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i 1 ABSTRACT

We derive an approximate form for the angle averaged

'single particle density matrix for particles in a central

potential. It is a Taylor series expansion in -the inter-
particle distance f§| based on the exact density matrix for
particles in a harmonic oscillator potential This form is
also shown to be exact for- particlea in a linear and qua-
dratic potential in one dimension. ‘

3': We show the relation between this approximation and
pPrevious ones derived by Negele and Vautherin, Campi and
Bouyssy, and Jennings. All these approximations aéree with
‘the exact angle averaged densitw matrix up to the 82 coef~.
ficient of their respective Taylor series expansion in |§|.
We compare the coefficients of'S4‘and higher powers of 8
within each approximation to show the connections between

them.

k , We: then check, humerically, the S4 coefficients of
the various approximations with the exact cdefficieht. In
one dimenSion we use the Eckart potential and in three dimen-
sions we use the Woods Saxon. All three give reasonably
good approximations to the exact g% coefficient, with the

exception of the Negele Vautherin form in one dinensiigrf/

"
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Suggaations for putting'the harmonic oscillator

approximation into a form amenable to calculating exchange

integrals are made.
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INTRODUCTION

The. nucleus is a strong interacting many body system,

Thorefore it is not clear that nuclcons can be described as
independent nonintcracting particles in a central potential
well, . However, the success of the ahell model indicates that
it is a good approximation to think of tho nuclcus in terms of
independent particles. In this case we would like to finmd the
"best" single particle orbitals. for the nucleons. The single
particle orbitals could.belobtaincd from a phenomenological =
bne-body potentiel like tho.harmonic oscillator or-tHe Woods-
Saxon potentic}. A more satisfactory approach would be to
start from the two—nuclton interaction that fits the scattering
‘data, and construct an effective (G-matrix type) interaction
with which onc could perform a ilartree-Fock calculation to
©obtain the sclf-consistent one-body fiecld. Such onc-hody po-
'tcntiqls are density—dopcndont in‘character.

The Hartree ﬁock theory imvolves the calculation of
exchange matrix clements. For-a central two bodg interaction

he exchange matrix clement may be written as:



e
.

T

<E>Exn='?'J[ pz(g,g)v(S)d%sts ‘ .(l).
where v(S) is the 2 body -central potential, p(g,§)lis defined
in (1.2), and the angle everage is defined in appenaik B.
Writing the exchange matrix element in the form of equa-'
tion (1) represents a 31mpllf1catlon over a full Hartree Fock |
treatment since we may do the S integration rather .easily, and
.’ h‘.,'

hence bhe- left with'a "local® exchange term. Th1§ 16bal term

L

reduces the work done in a var&atlonal calculatlon by. a large
amount.

This prov1des the motivation for the present work Some
approrlmatlons to p (Q,8) mustlxaproposed in order that we ‘may
actually do the calculation in (l). This is ‘rather difficultr
However, it can be shown that p(g,§)2 is identical to_p2(9,§)
when expanded in a Taylor series of the interparticle distance
§ up to 52. Hence we make an approximation oo ET@T%T and
square it, with errors due to squaring appearing if\.S4 and
. higher coefficients.

Several forms have been proposed for BT@T?T wﬁich_ere
appropriate for:nuclear calculations. Negele and Vautherin
(1972) derived a form (referred to as the NVA) based on a plane .
wave expansion. The NVA has been used in many calculations
to date'(Negele and Vautherin (1972,1975); Sprung et al (1975},
Treiner and Krivine (1976)). Reasoneble agreement was obtained

for the gross properties of several nuclei. This leads us to
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believe that tﬁe apprbach‘iS'a useful one.

Campipand Bouyssy (1978),, modified the Negele Vautherin
form into a Slater-llke form (referred to as .the CBA). This
has been checked in an analytlcally solvable model by Bhaduri
and Sprung (1978). The CBA was ipund to glVe better exchange
energy matrix elements for a frr?d potential and was ea31er to
use in comparison with the NVA. ﬁowever the CBA has a more
complicated dependence on densrty than the NVA. Thus, to
date, no one has reported a varlatlonal calculatlon using this
form .

Jennings (1975) derived a semi;classical torm for
p(9,§) (with the explicit angqular dependence on § still présent)
‘based on the éxtended Thoﬁas Fermi approximat%on. No reports
'have yet appeared using this in a calculation.

In the present work we consider a hew form for the
density matrix based on the exact density matrix for particles
in a harmonic oscillator potential.. The finite nucleus con-
sists of particles in bound states which are known to be rea-
sonably well. approximated by harmonic oscillator wavefunctions,
This was ‘the ratlonale ‘behind our approach.

In chapter one we derlcgﬁthe harmonic oscillator approxi-
mation (HOA) to the density matrix by direct analogy with the -

exact form for the density matrix of particles in'a harmonic

oscilllator well. As the exact density matrix in this case is
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known only in a‘'Taylor sertes in the 1nterpart1cle dlstance S,
the HOA is thus glven as a Taylor series in both one and three

' dimensions. The exact density matrix for partlcles in a linear
and a quadratic potential in one dimension are shown tc‘have the .
same form as the HOA in appendix A. This led us to believe

that the approximation ought to be teasonabiy good in the in-
terior of the nucleus whereighgcpotential is reasonably‘"flat"

Y

due to.saturationﬁ p

" In chapter 2 we use a semiclassical approximaticnﬁcn ¥
the HOA to.obtain it in a local-form. This allowed us‘to‘com;
pare the HOA to the‘other approximations mentioned above. The
relationship between the approximations is checked €%§m by term
in a Taylor series expaasion in S for.each approximation.

