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ABSTRACT

In this dissertation research, grey mathematical programming (GMP) and grey fuzzy mathematical
programming (GFMP) methods have been developed for the first time for decision making under uncertainty, and
applied to case studies for municipal solid waste (MSW) management planning in the Regional Municipality of
Hamilton-Wentworth (RMHW), Ontario, Canada.

The GMP/GFMP approaches have improved upon existing mathematical programming methods, such as
fuzzy mathematical programming, stochastic mathematical programming, and interval mathematical
programming, by introducing concepts of grey systems and grey decisions into ordinary mathematical
programming (MP) and fuzzy mathematical programming (FMP) frameworks. The deveioped methods allow
uncertain information (presented as grey numbers) to be effectively communicated into the optimization processes
and resulting solutions, such that feasible decision alternatives can be generated through the interpretation and
analysis of the grey solutions according to projected applicable system conditions. Moreover, the proposed
GMP/GFMP solution aigorithms do not lead to more complicated intermediate models, and thus have lower
computational requirements and are applicable to practical problems.

Four GMP (grey linear programming (GLP), grey quadratic programming (GQP), grey integer programming
(GIP), and grey dynamic programming (GDP)) and four GFMP (grey fuzzy linear programming (GFLP), grey
fuzzy quadratic programming (GFQP), grey fuzzy integer programming (GFIP), and grey fuzzy dynamic
programming (GFDP)) methods have been developed. The reievant solution algorithms have been provided, along
with hypothetical. but practical. case studies in waste management planning, where the GLP, GFLP, GQP, and
GFQP methods were applied to waste flow allocation planning problems, and the GIP, GFIP, GDP, and GFDP
methods were applied to capacity planning problems for waste management facilities.

The GFMP improved upon the GMP through the introduction of concepts of fuzzy decisions and FMP into
the GMP frameworks (o better reflect system uncertainties and generate grey solutions with higher certainty and
improved applicability. The use of the GFMP approaches may be particularly pertinent for GMP problems with
model stipulations fluctuating within wide intervals but the related membership function information for

admissible violations of system objectives and constraints is known. The GMP/GFMP pairs are all directly
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linked (GLP-GFLP, GIP-GFIP, and GDP-GFDP) except for the GFQP which is not linked to the GQP but
instead is linked to and improves upon the GFLP since it enables the modelling of constraints with independent
uncertain characteristics, In comparison, the GQP was formulated by including the effects of economies of scale
within the GLP modelling framework. In terms of the difference between the GIP/GFIP and GDP/GFDP. the
GIP/GFIP methods provide a "one step” optimization process which is convenient for modelling formulation and
solution, but may require computers witn high capacities and speeds when large scale problems with a multitude
of variables and time stages are to be solved, while the GDP/GFDP methods could potentially solve such a
problem by dividing the planning horizon into several stages, but may require more effort for the dynamic
analysis and computation of the stage submodels. The effectiveness of the methods and their solution algorithms
have been demonstrated through a series of comparisons between the MP/GMP/GEMP solutions. as well as
related sensitivity analyses.

The GMP and GFMP methodologies were applied to case studies of short term waste flow ailocation and
long term facility expansion pianning for the waste management system in the RMHW. Through examining the
relationships and conflicts between different system components, a GLP model was formulated for the waste flow
allocation planning problem, and a GIP model was formulated for the Facility expansion planning problem. The
grey solutions provided optimal and stable ranges for system objective function values and decision variables,
which could be used for generating decision altemnatives th:ougﬁ adjusting/shifting the decision variable values
within their solution intervals and making relevant tradeoffs between different system objectives/restrictions
according to projected applicable conditions. Generally, the short term waste flow allocation solutions were
useful for adjusting or justifying the existing waste flow allocation patterns. and the long term capacity planning
solutions provided optimal times, sizes and locations of the waste management facility developments/expansions.

Sensitivity analyses of the effects of system condition variations on the model solutions were also conducted.

iv



ACKNOWLEDGEMENTS

First and foremost, I am deeply grateful to Dr. Brian W. Baetz and Dr. Gilles G. Patry, my supervisors. for
their excellent supervision, which contributed very much to the successful completion of this dissertation. No
words can sufficiently express my thanks for their providing me with very kind instruction, encouragement, and
support. I will cherish all the good memories from my Ph.D. study at McMaster and use them as a guidance for
my future career.

I am also very grateful to Dr. A. A, Smith, Dr. R. M. Korol, Dr. Y, Y. Yin, and Dr. D. P. Loucks for ther
insightful advice and kind help.

A number of institutions and companies relating to solid waste management in the Regional Municipality of
Hamilton-Wentworth (RMHW) were very instrumental in making this study a success and were at all times very
supportive of my research. I am particularly grateful to Mr. V. Teriuk and Mr. P. Dunn from the Environmental
Services Department in the RMHW for their assistance. Thanks are also extended to Mr. P. Jensen
(Environmental Services Department in the RMHW), Ms. S. Coverdale (Department of Finance in the RMHW),
Mr. K. Brisbois (Third Sector Employment Enterprises), Mr. B. Marshall, Mr. J. Moore, and Mr. C. Liang
(Laidlaw Technologies Lid.), Mr. D. Lobe, Mr. R, Tuphalme, Mr, T, Taylor, Mr. B. Smith. Mr. B. Rogers, and
Mr. H. Postilt (Engineering Services Departments of the Cities/Towns of Hamilton. Ancaster. Dundas,
Flamborough, Glanbrook, and Stoney-Creek, respectively), as well as Eggers Excavating Inc, and KNE Waste
Inc. for providing me with useful technical information.

I am grateful to the Department of Civil Engineering at McMaster University and the Natural Sciences and
Engineering Research Council of Canada for providing scholarships for my Ph.D. studies. I also thank Ms,
Rashne Baetz for her kind help and encouragement, as well as Ms. J. Han, Dr. T. Jiang, Dr. J. Wu, Mr. C.
Chen, Mr, J. Wang, Dr. K. Barlishen, Mr. E. Evenson, Ms. L. Lishman, and Mr. P. Xu for their valuable
assistance. Thanks are also due to Ms. Deborak Smaluck, Ms. Gail Britton, and Ms. Grace Ferracuti of the
departmental office who have assisted me throughout my Ph.D. studies.

My wife. Chunling Ke, and daughter Wendy (Wanzhi) Huang are appreciated for their love and understanding.



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1. INTRODUCTION

CHAPTER 2. LITERATURE REVIEW

2.1, PREVIOUS STUDIES OF OPTIMIZATION MODELLING FOR REGIONAL SOLID

WASTE MANAGEMENT

2.1.1, Deterministic Optimization Modelling for Regional Solid Waste Management
(1) Linear Programming
{2) Integer Programming
(3) Dyramic Programming

(4) Muitiobjective and Goal Programming
2.1.2, Optimization Modelling for Waste Management Planning under Uncertainty

2.2. PREVIOUS OPTIMIZATION MODELLING APPROACHES DEALING WITH
UNCERTAINTIES AND THEIR APPLICATIONS

2.2.1. Fuzzy Mathematical Programming

(1) Modelling Approaches

(2) Extensions in Mathematical Programming
(3) Application to Regional Planning Issues
{4) Summary

222, Stochastic mathematical programming

(1) Modelling Approaches

2) Extensions in Mathematical Programming
(3) Application to Regional Planning Issues
(4) Summary

223, Interve! Mathernatical Programming

(1) Formulation and Solution
(2) Summary

2.3. LITERATURE REVIEW SUMMARY

CHAPTER 3. GREY SYSTEMS AND GREY MATHEMATICAL PROGRAMMING

3.1. GREY NUMBERS AND GREY SYSTEMS

Vi

iti

Xii
Xiv
xvi

XXv

12
17
17

18
18

7

s

25
28

28

28
30

30

32

32



3.2. GREY MATHEMATICAL PROGRAMMING

CHAPTER 4. GREY MATHEMATICAL PROGRAMMING

4.1. GREY LINEAR PROGRAMMING (GLP) AND ITS APPLICATION

4.1.1.
4.1.2.

4.1.3.

4.1.5.

Introduction
Formulation of the GLP Modelling Approach

Method of Solution
{1) Interactive Relationships between Model Parameters and Decision Variables

{1A) Relatiornships in the objective function
(1B} Relationships in the constraints

(2) Solution Algorithm

(3) Interpretation of the GLP Solutions

Application to Municipal Solid Waste Management Planning
(1) Overview of the Hypothetical Problem

(2) GLP Modelling Formulation

(3) GLP Solutions

{(4) A Comparison with Ordinary LP Solutions

Concluding Remarks

4.2, GREY QUADRATIC PROGRAMMING {GQP) AND ITS APPLICATION

4.2.1.

4.2.2

4.2.3.

4.2.4.

4.2.5.

Introduction
Formuiation of the GQP Modelling Approach

Method of Solution

(1) Interactive Relationships between Model Parameters and Decision Variables
{2) Solution of thie GQP Model

Application to Municipal Solid Waste Management Planning

(1) Overview of the Hypothetical Problem
{(2) GQP Modelling Formufation

(3) GQP Solutions

(4) A Comparison with GLP Solutions

Concluding Remarks

4.3. GREY INTEGER PROGRAMMING (GIP) AND ITS APPLICATION

43.1L
4.3.2.

4.3.3.

Introduction
Formuiation of the GIP Modelling Approach

Method of Solution

(1) Interactive Relationships between Model Parameters and Decision Variables
(2) Solution Algorithm

vii

34

37
37
37
38

39
39

39
40

43
50

51

51
33

35
57

58

3 8

60

62

62
65

67
67

72
72

74
6
76
77

79
79
80



434,

4.3.5.

Application to Municipal Solid Waste Management Planning

(1) Overview of the Hypothetical Problem
{2) GIP Modelling Formuiation

{3) GIP Solutions

(4) A Comparison with MILP Solutions

Concluding Remarks

4.4. GREY DYNAMIC PROGRAMMING (GDP) AND ITS APPLICATION

44.1.
442,

443,

444,

4.4.5.

Introduction
Formulation of the GDP Modelling Approach

Method of Solution

(1) Solution of the Embedded GLP Model
(2) Solution of the GDP Model
(3) Interpretation of the GDP Solutions

Application to Municipal Solid Waste Management Planning

(1) Overview of the Hypothetical Problem

(2} GDP Modeliing Formulation

(3} GDP Solutions

(4} A Comparison with Ordinary Dynamic Programming Solutions
(5} A Comparison with Grey Integer Programming Solutions

Concluding Remarks

CHAPTER 3. GREY FUZZY MATHEMATICAL PROGRAMMING

5.1. GREY FUZZY LINEAR PROGRAMMING (GFLP) AND ITS APPLICATION

5.2

2
-

3.1.1.

5.1.2.

5.13.

5.1.4,

5.1.5.

GREY FUZZY QUADRATIC PROGRAMMING (GFQP) AND ITS APPLICATION

32,1

Introduction

Formulation of the GFLP Modelling Approach
(1) Flexible Fuzzy Linear Programming

(2) Grey Linear Programming

(3) Grey Fuzzy Linear Programming

Method of Solution

(1} Solution of the GLP Model
(2) Solution of the GFL.P Model
(3) Interpretation of the GFLP Solutions

Application to Municipal Solid Waste Management Planning

(1) Overview of the Hypothetical Problem

(2) GFLP Modelling Formulation

(3) GFLP Solutions

(4) Comparisons with FLP and GLP Solutions

Concluding Remarks

Introduction

viil

82

i

“~

93
93
97
97
98

101

101
101
104

104

104
105
111

119
122

124

139
141
144

144



5.2.2.

5.2.3.

5.24.

5.2.5.

Formulation of the GFQP Modelling Approach

(1) Fuzzy Quadratic Programming
(2) Grey Fuzzy Linear Programming (GFLP)
(3) Grey Fuzzy Quadratic Programming

Method of Solution

(1) Solution of the GLP Model
(2) Solution of the GFQP Model
(3) Interpretation of the GFQP Solutions

Application to Municipal Solid Waste Management Planning

(1) Overview of the Hypothetical Problem

(2) GFQP Modelling Formulation

(3) GFGP Solutions

(4) Comparisons with FQP and GFLP Solutions

Concluding Remarks

5.3. GREY FUZZY INTEGER PROGRAMMING (GFIP) AND ITS APPLICATION

5.3.3.

Introduction
Formulation of the GFIP Modelling Approach
Method of Solution

Applicaton to Municipal Solid Waste Managemeni Planning

(1) Overview of the Hypothetical Problem
(2) GFIP Modeiling Formulation

(3) GFIP Soluiions

(4) A Comparison with GIP solutions

Concluding Remarks

54. GREY FUZZY DYNAMIC PROGRAMMING (GFDP) AND ITS APPLICATION

3.4.1.

5.4.2.

543

5.4.5.

Introduction

Formulation of the GFDP Modelling Approach
(1} Fuzzy Numbers and Their Operations

{2) GFDP Formulation

Method of Solution

{1} Solution of the Embedded GFLP Model
(2} Solution of the GFDP Model
(3) Interpretation of the GFDP Solutions

Application to Municipal Solid Waste Management Planning

{1} Overview of the Hypothetical Problem
{2) GFDP Modeliing Formulation

(3) GFDP Soiutions

{4) A Comparison with GDP Solutions

Concinding Remarks

ix

145
145
147
140
150

150
150
155
157
157
159

162
164

167
169
169
170
172

173

173
173
177
181

182
183
183

184

184
186

189

189
189
192

193

193
196



CHAPTER 6. APPLICATION TO MUNICIPAL SOLID WASTE MANAGEMENT

6.1.

0.2,

6.3.

PLANNING IN THE REGIONAL MUMICIPALITY OF
HAMILTON-WENTWORTH

THE STUDY AREA AND WASTE MANAGEMENT ACTIVITIES

6.1.1.

6.1.2.

6.1.3.

The Study Area

Solid Waste Management System

(1) Waste Generation
(2} Curbside Waste Pickup and Transportation
(3) Waste Management Facilities

{4) Industrial/Commercial/Institutional Waste Management
{5) Waste Management Costs

Statement of Problems

GREY OPTIMIZATION ANALYSIS FOR WASTE FLOW ALLOCATION PLANNING
IN THE REGIONAL MUNICIPALITY OF HAMILTON-WENTWORTH

6.2.1.
6.2.2,
6.2.3.
6.2.4.

6.2.5.

Introduction
Data Collection and Analysis
Formulation of the Grey Linear Programming Model

Analysis of Results

(1) Optimal Solation when SWARU is Operated at its Existing Flow Rate
(2) Optimal Solution when SWARU is not in Operation

(3) Optimal Solution when SWARU is Operated at its Full Capacity

(4) Summary

Concluding Remarks

GREY CAPACITY PLANNING FOR THE WASTE MANAGEMENT SYSTEM IN
THE REGIONAL MUNICIPALITY OF HAMILTON-WENTWORTH

6.3.1.
6.3.2.
6.3.3.
6.34.

Introduction
Dara Collection and Analysis
Formulation of the Grey Integer Programming Model

Analysis of Results

(1) Optimal Solution when a single Composting Facility is Located in Gianbrook

(1.1) Facility expansion

{1.2) Waste flow allocation
(1.2A) Waste flow allocation for period 1
(1.2B) Waste flow allocation for period 2
(1.2C) Waste flow allocation for period 3

(1.2D) Waste flow allocation for period 4
(1.2E) Waste flow allocation for period 5

(1.3) System cost

283
285
286



(2) Optimal Solution when there are Four Options for the Composting

Facility Location 286
(2.1) Facility expansion 286
{2.2) Waste flow allocation 291
(2.2A) Waste flow allocation for period 1 291
(2.2B) Waste flow allocation for period 2 206
(2.2C) Waste flow allocation for { ~iiod 3 207
(2.2D) Waste flow allocation for period 4 299
(2.2E) Waste flow allocation for period 5 300
(2.3) System cost 302
(3) Summary 302
6.3.5. Concluding Remarks 303
CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 304
7.1. SUMMARY AND CONCLUSIONS 304
7.2. RESEARCH ACHIEVEMENTS 307
7.3. RECOMMENDATIONS FCR FUTURE RESEARCH 307
REFERENCES 309

X1



Figure 4.1.1

Figure 4.2.1

Figure 4.2.2

Figure 4.3.1
Figure 4.3.2
Figure 4.3.3
Figure 4.4.1
Figure 4.4.2
Figure 44.3
Figure 5.1.1
Figure 5.2.1
Figure 5.2.2
Figure 5.3.1
Figure 5.3.2
Figure 5.4.1
Figure 54.2
Figure 6.1.1
Figure 6.1.2
Figure 6.2.1
Figure 6.2.2

Figure 6.2.3

Figure 6.2.4
Figure 6.2.5

Figure 6.2.6

LIST OF FIGURES

Hypothetical study municipalities and waste management facilities

Waste flow vs transportation cost from equation (4.2.33) and grey linear functions
in Table 4.2.2 (for the lower bounds of waste transpertation costs)

Waste flow vs transportation cost from equation (4.2.33) and grey linear functions
in Table 4.2.2 (for the upper bounds of waste transportation costs)

Hypothetical study municipalities and waste management facilities

Solution of the expansion scheme for WTE facility ! obtained through the GIP model
Solution of the expansion scheme for WTE facility 2 obtained through the GIP model
Hyoothetical study municipalities and waste management facilities

Solutions process for the GDP model

Solutions for optimal WTE facility expansion obtained through the GDP model

Flow cnart of the GFLP optimization approach

Hypothetical study municipalities and waste management facilities

Flow chart of the GFQP optimization approach

Solution of the expansion scheme for WTE facility 1 obtained through the GFIP model
Solution of the expansion scheme for WTE facility 2 obtained through the GFIP model
Convex fuzzy sets and fuzzy numbers

Solution for vpimal WTE facility expansion obtained through the GFDP model

Study area and waste management facilities

Population distribution of the Regional Municipality of Hamilton-Wentworth
Distribation of the districts

Distribution of the waste flows

GLP solution of optimal waste flow allocation pattern when SWARU is
operated af its existing flow raie

Existing waste flow allocation pattern
Waste flow allocation pattern obtained from the GLP model

Optimal waste flow allocation pattern when SWARU is not in operation

xii

52

70

70

115
143
158
168
180

180



Figure 6.2.7
Figure 6.3.1

Figure 6.3.2

Figure 6.3.3

Figure 6.3.4

Figure 6.3.5

Optimal waste flow allocation pattern when SWARU is operated at its full capacity
Potential locations of new waste management facilities

Facility expansion solutions for waste management facilities when a single
composting facility is located in Glanbrook

Optimal waste flow allocation pattern when the composting facility is located in
{3lanbroock

Facility expansion solutions for waste management facilities when there are
four options for the composting facility location

Optimal waste flow allocation pattern when there are four options for the
composting facility location

Xiii

275

290

262



Table 4.1.1
Table 4.1.2
Table 4.1.3

Table 4.1.4

Table 4.2.1

Table 422

Table 4.2.3
Table 4.3.1
Table 4.3.2
Table 4.3.3
Table 4.3.4
Table 4.4,1
Table 442

Table 4.4.3a

Table 4.4.3b

Table 4.4.4

Table 4.4.5

Table 4.4.6

Table 5,1.1
Table 5.1.2
Table 5.2.1

Table 5.2.2

LIST CF TABLES

Data for waste generation, transportation and treatment/disposal
Solutions obtained through a GLP model
Solutions obtained through an ordinary LP model

Sensitivity analysis of the effect of WTE facility capacity variation on system
cost through an ordinary LP model

Combinations of the upr<r and lower bounds of ®(x,) and ®(x,)

Transportation costs for "municipality ---> facility” waste flows and "WTE
facility ---> landfill” residue flows

Solutions obtained through a GQP model

Capacity expansion options and their costs for the landfil! and WTE facilities
Waste generation, transportation costs, and facility operating costs

Solution obtained through a GIP model

Solution obtained through a MILP model

Capacity expansion options and their costs for the landfill and WTE facility

Waste generation, transportation costs, and facility operating costs

GDP iterative optimization process and optimal solutions for facility expansion

planning corresponding to the lower bound of objective function value

GDP iterative optimization process and optimal solutions for facility expansion

planning corresponding to the upper bound of objective {unction value
Solutions of waste flow allocation obtained through a GDP model

Ordinary DP iterative optimization process and optimal solutions for facility
expansion planning

Sdiutions of waste flow allocation obtained through an ordinary dynamic
programming model

Solutions obtained through a GFLP model
Solutions obtained through a flexible FLP model

Data for waste generation, transportation and treatment/disposal

Solutions obtained through a GFQP model

Xiv

54

56

59

63

69
73
85
86
89
94
107

107
13

114

117
120

121
138
140
160

163



Table 5.2.3
Table 5.24
Table 5.3.1

Table 5.4.1

Table 5.4.2

Table 5.4.3a

Table 5.4.3b

Table 5.4.4
Table 6.1.1
Table 6.1.2
Table 6,2.1
Table 6.2.2
Table 6.2.3

Table 6.2.4

Table 6.2.5
Tabie 6,2.6

Table 6.2.7

Table 6.3.1
Table 6.3.2
Table 6.3.3
Table 6.3.4
Table 6.3.5
Table 6.3.6

Table 6.3.7

Solutions obtained through a FQP model
Solutions obtained through a GFLP model
Solutions obtained through a GFIP model

Capacity expansion options and their capital costs for the landfill and WTE
facility under different a-cut levels

Waste generation, transportation costs, and facility operating costs under
different a-cut levels

GFDP iterative optimization process and optimal solations for facility expansion
planning corresponding to the lower boud of objective function value

GFDP iterative optimization process and optimal solutions for facility expansion
planning corresponding to the upper bound of objective function value

Solutions of waste flow allocation obtained through the GDP and GFDP models
Total amount of waste disposed at the region's facilities during 1986 - 1992
Amounts of curbside waste collected in each municipality during 1986 - 1992
Population distribution and curbside waste generated in the seventeen districts
Capacities, operating costs, and revenues of waste management facilities
Transportation costs for different waste delivery routines

Solutions obtained through the grey linear programming model when SWARU
is operated at its existing flow rate

Solutions when SWARU is not in operation
Solutions when SWARU is operated at its full capacity

A comparison between the existing waste flow allocation pattern and the
optimal solutions

Five planning periods for the forty year study time horizon

Curbside wastes generated in the five time periods

Capacity expansion options and their capital costs for the waste management facilities
Operating costs and revenues of waste management facilities in the five time periods
Transportation costs for different waste delivery routes over the five time periods
Solutions for the case when a single composting facility is located in Glanbrook

Solutions when there are four options for the composting facility location

Xv

163
166

178

%4

195

201

202

256

257

271

287



LIST OF SYMBOLS

A = fuzzy subset on an universe of discourse R;

8" = fuzzy number with an a-cut level;

C.. = transportation cost for reference waste flow X,.;

C, = transportation cost for waste flow X;

®(DIk+1)(“’ = direct and indirect consumption of the landfill capacity in period k+1 under cut level o

f, = the least desirable system objective value;

fo(“’ = the least desirable system objective value under cut level o

£, = the most desirable system objective value;

f,‘® = the most desirable system objective value under cut level o

f; = system cost corresponding to roate i;

fopt = minimum system cost:

FE = residue [low rate from the WTE facility to the landfiil (% of incoming mass to the WTE facility);
FTCim = capital cost of expanding WTE facility i by option m in period k:
Gd[®(x)] = grey degree of @(x);

i = type of waste management facility;

IC/nax = maximum level of the WTE facility cabacity;

j = name of municipality;

Jj= name of district (in Chapter 6);

k = time period;

Ly =length of time period k;

LSI; = landfill salvage index for facility expansion route i;

m = economies of scale exponent (in Section 4.2);

m = expansion option for the WTE facilities (in Sections 4.3 and 5.3);

m = expansion option for the composting facilities (in Section 6.3);

xvi



n = parameter indicating number of options for the composting facility location;
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cut level o (for the wasie management planning problem);

@(FLC,) = capital cost of landfill expansion in period k;
®(FT,) = transportation cost for waste flow from WTE facility i to the landfill during period k;
®(FT,) = transportation cost for residue flow from the WTE facility to the landfill during period k;

®(FT,)® = transportation cost for residue flow from the WTE facility to the landfill during period k under cut
level o;

@18, 1 [B(5), By, )1l = function value for stage k+1 when the decision variable is ®(y,,) and the starting
state variable is ®(sy);

B {21 [O(6)™, B(yp.) 1} = function value for stage k+1 when the decision variable is ®(y,, ;)™ and the
starting state variable is ®(s,)' under cut level a;

® (h [®(TLC,), ®(’I‘I('.‘ks)}lupl = solution of operating cost under a given expansion scheme (r, s) in peried k
obtained through an embedded GLP model;

®{h, [®(TLC, ), ®(TIC,u)(“)] }op = Solution of operating cost under a given expansion scheme (r, s) in period k
obtained through an embedded GFLP model under cut level ¢r;

B(IC,) = existing incineration capacity;

®(IC,)"™ = existing incineration capacity under cut level o

®(IC,) = incineration capacity at the end of period k:

®(ICk)(°’ = incineration capacity at the end of period k under cut level o

&(K.Tp) = lowest allowable operating level of the KTS:

®(KTp') = lowest allowable operating level of the KTS compostable waste depot:

®(KT;) = capacity of the KTS;
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®(KT;'") = capacity of the KTS compostable waste depot:

&(LC,) = existing landfill capacity;

S(LCy)*™ = existing landfill capacity under cut level o

®(LC,) = highest allowable landfill operating level:

@(LC,) = landfill capacity at the end of period k;

®(LC)™ = landfill capacity at the end of period k under cut level o

®(MTy) = lowest allowable operating level of the MTS;

®(MTjp') = lowest allowable operating level of the MTS compostable waste depot:
B(MT) = capacity of the MTS:

®(MT)') = capacity of the MTS compostable waste depot;

®(OP;) = operating cost of facility i during period k;

®(OP,)™ = operating cost of facility i during period k under cut level ¢
B{p[®(ALC, ). B(AIC,)]} = total capital cost of the landfill and WTE facility expansions at the start of period k:

®{pI®(ALC, )™, ®(AIC, )™} = total capital cost of the landfill and WTE facility expansions at the start of
period k under cut level o

®(Pm) = operating cost of Glanbrook Landfiil:

@) = operating cost of landfill in period k:

®(®™) = operating cost of SWARU:

®(Pk(2)) = operating cost of SWARU in period k:

®(Pm) = operating cost of Third Sector;

®(Pk(3)) = operating cost of Third Sector in period k;
®(Pk(4)) = operating cost of composting facility in period k;
®(P,") = operating cost of the DTS;

®(P1i) = operating cost of the DTS in period k;
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®(P,) = operating cost of the KTS;

& (Po,)) = operating cost of the KTS in period k;

@(P4) = operating cost of the MTS;

®(P3,") = operating cost of the MTS in period k;

®(Qy,") = operating cost of the DTS compostable waste depot in period k;

®(Qai") = operating cost of the KTS compostable waste depot in period k;

®(Qax") = operating cost of the MTS compostable waste depot in period k;

R, ") = revenues from composting facilities in period k;

@R") = revenue from Third Sector;

®(RkR) = revenue from Third Sector in period k;

®(Rw) = revenue from SWARU;

®(Rkw) = revenue from SWARU in period k;

®(REy) = revenue from the WTE facility in period k;

®(RE,)"™ = revenue from the WTE facility in period k under cut level o;

®(RG;) = recyclable percentage of the total curbside collected waste from district j;
®(RGJ-k(1)) = recyclable percentage of the total curbside collected waste from district j in period k:
®(Rij(2)) = compostable percentage of the total curbside collected waste from district j in period k:
®(RSD4) = percentage of residue generated ?rom SWARU (in Section 6.2);
&{RSD;) = percentage of residue generated from Third Sector (in Section 6.2);
®(RSD3) = percentage of residue generated from SWARU (in Section 6.3):
®(RSDy) = percentage of residue generated from Third Sector (in Section 6.3);
®(RSDs) = percentage of residue generated from composting facilities:

®(RT,) = recyclable percentage for waste flows to transfer station r;

@(RTy) = recyclable percentage for waste flows to transfer station r in period k;
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@(s,.) = ending state variable for period k;

®(s,)™ = ending state variable for stage k under cut level o

R(SCp) = lowest allowable operating level of SWARU:

®(SCqi) = lowest allowable operating level of SWARU in period k:

®(SCy) = capacity of SWARI;

®(T;™) = transportation cost for waste flow from district  to transfer station r-

®(Tj,k(1)) = transportation cost for noncompostable waste from district j to transfer station r in period ki
&(T ;) = transportation cost for compostable waste from district } to transfer station r in period k:
®(’I‘;,‘2’) = transportation cost for waste flow from transfer station r to waste management facility i:
®(Tirkm) = transportation cost for waste flow from transfer station r to waste management facility i in period k:
®(Tij(3)) = transportation cost for waste flow from district j to waste management facility i:

®(Tiﬂ<(3)) = transportation cost for waste flow from district j to waste management facility i in period k:
&(T™) = wansportation cost for residue flow from Third Sector to the KTS:

R(Tx™) = cost of delivering residue of Third Sector to the KTS in period k:

®(Ti,k(5)) = cost of delivering residue of composting facility i to transfer station r in period k:

®{T, | = state transformation function for period k;

®(TCy) = lowest allowable operating level of Third Sector;

@(TCox) = lowest allowable operating level of Third Sector in period k;

®(TC,) = capacity of Third Sector (in Section 6.2);

®(TC,;) = existing capacity of Third Sector at the start of period 1 (in Section 6.3);

®(TC,) = existing capacity of WTE facility i;

®(TE) = existing capacity of the WTE faciliry;

®(TL) = existing capacity of the landfiit:

®(TR;p) = transportation cost for waste flow from municipality j to facility i during period k:
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®(TR;3)'™ = transportation cost for waste flow from municipality j to facility i during period k under cut level o;
@(w) = objective function of the GFQP model;

@{(w;n) = compostabie waste flow from district j to transfer station r in period k;
®(WG;) = waste generation rate in district j;

@(WGj) = waste generation rate in district j during period k (in Chapter 6});

@(WGj) = waste generation rate in municipality j during period k;

B(W Gﬂ‘)“” = waste generation in municipality j during period k under cut level o

®{x) = grey number;

@(Ix!) = grey absolute value of ®(x);

&(x) = lower bounds of &(x);

&(x) = upper bounds of ®(x);

®.(x) = whitened mid-value of ®(x);

®,(x) = whitened value of ®(x);

@,(x) = width of ®(x);

®(x;;) = waste flow from district j to facility i:

B(xiji) = waste flow from district j to facility i in period k:

®(x;5) = waste flow from municipality j to facility i during period k:

®(xi)™ = waste flow from municipality j to facility i during period k under cut level ot
®(yir} = waste flow from transfer station r to facility i

@(yirk) = waste flow from transfer station r to facility i in period k:

®(Yirg) = waste flow from transfer station r to facility i in period q;

®(y,) = binary decision variable for landfill expansion at the start of period k (in Sections 4.3 and 5.3):
®(yy} = vector of decision variables for peried k (in Section 4.4);

B(y,)™ = vector of decision variables for stzge k under cut level o (in Section 5.4):
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®(z;,) = waste flow from district j to transfer station r;

B(zj) = waste flow from district j to transfer station r in period k:

®(Zimic) = binary decision variable for WTE facility i with expansion option m at the start of period k;

@(ct) = slope of transportation cost curve for waste flow from municipality j to facility i during period k;
®(cy) = binary decision variable for landfill expansion at the start of period k:

®(Biz) = Y-intersec: of ransportation cost curve for waste flow from municipality j to facility i during period k;
®{Bimi) = binary decision variable for composting facility i with expansion option m at the start of period k:

®(8y) = Y-intersect of transportation cost curve for residue flow from the WTE facility to the land({ill during
period k;

®(AIC,,) = amount of capacity expansion option s for the WTE facility at the start of period k:

®(AICkS)‘°‘) = amount of capacity expansion option s for the WTE facility at the start of period k under cut level o
®(ALC) = amount of capacity expansion for the fandfill;

®(ALC,,) = amount of capacity expansion option r for the landfill at the start of period k:

®(ALC,“)‘“’ = amount of capacity expansion option r for the lancfill at the start of period k under cut level o
®(AMC;m) = amount of capacity expansion option m for composting facility i;

@(ARC) = amount of capacity expansion for Third Sector:

&(¥) = binary decision variable for Third Sector expansion at the start of period k;

®(A) = control decision variable corresponding to the degree to which the &(X) solutions fulfill the fuzzy
objective/constraints;

®(A)™ = control decision variable corresponding to the degree to which the ®(X)'® solutions fulfill the fuzzy
objective/constraints under cut level o;

@(A1) = control decision variable corresponding 0 the membership grade of satisfaction on the generated grey
solutions for the system objective (when L = 0) or constraints (when L > 0);

®{ox) = slope of transportation cost curve for residue flow from the WTE facility to the landfill during period k.
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LIST OF ABBREYVIATIONS

CCP = chance-constrained programming;
DP = dynamic programming;

DTS = Dundas Transfer Staiion;

DTS' = DTS compostable waste depot;

EFW = energy-from-waste;

EOS = economies of scale;

FDP = fuzzy dynamic programming;

FFP = fuzzy flexible programming;

FGP = fuzzy goal programming;

FIP = fuzzy integer programming;

FLIP = an interactive method for solving multiobjective fuzzy linear programming problems:
FLP = fuzzy linear programming;

FMOP = fuzzy multiobjective programming;
FMP = fuzzy mathematical programming;
FINLP = tizzy nonlinear programming;

FPP = fuzzy possibilistic programming;
FQP = fuzzy quadratic programming;

GDP = grey dynamic programming;

GFDP = grey fuzzy dynamic programming;
GFIP = grey fuzzy integer programming;
GFLP = grey fuzzy linear programming;
GFMP = grey fuzzy mathematical programming:
GFQP = grey fuzzy quadratic programming;
GIP = grey integer programming;

GLP = grey linear programming;

GMOP = grey multiobjective programming;
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GMP = grey mathematical programming;

GNLP = grey nonlinear programming;

GP = goal programming;

GQP = grey quadratic programming;

KTS = Kenora Transfer Station;

KTS' = KTS compostable waste depot;

LP = linear programming;

L.SI = landfill salvage index;

MILP = mixed integer Iine.ar programming;
MOE = Ministry of Environment;

MP = mathematical programming;

MSW = municipal solid waste;

MTS = Mountain Transfer Station;

MTS' = MTS compostable waste depot;

NR/NC = nonrecyclable/noncompostable;

QEW = Queen Elizabeth Way:

OMMRI = Ontario Multi-Materials Recvcling Industries;
QP = quadratic programming;

RMHW = Regional Municipality of Hamilton-Wentworth;
RRPLAN = resource recovery planning model;
SDP = stochastic dynamic programming;

SGP = stochastic goal programming;

SIP = stochastic integer programming;

SLP = stochastic linear programming;

SMOP = stochastic multiobjective programming;
SMP = stochastic mathematical programming;

SNLP = stochastic nonlinear programming;
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SQP = stochastic quadratic programming;

SSDP = sampling stochastic dynamic programming;
STRANGE = STRAtegy for Nuclear Generation of Electricity;
SWARU = Sulid WAste Reduction Unit;

WMYV = whitened mid-value;

WRAP = Waste Resource Allocation Program;

WTE = waste-to-energy.
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CHAPTER 1. INTRODUCTION

In municipal solid waste (MSW) management. there are a number of factors to be considered by planners
and decision makers, such as environmental, economic, technical, legistational, institutional and political issucs.
as well as the use and conservation of resources (Wilson 1985). These factors may affect the behavior of the
waste management system, and lead to conflicts between different system components. Therefore, systems
optimization methods may be particularly useful for effectively reﬂécting the impacts of these factors, making
tradeoffs between different system objectives, and thus providing maximized environmental and cconomic
efficiencies (Jenkins 1579: Chiplunker 1981: Thomas et al. 1990).

However, many of the above impact factors may have uncertain features in practical MSW management
problems, and the associated information may not be known with certainty but as follows: “the capital cost for
expanding the composting facility should be less than $1,000.000 to $1.200.000", "the waste generation rate is
approximately 100 t/wk”, "the incinerator has a capacity of 2,000 to 2,500 t/wk", and so on (Inuiguchi et al.
1990). Difficulties may arise when modelling such a system by deterministic mathematical programming
methods, which have been utilized in the large majority of the previous regional solid waste systems analysis
studies (Wenger and Cruz-Uribe 1990). There have been limited reports in the waste management systems are
reflecting uncertainties in their optimization frameworks (Jennings and Suresh 1986; Koo et al. 1991 Lee et al.
1991). Consequently, further development and application of methodologies for systems optimization under
uncertainty will be valuable for more effective waste management planning.

The majority of the previous systems optimization methods dealing with uncertainty in other application
areas relate to fuzzy mathematical programming (FMP) derived from fuzzy sct theory, stochastic mathematical
programming (SMP) based on probability theory, and interval mathematical programming (IMP) as a branch of
interval analysis methods. The FMP methods contain two major categories: fuzzy possibilistic programming
(FPP) and fuzzy flexible programming (FFP} (Inuiguchi et al, 1990). In the FPP methods. fuzzy parameters are
introduced into the modelling frameworks, which represent the fuzzy regions where the parameters possibly lay
and are regarded as possibility distributions (Zadeh 1978). The major problems with the FPP methods are that,

firstly, the possibility information may be difficult to obtain in practical problems: secondly. the methods may
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lead to more complicated submodels which are difficult io solve when applied to practical problems; and thirdly,
the methods are indirect approaches containing intermediate control parameters which may be difficult to
determine by certain criteria (Inuiguchi et al. 1990). Therefore, few practical applications of the FPP methods
have been reported. In the FFP methods, the flexibilities in the constraints and fuzziness in the system objective
are expressed as fuzzy sets with their membership grades corresponding to the degrees of satisfaction for the
constraintsfobjective (Tanaka et al. 1974; Zimmermann 1985). Because the FFP methods do not greatly increase
the model complexities, they have been widely applied. However, one problem with the FFP methods is that only
the stipulation uncertainties are reflected. Consequently, the feasibility of the FFP method is based on an
assumption that the uncertain features of the lefthand side coefficients for each constraint are dependent upon
each other, such that the stipulation uncertainty can be used for representing the uncertain features of the entire
constraint (i.e., each constraint can be represented as a fuzzy set). However, the lefthand side coefficients are
related to different decision variables and each may have very independent uncertain features in practical
problems, which may make the assumption not true and thus affect the feasibility of the FFP approach. In
addition, the methods are indirect approaches where intermediate control variables (A values) are used to
generate optimal solutions.

In the SMP methods. probability information can be effectively incorporated within the optimization
frameworks. Various SMP formulations and solution algorithms have been proposed (Loucks 1976; Stancu-
Minasian and Wets 1976: Kall 1979; Hagan et al. 1981; Loucks et al. 1981; Stedinger et al. 1984; Takeuchi
1986: Stancu-Minasian 1990). The SMP methods are especially useful when the values of system components
{luctuate within wide intervals but their probability distributions are known. The major problem with the SMP
methods is that the increased data requirements for specifying the probability distributions of model parameters
may affect their applicability. For example. a planner or engineer may know that the daily waste generation rate
in a city fluctuates within a certain interval, but he may find it difficult to state a meaningful probability
distribution for this variation (Wagner 1975; Marti 1990). In addition. when used in practical applications. the
SMP methods may lead to large or complicated intermediate models that are computationally onerous to solve.

The IMP methods can deal with uncertainties as interval numbers which are easier to obtain than distribution

information. Previously. however. only theoretical explorations of interval linear programming (ILP) problems
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have been conducted, and the majority of them are related to analyses of optimal vertices for guarantced lower or
upper bounds of system objectives, or other post optimality analyses. There has been a lack of practical
applications. since the proposed analytical ILP solution algorithms may be complicated and time consuming,
particularly when the problem scales are large (Dantzig 1963; Moore 1966: Soyster 1973; Beeck 1978; Jansson
1988).

One potential approach for mitigating the above problems is through the introduction of the concepts of grey
systems and grey decisions into existing mathematical programming frameworks, which leads to grey
mathematical programming (GMP)} models (Huang et al. 1992). The GMP approaches will improve upon
existing mathematical programming methods by allowing uncertain information (presented as grey numbers) to
be directly communicated into the optimization processes and resulting solutions, such that feagible decision
alternatives can be generated through the interpret:tion and analysis of the grey solutions according to projected
applicable system conditions. Moreover, the proposed GMP solution algorithms will not lead to more
complicated intermediate models, and thus will have lower computational requirements and be applicable to

practical problems (Huang et al, 1993 ¢ and d).

Generally, the objective of this dissertation research is to develop a set of grey mathematical programming
methods for systems optimization under uncertainty and apply them to waste management planning. This
objective entails:

(i) Development of a set of grey mathematical programming (GMP) formulations and relevant solution
algorithms, as well as provision of hypothetical, but practical, case studies of waste flow allocation and capacity
expansion planning in waste management systems, Four GMP approaches will be proposed and applicd:

(a) grey linear programming (GLP): formulated by incorporating the concepts of grey systems and grey

decisions within an ordinary LP framework, and applied to a hypothetical case study of waste flow

allocation planning under uncertainty:

(b) grey quadratic programming (GQP): formulated by incorporating the concepts of grey systems and grey
decisions within a quadratic programming framework, and applied to waste flow allocation planning
under uncertainty, with the consideration of the effects of economies of scale on waste transportation
Costs;



(c) grey integer programming (GIP): formulated by incorporating the concepts of grey systems and grey
decisions within a mixed integer linear programming framework, and applied to facility

expansion/utilization planning for waste management systems under uncertainty;

(d) grey dynamic programming (GDP): formulated by incorporating the concepts of grey systems and grey
decisions within a dynamic programming framework, and applied to facility expansion/utilization

planning for waste management systems under uncertainty;

(ii) Development of a set of grey fuzzy mathematical programming (GFMP) methods and their solution
algorithms, as well as provision of hypothetical, but practical, case studies of waste flow allocation and capacity
expansion planning in waste management systems. The GFMP methods improve upon the GMP methods
through introducing concepts of fuzzy decisions and FMP into the GMP frameworks to better reflect system
uncertainties and generate grey solutions with higher certainty and improved applicability, which are useful for
GMP problems with model stipulations fluctuating within wide intervals but the related membership information
for admissible violations of system objectives and constraints is known. Four GFMP approaches will be

proposcd and applied:

(a) grey fuzzy linear programming (GFLP): formulated by incorporating the concepts of fuzzy decisions and
flexible fuzzy linear programming within a GLP framework. and applied to a hypothetical case study
of waste flow allocation planning under uncertainty, with the input model stipulations fluctuating

within wide intervals but the related membership information being known;

(b) grey fuzzy quadratic programming (GFQP): formulated by incorporating the concepts of fuzzy decisions
and fuzzy quadratic programming within a GFLP framework, and applied to waste flow allocation
planning under uncertainty, with the input model stipulations fluctuating within wide intervals and

having independent uncertain characteristics:

(c) grey fuzzy integer programming (GFIP): formulated by incorporating the concepts of GIP and GFLP
within a mixed integer linear programming framework, and applied to facility expansion/utilization
planning for waste management systems under uncertainty, with the input model stipulations

fluctuating within wide intervals but the related membership information being known;

(d) grey fuzzy dynamic programming (GFDP): formulated by introducing the concepts of fuzzy numbers,
fuzzy decisions, and GI'LP into a GDP framework, and applied to facility expansion/utilization
planning for waste management systems under uncertainty, with the input model parameters
(stipulations and lefthand side coefficients) fluctuating within wide intervals but the related

membership information being known;



(zii) Application of the GMP and GFMP methodologies to case studies of short term waste flow allocation
and long term facility cxjpansion planning for the Regional Maunicipality of Hamilton-Wentworth (RMHW),
Ontario. Through the examination of the relationships and conflicts between different system components (such
as those between economic development and waste generation, between increasing waste disposal demands and
limited facility capacities, and between the high costs for waste transportation/treatment as well as facility
expansion/development and the limited funding for these activities), a GLP model will be formulated for the
waste flow allocation planning problem, and a GIP model will be formulated for the facility expansion planning

problem. It is hoped that the two studies may provide valuable bases for more effective management and

planning of the region's waste management activities.

The remainder of this dissertation is structured as follows: Chapter 2 will provide a literature review of
methods for opumization analysis under uncertainty and their applications to regional planning issues, including
regional solid waste management planning. Chapter 3 will introduce the concepts of grey numbers, grey systems,
grey decisions, and grey mathematical programming, as well as the related rules for their operations. Four grey
mathematical yrogramming (GMP) approaches and their application tc two types of hypothetical municipai solid
waste (MSW) management planning problems will be given in Chapter 4, where GLP and GQP methods will be
applied to waste flow allocation planning, and GIP and GDP methods will be applicd to capacity planning of
waste management facilities. Chapter 5 will present four grey fuzzy mathematical programming (GFMP)
approaches and their applications to the two types of MSW management planning problems similar 1o those in
Chapter 4. Comparisons between the GMP and GFMP solutions will also be provided. Chapter 6 will describe
the application of the grey mathematical programming methodologies to two case studies for the Regional
Municipality of Hamilton-Wentworth (RMHW), Ontario. The last chapter will be devoted to the summary and
appraisal of the proposed GMP/GFMP methodologies and their applications, as well as the recommendations for

future research.
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CHAPTER 2. LITERATURE REVIEW

2.1. PREVIQUS STUDIES OF OPTIMIZATION MODELLING FOR
REGIONAL SOLID WASTE MANAGEMENT

2.1.1. Deterministic Optimization Mudelling for Regional Solid Waste Management

Deterministic optimization modelling techniques have been extensively applied to solid waste management
and planning problems since the 1970s (MacLaren and Sexsmith 1970; Jenkins 1979; Haynes 1981). These
applications have dealt with problems regarding waste pickup, transfer/transportation, facility operation, energy
1nd materials recovery, as well as siting, timing, and sizing of facility expansion/development in regional solid
waste management systems. A multitude of mathematical programming methodologies have been utilized, such
as linear/nonlinear programming, dynamic programming, integer programming, multiobjective programming,

and goal programming, These are discussed sequentially in the following material.
(1) Lin nlinear Pr mmin

Linear programming (LP) is the most commonly used mathematical programming methed in regional solid
waste management and planning. Panagiotakopoulos (1972) applied network analysis and linear programming to
the design of waste management systems based on the examination of the impacts of wastes on the environment,
as well as relevant environmental assimilation capacities. Christensen and Haddix (1974) proposed analytical
techniques, with linear programming formulations, for the optimal design and operation of Iandfills. Fuertes et al.
(1974) described the generation of trade-off curves for costs versus equity in facility location problems through a
lincar programming approach, where they note the importance of having solutions that are both equitable and
Parcto-optimal. Greenberg et al. (1976) used linear programming to examine the optimal strategy for landfilling,
energy and material recovery, and waste transportation in metropolitan regions. Bishop and Narayanan (1979)
developed a linear programming model to determine optimum strategies for controlling air, water and solid waste
pollution resulting from resource development. Pierce and Davidson (1982) applied linear programming to
investigate the relative costs of regional and state-wide hazardous waste management schemes, where a cost

effective configuration of transportation routes, transfer stations, processing facilities, and secure long-term

6



storage impoundments was identified. Chapman and Yakowiiz (1984) described the use of a resource recovery
planning (RRPLAN) model for waste mar.agement planning, where linear programming techniques were used to
size and site facilities, to provide a detailed cost accounting system to incorporate economies of scale, and to
estimate the effects of siting, routing, marketing and financial decisions on a waste management system. More
recently, Kirca and Erkip (1988) formulated a linear programming model for determining transfer station
locations for large solid waste systems, and applied it to waste management planning in Istanbul, Turkey. Lund
(1990) developed a linear programming approach for evaluating and scheduling a given set of recycling
programs, and determining the least cost landfill lifetime. Jacobs and Evercit (1992) presented a linear
programming model for determining the optimal operation of consecutive landfills while incorporating the
possible utilization of recycling programs, which was capable of handling available landfills as well as numerous
proposed future landfills,

In nonlinear programming, Smith and Tufgar (1977) considered the planning and design of networks
whereby a public utility service such as solid waste disposal was made available to a number of separaie
communities distributed throughout a region. by using a nonlinear programming model with a separable concave
objective function subject to a set of linear constraints in terms of the design or decision variabies. The model

was solved through a technique involving the iterative application of a linear programming algorithm.

(2) Integer Programming

Integer programming (IP) has seen considerable appiication to the area of regional solid waste management
planning. Kuhner and Harrington (1975} studied the applicability of mixed integer linear programming (MILP)
within a Paretian environmental analysis framework, to solve a dynamic {multiperiod) investment model for
regional solid waste management. Clayton (1976) relied upon MILP methods to generate alternatives for waste
management and planning. Jenkins (1980) investigated the optimal location of recycling facilities for municipal
solid waste within different management systems using a MILP model. Hasit and Warner (1981) utilized the
Waste Resource Allocation Program (WRAP), which contains static and dynamic models which can be solved
through MILP approaches, for the planning of regional solid waste systems. Jenkins (1982a) utilized MILP

techniques for t'om{ulating a fixed-charge model for waste management planning in Toronto, Ontario. The same



author (Jenkins 1982b) provided a parametric mixed integer linear programming (MILP} method, which
involved first solving MILP problems at different point values of the model parameters and then joining the
solutiong by LP parametric analysis, and applied it to a facility location problem for resource recovery plants in
Ontario, Canada. More recently, Baetz (1988) formulated a MILP model to determine the optimal expansion
pattern for waste treatment and disposal facilities, where decision variables corresponding to the
development/expansion of waste management facilities were inherently binary, and variables relating to the

aitocation of demand to each facility in each time period were continuous.

(3) Dynamic Programming

Dynamic programming (DP} methods have been used for solving multistage waste management planning
problems. Rao (1975) applied a dynamic programming approach to plan for rural region waste disposal over
multiple time periods. Baetz (1988) proposed a dynamic programming method for the capacity planning of waste
processing/disposal facilities, where he also considered optimal and near optimal solutions for finer time
increments and stochastic demands through an optimization/simulation process. Baetz et al. (1989a) and Baetz
(1990a) used dynamic programming to determine the optimal sizing and timing for regional landfills and waste-
to-energy facilities. Baetz et al. (1989b) developed a dynamic programming model to investigate waste reduction

and treatment strategies for industries.

(4) Multiobjective and Goal Programming

Perlack and Willis (1985) formulated a multiobjective programming model for a waste disposal problem in
Boston, where objectives of net economic benefits, environmental impacts, and variability of impacts were
incorporated wit_hin the modelling framework. Panagiotakopoulos (1975) applied a goal programming method to
deal with conflicting economic, environmental, and technological objectives in waste management planning,.
Sushil and Vrat (1989) suggested the need to incorporate waste as a parameter in national planning, and
recommended several models using simulation, input-output analysis, and goal programming technigues.
Generally. there have been few applications of multiobjective and goal programming methods to regional solid

waste management problems.



2.1.2, Optimization Modelling for Waste Management Planning under Uncertainty

Previously, there have been limited studies of waste management planning under uncertainty. The first
report was given by Jennings and Suresh (1986), where they presented a method to generate risk penalty
functions for hazardous waste management planning, which was designed to accommodate the relatively high
degree of parameter uncertainty that existed at early stages of facility planning.

More recently, Koo et al. (1991) proposed a framework using WRAP (Waste Resources Allocation
Program) and fuzzy set theory to address the trade-offs among the objectives of economic efficiency,
environmental quality, and administrative efficiency, such that the optimal site for a hazardous waste treatment
facility could be determined. Lee et al. (1991) developed a decision Support systern based on a modified fuzzy-
composite programming method to assist the solution of multiobjective decision-making problems under
uncertainty, which was then applied to a waste management problem involving disposal of polluted dredged
material at multiple sites, where there were conflicting environmental/economic objectives and the information
regarding the impacts of the dredged material disposal was uncertain.

The major approaches dealing with uncertainties in the above studies related (o fuzzy set theory and
probability theory, where problems with data availability. solution algorithms, computational requirements, and
resuits interpretation may exist and create potential difficulties. Additionally, the previous application areas have
been limited to hazardous waste management planning. Consequently, studies of more effective methodologics
for systems optimization under uncertainty and applications to other areas of waste management planning will be

of contribution to the environmental systems engineering research.

2.2. PREVIOUS OPTIMIZATION MODELLING APPROACHES DEALING WITH
UNCERTAINTIES AND THEIR APPLICATIONS

2.2.1. Fuzzy Mathematical Programming
(1) Modelling Approaches

Fuzzy mathematical programming (FMP) was derived from the incorporation of fuzzy sets theory within

ordinary mathematical programming frameworks. The FMP methods contain two major categories: fuzzy



flexible programming (FFP) and fuzzy possibilistic programming (FPP) (Inuiguchi 1990). In the FFP methods,
the flexibility in the constraints and fuzziness in the system objective, which were represented by fuzzy sets and
denoted as "fuzzy constraints” and "fuzzy goal" respectively, were introduced into ordinary mathematical
programming models (Zimmermann 1985), In the FPP methods, fuzzy parameters were introduced into ordinary
mathematical programming frameworks, leading to ill-posed problems where various intermediate models could
be formulated based on the prob]em interpretation, The fuzzy parameters represented the fuzzy regions where the
parameters possibly lay and were regarded as possibility distributions (Zadeh 1978).

In terms of the difference between the concepts of fuzzy goal (or constraints) and fuzzy parameter {i.e.
possibility distributions), the fuzzy goal (or constraints) represents the decision makers' satisfying set whose
membership grade corresponds to the degree of satisfaction, while the fuzzy parameter represents the set where
the element represented by the parameter possibly occur, and whose membership grade corresponds to the
possibility of the occurrence. Namely, the former means vagueness and the latter means ambiguity (Klir and
Folger 1988). Thus, the FMP metheds can be classified into the following three types (Inuiguchi 1990): (i)
mathematical programming with vagueness, (i) mathematical programming with ambiguity, and (iii)

mathematical programming with vagueness and ambiguity.

(1A} Mathematical programming with vagueness

Primarily based on Bellman and Zadeh's model of decision making in fuzzy environments (Bellman and
Zadeh 1970), the FFP methods have been developed to reflect flexibility in constraints and fuzziness in system
objective within ordinary mathematical programming frameworks. Zimmermann contributed significantly in the
initiation and development of the FFP methodologies (Zimmermann 1976, 1978 and 1985). He showed that the
FFP problem can be reduced to a linear programming problem when a linear objective function and linear
membership functions exist (Zimmermann 1976). There have also been a number of other algorithms for solving
the FFP models. Tanaka et al. (1974) demonstrated that the FFP problem can be solved by using a linear
programming technique repeatedly even when the membership functions are nonlinear. Some authors (Chang
1975; Tanaka and Mizumoto 1975; Ostasiewicz 1982) described FFP problems by flowcharts in which each arc

was associated with a fuzzy relation and a fuzzy assignment, and provided relevant methodologies. Chanas

10



(1983) used a parametric linear programming method for solving FFP problems with linear membership
functions and minimum operator aggregation. Sakawa and Yano (19854, 1986¢ and 1986d) proposed a set of
interactive programming methods for the FFP problems. Inuiguchi et al. {1989) showed that when each
membership function is strictly quasi-concave piecewise linear in the range (0, 1), the FFP problem with a linear
function can be reduced to a linear programming problem. More recently, Cui and Blockley (1990) proposed a
fuzzy quadratic programming (FQP) method which improved upon the FFP method and enabled the modelling
of independent fuzzy constraints, where they introduced A; (i=1,2. ... . n) for n constraints instead of one A for

all constraints in the FFP methods.

(1B) Mathematical programming with ambiguiry

Since the 1980s, a number of FPP formulations have been proposed. Dubois (1987) dealt with FPP problems
through introducing the concepts of possibility and necessity into an ordinary LP framework, such that a linear
FPP model was formulated in a similar manner as chance-constrained programming models (V ajda 1972). Some
FPP formulations using concept of fuzzy max were also suggested, where fuzzy max was an extended maximum
operation between real and fuzzy numbers defined by the extension principle (Zadeh 1965: Blankenship and Falk
1976). It was demonstrated that the fuzzy max could be applied to models with fuzzy parameters (Dubois and
Prade 1580; Tanaka et al. 1984; Ramik and Rimanek 1985; Pence and Soyster 1989; Rommelfanger et al. 1989).
Tanaka and Asai (1984) provided a linear FPP formulation for the case when all uncertain parameters are
triangular fuzzy numbers, and Tanaka et al. (1985) proposed a linear FPP method for uncertain parameters
expressed as trapezoidal fuzzy numbers. More recently, Lai and Hwang (1992) provided an auxiliary
multiobjective LP model to solve a LP problem with imprecise objective and/or constraint coefficients. The same
authors (Lai and Hwang 1993} proposed an auxiliary bi-objective method to solve LP problems with model
parameters being impreciéa—; and having triangular possibilistic distributions.

In terms of the issues of optimality for the FPP problems, Luhandjula (1987a and b) extended the concepts
of optimality and efficiency for ordinary mathematical programming to FPP models. More recently, Sakawa et
al. (1989) discussed four kinds of efficiency for the FPP models based on Dubois and Prade's four ranking

indices (Dubois and Prade 1983).
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(1C} Mathemaiical programming with vagueness and ambiguity

Some authors have incorporated both the FFP and FPP approaches within a general optimization framework.
Dubois and Prade (1980) and Negoita (1981) studied robust programming problems and introduced set-inclusive
constraints as an extension of ordinary equality constraints. Orlovski {1980} introduced the concept of fuzzy
preference relations into possibilistic programming framewaorks, where he extended the concept of fuzzy
preference relation between elements to the concept of fuzzy preference relation between fuzzy sets. He also
formulated a multiobjective fuzzy possibilistic programming model (Orlovski 1984) as well as a possibilistic
programming model with fuzzy constraints (Orlovski 1985).

For possibilistic linear programming with fuzzy goals, Inuiguchi et al. (1987 and 1989) formulated a linear
FPP model as an extension of fuzzy flexible programming, where each fuzzy goal had a membership function
and a decision set could be viewed as a satisfying set for decision makers, such that the membership grades could
b‘c regarded as degrees of satisfaction. They also proposed a relevant solution algorithm by using simplex method
repeatedly. Buckley (1988) formulated a possibilistic linear programming model in a similar manner, where he

Py

introduced concepts of possibility and necessity into the modelling framework,

(2) Extensions in Mathematical Programming

There have been a number of extensions of fuzzy set theory to other mathematical programming approaches.
such as fuzzy integer programming, fuzzy dynamic programming, fuzzy goal programming, fuzzy multiobjective

programming, and fuzzy nonlinear programming.

(2A) Fuzzy integer programming

There have been few studies and applications of fuzzy integer programming (FIP) due to the difficulties
arising from the solution approaches. Ignizio and Daniels (1983) formulated a generalized netwoik for zero-one
or mixed integer mathematical programming models, with the utilization of fuzzy programming techniques as
well as a hybrid solution approach. Zimmermann and Pollatschek (1984} provided two equivalent crisp

formulations for a linear zero-one program with a fuzzy right-hand side. Fabian and Stoica (1984) suggested



several membership functions and a deterministic formulation for a FIP problem. and provided a directed

simuiation procedure for solving the problem.

(2B) Fuzzy dvnomic programming

Applications of fuzzy set theory to dynamic programming (DP) problems are usually designed to reflect the
tradeoffs between the optimization goals and constraints within a dynamic optimization framework (Kickert
1978). The membership functions describe how far a decision is from the ideal constraint or goal set. Fuzzy
dynamic programming (FDP) was first proposed by Chang (1969), Bellman and Zadeh (1970), and Esogbue and
Ramesh (1970). Other authors who have made contributions worthy of note to the initiation of this method
include Cluss (1973), Kacprzyk (1978), Nojiri (1979). and Stcin (1980). Since then, a multitnde of further
research has been reported. Esogbue and Bellman (1981) proposed an FDP algorithm for clustering
nonquantitative data and conducting optimization analysis for water pollution control planning. Vira (1981)
demonstrated the use of fuzzy expectation values for multi-stage optimization under uncertainty, where a
practical procedure was presented for the case when the optimization objective can be decomposed into a series
of single-stage decision goals, which facilitated a rapid solution for the problem with clear information on risks
involved. Esogbue (1986) developed two fuzzy dynamic programming models and relevant solution algorithms,
and applied them to nonpoint source water pollution control planning. There were also a number of other reports
regarding the extensions and applications of the FDP methods (Baldwin and Pilsworth 1982: Esogbue 1984;

Esogbue and Bellman 1984).

{2C) Euzzv goal programming

Fuzzy goal programming (FGP) is a possible approach for solving mullicriteria decision making problems
under uncertainty. The main difference between the FGP and ordinary goal programming (GP) is that the GP
requires decision makers to set a definite aspiration value for each objective that they wish to achieve, whereas
the FGP can accept the value in an imprecise manner. Fuzzy set theory was first introduced to the GP
frameworks by Narasimhan (1980). He proposed a FGP model in which both the goa's and their prioritics were

treated as fuzzy variables, and the relevant solution algorithm involved solving a series of ordinary ¥P problems.
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Hannan (1981a) showed in a subsequent article that a FGP problem with piecewise linear membership functions
could be recast as a mathematically equivalent GP problem.

Since then, various FGP methods have been investigated and applied (Kornbluth 1981b: Narasimhan 1981;
Hannan 1981a and b, and 1982; Ignizio 1982). Sakawa and Yano (1984) proposed an interactive FGP approach
for multiobjective nonlinear programming problems, and applied it to water quality management. Rubin and
Narasimhan {1984) proposed a method for formulating fuzzy priorities for goals in a GP problem through the use
of a nested hierarchy. The principal advantage of the method was that it led to a formulation in which tradeoffs
between goals could more closely reflect the decision makers' intentions than other noninteractive approaches.
Tiwari et al. (1986) introduced a priority structure into the FGP frameworks, where he utilized a lexicographic
order for goal programming problems and vielded an efficient solution algorithm. The same authors (Tiwari et al,
1987) formulated an additive model for solving FGP problems, where they used arithmetic addition for
aggregating fuzzy goals in order to construct the relevant decision functions, and incorporated cardinal and
ordinal weights for nonequivalent fuzzy goals within the model,

More recently, Rao et al. (1988) proposed a method for comparing different sets of aspiration levels assigned
to the goals of a FGP model based on their relative {lexibilities, and thereby determining the best set as the one
with Icast relative flexibility. The method was dependent upon the relative degree of choosing an objective in the
presence of other objectives as measured by a pair-wise comparison method. Pickens and Hof (1991)
documented an application of fuzzy goal programming to a forestry management problem, where the decision
regarding the timber harvest sequence over time was considered, with an objective to maximize the minimum

periodic harvest across all periods.

