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Single phase pure metals and alloys. d~formed ~t high

temp6rnture~ show large variations in the form of their ptrain~
. ,

ttm~ curves and in the stre~s dependence of th0 strain rate. At

pre~ent, it is not possible to predi9t theoretically the mechani­

cal responses of a giv~n alloy_

This thesis is concerned with the ~eformation of pure
" -

copper,' copper-S wt.' tin and iron-3i m.' silicon at t~pciratures

above half the melting point. Mechanical experiments involving

both constant load and constant'strain rate teats have established
,. .

that these three materials exhibit a spectrum of behaviour as wide

as nnr previously reported. Detailed microstr~ctural examination

hao revealed corresponding variations in dislocation arrangements ~
{

and in the extent of grain boundary distortion in crept specimens.
... ,~ .

. It .is '~rqued that the form of the primary .creep curve
.- ,'"-"

and strain transients following a ~ha~ge in stress, obtained in
, ." t

a given metal, is closely related to the mobility of mobile dis-

locations, rathe; than to an internal'resistance arising from the

substructure. To explain the observ~d mechanical respqnses, a
\ .'" :

lliode1 has been proposed' which provides sorno oeroi-quantitativ.e

predictions of mat~rial 'behaviour. Both th~ mechanical and micro-
, .

struc'i;ural"results suggest that the recovery theories of creep,
. t . .

, . " ~ ~ , ' "

~ which bard~nin9'and recovery.are cona~dered as separately de-
• • " I ~'. ~

f~nable par~aters,~ do not'deal realis~ic~y'~it~.thgc~eep. , . . ~ ..
. .

prooms,D. '~. .~, .
" ~ , .
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CHAPTER'l

INTRODUCTION

The mechanical behaviour of solids at elevated

temperatures is controlled primarily by thermally acti-

vated processes. As a result the strength of 'metals

decreases with increasing temperature .... An important -j.
characteristic of high-temperature strength is that it must

always be considered with respect to some time scale.

Under constant stress conditions, deformation at low

temperatures relative to the melting point is essentially

independent of time, involving only a very limited tran­

sient strain. At elevated temperatur~metal subjected

to a constant tensile stress will undergo a t~e dependent

change in length. This progressive dpformation at constant

stress is called creep. The differences in magnitude of

creep at high and low temperatures are a reflection of

'the fac~lity with which thermally activated processes can

proceed.

OVer the years a vast array of mechanical data has

been colleoted describing the strain-time behaviour of

many materials at elevated temperatures. This has led to

considerable advances in the understa.nding of creep mech­

anisms. Sufficient progress has been made that several of,

the deformation mechani~s have bean identified, and eq,ua-
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