In chapter 3 we calculate the den51ty matrix in the HOA,
the CBA‘ and the NVA for two model one body potentials in three
dimensions and a one body potential in one dimension. These were
compared wWith the exact angle averaged density matrix as given
in appendix B in three dimensions and expression (1.15) in one
dimension; ‘

fhe one'dimensional results show that the HOA and CBA
are reasonably good, but the:NVA is not. The three dimensional
results show that the HOA is quite accurate, particularly in the'J'.
interior. It confirms the findings of Campi and Bouyssy (1978A)

that the CBA is more accurate in the tail, No calculation of
LY



. matrix elemeﬁ%é are given since in its present, form, the HOA

is- ‘not amenable ‘to such calculatlon

.The flnal sec¢tion of chapter 3 jg devoted to a dlscus-

sion of the results and suggestlons of further work to be done
in this area.
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CHAPTER 1

'THE HARMONIC OSCILLATOR APPROXIMATION TO ‘THE DENSITY MATRIX

INTRODUCTION

In nucleér pPhysics short range forces and correlations.
are important. Hence, it is useful te know the expansion of
the density matrix p(R R') ln the ielatlve coordlnate S = B—B'.
Even when this expan51on does not converge rapidly to the den-
sity matrix p(§,§ ). it is Stlll of use in calculating matrix
elements of short range inﬁeractions; such as those'wﬁiéh are
found ' in nuclei.

In this chapterfwe define the single particie density
matrix, 9(8'3') for the ground-state of a many-fermion system
in the independent-particle model and«calculate it exp11c1tly
for the harmonlc oscillator potentlal. An expression of the
exact harmonic oscillator density matrix in the relative coor-
dinate §‘is then obtai?ed, and the coefficients are rewritten
in terms of the klnetlc energy density T(R) ang gradlents of
the density. We then propose to write the expansion of the
density matrix for a general potential in an analogous form.
We chose the harmonic osc1llator potentlal as a guide for the

81mp11c1ty of the result obtained, and also because it is known

that harmonic oscillator wavefunctions are a good approximation
~



to the true nuclear wave function in many cases (de . Shalit and

.Feshbach, 1974)

i) Deflnrtlons ‘

We begin with the single partlcle den51ty matrix in the ‘

spatial representation, Formally it ls\deflned as
(R,,R.) = | ¥¥(R, ¥ (R, a3 a3
PR = | YRy L RIVR Lo RO AR, @R

- (Landau angd ﬁifshitz, 1977) . ' However, within the inde-
pendent partlcle approximation ? (Rl,...,RN) is a Slater deter—

minant and therefore the @en51ty matrix reduces to:”

N~
p(R,R ) = I gi?i(g)wi(g ) (1)

where the w. are eigenfunctions of a single particle Hamiltonian,
wN(r) is éhe eigenstate w1th the greatest energy which is occu-

pied, and g, is the occupatlon number of the i'th orbital. 1In
-terms of the centre of mass (COM) and relative coqrdinates, we

have

S .S
9;¥; Q@ + 3y Q@ - 5

|
g

"N
P(Q,8) = I (2)

i=0

with Q = (R+R')/2, S

]

-

R-R'. Since (2).is already properly
symmetrized with respect to interchange of R and R', it is
often more convenient to use. ' )

The kinetic energy deﬁsity'is defined as:



‘" 8
. ﬁz‘ N ) | K .
TR =GR ey (R, (R) |
2 ' ;
R+ e '
ARA R ' 3 .
= 5 -V p( R) ReR" (3) ¢
ﬁZ

=% G 7 - v2e(,s)

ls=0

i
v
[
i
'

| ‘.w.where V acts only on R, V' acts only on R', and.VQ and V

act only on Q and S respectively.
We may also define T, (R) as:

B QR = -G Togpi (RIVA(R) ‘)
. . ~ .=0 i )
\ - | l

Using Gre¥n's theorem and the boundary condition on

Vwi(g), it can shown that J Tl(B)d3R = I. T(B)dBR.

'The Block density matrix is given by (March et al,

1967)
© ' —Be]

CIBEBHE) = I g RV (RYe & (5)
where 5 is the energy eigenvélue of w (R) The Block den51ty
matrlx, and the transformed’klnetlc energy (1ntroduced below)
are used here only as a mathematlcal convenlence to obtaln the
.requlred analytlcal result. It is primarily because (5} is
an 1nf1n1te sum that we were able to ‘obtain tﬁe_result'in closed

form. Physically, C(R,R',B) and T(R,RB) may be looked upon




as a non-zero temperature generalization of (1) and (3). ‘Since
"B o= ;; is 40 (eV) - at normal temperatures, we can see that in
‘terms of nuclear excitations of several kev, the nucleus is
essentially in the zero. temperature ground state. Therefore,
3 appears only as a parameter, which does not appear in the
final result.