{2D) Fuszy muliiobjective programming

Fuzzy multiobjective programming (FMOP) was first introduced by Zimmermann (1978), where he applied
fuzzy linear programming approaches to a linear vector maximum problem for finding a compromise solution.
The method was then extended to a number of other approaches (Leberling 1981: Hannan 1981a: Luhandjula
1982; Buckley 1983: Sakawa and Yano 1986a. b and c; Slowinski 1986a and b, 1987, 1990). Sakawa and Yano

contributed significantly to the further development of the FMOP approaches. They proposed interactive fuzzy
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satisfying methods for solving multiobjective LP problems with fuzzy parameters through a combined use of a
bisection method and a LP formulation, as well as five types of membership functions -- linear, exponential,
hyperbolic, hyperbolic-inverse, and piecewise-linear functions (Sakawa 1983: Sakawa and Yano 1986b, 1988a
and b, 1990a and b). The methods were then further extended for solving multiobjective lincar fractional
programming (Sakawa and Yumine 1983; Sakawa and Yano 1985b; Yuno and Sakawa 1989) and nonlincar
programming problems (Sakawa 1984; Sakawa et al. 1984; Sakawa and Yano 1986a and ¢, 1989a and b, 1991).
They (Sakawa et al, 1989: Sakawa and Yano 1991) also introduced four types of feasibility and Parcto optimality
for multiobjective linear and linear fractional programming problems with fuzzy parameters by making use of
the four indices for ranking fuzzy numbers proposed by Dubois and Prade (1983 and 1987).

There have been a number of other approaches for sotving linear FMOP problems. Choo and Atkins (1980)
provided an interactive approach for linear FMOP problems based on the weighted Tchebycheff norm.
Kornbluth and Steuer (1981a and b) presented two methods for linear FMOP problems: one was a simplex-based
approach and the other was a goal programming approach. Luhandjula (1982) reconsidered Zimmermann's
approach for solving fuzzy linear vector maximum problems by using operators which allowed some degree of
compensation between aggregated membership functions. The same author (Luhandjula 1584) presented a
linguistic approach for linear FMOP problems by introducing linguistic variables to represent linguistic
aspirations from decision makers. Tanaka and Asai (1984) formulated two types of linear FMOP models (one
generates nonfuzzy solutions and the other generates fuzzy solutions) based on the principles of fuzzy decision
and minimum operator proposed by Bellman and Zadeh (1970) together with triangular membership functions
for fuzzy parameters. Luhandjula (1987a) tried to incorporate possibilistic information into a lincar FMOP
framework based on possibility theory, where he proposed concepts of a-possible feasibility and B-possible
efficiency and demonstrated that the (o, B)-satisfying solution can be characterized by a family of ordinary
multiobjective LP models. Wemers (1987) introduced an interactive decision support system for solving
multicbjective programming problems subject to flexibie constraints. More recently, Chanas (1989) reconsidered
Zimmermann's fuzzy linear programming approach by assuming a considerably wider class of membership
functions for fuzzy goals and using a parametric programming technique for solving the problem, Buckley

(1990) presented two solution algorithms for a linear FMOP problem with model parameters being represented



by possibility distributions. Dutta et al. (1992) proposed a new algorithm for solving multiobjective linear
fractional programming problems, where the linguistic approach of Luhandula (1984} was modified and utilized
for generating optimal solutions. Lee and Li (1993) provided a FMOP approach by incorporating fuzzy set
theory and compromise programming within a general framework, where the proposed two-phase solution
approach guaranteed both nondominated and balanced solutions. Bit et al. (1993) presented an additive fuzzy
programming model for multiobjective transportation problem, where membership functions of the objectives
were aggregated into a general decision function through using concepts of weights and priorities for
nonequivalent objectives.

In nonlinear FMOP, Orlovski (1983 and 1984) formulated multiobjective nonlinear programming models
with fuzzy parameters by inroducing concepts of nondominance degree and feasibility degree, where he
presented two solution algorithms by using Zadeh's extension principle (Zadeh 1975), and demonstrated that
there existed in some sense equivalent nonfuzzy formulations. More recently, Verma (1990) and Biswal (1992)
employed fuzzy set theory to solve multiobjective geometric programming problems with the weights to the

objectives not defined.

(2E) Fuzzy nonlinear programming

Fuzzy nonlinear programming (FNLP) deals with FMP problems with nonlinear membership functions for
model parameters. Although there have been some studies of the FNLP methodologies. their applications are
limited due to solution difficulties. The most convenient approach to handle nonlinear membership functions is
to approximate them by piecewise linear functions. Some authors (Hannan 1981a; Nakamura 1984) used this
approach for solving FNLP problems, and showed that the resulting equivalent crisp problem was an LP problem
which, however, could be considerably larger than the original FNLP model because in general one constraint
would have to be added for each linear segment of the approximation. Leberling (1981) suggested S-shaped
membership functions for representing the degrees of satisfaction and acceptance in FNLP problems. Sakawa
and Yano (Sakawa 1984: Sakawa et al. 1984; Sakawa and Yano 1986a and c. 1989z and b, 1991) conducted a

series of studies on multiobjective nonlinear programming problems with fuzzy parameters, where interactive
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fuzzy satisfving methods were proposed for solving the problems by the combined use of a bisection method and
a LP model, as well as five types of membership functions.

More recently, Yang and Ignizio (1991} presented an approach for dealing with FMP problems with any
general class of nonlinear membership functions based on a piecewise approximation method. In the casc of
concave membership functions, the approach resulted in a conventional linear programming model: and for
nonconcave membership functions, the approach resulted in a mixed integer lincar programming model with

both continuous and discrete (zero-one) variabies.

(3) Application to Regignal Planning T

The majority of applications of the FMP to regional planning issues relate to water resource management,
environmental management, and agricultural development planning. In water resource management, Slowinski
(1986a and b, 1987} proposed an interactive fuzzy multiobjective linear programming method (named FLIP) and
applied it to water supply planning problems. Kindler (1992) proposed a FLP formulation for water resource
planning under circumstances when there was limited capability to expand water supply capacities by means of
structural solutions, such that measures for facilitating more efficient water use became very important.

In environmental management, Sommer and Pollatschek (1978) applied a fuzzy programming approach for
solving an air pollution regulation problem. Esogbue and Bellman (1981) and Esogbue (1986) applied FDP
methods to water pollution control planning. Sakawa (1984) torimulated an interactive fuzzy multiobjective
nonlinear programming model for water quality management.

In agricultural development planning, Czyzak (1989) applied a fuzzy lincar programming method for
solving multicriteria agricultural planning problems under uncertainty. The same author {Czyzak 1990)
formulated a FLIP model (Slowinski 1986a) for the optimal design of farming structures. Pickens and Hof

(1991) applied fuzzy goal programming to forestry management and planning under uncertainty.

(4) Summary

The above review indicates that the FMP methods provide useful approaches for systems optimization under

uncertainty, and there have been wide extensions and appilications of the methodologics. However, the FPP
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methods may lead to more complicated submodels that are computationally difficult to solve when applied to
practical problems. The possibilistic information may also be difficult to obtain (Zadel 1978). Moreover, most of
the FPP methods are indirect approaches containing intermediate control parameters which are difficult 1o
determine by certain criteria (Inuiguchi et al. 1990). Therefore, few practical applications of the FPP methods
have been reported. The FFP methods do not greatly increase the model complexities and have been widely
applicd. However, one problem with the FFP methods is that they are based on an assumption that the uncertain
features of the lefthand side coefficients for each constraint are dependent upon each other, such that the
stipulation uncertainty can be used for representing the uncertain features of the entire constraint, which may not
be true in many practical problems. In addition, the methods are indirect approaches where intermediate control
variables (A values) are used to generate optimal sclutions. Consequently, further studies of more effective
methodologies for mitigating the above problems may be of significance for more effective systems optimization

under uncertainty.

2.2.2. Stochastic mathematical programming

Stochastic mathematical programming (SMP) methods deal with programming problems with random input
information. The inherent uncertainty in a decision can manifest itself throughout the model as stochastic
elements in the constraint matrix, the right-hand side stipulations, or the objective function. The major advantage
of the SMP methods is that they do not simply reduce the complexity of the programming problems, instead they
allow decision makers to have a complete view of the effects of uncertainties as well as the relationships between
uncertain inputs and resulting sclutons. Typically, stochastic programming models are first replaced by suitable
deterministic versions (named deterministic equivalents), and then the deterministic model solutions can be

extended to represent the stochastic model solutions (Loucks 1981; Budnick 1988).

(1) Modelling Approaches
{1A) Chance-consirained programming

Chance-ccnstrained programming (CCP) is one of the major approaches in the SMP. In 2 CCP model, it is
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not required that the model constraints should always be satisfied. but they can be satisfied in a proportion of
cases or, in other words, with certain given probabilities (Loucks 1981). Since the 1950s. the issues of CCP have
been widely investigated. Stancu-Minasian and Wets (1976) enumerated a number of papers in this area. and
since that time, more CCP research has been conducted. Raike (1968) applied a rejection region theory to the
solution and interpretation of two-stage CCP problems. Chames et al. (1970) incorporated an acceptance region
theory within a CCP framework. Raike (1970) developed dissection methods for solving CCP probiems with
discrete distribution information. Sengupta and Gruver (1971) presented a linear CCP model under truncation,
and applied it to problems with varying sample sizes. Charnes et al. (1972) proposed a CCP model as an
extension of statistical methods. Sengupta (1973) introduced a concept of system reliability to CCP models.
Gochet and Padberg (1974) proposed a triangular E-model for a CCP problem with a stochastic A-matrix.
Gochet (1975) discussed an E-model for a CCP problem with a random B-vector.

More recently, Rakes and Reeves (1985) provided an approach for selecting tolerances within a CCP
framework. Weiniraub and Vera (1991) developed a convergent cutting plane algorithm for solving an
equivalent nonlinear CCP problem for the case when the technical parameters are normally distributed, which
required a moderate computational effort and compared favorably with a general nonlinear code and other
approaches,

Some authors discussed CCP problems with joint constraints. and provided relevant solution algorithms
(Miller and Wagner 1965; Doulliez 1966; Balintfy 1970; Jagannathan and Rao 1973; Bawa 1973 and 1976:
Jagannathan 1974b). Approximation methods for solving the CCP problems were also proposed (Weintraub
1979; Salinetti 1983; Olson and Swenseth 1987). Allen et al. (1974) provided a distribution-free approximation
method for chance-constraints in a CCP model. Salinetti (1983) discussed an approximation approach for solving
CCP problems based on the theory of sequence convergence for measurable multifunctions. Seppalia (1984)
provided an approach for constructing sets of uniformly tighter linear approximations for chance constraints in a
CCP model.

In terms of the extension of CCP to other mathematical programming approaches, there have been a number
of studies of nonlinear CCP (Tinn and Tyugu 1968; Murotsu et al. 1971; Murotsu et al. 1972; Jagannathan and

Rao 1973; Murotsu and Oba 1974; Lee and Olson 1985). Some authors proposed chance-constrained goal
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programming methods with a variety of applications (Keown 1978: De et al. 1982: Mohamed 1992). Eheart and
Valocchi (1993) developed a mixed-integer-chance-constrained programming (MICCP) method by considering
uncertainty in all LP constraint coefficients, which was then applied to a groundwater remediation problem to
find the globally optimal trade-off curve for maximum reliability versus minimum pumping rate. Gupta and Jain
(1986) formolated a stochastic fractional programming model under chance constraims with a random
technology matrix. The CCP methods have also been applied to decision making under risk (Naslund and
Whinston 1964; Naslund 1965; Baron 1973; Baron and Mackenzie 1973; Hogan et al. 1981; Chamnes and Cooper

1983).

(1B) Multistage stochastic programming

Many practical problems require that decisions be made periodically over time, which can often be
formulated as multistage stochastic programing models. A decision is first taken before the values of random
variables are known and then, after the random events have happened and their values are known, a second
decision is made in order to minimize the "penalties" that may appear due to any infeasibility (Loucks et al.
1981).

There have been various approaches dealing with the multi-stage programming problems. Charnes et al.
(1965) proposed constrained generalized medians and hypermedians as deterministic equivalents for two-stage
linear programming under uncertainty. Emmoliev and Shor (1968) proposed a random walk method for solving
two-stage stochastic programming problems, Raike (1968) applied a rejection region theory to the solution of
two-stage chance-constrained programming problems. Berkovich (1972) introduced existence theorems to two-
stage programming problems for stochastic optimal control. Cassidy et al. (1973) provided a game theoretic
approach for two-stage programming under uncertainty. Grinold (1983) described a model building technique for
the correction of end effects in multistage stochastic convex programs.

More recently, Birge (1985) developed decomposition and partitioning methods for solving multistage
stochastic linear programming problems. He also presented a comparison with the simplex method for a set of
practical test problems. and demonstrated that higher efficiencies can be achieved through the proposed method

since repeated solutions for similar scenario problems were eliminated, Birge and Louveaux (1988) proposed a



multicut algorithm for two-stage stochastic linear programs, which might speed up convergence and reduce the
number of major iterations compared with single cut algorithms. Gassmann (1990) proposed a computer code for
multistage stochastic linear programming problems. which supported an arbitrary number of time periods and
various types of random structures for the input data, Lustig et al. (1991) described a new approach for modeling
two-stage stochastic programming problems, as well as a relevant interior point solution algorithm. Pereira and
Pinto {1991) presented a method for solving multistage stochastic programming problems by approximating the
expected-cost-to-go functions as piecewise linear functions, and applied it to the planning of energy generation
within a reservoir system. Ruszczynski (1993) proposed a parallel decomposition method for multistage
stochastic programming, where a decision tree was constructed with each of its nodes associated with a lincar or
quadratic submodel,

Some authors discussed approximation methods for solving two-stage stochastic lincar programming
problems (Berkovich 1971; Kall 1979). There were also reports of advanced approaches for formulating and
solving more complicated multistage programming problems. Midler (1969) and Lindberz (1971} formulated
muiti-stage stochastic transportation models and presented applications. Yudin (1972) proposcd a multistage
stochastic programming method under conditions of incomplete information. Louveaux (1980) considered a
multistage stochastic programming problem with discrete distribution information for model parameters, as well
as a quadratic objective function and linear inequality constraints. He provided a selution algorithm, and showed
that under reasonable assumptions, solving such a program was equivalent to solving a nested sequence of
piecewise quadratic programs. Formulation of multi-stage stochastic programs with recourse and the relevant

solution algorithms were also described (Wets 1972; Rutenberg 1973; Everitt and Ziemba 1975; Olsen 1976: Sen
1993).

(1C) Numerical methods

Due to the complexity of the SMP problems. a number of numerical methods have been proposed for their
solution, such as gradient methods, semi-stochastic approximation procedures, and other computational
approaches (Ermoliev and Wets 198R). Stochastic quasigradient (SQG) methods are stochastic algorithmic

procedures for solving optimization problems with nondifferentiable, nonconvex functions. The basic idea of the



methods is *o use statistical estimates for the function values and their derivatives, such that the problems with
complex function natures can be simplified and then solved. The majority of studies in this area were conducted
by Ermoliev {Ermoliev and Nekrylova 1967; Ermoliev 1969, 1971, 1975, 1976 and 1983; Ermoliev and
Nurminski 1973 and 1980; Ermoliev and Gupal 1978; Ermoliev and Xaniovskiy 1979), Gupal (1977, 1978 and
1979), Gaivoronskiy (1977 and 1978), and Nurminski (Nurminski 1973a and b, 1979; Nurminski and Verchenko
1977). More recently, Pflug (1988) discussed concepts of stepsize rules and stopping times, as well as their
implementation in stochastic quasigradient algorithms.

The stochastic gradient methods were accelerated and improved by using deterministic descent directions or
more exact gradient estimations at certain iteration points. Marti and Fuchs (1986) proposed a method for
computing optimal descent directions and most efficient iteration points for solving stochastic optimization
problems without using derivatives. Marti (1986) discussed an approach for accelerating stochastic gradient
methods by using more exact gradient estimations. The same author (Marti 1987a and b, 1990) also proposed
several other methods regarding optimal control of semi-stochastic approximation procedures. Other numerical
methods for solving the SMP problems have also been proposed (Bereanu 1972, 1973 and 1976; Kall 1979:

Gaivoronskiy 1991).

(2) Extensions in Mathematical Programming
(2A) Stochastic integer programming

Stochastic integer programming (SIP) is an advanced area of stochastic mathematical programming, where
random clements are introduced (o integer programming frameworks to account for probabilistic uncertainties in
model parameters. Various approaches have been proposed for formulating and solving the SIP problems. Hillier
(1967} and Glover (1976) proposed chance-constrained techniques for solving stochastic integer programming
problems. Wilson (1972) formulated a priori bounded model for transportation problems with stochastic demand
and integer variables. Zimmermann and Pollatschek (1972) discussed a concept of 'resource-vector' domain as an
aid for solving stochastic 0-1 programming problems. The same authors also formulated probabilistic distribution

functions for a 0-1 programming problem with randomly distributed right-hand side values and objective
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function coefficients (Zimmermann and Pollatschek 1973 and 1975). More recently, Teghem and Kunsch
proposed and applied an inieractive mixed integer linear stochastic multiobjective programming method
(Teghem and Kunsch 1986a and b; Kunsch and Teghem 1987; Kunsch 1990). Laporte and Louveaux (1993)
presented an integer L-shaped method with a general branch and cut procedure for solving stochastic integer

programs with complete recourse.

(28) Stochastic dvnamic programming

There have been various approaches for formulating and solving stochastic dynamic programming (SDP)
problems. Norman and White (1968) proposed an approximate method for solving SDP problems using concepts
of expectations. Birge (1980) provided several simple solution algorithms for stochastic dynamic programming
problems with linear uncertainty. Stedinger et al. ( 19845 developed a SDP model which empioyed a concept of
"best forecast for current period's inflow" to define a reservoir release policy and to calculate the expected
benefits from future operations. Gorni (1985) proposed a variational approach for solving dynamic programming
problems based on a stochastic optimal control process at Hilbert spaces. Trezos and Yeh (1987) proposed a
differential SDP algorithm which could be applied to large-scale system management without discretizing the
state and control variables under a limitation in that the recursive equation is a concave function of the state
variables. Foufoula-Georgiou and Kitanidis (1988) presented an alternative interpolation algorithm for solving
discrete time linearly constrained SDP problems.

More recently, Carraway et al. (1989) discussed the generalization of SDP and proposed an algorithm that
guaranteed optimality even in the absence of monotonicity, which was illustrated through a stochastic traveling
salesman problem for which a previously proposed SDP algorithm (Kao 1978) was potentially suboptimal due 10
the violation of monotonicity (Sniedovich 1978). Carraway (1989) formulated a dynamic programming mode!
for stochastic assembly line balancing. Zhou (1990 and 1991) discussed the relationships between dynamic
programming and maximum principle. Kelman et al. (1990) expanded SDP to a sampling stochastic dynamic
programming (SSDP) model and applied it to reservoir management. Saad and Turgeon (1988 and 1989) and
Saad et al. (1992) proposed a principle component stochastic dynamic programming algorithm and applied it to

stochastic multireservoir hydropower system operation planning, where the dimension of the state space for the
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system was reduced by using only the major principal components of the system's state as determined by a
principal component analysis for the results of a deterministic optimization. Karamouz and Vasiliadis (1992)
developed a Baysian stochastic dynamic programming (BSDP) method by introducing Baysian decision theory
(BDT) into an SDP framework, where BDT was used to incorporate new information by updating the prior

probabilities to posterior probabilities.

{2C) Stochastic goal programming

Stochastic goal programming (SGP) can be used for solving multicriteria decision making problems under
uncertainty. The most common SGP approach is chance-constrained goal programming (Contini 1968; Keown
1978: De ct al. 1982; Lee and Olson 1985). Keown (1978) formulated a chance-constrained goal programming
model for bank liquidity management. De et al. (1982) applied a chance-constrained goal programming method
to decision analysis of capital budgeting. Lee and Olson (1985) proposed a chance-constrained nonlinear goal
programming model as well as a relevant gradient solution algorithm. Stancu-Minasian and Tigan (1988)

provided a linear fractional goal programming formulation and applied it through a stochastic solution approach.

(2D} Siochasti iohjective proer .

Stochastic multiobjective programming (SMOP) is an important extension of stochastic mathematical
programming, Since the 1960s, various SMOP formulations and their solution algorithms have been pmposed
(Geoffrion 1964; Geoffrion 1963; Baron 1974; Hendrix and Stedry 1974; Stancu-Minasian 1974, 1977 and 1984;
Armstrong and Balinfty 1975; Teghem 1983). More recently, Teghem and Kunsch contributed significantly to
the further development of the SMOP. Teghem and Kunsch (1985 and 1986b) and Teghem et al. (1986)
proposed an interactive method for stochastic multiobjective linear programming under uncertainty, named as
STRANGE (STRAtegy for Nuclear Generation of Electricity), which involved concepts of stochastic
programming and parametric analysis for providing detailed information of a large set of solutions. Teghem and
Kunsch (Teghem and Kunsch 19862 and b; Kunsch and Teghem 1987; Kunsch 1990; Teghem and Kunsch 1990
a and b) also formulated a STRANGE-MOMIX model as an extension of STRANGE for problems containing

integer variables. and applied it to nuclear fuel cycle optimizaton problems. The same authors (Teghem and



Kunsch 1986c) discussed issues of complete characterization regarding efficient solution for a mixed integer
linear SMOP probiem.

There have also been reports of other interactive SMOP methods (Leclercq 1982). Marcotte and Soland
(1986) provided an interactive branch and bound algorithm for stochastic multicriteria optimization. Urli and
Nadeau (1990) formulated a general linear SMOP model for the situation when decision makers possessed only
incomplete information about the stochastic parameters, which contained a number of modes for the
transformation of stochastic objectives and constraints in order to obtain a deterministic equivalent

multiobjective linear programming formulation which can be solved by an interactive method.

(2E) Stochasiic nonlineqr pragramving

Stochastic nonlinear programming (SNLP) can be used for dealing with nonlinearities in sysiem objectives
and constraints. A number of SNLP approaches have been proposed for formulating and solving quadratic
programming (Bergthaller 1970; Bergthaller 1971: Swarup et al. 1972; Louveaux 1977} and nonlinear
programming problems under uncertainty (Bui 1964: Mangasarian 1964a and b: Bui 1967; Sachan 1968: Tinn
and Tyugu 1968; Walkup and Wets 1969: Balintfy 1970; Kaplinskii and Propoi 1970; Murotsu et al. 1971
Ziemba 1972; Murotsu et al. 1972; Jagannathan and Rao 1973; Jagannathan 1974a; Murotsu and Oba 1974 Lee
and Olson 1985: Gorelick 1990; Wang 1991). However, few practical applications have been reported due 1o

soluton difficulties.

(3) Application to Regional Planning Issues

The SMP methods have been applied to a number of regional planning problems. such as resource and
environmental management, agricultural development planning, and regional economic planning.

In the area of water resource management, a number of authors have formulated SDP models for reservoir
management and planning and provided relevant data analysis and solution approaches. Stedinger et al. (1984)
developed a SDP model which employed a concept of "best forecast for current period's inflow” to define a
reservoir release policy and to calculate the expected benefits from future operations, where the "best forecast”

includes information about the entire flow data. Wang and Adams (1986) proposed a two-stage optimization

13
7]



framework for the planning of optimal reservoir operations. where the hydrologic uncertainty and seasonality of
reservoir inflows were described as periodic Markov processes, and the optimal release volumes in the
successive time periods were determined such that the expected total rewards resulting from the operations were
maximized. Ponnambalam (1987} and Ponnambalam and Adams (1987) formulated SEP models for the planning
of a multi-reservoir, multi-canal irrigation system in the Tamilnadn and Kerala States of India with the objective
of maximizing net benefits of agricuitural production subject to physical and institutional constraints, where they
proposed an aggregation/decomposition approach for the reservoir level optimization and a modified SDP model
for the farm level optimization. Trezos and Yeh (1987) proposed a differential SDP aigorithm which could be
applied to large-scale reservoir system management without discretizing the state and contral variables, under the
limitation that the recursive equation is a concave function of the state variables. Kelman et al. (1990} extended
the SDP (¢ a sampling stochastic dynamic programming (SSDP) model that generates an operating policy for
reservoir management. The model captures the complex temporal and spatial structure of the inflow process by
using a large number of sample stream flow sequences. Piccardi and Soncini-Sessa (1991) proposed an improved
SDP method for optimal reservoir control by using dense discretization and inflow correlation assumptions made
possible by parallel computing. Karamouz and Vasiliadis (1992} developed a Bayesian stochastic dynamic
programming (BSDP) method, by using SDP and Bayesian decision theory (BDT). for the generation of optimal
reservoir operating rules, where BDT was used to incorporate new information by updating prier probabilities 1o
posterior probabilities.

Studies of other water resource planning problems have also been reported. Loucks (1976) formulated
discrete chance-constrained models for river basin planning. Lane and Littlechild (1976) applied stochastic
programming for determining a weather dependent pricing scheme for water resource management. Ellis et al.
(1985} presented a stochastic optimization-simulation method for delineating least-cost treatment sequences for a
centralized liquid industrial waste treatment facility. Foufoula-Georgicu and Kitanidis (1988) presented an
alternative interpolation algorithm for sblving discrete time linearly constrained SDP problems in
multidimensional water resource systems. Lee et al. (1992) used a moedified stochastic dynamic programming
(SDP) model to evaluate the performance of Lake Shelbyville, which could effectively account for the

unrepeatable agricultural and property damages and improve the accuracy of these damage estimates.



Applications of SMP methods to wastewater systems optimization were also reported. Fujiwara et al. (1988)
proposed a CCP madel, in which the main stream, tributaries. and storm water were considered as random
variables, for the determination of the most economical level of wastewater treatment at each discharge city or
industry along a river basin. This provided a more rational approach than traditional safety factor methods since
probabilities of violating stream-water quality were considered explicitly. Gorelick (1990) combined nonlinear
stochastic programming and finite element simulation approaches for the design of a subsurface water pollution
control/remediation system, where optimal well selection and fluid withdrawl/injection rates were determined
through the proposed methodology. Applications of stochastic programming approaches to other water resources
and environmental management problems have also been reported (Moeseke 1965; Smith 1970: Thomas et al.
1972; Rozanov 1976; Dupacova et al. 1991; Pinter 1991).

In air quality management and planning, Fortin and McBean (1983} formulated a management model for
controlling acid rain pollution. Fronza and Melli (1984) applied stochastic programming to the assignment of
emission abatement levels. Ellis et al. (1985 and 1986) proposed a linear CCP model for decisions regarding acid
rain abatement, Guldman (1986} proposed a CCP approach for investigating the interactions between weather
stochasticity and pollution source/receptor locations in air quality planning. The same author (Guldmann 1988)
presented a CCP modelling approach for determining least-cost time-linked air pollution emission control
schemes through accounting for the dynamic and stochastic characteristics of meteorological conditions. Fuessie
et al. (1987) formulated a general CCP model for air quality planning, which improved upon ordinary CCP
techniques by allowing the incorporation of random and statistically dependent input parameters with any
distribution.

Louveaux and Peeters (1992) proposed a two-stage stochastic program with recourse for solving facility

location problems with uncertain demands. selling prices, and production/transportation costs. A number of -

applications of the SMP to regional economic planning (Tintner 1960 and 1973; Sengupta et al. 1962 and 1963:
Sengupta and Tintner 1963; Tintner and Sengupta 1964: Gonedes 1970; Tintner and Raghaven 1970; Lockett et
al. 1976) and agricultural development planning (Johnson et al. 1967: Rae 1971a and b; Moruyama 1972;

Pickens et al. 1991; Vedula and Mujumdar 1992; Huime et al. 1993) issues have also been reported.



(4) Summary

The above review indicates that SMP methods can effectively deal with various probabilistic uncertainties in
decision making, and are especially useful when the values of system components fluctuate within wide intervals
but their probability distributions are known. In the past 20 years. a number of extensions of the SMP
methodologies and their applications have been reported. However, some potential problems exist.. Although the
SMP methods can incorporate more uncertain information within the optimization frameworks, the increased
data requirements (thus computational requirements) for specifying the parameters' probability distributions may
affect their applicabiiities. For example, a planner or engineer may know that the daily waste generation rate in a
city fluctuates. within a certain intervai, but he may find it difficult to state a meaningful probability distribution
for this variation (Wagner 1975; Marti 1990). Moreover, the multi-stage stochastic programming approaches
may lead to large intermediate models that are computationally onerous to solve. The CCP methods can only
indirectly evaluate the economic consequences of violating model constraints, and cannot effectively reflect the
independent uncertainties of lefthand side coefficients. It may also be difficult to specify the correct values of the
least probability criteria for the CCP model constraints in practical applications (Wagner 1975; Kall 1979: Wets

1989: Stancu-Minasian 1990).

2.2.3. Interval Mathematical Programming

Interval mathematical programming (IMP) is a branch of interval analysis methods, and is useful for post
optimality analyses, as well as for investigations of optimal vertices for guaranteed lower or upper bounds of

system objectives.

(1) Formulation and Solution

Interval linear programming (ILP) is the onlv well developed methodology in the IMP studies. Clasen
(1966) described techniques for automatic tolerance control for ILP problems. Gould (1972) recommended a
variable extreme point method for proximate ILP studies. Stewart (1973) provided a method for finding a

guaranteed upper (or lower) bound for an ILP probiem by using proposed interval arithmetic after a revised



simplex computation. Steuer (1976) formulated a multiobjective linear programming model with interval criteria
weights. More recently, Fansson (1988) proposed a self-validating method for solving LP problems with interval
input data, which could be used for computing guaranteed lower and upper bounds for all optimal vertices. Other
authors who have studied LP problems with interval input parameters include Ben-Israel and Robers (1970),
Charnes et al. (1977), Steuer (1977 and 1981), Bitran (1980) and Rohn (1984).

Soyster and Falk introduced a series of inexact linear programming formulations and relevant solution
algorithms. Soyster (1973} formulated a convex programming model with set-inclusive constraints and extended
the approach to inexact LP problems, where the feasible region was defined via set containment instead of being
specified by a set of convex inequalities. The same author (Soyster 1979} studied inexact linear programs with
generalized resource sets, where closed form solution methods were provided for polyhedral resource sets, and
approximation algorithms were given for general convex resource sets. Falk {1976} provided an algorithm for
solving an ILP model whose objective function coefficients were known only 1o lie in a given convex set. where
he sought a solution that was optimal against the worst possible realization of the objective function (i.¢., a max-
min solution) and presented optimality criteria that characterized the desired solution and strengthened the carlier
results due to Soyster (1973). More recently, Matluka (1992) investigated the generalization of inexact lincar
programming and provided a relevant solution algorithm which would lead to feasible and optimal solutions.

Some authors introduced duality theory to inexact linear programming frameworks. Soyster (1974)
described a duality theory for convex programming with set-inclusive constraints, where he extended the notion
of convex programming with set-inclusive constraints by replacing the objective vector with a convex st and
thus formulating a dual problem, such that any feasible solution to the dual problem pravided an upper bound 10
the primal problem. Furthermore, it was shown that the optimal solution of the dual problem could be used to
reduce the primal ILP problem to an ordinary LP problem. Pomerol (1979) established 2 duality theorem for
inexact linear programs by means of a new constraint qualification, which complemented the results stated by
Soyster {1974) that are not generally true without further assumptions. Thuente (1930), Rohn (1980) and Lyall
(1988) also described some duality theorems for ILP problems, and provided various forms of optimality criteria

and solution algorithms.

Other ILP approaches have also been discussed. Kaur (1984) studied an inexact fractional programming



problem with set-inclusive constraints. Bird and Chattergee (1985) proposed an algorithm for calculating
objective function bounds for inexact linear programming problems with generalized cost coefficients. Ishibuchi
and Tanaka (1990) studied a LP problem with interval coefficients by converting it into a multiobjective
programming problem using order relations. Inuiguchi and Kume (1991) considered a linear goal programming
problem with interval coefficients and target values. where four formulations were provided for solving the
problem. Urli and Nadean (1990 and 1992) proposed interactive approaches for solving multiobjective linear
programming problems with interval coefficients, where non deterministic objective functions and constraints
were first transformed into deterministic versions and then solved by using techniques in goal programming and

chance-constrained programming.

(2) Summary

The above review indicates that the IMP methods can deal with uncertainties as interval numbers which are
generally easier to obtain than distribution information. Previously, however, only theoretical explorations of
interval linear programming (ILP) problems have been conducted, and the majority of them were related tc tae
analyses of optimal vertices for guaranteed lower or upper bounds of system objectives, or other post optimality
analyses. There has been a lack of practical applications. since the proposed analytical ILP solution algorithms
are considered to be complicated and time consuming, particularly when the problem scales are large (Danizig

1963; Moare 1966:; Soyster 1573; Beeck 1978; Jansson 1988).

2.3. LITERATURE REVIEW SUMMARY

Generally, it is indicated that, firstly, few previous studies of waste management systems analyses have
reflected uncertainties in their optimization frameworks; secondly, the majority of the existing systems
optimization methods dealing with uncertainty relate to FMP, SMP and IMP, where problems with data
availability, solution algorithms. computational requirements, and resuits interpretation may create difficulties in
their practical applications and extensions.

Consequently, studies of more effective methodologies for systems optimization under uncertainty and their



applications to regional solid waste management planning will be of contribution to the literature of
environmental systems engineering area. In this dissertation research, a set of grey mathematical programming
and grey fuzzy mathemaiical programming methods will be developed as an attempt to mitigate a number of the
above problems, and applied to a number of real and hypothetical case studies of regional solid waste

management planning (Huang et al. 1992, 1993a, b, ¢ and d).
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CHAPTER 3. GREY SYSTEMS AND GREY MATHEMATICAL PROGRAMMING

In this chapter, concepts of grey numbers, grey systems, grey decisions, and grey mathematical

programming, as wel as the related rules for their operations will be introduced.

3.1. GREY NUMBERS AND GREY SYSTEMS

Definition 3.1.1. Let x denote a closed and bounded set of real numbers. A grey number &(x) is defined as an

interval with known upper and lower bounds but unknown distribution information for x (Huang et al, 1992):
®(x) = [(x),B(0)] = {te x IRx) <t <X}, (3.1

where ®(x) and &(x) are the lower and upper bounds of ®(x), resﬁécriveiy. When 8(x) = B(x), ®(x) becomes

a deterministic number, i.6. @(x) = &(x) = &(x).

Definition 3.1.2. A grey system is defined as a system containing information presented as grey numbers (Deng

1985; Huang et al. 1992).

Definition 3.1.3. A grey decision is defined as a decision made within a grey system (Deng 1985 and 1986;
Huang et al. 1992; Huang and Moore 1993).
Definition 3.1.4, A grey vector ®(X) is a tupel of grey numbers, and a grey matrix ®(X) is a matrix whose
elements are grey numbers (Huang et al. 1992 and 1993e):

BX)={ Ax)=[Ax). Bx) 1 Vil, (3.12)

BX) = { B(x)=[ Bx). Bx )] | Vij}. (3.13)

The operations for grey vectors and matrices are defined to be analogous to those for real vectors and matrices.

Definition 3.1.5. The upper/lower bounds of grey vector ®(X) and grey matrix ®(X) are defined as follows:

BX) = [(Bx) | Vil, (3.1.4)
BX)y={&Ax) 1 Vi}, (3.L.5)
B = (B | Vijh, (3.1.6)
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X)) ={&(x) 1 Vi.j} (3.1.7)

Definition 3.1.6. In this dissertation, we have the following conditions for grey vector @(X) and grey matrix

B(X):
®(X) 20, iff ®(x) 20,V i, (3.1.8)
®X) <0, iff ®(x) < 0.V i, (3.1.9)
®X) 20, iff ®(x,) 20,V i, ] (3.1.10)
®(X) <0, iff ®(x,) <0, Vi, j. 3.L11)

Definition 3.1.7. For grey number ®(x), we have:

@(x)20, iff &(x)20and ®x)20, (3.1.12)

Bx)=0, iff ®(x)<0and R(x)<0. (3.1.13)

Definition 3.1.8. Let = € {+, -, X, +] be a binary operation on grey numbers. For grey numbers ®(x) and &(y),

we have (Ishibuchi and Tanaka 1990):
B(x) * ®(y).= {min (x * y}, max {x * y}], ®(x) <x <B(x), (y) <y <&(y). (3.1.14)

In the case of division, it is assumed that ®(y) ® (. Hence, we have:

BX)+8(F) = [2()+2AV.Bx) +B(y)), (3.1.15)
X)) -8F) = [&(x)-8).8(x -y, (3.1.16)
®X) X ®y) = [min {xXy}, max {xxy}], (3.1.17)
@x)+®(y) = [min{x+y), max {x+y}], (3.1.18)
k ®(x) = k&(x),kS(x)], fork20, _ (3.1.19)
k ®(x) = kB(x), k&(x)], fork <0, (3.1.20)

Definition 3.1.9. For ®(x) = [R(x), &(x)] and &(y) = [&X(y), 8(y)], we have their order relations as follows:

®X) < B(y), iff &(x)<(y) and B(x) < &X(y), (3.1.21)

Ax) <®(y), HIO(x)=<S(y)and ®(x) = &(y). (3.1.22)



Definition 3.1.10. The whitened value of a grey number. &(x}, is defined as a deterministic number with its

value lying between the upper and lower bounds of ®(x):
2(x) € B(x) € B(x), (3.1.23)
where @,(x) is a whitened value of ®(x).
Definition 3.1.11. The whitened mid-value (WMYV) of a grey number, ®(x), is defined as its mid-point value
between the upper and lower bounds; and the width of ®(x) is defined as the difference between its upper and

lower bounds. Thus, given ®(x) = [&(x), 8(x)], we have its whitened mid-value, ®,,(x), and width, ®,,(x). as

follows (Huang et al. 1992; Huang and Moore 1993):

B(x) = [(x) + B(x)]12, (3.1.24)

®(x) = B(x) - R(x). {3.1.25)
Definition 3.1.12. The grey degree of a grey number, ®(x), is defined as its width divided by its WMV as
follows (Huang et al. 1992; Huang and Moore 1993):

GA[B(x)] = [®,,(x)/@(x)] x 100%. (3.1.26)

where Gd[®(x)] is the grey degree of ®(x). Since ®,(x) and &,,(x) can be considered as approximations for the
expected value and variance of a grey number, respectively, the concept of grey degree is useful for

quantitatively evaluating the quality of input or output uncertain information for mathematical models.

32. GREY MATHEMATICAL PROGRAMMING

Definition 3.2.1. A grey mathematical programming (GMP) model is formulated by intreducing the concepts of
grey systems and grey decisions into ordinary mathematical programming frameworks. Generally, it can be
defined as {ollows:

max  @{{[®X)]}, (3.2.1)

s.t. R{g[®@X)]] 2@ D). Vi (3.2.2)

B(X) =20, (323



where ®(X) is a grey decision variable vector, @ {f[®(X)]} is a grey objective function. and ®{ g(®X)]) <

@(b,), V i, are grey constraints.

Remark 3.2.1. The GMP model has the following features (Huang et al. 1992):

(1) It improves upon existing mathematical programming methods by allowing uncertain information to be
directly communicated into the optimization process and the resulting solutions. such that decision alternatives
can be generated through adjusting the grey decision variables within their stable solution intervals and making
relevant tradeoffs between different system objectives/restrictions according to projected applicable conditions:

(ii) A set of GMP solution algorithms will be proposed, which will not lead to more complicated
intermediate models, and thus will have lower computational requirements and be applicable to practical
problems;

(iv) The GMP model does not require probability distribution information since grey numbers are used to
represent uncertain inputs and outputs, This is particularly meaningful for practical applications because it is

typically much more difficult for planners/engineers to specify the distributions than to define fluctuation

intervals.

Remark 3.2.2. A GMP model has similarities to that of an IMP model. However, their conceptual
characteristics. solution algorithms, and practical applicabilities are significantly different from each other as
follows:

(i) For the GMP approaches, interactive solution algorithms will be proposed and applied, which arc
computationally efficient and thus will be applicable to practical problems. In comparison, analytical solution
methods were used for the IMP models, which are complicated and time consuming, particutarly for large scale
problems (Jansson 1988);

(i) The GMP methods can provide stable solutions for the optimal ranges of decision variables and
objective function value. as represented by grey numbers. Thus, relevant decision alternatives can be generated
by adjusting ditferent combinations of the whitened decision variable values within their solution intervals and

making relevant tradeoffs between different system objectives/restrictions according to projected applicable



conditions. In comparison, the majority of the previcus ILP studies were related to either analyses of extreme
lower and upper bounds for optimal vertices, or other post optimality analyses, which may not be able to ensure
that either the relevant decision variable solutions are stable, or the relevant "whitened” decision aiternatives are
feasible (Bird and Chattergee 1985);

(iii) Previously, only theoretical explorations of ILP problems have been conducted. There has been a lack of
further extension of the IMP method to other mathematical programming approaches due to the complexity of
the analytical solution methods. As a comparison, the GMP metheds can be extended to a number of
mathematical programming approaches, such as grey integer programming, grey dynamic programming, and
grey nonlinear programming, based on the concepts of grey systems and grey decisions. as well as the proposed
interactive solution algorithms (Huang et al. 1992, 1993a, b, ¢ and d; Huang and Moore 1993).

(iv) There has been a lack of practical applications of the ILP methods due to the difficulties associated with
the analytical algorithms, while successful applications of the GMP methods will be reported in this dissertation

research.



CHAPTER 4. GREY MATHEMATICAL PROGRAMMING

4.1. GREY LINEAR PROGRAMMING AND ITS APPLICATION

4.1.1. Introduction

In municipal solid waste (MSW) management and planning, there arc a number of factors 1o be considered
by planners and decision makers, and many of these factors may be influenced by uncertaintics {Inuiguchi et al.
1990). Difficulties may arise when modelling such systems with deterministic mathematical programming
methods. Therefore. it is typically required that the modelling approaches for MSW management and planning
be able to incorporate uncertain information within their frameworks. For problems of MSW decision making
under uncertainty, such as waste flow allocation planning, and waste transportation network analysis, the
development and application of linear programming methods that can effectively deal with uncertainty will be of
significance for better reflecting the actual MSW system activities and generating more realistic solutions.

The majority of the previous linear programming methodologies dealing with uncertainty relate to fuzzy
linear programming (FLP) (Tanaka et al. 1974; Zimmermann 1985; Dubois 1987; Inuiguchi et al. 1990).
stochastic linear programming (SLP) (Stancu-Minasian and Wets 1976; Loucks et al 1981: Ermoliev and Wets
1988; Marti 1990), and interval linear prograrnming (TLP) (Soyster 1973: Beeck 1978: Jansson 1988), where
potential shortcomings in data availability, solution algorithms. computational requirements, and results
interpretation may create difficulties in their application or further extension (see Chapter 2 for more
information). Therefore, one potential approach for mitigating these shortcomings is through the introduction of
concepts of grey systems and grey decisions to an ordinary linear programming framework, which leads to a grey
linear programming (GLP) formulation. The GLP approach will allow uncertain information to be cffectively
communicated into the optimization processes and resulting solutions, such that feasible decision alternatives can
be generated through the interpretation and analysis of the grey solutions according to projected applicable
conditions. Moreover, the GLP solution algorithms will not lead to more complicated intermediate models, and

thus will have lower computational requirements and be applicable to practical problems.
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In this section, a GLP formulation and a relevant solution algorithm will be developed and then applied to a
hypothetical waste flow allocation planning problem, where uncertain system components relating to
environmental, economic, and resource abjectives and restrictions will be considered and incorporated within the
modelling framework, and the GLP solutions will be interpreted and analyzed to demonstrate the potential

applicability of the developed methodology (Huang et al. 1992).

4.12. Formulation of the GLP Modelling Approach

Definition 4.1.1. Let @(R) denote a set of grey numbers, A GLP model can be defined as follows (Huang et al.

1992):
max @ =8(C) B(X), C@L

st ®(A) B(X) < 8(B)., . 4.12)

®(X) 20, @.1.3)

where ®(A) € ®R)™ ", ®B) € ®R)™ ™, ®(C) € ®R)' ", and ®(X) € OR)"*".
Characteristics of the GLP model solutions can be described as follows:

Lemma 4.1.1. For A € [®(A), B(A)] and B € [ &(B),B(B)]. denoting Q = {X | AX<B.X 20},
RQ) = (X | BA) X< &B)X 20}, and BQ) = (X | &(A) X £ BB), X 2 0}, we have:
B(Q) >Q> Q.

Proof, If both X e 2(Q) and X 2 0 hold. then AX £ &(A) X £ &(B) £ B, such that X  Q holds. Furthermore,
if both X € Qand X 2 0 hold, then ®(A) X € AX £ B < &(B), such that X e &(Q) holds. Hence, EQ) > Q

o &(Q). d

Theorem 4.1.1. Model (4.1.1) to (4.1.3) can have grey solutions. which are composed of grey numbers, as
follows:

(X)),

opt = 19\ Ndopt | J T A s

n}, 4.1.4)
B Pope = [ Ry » By Bl 2 XY, Vi (4.1.5)
O (Dope = [B(D4p0 - B s BB, 2 RAD,, - (4.1.6)



[
=]

Proof. (1) Firstly, we will prove (4.1.4) and (4.1.5). Consider two feasible solutions for model (4.1.1) to (4.1.3);
XPe (X | Xe B(Q).2dX? e (X | Xe R(Q), where (Q) = {X | BA) X < ®(B). X 20},
and B(Q) = (X 1 &(A) X <B(B), X 2 0}. From Lemma 4.1.1.§(Q) > &(Q) holds. Hence, for any X'~
from &(Q), including optimal solution Xm‘,Pt which corresponds to &(f),, = &(C) X“,, = max ((C) X |
X e QD 3X%e B(Q). such hat x,2 x®, . where x', € X©, and x? e XV j. Hence,
Bx) o0 2 BX)py V.

(2) Next we will prove (4.1.6). From Lemma 4.1.1,&(f),,, = B(C) X, = max (B(C) X X € B(Q).
X 20}. Let max { &(C) X 1 X e®(Q), X 20} = max {®(C) X + [B(C) - (C)] X | X «B(Q). X 2 0}.
Since &(C) - 8(C) 20, we have max {R(C) X + [B(C)- R(C X 1 X e &(Q). X 20} 2 max [R(C)X
1 Xe®B(Q),X20}2max {R(C)X | X eR(Q), X 20} = &(C) X® = &(D,,. Thus. B0, 2
(g - ]

4.1.3. Method of Solution

(1) Interactive Relationships between Model Parameters and Decision Variables

(1A) Relationships in the objective functi

For the upper and lower bounds of the objectivc function value, we have the following:

Lemma 4.1,2. For n grzy coefficients ®(cj) (=1.2,...,n)in the objective function of model (4.1.1) to (4.1.3),
if k; of them are positive, and k, are negative, let the former k, coefficients be positive, i.c. @(c)20(=1.2
. .-, k;), and the latter k, coefficients be negative. i.e. @) <0(=k+l k+2,..., n), where k, +k, = n (the
model does not include the situation when the two bounds of @(c;) have different signs). Thus, for the upper and

lower bounds of @(f). we have:

Ky n

Bl = Z8()Blx) + I Be)RAx,). (4.1.7)
=l kytl
k n

20 = L RAHRAx) + I &Ac) Bx). (4.1.8)
=l jak,+1

Proof. Since
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B(f) = max [ X @(c) ®(x) | ®(x)20 . (4.1.9)
j=1
we ¢an convert il to:
I n
B =max { X ®@c)d(x)} + max [ X ®(cj) (x;) J. (4.1.10)
jal =k
Forj=1,2,...,k , we have:
X X,
max { £ &c)®x) = I B(c)B(x) {4.1.11)
: o

Jm]
n. we know ®(c;) < 0. By Definition 3.1.8, letting &(d;) =

......

- ®(c)). we have ®(c;) = [&(c)), @(cj)] = -(- B(c), - @(cj)] =-@(d)=- [@(dj). E(dj)], @(d;} > 0.

Therefore:
mix | 2@)B(x)} = max [ L-d)®(x) ] =
j=ieg+1 j=k,+1
= IRy = I B)Ax). (4.1.12)
kvl j=k+1

|

Thus. (4.1.7) is proven. n a similar way, (4.1.8) can also be proven.

(IB) Relationships in the constraints

For constraints corresponding to the upper and lower bounds of the objective function value. we first have

the {ollowing definitions:

Definition 4.1.2. For grey number @(a), we define Sign{@(a)) as follows:

Sign(®@)) = 1, if @@ =0, 4.1.13)
-1, if @) <0, {4.1,14)
Definition 4.1.3. For grey number ®(a). we define its grey absolute value ®(lal) as follows:
Aah = &), if ®(a) =0, (4.1.13)
- ®(a). if @(a) <0. (4.1.16)

Thus, we have:
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R(a) = 8(a), if®(@)=0, (4.1.17)
-&Xa), if (@) <0 (4.1.18)
and
Bla) = (a), if @(a) 2 0, (4.1.19)
-8Ya), if ®(a) <0. (4.1.20)

Theorem 4.1.2. In order to obtain grey solutions as shown in (4.1.4) to (4.1.6), constraints corresponding to
B(f) can be developed as follows, based on (4.1.7) in Lemma 4.1.2 and the interactive relationships between

model parameters and decision variables:

k a
I X(la) Sign(@(a)) Blx) + I Bl Sign®(ay) B(x) < Sy, V i, @.1.21)
=1 1

=k +

Similarly, based on (4.1.8), the relevant constraints are:

¥ n
Y Bay) Sign@(a) (x) + I &) Sign(®@@) B(x) € Sb), Vi  (4.1.22)
1

j=1 jzkl+

Proof. (1) Firstly, we prove that constraints &(A) X < &(B) and (A) X £ B(B) in Lemma 4.1.1 are unable
to generate grey solutions with good quality. From Lemma 4.1.1, &(Q) o ®(Q) holds. Thus. for me €
2(Q), 3 X eB(Q), such that:

M 5@

. 2 jDP" fOl'j:l. 2""’kl| (4.1.23)

M @
g 32X jopo

forj = kl+l’ k1+2‘ BPIN | 8 (4.124)

where xu’j € X(”. and x®.

@ -
]opiE X apvv.]-

Howevar. for X(”‘,Pl e B(Q). itis not necessary that 3 X¥ ¢ &(Q), such that:

x(Z) < x(1)

c<x® . forj=12,... .k

) (4.1.25)

@ 5 M
Ep =% ops

forj=k+Lk+2,....n, 4.1.26)
m ) ’ ]
because B(Q) > &(Q), where x; e X and x' )j e XP v,

Therefore, to obtain grey solutions as shown in (4.1.4) to (4.1.6), we have to first solve the lower bound

submodel (when the objective is to be maximized} with constraints &(A) X < ®(B), which may result in a poor,



or even infeasible, solution. The solution of X’ which should satisfy (4.1.23) and (4.1.24) may not be X',

Thus, the method may lead to grey solutions with high grey degrees and low system benefits,

{(2) Next we prove that constraints (4.1.21) and (4.1.22) can lead to grey solutions with good quality. To

accomplish this, we denote the upper and lower bounds for Q as follows:

Kk o
Q=(X” I I &) Sign@E)x?;, + T Bay) Sign@®(ay) x; < By, ;& XV
=l el
' (4.1.27)

forj=1,2,...,0,X¥20}, Vi

I 2(ay) Sign(@(a) x¥, < @(by). x¥, e X

and
kl
B(lay) Sign@(,) x9,  +
j=1 =Ry

QY= (X9 | ¥

=

(4.1.28)

forj=1,2,....0, X920}, Vi

If the objective function is to be maximized, we can first solve the upper bound submode! with the following

constraints:
X, n

&(a) Sign@(@) x™, + I S(la) Sign@(a ) =, < @), Vi (4.1.29)
=1 j=ky+1

)
such that higher system benefits can be achieved. Conversely, if the objective function is to be minimized. the

lower bound submodel with the following constraints should be first solved:

k, n
£ By Sign@(a) x; + Ekfaaﬁi) Sign®(a) x¥; < @), Vi o (4.130)

el
As a comparison, when the two constraints in Lemma 4.1.1 are used. the lower bound submodel has 1o be

first solved even though the objective is to be maximized.
Assuming that the solulions corresponding to the upper bound of system objective are }\{(“)opL and f‘“)op‘. we
have:
X, n
I R0y Sign(R(a) xVj,, + .):k 'i)l:»‘{la;jl) Sign®@) x"; . < @), x| e X¥ forj=
IFR
(4.1.31)

i=l

C d
Ky . since @(a;) < @(aﬁ). 3 X" )ij < x(“’jop,. such that:



B(a) x“” Q(a,_};x et v i (4.1.32)
Thus, we have: E(x)apt )mn ,and Q(x)epge [min [x(d’ I¥ 1], max [x(d’ IV ijjforj=1.2.... .k .
Similarly, for =k +1.k+2.....n, since &(a) < B(a,). 3xY, > =¥, such that

B(ay) x¥y = Ba ", .. Vi (4.1.33)
Thus, we have: (), = X}, . and B(x),, € (min (x¥; 1V i) max (9, | V i}] forj=k+1, k42,
1

( () W) - At E} () (d) w
Therefore, for X™ . € Q™, 3X™ e Q, such that x iS X pforj=12,... k.and x* 2 x jopt

for j=k+1,k+2.....n where x¥; ¢ X, andx®, e X® - Thus, (4.1.21) and (4.1.22) correspond to

the upper and lower bounds of ®(f), respectively.
In a similar way. it can be proven that, when the objective is to be minimized, for X“”DPI e QY 3 XM ¢
Q™. such that x(”’j >x®  forj=1.2...., k,,and x". < x@ fops fOF J=k+ 1 k42,0 n, where x“’j €

(u} (d) d)
X“ andx X9

jopt € pt
(3) Since B(Q) = Q™ > B(Q), and Q) > Q" > B(Q) according to Lemma 4.1.1, we have: XY €

B(Q) since &(Q) > Q™ hoids, and X & Q¥ since Q® 5 &(Q) holds. Thus. for &(0),_, = &(C) X =

apt
max { B(C) X1 X e R(Q), X 20} and £, =€) X = max (R(C) XX € Q¥ X 20}, we have .

2 Q(Dcpt . which means that higher system benefits may be achieved through using (4.1.21) and (4.1.22) as
constraints.

Although Xmopt can be firse solved under constraints &(A) X < B(B), )(“)upl € THQ). the relevant lower
bound solution may be infeasible since Q) > ®(Q) and X e &(Q). which means that feasible grey
solutions may not be obtained. On the other hand, if X‘z’OPL is first solved under constraints 2(A) X £ &(B),
X(Z)opl € 8(Q), an extreme lower bound solution may be generated, while the relevant upper bound solution
may not be X', . which may lead to lower system benefits when the difference between X, and X¥ s
large.

As a comparison. constraints (4.1.21} and (4.1.22) ailow the solution corresponding io the upper bound of

system objective )((“"th {abbreviated as "upper bound solution") to be first solved for when the objective is to

be maximized, and the relevant solution corresponding to the lower bound of system objective (abbreviated



as "lower bound sclution”) is proven to be feasible and comresponds to the upper bound solution {i.e.. E(xj)opl {
=L2 ..., k), 2Ax),, k+l.k+2...., n), and &Xf),,,, can be obtained from the upper bound solutions. and

@) G=1.2,..., k) g(xj)c,[,1 (k+1, k42, ..., n), and @(f)__ can then be obtained from the lower

opt
bound solutions). Since both the upper and lower bound solutions for ®(x), ¥ j, are optimal under constraints
(4.1.21) and (4.1.22) corresponding to the two extreme bounds for given sysiem condition variations,

respectively, a complete set of optimal decision alternatives are contained within the two bounds of the decision

variable solutions, which reflect the feasible ranges of system condition variations (variations of ®(aij) and ®(c),
¥ 1, j) and will correspond to the objective function values lying between JE“”,,pl and E(“’op‘. Therefore. the

solutions ®(x),., = [B(%) g » DX 30d &), = (9, £ ] obtained by using (4.1.21) and (4.1.22) will

opt *

provide optimal and stable results. O

For the right-hand side constraint @(b;) = [€(b,), &(b,)], the possible relationships can be analyzed as
follows:
Corollary 4.1.1. When (b)) = &(b)), by Definition 3.1.1, ®(b,) is a deterministic number, Le. ®(b) =2(b,)
= &(b,) = b,. Thus. (4.1.21) and (4.1.22) can be specified as:

k

i
=2

I S Sign@NB(xy + T Blay) Sign®(a) (x) < v i (4.1.34)

=l j:-.klin[

In

ky n
z @(la.ijl) Si.gn(g(aij))@(xj) + Z Q(Iaiﬂ) Sig“(@(aij))g(x}-)

j=t jek, +1

b, Vi (4.135)

When &(b,) < E(bi_), which means that ®(b,) is a grey number, two potential situations have to be

considered:

(1) When @(b;} does not contain a zero. i.e., &(b,) > 0 or ®(b;) <0, the grey properties of @(b;) can be easily

incorporated into the left-hand side coefficients as follows:

Theorem +4.1.3. When ®@(b;) > 0, (4.1.21) and (4.1.22) can be transformed to:

Kk, n
I R(ay) Sign@(@) Blx) Bb) + T B(la) Sign@(a) BxY BOB) < 1. Vi,
j=l jek, +1

(4.1.36)



k, n
3 @(laijl) Sign@(aij)) @(X})/ gb;) + p @(Iaigl) Sign(@(ﬂij)) E('(J)fr ®(bi) <1 Vi
j=1

j=i et

4.1.37
Proof. By dividing both right- and left- hand sides of (4.1.21) by @(b,), we have:
ky n
L [&(a/O0)] Sign(RE) Blx) + T B(a)@b) Sign(Ba)R(x) < 1. Vi
=1 j=ky+l
(4.1.38)

Letting S(lal) = R(la;)/@&(b) forj=1,2.....%, . and B(lal) = @(]aijl),'@(bi) forj=k+l. k2, ..., n, we
have:
®layly = [R(aly B(b,), @(Ia.ijl)/ﬁ(bi)], forj=12,..., k. {4.1.39)
(Bl B(b). BllaH/&(b)1.  forj=k+Lk+2,...,n, (4.1.40)

Thus, based on the interactive relationship defined by (4.1.21) in Theorem 4.1.2, we have:

K, n
() Sign(@(@)) Bx) + I Bllay) Sige@(a))R(x) € L. Vi, (4.1.41)
j=1 =k +l
which is equivalent to (4.1.36). In a similar way, (4.1.37) can be proven. W

Theorem 4.1.4. When ®(b,) <0, (4.1.21) and (4.1.22) can be transformed to:

ky

T D) Sign@E) B Bby + T Biay) Sign@(a,) RO/ ROY < -l Vi,
j=1 ke 1
(4.1.42)

k, n
2 Bayl) Sign@(a ) () @by + I a) Sign@@)BGY By < -1, Vi
j=l j=ic +1

J J (4.1.43)

where ®(b,)' = - ®(b,).
Proof. From Definition 3.1.8, we have 3(b;) = - &(b;) and (b} = - &(b) since D(b,) < 0 and ®(b)' =
- ®(by). Thus, by dividing both right- and left- hand sides of (4.1.21) by ®(b,)', we have:

k;

T [R02/O0,)1Sign( @) B(x) + I [BlaHOb)1Sign(BG)R() < -1 Vi
i=1 jeky+1

{4.1.44)



Hence, (4.1.42) can be proven in a similar way as the proof for Theorem 4.1.3, and 5o can (4.1.43). ]

(ii) When ®(b,} contains a zero, two situations, ®(b,) = [0, b]] or & (b,) = [-b;. 0], where b;> 0, are

considered (the model does not include the sitiation when the two bounds of @(b,) have different signs).

Theorem 4.1.5. When ®(b) = [0, b, b;> 0, if all B(x;) = 1,2, .., n) correspond to &(f) for constraint
B(A), ®(X) < ®(B); , the constraint can be specified as:

T R(a)) Sign(®(2;)) B(x) < by, (4.1.45)

ju=l

corresponding to &(f), and

T ®(a)) Sign(®(a,) BAx) < 0, (4.1.46)

jml
corresponding to &(f), where ®(a;) € ®(A);, ®(b;) € ®(B), , and ®(x;) € B(X), ¥ j. Similarly, when all
®(x) (=1,2,....n) correspond to &), constraint ®(A); ®(X) < ®(B); can be developed with ®(x;)'s bounds

being specified in a reverse manner to those in (4.1.45) and (4.1.46).

Proof. Through dividing both right- and left- hand sides of constraint ®(A), ®(X) < ®(B); by (0, b;], we have:

2 {®(ay)/10, b} Sign( B(2y)) B(x) < 1, (4.1.47)

jml
corresponding to &), since ®(b;} = [0, b;] and all &(x;) =1, 2, ..., n) comrespond tc ). Letting
B(a,)/(0, b] = B(ay), V j. we have 2x(a,)’ corresponding to b; , and &(a,)’ corresponding to 0. Thus, (4.1.45)
can be proven in a similar way as the proof for Theorem 4.1.3, and so can {4.1.46) as well as the case when all

R(x) (i=1,2,...,n) corespond to E(f). |

Remark 4.1,1. However, if some @(xj) correspond to &(f), and some correspond to &(f), the specification of
constraints @(A) ®(X) £ @(B) requires a comparison of the contributions of the @(xj) and the Q(xj) groups to

the sum ZJ. B(ap)®(x), ¥ i. when &(f) is desired (for max ®(f) problem).

