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INTRODUCT1ON

The single distinguishable geometrical characteristic of
molecular crystals is that intramolecular bonded distanggs are
significantly smaller than intermolecular nonbonded distances
For e*ample, in hydrocarbon crystals the carbon hydrogen b;nds are
about 1 R whereas the Intermolecular hydrogen contacts are at least
2.2 R. The carbon carbon bonded distances are 1.2 to 1.5 & while
the corresponding intermolecular spacings are at least 3.3 R.

Hydrogen bonded crystais, in which an‘electron deficient hydrogen

atoé forms a weak intermolecular bond with a lone pair of electrons

or a regign of high electron density on an adJacent malecule ™, are

an exception to the above generallzation. Although the intermolecular
hydrogen bonds mgy be asizgort as 1.6 R, they are still classified

as molecular in nature.

This single property has had a profound influence on the
manner in which the theory of molecular crystals has been devgloped.

In genera\,‘they are classified according to the nature of the
Intermolecular forces thought to be of greatest importance in‘the
binding of their lattices. Hsﬁca, theoretical stu&les of these systems
are usually‘based on a priorf assumptions concerning the type of
Interactions to be included and as to the bairwise additivity of ;hese
Interactions. Little effort has been made In assessing the relative

lmportance of various types of intermolecular forces or pairwise

additivity by treating molecular crystals with a unified approach.
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The usual method of calculating the lattice energy is to take

ot

the difference in energy of molecular pairs and the isolated molecules

»

“ {

summed over the lattice. The intermolecular interaction is most

18
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often calculated by a perturbation method 3'% in which the wavefunction

S .
= S

on each molecule is expanded as a summation of excited free molecule
. I '

functions, Y , \\\\\x,

2

. \ (1.1)

where the jsummation is over all functions that involve the excitation

between the molecules, the wavefunction for the pair is written as
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a simple product and the resulting energy, up to second order in the
\

*
molecular potential, V is:
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The most Important feature of this result is that the energy appears
as four distinct terms: the first is the interaction between the
ground state charge distribution of the molecules and the remaining
terms are the dispersive contribugions to the intermolecular energy.
The last term is the one usually associated with the van der Waals
interaction betweerr molecules which have zero or small moments of

charge distrihution. Because of the form of the dispersive term it

is the lowest excited states that contribute the most to the van der



Waals interaction. The potential Vab is u;ua!ly expanded about the
centres of the two interacting molecules in a series of terms which
are the interactions between the various moments of the static and
transition charge distributions of the mole;u}es. The integrals are
then evaluated using experimental momenés of the static distribution
and molecular or bond polarizabilities by terminating this serles

at the first term that is not zero.

Buckingham® has suggested that 'the structures of molecular
crystals are-normally dete}m;ned by the Ieadikg multipole moments"
and Hagl and Nakamura® have confirmed that for N2, NZO, CO2 ahd co
the quadrupéﬂe quadrupole interaction has its minimum near the
actual orientation of the molecules in the lattice. However, Mason
and others 3'7°8 have shown that the major orientational effect is

the short ranged repulsions between nonbonded atoms due to the

overlapping of their charge distributions not included in equation

(1.2) and that although the dispersive term may contribute the largest

amount to the binding energy its variation with ornentat!on within

~

the crystal lattice is small. When all the terms of (1.2) are included,

the predicted values of the lattice energy, lattice constants and

molecular orientations are within a few percent of the experimental

’

values 3'7-11  However, the evaluation of the repulsion energy between

. 4
nonbonded atoms often requires the use of an empirically getermined

parameter which may offset any inadequacies in treating the other terms.

A method that has been useful in the study of hydrocarbon
crystals 1s the method of atom atom potentials 4,12-1%  yn.this

method the entire Interaction is taken between nonbonded atoms and

o
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is of the simple form
-6\‘ ]
Ar = + B exp(Cr) , (1.3)

with the constants fitted empirically from the equilibrium structures
of crystals.
Recently, a method of calculating the intermolecular forces
‘

by treating the dimer system as one molecule and using the difference

between this system and that of monomeric molecules has been used by

‘Hasimoto and Isobe 15,1® to calcu}ate the lattice energy of Ny, CO,,

C2H2; N,O; CO, HCN and F, crystals with some degree of success.

2 2
However, as this i{s a single determi;antal method, It cannot include
any diSperglve effects3 and its good agreement with experiment should
be questioned. This type of caicu!atlon for the dimer has been most
often applied to the hydrogen bond 17-23 put it has not as yet been
applied to extgnded hydrogen bonded networks.

The spectra of molecular crystals exhibit several Interésting
features. The absorption bands in a molecular crystal are generally
displaced from the free molecule energy and split into a humber of
components equal to the number of mslecules in the unit cell. The

spectrum of the crystal also exhibits a strong variation with the

direction of polarization of the Incident light, transitions forbidden

.in the vapour may appear, molecular vibrations change slightly and

lattice vibrations appear.
In order to explain the number and polarization of the crystal

excited states Davydov applied Frenkcl's theory of ''excitation

“waves'' 2% | excitons, to molecular crystals 25, In doing so Davydov
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considered only excitons in wh[gg the elestron and hole were tightly
bound, that Is spread over only one molecule at any partlculér time
as they travel throughout the lattice. The main result is that the

excltation energies can be.written

MW= pE+D+ ] )T w0
11

aMig,m (1.4)

where AE is the excitation energy of the isolated molecule, D is the chadge
in the Coulomb Interaction of a molecule with the lattice upon excitation,
MlJ,ﬁm Is the energy corresponding to the transfer of the exciton

from the molecule at site & in unit cell m;to the molecule at site i

In-cell j and the w

Al

crystal factor group. The matrix elements Mtj m for different
’

sites, i#4%, determine the splitting between the components that arise

are coefficients that are determined by the
N

from one electronic B;nd in the vapour and the elements for which
I=2 contribute to the shift of the centre of the band from the vapour
spectrum. The required matrix ¢lements are usually evaluated by
expanding the Interaction potential in a series of multipole-multipole
t§rms. For strong transitions, the leading dipole-dipole terﬁ is
often usea. This method has been used by Davydov 25 and others 26-30
for the ;tudy of strong trapnsitions In various aromatic hydrocarbons.

For weak transitions the transition dipole moments become
small and 1f the Intermolecular interactloq is represented b& the
dlpole—akpole term alone the spl{ttfngs are too smali and the polarizations

_different from the experimental values. - Craig 31-32 has suggested

that a crystal induced mixing of the upper state of one transition

e i 2y
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with the upper state of another, called second order mixing, takes
place and as a result. the intensity of the weak transition is increased
and the polarization ratio changed. Craig also showed that the inclu-
sion of higher multipoles in the evaluation of the integrals can
account for the larger observed splittings. Jortner, Rice and

Silbey 30,33-35 have shown that the inclusion of charge transfer

. -

states Iincreases the splitting but does not affect the polarization \
ratfo significantly. - Both.the theoretical and experimental aspects ﬁ
of the spectra of the crystals. have extensive literatures that have
been reviewed by several authors 38,

Although many of these methods satisfactorily predict some
properties of molecular crystals, for instance structure and lattice
dynamics or the spectrum of the excited states, there is-no one j

\

single theory which makes predictions of iattice energy and crystal

spectrum, A theory of the electronic properties of molecular crystals
should predict the re!;tive importance of the various forces resgonsible
for the binding of the jattice as well as the charge distributions

and electronic spectra. The overall objective here 1s to investigate
the development of a theory of the electronic properties of molecular
criystals which makes no a priori assumptions concerning the type

of Interactions to be included or of pairwise additivity which can

be used to study many aspects of this type of system. RN

e

In order to accomplish this end a perturbation theory for
the total crystal energy and molecular charge distributions for
crystals éflstrongly Interacting molecules is presented in chaptef

one: in order to assess its applicability to different crystal types

™~



it Is applied to a series of crystals in chapter two; {n chapter

three a method of obtaining the crystal orbitals and hence the band
structure and density of electronic states is presented and in

chapter four a theory of the excited states of strongly interacting

crystal molecules is glven.




CHAPTER 1

Basic Theory

§ 1.1 Molecular Orbital Theory

The foundation of the molecular orbital method3? is the
approximation of a many-electron wavefunction for a system of several
electrons by a product of sing}e-eleétron functions called molecular
orbitals. The electronic description of the ground state of an n
electron system is obtained by the occupation of the n molecular
orbitals of lowest energy according to the aufbau principle.

As for all quantum mechanical calculations for stationary

states, the starting point is the time Independent Schroedinger equation,
HY = EY |, (1.1)-

where H is the quantum mechanical Hamiltonian operator for the system
and ¥ is its wavefunction inzthe stationary state with total energy E.
Neglecting relativistic and mggnetic effects, the Hamiltonian for a
system of nuclei (labelled by A and B) and electrons (labelled by i

and J) can be written

£2 y2 42 g2 ez e?7. 7 e?
A A A
H=-] -1 -11 +1 ] B +y) —
A ZMA i Zme Al rA’ A<B RA8 i<]- rij
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Is the total kinetlic energy of the nuclei

each of mass MA’

is the total kinetic energy of the
electrons,

Is the Interaction energy of the electrons
and nuclei each of charge eZA,

is the electrostatic repulsion energy
among the nuclel,

is the electrostatic repulsion energy
among the electrons,

units, where

A
e2
-a..-nl’aonl,me=1,and‘ﬁ=1,
0
- . ,,V—
tlke Hami ltonian becomes
v2 v2 z 2,2 .
A i A AB
AN SRR Trarit Sl ¥ w3 Sl

(1.3)

(1.4)

(1.5)

(1.6)

(1.7

(1.8)

(1.9)
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Since the motlons of all the electrons and nuclei are
coupled through the interaction terms of (1.10), thechhroedinger
equation Is exactly soluble only for two particles. However, the
Born-Oppenheimer 38 approximation allows for the approximate
separation of the electronic and nucltear motions. When the nuclei

are in fixed positions (TN = 0 and VN = a constant), it is assumed

N

that there is a set of electronic functions, @e, that satisfy an

approximate electronic Schroedinger equation

Ho, = Ee¢e (1.11)
where

Hy = Tg + VEN + VEE | (1.12)
and Ee Is the total electronic energy of the system. |if Qe varies

slowly as a function of the nuclear coordinates, then the electronic
energy Just provides part of the potential for the nuclel and the

equation for the nuclear motion is:
e

-

(Ty * Vo Ee)q»n = €0 . (1.13)

NN

Here, E Is the total energy of the system and ® is a set of nuclear
wavefunctions. Neglecting small cross terms,the total wavefunction

under the Born-Oppenheimer approximation is the product function

¥ o= ¢e@n . ' (1.14)
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¢ .
and the motions of the electrons and nuclel are effectively separated.

As a result of this separation the electronic problem can be solved
for fixed nuclei and then the nuclear energy added to obtain the tatal
energy.

It is the solution of (1.11), the Schroedinger equation for
the electrons moving In the potential of the fixed nuclei of a
molecule, which is usually of central concern to chemists. But, because
the motions of the electrons are correlated, accurate solutions have
only been obtained for systems of up to four electrons 3%, However,
the variational method *0 allows the approximation of the ground
state energy and the molecul;r orbitals for the system without solving

the Schroedinger equation. It can be shown that the expectation

value of an approximate wavefunction, Wt, with the Hamiltonian, H,

provides an upper bound on the exact ground state energy, Eo. That is,

{ ¢iuy d ’

———;—————-ttT-Egﬁ (1.15)
t 0. .

I ?t?tdt

This provides a simple means to approximate the exact ¢e by the ]
adoption of a trial function which depends .on some set of parameters; the
Best such function s the one which minimizes the energy Etwith respect
to variations In those parameters. s )

The trial Functfon ma§ be taken as the simple product of
one-electron functions known as the Hartree product *l. . However,

since electrons have a spin of ¥, they obey Fermi-Dirac statistics and

their wavefunctions must be ant!symmetrib with respect to the interchange

of electrons 37, Therefore, to properly account for electron spin,

8

[P,
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1inear combinations of Hartree products must be taken. A convenient
way of expressing these combinations is the Slater determinant “Z,
For a 2n electron system this determinantal trial function Is

expressed as
¥, = 120) )7 ¥ o, (D5,(2)4,(D5,(1) « + « ¢ (2n-1F (0] (1.16)

For the closed shell ground state, the electrons are
assigned in pairs to molecular orbitals, ¢i’ which are one-electron
functions of the spét!al coordinates of the assigned electron, the
two possible spin states of the electron,a and B, being denoted by
an unbarred ¢ and a barred ¢ respectively. This determinantal form
of wavefunction is one which Ts properly antisymmetric with respect
to interchange of electroqf. Thus, it accounts for the Pauli principle 43
which arises from Ferm! electron correlation.

Lennard-Jones “% has shown that under an orthogonal transformation
of the molecular orbita&s the wavefunction Wt remains essentially
unchanged (to within a multiplicative constant). This makes It

possible to transform the molecular orbitals to an orthonormal set

without any loss of generality. Hence, for the sake of simplicity,

A *

it may be assumed that the molecular orbitals form such a set.
Using (1.16), the expectation value of the Hamiltonian (1.12),

]

under the assumption that the molecular orbitals are orthonormal, Is
.Q. AN

n
) Gy + ] @y =) | AN CRYS

l
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where

Moy = <q, (D ]-492 - ] 28 Jo. (1), (1.18)
A TiA

RV THSIRCE " (1.19)

Ky = <6 (D8, @) l;%-z-wj(ﬂcbi(z)h | (1.20)

and the labels | and ] refer to the molecular orbitals. The er-
electron Integral H{l represents the energy of an electron In molecular
orbital ¢‘ In the field of the bare nuclei. Jij Is the Coulomb
integral and is the electrostatic interaction between the charge
distributions ¢T(1)¢i(1) and ¢j(2)¢j(2). KU Is the exchange integral
which represents the reduction in energy due to the Fermi correlation

between electrons in orbitals ¢‘ and ¢j. Under the Born-Oppenheimer

approximation, the total energy is now given by
- A°B .
E=E +)) — (1.21)

The Hartree-Fock orbltals"> are the best possible ¢i determined

by the varlational theorem subject to the orthonormality constraints

$lop =85 (1.22)

Using the‘met od of Lagranglan undetermined multipliers 40, the
Hartree-Fock orikjtals are found by applying variations In the ¢} to the

functional

T




V.
E = Ee - %

bl e =1

<

n
§ e (o lepr v <olep)

and setting the result equal to zero., The ¢

14

(1.23)

are the undetermined

t
multipliers. The resulting conditions for 8E = 0 determine the

molecular orbitals and are given by

n < n
{H, + § (2Jj - KJ)}I¢5> - § l¢j>ej,

and
# N X% n
<¢ |1+ § (20 - K} = § TR

The operatdrs Hc’ 43 and Kj are defined as

Z .
HTe, (10> = (492 - T Ayl (1)>
Atia

3jle (1> = <oy @ I-e; @)oo (10>
and g

K 1o, (1)> = <¢J(2)I;%;|¢,(2)>l¢j(1)>

Since, for the closed shell ground state, the ¢

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

form a hermitlan

]
matrix 5, the two tonditlions for §E = 0 are equivalent (each others

complex conjugate), and there is a unitary transformation such that

the right hand sides of (1.24) and (1.25) are diagonal. The canonical

=,

T A e
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Hartrec-Fock equations are then

n
H_ + § (2JJ - KJ)}‘QK(1)> - C;l‘®;(1)> (1.29)
or
F‘Qi(1)> = EEi‘¢i(‘)> (1.30)

where F is the Fock operator defined by the above. The cii(often
¥

written as Cl) are the orbital energies and are minus the vertical

fonization energies of the electrons in orbitals ¢i“6, The total

energy Is not just the sum of the drbital energies but 1s modified

by the Coulomb and exchange Interaitions as shown in (1.31).

o)

_ n
E_= ?ii{Zci[ - §-‘(2Jij - 'ij)}. (1.31)

The molecular orbitals, In principle, cag be determined by
solving equation (1.30). However, excépt for the simplest molecules,
this is computationally out of the question and approximations to
the Hartree-Fock molecular orbitals must be used. Commonly, the
molecular orbitals are expanded In some set of basis functions and
the varlational theorem applied to the expansion coefficients. In
the LCAO (Linear Combination of Atomic Orbitals) method, the basis
functions are a set of m atemic orbitals, X,» On the\atoms of the

o

molecule and

-

m
ép =L Sy, R (1.32)

P ——
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]

where the Cv are the expansion coefficients. This method has an

i
added advantage as for many molecular problems it is convepient to
relate the mélecular orbitals to the atomic orbitals on the atoms
of the molecule. The conditions for a minimum invE‘ (GE' = 0)
become a set of equations for the expansion coefficients known as

the Roothaan equations “°.

m
) (Fly ™ &5,0)6 =0 ueE 1,2, cce,m (1.33)
=1

or In matrix notation .

FC = SCE ' (1.34)

in (1.33) SW is the overlap integral between atomic orbitals X, and

X, and
n m m » 1
fuv = b e b6t (D@ Izl (2, (0>
R
= <, 10, @) 7=l (20, (1)) (1.35)
or

nomom

L E;&,lgﬂc’\lcdi{u“"“ L (1.36)

&

Where the core Hamlltonian, Coulomb and exchange integrals in the

atomic basis, H J , respectively are defined by the

uv? “uvao and Kuv

Ac

above. Under the LCAO approximation, the electronic energy can be

-

i

R

i Ry T
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HY
3
written
- m m ';
E = P H F . N
LR qun‘ ! “Yf w (1.37) |
where 3
P =2 E ¢ ¢ (1.38) {
w J=1 wjvj \ 3 {

s the population matrix and the sum in (1.38) is over the n doubly i
-

occupied molecular B}bitals.

e R,

The Roothaan equations (1.33) are algebraic and hence less
difficult to solve than the differential Hartree-Fock equations (1.29).
Even so, they gave to be solyed iteratively since the elements of
Qbe Fock matrix, the Fuv’ required to construct the equatlon§ depend

on the solutions of the equations themselves, the cui' The usual

method of*solving equations (1.33) -isas follows: Assuming a set of
expansion coefficients the approximate Fock and.overlap matrices are ‘
calculated. Equations (1¥33) argjthen solved by diagonalizing the
Fock matrix and the resulting coefficients are compared with the ’
assumed set. If thelr difference is' less than a given amount the self
conslstent”solution has been found, iﬁénot, the new coefficients are
QSed to construct a new Fock matrix and the diagonalization is repeated.
Because of the self consistént field procedure used to solve the
Roothaan equatfons,g%he molecular orbitals obtained by this method

are known as the LCAOSCF (Linear Co atfon of Atomic Orbitals Self

Consistent Fleld) molecular orbitals,
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§ 1.2 The CNDO Approximate Method %7-S!

Tge theory presented to this point involves the evaluation of
a number of integrals and an algebraic self-consistent procedure to
determine the molecular orbitals. Unfortunately, this method is
not readily adaptable to molecules of large size because of the
numerous Coulomb and exchange integral4 that must be evaluated. In
this sectlion an approximate method Ehat avoids m&ch of this computa-
tional effort for large systems is presented,

The CNDO. (Complete Neglect of Differential Overlap) theory
of Pople, Santry and Segal %7 is based.on the‘LCAO§CF procedure and
retains the essential features of electron repulsion but avoids the
calculation of many of the Integrals and approximates others using
éxperimental éata. The Targe saving in computation arises from the
;:Ziect of lntegrgls that involve the overlap distribution Xu(1)xv(l);

with y ¥ v, in the Integrals

J

1
o = X (1%, (2) |-F]—2-|xc(z)xv(t)> | \ (1.39)
‘= (uwv|20)
and
K s <xu(1)xA(2)|;%;|xv(2)xa(1)> o G
(o {av)

¥
4
¥

The round bracket notation illustrates this overlap more clearly

than the Dirac notation used previously. A further reduction in

P ]
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computation Is achleved by treating only the valence electrons
explicitly, the inner shells acting to modify the nuclear potential,
ZA' in the Hamiltonian. In order to take advantage of the neglect

’ .
of differential overlap and the inner shell electrons, Pople, Santry

and Segal *7 make the followlng assumptions.

Approximation 1:

The X, are treated as {f they form an orthonormal set. That

Is, the overlap integrals, Suv’ in equation (1.33) satisfy

L ‘ (1.41)

-

For'orbitals on the same atom Suv is already zeyo. For orbitals on
different atoms (1.41) {s not quantitatively agzurate but simplifies
the subsequent analyslis considerab\y.\iThe coefficients in equation
(1.32) then form an orthogonal matrix and the orthogonality condition
on the ¢‘ becomes

2 c [- . (1.42)

wi g . '

Under this approximation, the diagonal elements of the bond order

matrix, Puu, are the electron populations of the atomic orbitals and

E Puu = 2n . | (1.43)

Approximation 2:

All two ¢lectron integrals that depend on the overlapping of

charge distributions of different basis orbitals are neglected. That is,

3
’

-

P —

e T -
S .

o
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B
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(wlro) = Cuulaads 6, (1. 44)

= Yukﬁuvéko

This approximation can be bartialiy Justified by approximation 1,
as Su“ is the magnitude'of the overlap distribution xu(I)xv(1) and
has already been neglected.

With approximations 1 and 2 the theory is nst invariant
under transformations that mix any atomic basis orbitals on the same
atom or the rotation of local axes. In order to restore this Invariance
approximation 3 is made.

Approximation 3:

-

The electronic interaction integrals, Yuv’ are assumed to
depend only on the atoms to which X, and Xy belong and not on the
actual type of orbital. The Yo reduce to a set of electron-interaction
integrals, Yag? that measure the average repulsion between a valence
electron on atom A and one on atom B.