In analogy with (2) we find:

. -Re,
c(Q,s,8) = n

~

S » S
giwi(g + E)wi(g - ETE

g

i=0

The Block density matrix has several simple properties. The

. © -Be, _
trace of C(R,R',8) is simply 2Z(B) = § e L, the canonical
T i=0 C(BrBIJB)l

partition function. The inverse Laplace transform of —
-is simply p(R,R',u):
-Be, -
Riv (rry-lce * '
« B+
93 ¥; (R (R) [ g—iB+u]

L';[% C(R,R',B);B+n] =

18
(=)

)
il v 8
o

w
X wi(§>wi(5 )B(u—ei) (7)

(Abramowitz and Stegun, 1972), where e(u—ei) is the

0

™)
”
0w
12
D
o]
g
Q
(1d
~
0
=
0
=
4
n
t
e
(1]
|
1}
:
D
=5
D
H
[Te]
e
[7:]
0o
(28
=g
o1}
t
<
=
I
m
i)

for i>N, and hence (7) coincides-with (). The proof ig Similar
for p(Q,s).

The Block density matrix also obeys the Block equation:

H'C(R,R',8) = - B c(r,R',8)- (8)

L
R



- ey = 4 T TP TET rT  ry
T i e

Lo T e

o | j I 10

as .can easily .be verified £rom equation (5). §! is the Hamil-

tonian operator, acting only on the ﬂ' coordrnate. The boun-

dary condition on (B) is aimply-

C(R,R",0) = 8 (R-R") | (9

as can be easily seen from the fact that

\ o
C(R,R',0) = L gy, (R)y,(R') = §(R-R')
-u’- i=0 i i L) i ~ -~ ~

by the condition of completeness for eigenfunqtions}

. We may also define the transformed kinetié.energy'deni
sities: .
-y ; v oot -Bei'
. T(R,B) = ™ ico 9 wi(§> ¥, (Rle
- ﬁz |
= 5z V*V'C(R,R',B) | (10)
) R=R'
and -
. 2 -Be,
‘ H * 2 i » :

i=0

Zm ReR'

2 .
——\\\_//r == V'2C(R.R'.8)l . (11)

They are related to (3) and (4) respectively by:

U TR, 8) 580u] = T (R) (12)
and
AT B) ;B+ul = T, (R) (13)
_B 1.’ ’_ 1.

as can be shown in a manner similar to (7).
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‘1159 The Dne.Diﬁensiqnal Case

_ Below we shall. derivL an approximate form for the
density matrix. in one dimension. We begin with the exact den-
sity matrix:

. . .- N ..s . s i .
o plg,s) =. E 9;#; @ + Y, (q - %) (14)

where q = (x+x')/2, 8 = s-s',

(14) is expanded in a Taylor series of the relative
coordinate to obtain: ' '

P y Ay (@ 2 o
p(q.hs) = iﬁl gy Wi (@) - 7 (( ag ) - w @ ﬁﬁ—a)s
. . 4y ' g2y oy 2
A d'v. (q) dy (q) a’ w-(q) d™y, {(q)
- 1 1 i 1 7% i 1 i 4
r:f ) + 1—6' UJ (Q) dq4 "'3 aq dq3 +-4- (——d‘qj-——) ys '+, .

(15)

where the wavefunction has been assumed to be real for simpli-

city of notation.

It is easy to see that the g2 coefficient may be writ-

,

ten as:
1 a%p(q,8)| ° 1 2m 142 g2 |
3 S-eld.s) =% 33 (L - ¢ 3 doefa), (16)
ds s=0 " - 1] dg . '

(see equation (3)). It is not possible to write the coefficients

.22
of 54 and-higher power in terms of t(g) and Q—E%QL for all po-.

dg’. .
tentials, However, for the harmonic oscillator there exists a

.
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feimple'relatienahip.between the s

2

oxdexr coefficients: To develop'thie relationship we derive

© an integral relation between the density p(q) and the kinetic
" enexrgy density t(q) which is velia for all -one diﬁensional

single earticle'potentials. We theh calculate the Block den-
sity matrix, €(q,s8,B) explicitly for the harmonic oscillator.

Upon expension in the relative coordinate, we ehow'that the

. coefficients may be written as integrals of (16). Then each

coefficient and the hiéher-'

coefficient contains the transformed quantitiee linearly, and }

hence the inverse transform is trivial.

. The Schrddinger equation in one dimension is

Ni
2 4 ()

— t (V(q) - E )w (q) = 0 (17)
2m dqg  i

’ ' ‘ *
We ‘may differentiate (17) and multiply by wi(q) to
obtain

.52 w @ vy (@) wi( qQ) dv .

(18)
2
-u2 d wi(q)

If we replace (V-E, )w (q) by ————Iw— and add and subtract

W@ (@) &Py (@)

2m dq dq2 'lapd sum over all occupled states we find:
2 N o (@ vl @4d, (@ @@ 4%, (@)
I S v (q) () v (@kdV; (@) (g NE
2m gi- i q 2 ) %

i=0 dg* . dq ° 4q da g4q

2*
d wi(q) ay. (q)
+ -

i avig) |
3 3 p ‘?E?T | (19)

. dq

Wi(Q)wi(Q) =0 ..

3
/
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It is easy to see that the left hand side of (19) is simply

(T(q) + T (q)) and hence we may integrate to obtain-

. .