46
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Theorem 4.1.6. When ®(b,) = [0. b}, b, > 0. if constraint @ (A), ®(X) < ®(B), is dominated by the
@(xj) group when &(f) is desired, the sub-constraints corresponding to 8f) can be specified as;
k

T () Sign(@(a;)) B(x) + X B(lay) Sign®(a;)) R(x) < b;. (4.1.48)
j=l

kel

Consequently, the sub-construint corresponding to &(f) is:

k n
I B(a) Sign®ay,; R(x) + I By Sign(@ay)) HKx) < 0. 4.1.49)
I j

j=ky#l

Similarly, if the constraint is dominated by the Q(xj) group when &X(f) is desired. it can be specified with ®(xj)'s

bounds being specified ina reverse manner to those in (4.1,48) and (4.1.49),j= 1,2 .

4 s sy

Proof. Since constraint @(A), ®(X) < ®(B), is dominated by the Eﬁ(xj) group when &) is desired, it can
be approximated as the case when all ®(xj) (G=1.2....,n) correspond to &(F). Thus, (4.1 48) can be proven in
a similar way as the proof for Theorem 4.1.5, and so can (4.1.49) as well as the case when the constraint is

dominated by the 2(x;) group when &(f) is desired. ]

Remark 4.1.2. When the problem is complex and many decision variables exist, a direct compuriscn of the

dominance of @(xj) or @(xj) becomes impossible. Consequently. solutions corresponding 1o the two pairs of

constraints ((4.1.48)-(4.1.49), and the pair corresponding to the case when the constraint is dominated by the

Q(xj) group) must be compared. Thus, the pair which is feasible and has higher system benefits is chosen as the

pair for the actual constraint.
Remark 4.1.3. When more than one constraint has [0, b or [-b.. 0] type stipulations, various combinations of

the constraint pairs have to be formulated. and the relevant optimal solutions shouid then be calcylated and

compared.

Theorem 4.1.7. When ®(b,) = [-b., OF (4.1.45) and (4.1.46) become:
T ®(a) Sign(@(@,)) Blx) < -b; (4.1.50)
j=l

corresponding to &(f), and
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Z Blay) Sign®H(a,)) RA(x) < 0 (4.1.51)

i
corresponding to R(f), and so on for (4.1.48) and (4.1.49).

Proof. For ®(b) = [-b; , 0], letting @(b,) = - ®(b,)', we have ®(b)' = - [-b; , 0] = [0, b;] from Definiton 3.1.8. By
dividing both right- and left- hand sides of constraint ®(A), ®(X) < ®(B); by [0, b,], we can prove this theorem in

a similar way as the proofs for Theorems 4.1.5 and 4.1.6. O

Theorem 4.1.8. For equality constraints:

)

n

L O@)8x)=®p) Vi {4.1.52)
=]

they can each be converted into two inequalities:

T ®)O(x)= &b VL 4.153)

=l

b ®(uij) ®(xj)s @(bi). Vi (4.1.34})
il

which will then be expanded to two sets of inequalities similar in form to (4.1.34) and (4.1.33).

Proof. Straightforward. O

(2) Solutign Alsorithm

The solution of the GLP model includes two major steps as follows:

Corollary 4.1.2. Based on Theorem 4.1.2, model (4.1.1) to (4.1.3) can be solved through a two-step method.
where a whitened submodel corresponding to &(f) (when the objective is to be maximized) is first formulated
and solved. and then the relevant whitened submodel corresponding to &(f) can be formulated based on the

gencrated upper bound solution.
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Corollary 4.1.3. According to Lemma 4.1.2, and Thecrems 4.1.2 and 4.1.3, the GLP whitened submodel

corresponding to &(f), which provides the first step of the solution process when the objective is to be

maximized, can be formulated as follows (assuming that d(b,) > 0):

k n
maximize &0 = I &c)Bx) + I B(c)R(x). (4.1.55)
j=l kel
subject to:
k, a
Z 2y Sign(@(ay)) Bx)/ BO) + I Bay) Sign®a,) ®x)/ BG) < 1. Vi,
j=1 juky+1
: } (4.1.56)
®(xj) 210, V] (4.1.57
Corollary 4.1.4. According to Theorem 4.1.2, @(xj)‘,pt G=12,.... k) and ®(x)o, =k +Lk+2,..., n)

can be obtained from the solution corresponding to &(f), and B (=1.2..., k,) and @(xj)c,Pt (=k+1,

ki+2,...,n)can be obtained from the solution corresponding to &(f).

Corollary 4.1.5. According to Lemma 4.1.2, Theorems 4.1.2 and 4.1.3, and Corollary 4.1.4, the GLP whitened
submodel corresponding to &(£), which provides the second step of the solution process based on the solutions of
@(xj) G=12....,k)and R(x) § =k+1.k,+2,.. ., n) from submodei (4.1.55) to (4.1.57), can be formulated

as follows (assuming that ®@(b,) > 0):

k, n
maximize &) = X R(c) R(x)) + ¥ B(c) @(xj), {(4.1.58)
=l j=ky+l )
subject to:
ky n
% &) Sign®(a)) &(x)/ @) + I Ra)) Sign(@(a,) Bx)/ Bb) < 1. Vi,
j=l k41
J j (4.1.59)
®(x)20, V] (4.1.60)
B(x) £ Bx)y» j=1,2, ...k, (4.1.61)

Bx) 2 B, =kt k42,00, (4.1.62)



where Q(xj) L2 ... k. and &(x),, Li=k+1.k+2. ..., n, are decision variable solutions

opt.'J=

generated from submodel (4.1.53) to (4.1.57).

Remark 4.1.4, When the objective is to be minimized, the submodel corresponding to 2(f) should be first

formulated and solved.

Remark 4.1.5. The whitened submodels defined by (4.1.55) to {4.1.57} and (4.1.38) to (4.1.62) are ordinary
lincar programrning problems with a single objective function, Therefore, Q(Dm . E(xj.)cpt G=L2...., k)
and Q(xj)npl ( =k +1,k+2,..., n}can be obtained by solving submodel (4.1.55) to (4.1.57), and &(f)

opt *

@(xj) G=k+1.k+2...., n),and @(xj) (i=1,2,..., k) can be obtained by solving (4.1.58) to (4.1.62).

opt opt

Thus, from Definition 3.1.1 and Theorem 4.1.1, we have ®(xj)u?l ={ Q(xj)npl . @(xj)m 1. ¥ j,and ®(f)upl =

(2D BB,

Remark 4,1.6. The GLP solution algorithm is different from ordinary best-case/worst-case analysis. In GLP, the
solution corresponding to (f) can be first solved (when the objective is to be maximized), and the relevant
solution corresponding to ®(f) is proven in Theorem 4.1.2 to be feasible as one of the two bounds of the arey
solution, which leads to a set of optimal and stable yrey solutions. In a best-case/worst-case analysis, as a
comparison, the major concern is the solution of the objective function value, while the decision variable
solutions from the best and worst cases may not necessarily construct a set of feasible and stable interval
solutions (i.c., when the best case (corresponding to &(f) when the objective function is to be maximized) is first
calculated, the relevant worst case solution of the decision variables may be infeasible as one of the two bounds
of the interval solutions; conversaly, when the worst case (corresponding to ®(f) when the objective function is

to be maximized} is [irst calculated, poor interval solutions may be generated (Theorem 4.1.2)).

(3) Interpretation of the GLP Solution

The GLP approach will generate solutions for decisicn variables (X))o » ¥ J- and objective function value

opt *

@ (D), - The &(x;) solutions can be directly utilized for generating decision alternatives, with the values

potentially being adjusted within their intervals according to detailed system conditions. The ®(f) value



corresponds to the @(xj) solutions. such that the adjustment of the decision variable values within their lower and

upper bounds may lead to a variation of the objective function value within its two bounds correspondingly,

The following is an example problem to illustrate the practical significance of a GLP model. First, set 3 GLP

problem;
max ®(f) = [50, 601 @(x,) - [70, 90] ®(xy),
s.1. {4, 6] @(x)) + Bixy} < 150,
6 &) + [5, 71 ®(x;) <280,
®(x;) + [3. 4] ®(x;) <90,

[1,2] ®(xy) - 10 ®(xy) -1,

We can then solve the model by the previously discussed algorithm. The solutions are: @(x1)p, = [24.18, 36.56],
®(Xz)p, = [3.76, 4.94], and (£ o, = [764.71, 1930.73].
From Theorem 4.1.2, we know that ®(Dopt corresponds 0 ®(x,),, and ®(x,)__ . and can be used for

opt opt *

evaluating the decision alternatives which are generated by constructing different combinations of the whitened

decision variable values, ®V(xj)npl (Definition 3.1.10), within their solution intervals. Under the scheme for
E(f)opt ,» @(x,) should take the upper bound value (®(n:1)ﬂpl = 36.56), and ®(x.) the lower bound

(@(xz)‘,pl = 3.76); and under the scheme for @(f)“p,1 , @(x,) should take the lower bound value (Q(xl)npl =
24.18), and ®(x) the upper bound @(x,) = 4.94). Thus. the final decision for ®(x,) and ®(x-) values can be
determined from the generated alternatives according to the projected applicable conditions. For example. a

higher ®(x,) and a lower ®(x;) within their solution intervals could be chosen for a higher ®(F), and a lower

®(x;) and a higher ®(x,) within their solution intervals could be chosen for a lower @{f).

4.1.4. Application to Municipal Solid Waste Management Planning

(1) Overview of the Hvpothetical Problem

A hypothetical problem is developed to illustrate the GLP modeliing approach based on representative cost
and technical data from the solid waste management literature. The study region is assumed to include three
municipalities, as shown in Figure 4.1.1. Three time periods are considered (each has an interval of five years).

Over the 15 year planning horizon, an existing landfill and a waste-to-energy {WTE) facility arc availablc to
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serve the municipal solid waste (MSW) disposal needs in the region. The landfill has an existing capacity of
(2.05.2.30] x 106 t. and the WTE facility has a capacity of [500, 600} t/d. The WTE facility generates residues of
approximately 30% (on a mass basis) of the incoming waste streams, and its revenue from energy sale is [15, 25)
S/t combusted.

Table 4.1.1 shows waste generation rates of the three municipalities, operating costs of the two facilities, and
transportation costs for waste flows between the municipalities and facilities in the three time periods. Tt is
indicated that the waste generation rates and the costs for waste transportation/treatment vary temporally and
spatially, Therefore, the problem under consideration is how to effectively allocate waste flows from the three
municipalities to suitable waste management facilities to minimize system cost. Since uncertainties exist in the
system components (expressed as interval numbers), the GLP method is considered to be a feasibic approach for
this flow allocation problem, such that system uncertainties can be effectively refiected and optimal grey

soluticis (and thus ranges for decision alternatives) can be generated

(2) GLP Modelling Formulation

In the MSW management system under consideration, the grey decision variables represent waste {lows
from municipalities to waste management facilities over the time horizon. The objective is to achieve the
minimum cost flow allocation, and the constraints include all relationships between the decision variables and

the waste generation/management conditions. Thus, 2 GLP model can be formulated as follows:

z 3 3
minimize &0 = ¥ X T Ly [ ®xy) [B(TR;;0) + S(OPy)) +
=1 jal kel
+ ®(xo) FE [@(FTy) + ®(OPy,)] - ®(xoy) ®RE) |, (4.1.63)
subject to:
303
Y % L[ ®(xip) + O(xa5) FE 1 S (TL), (4.1.64)
= k=l

(landfill capacity constraint];
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Table4.1.1 Data for waste generation, transportation and treatment/disposal

Time period
k=1 k=2 k=3
Waste generation ®@(WGy) (1/d):
Municipality 1 (j=1) [260, 340] {310, 390] [360, 440]
Municipality 2 (j =2) {160, 240] [1835, 265] (210, 290]
Municipality 3 (= 3) [260, 3401 [260, 340] [31Q, 390]
Cost of transportation to landfill ®(TR ) (8/t):
Municipality 1 (j= 1) [12.1, 16.1] [13.3,17.7 [14.6, 19.5]
Municipality 2 (j = 2) [10.5, 14.0] [11.6, 15.4] [12.8, 16.9]
Municipality 3 (j=3) [12.7, 17.00 [14.0, 18.7] (134, 20.6]
Cost of transportation to WTE facility ®(TRx;) ($/1):
Municipality 1 (j= 1) (9.6, 12.8] [10.6. 14.1] [11.7. 15.5)
Muricipality 2 (j=2) [10.1, 13.4] [11.1,14.7] [12.2, 16.2]
Municipality 3 (j=3) [8.8,11.7] (9.7, 12.8] [1c.6, 14.0]
Operating cost @(OPy) (S/t):
Landfill (i= 1) [30, 45] [40, 60] [50. 80]
WTE Facility (i=2) [53,75] [60, 85] [65. 93]
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z B(xap) < S(TE), ¥ k. (4.1.65)
=l

[WTE facility capacity constraints];

i B(xip) = @(WGyp). Vv j.k {4.1.66)
i=1

{waste disposal demand constraints]:
B(xz) 20, vV ik (4.1.67)

[non-regativity constraints);

where;
FE = residue flow rate from the WTE facility to the landfill (% of incoming mass to the WTE facility);
1=typ= of waste management facility, i = 1, 2, where i = 1 for the landfiil, and 2 for the WTE facility;
j = name of municipality, j = 1. 2, 3 (Figure 4.1.1);
k =time period. k=1.2.3;
L, = length of time period k (day);
®(FTy) = transportation cost for "WTE facility ---> landfill " residue flow during period k (5/t):;
®(OPy) = operating cost of facility i during period k ($/);
®(RE,) = revenue from the WTE facility during period k (5/0);
®(TE) = capacity of the WTE facility (/d);
@(TL) = capacity of the landfill {t);
@(TR;;) = transportation cost for "municipality j ---> facility i" waste flow during period k (S/1);
@(WGy) = waste generation rate in municipality j during period k (t/d);

@(x;5) = waste flow from municipality j to facility i during peried k (t/d).

(3) GLP Solytiong

Table 4.1.2 shows the solutions obtained through the GLP model. It is indicated that the solutions for the
objective function value and many decision variables are grey numbers. The results suggest that the grey inputs
for the model parameters can lead to grey responses from the solutions of ®(x,;,). ®(X;;3). D(X,22). BD(%13).

®(X131). ®(X131), ®(X133), ®(X212), ®(x213)‘ ®(X27_1), ®(X122), ®(x?.3l)- ®(X232) and @(3133). The deterministic



Table 4.1.2 Solutions obtained through a GLP model

Symbol Facility Municipality = Period Soiution

Decision vartable (t/d):

®(x1 [1) fandfill 1 1 [210, 290]
®(x112) landfill 1 2 0

®(x,15) tandfill 1 3 [0. 30}
®(X111) landfill 2 1 0

®(Xi22) landfill 2 2 [0, 65]
B(x123) landfill 2 3 [210, 290]
B(x,31) landfill 3 1 [0. 30]
B(x,52) landfill 3 2 [260, 330}
®(x133) landfill 3 3 {170, 200}
®(xan1) WIE facility | 1 50
®(X212) WTE facﬂlty 1 2 {3 10, 3501
B(Xa13) WTE facility 3 [360, 410}
®(X221) W'I'.E r&cﬂity 2 1 [160. 240]
®(Xas) WTE facility 2 2 [185, 200]
®(X123) WTE facility 2 3 0

®(Xa11) WTE facility 3 1 (260, 310]
®(x213) WTE facility 3 3 [140, 190]

System cost ($106): ®() = [220.2.507.4]




number solutions for @(x 12} ®(X191). @(X211) and &(x1;3) demonstrate that these decision variables are not
sensitive to the existence of the input uncertainties.

The results indicate that the landfill skould accept most of the direct-haul MSW from municipality 1 ([210,
290] t/d) in pericd 1, municipality 3 ([260, 330 t/d) in period 2, and municipalities 2 and 3 ({210. 290] and [170.
200] ¢/d, respectively) in pericd 3. The solutions for waste flows to the WTE facility indicate that all three
munijcipalities are determined to use the facility. In period 1, the majority of waste flows to the WTE facility are
from municipalities 2 and 3 ([160, 240] and [260, 310] t/d, respectively). In period 2, the majority of the {lows
are from municipalities 1 and 2 ([310, 390] and [183, 200] t/d, respectively). In period 3, municipalitics 1 and 3
are determined to use the WTE facility, with flows of [360, 410} and {140, 190) vd. respectively. The results
demonstrate that the variations of waste generation/management conditions with time may lead to relevant
changes of optimal waste flow allocation pattemns.

Generally, less waste flows to the landfill and WTE facility were determined under the scheme for A(Dape »
and more flows were determined under the scheme for @(f)opp The scheme for &(f),, represents a decision
option with the lower bound system cost {7220.2 x 106}, and that for B(p represents an option with the upper
bound system cost (5307.4 x 10%). Therefore. lower Bxip) 1= L2,....m j=12.... nk=1.2,..., p.
within their solution intervals should be used to obtain lower system cost under advantageous conditions. and
higher ©(x;,) within their solution intervals should be used under more demanding system conditions. Thus, the
®(x) solutions can be used to generate decision alternatives by analyzing and adjusting different combinations
of the whitened decision variable values within their solution intervals according to projected applicable system
conditions,

In summary, planning for E(f)c,pt corresponds to the most demanding system condition, and will guarantee
that lwaste management requirements are met, but as planning aims toward £¢(0),, the possibility of meeting the
requirements hy the planned pathway decreases (i.e. the risk of unforeseen conditions increases). In other words,

planning for (), represents a conservative strategy and that for &(£),p, represents an optimistic strategy.

(4) A Comparison with Qrdinary LP Solytion

The problem can also be solved through an ordinary linear programming (LP) mcthod by letting all grey



parameters in the GLP model be equal to their whitened mid-vaives (WMV) (Definition 3.1.11). Table 4.1.3
shows the solutions obtained through an ordinary LP model. It is indicated that only one set of deterministic
solutions is generated, which represents a decision option when all input grey parameters are equal to their
WMVs. Although further sensitivity analyses can be conducted. there may be a multitude of possibilities when
many input parameters are uncertain, and every sensitivity analysis run represents only a single response to one
or several parameter variations. Table 4.1.4 shows an example of the sensitivity analysis of the effect of WTE
facility capacily variation on system cost throngh an LP model. Similar analyses may be conducted for other
uncertain parameters. It is thus demonstrated that sensitivity analyses using an ordinary LP model can only
reflect the uncertain features of the GLP model parameters individually. rather than give a comprehensive

overview.

4.1.5. Concluding Remarks

A grey linear programming method has been proposed and applied to the waste management planning area.
The method improves wnpon existing LP approaches by ailowing uncertain information to be direcily
communicated into the optimization process and resulting solutions, such that feasible decision alternatives can
be generated through interpretation of the grey solutions. Moreaver, the proposed GLP solution algorithm does
not lead to more romplicated intermediate models, and thus has lower computational requirements.

The results from the hypothetical case study of waste flow ailocation planning indicate that reasonable grey
sofutions have been generated, which represent stable ranges of the allocated "municipality --> facility” waste
flows during different periods (decision variables) and relevant system cost (objective function value). The
solutions are flexible in reflecting all possible system condition variations caused by the existence of parameter
uncertainties. Consequently, decision alternatives can be generated by adjusting the decision variable values
within their solution intervals and making tradeoffs between different system objectives/restrictions according to

projected applicable conditions.



Table 4.1.3 Solutions obtained through an ordinary LP model

Lh

Symbol Facility Municipality Period Solution
Decision variable (t/d):

X111 landfill 1 1 253
X112 landfill 1 2 H
X113 landfill i 3 0

X1 landfill 2 1 0
X131 landfill 3 1 0
X1 landfill 3 2 300
X133 landfill 3 3 200
X WIE faClllty 1 1 30
Xo1z WTE facility 1 2 350
X213 WTE facility 1 3 400
X221 WTE facﬂlty 2 1 200
Xaom WTE facility 2 2 195
X203 WTE facility 2 3 0
X231 WTE fac.lhty 3 1 300
Xo9z WTE facility 3 2 0
X WTE facility 3 3 145
System Cost (S108): f = 3517

Table 4.1.4 Sensitivity analysis of the effect of WTE facility capacity variation on system
cost through an ordinary LP model

WTE facility capacity (t/d) System Cost (3106)
300 3710
400 3624
500 355.0
600 3477
700 340.5
800 3340
900 3292

1000 3259




4.2. GREY QUADRATIC PROGRAMMING AND ITS APPLICATION

4.2.1. Introduction

In section 4.1, a grey linear programming (GLP) method has been introduced and applied to waste flow
allocation planning. Although the GLP method can generate optimal solutions with maximum system benefit (or
minimum system cost), it is based on an assumption that its cost function is linear. In fact, nonlinear relationships
may exist between many of the system components. For example, economies of scale {EOS) may affect the cost
coefficients in a mathematical programming problem (Thuesen and Fabrycky 1989: Cohen and Mcon 1991:
Campbell 1992; Fleischmann 1993), and make the relevant objective function nonlinear. Since the solution to a
nonlinear programming problem under uncertainty is potentially difficult to determine, particularly for a global
optimum, a grey quadratic programming (GQP) method is proposed in this section by introducing grey quadratic
variables into the objective function to approximate the effects of EOS. Existing quadratic programming (QP)
methods deal with optimization problems with deterministic input parameters (Goldfard, and Tdnani 1983: Best
1984: Chapman and Yakowitz 1984; Terlaky 1987; Korner 1990: Yang and Tolle 1991 Klafszky and Terlaky
1992; Ye 1992; Dietrich and Chapman 1993; Fang and Tsao 1993), but are not effective for QP problems with
uncertain parameters. The proposed GQP method is formulated by introducing the concepts of grey systems and
grey decisions into an ordinary QP framework. It will be able to effectively incorporate uncertainties within the
QP optimization process and resulting solutions. The GQP model is also moderately easy to solve with available

quadratic programming packages (e.g.. LINDO Software 1988), and a global optimum can be obtained.

4.2. Formulation of the GQP Modelling Approach

Definitioa 4.2.1. A grey quadratic programming (GQP) model is formulated by introducing concepts of grey
systems and grey decisions into an ordinary QP framework as follows (Hartley 1976; Hillier and Lieberman

1980: Budnick et al. 1988):

max ®f= Z&c)Bx)- I X ®(q,) B(x) B(x,)/2. @2.1)
j k=]

j=l =l
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s.t. Y ) ®x)s@Mb), i=12.... m, (4.2.2)
=1
B(x)20. j=12....n, 4.2.3)
where ®(xj) and ®(x, ) are grey decision variables, and ®(cj). ®(qﬂ‘). ®(:Lu.). and ®(b ) are grey parameters.
Characteristics of the GQP solutions can be described as follows:
Lemma 4.2.1. For A & [ &(A),B(A)] and B & [®(B),&(B)], denoting Q= {X |AX<B,X >0}, ®(Q) =

{(X 18(A) X <®(B). X20}, and BQ) = (X | R(A) X <B(B), X 20}, we have: B(Q) o Q > B(Q).

Proof. If both X € 2(Q) and X > 0 hold. then AX < ®(A) X < @(B) < B, such that X & Q holds.
Furthermore, if both X € Q and X 2 0 hold, then ®(A) X < AX < B < &(B). such that X € B(Q) holds.

Hence, &(Q) > Q o &(Q). 0]

Theorem 4.2.1. Model (4.2.1) to (4.2.3) can have grey solutions, which are composed of grey numbers, as

follows:
®(X) e = () | §=1.2,... 1}, _ (4.2.4)
B(%op: = R(X)opi » BlDgpu)s Bl 2 Bx)pe. Vo (4.2.5)
B = [R(Dopr+ BOopds BB 2 ROy - | (42.6)

Proof. (1) Firstly, we will prove (4.2.4) and (4.2.5). Consider two feasible solu'tions_for model (4.2.1) to (4.2.3);
XPe (X1X e BQ). (@.2.7)
X? ¢ (X1 Xe Q). (4.2.8)

where ®(Q) = {X | &(A) X< &(B), X2 0}, and B(Q) = {X | &A) X < &B), X 2 0}. From Lemma

4.2.1, B(Q) = &Q) holds. Hence, for any X® from &(Q), including optimal solution X . which

corresponds to:

RO = I; G, - 5 L, 8 x®,  x?, 2
= max { Zj () X; - Zj . @(qﬁ) xx/2 | x.x € &Q), {4.2.9)

FxWe &(Q), such that x“’jz xmj opt {or xmj < x(z’j opt)' where x{l)j e X and xmj e X9 v j;



(2) Secondly, we will prove (4.2.6). From Lemma 4.2.1, we have:

Blop = I, Ble)x” - LT, A, X eom
max { Zj @(cj) X, - Ej 2, 2(q,) %, x/2 | X, X € &B(Q)}. 4.2.10)

2

Let:
max { X, E(cj) x-LE Q(qjk) x,x/2 | X, X € B(Q)}
=max {f Ej RAc) x; + (E(Cj) -RCE)x] - L X, Q(qk) xx/2 | x.x€ BQ1.

(4.2.11)
Since E(cj) - &(c)20,and @(qj.k) > Q(qﬁc), we have:
max {Z, Bc)x - XX, @(q&)xjxkﬂ I x;, %, e B(Q)
>max { Z, B(c)x,- XX, Q(qjk) X, x/2 1 x,x eB(Q)
2max {2, &(c)x; - LE, Blg)xx/2 | x.x e B(Q)
=2, A0) X0 5T B %, 5%, 12
- 200, (42.12)

Thus, B(8),,, 2 (D, - O

4.2.3. Method of Soluiicn

(1) Interactive Relationships between Model Parameters and Decision Variables
(14) Relationships in the objective fancti
In this section. the objective function ior reflecting the effects of EOS for the waste flow allocation problem

is specified as:

max ®(D= X [B(c) B(x) + B(d) ®(x)’], (4.2.13)
jal

which is a special case of (4.2.1) when j=k.

Corollary 4.2.1. When the cost coefficients of ®(x;} and ®(xj):. Le. ®(c) and ®(d), j=1.2,...,n, have the
same sign (positive or negative), we can assume that k, of the pairs {®(cj-). ®(dj)} are positive and k, of them are

negative, and let the former k, pairs be positive. i.e. ®(c) 20, @@)=20G=12..., k)). and the latter k, pairs
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be negative. i.e. ®(cj) <, ®(dj) <0 (=k+1, k+2,..., n), where k, + k. = n (the model does not include the
situation when the two bounds of ®(c;) or ®(d;) have different signs). Thus. according 1o Lemma 4.1.2, wc‘can
formulate the following expressions for the upper and lower bounds of R(D:
k, a
B = j{_l [8(c) B(x) + &) B(x)*]  + j-i:kl ft?(cj) A(x)+ Bld) &(x)°l,  (4.2.14)
ky

2h = X [8() B + Y R+ T KA Bx)+ V) Bx)*l (42,19
=1

j =g, -1

Remark 4.2.1, When ®(cj) and ®(dj) have different signs, various combinations of the upper and lower bounds
of ®(x). V], have to be formulated for the objective function, and the relevant quadratic programming niodels
are then solved. Consequently, E(Dopl and &(f),, can be obuined through a series of comparisons for the
generated solutions, and thus the optimal ®(xj) combinations corresponding to3(f), o and @(Dum. respectively,
can also be determined, For example, for
R = Blc)) Bx,) + @) ®(x1)2 + ®(c,) B(x,) + ®(d.} ‘&(xgj2
+ ®(cy) B(xy) + B(dy) B(x,)°, (4.2.16)

if different signs exist between ®(c,) and ®(d,) and between ®(c,) and ®(d,), but the same sizn exists for ®(cy)
and &(d,), we can formulate four combinations of the upper and lower bounds of @(x,) and ®(x,)} (refer to Tabie

4.2.1) according to the principle of factorial design (Box et al. 1978).

Table 4.2.1 Combinations of the upper and lower bounds of ®(x,) and &(x,) °

Combination &(x,) ®(x,) ®(x,)
1 + + +
2 + - +
3 - + +
4 - - +

* + represents the upper bound, and - represents the lower bound,



Assuming that ®(c,) > 0. ®(dy) < 0, &(c,) < 0, ®(dy) > 0, 8(c;) > 0, ®(dy) > 0, and F(f),,, is obtained

from combination 2 (Table 4.2.1) after a series of comparisons for the generated optimal solutions, we have:

B = Be)B(x,) + Bd)B(x,) + Ble,)B(x,) + Bd,)B(x,)
+ B(c,)B(x,) + B)B(x,), 4.2.17)

and consequently;

&N = R(C)R(x,) + (d)RA(x,)* + B(c,)B(x,) + R(d,)(x,)
+B(c,)B(x,) + RAd)RAx,) . (4.2.18)

Remark 4.2.2. Obviously, when many pairs of {®(cj), ®(dj)} have different signs, there will be a large number

of combinations (if there are n pairs, the combination number will be 2" (Box et al 1978)), and thus a large

amount of computation will be required for obtaining &f)_, (when the objective is to be maximized) and the

opt

relevant combination.

Remark 4.2.3. One potential approach to reduce the computational effort is to apply techniques of fractional

factorial design to reduce the number of combinations if the pairs are not intercorrelated (Box et al. 1978).

Another altemative is to determing ®(xj)‘s bounds corresponding to B(f) and &KXf) step by step. Firstly, to

determine the choice of ®(x,)'s bounds, let ®(x,) be its whitened mid-value, i.e. ®(x,) = ® _(x,). Thus,

B(f) can be determined by comparing optimal solutions corresponding to the following two objective functions:

BE) = Ble)Bx,) + HAPB(x,)* + 8 (c,) ®,(x,) +8_(d) ®_(x,)
+ B(e)B(x,) + B(d)B(x,), (4.2.19)
&) = Ble)RK,) + BdIRX,)F +®_(e,) B (%) + & _(d) ®_(x,)°

+ B(c)B(x,) + B(dy) Bix,)o (4.2.20)

If ®(f)) 2 ®(f,). B(x,) corresponds to (f), and &(x,) corresponds to &(f); if ®(f,) < ®(f,), R(xy)
corresponds to &Xf). and &(x,) corresponds to &(£).
Secondly. o determine the choice of ®(x,)'s bounds corresponding to ®(f) and &(f), we have (assuming

that &(x,) corresponds to ), and &(x,) corresponds to &(f) from step 1);

BE) = Be)Bx) + BANBx,) + B, Bxy) + B(dy)B(x,)

64



+ Be)B(xy) + Bd)B(x,)* (4.2.21)

() = Bl + BA)RAx,F + Ble,)Rx,) + Bd)RY(x,)}
+ B(e,)B(x,) + B(dy)B(x,)". (4.2.22

If ®(£;") 2 @(£;). we then know that &(x,) corresponds to ), and &(x,) corresponds to Q(f); If ®(f,) <
@(f,), &(x,) corresponds to &Xf), and @(x,_) corresponds to €Xf). Similar relations can be determined for

other decision variables. ®(x}, when the relevant signs between ®(c;) and &(d,) are different.

(1B} Relationships in the constraints

Corollary 4.2.2. For a combination of different bounds of decision variables corresponding to (1), assume that

k, of them were determined to be the upper bound values, and k, to be the lower bound values. Let the former k,
decision variables have the upper bound values. i.e. ®(xj) = E(xj) =1.2....,k), and the latter k, variables
have the lower bound values, i.e. ®(xj) = @(xj) G=k+l k+2..... n). where k; + &, = n. According to
Theorem 4.1.2, we can then specify the relevant constraints B(A) &(X) £ ®(B) corresponding 1o &) as

follows:

ky n
Y Rlayf) Sign@@) Bx) + L B(a) Sign@(a,)) Kx)
=1

< ®b). Vi (4.2.23)
=k +1
Similarly, the constraints corresponding to &(f) are:
k, n
x @(hﬁl) Sign(@(aﬁ)) @(xj) + (lay) Sign(2(a) @(xj) < ®b) Vi (4.2.24)

=i jmiy+]

Remark 4.2.4. For the right-hand side stipulations ®(b;) = [&(b). B(b,)], ¥ i, the relevant relationships can be

analyzed similarly to those in Theorems 4.1.3 to 4.1.8 and Corollary 4.1.1.

(2) Solution of the GOP Model

Solution of the GQP model can be obtained through two steps as follows:

Corollary 4.2.3. Based on Corollary 4.2.2 and Theorem 4.1.2, the GQP model can be solved through a two-step

method, where a whitened submodel corresponding to &) (when the objective is to be maximized) is first
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formulated and solved and then the relevant whitened submodel corresponding to 2(£) can be formulated based

on the generated upper bound solution,

Coroltary 4.2.4. According to Corollary 4.2.2 and Theorems 4.1.2 and 4.1.3, the GQP whitened submodel
corresponding to &(f), which provides the first step of the solution process when the objective is to be
maximized, can be formulated as follows (assuming that ®(b,) > 0, and constraint i is dominated by @(xj) group
when &(f) is desired):
maximize  &(f) (4.2.25)
subject to:

k

2 RAa) Sign@(a) Bx)/BO) + I B(ay) Sign@(ay) REYRB) < 1, Vi,

=l jmig1
(4.2.26)
Bx)20, V. (4.2.27)
Corollary 4.2.5. According to Corollary 4.2.2 and Theorem 4.1.2, @(xj)wt Gg=1.2...., k) and Q{xj)up‘ =

k;+1,k+2, ..., n)can be obtained from the solution corresponding to &X(f), and @(xj)om G=12,....k)and

B(X)ops (i =Xy +1,k+2, .. ., n) can be obtained from the solution corresponding to &(f).

Corollary 4.2.6. From Corollaries 4.2.2 and 4.2.5, and Theorems 4.1.2 and 4.1.3, the GQP whitened submodel
corresponding to &(f), which provides the second step of the solution process based on the solutions of @(xj) G
=12,..., k;) and Q(xj) (=k+1, k;+2, ..., n) from submodel (4.2.25) to (4.2.27), can be formulated as
follows (assuming that &(b,) > 0):
maximize 2(f), (4.2.28)
subject to:

k,

I &(ay)) Sign®a)) Bx)/R0b) + T Rlay) Sign@(a)) Bx)Bb) < L, Vi,
=1

=kl
(4.2.29)
®x)20, V| (4.2.30)
B(x) S WX Do+ =1L 2.... K, @.2.31)

B(x) 2 (x)oy» J=K+1 K42, ..., (4.2.32) -



where B(x)yp.j=12...., K Land @(x),. = k+l k2L n, are decision variable solutions

generated from submodel (4.2.23) to (4.2.27).

Remark 4.2.5. When the objective is to be minimized, the submodel corresponding to SXf) should be first

formulated and solved.

Remark 4.2.6. The whitened submodels defined by (4.2.25) to (4.2.27) and (42.28) to (¢.2.32) are ordinary
quadratic programming problems. Therefore, B0 ope @(xj)opl G=1,2...., k). and &(x), (=K +1. Kk +2, .

. 1) can be obtained by solving submodel (4.2.25) to0 (4.2.27). and Q(f‘)os,t . @(xj)m (G=k+Lk+2, .. n),
and @(xj)nPt (1=1.2,..., k) can be obtained by solving (4.2.28) to (4.2.32). Thus, from Definition ? : : and
Theorem 4.2.1, we have ®(x)., = [ B(x),,, @(xj)up,], ¥ j, and @(0),, = [ R(Bqq By, -

The sclutions to the above crisp quadratic programming problems can be obtained through the use of

existing commereial software (e.g., LINDO Software 1988).

4.2.4. Application to Municipal Solid Waste Management Planning
(1) Overview of the Hypothetical Froblem

The hypothetical problem under consideration is similar to that in Section 4.1, where issues of waste [low
allocation planning were studied. In Section 4.1, waste transportation costs were considered to be lncar functions
of waste flow, which may not lead to realistic solutions when the effects of economies of scale (EOS) are
significant. Consequently, study of the effects of EOS may provide more reasonable and effective solutions.

The information for waste generation rates and facility operating costs for the problem is the same as that
given in Section 4.1. The only difference in this study problem is that the effects of EOS on waste transportation

costs are considered. Generally, the EOS in terms of waste transportation can be expressed as a sizing model

with a power law:

Co=Cee (X /X", (4.2.33)
where X, is a waste flow decision variable (t/d), X,. is a reference waste flow (t/d), C, is the transportation cost
for waste flow X, (8/t), C,. is a known transportation cost for reference waste flow X. (G/t),and m is an

economies of scale exponent, 0 <m < 1 (Thuesen and Fabrycky 1989).
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The exponential relationships in equation (4.2.27) can be approximated as grey linear functions. as shown in
Table 4.2.2 where transportation cost functions for "municipality ---> facility” waste flows and "WTE facility ---
> landfill” residue flows are provided.

Figures 4.2.1 and 4.2.2 show the curves of waste flow vs transportation cost obtained from both cquation
{4.2.33) and Table 4.2.2 for waste flow from municipality 1 to the landfill during period I (first row in Table
4.2.2), under the assumption that m = 0.8 ~ 0.9 for the hypothetical study problem (the grey lincar functions in
Table 4.2.2 will vary as the m value for equation (4.2.33) is changed). It is indicated that the noniinesr
relationships in equation (4.2.33) can be approximated by grey linear functions with a reasonable degree of error.

Generally. the MSW generation rates vary between different municipalities and different periods, and the
costs for waste transportation and treatment also vary temporally and spatially. Moreover, interactions exist
between the waste flows and their transportation costs due to the effects of EOS. Thus. the problem under
consideration is how to effectively account for all these factors and allocate waste flows from the three
municipalities 10 suitable waste management facilities to minimize system cost. A GLP method will not be able
to address the eifects of EOS, and a grey nonlinear programming model may be difficult to solve. Therefore, (he
GQP method is considered to be a feasible approach for dealing with this type of problem and achicving
reasonable solutions.

The problem will be first formulated and solved through a GQP model. and then the GQP solutions will be

compared with the GLP solutions to show the potential advantages of the developed methodology.

(2) GOP Modelling Formulation

In the MSW management system under consideration, the grey decision variables represent MSW flows
from municipalities to waste management facilities over the time horizon. The objective is 1o achieve Lhe
minimum cost flow allocation, and the constraints include all relationships between the decision variables and
the waste generation/management conditions. Since the effects of EOS on waste transporiation costs exist, a
GQP model can be formulated as follows:

2 3 3

minimize  &(f) = L X I Ly ®(xip) (@00 @xigd + @B + ®(OPL)] +

i=ml J'l k=]

€8
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303
+ Z I Ly { @xqgp) FE [ &(0y) ®(xzp) FE + &(&) + &(OPy)] - @{xa5) @REY |,
jel  kml
" 42.39)
subject to:
103
% ¥ Lo [®(xp) + ®(xq5) FE ] S @(TL), (4.2.35)
jml kml
[landfill capacity constraints);
3
2 ®(xgp) < &(TE), vk, (4.2.36)
jul
[WTE facility capacity constraints];
2
2 ®(xi) = (WG, vk (4.2.37)
inl
[waste disposal demand constraints];
B(xip) 2 0, Viijk {4.2.38)
{non-negativity constraints);
where;

FE = residue flow rate from the WTE facility to the landfill (% of incoming mass to WTE facility);
i = type of waste management facility, i = 1, 2, where i = 1 for the landfill, and 2 for the WTE facility;
j = name of municipality, j=1, 2, 3 (Figure 4.1.1);

k= time period. k=1,2, 3;

Ly = length of time period k (day);

®(OP;) = operating cost of facility i during period k ($/t);

®(RE,) = revenue from the WTE facility during period k (5/1);

®(TE) = capacity of the WTE facility (t/d);

@(TL) = capacity of the landfill (t);

®(WGj) = waste generation rate in municipality j during period k (t/d);

®(x;x) = waste flow from municipality j to facility i during period k (t/d);

®(oip) = slope of transportation cost curve for waste flow from municipality j to facility i during period k;



®(Bip) = Y-intersect of transportation cost curve for waste flow from municipality j to facility i during
period k:

®(0w) = slope of transportation cost curve for residue flow from the WTE facility to the landfill during
period k;

®(8,) = Y-intersect of transportation cost curve for residue flow from the WTE facility to the landfill during

period k.

(3} GOP Solutions

Table 4.2.3 shows the solutions obtained through the GQP model. It is indicated that the solutions for the
objective function value and many decision variabies are grey numbers, with the grey inputs for the model
parameters having grey responses in the solutions of ®(x,,,), ®(X12}, ®(x113). B (X121} ®(X12), @(x123), @(Xay )
B(x212) B(x22;), S(X222), ®(X323), O (Xa31)» (Xa3;) and ®(Xa33). The deterministic solutions ®(x,3;), ®(x132).
®(x133), and ®(x,;3) suggest that these decision variables are not sensitive to the existence of the input
uncertainties.

The majority of waste from municipality 1 and part of waste from municipality 2 are determined to be
transported to the landfill because of their proximity to the facility, while municipality 3 should deliver the
majority of its waste to the WTE facility because it is closer to the facility. Generally, more waste flows lo the
landfill and WTE facility were determined under the scheme for %(f)p. and less flows were determined under
the scheme for &Y(f). The scheme for &(f),,, represents a decision option with the lower bound system cost
(8239.5 x 10%) under the most advantageous system condition, and that for &(f),,, represents an option with the
upper bound system cost (8514.1 x 10%) under the most demanding condition. Thus, the @(x3,) solutions can be
used to generate decision alternatives by analyzing and adjusting different combinations of the whitened decision

variable values within their solution intervals according to projected applicable system conditions.

(4) A_Comparison with GLP Solutigng
The solutions for the same hypothetical problem through a GLP model without considering the effects of
EOS on waste transportation costs are shown in Table 4.1.2 (in Section 4.1). in the GLP model, waste

transportation costs are considered to be independent of the quantities of wastes handled. Therefore, the GLP



Table 4.2.3 Solutions obtained through the GQP model

Symbol Facility Municipality Period Solution
Decision variable (t/d):

B(xy12) landfill 1 2 (310, 350)
®(x113) landfill I 3 (360, 440]
®(x141) landfill 2 1 {0, 30]
(%2 landfill 2 2 [185, 225]
®(x123) landfill 2 3 {50, 201
®(x131) landfill 3 1 0

@(Xlgz) landfill 3 2 0

®(x)33) landfill 3 3 0

®(x211) WTE facility 1 1 (10, 50]
®(xX212) WTE facility 1 2 [0.40)
B(x513) WTE facility 1 3 0

B(x371) WTE facility 2 i {160, 210]
®(x909) WTE facility 2 2 {0, 40]
(X793} WTE facility 2 3 [160, 210]
®(x3;) WTE facility 3 1 (260, 340]
®(x337) WTE facility 3 2 (260, 3401
B(x233) WTE facility 3 3 {310, 390]

System Cost ($109):

@(f) = [239.5,514.1]
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solutions are significantly different from the GQP solutions. In the GQP solutions. the waste flows are
concentrated to the lowest possible number of paths, i.¢.. the majority of the waste flow from cach municipality
in a given period will be transported to either the landfill or WTE facility rather than in a flow split to both
facilities. For example, if the majority of wasie flow from a municipality is determined to be transported (o the
landfill in the GQP solution, its waste flow to the WTE facility will be low (or zero). Thus. the GQP modet
reflects the fact that lower allocated waste flows will have higher unit transportation costs due to the effects of
EOS {and vice versa). In comparison, the GLP model assumes the same transportation cost for the full range of
waste flows.

The system costs in the GLP and GQP solutions are ${220.2, 507.4] x 108 and $[239.3. 514.1] x 105,
respectively. In fact, for a given problem. the ®(f) solution from a GQP model may be greater than or less than
the ®(f) solution from a GLP model, depending on system flow conditions. If the GLP dccision variable
solutions in Table 4.1.2 are input into the objective function of the GQP model. the cbjective function value
obtained will be $[243.1, 522.3] x 105, which corresponds to a higher system cost than the optimal solution from
the GQP approach.

Generally, the GLP method is based on the assumption that the effects of EQS are negligible. However, the
effects may be significant in some practical problems, and thus may make the GLP method less realistic. The
above comparisons demonstrate the potential role of the GQP approach in better reflecting system cost variations

and generating more reasonable and applicable solutions.

4.2.5. Concinding Remarks

A grey quadratic programming method is proposed in this section and applicd to a MSW management
planning problem. The method improves upon existing grey linear programming methods by allowing the
consideration of the effects of EOS. The approach also has advantages over a grey nonlinear programming
method. since a global optimum is obtainable and the model is moderately easy to solve through commercially
available quadratic programming packages. However, in practical applications of the method, it is important to
carefully investigate the relationships between waste flows and their ransportation costs to determine a correct

range for the m value in the sizing model, such that a relevant grey linear function can be constructed to
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approximate the effects of EOS. The developed GQP method would also be applicable to other types of resource

allocation problems under uncertainty (e.g. water quantity allocation, traffic flow allocation. and manpower

planning) that have quadratic objective functions but linear consgaints.



43. GREY INTEGER PRCGRAMMING AND ITS APPLICATION

4.3.1. Iatroduction

A significant number of MSW management planning problems involve facility capacity issues, where a
rclated optimization analysis will typically require the use of integer variables 1o indicate whether or not
particular facility expansion options are to be undertaken. Mixed integer linear programming (MILP) methods
are especially useful for this purpose. Previously, there have been a number of studies of MILP approaches and
their application to solid waste management planning (Kuhner and Harrington 1975: Clayton 1976; Jenkins
1680; Hasit and Warner 1981; Jenkins 1982; Baetz 1990b) (see Chapter 2 for more information). However, two
issues of major concem exist with the previous MILP studies. Firstly, the MILP method czn only be used when
ail input parameters are deterministic (Jenkins 1982), and is not appticable when uncertain parameters exist.
Secondly, in terms of capacity planning for waste management systems, public sector decision makers may
desire a range of alternatives (in terms of 1ime, location, and scale) that could be considered when making long-
term decisions under uncertainty, while the MILP method may nat be effective in yielding such a range.

Most previous methods dealing with uncertainty in integer programming problems relate (o fuzzy inleger
programming (FIP) and stochastic integer programming (SIP). The FIP methods provide potentially uszlul
approaches for integer programming under uncertainty (Ignizio and Daniels 1983: Zimmermann and Pollatschek
1984; Fabian and Stoica 1984) (see Chapter 2 for more information). However, they may lead to more
complicated submodels which may be computationally difficult for practical applications. Moreover, most of
them are indirect approaches containing intermediate control variables or parametcers which are difficult to
determine by certain criteria. They are unable to communicate uncertainty directly into the optimization
processes and resulting solutions (Inuiguchi et al. 1990).

The STP methods can effectively deal with various probability uncertainties in decision making and are
particularly useful when the values of system components fluctuate within wide intervals but their probability
distributions are known (Yudin and Tsoy 1974: Zimmermann and Pollatschek 1975: Glover 1976; Teghem and
Kunsch 1986a and b: Kunsch and Teghem 1987; Kunsch 1990). However, one potential problem with these

methods is that, although they can incorporate more uncertain information within the optimization frameworks,
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the increased data requirements (thus computational requirements) for specifying the parameters’ probability
distributions may affect their applicability.

One potential approach for mitigating the above problems is through the inroduction of concepts of grey
systems and grey decisions into a MILP framework, which will lead to a grey integer programming (GIP)
formulation. The GIP method allows uncertain informaticn to be directly communicated into the optimization
process and resulting solutions, It also does not lead to more complicated intermediate models, and thus will
have lower computational requirements and be applicable to practical problems.

In this section. a GIP formulation and its solution aigorithm will be developed and then applied to a
hypothetical capacity planning problem in a MSW management system. Grey solutions for both integer (binary)
and non-integer (continucus) variables will be analyzed and interpreted to provide useful decision alternatives

and thus demonstrate the potential applicability of the developeé methodology.

4.3.2. Formulation of the GIP Modelling Approach

We first introduce two definitions relating to grey integers and grey binary numbers, and then provide a GIP

formulation.

Definition 4.3.1. Let R’ denote a set of real integer numbers. A grey integer is a grey number with integer upper

and lower bounds, and all its whitened values are integers:

() = [B(y). B(y)], 4.3.1)
2(y)e R, B(y)eR. (4.3.2)
® (V) &R, (4.3.3)

where ®(y) is a grey integer, £(y) and B(y) are the lower and upper bounds of ®(y), respectively, and @ (y) is

a whitened value of @(y) (Definition 3.1.10).

Definition 4.3.2. A grey binary number is a grey integer with its two bounds being 0 and 1, and can only be

whilened as 0 or 1.
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Definition 4.3.3. A grey integer programming (GIP) model is formulated by introducing concepts of grey

systems and grey decisions into a MILP modetling framework as follows:

max  &(f) = &(C) ®X) +.3.4)
S.t. @A) B(X; < ®(B), (4.3.3)
®(xj) = grey continuous variable, ®(xj) e ®X). i=1.2..... p(p<n), (4.3.6)
®(xj) = grey discrete variable, ®(xj) e ®X). j=p+l.p+2... ., n. 4.37

®(xj) z0, j=12,..., n, (4.3.8)

where ®(A) € @R)™ ", ®B) ¢ ®R)™™*, and ®(C) € ®R)' " (®(R) denotes a set of grey numbers).

Characteristics of the GIP solutions can be described as follows:

Lemma 4.3.1. For A & [&(A). B(A)] and B [ &(B), (B)], denoting @ = {X | AX<B. X > 0}, &Q) =

(X I®A)X<®B).X20},and BQ) = (X | 8(A) X < &(B). X 20}, we have: B(Q) o Q > 2(Q).

Proof. If both X & &(Q) and X 20 hold. then AX < B(A) X < (B) < B. such that X € Q holds. Furthermore,
if both X € Q and X 2 0 hold. then ®(A) X < AX < B <B(B). such that X e B(Q) holds. Hence, B(Q) > Q =

2Q. O

Theorem 4.3.1. Modei (4.3.4) to (4.3.8) can have grey solutions, which are composed of grey numbers, as

follows:
X) = (®(x),p | i=1,2.....0}, 4.3.9)
®(xj)°P‘ = [Q(xj)ﬁm ’ g(xj')l:'pl]' E()‘:j)opl 2 Q(xj)op( » v j' (43 10)
B(Dope = (R(D)gpe » Bl)py) B(Dop1 2 2Dy » (4.3.11
where:

®(X;)op = grey continuous variable solutions, j=1,2,....p(p<n);

®(X;)op: = grey discrete variable solutions, j = p+1, p+2.. .., n.

Proof. (1) Firstly, we will prove (4.3.9) and (4.3.10), Consider two feasible solutions for modet (4.3.4) to {4.3.8):

Ve (X | Xe BQLandX? e (X 1 Xe R(Q)}, where R(Q) = (X | B(A) X < @(B), X 2 0), and



B(Q) = {X | 2(A)X <B(B). X 20)}. From Lemma 4.3.1. Q) = 2(Q) holds. Hence, for any X from

2(Q), including optimal solution ){‘2’UFl which corresponds 1o 2(f) = &(C) X", o = max { R(C)X | Xe

opt

2(Q)h. I X" e B(Q). such that x> x®, (orx', 2 x?,), where x, ¢ XV, and e XP v

(2) Next we will prove (4.3.11). From Lemma 4.3.1,8(f),, =8(C) X", = max (B(C) X [X €

B(Q), X 20}. Let max {B(C) X 1 X e B(Q), X 20} = max [R(C) X + [B(C) - D(C)) X | X eB(Q), X2
0}). Since B(C) - 2(C) 20, we have max ((C)X + [BC)-B(CNX | XeBQ.X20}2
max {@(C)X | Xe B(Q,X20l2zmax { 2(C)X | Xe B(Q),X20}= 2(C)X?_ = 2(D,,

Thus, B(D),, > (D, - L
4.3.3. Method of Solution
(1) Interactive Relationships between Model Parameters and Decision Variables
(1A) Relationships in the abjective function

For the upper and lower bounds of the objective function value, we have the following:

Lemma 4.3.2. For n grey coefficienss &(c,) j=1.2,..., n) in the objective function of modal (4.3.4) to (4.3.8).

if k, of them are positive. and k, are negative, let the former k, coefficients be positive. i.e. @(c)20(=12

-+ k), and the latter k; coefficients be negative, i.e. ®(c) <0 (j=k+1. k+2,....n). where k, +k, = n (the
model does not include the situation when the two bounds of ®(cj) have different signs). Thus, we can develop

the following expressions for the upper and lower bounds of &():

k, n

B = X BBk) + I B(e)RAx). (4.3.12}
=l J=k +1
k, n

) = X () ax) + I &) @(xj). (4.3.13)
jui

jmiey*l
where &(x;) can be either continuous or discrete decision variables.

Proof. Similar to the proof for Lemma 4.1.2.
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{1B) Relarionshipsin the constrainis

For the constraints corresponding to the upper and lower bounds of the objective function value. we have the

following:

Theorem 4.3.2. In order to obtain grey solutions as shown in {4.3.9) to (4.3.11), constraints corresponding to
&(f) can be developed as follows, based on (4.3.12) in Lemma 4.3.2 and the interactive relationships between
model parameters and decision variables:

k

3 RYla,)) Sign(R(a;)) @(xj) + 3 @(Iaijl)Sign(Q(aﬁ)) (x) < @@®), Vi {4.3.14)
=l j=ky+1
Similarly, based on (4.3.13), the relevant constraints are:
ki n
) E{Iaijl)Sign(@(ajj)) RA(x) + b @(laijl) Sign(@(aij)) E(xj) < @), Vi (4.3.15)

j=1 =R+l
where ®(x;) can be either continuous or discrete decision variables.
Proof. Similar to the proof for Theorem 4.1.2.

Remark 4.3.1. The possibie relationships for the right-hand side stipulations ®(b;) = [ 2(b,), B(b,)], V i, can

be analyzed similarly to those in Theorems 4.1.3 to 4.1.8 and Coroilary 4.1.1.

(2) Solution Algorithm
The solution for the GIP model includes two major steps as follows:

Corollary 4.3.1. Based on Theorem 4.3.2, model (4.3.4) to (4.3.8) can be solved through a two-step method.,
where a whitened submodel corresponding to (f) (when the objective is to be maximized) is first formulated

and solved. and then the relevant submode! corresponding to £(f) can be formulated based on the generated

upper bound solution.

Corollary 4.3.2. According to Lemma 4.3.2, and Theorems 4.3.2 and 4.1.3, the GIP whitened submodel

corresponding to B(f}. which provides the first step of the solution process when the objective is to be

maximized, can be formulated as follows (assuming that @(b,) > 0):



31

maximize (f) = gl E(cj}g(xj) + :%k ?(cj)&xj), (4.3.16)
= Pali
subject to:
k, n
,E B(la) Sign(A(ay)) B(x)B(b) + j‘z:‘fl(la,-,-i) Sign@(a;) R(x)/2(b) < 1, Vi,
4.3.17)
®(x;) = grey continuous variables, j=1,2,....pk+Lk+2,. .. ki+p,,
(0, Sk, and p, Sk, , k;+k, = ), (4.3.18)
®@(x;) = grey discrete variables, j=p+1,p+2, ... Ky, ki#p+ 1 kj+p,+2, .. n. (4.3.1%)
®(x)20, Vj, (4.3.20)

where @(x), j=1,2,...,p,, are grey continuous variables with positive cost coefficients, and ), j=k+1,
k+2,..., k,+p, , are grey continuous variables with negative cost coefficients: ®(xp, j=pr+l. 2, ...k,
are grey discrete variables with positive cost coefficients, and ®(x), j=ki+p,+L kj+py+2, ..., n, are grey

discrete variables with negative cost coefficients.

Coroliary 4.3.3. According to Theorem 4-3-2-@(",')0;» G=12,...,%)and Q(xj)‘th J=k+LXk+2,...,n)
can be obtained from the solution corresponding to &(f), and &(x)),,, G=1.2...., k;) and B(x),, (= k,+1.

k;+2,....n)can be obtained from the solution corresponding to &(f).

Corollary 4.3.4. According to Lemma 4.3.2, Corollary 4.3.3, and Theorems 4.1.3 and 4.3.2, the GIP submodel
corresponding to @(f). which provides the second step of the solution process based on the solutions of @(x}.) g
=12....,k)and @(x;) =k +1L. k+2. ..., n) from submodel (4.3.16) to {4.3.20), can be formulated as

follows (assuming that ®(b,) > 0):

k,

maximize &(f) = X () + I B(c)B(x), (4.3.21)

juul =kl

subject to:

k, o

L B(lay)) Sign@(ay)) R(x)/RM) + T Bay) Sign(®(ay) Bx)/B) < 1, Vi,

jml '=kl+1

} ! (4.3.22)
@(x)) = grey continuous variables, j=1,2,...,p,. k+1, k+2, ... . k+p,.



(p, £k, and p, £k, . k;+k, =n), (4.3.23)
®(x) = grey discrete variables, j=p+1.p+2...., K;. K +pa+ L kppat2 . N ($.3.29
&(x)20, V¥ (4.3.25)
B(x) < BxJey . j=1.2..... k,. {4.3.26)
Blx) > &), i=k+1k#2, ..., n, 4.3.27)
where @(xj)npt 2j=L2,..., k; ,and Q{xj)opt =kl k2,00 n, are decision variable solutions

generated from submodel (4.3.16) to (4.3.20).

Remark 4.3.2. When the objective is to be minimized, the submodel corresponding to €XI) should be first

formulated and solved.

Remark 4.3.3. The submodels defined by (4..3.16) to (4.3.20) and (4.3.21) to (4.3.27) are ordinary MILP

problems with a single objective function. Therefore, @(f)opl , @(xj)u aG=12...., k). and &(x)., (= k+1.
k,+2,..., n}can be obtained by solving submodel (4..3.16) to (4.3.20), and @(Dopl , @(z-:j)upl =kl k42, ..
., n),and @(xj)wt (=1.2,.... k;) can be obtained by solving (4.3.21) to (4.3.27). Thus. from Definition 3.1.1
and Theorem 4.3.1. we have ®&(x),, = [ R(x),.. Bx) 1. V j, and (), = [RAD,,, - BDyy, .

The solutions to the above MILP problems can be obtained through the use of existing commercial

softwares (e.g. Eastern Software Pro-ucts 1989),

4.3.4, Application to Municipal Solid Waste Management Planning
(1) Qverview of the Hypothetical Problem

A hypothetical problem has been developed to illustrate the GIP modelling approach based upon
representative cost and technical data from the solid waste management literature. The study region is assumed
to include three municipalities, as shown in Figure 4.3.1. Three time periods are considered (each has an interval
of five years). At the beginning of the dme horizon, an existing landfill and two waste-to-energy (WTE) facilitics
are available to serve the region's MSW disposal needs. The landfill has an existing capacity of {0.625, 0.775] x

106 t, WTE facility 1 has a capacity of [100. 125] t/d, and WTE facility 2 has a capacity of {200, 250] t/d. The
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Figure 4.3.1 Hypothetical study municipalities and waste management facilities

33



WTE facilities generate residues of approximately 30% (on a mass basis) of the incoming waste streams. and
their revenues from energy sales are approximately [13, 25] $/t combusted.

Over the 15 year planning horizon, the landfill capacity can be expanded once by an increment of [1.55,
1.70] x 10% t, and the WTE facilities can be expanded by any of three opiions in gach of the three time periods
(see Table 4.3.1 for detailed information), with a maximum expansion limit of 200 #/d. Table 4.3.1 also shows
the capital costs of capacity expansions for the three facilities, which are expressed in terms of present value
dollars, with the costs being escalated to refle~* anticipated conditions and then discounted to generate present
value cost terms for the objective function.

Table 4.3.2 contains wasie generation values for the three municipalities, operating costs of the three
facilities, and transportation costs for the waste flows between municipalities and facilities in the three time
periods. It is indicated that the MSW generation rates and the costs for waste transportation/treatment vary
temporally and spatially. Therefore, the problems under consideration are how ta select preferred capacity
expansion schemes for the waste management facilities during different time periods and how to clfectively
allocate the relevant waste flows, in order to minimize total system cost. Since unceriainties exist in the system
components (expressed as grey numbers), the GIP method is considered to be a feasible approach for this type of
capacity planning problem, such that sysiem uncertainties can be effectively reflected and optimal grey solutions

(and thus ranges for decision alternatives) can be generated.