Under approximations 1 and 2 the matrix elements Fuv are

&£

F H o+ 4P + P ' 1.4
LTV LR A g,‘u oo "uo (1.45)

-

Fuv = Huv - *Puquv . _ (1.16)

After approximation 3, they are

= - P 1.4
Fan = My iPuuYAA * g_ BB YAB \ (1.47)

P

o enn PO -A.,..,"......w‘..
. e
R T R K
L S S VPP IV SR T SR D S SO

R

At o ST T
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Flv ™ Huv - *PuvYAB (xu on A, xv(on B) (1.48)

Where P88 Is the valence electron density on atom B,

Py = 10 P
\Y

(1.49)

AAY

and the summation is over all atomic orbitals on atom B.
The matrix elements Huv of the core Hamiltonlan Hc, defined by
equation (1.26), are next developed. The diagonal elements, Huu,

can be written as one and two centre terms

L (u]-4v% - v, lu) - g#A(u|VB|u)

u
&
=y -7 (ulv.]n ~ "(u on atom A) (1.50)
uu g#A BT
ZA
where VA a 717; . ' . (1.51)

and Z, ts the core charge of atom A (the nuclear charge plus the charge

A
of the core electrons). The Uuu are essentially atomic parameters
and are chosen from experimental data. Discussion of the numerical
values will be left to later. Similarly, the off diagonal elements
canbe written

Hy=U, - ggA(ulvB‘V) (w and v on atom A) (1.52)

where qu Is a one electron matrix element that Is zero by symmetry

~q
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if Xy and X, are s, p or d type functions. The remaining terms are

the Interaction of Xuxv with the cores of other atoms. Since

»>

differential overlap is neglected, it is necessary to make approximation

L, N "

i

Approximation 4:

Integrals of the type (uIVB]v) where p and v belong to atom

A satisfty

(ulvalv) = SquAB {(1.53)
and VAB is the same for all valence orbitals,
Then,

L §¢AVAB ‘ (1 on atom A) (1.54)
and
Hy =0 ’ (» ¥ v but both on,the‘ 1.55)

same atom).

{

The remaining matrix elements Huv where u and v are on different atoms
are taken to depend only on the local environment between the atoms
and not on any interactions with distant cores.

Approximation 5:

’

The off-diggonal core matrix elements between atomic orbitals

on different atoms are written

o .
Huv g\Fuv = BABSu\! = (1.56)

[
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where Suv Is the overlap integral and B:B Is a parameter that depends

only on atoms A and B, The method of choosing the BZB

the next section. The Fuv matrix elements then become !

's is given in

Fuw = Yy * (Pap 3P dvpp # g#A(PBBYAB - V,p) (1.57) |

[+
F v 8AB Suv _%PuvYAB (1.58)

Equation (1.58) applies even when yu and v are on the same atom,

whan Suv = 0 and Yag = Yaa

Under these approximations the total energy can be written

as a sum of one and two atom terms

E-zh+§£5” (1.59)
where
EA. A p P U ZAZA PLPoy 32 )T (1.60)
and
EAZB (2P 8.y = ¥P2 vpp) ) .

+ (ZZgR 7 - PpaVis = PogVan * PaaPap¥ig) (1.61)

AB"VBA and YaB all”’

approach Rf‘ so that the last group of terms In (1.61) becomes QAQBR‘1,

For large interatomic separations, the integrals V



. 2k

where QA is the net charge on atom A. This illustrates that the

theory takes proper account of the interaction of charged atoms in

[S
LY

a molecule.

The CNDO/2 Parameterization “9

In order to specify a CNDO calculation, values for ‘the overlap
integrals, Suv, the core Hamiltonian elements, uuu and VAB’ the
electron repulsion integrals, YAB’ and the bonding parameters, SZB,
are required.

The overlap Integrals are calculated explicitly using formulae
given by Mulliken, Rieke, Orloff and Orloff 52 for Slater atomic
orbitals. The electron repulsion integrals are calculated from the
two centre Cou\%wb integrals for s type functions given by Roothaan 53,

The parameter VAB’ which represents the interaction of a valence

electron on atom A with the core of B, is taken as

Vag = ZpYpg (1.62)

The significance of this cholce can be seen if (1.57) is rewritten as

Fop = U+ (Pay 40 Mpp + ng(-QBYAB + (Zgvpg - Vpe)), ‘(1.63)
where QB Is the net charge on atom B,

Q = Z; - Py ' (l.ék)
The chpice of Vg makes the penetration integral S%, (zéYAB - VAB)’

zero. This neglect of penetration partially offsets the effects of

- <

ety > S i

[
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the neglect bf differential overlap 2.
The one elect;j::;ocal core matrix elemepts, Uuu’ ;?g
computed from observe ‘ omic spectra. Under the CNDO approximation
the electrontc energy for a configuration 25m2pn for an atom or ion

~

A 1s glven by
E(A,2s™2p") = m Upags * N UZpr + 3 (m+n)(m+n -1)YAA (1.65)

Since several states arise from each of these configurations, the
energy s taken as an appropriately welghted average of the experimental
energies. The core integrals can be estimated from ionization
potentials and electron affinities, calculated from the energies of

the average states, by using the relations,

4y + A = U,k (2, - By, (1.66)
2y, v A) = Uy * (2, - vy (1.67)

The fonization potentiaks, {, can be calculated using spectral ;ata.
However,'sufficlent data for the accurate determination of the electron
affinities, A, for most elements is not available so that Pople and
Segal "8 based their evaluation on the affinity of lithium for an s
electron and carbon and fluorine for a p electron, Using these
electron affinities obtained by Edlen 55 and spectroscopic d;za of
Moore 5% .. the values of {iZS + A2s) and (‘Zp + A2p) were calculated

for lithium, carbon and flourine and were obtained by quadratic

Interpolation for the rest of the first row elements. For hydrogen,

=
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the observed value of 13.605 eV was used Forlf and the calculated
value of .747 eV for the electron affinity. Tables of these values
are given in referenced!,

in order to reduce the amount of empirical parameterization

the remaining parameters, the 626, are taken to be of the form

Bag = H(By + 87 ‘ (1.68)
with the Bz depending only on the nature of atom A, so that oﬁly
a single parameter Is chosen for each element, The values were
selected to give the best overall fit of molecular orbitals and
orbitaj energies with more detalled LCAOSCF calculations on diatomic
molecules using a @inima} basis set. The values of BX obtained
from the analysis are also given In reference !,

The CNDO method is known to reproduce the geometries
of molecules reasonably well. The bond lengths are usually calculated
to within ten percent and th; angles to within a few degrees °1!.
The orbital energy dlfferences'for the ocfpied orbitals agree well
with those from more detalled calculations, however, although the
ordering of the unoccupied virtual orbitals Is usually correct, their

spacing, in general, is too large making the values of the excitation

7

éhergies calculated too large 57, Fortunately, the charge distributions

produced by the CNDO method are in reasonable agreement with more

detalled calculations 58739,

s st o 3 i enr
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§1.3 The SCF Perturbation Theory for Molecular Crystals 60-65"

The SCF perturbation theory for molecular crystals was first
proposed by Bacon and Santry 69:81 for the case in which the molecules
in the unit cell are symmetry related. Later, Crowe and Santry ©2,63
extended the theory to crystals in which the unit cell molecules aré
not necessarily related. The non-empirical version of the theory
has recently been given by 0'Shea and Santry &%,

In order to develop the perturbation equations, the SCF

matrix equation for the crystal under the neglect of overlap is

written .
FC = CE (1.69)

Where the matrices F and C are now referred to a basis set of
atomic orbitals centered on all the atoms on all the molecules of
the crystal. In order to aid in the explanation and facilitate the
solutlion of the matrix equation, the basis set is assumed to be
ordered so that all of the atomic orbitals associated w{th a given
molecule are collected together as a group.

In their treatment, Bacon and Santry consider all the
Interactions bgtween all the molecules in a crystal as a single
perturbation through the _solution of the SCF perturbation equations.
These equations are derived by expanding the matrices F, C and E

In the various orders of the perturbation as follows:

E uE(O) + )‘E(‘) + AZE(Z) + ASE(3) ‘e, (’_70)

tThe correspondence batwesn thls work and that of McWeeny for
the denslity matrix is given i{n appendix 3.

d
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‘(2) . A3(_:(3) e (1.i1)
. (1.72)

Substituting these expfimsions in the matrix equation (1.69) and
equating the coefficients of like powers in ) yields the perturbation

equations which can be summarised as

n n
) E(m)g(n m) ) g(n m)g(m) ’ (1.73)
m=0 m=0
th

for the n-~ order perturbation.

Because of the molecular character of the crystals under
conslideration, the zero order solution of (1.69) is chosen as the
molecular orbitals of a hypothetically non-interacting lattice,

l.e. an oriented gas. These orbitals satisfy the zero order equation

(0} (0)

where F and € ""are assumed to be block diagonal because of the
basis set ordering. The diagonal blocks are the fock and molecular
orbital matrices for the isolated molecules. With the above choice,
since the crystal Is made up of identical molecules, the zero order
solutions are highly degenerate and reducible under the crystal space
group symmetry. Since the inclusion of any intermolecular interaction
requires that the crystal orblitals transform irreducibly under the

(0)

crystal space g}oup, a zero order transformation of the C'"''s should

be undertaken. Fortunately, this transformation is unitary and

T s

e e
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therefore does not affect the bond order matrix or the crystal
binding energy 44 snd may be neglected in the calculation of these
quantities. Hence; equation {1.63) Is solved directly for the

bond order matrix in preference to the orbital coefficient matrix

C. With the neglect of this transformation the orbital energy matrix
cannot be calculated directly; however, it will be shown in chapter 3
that the transformation can be applied, after the completion of the

perturbation calculation, to calculate the elements of E.

The orthonormality of the C's,

Yo=1, (1.75)

-

I's used as a constraint In solving the perturbation equations and

since the zero order solutions are already normalized,

rf (?_f(m)g(“"“) + ?_f("'“‘)(_:('“)) =0, for all n > 0. (1.76)
mm=0

The nEtl order change In the bond order matrix is obtained by expanding
P In the same manner in which F, C and E were expanded, substituting
(1.71) into the expression for the bond order (1.38) and equating

the coefficlents of like powers in ). The net result is

|

{m) ~(n-m) -
0 cﬂ? CV5' ' n>0, (1.77)

c

{n) ¢
5vn -2;

i

where u and v label atomic orbitals and the summation over i includes

all occupied molecular orbitals. .
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The first order equation is solved by expanding the perturbed

molecular orbitals in tefms of the zero order orbitals, g(o). That

s,

A o (1.78)

where A is a matrix of mixing coefficients. Substituting (1.78) into

the orthonormality constraint (1.76) for the first order gives

¢
AIJ AJ{ 5 (1.79)

and, therefore,

A, = 0. , (1.80)

Substituting Into the perturbation equation (1:;73) shows

(0) (1) .(0) ,, (0) (0) (1) ,, (0) (o)
Ay = & ET g /(eJ -e; ) = Fi) /(eJ -e ), (1.81)
where §§0) ls the zero order molecular orbital and efo) is the
corresonding orbital energy. Explicitly,
(1) (o) (1) (0) '
= z 2 uv vj (1.82)
v .

The corresponding flirst order change in the bond order matrix is

glven by

ogcc all
P 227 Y (Dl s () (0))A

i z vI (1.83)

21



As the crystal molecules are identical, the zero order solutions

are degenerate and the denominators of the A ., in equation (1.83)

21
will be zero for many of the terms in the occ-occ part of the sums

(1)

over | and &. Hence, the expression for P appears singular but

It can be reduced to a nonsingular form. Using the skew symmetry of

A, equation (1.83) can be reduced to i
(m _5° (o) (0) , .(0).(0)
Puv = 22 z <C Cog ¥ cuz vi )AL (1.84)

{ )

which 1s non-singular. This reduction also reduces the computation

rquIred to calculate the bond order which must be done lteratively

as E(j) depends on A through P( ) .
—.—-—'3’/

Proceeding in a manner similar to that for the first order
solution, 9(2) Is expanded in terms of the zero order molecular
orbitals, -
¢ o @4 (1.85)

The matrix B Is skew symmetric and analogous to the first order

“matrix A. Substifution into equation (1.73) yields

Biy = 'Bjtf | ~ (1.86)
é:g =0 _ (1.87)
and |

B“J - an)ﬁ(z) gj(b) /(%o) _h efO)) - (2) /(e (o) go)).~ (1.88)

TThls reduét!on can be avoided. See appendix 3. ‘ .

3




The second component b has no counterpart in the first order theory

and s neither symmetric nor skew symmetric. It Is a second order

quantity that arises from the summation of pairs of first order

j
quantities. Equation (1.76) gives

=-) A A (1.89)
iy ¥ Py % IR

Substitution into the second order perturbation equation yields

T

e

(1) (o) _
(2 Zj }/(e

Myes §°>). (1.90)

bU={§

Using (1.85) and (1.77), the secord order change in the bond order

A \&
matrix s given by
11 all |
(2) _ %% 5" (0) . (0)
Puv =2 Z z z AkIAzicuk vi
i k2
occ all (
0).(0) (0) (0)
+2] 108+ bk,uc Coe! + Cipled). (1.91)
This exéresslon for P(z)‘!s singula? and must therefore be reduced

t0 a nonrsingu}ar form The contribution from the -skew éymmetric
componen; Bkl can be simpltfied in the same way as equatlon (1.83)

but the remaintng terms present a more difficult problem.

, (1& \the by contributi

tising

to (1,91) can be written,

32
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QCC vac (0) (0) (0) (0) 'I OoCC OCC vac (0) (0)
2 ? E (Cui cvk + Cuk cvi )bkl -2 g E z cul vk AziAlk
0CC 0CC OcCC
. (0) . (0)
2‘2 E }:C Cox AuiPak: (1.92)
The last term of (1.92) cancells part of the first term of (1.91).
Thus,
(2) . OcC vac vac (0) (0) occ vac (0) (0) (0) (0)
Pav = 21 }Z Z» I Gk Sug APy * 'Z LAC e * Gty )8y
GCC 0OCC vac (0) (0) ‘; OCC vac (0) (0) (0) (0)
=L L Loy Aghm t L L (C e L
ik 2 x I
occ vac occ
(0) . (0) (0 (0)
)L Llegieg ] e iel )AWAM} (1.93)
P k2
Some of the singular terms in the second order bond order have been
eliminated, but two, the fourth and fifth, still remain. On
collecting these two terms together one has:
oc occ
(0 (0) , ((0) (D)
g E(C Cok *cuk vi 1By * g Agghyi) - (1.94)
Using (1.90) and
. o
e el T \ . (1.95)

SN
the second part of (1.94) can be expanded, -

-
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occ

* oce all
(1)
A Z APt

: (0)
* ; Maher? = é Frg Agp/ler -

(0)
(b, € ) *

e (1) (0) _ (0)
Fri Aa/{eg - )

(1.96)

By making use of (1,80) and (1.81), the right hand side of equation

(1.96) simplifies to

vac

A ) + T - 0

ke 2i ki

Thus, the second order bond order is given by

(2) oCCc vaC vac (O) (0)
P 2( % E N Z uk Cug Akifeg

0occ vac vac
T - T -

OocC ‘

. O R

~

okc @ 0).(0 0).(0
-% g g E (C( ék) + cﬁk) éi) Agpifgi) -

(1.97)

eéo))

(1.98)

Equation (1.98) has no singular terms ard may be used when the zero

order solutions are degenerate.
following notation

pl2) 2(°§CGVEC vfcc(")c(o)A A 02

(0) (0)
v 2R I ST 21 t Z (c,

c(0) (0
uk vi

It 1s useful to introduce the

(1.99)

)

34
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where, if | and k label octupied and vacant orbitals, respectively

. vac - occ , '
B, = %FéL)A“ + E A&Fép + Fg)}/(sfo) - e,EQ)), (1.100)

and, if { and k both label occupied orbitals

vac

pki = -} % AkPai (1.101)

, A}

The terms collected underJ® are also useful in the calculation of
the third order bond order matrix. The second order bond order
may be separated into two pagts, iterative and non-iterative. The

(2)

only iterative part is the F contribution which depends on B
th}ough 5(2). The non-iterative component arises from proéucts
of A and 5(1) and need be calculated only once, on the completion
of the first order calculation. B

A non-siﬁgula} expression for the third order bond order

may be obtained in a manner similar to that used for the second
order bond order. This bond order also has iterative and nbn-iterative
terms and the non-iterative parts depend only on the first and
second order solutions. Thus, if they are solved consecutively

" starting from the zerpth order, the perturbation equations for the
various orders are independent. Each order contributes toball Qigher

orders and is simply added on as constants.

The basic approach to the solution of the infinite bond

order matrix equations is to break them down into infinite sets of

R
s
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finite sub-matrix equations by means of the special ordering of the

basis set. The crystal bond order matrix is then built up from

these sub-matrices.

The numerous sub-matrices that appear in the thebry are |
labelled according to the lattice molecules involved, by the unit ﬁ‘
cell they occupy, R, and the site within that cell, u., All the

(n)

crystal matrices, except the C*'“'s, are partitioned into intra-

x

and intermolecular sub-matrices,

RuSyy (1.102)

where the,sub-matrix'Rusyg has etements between the atomic orbitals

L)
on the RuEb and Sysb molecules, Generally, the sub-matrices

RuSy'j
th th

are not square unless the Ru=- and Sy-- molecules are of the same

chemical species. The diagonal‘sub—matrices, where R =S and u = vy,

are the intramolecular submatrices and the off diagonal sub-matrices

are intermolecular sub-matrices. O
Expressions for the crystal bond order sub-matrices are

obtained by partitioning and part?ally multiplying out the equations

for the corresponding bond orders making use of the block diagonal

form of C(o). From (1.83)

7
OLCru"3%sy u (0) yc(0) syRu, 2°§cSyva°Ru uz(0) y.(0) Rusy
; E ni At E Soi

- RuSy, (1)
Puv -2 vk i uk

ki?
1
occ (1.103)

where J RU-sums over all occupied orbitals on the Ruth molecule,

ug(0) i;

ui the 1&h zero order molecular orbital coefficient for the
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uEb atomic orbital on the RuEE molecule and
SyRup XSy ERU yc(O) SyRuF(1) uC(O)/(e(O) } 6(0)). (1.104)
ki bV puk Ny vi i k

(1)

Hence, the matrix equation for P’ ° has been broken down into an

infinlte number of finite matrix equations that are coupled through
the corresponding Fock matrices but can be more or less decoupled

by means of the lattice symmetry. Similarly,

»

RuSypsg) ~2] z°§°TwV§°RuV§°5y RuTw

SyTw u (0) Yc(o)
Tw i k L Vi

A M Sk

oﬁcRuaz] y SyRﬁskiu (0) yc(O) + 2°§°Sya%‘Ru Ru U (0) yc(o) -

ni i K ki

(1.105)

where the summations over T and w Include all the molecules in

the crystal., ‘Fortunately, this series is strongly convergent so

- that few terms need be included. This second order contribution

f
explicitly includes three molecule tnteragtioés; that is the Interaction
of two molecules modified by their interaction with a third.
| The corresponding expressions for the third order sub-matrices
may be derived in a similar manner and include four molecule interactions.
Expl}ctt expressions for the‘Fock sub-matrices negessary
for the calculation of the bond orders are give below. Although

these expressions are presented in terms of the CNDO approximate

method, the theory is independent of this approximation 22,

PN

{
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(1) Zero Order Fock Sub-Matrices, Rusyg(o)

Since the zero order solution of the perturbation equations

Is chosen as the molecular orbitals of a hypothetically non-interacting

lattice, all of the zero order Fock sub-matrices are intramolecular
in character -and, under the CNDO approximation in a notation that '

reflects the crystal problem, are given by

-

RuRuF(O) - RuRuu - (RuQ(O) - Ru, )YRuRu

uu LU B g° "aB
+ (RUQ£O) _ iRuRuP(O))YRuRu . (1.106)
RuRu_ (0) RuRu (0) RuRu .
. FUV -} uv Yo (1.107)

where u and v label atomic orbitals on the a and 8 atoms of the
Rugb molecule. (0) ZB are the zero order charge density
and effective nuclear charge for the B-- atom of the Ru—- molecule,

RuRu is the CNDO electron repulsion integral between the aEb and

Ya8

BSD atoms of thg Ru-t-}-T molecule and R“RUUuu is the one electron CNDO
matrix élement/ .

(11) lntramolecular‘Sub-Matrices, RuRuE(n)’ for n > O:

For n > 0, the elements of the ngb order intramolecular

Fock sub-matrices, unde} the .CNDO approximation, are given by

BuRuFig) -0 g E(SYQ(O) Sy, ) RuSy)Gln £ g ) SyQén) zzSy

_sRuRu {n)_RuRu n ~
3 Puu Taa ° iy (1.108)

S S 11, o WIS i o i
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RuRu.(n) _ _;RuRu,(n) RuRu
FUv 3 Puv Yag (1.109)

-

SYQ(“) and Yz

xhere g are, respectively, the nsb order change in the
total electron density and the effective nuclear charge for the
BEb atom of the SyEb molecule and ngSy ts the CNDO electron repulsion

integral between the ugb and BEb atoms on the RuSb and Sysb molecules.

The primes on the summations over S and y, which label unit cells
and sites respectively, are to exclude the Ru£b molecule. 61n is
the Kronecker delta, which is zero unless nF= 1. All of the intra-
molecular Fock sub-matrix equations are coupled through the charge
densities which appear in their diagonal elements. That is, the
chgrge densities and hence the bond'orders for all the molecules'

RURU (n) sub—matrnx

in the lattice are required to calculate each
so that all the equationis for the intramolecular Fock matrices are
interdependent, This coupling Is easily removed for régions of

perfect lattice symmetry by noting that translafionally equivalent

molecules are {dentical and hence, their bond order sub-matrices, ;

total charge densities and effective nuclear charges are equal. ‘o

{n)

and Z is redundant and can

-

be omitted. By making use of this and rearranging the summations

Thus, the unit cell label on both Q

the diagonal elements of the intramolecular Fock sub-matrices can

be s}mplified to

RuRu (n) -0 g(y 0) ’yza)r:§)61n + § g yQén)r:; . g uQén) zgku
Y

RuRug (n) RuRy o
=+ Py Yag f (1.110)
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where Pz; Is a lattice sum of CNDO Coulomb integrals
uy * RuSy )
rae”g‘(us : | (1.111)

The prime omits the origin cell, S = R, If u=y. The Intramolecular

sub-matrix equations for translationally equivalent molec:les are
no }onger coupled through the Fock sub-matrices. However, the
equations between unit cell molecules are still coupled since the
factor group symmetry was not used in deriving (1.110).

(i11) Intermolecular nt? order Sub-Matrices, RuSyE(n)

RuSy. (n} _ Rusy, (1) _ 4RuSy_(n) RuSy
Fuv Huv 61n 3 | Puv Yog (1.112)
!
where RuSy iz) is an element of the intermolecular core Hamiltonian

sub-matrix, and is given by a produc£ of a resonance parameter and
the corresponding overlap integral.