Q) + 1) (@) = J p(R)‘%%i’- ¥R . (20)

q .

where it ig noted that t(q) anlel(q) vanish at infinity. We

now calculate the difference T(q) - T, (Q).

2 | ' *
2 2 2 N a2 w (q) a~y, (q) day, (q) 4y, (q)
HM° 4 H * i i i
e *—Eésu-=-—— Eog, (¥ (q) ———7y———+-w (q) — + 2
= 2(t(q) - Ty (a)) . . : (21)
We may use (20) and: (21) to write:
" .
oixt a1 [ av(R) .. |
T(C]) - E‘ Tm‘ P > = 3 D(R) _a-l—i— dR . - (22).
q * '
q
@ + zg“‘ud(z" =%‘J o) Stk ar T2y
. q
q

It can be seen that (22) and hence' (23) satisfy the

virial theorem:



B o -

——

14
. » - | | ¥
. %--':q‘ ég L> w2 J qp(q) g-g—ég_)-'dq
. i . w.w - |
= J %J p(r) 2LRL 4R .aq
o g
= <T>
: | | ‘ o 2
" where the 'last step followgéfrom the fact that I Q_R%SL dg = 07

dq

-
because of the boundary condition. It is to be noted that these

results hold for all gne dimensional single particle potentials.
\

Furthermore, it is clear that T(g) and p(g) appear only linearly

in the above, and hence the same relations hold for the trans-
formed qﬁan;ities 1(q,B) and C(q,B).

We now calculate the Block density matrix for the hax-

‘monic oscillatdr. It is possible to use (8) (feynman, 1972)

but we choose to calculate it directly, using (5}, since
this is easier to generalize to three dimensions. The potential
is:

2

alq 2,

/muw “

where a = Vi-alt

The harmonic oscillator wave functions are (Landau and

Lifshitz, 1977 )@
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o ' 2 2
"N H.O. a - /2
. w (q) = _——e qd H (aq) -
n TS Rt

t
. : L] l%“
corresponding‘to the energy eigenvalue €. = (n + %)hm. .
Then formallyggijgy-Write:
2 .

‘ o 2 2 BHw ,

: - (X"xt17) =222 H (ax)H (ax'") -
-0 (e, xt )=l o 2 e 2 o (e™Bn (a9

: T o n=0 2 nl :

4 _B“w

where the factor e comes from the zero point energy. The

generating function (Magnus et al, 1966)
© y : vy ‘ '
; Hn(x}nn(x )

n 1 2 (x'-x )2
. y© o= ——— exp(x'© - XMy}, (28)
) n=0 2'n! l_yz l-y

where we identify e_Bﬁm with y, may be used to write (27) in

closed form,

2
. . 2,42
. —Bitw/2 -S(x%4x' %) e~ P10, 2
cu.o.(x,xr,ﬁ}= ac e ? exp(mz(x'z“(x xfz Hm) )
“/“(l_éQBhw) be™
: (29)

.

(29) may be rearranged into a more convenient' form using hyper-
bolic trigonometric functions to obtain:

Oy, xt,8) = a

/2nsinh(6hw)_

2
exp (-5 (x%+x'?) coth (BKu) ~2xx" cscli (Bifw) ) .

(30)
. Using the identity tanh(%)'= coth({Z)~csch(2) we write

the diagonal Block density matrix.

E

-
ok

CH'OTx;Ej =

exp(—azxztanh(é%g)) (31)

N

v2msinh (BAWY

e LE L e i b e

T U R OY = - R




"1972 ) We may wrlte (30) in terms of the centre of mass and

' ‘in s rather easy. (32) shows explicitly the invariance under

16

»
-
e g

This agrees w1th the result obtalned by Feynman (Feynman,

relatlve coordlnates to obtaln-

. | | 2.2
™% (q,s,8) = ——8 . oxp(-aqtanh (BHw/2))exp (- 2
/Zﬁsinh(ma) ‘

coth (8fiw/2 Yy
(32)?'

The reason for using the Block den51ty matrix rather than
the denSLty matrlx is now readily apparent. Not only does it al-
low one to write the matrix in closed’ form, it also glves a -

complete separatlon of the matrlx into a multlple of the dlagonal

matrix times the off diagonal elements. Thls-makes an expansion t

interchange of x and x' and thus,-will have a Taylor series in

52, not simply s.

Using. (10) and (32) we may now calculate TH'O'(q,B).
4

\

* ‘ 2 : . ’ '
v 10 g8y =T (adeann? (B) g2 4 aZcocn (8w)) 0 (q,8)  (33)

L e 2 '
where the identity 1-tanh®(x/2) _ csch(x) has been used. Since
, i 2tanh(x/2) :