(2) GIP Modelling Formulation

In the MSW management system under consideration, grey decision variables include two categories:
continuous and binary. The continuous variables represent "municipality ---> facility" wasic flows over the time
horizon, and the binary variable's represent facility expansion options. The objective is to achieve optimal
planning of facility expansion and relevant MSW flow allocation with minimum system cost. The constraints
include all relationships between the decision variables and the waste generation/management conditions. Thus,
a GIP mudel can be formulated as follows:

3 303 3

minimize &) = ;ZI®(FLCk) B + 2 T I FTCm ®(zm) +

=2 mal k=]
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Table 4.3.1 Capacity expansion options and their costs for the landfill and WTE facilities

Time Period

k=1 k=2 k=3

Capacity expansion option for WTE facility i,i =2, 3 {t/d):

ATC,), (option 1) 100 100 100
ATC,, (option 2) 150 150 150
ATC,,, (option 3) 200 200 200

Capacity expansion option for the landfill (108 1):

&(ALC) [1.55, L.70] [1.55, 1.70] [1.55, 1.70]

Capital cost of WTE facility expansion, i = 2, 3 (8108 present value):

FTC,,, (option 1) 10.5 8.3 6.3
FTC,,, (option 2) 152 11.9 9.3
FTC,;, (option 3) 19.8 15.5 122

Capital cost of landfill expansion (3105 present value):

BFLC) (13, 15] (13, 15] [13,15]




Table 4.3.2 Waste generation, transportation costs, and facility operating costs

Time Period
k=1 k=2 k=3

Waste generation (t/d):

(WG (Municipality 1) (200, 250] [225, 275] {250, 300]

®(WG4) (Municipality 2) {350, 400] [375,425] {400, 4501

®(WG;) Municipality 3) [275, 325] (300, 350] (325, 375)
Cost of waste transportation to the Jandfill ($/t):

&(TR,) (Municipality 1) [12.1,16.1) [13.3,17.7 [14.6, 19.5]

@(TR,) (Municipality 2) [10.5, 14.0] (11.6, 15.4] {128, 16.9]

&(TR;3) (Municipality 3) [12.7,17.0] (14.0,18.7] [15.4,20.6]
Cost of waste transportation to WTE facility 1 (3/t):

®(TRyy) (Municipality 1) [9.6,12.8) [106, 14.1] [11.7, 15.5])

®(TR2,} (Municipality 2) (10.1, 13.4] [iL.1,14.7] [12.2, 16.2]

S(TR,3,) (Municipality 3) (8.8, 1L.7] [9.7. 12.81 [10.6, 14.0]
Cost of waste transportation to WTE facility 2 (3/t):

®(TRyy) (Municipality 1) [12.1,16.1] [13.3,17.7] [14.6, 19.5]

®(TR3z,) (Municipality 2) [12.8,17.1] [14.1, 18.8) [15.5,20.7]

B(TR;35) Municipality 3) [4.2, 5.6] (4.6, 6.2] [5.1,6.8]
Cost of residue transportation from the WTE Facilities to the landfill ($/t):

®(FT,,) (WTE facility 1) [4.7,6.3] (5.2, 6.9] [5.7.7.6]

®(FT,,) (WTE facility 2) (134, 17.9] f14.7, 19.7] [16.2,21.7]
Operational cost (3/t):

(0P (Landfill) [30, 45] {40, 60] (50, 80]

®(OPy) (WTE facility 1) (55,75} {60, 85] [65, 93]

@(0OP;) (WTE facility 2) (50,70 (60, 80] [63, 85]
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+ X X ZL S(Ciz) BXig)s (4.3.28)
iwi jal k=l
subject to:
3w 13 x "
T Li®kxy + X I E L®xpFE s LRALCO) &y + @LC),
ol kal =2 jel k=i k=1

k'=1,2,3, (4.3.29)
(landfill capacity constraints];

3 3 ¥
Z®(xp) < z Z ATC, , Bz + O(TC), i=2,3k'=1,2.3, (4.3.30)
j=l m=l k=l

{WTE facility capacity constraints];

3

2 ®(xip) = WG vk (4.3.31)
i=l

[waste disposal demand constraints];

R(x;p) 20, Y i,j.k, (4.3.32)
[non-negativity constraints);

By <L

20,
= integer, Yk, {4.3.33)

®Zm) <1,
=0.
=ineger,i=2,3, Vm.k (4.3.34)

[non-negativity and binary constraints];

3
Y®E.) €1, i=2.3, VK, (4.3.35)

m=]

[only one WTE facility expansion may occur in any given time period);

3

Y @) =1, (4.3.36)
ket

[tandfill expansion may only be considered once]:

where:

FE = residue flow rate from the WTE facility to the landfill (% of incoming mass to the WTE facility);

FTC,,,, = capital cost of expanding WTE facility i by option m in period k (8),i=2.3;



i = type of waste management facility, i = 1. 2, where i = 1 for the landfill, and 2 for the WTE facility;
j = name of municipality, j = 1. 2, 3 (Figure 4.3.1);

k =time period. k=1,2, 3

Ly = length of time pericd k (day);

m = name of expansion option for the WTE facilities, m = 1. 2. 3;

®(Ciﬁc) = total cost of waste managemen: for waste flow from municipality j to facility i in period k (S/t);

®(Cy) = O(TRy) + &OPy), wheni=1, V j,k,

®(Cy) ®(TR;) + &(OPy) + FE [B(FT,) + ®(OPy)) - @RE,). wheni=2,3, ¥j.k
®(FLCy) = capital cost of landfill expansion in period k ($);

®(FTy) = transportation cost for waste flow from WTE facility i to the landfill during period k ($/1), i = 2. 3
&(LC) = existing landfill capacity (t);

®(OP;) = operating cost of facility i during period k (S/t);

®(REy) = revenue from the WTE facilities during period k (S/1):

&(TC,} = existing capacity of WTE facility i (t/d), i=2. 3:

®(TRyz) = transportation cost for waste flow from municipality j to facility i during period k {8/t);

S(WGj) = waste generation rate in municipality j during period k (1/d);

®(x;x) = waste flow from municipality j to facility i during period k (t/d);

®(yi) = binary decision variable for landfiil expansion at the start of period k;

@(zimi) = binary decision variable for WTE facility i with expansion option m at the start of period k. i = 2, 3;
®(ALC) = amount of capacity expansion for the landfill (t);

ATC,,, =amount of capacity expansion option m for WTE facility i at the start of period k (1/d), i = 2, 3.

(3) GIP Solutions

Table 4.3.3 contains the solutions obtained through the GIP model. It is indicated that solutions for the
objective function value and many decision variables are grey numbers. For the grey binary variable solutions,
there are four possible presentations, including [0, 0], [1, 1], [0, 1], and {1, 0}. We note that Ay or &(z;) is 2

deterministic number if its solution is [1, 1] or [0, 0], which means that the relevant expansion scheme can or



Table 4.3.3 Solution obtained through a GIP model

Symbol Facility Expansion Period Solution
Binary decision variable:

2(yy) landfill 1 1 1
B(yq) landfill 1 2 0
B(ys) landfill 3 0
®(za11) WTE facility 1 1 1 0
@(z212) WTE facility 1 1 2 0
®(z319) WTE facility 1 1 3 0
®(2201) WTE facility 1 2 1 0
®(Za77) WTE facility 1 2 2 0
@(zyny)  WTE facility 1 2 3 0
@(za31) WTE facility 1 3 | 1
®(2219) WTE facility 1 3 2 1
®(Z233) WTE facility 1 3 3 0
@(zay) WTE facility 2 1 1 0
®(z312) WTE facility 2 1 2 ¢
®(zy3)  WTE facility 2 1 3 0
&(z321) WTE facility 2 2 13 [1.0]
@(z332) WTE facility 2 2 2 1
®(z323) WTE facility 2 2 3 0
B(z3) WTE facility 2 3 1 [0.1]
B(z332) WTE facility 2 3 2 0
@(2333) WTE facxhty 2 3 3 0

Continue to the next page

89



Table 4.3.3 (continued) Solution obtained through a GIP mode;

Symbol Facility Municipality Period Solution

Continuous decision variable (t/d):

&(xy11) Iandfill 1 1 0

®(x_u)) Iandfill 1 2 0

®(Xy113) Tandfill 1 3 0

®(xm) landfill 2 1 [263, 271]
@(x129) landfill 2 2 [51,72]
(X (4) landfill 2 3 {125, 1371
®(x31) landfiil 3 1 0

O(x132) landfiil 3 2 0

®(X]_33) landfill 3 3 0

®(xy;)  WITE facility 1 1 1 [200, 238]
B(x212) WTE facility 1 1 2 122
@(X213) WTE faci]ity 1 1 3 150
@(x3a1) WTE facility 1 2 1 87
®(Xa99) WTE facility 1 2 2 (374, 403]
®(X223) WTE facxhty 1 2 3 [350, 3631
®(X231) WIE famhty 1 3 1 0

@(X23ﬁ WIE faCilitY 1 3 2 0

®(xy33) WTE facility 1 3 3 0

®(x311) WTE facility 2 1 1 [0, 12]
@(x312) WTE facility 2 1 2 [103, 153]
®(X313) WTE facility 2 1 3 (100, 150]
®(X32!) WTIE fac1lity 2 2 1 [25,67]
®(x3)  WTE facility 2 2 2 0

®(XBB) WIE facih'ty 2 2 3 [0, 25]
@(X331) WTE facility 2 3 1 [300, 350]
®(x332) WTE facility 2 3 2 [325, 375]
®(%333) WTE facility 2 3 3 [375,425]

System Cost ($105): ®(f) = [385.8, 690.9)
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cannot be adopted with certainty. The [0, 1] solution indicates that the expansion is more suitable to the scheme
for &{f). The [1, 0] solution means that the expansion is more suitable to the scheme for &(f}, which should
correspond to a {0, 1] solution for the same facility and period with a higher expansion amount.

The results indicate that the landfill shouid be expanded at the start of period 1 (®(y,) = [1, 1]), but not
further expanded in periods 2 and 3 (®(y,) and ®(ys) are both equal to [0, 0). The amount of expansion is the
[1.55, 1.70] x 10% t level input into the model.

Figures 4.3.2 and 4.3.3 show the optimal expansion schemes for WTE facilities 1 and 2, respectively. It is
indicated that WTE facility 1 should be expanded by 200 t/d in both periods 1 and 2, and WTE facility 2 should
be expanded by [150, 200] t/d in period 1 and 150 t/d in period 2. The expansion of [150, 200] t/d in period 1
means that there are two alternatives for the expansion, where 150 t/d corresponds to &(f), and 200 t/d
corresponds to &(f). Thus, when the decision scheme tends toward &(f) under advantageous conditions, it may
be applicable to expand WTE facility 2 by 150 t/d in both periods 1 and 2; and when the scheme tends toward
() under more demanding conditions. it may be suitable to expand WTE facility 2 by 200 t/d in period 1 and
150 t/d in period 2. No expansion should be carried out in period 3 for either of the facilities since sufficient
capacity has been developed in the previous periads.

For the grey continuous variable solutions, the landfill is determined to accept only wastes from
municipality 2 due to its close proximity to the muniripality and the landfill capacity limitation, besides residues
{rom the WTE facilities. All waste flows from municipality 3 are determined to be delivered to WTE facility 2
due to its close proximity to the facility. WTE facility 2 should also accept a portion of the flows from
municipality 1. The remaining waste flows from municipalities 1 and 2 are determined to be hauled to WTE
facility 1.

Generally, less flows to the waste management facilities and less expansions of WTE facility 2 are

determined under the scheme for &(f),,, than under that for 8f),,, . The scheme for &(f),,, corresponds to a

decision option with the lower bound system cost ($385.8 x 10%) under the most advantageous system condition.
and that for E(f)nFl represents an option with the upper bound system cost {$650.9 % 10) under the most
demanding system condition. Thus. decision alternatives can be generated through adjusting/shifting decision

variables within their solution intervals according to anticipated system conditions,
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Figure 4.3.3 Solution of the expansion scheme for WTE facility 2 obtained through the GIP model



(4) A Comparison with MILP Solutions

The problem can also be solved through an MILP method by letting all grey parameters in the GIP model be

equal to their whitened mid values (WMVs). Table 4.3.4 shows the solutions obtained through a MILP model. It

is indicated that the binary variable solutions are identical to the GIP solutions corresponding to &(f),, . and. as
expected, the continuous variable solutions le within the grey intervals of the GIP solutions for ®(xj) and &(f).
Generally, only one set of deterministic solutions is generated from the MILP model, which represents a
decision option when all input grey parameters are equal to their WMVs. Although further sensitivity analyses
can be conducted, there may be a multitude of possibilities when many input parameters are uncertain, and every
sensitivity analysis run will represent only a single response to one or several parameter variations. Table 4.3.5
shows an example of the sensitivity analysis of the effect of existing landfill capacity variation on system cost
through a MILP model. Similar analyses may be conducted for other uncertain parameters. It is thus
demonstrated that the sensitivity analyses using a MILP model can only reflect the uncertain features of the
model parameters individually, rather than give a comprehensive overview that is possible from the use of the

developed GIP approach.

Table 4.3.5 Sensitivity analysis of the effect of existing landfiil capacity variation on
system cost through a MILP model

Existing Landfill Capacity (107 1) System Cost (510%)
400 546.9
500 538.6
600 532.0
700 5279
800 521.1
900 515.0
1000 509.2

4.3.5, Concluding Remarks

A grey integer programming method has been developed and applied to MSW management planning. It

improves upon existing integer programming approaches by incorporating concepts of grey systems and grey



Table 4.3.4 Solution obtained through a MILP model

Symbol Facility Expansion Period Solution
Binary decision variable:

b4 landfill 1 1 1
Y2 landfill 1 2 0
Y3 landfill 1 3 0
1 WIE faClllly i 1 1 0
Za12 WTE faﬂlh[y 1 1 2 0
Z213 WTE facility 1 1 3 0
21 WTE facility 1~ 2 1 0
Z311 WTE facﬂlty 2 1 1 0
Z312 WTE faCIIlty 2 1 2 0
Z313 WTE faClIlty 2 1 3 0
YA WTE faClllly 2 2 1 1
Zym WTE facility 2 2 2 1
Z33 WTE faClllty 2 2 3 0
2331 WTE facility2 3 1 0
Z332 WTE facxhty 2 3 2 0
Z133 WTE facility 2 3 3 0

Continue to the next page
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Table 4.3.4 (continued) Solution obtained through a MILP model

Symbel Facility Municipality Pericd Solution

Continucus decision variable (t/d):

Xin landfiil 1 1 0
X112 landfill 1 2 ¢
X113 landfill 1 3 0
Xin landfill 2 1 263
X123 landfill 2 3 137
Xy3; landfill 3 1 0
X132 landfill 3 2 0
X133 [andfill 3 3 0
Xa12 WTE facility 1 1 2 122
X213 WTE fﬂCllity i 1 3 150
X231 WIE fac:hly i 2 1 87
Xang WTE faClllty 1 2 2 391
Xa73 WTE fﬂCiliEy 1 2 3 363
Xaq WT'E facilily 1 3 1 O
X272 WTE fﬂflllty 1 3 2 0
X273 WTE fﬂ.':ﬂity 1 3 3 O
Xaqt WTE facility 2 1 1 0
X312 WTE facﬂity 2 1 2 128
%313 WTE facility 2 1 3 125
X321 WTE facduy 2 2 1 50
X372 WTE fﬂclji[y 2 2 2 0
X323 WTE facility 2 2 3 0
X331 WTE fﬂClIlty 2 3 1 325
X33 WTE f(l.Clll[y 2 3 3 400

System Cost ($109): f = 35279




decisions within an MILP optimization framework. The method allows uncertain information to be effectively
communicated into the optimization process and resulting solutions, such that feasible decision alternatives can
be generated through adjusting/shifting the decision variable values within their solution intervals according to
projected applicable conditions. The GIP method also does not lead to more complicated intermediate
submodels, and thus has lower computational requirements and is applicable to practical problems.

The modeling approach has been applied to a hypothetical planning problem of waste management facility
expansion and waste flow allocation within a MSW management system. The results indicate that reasonable
solutions have been generated for both continuous and binary decision variables. The binary variable solutions
provide the ranges of different facility expansion alternatives within a multi-period, multi-facility and multi-scale
context, and the continuous variable solutions provide optimal schemes for relevant waste flow allocation

corresponding to the facility expansions.
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4.4, GREY DYNAMIC PROGRAMMING AND ITS APPLICATION

4.4.1. Introduction

A significant number of waste management planning problems involve facility capacity considerations,
which are dependent upon a series of interrelated decisions, and the overall planning problem may be subdivided
into a series of stages and states (Loucks et al. 1981; Hillier and Lieberman 1986). Dynamic programming (DP)
may be a useful approach for solving these types of problems. Previously, there have been some applications of
the DP approach to solid waste management planning (Rao 1975; Baetz et al. 1989a and 1989b) (see Chapter 2
for more information}.

Two issues of major concern remain from the previous DP studies, which are relevant to any dynamic
programming application. First, an ordinary DP approach can only be used when all input parameters are
deterministic (Jenkins 1982). and may not be applicable when uncertainties exist for the model parameters,
Second. in terms of capacity planning issues. public sector decision makers may desire a range of alternatives
that could be considered when making long-term decisions under uncertainty, while the ordinary DP methods
may not be effective in yielding such a range,

The majority of previous methods dealing with uncertainty in DP problems relate to fuzzy dynamic
programming (FDP), and stochastic dynamic programming (SDP). The FDP methods are usually designed to
reflect tradeoffs between optimization goals and constraints (Kickert 1978), where membership functions are
used to describe how far a decision is from an ideal constraint or goal set. FDP was first proposed by Chang
(1969), Bellman and Zadeh (1970), and Esogbue and Ramesh (1970). Since then. many further developments
have been reported (Esogbue and Bellman 1981 Vira 1981: Esogbue 1986) (see Chapter 2 for more
information). The major problems with the FDP methods are that they may lead to more complicated submodels
which may be computationally difficult for practical applications. Moreover, the methods are indirect approaches
containing intermediate control variables or parameters which are difficult to determine by certain criteria. They
are unable to communicate uncertainties directly into the optimization processes and resulting solutions
(Inuiguchi et al. 1990).

The SDP methods can effectively deal with various probability-based uncertainties in decision making.
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There have been a number of approaches for formulating and solving stochastic dynamic programming (SDP)
models (Norman and White 1968; Birge 1980; Gorni 1985; Carraway et al. 1989; Kao 1978; Carraway 1989;
Zhou 1990 and 1991). Many civil enginesring applications have also been reported (Loucks 1976: Stedinger ot
al. 1984; Trezos and Yeh 1987: Foufoula-Georgiou and Kitanidis 1988; Kelman et al. 1990: Piccardi and
Soncini-Sessa 1991; Karamouz and Vasiliadis 1992) (see Chapter 2 for more information). However, the major
problem with the SDP methods is that, aithough they can incorporate more uncertain information {probability
distributions) within the optimization frameworks, the increased data requirements (thus computational
requirements} for specifying the probability distributions of model parameters may create difficulties in their
applications (Wagner 1975; Marti 1990).

One potential approach for mitigating the above problems is through the introduction of the concepts of
grey systems and grey decisions into a DP framework, which leads to a grey dynamic programming (GDP)
formulation (Huang et al. 1993d). The GDP method allows uncertain information (presented as grey numbers) to
be directly communicated into the optimization process and resulting solutions without encountering lhe
potential problems associated with the FDP and SDP approaches. It also does not lead to more complicated
intermediate submodels, and thus has lower computational requirements.

In this section, a GDP formulation and its solution algorithm wiil be proposed and then applied to a
hypothetical capacity planning probiem for a MSW management system. Grey solutions for capacity expansion
of waste management facilities and relevant waste flow allocation will be interpreted and analyzed 1o

demonstrate the potential applicability of the developed methodology (Huang et al. 1993d).

4.4.2. Formulation of the GDP Modelling Approach

In dynamic optimization analyses of capacity planning problems, the stages in an optimization framework
typically correspond to the units of time into which the planning horizon period is divided. The state variables
describe the system state at each stage, and generally involve some aspects of system capacity. For the waste
management planning problems considered here, the system state may be defined as a two-dimensional array:
incineration capacity and landfill capacity. The decision variabies relate to the capacity expansion of both types

of facilities and the utilization of the facilities in different stages. The decisions made at a stage will directly



influence the capacity level of each facility at the beginning of the next stage. Therefore. the levels of the state
variables at the end of any stage depend solely on the entering state variable values and the decisions made at

that stage, and are independent of decisions made at the previous stages.

Remark 4.4.1. A forward recursion GDP model will be developed for this capacity planning problems, based on
the fact that a backward recursion approach could potentially lead to significant landfill capacity roundoff error
(the GDP approach would also be equally applicable to backward recursion problems for other applications), and
that a large amount of information for the waste management sysiem may be uncertain and presented as grey
intervals. The solution process for a backward recursion DP method would proceed from the erd of the time
horizon and move toward the start, and may require an estimation of the remaining landfill capacity at the start of
each stage (since the landfill is a "consumable capacity facility", where satisfaction of waste disposal demand
through utilization of the landfill will consume a portion of the landfill capacity), which may lead to roundoff
errors due to the inaccuracy of estimation. In comparison, the solution process for a forward recursion GDP
model would proceed from the start of the time horizon to the end. Because of the recursion direction. the
rounded landfill capacity volume can be associated with the transformed state space. and the specific roundoff
can then be accounted for in the solution process for the next stage. In this way, landfill capacity roundoff can be
carried along in the solution process and the modelled landfill utilization will be more representative because of

the improved accuracy for the remaining landfill capacity value at the start of each stage.

Definition 4.4.1. Denoting @(f, [&(s,)]} as a grey minirum cumulative cost (inflated to the end of period k) for

periods 1 to k. the final objective is to find the minimom @{fy[®(s))]} that traces back to the existing facility

capacity levels art the start of the time horizon. Thus, a forward recursion GDP model can be formulated as
follows (Huang et al. 1993d):
B{f[B(sp)1) =0, (4.4.1)

O{fi @, DIt = Min { ®lg, (8. B, )1/B + S{EIBEIIB }, k=0, L.....N-1,
®(ybl)
(¢.4.2)
where:
®(sy,) = ending grey state variable. ®(sy, ) = &[T, ;[®(s) ®(yy, D1}, where ®{T,,,} is a state

transformation function;

99



@(¥y.) = grey decision variable:
®{ g+ 1[®(sy). B(¥y, 1)1} = function value for stage k+1 when the decision variable is ®(y, ) and the
starting state variable is &(s,) (&(s,) = ending state of period k);

B = single period discount factor, § = 1/(1 + i) = (P/F. 1 period. i).

Remark 4.4.2. For the MSW management planning problem considered here, ®¢{f,,,[®(s,,,)]} can be
represented as ®{f, , [R(LC,,,), ®UC, )1}, with &(LC,,,} units of landfill capacity and ®(IC,,,} units of
incineration capacity at the end of period k+1; @{g,,, [®(s,}. ®(y,, )]} can be divided into two parts: the capital
costs for expanding the landfill and the incineration facilities at the start of period k+1, ®{p,.,[®(ALC,, ).
&(AIC,, D11, and the optimal operating cost for facility utilization under each expansion option, ®{h,,,[®TC)
+ ®(ALC,,,) - ®(DL, ), ®(IC,) + S(AIC, )] }opt» Where ®(ALC, ) and ®(AIC, ) are the decision variables
for landfill and incineration capacity expansions at the start of period k+1, respectively, and @(Dl,,,) represents
the consumption of the landfill capacity in period k+1 (satisfaction of waste disposal demand through ulilization

of the landfill will consume a portion of the landfill capacity). Thus, model (4.4.1} and (4.4.2) can be specifically

developed for capacity expansion planning problems in a MSW management system as follows.
The initial condition is:
B{f,[®(1C,). BICY]) =0, (4.4.3)

where @(L.C,) is existing landfill capacity, and ®(IC,} is existing incineration capacity, In general, fork = 0. 1,
..., N-1, we have;

B{f [®LC,), BUAC,, ]} = Min ({®{p,,[®ALC,, ). ®(AIC,, )1I/B +
®(ALC,, ). BQIC,, )

+ ®{h  [®LCY + &ALC,, ) - &(DIL,,), ®IC,) + B(AIC,, )1 bope /B +

+ B{fI®LC,). ®ACIH1I/B}. (4.4.4)

Remark 4.4.3, The optimal facility utilization schemes under different expansion options are dependent upon
available facility capacities and specific system conditions at each of the stages, and will be typically obtainable
by solving embedded linear programming problems. Thus, to reflect the effects of uncertainties, the grey linear

programming (GLP) method (Section 4.1) could be utilized to determine the optimal facility utilization scheme
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(i.c.. optimal "municipality ---> facility” waste flow allocation, ®(xj)opt. ¥ j), and relevant waste
transportation/treatment cost ® {hy,; [®(s,). ®(¥,,,)1},,, for each expansion option at a given stage. Thus. for a
set of given decision variables ®(y,,,) and incoming state variables ®(s,) for period k+1, ®{h,,, [®(s,}.
®(Yyo1))}op Will be dependent upon the particular stage, state and decision variables. Letting @ {h,,,[®(s,).

(¥, )]} = ®(h) for the purpose of simplification, we have ®(h),,, = min ®(h) subject to the following

opt
embedded GLP model:

min B(h} = @(C) 8(X) (4.4.5)

s.t ®(A) @(X) £ ®(B) (4.4.6)

®X)20, 4.4.7)

where ®(A) e ®R)™*", @(B) € ®R)™*!, ®(C) e SR)'*", and B(X) = (B(x) | YilTe @R (@R)

denotes a set of grey numbers).

4.4.3, Method of Solution
(1) Solution of the Embedded GLP Model

According to Theorem 4.1.1, GLP model (4.4.5) to (4.4.7) can have grey solutions, which are composed of

grey numbers, as follows:

OX) o = (B(X)ope | f= 1.2, 1}, 4.4.8)
O(Xopr = [ B+ BX)pede 75, (4.4.9)
B (Mo = [B(N) e » B(h),,, ] (4.4.10)

Remark 4.4.4. In this MSW management planning application, the embedded GLP model can be used to
determine an optimal facility utilization scheme and relevant MSW transportation/treatment costs for each

expansion option in each time period.

(2) Solutign of the GDP Model

The function value ®{g,,,[®(s,). ®(y,,)]} in GDP model (4.4.1} and (4.4.2) can be specified as follows:

B2 [0 By, )]t = B{hy 1 {®(5). By hop + BlPkni[®(s), By ) V¥ k+1l. (44.1D)
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For a given set of decision variables &(y,,,) and starting state variables ®(s, ) for period k+1, @{h,,[®(s,).
B )]} op and &{py, [B(S,). B(¥y,1)]} are dependent upon the particular stage, state and set of decision
variables. This is based on the following facts: (i} different stages may have different costs for waste
management facility expansion/utilization: (ii) different states for a given stage represent different landfill and
WITE facility capacities at the start of the stage (initial waste management conditions), which correspond to
different decision options for facility expansion/utilization leading to different system costs; (iii) different sets of

decision variable values mean different facility expansion options, and thus different capital costs.

Remark 4.4.5. For the purpose of simplification, we let ®1{2,1(8(s). (¥, )1} = B(g). ®{h,[®(s)).
(ko)1) op = ®(h), and B{p,,,(&(s,). B(y,, )]} = @(p), where (h) can be obtained from the solutions of the

embedded GLP model, and ®(p} can be determined according to the following theorem.

Theorem 4.4.1. As funcdons of &(s,) and ®(y,,,), the upper and lower bounds of ®(p) can be determined as

follows: for u grey coefficients ®(d)) j=1.2. ..., u) for ®(s,). if u, of them are positive, and u, are negative,
let the former u, coefficients be reordered such that ®@d)=20(=12..., u,), and the latter u, coefficicnts be
reordered such that ®(i) <0 (j=u+1,u+2, ..., u); similarly, for v grey coefficients ®)(=1.2..... v) for

®(¥y.1)» if v, of them are positive, and v, are negative, let the former v, coefficients be reordered such that ®(e)
20(G=1,2,...,v), and the latter v, coefficients be reordered such that ®(e;) <0 (= v, +1,v;+2, ..., v).

Thus, we can develop the following expressions for &(p) and &(p):

4, u v, v
B(p) = 21 BA)B(s) + 2 BERAs) + 21 Be)Bly) + T Be) &y).
J= J:

Fu+l jav i+l
(4.4.12)
i u v, v
2(p) =3, d)RAs) + X DN B(s) + X DAepRAyp + X 2Ae) By
j=1 =l )=l j=v i+l (44 1)

Proof. Since

B(p) = max { 5 [®(d) ) +®(e) 8(y) ! B(5)20.8(y)20 ),  (4.4.14)
=l

We can convert it to:

Bp) = max { I ®() 8} max { 3 ®@)8(s)) +

+
j=1 jBU=+1
+ max { Z () ®ypl + max { X ®(e)B(y) ). (4.4.15)

=t jmvy ¥l



Forj=1,2....,u, in Z,®(d) &(s),

max { L @)&(s) } = I HdHB(s) (4.4.16)

=1 =i
holds since ®(d)) = 0. For j=m+lous2, ., u, we know ®(d;) < 0. By Definition 3.1.8 letting ®(dj’) =-®(dy},
we have ®(d) = [ 2(d), B(d)] = -[-8(d), -(d)] = - ®(d)) = - [R(d). B(d;)], ®(d;) 2 0. Therefore:
max { T®(d)S(s)}= max{ X-&(d) ;) }
jmuy+l j=ay+l
= LiedNs) = I B@)a(s). (4.4.17)
oy +L =+l

Similarly, forj= 1,2, ..., v, in X &) &),

max { L @)y ] = I B(e)BHy) : (4.4.18)

j=1 =i
holds since ®(ej) 20.Forj=v+1,v+2,...,v, we know ®(ej) < 0. By Definition 3.1.8, letting @(ej') =- ®(ej),
we have ®(e) = [R(c). B(e)] = -[- Ble). - R(e)] = - 8(e)) = - [ &(¢,). Ble))], ®(e)) 2 0. Therefore:

max { X ®(Bj) ®(Yj) }=max{ X- ®(3j‘) ®(}’j) }

javy+l j=v ¥l
= ZIRAHIRAY) = I Be)R(y). (4.4.19)
Juvyl e+l

Thus, we have proven (4.4.12). In a similar way, (4.4.13) can also be proven. d

Remark 4.4.6. For the waste management planning problem considered here. ®(p) represents the capital costs of
facility expansion:

®(p) = ®{py,. [BALC,, ). BQAIC,, )]} = &(CLL,,, ) + &(CIC,,; ), (4.4.20)
where ®(CLC,,, ) is the capital cost of landfill expansion r in period k+1; ®(CIC,,, ,) is the capital cost of
WTE fucility expansion s in period k+1. All elements in equation (4.4.20) are positive.

According to Definition 3.1.8. we have: &(g) = &(h) + (p). B(g) = B(h) + S(p). Hence:

O, [, 1) = [ R, [®(s )1}, Bf, (B, )1} ), (4.4.21)

B{fe (@)} =
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= Min { Btg,,,[®(). By, )11/ + BIEOENIB Y k=0. 1..... N-1, (4.4.22
(Y.
D(fis 1 (@5, )} =
= Min {®(g,, [®(s,). (3, )1 + RE[SGIINB) k=0. I,... N-1, (4.4.23)
&(y,,)

Remark 4.4.7. The upper and lower bounds of the cumulative system cost ®{ . [®(s)]} for period k (k= 1,2,

..., N) can be obtained from the above calculations, We can then trace back fromk = N o k = 1 to determine
the optimal route corresponding to the upper and lower bounds of system cost for the entire time horizon. The
optimal route for k = N corresponds to the minimum @ {f[®(sy)]} value, which is connected to a set of possible
routes in period k = N-1. Then the optimal route for period k = N-1 corresponds to the minimum
®{f.1 [&(sx.1)]} among the routes connected to the optimal ®{ f[®(s)]1}, and so on. Thus, the optimal route for
the entire time horizon can be determined through the connection of the optimal sub-routes for periods | to N,

and the optimal waste flow allocation patterns in the periods are thus subject to the decisions made and state

variables obtained through the optimal sub-routes.

(3) Interpretation of the GDP Solutions
The GDP approach will generate solutions for the decision variables and the relevant objective function
value as grey numbers. The decision variables include two categories: continuous and discrete. The continuous

variable solutions ®(xj)c,pt (facility utilization schemes obtained from the embedded GLP model) can be directly

applied to decision making, with the values potentially being adjusted within their solution intervals for

generating decision alternatives. The discrete variable solutions ®(y, ), {capacily expansion schemes obtained

DPI
from the general GDP model) provide facility expansion altematives within a multi-period. multi-facility, and
multi-scale context corresponding to minimum system cost. Thus, the optimal facHity expansion scheme for the

entire time horizon can be obtained through connecting the discrete variable solutions for all stages.

4.4.4. Application to Municipal Solid Waste Management Planning
(1) Qverview of the Hvpothetical Problem

A hypothetical problem is developed to illustrate the GDP modelling approach based upon representative
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cost and technical data from the solid waste management literature. The study region is assumed to include three
municipalities, as shown in Figure 4.4.1. Three time periods are considered (each has an interval of five years).
At the beginning of the time horizon, an existing landfill and a waste-to-energy (WTE) facility are available to
serve the region's solid waste disposal needs. The landfill has an existing capacity of [0.75, 0.95] x 10 t, and the
WTE facility has a capacity of [480, 560] t/d. The WTE facility generates residues of approximately 30% (on a
mass basis) of the incoming waste streams, and its revenue from energy sale is approximately [38, 42] 3/t
combusted.

Over the 15 year planning horizon, the landfill can be expanded once by an increment of [1.70, 1.90] x 106 ¢;
and the WTE facility can be expanded by one of three options in each of the three time periods (see Table 4.4.1
for detailed information) with a maximum expansion limit of 420 t/d. Table 4.4.1 also shows the capital costs of
the capacity expansions for the two facilities, which are expressed in terms of present value dollars, with the
costs being escalated to reflect anticipated conditions and then discounted to generate present value cost terms
for the objective function.

Table 4.4.2 contains waste generation values for the three municipalities, operating costs of the two
facilities, and transportation costs for the waste flows between municipalities and facilities in the three time
periods. It is indicated that the MSW gcneration rates and the costs for waste transportation/treatment vary
temporally and spatially. Therefore, the problems under consideration-are how to select preferred capacity
expansion schemes for the facilities during different time periods and how to effectively allocate the relevant
waste flows, in order 10 minimize total system cost. Since uncertainties exist in the input system components
(expressed as grey numbers), the GDP method is considered to be a feasible approach for this type of capacity
planning problem, such that system uncertainties can be effectively reflected and optimal grey solutions (and

thus ranges for decision alternatives) can be generated.

(2) GDP Modelling Formulation

In the waste management sysiem under consideration, the municipalities may utilize the landfill and WTE
facility to meet their overall demand for waste disposal. The grey state variables are defined as a discretized two-

dimensional array including the landfill and WTE facility capacities at the start of each time period before
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Figure 4.4.1 Hypothetical study municipalities and waste management facilitics
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Table 4.4.1 Capacity expansion options and their costs for the landfill and WTE facility

k=1 k=2 k=3

Capacity expansion options for waste management facilities:

WTE facility (d):  AIC,, 0 0 0
AIC,, 140 140 140
AIC,, 280 280 280
AIC, , 420 420 420

landfill (106 t): ®(ALC,,) 0 0 it
S(ALC,) [1.70, 1.90] [1.70, 1.90] {1.70, 1.90]

Capital costs of waste management facility expansions ($10° present value):

WTE facility: FIC,, 0 0 0
FIC, 17.8 13.9 10.9
FTC,, 34.6 27.1 212
FTC,, 51.4 40.3 316

landfill: ®(FLCk1) 0 0 0
QFLCyo) (13, 15] [13, 15] {13, 15]

Table 4.4.2 Waste generation, transportation costs, and facility operating costs

k=1 k=2 k=3

Waste generation (t/d):

®(WGy,) (Municipality 1) (200, 250] [225, 275) {250, 300}

S(WGy) (Municipality 2) (350, 400] [375, 425) [400, 450]

®(WG;) (Municipality 3) (275, 325] (300, 350] [325, 3751
Cost of waste transportation to the landfiil (S/t):

®(TRy) (Municipality 1) (12.1, 16.1} [13.3, 17.7] (14.6, 19.5]

®(TR|~y) (Municipality 2) (10.5, 14.0] [11.6, 15.4] [12.8, 16.9]

®(TR|%) (Municipality 3) {12.7, 17.0) {14.0, 18.7] [15.4,20.6]
Cost of waste transportation to the WTE facility (8/t):

@(TR1y) Municipality 1) [12.1, 16.1) (133, 17.7 [14.6, 19.5]

®(TRan) (Municipality 2) [12.8,17.1] [14.1, 18.8] [15.5, 20.7]

®(TR2y) (Municipality 3) [4.2,5.6] (4.6, 6.2] (5.1,6.8]
Cost of residue transportation from the WTE facility to the landfill ($/t):

®FT,) (13.4,17.9] [14.7,19.7] [16.2,21.7]
Operating cost (/t):

®(OPy) (Landfill) [30,45] {40, 60} (50, 80]

®(OPyy) (WTE facility) [50, 701 (60, 80] {65, 85]




any facility expansions have occurred (their in-place capacities at time zero are known in this problem). The grey
decision variables include binary and continuous variables which represent facility expansion options over time
and relevant "municipality --> facility" waste flows, respectively, The grey decision variable solutions for a time
period will directly influence the capacity level of each facility at the beginning of the next time period.
Therefore, the grey state variable levels at the end of any time period depend solely on the entering grey state
variable and the decisions made in that period. and are independent of decisions made in the previous periods.
The objective is to minimize total system cost, and the constraints include all of the relationships between the
state/decision variables and the waste generation/management conditions. Thus. a forward recursion GDP model
can be formulated as follows.

Assuming that the planning time horizon includes N periods, we can denote @ Henl®LC,, ). ®1C, 1) as
a minimum cumulative cost (inflated to the end of period k+1) for periods l tok+1 (k=0.1,...,N-1), with
®(LC,,,) units of landfill capacity and @(IC,,,) units of incineration capacity at the start of period k+1.
Consequently, the general objective is to find solutions with minimum @ [@(LCy). ®(IC)1}, which
correspond to an optimal expansion policy based on the starting landfill and incineration capacity levels and the
optimal waste flow allocation patterns for different time periods. Thus we have the following.

The initial condition is:

®{f,(®LCy), SUCH]} =0. (4.4.24)

Fork=190,1, 2, we have:

®{£.[®LC,.). 8UC, I = Min (@(p,,[@(8LC,,, ). BAIC, , NI/B +
BALC, ,) ) BQIC,,; )

K+l

+ ®{]'lk+1[®(TLCk+l, r)’ ®(T1Ck+l, s)] }opl /B +

+ @ I®LC). ®UCYN/BY, k=0.1,... . N-Lir=1,25=1,2.3,4,  (4.4.25)
®(TLC,,, )= ®LC) + ®ALC,,, )-®(DL,,,), (4.4,26)
®(TIC,, )= ®(C) + ®(AIC,,, ), (4.4.27)
®(IC,) + ®(AIC, ) S IC,, . (4.4.28)

®(ALC,,, )20, (4.4.29)
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®(AIC,,, ) =0, (4.4.30)

where:

[Conax = maximum level of incineration capacity;

k = name of time period, k=0, 1, 2;

N = number of time period under consideration, N = 3;

r = name of capacity expansion option for the landfill,r= 1, 2;

§ = name o4 capacity expansion option for the WTE facility, s= 1, 2, 3, 4;

®@(Dl,,,) = direct and indirect consumption of the landfill capacity in period k+1:

B, [®LC,, ). ®IC,, )]} = cumulative system cost (inflated to the end of period k+1) for periads 1 to k+1:

®{h,,[®(TLC,,;, ). &(TIC,,; 1,y = solution of operating cost under a given expansion scheme (r, s) in
period k+1 obtained through an embedded GLP model;

®&(IC,,,) = incineration capacity at the end of period k+1 (state variable);

&(LC,,,) = landfill capacity at the end of period k+1 (state variable};

®{p,. [8ALC,,, ), @AIC,,, )1} = total capital cost of the landfill and WTE facility expansions at the
start of period k+1, ®(p,, ) = ®(CLC ) + &(CIC,,, ;). where:
@(CICy,,, ;) = capital cost of expanding the WTE facility by option s in period k+1, and
®(CLCy,1,,) = capital cost of expanding the landfill by option r in period k+1;

®(AlIC,,,, ;) = amount of capacity expansion (option s) for the WTE facility at the start of period k+1
(decision variable);

®(ALC,,, ) = amount of capacity expansion (option r) for the landfill at the start of period k+1 (decision
variable),

An embedded GLP model is utilized to determine (i) the optimal operating cost @ {he  [®(TLC,,, .

@(TIC,, , Nl » which is dependent upon the particular stage, and the relevant decision variables ®(LC,,, )

and ®(AIC, |, ) and state variables B(LC,) and &(C,), and (ii) the relevant facility utilization schemes [®(xj). v
)1 for each expansion option at each stage. Thus. for the purpose of simplification, letting:

B {0, [@(TLC,,, ). &(TIC,,; I} =&(M)., V krs. 4.4.31)
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we have ®(h)oPt = min &(h) subject to the following embedded GLP model:

2 3
minimize @(h) = _Zil 'z[ L'k®(ci.j.k+l) ®(x‘i.j.k+1)r v kv L 8, (4‘4‘32)
iml
subject to:
3
Lk p [®(x1.j, k+l) + @(Xz‘j'k.,.])FE] < ®(LCk)+ @(ALC.‘H r)' Y k,r, (4.4.33)
=l '
(landfill capacity constraints];
3
28 (xy ) S OUCY+ @QAIC,,; ) Vks, (4.4.34)
jal
{WTE facility capacity constraints];
2 .
_21®(Xi,j,k+1) =@WGjx1) V. k, : (4.4.35)

[waste disposal demand constraints];

Ox,;e)20, YV LLk (4.4.36)
[non-negativity constraints];

where:

i = type of waste management facility, i= 1, 2, where i = 1 for the landfill, and 2 for the WTE facility;

J = municipality, j= 1, 2, 3 (Figure 4.4.1);

FE = residue flow rate from the WTE facility to the landfill (% of incoming mass to the WTE facility);

Ly = length of time period k (day);

(T, j, k1) = total cost of waste management for waste flow from municipality j to facility i during period
k+1 (S/t):

O(Ci,j,ks1) = B(TRy 5, 141) + ®(OP; 50), wWheni=1,Vj k%,

B(Ci jxs1) = TRy j, k1) + B(OP; p,1) + FE [®(FTyyy) + S(OP 10)] - ®RE,;), wheni=2,Vj k;
®(FT.,) = transportation cost for residue flow from the WTE facility to the landfill during period k+1 ($/t);
®(OP; .1) = operating cost of facility i during period k+1 ($/t):
®(REy.) = revenue from the WTE facility during period k+1 ($/t):

@(TR;, ; «+1) = transportation cost for waste flow from municipality j to facility i during period k+1 (3/t);

@(WG;,xs1) = waste generation rate in municipality j during period k+1 (/d);



(x; k1) = waste flow from manicipality j to facility i during period k+1 (¢d).

For use by the GDP solution process, the foilowing is returned from the GLP solution:

1
®(DI,,) = L, Z (@ k) + &(x3, ;1) FE ], Y k. 4.4.37)
jal
In addition, @ (h}op = L Zi Zj ®(C, 5 1) ®(x; 5, keldopt» V X, T, 5, are the solutions of optimal waste
Lransportation/treatment costs under different expansion options (different r and s values) in different time periods

(different k values), and are also returned to the GDP solution process.

(3) GDP Solutions

(3A) Solution process

Figure 4.4.2 shows the solution process for the GDP modet. It is indicated that, for each stage, embedded
GLP models should be first formulated and solved to provide optimal waste transportation/treatment costs under
different facility expansion options. Then optimal facility expansion/utilization schemes for the stage can be
determined. After all expansion/utilization schemes have been determined for the three stages, we can then trace
back from stage 3 to stage 1 to obtain the optimal route of facility expansion for the entire time horizon and the
relevant system cost. Table 3 shows a detailed forward recursion calculation process for solving the GDP model.
It is indicated that potential subroutes for facility expansion should be considered for each stage, and the optimal

route for the entire time horizon is the one with the lowest cumulative system cost.

(38) Eacility expansion

The GDP solutions indicate that the landfill should be expanded at the start of period 1 by an amount of
[1.70, 1.90] x 105 t capacity, which corresponds to a minimum system cost of ${191.6, 407.9] x 105, As a
comparison, the system cost is 5{191.9. 412.4] x 106 if the landfill is expanded at the start of period 2, and it is
infeasible to expand the landfill at the start of period 3 because the existing landfill capacity is not sufficient for
disposing of even residues from the WTE facility in periods 1 and 2.

Table 4.4.3 and Figure 4.4.3 show the GDP solutions for optimal WTE facility expansions when the landfi]l
is expanded at the start of perioid 1. It is indicated that the WTE facility should be expanded by an amount of 280
t/d at the start of period 2. and (0. 140] t/d at the start of period 3. Thus, when the decision scheme tends toward

R(f) under advantageous system conditions, it may be applicable to expand the WTE facility only by 280 t/d at
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Grey inputs (waste disposal demand constraints,
facility capacity constraints, expansion options)

existing facility capacity ®(LCo), ®(1Co)

{

embedded GLP models corresponding

™1 | to different facility expansion options

optimal facility expansion
& utilization schemes

Y

remaining landfill capacity @(LC1) = ®(LCo) + S(ALC1) - ®(DLI1)
existing WTE facility capacity ®(IC1) = ®(ICo) + S(AIC1)

¥

embedded GLP models corresponding

to different facility expansion options

optimal facility expansion
& utilization schemes

'

remaining landfill capacity ®(LC2) = ®(LC1) + ®(ALC2) - ®(DL2)
existing WTE facility capacity ®(ICz) = ®(IC1) + Q(AIC2)
¥

embedded GLP models corresponding

to different facility expansion options

optimal facility expansion
& utilization schemes

'

remaining landfill capacity ®(LC3) = ®(LC2) + (ALCs) - ®(DL3)
existing WTE facility capacity ®(IC3) = ®(IC2) + ®(AIC3)

trace back from stage 3 to stage 1 to
determine optimal route and system
cost for the entire time horizon

Stage 1

Stage 2

Stage 3

1

grey outputs (optimal facility expansion scheme,
and optimal waste flow allocation pattern)

Figure 4.4.2 Solution process for the GDP model
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Figure 4.4.3 Solutions for optimal WTE facility expansion obtained through the GDP model



the start of period 2 (Route 1.1 - 2.6 - 3.4 (Table 4.4.33)); and when the decision scheme tends toward )
under more demanding system conditions, it may be applicable to expand the WTE facility by 280 v/d at the start

of period 2 and a further 140 t/d at the start of period 3 (Route 1.1 - 2.6 - 3.8 (Table 4.4.3b));

(3C) Waste flow allocation

Table 4.4.4 contains the solutions of waste flow allocation corresponding to the optimal facility expansion
route during the three periods, which are obtained through the embedded GLP models. The results indicate that
the landfill should accept most of the direct-haul MSW from municipality 2 because the municipality is located
closest to the facility. The "municipality 2 --> landfill" waste flows were determined to be 350. 150, and 225 yd
for periods 1, 2, and 3, respectively, corresponding to &(h) (lower bound solutions for Route L1-2.6-34) and
400, 200, and 135 t/d for periods 1, 2, and 3, respectively, corresponding to 8(h) (upper bound solutions for
Route 1.1 - 2.6 - 3.8). Municipality 1 should only consumz a very small amount of landfill capacity, and
municipality 3 should not directly use the landfill. as they have tonger haul distances to the landfill. The results
demonstrate that the majority of the landfill capacity is planned for accepting residues from the WTE facility.

The solutions for waste flows to the WTE facility indicate that municipalitics 1 and 3 should utilize the
majority of the facility capacity. The waste flows from municipality 1 were determined to be [200, 235], [225,
265], and [250, 290] t/d for periods 1, 2, and 3, respectively, where the lower bound values correspond to the
lower bound solutions for Route 1.1 - 2.6 - 3.4, and the upper bound values correspond to the upper bound
solutions for Route 1.1 - 2.6 - 3.8, The waste flows from municipality 3 were determined to be [275, 325], [300,
3501, and [325, 375] t/d for periods 1, 2, and 3, respectively. In comparison, the flows from municipality 2 were
determined to be 0, 225, and [175, 315] d for periods 1, 2, and 3, respectively. Municipality 3 should transport
all its MSW to the WTE facility because of its closest proximity to the facility. The results demonstrate that
variations of waste generation/management conditions with time may lead to relevant changes in the optimal
waste flow allocation patterns.

In terms of the differences between system costs for subroutes 3.4 and 3.8 in Table 4.4.4, it is known that i)
the cost values in Table 4.4.4 only represent waste transportation/treatment costs, rather than total cumulative

cost (i.e. capital costs for facility expansion are not included); and (ii} subroute 3.4 is an option with no WTE
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Table 4.4.4  Solutions of waste flow allocation obtained through a GDP model *

117

Route Symbol Facility Municipality  Period Solution
Decision variable (t/d):

11 ®(x111) landfill 1 1 (0, 15]
®(x121) landfill 2 I {350, 40G3
®(x131) landfill 3 1 0
®(x211) WTE facility 1 1 {200, 235]
B(x221) WTE facility 2 1 0
®{x231) WTE facility 3 1 [275, 325]
System Cost ($105): ®(h) = [36.3,83.8]
Decision variable (t/d):

2.6 ®(X112) landfill 1 2 [0, 10]
S(x122) Tandfill 2 2 [150, 200]
®(x132) landfill 3 2 0
®(x212) WTE facility 1 2 (225, 265]
®(x292) WTE facility 2 2 225
®(x212) WTE facility 3 2 {300, 350]
System Cost (3105); ®h) = [53.1,116.8)
Decision variable (t/d):

3.4 ®(x113) landfill 1 3 [0.10]
®(x123) landfill 2 3 {225, 275}
®(x;33) landfill 3 3 0
®(x213) WTE facility 1 3 [250,290]
B(x223) WTE facility 2 3 175
B{x713) WTE facility 3 3 [325, 375]
System Cost ($106); ®h) = {62.1,154.4]
Decision variable (t/d):

3.8 ®(x113) - landfill 1 3 [0, 107
®(x123) landfill 2 3 (85, 135]
®(x133) landfill 3 3 0
®(x213) WTE facility 1 3 [250,290]
®(x13) WTE facility 2 3 315
®(x233) WTE facility 3 3 (325,375]
System Cost ($106): ®(h) = [59.3,154.3]

*

The lower bounds of @(x;jk) solutions for route 1.1-2.6- 3.4 correspond to the lower bound of total

system cost, and the upper bounds of &(xjjk) solutions for route 1.1-2.6-3.8 correspond to the upper
bound of tots] system cost.



facility expansion in period 3. while subroute 3.8 relates to expanding the WTE facility by a capacity of 140 t/d
at the start of period 3. Therefore, the waste transpontation/treatment cost for subroute 3.8 ($[59.3. 154.3] x 10%
would be lower than that for subroute 3.4 (S[62.1, 154.4] x 10°) because the former has more choices of waste
management facilities,

For the solutions corresponding to €(f), however, when the capital costs of facility expansions are included.
the &(f) value for route 1.1 - 2.6 - 3.4 (3191.6 x 10°) becomes lower than that for route L1 - 2.6-3.8(5199.7 x
10%) due to the difference in the capital cost for expanding the WTE facility at the start of period 3 (0 for
subroute 3.4 and $10.9 x 10° for subroute 3.8). Therefore. the optimal route corresponding to &(f) is 1.1 - 2.6 -
3.4. For the solutions corresponding to &Xf), subroute 3.4 is infeasible due to the insufficient facility capacities
(from the landfill and WTE facility) for disposing of the wastes generated in period 3. Therefore, the optimal

route corresponding to &(f) is 1.1- 2.6 - 3.8.

(3D) Salvage of the remaining landfill capacity and glternative decision schemes

The results in Table 4.4.3 can also be utilized for generating altermative decision schemes. Since a varicty of
landfilk capacities remain at the end of the planning horizon corresponding 1o different WTE facility expansion
schemes, it may be of significance to consider the effects of the salvage value of the remaining landfill capacity
on the general system cost, which may lead to alternative decision schemes. First, we give the following

definition of landfill salvage index.

Definition 4.4.2. Denoting LS, as a landfill salvage index for expansion route i, we have:
LSE; = (£; - f,p)/(R; - Rego), (4.4.38)

where f,,, is the minimum system cost (S). £, is the system cost corresponding to route i (3), R, is the remaining
landfill capacity corresponding to the minimum system cost (1), and R; is the remaining landfill capacity
corresponding to route i (1).

A decision-maker may be able to quantify the perceived value of a unit of landfill capacity. If this value is
lower than the LST;, the original optimal solution would probably be considered the preferred choice; when this
value is higher than LSI; , it may mean that route i provides a better expansion scheme than the original optimal

solution. The results from Table 4.4.3 indicate that the alternative decision schemes for 2(f) are as follows:
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when the decision-maker's landfill value is higher than 21.0 $/t, expanding the WTE facility by 420 t/d at the
start of period 2 (Altemnative 1) may be a better choice than the original optimal route; when the decision-maker's
landfill value is higher than 45.3 $/t, expanding the WTE facility by 280 and 140 t/d at the starts of periods 2 and
3, respectively (Alternative 2), may be another reasonable alternative in addition to Alternative 1.

There is only one potential alternative for &(f) (expanding the WTE facility by 420 t/d at the start of period
2) in addition to the original optimal route, which would possibly be preferred when the decision-maker’s landfiit

value is higher than 11.7 $/t.

(3E} Summary

The GDP model was solved through the iterative calculations for optimal facility expansion route over the
entire time horizon and the optimization analyses of relevant waste flow allocation pattems for each period. The
results indicate that, through the proposed solution algorithms, uncertain information can be effectively
communicated into the GDP optimization processes and resulting solutions, Therefore, the GDP approach can
better reflect the effects of uncertainties than sensitivity analyses or best-worst case analyses based on ordinary
DP approaches. Thus, decision alternatives can be generated by adjusting/shifting the decision variable values
within their grey solution intervals according to projected planning situations, which are flexible in reflecting all
possible system condition variations caused by the existence of the input uncertainties. This GDP solution feature
may be favored by decision makers because of the increased flexibility and applicability for determining the final
decision schemes. Generally, lower decision variable values within their solution intervals should be used to
obtain lower system cost under advantageous conditions, and higher decision variable values should be used

under more demanding system conditions,

(4) A Comparison with Ordinary Dvnamic Programming Solutiong

The problem can also be solved through an ordinary dynamic programming (DP) model by letting all grey
parameters in the GDP model be equal to their whitened mid-values. The resuits indicate that the DP solutions
for landfill expansion are identical to the GDP soluiions, and those for WTE facility expansion are identcal to

the GDP solutions for &(f),,, (see Table 4.4.5 for the DP solutions of optimal WTE facility expansion).

In terms of the DP solutions for waste flow allocation (Table 4.4.6), it is indicated that, as expected, they all
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Table 4.4.6 Solutions of waste flow allocation obtained through an ordinary dynamic programming model

Symbol Facility Municipality Period Solution
Decision variable {t/d):

X1 landfill 1 1 5

X121 landfill 2 1 375
X131 landfill 3 1 0

X211 WTE facility 1 1 220
X221 WTE facility 2 i 0

X231 WTE facility 3 1 300
System Cost ($106): h = 584

Decision variable (t/d):

X112 landfill i 2 0
X122 landfili 2 2 175
X132 landfil! 3 2 0
X212 WTE facility i 2 250
X222 WTE facility 2 2 225
X137 WTE facility 3 2 325
System Cost ($106); h = 83.1
Decision variable (t/d):

X113 landfill 1 3 0
X123 landfitl 2 3 250
X133 landfilt 3 3 0
113 WTE facility 1 3 275
X273 WTE facility 2 3 175
X233 WTE facility 3 3 350

System Cost ($106): h = 117.0




lie within the grey intervals of the GDP solutions for ®(x,). ¥ j. It is also indicated from the DP solutions that the

optimal system cost is 5299.6 x 10¢ when the landfill is expanded at the start of periad 1. and $302.6 x 10% when
the Iandfill is expanded at the start of petiod 2. which also lie within the grey intervals of the GDP solutions for
&(f) correspondingly.

Generally, the DP solutions represent an optimal capacity expansion/utilization policy when all input grey
parameters in the GDP model are equal to their whitened mid-values. Thus, only a single set of deterministic
solutions is generated. Although further sensitivity analyses may be conducted, there may be a multitude of
possibilities when many parameters are uncertain, and every sensitivity analysis tun would represent only a

single response to one or several parameter variations.

(5) A Comparison with Grey Integer Programming Solutions

The above capacity expansion planning problem could also be solved through a grey integer programming
(GIP) modelling approach (Section 4.3). The GIP model would include two groups of grey decision variables,
with the continuous variables representing the waste flows from municipalities 1o waste management facilitics,
and the binary variables representing the frcility expansion decisions. A GIP model for the above problem can be

formulated as follows:

3 3 3 2 3 3
minimize ®(f) = £1®(FLC1() B + I X FICu ®(m) + L X X 2 &(Cip) S(xipe),
m=l k=l ixl jmi kel
(4.4.39)
subject to:
3 Kk 3 x k'
21 kZ[ Li @) + Zl E‘l L @(x0 FE < 3 Q(ALC) (y,) + ®(LC),
j=l k= j=1 k= k=l
k=123, {(4.4.40)
[landfill capacity constraints];
3 3 k'
L®(xgp) € L Z ATC, ®zy) +@(TC), kK'=1,2, 3, (4.4.41)
=1 m=| k=l
[WTE facility capacity constraints]:
2
2 Bxip) = WGy, Vik (4.4.42)

i=1

[waste disposal demand constraints];
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123

B(xp 20, Y ijk (4.4.43)

[roz-negativity constraints);

By <1,

=0,

=integer, Vk, (4.4.44)
Bz <1,

20,

=integer, Vm,k, (4.4.45)

{[non-negativity and binary constraints];

3
I®(zyo €1, Vi (4.4.46)

sl
[only one WTE facility expansion may occur in any given time period];

3
L B <1, (4.4.47)

k=l
flandfill expansion may only be considered once];
where:
FTC,,, = capital cost of expanding the WTE facility by option m in period k (S);
Ly = length of time period k (day):
ATC_, = amount of capacity expansion option m for the WTE facility at the start of period k (t/d);
®(FLC,) = capital cost of landfill expansion in period k (S);
@(FTy) = ransportation cost from the WTE facility to the landfill during period k (5/t);
&(LC) = existing capacity of the landfill ()
®@(TC) = existing capacity of the WTE facility {t/d);
@(yx) = binary decision variable for landfil expansion at the start of period k;

@(znk) = binary decision variable for the WTE facility with expansion option m at the start of period k:

@(ALC) = amount of capacity expansion for the landfill (t);

This model was solved through the GIP solution dgorithm described in Section 4.3. The obtained results
indicated that the GIP solutions for both facility expansion and waste flow atlocation are identical to the GDP
solutions. It is therefore demonstrated that both methods couid be effective alternatives for solving this type of

capacity expansion planning problem.



The major differences between the GIP and GDP methods are as follows, Firstly. the GIP method provides a
"one step” optimization process which is convenient for modelling formulation and solution. but may require
computers with high capacities and speeds when large scale problems with a multitude of variables and time
stages are to be solved. The GDP method could potentially solve such a problem by dividing the planning
horizon into several stages, but may require more effort for the dynamic analysis and computation of the stage
submodels (the state space effects would need to be considered if more than two or three facilitics are modelled
due to the potential effects of dynamic programming "curse of dimensionality"). Secondly, the GDP method
provides not only the general optimal solutions but also intermediate resuits of the optimization process, which

can be easily utilized for generating near optimal alternatives, while the GIP method does not directly provide

such results.

4.4.5, Concluding Remarks

A grey dynamic programming method has been developed and applied to MSW management planning, It
improves upon existing dynamic programming approaches by incorporating concepts of grey systems and grey
decisions within a deterministic DP framework. The method allows uncertain information to be effectively
communicated into the optimization process and resulting solutions, such that feasible decision alternatives can
be generated through the interpretation of the grey solutions. It also does not lead to more complicated
intermediate submodels, and thus has lower computational requirements,

The results of the hypothetical case study for capacity planning in a waste management system indicate that
reasonable solutions have been generated for both groups of decision variables (continuous and binary). The
binary variable solutions provide the ranges of facility expansion alternatives within a multi-period, multi-facility
and multi-scale context. and the continuous variable solutions provide optimal schemes for waste flow allocation
corresponding to the facility expansion decisions. Thus, decision makers can adjust or shift the decision variable
values within their solution intervals to generate useful decision alternatives according to projected applicable

system conditions.
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CHAPTER 5. GREY FUZZY MATHEMATICAL PROGRAMMING

5.1. GREY FUZZY LINEAR PROGRAMMING AND ITS APPLICATION

5.1.1. Introduction

In Section 4.1, a grey linear programming (GLP) approach for systems optimization under uncertainty was
presented for potentially mitigating problems with existing FLP, SLP and ILP methods, and then applied to
municipal solid waste (MSW) management planning. The GLP method allows uncertain information to be
directly communicated into the optimization process and resuiting solutions, such that feasible decision
alternatives can be generated through adjusting the decision variable values within their solution intervals and
making tradeoffs between different system objectives/restrictions according to projected applicable conditions.
Moreover, the proposed GLP solution algorithm does not lead to more complicated intermediate models, and
thus has lower computational requirements and is applicable to practical problems. However, when the model
stipulations are highly uncertain (i.e., the stipulation values fluctuate within wide intervals), solutions with high
grey degrees may be generated if a GLP model is applied, which may be of limited use to decision makers,

As a comparison. in the flexible FLP methods, the flexibilities in the constraints and fuzziness in the system
objective are expressed as fuzzy sets, with their membership grades corresponding to the degrees of satisfaction
{Tanaka et al. 1974; Zimmermann 1976 and 1985). The flexibie FLP metheds have an advantage in that they do
not greatly increase model complexity, and thus have been widely applied. However, one problem with the
flexible FLP methads is that only the stipulation uncertainties are reflected, i.e., the feasibility of the flexible FLP
is based on an assumption that the uncertain features of the lefthand side coefficients for each constraint are
dependent upon each other, such that the stipulation uncertainty can be used for representing the uncertain
features of the entire constraint (i.e., each constraint can be represented as a fuzzy set). However, the lefthand
side coefficients are related to different decision variables and each may have very independent uncertain
features in practical problems, which may make the assumption not true and thus affect the feasibility of the
flexible FLP approach. In addition, the methods are indirect approaches where intermediate control variables (A

values) are used to generate optimal solutions (see Chapter 2 for more information).
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According to the above analyses, the flexible FLP methods can effectively reflect the stipulation
uncertainties by using the concepts of fuzzy sets and membership functions, but not the independent uncertainties
of the lefthand side cocfficients: while the GLP method can effectively reflect the independent uncertain features
of the lefthand side coefficients, but not the stipulations if they fluctuate withir: wide intervals. The flexible ELP
method also has a problem with the effective determination of the tolerance interval for the system cbjective,
while the GLP method can provide such an interval through its objective function value solution. The author
contends that the two methods can compensate for each other. Therefore, one potential approach to better reflect
system uncertainties and thus increase the effectiveness of the above two methods is to incorporate them within a
general optimization framework where both methods' advantages are exploited. which would lead to a grey fuzzy
linear programming (GFLP) model. It is expected that, through incorporating the concepts of fuzzy decisions and
FLP, as well as the membership information for admissible violations of system objective/constrainis within a
GLP framework, the developed GFLP model will be able to generate solutions with higher certainty and
improved applicability compared with the GLP solutions.