The lattice energy, w', can be calculated from the energy
expression equation (1.37) by substituting the perturbation series

for H, E and F. The result to third order is

& (m) 7, (n=m) (n-m) (n=m) ,,,(m) {m)
oot h 3 Tr el el ol e,

+ nuclear repulsion (1.113)

On partitioning the P,H and F matrices into sub-matrices and summing

Lo

over translationally equivalent molecules for,a lattice of N unft cells
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g T RuSy_ (m) RuSy, (n-m) RuSy,. (n-m)
W o= 3N { A H + F )}
piach bap e w
Ru, Sy T
+§g 2.2,/ Rad ], (1.114)

where R;das Is the interatomic distance between atoms o and 8 on

the RuEb and Sysb molecyles. The{energ? per unit cell, W, is obtained
by dividing (1.114) through by N. When there is intermolecular

charge transfer between lattice molecules the energy per molecule

Is not a well defined quantity,

The energy expression can be resolved into the sum of five

contributions termed wmolecular’ we]ectrostatic’ wpolarlzatlon’

wintérmolecular and wintramolecular’ This organization of the energy

equation into five terms is partly to take advantage of the inter-
pretive potential of the perturbation approach and partly for compu-
tational convenience.

W

molecular Is the zero order molecular energy, Including

nuclear repulsion, for the hypothetically independent lattice molecules.

welectrbstattc‘inCIUdes all terms involving zero order charge

densities and the Coulomb lattice sums. [t represents the electrostatic

Interaction in the crystal. Under the CNDO approximation 3-13

’

this Is modified by‘the neglect of penetration so that it also

. Includes the overlap dependent closed shell repulsion energy. )
wpolarizatlon includes all the contributions involving the

product of perturbed, charge densities with the Coulomb lattice sums.
It is the polarization energy of the lattice subject to the neglect

of penétratlonl

, R
S . W,«Askx ..vl«- g
J,
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wlnfermolecular Includes all contributions involving the

intermolecular bond order sub-matrices.

wlntramé!ecdlar includes all the remaining terms. That is,
terms that involve the perturbed intramolecular sub-matrices. It Is

the increase in molecular energy resulting from the crystal induced

~

polarization of the molecular charge distribution.

The corresponding expressions for these energies are;

W
molecular ny uv uv

-337 7 RuRuP(O)(RuRuH(O) RuRug (0)
TIRYIRY
+ nuclear repulsion, (1.115)

u, (0) v, (0) _ uy
e, g - 2721 g

welectrostat_ic =3 g g g g

. + nuclear repulsion, {1.116)

0

(0) y (1) ( ) vy, (1) (0) y,(2)
wPolarization =% g g g z ! a yQ YQB * uQu YQB

+ uQ£0) vQé3) ir) yQ(Z) Qo(‘Z) yQéi)
+ ({4 ”Qéz))(yeé°) 2Y2 )r“y , (1.ny)
wintermo!ecular =

z g g"zj g (RUSYP‘E:) + RUSYP‘E\Z,))(ZRUS\/H;(I:’)

RuSy, (1) RuSy
-3 Puv a8 ). (1.118)

The primed sum over unit cells, S, excludes the reference cell S = R,

when u = y as thls corresponds to an intramolecular contribution.

A — e e
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The Intramolecular term is not so straightforward since there
Is a significant level of cancellation. Specifically, it can be
shown that the fiFst order intramolecular energy is zero so that all
Intramolecuiar terms are of second or third order.

=335 {UQ§2) uQéO) . uQé{) ug{1) 4 ug(0) uy(2)
uasf

wintramolecular 8 « 8

uQ(O) uQ(B) . uQ(1) ug(2) | v (2) u ()7, ”Qi” uQ(O)}‘RuRu

a 8 a g Qa QB 23 WuB

-+

z Z {RuRuP(Z)(ZRuRuH(O) _ RuRuP(O)YRuRu)
vV v uv uv ap >4

_ *RuRuP(I) RuRuP(l)YRuRu . 2RuRuP(3) RuRuH(O)
uv uw Taf uv Ny

RuRu

_ (RuRuP(B) RuRuP(O) N RuRuP(Z) RuRuP(l))Y y.
\Y uv Y af

- u v
(1.119)

The SCF perturbation method for molecular crystals has been
successfully applied to solid hydrogen fluoride ©!, the two forms of
oxalic, acid dihydrate crystals 2, cublic and hexagonal ices 82-63 and
ice-11 5, The predicted structural parameters are comparable to the
experimental values -for hydrogen fluoride, hexagonal ice and icerl|
with the molecular parameters in considerably better agreement than
those for the unit cell. The relative binding energies for the three
fce structure studied are In the correct order but the relative
intervals are calculated rather much larger than the experimental values.

The change in dipole moment for water molecules in hexagonal ice on

Ay A ot s o e e 8 st b e
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(o)
cryst@llization calculated by this method is much smaller than the

value predicted by two other calculations 66-87, Although these

-
calculations are superior in some respects, both are based on

\

essentially electrostatic models that cannot adequately describe
hydrogen‘bogding interactions. In geneﬁél,.thg SCF perturbation
method appears to predict structural parameters, binding energies
end charge distributions for hydrogen bonded crystals nearly as

well as the CNDO method for molecules.

Ly
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CHAPTER 2

Theoretical Lattice Energles and Charge Distributions of Molecular Crystals

§ 2.1 Introduction

The SCF perturbation method appears to predic¢t structural
parameters, binding energies and charge distributions very well for
the case of small molecules bound together predominantly by hydrogen
bonds 61-63,65  |n order to assess its dpplicability in a general °
sense, it is of interest to study a range f/crystal types using
this method. However; it must be noted that as It is a single
determinantal method, Coulamb electron correlation which is responsible
for the dispersive forces is not included “; Nevertheless, zhe non-
dispersive hydrogen bonding and electrgstatic multipole interactions
are fncluded explicitly. Also, Fermi electron correlation, intermole-
cular exchg;ge, overlap dependent closed shell repulsion and electron ‘
delocalization are included at an approximatg level.

ln.thls chapter this method is used to calculate the biﬁding
energy and charge distributions for a serles of crystals in order
to estlmate the Importance of the perturbation contribution éo the
energy In ea;h/type and to assess {ts applicability to d!fféreqt
tyﬁes. Included in the series are some weakly bound dispersivé crystals,
some in which the electrostatic mhltipole; are usually assumed to be
largely responsible for the binding epergy, hydrogén bonded crystals .

and two fonic crystals. Among the ¢rystals studled are three, triazine,

melamine and cyanuric acid, whose molecules have a common ring structure.
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§2.é Computational Details

The unit cell parameters, number of molecules per unit cell
apd space group for each of the crystals studied are given In table 2.1.
The atomic coordinates o% the reference molecule in each crystai
used'in the calcul%tions are given in the various sections of appendix 1
to the six decimal places assumed by the program used. An asterisk
Is used to indicate the Hydrogen, in a hydrggen bonded crystal, which
makes the shortest intermolecular contact. These coordinates, with
the exception of those of the formic acid protons, were taken directly
from references 68784, The formic aclid prbgon coordinates, which were
not listed with the experimental crystal structure, were calculated
using assumed, bond length% of 1.086 R and 0.96 R for the G-H and 0-H
bonds respectively. .

A . *

The SCF perturbation calculations for the crystals were
carried out using a version of the program CRYDEN 85 The Coulomb
or exterior . lattice sums were evaluated by summing over all molecules
withth a spﬁere of radius 35 X for all crystals studied except
cyanuric acid for which 30 R was used. The molecules included in the
perturbation or Interior scans were restricted to those which make
an Intermolecular atomic contact of less éhan 5.5 R for nitrogen,
3.0 & for me]amiQé, SF3BFu ané HHEBFh égd 3.5 x,for the rest.

.AA§;pnder's level shiftin; téchnique 86 Qas uséd in order to
obtaln convergence of the TCNE and TCNEO zero order calculations.
bonvergence of the first and h}gher orders for these .two crystal

calculations was achieved by setting the net atomic electron densities

at each site equal to those of the reference md!ecule:

’

‘.
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TJable 2.1 Lattlce ‘parameters and space groups of the crystals studied

2 b, o 8 Z space group
Nitrogen®8 5.644 5.644 5.644 90, iA Pa3
S-trlazine®? 9.647  9.647  7.281 120, L R3c
Naphthalene’? 8.266 5.968 8.669 122,92 2 P2,/a
Benzene 7! 7.39 9.42 6.81 0. 4  Pbca
Hydrogen gyanide’2 7.80‘ 9.16 8.20  90. 2 | mm2
Carbon dioxlide”3 5.575 5.575 5.575 90. 4 Pa3
Sulphur dioxide?" 6.07 5.94 6.14 90. L Aba
Diborane?5 - 5.72 6.50 hho 1051 27 P2./n
Tetra.cyanoethylenep’6 9.718 6.141 12,162 110.28 4 P21/c
ox{de(TCNEOD)
Tetracyanoethylene?? ' 9.736 9.736 9.736 90. 6 {m3
(TCNE) ¥
Formic acid’8 10.23 3.64 5.34 90. 4 Pnaz,
Melamine73 . 10.606  7.4k95  7.295 112.26 4  P2,/a
Formami de80 3.69 9.18 - 6.87 98. 4 P2,/n
Uread! 5.582  5.582 4,686  90. 2 pRzlm
Cyanurlc acid®? 7.7%  6.736 11.912 130.69 4  c2/n
" SFBBFh83 A 9.599 '5.755 8.974  90. ¥ pama
NH,BF , 84 1 9.077 5.679  7.279 90, 5 prma

% This Is the hexagonal ahgle Y.

*% Each of these molecules is composed of two oppositely charged ions.

~

s
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The SFBBFA and NHhBFk crystals are particularly interesting
since they are thought to be almost ionic in character. Accordingly,
they represent a special problem since the intermolecular interactions
are rather strong. {n order to circumvent this difficulty the
compound molecule approach was introduced. That is, these crystals
were treated as being composed of neutral molecules compounded from
nearest neighbour oppositely charged ions.

§ 2.3*The Calculated Lattice Energies e

The theoretical contributions to the lattice energies along
with the experimental values, where available, are given in table 2.2,
The experimghtal values are the heat of sublimation at OQK either as

given in the reference cited or calculated by the method of Rae 11

using the value at a higher temperature or data given in the reference.

The calculations for carbon dioxide and sulphur dioxide were carried
out with and without the Inclusion of interactions between molecules
as modified by the presence of a third (three centre interactions)
in order to determine their importance in the binding of these two
crystals. The electrostatic, polarization, intramolecular and
intermolecular contributions to the lattice energy are as defined in
chapter 1.,

With the exception of lonlc crystals, the calculated lattice
energy {s largely the result of the partial éancellation‘of a binding
intermolecular energy by the destabilizing intramolecular energy,

whilst the electrostatic term Is ccns}derably smaller’than either

energy makes the smallest contribution in all cases. As one would

" and may tend to increase or decrease the binding energy. The polarization
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expect the binding energy of the logic crystals ls extensively
determined by the electrostatic interaction,

The ;verall agreement between the experimental and calculated
lattice energies ranges from good for the styongly hydrogen bonded
crystals to especially poor for the crystals such as nitrogen and
s-triazine. This poor agreement {s likely due to the neglect of
dispersive Interactions in the perturbation method and a poor representa-
tlon of the quadrupole and higher moments In the CNDO approximation.

For formic acid, formamide, and urea which are hydrogen bonded
crystals in which the leading molecular moment is {he dipole, the agree-
ment with experiment Is reIatlvelyvgood. For-this particular class of
crystals, the main contribution to the lattice enefgy not included is the
d‘spe;sive term. Hence, the difference between the calculgted and
experimental energies may give some indication of the relative Importance
of this kind of interaction. Thus, the dispers!ve‘forces may make a
small but significant contribution, about 14% fn formlc acid, -to the energy.

J For the dispersive crystals and crystals in which‘khe higher
multipole moments are ?mporta?t, the agreeﬂgnt with experiment is poor.
However, the sum ?f the -intermolecular and intramolecular contributions
to the energy can be used to determine the contribution to the lattice
énergy due to the pertﬂfbjng effect of the molecules on each other. For
Iﬁstance, the perturbation makes a contributfon of about 30%’in.the case
of bénzene and though carbon dioxide and sulphur dtogide are ‘most often
described In terms of the quadrupole quadrupole interactiors, it appears

at least In the case of carbon dioxlide, that the perturbatlion interaction

ot
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may make a significant contribution to the lattice energy.

As shown In figure 2.1, the s-triazine, melamine and cyanuric
acld molecules have a similar ring structure, aromatic for the first
two and saturated for cyanuric acid. Because of this similarity In
structure, they are an Interesting set for comparison. S-triazine and
melamine both have aromatic rings and have quite similar probable
contributions from dispersive interactlons and higher multipoles, 10.5
and 11.2 kcal per mole respectively, whilst their experimental lattice
energies are quite different. Unfortunately, the experimental lattice
energy for cyanuric acid is not available so that its dispersive contri-
bution cannot be estlmated\but it may be smaller than that of s-triazine
or melamine since the low energy mrr* excitations that contribute to the
dispersive term In equation (1.2) for the-aromatic molecu:;gL3:§~absent.

The main contribution to the deviation from the palrwise
additivity of intermolecular forces is the three body interaction.
That is, the modification of the Interaction between pairs of molecules
by the presence of a third molecule is the main effect responsible for
the non pairwise additive part of the intermolecular interactions. The
net stabllization energy arising from these three centre interactions
in the carbon dioxide and sulphur dioxide crystals was obtained by
subtraction of the total binding energies f;om the calculations with
" and without their incluston. The results are .0426 and .3386 kcal
per mole for carbon dioxide and sulphﬁr dIOxI&e respectively, and are
small when compared to the total binding eéeréles. The result for carbon
dloxide 1's much less than that of Hashimoto a;d isobe 16, However;

their single determinantal method seems to be ratﬁer unreliable as,

_ME‘: B S e o
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Figure 2.1 The structure of the s-triazine, melamine and cyanuric acid

molecules.
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A
although It cannot acount for dispersive Interactions “, it closely
reproduces the experimental lattice energies of crystals for which
these forces are lmpértant. Since three centre Interactions, at least
In the case of hydrogen, are highly orientation dependent 32, the large
difference in the calculated three centre interaction energy for the
carbon dioxide and sulphur dioxide crystals may be due to favourable
orientations In the latter.
Although the above arguments are based on the assumption
that the SCF perturbation calculations reproduce virtually all of the
perfurbatlon energy, the results for the series of crystals taken
together Indicate that this assuﬁgtion Is likely valid and the method
can be used to estimate the perturbation coétributlon to the energy

for a wide range of crystal types, and the lattice energy for hydrogen

bonded crystals.
§ 2.4 Charge Distributions in Molecular Crystals:
Intermolecular Charge Transfer 101 °

The experimental determination of electronic charge distribu-
tions for molecules within crystals has been made possible, in principle
at least, by recent improvements In the accuracy of X-ray and neutron
diffraction methods 3%~96, These molecular charge distributions may
provide a unique opportunity for the comparison of theoretical results
with detalled experimental data.

The discusslion presented here is relevant to the comparison
of experimental and theoretical resylts since it is clearly necessary

to estimate the gross effect of the crystal environient on the charge

i
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distribution before evaluating the agreement between theory and experiment.

It will be shown that the first order intermolecular transfer
of charge is zero; that is, intermolecular charge transfer is a second

and higher order effect.

2

Following the notation used {n chapter 1, the qu diagonal

element of the Intramolecular bond order submatrix for the RuSb molecule,
RuRuP(I)
uu
(1.103) becomes

, Is given by equation (1.103). With a slight rearrangement

occ vac
RuRuP(l) -k Z u z u RuRuA uC(O) UC(O) (2.1)
k

U i ki uk i

where the summations are over the occupied and vacant molecular
orbitals of a molecule occupying the usb site In the crystal lattice,
It Is unnecessary to identify the unit cell in this Instance since the

molecular orbitals of transiationally equivalent molecules are the same.

(0)

Y ok is the molecular orbital coefficient for the uEb atomic orbital

c
th th
In the k== molecular orbital localized on a molecule occupying the u--

RURuAkl is the molecular orbital mixing coefficient defined

site and
by equation (1.104).

The total first order change in the electron population of

the uf® molecule, UQ(I), is given by the trace of RUR"g(l). )
uy (1) _ p su %% V8% RuRu,  u (0) u.(0)
e 4 g ; E A Sk Sy (2.2)

occ  vac -
- ;1“ 1Y R“R"Aki N "cﬁg) “ci?) -0 (2.3)
U

N

p—_
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Thus, the first order intermolecular chargé transfer s zero.

However, the second order charge transfer between Inequivalent
molecules Is not zero. Once again following chapter 1, the diagonal
elements of the second order intramolecular bond order are given by

(1.105) whfch, with a slight rearrangement, becomes:

RuRuP(Z) -2 u.c. sites occy vicu vicu RuTyA' RuTy, u (0) ue (0)
MU T y 0 k g ki Li uk uz
occ a!]
u RuR Ue (0) ue (0)
+ul ¥, AN A (2.4)

where J } ts a lattice summation over unit cells and sites respectively.
Ty
If k labels a vacant and | an occupled molecular orbital, then RUR%Bkl

1s given by

RuRu - u.c. S‘Ees(vicyaRuTyF(i) TyRuA
P 12, ke 2
Y £ L

occ
y TyRu TyRu (1)
+ ] A Fg)

/(u€§0) . ueéO)) + RuRu (2)/(u (0) ucéO)) (2.5)

and tf both k and i label occupied orbitals 5

u.

c
RuRgBk‘ - -} ;

* s{te? V§Cy TyRu TyRuA
z! 13
Y S~ z

(2.6}

* The second order charge in the cha@ge distribution of the

usb molecule Is obtained by summing equation (2.4) over y. Hence,

7

u (2) OCC vac

z X z E u {RuTYAk‘ ?cu RuR%Bi' (2.7)
Tyl




On expanding RuRgB“ using equation (2.6), equation (2.7) becomes

OoCC_vac oCC Vvac 2

W@ gy Y Y A P - 211 vy (YRip ¥ (2.8)
Tyl k Tyl k
. occ  vac occ  vac
- 2 ; 2( % Yy z u {RUTyAkt)z - g u E y {TyRuAk‘}Z) (2.9)
Y

Since only diagonal terms of RURSﬁ&i occur, equation (2.5)

uQ(Z); hence the first contribution to the

(2)

does not contribute to
electron population Q from F Is In the third order.

If all the unit cell molecules are symmetry related the two
terms in équation (2.9) become equivalent when summed over the lattice
and UQ(Z) will vanish for all u, as it should. {f the unit cell
molecules are not all crystallographically equivalent, the two terms
of (2.9) do not cancel and UQ(z) {s non-zero. It is Interesting to
note that even here the Intramolecular terms, Ty = Ru, in equation
(2.9) cancel. Thus, the leading contribution to Intermolecular charge
transfer arises from intermolecular interactions.

The conservation of charge requires that

sites
) “Q(“) = 0 altn>0 (2.10)
4]

it.can easily be shown by summing equation (2.9) over all u, that this
Is satisfied In the case of quz).

The above resulfs give Important insights into the convergence
of the SCF perturbation series for the bond order matrix. The first

order term in this expansion dées not Include any contribution from

-
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intermolecular charge transfer and may, therefore, be smaller than the

second order term where this process Is.allowed. Clearly, the per-
turbation expansion must be taken to at least the second order. Even

at this level the quantity of charge transferred is not €alculated

(2)

self-consistently since uQ originates from the constant, non-iterative,

(2) 63 The first self-consistent correction to the

(3)

quantity of charge transferred is made at the third order through P'~°.

-
.

The expansion of the density matrix.should thus be taken to the third

component of P

order for crystals which contain crystallographically independent
molecules where charge transfer is expected. However, for the majority

of simple hyd?ogen bonded crystals, 2(3)

is negligible for most purposes.
Tyﬁical results supporting this conclusionh are given in Table 1 of

o~
Reference 63.

The necessary conditlon for the transfer of electron density

between molecules In crystals is that they be crystallographically
independent. There are three distinct ways in which this condition can
be met and it is of interest to compare“the levels of charge transfer

in each of them,

~

The most obvious way for a crystalféo satisfy the above

* condition is for [£ to be composed of two‘or more different species.
Examples of this are provided by the two forms, a and B, of the oxalic
ac[d dihydrate crystal. Both crystallise with two oxalic acid molecules

plus four water molecules in their unit cells 97, Despite the strong
. . ) .

Interiolecular hydrogen bonding, the calculated transfer of electron

density %2, taken to the third order, Is only about .Ohe and .03e for

the o and B structures respectively; the water molecules carry positive .

4 ’ .
H N ‘1& B . . . W
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charges in both cases.

Charge transfer is allowed between molecules of the’same
species as long as they are not related through any element of the
crystal's space group. An example of such a crystal Is ice-1l, where

the twelve unit cell molecules fall into two crystallographically

independent sets of six molecules 28, As might be expected, the

level of charge transfer calculated 55 for this system, 1073 e, is

very small. Thus, for many purposes, the water molecules in ice~l! can
be considered as being effectively neutral. .

The equivalence of unit cell molecules can be broken by a |
structural distortion of the type produced by either an inter- or
intramolecular asymmetric vibration of equivalent molecules. Accordingly,
such vibrations should be accompanied by a measure of intermolecular
charge transfer.

Th; magnitude of this effect for the C-0 stretching and

molecular oscillatory motions of the formamide molecules within the

crystal lattice has been estimated in the'FollowIng manner. The formamide

crystal 89 has four equivalent molecules per unit cell which are

related In palrs by centres of Iinversioh. The symmetry of this arrange-

ment and the molecular equivalence was broken by subjecting opposite

molecules In each palr to opposing distortions which produce two pairs

of Inequivalent molecules within the unit cell. The calculated quantity

9 e

of charyge transferred for each.of the four motions is given in Table 2.3,

Thus, to take C-0 stretching as an example, Table 2.3 shows

that the 0.05 § distortion produces two molecules carrying a charge

_of +8.9 x 10-3e and two with a charge of -8.9 x lb-Be in each unit cell.

[
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Table 2.3 Net molecular charges for formamide g&lecu]es in ghe

distorted unit cell,

DISTORTION AQ
C-0 stretch of .05 R 8.9 x 10-3 e
x 0.2 x 10-3 e
|
Rotation about y by 5° 3.2 x 10“3 e
. 2 18.7 x 10-3 e

The first distortion corresponds to the alternate extension and
“compression of the C-0 bonds in the four formamide molecules by
.05 8. The three rotations correspond to alternate rotations of

5° about the principal axes of inertia.

tew
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Of course, the total unit cell charge must remain zero. Although

the quantities of charge in Table ;.3 are small, the resultant
changes In unit cell dipole moments are appreciable because the
separations between the oppositely charged molecules, 3.7 R, is quite

large. Thus, 3u/3Q for the C-0 stretch is of the order of .BD/X per

pair of molecules. Comparison of this with the theoretical and

b

experimental data collected in reference 99 shows it would make a

significant contribution to the spectral intensity for this vibration.