2 H 0. ' 2
3 B 4tanh2(8rm) ? - & tann (B9)) cH-0- (g g
dq
we have
2 .2 _H.O. 2 2
_H. o[) 1 %2 a?c (q,B8) K%« Bi‘iw H.O.,6
) +B) ~7 %m dq?_ = —2—5'——2— coth(—==-)C (g.8). (34}
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. . . © 2
We may use the integral: J. xe ¥ gx = é% e 29 ang
’ . ’ q ¥ . .
write x = —% 2m 4V (x) to verify (22) explicitly for the harmonic
, 2a4 ;7 dx iy
oscillator. S ' N
—lz Z% J g exp (~a xztanh( ))Qgﬁﬁl dx .
2a” H*© v2Tsinh (Bhw) N
g _ .
-1 coth (E1) o exp (-a’q tanh(ihﬂ)) (35)
2a /27TSTnh (BHw)
" which, when coﬁpared with (34) shows:
= S ' 2 .2 H.O.,_
1| _H.o. av(x) .. _ _H.O. _ 1a° a®ct-9 (q,8)
2 J U8 S ax = 1% g8 - ;L = . (36)

qQ .
Upon repeated integration, we find:

‘ < dvi{x.) dvix, )
H.O. , n’ . 1
( ) l l [ © (xn,B) dx dxn..' dx dx

. n 1 1

xl n-2 -
. .2.H.O, .
1 h2 a c ( n-1 B) dV(xn_l) avix,)
"% Zm ) “ax_ *n-1"""ax dx)
dx n-1 1l
n-1
n n Bﬁw

It

2]

0

o

&
N
-

z

(37}
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]

If we expand (32) in a Taylor Serles, expand about s=0

and compare with (37) we see that:

i o2
% (q,s, By =t ‘."( ,s) - & cotn(&lle )(c % (q,8)s?
u4 2 eﬁw
* 33-coth™ (5 e 0 (g, toee
n a2n n, 8w, -H.O 2n -
* ()7 S coth™ (552)cH 0 (q,8)52" + ..
4"'n!l:
2 H.0.,
: 2 4d%¢c '(QIB)
H.O. 1 2m ,:H.O 1.4 2
= C ( rB) - = (T (qu) - =’ )S +
_2_;2 4.2ﬁ dqz
(o] 2 -H.O.
2 2 d°c (x,B)
1 ,2m H.0. 14 av
+ — (=) (t (x,8) - = 3= dx
16 H J 4 Zm dx2 dx
g _
SRR SRERN L e Te . N ( [ (%% (x__ .8)
4 ' n! X J
T X *n-2
2 H.O. '
142 9°C ( 1'8)) av_ oAV
4 Im 2 ax a1 axs 9%
dx -1 n-1 1
- szn + LY - (38)

Since all the transformed quantities in-(38) appear
linearly, it is simple to Laplace invert (38) to obtain the ex-

pression for the den51ty matrix w1th the sharp Fermi surface

/
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. 2 .2 H.O.
.0, H.O. 1 .0. .
o (q,s,m) = p (qom) -5 %‘3 ("0 (@, ) -%%ﬁ Lo ) 9.1 2
: H . dq '
2w 2 .2 H.0.
1 ,2m H.0. 12 a%p8-0- (4 1) avix 4
T o= (%) (t (x,n) - =% £22) dx 8 4+ --+>
16 2 J : 4 2m P ax
q
- . - n m m . [++} ) .
2 2m i : H.O.
(=) = (&, (1 (x )
4nn! 'ﬁ2 ‘ . n-1,u
% *n-2
. 2 H.O. "
_1xntdr Camg i) 8V (x, ) L) dx
4 2m dxz dxn_l n-1 dx1 1
n-1
P | (39)

[

As mentioned earlier, B does not appear in the final
result. There is a parameter u, which is necessary because of
(7). However, u, which is the ?ermi energy, is fixed by N, the
number of particles in‘the potential,

.(39) is also reproduced for thg linear potential
"N = kx é;gpéuadratic potentials of the form v = a+bx+cx2 as
is shown in Apﬁendix A.  This leads us to believe that the dep-
sity above will be good wherevér higher than second derivatives
of the potential a?e small. This should not be surprising since
it is known (de Sha1i£ and Feshbach, 1974) that hérmonic
oscillator wavefunctions are feasonably good in the interior of
the nucleus, but rafher poor in the nuclear surface. However,

if oﬂe,looks'at smooth one-body nuclear potentials, guch as

the Woods-Saxon, one finds that within the interior of the
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nucleué it has véry small high order derivatives,'and it is not
until one gets closé to the nuclear tail that the high o;ﬁér
dérivatives become large with respect to the low order deriva-
tives. |

The accuracy of (39) is checked in a model potential
whose eigenfunctions are known analytlcally (see chapter 3)
It is seen that (39) is reasonably good even. when hlgher than
second derivatives are not necessarily small. The accuracy
is also compared to other approximations such as the Campi-
Bouyssy and Negele-Vautherin, and (39) is found to be ccﬁparable
in accuracy to these expansions. |

»

iii) The;Three Dimensional Case

In 3 dimensions we may write the density matrix as:

g, V¥. (Q + “)W-(Q

N 5
L
=0 EERE L

talr 0

i

If we expand in a Taylor series of the relative coordinate
5 we find:
1

* * 2:
. 9; (0 QU (Q) + 3 (¥, (Q) (S+V) ¥, (Q)

.01 2

p(Q,S)

. 1 cor 4y
S-TYL (Q)S-Tv, (@) + 1hs (@) e %y, (@

-

) * 3 ) 2 *
T AT (I8 T Y, (@) +3(5: V) Yy ()

(5729, (Q)) + ---) | | (40)
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The angle average of (40) is given in appendix B.

p(Q,S) = p(Q) =L g.{vvpf(Q)-‘ng. Q) - Luf(o)vzw () }s?
~ 12 i :