Therefore, the objective of this section is to develop a GFLP method and apply it to a hypothetical case
study in MSW management planning (Huang et al. 1993a). A comparison between the GFLP and GLP/FLP
solutions for the same problem will also be provided to illustrate the potential advantages of the developed

methodology.

5.1.2. Formulation of the GFLP Model:ag Approach

(1) Flexible Fuzzy Linear Programming

Assume that we are given a fuzzy goal G and a fuzzy constraint C in a space of alternatives X. Then G and C
combine to form a decision, D, which is a fuzzy set resulting from the intersection of G and C. In symbolic form,
D =GN and correspondingly:

Mp = Min {1g, el (5.1.1)
where W, 1t ., and j1, are the membership functions of fuzzy decision D, fuzzy goal G, and fuzzy constraint C,

respectively (Zimmermann 1984).
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More generally, suppose that we have n goals G,, G,, .. .. G, and m constraints C,, C,,...,C_. The

resultant decision is an intersection of the given goals G, G,. . . ., G, and constraints C,, C,, ..., C,, as follows:

D=G, nG,n..nG,nCnCn...nC_, (5.1.2)
and correspondingly:
“'D‘"“Mi"“-’-G,’”Gz--'”cm-ucl-“cz’---“cm}- (5.1.3)

Letting p.Ci(X) be membership functions of constraints G;,i=1,..., m, and pGj(X) be the membership
functions of goals Gj .j=1,2,...,n,adecision can then be defined by its membership function:
Hp(X) = uci(X) * qu(X). i=1l....mj=12,....n, (5.1.4)
where X can be defined as a set of fuzzy decision variables, and #« denotes an appropriate and possibly context-

dependent "aggregator”.

Now consider a fuzzy linear programming (FLP) problem:

min  f=CX, (5.1.3)
st.  AXSB, (5.1.6)
X 20, (.1.7)

where A € R*** B e R™*',C e R'*", and X € R"*' (R denotes a set of real numbers), and S is a fuzzy <
symbol.

According to Zimmermann (1984), a decision maker can establish an aspiration level, ', for the objective
function value he wants to achieve, and each of the constraints can be modelled as a fuzzy set. Thus, FLP

problem (5.1.5) to (5.1.7} can be converted to:

CXSF, (5.1.8)
X<B. (5.1.9)
X >0, (5.1.10)

which can be written as:

EXSB', (5.1.11)
X >0, (5.1.12)



1

b

3

where:
c
E =] i,
A
]
B'= | -],
B |

Each of the m+1 rows in E and B' is represented by a fuzzy set with a membership function i (X). Thus, the
membership function of the fuzzy decision is:
HpX)=Min {pX) I i=1,...,m+1}, (5.1.13)
where 1,(x) can be interpreted as the degree to which X fulfills (satisfies) fuzzy inequality E, X § b’ (where E
denotes the ith row of E, and b.' denotes the ith element of B').
Thus, the "maximizing solution” is a solution to the following problem:
#,,(X) = Max Min {p(X)}, X20, (5.1.18)
where 11.(X) should be 0 if the constraints (including the objective f) are strongly violated, 1 if they arc very well
satisfied, and should increase monotonically from 0 to 1 as follows:

wX) =1,  ifEX<b,
©.1), ify'<EX<b'+p,,
0, EX>b'+p, i=L2...,m+l (5.1.15)

Assuming p.(X) to be linearly increasing over the "tolerance intervals” p, . we have:

KX = 1, ifE.tXSbi',
1-(EX-b)/p,, ifbi'<EiX$bi'+pi, i=1,...,m+1,
0, ifEiX>bi'+pi, i=1,2,...,m+1. (5.1.16)

where p, are subjectively chosen constants for admissible violations of the objective and constraints. Thuos,

(5.1.14) can be converted to:

W, (X) = Max Min (1- (€, X-b)/p,}, X20. (5.1.17)



Inuoducing a new variable A, which corresponds to the membership function of fuzzy d2sision uy(X) = Min {

wXyii=1,..., m+ 1 }, we can convert (5.1.17) to a linear programming model:
max A, (5.1.18)
s.t. Ap.+E X<b'+p, i=12,....m+]1, (5.1.19)
X=0, (5.1.20)
IE -4 N {5.1.21)

The resultant solution is equivalent to the solution for FLP problem (5.1.5) to {3.1.7). The major problem with
the fiexible FLP model is that the method is based on an assumption that the uncertain features of the lefthand
side coefficients for each constraint are dependent upon each other such that each constraint can be represented

as a fuzzy set, which, however, may not be true in many practical problems.

(2) Grey Linear Programming

The above problem can also be formulated as a grey linear programming model as follows (Section 4.1):

max (D =O(C) BX), (5.1.22
st ®(A) ®(X) < &(B), (5.1.23)
8(X) 20, (5.1.24)

where ®(A) e ®R)™ ", ®(B) € ®R)™"', 8(C) € BR)' **, and ®(X) € ®R)**! (S(R) denotes a set of grey

numbers).

Remark 5.1.1. From (3.1.22) to (5.1.24), it is indicated that the GLP model can incorporate the independent

uncertainties of lefthand side coefficients within its modelling framework.

According to Theorem 4.1.1, the GLP model has grey solutions as follows:
®(.X)T::pll = {®(xj)opll | J =12..., n}, (5125)

S(X)opn = [ @(Xj)upu » g(xj).,,,u]. v (5.1.26)

&Dogn = [ ROopu + BDgpul- (5.1.27)



(3) Grev Fyzzv Linear Programining

Definition 5.1.1. A GFLP model is formulated by incorporating concepts of grey systems, GLP and FLP within

a general optimization framework as follows (Huang et al, 1993a):

max  ®(A), (5.1.28)
st ®E)OX)Sb'+(1-®M)p, ., i=1.2,....m+l, (5.1.29)
(X) 20, (5.1.30)
0<®A) <1, (5.1.31)

where:
®E)={@¢p 1j=1....nLVi
B(e;p) = B(c), ifi=1, Vvj,
®(ai_1_j), ifi=23,..., m+1, ¥ j.

Definition 5.1.2. We define ®(&) as "GFLP mode! objective", and ®(f) = ®(C) ®(X) as "system objective”.

Remark 5.1.2. The GLP solution for @(f) can be used for providing the tolerance interval of the system

objective variation for the first line constraint of the above GFLP model. Thus, we have:

b = @(Oopu, ifi=1,

(b 1), if1=2.3,..., m+ 1; (5.1.32)
Pi = ﬁ(ﬂoptl - @(001:[! ’ ifi=1,

B(b,,) - b, ). ifi=2.3,..., m + 1. (5.1.33)

Remark 5.1.3. From Remark 5.1.2, medel (5.1.28) to (5.1.31) can be converted 1o

max @A), (5.1.34)
st. ®C)eX)< Q(f)upu +[1- &) [@(f)upu - Q(Qop[l I, {(5.1.35)
®(A) &X) < (B) + (1 - @(1)] [B(B) - (B)], {5.1.36)
®(X) 20, (5.1.37)

0<®@) =1 (5.1.38)



Corollary 5.1.1. Since grey parameters exist in the constraints, the optimal solutions for modei (5.1.34) w0

{5.1.38), according to Theorem 4.1.1, will be:

B(X) 2 = (8% 1 i=1.2,... .1}, (5.1.39)
®(Xj)opt2 = Q(xj)opa - g(x'j)upa]’ VJ- (5.140)
Oz = { (M) opz » BR), 0l (5.1.41)

5.1.3. Method of Solution

(1) Solytion of the GLP Model

The GLP model (3.1.22) to (5.1.24) should be first solved to provide ®(f)_,, as the aspiration level for the

optl
first line constraint (5.1.35) in GFLP model (5.1.34) to (5.1.38). The solution algorithm for the GLP model is

presented in Section 4.1.3.

(2) Solution of the GFLP Model
(24) [ . lationships ¢ ol | devisi iabl

Remark 5.1.4. According to Lemma 4.1.2 and Definition 5.1.2, the system objective function ®(f) = ®(C) ®X)

for model (5.1.34) to (5.1.38) can be specified as follows:

k o

B = L B)Bx) + I B()a(x), (5.1.42)
jmi ek, +l
k, n

& = ¥ S(c)RAx) + L &(c)B(x). (5.1.43)
=1 j=ky+l

where &(f) corresponds to @(A), and &(f) corresponds to (L) in the GFLP model.
For the constraints corresponding to the upper and lower bounds of system objective ®(f), we have the

foilowing theorem:

Theorem 5.1.1. In order to obtain grey solutions as shown in (5.1.39) to (5.1.41), constraints corresponding to

(1) (i.e. B(f)) can be developed as follows, based on (5 .1.42), and the interactive relationships between model

parameters and decision variables:
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k

L))+ T W) Bx) < Ry + [1- OO [BDyyy - RN, (5.1.44)

=l ik el
k, n
Z ey Sien@a) Bx) + % Hay) Sign®(a) &)
i1 eyl
< 20)+{1-8MN] [Bb) - /B, ¥ i (5.1.45)

Similarly, based on (5.1.43), the relevant constrainis are:
k) n
2R R+ I RA)Bx) < Rl + [1- BN [ By, - RO, 0] (5.1.46)
j=l ek, +1
ky n
Z Bla) Sign®a) Bx) + T Rlay) Sign(@(a) Fx)
=t

j=Ky+l

< @0)+{1-OM] [BO) - @b, v i (5.1.47)

Proof. Similar to the proof for Theorem 4.1.2.

Remark 5.1.5. The possible relationships for the right-hand side stipulations in the GFLP model can be analyzed

similarly to those in Theorems 4.1.3 to 4.1.8 and Corollary 4.1.1,

(2B) Solution Algorithm
The solution of the GFLP mode! includes two major steps as follows:

Corollary 5.1.2. Based on Theorem 5.1.1, GFLP model (5.1.34) 10 (5.1.38) can be solved through a two-step
method, where a whitened submodel corresponding to @(A) is first formulated and solved (because ()
corresponds to &(f), and the system objective is to maximize @(1)), and then the relevant whitened submodel

corresponding to (&) can be formulated based on the generated lower bound solution.

Corollary 5.1.3. According to Remark 5.1.4, and Theorems 5.1.1 and 4.1.3, the GFLP whitened submode]
corresponding to (1), which provides the first step of the solution process when @(f) is to be maximized, can

be formulated as {oilows (assuming that @, > 0, and ®(f) > 0):

maximize &), (5.1.48)



subject to:
ky n
z @(CJ) E(x}) + 2 @(CJ) Q(X.J) S Q(f)opﬂ. + [1 = Q(A‘)] [ E{anﬁ - @(Dopl] ]'
=1 j=ky+l

k

R(la;) Sign(@(a)) B(x) + X Blay) Sign@(a,)) Ax) < &b) +
=]

k4l

J
+ [1- 2] [B(b) - (b)), V i,
8(x)20, ¥ j,

0<®M) < 1.

Corollary 5.1.4. From Theorem 3.1.1, @(xj)opa (G=12,...,%)and Q(xj)om2 (j=k+L Kk+2,...,n)canbe

obtained from the solution corresponding to &(3),, , and (X (=12, k,) and @(:v(j)ugl1 (G=k+1.

k;+2, ..., n) can be obtained from the solution corresponding to @A), -

Corollary 5.1.5. From Remark 5.1.4, Theorems 5.1.1 and 4.1.3, and Corollary 5.1.4. the GFLP whitened
submodel corresponding to &(A), which provides the second step of the solution process based on the solutions

of @(xj) g=1.2,.... k,) and Q(xj) U =k+1, k,+2, ..., n) from submodel (5.1.48) to (5.1.52), can be

formulated as follows (assuming that &(b,) > 0, and &(f) > 0):

maximize &Y{A).

subject to:
k o
2 2 Bx) + L &) Blx) < QD +[1- RN (D, - RO 1.
j=1 j=ky+1
ky n
x @(Iaijl) Sigﬂ(g(a;j)) Q(xj) + Z @('aijl) Sign(@(aﬁ)) @{xj) < Q(bx) +
=l =k +1
+ [1-BQ) (B - b)), Vi,
0<@®A) <1,

®(x)20, V|
Q(xj) < @(xj)opa , J =1,2,.... kl'
E(KJ) 2 Q(xj)mpl'l ’ .I = k1+1. kl+2' 1 N

{5.1.49)

(5.1.50)

(5.1.51)

(5.1.52}

(5.1.53)

(5.1.54)

(5.1.53)

(5.1.36)
(5.1.57)

(5.1.58)
(5.1.59)
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where Q(Xj)op‘z =12, k ,and Q{xj)oplz JEkEL k2,00, n, are decision variable solutions

generated from submodel (5.1.48) to (3.1.52).

Remark 5.1.6. When ®(f) is to be minimized, the submodel correspanding to @(A) should be first formulated

and solved.

Remark 5.1.7. The -vhitened submodels defined by (5.1.48) to (5.1.52) and (5.1.53) to (5.1.59) are linear
programming problems witi1 a single objective function. Therefore, BA) gz DX (= 1.2, . ., k,). and
B(X)opa G =kj+1, ki+2. ..., n)can be obtained by solving submodel (5.1.48) to (5.1.52), and B o2 -
E(xj)uptz 0=k+1, k+2,.... n),and Q(xj)aptz Gg=1.2,..., k) can be obtaincd by solving (5.1.33} 1o
(3.1.59). Thus, from Definition 3.1.1 and Corollary 5.1.1, we have OMop = [B(A) gz - B0 1. and

B ope = [ B 0> B0 Vi
j/ep2 j/op p

Remark 5.1.8. According to Remark 5.1.4 and Corollary 5.1.2. @(ﬂopL2 corresponds t0 8(A),; and can be

calculated as follows:

k, n
B = ;»:1 BEBpe + T R o (5.1.60)
=

j=k +1

Similarly, @(f),,, corresponds to B(1), , and can be calculated as follows:

kl n
B = ZRPRXpe + T BB, (5.1.61)
=1 e+l

Thus we have 8(f)y,, = [ B(Dpz» By 1.

(3) Interpretation of FLP Solution
The GFLP approach will generate solutions for the decision variables ®(xj), ¥ j, system objective function
value ®(f), and the GFLP model objective value ®(X). The ®(x;) solutions can be directly applied to decision

making, with the values potentially being adjusted within the solution intervals to generate decision alternatives.

The &(f) solution corresponds to the ®(x;) solutions, such that adjustment of the decision variable values within



their solution intervals will lead to variation in the system objective value within its corresponding solution

interval. The ®(X) solution shows the membership grade of satisfaction for the generated grey decision scheme.

The following is a simplified example problem for illustratng the GFLP modelling approach. First, we set a

GLP probiem:

max

s.t.

&(f) =[50, 60] &(x;) - [70,90] ®(x,),
(4, 61 ®(x)) + ®(xz} £[150, 2001,

16 @(x)) + [5, 7] ®(x,) < [280, 360],
®(xy) + {3, 4] ®(x;) < (90, 110},

{1, 2] ®(x,) - 10 ®(xy) =-0.5,

®(x) 20, j=1,2.

The solutions of the GLP model are: &(x,)oo = {164, 21.5], @(Xg)op = [2.20, 3.34], and &(f),p = [522. 1138].

The same problem can also be formulated as a GFLP model by incorporating concepts of GLP and FLP

within a general optimization framewaork as follows:

max

5.t

S,
[50. 60 ®(x) - {70, 90] ®(x3) - ®A) [ B(Doput - @Dages] 2 R(Dogus-
(4, 6] ®(xy)} + @(x5) £ 150 + [1 - @(A)] (200 - 150],

16 ®(x;) + (5,71 ©(x2) £ 280 + [1 - ®(A)] [360 - 280],

&(x)) + [3.4] ®(x) 90+ [1 - @A) [116 - 901,

[1,2] ®(x,) - 10 ®(x,) < -0.5,

0@\ <1,

®(x)20, j=1,2.

Solving the GFLP model by the previously discussed approach, we have: B(X1)opiz = 19.0. @(Xz)gpz = [1.95.

3.86]. ®(A)op2 = [0.134, 0.522], and &(f),,z = [605, 1006]. It is indicated that the grey degrees of O (Doprz and

@(x1)opr2 (the major decision variable) are significantly decreased compared with the GLP solutions, although

Gd[®(x2)op2] {for the minor decision variable) is slightly higher than GA[®(x3)opu ]- This simplified example has

illustrated the GFLP solution process and demonstrated its role in potentially improving the solution quality for

GLP problems significantly uncertain stipulations.
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5.1.4. Application to Municipal Solid Waste Management Planning

(1) OQverview of the Hypothetical Problem

The hypothetical problem under consideration is the same as that in Section 4.1, where issues of waste flow
allocation planning were studied. From Section 4.1, it is indicated that the values of model stipulations (waste
generation rates, and landfill/incineration capacities) fluctuate within wide intervals, which lead to GLP solutions
with high grey degrees. Consequently, it is expected that application of the GFLP method to the same problem
may provide less uncertain solutions due to its advantage in better reflectin g the stipulation uncertainties.

The problem will be first formulated and solved through a GFLP model, and then the GFLP solution will be

compared with GLP/FLP solutions for the same problem to show the advantages of the developed methodology.

(2) GFLP Modelling Formulation

In section 4.1, a GLP model [(4.1.63) to (4.1.67)] for the above problem has been formulated, which can be

converted to a GFLP formulation by the previously discussed approach as follows:

maximize  @(A), (5.1.62)
subject to:

2 3 3

_21 2[ kZ[ Ly { ®(xip) {(B(TRy) + ©(OPY)] + B(xqp0) FE [ ®(FTy) +

=l j= =

+ ®(OP“:)] = ®(x2ﬁ) ®(RE5:) } s Q(ﬂopl]. + [1 - ®(7L)] [g(f)optl = @(Dupll]'

(5.1.63)
[system objective constraint];
303
Z X L [®(xp)+ B(xa) FE 1< &(TL)+ {1 - ®(A)] (B(TL) - &(TL))], (3.1.64)
j=i k=l
[landfill capacity constraint];
3
X @(xa5) < &(TE) + [1 - ®(\)] [B(TE) - &(TE)], v k, (3.1.65)
=l
[WTE facility capacity constraints):
L @(x) = WGy + (1 - ®()] [BWGy,) - 2B(WGp)] v jk (5.1.66)
ieel

[waste disposal demand constraints];



0<B(A) €1, (5.1.67)

®xx) 20, ¥ Ljk (5.1.68)

[technical constraints);
where:
FE = residue flow rate from the WTE facility to the landfill (% of incoming mass to the WTE facility);
i = type of waste management facility, i = 1, 2, where i = 1 for the landfill. and 2 for the WTE facility;
j = municipality, j= 1, 2, 3 (Figure 4.1.1};
k = name of time period, k=1, 2. 3;
L, = length of time period k (day);
@(E)opry = GLP solution of system objective function value:
@(FT,) = ransportation cost for "WTE facility ---> landfill " residue flow during period k (§/t):
®(0P;) = operating cost of facility i during period k ($4);
®(RE,) = revenue from the WTE facility during period k (S/t);
®(TE) = capacity of the WTE facility {t/d};
@(TL) = capacity of the landfill {t};
®(TR;3) = transportation cost for "municipality j -—> facility i” waste flow during period k (S/t);
®(WGy) = waste generation rate in municipality j during period k (t/d):
®(x;3) = waste flow from municipality j to facility i during period k (t/d).
®(A) = control decision variable corresponding to the membership grade of satisfaction on fuzzy decision

H5(X) = Min p;(X) (see (5.1.13)).

(3) GFLP Solutions

Table 5.1.1 shows the solutions obtained through the GFLP model. It is indicated that the landfill should
accept most of the direct-haul MSW from municipality 1 ({250, 269) t/d) in period 1, municipality 3 ([260, 314]
t/d) in period 2, and municipalities 2 and 3 ([210, 269] and 200 t/d. respectively) in period 3. The solutions for

waste flows to the WTE facility indicate that all the three municipalities are determined to use the facility. In



Table 5.1.1 Solutions obtained through a GFLP model

Symbol Facility Municipality Period Solution
Decision variable (t/d):

@(xy;1) [andfill 1 1 (250, 269]
@(x;12) landfill 1 2 0

O(x13) landfill 1 3 [0, 14}
&(x191) landfill 2 1 0

®(X120) landfill 2 2 [23.44]
B(x123) landfill 2 3 (210, 269]
B(x;31) landfill 3 1 [0, 14]
®(x132) Tandfili 3 2 [260, 314]
®(X133) Iandﬁll 3 2 200
®(xa11) WTE facility 1 1 [10, 50
®(%912) WTE facility 1 2 (310, 369]
S{xa13) WTE facility 1 3 (360, 405]
®(X221) WTE facility 2 1 (160, 219]
B(X27) WTE facility 2 2 [160, 200]
@(x723) WTE facility 2 3 0

®(x93)) WTE facility 3 1 [260, 305]
S(Xg32) WTE facility 3 2 [0, 5]
S(xq33) WTE facility 3 3 (110, 169}
®(A) value: [0.26.0.99]

System cost (5106):

2(f) = [222.6,476.0]




period 1, the majority of waste flows to the WTE facility are from municipalities 2 and 3 ([160, 219] and {260,
305] v/d, respectively). In period 2, the majority of the waste flows are from municipalities 1 and 2 ([310, 369]
and [160, 200] v/d, respectively). In period 3, only municipalities 1 and 3 are determined to use the WTE facility,
with flows of [360, 405] and [110, 1697 t/d. respectively. The results demonstrate that variations of waste
generation/management conditions with time may lead to relevant changes of optimal waste flow allocation
patterns.

Generally, more waste flows to the landfill and WTE facility were determined under the scheme for &(f),
than under that for &(f). The scheme for &(f) represents a decision option with the lower bound system cost
(3222.6 x 108 with a &(\) value of 0.99), and that for &([; represents an option with the upper bound system
cost (3476.0 x 105 with a ®(}) value of 0.26). Therefore, lower ®(x;3) values, i=1,2,....m,j=1,2,....nk
= 1,2, ..., p, within their solution intervals should be used to obtain lower system cost under advantageous
system conditions, and higher &(x;,) values within their solution intervals should be used under more demanding
conditions. Thus, the @(x;;) solutions can be used to generate decision alternatives by analyzing and adjusting
different combinations of the whitened decision variable values within their solution intervals according to

projected applicable system conditions.

(4) Comparisons with FLP and GLP Solution
f44) A CQ!HQ(IEHQ!] with flexible FLP solutions

The problem can also be solved through a flexible FLP method by letting all lefthand side grey coefficients
in the GFLP model be equal to their whitened mid values, which means that only the stipulation uncertainties are
reflected as tolerance intervals (p;) in the FLP framework. Table 5.1.2 shows the solutions obtained through a
flexible FLP model. It is indicated that the solution of system cost is 319.1 x 10°, and the corresponding A value
is (.83.

However, only one set of deterministic solutions is generated from the FLP model, which represents a
decision option when all grey coefficients in ®(A) and ®(C) are equal to their whitened mid values. Although

further sensitivity analyses can be conducted, there may be a multitude of possibilities when many input
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Table 5.1.2 Solutions obtained through a flexible FLP model

Symbol Facility Municipality Period Solution
Decision variable (t/d):

X113 landfill 1 1 203
X112 landfill 1 2 0
X113 landfill 1 3 0
X121 landfill 2 1 0
X122 landfill 2 2 5
Xin landfill 2 3 223
X131 landfill 3 1 0
X132 landfill 3 2 273
X133 landfill 3 3 180
Xaqg WTE facility I 1 70
X212 WTE facility 1 2 323
Xaq3 WTE facility 1 3 373
X232 WTE fﬂClll[y 2 1 173
Xan3 WIE facﬂlty 2 3 0
Xay WTE faCl.[ltY 3 1 273
X232 WTE facﬂlry 3 2 5
Xo13 WTE facility 3 3 143
A value: 0.83

System Cost (S106):;

319.1
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coefficients are uncertain, and every sensitivity analysis run would represent only a single response to one or
several coefficient variations. In fact, the flexible FLP method is based on an assumption that the uncertain
feawures of the lefthand side coefficients for each constraint are dependent upon each other, such that each
constraint can be represented as a fuzzy set. However, the lefthand side coefficients are related to different
decision variables and may each have very independent uncertain features in practical problems, which may

make the assumption not true and thus affect the feasibility of the flexible FLP approach.

(4B) A comparison with GLP solutions

The problem can also be solved through a GLP approach as shown in Section 4.1 (the solutions are given in
Table 4.1.2). It is indirated that the generated ®(f) solution ranges from $220.2 x 105 to $507.4 x 10 and has a
higher grey degree (78.9%) than the GFLP solution (®(f) = ${222.6, 476.0] x 106 with a grey degree of 72.5%):
and the GLP decision variable solutions generally have significantly higher grey degrees as well. These results
demonstrate the potential role of the GFLP method in better reflecting system uncertainties and achieving more

applicable solutions for LP problems with uncertain inputs.

5.1.5. Concluding Remarks

A grey fuzzy linear programming method has been developed and applied to MSW management planning
under uncertainty. It improves 1 pon existing GLP and FLP approaches by incorporating them within a general
optimization framework to better reflect system uncertainties and thus provide more satisfactory solutions. From
a GLP point of view. the GFL.P model is formulated by introducing the concept of fuzzy decisions and the
membership information for admissible violations of system objective/constraints into the GLP framework to
deal with highly uncertain stipulations. The GFLP outputs consist of two sets of flexible FLP solutions
corresponding to the upper and lower bounds of the system objective function value. It has been indicated that,
through the developed GFLP approach, system uncertainties can be berter reflected and solutions with higher
certainty and better applicability can be generated, compared with the GLP solutions.

From an FLP point of view, the flexible FLP methods can only effectively reflect stipulation uncertainties
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(rather than the independent uncertainties of lefthand side coefficients). and the required tolerance interval for the
system objective is difficult to determine (Zimmermann 1984; Cui and Blockley 1990). Therefore, concepts of
grey systems and GLP can be introduced to the FLP framework to reflect the independent uncertainties of
lefthand side coefficients, and a GLP model can be first solved to provide preliminary resuits of the rolerance
interval for the system objective (in the first line stipulation of GFLP model (5.1.28) to (5.1.31)). Thus, a GFLP
model is formulated, where uncertainties of not only stipulations but also lefthand side coefficients are

effectively reflected, Figure 5.1.1 depicts a flow chart of the GELP approach.
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5.2. GREY FUZZY QUADRATIC PROGRAMMING AND ITS APPLICATION

5.2.1, Intreduction

In section 5.1, a GELP method was presented. which incorporated concepts of fuzzy decisions and (lexible
FLP within a GLP modelling framework. such that uncertainties in model stipulations could be better reflected
and communicated into the optimization process and resulting solutions, compared with the GLP approach, The
GELP method is useful when the model stipulations are highly uncertain but with known membership
information (for admissible violations of system objective/constraints), which may lead to solutions with high
grey degrees if a GLP method is used. However, the GFLP approach has a similar drawback to that of the
flexible FLP methods, i.e., it is based on an assumption that the uncertain features of model constraints are
dependent upon each other, such that one ®(1) value can be used for all constraints. This assumption may make
some constraints not well satisfied and some over-satisfied since it may not be truc in many practical problems.

In comparison, Cui and Blockley (1990) proposed a fuzzy quadratic programming (FQP) method which
improved upon the flexible FLP method by enabling the modelling of independent uncertainties for fuzzy
constraints (n control variables, A (i=1.2....,n), for n constraints were introduced, instead of one A for n
constraints as used in the FLP method. such that the independent constraint uncertaintics could be effectively
reflected). However, the FQP method can only reflect the independent uncertainty of each mode! constraint as a
fuzzy set (in other words, only independent uncertainties in model stipulations are reflected), but is not effective
when the uncertain features of the lefthand side coefficients are also independent. Morcover, the meihed is an
indirect approach in which intermediate control variables (A; values) are used to generate optimal solutions
(Zimmermann 1978) (see Chapter 2 for more information).

According to the above analysis. the FQP method can effectively reflect the independent uncertainties in
model stipulations, but not the uncertainties of the lefthand side coefficients; while the GFLP method can
effectively reflect the independent lefthand side uncertainties, but may yield less desirable solutions when the
uncertain features of model constraints are independent upon each other. The author contends that the FQP and

GFLP can complement each other. Therefore. one potential approach for better reflecting system uncertaintics
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and thus increasing the effectiveness of the above two methods is to incorporate them within a general
optimization framework where both the two methods' advantages are exploited. which leads to a grey fuzzy
quadratic programming (GFQP) mode! (Huang et al. 1993b). It is expected that, through the developed GFQP
method, the model constraints will be better satisfied and grey solutions with higher certainty and betrer
applicability, compared with the GFLP solutions, will be generated.

The objective of this section is to develop a GFQP method and apply it to a hypothetical case study of waste
flow allocation planning (Huang et al. 1993b). A compearison between the GFQP and FQP/GFLP solutions for

the same problem will also be provided to iliustrate the potential advantages of the developed methodology.

5.2.2. Formulatior of tiie GFQP Modelling Approach
(1) Fuzzy Quadratic Programming

First, consider an FLP problem:

min  f=CX, (5.2.1)
st.  AXSB. (5.2.2)
X >0, (5.2.3)

where A € R™** Be R™™'.Ce R"™" and X € R™*' (R denotes a set of real numbers), and £ is a fuzzy <
symbol.

According to Zimmermann (1984}, a FLP problem can be converted to an ordinary LP problem by

introducing a new variable A, which corresponds to the membership function of fuzzy decision U, (X) = Min

1.(X) with p.(X) being 0 if the constraints (or objective) are strongly violated, or 1 if they are well satisfied (see

Section 5.1 for more information). Thus, FLP problem (5.2.1) to (5.2.3) becomes:

max A, (5.2.4)
S.t. lp.t+EiX.<_bi'+pi, i=1,2,...,m+1, (5.2.3)
X=z0, (5.2.6)
sk <1, (52.7)
where:
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e o
ey s M =23 .. m+

B

admissible violations of system objective/constraints, 1= 1,2, ..., el

L

most desicable sysiem objective function value:

=
i

control decision variable corresponding to the membership function of fuezy devision H,(X) =

Min p(X),

The essence of the above FLE formulation is that the "edyes’ of the feasible regions are not tixed, Vach edge
can be moved between two boundaries ¥ x < d; and X0 S o+ pu The optimal soluton s determined by a
compromise between making the system objective vilue approach the aspisation level (1) as closely as possible
and having the mitnmum feasible region (fonmed by all ):! apx s (=120 m)) be enlarged as slighily as
possible,

Since the movenient of all the edges is controlled by a single variable X, the edges of the feasible regions
will be moved i the sime direction and inan inerrelited process, which, in fact, is biased o an assumption fhat
the fuzzy characteristics of the model consrmnts are dependent on each other. However, in many practical
prablems, the constraint uncertundies could be ndependent of each other, i.e., thet boundaries vould be moved
from Y, A XS X xS dg g independenily. To address this problens, Cin s Blockley {1990) sugpested
A fuzzy gquadeitic progeaumming (FQP) appeoach, where m independent control variibles, A= 1,20 00 m),
were introduced Tor m Tuzzy constraings, cespectively, In the FQP model, o linear menbership function wiy
adopted for the objective function and parabotic membership lunctions were used for the consteings (Cai and
Blockley 1990}, Letting A, denote the Muzziness in e objective Tanction and A= 1,2, 0, m} denome the
luzziness in constrng i, the sapports for the system objective and constraint i were |- A, and | - l,z,
respectively. An additive model proposed by Tiwari et al. (1987) was adopted lor generating optimal solutions

by ‘maximizing an achievement tunction’, w, (w, is defined as the sum of all the supports for the objective
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function and constraints, Le.. w, = 1 - iy + X, (1 - 1.). This is equivalent to minimizing another function w = A,
+ 2 ?Lf. Although the FQP's criterion for determining the optimum is different from that of flexible FLP, its
underlying meaning is the same as that found in Zimmermann's formula (Zimmermann 1978). Thus, we can

formulate a FQP mode! for FLP problem (5.2.4) to {5.2.7) as follows:

m
mn  w = A + I A% (5.2.8)
=1
s.t. ;lcj xj+(1-k0) (-t <1, (5.2.9)
i
n
Za.ljxj+hipif25cll+pi/2, i=12,....m, (5.2.10)
=l
szo. ji=L2....n (5.2.11)
0<h, <1, (5.2.12)
1gA<l i=1,2,....m, (5.2.13)

where £, and f, are the least and most desirable system objective values, respectively, corresponding to control
variable A . The values of &, to A correspond to constraints 1 to m independently. When A.>0,i=1.2,.,.,m.
it is signified that the boundary of stipulation i can be moved inward closer to d.; when A, < 0,i=1.2,....m,
the boundary can be moved outward closer to d, + p, . Thus, a lower 7\,12 value represents a boundary closer to d. +

p,/2. while a higher le value represents a boundary either closertod or d, +p, .

(2) Grey Fuyzzy Linear Programmin

The above problem can also be formulated as a GLP model when uncertainties exist in A, B, and C, which is

presented as follows (see Section 4.1 for more information):
max  &(C) &X), {5.2.14)
s.t. B(A) X) = ®(B). (5.2.15)

(X)) 20, (5.2.16)
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where ®(A) € @R)™ ", @(B) € ®R)™ ™. ®(C) e ®R)' *", and ®(X) &€ OR)™™! (H(R) denotes a set of grey

numbers).

According to Theorem 4.1.1, model (3.2.14) to (5.2.16) can have gray solutions as follows:

®(X)Topt1 = {®(xj)opt1 Pj=1.2,..., n}, (5.2.17)
®(xj)epﬂ ={ Q(xj)opu ’ g(xj)gpu]u v j, (5.2.18)
®(f)upll = [ Q(Dogtl * @(Dupu]- (5219)

In order to better reflect system uncertainties in model stipulations, the concepts of fuzzy decisions and FLP

were incorporated within the GLP framework, which leads to a GFLP model as follows {Definition 5.1.1):

max  ®(A), (5.2.20)

5.t ®E)BX) < b+ (1- ®(7~.))pi =12, , m+l, (5.2.20)
(X)) =0, (5.2.22)
0<®A) £1, (52.23)

where:

®(E;)={®(eij) lj=1..., n}j, ¥V i

B(ey) = @), ifi=1 Vvj,
&(a,, ;) ifi=23,..., m+1 Vj

The GLP solution for ®(f) can be used for providing the tolerance interval of system objective variation for

the first line constraint in the above GFLP model. Thus, we have:

b = &), if i= 1.

(b, ). ifi=2,3,..., m+1: (5.2.24)

pl = E(Doptl - Q(Qopll v if i= 1,
Bb,,) - 20,), ifi=23,....,m+1 (5.2.25)

Hence, GFLP model (5.1.28) to (5.1.31) can be converted to:

max  ®(A), (5.2.26)

St ®(C) B(X)'S B(D,g + (L - 8] B,y - BB,y ). (52.27)
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®(A) BX) < R(B) + (1 - ®(A)] [B(B) - R(B)], (5.2.28)

X)) 20, (5.2.29)

0@ 1. (5.2.30)
(3) Grey Fuzzy Quadratic Programming

In order to reflect the independent uncertainties in the GFLP model stipulations, the concepts of fuzzy
decisions and FQP are introduced into the GFLP modelling framework, which leads to 2 grey fuzzy quadratic

programming (GFQP) model.

Definition 5.2.1. A GFQP mcdel is defined as follows (Huang et al. 1993b):

min  ®w)=8@R) + > B, (5.2.31)
=1

st ®(C)®X)+[1-OG)] [f,-f1<F, (5232

[®(A) ®(X)], + ®RA)p, /2 SR(Ob)+p./2, Vi, (5.2.33)

®(X) 20, (5.2.349)

0S®(y) <1, (5.2.35)

1S8R €1, Vi (5.2.36)

Definition 5.2.2. We defing @(w) = ®(lo) + Ei ®(7‘Li)2 as "GFQP model objective”, and ®(f) = ®(C) ®(X) as
"system objective”.
Remark 5.2.1. The GLP solution for ®{f} can be used for providing the tolerance interval of system objective
variation for the first line constraint in the above GFQP model. Thus. we have:

f£,= Eu(f)opu , (5.2.37

f, = @(Dupu . {5.2.38)
Remark 5.2.2. From Remark 5.2.1, model (5.2.31) to (5.2.36) can be converted to:

min  ®w)=®0Q) + = OQ), (5.2.39)

im]

st ®C)OX) £ &0, +Og) (B, - Dyl (5.2.40)



3(A) 3(X) < B(G).

RGN ={®(g)li=1...., mj,
®(g’i) = a(bl) + [1 - ®(}‘1)] I g(bl) - Q(b,)]p-.
8(X) 20,

0<®() <1,

1S®A) €1, i=12,...,m

Corollary 5.2.1. Since grey parameters exist in the constraints, the optimal solutions for modet (5.2.39) 10

{5.2.46), according to Theorem 4.1.1, will be:
®(X)Top12 = {<89(ch)uptz bi=1,2,..., nj,
®(xj)0pl2 = [ @(xj)upa 1 E(xj)upals V j‘

®(li)nplz = @(Ri)upﬂ’ gai)"f’a]'

Remark 5.2.3. In GFQP model (5.2.39) to (5.2.46), the ®(A,) values are used to reflect the independent uncertain

features of the model stipulanons, and grey elements in ®(A) and ®(C) are used (o reflect the independent

uncertainties of the lefthand side coefficients.

5.2.3. Method of Solution

(1) Solution of the GLP Model

The GLP model (5.2.14} to (5.2.16) should be first solved to provide ®(f)op as the aspiration level of the

system objective for the first line constraint (5.2.40) in GFQP model (5.2.39) to (5.2.46). The solution algorithm

for the GLP model is presented in Section 4.1.3.

(2) Solution of the GFQP Model

(24) [nteractive relarionships between model parameters and decision variables

For the upper and lower bounds of the GFQP model objective ®(w), we have the following:

(5.2.47)

(5.2.48)

(3.2.49)
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Lemma 5.2.1. Since 0< @(& )< Land -1 €@(R) <1, i=12. ..., m. the upper and lower bounds of @(w) =

B(h) + . @(a )" will be:

Bw) = BO) + I OR) (5.2.50)
|
with ®(A) = @A) when (%) < 0, and S(h) = 5(}\_1) when ®(A}>0,i=1,2...., m; and
Bw) = &%) + I QR (5.2.51)
]
with @(&) = @(l’) when ®(4.) < 0, and @) = (i) when ®(7Ll) >0,i=1,2,....m.
Proof. Straightforward.
Remark 5.2.4. According 16 Lemma 4.1.2 and Definition 5.2.2, the system objective function &(f) = &(C) ®(X)
for GFQP model (5.2.31) to (5.2.36) can be specified as follows:
k, 0
& = X ﬁ(cj)ﬁ(xj) + b Q(Cj)Q(xj), (5.2.52)
=1 =y
k, n
RO = I RAc)RAx) + I Ac)Blx), (5.2.33)

j=1 jmicy+l
where &([) corresponds to &(w)., and () corresponds to B(w) when the system objective ®(f) is t0 be

maximized.

For the constraints corresponding to the upper and lower bounds of system objective ®(f), we have the

following theorem:

Theorem 5.2.1. In order to obtain grey solutions as shown in (3.2.47) to (5.2.49). constraints corresponding to

&(w) (i.e. B() when &(f) is to be maximized) can be developed as follows, based on equation (5.2.52). Lemma
5.2.1, and the interactive relationships between model parameters and decision variables:

3

IBE)&Bx) + I ) Ax) < BlOgy + B (Bl - Bl ). (5.2.54)

=l J=ky+l



k, a
2 @(ay) Sign((2)) Blx) + T Biay) Sign@a) RAx) <
=l PRyl
< M)+ [1-3A)N{8L) - b2, Vi (5.2.55)

where ®(A) = B(A) when ®(X) <0, and @A) = &R) when @A)>0.V i

Similarly, based on equation (5.2.53) and Lemma 5.2.1, the relevant constraints are:

k, n
LE)Rx) + I APBEY € ROy + BA) [ B0y - Doy 1. (5.2.56)
=1 jeky#1
X n
% Blayf) Sign@a ) R(x)) + I Ry Sign(@()) Bx) <
=1 Jeley+1
< BEY+UL-A)][BO) - D)2, Vi, (52.57)

where ®(&) = @(7\1) when ®(A.) <0, and Q) = () when ®(A)>0,V i
Proof. Similar to the proof for Theorem 4.1.2.

Rewark 5.2.5. The possible relationships for the right-hand side stipulations in the GFQP model can be anatyzed

similarly to those in Theorems 4.1.3 to 4.1.8 and Corollary 4.1.1.

(2B} Method of solution
The solution of the GFQP model includes two major s.«cps as follows:

Corollary 5.2.2. Based on Theorem 5.2.1, GFQP model (5.2.31) to (5.2.36) can be solved through a two-step
method, where a whitened submodel corresponding to ®(w) is first formulated and solved (because B(w)
corresponds to &(f) when ®(f) is to be maximized), and then the relevant whitened submodel corresponding to

@(w) can be formulated based on the generated lower bound solution.

Corollary 5.2.3. According to Remark 5.2.4, and Theorems 5.2.1 and 4.1.3, the GFQP whitened submodel
corresponding to £(w), which provides the first step of the solution process when @(f) is to be maximized, can

be formulated as follows (assuming that A(b,) > 0, and &(f) > 0):

ih

I
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minimize &(w) = &) + £ @G, (5.2.58)
jm]
subject to:
k, n
T8C)Bix) + T Bop &Ax) € D,y + BAY) [BDgpy - BDopu L (52.59)
=l Jukcy+1
k, a
T a) Sign(®ay)) B(x) + I B(la) Sign@(ay)) R(x) <
jul k1
< 2(b) + [1- @A) [&(Db,) - 2B)2, ¥ i (5.2.60)
0< ®() < 1. (5.2.61)
1@ S i=12,....m, (5.2.62)

where ®(A) = R() when @A) <0,and ®(A) = B(X) when ®(A)>0,V i.

Corollary 5.2.4. For the ®(}) solutions (i= 1,2, ..., m) from submodel (5.2.58) to (5.2.62), if m, of them are
positive, and m, are negative, let the former m, solutions be positive, i.e. ®(A)20({i=12...., m,), and the
latter m,, solutions be negative, i.e. ®(A) <0 (i = m;+1, m;+2, ..., m), where m, + m, = m {the model does not
include the situation when the two bounds of ®(X) have different signs). Thus, from Theorem 5.2.1, Q(’t\o)opc.
B (=12, ... m)s B )opn (=my+l, m+2, ... m), Bx)opn (= L2,... k) and R(x)y,, G

= x,+1, k+2, . ... n) can be obtained from the solution corresponding to &(w), and @(7\.0)0?13, E(?\.l),,zn2 fi=1.
2..... m,), @(?Li)op‘2 i=m+1, m+2...., m), (XYoo G=1.2,... k) and @(xj)upa (=k+1, k+2,

....n) can be obtained from the solution corresponding to B(w).

Corollary 5.2.5. From Remark 5.2.4, Theorems 5.2.1 and 4.1.3, and Corollary 5.2.4, the GFQP whitened

submodel corresponding to &(w), which provides the second step of the solution process based on the solutions

of BAY, BA) (i=L2.....m) Q) (i=m+1, m+2,....m), Blx)(=1.2..... k) and €(x) (]
=k+Lk+2,. .., n) from submodel (5.2.58) to (5.2.62), can be formulated as follows (assuming that ®(b,) > 0,
and ®&(H) > 0):
minimize B(w) = By + TBAY + I M), (5.2.63)
=l

imm+1



subject to:

k, n
TR AR + I )BK) < @Dy + B[ BN, - BD,, ). (5.2.64
=1 ke

3

K, n
z E(!aiji) Sign®Ba) @kx) + I (layl) Sign(R(a,) Bx) <
=l

aky+l

< 2b)+[1-@A)][&D)- 8O, Vi, (3.2.63)
0<BQ) <1, (5.2.66)
0<BA)<1, i=1,2,...,m, (5.2.67)
-1s@A) <0, i= m+l,m+2,....m, (5.2.68)
®(A) = BL), when ®(A)20.i=1.2,...,m,, (5.2.69)
®() = (), when ®(A) <0, i=m+I.m+2.....m, (5.2.70)
B(x) 20, Vj (3.2.71)
B = Rz » (5.2.72)
BA)2 M) ypo i=1.2,...,m, (5.2.73)
ROA) S BO) g, i=m+1, m+2.....m, (5.2.74)
R0) < B+ j=L2..... k,, (5.2.75)
B(x) 2 &%) pa » =kt L k42, .., n, (5.2.76)

where ()0, @A) (=12... ., ml),E(}\_l)“!“2 (i=mq+1,m+2,...,m), Bx)gp 1= 1,2,.. k)
and @(x;)op, (= ky+1L k42, .. ., n) are decision variable solutions generated from submodel (5.2.58) to

(5.2.62).

Remark 52.6. When the system objective is to be minimized, the submodel corresponding to £(f) should be

first formu'ated and solved.

Remark 5.2.7. The whitened submodels defined by (5.2.58) to (5.2.62) and (5.2.63) to (5.2.76) are quadratic
programming problems with a single objective function. Therefore, BAodopr » BAdepn (1= 1,2,...,m),
fg(?ti)uptz (i=m+1, m+2,...,m), @(xj)opl2 (G=1,2,...,k)and B(X)opr G=X;+1,ky+2, ..., n) can be

obtained by solving submodel (5.2.58) to (5.2.62), and E(Jx.u),,pr2 ,E(Ai)optz (i=1,2,....,m) @(li)opa (i=



m o+l m+2,..., m), B(x) g G=1.2..... k) and B(x)),, ( =k +1. k;+2,. .., n) can be obtained by

solving submodel (5.2.63) to (5.2.76). Thus, from Definition 3.1.1 and Corollary 5.2.1, we have:

B(h)ogs = [BA )00+ B 00l i=0,1.....m, (5.2.77)
B(x)opz = [ R(X)gp0 G(xj)opa], j=1.2,....n (5.2.78)
Remark 52.8. According to Remark 5.2.4 and Corollary 5.2.2, ®(f),,, corresponds to #(w),, and can be
calculated as follows:
k n
g(f)aplz = z E(Cj)g(xj)opa + z E(Cj)@(xj)opg . (5.2.79)
=1 joky+l
Similarly, 8(f), , corresponds to &(W),pi2 and can be calculated as follows:
k, n
Q(f)"l"2 = E Q(cj)Q(xj)opLZ + 2 Q(Cj)g(xj)upa . (5.2.80)
=1 ey +1

Thus we have &0, = [ (D0 @(DDFQ l.

Remark 5.2.9. The solution to the crisp quadratic programming problems can be obtained through the use of
existing commercial software {¢.g. LINDO Software 1988). It is known that if the Hessian matrix is positive
definite or positive semi-definite, the global minimum can be found. In this type of problem, the Hessian mairix

is always positive semi-definite (Hanley 1976: Hillier and Lieberman 1986},

(3) Interpretation of the GFQP Solution

The GFQP approach will generate solutions for decision variables B(x;) ¥ j, system objective function

oplt2

value ®(f),,; . and the relevant control variables ®(A;) ¥ i. The solutions can be directly applied to decision

optd *
making, with the values potentially being adjusted within their solution intervals to generate decision

alternatives, The ®(f) solution corresponds to ®(xj) such that the adjustment of the decision variable values

apt *
within their solution intervals will lead to a variation of the system objective function value within its

corresponding solution interval. The ®(R;} solutions illustrate the membership grades of satisfaction on the

generated grey solutions for the system objective (when i = ) and constraint i (wheni=1.2...., m).



The following is a simplified example problem to illustrate the GFQP modelling approach. First, we sct 2

GLP problem:
max ®(f) = [50, 60] ®(x;) - {70, 90] B(x,).
S.t. f4, 6] ®(xy) + &(x,;) <[150, 200),

16 ®(xy) + 5. 71 ®(x,) < {280, 360],
&(x)) + (3. 4] ®(xy) <[90, 110],

(1, 2] ®(x;) - 10 ®(xy) < -0.5,

®(x) 20, j=1,2.

The solutions of the GLP model are: (X )op = (164, 21.5], ®O(x2)ope = {220, 3.341, und B(Nop = (522, 1138).

The above problem can also be formulated as a GFLP model as follows:

max ®(A),

s.t. 50. 60] @(x,) - (70, 90] ®(x3) - ®(R) [B(Dopy ~R{(opt] 2 RO
(4, 6] ®(x)) + B(xy) < 150 + [1 - ®(A)] [200 - 150],
16 B(x)) + [3, 7] ®(x,) <280 + [1 - @(A)] [360 - 280].
O(x;) + (3, 4] @(x5) <90 + [1 - ®(A)] [110 - 90},
{1,2] ®(xy) - 10 &(x,) < -0.5,
0=®x) <1,
®(x;)20, j=1.2.

Solving this GFLP model by the algorithm presented in Section 5.1.3. we have: B (X )opt = 19.0, B(x,)

optl =

(195, 3.86), @(A)op = [0.134, 0.522], and B(Dopu = (603, 1006].

As a comparison, we can aiso formulate a GFQP model for the same problem by incorporating the concept

of FQP within the GFLP framework as follows:
3
min  ®Q) + I 8k
i=l

st (50,601 ®(xy) - [70,90] ®(xy) - [1 - B(A) [B(Daps - R{Dopd 2 R(D)epe.
[4, 6] B(x)) + B(x2) < 150 + [1 - ®(A,)] [200 - 150)72,
16 ®(xy) + [5. 7] ®(x;) <280 + [1 - ®(A,)] (360 - 280}/2,
B(x;) +[3, 4] @(x2) <90 + 1 - @(A,)] [110 - 90)12,
[1.2] ®(x,) - 10 ®(xy) £-0.5,
0£®(0) <1,
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13 <1, i=1,23,

D(x;) 20, j=1,2.
Solving the GFQP model by the previously discussed approach, we have: @(x)op2 = 21.2, &(x2)pz = [2.16,
4.28], @(Ag)opz = {0034, 0.755], @(A)gpiz = 0, B(Aa)epz = 0, @(Aa)gpa = 0. and @(f) g2 = [673. 1117].

The resuits indicate that differences exist between the GFLP and GFQP solutions. The ®{(f} solution
obtained from the GFQP model has a higher value and lower grey degree (®q(f)opz = 895.0 with a grey degree
of 49.6%) compared with the GFLP solution (®,(f)op = 805.5 with a grey degree of 49.8%), which
demonstrates that an improved solution is obtained from the GFQP approach. The ®@(A;) solutions from the

GFQP model represent the membership grades of satisfaction on the generated grey solutions for the system

objective (when i = 0) and constraint i (wheni= 1, 2,..., m). A lower ®(IA), ., value represents a higher

opt
degree of fulfilling the fuzzy objective or constraints, ie.. ®{A;l) should be 1 if the system abjective (or
constraint i) is strongly violated, 0 if it is fully satisfied, and between 0 and 1 if it is satisfied partly with different
degrees. Thus, the solutions of ®(Ag)gpe = [0.034, 0.755) and &(A,)opn = B(Azdoprz = ®(A3)opz = 0 demonsirate
that the fuzzy constraints are fully satisfied in the GFQP solutions, while the fuzzy objective is partly satisfied.

Generally, this simplified example has illustrated the GFQP soluticn process and its potential role in improving

the solution quality for linear programming problems with uncertain inputs.

5.2.4. Application to Municipal Solid Waste Management Planning
(1) Qverview of the Hypothetical Problem

A hypothetical problem is developed for illustrating the GFQP modelling approach based on representative
cost and technical data from the solid waste management literature. The study region is assumed to include three
munictpalities. as shown in Figure 5.2.1. Three time periods are considered (each has an interval of five years).
Over the 15 year planning horizon, an existing landfill and a WTE facility are available to serve the MSW
disposal needs in the region. The landfill has an existing capacity of [2.63, 3.10] x 10¢ t, and the WTE facility has
a capacity of (500, 600] t/d. The WTE facility generates residues of {20, 40]% (on a mass basis) of the incoming

waste streams, and its revenue from energy sale is {15, 25] $/t combusted.
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@ Municipality 2
@ Municipality 3

A WTE facility

' Rl N

@
Municipality 1

e municipal solid waste
------ > residue from WTE facility

Figure 5.2.1 Hypothetical study municipalities and waste management facilities



Table 5.2.1 shows waste generation values for the three municipalities, operating costs of the two facilities.
and transportation costs for waste flows between the municipalities and facilities in the three time periods. It is
indicated that the waste generation rates and the costs of waste transportation/treatment vary temporally and
spatially. Therefore, the problem under consideration is how to effectively allocate waste flows from the three
municipalities to suitable waste management facilities to minimize system cost. Since the model stipulations
(waste generation rates, and landfill/incineration capacities) have independent uncertain characteristics, the
GFQP method is considered to be a feasible approach for this problem. such that system uncertainties can be
effectively reflected.

The problem will be first formulated and sclved through a GFQP model, and then the GFQP solut_ion will be

compared with FQP/GFLP solutions to show the potential advantages of the developed methodology.

(2) GEQP Modelling Formulation

In the MSW management system under consideration, the grey decision variables represent waste flows
from inunicipalities to waste management facilities over the time horizon. The objective is to achieve the
minimum cost flow allocation, and the constraints include all relationships between the decision variables and
the waste generation/management conditions. Thus, a GLP model for this type of waste flow allocation problem
can be formulated as shown in Section 4.1.4 (model (4.1.63) to (4.1.67)). Converting the GLP model to a GFQP

formulation by the previously discussed approach, we have:

13

min @)+ T QA% (5.2.81)
L=i s
2 3 3
st. ¥ ¥ kz Ly { (x5 [®(TRiz) + ®(OPy)] + (x50 FE [ ®(FTy) +
=l jml  ka=l
®(OP1)] - @(x250) @RE) } € EAB)opus + B(Ro) [ BHDoput - Bugut 1, (5.2.82)

[system objective constraint]:
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Tabie 5.2.1  Data for waste generation, transportation and treatment/disposal

Time period
k=1 k=2 k=3
Waste generation @(WGy) (t/d):
Municipality 1 (j=1) (260, 340] [310, 390] [360, 440)
Maunicipality 2 (j=2) [160, 240] [185, 265] (210, 290]
Municipality 3 = 3) [260, 340] (260, 340) (310, 390]
Cost of transportation to landfill ®(TRy) (/t):
Municipality 1 j=1) [12.1, 16.1] [13.3,17.7] [14.6, 19.5]
Municipality 2 (j = 2) [10.5, 14.0 1.5, 15.4] (12.8, 16.9
Municipality 3 (j = 3) [12.7. 17.0] [14.0, 18.7] {15.4,20.6]
Cost of transportation to WTE facility @(TRqy;) (3/t):
Municipality 1 (j= 1) 9.6, 12.8] [10.6, 14.1] [11.7,15.9]
Municipality 2 (j = 2) [10.1, 13.4] [11.1, 14.7) [12.2,16.2]
Municipality 3 (j = 3) [8.8,11.7] 9.7, 12.8] (10.6, 14.0]
Qperating cost ®(OPy) (8/1):
Landfill (i=1) [30,45] (40, 60] [50, 801
WTE Facility (i=2) [35,73] (60, 851 [65,95]
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where:

33

Z 2 L [®(x50 + B(xap) FE ]S &(TL) + (1 - @(A,)] (B(TL) - R(TLY)/2,

j=l k=l

[landfill capacity constraint];

3
%, ®(xj0) SB(TE) + [1 - 8(AL)] [B(TE) - (TE)]/2, v k,

=1

where @A) = ®(Aa). when k=1,
®(As), when k=2,
@), when k=3,

[WTE facility capacity constraints];

2
2 ®(xig) = WG} + [1- ®(AL)] [ BWGy) - R(WG;)2

iml

where @(AL) = ®(As), when j=1, k=1,
®(As), when j=1, k=2,
S(A). when j=1, k=3
S(As). when j=2, k=1
®(hs). when j=2. k=2
QA0 when j=12, k=3
(1), when j=3, k=1
(A1), when j=3, k=2
@(A;5), when j=3. k=3,

[waste disposal demand constraints];

0<®) <1,
-l<®@Rp €1, L=1.2...., 13,
®(xiﬁ<) 20, v i.j. k.

{technical constraints);

v ik,
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(5.2.83)

(5.2.84)

(5.2.84a)
(5.2.34v)
(5.2.84¢)

(5.2.85)

{5.2.85a)
(5.2.85b)
(5.2.85¢c)
(5.2.85d)
(5.2.85e)
(5.2.850)
(5.2.852)
(5.2.85h)
(5.2.831}

(5.2.86)
(3.2.87)

(5.2.38)

FE = residue flow rate from the WTE facility to the landfill (% of incoming mass to the WTE facility);

i = type of waste management facility, i = 1, 2, witere i = 1 for the landfill, and 2 for the WTE facility;

j =name of municipality, j = 1, 2, 3 (Figure 4.1.1);

Kk =time period k=1,2,3;

L = name of consmaint, L =0, 1, ..., 13;



Ly = length of time period k (day):

®(fopu = GLP solution of system objective function value (S):

®(FTy) = transportation cost for "WTE facility ---> landfill " residue fow during period k (S/t):
®(OPy) = operating cost of facility i during period k (S/);

®(RE,) = revenue from the WTE facility during period k (5/1):;

®(TE) = capacity of the WTE facility (t/d);

®(TL) = capacity of the landfill (t);

®(TRypo = transportation cost for "municipality § ---> facility i" waste flow during period k (3/0):
@(WG;o = waste generation rate in municipality j during period k (t/d);

®(x;) = waste flow from municipality j to facility i during period k (t/d);

®(AL) = control decision variable corresponding to the membership grade of satisfaction on the gencrated

(3) GEQP Solutionsg

Table 5.2.2 contains the solutions obtained through the GFQP model. It is indicated that the solutions of
®(A,) are different from each other, and can be either negative or positive (-1 € ®(X,) < 1), which means that
some edges may move outward while some may move inward, The fluctuations of the ®(A;) solutions
demonstrate different degrees to which the ®(X) solutions fulfill the fuzzy objective or constraints. According 10
GFQP model (5.2.81) to (5.2.88), the lower the @(IA, 1) value for constraint L (or system objective when L = 0),
the higher the degree of satisfying the constraint (or objective), L=0, 1, ..., 13. Thus, the results of B(Ay) =
[0.12, 0.80] and ®(A,) = [-0.6, O] demonstrate that fuzzy objective (5.2.82) and fuzzy constraint (5.2.83) may
only be partly satisfied by the ®(X) solution, while the results of ®@(A,) = @(A;) = 0 mean that constraints
(5.2.84a) and (5.2.84b) can be fully satisfied. The other ®(A,) solutions (@(3,) to ®(A,,)) are also low @M<
0.21.L=4,5,..., 13), which indicates that the relevant fuzzy constraints (5.2.84c) and (5.2.85a) tor .('5.?..85i)
can also be well satisfied by the generated GFQP solutions. T ne system cost sclution is &(f) = $ [260, 456] x 106
with its upper bound solution () corresponding to the (A1) values €(IA,1) to R(I ) are all close to

zero), and the lower bound solution &(f) corresponding to the (1A, ) values,



Table 5.2.2 Solutions obtained through a GFQP model
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Symbol Facility Municipality  Period Solution
Decision variable (t/d):
@(x111) landfill 1 1 0
B(x112) landfill 1 2 0
®(X1 13) landfill 1 3 0
®(1121) landfill 2 1 [45, 53]
®(xy22) landfill 2 2 (217, 225]
B(x123) landfill 2 3 [242, 250]
®(x131) landfill 3 1 [292, 300]
(x5 landfiit 3 2 [292, 300]
®(x33) landfill 3 3 {291, 299]
B(x317) WTE facility 1 1 {297, 3003
B(X210) WTE facility i 2 (347, 350]
B(x;13) WTE facility 1 3 {397, 400]
®(%22,) WTE facility 2 1 147
D(x227) WTE facility 2 2 0
®(x423) WTE facility 2 3 0
®(xy31) WTE facility 3 1 0
(x137) WTE facility 3 2 0
B(x331) WTE facility 3 3 51
®(\,) Values:

®(hy) =10.12,0.80] B(h) =[-0.6,0] @A) =0

®(A;) =0 @@y =[-0.002, 0] ®(As) =[0.007,0.083]

®(Ag) = [0.008. 0.084]
®(\g) = [0.009, 0.203]
®(h2) = [0.008, 0.202)

System cost {$10%):

®(A;) =[0.011, 0.085]
@(7\.10) = [0011, 0.203]
®(A13) = [0.011, 0204)]

®(Ag) =[0.007, 0.201]
B(Ay) = [0.007,0.201]

®(f) = [260.6,456.01




(4} Comparisons with FOP and GFLP Solutions

(#4A) A comparison with FQP solufions

The problem can also be solved through an FQP method by letting all lefthand side grey coefficients in the
GFQP model be equal to their whitened mid-values, which means that only independent stipulation uncertaintics
are reflected through the use of A; and p;. Table 5.2.3 shows the solutions obtained through an FQP model. It is
indicated that, as expected, all the FQP solutions lie within the ranges of the GFQP solutions. The decision
variable solutions are identical to the GFQP solutions for X(f), with solutions of A, 10 A3 being close to zer
and the solution for system cost is $361.4 x 105 with &, = 0.47.

The major problem with the FQP method is that only one set of deterministic solutions is generated, whict,
represents a decision option when all grey coefficients in ®(A) and ®(C) are equal to their whitened mid-values.
Although further sensitivity analyses can be conducted, there may be a multitude of possibilities when muny
input coefficients are uncertain, and every sensitivity analysis run would represent only a single response 10 one
or several parameter variations. In fact, the FQP method is based on an assumption that the uncertain features for
different cost coefficients (or coefficients @(ayj) for constraint i) are dependent upon cach other, and thys cach
constraint can be represented by a fuzzy set. However, these coefficients are related to different decision

variables and may each have very independent uncertain characteristics.