Similar conclusions follow for the other three motions under discussion
here. These results suggest that intermolecular charge transfer,méy
have a marked effect on the spectral intensity of inter- and intra-
molecular vibrations in hydrogen bonded molecular crystals.

The above results closely parallel those of Dreyfus and Puliman?9
for hydrogen bonding between formamide dimers. However, the approach
outlined here has the advantage of being applicable to real, physically
realizable, systems. The theory, for example, could be applied
the calculation of crystal field effects on the frequencies and spectral
lntensltlés of molecular vibratlons. The resultant data would be
directly compgrable to the corresponding frequencies and intensities
derived from the crystal's infrared spectrum.

In summary, the quantity of charge transferred between
inequivalent molecules in a crystal lattice tends to be small. This
Is In agreement with McConﬂe!l's 100 syggestion that molecular crystals
tend to be elther strongly lonic or non-loni¢ in character. Nonetheless,
[t may have an effect on the Intensitles éf Jattice vibrations since

the separation between siightly éharged molecules Is relatively large.



~ § 2.5 The Calculated Net Charge Distributions
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The contributions to the calculated net charge dist#ibutions

of the crystals listed in table 2.1 are given in table 2.4, The
numbering of the atoms Is the same as in Appendix 1 and any atoms not
Included in the table are symmetry related to others in the unit cell,
Since their unit cells contain only equivalent m&\ecules, there Is no
net Intermolecular charge transfer in any of the crystals studied

This Is true even for the SF3BFh and NHhBFh crystals since they were

treated as being composed of neutral molecules compounded from the lons.

The nitrogen crystal is not included as all nitrogen atoms In the unit
cell are symmetry related and hence no polarization of the nitrogen
nitrogen bond can occur. As caﬁ‘be seen from the table, the charge
distributions have converged satisfactorily by the third order &nd even

in the worst cases, those of SF BF& and NHABFQ' the third order contri- .

3

butions are only a few per cent of the final charge densities.

In all cases the effect of the crystal field is small when
compared to the net charge on the atom. Broadly, the crystal field
tends to slightly Increase the charge of atoms over that of the isolated
molecule. There are, of course, some exceptions, the most notable of
which Is that of the hydrogen atom In a carbon hydrogen bond. In al}-
the cases studleé, Trregardless of the charge of the hydrogen in the
Isolatéd molecule, electronic charge is transferred from the hydrogen
atom to the rest of the molecule under the influénée_of the crystal field;
that is the ﬁyd;ogep atom, In.a carbon hydrogen bond, becomes relatively
more. positively charged in the crystal.

For the hydrogen bonded crystals, the crystal induced polarizations
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Table 2.4 The calculated net atomic charges for the reference molecule of

each crystal. CIP refers to the crystal Tnduced polarization;
a positive CIP Indicates an Increase In relative positive charge.
An asterisk indicates the hydrogen atom that makes the shortest

Intermolecular contact.

a) S-triazine

Atom Zero order First order Second order Third order Total ciep
charge . change change change charge

H‘ ~-.0220 .0033 .0012 .0000 . -.0175 .00k5

C1 .2250 -,0005 ~.0013 . 0000 L2232 -.0018

N -,2030 -,0028 .0001 .0000 -,2057 -.0027

b) Naphthalene

Atom Zero order First order Second order Third order Total cip
charge change change change charge

H, -.0088 .0033 .0012 .0000 -.0073 .0015
H, -.0088 _~.0033 .0003 .0000 -.0088 .0000
Hy -.0062 .0000 .0010 .0000 -.0052 .0010
H), -.0060 -.0023 .0025 .0000 ~.0055 .0005
c, .0075 .0007 ~.0010 -~ .0000 .0072  -.0003
c, .0075 .0005 . =.0005 .0000 . .0075 .0000
Cy -.0061 000k -.0016 .oqbo -.0073  -.0012
Cy -~.0063 .0000 -.0023 .0000 -.0086  -.0023
¢ 0273  .0006 .0001 .0000 ’}.ozso .0007

PR ezt Ty I R,
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Table 2.4 continued
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c) Benzene
Atom Zero érder First order Second order Third order Total cip
charge change change change charge
H1 -.0097 -.0004 »0009 . 0000 ~.0092 .0005
HZ -.0066 ~.0007 .0019 . 0000 -.0054 .0012
H,y -.0046 ~.0002 .0017 .0000 -.003t .0015
C1 .0093 .0005 -.0006 .0000 .0092 -.0001 -
C2 .0064 .0004 -.0022 .0000 . 0046 -,0018
83 .0052 . 0004 -.0017 . 0000 .0039 -.0013
d) Hydrogen cyanide
Atom Zero order Fiest order Second order Third order Total cip
charge change - change change charge i
* i
|
H .0706 -.0006 L0063 .0000 .0763 0057 ?
¢ .0306 -.0004 ~.0068 .0000 0234 -.0072
N -.1012 L0010 ,0015 .0000 -.0997 ,0015
e) Carbon dioxide
Atom Zero order First order Second order Third order Total clp
charge change change change charge
c .5363 .0220 .0015 .0000 .5598  .0235
~-.0110 -.0008 .0000  ~.2799  -.0118

0 -.2681

4




Table 2.4 continued

f) Sulphur dioxide
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Atom Zero order First order Second order Third order Total cie
charge change change change charge
s . W LLY) .0299 .0018 / .0000 7764 .0317
0 -.3723 -.0149 -.0009 .0000 -.3881 -.0158
g) Diborane
Atom Zero order First order Second order Third order Total ‘eip
charge change change change charge
H, -.0540 -.0030 -.0010 .0000 ~.0580 ° -.0040
Hz -,0519 . -.0015 -,0012 .0001 _-.0545 -.0026
H . 1480 .0021 -.0029 1,0002 1472 -.0006
&
B -. 0421 .0024 .0051 -,0003 -.0349 ,0072
‘ t
v




Table 2.4 continued

h) Tetracyanoethylene oxide

66

Atom Zero order First order Second order Third order Total cip
charge change change change charge

¢, .0781 .0135 .0008 . 0000 .0924 0143
¢, .0775 .0126 .0007 .0000 .0908 - .0133
¢y .0756 .0188 .0003 .0000 .0947 .0191
ck .0757 .0005 .0000 , 0844 .0087
Cy .1680 -.0004 .0000 L1712 .0032
Ce 1742 .0000 .0000 .175h .0012
N -.1170 -.0001 .0000 -.1320 -.0150
N, -. 1179 -.0111 -,0003 .0000 -.1293  -.0114
Ny -.1162 -.0266 ~.0003 .0000 - 1431 -,0269
N, -.1186 -.0073 -.0006 .0000 -.1265  -.0079
0 -.1796 .0021 -.0006 © 0000 -1781 0015

K e iy S amma—
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Table 2.4 contlinued
1) Tetracyanocethylene
Atom Zero order Flirst order Second order Third order Total cip
charge change change change charge
C1 .0661 .0038 -,0004 . 0000 .0695 .0034
C3 .0934 L0136 ,0006 .0000 .1076 L0152
N -.1264 ~.0155 -,0004 . 0000 -. 1423 -,0159
}) Formic acld
Atom Zero order First order Second order Third order Total cip
h charge change change change charge
>
H’ -,0315 L011h -.0017 ,0002 -.0216 .0099
*
H2 .1901 -.0237 .0236 -,0012 .2362 .0h61
c .h019, L0143 .0110 -.0110 .h251 L0242
0, -.2374 -.0085 -.0301 .0013 -.2747  -.0373
Dé -.3231 -.0408 =,0027 .0008 -.3658 ~.0427
o

Y

- WM*: :‘:;f:“:‘ E

——— i




Table 2.4 continued

k) Melamine
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Atom Zero order First order Second order Third order Total cle
charge change change change charge

Hy .1039 .0138 .0030 -.0002 .1260 .0221
H, 1045 .0030 .0023 .0000 .1078 .0053
3 1186 .0173 .0105 -.0003 ab62 0276
Hy, .1180 .0015 .0004 .0000 .1199 .0019
Hg L1182 ©.0019 .0059 -.0002 .1358 .0176
He . 1199 .0135 .0079 -.0002 b1 .0212
Ny -.3684 -.0135 .0001 .0001 -.3817  -.0133
N, -.3673 -.0177 .o .0001" ~.3838  -.0165
N -.3658 -.0137 .0002 .0001 -.3792  -.0134
N, -.2318 -.0108 -.0124 .0002 -.2548  -,0236
Ng -.2403 -.0068 -.0140 .0003 -.2602  -.0199
Ng -.2h29 -.0093 -.0143 .0006 -.2709  -.0280
c, .3747 L0036 .0028 -,0001 .3810  .0063
¢, .3811 .0034 .0024 -,0002 .3867  .0056
¢ .3776 ~<.0037 -0030 -.0002 3841 - .0065

w

e ——
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Table 2.4 continued

1) Formamide

Atom Zero order First order Second order Third order Total cip
charge change change o ﬁgpnge charge
Lol
Hy 1313 0383 .0018 -.0009 1805 0492
Hz .1601 .0201 .0108 -.0006 .1904 .0303
Hy -.0458 .00k2 ~.0023 .0002% -.0437 .0021
¢ . 3440 017 .0109 -.0024 .3596 .0256
N -.2307 -.0168 -.0322 .0024 ~.2773 -.0466
0 -.3589 -.0630 ” .0010 .0012 -.4197 -.0608
m) Urea
Atom Zero order Flirst order Second order Third order Total cip
charge change change change charge
Hy 1385 .0179 0096 - 000k 626 L0271
H, 1146 .0231 .0029 -.0001  .1405 .0259
N‘ -.2612 -.0148 -.0194 .0009 -.2945 -.0333
c 4363 .0124 0061 . -.0017 4731 L0168
0 = 4341 -.0646 .0077 .0009 -.4901 -.0560

e

e S
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Table 2.4 continued

n) Cyanuric acid

70

et s v et e et 0 O s

Atom Zero order First order Second order Third order Total cip
charge change change change charge
Hy 1577 .0251 .0138 -.0007 1959 0382
H, 1570 .020k4 .0155 -.0006 .1923 0353
c, . 4950 .0225 .0060 -.0005 T .4870 .0280
¢, 4567 .0191 .0068 -.0006 L4820 .0253
N, -.2511 -.0037 -.0168 .0006 -.2710  -.0199
N, -.2511 - . 0044 -.0197 .0006 -.27h2  -,0235
0, -.3616 -.0366 -.0040 .0006 -.4016  -,0k00
o, -.3650 -.0388 -.0020 .0006 -.bo52 -, 0402
o) SF 4BF
S
Atom Zero order Fi??% order Second order Third order Jotal cip
charge ‘¢hange change change charge

B .6067 .0041 .0068 -,0101 .6075 .0008
F -. 4250 .0173 0147 -.0078 - -.4008 .0242
F, -. 418} .0108 .0070 -.0077 -. 5083 .0101
Fy -.3669 -.0295 .0225 -.0270 -.4009  -.0340
Fg -.1502 -.0087 -.0142 .0124 -.1607 -.oaQé
Fy -.1862 .0231 -.0104 0092 -.16h3  .0219
S 1.4572 .0212 ~.0347 .0455 _1.4892 .0320




Table 2.4 continued
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p) NH,BF) |
Atom Zero order First order Second order Third or;er Total /7!?

charge change change change charge
H] .2559 .0093 -.0058 .0184 .2778 .0219
Hy .2559 .0026 -.0056 .0179 22708 ).0149
Ha .2751 -.0059 -.0064 .0189 .2817 .0066
N -.0620 -.0001 ~.0202 L0172 ~.0651 -.0031
B .6073 .0029 .0059 -.0096 .6065 -.0008
Fy ~-.3846 .0018 .0662 -+0129 -.3895 -.00L49
Fy -.4179 .0164 .0109 -.0219 -.5125 .0054
F -.5024 -.0105 .0107 -.0234 -. 4256 -.0232

]
i
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are relatively large. This accounts for the large intramolecular
destabil{zation ené%gies calculated for these crystals. Also, the
ltydrogen atom in a hydrogen bonded crystal that mgkes the shortest
contact, hence the one likely involved in the stréhgest hydrogen bond,
has the largest crystal Induced increase in positive charge for the
molecule. This increase in positive charge tends to increase the
strength of the bond through an increase in the electrostatic attraction
between lhe hydrogen atom and a region of negative charge on the other
molecyle whilst it tends to destabilize the molecule in whléﬁﬂéﬁé hydrogen
atom is located.
3

0f the three molecules with a similar ring stru?ture cyanuric
actd has a largely hydrogen bonded tattice, the s~triazine crystal is
bound by dispersive forces and the melamine crystal has important

contributions from both. For all three crystals, electronic charge s

t
transferred from the hydrogen atoms to the ring with the amount trans-

ferred proportional to the strength of the hydrogen bonding in the

crystal, That is s-triazine has the smallest polarization while

cyanuric acid has the largest polarization due to the crystal Interac-

tions. " ¥

-3

§ 2.6 Comparison of Theoretical and Experimen{aﬁ Charge Distributions
The diffraction of X-rays by a cryEtal, in principle, Is

capable of providing detailed information concerning the one electron
& . .
density function. This may provide a method for the comparison of

detalled‘experlmental results with those from theoretical calculations.

Howevér, systematic errors occur in the standard X—fay diffraction

" approach which obscure the bond density features 3. In order to

+
v 4

« €
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overcome these difficulties, recent studies have been carried out using

combined neutron and X-ray data 34-96 Although the results may appear

to be encouraging, the net charge distributions obtained vary with the

particular model used to fit them to the experimental data %6 Table 2.5

glves a comparison of typical experimental molecular charge distributions

obtalned by diffraction methods with those calculated in section 2.3 for

s-trlazine, melamine, cyanuric acid and TCNE. The charge distribution

obtained from an alternate experimental method, ESCA %% is included for TCNE.
As Indicated in the table, the agreement between the calculated

charge distributions and those from diffraction experiments fs fafr but

may be poor for the hydrogen atom charges. This poor agreement In"ﬁéneral

may be due to uncertainties in the diffraction data and the fact that the

centre of charge for a bonded hydrogen is not at the position of the

proton 73,96, The effect of this can be seen in the case of s-triazlne.

Although the agreement for the hydrogen and carbon charges Is still poor,

a great deal of Improvement Is obtained when the atomic cooréiﬁates are
treated as variables, thus allowing for a shift in the position of the
hydrogen atom of .13 R. The agreement of the theoretical charge distri-
butlons wlth those from’the ESCA experiments s much better than for

b
d{ffractlon ex&é{iments but these experiments could not detect any change

»

ln)charge distribution on crystalljzation.

An alterndte method of Investigating the crystal Induced change
In charge distribution {s to examine the change In dipole moment on
crystalllzatlog. The changes In the components along three orthogonSI
directions in the molecule as well as the net change in waénitude of

the dipole moments for HCN, urea, formamide and formic acid are given
3

&8
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Table 2.5 Theoretical and experimehtal net atomic charges for s-triazine,

melamine, cyanuric acid and TCNE.

a) s-triazine

Atom Theoretical Experimental 26
H -.02 48" .26™
C .22 -.13 -.06

~
N -.21 -.35 -.21

t,

* .
Best agreement between the model charge distribution and the experi-

mental data.

Py

distribution.

b) melamine

*k
Atomic coordinates treated as variables in the model of the charge

Atom Theoretical Experimental’?2 Atom Theoretical Experimental’?
H, .13 .20 Ny -.38 -

H, 1 27 N, -.38 - b2

H3 .15 .36 N3 -.38 -.38

Hh 12 .32 Nh . -.25 -.h5

Hs‘ .13 .24 NS -.26 -.35

Hé\ ‘ 4 .22 N6 -.27 ~.3h

C1 .38 .20

C2 .37 .30

c, .38 2%
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Table 2.5 Continued

c) cyanurlc acld

Atom  Theoretical Experimental 102

Hy .19 .33

H2 .19 .24

C1 .49 .30

C2 .48 .15

N, -.27 -.61

NZ -.27 -.54

0, -.h0 -.08

02 -.n .15

d) TONE
Atom Theoretical  Experimentall03 Experimentalll
(diffraction) (ESCA)

C‘ .07 N .20 ,04
C3 1 | -.04 17
N .14 -,06 ~-.19
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In table 2.6 along with the experimeﬁtal values for HCN and urea. The
net changes given In the table are a result only of the crystal field;
no attempt has been made to assess the changes due to differences in
molecular configuration which are assumed to be negligible. The agree-
ment with experiment appears poor. However, the relative sign of the
change is correct, an increase for urea and a decrease for HCN. The
two experimental results for urea are quite different, the calculated
value falling between them. The calculated change for HCN differs

-

considerably from the 60% increase predicted by a recent calculation of

1

Munn et al. 198 This calculation was, however, based on a point dipole
approximation which, since some intermolecular contacts in HCN, 2.12 R,
are less than the length of the molecule itself, 2,22 R, cannot be
expected to apply.

The most notable feature of the calculated changes in dipole
moment is that they are not necéssar!ly negligibly small as might be
expected from the results of Crowe and Santry %2 ;or the lattice water
molecules in'a and B oxallc acid dihydrate and hexagonal and cubic ice.
The dipole moment of a molecule, u, Iin general can be written as the

sum of two contributions 31

® = ¥eharge * Yhybrid ? (2.11)

where u Is the dipole moment cont%ibptlpn from net atomic charges

charge
and uhybrld Is proportional to the PZ 2p " bond orders. For.the lattice

water 52 and HCN it Is a cancellation of these two terms rather than the

slze of the terms themselves that leads to the small induced change in’

dipole moment. For urea, formamide and formic acid, the terms themselves

Al <
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Table 2.6 Crystal field induced changes in the dipole moments of

HCN, urea, formamide and formic acid.

1

Change In dipole HCN urea formamide formic acld
moment (D)
An 0 0 -.1515 . 1458
x N
Auy 0 0 4280 .1896
A, ~.0240 -.3888 .2691 .0239
net change in -.0240 .3888 .4768 . .1866
magnitude
experimental -.6 105 .98 106
change .10 107
calculated zero 2.4h636 L.9403 3.9712- 1.2651
order dipole
moment
experimental free 2,95 108 4 56 106 3.71 108 1.35 108

molecule dipole
moment

A zero without a decimal polint indicates a component that is zero,

by symmetry. The calculated zero order dipole moment corresponds to

an lsolated molecule with the geometry of the crystal molecule.

[P

~
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are large and the cancellation Is less efficient so that the resultant

changes can be relatively large.

In summary, the agreement between the theoretical and experimental

charsévdistrlbutions Is only fair and until experiments are done that can

/’

detect the change In the charge distribution on cfystallisation directly

are done, any meaningful comparison between expefimental results and the

o
2 G
predictions of different theoretical calculations cannot be made. However &

the calculated changes in the charge distribution are expected to b

within reason as thesa changes are due to the Intermolec;}ar perturbation

and the contribution to the energy of the crystals from this source are

reasonable,

e,



CHAPTER 3

A Self Consistent Field Perturbation Theory for Band Structures

. by a wave vector k,

§ 3.1 Introduction

Band structure calculations give an Indication of the relative
effect of intermolecular interactions on particular molecular levels
in a crystal through the amo?nt of dispersion of the bands derived from
the levels. The greater the dispersion, the greater the effect of the
interaction. Also, the density of states calculable from the band
energies {s directly comparable to the one obtained by the experimental
technique ESCA. This comparison has been done recently for the ethylene
polymer 116 ard the extension of the theoretical portion of the approach
to three dimensional hydrogen bonded crystals is given in section 3.5..

Bands In the electronic energy are a characteristic of any
periodic structure 110 and the periodicity of the lattice is often .
used In order to simplify the calculation of these bands. For instance,
in the conventional approach to band structure calculations, 111115

the atomic basis functions are written in a symmetrized form characterized

[

: . . . &
y, (k) = N7¥ ] exp(anikes)x (5) (3.1)
oo oL u

-

. A
where N is the number of unit cells/}ﬂfzﬁe'latt‘ce, Xu(g) is the pil

atomic orbital in the sE unit cell/and the summation is over all_

4

unit cells in the lattice. The crystal oybltals, Cz(i); are the §olutlons

79
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of the wave vector dependent SCF matrix equations

Fk)c(k) = s(R)C(k)E(K), (3.2)

where the Fock matrix, E(E), the crystal orbital matrix g(ﬁ), the over-
lap matrix S(k) and the orbital energy matrix E(k) are referred to the

% hd
basis of symmetrized atomic orbitals wu(E).

There are an infinite number of these equations, one for each
value of k. For most systems, however, only a finite set of these
equations need be solved !11,

For one dimensional crystals and polymers, the scalar character
of the wave vector simplifies the theory and limits the amount of
computation necessary. However, for three dimensional systems, the
vector character of k complicates the calculations to the point where
even approximate studies of chemically and biologically significant
systems become prohibitively time consuming. Furthermore, much of this
computational effort is wasted in the case of molecular crystals. The
first stage qf such a calculation involves setting up délocalizéd
orbitals, t;e Cz(ﬁ), which then are.localized to some extent by the
solution of the coupled'equatlons (3.2). An alternate approach is
clearly required for these crystals in order to avold the large amount

_of computational effort and to facilitate calculations for aggregates

of complex molecules.

x

4

The SCF perturbation theory proposed by Bacon and Santry 50765
avolds many of the disadvantages of the above approach by using a
localized basis set for the crystal rather than a delocalized set

of the form tn equation (3.1). As this theory was specifically developed
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to provide a computational method which is Independent of the wave
.3
vector concept, it does not yield crystal orbitals or band structures.

The only quantities calculated are the crystal binding energy, bond

order matrix and Fock matrix.

Nonetheless, the crystal band structure can, in principte, be
calculated from the crystal Fock matrix by the introduction of wave
vector dependent symmetry orbitals on completion of the SCF pertur-
batlon calculation. A significant advantage of this approach, besides
the saving in computational effort, is that individual energy bands
can be calculated independent of“;bgh:est of the levels as long as

Y e,

there is no crossing of bands.
§ 3.2 The Orbital Energies
The Fock matrix for the crystal, from equation (1.70), is

glven to the third OrQQr by

Fap0 L () @ 03) (3.3)

Similarly, the corresponding orbital energy matrix is given to the

third order by

E = E(O) + E(l) + E(Z) + 5(3). . (3.4)

e

Expressions for the various g(")'s can ‘be readily derived from the

corresponding perturbation equations (1.73) for the ng band level.