* 565 T 9,00 (@1v? b (Q)-ww T (@) + w2y L@, @)
bR
5

‘.J

. . . * ‘ . 4 o . ,ﬁ‘ff.ﬁ e
+ 2vvwi(9) :vvwi (9) Is® + ... | .. (40a)

where thg-last term in;the fourth order co-efficient ig

defined in éppendix B. The S2 coefficient may be written as
o S ~

1 N. *® v - x 2
T1Z 2 T @Y ) - uiig)y b, (Q))
e , |
1 2m . 1H#° 2 ‘
T T 6.3 (v - 25w . 41)
6 42 7@ Tm @) (

which is the three dimensioﬁal analogue of (16). 1t is also

€asy to see the analogous relation to (21) holds in 3 dimensions.
. . e .
T{Q) - Ty (Q) = T 3w ¥V oe(Q) . _ (42)

However, it is not possible, in general to reproduce
equation (20) for all potentials in three dlqenSLOns. "The reason
is that in going from (18) to (19) (in the Spherically symmetric

case), we would need the following relation to hold:
2 N 2 -

S < B (¥; (Q) 772 (Q)+Vw*(Q)v2w Q))+ & vel 1924, (Q) ;E'
2m 2o Fit¥i QYT (g itx 119M+4 jog FitV¥i(Q 11Q

2 % '
+ V%, @)V, () )

= V(T + 1 (Q)) (43)
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which is a.very restrlctlve condition. But it is poss;ble to
'show - exp11c1t1y that the three dlmen31ona1 harmonlc osc11lator
obeys a relation ahalogous to (20). - This shows that (43) is

. a sufficient, bhut not necessary condition that:relation.(44)

is satisfied.

dV(R) 2
' < 3 o~ 1lH 2
a .

An infegratiqn by parts shows that:

L (e
.5-4'n ..Q "‘EF—D(Q) Q

]

3T

~

. {% 3 o av(R)
=4n ] 30 o R — 4R Q 230

= <T'> (45)

where we have assumed 1(Q) and p(Q) to be spherically symmetric

and we have used the boundary condition to see that
J vzp(g)d3Q = 0.

Thus a kinetic energy density defined by (44} satisfies the
virial theorem. It will be shown below that the three dimensional -

isotropic_harmonic oscillator does satisfy (44).



23

" For a separable potentlal V(R) = V(x) + Viy) + viz).

each coordlnate. Hence,

the wavefunctions separate Lnto products of wavefunct;ons of
potentlal is 31mply.

the Block density matrix for such a

3 . L]
]I C(x. '.x"B) -
i=1 M1

{46)
Then we may use (30) to write:
. '3/2
(R,R',B) = ( o ) a 2+R'2)' th( 'hm) -
~'~ "1 7 \2msinh (BR0) exg(— 5 ((R™ go B

- 2R*R' csch(8Mu))) > (47)
which may be written in the centre of mass system as:

. 2 ‘3/2‘
"(Q,8,8)= (5ol )
e 2nwsinh (fHw)

. ' 2.2
exp(—azgztanhcggﬁ))exp(—a‘f coth(E%E)).

- (48)

Using (48) and (10) we may calculate the kinetie energy
density. :

H.O
T

2 .
: (9:8) = % (%‘ azcoth( ) + % uztanh (Eﬁu_!) +

+ a’g®eann? (B8) ) cH-0- (g ) (49)
and hence : '
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2

2
" (Q.8) - %gm v2cH0(g,p) = 7 75 @ coth (E3e) ¢t 0 (@, 8)

H 0.

‘,-

_ 3 H.O. | dv(R) .. .
= 3[ C ) (B,B) ?ﬁ_ dRr | . .(50)

(see equation (35)).

| Theréfq;e} we have shown explicitly that ;he harmonic’
oscillator kinetic energy density may belw:itten in the same
form as (44). It is'theﬁ e55y to Shqy that a relation similar

to (37) also holds in 3 dlmen51ons.'

a*fcoth (Bhw/Z)CH "% (Q,8) =% [ [ [ H“"(m_l,ﬂ) -
. ﬁ '
QR1 R._
- lfﬁi vch‘o;(R B)) _Q!__ d' ...g!_ dR (51)
4 7m *n-1, dg}l Rn-1 ar, N
To generalize (38) to 3 dimensions we use (Sifyto writg:
H.O. ' H. 2m O.. 1 hz 2 ﬁ.O. 2
C (Q,s,8)=C (Q B)-—— = (T (Q.B)-; EE voe (Q,B))s
=2 K et =
+ L (2“‘;2 (a0 (g gy L LA v2 H-O. (g, B)}‘w\dRS
48 .2 =TT m
- ) ’ n o cn‘
2 2m H.O.
+ ——— () X} (""" (R B). -
‘ 3.4 Tt 37 J [ . ~n-1’
| Q Rn—2

2
_1x av 2n ...
amv e n—l’B)) aR 7 -1 ‘@R P St

(52)
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' Again, all the transformed quantities appear linearly
N h\r\ ~
in (52). Hence we nay Laplace invert (52) to get the sharp -

Fermi surface .result:

. : - . 2
- [ 2 ' p Y - N
010 1g,8) = o0 (g) L 2m (B0 L %ﬁ y2pH-© (o))sz
"~ h L) | . N
+__1_';2m)2 m(Tﬁ.o.(R)__l_a_ﬁ 2HO.(R” dRS . e
" 38 ;2' ' 4 2m
Q
. o @ »
. n |
2 2m H.O
} ) +'——._ ( ) T e (T . '(E ~ )-
S 3.4M -Ei J [ -l
Q@ R,
2. . .
—l'!1 2H'.0' dv . l.'—dl 2 P
Tam Ve TR ) a&® T ary Ry S°T+ e (53)

_(53) 'is ﬁhe form of the density matrix expansion
which we propose to use. It is important to reallze that this
derlvatlon depends cruc1ally en (51).. It was not p0551ble to
Laplace invert a Taylor series expansion in S of (48) until the
coeff1c1ents were "llneartzed" The sacrlflce one makes for
this is nonlocallty in the expan51on coeff1c1ents.

Other density matrlx expan51ons are written in terms

of local coefficients. To compare them with (53), we evaluate.

(53) and the other expansions in‘'a local gradient approximation.

This is done in chapter 2 to show the relatlon between our work -

and other approaches.
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In the third chapter we use (53) to evaluate the _
density matrix. These are compared to exact calculations

and to calculations using other approximations. It is shown
A

that (53) iS‘;easonably accurate.

~



CHAPTER 2

- CONNECTION WITH ALTERNATIVE APPROACHES

i) Alternative Forms for the Density Matrix

Several forms have been proposed as- approxlmatlons to
the nhuclear den51ty matrlx. Negele and Vautherln (1972) ex-
pand the exact den31ty matrix 1n a bas;s of spherlcal Bessel
functions, ThlS has the advantage that the first order term
is. the Slater mixed density’ which is exact for uniform nuy-
clear matter, with all hlgher order terms vanishing in unlform
nuclear matter.' - The other terms are then a measure of the
departure of the den51ty matrlx for finite nucleayr matter
from that of uniform nuclear matter,. ‘

As with a Taylor seriesg expansion, an expansion in

Bessel functions is @Xact up to infinite order. When truncategf:

~—
at a finite order, and eXpanded in a Taylor series in 8, it
reproduces the exact Taylor series éxpansion up to that order,
but in essence corresponds to having undetermined coefficients =
in higher order powers of S. fThus, when Negele and Vautherln ' \;:S
/

truncate the Bessel functlon expansion after the first correc- N
‘tion texrm, it reproduces the exact Taylor series expansion up !

to 82, with the coeff1c1ents of S4 and hlgher terms undetermined

27
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. . \'-..._.—-‘" . .
(Negele and Vautherin, 1972). It is with the density matrix
given by (1) that we shall make the connection to the harmonic
approximation, to see how this truncated expansion reproduces

the higher powers of a Taylor series expansion.
]

: ' 2
o'V Q,8) = ()3 (kps) + 3 33(k S)[—7 m LA
Vo) -t + 2k For1s? + ok W

where kF is the Fermi momentum in the local density approxima-

tion defined by: ky = (3r°p(@))%/%; and § (x = 2oL Gy,
: - X

jn(x) being the spherical Bessel function of order n.

Campi and Bouyssy'(lQ?B) realized that by a change fh_
the definition of k, the second term inr(l) Qanishes,'thus‘
leaving adﬁlater—iike form for the density matrix. As pointed
out in theif paper, this "effective" momentum ;;y be seen as a
conéergence proéucing factor,(;yéh though the full expansion

does not depend on the definition of k.  Therefore, if we define

Kk to be:
H
£ o (-5 (2m _ 14 1/2 (2y
k —.(30(9) (ﬁz)(T(g) 4 = V70 (Q))) (2) .
then (1) becomes:
0© P 1g,8) = p(@3, (ks) . )

Both of these forms have been looked at numerically, in

this thesis (see chapter 3), and elsewhere (Bhaduri and Sprung,

C.B.

1978; Campi and Bouyssy, 1978). It appears that p (Q,S)

-

/\
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tends to give betteér values. for the matrix elements. In model

C.B. ’

calculations P (Q S) tends to be more accurate in the tail

and less accurate in the interior thah pN V. (Q S) when they are

compared to the exact .density matrlx (Campi and Bouyssy, 1978 ).

A third form has been proposed by Jennlngs (Jennings,
1978). Based upon a semi-classical expansion, it is given in
(4) .
J - 2 5 2m 2 w3 .2
Q8 =log (o 3 (kS) P RZ W2 G 55 V °s.c. " Ts.c.) * 5 KTeg ¢,
o o 32 172 3(s+7) %y |
2471 @“_ '
' 2
1/2 . 2 (5-7v)7v
1 2m -1/2 .2 9 (VV) ~ .
- (=) (A-v) T [viv-x -5 V)kSj. (kS)
a2 2 _ 4 A=V g2 3

. ) 5
- s Y2 e 2 Lt B 1k%s%3, (ks) Jo (A-v)  (a)
481 : S
wheré A is the semi-classical fermi energy which is determined
by integrating the semi-ciassical density of states; and pS c.
Ts.c. and k. are given by gradient expansions (Jennings, 1976)
Slnce thlS result is semi-classical, it is valid only to the
turning p01nt where V(QT p. ) = A. Hence the step functigh cuts
off the density at the turning point.