(4B) . th GFLP solui

The problem can also be solved through a GFLP model by the approach discussed in Section 5.1. The
solutions are shown in Table 5.2.4. It is indicated that the GFLP solution of ®() (R(f) = 3{228.7, 504.2] x 108,
®.(f) = 366.5 x 105, and Gd[®(f)] = 75.2%) has a higher whitened mid-value and higher grey degree compared
with the GFQP solution (®(f) = $ {260.6, 456.0] x 105, B(f) = 358.3 x 10°, and Gd[®(D)] = 54.5%). The grey
degrees of the majority of the GFLP decision variable solutions are also higher than those of the GFQP solutions.
The major problem with the GFLP method is that it uses one ®(A) value for all constraints by assuming

dependence between the constraint uncertainties, which may make some constraints not well satisficd and some

over-satisfied since the assumption may not be true in many practical problems,
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Table 5.2.3 Solutiors obtained through a FQP modetl

Symbol Facility Municipality Period Solution

Decision variable (t/d):

In landfill 1 1 0

X112 landﬁll 1 2 0

X113 landfill 1 3 0

X121 1andfill 2 1 53

Xim landfill 2 2 225

X273 landfill 2 3 250

X131 landfill 3 i 300

X132 Iandfill 3 2 300

X33 landfili 3 3 299

X211 WIE facxhty 1 1 300

X212 WTE facxhty 1 2 350

X213 WTE facility 1 3 400

X221 WTTE facility 2 1 147

X3z WTIE facility 2 2 0

X923 WTE facility 2 3 0

X231 WTE facility 3 1 0

Xa:2 WTE facility 3 2 0

X213 WTE facility 3 3 51

A; values:
Ao =047 M o= Ay =-0.002
As =0.007 A =0008 A =0.011 Ao = 0.009
lw = 0.011 ln =0.007 ;\.13 = 0008

System Cost (310%): 3614
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Table 5.2.4 Solutions obtained through a GFLP model

Symbol Facility Municipality Period Solution
Decision variable (t/d):

&(x111) landfii 1 1 [261, 334]
@(Xl u) landfill 1 2 0

(x113) landfill 1 3 [0, 29]
®(x121) landfill 2 1 0

R(x;) landfill 2 2 [96, 160]
@(x121) landfill 2 3 211, 284]
@(x131) Iandfill 3 1 {46,73]
@(xy32) landfill 3 2 261, 324]
B (x33) landfill 3 3 [271, 296]
®(xz11) WIE facility 1 1 0

®(X212) WTE facility 1 2 [311, 384]
®(x33) WTE facility 1 3 [361, 403]
®(x222) WTE facility 2 2 {90, 99]
®(X729) WTE facility 2 3 0

®(x231) WIE facility 3 1 [214, 258]
®(x232) WTE faCl.hty 3 2 [0., 10]
B(xa33) WTE facility 3 3 [40, 87]
®(A) value: [0.08, 0.99]

Syster cost ($10%):

®(f) = [228.7,504.2]
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5.2.5. Concluding Remarks

A grey fuzzy quadratic programming method has been developed and applied to MSW management
planning. It improves upon existing GFLP and FQP methods by incorporating them within a general
optimization framework to better reflect system uncertainties and thus provide more satisfactory solutions. From
a GFLP point of view, the GFQP model is formulated by introducing the concept of FQP iniv the GFLP
framework to deal with independent stipulation uncertainties. The GFQP output consists of two scts of FQP
solutions corresponding to the upper and lower bounds of the system objective function value. The GFQP
approach is useful for effectively reflecting independent stipulation uncertainties, and thus better satisfying
model objective/constraints and providing solutions with higher certainty and lower system cost.

From an FQP point of view, the FQP method can only deal with independent stipulation uncertainties (rather
than the independent uncertainties of lefthand side coefficients), and the required tolerance interval for system
objective may be difficult to determine {Zimmermann 1984; Cui and Blockley 1990). Therefore, concepts of
grey systems and GFLP can be introduced into the FQP framework to reflect the uncertainties of lefthand side
coefficients, and a GLP model can be first solved to provide preliminary results of the tolerance interval for the
system objective. Thus, a GFQP model can be formulated, where the independent uncertain features of not only
the stipulations but also the lefthand side coefficients are effectively reflected. Figure 5.2.2 shows a flow chart of
the GFQP approach,

The GFQP method was applied to a hypothetical case study of waste flow allocation planning under
uncertainty, with the input model stipulations fluctuating within wide intervals and having independent uncertain
characteristics. The results indicate that reasonable solutions have been generated. Compared with FQP and
GFLP approaches, the GFQP method can better reflect system uncertainties and provide more realistic solutions

(with lower grey degrees and lower system cost),
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l [ |
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Figure 5.2.2  Flow chart of the GFQP optimization approach
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5.3. GREY FUZZY INTEGER PROGRAMMING AND ITS APPLICATION

53.1. Introduction

In Section 4.3, a grey integer programming (GIP) method for capacity expansion planning under
uncertainty was presented and applied to 2 MSW management planning problem. A GIP model was formuiated
by introducing concepts of grey systems and grey decisions into a mixed integer linear programming (MILP)
framework. It allows uncertainties to be directly communicated into the optimization processes and resulting
solutions, such that feasible decision alternatives can be genecrated through the solution interpretation and
analysis. The approach also does not lead to more complicated intermediate models. and thus has lower
computational requirements. However, when the model stipulations are highly uncertain (i.e., the stipulation
values fluctuate within wide intervals), solutions with high grey degrees may be generated if the GIP method is
used, which may be of limited practical use to decision makers.

Therefore, one potential approach for better accounting for uncertainties in an intcger programming
problem is to more carefully consider the uncertain characteristics of the stipulations. Thus, concepts of grey
systems/grey decisions and fuzzy sets/fuzzy decisions can be incorporated within a MILP framework. which
leads to a grey fuzzy integer programming (GFIP) model. The GFIP model is formulated by first using a GIP
submodel for determining the discrete variable solutions, and then using a grey fuzzy linear programming
(GFLP) submodel, which can more effectively reflect stipulation uncertaintics, for determining the continuous
variable solutions for fixed discrete variable values. It is expected that the GFIP approach can provide solutions
with higher certainty and better applicability compared with the GIP method.

The objective of this section is to develop the GFIP method and apply it to a hypothetical case study of
planning for waste management facility expansion/utilization, with the input model stipulations fluctuating
within wide intervals but the related membership information for admissible violations of system
objective/constraints being known. Uncertain factors relating to various environmental, economic, and resource
objectives/restrictions will be considered and incorporated within the model. Grey solutions for discrete and

continuous variables will be interpreted to generate useful decision alternatives. A comparison between the
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GFIP and GIP solutions for the same problem will also be provided to illustrate the potential advantages of the

developed methedology.

5.3.2. Formulation of the GFIP ModeHing Approach

Definition 5.3.1. A GFIP madel is formulated by incorporating the concepts of GIP and GFLP within a general
optimization framework, where a GIP submodel is first formulated for determining the discrete variable
solutions, and then a GFLP submodel, which can more effectively reflect stipulation uncertainties, is used for
determiining the continuous variable solutions for fixed discrete variable values.

The GIP submodel is formulated by introducing the concepts of grey systems and grey decisions into an

MILP modelling framework as follows (Definition 4.3.3):

max  ®(f) = &(C) ®X) (8.3.1)
s.L. B(A) (X) s &(B), (5.3.2)
®(xj) = grey continuous variable, ®(xj) e ®@X), j=1,2,...,p{p<n), (53.3)
®(xj) = grey discrete variable, ®(xj) e ®X), j=p+l.p+2,..., n, (5.3.4)

®(xj) 20, j=12.....n, {5.3.5)

where ®(A) € ®R)™*", ®(B) € ®R)™™', and ®(C) € ®R)' *" (®(R) denotes a set of grey numbers).

According to Theorem 4.3.1, the solutions for the above GIP submodel will be:

B(X) ey = (B 1 j= 12,000}, (53.6)

B )gpn = [B(X)op1 + BX)puls Vi, (53.7)

®(Dgpet = (ROt + BBl (5.3.8)
where:

B(X;)op = ETEY continuous variable solution, j=1,2,...,p(p<n);

@(x;),p = grey discrete variable solution, j = p+1,p+2,...,n.

Remark 5.3.1. When the model stipulations are highly uncertain, model (5.3.1) to (5.3.5) may generate grey

solutions with high grey degrees. Obviously, the higher the grey degrees of the solutions, the lower the
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effectiveness and usefulness of the solutions. When the solutions have very high grey degrees, they may be of
limited use to deci.ion makers.

One potential approach to decrease the solution uncertainties and thus increase the system effectiveness is
to more carefuily consider the uncertajr; characteristics of the stipulations. Since a GFLP model can effectively
communicate membership information for admissible violations of system objective and constraints into its
optimization framework, it can be incorporated within the GIP framework to better reflect the stipulation
uncertainties, such that a GFIP model can be formulated and solutions with lower grey degrees and improved

applicability are expected to be generated.

Definition 5.3.2. A GFLP submodel within a GFIP framework can be defined as follows:

max  ®(A), (5.3.9)
S.L. 3O &X)s £ +[1-ON)]If, - £, (5.3.10)
®(A) ©(X) < (B) + [1- ®(N)] [B(B) - (B)], (53.11)

®(xj) = grey continuous variable, ®(xj) e®X), j=L2.....p(p<n), (5.3.12)

®(xj.) = grey discrete variable, ®(xj) € @(X), j=p+l.p+2,....n, {5.3.13)
®(x}.)20, i=L2....p (5.3.14)
®(xj) =Q(X) - i=prLpH2, L n, (5.3.15)
0<®Q) <1, (5.3.16)

where:

fo = most desirable system objective value:
f, = least desirable system objective value;
®(xj)0ptl = grey discrete variable solutions from GIP submodel (5.3.1) to (5.3.5), j=p+1,p+2, ....n:

®(A) = control decision variable corresponding to the degree (membership grade) to which ®(X) solution

fulfills the fuzzy objective or constraints;

Remark 5.3.2. To determine the tolerance interval for the system objective (i.c., fo and f1) in the above GFLP

submodel, the following GLP model should be solved before solving submodel (5.3.9) to (5.3.16):
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max  &(f) = (C) &X), (5.3.17)
s.t. ®(A) @X) <2(B), (5.3.18)
®(ij = grey continious variable, ®(xj) e ®X), j=12,....pp<m, (5.3.19)

®(xj) = grey discrete variable, ®(ij e ®X), j=p+l,p+2,...,1n, (5.3.20)
®("j) 20, j=12,...,p {5.3.21)
®(x) = ®(xj)opll , j=p+l.p+2... .0, (5.3.22)

According to Theorem 4,1.1, the GLP solutions are as follows:

B(X) gz = [ BXgpez » (%)l J=1.2,...,p, (3.3.23)

@Dz = (B(D 2 » DOl (5.3.24)

Thus, we have: fj= &(0),,, . and f, = D), .

Remark 5.3.3. According to Corollary 5.1.1 and Remark 5.1.8, the GFLP submodel will have grey solutions as

follows:
(%) = [ RAx)ops» BE)gpal J=1,2,...,D (53.25)
BM)gps = [ BNz » BA)p3), (53.26)
8By = [ BB pes Bl ' (5.3.27)

Remark 53.4. From (5.3.7), (5.3.25), and (5.3.27), the optimal solution for the overall GFIP model will be:

discrete decision variable solutions = ®(x)),,; » j=p+1,p+2,...,1, (5.3.28)
continuous decision variable solutions = ®(xj)up,3 Li=L2,...,p (5.3.29)
optimal objective function value = B(Dopi3 - (5.3.30)

5.3.3. Method of Solution

Remark 53.5. A combined solution approach is proposed for the GFIP model. The GIP submodel [(5.3.1) to

(5.3.5)] is first solved through the solution algorithm presented in Section 4.3 to provide discrete variable

solutions, ®(x), il j=p+Lp+2,...,n. A GLP model can then be formulated for the same problem by letting

all discrete variables be equal to the GIP solutions, which will provide the aspiration level for the system
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objective in the first line constraint of GFLP submodel (5.3.9) to (5.3.16). Thus. GFLP submodel (5.3.9) to
(5.3.16) can be formulated by letting all discrete variables be equal to the GIP solutions. and the aspiration level

of the system objective be obtained from the GLP sclutions of &(f). All continuous variables can thus be further

optimized since the GFLP submodel allows a better reflection of highly uncertain model stipulations and may

lead to ®(x)) .5, ¥ j, with lower grey degrees and ®(f),,,, with a higher value (higher system benefit). The
solution algorithm for the GFLP submodel was presented in Section 5.1. Consequently, the GFIP solutions will

ve composed of ontputs from both the GIP and GFLP submodels.

5.34. Application to Municipal Solid Waste Management Planning

(1) Qverview of the Hypothetical Problem

The hypothetical problem under consideration is the same as that in Section 4.3, where issues of waste
management facility expansion/utilization planning under uncertainty were studied. From Section 4.3, it is
indicated that the values of the model stipulations (waste generation rates. and landfill/incineration capacitics)
fluctuate within wide intervals, which led to GIP solutions with high grey degrees. Consequently, it is expected
that application of the GFIP approach to the same problem may provide solutions with improved quality based
on its advantage in better reflecting stipulation uncertainties.

The problem will be first formulated and solved through a GFIP model, and then the GFIP solutions will be
compared with GIP solutions for the same problem to show the potentizl advantages of the developed

methodology.

(2) GFIP Modelling Formulation

In the MSW management system under consideration, the grey decision variables include two categories:
continuous and binary. The continuous variables represent "municipality ---> facility” waste flows over the time
horizon, and the binary variables represent facility expansion options. The objective is to achieve optimal
planning of facility expansion and relevant MSW flow allocation with minimum system cost. The constraints

include all relationships between the decision variables and the waste generation/management conditions. Thus,
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a GFIP model for this capacity planning problem, which is composed of a GIP submodel and a GFLP submodel,

can be formulated as follows.

[Step 1]: Formulgtion of the GIP submodel

3 303 3
minimize ®(f) = ZOFLCHIS(y) + I I X FiCim @) +
kwl i=2 mal k=l
33 3
+ X 2 X L &Cy Bxip), (5.3.31)
iml j=l k=l
subject to:
3K 303 % K
O Le®xy) + Zz 2 I L®xpFE < I®ALC)®Hm) + SLC).
jml kal =2 jul kel k=i
k=123, (5.3.32)
[landfill capacity constraints];
3 3K
LO(p) € X X ATC,, ®(zy) +&(TC), i=2,3:k =123, (3.3.33)
jut m=l ksl
[WTE facility capacity constraints];
3
2 ®(xijk) = Wij » v j. k, (5334)
inl
[waste disposal demand constraints];
®(x;5) 2 0, v ik (5.3.33)
[non-negativity consiraints];
@y sl
20,
= integer, Vk, (5.3.36)
S(Zime) < 1,
20,
=integer,i=2,3, Vm,k, (5.3.37)
[non-negativity and binary constraints]:
;
T®Zm) €1, i=2.3, Vk (5.3.38)

mml

[only one WTE facility expansion may occur in any given time period];



3
2 ®F) <1, (5.3.39)
k=]

[landfill expansion may only be considered once];
where:
FE = residue flow rate from the WTE facility to the landfill (% of incoming mass to the WTE facility);
FTCioy = capital cost of expanding WTE facility i by option m in pericdk (8),i=2,3;
1= type of waste management facility, i = 1,2, where i = 1 for the landfill, and 2 for the WTE facility;
Jj =name of municipality, j = 1, 2, 3 (Figure 4.3.1);
k =time pericd, k=1, 2, 3;
Ly = length of time period k (day);
m = name of expansion option for the WTE facilities, m = 1, 2, 3;
@(Cyy) = total cost of waste management for waste flow from municipality j to facility i in period k (3/1),

&(Cy)
&(Cy)

®(TRy) + ®(OPy), wheni=1, V j,k,
®(TRy) + ®(OPy) + FE[®(FT,) + ®(OP)] - ®REy), wheni=2,3, Vj.k:

I

It

@(FLCy) = capital cost of landfill expansion in period k (3);

@(FT}) = transportation cost for waste flow from WTE facility i to the landfill during period k (8/1),i=2,3:
®(LC) = existing landfill capacity (t);

®(OPy) = operating cost of facility i during period k ($/t);

®RE,} = revenue from the WTE facilities during period k (3/);

®(TC)) = existing capacity of WTE facility i (t/d),i=2,3;

(TR} = transportation cost for waste flow from municipality j to facility i during period k ($/1);

®(WGy) = waste generation rate in municipality j during period k (t/d);

®(x;) = waste flow from municipality j to facility i during period k (t/d);

@(yw) = binary decision variable for landfill expansion at the start of period k:

®(Zimy) = binary decision variable for WTE facility i with expansion option m at the start of period k, i = 2, 3;
@(ALC) = amount of capacity expansion for the landfill (t);

ATC;,, = amount of capacity expansion option m for WTE facility i at the start of period k (t/d), i = 2, 3.



[Step 2]: Formulation of the GFLP submodel

The GFLP submodel is formulated by the following procedures: firstly, letting afl discrete variabies in GJP
submodel (5.3.31) to (5.3.39) be equal to the GIP solutions, and thus generating a new GLP problem; secondly,
solving the generated GLP problem to provide the tolerance interval for the system objective which is needed in
the GFLP submodel; and thirdly, incorporating the concepts of fuzzy decisions and FLP within the GLP

framework to better reflect the stipulation uncertainties. Thus, the GFLP submodel can be formulated as

follows:
maximize ®(A), (5.3.40)
subject to:
3 3 3
}Zl z E:Lk B(Cid Bxipd < BlDopz + [1 - O] [B(Dope - ROl -
il el k=i
3 i 3 3
- [ kE[@(FLCk) ®(}'k)°[_“1 + zz 2 E FTC:mk ®(Zimk)optl 1. (5341)
- is2 m=] k=1

[system objective constraint];

3ok 303 ¥ K
Z T L @(xy) + L XL Bxy)FE < 2 R(ALC) (Yo + R(LC) +
=l kel i=2 j=l k=1 k=l ‘

iK' "
+ [1-®@A1 ([ EI BALC) B(yidopn + BLC)] - [ kE RALCYE(Ydepu + BAC) 1},
= ]

k=123, (£.3.42)
[landfill capacity constraints];

3 3K
L8 £ X X ATCy Blzindopn + R(TC) +
j=l m=l k=l
I ox
+ [1-®MHI Z X ATC,, Bz + HIC)) -
m=l k=1
i K
-2 X ATC,y B(Zimdopy + &(TC) 1}, i=2.3:Kk=1,2,3, (5.343)
mal k=l

{WTE facility capacity constraints];
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T ®(xi) = RWGz) + [1- 8] [BWGy) - ®WGY). V j.k, (5344
=t
fwaste disposal demand constraints);

®(x;50 20, v i.i.k, (5.3.45)

[non-negativity constraints);

where:
®(E)oprz = solution of the system objective function value obtained through the generated GLP modet:
B(¥idopu = solution of ®(yy) obtained through GIP submodel (5.3.31) to (5.3.39);

B(Zimi o = SOTUtion of ®(z;,) obtained through GIP submodel (5.3.31) to (5.3.39).

(3) GFIP Solutions

Table 5.3.1 contains solutions obtained through the GFIP model. For the grey binary variable solutions, it is
indicated that the landfill should be expanded at the start of period 1 (®(y,) = [1, 1]). but not periods 2 and 3
(®(y2) and @(y;) are both equal to [0, 0]). The amount of expansion is the [1.55, 1.70] x 10 t level input into
the model.

Figures 5.3.1 and 3.3.2 show the optimal expansion schemes for WTE facilities 1 and 2, respectively, Tt is
indicated that WTE facility 1 should be expanded by 200 ¥/d in both periods 1 and 2, and WTE facility 2 should
be expanded by {150. 200] t/d in period 1 and 150 t/d in period 2. The expansion of [150, 200] ¥d in period 1
means that there are two altematives for the expansion, where 150 /d corresponds to &(f), and 200 yd
corresponds to &(f). Thus, when the decision scheme tends toward &(f) under advantageous system conditions.
it may be applicable to expand WTE facility 2 by 150 t/d in both periods 1 and 2; and when the scheme tends
toward &(f) under more demanding conditions, it may be suitable to expand WTE facility 2 by 200 t/d in period
1 and 150 t/d in period 2. No expansion should be carried out in period 3 for either of the facilities since
sufficient capacity has been developed in the previous periods.

For the continuous variable solutions, it is indicated that solutions for the objective function value and

many continuons variables are grey numbers. The solution for the objective function value is ${386.6, 660.0] x
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Table 5.3.1 Solutions obtained through a GFIP model

Symbol Facility Expansion Period Solution
Binary decision variable (1/d):

@(y1) - landfill 1 1 1
®(y2) landfill 1 2 0
@(y3) landfill 1 3 0
®(zy1)  WTE facility 1 I 1 0
®(zy2) WIE facility 1 1 2 0
®(Z213) WTE facility 1 1 3 0
@(2p1) WTE facility 1 2 1 0
(2+7) WTTE facility 1 2 2 0
B(Zy23) WTE facility 1 2 3 0
®(z31) WTE facility 1 3 1 1
®(2237) WTE facility 1 3 2 1
®(zy33)  WTE facility 1 3 3 0
@(z311) WTE facility 2 1 1 0
'®(2312) WTE fac:1hty 2 1 2 0
®(z43) WTE facility 2 1 3 0
@(an) WTIE fac:hty 2 2 1 [1, 0]
®{(zZ327) WTE facility 2 2 2 1
®(z323) WTE facility 2 2 3 0
®(z33)  WTE facility 2 3 1 (0,1}
A(Za3p) WTE facility 2 3 2 0
®(z333) WTE facility 2 3 3 0

Continue to the next page
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Table 5.3.1 (continued) Solutions obtained through a GFIP model

179

Symbol Facility Municipality Period Solution
Continuous decision variable (t/d):

B(x111) landfill 1 1 0

®(X1 12) landfil} 1 2 0

B(x113) langfill 1 3 0

®(X121) landfilt 2 1 263
B(X12) langfilt 2 2 [51, 64]
&(x122) landfill 2 3 {125, 137]
&(xy3) landful 3 1 0

8(x132) landfill 3 2 0

®(x33) landfitl 3 3 0

B(Xq11) WTE facility 1 1 1 [200, 228]
®(X212) WTE faci]ily i 1 2 122
®(X213) WTE facility 1 1 3 150
®(x311) WTE facility 1 2 1 87
®(xan)  WTE facility 1 2 2 {374, 392)
®(X'_;23) WTE f&Clhty 1 2 3 350
@(X’_}_g;) WIE facility 1 3 1 0

®(X23ﬁ WIE fac:hty 1 3 2 0

®(%p33) . WTE facility 1 3 3 0

®(X31[) WTE faci]jty 2 1 1 (1, 2]
B(x312) WTE facility 2 1 2 [104, 134]
®(x313)  WTE facility 2 1 3 [101, 131]
(x331) WTE facility 2 2 1 [26, 56]
(X3) WTE facility 2 2 2 0

®(X323) WTE facility 2 2 3 {1, 19]
B(x33) WTE facility 2 3 1 [301, 331]
B(x33) WTE facility 2 3 2 [326, 356]
@(X333) WTE facility 2 3 3 [376. 406]
®(R) value: {0.38,0.98)

System cost ($109):

®(f) = [386.6, 660.0)
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Figure 5.3.1 Solution of the expansion scheme for WTE facility 1 obtained through the GFIP model
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Figure 5,3.2 Solution of the expansion scheme for WTE facility 2 obtained through the GFIP model
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10° with a grey degree of 52.2%. For the waste flow allocation patterns corresponding to the facility expansion
decisions in the three time periods, the landfill is determined to accept only wastes from municipality 1 due to
its close proximity to the municipality and its capacity limitation, besides residues from the WTE facilities. All
waste flows from municipality 3 are determined to be delivered to WTE facility 2 due to its close proximity to
the facility. WTE facility 2 should also accept part of waste flows from municipality 1. The remaining portions
of the waste flows from municipalities 1 and 2 are determined to be hauled to WTE facility 1.

Generally, it is ind*=ated from the obtained solutions that less flows to the waste management facilities and

lower expansion of WTE facility 2 are determined under the scheme for Q(ang than under that for E(Dupﬂ.
The scheme for &(ﬂopﬁ corresponds to a decision option with the lower bound system cost under the most

advantageous system conditions, and that for @(f)w3 represents an option with the upper bound system cost

under the most demanding condition. Thus, decision alternatives can be generated through adjusting/shifting the

decision variable values within their solution intervals according to projected applicable system conditions.

(4) A Comparison with GIP solutions

The probilem can also be solved through a GIP model, as shown in Section 4.3 (the solutions ar¢ given in
Table 4.3.3). 1t is indicated that, although the dis~rete variable solutions from the GIP model are identical to the
GFIP solutions, the GIP solutions for the continuous variables and objective function value are significantly
different from the GFIP solutions. As a comparison, for waste flows from municipality 2 to the landfill, the GIP
solutions are [263, 271], [51, 72, and [1235, 137] t/d for periods I, 2. and 3, respectively, while the GFIP
solutions (obtained from the GFLP submodel) are 263, [51, 64], and [125, 137] t/d. respectively. The results
demonstrate that the grey degrees of the GFIP solutions are decreased by 3.0%, 11.5%, and 0% for periods 1, 2,
and 3, respectively, compared with those of the GIP solutions. The GFIP solution of @(f) (5[386.6, 660.0] x
10°) also has a lower grey degree (52.2%) than the GIP solution ($[385.8, 690.9] x 10° with a grey degree of

56.7%). Similar improvements can be found in other allocated waste flows (see Tables 4.3.3 and 5.3.1).
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5.3.5. Concluding Remarks

A grey fuzzy integer programming (GFIP) method has been developed and applied to MSW management
planning under uncertainty. It improves upon the grey integer programming method by incorporating both
GFLP and GIP approaches within a general optimization framework. The approach may be particularly useful
when the model stipulations are highly uncertain, which may lead to solutions with high grey degrees if a GIP
method is utilized. Since more information relating to the stipulation uncertainties (membership information)
can be incorporated within the GFIF modelling framework, the proposed approach may provide more realistic
solutions than the GIP method.

The modelling approach has been applied to the same hypothetical MSW management planning problem as
that in Section 4.3. The results indicate that solutions with lower grey degrees and higher system benefits have

been obtained through the GFIP approach (compared with the GIP solutions in Section 4.3).
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54. GREY FUZZY DYNAMIC PROGRAMMING AND ITS APPLICATION

5.4.1. Introduction

In Section 4.4, a grey dynamic programming (GDP) method for capacity expansion planning under
uncertainty was presented. It was formulated by introducing concepts of grey systems and grey decisions into an
ordinary dynamic programming (DP) framework. The GDP approach allows uncertainties to be eifectively
communicated into the optimization process and resulting solutions, such that feasible decision alternatives can
be generated through solution interpretation and analysis. It also did not lead to more complicated intermediate
models, and thus had lower computational requirements. However, when the model parameters (stipulations and
lefthand side coefficients) are highly unc:f.:.rlain (i.e., their values fluctuate within wide intervals), solutions with
high grey degrees may be generated if the GDP method is used, which may be of limited practical use to decision
makers.

Therefore, one potential approach for better accounting for the uncertainties in a dynamic programming
problem is to more carefully consider the uncertain characteristics of the model parameters. Thus. concepts of
fuzzy sets, fuzzy numbers, and fuzzy decisions can be introduced into the GDP framework, and a GFLP
approach can be used for solving the embedded LP problems, which leads to a grey fuzzy dynamic programming
(GFDP) model (Huang et 31.7-1993c). Itis expected that the GFDP approach can better reflect system uncertainties
and provide solutions with higher certainty and better applicability compared with the GDP method.

The objective of this section is to develop the GFDP method and apply it to a hypothetical case study of
planning for waste management facility expansion/utilization, with the input model parameters fluctuating within
wide intervals but the related membership information (or possibilistic information) bein 2 known, Uncertain
factors relating to various environmental, economic, and resource objectives and restrictions will be considered
and incorporated within the model. Thus. grey solutions for discrete and continuous variables will be interpreted
to generate useful decision alternatives. A comparison between the GFDP and GDP solutions for the same

problem will also be provided to illustrate the potential advantages of the developed methodology.
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5.4.2. Formulation of the GFDP Modelling Approach

(1) Fuzzy Numbers and Their Operations

Definition 5.4.1. Let & be a fuzzy subset on an universe of discourse R, i.e., & ¢ F(R). A fuzzy number in R is

a fuzzy subset of R that is convex and normal (Zadeh 1978). Iis a-cut is:

2%=(x | w@2a), xR ael01]

where A is a fuzzy number with an a-cut level. It is a conventional set on R, and can be expressed by & =

[x,", x,] (as shown in Figure 5.4.1), which is an interval of confidence with a level of presumption equal to o

(Dubois and Prade 1980).

Definition 5.4.2. Let .5(“’. Q‘“’ € R be two fuzzy numbers on R, and * be denoted as an operation term with *

(54.1)

(+, - X, +). I min {x * y} and max (x « y} existforx e &% ,ye B,V ae [0, 1], then (8 + B®)isa

fuzzy number in R. Based on the extension principle {Dubois and Prade 1980), we have:

S=8+B = | o (4% 5%,
oe [0,1]

o) (o) (o)
= 4%« B

Definition 5.4.3. The operations for fuzzy numbers & = [x,®, x,®], and B = {y,®, y,™] are as follows:

addition; * =+, and

AR L B x® +y,9 %@ 4y@= g,

subtraction: *=-,and

() o} o a)
A% BT = [xl( ) _yz(u), xztu) _yl(u)]= g .

multiplication; * =x , and
A . 8% = [min {xy), max {xy}] =G,
k8% = 0o k] [0 ™ = x5 = g

where: x,® <x< %, y@gy< y,©,

division (when B” # 0); *=+,and

(5.4.2)

(5.4.3)

(5.4.4)

(5.4.5)

(5.4.6)
(5.4.7)
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Figure 5.4.1 Convex fuzzy sets and fuzzy numbers




A%+ B¥ = [min {x +y},max {x+y}] = §", (5.4.8)

where: x,® €x< x,, y®@<y< y, @ yz0. (5.4.9)

Definition 5.4.4. A fuzzy a-cut vector is a tupel { e«‘“’j | j=1,2,...,n} of fuzzy numbers, and a fuzzy a-cut
matrix is a matrix { %‘a’ij li=12,..., m,j=1,2,...,n} whose elements are fuzzy numbers. The operations

for fuzzy number vectors and matrices are defined to be analogous to those for real vectors and matrices.

Remark 5.4.1. When the input parameters for dynamic programming (DP) problems are highly uncertain (i.e. of
high grey degrees) but with known possibilistic information, fuzzy numbers with different o-cut levels can be
introduced into the DP framework to replace the highly uncertain grey parameters to better reflect system
uncertainties (possibilistic information) (Zadeh 1978).

For the convenience of comparison, a fuzzy number with cut level c, which will be used to replace grey
parameters with high grey degrees, is denoted as ®(a)® in this section. Therefore, when a =0, ®(a)® = ®(a),
and when o > 0. w(a)‘“’ & ®(a). Consequently, according to Definitions 5.4.1 and 5.4.3, and Theorem 4.1.1,
solutions with different "grey degrees” can be generated through the input of fuzzy numbers with different o-cut

levels.

(2) GEDP Formulation

Definition 5.4.5. A GFDP model is formulated by introducing the concepts of fuzzy sets, fuzzy numbers, fuzzy

decisions, and GFLP into a GDP framework. Denoting ®{ fk[®(sk)(“’]} as a2 minimum cumulative cost (inflated
to the end of period k), ¥ o for periods 1 to k, the final objective is to find the minimum & fN[®(sN)(“’]} that
traces back to the existing facility capacity levels at the start of the time horizon. Thus, a forward recursion

GFDP model can be formuiated as follows (Huang et al. 1993c):

B{fH[®(sx 1) =0. (5.4.10)

& {01 [®(5y41) 1} =

= Min { &{g,,i®60, 8¢, ) 11/B + S{f[®EI¥IB }. k=0, 1,....N-1, (5.4.11)
8(y,,)

where:
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®(sy,1)™ = ending state variable under cut leve! o, B (54 1) = @[Ty [O(5,) ™. (¥ )}, where
®{Ty,} is a state ransformation function;
(¥, ) = decision variable under cut level o
® (841 (5™, @i, )™} = function value for stage k+1 when the decision variable is ¥y, )™ and the
starting state variable is ®(s, ) (®(s,)® = ending state of period k under cut level o);
B = single period discount factor, B = 141 + i) = (P/F, 1 period, i). |
Remark 5.4.2. For the MSW management planning problem under consideration, B £, [®(5. )]} can be

represented as ®{f,,[®LC,,)®, &(IC,,,)*™1}, with ®(LC,,,)*™ units of landfill capacity and S(IC,, ) units

of incineration capacity at the end of period k+1, V o ®{ 2 [®(8) ., ®(¥,, )1} can be divided into two

parts: the capital costs for expanding landfill and incineration facilities at the start of period k+1,

(P, [®(ALC,, ), ®(AIC,, )1}, and the optimal operating cost for facility utilization under each expansion
option, ® {h, | [®LCH? + B(ALC,, )™ - @(DL,,)™, ®(ICY™ + B(AIC,, )] Jopt » Where ®(ALC,, )@ and
®(AIC,, )™ are decision variables for landfill and incineration capacity expansions at the start of period k+1,

respectively, and ®(DIk,1)(“’ represents the consumption of the landfill capacity in period k+1. Thus, model

(5.4.10) to (5.4.11) can be specifically formulated for capacity expansion planning problems in a MSW

management system as follows.
The initial condition is:
R{fI®ACYH™, ®UACH ™} =0, (5.4.12)

where:  ®(IC))™ = existing incineration capacity,

®(LC,)™ = existing landfill capacity.
In general, fork=0, 1,..., N-1, we have:
®{f,,[®LC,, )™, BUC,, )™} =

= Min {®(p,,,[®ALC,, ), ®(AIC,, )1/ +
B(LC, )", BAIC, )

+ ®fh, ,[®LCY™ + BALC,, )™ - ®(DI,, )™, ®CH™ + B(AIC,, )]} /B +
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+ ®(f [®LCYH, ®UC,)™}/B). (5.4.13)

Remark 5.4.3. The optimal facility utilization sch=mes under different expansion options are dependent upon
available facility capacities and specific system conditions at each of the stages, and will be typically obtainable
by solving embedded linear programming problems. In the GDP method, GLP models were formulated for the
embedded LP problems. However, when the model parameters (especially stipulations) are highly uncertain,
GLP soiutions with high grey degrees may be generated. Consequently, to better reflect the parameter
uncertainties, a grey fuzzy linear programming (GFLP) model (Huang et al. 1993a) with fuzzy number inputs

can be utilized to determine optimal facility utilization schemes (i.e.. optimal "municipality --> facility"” waste

flow allocation, ®(x)),,,*, ¥ j), and relevant transportation/operation costs ® {h,,[®(s, ), &(y,,,)*1},,, for

opt opt

each expansion option in a given time period. Thus, for a set of given decision variables ®(y,,,)™ and incoming

state variables ®(s, ) for period k+1, ® {h,,, [®(s)®, ®(3,,,)™]},,, Will be dependent upon the particular

Opt
stage, state and decision variables. Letting ® (h,,,[®(5,)®, ®(y,, )]} = ®(h)™ for the purposes of

simplification, we have ®(h)_® = min ®(h)® subject to the following embedded GFLP model (see Section

opt

5.1.1 for a complete description of the GFLP methodology):

max  ®MA), (5.4.14)
st SO X < £+ [1- @MW [£,@- £, (5.4.15)
®(A Q(X)™ < R(BY™ + [1 - ®(R)™] [(B) - &(B)Y™), (5.4.16)
®X)* 20, (5.4.17)
0O <1, (5.4.18)

where:

[, = least desirable system objective value;

f,© = most desirable system objective value;

®(A)® & R™ 7. ®(B)™ & R™*'. ®(C)™ e R'*", and ®(X)™ = {®(x)® | ¥ j}" € R™! (R denotes a
set of fuzzy numbers);

®(A)™ = control decision variable comesponding to the membership grade of satisfaction for the fuzzy

decision (i.e., the degree to which the ®(X)® solution fulfills the fuzzy objective/constraints),
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5.4.3. Method of Solution
{1) Solution of the Embedded GFLP Model

Remark 5.4.4. For the MSW management planning application, the embedded GFLP model can be used o
determine an optimal facility utilization scheme and relevant MSW transportation/treatment costs for each

expansion option in each time period.

Remark 5.4.5. The only difference between the embedded GFLP model here and an ordinary GFLP model
{Section 5.1) is that fuzzy numbers with different a-cut levels have been introduced into the embedded GFLP
framework to replace grey numbers for the input parameters. Since a fuzzy number at a certain o-cut level is
equivalent to a grey number, the solution algorithm for the GFLP model in Section 5.1 is applicable to the
embedded GFLP model. Under different a-cut levels, GFLP solutions with different grey degrees can be

generated correspondingly.

Remark 5.4.6. According to Corollary 5.1.1 and Remarks 3.1.8 and 5.4.5, solutions of the embedded GFLP

model under cut level « are as follows:

B(Mop™ = [ BNg™ s BA), ], (5.4.19)
B(X) o™ = (B} ® 1 j=1,2....,n}, (5.4.20)
B )ope® = [ B(x) ™ B, ), V5, (5.4.21)
()™ = [ 81, ™ . B(M),, 1. (5.4.22)

(2) Solution of the GFDP Model

The function value ®{g,,,[®(s)®, ®(y,,,)™]) in GFDP model (5.4.10) and (5.4.11) can be specificd as

follows:

®{ g1 [BE)®, OF )M} =

= BBy (B, By )™ e+ DD [B6) @, By, )P}, ¥ kel (5.4.23)

For a given set of decision variables ®(y,,,)® and starting state variables ®(s,)*' for period k+1,



B {1, [®(5)™, By, 1)), 20d @{py,, [®(5)?, B(¥,,,)'™} are dependent upon the particular stage. state
and set of decision variables.

For the sake of simplificaticn, letting:

®(2,,.[8(s), 8y, )™} = (@), ¥ k+l, (5.4.24)

B{by, [B(5), By 1)V ope = OM), V k+l, (5.4.25)

® (P (B, By, ™1} = ®(P), Y k+l, (5.4.26)
we have;

() = M)™ + @), (5.4.27)

where ®(h)® can be obtained from the solutions of the embedded GFLP model, and &(p)® can be determined

according to the following theorem,

Theorem 5.4.1. As functions of ®(s,)® and &(y, ;)™ the upper and lower bounds of ®(p)® can be determined
as follows: for u coefficients ®(dj)‘°" G=1,2, ...,u)for ®(sk)(°‘), if v, of them are positive, and u, are
negative, let the former u, coefficients be reordered such that ®(d)® 20 (j=1,2,...,u,), and the latter u,
coefficients be reordered such that &(d)® < 0 (= u;+1, u+2, ..., u); similarly, for v coefficients ®(e)® (j =
L.2,..., V) for ®&(y,, ). if v, of them are positive, and v, are negative, let the former v, coefficients be
reordered such that ®(e)¥20(=1,2...., vy), and the latter v, coefficients be reordered such that ®(e)® <0
(i=vi+L,vi+2, ..., v). Thus, we can develop the following expressions for &(p)* and &(p)®:
|

u Y v
Bp)=3 @(dj)(u)g(sj)(a) > g(dj)(u)a(sj)(a) + Ei E(Cj)(a)@(Yj)(w + X @(ej)(‘”@(yj)(“),
J=

=l B+l jEvirl

(5.4.28)

u, u v, v
R0)= % AGURANT + T A(GUBEHT + I ae)¥a® + T 2Ae)VB©.
= JLTRN | =l vl

(5.4.29)

Proof. Similar to the proof for Theorem 4.4.1.

Remark 5.4.7. For the waste management planning problem under consideration, @(p)® represents the capital

cost of facility expansion under cut level o
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@(p)(a)

i

B{en [BALG,,)), S(AIC,, )Y}

)]

®(CLC,,,, ) + ®(CIC,,, )@, (5.4.30)

where ®(CLC,,; )™ is the capital cost of landfill expansion r under cut level ot in period k+1; ®(CIC, ,, )™ is
the capital cost of WTE facility expansion s under cut level ¢ in period k+1. All elements in equation (5.4.30) are
positive.

According to Definition 3.1.8, we have;

@@ = &0+ &)@, (5.4.31)
B(g)® = B)@ + Bp)®, (5.4.32)
Hengce:
Bt (B8 )™} = [ B{E, (@05, )™ 1LBE,,,[®(s,., )11, (5.4.33)
Bt 1[Bs1e )™} =
= Min (B(g,.,(860®. B, J¥1/B + BEIS()@N/BY. k=0, 1,....N-L. (5.4.34)
®(yk+:)m
&{f,1[8(5,.,) "} =
= Min {®(g,,,[®)®, ¥, )11/B + RUEIOEIVN/BY, k=0, L....,N-1. (5.4.35)
B(F,.,)"

Remark 5.4.8. The upper and lower bounds of the cumulative system cost ®{ £ [®(s,.)®]) for period k (k=1, 2,

-+« N) can be obtained from the above calculations. We can then trace back from k=N tok = 1 to determine
the optimal route corresponding to the upper and lower bounds of the system cost for the entire time horizon. The
optimal route for k = N corresponds to the minimum & £,[®(s,)™1} value, which is connected to a set of
possible routes in period k = N-1. Then the optimal route for period k = N-1 corresponds to the minimum
®{fy.;[®(sy.,)*1} among the routes connected to the optimal ® (£ [®(s)'¥1}, and so on. Thus, the optimal
roﬁte for the entire time horizon can be determined through the connection of the optimal sub-routes for periods
1 to N, and the optimal waste flow allocation patterns in the'ijen‘ods are thys subject to the decisions made and

state variables obtained through the optimal sub-routes.
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(3) Interpratation of the GFDP Solytions

The GFDP model will generate solutions for the decision variables and the relevant objective function value.

The decision variable solutions include two categories: continuous and discrete. The continuous variable

-

solutions ®(xj) (@) {facility utilization schemes obtained from the embodded GFLP models) can be directly

UP‘
applied to decision making, with the variable values potentially being adjusted within their solution intervais to
generate decision alternatives under a given a-cut level for the input fuzzy numbers. The discrete variable

solutions @(y,) @ (capacity expansion schemes obtained from the general GFDP model) provide facility

opt
expansion altemnatives within a multi-period, muiti-facility, and multi-scale context corresponding to minimum
system cost. Thus, the optimal facility expansion schemes for the entire time horizon can be obtained through
connecting the discrete variable solutions for ail stages.

"The ®(f)(‘“ solutions correspond to the decision variable solutions, such that adjusting (or shifting) the

decision vaniable values within their soluton intervals (or between their feasible alternatives) under a given c-cut

leve! may lead to a variation of the system objective value within its corresponding solution interval.

Remark 5.4.9. For fuzzy number a, the interval corresponding to a larger o, is contained within that
corresponding to a smaller o, i.e. 2™ & a®? if a, > ar,. Hence, the admissible domain for the GFDP solution
will decrease with increasing , resulting in smaller intervals (lower grey degrees) for the GFDP solutions, ie..

BX)™ < &X) ™, and /(O™ e &N,

Remark 5.4.10. Different a-cut levels for the input fuzzy numbers reflect not only the possibilistic fevels of the
uncentain information (Zadeh 1978), but also a radeoff between the fuzziness and reliability of the desired model
outputs. A low input ¢ value may lead to fuzzy but reliable outputs, while a high o value may lead to less fuzzy

but also less reliable outputs. Therefore, solutions corresponding to different o-cut levels can be used for

providing more useful information to decision-makers when the model ihputs are very uncertain but their -

possibilistic information is known.
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5.4.4, Application to Municipal Solid Waste Management Planning
(1) Qverview of the Hvpothetical Probiem

The hypothetical problem under consideration is similar to that described in Section 4.4, where issues of
capacity planning for waste management facilities and relevant waste flow allocation under uncertainty were
studied. From Section 4.4, it is indicated that the majority of model parameters (stipulations and lefthand side
coefficients) fluctuated within wide intervals, and led to GDP solutions with high grey degrees since the GDP
approach may not be as effective for problems with highly uncertain parameters. Consequently, study of the
same problem with a more careful consideration of the parameter uncertainties may provide solutions with better
quality, particularly when possibilistic information (membership functions) for the uncertain parameters is
known .

Table 5.4.1 shows the available landfill and incineration capacities, as well as their expansion options and
relevant capital costs. under different o-cut levels. Table 5.4.2 contains waste generation values for the three
municipalities, operating costs of the two waste manage:ﬁént facilities, and uanspomtion costs for waste/residue
flows under different ci-cut levels. It is indicated that the condition when o = 0 is the same as that in Section 4.4,
while the data corresponding to o > 0 (o = 0.25 or & = §.5) have lower grey degrees. According to Remark
3.4.10, higher o values repre.ent less fuzzy but also less reliable information, while lower @ values correspond to
more fuzzy but also mcre reliable information.

Generally, it is indicated that the MSW generation rates and the costs for waste transportation/ireatment vary
temporally and spatially. Therefore, the problems under consideration are how to effectively account for all these
factors and select preferred capacity expansion schemes for the waste management facilities during different time
periods, and how to effectively allocate the relevant waste flows in order to minimize total system cost. Since the
input data are highly uncertain (but with known possibilistic information), the GDP method may not be as
effective in addressing this type of problem. Therefore, the GFDP method is considered to be a feasible approach
for potentially generating more satisfactory solutions (solutions with lower uncertainty and lower system cost).

The problem will be first formulated and solved through a GFDP method, and then the GFDP solutions will
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be compared with GDP solutions to show the potential advantages of the developed methodology.

(2) GFDP Modelling Formulation

In the waste management system under consideration, the municipalities may utilize the landfill and WTE
facility to meet their overall demand for waste disposal. The state variable are defined as a discretized two-
dimensional array including the landfill and WTE facility capacities at the start of each time period before any
facility expansions have occurred (their in-place capacities at time zero are known in this problem). The decision
variables include binary and continuous variables which represent facility expansion options over time and
relevant "municipality --> facility” waste flows, respectively. The decision variable solutions for a time period
will directly influence the capacity level of each facility at the beginning of the next period. Therefore, the state
variable levels at the end of any time period depend solely on the entering state variable and the decisions made
in that period. and are independent of decisions made in the previous periods. The objective is to minimize total
system cost, and the constraints include all the relationships between the state/decision variables and the waste
generation/management conditions. Thus, a forward recursion GFDP model for this capacity planning problem
under a given input c.-cut level can be described as follows.

Assuming that the planning time horizon includes N periods, we can denote ®[fk+1[®(LC.‘¢l‘\f“’,

®(IC,, )™} as a minimum cumulative cost (inflated to the end of period k+1) under cut level o for periods 1 o

k+1 (k=0.1,...,N-1), with ®LC,,,)™ units of landfill capacity and ®(IC,, ) units of incineration capacity

at the start of period k+1. Consequently, the general objective is to find soiuticns with minimum

®{ £, [®ELC)™. ®IC) ™11, which correspond to an optimal expansion policy based on the starting landfill and
incineration capacity levels and the optimal waste flow allocation patterns for different time periods. Thus we
have the following GFDP model formulation,
The initial condition is:
®F,[®LLCY™. SUCH ™) =0. (5.4.36)

Fork=10, 1,2, we have:

®{fk+1[®(LCk+1)(u)' ®(Ick+l)(mn =
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= Min {®(p,,[®ALC,,, )™, S@AIC,,, )™II/B +
- ®(aLe,,, ) eI, )

+ ®{hy [B(TLC,,, ), &(TIC,,, )] bom/B +

+®{EIRLCY™. ®AC,) ™ 1/B).

k=0,1,....N-lir=1,2%s=123,4, (5.4.37)
&(TLC,,,, )™ = ®LCY™ + &(ALC,,, ) - ®(DI,, ), (5.4.38)
®(TIC,,;, ) = ®IC)™ + B(AIC,,, ), (5.4.39)
B(IC)™ + ®(AIC,,)® £ ICpus . (5.4.40)

. ®(ALC,,, ) 20, (5.4.41)
®(AIC,,, )20, (5.4.42)

where:

ICpax = maximum level of incineration capacity;

k = name of time period, k=0, 1,2

N = number of time periods under consideration, N = 3:

r = name of capacity expansion option for the landfill.r = 1, 2;

s = name of capacity expansion option for the WTE facility, s= 1, 2, 3, 4;

B = single period discount factor, § = 1/(1 + i) = (P/F. 1 pericd, i);

®(DIk+[)(°‘) = direct and indirect consumption of the landfill capacity in period k+1;

® (£, [®LC,,))™, ®(C,,)*™1) = cumulative system cost (inflated to the end of period k+1) for periods 1
to k+1;

@by, [&TLC,,, r)(“‘), &(TIC,,;, s)“")] }opt = solution of operating cost under a given expansion scheme (r, 5)
in period k+1 obtained through an embedded GFLP model;

®(ICk+1)(°‘) = incineration capacity at the end of period k+1 (state variable);

®(LC,, )™ = landfill capacity at the end of period k+1 (state variable):

®{ pk+1[®(ALCk+1,,)(a). ®(AICM‘,).(“:}}. = total capital cost of the landfill and WTE facility expansions at

the start of period k+1, @(pm)(a’ =@(CLCy,, ) ®(CIC,,, ,)‘“’, where:



@(CIC,.q, ,)(“’ = capital cost of expanding the WTE facility by option s in period k+1, and
®(CLC,,,, )™ = capital cost of expanding the landfill by option r in period k+1;

®(AIC,,, J(“’ = amount of capacity expansion option s for the WTE facility at the start of period k+1
{decision variable);

®(ALC,,, ) = amount of capacity expansion option r for the landfill at the start of period k+1 (decision
variable).

An embedded GFLP model is utilized to determine (i) the optimal operating cost ®{h, , [®(TLC,,; r)‘m,

®(TIC,,; )™}, . which is dependent upon the particular stage, and the relevant decision variables
®(ALC,,, ) and ®(AIC,,, ) and state variables ®(LC,)™ and ®(IC)™, and (ii) the relevant facility
utilization schemes [® (xj)(“’, V j] for each expansion option at each stage. Thus, for the purpose of

sirnplification, letting:
®(h, [®(TLC,,, )@, ®TIC,, )1} =em®, V¥ krs, (5.4.43)

we have ®(h), ptm = min ®(h)(°" subject to the following embedded GFLP model corresponding to cut level o

maximize Q(A)®, (5.4.44)
subject to:
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T T L @C )@ O )™ € @ +I- 0N £, VYkrs, (5.4.45)

jml jml
[system objective constraint];

3

Le T (80, )® + @ jw)®FE] € 8LCYY + ®QALC,,, ), V¥ ki, (5.4.46)
j=l

[landfill capacity constraints];
k]
Z® (X260} € BUCH !+ &AIC,, ). VK s, (5.4.47)
j=l

[WTE facility capacity constraints];

2
% O 5 01)® = ®WGj )™ VK, (5.4.48)

iml

[waste disposal demand constraints];
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O ;) 20, Vijk (5.4.49)
[non-negativity constraints);
where:
FE = residue flow rate from the WTE facility to the landfill (% of incoming mass to the WTE facility);
i=type of waste management facility, i = 1, 2, where i = 1 for the landfill, and 2 for the WTE facility;
J=municipality, j= 1, 2, 3 (Figure 4.4.1);
L, =length of time period k {day);

®(C;, j,m)“” = total cost of waste management for waste flow from municipality j to facility i during period
k+1 (Sit):

&(C, jxr)™
&(C;. ;)™

It

&(TR; 1)@ + O(OP, . )®, wheni=1Vj k.

(TR; j1rt)® + B(OP, 1 )® + FE [®(F Ty, )™ + (0P, 11} - ®(RE,, )™,
wheni=2,V }, k

]

®(FTy.1}'™ = transportation cost for residue flow from the WTE facility to the landfill during period k+1 (S/t);
®(OP; .)' = operating cost of facility i during period k+1 (S/0);

®(REy,1)™ = revenue from the WTE facility during period k+1 ($/1);

®(TR;,j, 1r1)'® = transportation cost for waste flow from municipality j to facility i during period k+1 ($/1);
(WG, x,1)™™ = waste generation rate in municipality j during period k+1 (¢d);

®(x;, j,x+1)™ = waste flow from municipality j to facility i during period k+1 (t/d):

® (W)™ = control decision variable corresponding to the degree to which the ®(X)® solutions fulfill the

fuzzy objective/constraints.

For use by the GFDP solution process, the following is returned from the GFLP solution:
3

(DL, ) = L, T [®xyjket)® + ®(xz;)®FEL,  V k. (5.4.50)
=l

In addition, @(h)ou™ =L Zi &5 O(C;, i ko)) ® (x; wiept ™. V k. 1, s, are the solutions of optimal waste
transportation/treatment costs under different expansion options (different r and s values) in different time

periods (different k values), and are also returned to the GFDP solution process.



(3) GFDP Solytions
(3A) Facility expansion

The GFDP modeiling results indicate that the discrete variable solutions (for facility expansion planning) do
not vary with the input a-cut level changes. Table 5.4.3 shows the GFDP iterative optimization process and
optimal solutions for the facility expansion planning when o = 0. It is indicated that the landfill should be
expanded at the start of period 1 by an amount of [1.70, 1.90] x 10° t capacity when = 0 (or [1.73, 1.88] x 106 t
when o = 0.25, [1.75, 1.85]1 x 105 t when & = 0.5), which corresponds to a minimum system cost of ${192.0.
406.4] x 105 (the system cost is $[192.3, 410.7] x 106 if the landfill is expanded at the start of pericd 2, and it is
infeasible to expand the landfill at the start of period 3 because the existing landfill capacity is not sufficient for
disposing of even residues from the WTE faciiity in periods 1 and 2).

Figure 5.4.2 shows the optimal expansion schemes for the WTE facility. It is indicated that the WTE facility
should be expanded by an amount of 280 1/d at the start of period 2, and [0, 140] t/d at the start of period 3. Thus,
when the decision scheme tends toward @f) under advantageous system conditions, it may be applicable to
expand the WTE facility only by 280 t/d at the start of period 2 (Route 1.1 - 2.6 - 3.4 (Table 5.4.3a)); and when
the decision scheme tends toward &(f) under more demanding system conditions, it may be applicable to expand
the WTE facility by 280 t/d at the start of period 2 and a further 140 t/d at the start of period 3 (Route 1.1 - 2.6 -

3.3 (Table 5.4.3b)).

(3B) Waste flow allocation

Table 5.4.4 shows the waste flow allocation solutions corresponding to the optimal facility expansion route
during the three time periods under different qi-cut levels. It is indicated that the solutions for the operating costs
and many decision variables are grey numbers,

The landfill is determined to accept most of the direct-haul MSW from municipality 2 because this
municipality is located closest to the facility, Municipality 1 should only consume a very small amount of landfill

capacity and municipality 3 should not directly use the landfill, as they have longer haul distances to the landfill.
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Figure 5.4.2 Solutions for optimal WTE facility expansion obtained through the GFDP model
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The resuits demonstrate that the majority of the landfill capacity is planned for accepting residues from the WTE
facility.

For waste flows to the WTE facility, it is indicated that all three municipalities should directly utilize the
facility, where municipalities 1 and 3 are determined to transport the majority (or all} of their wastes to the WTE
facility since they are located in closer proximity to the facility. The results demonstrate that the variations of

waste generation/management conditions with time may lead to relevant changes in the optimal waste flow

allocation patterns.

When the input a-cut level is increased from 0 to 0.25 or 0.50, the grey degrees of the (%) and B(F)
solutions are Gecreased correspondingly. For example, the solutions for “municipality 1 --> WTE facility" flows
during period 1 are (200, 234] t/d when o = 0, {206, 231] t/¢ when o = 0.25 (grey degree is decreased by 4.2%),
and {212, 227) t/d when @ = 0.5 (grey degree is decreased by 8.8%). The results demonstrate that the variation of
input o-cut levels can affect the grey degrees of the generated continuous variable solutions. Thus, grey solutions
under different input a-cut levels provide useful information regarding the tradeoffs between fuzziness and

reliability for the desired decision schemes (Remark 5 4.10).

(3C) System cost
The solutions of the optimal total system cost are $[192.0, 406.4) x 108 when @ = 0, §[233.3, 382.7] x 106
when o = 0.25 (grey degree is decreased by 23.2%), and $[257.2, 3547} x 108 when a = 0.5 (grey degree is

decreased by 39.8%).

(3D) 8g

The results of the iterative optimization analyses (Table 5.4.3) can also be utilized for generating alternative
decision schemes. Since a variety of landfill capacities remain at the end of the planning horizon corresponding
to different:WTE facility expansion schemes, it may be of significance to consider the effects of the salvage
value of the remaining landfill capacity on the general system cost, which may lead to alternative decision
schemes. Through the analyses of the landfill salvage indices (LSI; values) (Definition 4.4.2) and the decision-

makers' perceived value of a unit of landfill capacity, it is indicated that the alternative decision schemes



corresponding to 8Xf) (for @ = 0) are as follows: when the decision-maker's perceived landfill value is higher
than 21.3 $/t, expanding the WTE facility by 420 t/d at the start of period 2 (Altemative 1) may be a better choice
than the original optimal route; when the decision-maker's perceived landfill value is higher than 45.3 3/t
expanding the WTE facility by 280 and 140 t/d at the starts of periods 2 and 3, respectively (Alternative 2), may
be another reasonable alternative in addition to Alternative 1.

There is only one potential alternative corresponding to 8X(f) (expanding the WTE facility by 420 t/d at the
start of period 2) in addition 10 the original optimal route, which would be of potential interest when the decision-

maker’s perceived landfill value is higher than 11.7 $ft.

(3E) Summary

The GFDP model has been solved through the iterative calculations for optimal facility expansion route over
the entire time horizon and the optimization analyses of relevant waste flow allocation pattemns for each period
under given a-cut levels. The results indicate that the GFDP approach can better reflect system uncertainties and
provide solutions with higher certainty and better applicability compared with the GDP method. Thus, decision
altematives can be generated by adjusting or shifting the decision variable values within their solution intervals
corresponding to different a-cut levels according to projected applicable conditions, which are flexible in
reflecting all possible system condition variations caused by the existence of the input uncertainties. Generally,
lower decision variable values within their solution intervals should be used to obtain lower system cost under
advantageous conditions, and higher decision variable values should be used under more demanding system
conditions. Low a-cut levels correspond to uncertain but reliable solutions, and high a.-cut levels correspond to
less uncertain but also less reliable solutions. Thus, more realistic and applicable decision alternatives can be
obtained through a further analysis of the tradeoffs between "acceptable fuzzy degee" and "desired reliability"

for the model inputs and outputs.

(4) A_Comparison with GDP Solytions

The above problem can also be solved through a GDP approach by using grey numbers for the uncertain
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inputs and a grey linear programming (GLP) model for the embedded LP problem (the GDP solutions are given
in Tables 4.4.3 and 4.4.4 in Section 4.4). A comparison between the GDP and GFDP solutions indicates that,
although both methods may generate the same discrete variable solutions. their continuous variable solutions are
significantly different from each other (Table 5.4.4). Generally, from Table 5.4.4, the GFDP continuous variable
solutions have significantly lower grey degrees than the GDP solutions. This is true even for the GFDP solutions
when o = 0, since the embedded GFLP model in the GFDP approach can better reflect stipulation uncertainties
than the embedded GLP model in the GDP approach. As the input a-cut levels increase, the model inputs
become less uncertain, and thus the grey degrees of the model solutions may decrease. The comparative resulis
demonstrate the potential role of the GFDP approach for better reflecting system uncertainty and improving

optimization output quality by providing more extensive solutions that reflect the tradeoffs between system

uncertainties and reliabilities corresponding to different input o-cut levels.

54.5. Concluding Remarks

A grey fuzzy dynamic programming method has been dgveloped and applied to MSW management
planning. It improves upon cthe GDP approach by incorporating concepts of fuzzy sets, fuzzy numbers. fuzzy
decisions, and GFLP within the GDP framework. The approach is especially useful when model parameters are
highly uncertain (i.e., fluctuate within wide intervals), which may lead to solutions with high grey degrees if a
GDP method is utilized. Since more information of the parameter uncertainties (membership information) can be
incorporated within the GFDP modelling framework, solutions with lower grey degrees and higher system
benefits can be generated, compared with the GDP solutions. Moreover, the GFDP solutions under different a-
cut levels reflect a tradeoff between system certainty and reliability for the desired decision scheme, which may
be potentially helpful for generating more realistic and applicable decision altematives.

The GFDP method is applied to a hypothetical case study of capacity planning in a waste management
system, with the input model parameters (stipulations and lefthand side coefficients) fluctuating within wide
intervals but their possibilistic information being known. The results demonstrate that more satisfactory solutions

have been generated for both groups of decision variables (continuous and binary), compared with the GDP
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solutions in Section 4.4. The binary variable solutions provide the ranges of facility expansion alternatives within
a multi-period, muiti-facility and multi-scale context, and the continuous variable solutions provide optimal

schemes for waste flow allocation corresponding to the facility expansion decisions.



CHAPTER 6.
APPLICATION TO MUNICIPAL SOLID WASTE MANAGEMENT PLANNING IN
THE REGIONAL MUNICIPALITY OF HAMILTON-WENTWORTH

6.1. THE STUDY AREA AND WASTE MANAGEMENT ACTIVITIES

6.1.1. The Study Area

The municipal case studies for this research focus on the planning of waste flow allocation and waste
management facility development/expansion for the Regional Municipality of Hamilton-Wentworth (RMHW).
The RMHEW is simaied in south-central Ontario, Canada. Its area is 0.11 x 108 km?, including six cities/towns
(Hamilton, Dundas, Ancaster, Stoney-Creek, Flamborough, and Glanbrook (Figure 6.1.1)), and a population of
0.43 x 10° (0.16 x 106 households). Figure 6.1.2 shows the population distribution in the Region. ft is indicated
that the majority of the Region’s population is concentrated in the City of Hamilton (Statistics Canada 1991).