For the zeroth order, writing Q(o)fqr the zeroth order crystal orbital,

equation (1.73) yields B .
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5(0) T\,
Multiplication on the left by 0 , Qives, after making use of the
orthonormatity of the zero order crystll orbitals, -

Hence, the zero order orbital energy for the st band level is

-~

(0) _ %(0).(0),(0) _ (0) (
Egp = 0, B 00 = 0 (3.7)
The flrst order perturbation equation is

E(1)9(0) + E(0)9(1) - 9(1)§(0) + g(O)E(i) (3.8)

3(0)

Multiplication on the left by glves

30 (1),(0) , 50 (0)(1) _ §0) (N (0) | 5010 () (5

Substituting the analogue of eguation (1.78),
C
oM = (0, " (3.10)

& )
into (3.9} and making use of the orthonormality of the zero order

kv

o
crystal oibigals ylelds

4

FO (190 | 501 (@)g(00y  pe(0) , ((0) (3.11)

’
th
and for the %-- band level

?Here, and in subsequent usage, § implies 0 complex conjugate transposed.
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ey (0) (0) (1
Foo ¥ z Fam Ame Z Aomtme * Egg o (3.12)

(0)

where the summations are over all the crystal orbitals. Since £

and §(0) are diagonal and Agg = 0, the net result for the first order
correction to the energy of the o0 band is

T~

Eil) - Fél)- (3.13)

The second order contribution is obtained in much the same

way as the first. After multiplication on the left by @(O)’ the second

order perturbation equatlo; is
50 (2) (o) | y0) (1) (1) | y(0) (0) (2)

- 30021 (0) | g (N (1) 50000 (@) (5 gy

After substituting the crystal orbltal analogue of equation (1.85)
into the above and making use of the orthonormality of the zero order

crystal orbitals, one obtalns for the st band level,

éi) + z Fi;) mz z F(O) * bmz)

©) g5 ), (0

m me [ 3 (3.15)

=L (B, + b, JE
m

and since the diagonal elements of‘é and b are equal to zero and

E(o) and the g(n) are all dlagonal, with Fig) éz),

gi) ii) + Z Fi;) Ang’ ‘ (3.16)



gy

RIOUE

I3

i

\
\

~

84

The summations in the above are over all crystal orbitals. Similarly

the third order contribution is

crystal orbitals
)

(2)
2 0h + bm) + FY9'A ). (3.17)

(n
{Fﬁm (Bm em  mi

m )

§ 3.3 The Zero Order Crystal Orbitals 117
The inclusion of Intermolecular interactions into the crystal

perturbation equations strictly requlires that the solutions, to all
orders, transform irreducibly under the crystal space group. Since the
zero order solutions chosen for the perturbation calculations are the
unperturbed molecular orbitals of the lattice molecules, they are localized
and reducible under the crystal space group. ‘Moreover, as they are de-
generate, they cannot be used in equations (3.7), (3.13), (3.16) and
(3.17) to calculate the crystal band structure. Ho;aver, a zero order
transformation of these localized molecular orbitals to crystal orbitals
that have the reduired transformation properties may be undertaken.
As this transformation is unitary, it does not affect the crystal boé%“
order matrix or the lattice energy, in the same way as unitary trans-
formations of molecular orbitals do not affect the calculation of
molecular bond orders and total electronic energy “*, and may, therefore,
be neglected for calculations of these quantities. It does, however,
have a significant effect on the calculated crystal orbital energies and,
in fact, leads to the appearance of the band structure in the present
treatment of molecular crystals.

~ This transformation is undertaken in two steps. The zero order

molecular orbitals from translationally equivalent molecules are first
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combined to give crystal orbitals that transform irreducibly under the
translational sub-group of the crystal space group. Linear combinations
of these orbitals are then taken over all the unit cell sites to yield,
where possible, irreducible representations of the unit cell group.

The zero order single site functions that transfo;%, according
to Bloch's theorem %2 jrreducibly under the translational sub-group

are glven by

Y

- _y crystal ...
(k) = N 3 Z exp{2nik-(R + t)}Céo)

Déo
R

) .-
Y (R,1), (3.18)

where DEOL(E) is the delocalized crystal orbital corresponding to thé
]

- Fock matrix, with the same ordering as the basis set. N is the rumber
of unit cells, labelled by R and k is a wave vector with values |lmited
1 by the Born-von-Karman cyclic boundary condition 118, There is one -

single site function for a given k and ¢, for each molecule in the unit

cell. These functions are combined to yleld the final zero order crystal

- (0)
e O -
orbitals, °x,z(k)'

—

unit cell
0@ - 7 W @® (3.19)
? t » ? )

where the summation is over all molecules in the unit cell, The

t coefficlents w, , (k) may be determined by symmetry except for the case

o M o

L
A,t
of wavevectors which are not invariant under the crystal point group.

The discussion of their evaluation will be presented later. There

L[5 S

] PP

b -
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are as many combinatlions, labelled by A, as there are molecules In the
unit cell. The inclusion of the site vector, t, in the phase factor in
equation (3.18) 1s to ensure that the various lattice sums that appear
in the theory will be real for most crystals.

(0 (ry (0) .
Substituting Oy g(k) for 0,77 in the equations for the con
*

tributions to the RED band level aund using the expansions for. A, B and

b, equations (1.81), (1.88) and (1.90}; one has
(O (0) ;v (0) L (0) -

Eg AR = B0 o0 (&), (3.20)
(1) ¢ (0) ;e\ (V) (0) (¢

B (0 = 80 e o7 (), (3.21)

(2) ¢ (0) ,zyo (2) . (0) =
Eg,x(k) - Bz,z(k)ﬁ , 0y, (K)
]

molecular level
(0) jeye (1) £ (0) 12y % (0) =y (1) (O} (& (0)__(0)
+ é %l’g(k)g OA'm(k)BA’m(k)E 0y pE/ ()™ e )

(3.22) >

(3) oy o %(0) 5y (3),(0) ¢
Eg,k(k) - OA’Q(k)E OA’R(R)

molecular levels
+ A TR N RY AT SN (3
m

molecular lewvels
: ) &) e ol @31 Ry (Mo /(e (V-

- 810 @) Mo 0 @310 e Mol®) /(- Oy

]

LT TN TRC IR I

where use has been made of the equalitles
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-

3§?l(ﬁ)ﬁ(1)0§?{m(§') = 0 unless ke=k' and A=1', (3.24)

3(0) @ @o (0) (') = 0 unless kek! and re)', (3.25)

¥

to exclude the summation; over k and )\ In the summations over crystal
orbitals. The above conditions hold exactly for wavevectors that are
fnvariant with respect to the crystal space ‘group as then k and A label
Irreducible representations of this group. However, X=)' does not hold
for the general wavevector since the w's may not be -symmetry determined.
Nonetheless, it will be shown that this approximation does not significantly
affect the resultant band structures except in the case of very strongly
Interacting crystaf mole¢ules.

It s necessary to distinguish two cases for the determination
of the w's according tq the’transformation properties of the wave vector
k 119 {n the first, the wave vector is lnvariant to all the operations
of the group of the unit cell. Under these clircumstances, the w's are
determined by the symmetry o% the unit cell apd are thus independent of
both £ and {El. in the second case, the application of the unit cell group
operators generate§ 5 star of k's362 from the original k. Each member
of the star is invariant only to a sub-group of the unit cell group,
called the group of K. Only the group of K can be used to determine the
w's., This gro;p is often sufficient for crystalsbof high symmetry to fix
the w's, but for crystalg of low symmeéry some independent method for
calculating thom may be required.

Consider flrst the case in whilch the wave vector.ﬁ,is invariant
with respect to atl unlé cell operations-and the unit cell group has

X

no degenerate representations for k=0. Under these clrcumstances, assuming
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the neglect of overlap, the o (k) form a unitary matrix with elements

At
equal to iZ-&, where Z is the number of molecules in the unit cell and

the dependence on ¢ and k can be omitted. Hence, equation (3.19) can

be written

it cell
©);py o " p(0)
Ox,n(k) g Uy, t t )

(k) (3.26)

In the case of the general wave vector, the crystal symmetry
Is usually insufficient to completely determine the w's and it is
necessary to use an alternate method for calculating them., In the
‘present treatment 117 the w's are calculate®by requiring that the
orbital energy matrix be diagonal. Thus, for a given k and 2

(K) + E(i) () + 5(2) (k) + (3) (Ei

C (0)
k) =€ 22,81 22, 21" TWIL

. 22,21

22,2

=0, ¥ 2. - (3.27)

Expanding the zero order crystal orbitals In equation (3.20) gives,

for the zero order contribution to the band energy,

'
-

. unit cell _ _ crystal Rt B 3
ig)zx o{k) = z 5‘ SROTAN G g g GFrike (Rl
RO HOR T (3.29)

' : 0
Using the block diagonal property aof E( ),

.y unit cell 0 o ) crygtal Rt, Rt (o)

(k) = N I uy (Ko Foo » . (3.29)

(0)
E L At

X,
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N
3 - 4

atrix is diagonal to all orders, then

and since the orbltal energy m

A=X', and
(0) -1 unlt cell . 9 crystal Rt , Rt (0) f/"
Eoa, k) =N ) {wx,t(k)} é Fon
_ Rt Rt (0) (0) .
e ™ %y (3.30)
Hence, the zaro order term does not restrict the w's at all. Similarly
the first order contr{bution is given by
it cell crystal B T~
(1) -1 " % ey 2 (L 2rike (S+v-R-t)
(0) ;= =v(1) 02 (2 G
. 3§°’ R, )C§ (5,9
unit cell crystal - gmo= = T
| RS C 2nike (S+v-R-t} R 1
~ = Py t(k)mk‘,v(k) g e i (S v-R ) t’stg‘ﬁ')'
' ' t v °
(3.31)
This may be conveniently expressed as
it cell g ¢
(1 _ o ¢ oyt el
Eon, xx'(k) E gﬁwk,t(k)ml',v(k)GtE,vl(k) (3.32)

where Gilivg(k) {s the phase modulated sum based on F( ) given by

M crystal  ogqie (S+v-R-t) Rt,Sve (1)~
tL L(k) = % e F&ﬁ . (3-33)

*

. . ‘
As the w's are the coefficients for the single site functions, D, In

the condition that the first order orbital

the crystal orbitals,

—_— .
;\\
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energy matrix be dlagonal Is satisfied by the w's that diagonallize

the Z X Z matrix over single site fuactions,

L @e Mo @)~ 6V @), (3.3
» ?

te,vi

.

These w's will differ from :z'* if, for the particular k direction,
the diagonal G lattice sums are not equal. The generality of this
condition can be illustrated by considering the hypothetical two
dimensional crystal shown in figure 3.1. As there are two molecules
per unit cell, the calculation of the w's for a given ¢ and general

‘K tnvolves the diagonalization of the 2 X 2 matrix:

N S
MO ¢ @ ]
YRTACEEVNTIL
(3.35)
1M w N :
| Cite, u,(k) IR
“The efgenvalues will differ from 27 1f
Ne) (1 ”
NACEANFRTACE (3.36)
in the calculation of the -1 lattice sum all interactions between
molecules | and |' are Included and the corresponding 11-11' interactions

are included for the {I-1l sum. For each t-1" interaction there is
an equal 11-11' interaction but with a different direction for the
vector R. Thus, although the same interactions are found in both
sums, they are included with different phase factors. -

From the figure it can be seen that it is the fairly long range
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interactfons that are responsible for the inequality of the diagonal
lattice sums. Fortunately, the unit cell dimensions and intermolecular
interactions for the crystals studied in section 3.4, are such t@at
only nearest nelighbours contribute significantly to t;e diagonal G /
lattice sums so that the differences between these sums are neqligible,

¥

and the corresponding w's can be approximated by +2°%. Yo illustrate

this the g(‘)\and 5(2) lattice sums for the lowest occupied molecular
level of formamide are given in tables 3.1 and 3.2. From these

tables it can be seen that the diagonal sums do not differ significantly
and the approximation for the w's Is valid.

In general, then, If the discussion is limited to those
crystals for which the unit cell group has no deaenerate irreducible
repraesentations and all the unit cell molecules are symmetry related,
the w's may be taken as tge characters for the Asb representation of
this group times an appropriate normalization factor. This Is a
common apprgx!matlon,!n the theory of excitons and Is known as the
restricted Frenkel limit 120,

Equatlon (3.32) may be written, neglecting the dependence of

won k and £,

(1) - / unit cell M -
ng’%k(k) - ) g wk,tmk,vstﬁ,vz(k)' {3.37)

Stmilarly, the second and third order contributions to the band energy

'

may be expressed as
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Table 3.1 The first order lattice sums, G(‘)
ti,ve
¢ occupied level of formamide and k = (.2,
1 2 3
1 .000457 .000470 .001053
2 .000470 .000457 .001415
3 .001053 .001425 .000456
L -.001138 -.008349 -.001232
Table 3.2 The second order lattlce sums, Gii)v

occupled level of formamide and k = (.2,

1

1 .006583
2 .000000
3 .000119
4 -.000041

2
.000000
.006583
.000048

-.000162

3
.000119
.000048
.006582

~.000000
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(k), for the Towest-

b, .8).

?

b
-.001138
-.008349
;.001232

. 000456

(k), for the lowest

A, 08).

L
-.Q00041
-.000162
-.000000

.006582

B



9k

a1l
NC PN L (2)
E“’“(k) " : \X, wx,tw.\,vsti,vﬂ.(k)
unit cell mls.
() (w1 (0) __(0) ,
M % E g z wx,twk,uwx,vmx,w g Gt%,um(k)va,wz(k)/(El ‘Em ) %
(3.38) |
and
(3) - unit cell (3) - -
Eu.m(“) - ¢ L "“,\,t“’x,vgu,vzm
unit cell mls.
(1) (o (2) oy (2) oy 81) e
+ g g é E mx,th,uwk,vwx.w g Gtz,um(k)svm,wz(k)+ﬁt%,um(k)va,wa(k)

! ~ "

{ 1
g E Lt v WL Xy

u ce

i 2 E

n
tu

< ey

ms. [ 6 @e @6 @ ms. o @6 @e” (@
}

. z tm,uf v Wi x¢,ym - '{ £ ,um v, wn Xn,yL
m | Loy a0y ()

(3.39)
In the above, mls. indicates tge summation over molecular levels,
Upon the completion of an SCF perturbation calculation for a
partlcular crystal, equations (3.30), (3.37), (3.38), and (3.39) can
be used to calculate the band energles as a function of wave vector up
to third order. Ffrom-these equations, it can be seen thét the energy
of each level Is Independent of the rest if crossing of the levels is P
Ignored. 'The only crossing that I§ not allowed is that of levels of //
‘the same symmatry. However, If such crossing does occur, it can be
simply treated by degznerate perturbation theory.

Unfortunately, the theory in its present form cannot be used
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to study crystals In which there are molecules that have degenerate
zero order molecular orbitals. For these crystals, the denomlinators
In the second and third order contributions to the band energies
will be zero for some of the terms in the sum over molecular levels.
However, [f a degenerate perturbation calculation on the motecular
levels or a very small distortion of the molecular structure removes

this degeneracy, then the theory could be applied.

§ 3.4 Band Structure Calculations for Ethylene, Naphthalene,
Formamide, Formic Acld and Urea.

A. Symmetries of the Valence Set Orbitals

The ethylene crystal is classified under the space group Pnnm(ﬁég)
of the orthorhombic system and has two molecules per unit cell. These
two molecules occupy sites of th symwetry hence the crystal molecules

are of lower symmetry than the free molecule which has DZh symmetry. The

unit cell molecules are related by two fold screw rotations about the a

b

and b crystal axes, Cg and CZ’ and two glide planes perpendicular to the

¥
rotational axes, o" and o" . Under the operations that relate the unit

cell molecules, the single site functions combine iInto elghg sets of
crygtal orbitals of symmetries Ag, Au' Blg’ 829’ 839, B\u’ BZu and B3u'

A group character analysis of these combinations is given In table 3.3.
Any of the four possible cholices for the relationships between the single
site functions can be used to determine the w's, the only difference
batween these cholces Is in the aribtrary subscripts 1,2 and 3 in the

B symmetry lcbels. Table 3.4 glves the symmatries of the combinatlgns

based on the cg opcration and hence, the appropriate w's., /
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A

Table 3.4 Symmetries of the combinations of ethylene single site =

functlons under the Cg operation

Combination of single slte functions Crystal orbital symmetry
D D

1 2
A + A A

g 9 g9
A - A 8

. q g 3q

A + A A

u u u
Au . Au B3u
B + B B

9 9 29
B - B ]

] g9 ig
Bu + Bu Bzu
Bu B Bu Biu
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The naphthalene crystal is monoclinig¢ with space group PZI/a(Cgh)
and has two molecules per unit cell related by a two fold screw axis, Cg,
and a glide plane, 0?. Thete molecules occupy sites of Ci symmatry which
[s much lower than the DZh symmetry of the free molecule. Under the )
operations of the Ci point group, the naphthalene molecular orbitals
are classified as of cither ag or a symmetry. Hence, the two sets
of single site functions have either Aq or Au symretry, Under the
operations that relate the two molecules in the unit cell, the single
s{ite functions combine into four sets of crystal orbitals with symmetries
Ag‘ Au’ Bg' and Bu' A group character analysis of the four combinations
and the symmetries of the combinations based on the glide plane operation
are glven In tables 3.5 and 3.6 respectively. Although Kopelman 121
has shown that the cholce of the glide plane, rather than the screw
axls, to relate the two molecules in the unit cell intfoduces a left
handed coordinate system at the second molecule, it is retained
because of Its heavy usage 360,

The formamide crystal is classified under the space group
P2l/n(cgh) of the monoclinic system and has four molecules per unit
cell., Each of the unit cell molecules occupies a site of the same
symmatry as the free molecule, C‘, Under the operations of thls space
group all of the formamide molecular orbitals are classified as of

’ .
symmatry type a. Thus the four sets of single site functions'are of
A symmetry. These sihg\e site functions combine into four sets of
crystal orbitals of Ag' Au’ Bg and Bu symmetries under the two fold

screw axis, the glide plane and centre of symmetry that relate any one

of the unit cell molecules to the three others. An analysis of the

C et e ——
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Table 3.5 Group character analysis of the naphthalene single site

5 -
functions under CZh ;
\ ’
Single site b a Crystad orbital
functlion symmetry. Dl ED'I DZ C2D1 DZ ‘ Dl symmetry
A +1 +1 +1 A
9 9
A +1 -1 -1 . B
EAN g
A +1 +1 ~1 A
u . u
A +1 -1 ) B
u u
® X
Table 3.6 Symmetries of the combinatlons of the naphthalene single \

site functions under the o® operation

Combination of single site functions Crystal orbltal symmetry
D D
] 2
A + A A
g 9 9
A - A B
} A + A B
i u u u
y A - A A
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relations between the single site functions and the symmetries of

100

the appropriate combinations, and hence the w's, are given in tables
3.7 and 3.8 respectively. |

Crystalline éﬁ;mic acld is orthorhombic with space group
PnaZ‘Sﬁgv) and four molecules per unit cell. Each of these molecules
occupies a site of the same symmetry as the free mof;cule, C1 and ls
relatéd to the three others by a two fold screw axis, C;, and-two glide
plane operations o2 and ¢". All the molecular orbitals are of symmetr§
type a. Hence the four sefs of single functions are bf A symmetry.
These four sets‘of single functionéycombine.into crystal orbitals of
A1, A2, 81 and 82 symmetries, the analysis of which is glven in tables
3.9 and 3.10.

Ay

The urea crystal Is tetragonal with space group PEZIm(ng)
and has two molecules per unit cell. These two molecules occupy sites

of C, symmetry which is the same as the free molecule's. Following

2v

the procedure outlined above, the valence orbitals of urea are classified .

as of 3, 3 b, or b, symmetry and hence the single site functions are

2' 71 2
of Ai’ AZ’ B1 or Bz symmetries. These functions combine lnto crystal
N orbitals of Al' AZ’ B‘, 82 and E symmetries. An analysis of these

combinations and the appropriate symmet}y combinations under the Cz
operation are given in tables 3.11 and 3.12.

The symmetries of .the combinatiéns given In the tables are
strictly on]y meanlngful éor the invariant wave vectors; they are
retatneé, however, for the convenlence of-‘dent!fylng particular bands.
In the more general case the qrbltals should be labelled .according to

the * combinations rather than symmetry.

o
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e

Table 3.11.Group character analysis of the urea single site functions

under Dzd
fungtion symetry  PIED DDy DSy, Cry:;:;e::s‘ta‘

A1 +1 +1 +1 .‘1\1

‘A, +1 -1 -1 82
_A2 +1 +1 +1 A2

A2 +1 -1 -1 B,

By . +1 10 n E

B1 +1 s -1 . -1 E

82 +1 R 3 -1 . E

B, +1 -1 +1 ) E

Table 3.12 Symmetries of the combinatlons of urea single site functions

EY

under the C2 operation

&

Combinatfon of single site functions ' Crystal orbi;al symmetry
% D, '
Ay + A A,
Ao K B
At R ‘ Ay
Ayt A B
B, + Y E
81 - B‘ E
™ B2 + B2 - E

PO,
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8. The Band Structures ‘ . »

’

Sections of the band structures for the crystals under conside-
ration were calculated using the‘E and A matrices and zero order mola-
cular orbitals from the crystal perturbation calculations reported in
reference 117 for ethylene and in chapter 2 for ;aphthalene, formamide,
formic acld and urea. As an example of the convergence properties of
this type of.calculation, the first, second and third order contribut}bns
to the energies of the bands derived from the lowest occupied molecula;
orbital of the fairly strongly interacting crystalline formamide molecule
are given In table 3.13, for three values of the wave vector along the
100 direction. From this table it can be seen that even in the case of
strongly Interacting crystal molecules, the band energy has sufficiently
coriverged by the third order and that each sucdessive order of corvection
is at least one order of magnitude smaller than the previous order. This
suggests that for weakly interacting molecules second order calculations
would liké{y be sufficient. ;

The band structures along the 100 and 111 directions, calculated
to the third order, for all the valence levels of formamide, formic acid
(and urea are givén tn figures 3.2, 3.3 and 3.4 resbect%vely. The correspon-
ding plots for second order calculations for all the valence levels of
ethylene and all the occupied and lowest vacant pi levels ofhnapﬁthalene
are tn figures 3.5 and 3.6. The wave vector, k, along thé 100 direction
“tn ethylene, naphthalene and urea 1le along axes of symmetry; the k's
along the 100 direction of formamide and formic acid and the 111 direction

of all the crystals studied belohg to stars. For the fiéures, crossing

of levels of the same symmetry has been ignored as the gaps between the



105

Table 3.13 Contributions to the band levels derived from the lowest
occupled level of formamide for the wave vectors (0., 0.,°0.),
(.25, 0., 0.) and (.5, 0., 0.). The zero order contribution

is -1.647781 a:u.

(0., 0., 0.) (.25, 0., 0.) (.5, 0., 0.)
First order  -.099199 020356 .025005¢
.052332 -.015710 .025005
.028036 -.005606 " .025005
-.029782 026434 . .025005
Second order  .002360 .001536 .002537
.000166 .001570 .002537
-.001326 f .000871 .002537
-.001226 .001562 .002537
Third order .000017 -.000271 -.000338 ,
-.000620 -.000165 ~.000338
-.000379 -.000260 -.000338

-.000570 -.000423 -.000338
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bands, calculated by perturbation theory at the point at which they
cross, are in general too small to be plotted on the scale used.
Broadly, the dispersion shown in the bands for formamide, formic
acld and urea Is greater than that for ethylene and naphthalene. This
is likely due to the relatively stronger interactions in the hydrogen
bonded crystals. All the crystals studied show a general increase In
dispersion of the' bands from the highest vacant to the lowest occupied
band. The relative increase and the especially strong dispersion In
the lowest occupied bands reflects the fact that the hydrogen bonding
interactions involve the hydrogen atomic orbitals which contribute
In Increasing amounts to the molecular ggbitals of the isolated molecule
from highest to lowest in energy. fE;;»all the crystals studied, the
bands derlved from the pi molecular orbitals, in general, show less
dispersion than those from sigma molecular orﬁT{als. Also, the bands
derlved from the nonbonding orbitals on the carbonyl groups are rela-
tively undispersed. This small dispersion reflects the fact that the
hydrogen bonding Interactions do not involve the electrons in pi or

-
nonbonding molecular orblitals to any great extent.

§ 3.5 The Density of States for Formamide, Formic Acid and Urea 122
The electronic density of states for formamide, formic acid

and urea were obtained tn much the same manner gs those of Andre et al 116

for a system which Is periodic In only one direction, polyethylene.

The energy of al{ the occupied valence levels was calculated for 9261

wave vectors by means of a Lagrangian interpolation procedure based on

125 directly calculated points. Then the denslity of states was obtained

by counting the number of states within Intervals of .004 a.u. in energy.
!
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As a check on the accuracy of the Interpolation procedure, the areas

under the plots for the three crystals were measured. These areas

should be in the ratio of (the number of molecular levels) X (the

number of molecules in the unit cell). This area relationship was

found to be accurate to within 5%.

The density of states for the three crystals are given in
&

figure 3.7. Note, for the purpose of this diagram, the plots have

been scaled to make the highest peak in each of equal height. The

positions of the levels In the free molecule are given below each

plot.qlThe breadth of a given peak In the diagram reflects the degree

of dispersion iIn the corresponding energy band in the space of the

wave vector, reciprocal space. The dispersion of some bands Is sufficient

to cause overlapping of the peaks, so that not all can be assigned to

a unique molecular level, While others have little dispersion and

give rise to sharp peaks. These bands are associated with the mole-

cular orblitals that are affected little by the hydrogen bonding inter-

action. The most prominent of these are the bands derived from the

carbonyl lone palr and highest occupied pi orgitals which show little
;vffalspersion and hence give rise to sharp peaks. However, there are

some examples of dispersed pi orbital and sharp sigma orbital peaks.

ﬁOverall, the formamide deﬁsity of states appears more dispersed than

those of the other two crystals. Since the binding energy of formamide

lfes between that of formic acid and urea, this Is Ilkely a JQA;Equence

of Erystal packing rather than a stronger hydrogen bonding environment.

The symmetry of the urea crystal is unusually high and could

affect the dispersion by limiting the smount of mixing allowed between
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the zero order molecular orbitals under the crystal field. Formic% v
acld has a somewhat lower symmetry but the crystal may be viewed as
being composed of pairs of strongly interacting molecules, related by

a plane of reflection, situated throughout the lattice. Intermolecular
interactions within the dimers are expected to be stronger than between
dimers. This situation could lead to a significant factor group
splitting for zero wave vector but relatively small dispersion of the
resultant components. ‘The presence of a ;epetltive centre of inversion
in the formamide crystal lead§ to the presence of dimers also. However,
unlike formic acid{ the Interactions between the dimers In formamide
are relatively strong forming an extended hydrogen bonded network
which strongly disperses the energy bands,

An fmportant result from this study Is simply that the hydrogep
bonding interaction within molecular lattices apparently strongly
disperses some of the molecular energy levels while leaving others
relatively unaffected. 1t also provides a means of calculating when
bands should be brc;ad which should help in the assignment of ESCA 116
spectra, which glve the experimental density of states. Thus, it
provides an opportunity for the use of theoretical studies in con-

Junction with an experimental technique, ESCA 116 to investigate the

»
hydrogen bonding potential.



CHAPTER 4

The Sel f Consistent Field Perturbation Theory for the Frenkel and

Charge Transfer States of Hydrogen Bonded Crystals

§ 4.1 Introduction

The formulation of a theoty for the excited states of molecular
crystals within the SCF perturbation apprégch partially fulfils the
objective set out in the Introductory chapter. That is, with the
inclusion of a theory of the excited states Into the approach, the
SCF perturbation method could be used to calculate many of the elec-
tronic properties of molecular crystals.

lQ\EPIs chapter, a theory of the electronic excited states
for molecular crysEa\s is developed within the molecular orbitai forma=-
Tism of the‘SCF»perturbatIon theory. Although the approach is quite

" different, the resultant excitation energies are shown to be comparable

to those from the basically valence bond approach of Davydov 25,

§ 4,2 Band Structures and Crystal Excited States

Theoretical band structures are ogviously of considerable
interest from a spectroscopic point of view. A possible approach
to the calculation of the crystal excitation energies is the virtual
orbital approximation *5 in which an electron is excited from a filled
band to a vacant band. Unfortunately, however, the band energies
cannot be used directly, s%nce the singﬁe configuration molecular

orbltal- approximation is particularly unsatisfactory when applied to

115
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the excited states of molecular crystals. This can be illustrated by
an analysis of the excited states of, for example, a linear chalin of
¢losed shell:atoms, such as helium.

Consider first the approximate excitation energy for the 1s42s
transition of an isolated He atom. Using the well known expression
of Roothaan “5 for the virtual orbital approximation, this energy is

gliven by

AE1s-*25 S PR T Jls,zs * ZTK]S,ZS ’ (4.1)

where the e's are the orbltal energies and J and K are the Coulomb and
. exchange integrals respectively. The 1 In e%uation (4.1) is equal to
one for singlet states and zero for triplets? For comparisca, consider
the excitation energy of an infinite chain of He atoms with very large,
almost Infinite, repeat atomic separation. The interatomic Interactions
In such a chain will be negligible_so that its excitation energies
should be degenerate and all equal to the corresponding energy far an
isolated atom, equation (4.1). Following the procedure outlined in
chapter 3, the franslational symmetry is used to generate ‘highly delo-
callized symmetry adapted orbitals for the chain. Under the virtual
orbital approximation and the Ak=0 selection rule, the excitation

energies of the chain are,

B ) = &) () - ey (R) -9y ) (R) + 2ek), (R). (h.2)

1s+2s 2s 1s

]

1s,2s

Clearly, for the chain under discussion, there is zero dispersion of

the bands so that gzs(ﬁ) = €5 and eis(g) =€y the orbltal energy
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' .
= i ‘
’élfference in (4.2) will therefore be the same as in (4.1). However,
it has been shown that as the number of atoms in such a chain tend to

Infinity, both J(k) and K(k) tend to zero 123, Thus, the excitation

energy for a chain of noninteracting atoms tends to

AEIs*Zs T f2s T 1 (4.3)

as a limiting value as the number of atoms In thé chain approaches
Infinity., This result contradicts the predicted value from equation
(4.1).

This contradiction arises because the single configuration
virtual orbital approximation is serliously in error for systems In
which éhe interactions between t;e units are small such as the helium .
atom chain or molecular crystals. From a physical point of view, this
approximation describes the crystal excited states in terms of an
Independently delocalized electron and hole, whereas there is strong
experimental evidence which suggests that, for the lower g-states of
aromatic molecules at least, the electron and hole are tightly bound
and delocalize together as a Frenkel exciton 36D,

From the point of view oé\molecular orbital theory, the adop-
tion ofd;quation (4.2) would lead to serious problems. First, as
shown, it has the incorrect limiting behaviour as the intermolecular
poteﬁtiai tends to zero, and second, under the Ak=0 selection rule,
equation (4.2) yields, for.a crystal with low dispersion bands, an
infinite number of almost degenerate states of different wavevectors.

Under these circumstances an appreciable level of mixing between these

\
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states, configuration interaction, would have to be included in order
to achieve realistic results. Hence, the theoretical investigation
of the excited states of molecular crystals in terms of molecular
orbital theory requires the resolution of a configuration interaction
problem over an Infinite basis of almost degenerate virtual orbital
states. The solution of this problem is not as difficult as it would
appear at first sight, since the lower states are known to closely
correspond to a bound electron and hole delocalizing together through
the crystal as a Frenkel exciton 36P,  This suggests that the configu-
ration interaction problem could be simplified by transforming the
delocalized electron-hole functions into a localized representation,

In the next section, such a transformation is used to develop the

basis functions for the crystal configuration interaction problem.

§ 4.3 The Wave Functions in the Localized Representation 12%,

The relationship between the band structure and the electronic
states of a molecular crystal is developed here. As pointed out in
the previous section, a convenient starting point for this is the
virtual orbital approximation to the excited states. That Is, it will
be assumed that the crystal excited states can be represented by the
excitation of an electron from a level in the filled band to one in
a vacant band, However, this simple approach has to be modified by
a suftable transformation in order to achieve a realistic representation
of the electronic excited states of molecular crystals.

The zero order crystal orbital as given by (3.9), is

[t cell crystal
"l’ _& un
Z*N )

wk,u T

-

0ol (&, - MR O 5y
u

et o -
et ety
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The notation for the crystal orbitals has been changed slightly from
the"notation used in the previous chapter to emphasise the relation~
ship between T and k and u and A. This reciprocity carries over to
the orbital label i, in the sense.that it labels two sets of orbitals,
which to the zeroth order, are related as the three dimensional
Fourier transforms of one another. This duality plays an important
part in the theory and, consequently, a considerable clarification of
the forthcoming equations can be achieved by adapting the orbital
notation to refiect it. Firstly, variables in real and reciprocal
space are labelled by ¢ and n respectively. The zero order crystal
orbital, equation (4.4), Is thus given by

(o) ,- -3 -3 2vik -R (0) ,= -
01 (kn,kn) = 7 *N E N Z e n n C‘ (TC’UC)’ (4.5)

¢ Mt T

v

where, for convenience, the u has been combinéd with T to give R.
R may be used Iinterchangeably with T+u to label a molecule when the

structure of the unit cell is unimportant. The following convention

may now be introduced

;n

0) (¢
o{ (kn,xn) ] (4.6)

0= -y -
= €, (Tc,ut) ’ , 4.7

-
n

The approximate ground state electronic wave function for the
crystal is given by the usual determinantal function. This can be

conveniently written by making use of the above convention for a crystal

—— g

e R
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of 2n electrons,

¥ om (2n0)7F e N Ll (4.8)

0

Simllarly, approximate crystal singlet and triplet wave functions,
corresponding to the excitation of an electron from the (i‘)-t-h level

in the filled band to the (RZ)SE level in the vacant, are given by %5
Dly o= 27 F @) TH(e 1182 el s el T 02 ), (4.9)

The excitation energies are given directly by the well known expression

derived by Roothaan %3 for the corresponding molecular process.

VIR g0 = e(82) - e(11) - J(i1,2?) + 2tK(i1,07), (4.10)

where €(22) s the level from the energy band associated with the

crystal orbital £2. In the notation of the previous chapter,

e(22) =z E k), (4.11)

z,lz

L H

J and K are the Coulomb and exchange integrals respectively.

J(i1,22) = <i122]11g2> (4.12)
and
K{11,22) = <ilp2|p2il>, ' (4.13)

Equation (4.10) Is the crystal analogue of the virtual orbital

expression for the excitation energy of a finite molecule. This
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single determinantal approximation is fundamentally in error for

molecular crystals and a multiconfigurational analysis of the type

T i s e

dlscussed in the previous section must be carried out. In order to
simptify the confiqurational problem, the delocalized electron-hole é
wavgﬁfunctlons are first transformed to a locallized representation.

The;e localized functions are generated, following Slater and Shockly 1235,
by a double Fourier transformation of the excited state functions

glven In equation (4.9). Thus,

jlg2»

123 R, R - -1,-1 Zﬂl(‘:x'ﬁ]":z'ﬁz) 123
Lig(R1,R2) = N2 § g“h,Ulwkz,Uzz e )

1 A2 ky kg

(4.1%)
where 1’3L(§1,R2) Is a function In which the hole fs localized on the
Tlulgb molecule and the excited electron on the Tzuzsb.

The L-type basis functions, being localized,. transform reducibly
under the crystal space group. In order to simplify the eventual
configuration Interaction equations, linear combinations of these
functions are taken to generate new functions, M, that transform {rredu-
cibly under the operations of the space group. O0f all the different
possibilities, the k=0 representations are of the most Interest. This
Is so because the ground state transforms as the k=0 representation
and the selection rule for electronic transitions is Ak=0. Hence, the
wave vector for the exclted state Is approximately.zero. The k=0
M fuggtions are given by

1s3yd (3 7y o v-4y % 1531 (F 50-FaR s
Ty, (Bi0) = Z 7N E“’k»u@ Ln(T,u,T'l-B,tH-p). (4.15)
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The vectors B and p qlve the separation between the molecule on which
the hole is centered and that on which the gxcited electrg& Is centered.
There Is a set of M functions, corresponding to all of the represen-
tations of the unit cell group given by A, for each value of 8 and 6;
that Is, for every electron hole separation. The M functions describe
the crystal excited states In terms of a oceneralized exciton for which,
although they are bound together, the electron and hole are on different
molecules separated by [8| unit cells and |p| sites. The Frenkel 36b
exciton corresponds to the special case where both g and o are zero.

Symmetrization of the localized L functions by means of the
space group symmetry gives delocallzed character to the final M basis
functlons. There Is, however, an important difference in the type of
delocalizations represented by the ¥ and M functions. In the former,
the excited electron and hole are represented as being in_independent
motion In the cryst3dl lattice; their motion {s uncorrelated. in the
case of the M functions, the electron and hole, even though they may
be on different molecules, are represented as being bound together as
a single entity; their motions are completely correlated. The ¥ and M
basts functions represent the two extremes In crystal excited state
approximate wavefunctions.

The M type basis Ffunctions of a given symmetry, X, form the
basis set for the confiquration interaction calculation; the final
crystal exclited state wavefunction will have contributions from all
the M's of a glven symmetry with every possible separation B+p .

The confiquration Interaction equations can be written in a matrix form

referred to as the secular equation. The diagonal elements of this
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matrix are qiven by B+p=R'+p' and the off diagonal elements correspond
to é+5¢é'+5', Thus, the secular equation Is of infinite dimension.
However, because of the choice of basis set, nearly all of the off
dlagonal matrix elements should be neaqliqible in comparison with the
diagonal ones. Hence, as 3 first approximation, the crystal excitation
energlies will be approximated by the appropriate diaqonal elements of
the confiquration interaction matrix.

It should be noted that the configquration Interaction calculation
has been transformed from an iafinite basis of functions of wave vectors
to one of electron hole separations. The advantage of the latter is that
even though it still is of Infinite dimenslon very few functions are
expected to contribute to any partlicular excitation,

1t may appear that the sbove approach neqglects any possible
mixture of charge transfer character Into states that are Frenkel
exciton in character. This is not the case. The crystal orbitals,
0(k,1), used to construct the L functions are solutions to the crystal
SCF perturbation equation and are thus only perfectly localizable to
the zeroth order. This confers some éiarqe transfer character even

to the fFrenkel-type M functions.

§ 4.4 The Evaluation of the Matrix Elements
1
The Implementation of the confiquration interaction procedure

requires the evaluation of the following type of matrix element;

]1'3Lmn(§3;§“)> (4.16)

1»3 . 1»3 R.:R -
Mg mn(152:3,0) = < Ly (RysR) JH-E

ground

the crystal

wnare H Is the crystal electronic Hamiltonlian and £
ground
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ground state encrqy. Expanding the localized, L, functions using

equation (3.14), this matrix element equals

-2~ < ~2mi(h g eRy-k L eR kg eR Ak,
IR e s u iy p LD rHb bRk
'\‘])\ZX3>‘Q 1+Y1 DM 39V3 1, U ‘,\15_\2;\3‘\“
s<be3y 0 lH-E [ 123y Lo
\ilQ‘i ground’ mint” (4.17)
The inteqral can readily be evaluated using cquation (4.10). Expression

(4.17) then becomes,

Z(A)E-Zwi(El-§1~§:e§2—ﬂ3-R3+Eu*Rh)
K

)

-2 =2¢ (&)
zo 2 u*x.ul“%2,07w\3.U3wRu,Uq

. [{6 e(22) -~ &, (1) )81 0382 % & {2¢<m322]a4i)s - <m3a?liln“>}),

in {m

(%.18)
where 6173 = 1 if k| =« k3 and X} = X3 and Is zero otherwise. The
superscript convention has been Introduced for the Kronecker delta
to make it consistent with later usage. E(A) and Z(h) represent the
four fold summations over X's and k's exp?‘citly wtitten out in
expression (4.17).

The next step is the expansion of (4.18) using the special
properties of the crystal perturbation algebra introduced previously.
Starting with the orbital energy terms:

DY) P TE RS VU TIL PRTIR S Y E e 2mtlky = (Ry-Ry)-ky (Ry-Ry))
)\1)&2 “19H1 A2 M2 A3LM3 '-ov%klz

5, e(22) - 8, c(iM)). (h.19)
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As shown In chapter 3, to zero order, ¢(1?) is independent of Ez and

A, and equals c(o)(tz), the QEb molecular orbital energy of an arbitrary
lattice molecule {(here set to T,,u,). Thus, to this order, the orbital
energies may be taken outside of the summations, and the summations

over k and ) evaluated. The fi:él zero order result is

(5in€(0)(ﬁ?) - 6;mc(0)(31)}61,362,h , (&.20)

where 67,3 = 1 if ﬁ} - §3, that is fl - fg and 51 * 53, and is zero
otherwlise.

The first order correction to the orbital energy, e(1)(£2),

(1)

& -
depends- on both X3 and k. The expression for ¢ is given in equation

(3.18); In terms of the new notation it is;

M2y w )V 7]

»

o, ) m} . z eZﬁikz'(ig‘ﬁs) s.sFé;)
6 2285 A2,M6 T5T6

usu
(4.21)

where
5'5F§;) - T5“5'76“6F£;) : (b.22)

Substitution of (4.21) for the appropriate orbital energy in expression

(4.19) ylelds, on evaluation of the summations of A's and k's:

2’“F£;)51.3 - 1’3F§:)52,“ . ) (b.23)

Thus, to the first order, the orbital energy difference is given by

(ﬁan(O)(ﬁz) - dmI?(O)(Il))51:352rk + Z’QFi:)61:3 = 1’3F§;)62:k .
(h.214)



[

~
~

126

Next, the electron repulsion terms are expanded. First, the Integral
<«m3z2|n%il> is expanded in terms of the zero order molecular orbitals:

" ~2,-2
<m3£2‘n“|1> - N "Z 2(&) w w w w
" A3, us A2,u6 Mu,uy Az,ug

. Z(Q)QZWI(—k3'Rs-kz'R6+fu'R7+k1'Re) <mslg|noig>.  (4.25)
t

\

AN
~

Next, this is substituted into the approbkjate position in expression
(4.18) and the summations over A, k, T and a0 evaluated. The final

result (s

<m3fy |nyiy>. ' (h.26)

The effect of the multiple summations is simply to convert the super-
scripts on the crystal orbitals to subscripts on molecular orbitals.