The Region is Canada's Iargest steel producer and ranks high in industrial production. Two of Canada’s three
largest steel firms (STELCO and DOFASCO) are located in the Region. The majority of the industries are
clustered along the waterfront of the City of Hamilton (north Hamilton). The cultural, financial, commercial, and
administrative core is located in Downtown Hamilton. The main residential areas are distributed in Hamilton,
Dundas, north Ancaster, and west Stoney-Creek. In terms of transportation, the Region is connected to Toronto
and Niagara Falls via two highways (Queen Elizabeth Way (QEW) and Highway 403) (Freeman and Hewitt

1979; Marsh 1988; Sleightholm and Ruberto 1990).

6.1.2. Solid Waste Management System

The Region's solid waste management system is required to satisfy the waste disposal needs of the 0.45 x
106 population who collectively produce more than 0.3 x 105 t/yr of residential, industrial, and commercial
wastes. To effectively manage these wastes, an integrated system has been constructed, which includes a waste-
to-energy facility (named SWARU as an acronym for Solid WAste Reduction Unit), a Blue Box program, a 550
acre landfill, three transfer stations, a household hazardous waste depot, and a backyard composting program

(Figure 6.1.1).
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Each of the cities/towns is responsible for its own curbside garbage collection, using either its own force or a
contracted service. The Region (i.e. the RMHW) is responsible for the disposal of the collected wastes through
the use of the transfer stations and waste management facilities. Most of the Region's waste management
facilities are operated by Laidlaw Technologies Inc. under a full service contract (the current contract is effective
1ill 1995), except the Blue Box program and the household hazardous waste depot which are operated by Third

Sector Employment Enterprises and Hotz Environmental Services, respectively.

(1) Waste Generation

Table 6.1.1 shows the total amounts of wastes disposed of at the Region's facilities during 1986 to 1992,
Table 6.1.2 presents the armounts of curbside waste collected in each municipality during 1986 to 1992, 1t is
indicated that there was a noticeable decline in the amount of waste collected and received at the Region's
facilities from 1987 to 1992. This can be attributed to a number of causes, such as the recession, high waste
disposal costs and improved environmental awareness. Recently, however, a significant amount of the decrease
can be attributed to the lower waste disposal costs in the United States. Changes to U.S. landfilling regulations,
effective by 1994, have made U.S. landfill operators drastically lower their rates to allow more wastes (including

wastes from Canadian sources) to enter their facilities before September 1993 when many of them will be closed.

(2) Curbside Waste Pickup and Transportation

The cities/towns are responsible to collect their own curbside wastes and deliver them to the transfer stations
or SWARU. The Region has three strategically located transfer stations which were built in the late 1970s to
receive wastes from municipal or individual sources and transfer them to waste management facilities. They are
located in Dundas (Dundas Transfer Station (DTS)), east Hamilton (Kenora Transfer Station (KTS)), and
Hamiiton mountain (Mountain Transfer Station (MTS)), respectively (Figure 6.1.1). Currently, wastes collected
through curbside pick-up from Flamborough, Dundas, and northwest Ancaster are delivered to the DTS, wastes
from Glanbrook. Hamilton mountain, and southeast Ancaster go to the MTS, and wastes from lower Hamilton

and Stoney-Creek are directly delivered to SWARU. The DTS and MTS also receive individual deliveries from
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Table 6.1.1 Total amount of waste disposed at the region's facilities during 1936 - 1992

Year 1986 1987 1988 15989 1950 1991 1992
Amount of waste (10° t) 2987 3122 299.0 289.1 2752 2480 2450
Population (10%) 4234 4252 4316 4424 4476 4535 4590

Waste generation rate (t/capita) 0706 0.734 0.693 0.653 0.615 0.547 0.534

Table 6.1.2 Amounts of curbside waste collected in each municipality during 1986 - 1992 (10° t)

Year
Municipality

1986 1987 1988 1989 1990 1991 1992
Ancagter 668 707 703 763 74 706 769
Dundas 66l 645 621 622 595 5359 620
Flamborough 828 867 842 894 907 836 8.0
Glanbrock 318 307 298 284 291 264 321
Hamilton 10922 108.17 104.50 10440 10548 99.89 105.03
Stoney-Creek 13.76 1346 1360 1415 1389 1343 1482

Total 147.73 14650 14274 144.18 144.75 136.97 14545




local industries, businesses and institutions. No curbside collected waste is delivered to the KTS (the KTS only
accepts individual truck loads of industrial, commercial, and institutional wastes).

Wastes received at the transfer stations are compacted into large, completely enclosed 75 yd? trucks (transfer
trailers), and then hauled to the Glanbrook landfill (the landfill site is not open to the public}.

The use of transfer stations provides many advaatages for waste transPBnaﬁon. ‘They include (i) a reduction
in traffic going to and from the landfill, (ii) provision of an inspection area where wastes can be viewed and
unacceptable materials removed, (iif) provision of an effective control on dumping site at the landfill, and (iv) a
reduction in the volume of wastes due to the compaction done in the trailers. Transfer stations are also more
convenient for both municipal collectors and individual users as they are closer and easier to access than the

landfill site.

(3) Wagte Management Facilities
(3A) SWARL]

In 1971, a solid waste incinerator (SWARU) was built in east Hamilton (Figure 6.1.1) employing semi-
suspension technology with ferrous metal recovery. The facility, which meets the provincial emissions standards
(Regulation 308 in the Environmental Protection Act), can burmn up to 450 t/d of waste and generates about 14 x
106 kw hrfyr of electricity (the electricity is either used in plant or sold to Ontario Hydro where it provides for
non-heating needs of about 2.600 homes for an entire year).

The remaining combustion by-products (residues) are divided into non-hazardous bottom ash and hazardous
fly-ash. The bottom ash, being the heavier component, falls to the boiler bottom and is removed by a conveyor
belt. This type of material is inert and can be delivered directly to the Region's landfill. The fly ash, being much
lighter, is suctioned off, cocled. and then removed by conveyor or filtered through a bag house. Finally, it is
placed in covered containers and shipped to a licensed hazardous waste landfill.

SWARU is not open to the general public. Currently, the majority of the waste inputs to the facility are from

Tower Hamilton and Stoney-Creek.



{3B) Third Sector

An organized recycling program in the Region was initiated in 1977, when Third Sector Employment
Enterprises (abbreviated as Third Sector) collected newspapers as part of a non-profit job training program. By
mid 1985 it was expanded to a multi-material recycling jnogram, which accepted newspapers, glass, food and
beverage containers, glass bottles and jars. and 2 litre plastic pop bottles. Beginning in 1992, in addition to the
above items, Third Sector also started to accept corrugated cardboard, plastic bottles and jugs. film plastic
grocery bags, glossy covered magazines and catalogues, aluminum pie plates and trays, and telephone books.

Thé recycling program is overseen by the Department of Environmental Services of the RMHW, Ontario
Minisiry of Environment (MOE), Ontario Multi-Matertals Recycling Industries (OMMRI), and local
municipalities of the Region support the program by subsidizing the purchase of blue boxes, and providing
funding to offset the operating costs. A typical Ontario household using the blue box diverts about 136 kg/yr of
recyclable materials from disposal. This figure converts to approximately 0.3 m3/yr of landfill space. At the same
time, huge amounts of valuable natural resources can be saved as recycled feedstock replaces virgin feedstock.

Once a week, recyclable wastes, clearly separated from normal garbage, are picked up on the regular
garbage collection day. The contractor who picks up the recyclable materials in all cities/towns except Glanbrook
is Third Sector itself. In Glanbrook, the recyclable materials are picked up by Eggers Excavating who also
collects curbside garbage. Currently, Third Sector has an operating capacity of 100 to 110 t/d.

Once the recyclable materials are delivered to Third Sector at their materials recycling facility located in
north Hamilton, they are processed and sorted out according to the requirements for sale or shipping. Generally,
the materials are sorted into the following categories: metals, glass, plastics, newspapers, magazines, tclephone
books, aluminur pie plates, and corrugated cardboard.

Resource recovery at the transfer stations is accomplished through the use of large bins which can accept
corrugated cardboard, large metal items, and regular blue box materials. These bins are kept separate from the

normal waste disposal area, and the recyclable materials in the bins are picked up and delivered to Third Sector.



(3C) Landfill

The Region's landfill was developed in 1981. Tt is located at the southeast comer of Glanbrook with an area
of 550 acres. Due to the expense and time involved in siting and constructing a landfill, it is the Region's
objective to maximize the existing landfill's life expectancy by prohibitiﬁg materials which may be feasibly
diverted elsewhere.

The landfill only accepts approved non-hazardous waste from the following sources: (i) waste generators in
the Region via transfer stations (the landfill itself is not open to the public), (ii) bottom ash frorri SWARU, and
(iii) grit from the sewage treatment plant of the Region. It is esimated that under current capacity consumption
rate, the landfill should be able to last for another 20 years.

Wastes that can be hauled to the landfill include generat residential, commercial, industrial and municipal
refuse, such as kitchen waste, appliances, car tires, general trash, furniture, glassware, clothing, sweepings, tree
clippings, crates, approved industrial by-products (in limited amount), and most articles under four feet in length.

Wastes that cannot be taken to the landfill include two categories: (i) wastes that pose no environmental
control problems, such as construction and demolition debris, earth fill, broken concrete, asphalt, tree stumps,
construction timber, tires from industrial/commercial generators, wood products over four feet in length, bundles
of metal strapping. abandoned motor vehicles. metal drums or barrels, agricultural waste, recyclable corrugated
cardboard (from commercial and industrial sources); and (ii) wastes not acceptable for the landfill, such as dead
animals, liquid waste, untreated sewage. hazardous wastes, pathological waste, pesticides and herbicides. A
number of alternative facilities and companies (¢.g. companies involved in waste reduction, reuse, recycling and
recovery, as well as hazardous waste treatment) in the Region can cater specifically to these wastes.

The landfill is also subject to a continuous and comprehensive monitoring program which allows early

detection and remediation of problems before they become serious.

(3D) Backyard composting program

The initial home composting program for the Region was approved by Regional Council in 1989, which was

open to all residents living in dwellings where backyard composting is feasible. As a natural process that breaks
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down kitchen and yard wastes into a soil-like product, backyard composting is an easy and effective way to
reduce curbside waste (approximately 30% of household and yard wastes can be composted, and finished
compost can be used for improving the ability of soil to hold moisture. nutrients, and air). The total number of
composting units in the region is approximately 25,000, suggesting that approximately 20% of the households
participated in the program.

A participating household diverts approximately 219 kg/yr of waste from the region's waste stream. It was
estimated that, for the whole Region, over 5,300 t/yr of residential waste were composted through the Home

Composting Program in 1992, which is approximately 3.5% of the total amount of MSW generated.

(3E) Househpld hazardous waste depot

Household hazardous wastes bearing consumer labels indicating that they are corrosive, toxic, flammable, or
reactive may cause the following problemsf pouring them on the ground may contaminate soil, surface water,
and groundwater; flushing them down the drain may damage pipes and cause problems in sewage (reatment
plants which were not designed to handle them: and putting them at the curb for garbage collection can resuit in
spills either on the ground, on collection crews, or on passers-by.

At the beginning of l1991. the region, in cooperation with Hotz Environmental Services. established a
permanent depot in Hamilton for receiving household hazardous wastes from residents. It is operated by Hotz
Environmental Services, and is open to the public every Saturday from 9:00 am to 5:00 pm.

The depot is a transfer point between the householders and the receivers for the hazardous wastes. Most
products are placed in a second container and packed in vermiculite (specially designed tanker trucks are used to
transport oil, paint, and antifreeze). The destinations include various licensed waste management companies,
which are determined based on the feasibilities for the companies (o receive a specific product. However, the
preferred options are to reuse or recycle the wastes, e.g., used motor oil can be re-refined, automotive batteries
can be recycled for plastics, lead, and battery acid, and some paint can be made available to residents.

Hazardous wastes from industrial, commercial, and institutional sources are not acceptable at the Household

Hazardous Waste Depot. The generators must contract directly with licensed companies to haul and receive their

hazardous wastes,



(4) Industrial/Commercial/Institytional Waste Management

In 1992 , industrial, commercial, and institutional wastes accounted for approximately 40% of the total
amount of waste generated in the Region (they were either delivered to the landfill via the iransfer stations or
hauled to other areas by private companies). Effective management of the industrial, commercial, and
institutional wastes is one of the major issues facing today's businesses, which relates to the costs and types of
raw malterials used, the manufacturing processes, the prices of the final products, and rost importantly the
environment and public health.

Three main initiatives have been implemented in the Regicn to encourage businesses to manage their wastes
more efficiently. They are tipping fees, material bans, and market directories. Tipping fees (180 §/t) represent the
cost to dispose of waste, which provide businesses with economic incentives to reduce, reuse, or recycle their
wastes, and encourage the development of new businesses in the waste management field; material bans restrict
materials that pose no environmental impacts from being landfilled, which creates new business initiatives for
more efficient management of these materials; and market directories provide opportunities for productive use of
waste materials.

Effective waste minimization within the industrial. commercizl. and institutional sectors not only reduces the
burden on the Region's landfill site but actually saves money for businesses through reduced tipping fees and raw
material costs, increased revenues (with sale of waste materials), better process controls, improved standing in

the community. and reduced tax burdens.

(5) Waste Management Costs

In 1992, approximately $21,700,000 was required to operate the Region's solid waste management system.
The cost is paid for through both the municipal tax base and the tipping fees received at the transfer stations,

Residents are allowed to bring in up to 300 kg of acceptable solid waste free of charge to the transfer stations
(for loads of more than 300 kg the charge is based on the entire load at 180 $/t), while commercial haulers are

charged at a rate of 180 3/t (the first 300 kg are not free).



The high tipping fee policy in the Region has the following atibutes: (i) discouraging importation of waste
from other Regions: (i) making it financially attractive for companies and individuals to enhance their waste
recycling and reduction activities (¢.g.. the current charge for corrugated cardboard recycling ranges from 235 to
35 3/t which is much lower than the tipping fee of 180 $/t); (iii) providing operating costs, maintgnance costs, as
well as funds for supporting waste reduction initiatives (such as Blue Box programs, household hazardous waste
management programs, backyard composting programs. and industrial waste reduction programs), or

developing/expanding waste management facilities; and (iv) supplernénting capital reserves for public works.

6.1.3. Statement of Probiems

The above infom;ation indicates that the MSW management system in the Region is complicated and relates
to a number of impact factors, such as economic, technical, environmental, legislational, and political issues, as
well as the use and conservation of resources. Previously, the studies of waste management activities in the
Region were conducted by consulting companies individually. There has been no systematic planning for the
entire Region and for a long time horizon, and no planning that effectively incorporated uncertain information
within the study .frameworks. Consequently, solid waste managers in the Region are concerncd about the
effectiveness of the existing waste flow allocation pattern from the whole Region point of view, as well as the
long term capacity planning for the Region's waste management facilities.

Since a number of system components are uncertain, and the majority of them can only be stated as intervals
without distribution information, the proposed GMP methods could be effective for solving the above problems.
Through the examination of the relationships and conflicts between different system components (such as those
between economic development and waste generation, between the increasing waste disposal demands and the
limited facility capacities, and between the high costs for waste transportation/treatment as well as facility
expansion/development and the limited funding for these activities), a GLP model will be formulated for the
waste flow allocation planning problem, and a GIP model will be formulated for the facility

development/expansion planning problem.



6.2. GREY OPTIMIZATION ANALYSIS FOR WASTE FLOW ALLOCATION PLANNING
IN THE REGIONAL MUNICIPALITY OF HAMILTON-WENTWORTH

6.2.1. Introduction

The Regional Municipality of Hamilton-Wentworth (RMH'W) has a curbside waste generation rate of
approximately 0.16 x 10° t/yr (1992 data), which is generated within the six cities/towns of the Region. The
wastes are picked up and delivered to waste management facilities via a number of routes. These include
"municipality --> transfer station", "municipality --> SWARU", "transfer station --> landfill", "transfer station --
> Third Sector”, and "SWARU (residue) --> landfill” routes.

Many factors may relate to waste flow allocation in the Region. They include waste generation rates in the
citiesftowns, costs for different waste transportation routes, and capacities and operating costs of waste
management facilities. MSW managers in the Region are concerned about the effectiveness of the existing waste
flow allocation pattern. They desire to know (i) whether the existing pattern is the optimal. and (i) if not, what is
the optimal? To answer these questions correctly for such a complicated system, systems analysis methods may
be particularly useful since they can effectively deal with the interactive relationships between the impact factors
and generate optimal solutions.

Since a number of system componenis in the Region are uncertain, and the majority of them can only be
stated as intervals without distribution information, deterministic systems analysis methods may not be
applicable in this case. Therefore, a grey linear programming (GLP) method, which has been shown to be
[easible for solving a hypothetical waste flow allocation planning problem in section 4.1, is applied to this actual
case study. The GLP method has advantages in that, firstly, it can effectively incorporate uncertainties within its
optimization process and resulting solutions, such that feasible decision alternatives can be generated through the
interpretation of the grey solutions according to projected applicable conditions; secondly, it has lower
computational requirements siace the solution algorithm does not lead to more complicated intermediate
submodels: and finally. since interval data are acceptable for the model, the specification of relevant distribution
information is not requircd (Huang et al. 1992).

This section is structured as follows. In subsection 6.2.2, data for the Region's waste management system



are presented and analyzed. The formuladon of a GLP model for the study problem is given in subsection 6.2.3.
In subsection 6.2.4. the GLF solutions under different system conditions are described and interpreted.

Concluding remarks are provided in subsection 6.2.3.

6.2.2. Data Collection and Analysis

The Region was divided into 17 waste generation districts for the planning of waste flow allocation. based
on their characteristics relating to waste generation and transportation (Figure 6.2.1). The data for the Region's
waste management activities were obtained from the Environmental Services Department in the RMHW, the
engineering services departments in the six cities/towns, the Department of Finance in the RMHW, as well as the
contracted waste management companies, such as Laidlaw Technologies Inc., Third Sector Employment -
Enterprises, Eggers Excavating Inc., KNE Waste Inc., and Hotz Environmental Services.

Table 6.2.1 shows the population distribution and curbside wastes generated in the 17 districts. It is indicated
that Hamilton, Dundas, and lower Stoney-Creek have higher population densities and thus higher waste
generation rates than the other cities/districts. Table 6.2.2 contains the capacities, operating costs, and revenues
of the existing waste management facilities. It is indicated that these facilities have different characteristics in
terms of their operating capacities and economic efficiencies.

Table 6.2.3 shows the transportation costs for different waste delivery routes. It is indicated that U}c ¢Osts
vary between different routes. The transportation costs for "transfer station --> waste management facility” routes
are much lower than those for "municipality --> transfer station/SWARU" routes, because the municipal
collection is a two-step process which includes "pick up" and "delivery", while the "transfer station --> facility”
routes are direct hauls. Moreover, the trucks for the municipal collection are much smaller thgn the trailers for
the "transfer station --> facility” routes, which is also a disadvantage for the "municipality --> transfer
station/SWARU" routes due to the effects of economies of scale.

The residues from SWARU (bottom ash} and Third Sector (nonrecyclable waste) are [25, 35]% (dry weight)
and [7, 8]% of their inflows, respectively. The only downstream facility for these residues is the Glanbrook

landfill.
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Table 6.2.1 Population distribution and curbside waste generated in the seventeen districts

City/Town  District Name of District Population Waste Generation Rates*
Number 1 (t/yr) (YwK)
Flamborough 1 Flamborough 32.0 [8060, 88401 [155, 170}
Dundas 2 Dundas 236 [5720, 6500} [110, 125]
Hamilton 3 Hamilton 403 West 179 [5460, 5980] {105, 113)
4 West Downtown Hamilton 182 [5460, 6240] (105, 1207
5 Downtown Hamilton 316 [9620, 10660] [185,205]
6 East Downtown Hamilton 50.4 [15340, 169007 [295, 325]
7 East Lower Hamilton 834 {25480, 283401 [490, 545]
2 ‘West Mountain Hamilton 433 [13000, 145601 [250, 2801
9 East Mountain Hamilton 21.8 [25220, 278201 [485, 535]
Stoney Creek 10 Lower Stoney Creek 35.1 (10400, 11700] [200, 225]
11 East Mountz" * Stoney Creek 1.5 (260, 624] (5.12]
12 West Mountain Stoney Creek 10.7 [3120, 3640] (60, 70]
Ancaster 13 Northeast Ancaster 5.8 [2080, 2600} [40. 50]
14 Northwest Ancaster 1.5 [364,780] {7, 15]
15 South Ancaster 2.7 [780, 1300] {15,25]
16  East Ancaster 8.9 (3380,3900]  (65,75]
Glanbrook 17 Glanbrook 10.5 {2860, 3380] {33, 65]

* including recyclable wastes.



Table 6.2.2 Capacities, operating costs, and revenues of waste management facilities

Landfill SWARU Third Sector DTS XTS MTS
Maximum Possible Capacity (t/d):

/ 450 [180, 200] 250, 300] [780, 820} {250, 3007
Present Operating Capacity (t/d):

[650, 800] [380, 400] [100, 1101 [1s,25]" [75,85]" 15,25]1"

(80, 92]™ o [55,651™

Operating Cost (S/t):

[37, 48] (60,701 [100, 115] {13, 16] [13, 16] 13,161
Revenue (S/t):

] 4.0, 5.51 [45, 53] 0 0 0
* commercial, industrial, or unrecorded sources;

o municipal coliection.
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Table 6.2.3 Transportation costs for different waste delivery routes

City/Town District DTS KTS/SWARU MTS Third Sector
Number 3 8/ (1) (/)
Transportation costs trom cities/towns to transfer stations and Third Sector (t/wk):
Flamborough 1 394 71.0 67.0 125.2
Dundas 2 326 664 700 64.0
Hamilton 3 17.6 44 4 49.8 54,1
Hamilton 4 26.2 38.8 44.6 46.7
Hamiiton 5 34.3 31.0 45.0 36.3
Hamiiton 6 370 284 437 327
Hamiiton 7 45.0 19.3 38.8 26.1
Hamilton 8 39.5 519 32.7 624
Hamilton 9 46.3 43.0 226 50.5
Stoney Creek 10 67.4 335 61.2 48.6
Stoney Creek 11 75.7 458 523 S0.0
Stoney Creek 12 70.6 385 36.5 532
Ancaster 13 348 474 34.8 839
Ancaster 14 41.2 527 41.6 94.0
Ancaster 15 38.1 46.7 32.6 82.6
Ancaster 16 29.9 43.1 279 75.8
Glanbrook 17 67.9 61.3 373 60.0

Transportation costs from transfer stations to landfill, SWARU, and Third Sector (t/wk):

Landfill
SWARU
Third Sector

(9.0,11.5]
(3.5,7.0]
[11.0, 15.0]

[6.5, 8.0]
{0.1,0.3]
{5.5.7.0]

[6.5,7.5]
[6.5, 8.5]
[12.0, 16.0]

| &
n



Generally, from Tables 6.2.1 to 6.2.3, it is indicated that the majority of data obtained for the Region's solid
waste management activities are interval numbers, which can be readily incorporated within a grey mathematical

programming model.

6.2.3. Formuiation of the Grey Linear Programming Mcdel

In the waste flow allocation planning problem under consideration, the decision variables are the waste
flows for different waste delivery routes (Figure 6.2.2) (industrial/commercial waste flows are not included in the
model, and will be discussed separately). The objective is to achieve the minimum cost flow allocation. The
constraints include all relationships between the devision variables and the waste generation/management

conditions, Thus a GLP model can be formulated for the prablem as follows:

5 5 2
minimize &(f) = Zl ®(C,) + 21 &ChH - T ech. (6.2.1)
U= u= n=l
with:
17 3 o
®(C) = Z X 8T ) 8z, (62.2)
jml =t
[total transportation cost for waste flows from cities/towns to ransfer stations];
303 )
BC) = X X OT") O (62.3)
[total transportation cost for waste flows from transfer stations to waste management facilities];
, 317 N
®C) = % T OT) 8y, (6.2.4)
=73 j-
(total transportation cost for waste flows from cities/towns to waste management facilites];
‘ 17 3 @
®Cy) = JE. Z &(T12 ) [®(xzp) + B(y2)] BRSDy), (6.2.5)
[total transportation cost for residue flow from SWARU to the landfill};
17 3
®CH = X IO(T) + &(T1™)] [@(xz) + B(ys)] ORSD3), (6.2.6)
(total transportation cost for residue flow from Third Sector to the landfill];
®C) = Z >: BC") (B(y10) + [B(xy)) + B(y2)] BRSDy) +

=1 rwl
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District
Flamborough j=1
Dundas j=2
Hamilton j=3

Y U TS TR
nn " [} n 1
v 00 =1 h

Stoney Creek j=10
j=11
j=12

Ancaster j=13
i=14
j=15
i=16

Glanbrock  j=17

LEGEND:;
DTS = Dundas Transfer Station
KTS = Kenora Transfer Station
MTS = Mountain Transfer Station
a=8SWARU residue

B Third Scctor

Xj;= waste flow from municipality j to facility i

¥;, = waste flow from transfer station r to facility i
Z;, = waste flow from municipality j to transfer station r
b= Third Sector residue

Figure 6.2.2 Distribution of the waste flows
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+[@(xy) + B(y3)] ®RSDy)}, 6.2.7
[total operating cost of Glanbrook Landfill];

17 3

8CH = P OP?) [®x;) + By, (6.2.8)
jml e

[total operating cost of SWARUT;
17 3

8CH = gl ) P [®(x3) + By, (6.2.9)

[total operating cost of Third Sector];
17 :

®CH = % O@) (). (6.2.10)
)-

[total operating cost of the DTS];

17 3 _
8Cs) = E g{ 8P, (®(z) + [®(xz) + B(ys)] ®RSD}, (6.2.11)
[total operating cost of the KTS]);
17
®CH = X O 8(z). (6.2.12)
]-

[total operating cost of the MTS];

17 3
CYH = % ):1 BRY) [®(xy) + B(y2)], (6.2.13)
[total revenue from SWARU];

17 3
8CYH = j.z. ) BRY) [®(xs) + O(y3)), (6.2.14)

[total revenue from Third Sector];
subject to:

(i) capacity constraints:
17 3
2 Y [B(xy) + @yl < &(SCy), (6.2.15)

=l =i

[SWARU capacity constraint];

17 3

j;l zi (B(x3;) + B(ys)] = S(TCy, (6.2.16)

[Third Sector capacity constraint];



17
2 &(z;) £ DTy,
=1

(DTS capacity constraint];

17 3

j% 2‘1 {@(zp) + [B(x3) + B(y3)] ®RSD;)) < Q(KT)),

[KTS capacity constraint];

17
2 ®(z) < ®MTY),
F=l

[MTS capacity constraint];

(it) waste flow control;

17 3

Z{ 2 [®x) + B(y2)] 2 &(SCy),
p~

=1
[constraint for the lowest allowable operating level of SWARUT:

17 3
j_):l 21 (@10 + [®(xg)) + B(y2)] ®RSDy) + [B(x5) + B(¥3)] ®RSD3)} < BALC,),

[constraint for the highest allowable operating level of Glanbrook Landfill];

3

0
;-21 1 [®(x3) + B(y3)] 2 S(TCy),

=

[constraint for the lowest allowable operating level of Third Sector]:

17
1-21 ®(z;;) 2 S(DTy),

[constraint for the lowest allowable cperating level of the DTS}

17 3
5-21 gl {@(zp) + [B(x3) + B(y3)] @RSDy)} 2 ®(KTy),

[constraint for the lowest allowable operating level of the KTS];

17
,Z*‘; ®(z;3) 2 B(MTy),

[constraint for the lowest allowable operating level of the MTS];

(6.2.17)

(6.2.18)

(6.2.19)

(6.2.20)

(6.2.21)

(6.2.22)

(6.2.23)

(6.2.24)

(6.2.25)

R ]
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(iii) satisfaction of demands:

3

3
2 1 [®(z;) + B(x;)] = WG, v (6.2.26)

twl =

{general waste disposal demand constraints];
r)_:3l [®RT,) B(z;) + B(x3)] < BRG) BWG)), Y j, (6.2.27)
[recyclable waste disposal constraints];

{iv) materdal balances at transfer stations:

17 3
j_El &(z;) = Z; &(yih (6.2.28)

[mass balance constraints for non-recyclable wastes at the DTS];

17 3 3

Y, {®(zp) + [®(x3) + O(y:)] ®RSDy)} = 3. Sy, (6.2.29)

jul pal fel

[mass balance constraints for non-recyclable wastes at the KTS];

17 3 .

% &) = 21 S(yis (6.2.30)
= =

[mass balance constraints for non-recyclable wastes at the MTS];

17
B(yy) = ®RT) Eﬁ O(z;), Yr, (6.2.31)
j-

{mass balance constraints for recyclable wastes at the transfer stations];

{v} technical constraints:
®(x;) 20, Y ij, (6.2.32)
Ay 20, vir, - (6.2.33)
@(z;) 20, Vv j.r, (6.2.34)

[non-negativity constraintsj;
where;

i = type of waste management facility, i = 1, 2, 3, where i = 1 for the landfill, 2 for SWARU, and 3 for
Third Sector;

j=name of district, j=1,2,..., 17 (Figure 6.2.1);
r = name of mansfer station, r= 1, 2, 3, where r =1 for DTS, 2 for XTS, and 3 for MTS;
®(C,") = total operating cost of Glanbrook Landfill ($/d);

®(C,) = total operating cost of SWARU (8/d);



®(C;") = total operating cost of Third Sector ($/d);

®(C,") = total operating cost of the DTS ($/d);

®(C,7) = total operating cost of the KTS (3/d);

&(Cy") = total operating cost of the MTS ($/d);

®(C,)) = total revenue from SWARU ($/d);

®(C,")) = total revenue from Third Sector (3/d);

®(C,") = total ransportation cost for waste flows from cities/towns to transfer stations (3/d);

@(C,") = total transportation cost for waste flows from transfer stations to waste management facilitics
(/d);

®(C5") = total transportation cost for waste flows from cities/towns to waste management facilities ($/d);

®(Cy) = total transportation cost for residue flow from SWARU to the landfill ($/d);

&(C5") = total ransportation cost for residue flow from Third Sector to the landfill (S/d);

@(DT,) = lowest allowable operating level of the DTS (t/d);

®(DT,) = capacity of the DTS (t/d);

@(f) = total system cost (3/d);

®(KT,) = lowest allowable operating level of the KTS (t/d);

®(KT,) = capacity of the KTS (t/d);

®(LC,) = highest allowable operating level of Glanbrook Landfil! (t/d);

®(MT,) = lowest allowable operating level of the MTS (t/d):

®(MT),) = capacity of the MTS (t/d);

®(P") = operating cost of Glanbrook Landfill ($/1);

&(P™) = operating cost of SWARU (S/t);

@(@™) = operating cost of Third Sector (3/t);

®(P,") = operating cost of the DTS (5/t);

®(P,’) = operating cost of the KTS ($/t);

@(Py") = operating cost of the MTS ($/t);

®R?) = revenue from Third Sector ($/t);



®R™) = revenue from SWARU (S/t);

®(RG;) = recyclable percentage of the total curbside collected waste flow from district j (%);
B(RSD,) = percentage of residue generated from SWARU (%);

@(RSD;) = percentage of residue generated from Third Sector (%);

®(RT,) = recyclable percentage for waste flows to transfer station r (%);

®(SCy) = lowest allowable operating level of SWARU (t/d);

@(SC)) = capacity of SWARU (t/d);

®{T,-,(”) = transportation cost for waste flow from district j to transfer station r ($/t);

®(T;,?) = transportation cost for waste flow from transfer station r to waste management facility i (S/0);
®(Tij(3>) = transportation cost for waste flow from district j to waste management facility i (3/t);
&(T™) = transportation cost for residue flow from Third Sector to the KTS (S/t);

@(TCy) = lowest allowable operating level of Third Sector (t/d);

®(TC,) = capacity of Third Sector (t/d);

®(WG;) = waste generation rate in district j;

®(x;;) = waste flow from district j to facility i (t/d);

®(y;,) = waste flow from transfer station r to facility i (t/d);

®(z;;) = waste flow from district j to transfer staticn r (t/d).

6.2.4. Analysis of Results

Three cases of interest were modelled, which include: (i) when SWARU is operated at its existing flow rate:
(ii) when SWARU is not in operation; and (iit) when SWARU is operated at its maximum flow rate. The

modelling results for the three cases are presented sequentially,

(1) Optimal Solution when SWART is Qperated at its Existing Flow Rate
(14) Wy W ransfer jons, SWARU and the Glanbrook Lan

Table 6.2.4 and Figure 6.2.3 show the solutions obtained through the above GLP model when SWARU is

operated at its existing flow rate. The GLP model contains more than 100 decision variables and more than 150



Table 6.2.4 Solutions obtained through the grey linear programming model when SWARU is operated

at its existing flow rate

Symbol Municipality District Facility Solution
Waste flow from maunicipalities to SWARU {t/wk):

®(xa1) Flamborough 1 SWARU 0

(%) Dundas 2 SWARU 0

B(Xp3) Hamilton 3 SWARU 0

@(Xg4) Hamilton 4 SWARU {100, 118]
®(xa5) Hamilton 5 SWARU [177, 200]
®(X25) Hamilton 6 SWARU [282,317]
@(xq7) Hamilton 7 SWARU [468, 532]
@(X23) Hamilton 8 SWARU 0

S(xq9) Hamilton 9 SWARU 0

@(x2,10) Stoney Creek 10 SWARU [211, 238}
®(x211) Stoney Creek 11 SWARU (6. 13]
®(x3,19) Stoney Creek 12 SWARU (63, 74]
®(x213) Ancaster 13 SWARU {40, 52]
®(x3,14) Ancaster 14 SWARU (7. 16}

. ®(x315) Ancaster 15 SWARU [16, 26]
®(x216) Ancaster 16 SWARU [65,77]
®(x217) Glanbrook 17 SWARU 0
Waste flow from municipalities to Third Sector (t/wk):
®(x3) Flamborough 1 Third Sector [15, 17}
®(x1) Dundas 2 Third Sector 16
@(x13) Hamilton 3 Third Sector 16
®(x34) Hamilton 4 Third Sector 21
@(x1s) Hamilton 5 Third Sector 37
®(x36) Hamilton 6 Third Sector 39
®(x17) Hamilton 7 Third Sector 98
®(x13) Hamilton 8 Third Sector 37
®(x39) Hamilton 9 Third Sector 73
&(x3,10) Stoney Creek 10 Third Sector {20, 23]
&(x311) Stoney Creek i1 Third Sector [0.5, 1.2
®(X3,12) Stoney Creek 12 Third Sector (6. 71
@(x3,13) Ancaster 13 Third Sector 6
S(x3,14) Ancaster 14 Third Sector (0.7, 1.5
®(x3,45) Ancaster 15 Third Sector [1.5,2.5]
B(x3,16) Ancaster 16 Third Sector 9.8
®(x3,17) Glanbrook 17 Third Sector [11, 13]

Continue to the next page
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Table 6.2.4 (continued)  Solutions obtained through the grey linear programming model when
SWARU is operated at its existing flow rate

Symbol Municipality District Transfer Station Facility Solution

Waste flow from municipalities to Dundas Transfer Station (only non-zero flows are shown) (t/wk):

@(z11) Flamborough 1 Dundas [164, 180]
®(z1) Dundas 2 Dundas (111, 129]
B(z3;) Hamilton 3 Dundas (105, 117]

Waste flow from municipalities to Kenora Transfer Station:
Values from all districts were determined to be zero.

Waste flow from municipalities to Mountain Transfer Station (only non-zero flows are shown) (t/wk):

®(zg4) Hamilton 8 Mountain (252, 287)
®(zg3) Hamilton 9 Mountain [487, 545]
®(z173) Glanbrook 17 Mountain [53,62]

Waste flow from transfer stations to facilities (t/wk):

@(y11) Dundas Landfill [114, 138]
®(yy2) Kenora Landfill 0

®(y1p) Mountain Landfill (791, 892]
B(yx) Dundas SWARU [265, 287]
®(yn) Kenora SWARU Y

®(y23) Mountain SWARU 0

®(ya;) Dundas Third Sector [0.8,0.9]
®(y12) Kenora Third Sector 0

B(ym) Mountain Third Sector [1.6,1.8]

Residue from SWARU and Third Sector to the landfill (t/wk):

from SWARU to the landfill [425, 683]
from Third Sector to the landfill [30, 35]

System Cost ®(f) ($105/yr): [15.0, 20.7]




District DTS
Flamborough j=1 @ O\
Dundas j=2 ./ \
Hamilton  j=3 @ M Landrill
i=4 @ +
i=5 @
i=6 @ o »
i=7 @
=8 @
i=9 @ B swaru
Stoney Creek j=10 @
o e o
i=12 @ MTS
Ancaster ji=13 @
j=14 @
=15 @ Bl Third Sector
i=l6 @ /
Glanbrook  j=17 @ -
Blue Box

LEGEND:
DTS = Dundas Transfer Station

KTS = Kenora Transfer Station
MTS = Mountain Transfer Station

Figure 6.2.3 GLP solution of optimal waste flow allocation pattern when
SWARU is operated at its existing flow rate




constraints, which was solved with an author-coded FORTRAN program on a2 SUN Sparc Station 1+, with a
typical run taking 2 to 6 minutes. The results indicate that all nonrecyclable MSW collected from districts 1, 2.
and 3 should be delivered to the DTS, and all nonrecyclable MSW collected from districts 8, 9 and 17 should be
hauled to the MTS, while no curbside collected MSW should go to the KTS. The waste entering the MTS should
then be delivered to the landfill, while that in the DTS should be transported out in a two stream fashion: one
stream with a flow of [114, 138] t/wk to the landfill, and another with a flow of [265, 287] t/wk to SWARU. All
nonrecyclable MSW collected from districts 4 to 7 and 10 to 16 should be directly hauled to SWARU.

The suitable input for SWARU is curbside collected MSW, while a very low percentage (less than 1%) of
industrial/commercial wastes are considered acceptable. Therefore, if the existing operating capacity of SWARU
([1700, 1950] t/wk averaged over a year) is set as the lowest allowable level, more than 50% of the
nonrecyclable MSW will have to be hauled to SWARUJ (the total amount of nonrecyclable MSW collected by
the municipalities in 1992 was approximately 143,000 t).

The majority of the districts (4 to 7. and 10 to 16) were determined to have their curbside wastes directly
hauled to SWARU because this will avoid mixing the curbside waste with industrial/commercial wastes in the
transfer stations and will reduce the operating costs for the transfer stations. The wastes from districts 1, 2. and 3
are first hauled to the DTS and then to SWARL via the QEW, since the three districts are close to the DTS and
the "DTS --> SWARU" routing avoids passing through the City of Hamilton.

All waste collected from districts 8. 9 and 17 should be first hauled to the MTS because of their close
proximity to the transfer station. The distance from the MTS to SWARU is similar to that to the landfill, while
the DTS has a much greater distance to the landfill than to SWARU. Therefore, it is more cost-effective to haul
ail waste in the MTS to the landfill, and use the DTS as a SWARU "topping up” source to meet the facility
capacity, such that only the surplus waste in the DTS is shipped to the landfill,

Mo curbside collected waste should be delivered to the KTS because, if the waste is to be disposed of in the
1sndfill, it is more efficient to ransport it via the MTS rather than the KTS since the KTS is located in northeast
Hamilton and is distant from the landfill; on the other hand, if the waste is to be treated in SWARU, it is more

convenient to directly transport it to SWARU which is directly adjacent to the KTS. Therefore, the KTS only



accepts individual hauis of industrial/commercial wastes and residential wastes {minar).

Presently, about 23,000 t/yr (1992 data) of the curbside byproduct materials are recycled in the Region. For
cach district individually, it was estimated that Districts 2 to 9, 13, 16 and 17 would have approximately 135 to
20% of their curbside wastes recycled, while other districts (Districts 1, 10 to 12, 14 and 15) were estimated to
have somewhat lower recycling rates (approximately 10%).

Districts 3 to 9 are in Hamilton, and have higher populations (thus lower collection costs due to economies
of scale), and shorter distances to Third Sector (thus lower transportation costs). District 2 is Dundas. and
Districts 13 to 16 are in north Ancaster, where residents have historically shown an excellent response to the blue
box program. District 17 is Glanbrook, where both recyclable and nonrecyclable curbside MSW are collected by
Egger Excavating for the same trip but in separated bins. Thus, the associated collection and ransportation costs
are lower, Therefore, it is suggested that the blue box program be promoted {o a greater degree in these districts.
For example, more education programs could be conducted in Hamilton and Glanbrook to increase the
participation rates, and better services (such as expanded materials) could be provided in Dundas and Ancaster to
correspond to the positive program response.

Very low percentages of MSW in the transfer stations are recyclable (the recyclable flows from the transfer
stations are less than 0.5% of the total amount of MSW recycled in the Region). Although there is a large bin at
each transfer station for accepting recyclable wastes, few individuals respond presently. Normally, only about
50% of the wastes in the bins are recyclable, which leads to the low recycling rate and the high cost of collection
and transportation from the transfer stations.

The residue from Third Sector is {7, 8]% of its input ([30, 35] t/wk), and that from SWARU is [25, 351%
((425, 683] y/wk). These residues should all be hauled to the landfill. There are also [791, 892] t/wk of MSW
flow from the MTS to the landfill. Thus, the total amount of curbside collected MSW routed to the landfill is

(1360, 1750] t/wk ([70700, 91000] t/yr).

(1B) Wastes from industrial and commercigl sources

Based on 1992 data, the waste flow from industrial/commercial sources to the Region's landfill is [32.8,



42.1] x 10? t/yr. These wastes are delivered to the landfill via the transfer stations, subject to a current tipping fee
of 5180/t

All industries and companies will deliver their wastes to a transfer station closest to the waste generation
source. Therefore, the general distribution pattern of the industrial/fcommercial waste flow to the transfer stations
will tend to remain constant. In 1992, the industrial/commercial wastes entering the DTS, KTS, and MTS were

(15,251, [75., 85}, and [15, 25] ¥/d, respectively.

Figures 6,2.4 and 6.2.5 show the existing waste flow allocation pattern and the pattern obtained from the
GLP model. It is indicated that. generally, the existing waste flow allocation pattern in the Region is similar to
the optimal GLP solution. Only three major differences were found. They are: (i) the waste collected in Ancaster
should be directly delivered to SWARU in the optimal solution rather than to the DTS (Districts 13 and 14) and
MTS (Districts 15 and 16) in the existing allocation; (ii) the waste col]écted in District 3 (Hamilton 403 West)
should be delivered to the DTS in the optimal solution rather than 1o SWARU in the existing allocation; and (iii)
the majority of curbside waste in the DTS ([265, 287] t/wk) is hauled to SWARU in the optimal solution while a
smaller fraction of the curbside waste in the DTS ([70, 100] t/wk) is hauled to SWARWU presently.

The system cost under the GLP solution is [15.0, 20.7] x 10° $/yr, which is 200,000 to 300,000 S/yr lower
than the existing system cost ([15.2, 21.0] x 10 $/yr). The results demonstrate that the existing waste flow
allocation scheme is generally satisfactory from the system cost point of view. However, since minor system
changes are required for realizing the optimal allocation, the GLP solution may still be of interest 1o decision

makers:
(2) Optimal Solution when SWART is not in Operation

The GLP model can also easily reflect the effects of system condition variations on the waste flow allocation
pattern. Table 6.2.5 and Figure 6.2.6 show the solution obtained when SWARU is closed under the assumption
that future environmental regulations may greatly inhibit its utilization. It is indicated that. under this situation,

the landfill consumption rate will be greatly increased (from {70700, 90900] t/yr for the system with SWARU o
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Table 6.2.5 Solutions when SWARTU is not in operation
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Symbol Municipality District Facility Solution
Waste flow from municipalities to SWARU (t/wk):

Due to the non-operating nature of SWARU, all flows are zero.
Waste flow from municipalities to Third Sector (t/wk):
®(x3)) Flamborough 1 Third Sector 31
&(x3) Dundas 2 Third Sector 22
®(x43) Hamilton 3 Third Sector 21
B(x3y) Hamilton 4 Third Sector 21
@(x35) Hamilton 5 Third Sector [37.41]
®(X1g) Hamilton 6 Third Sector [38, 64)
B(x37) Hamilton 7 Third Sector [97. 108]
®(x3p) Hamilton 8 Third Sector 50
®(xag) Hamilton 9 Third Sector 96
®(x3,10) Stoney Creek 10 Third Sector 40
@(x3,11) Stoney Creck 11 Third Sector [1.0,1.2]
®(x3,12) Stoney Creek 12 Third Sector 12
B(x3,3) Ancaster 13 Third Sector 79
®(x3,14) Ancaster 14 Third Sector [1.4,15]
®(x3,5) Ancaster 15 Third Sector 3.0
®(x3,16) Ancaster 16 Third Sector 13

.Glanbrook 17 Third Sector 11

B(x3,17) .

Continue to the next page
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Table 6.2.5 (continued) Solutions when SWARU is not in operation

Symbol Municipality District Transfer Station Facility Solution

Waste flow from municipalities to Dundas Transfer Station (only non-zero flows are shown) (t/wk):

®(z11) Flamborough 1 Dundas [148, 166]
@(z91) Dundas 2 Dundas [105, 123]
®(z21) Hamilton 3 Dundas [100, 112]
@(z41) Hamilton 4 Dundas (100, 118}

Waste flow from municipalities to Kenora Transfer Station (only non-zero flows are shown) (t/wk):

B(zs2)
®B(zs2)
B(z7)
®(z102)
(2112

Hamilton
Hamilton
Hamilton
Stoney Creek
Stoney Creek

5
6
7
10
11

Kenora
Kenora
Kenora
Kenora
Kenora

[177, 196]
(283, 312]
[469, 522]
[191, 220]
(5, 13]

Waste flow from municipalities to Mountain Transfer Station (oniy non-zero flows are shown) (t/wk):

®B(zg3)

&(z53)

®(212,3)
®O(z13)
®(z14,3)
&(zy53)
®(z153)
®(z17,3)

Waste flow from transfer stations to facilities (t/wk):

®(y11)
A(y12)
®(y12)

®(ya)
B(yn)
B(ya3)

®(yy)
®(y32)
®(y»)

Residue from Third Sector to the landfill (t/wk):

Hamilton
Hamilton
Stoney Creek
Ancaster
Ancaster
Ancaster
Ancaster
Glanbrook

System Cost ®(f) ($10%/yr);

8

9

12
13
14
15
16
17

Mountain
Mountain
Mountain
Mountain
Mountain
Mountain
Mountain
Mountain

Dundas
Kenora
Mountain

Dundas

Kenora
Mountain

Dundas
Kenora
Mountain

Landfill
Landfill
Landfill

SWARU
SWARU
SWARU

Third Sector
Third Sector
Thizd Sector

{239, 275]
[465, 522]
[57.69]
[38, 50]
[7,16]
(14,26)
(62,74]
(53, €4]

(453, 518]
(1122, 1260]
(933, 1093]

0
0
0
(0.9, 1.0]
(2.3,2.5]

[1.9,2.2]

[37,44]
[13.7,18.5]
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Figure 6.2.6 Optimal waste flow ailocation pattern when SWARU is not in operation



[132300, 151600] t/y for a system without SWARU), and the blue box recycling program will also be promoted
in all the six municipalities (they are all determined to have approximately 20% of their curbside wastes
recycled). In terms of transfer station utiIiz:i:ion. all curbside wastes collected from Districts 1 to 4 should be
hauled to the DTS, those from Districts 5 to 7, 10 and 11 should be hauled to the KTS, and those from D-istricts
8,9, and 12 to 17 should go to the MTS. It is thus demonstrated that there will also be increased utilization of the
transfer stations.

The solution of system cost under this situation is [13.7, 18.5] x 10° $/yr, which is (1.5, 2.5] x 10° S/yr lower
than the cost for the system with SWARU. However, this cost reduction is based on an increase of the landfill
capacity consumption by approximately 60,600 t/yr. In fact, any evaluation of the benefits of SWARU's

utilization would need to consider economic, land resource conservation, and political issues. From a long term

planning point of view, if SWARU is closed, new facilities, such as central composting areas, could be

developed to balance the lack of SWARU, and the Third Sector recycling program could also be expanded.

(3) Qptimal Sclution when SWARYJ i its Full

Table 6.2.6 and Figure 6.2.7 show the solution obtained when SWARU is operated at its fuil capacity
([2500, 2700] t/wk) under an assumption that increased utilization of the waste-to-energy facility is allowed. It is
indicated that, under this situation, the landfiil consumption rate will be greatly decreased (from [70700, 509001
t/yr for the system with the existing SWARU operating capacity to [39500, 65500] t/yr for that with the full
SWARU capacity). The solution of system cost under this situation is [16.3,224] x 10° S/yr, which is [l.:L 1.4]
x 10° $/yr higher than the system cost with SWARU operating at its existing capacity. However, this cost
increase is associated with a decrease of the landfill capacity consumption by [24200, 32200] t/yr. Again, an

evaluation of the benefits of SWARU's utilization would require an investigation of a number of issues.

{(4) Summary

Table 6.2.7 shows a comparison between the existing waste flow allocation pattern and the GLP solutions

under the three different conditions: (i) SWARU operating at its existing flow rate, (if) SWARU not in operation,



Table 6.2.6 Solutions when SWARU is operated at its full capacity
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Symbol Municipality District Facility Solution
Waste flow from municipalities to SWARU (ywk):

®(xq;) Flamborough 1 SWARU 0

@(xy) Dundas 2 SWARU 0

S(x23) Hamilton 3 SWARU 0

®(xq4) Hamilton 4 SWARU [100, 118]
®(xz5) Hamilton 5 SWARU [177, 200]
®(x26) Hamilton 6 SWARU [282,3135]
B(xz7) Hamilton 7 SWARU [468, 532]
®(x13) Hamilton 8 SWARU 252
®(xq9) Hamilton 9 SWARU 0

®(x2,10) Stoney Creek 10 SWARU [211,238]
@(xz,11) Stoney Creek 11 SWARU [6, 13]
@(x2,12) Stoney Creek 12 SWARU [63,74]
®(x3,13) Ancaster 13 SWARU {40, 48]
B(x2,14) Ancaster 14 SWARU [7, 16]
®(xz,15) Ancaster 15 SWARU 16
B(x2,16) Ancaster 16 SWARU 65
@(x,17} Glanbrook 17 SWARU 0

Waste flow from municipalities to Third Sector (t/wk):

D(xq) Flamborough 1 Third Sector (15,17]
B(x3) Dundas 2 Third Sector 16

®(Xas) Hamilton 3 Third Sector 16

&(x34) Hamilton 4 Third Sector 21

®(x35) Hamilton 3 Third Sector 37

(X136 Hamiiton ] Third Sector [59, 61}
@(x37) Hamilton 7 Third Sector 98

&(x33) Hamilton 8 Third Sector 37

®(Xa9) .Hamilton 9 Third Sector 73
®(x3,10) Stoney Creek 10 Third Sector [20, 23]
®(x311) Stoney Creek 11 Third Sector (0.5.1.2]
®(x3,12) Stoney Creek 12 Third Sector 6,71
®(X3_13) Ancaster 13 Third Sector 6

®(x3,14) Ancaster 14 Third Sector [0.7,1.3]
@(x3,15) Ancaster 13 Third Sector (1.5,2.5]
®(x3,16) Ancaster 16 Third Sector 9.8
®(x3,17) Glanbrook 17 Third Sector 11

Continue to the next page



Table 6.2.6 (continued)} Solutions when SWARU is operated at its full capacity

Symbol Municipality

District

Transfer Station

Facility

Solution

Waste flow from municipalities to Dundas Transfer Station {only non-zero flows are shown) {t/wk):

®(Zu) Flamborough
®(z21) Dundas
®(z3,) Hamilton

1

2

3

Dundas
Dundas
Dundas

Waste flow from municipalities to Kenora Transfer Station;

Values from all districts were determined to be zero.

{164, 130]
(111, 129}
[105, 117]

Waste flow from municipalities to Mountain Transfer Station (only non-zero flows are shown) ({/wk):

@(zg3) Hamilton
®(243) Hamilton
B(z33,9) Ancaster
B(z153) Ancaster
®(z163) Ancaster
®(z73) Glanbrook

Waste flow from transfer stations to facilities (t/wk):

®(y11)
®(y12)
B(y13)

®(ya1)
B(y22)
B(y)

B(ys1)
A(y3
B(y2)

8
9
13
15
16
17

Mountain
Mountain
Mountain
Mountain
Mountain
Mountain

Dundas
Kenora
Mountain

Dundas
Kenora
Mountain

Dundas
Kenora
Mountain

Residue from SWARU and Third Sector to the landfill (t/wk):

from SWARU to the landfill
from Third Sector to the landfill

System Cost ®(f) ($106/yr):

Landfill
Landfill
Landfiil

SWARU
SWARU
SWARU

Third Sector
Third Sector
Third Sector

{0, 35}
[487, 545]
0.3]

[0, 11]
(0. 12]
{53, 64]

[0, 46)
0
[105, 234]

379
0
434

(0.8,0.9]
0
(0.9, 1.3]

(625, 945]
{30, 35]

{16.3,22.4}




(] [1687. 1887] - B SWARU
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(920, 1096] 813 (625, 945]
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Figure 6.2.7 Optimal waste flow allocation pattern when SWARU is operated at its full capacity



Table 6.2.7 A comparison between the existing waste flow allocation pattern and the
optimal solutions

CASE 1: Optimal sofution when SWARU is operated at its existing flow rate
{1) Changes required from the existing system:
(i) all waste collected in District 3 (Hamilton 403 West) should be delivered to the DTS:
(i) all waste collected in Ancaster should be directly delivered to SWARU;
(i) the majority of curbside waste in the DTS ([265, 287] t¥wk) should be hauled to SWARU.
(2) Cost difference:
optimal cast - existing cost = -{0.2, 0.3] x 105 Sy (savings).
(3) Landfill consunption:

(70700, 90900] tfyr of waste (residue and raw MSW) to landfill (existing landfilt consumption =
(69700, 92100] t/yr).

CASE 2: Optimal solution when SWARU is not in operation
(1) Changes required fron: the existing system:

(i) all waste collected in Disiricts 3 (Hamilton 403 West) and 4 (West Downtown Hamilton) should be
delivered to the DTS:

(i) all waste collected in Districts 5 to 7 (Downtown Hamilton and East Hamilton), 10 (Lower Stoney
Creek), and 11 (East Stoney Creek) should be delivered to the KTS;

(iti) all waste collected in Ancaster and District 12 (Mountain Stoney Creek) should be delivered to

(iv) all curbside waste in the DTS, KTS and MTS should be hauled to the landfiil.
(2) Cost difference:

optimal cost - existing cost = -[1.5, 2.5] x 105 Spyr (savings).
(3) Landfill consumption:

(132300, 151600 t/yr of waste (residue and raw MSW) to landll ({60600, 60700] y/yr increase from
existing system).

CASE 3: Optimal solation when SWARU is operated at its full capacity
(1) Changes required from the existing system:

() the majority of waste collected in Ancaster, and District 8 (West Mountain Hamilton) should be
delivered to SWARU;

() the majority of curbside waste in the DTS should be hauled to SWARU:

(i) all curbside waste in the MTS should be transported out in a two stweam fashion: one stream with a
flow of 434 twk to SWARU, and another with a flow of [105, 234] t/wk to the landfill.

(2) Cost difference:
optimal cost - existing cost = [1.1, 1.4] x 10 $/yr (increased cost).

(3) Landfill consumption:

[39500, 65500] tyr of waste (residue and raw MSW) to landfill ([24200, 32200] t/yr decrsase from
existing system).




and (iii) SWARU operating at its {ull capacity. Compared with the solution when SWARU is operated at its
existing flow rate, the changes required to realize the optimal ailocation only relate to the waste flows from
Ancaster, District 3 (Hamilton 403 West) and the DTS. In comparison, a number of changes will be required for
the existing system to realize the optimal atlocation if SWARU is not in operation. These changes relate to the
waste flows from Ancaster, Stoney Creek, Districts 3 to 7, and the DTS, KTS and MTS. The differences between
the GLP solution when SWARU is operated at its full capacity and the existing allocation pattemn involve waste
flows from Ancaster, Districts 3 and 8, and the DTS and MTS.

Generally, less flows to the landfill, SWARU and Third Sector are determined under the scheme for &¢(f)
than that for &(f). The scheme for &(f) represents a decision option with the lower bound system cost under the
most advantageous system condition, while that for 2(f) represents an option with the upper bound cost under
the most demanding system condition. For system implementation, all the waste flow values can be adjusted
within their solution intervals to generate useful decision altematives according to specific system objectives and
restrictions. In summary, planning for ®(f) will guarantee that waste management requirements are met. but as
planning aims toward &(f), the possibility of meeting these requirements by the planned pathway decreases (i.e.
the risk of unforeseen conditions increases). In other words. planning for &X(f) represents a conservative strategy

and that for &Xf) represents an optimistic strategy.

6.2.5. Concluding Remarks

In this section, a study of waste flow allocation planning has been conducted for the RMHW through the
application of a GLP approach. The formulated GLP model can effectively reflect the interactive relationships
between different system components. It can also directly incorporate uncertain information (presented as
interval numbers) within the optimization framework, such that reasonable solutions can be generated through
the proposed GLP solution algorithm (Section 4.1).

This study utilizes a grey mathematical programming methed to solve a practical waste management
planning problem, and thus demonstrates its applicability. The results are potentially useful for MSW decision

makers in the RMHW to adjust/justify the existing waste flow allocation patterns, and formulate related local



policies/reguiations regarding waste generation and management.

Based on this study it is also recognized that. due to the temporal variations of the relationships between
waste generation {demand for waste disposal) and available facility capacities (supply for waste management),
further systems optimization analyses are necessary for the long term planning of waste management facility
development/expansion and utilization. This problem is another issue being of concern for the Region's MSW
decision makers. Consequently, in section 6.3, a grey integer programming model will be formulated for this

MSW capacity planning problem.
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63. GREY CAPACITY PLANNING FOR THE WASTE MANAGEMENT SYSTEM IN
THE REGIONAL MUNICIPALITY OF HAMILTON-WENTWORTH

6.3.1. Introduction

The RMHW's waste management facilities include SWARU, Third Sector, Glanbrock landfill, the
household hazardous waste depot, and three transfer stations. The landfill is utilized directly to satisfy waste
disposal demand or alternatively to provide capacity for the other facilities' residue disposal, and typically has an
overall cumulative capacity limit (i.e., it is a ‘consumable capacity facility’ which generally consumes productive
land). The other facilities have duily operating capacity limits. From a long term planning point of view, waste
generation rates in the Region may keep increasing due to population increases and economic development.
‘Therefore, not only the landfill but other existing facilities will face problems of insufficiency in their capacities
to meet the Region's overall waste disposal demand in the future. In addition, because of the temporal variation
of the relationships between waste generation (demand) and available facility capacities (supply), the optimal
schemes for the effective utilization of the facilities (i.e. optimal waste flow allocation patterns) may also vary
between different time periods.

The above points emphasize the need for a systematic approach for the long term capacity planning of the
Region's solid waste management system. Previously, mixed integer linear programming methods have been
used for solving this type of waste management capacity planning problems (Jenkins 1982a; Baetz 1988).
However, since a number of the system components in the Region are uncertain, and many of them can only be
known as intervals without distribution information, the ordinary integer programming methods may not be
actually applicable, Therefore, a grey integer programming (GIP) method, which has been shown to be feasible
for solving a hypothetical MSW capacity planning problem under uncertainty in section 4.3, is applied to this
case study. The grey binary variables in the model represent the ranges of facility expansion/development
alternatives within a multi-period, multi-facility and multi-scale context, and the grey continuous variables
represent waste flows along the routes connecting the municipalities and waste management facilities. The GIP
method has the advantages that, firstly, it can effectively incorporate uncertainties within its optimization process

and resulting solutions, such that feasible decision alternatives can be generated through the interpretation of the
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grey solutions according to projected applicable system conditions; secondly, it has lower computational
requirements than other integer programming methods that deal with uncertainties (e.g.. stochastic integer
programming and fuzzy integer programming); and finally, since interval data are feasible for the GIP model. the
specification of relevant distribution information is not required. Thus, the objective of this section is to
determine the optimal expansion/development pattems for the Region's waste management facilities over time,
as well as the relevant facility utilization schemes during each time period through the GIP modelling approach,
such that the total system cost is minimized.

This section is structured as follows. In subsection 6.3.2, data relating to this case study are presented and
analyzed, The formulation of a GIP model for the study problem is given in subsection 6.3.3. In subsection 6.3.4.
the GIP solutions under different system concitions are described and interpreted. Concluding remarks are

provided in subsection 6.3.5.

6.3.2. Data Collection and Analysis

The study time horizon is forty years, which is divided into five planning periods as shown in Table 6.3.1.
Table 6.3.2 presents the curbside wastes generated in the five periods. It is indicated that, as time goes on, the
waste generation rates in all the 17 districts are assumed to keep increasing, At the beginning of the time horizon.
an existing landfill, a waste-to-energy facility (SWARU), a material recycling facility (Third Sector), and three
transfer stations are available to serve the Region's curbside waste disposal demands. Their present capacitics,

operating costs, and revenues are given in Table 6.2.2 (Section 6.2).