Thus, the total zero order electron repulsion contribution is

2t<myL, |ny,iy> - <mgy|iyng>. (8.27)

The procéaure for the evaluation of the first and highe¥ order

contributions to the electron repulsion integrals is very similar to

the evaluation of the zero order. The integral <m322|n*il>, for

example Is expanded to first order as
<m322{n“0§1)(§1,x1)> + <m312[0£])(ﬁk,xk)t1> + <m30£1)(E2,A2)In“i]>

. <o£")(E3,x3)12{1n‘*11>. (4.28)

As In the conventlonal perturbation theory, outlined in chapter

a3

e o e o

. PRI
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1, the first order change In the crystal orbitals, 0(‘), is expanded
Iin terms of the zero order orbitals, 0(0),
L
o(')(ﬁ,x) - o(o)(i,x)g(i,x) (4.29)

where A 1s a matrix of mixing coefficients. The matrix elements of A

are glven by a relationship similar to (1.75),

RV S RN A R RV (4.30)
A”\(‘E,,\) =0, 9 (4.31)
0n expanding F') into submatrices,

Apr (K1) - (NZ)—lgsgswx,uswk,us §5§682"’E'(§5'§6) TR, 32)
where,

Se6a ;- S’GFé:)/(e§o) - eéo)). (4.33)

v

The Intermolecular potential within the crystal which provides
the perturbation, can only mix zero order crystal orbitals of the same
symmetry, that is, the same k and A. This result is self evident for
wave vectors that are iﬁvariant with respect to the unit cell oper;tors.
in the case of a more general k belonging to a star, mixing between
orbitals associ§ted with the star is presumably allowed. Howeger, as
this mixing will be of a unitéry nature and corresponds to a rotation

of a degenerate basis, it will be neglected.
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(
1

equations (4.29) and (L4.33), then substituting into equation (4.18)

On substitution for O 1)(E1,x1) in <m3£2|n“0§1)(il,xl)> using
and evaluating the summations over k's and Ats, the contribution (s

found to be

) zl S’IApl<m312|nhp5>. (4.34)
us Ts p

The prime on the summation over all the orbitals on molecule five
excludes the case p=i. Expression (4.34) represents the first order
change in the electron repulsion integral under discussion as a lattice
sum, over ﬁs, with molecule 1 as the origin, Thus, the total first

order contribution from the electron repulsion integrals is

e

~

t
; I L (571A, (2vamgy[nyps> - <myiy [psny>)
s Us P

* SMA L (Zremgty[psly> - <mytp|Tgps>) + 5’2A9£(5?<m395|nu'1> - <mgps|Tny>}~
+ 5’3Apm{21<p5£2|n“il> - <pgy | T1ny>1]). (4.35)

In ordeg to be consistent with the SCF perturbation ;heory use§

to evaluate the crystal orbitals and Fock matrices, the CNDO approximation *7-51

should be used. The systematic integral approximation of this method, .
given in chapter 1, leads to an appreciable simplification of the theory
pithout the ioss of essential SCF features of Inter-electron repulsion;
the simplified equations still reflect the underlying structure of the
more detalled theory. Recent work 1261127 gtrongly suggests that this

step is unwarranted in the case of calculations on triplet excitons.
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The same may also be true for singlet excitons from states of very small
Davydov splittings. However, for the singlet states of strongly Interac-
ting molecules, such as for charge transfer and hydrogen bonded crystals,
the neglect of differential overlap should be relatively unimportant.
Under the Intended approximation all‘charge distributions
Involving two molecules are neglected. Thus, after the applicatlion
of the appro#imation to expression (4.34) the only term to remain from
the summatlion over the lattice is the one for which Rg=R,. Furthermore,

Ry must equal R,. Hence, the only terms from (4.34) are

]
z 2’1A <m3&2|n3p2>63,“. (h.36)
pi
P
The final approximate expression for the matrix element (4.16), to the
first order, is given by

(1»2;39h) = (san(O)(zz) = GimE(‘l))61’362’Q + Z’QF(’)G 61,3

th,mn L T L,n

1 | |
- 1’3F§;)5‘,m52»u + {21<m3ey |n3l1>63,481,2 = <m2a]11ny>8y,382,4)

!
+ 1 {20208 <matalngpa>8s,u + 37VA am3ny[psly>6),2 + 122A <mapyingiy>s,y
p : »

+ “’SApm<Pu22‘ﬂu‘2>51,z} - {2'“Apn<m312l‘1P2>51.3 + a’lApi<m322|93n2>5z.u

Y

+ “’zApt<m3pq|I3nu>61,3 + 1’3Apm<p1£2l11n2>62,q}). (5.37)

The Frenkel exciton 36b corresponds to the situation in which
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the electron and hole are strongly bound together on the same molecule.
In the present treatment, the wave functions which most closely correspond
to this type of state are the M(0,0) functions. However, these
functions have some charge transfer character aska result of thelr
construnction from crystal orbitals that are eigenfunctions of the
crystal Hartrgg-Fock equation,

The diagonal element of the configuration interaction matrix

and the first approximation to the crystal excited state energy, A1’3E?1(0,0)

corresponding to M?l(o,o) is given by

-

1532 (0) - -1 113 .
ARTIEL (0,0) = (N2) " ] ] Gy, u, ) ; | Hiz,i1(1"’2’2)'
u up, Ty Ty

5 (4.38)

Substitution for !?3H to the zeroth order ylelds

A1’3E?‘§0) (0,0) = E(O) (21) - C(o)(il) + {ZT<illl|21i1> -<i121Ii]9‘1>}

.o+ 227 gl Ez T %; <iy12,]2,12>, €4-39)
where the prime over the lattice sum is to omit the origin cell when
u; = up.

" The e(o)'s are the free molecule orbital energies and the first
two electron repulsion integrals are the molecular exchange and Coulomb
integrals respectively. Hence, the first four terms when taken together
give the excitation energy, singlet and triplet, for an isolated #
moTecule under the virtual orbital approximation *S, If the terms

assoctated with the free molecule excltation energy are collected together
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(0)

and written as A1’3E‘z .

the zero order crystal excitation energy

may be expressed as

A1'3E‘§0)(0,0) = A1'3Efg) +77V2x 7 3

'
iy oy “Au1%2,up ;2 <htzluiz.
(4.50)
The first order correction to the excitation energy is llkewise
evaluated. Substitution of the first order correction to 1’3H‘£,‘2(1,1;2,2) \

In equation (4.38) yields
103gA(1) o Ala3p(l}
A EIQ (0,0) Aw’ Ei£

—1 ) L]
+2 2ty )} ml,ulmx,UZX (2’2Ap£<32£1|p211> + 1'1Ap£<i2p1|z211>)

uju T
P\ 192 2
-b’ ] t
+ 272t L Lo, w, b (1A <ingg|fopr> + 272A <paty|Raiy>),
B UyUz A,Uj X,UZTZ pli ) ' pl

(4.41)
whare A1’3E§1) Is\the crystal induced first order change in the

molecular excitaticn energy, given by:
ate3g{D) LD e (Dot in rdd i ey - <y ]iiers)
¥ L2 i 5 pL

+ I’IAP'(21<‘121‘21p1> - <‘121|p1£1>)}. (A.AZ)

All the A matrix elements in equation (4.42) are Intramolecular
in character since they are between molecular orbitals belonging to
a single molecule, arbitrarily chosen as the first. Thus, the charge

transfer or delocalized character of the crystal orbitals does not
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contribute to the crystal exclted state to the first order. However,
there 1s some crystal Induced mixing of molecular orbitals on indivi-
dual molecules. |

_The exclitation energy to the first order is gliven by the sum
of (4.50) and (4.41). This form has the correct limiting behaviour
as the intermolecular potential tends to zero. That Is, as all the
Intermolecular integrals, first order Fock matrices and mixing coefficients
tend to zero, the crystal excitation energy tends to that of an Isolated
molecule. '

The excltation energy may be broken down into three terms
which are analogous to the three of the Davydov theory 25 given In
equation (1.4), The excitation eneﬁéy of the isolated molecule is
the first term in both (1.4) and (4.40), the shift {n excitation energy
of a molecule due to the interaction with the lattice, which contributes
to the term D in equation (1.4), is A1’3E§;) in (4.41) ‘and all the re-
maining parts of ejuations (4.40) and (4.41) contribute to a term
comparable to the last in (1.4), §

i
Intermolecular exchange integral M

&

]
z! § "’x,:“’x,z“u,zm , with the

1j,m given by

1
Muptp 0ty ™ 21(“’%2121‘2> * E {2'2Apg<’211|92‘1> + I'IAP2<32P1|22‘1>

£

+ IQIAP‘<;2£1'22p1> + 2)2Api<p29,1l2,211>}). (h.f’B)

The lattice sums of these exchange integrals for uj=u; contribute to
the ¢'splacement of the centre of the manifold of Frenkel states from

the corresponding molecular excitation energy and the sums for uj#u;
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contribute to the Davydov splittings within the manifold.
Since the Davydov theory neglects any crystal field effects on
the molecular orbitals, only the zero order term of (4.43) corresponds

to the usual dipole dipole approximation used to evaluate the lattice

summations and the correctlions to the orbital energy levels, I’IFil)

(1)
e

approach, the neglect of differential overlap removes the lattice sums

(1)
12 .

Also, It should be noted that, since 1=0 for triplet states, the Davydov

and 13 do not occur in the term D. However, under the present

of integrals in al*3g which contribute to D in the Davydov approach 25,
splitting of triplet excltons in the present treatment is zero to the

first order. However, it can be shown that the second order triplet

exciton splitting is nonzero.

§ 4.6 Charge Transfer Exclitons 12%
The diagonal elements of the configuration interaction matrix

that correspond to the charge transfer states are given Gy

193X (3 2Y o <1932 (8 oy 1lu- 193 (5 =
a Elz(8’°) < "iz(s’p)lH Egroundl PIM7 g (Byp)>

= 0)TY T, e T T 1e3n (1,233 (h.4b)
Uy éz AUy A,us T, To fe,i2

where molecules 2 and 4 are |B| unit cells and |p| sites away from

molecules 1 and 3 respectively, To the zero order,

230 G5 = Dy - Dy - sl (.45)

/
The necessary Coulomb and exchange integrals to complete the free
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molecule excitation energy expression are missing from (4.44). Addition

and subtraction of these integrals ylelds
~

A1'3E?§'0)(§,5) = 61’35‘(2) - <5112|11£2> + <f121“1i.1> - ZT<f1£1I21‘1>,

(4.46)
where, as before, A1’3E§2) Is the free molecule excitation energy.
From equation (4.46) it can be seen that the charge transfer excited
states are just displaced from the free molecule excitation energy
and not split into several components.

To the zeroth level approximation, the charge transfer states

are displaced, relative to the centre of the Davydov manifold, by

- 1
- <l llhep> + <l |ty0g> - 2eclygyfegty> - 212 ]Z{ml,U2}2; <iy2afeyiy>
' uz 2

(4.47)
where all the integrals are positive, The lattice sums from equation
(4.40) for uj¥u, do not contribute to the position of the centre of
the Davydov manifold and hence do not appear in (4.47). Since the
intramolecular Coulomb Integral, <i;2;|{i;2;>, will typlcally be
appreciably larger than the sum of the other integrals in (4,47), the
charge transfer state will be higher in energy than the\corresponding
Frenkel state. In the case of singlet excitons this could be offset
by a favourable value of the intramolecular exchange integral <1121|2111>.

There will be a whole series of charge transfer states which
correspond to different values of the electron hole separ;tlon. As
this separation increases, the intermolecular Coulomb Integral in

equation (4.45) will decrease in value until it reaches zero for infinite

i
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separation. Moreover, the rate of dgcrease of this integral will
decrease with Increasing separation. Thus, the charge transfer states
glve rise to a stack of levels, with each successive leve# closer to
the next. The series limit for these levels, correspon?i%g to infinite
electron hole separation, is, to zero order, the difference in the
corresponding free molecule orbital energy levels,

For relatively strongly interacting molecules, the positive
displacement of the charge transfer exciton energy could be conceivably

offset by negative higher order corrections. The first order correction,

is given by:

1) = - 1 -
AI.BE?g )(B,O) - lolFig) - IOIF’(;) - z {2'2Ap2<‘19~2|'1P2" + l,lAp]<‘12‘2!plg‘2>
P

+ 2’2Ap2’<‘ 1p2“19,2> + l’lApi‘(pliz'illz)}- (14.1%8)

Clearly, the A matrix elements would have to be especially large in

order to override the positive term in equation (4.46)

§ 4.7 The Polarization ratio Plz(g)

The polarization ratio Piz(g) Is the ratio of the oscillator
strength for light polarized parallel to the b crystallographic axis
to that polarized parallel to the a axis for a particular transition.
The theoretical value can be obtained from (A4.49)

9 = b .- ac.- Z
Pro(g) = Ty b/Tygeal

where b and a are unit vectors in the b and a crystallographic directions

and T?z and T?: are the components of the transition moment in the b
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direction and the ac plane respectively.
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The transition moment In the above is given by
T (B.6) = f ¥opmy, (8,5)de (4.50)
1e'\®e S TALCLE AR :

where WO Is the ground state wavefunction in the delocalized represen-

tation, M?g(é,a) is the excited state wavefunction in which the electron
and hole are separated by |g] unit cells and |p| sites and p is the
dipole moment operator.

Slater and Schockley 125 have shown the equivalence of the
ground state wave functions in the localized and delocalized represen-
tations. Hence, the gro;nd state wavefunction in the localized represen-
tation, LO, can be used to evaluate the transition moment integral rather

The substitution of L, for ¥, and equation (4.15) for M?A(Q,S)

0’ 0 0
in equation (4.50) yields

than ¥

A (5 - -4 - s i -
Tu(ﬁ,p) o (NZ) glw)‘!ul ;2 f LoPL‘E(Tl)ul;Tzruz)dT- (I*-S’)

in the above T,=T,+§ and upy=u,+p. Evaluation of the summation over T,

and integration ylelds to the zeroth order,

-

OG5 = @it L f b, (h.52)
u; ?

The first order correction is obtained by substituting the first order

corrections for i) and %, gl&en by (1.78), into (4.52)

A(‘)( 3,1 - 3’ . =
B,p) = (ZN) 2 w Y ) {3'1A . [qspeadt + 372A . [i;pqadt}.
uy A,uy q Es ql qL

N , (4.53)
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%
Under the neglect of differential overlap approximation, integrals of

the type
f 11p2,dt = &y, [ 1,pe,dr. (4.54)

Obviously, the neglect of differential overlap, at this point, is un-
acceptable for the study of charge transfer excitons as it gives, to the
zero order, zero intensity. |f the theory is used to investigate these
states the neglect of overlap should not be used at this point. As a
result of (4.54), the intermolecular contribution to the intensity of
the Frenkel exciton [s at least second order. This Is consistent with
the result for the intermolecular contribution to the splitting of the
Frenkel exciton which Is also a second order effect. The bulk of the
Intensity of the Frenkel exciton arises through the intramolecular
excitoé and thus the neglect of overlap does not present a serious
problem in the calculation of the polarization ratio. Hence, to first

order, the transition moment Integral for the Frenkel states is given by:

T?z - (ZN)iZ-i g wx,ul{jilszldT D) (l’lAqIfqlslldT + l’lAqLI‘IBQ1dT)}’

1 ) (4.55)
Using (4.55), the polarization ratio, Piz(g)’ is easily obtained from
(4.49)

For weak allowed transitions the free molecule transition moment,
the zero order integral In (4.55), is small. Thus, the first order
corrections ‘could make an appreciable contribution to the polarization
ratio through mixing of molecular orbitals involved in strongly allowed

transitions with those of the weak transition. This effect Is comparable
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té the Intensity ''stealing' due to crystal induced mixing of exciton
states proposed by Craig 31, However, the intensity redistribution
proposed by Craig Is the result of the mixing of crystal states of the
same symmetry but not necessarily the same molecular polarization, and
hence may have a large effect on the polarization ratio. On the other
hand, the first order intramolecular mixing coefficients in (4,55)

mix only molecular drbitals of the same symmetry on individual molecules.’

Thus the effect of the first order corrections in (4.55) is expected to

be small with respect to intensity "'stealing'.

§ 4.8 Application to the Excited States of Naphthalene and Formamide.

In this section the theory is applied to the low lying singlet
Frenkel states of naphthalene and formamide crystals using the zero
order molecular orbitals and F and A matrices from the calculations
reported In chapter 2.

In order to apply the theory to the naphthalene crystal, the
pi molecular orbital structure and lowest singlet states of the free
molecule should be examined. The isolated naphthalene molecule s an
alternate hydrocarbon under the pi electron approximation 128 and the
two lowest unoccupied and two highest occupied pi levels have the
same spacing. The corresponding energy level diagram for the crystal
molecule Is given in figure k.1. Although the pi levels calculated
for the crystal molecule under the CNDO approximation are not exactly
evenly spaced, the molecule was treated as an alternate hydrocarbon,

; For the case of exactly even spacihg, the states arising from excitations
from pl levels 5 to 7 and 4 to 6 are degenerate and combine into two

states labelled a and 8. The states arising from transitions from level
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Flgure 4.1 The lowest singlet states of molecular naphthalene.
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5 to 6 and level 4 to 7 are generally labelled p and 8' respectively.
The transitions assoclated with.these states are classified as very
weak for the a state, weak for the p and 8' and strong for the B state.
In order to determine the coefficients of the a, B8, p and 8'
-exciton states due to allowed mixing at the molecular level, a molecular
configuration interaction calculation using the states that arise
from transitions shown in figure 4.1 was performed. This is referred
to as the small set configuration interaction calculation (55C1). Since
a full single excitation confliguration interaction calculation will
change the order of the molecualr g and B' states 128 5 second conflg-
uration calculation was performed using all w*ﬂ* transitions that
lead to states of u symmetry, This is referred to as the large set
configuration interaction calculation (LSCI). The additional integrals
required for the molecular configquration interaction calculations are
glven by Pople 123, The coefficients for the a, 8, p and B' crystal
states from these calculations are given in table 4.1. The only appre-
ciable contribution from the higher energy states to the lowest singlet
states Is the IM3,5(0,0) contribution to the 8' state. It is this
contribution, presumably, that lowers the energy of the 8' state below

the g state.

The calculated contributions to the energies of the a, B, p and

8' states of naphthalene from the SSCI! and LSCI calculations are given

(0)

in table 4.2. In the table, the molecular excitation energy BE. 7, s

the contribution from the zero order excitation energy of the crystal

molecule, its first order contribution AE§:), is the crystal induced

first order correction from equation (4.42), the zero order shift due to
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Table 4.1 'qu\fflcients of the M type functions in the &, 8, p and 8'
Frenkel states of naphthalene.

a) From the small set molecular configuration interaction calculation,

o

Function a 8 P g'

W 0,00 - 677097 -.735893 -.000327 - .000939
! &

IMQ 7(o,o) -.000275 .001072 -.509031 -.860748

M, (0,00 -.000482 -.000710 - 860748 .509031

‘MS 7(o.o) -~.735894 ~.677096 .000453 -.000876

b) From the large set molecular configuration interaction calculation.

Function o B P B!
lMl'é(0,0) -.011988 -.004890 ~.000047 -.000016
1Mm(o,o) .000027 -.000024 ~.024700 .022271
M (0,0) .000000  ~.000001 -.002907 .008656
IMZ'B(O,O) .048003 .058321 ~ -.000009 -.000133
IMZ’S(O,O) -.000016 .000065 .005979 -.010013
1H3’8(0,0) . .000027 -.000183 007623 -. 454510
lHa'g(0,0) .052658 .089978 .000052 .000217
5 IH“’G(O,O) -.675949 .729377 -.000245 ~.001071
lMu,7(O,O) .000225 '~.001310 -.500581 ~.772266
V 1“4,1é0’0) -.000029 -.000097 ~. 041445 .052108
_ M, (0,00 . .000385 .000847 -.864285 . hook1
g u, (0,00 .733100 .675487° 000379 - 000969

1

.000071

Lks §0.0) .020864 -.014277 .000052
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Table 4.2 Contributions to the energies of the a, 8, p and B' states of

crystalline naphthalene In em ¥,

a) Using the small set configuration interaction coefficlents,

Contribution a g P B!
Aefg) 63693.5 102373.3  65061.2 105324, 4
AES) 4.2 k.2 0.2 0.2
lﬁ?) 2.4 1564.9 -210.9 -925.1
() -0.7 0.7 0.0 0.0

11 >
|;§°) -9.4 9159.1  63.2 . 2049.8
nﬁo) 9.4 9159.1 -63.2 -2049.8
1 n 2.9 -2.5 0.4 -1.1
12
y2(M -2.9 2.5 -0.4 1.1
12

AEfg), lfg) and the !iiox denote the zero order molecular excitation

engrgy, the zero order -shift due to equivalent molecules and the zero

order shifts due to Inequivalent molecules respectively. The corre~

(1)
ig?

Ifl) and the Izil). The liz components are polarized perpendicular

sponding first order corrections to these contributions are AE

to the b axis and the components Iiz are parallel to the b crystal

axls. .
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Table 4.2 continued

g .
b) Using the large set configuration Interaction coefficlents.
P 4
"Contribution a R p B
Aefg) 63225.7 101757.4 64843.3 96936.7
AES) ( 3.7 -3.7 0.2 -0.2
:f‘:) 1.5 2548.9 -203.5 -266.2
If:) 0.7, 0.7 0.0 0.0
l ii") -9.7 -8588.6 6.6 625.0
|§§°) 9.7 8588.6 -96.6 -625.0
lii‘) 2.9 -3.3 0.4 -0.4
201 2.9 3.3 -0.4 0.4

12 -
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(0)

11 * is the contribution to the sum

equivalent molecules |

2rz"’ w w <i12;]%2112>, in equation (4.40), In which
A,ui Aa,u 1

molecule 2 is equivalent to molecule 1 under the full translation group

(1)

of the lattice. The corresponding first order contribution Is -

The shifts due to inequivalent molecules are the contributions for

which molecule 2 Is not equivalent to molecule 1, I[n the tables;‘the

A (0)

shifts due to Inequivalent molecules are l,

and l?(]) for the zero
2
and. first order contributions respectively. Although the CNDO method

gives poor values for the excitation energies in the virtual orbital
> .
¥
, these energies are reported for comparison purposes.

In the isolated formemide molecule, the lowest weak n+n* and

approximation 37

strong m+* transitions give rise to two states between which mixing
ts formally not allowed. However, in the crystal, a small distortion
of the molecule induces a small amount of mixing between these states.
The dlagonal and off diagonal coefficients of the mixing between these
states are .997782 and +.066573. The electronic contributions to the
corresponding bands in the crystal are given in table 4.3. For con-
venience, the bands in the crystal are labelled according to the tran-
sition which makes the larger contribution.

Since for weak and very weak transitions the mixing between
excitons of the type proposed by Cralg 3!, is expected to have a large
effect on the polarization ratio, calculations of the mixing between
the a, 8, p and B} states of naphthalene and the a+rr* and w1 bands of
formamldefwere performeq. The ahdition matrix elements for these

calculations are given in appendix 2. The calculated and experimental
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Table 4.3 Contributions to the energies of the n-»n* and n»a* bands

of crystalline formamide {n cm-j.

Contribution n->yw¥ Polarization
Aefg) 51372.6
AEgl) 3614.5
(0) 8 ®
by .3
() 1.4
11
11(0) -27.3
12
12(0) 47.6
12 ac
13(0) 5.5 b
12
- 140 -14.7
~ 12
'1(1) _1'7
12
\>_
12(1) 9.4 ac R
12
13(‘) -26.8 b
12
(1) 19.0
12

The contributlions are as defined In table 4.2 and in the text.
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Davydov splittings and polarization rat}os for naphthalene are in tables
4.4 and 4.5 respectively. The experimental and oriented gas values
were taken from reference 30.

Table 4.6 contains the calculated Davydov splittings and
polarization ratios for the n+1" and m1* bands of formamide. The
splitting was taken as the difference between the b and ac polarized

’
components in each case.

In.the crystal each of the molecular states of naphthalene
glves rise to a state of Au symmetry with transition moment parallel
to the b crystallographic axis and one of Bu symmetry polarized in
the ac plane. In the same manner, the formamide bands are split into
four of Ag, Au, Bg and 8; symmetries with the A; polarized parallel to ’,ﬁ
the 6 axis, the B, in the ac plane and the Ag and B  states with no net™
transition moment.

in general, the relatively]stronger intermolecu&pr interactions
in formamide are reflected in the larger first order corrections to
the molecular excitation energies. The occurence of larger contributions
from the sums of exchange integrals for formamide also is a consequence
of the larger intermolecular interactions. Increasing the size of the
configuration interaction calculation from the SSCI to the LSC! for
naphtha\;ge has only a small effect except for dropping the energy of
the g' state below that of the g state and reducing the contributions

et

from the sums of exchange integrals to the B! gQ?te.
The large first order corrections to ﬁh:imolecu\ar excitation
energles of .formamide, towards higher energy for the n>n™ band and towards

lower enefgy for the q+ﬂ* band, parallel the effect of hydrogén bonding
X M , .
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Table 4.4 The calculated and experimental Davydov splittings for the

lowest singlet states of naphthalene in cm-,.

State Expt. Calc.(ssCt) Calc.(ssCt) Catc. (LSCl) Calc. (LSC

E.N. E.M.

« -186" -13.2 -8.3 -12.5 -7.7
8 -18323.4 222445 -17185.8 -17502.8
P 320 127.5 195.3 194.0 263.8
8! 4097.3 5750.9 1250.8 2151.2

1 in the 0-0 band and 36 c:m“1 in the 0-1 band. °

* -
This ts*made up of 150 cm
SSCl refers to the use of the coefficients from the small set configuration
- Interaction calculation and LSCl from the large set configuration -interaction
cqlculation. E.M. refers to the exciton mixing of Craig 31,
»

Table 4.5 The calculated and experimental polarization ratios, P;z(g)' for

the lowest singlet states of naphthalene.

State Expt. Oriented Cale.(SSCi) Calc.(SSCI) Cale.(LSCt) Calc.(LsCi)

gas . E. M, ) E.M.
a 10. .25 .22 .01 .23 .00
B8 .25 .23 .0k .23 .00
p 3. 7.7 7.25 2.99 7.25 3.01

B - 7.20 3.73 7.18 3.98
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solvents on aldehydes and ketones 130, Also, recent calculations by
Del Bene 13! on the n+x* bands in carbonyY compounds upon dimerization
Indlcate a shift towards higher energy. Hence, the major effects of

the crystalline hydrogen bonding environment on the carbonyl group are

-reproduced by the SCF perturbation method.

Since the CNDO method gives poor values for the molecular
excltation energies in the virtual orbital approximation >7 and\the
neglect of overlap removes a large part of the contribution to the
shift of the centre of the Davydov manifold from the molecular excita-
tion energies, only the Davydov splitting and polarization ratios for
the purely electronic excited states should be directly compared to
experimental results,

Generally, for'naphthaléné, the inter-exciton mixing strongly
influences the polarization ratio; and has only a small effect on the
splittings. The only significant effect of Increasing the size of the
molecular configuration interaction Is iIn the considerable decrease in
the slze of the splittiné in the B' state. -

The po\arlzat!én rafio and Davydov splitting of the a state
for naphthalene show a very poor agreeflent with experiment. However, it
has been demonstrated previously by Craig 3! that for very weak transitions
the dipole-dipole approximation cannot account for the ‘observed Davydov
splittings. Thus, since under the CNDO approximation the highes multi-
pole moments i{n the lattice sums of exchange lntegra}s are not well
represented, the calculat;d splitting is much smaller than observed.
Furthermore,~the intensity of the a band in naphthalene arises largely

from the p molecular state through vibronic couplting. Hence, the calculated




Table 4.6 The calculated Davydov splittings and polarization ratlos

for the n+w* and wa* bands in the formamide crystal.

Band Splitting Polarization Spiitting Polarization
ratio (E.M.) ratio(E.M.)

n-+w¥ -89.3 228.03 -79.2 6.90

ek -16728.4 12.69 -16737.6 12.72

The Davydov splittings were taken as the Intervals between the b and

ac polarized components In cm . E.M. refers to the Inclusion of the

1

Inter-exciton mixing of Cralg 31,
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polarization ratio Is not comparable to the experimental value,

For the p state, which arises from a stronger transition than
the a state, the polarization ratio agrees with experiment after inter-
excliton mixing has been taken into account. The calculated Davydov
splitting for the p state Is about 80% of the experimental value when
inter-exciton mixing and the coefficients of the molecular large size
confliguratlion Interaction calculation are used. The remaining portion
of the splitting In the p state of naphthalene could easily be accounted
for by mixing with charge transfer states 3%,

%
For formamide, since the m+n transition is much more strongly

allowed than the n+n™ transition, the resultant Davydov splitting for

© the mr* band is much larger than that for the n>n”* band. The rather

targe change in the polarization ratio of the n+n" band is the result
of a mixing of only about 4% of tRe transition moment of the mu" band
with that of the n+r" band. Hence, in the crystal, the polarization
ratio of a weak transition can be changed quite drastically by the
perturbing effect of a strong transition.

in summary, a theory for the electronic excited states of
molecular crystals within the molecular orbital approximation has been
developed and used to calculate the Davydov 4plittings and polarization
ratlos for some transitions of a hydrogen bonded crystal, formamide, and
a dispersive crystal, naphthalene,

it has been shown that the results for the Frenkel exciton can
be cast'lnto the same form as those Davydov 25 obtained from the valence
bond approach. With the inclusion of the Inter-exciton mixing of Craig 31»32,

the polarization ratio of the p state of naphthalene and up to 80% of

-




v
N

lts Davydov splitting can be reproduced. There Is some reason to
believe that the agreement for the splitting could be improved by
the inclusion of cha;ge transfer states 30,33735

If the theory Is to be applied to weak transitions or to the
calculation of the excitation energies and spectral shifts, the neg-
lect of overlap, which Is not an Inherent approximation of the Lastc
theory, should be abandoned in favour of less approximate methods.
However, the gross effect of the hydrogen bonding interaction on the
spectrum of carbonyl compounds is predicted within the neglect of

overlap approximation,
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CONCLUDING DISCUSSION

The SCF perturbation method for molecular crystals outlined
In Chapter 1 is a useful method for the investagation of some of the
electronlc properties of a wide range of these systems.

The results for the intermolecular perturbative portion of the
binding energy and charge distributions given in Chapter 2 are quite
reasonable. The lattice energy of hydrogen bonded crystals is repro-
duced quite well and the contribution from perturbative bonding inter-
actions to van der Waals crystals is found to be small but significant.
The changes in the molecular charge distribution upon crystéllization
are small and In the case of hydrogen bonded crystals are such that
the hydrogen bonding environment is enhanced. The amount of charge
transferred between molecules, due to distortions of the unit cell
brought about by cooperative vibrations or 5otatlons of the molecule%,
Is small but may have a significant effect on the lattice vibrational
spectra.

The method of calculating the band structures given in Chapter
3 Is quite practical and can easlly be applied to systems as large as
the naphthalene crystal. The results of the band structure calculations
on naphthalene and ethylene and the band structure and density of states
calculatlions for formamide, formic acid and urea indicate that some
molecular levels are dispersed more than others. Specifiéally, the
bands derived from the lowest occupied sigma levels are strongly

dispersed whilst the bands derived from the highest occupied pi and
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non bonding levels are relatively unaffected.

The molecular orbital method for the excited states of crystals
derived In Chapter 4 reproduced the observed values for the Davydov
splitting and polarization ratio for the weak p state of naphthalene
and the gross effect of the hydrogen bonding environment on the nen

* bands of the carbonyl group of formamide. The Davydov splittings

and wn
of these bands in formamide are predicted to be quite large and in
proportion to the strengths of the transitions.

The SCF perturbation method for molecular crystals can be used
to calculate the intermolecular perturbative bonding energy, charge dis-
tribution, electronic band structure, density of states and crystal
spectra for various ¢rystal types. Thus, the objective set out in the
Introduction, In part at least, has been fulfilled. That is, a theory of
the electronic properties of molecular crystals which includes all crystal
Interactions and makes no assumptlions as to the additivity of intermole-
cular forces could be obtained,{f the dispersive van der Waals inter-
actlons are Incorporated within the framework of the SCF perturbation
theory and the representation of the higher multipole moments is improved,

The removal of the requirement of the Neglect of Differential
Overlap from the theory could improve the agreement with experiment.
This Is especlially probable for properties such as the ground state energy
of crystals of molecules {n which quadrupole and higher moments play
an Important role and the spectral shift and splittings arising from
very weak transitions In the crystal for which the higher transition
moments make an important contribution. The theory for the calculation

of the charge distributions and lattic9 energies without this restriction
/

14
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has recently been given by 0'Shea and Santry ®" and its implementation
scems quite possible with the increasing availability of large
computers.

The inclusion of dispersive forces could be accomplished using
the perturbation method outlined in the Introduction with the additional
matrix elements and enerqy differences obtained from the theory of the
excited states given in Chapter 3. In this approach, the dispersive
Interactions would be calculated after the completion of the SCF per-
turbatlion and its effects simply added to the results of the SCF per-
turbation calculation. A much more satsifactory method of the inclusion
of dispersive forses would be to use the method of Mukherjee 132 in
which the expansion coefficients of (1.1) and the forms of the orbitals
are optimized simultaneously. Hence, the dispersive and non-dispersive
forces could both be treated self consistently. However, the large
amount of computer storage required for this type of calculation
would likely limit its application to crystals of very small molecules.

An Important application of the theory in its present form could
be to charge-transfer or n-molecular complexes. Recent theoretical
studles using the CNDO or a modified CNDO method for dimers 133-135)

a method of building up wavefunctions for the pi electrons of the
crystal from those of triads of molecules 136-137 and a treatment of
the ferroelectric transiflon due to a distortion of the lattice of
TTF-TCNQ 138 have been reported. Un!!ke the above calculations, the
SCF perturbation method can be used to treat all the valence electrons

of molecules in the crystalline environment and the effects of lattice

distortions unambiguously,
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Coordinates of the atoms, in terms of the unit cell axeﬁ? for the

reference molecules of the crystals studied in chapter 2.

An asterisk

Indicates the hydrogen in a hydrogen bonded crystal which makes the

shortest intermolecular contact.

68
a) Nitrogen

o S

69

b) S-triazine

Atom a b c

Q [o] Q
N, . 554000 . 4146000 -.054000
N, . hh6000 .554000 ~.05L000

Atom a b c

[o] Q o]
H, .235203 .000000 .250000
H, .000000 .235203 .250000
H3 -.235203 .235203 . 250000
c1 .131803 .000000 .250000
c2 .000000 .131803 .250000
c3 -.131803 .131803 .250000
N, ~. 1412058 .000000 . 250000
Nz . 000000 141205 ’.250000
u3 . 141205 . 1412056 .250000
%

&

( A




c) Naphthalene

70

Atom a, b° <,
H, . 136800 .062700 . 466500
H, .031800 .297800 . 340800
Hy . 188300 . 318500 .273300
Hy, . 149900 . 404300 .021300
Ho . 136800 .062700 . 466500
He .031800 .297800 .430800
Hy /188300 .318500 .273300
Hg . 149900 .104300 .021300
o .085700 .017400 . 326700
c, .009900 . 186900 .255500
s . 114900 . 160600 .220500
Cy .076100 .247600 .078200 -
Cg .048200 .103000 .035900
Cg .085700 .017400 .326700
¢, .009900 .186900 .255500
Cg . 114900 . 160600 .220500
Cy .076100 .247600 .078200
c .048200 .103000 .035900
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71
d) Benzene .
3
Atom a b c
[o] Q 0
H1 -, 104600 .250500 -.012300
H2 . 104600 .250500 .012300
H3 -.245800 .078100 .224100
Hh .245800 .078100 -.224100
Hs -.137100 .168100 .236000
He .137100 .168100 -.236000
C1 ~.060700 .1338300 -.006900
CZ .060700 -139300 .006900
C3 -.137700 .0k4700 .126000
Ch .137700 . 044700 -.126000
CS < =,077000 .095800 . 132500
C6 .077000 .095800 ~-.132500
72
e) Hydrogen cyanide \
Atom ’ a b c
[+] o] (o)
_H .000000 .000000 . 24654k
¢ .000000 .000000 .000000
N . 000000 .000000 -.265899

4
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f) Carbon dioxide

Atom a b c
o] [a] [o]
¢ .000000 . 000000 .000000
01 .120300 . 120300 .000000
02 -. 120300 -.120300 . 000000
74
g) Sulphur dioxide
Atom a b c
o ° o
S .000000 .000000 . 000000
o] .140000 . 150000 .118000
02 -.1k0000 -.150000 . 118000
75 ,
h) Diborane ‘
Atom a b c
0 o 0
H, .166000 . 140000 -.194000
HZ -.166000 -, 140000 . 194000
HB .294000 -.005000 . 196000
. Hk -.294000 . 005000 -.196000
HS -.019000 . 112000 . 104000
H6 .019000 -.112000 -.10L4000
Bl . 146000 .042000 .002000
B -. 146000 -.042000 -,002000
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1) Tetracyanoethylene oxide

Atom a, bo <,
¢, . 739400 .311100 . 194900
c, .875600 641300 .284700
Cy .582900 .326100 . 354000
c, .720500 .654600 . 416200
Cs . 796000 .150000 .297000
Cq .715300 457700 .381400
N, .691300 .1993900 .116800
N, .937800 .795100 .278900
Ny . 478300 226200 .324700
N, .728500 .817000 . 494600
0 .848600 .342900 .407300

1) Tetracyanoethy\ene77

Atom 3, bo <,
¢, .069000 .500000 .500000
¢, -.063000 .500000 .500000
Cy . 147680 .500000 .624900

Cy -. 147680 .500000 .624900
C5 . 147680 .500000 .375100
Ce -.147680 .500000 .375100
N, .212870 .500000 .726100
N, -.212870 .500000 .726100
N .212870 .500000 .278400
Ny, <.212870 .500000 .278400
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k) Formic acld

78

1) Melamine

Atom a, b° <
Hy .107300 . 428400 . 320200
H; .138600 .028500 -.129800
c .157000 .306000 .161000
0, .089000 . 140000 ,000000
0, .267000 . 337000 . 147000

Atom a, bo <,
H, .018600 .050900 . 163000
H, .053800 .984700 . 344900
H; .064600 .364700 .505000
H) .161000 .255800 .391300
He .271200 .537600 -.085200
He .240900 .7639500 -.123900
N, .181200 .504300 .180800
N, .116400 .809000 .099300
Ny 060400 .662300 . 349100
Ny .011600 .960100 .276500

| Ng 1121300 .367900 .421100
Ng .224200 .643900 -.068200
¢y .063500 .804700 .240000
¢, .121300 .515200 .313900
¢ .172900 .658300 .074300
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-
m) Formamide
Atom a, bo <,
Hy .231000  -.262000 .176000
H, .420000 ~. 124000 .010000
Hy . 184000 - .085000 . 389000
c .310000 -.059000 .261000
N .330000 -.159000 . 128000
0 . 434000 .067000 .225000
n) Urea81
Atom a, bo <,
Hy .269000 .769000 .279000
H, -.269000 .231000 .279000
Hy .1&2600 .642000 .028000
Hy, - .142000 . 385000 .028000
N, . 145500 .645500 . 180000
N, -.14500 .354500 .180000
T C .000000 .500000 .327800
0 .000000 .500000 .596600
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8
o) Cyanurlc acid

Atom 2 bo <,
Hy .250000  -.140900 250000
H, .242250 384500 .073660
Hy 247750 384500 . 426300
c, .250000 417910 .250000
c, .245250 .105880 146230
C3 .254750 .105880 .353770
N, 250000 .011410 .250000
N, .2414600 .309010 . 150460
Ny .255400 .309010 .349540
0, .250000 .598180 250000
( 0, .242620 .013750 .057120
| 0y .257380 .013750 .442880

-
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83
p) SF 4BF,

Atom a, bo <,
B 483460 . 750000 .176580
Fy .628180 .750000 .159840
F, 424900 . 750000 .034570
Fy .kho870 .552380 .250110
Fy .440870 .947620 .250110
Fy .804710 .554530 -.053470
Fe .8o4710 .954530 -.053470
Fy 775190 . 750000 -.268220
s .718320  .750000  ~-.112590
q) BFhNHbeu
Atom— a, bo <,
H, .225000 .250000 .346000
H, .347000 .250000 .234000
Hy . 346000 .121000 .372000
H, . 346000 .379000 .372000
N .314000 .250000 . 336000
8 .940000 .250000 .693100
Fy 1.075200 .250000 .61f100
F, .828300 .250000 .563700
Fy .924100 .051700 .803000

Fy .924100 .-48300 .803000
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APPENDIX 2

The required matrix elements for the inter-exciton mixing
calculations are those between singlet Frenkel excitons for different

transitions, and are written

(0,00 = )7 ] J o Iow, (,152,2),

Al w 2
iﬂ,, up Uy A,Up A,up T, T, ie,

) (A2.1)

Substitution for 1lH

‘e n(1,1;2,2) to the zeroth order yields
r

2 (0) -1 '
AlE (0,00 =2 "2t ) ] w w Y <magyfnyty>.
{4,mn 4y Gy A, Uy A,uUp T, (A2.2)

The flrst order‘correction is llkewise evaluated, Substitution of
the first order correction to lHiz mn(1,1;2,2) In equation (A.1)

b}
ylelds

a2 5.0) = 27!

t
t2,mn ) (2’2Apm<P2111"2‘1>

¢
]l le
P Ul U R T2

+ l’lAp2<mzp1ln2‘1> + 2'2Apn<m221192‘1>

+ l’lApfmzhl“zPl’)- (A2.3)

e L
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APPENDIX 3

o

The correspondence between the theory of Bacon, Crowe and
Santry 60-65 for the bond order matrix and that of McWeeny %0 for the

density matrix is given here.

The coefficients of the atomic orbitals in equation (1.32) for
the occupied molecular orbitals are collected together in a matrix T.

Thus (1.32) 1s now written

$ = Ty (A3.1)

with the ¢'s -and x's now row matrices. The spinless density matrix,

p, Is then defined as

o =TT . - (A3.2)

The columns of T are the coefficients of (1.32) for the occupied molecular

orbitals calculated by the solution of the Hartree-Fock equations

FC = CE . \\ (A3.3)

This may also be written,

FT = TE (A3.4)
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readily follows. Because the molecular orbitals are assumed to be
orthonormal, p is Idempotent

' w ol 15?
p? = o . - (A3.6)

Conversely, (A3.5) and (A3.6) are the necessary and sufficient conditions
that E is stationary against any variations of the ¢'s, subject to the
preservation of orthonormality.

Proceeding in the manner of ordinary perturbation theory, the

density matrix is expanded

o = e(0) . e(l) . 9(2) . e (A3.7)
and
AR (A3.8)

On inserting (A3.7) and (A3.8) into (A3.5) and (A3.6), one obtains on

separating the orders

(0,0 _ .0 _ (A3.9)

Y v

E(0)2(1) - e(l)E(O) + ée(o) _ 8(9)9 -0, (A3.10)
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E(o)e(m i e(u)E(o) - (k-1) _ Q(k:J)Q - 0 (A3.11)
and
(0)2 (0) (A3.12)

% =R ,

e(0)9(1) () {0 (1) | (A3.13)

teop =0

A A N L T 7L T

A zero order solution is assumed to exist that satisfies (A3.9) and
(A3.12). Thus, (A3.11) and (A3.12) define the higher order corrections.
(0)

Since ¢ Is a projection operator for the space spanned by

the occupied orbitals, the complementary projection operator

1@ L 0Ly, (0 (A3.15)

o]

deflines the subspace spanned by the vacant orbitals. Any arbitrary matrix,

M, can be resolved into components as follows,

o= eéo)ﬁeéo) * eéo)ﬁeio) * eio)ﬂeéO) * e£°)§e£°) )
" ﬁoo * rjov * nvo * Evv' . (A3.16)

The components are linearly independent and Aijalk = 0 unless j = k.

If 9(1) ts resolved into its components, equation (A3.13) yields four
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equatlions, one for each component:

29§l) = Qé;) , (A3.17)
o1 (A3.18)
ei;) = eil) , © . (A3.19)
0=l (A3.20)
Thus, Qéé) - pél) = 0, whilst eél) and 95;) are undetermined, though by

Hermitlan symmetry

1 1)t “
SURRLL 2.2
This means that 9(0) + 9(1) {s idempotent providing g(‘) is of the form
ORI (33.22)

-~

Substltution of g(‘) into (A3.10) and resolving 9(1) and 4 into components

ylelds

L0 () (0, (A3.23)
= Boy Bov - “ov ! .
F(0)2(1) . e\(,;)E(O) sa, =0 . . (A3.2h)

- vo
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Since (A3.23) and (A3.24) are each others Hermitian conjugates, then one -

(1)_ LF F(o)

need solve only for N is assumed nonsingular (this is In

-

general the case) then Its Inverse exists and yA3.23) can be written

-

1 -1
(D L @@, (33.25) |
or
~ Vi
1 : - . -
xm £ @O0y ¢ 07 L ) (x = ol (A3.26)

A formal solution may be obtained by lteration. Thus, if x, =0,

x, = f(x ) = A F(O)-‘ and in general
-1 -0 ~ov- .

- flx) = f (0 (0" B (Ol " (A3.27)

Xt 4k -ov-

-

LY
-~z

Then the 1imit of the sequence gives

n -(n+1)
nZO F(gzﬂsovg( o) . (A3.28)

-

In order to determine under what conditions the lterative solution
- (0)

converges, F Is written in terms of its eigenvalues and the projection

offarators for its elgenvectors. Thus

(A3.29)
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where ey = EIET Is the projection operator for the eigenvector c- in
general,
m
FE) w T e (A3.30)
=1 -
On substituting this form into (A3.28) and making use of
occe
Q(()o) =7 g (A3.31)
and
0 vac ' )
95 ) y o » (A3.32)
McWeeny obtains
VI PO NOMUL '
w0 -ov-
. E OEC vac N - (n+1)
w0 | E jej-ovek k
» occ vag (e +
- o bt o SijAjk ; & (A3.33)
) ¢ -
wheré“\
N
."'\4-
A ' (A3.34)

Jk T EJéEk .

r
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This expression Is a geometric series with respect to n and converges
absolutely as long as €y < £ (all J occupied, all k vacant). In
general this condition is met by the zero order solutions and the sum

over n may be evaluated to obtain

(]) 0CC vac

-t- .
Cov "~ § E EksjA_}k/(Ek - EJ) . (A3.35)

Thus, from (A3.22)

(M OEC V§C (cfe, + ¢fe)a /e, - €,) (A3.36)
bobotas T egadindtae o ‘
The comparison of (A3.36) and (1.84) using ( .
P =2 (A3.37)
yields
M /(e - €)= Fi e - eg) (43.38)

’ <
Thus the correspondence of the two theories to first order Is exact.

Since McWeeney does not allow for changes in F above first order, the
theory of Bacon, Crowe and Santry contains extra terms and the correspon-
dence s not exact for the second and higher orders.

It should be noted that because of the properties of the éro-

Jection operators, expresslions with apparent singularities do not occur
. w X

In McWeeny's presentation of the theory.
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