Table 6.3.1 Five planning periods for the forty year study time herizon

Period Interval

k=1 1993 - 1998
k=2 1998 - 2003
k=3 2003 -2013
k=4 2013 -2023
k=3 2023 - 2033

Over the forty year planning horizon, due to the temporal variation of the relationships between waste

[
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generation and available facility capacities, the overall capacity of the Region's waste masagement facilitics may
have to be increased. Table 6.3.3 shows the capacity expansion options and their capital costs for different waste
management facilities in the five time periods. No expansion of SWARU was considered due to the‘.cxisling
restrictive waste-to-energy policies in the Province of Ontario. It is indicated that a new landfill may be
developed with an area of [200, 300] acres over the time horizon: a new composting facility could be
developed/expanded by three different options in each of the five time periods with a maximum expansion limit
of {554, 623] t/wk; and Third Sector's material recycling facility could be expanded once by a capacity of [810,
900] t/wk. In terms of the potential locations of the new facilities, an unspecified location in southeast Ancaster
was assumed to be a suitabie site for the new landfill due to its satisfactory geological/geographical conditions
(Figure 6.3.1), while four potential locations were assumed to exist for the new composting facility (rural parts of
Dundas, Ancaster, Stoney-Creek, and Glanbrook (Figure 6.3.1)). Recently, Laidlaw Technologies Inc. also
submitted a proposal for the new composting facility in the Region, where a location in Glanbrook was suggested
(Laidlaw Technologies Inc. 1992). Therefore, in order to better reflect the potential system condition variations,
two cases will be studied. They are: (i) when the composting facility is Iocated in Glanbrook. and (ii) when there
are four options for the composting facility location. The final decision for an optimal facility
expansion/development scheme will depend on the consideration of many environmental, economic. and
resources factors.

Table 6.3.4 presents the operating costs and revenues for different waste management facilities over the five
time periods. Table 6.3.5 shows the transportation costs for different waste delivery routes over the five time
periods. It is indicated that the costs vary between different routes and different time periods. Particularly, the
transportation costs for "transfer station --> waste management facility" routes are much lower than those for
"municipality ---> transfer station/SWARU" routes.

The residues from SWARU (bottom ash), Third Sector (nronrecyclabie waste), and the composting facilitics
(noncompostable waste) are 25, 35]% (dry weight), (7, 8]%, and (8, 10]% of their inflows, respectively, The
only downstream facility for these residues is the landfill.

Generally, from Tables 6.3.2 to 6.3.5, it is seen that the majority of data obtained for the Region's waste
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management activities are interval numbers, which can be easily incorporated within a grey mathematical

programming model.

6.3.3. Formulation of the Grey Integer Programming Model

Both the entire Region (Figure 6.1.1) and the entire time horizon (40 years) are integrated as a general
system. The decision variables in the system include two categories: discrete and continuous. The discrete
variables represent the expansion options for waste management facilities in different time periods. and the
continuous variables represent the waste flows from different districts (Figure 6.2.1) to the waste management
faciiities via municipal collection (industrial/commercial wastes are not included in the model, and will be
discussed separately). The objective is to minimize total system cost by achieving optimal facility
expansion/development planning and optimal waste flow allocation for the entire time horizon. The constraints
include all of the relationships between the decision variables and the waste generation, transportation, and
management conditions. Thus, a grey integer programming (GIP) model for this capacity expansion planning

problem can be formulated as follows:
6 . 7 p 3 R
Min Q)= 21®(Cu) +21 ®(C,) - 21®(Cu )+
u= u= u=

n 5 3
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= J‘- ]_ =

[constraints for the highest allowable landfill operating level];

17 3

E ): [®(X4,‘)+®(Y4¢)] ®(TCo). Vk.

j-—- =1

[constraints for the lowest allowable operating level of Third Sector];

(6.3.23)

{6.3.24)

{6.3.25)

(6.3.26)

63.27)

(6.3.28)

(6.3.29)

(6.3.30)

6.3.31)

3



17
-21 [®(zj1) + B(Wji) ®RSDs)] 2 @(DTp), Vk, (6.3.32)
=

[constraints for the lowest allowable operating level of the DTS]:

17 3
-21 }:l {8(zj20 + [B(x430 + B(y1u)] ®RSDy) + O(wiz) ®(RSDs)}z @(KTp), Vk.  (63.33)
F =

[constraints for the lowest allowable operating level of the KXTS);

17
}:1 [®(z30) + (W) ®@RSDg)] =2 ®MTy), Vk, (6.3.34)
=

[constraints for the lowest allowable operating level of the MTS];

17
_}:1 S(wji) 2 ®DTo), Vk, (6.3.35)
-

[constraints for the lowest allowable operating level of the DTS compostable waste depot];

17
_Zl ®(wp 2 ®(KTg). Vk, ' {6.3.36)
j=

[constraints for the lowest allowable operating level of the KTS compostable waste depot];

17
-21 ®(wiz) = ®(MTp), Vk, (6.3.37)
J=

[constraints for the lowest allowable operating level of the MTS compostable waste depot}:

(iii) satisfaction of demands:

4 3
) . (i) + Blxid) + BWjg)] = ®(WGy), VY j k. (6.3.38)

i=3 r=

{general waste disposal demand constraints];

3
S BRTW Bl + )] S BRCKM) OWG, v ik (6.3.39)

[recyclable waste disposal demand constraints];

3
3. 8w < ®RGEP) WG, V¥ jk, (6.3.40)
P

[compostable waste disposal demand constraints];



(iv) material balances at transfer stations:

i7 4
.El [®(z;1p) + B(wjnd) ®RSDs)] = 21 S(yin), v k, (6.3.41)
= i=

[mass balance constraints for nonrecyclable/noncompostable wastes at the DTS];

17 3 4
-Ei }:l {®(z2) + [B(x450) + B(Yar)] ®RSDy) + B(wizw) ®RSD3)} = Ei B, VYV k
=l = i=
{6.342)
[mass balance constraints for nonrecyclable/noncompostable wastes at the KTS);
17 4
‘Ei [®(zpp) + @(wj3k) ®(RSDs)] = Ei @(¥i3K)- v k, (6.3.43)
j..- 1=
{mass balance constraints for nonrecyclable/noncompostable wastes at the MT1S];
17
B(Yar) = @R T4) 21 B (i), V 1,k (6.3.44)
J=
[mass balance constraints for recyclable wastes at the transfer stations];
17 n
Y ®Wjg) = ):5 AYind» ¥ 1k (6.3.45)
=1 1=
(mass balance conztraints at compostable waste depots in the transfer stations];
(v) technical constraints:
@(xip) 20, v Lk, (6.3.46)
R(vig) 20, v iLrnk (6.347)
&(zjn) 2 0, Vv irnk (6.3.48)
B(wig) 20, Vv j,r.k, (6.3.49)
[non-negativity constraints];
{vi) binary variable constraints;
Q) <1
20,
= integer, ¥ k, (6.3.50)

[non-negativity and binary constraints};

~J
n



tJ
h
[y}

1
0,
integer, V¥V i,m,k, (6.3.51)

B(Bimi

v IA

[non-negativity and binary constraints];

1
O!
integer, V k, {6.3.52)

(1o

v IA

[non-negativity and binary constraints];

n 3
2 21 QB0 <1, Y k, (6.3.53)

=2 m=

[only one composting facility expansion may occur in any peried];

5
3 ey <1, (6.3.54)
k=1

(landfill expansion may only be considered once];

where:

DTS' = DTS compostable waste depot:

i = type of waste management facility, where i = 1 for the existing landfill, 2 for the new landfill. 3 for
SWARU, 4 for Third Sector, and 5 to n for composting facilities;

j=name of district, j= 1,2, ..., 17 (Figure 6.2.1);

k = name of time period, k=1,2.....5;

KTS'= KTS compostable waste depot;

Ly = length of time period k (day);

m = name of expansion option for the composting facilities. m =1, 2, 3;

MTS' = MTS compostable waste depot;

n = parameter indicating number of options for the .omposting facility location (n = 5 when there is only
one option for the composting facility location; n = 8 when there are four options for the
composting facility location);

r = location of transfer station, r = 1, 2, 3, where r =1 for the Dundas Transfer Station (DTS), 2 for the

Kenora Transfer Station (KTS), and 3 for the Mountain Transfer Station (MTS);



&(C," = total operating cost of landfill (3);

@(C,5) = total operating cost of SWARU (8);

@®(C3") = total operating cost of Third Sector ($);

®(C4") = total operating cost of composting facilities (3);

®(Cs") = total operating cost of the DTS and DTS' ($);

®(C¢’) = total operating cost of the KTS and KTS' ($):

®(C+") = total operating cost of the MTS and MTS' ($);

&(C}) = total revenue from SWARU (S);

®(C2R) = total revenue from Third Sector (8);

®(C3R) = total revenue from composting facilities (3);

®(C ") = total transportation cost for waste flows from cities/towns to transfer stations (3);
®(C21) = total transportation cost for waste flows from transfer stations to waste management facilities (3);
®(C4') = total transportation cost for waste flows from cities/towns to waste management facilities (3);
®(C4") = total cost of delivering residue of SWARU to landfill ($);

®(Cs") = total cost of delivering residue of Third Sector to landfiil (8);

®(C¢') = total cost of delivering residues of composting facilities to landfill (3);

®(CkE1) = capital cost of landfill expansion in period k (8);

®(Ci,nkE2) = capital cost of expanding composting facility i by option m in period k (8);
®(CkE3) = capital cost of Third Sector expansion in period k (8);

®(DTy) = lowest allowable operating level of the DTS (t/d);

®(DTy) = lowest allowable operating level of the DTS compostable waste depot (t/d);
®(DT;) = capacity of the bTS (vd);

®(DT;" = capacity of the DTS compostable waste depot (t/d);

®(f) = total system cost (3);

®(KTp) = iowest allowable operating level of the XTS (t/d);

®(KTp") = lowest allowable operating level of the KTS compostable waste depot (t/d);

®(KT)) = capacity of the KTS (/d);
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@®(KT;') = capacity of the KTS compostable waste depot (t/d);

®(LC) = existing landfill capacity (t);

®(LC,) = highest allowable landfill operating level (t/d);

®(MT)p) = lowest allowable operating level of the MTS (/d);

®(MTj') = lowest allowable operating level of the MTS compostable waste depot (t/d);
®(MT1) = capacity of the MTS {t/d);

®(MT') = capacity of the MTS compostable waste depot (i/d),

® @ ™) = operating cost of landfill in period k (S/t);

8P P) = operating cost of SWARU in period k ($/1):

®(Pk(3)) = operating cost of Third Sector in period k ($/t);

®(Pk(4)) = operating cost of composting facility in period k (5/t);

®(P11") = operating cost of the DTS in period k (8/1);

®(P2') = operating cost of the KTS in period k (3/t);

®(P3x) = operating cost of the MTS in period k (§/1);

®(Q1x") = operating cost of the DTS" in period k (3/t);

®(Qa") = operating cost of the KTS' in period k ($/);

®(Qs") = operating cost of the MTS' in period k (5/t);

®(ch) = revenues from composting facilities in period k ($/1);

®(RkR) = revenue from Third Sector in period k ($/1);

®(Rkw) = revenue from SWARU in period k (3/t);

®(RGJ1;(1)) = recyclable percentage of the total curbside collected waste flow from district j in period k (%);
®(RGJ-k(2)) = compostable percentage of the total curbside collected waste flow from district j in period k (%):
®(RSD3) = percentage of residue generated from SWARU (%):

@(RSD3) = percentage of residue generated from Third Sector (%);

®(RSDs) = percentage of residue generated from composting facilities (%);

@(RTy) = recyclable percentage for waste flows to transfer station r in period k (%):

®(SCox) = lowest allowable operating level of SWARU in period k (t/d);



®(SC) = capacity of SWARU (/d);

@(Tj,k(l)) = transportation cost for noncompostable waste from district j to transfer station r in period k (3/t);

@(’I"j,k(l)) = transportation cost for compostable waste from district j to transfer station r in period k (S/t);

®(Ti,.k(2)) = transportation cost from transfer siation r to waste management facility i in period k (8/t):

®(Tijk(3)) = trangportation cost from district j to waste management facility 1 in period k ($/t);

& (T ) = cost of delivering residue of Third Sector to the KTS in period k ($/1);

®(Ti,k(5)) = cost of delivering residue of composting facility i to transfer station r in period k. i= 5.6, ...,
n (S);

®(TCoi) = lowest allowable operating level of Third Sector in period k (t/d):

@(TC}) = capacity of Third Sector at the start of period 1 (t/d);

®(wjr) = compostable waste flow from district j to transfer station r in period k {t/d);

®(WGj) = waste generation rate in district j during period k;

®(xjjx) = waste flow from district j to facility i in period k (/d);

®(¥;rk) = waste flow from transfer station r to facility i in period k (t/d);

®(Yirg) = waste flow from transfer station r to faciiity i in period q,q = 1,2, ..., 5 (¥d):

®(zjri) = waste flow from district j to transfer station r in period k (t/d);

®(ALC) = capacity for the new landgfill (1);

®(ARC) = amount of capacity expansion for Third Sector (t/d);

®(AMC;) = amount of capacity expansion option m for composting facility i (t/d):

®(oy) = binary decision variabie for landfill expansion at the start of period k;

@&(Bimi) = binary decision variable for composting facility i with expansion option m at the start of period k:

@ () = binary decision variable for Third Sector expansion at the start of period k.

6.3.4. Ana]ysis of Results

The GIP model contained more than 1.000 constraints and more than 700 decision variables (25 binary and

715 continuous variables for the case when a single composting facility is assumed to be located in Glanbrook:



70 binary and 760 continuous variables for the case when there are four opiions for the composting facility
location), which was solved on 486 microcomputers using the MILP88 package (Eastern Software Products

1989), with a typical single run taking approximately 50 hours.

(1.1) Facility expansion

Table 6.3.6 and Figure 6.3.2 shows the facility expansion solutions for the landfill, Third Scctor. and
composting facility obtained through the above GIP model when the composting facility is assumed to be located
in Glanbrook. It is indicated that a new landfill should be developed by a size of [200, 300] acres ([80.9. 121.4]
hectares) at the start of period 4 (year 2014). A composting facility should be developed at a capacity of [431,
485] t/wk in Glanbrook at the start of period 1, and then expanded by 511 increment of [554, 623] t/wk at the start
of period 2 (year 1999). Third Sector is determined to be expanded by a capacity of (810, 900] t/wk at the start of

period 3 (year 2024).

(1.2) Waste flow allocation

The waste flow allocaticn solutions for periods 1 to 5 are shown in Table 6.3.6 and Figure 6.3.3. It is
indicated that the waste flow allocation patterns vary between different time periods due to the temporal variation

of waste management conditions over the time horizon.
(1.2A) Waste flow allocation for period 1
Nonrecyclableinoncompostable waste flows to transfer stations, SWARU and landfill;

The solution for period 1 indicates that all nonrecyclable/noncompostable (NR/NC) MSW collected from
district§ 1,2, and 3 ([132, 149], (89, 106, and (85, 96] t/wk, respectively) should be delivered to the Dundas
Transfer Station (DTS), and the majority of NR/NC MSW collected from districts 9 and 17 {[393, 624], and [39,
491 t/wk, respectively) should be hauled to the Mountain Transfer Station (MTS). while no NR/NC MSW should

g0 to the Kenora Transfer Station (KTS). The wastes entering the MTS should then be delivered to the landfill,
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Municipal

Collection . \

[431, 454]

Y

[804,

[1395, 1650] — » J sWARU
33\ 305, 350] [425;7003

Transfer Stations O ""‘— (525, 569] ——w- R Landfil

{non-compostabie) \\\\

IZ 3]

(28, 3«\ (34, 45
Blue Box \

W . [405, 429)] e ]
Third Sector

Transfer Stations
(compostable)

Note: all numbers are in t/wk.

(431, 454] » B
Glasabrook
Composter

Figure 6.3.3a Optimal waste flow allocation pattern when the composnng facility
is located in Glanbrook (period 1) ‘

Municipal

Collection \

[640, 672}

(609, 704] [403, 447}

[425, 700}

.

Transfer Stations O ———— [350,309] ——— B Landfil

(non-compostable) \
\ 4
| [47.5\ (51,67
Blue Box \

- (674, 704] e
' Third Sector

@) (640, 672} » B
Transfer Statons Glanbrook
{compostable) Composter

Note: all numbers are in t/wk.

[1297, 1553] - [ SWARU

Figure 6.3.3b Optimal waste flow allocation pattern when the composting facility
is located in Glanbrook (period 2)
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Municipat

Collection \

[560, 685] [425, 700]

\ [411, 460] +

Transfer Stations O g=———— [201,287) o [l LandSiit

[765, 798] (non-compostable) \
{4, 5]
(56, 67\ (61, 80}
Blue Box \

[1289, 1540] - B swWaRrRU

L (807, 839} ———————- .
' Third Sector

O (765, 798] » H
Transfer Stations Glanbrook

(compostable) Composter

Note: all numbers are in t/wk.

Figure 6.3.3c Optimal waste flow allocation pattern when the composting facility
is located in Glanbrook (period 3)

Municipal 9 [1337, 1596] - Pl swaru
Collection \
[991, 1040] I363 404] 425, 700}

Transfer Stations O ————— [673 701] ——p B Landfilt

76,5761 (non-compostable) \
{4, 5]
(54, ‘HN\ (62, 88)
Blue Box \

- (771,871 =
Y Third Sector

[776. 876] -
Transfer Stations Glanbrook
(compostable) Composter

Note: all numbers are in t/wk.

Figure 6.3.3d Opnmal waste flow allocation pattern when the compostmg facility
islocated in Glanbrook (period 4)



Municipal g (1517, 1769] - [l SWARU

Collection \

[1139, 1239] {425, 7001

S +

Transfer Stations ) ———— (1013, 1083] ——3» [l Landfill

(882, 999)] (non-compostable) \
i4, 5]
(61, SN [71. 100]
Blue Box \

[183, 231]

- 876,995 ———— = [
Y Third Sector

0O (882, 999] » B
Transfer Stziions Glanbrook
{compostable) Composter

Note: all numbers are in t/wk,

Figure 6.3.3¢ Optimal waste flow allocation pattern when the composting facility
is located in Glanbrook (period 5)
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while those from the DTS should be transported to SWARU. All NR/NC MSW collected from districts 4 to 7
and 10 to 16, and the majority of NR/NC MSW from district 8 should be directly hauled to SWARU.

Curbside collected residential wastes are generally considered as suitable inputs for SWARU, while a very
low percentage (less than 1%) of industrial/commercial wastes are considered acceptable. The majority of the
districts (4 to 7, and 10 to 16) were determined to have their curbside wastes directly hauled to SWARU because
this will (i) avoid mixing the curbside waste with industrial/commercial wastes in the transfer stations, and (ii)
reduce the operating costs for the transfer stations, The reasons why wastes from districts 1, 2, and 3 are first
hauled to the DTS and then to SWARU via the QEW are that the three districts are close to the DTS and the
"DTS --> SWARU" routing avoids passing directly through the City of Hamilton.

All wastes collected from districts 9 and 17 should be first hauled to the MTS because of their close
proximity to the transfer -stalion. The distance from the MTS to SWARU is similar to that to the landfill, while
the DTS has a much greater distance to the land£ill than to SWARU. Therefore, it is more cost-effective to haul
as much waste as possible from the DTS to SWARU, and deliver waste from the MTS to the kandfill.

No curbside collected waste should be delivered to KTS because, if the waste is to be disposed of in the
landfill, it is more efficient to transport it via the MTS rather than the KTS since the KTS is located in northeast
Hamilton and is distant from the landfill; on the other hand. if the waste is to be treated in SWARU, it is more
convenient to directly transport it to SWARU which is directly adjacent to the KTS. Thercfore, the KTS only
accepts individual hauls of industrial/commercial wastes and residential wastes {minor), as well as residue from

Third Sector.

Waste flow to Third Sector:

Presently, about 23,000 t/yr (1992 data) of curbside byproduct materials are recycled in the Region. In the
period 1 solution, it is determined that, for each district individually, districts 4 to 7, and 17 would have
approximately 15 to 20% of their curbside wastes recycled, while the other districts would have somewhat lower
recycling rates (approximately 10%).

Districts 4 to 7 are in lower Hamilton, and have higher poputations (thus lower collection costs due to

economies of scale), and shorter haul distances to Third Sector (thus lower transportation costs). District 17 is
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Glanbrook, where both recyclable and nonrecyclable curbside MSW are collected by Eggers Excavating in
separate bins during a single collection trip. Thus, the associated collection and transportation costs are lower.
Therefore, it is suggested that the blue box program be promoted to a greater degree in these districts. For
example, increased education programs could be conducted in these districts to increase; the participation rates.
Very low percentages of MSW in the transfer stations are recyclable (the recyclable flows from the transfer
stations are less than 0.5% of the total amount of MSW recycled in the Region). Although there is presently a
large bin at each transfer station for accepting recyclable wastes, few individuals respond. Normally, only about
50% of the wastes in the bins are recyclable, which leads to the low recycling rate and the high cost of collection

and transportation from the transfer stations.

Waste flow to the Glanbrook Composter:

The composting facility is assumed to be developed in Glanbrook at the start of period 1. According to the
regional contractor's design, the compostable wastes collected from the municipalities should first be delivered 1o
the compostable vaste depots in the Region's three transfer stations, and then to the Glanbrook Composter by
transfer trailer. The results indicate that all compostable MSW collected from districts 1 to 3 (78 t/wk) should be
delivered to the DTS compostable waste depot (DTS, all compostable MSW from districts 4 to 7, and 10 to 12
([155, 174] t/wk) should go to the KTS compostable waste depot (KTS"), and all compostable MSW from
districts 8, 9, and 13 to 17 ([198, 202] t/wk) should go to the MTS compostable waste depot (MTS"), because of
their close proximity to the relevant transfer stations. For each district individually, it is determined that districts
1to 3, 8,9, and 17 would have approximately 15 to 20% of their curbside wastes composted, while the other

districts would have somewhat lower composting rates {approximately 10%).

Waste flow to the landfill:

The residues from Third Sector, SWARU., and the Glanbrook Composter are {7, 81% ([28. 341 t/wk), {25,
351% ([4235, 700} t/wk), and [8, 10]% ([34, 45] t/wk) of their inputs, respectively. These residues are all hauled to
the landfill. There are also {497, 535] ¢wk of MSW flow from the MTS to the landfill. Thus, the total amount of

curbside collected MSW (including residues) routed to the landfill is [984, 1314] tywk ([51.2, 68.3] x 10* tfyr).
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MSW from industrial and commercial sources:

Based on 1992 data. the waste flow from industrial/commercial sources to the landfill is [32.8, 42.1] x 103
t/yr. These wastes are delivered to the landfill via the ransfer stations. subject to a current tipping fee of S180/.

It is assumed that all industries and companies will deliver their wastes to a transfer station closest to the
waste generation source. Therefore, the general distribution pattern of the industrial/commercial waste flow to
the transfer stations will tend to remain constant. In 1992, the industrial/commercial wastes entering the DTS,

KTS, and MTS were [13, 25], [75, 85), and (15, 25] t/d, respectively.

A comparison between the existing waste flow allocation and the period 1 solution:

Compared with the existing waste flow allocation pattern, the major cause of the changes in the period 1
solution is the development of the Glanbrook Composter, which accepts compostable waste at a low operating
cost, and thus may significantly reduce waste flows to other facilities. The major differences between the existing
allocation and the optimized period 1 allocation are: (i) compﬁstable MSW should be delivered to the transfer
stations and then to the Glanbrook Composter in the optimized allocation; (if) all NR/NC MSW coilected from
Ancaster (District 13 to 16) and the majority of NR/NC MSW from West Mountain Hamilton (District 8) should
be directly delivered to SWARU in the optimized allocation rather than to the DTS (Districts 13 and 14) and
V_MTS (Districts 8, 15 and 16) in the existing allocation; (iii) all NR/NC MSW collected in District 3 {(Hamilton
403 West) should be delivered to the DTS in the optimized allocation rather than to SWARU in the existing
allocation; and (iv) all NR/NC MSW from the DTS should be hauled to SWARU in the optimized allocation

*

while a smaller fraction of the MSW from the DTS ([70, 100] t/wk) is hauled to SWARU presently.

(1.2B) Waste flow allocation for period 2

The major causes of the differences between the period 1 and period 2 solutions include: (i) waste generation
is increased in period 2: and (ii) the Glanbrook Composter is expanded by an increment of [554. 623] t/wk at the
start of period 2. However, the general waste flow allocation pattern is not significantly changed compared with

the period 1 solution.
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Nonrecyclable/noncompostable waste flows to transfer stations, SWARU and landfill:

The "municipality ~-> transfer station” flow allocation pattern is the same as that of the period 1 solution. All
NR/NC MSW collected from districts 1, 2, and 3 ([123, 1401, [83, 991, and (76, 86] t/wk, respectively) should be
delivered to the DTS, and the majority of NR/NC MSW from districts 9 and 17 ([293, 3341, and [34, 45] t/wk,

respectively) should be hauled to the MTS, while no NR/NC MSW should go to the KTS.

The wastes entering the DTS should then be delivered to SWARU, while those in the MTS should be- .

transported out in a two stream fashion: one stream with a flow of [203, 252] t/wk to the landfill, and another

with a flow of 123 t/wk to SWARU. As a comparison, all wastes entering the MTS were determined to be hauled
to the landfill in the period 1 solution. The major cause of the lower "MTS --> landfill” flow in period 2 is the
increased capacity of the Glanbrook Composter, which leads to decreased "municipality --> SWARU" flows,
such that SWARU capacity is left over for the "MTS --> SWARU" flow.

All NR/NC MSW collected from districts 4 to 8 and 10 to 16 should be directly hauled to SWARU, which
has the same pattern as that for the period 1 solution, except that the flows are decreased due to the increased

composting proportions.

Waste flow to Third Sector:

The results indicate that more MSW will be recycled in period 2 because of the increased waste generation,
as well as the improved service and education initiatives for the recycling program. For each district individually,
it is determined that districts 4 to 7. 9, and 17 would have approximately 20 to 25% of their curbside wastes
recycled, while the other districts would have somewhat lower recycling rates (approximately 15%). This pattern

is similar to that from the period 1 solution.

Waste flow to Glanbrook Composter:

More waste is composted in period 2 due to the expansion of the Glanbrook Composter at the start of period
2 and its low operating cost. It is determined that compostable waste flow to the MTS' should be significantly

increased because of its close proximity to the Glanbrook Composter. However, the general flow pattern is
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similar to that in period 1: districts 1 to 3, 8. 9, and 13 to 17 should have approximately 20 to 23% of their
curbside wastes composted, while the other districts should have somewhat lower composting rates

(approximately 15%).

Waste flow to the landfill:

Generally, the waste flow to the landfill is decreased in period 2 due to the expansion of the Glanbrook
Composter. Although the residues from Third Sector, SWARU, and the Glanbrook Composter should still be
hauled to the landfil, the waste flovw from the MTS to the landfill is decrezsed from [497, 535] t/wk in period 1
to {203, 253] t/wk in period 2. Thus, the total amount of curbside collected MSW (including residues) routed to
the landfill is decreased from {984, 1314} t/wk ([51.2, 68.3] x 10° t/vr) in period 1 to [726, 1076] t/wk ([37.8,

56.01 x 10° t/yx) in period 2.

{1.2C) Waste flow gllocation for period 3

The major causes of the differences between the period 2 and period 3 solutions include: (i) waste generation

is increased in period 3; and (ii) the existing landfiil is close to completion ¢ the end of period 3.

Nonrecyclableinoncompostable waste flows to transfer stations, SWARU and landfiil:

The "municipality --> transfer station" flow allocation pattern is the same as that for the period 2 soiution.
All NR/NC MSW collected from districts 1, 2, and 3 ({127, 146], (81, 99}, and [72, 84] t/wk. respectively)
should be delivered to the DTS, and all NR/NC MSW from districts 9 and 17 ([252, 313], and [28,' 40] t/wk,
respectively) should be hauled to the MTS, while no NR/NC MSW should go to the KTS.

The wastes entering the DTS should then be delivered to SWARU, while those in the MTS should be
transported out in a two stream fashion: one stream with a flow of [145, 220] t/wk to the landfill, and another
with a flow of 132 t/wk to SWARU. This "transfer station --> facility” flow allocation pattern is similar to that
for the period 2 solution,

All NR/NC MSW collected from districts 4 to 8 and 10 to 16 should be directly hauled to SWARU, which

also has the same pattern as that from the period 2 solution.

[
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Waste flow 1o Third Sector:

The results indicate that more MSW will be recycled in period 3 because of the increased waste generation,
as well as improved service and education. For each district individually, it is determined that districts 4 to 7. 9,
and 17 should have approximately 25 to 30% of their curbside wastes recycled, while the other districts should
have somewhat lower recycling rates (approximately 15%}. This pattern is similar to that from the period 2

solution.

Waste flow to Glanbrook Composter:

More waste will be composted in period 3 due to the low operating cost of the Glanbrook Composter and the
limited capacity of the landfill. Compostable waste flow to the MTS' is significantly increased because of its
close proximity to the Glanbrook Composter. However, the general flow pattern is similar to that in period 2:
districts 1 to 3, 8, 9, and 13 to 17 should have approximately 25 to 30% of their curbside wastes composted,

while the other districts should have somewhat lower composting rates (approximately 15%).

Waste flow to the landfill:

Generally, waste flow to the landfill is decreased in period 3 due to the limited landfill capacity. Although
the residues from Third Sector. SWARU, and the Glanbrook Composter should still be hauled to the landfill. the
waste flow from the MTS to the landfill is decreased from [203, 253] t/wk in period 2 to [145, 220] t/wk in
period 3. Thus, the total amount of curbside collected MSW (including residues) routed to the landfill is
decreased from [726, 1076] t/wk ((37.8, 56.0] x 10° t/yr) in period 2 to [687, 1067] twk ([35.7, 55.51 x 10° yyr)

in period 3.

{1.2D) Waste flow ailocation for period 4

The major causes of the differences between the period 3 and period 4 solutions include: (i) waste generation

is increased in period 4; and (ii) a new landfill is developed at the start of period 4.

Nonrecyclableinoncompostable waste flows 1o transfer stations, SWARU and landfill:

The "municipality --> transfer station” flow allocation pattern is similar to that from the period 3 solution.



All NR/NC MSW collected from districts 1, 2, and 3 ([176, 195], [103, 117]. and [86, 94] ywk. respectively)
shouid be delivered to the DTS. and the majority of NR/NC MSW from districts 8, 9 and 17 (185, 396. and [45,
53] t/wk, respectively) should be hauled to the MTS, while no NR/NC MSW should go to the KTS. The only
significant change in period 4 is that the majority of waste from dis:zict 8 should be delivered to the MTS and
then to the landfill, rather than to SWARU.

The wastes entering the DTS should then be delivered to SWARU, while those from the MTS should be
transported to the Jandfill. As a comparison, the wastes entering the MTS were determined to be transported out
in a two streamn fashion (one stream to the landfill, and another to SWARU) in the period 3 solution. The major
cause of the increased "MTS --> landfill" flow in period 4 is that a new landfill is developed at the start of the
period.

Al NR/NC MSW collected from districis 4 to 7 and 10 to 16 should be directly hauled to SWARU, which is

similar to that from the period 3 solution.

Waste flow to Third Sector:

The results indicate that more MSW will be recycled in period 4 because of the increased waste generation,
as well as the improved service and education. For each district individually, it is determined that all districts
should have approximately 20% of their curbside wastes recycled in the period 4 solution, while some districts
(districts 6, 7,9, and 17) were determined to have somewhat higher recycling rates than the others in the period 3

solution.

Waste flows to Glanbrook Composter:

Generally, waste flow from the transfer stations to the Glanbrook Composter is increased from [765, 798]
t/wk in period 3 to [776, 876] t/wk in period 4, due to the increased waste generation. For each district
individually, it is determined that all districts should have approximately 20% of their curbside wastes composted
in the period 4 solution, while some districts (districts 1 to 3, 8, 9, and 13 to 17) were determined to have

somewhat higher composting rates than the others in the period 3 solution.
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Waste flows to the lundfill:

Waste flow to the landfill is significantly increased in period 4 due to the increased waste generation rate and
the development of the new landfiil. The waste flow from the MTS to the landfill is increased from [145, 220}
t/wk in period 3 to [624, 631] t/wk in period 4. Thus, the total amount of curbside coilected MSV/ (including
residues from Third Sector, SWARU, and the Glanbrook Composter) routed to the landfill is increased from

(687, 1067] t/wk ([35.7, 55.5] x 10° t/y) in period 3 to [1165, 1489) t/wk ([60.6, 77.4] x 10° /yr) in period 4,

(1.2E) Waste flow allocation for period 5
The major cause of the differences between the period 4 and period 5 solutions is the increased waste
generation in period 5. In addition, Third Sector is determined to be expanded at the start of the period. However,

the general waste flow allocation pattem is not significantly changed, compared with the period 4 solution.
Nonrecyclableinoncompostable waste flows to transfer stations, SWARU and landfill:

The "municipality --> transfer station” flow allocation pattern is the same as that for the period 4 solution.
All NR/NC MSW collected from districts 1, 2, and 3 ([227, 2497, [120, 137], and [93, 102] t/wk, respectively)
should be delivered to the DTS, and the majority of NR/NC MSW from districts 8, 9 and 17 (221, [429, 473},
and [49, 57} t/wk. respectively) should be hauled to the MTS, while no NR/NC MSW should go to the KTS.

The wastes entering the MTS should then be delivered to the landfill, while those from the DTS should be
transported out in a two stream fashion: one stream with a flow of 256 t/wk to the landfill, and ;cmother with a
flow of [183, 231] v/wk to SWARU. As a comparison, all wastes entering the DTS were determined to be hauled
to SWARU in the period 4 solution. The major cause of the increased "DTS --> landfill” flow in period 5 is the
increased waste generation in the Region.

All NR/NC MSW collected from districts 4 to 7 and 10 to 16 should be directly hauled to SWARU, which

has the same pattern as that from the period 4 solution.

Waste flow to Third Se:ior:

The results indicate that more MSW will be recycled in period 5 because of the increased waste generation,
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the expansion of Third Sector, as well as the improved service and education. For each district individually, it is

determined that all districts should have approximately 20% of their curbside wastes recycled. This pattem is

similar o that from the period 4 solution.

Waste flow to Glanbrook Composter:

Generally, waste flow from the transfer stations to the Glanbrook Composter is increased from [776, 876]
t/wk in period 4 to [882, 999] t/wk in period 5. due to the increased waste generation. However, the general flow

pattern is similar to that in period 4 with all districts having approximately 20% of their curbside wastes

composted.

Waste flow to the landfill:

Waste flow to the landfill is increased in period 5 due to the increased waste generation and the available
landfill capacity. The total amount of curbside collected MSW (including residues from Third Sector, SWARU,
and Glanbrook Composter) routed to the landfill is increased from [1165, 1489] t/wk ([60.6, 77.4] x 10° v/yr) in

period 4 to {1509, 1883] t/wk ([78.5, 97.9] % 10° t/yr) in period 5.

(1.3) System cost

The system cost for the entire time horizon (40 years) under the optimal solution. is $[515.1, 699.1] x 105,

with a total landfill capacity consumption of [2,19, 2.93] x 10° ¢/40 yr.

(2) Optim Iutign when F ions for th mposting Facili
(2.1) Facility expansion

Table 6.3.7 and Figure 6.3.4 show the optimal facility expansion solutions for the landfill, Third Sector, and
composting facilities obtained through the above GIP mode! when there are four options for the composting
facility location (Glanbrook, Dundas, Ancaster, and Stoney-Creek). It is indicated that a new landfill shouid be

developed with a size of [200, 300] acres ([80.9, 121.4] hectares) at the start of period 4. The first composting
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facility should be developed at a capacity of [431, 485) t/wk in Dundas at the start of period 1, and the second
composting facility should be developed at a capacity of [554, 623] t/wk in Stoney-Creek at the start of period 2.
Third Sector is determined to be expanded by a capacity of [810, 900] t/wk at the start of period 5. Thus. the
general facility expansion pattern from the four option solution is similar to that from the solution when a single
composting facility is located in Glanbrook (referred to here as the "single option solution™), except the

development of the composting facilities.

(2.2) Waste flow allocation

The waste flow allocation solutions for periods 1 to 5 are shown in Table 6.3.7 and Figure 6.3.5. It is
indicated that, generally, the waste flow allocation pattern for the four option solution is similar to that for the

single option solution except waste flows to the composting facilities.

(2.2A) Waste flow allocation for period [
Nonrecyclableinoncompostable waste flows to transfer stations, SWARU and landfill:

The solution for period 1 indicates that all NR/NC MSW collected from districts 1, 2, and 3 ([126, 142], [89,
106], and (83, 98] t/wk, respectively) should be delivered to the DTS, and the majority of NR/NC MSW from
districts 8, 9 and 17 (142, [416, 4357, and {38, 49] t/wk, respectively) should be hauled to the MTS, while no
NR/NC MSW should go to the KTS. The wastes entering the MTS should then be delivered to the landfill, while
those from the DTS shouid be transported to SWARU. All NR/NC MSW collécted from districts 4 to 7 and 10 to
16 should be directly hauled to SWARU. The above waste flow allocation pattern is similar to that from the one

option solution because of the similar management conditions for NR/NC MSW.

Waste flow to Third Sector:

The general recyclable waste flow allocation pattern is similar to that from the single option solution. The
majority of the districts would have approximately 10% of their curbside waste recycled. except Glanbrook

which would have a somewhat higher recycling rate.
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Figure 6.3.5a2 Optimal waste flow allocation pattern when there are four options
for the composting facility location (period 1)
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Figure 6.3.5¢c Optimal waste flow allacation pattern when there are four options
for the composting facility location (period 3)
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Waste flow to Dundas Composter:

The composting facility is determined to be developed in a rural part of Dundas at the start of period 1. The
results indicate that all compostable MSW collected from districts 1 to 5. 8, and 13 to 16 ([206, 209] t/wk)
should be delivered to the DTS compostabie waste depot (DTS, all compostable MSW from districts 6, 7, and
10 to 12 ([121, 137] ¢'wk) should go to the KTS compostable waste depot (KTS", and all compostable MSW
from districts 9 and 17 (104 t/wk) should go to the MTS compostable waste depot (MTS"). because of their close
proximity to the relevant transfer stations. For each district individually, it is determined that districts 1 to 3, 8, 9,
and 13 to 17 should have approximately 15 to 20% of their curbside wastes composted, while the other districts

should have somewhat lower composting rates (approximately 10%).

Waste flow to the landfill:

The residues from Third Sector, SWARTUJ, and the Dundas Composter are {7, 8]% ([21, 28] t/wk), [25, 35]1%
([425, 700] t/wk), and (8, 101% ([34, 45] v/wk) of their inputs, respectively. These residues should all be hauled
to the landfill. There are also [616, 653] t/wk of MSW flow from the MTS to the landfill. Thus, the total amount
of curbside collected MSW (including residues) routed to the landfill is [1075, 1398] t/wk ([55.9, 72.7] x 10°

t/yr). This pattern is similar to that from the single option sofution.

A comparison between the existing waste flow allocation and the period 1 solution:

Compared with the existing waste flow allocation pattern, the major cause of the changes in the pericd 1
solution is the development of the Dundas Composter, which accepts compostable waste at a low operating cost,
and thus may significantly reduce waste flows to other facilities. The major differences between the existing
allocation and the optimized period 1 allocation are: (i) compostable MSW should go to the Dundas Composter
in the optimized allocation; (ii) alt NR/NC MSW collected in Ancaster (District 13 to 16) should be directly
delivered to SWARU in the optimized allocation rather than to the DTS (Districts 13 and 14) and MTS (Districts
15 and 16) in the existing allocation: (iii) all NR/NC MSW collected in District 3 (Hamilton 403 West) should be

delivered to the DTS in the optimized allocation rather than to SWARU in the existing allocation; and (iv) all
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NR/NC MSW from the DTS should be hauled to SWARU in the optimized allocation. while a smaller fraction of

the MSW from the DTS ({70, 100} t/wk) is hauled to SWARU presently.

(2.2B) Waste flow allocation for period 2

The major causes of the differences between the period 1 and period 2 solutions include: (i} waste generation
is increased in period 2; and (ii) the Stoney-Creek Composter is developed with a capacity of [554, 623] t/wk at
the start of period 2. However, the general waste flow allocation pattem is not significantly changed compared

with the period 1 solution.
Nonrecyclable/noncompostable waste flows to transfer stations, SWARU and landfill:

The "municipality --> transfer station” flow allocation pattern is the same as that from the period 1 solution.
All NR/NC MSW collected from districts 1, 2, and 3 ([123, 140), [83, 99], and [76. 86] t/wk, respectively)
should be delivered to the DTS, and the majority of NR/NC MSW from districts 9 and 17 ([334, 3791, and [33,
45] t/wk. respectively) should be hanled to the MTS, while no NR/NC MSW should go to the KTS.

The wastes entering the DTS should then be delivered to SWARU, while those entering the MTS should be
transported out in a two stream fashion: one stream with a flow of {208, 265] t/wk to the landfill, and another
with a flow of 157 t/wk to SWARU. As a comparison, all wastes entering the MTS were determined to be hauled
fo the landfill in the period 1 solution. The major cause of the lower "MTS --> landfill” flow in period 2 is the
increased flow to the Stoney-Creek Composter, which leads to decreased "municipality --> SWARU" flows.
such that SWARU capacity is left over for the "MTS --> SWARU" flow.

All NR/NC MSW collected from districts 4 to 8 and 10 to 16 should be directly hauled to SWARU, which is

of the same pattern as that from the period 1 solution.

Waste flow to Third Sector:

The results indicate that more MSW will be recycled in period 2 because of increased waste gencration, as
well as the improved service and education. For each district individually, it is determined that districts 4 to 7,
and 17 should have approximately 20 to 25% of their curbside wastes recycled, while the other districts should

have somewhat lower recycling rates (approximately 15%). This pattern is similar to that from the period 1
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solution.

Waste flow to composting facilities:

More waste is composted in period 2 due to the development of the Stoney-Creek Composter and its low
operating cost. It is determined that compostable waste flow to the MTS' shouid be significantly increased
because of its close proximity to the Stoney-Creek Composter. For the "municipality --> transfer station” flow
allocation, it is determined that the compostable waste flow from district 8 should be delivered to the MTS' rather
than to the DTS’ (in the period 1 solution), because district 8 is closer to the MTS' than to the DTS'. Generally,
districts 1 to 5, 8, 9, and 13 to 17 should have approximately 20 to 25% of their curbside wastes composted,

while the other districts should have somewhat lower composting rates (approximately 15%).

Waste flow to the landfill:

Generally, the waste flow to the landfill is decreased in period 2 due to the development of the Stoney-Creek
Composter. Although the residues from Third Sector, SWARU, and the composting facilities should still be
hauled to the landfill, the waste flow from the MTS to the landfill is decreased from [395, 625] t/wk in period 1
to [208, 263] ¢/wk in period 2. Thus, the total amount of curbside collected MSW (including residues) routed to
the landfill is decreased from [1075, 1398] t/wk ([55.9, 72.7] x 10° t/yr) in period 1 to [731, 1088] t/wk ([38.0,

56.6] x 10° t/yr) in period 2.

{2.2C) Wagste flow allocation for period 3

The major causes of the differences between the period 2 and period 3 solutions include: (i) waste generation

is increased in period 3; and (ii) the existing landfill is close to completion at the end of period 3.
Nonrecyclablelnoncompostable waste flows to transfer stations, SWARU and landfill:

The "municipality --> transfer station” flow allocation pattern is the same as that from the period 2 solution.
All NR/NC MSW collected from districts 1, 2, and 3 ([127, 146], [81, 93], and [72, 80] t/wk, respectively)

should be delivered to the DTS, and all NR/NC MSW from districts 9 and 17 ([252, 313], and [28, 40] t/wk.



respectively) should be hauled to the MTS. while no NR/NC MSW should go to the KTS.

The wastes entering the DTS should then be delivered to SWARU. while those entering the MTS should be
transported out in a two siream fashion: one stream with a flow of [90. 163] ¢/wk to the landfill. and another with
a flow of 187 t/wk to SWARU. This "transfer station > facility” flow allocation pattern is similar to that from
the period 2 solution.,

All NR/NC MSW collected from districts 4 to 8 and 10 to 16 should be directly hauled to SWARU, which is

also of the same pattern as that from the period 2 solution.

Waste flow to Third Sector:

The results indicate that more MSW will be recycled in period 3 because of increased waste generation, as
well as improved service and education. For each district individually, it is determined that districts 4 to 7. 9, and
17 should have approximately 25 to 30% of their curbside wastes recycled, while the other districts should have

somewhat lower recycling rates (approximately 15%). This pattern is similar to that from the period 2 solution.
Waste flow to composting facilities:

More waste will be composted in period 3 due to the low operating cost of the composting facilities and the
limited capacity of the landfiil. Compostable waste flow to the Stoney-Creek Composter is increased from 245
t/wk in period 2 to 389 t/wk in period 3 (the flow to the Dundas Composter is not significantly increased).
However, the general flow pattem is similar to that from the period 2 solution. Districts 1 to 5, 8, 9, and 13 to 17
should have approximately 25 to 30% of their curbside wastes composted. while the other districts should have

somewhat lower composting rates (approximately 15%).

Waste flow to the landfill:

Generally, waste flow to the landfill is decreased in period 3 due to the limited landfill capacity. Although
the residues from Third Sector, SWARU, and the composting facilities should still be hauled to the landfill, the
waste flow from the MTS to the landfill is decreased from [252, 318) t/wk in period 2 to [146, 230] (/wk in

period 3. Thus, the total amount of curbside collected MSW (including residues) routed to the landfill is
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decreased from [731, 1088] t/wk ([38.0, 56.6] x 10° t/yr) in period 2 to [636, 1016] ywk ([33.1, 52.8] x 10° v/y1)

in period 3.

(2.2D) Waste flow allocation for period 4

The major causes of the differences between the period 3 and period 4 solutions include: (i) waste generation

is increased in period 4; and (ii) a new landfill is developed at the start of period 4.
Nonrecyclableinoncompastable waste flows to transfer stations, SWARU and landfill:

The "municipality --> transfer station” flow allocation pattemn is similar to that from the period 3 solution.
All NR/NC MSW collected from districts 1, 2, and 3 ({176, 194], [103, 117], and [835. 94] t/wk, respectively)
should be delivered to the DTS, and the majority of such MSW from districts 8, 9 and 17 {186, 396, and [45, 53]
t/wk, respectively) should be hauled to the MTS, while no NR/NC MSW should go to the KTS. The only
significant change in period 4 is that the majority of waste from district 8 should be delivered to the MTS and
then to the landfill, rather than to SWARU,

The wastes entering the DTS should then be delivered to SWARU. while those entering the MTS should be
transported to the landfill. As a comparison, the wastes entering the MTS were determined o be transported out
in a two stream fashion (one stream to the landfill, and another to SWARU) in the period 3 solution. The reason
for the increased "MTS --> landfil}" flow in period 4 is that a new landfill is developed.

All NR/NC MSW collected from districts 4 to 7 and 10 to 16 should be directly hauled to SWARU, which is

similar to the period 3 solution.

Waste flow to Third Sector:

The results indicate that more MSW will be recycled in period 4 because of the increased waste generation,
as well as the improved service and education, For each district individually, it is determined that all districts
should have approximately 20% of their curbside wastes recycled in the period 4 solution. while some districts

(districts 4 to 7, 9, and 17) were determined to have somewhat higher recycling rates than the others in the period

3 solution.



Waste flows to composting facilities:

Generally, waste flow from the transfer stations to the composting facilities is decreased from [820, 855]
Ywk in period 3 to [776, 876] t/wk in period 4, due to the development of the new landfill. It is determined that
all districts should have approximately 20% of their curbside wastes composted in the period 4 solution. while
some districts (districts 1 to 5, 8, 9, and 13 to 17) were determined to have somewhat higher composting rates

(25 to 30%) than the others in the period 3 solution.

Waste flows to the landfill:

Waste flow to the landfill is significantly increased in period 4 due to the increased waste generation and the
development of the new landfill. The waste flow from the MTS to the landfill is increased from [90, 163] t/wk in
period 3 to (624, 631] t/wk in period 4. Thus, the total amount of curbside collected MSW (including residues
from Third Sector, SWART, and the composu'ng' facilities) routed to the landfill is increased from {636, 1016)

t/wk ([33.1, 52.8] x 10° t/yr) in period 3 to [1165, 1489] t/wk (160.6. 77.4] x 10° t/yr) in period 4.

(2.2E) Waste flow allocation for period 3

The major cause of the differences between the period 4 and period 5 solutions is the increased waste
generation in period 3. In addition, Third Sector is determined to be expanded at the start of this period.

However, the general waste flow allocation pattern is not significantly changed, compared with the period 4

solution,

Nonrecyclable/noncompostable waste flows to transfer stations, SWARU and landfill:

The "municipality --> transfer station” flow allocation pattern is the same as that from the period 4 soluticn.
All NR/NC MSW collected from districts 1, 2, and 3 ([171. 2001, [90, 113], and [77. 89] t/wk, respectively)
should be delivered to the DTS, and the majority of NR/NC MSW from districts 8, 9 and 17 ([221, 237), {429,

473], and [49, 37] t/wk, respectively) should be hauled to the MTS, while no NR/NC MSW should go 10 the
KTS.

J

00



The wastes entering the MTS should then be delivered to the landfill, while those entering the DTS should
be transported out in a two stream fashion: one stream with a flow of 153 t/wk to the landfill, and another with a
flow of [183, 247] t/wk to SWARU. As a comparison, al} wastes entering the DTS were determined to be hauled
to SWARU in the period 4 solution. The major cause of the increased "DTS --> landfill” flow in period 5 is the
increased waste generation in the Region.

All NR/NC MSW collected from districts 4 to 7 and 10 to 16 should be directly hauled to SWARU, which is

of the same pattern as that from the period 4 solution.

Waste flow to Third Sector:

The resuits indicate that more MSW will be recycled in period 5 becanse of the increased waste generation,
the expansion of Third Sector, as well as the improved service and education. All districts should have

approximately 20% of their curbside wastes recycled, This pattern is similar to that from the period 4 solution.

Waste flow to composting facilities:

Generally, waste flow from the transfer stations to the composting facilities is increased from [776. 876]
t/wk in period 4 to [984. 1085] t/wk in period 3. due to increased waste generation. It is determined that districts
1 to 3 should have approximately 30 to 35% of their curbside wastes composted. while other districts should
have somewhat lower composting rates (approximately 20%). As a compariscn, all districts had similar
composting rates (approximately 20%) in the period 4 solution. The reasons for the higher composting mteé in

districts 1 to 3 in period 5 are their close proximity to the Dundas Composter and the increased waste generation,

Waste flow ro the landfill:

Waste flow to the landfill is increased in period 5 due to the increased waste generation and the available
landfill capacity. The total amount of curbside collected MSW (including residues from Third Sector, SWARU,
and the composting facilities) routed to the landfill is increased from [1165, 1489] t/wk ([60.6. 77.4] x 10° t/y7)

in period 4 to {1413, 1806] Ywk ([73.5.93.9] x 10° t/yr) in period 5.
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(2.3) Svstem cost

The system cost for the entire time horizon (40 years) under the optimal solution is S[511.6. §94.9] x 108,
which is ${3.5, 4.2] x 10° lower than that from the single option solution, with a total landfill capacity
consumption of [2.14, 2.88] x 10° /40 yr, which is 0.05 x 10° 40 yr lower than that from the single option
solution. The results indicate that the four option solution provides a better choice for the composting facility
location by incorporating different location options within the GIP model as binary decision variables.
Consequently, the choice of developing the composting facilities at the Dundas and Stoney-Creek locations may
be preferable to developing and expanding the Glanbrook Composter in terms of not only lhe.systcm cost but

also the landfill capacity consumption, although the differences in percentage terms are not large.

(3) Symmarv

The single option solution provides an optimal alternative for facility expansion and relevant waste flow
allocation, when Glanbrook is considered to be the preferred composting facility location as designed by Laidlaw
Technologies Inc. However, if the consideration of other potential locaticns is allowable, the four option solution
may provide preferable options with both lower system cost and lower landfiil capacity consumption.

The major differences between the single option and four option solutions include: (i) the compostable waste

flow allocation patterns are significantly different between the two solutions due to the different facility

locations; (if) more curbside collected wastes are determined to be composted in the four option solution,

because the two composting facility locations (Dundas and Stoney-Creek) lead to lower transportation costs for
the compostable waste flows and thus increased utilization of the composting facilities: and (iii) waste flows 10
Third Sector and the landfill are decreased in the four option solution due to the increased flows (o the
composting facilities.

For the interpretation of the grey solutions, it is indicated that less flows to the landfill, SWARU, Third
Sector, and the composting facilities are determined under the scheme for &(£) than that for &(f). The scheme
for &(f) represents a decision option with the lower bound system cost under the most advantageous system

condition, while that for &X(f) represents an option “ith the upper bound cost under the most demanding
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condition. For system implementation, all the decision variable values can be adjusted/shifted within their

solution intervals to generate decision alternatives according to specific system objectives and restrictions.

6.3.5. Concluding Remarks

In this section, a study of long term capacity planning for the waste management system in the Regional
Municipality of Hamilton-Wentworth has been conducted through the application of 2 GIP approach. The
formulated GIP model can effectively reflect the interactive relationships between different system components.
It can also directly incorporate uncertain information (presented as interval numbers) within the optimization
framework, such that reasonable solutions can be generated through the proposed GIP solution algorithm
(Section(4.3).

This study demonstrates the applicability of the grey integer programming method for solving a large scale
waste management planning problem. The results are potentially useful for MSW decision makers in the RMHW
for making long term planning of the Region's waste management activities and formulating related local

policies/regulations regarding waste generation and management.
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

7.1. SUMMARY AND CONCLUSIONS

(1) Grey mathematical programming (GMP) and grey fuzzy mathematical programming (GFMP) methods
have been developed for decision making under uncertainty, and applied to case studies for municipal solid
waste (MSW) management planning in the Regional Municipality of Hamilton-Wentworth (RMHW). Ontario,
Canada,

(2) In terms of methodology, the GMP/GFMP approaches have improved upon existing mathematical
programming methods, such as fuzzy mathematical programming, stochastic mathematical programming, and
interval mathematical programming, by introducing concepts of grey systems and grey decisions into ordinary
mathematical programming (MP) and fuzzy mathematical programming (FMP) frameworks. The developed
methods allow uncertain information (presented as grey numbers) to be effectively communicated into the
optimization processes and resulting solutions, such that feasible decision alternatives can be generated through
the interpretation and analysis of the grey solutions according to projected applicable system conditions.
Moreover, the proposed GMP/GFMP solution algorithms do not lead to more complicated intermediate models,
and thus have lower computational requirements and are applicable to practical problems.

Four GMP methods (grey linear programming (GLP), grey quadratic programming (GQP), grey integer
programming (GIP), and grey dynamic programming (GDP)) and four GEMP methods (grey fuzzy linear
programming (GFLP), grey fuzzy quadratic programming (GFQP), grey fuzzy integer programming (GFIP), and
grey fuzzy dynamic programming (GFDP)) have been developed (Huang et al. 1952 and 1993a, b, c, d). The
relevant solution algorithms have been provided, along with hypothetical, but practical, waste management
planning applications, where the GLP, GFLP, GQP, and GFQP meihods were applied to waste flow allocation
planning problems. and the GIP, GFIP, GDP, and GFDP methods were applied to capacity planning problems for
waste management facilities.

The GFMP improved upon the GMP through the introduction of concepts of fuzzy decisions and FMP into

the GMP frameworks to better reflect system uncertainties and generate grey solutions with higher certainty and
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improved applicability. The use of the GFMP approaches may be particularly pertinent for the GMP problems
with model stipulations fluctuating within wide intervals but the related membership function information for
admissible violations of system objectives and constraints is known. In practical applications, the GMP could be
first used. However, if solutions with high grey degrees are generated from the GMP approaches, a decision
would be required on the use of the more challenging GFMP approaches. The GMP/GFMP pairs are all directly
linked (GLP-GFLP, GIP-GFIP, and GDP-GFDP) except for the GFQP which is not linked to the GQP but
instead is linked to and improves upon the GFLP since it enables the modelling of constraints with independent
uncertain characteristics. In comparison, the GQP was formulated by including the effects of economies of scaie
within tr> GLP modelling framework. The GFLP improves upon the GLP by enabling the modelling of
problems with highly uncertain stipulations. The GFLP method is also incorporated within the GFIP and GFDP
modelling frameworks for solving the embedded LP problems. In terms of the difference between the GIP/GFIP
and GDP/GFDP, the GIP/GFIP methods provide a "one step” optimization process which is convenient for
modelling formulation and solution, but may require computers with high capacities and speeds when large scale
problems with a raultitude of variables and time stages are to be solved, while the GDP/GFDP methods could
potentially solve such a problem by dividing the planning horizon into several stages, but may require more
effort for the dynamic analysis and computation of the stage submodels (the state space effects would need to be
considered if more than two or three facilities are modeiled due to the potential effects of dynamic programming
"curse of dimensionality"). The effectiveness of the methods and their solution algorithms have been
demonstrated through a series of comparisons between the MP/GMP/GFMP solutions, as well as related

sensitivity analyses.

(3) In terms of application, the GMP and GFMP methodologies have been applied to two case studies of |

short term waste flow allocation and long term facility expansion planning for the waste management system in
the RMHW, Ontario. Through examining the relationships and conflicts between different system components
(such as those between economic development and waste generation, between increasing waste disposal
demands and limited facility capacities. and between the high costs for waste transportation/operation as well as

facility expansion/development and the limited funding for these activities), a GLP model was formulated for the



waste flow allocation planning problem. and a GIP model was formulated for the facility expansion planning
problem.

{4) The results of the two case studies indicated that reasonable solutions for MSW decision making could
be generated through the application of the GMP methodologies. The grey solutions provided optimal and stable
ranges for the system objective function values and decision variables, where the scheme for &(f) represents a
decision option with the lower bound system cost under the most advantageous system condition (when the
objective is to be minimized), while that corresponding to (f) represents an option with the upper bound
system cost under the most demanding condition. Generally, planning for &(f) will guarantee that waste
management requirements are met, but as planning aims toward &{f), the possibility of meeling these
requirements by the planned pathway decreases (i.e. the risk of unforeseen conditions increases). For system
implementation, the grey solutions can be used for generating feasible decision alternatives through
adjusting/shifting the decision variable values within their solution intervals and ﬁaﬁng relevant tradeoffs
between different system objectives/restrictions according to projected applicable conditions.

The short term waste flow allocation solutions were useful for adjusting or justifying the existing waste flow
allocation patterns, and the long term capacity planning solutions provided optimal times, sizes and locations of
the waste management facility developments/expansions. The results could bring both higher cconomic
efficiencies by reducing system costs through the optimization analyses, and higher environmental efficiencies
by better satisfying environmental objectives through the system constraints.

Sensitivity analyses of the effects of system condition variations on the model solutions were also
conducted. For the study of waste flow allocation planning, cases when SWARU (the Region's waste-to-energy
facility) is (i) operated at its existing flow rate, (ii) operated at its full capacity, and (iii} not in operation. were
solved and analyzed. For the study of facility expansion planning, cases when (i} a single composting facility
was assumed to be located in Glanbrook, and (i) there were four options for the composting facility location,
were solved and analyzed. These analyses and the associated results may be useful for the Region's MSW
decision makers since the provided solution alternatives are flexible in reflecting potential system condition

variations.

3
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72. RESEARCH ACHIEVEMENTS

The following are the achievements of this research from a general systems analysis perspective and an
environmental systems engineering application perspective (Appendix 1 contains a list of research related
publications):

(1) Four GMP and four GFMP formuiations as well as their solution algorithms have been developed, which
improve upon previous mathematical programming methods by directly communicating uncertainties into the
optimization processes and resulting solutions, such that feasible decision alternatives can be generated through
the interpretation of the grey solutions. Moreover, the proposed GMP/GFMP solution algorithms did not lead to
more complicated intermediate models, and thus had lower computational requirements and were applicable to
practical problems.

(2) The GMP/GFMP methodologies have been introduced to the area of MSW management planning to
solve problems of decision making under uncertainty. Previously, there have been very limited studies of
optimization modelling under uncertainty for hazardous waste management systems, but no previous
applications to the municipal solid waste planning area exist.

(3) For the Regional Municipality of Hamilton-Wentworth, the results for the two case studies will provide
valuable inputs for (i) the adjustment or justification of existing waste flow allocation pattemns. (ii) the long term
capacity planning of the Region's vraste management system, and (iii) thél formuiation of local policies and

regulations regarding waste generation and management,

7.3. RECOMMENDATIONS FOR FUTURE RESEARCH

(1) In this study, single objective GMP/GFMP methods have been developed and applied. However, many
engineering decision making problems may in fact have multiobjective characteristics. The majority of the
previous methods dealing with muitiobjective decision making under uncertainty include stochastic
multiobjective programming (SMOP) and fuzzy multiobjective programming (FMOP), where shortcomings in

data availability, solution algorithms, computational requirements, and results interpretation may create
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difficulties in their application. Therefore, one potential approach for mitigating these shortcomings is through
the development of grey muitiobjective programming (GMOP) methods. where elements of uncertainty ¢an be
effectively communicated into the optimization processes and resulting solutions, such that feasible decision
alternatives can be generated.

(2) In the grey mathematical programming models. uncertain information has been expressed as grey
numbers with known intervals but unknown probability distributions. However, when the system components are
highly uncertain (j.e., with high grey degrees) but with known distribution information. highly uncertain grey
solutions may be generated if the GMP methods are used, which may be of limited practical use to decision
makers. Therefore, an integration of probability theory (and thus stochastic programming methods) within the
GMP frameworks may allow more complete information of the uncertainties to be incorporated within the modei
and thus provide more effective solutions (Huang et al. 1993e).

(3) In the proposed GMP/GFMP methods, only linear and quadratic relations for the decision variables were
considered in the objective functions and constraints. In reality. solid waste management systems are
complicated and many intricate relationships and interactions may exist between system components. Therefore,
development of grey nonlinear programming methods and relevant solution algorithms may help to broaden the
applicable ranges of the grey mathematical programming approaches.

(4) Owing to the compiex nature of the MSW management system in the RMHW, ihe data base required for
the two case st.u'c'lies was extensive. Although most data sources are relatively accurate (deterministic numbers, or
grey numbers with low grey degrees), others are less so (grey numbers with high grey degrees). Therefore,
increasing the certainty of the data sets (i.e., decreasing the grey degrees of the input grey parameters) through
further investigation and verification would help to increase the certainty of the generated solutions,

(5) As new methods of mathematical programming under uncerainty, the GMP/GFMP approaches could
also be applied to other engineering decision making problems, such as water resource management and

water/air pollution control planning.
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