‘In‘order to compare (4) with other approaches, we must

angle average it over the diredtions of §.. When this is done

A

Tt
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we obtain: T

3, 5 2m 1x? 2 &3 k2 > ks
~ . p7(Q,8) = {ps C-F.ll(kS) +2k2 {'112 3 m ¥ Ps.c. Ts.c.) *E KT, 13,k
B . 1/2 ., 2.5~ . 2
12 2 ¥2v° 9 (ww) -
+=ts (3R I 2 ks (ks) ~
YU R v S : N
. 1/2 TR 2 L | |
- =5 & g s 2 TS 34(kS)}B(A—V) (5)
48T hz B (A=V) T VAV

We reproduce the semi-classical expression used (Jennings,
1976 ), up to the first order correction term, since- (4) was
derived up to this order..

-3/2 | 1/2

: _ ,2m 3/2 . 2m 1 m(R)) + Y V(R)
p (R) = (=) - T)\ =V(R))} - (==} {=
CSCe w2 3e? & PV V(R))3/2 W ~@®
‘ Q . . ” . ‘ (6)
- oo 32 < 0572 2m t%.1 0 3 q(vvim))?
Te ¢ (8) = (—5) -3 (A-V(B)) —(““2') 5 {Z
-C. X 5m " 8T /YV=(R)
5 2 o ) . ’ :
- 3 YA=V(R) VV(R)} o (7)
3 ) . | . e » . . . '
k(R = / 2 o-vm) (8)
R w20 | |
- 3/2 |
_ 1A _ ,2m .1 5/2
Tgc.-" 733 VPge. T (F) — (A-V(R))
_ 5%
. 1/2 ‘ 2 . <
w3 A R 2 sy vvim) (9) .
: JY=VTRY

A 8

}
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where the above are all multlplled by the step functlon

(A= V(R))

T IEY

Fermi éxpreSSlon.-

Whlle all three expan51ons above are local our expan-

'51on (1.53) contains nonnlocal doefflclents.

In order ‘to show

' the relationship between our -approach and the three above

we use the sem1cla581caf~expre5510ns above

integrals in (1.53);

.Flrst we expand (1),

~to evaluate the

(3) and (5) in

a power series of §% up to order s®.
oV @:9). = prg) : -5 B L o262
2 ' 4
-k ' | k
F 2m l-h
+. ( 8_!? (T(?) —ETVp(Q)) “‘gﬁp(Q))S
S & ' 6 N
k ﬁz ) k 6

1

0“ P Q.8 = o) - 3 (i‘%)(ﬂg) - 3 20 s
. —'43.' . nd
" 501 G C@ - e g @t
a 25 om 3, 142 2 3, 2.6
e 2 @ - 35 e k@3t ayy
'l 2‘
p‘T—JQS)-{p(m -§ 3« Q) ——}%vzp(g))sz :
2 L 1/2 4 2
1 2x? g 1 3 x* 2 [v%y
+ 575 [—=— (t (Q) T D(Q))‘ x* D(Q)+( ) ‘ 3 T
24 U7 2 42m * PRIT3E 52 10sn2 3 bh=w
2 " 4 6
9 (W) 4 1 x 1 42 2, 2k
+ 32 1s 5B @ -1y p@) - 25 o(0)
4 (A_v)3/2 | 432 7‘ﬁ2
.6 1/2 ’
+ L 2m '(vzv + 11 “i“!l——“)]s }8 (A-V) (12)
@y 10512 52 AV (-n3/2

2w 7 P(@) - rgheay e(@)s

(10)

2

" The flrst term in each of the above is the Thomas- a
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‘It is. clear that all of the above expressions, as
-well as (l 53) agree w1th the exact expre551on up to order 52

It is only in the S4

and ‘higher power coeff1c1ents that they
dlffer. Therefore we w111 show the relation between our
approach and the others for the higher coefficients. We do
this first by evaluating the integrals in (1.53) using (6)
through «(9). This shall\show that'within the semi-classical
formalism, our approach reduces to Jennings' approach. Next
we use the connection.between {1} .and (5) to infer the re- |
latiqnship between our approachf and - that of Negele and
Vautherin. Finally, we evaluate the integrais in (1.53)

* within the‘Thoﬁas-Fermi approximation and show that our

approach then reduces to that of Campi dad Bouyssy.

ii) The Connection with Jennings' Approach

The appropriate expressions for p, T and k are found

iJ1equations (6) through (9). We use them to evaluate the S4

coefficient in our harmonic apprOxlmatlon, (1.53)- Omitting the
5 . _
1
- factor: 8 (—7) we haye.

H.0. ‘ 1-H av :
sS4 =_J (t(xr) - I E—VD (r)) 3¢ dr . (13)
- Q

From (9) we have:



E7 - e
gqH-0- _ [rﬁ J (A_v)5/2%¥ ar + ar
5T

- -g— IV viv) g" ar1e (A-v) .

we'may note that %¥ dr = dVand also use:
| av, 2
1 — ¥ ~ a2y
2 & dr 4/X—v dr

We also exploit the fact that we are assuming higher gradients

of V are small so that V2V is a constant, and it is equ to

2 . . g
3 g—g as is true-for the harmonic.oscillator. Then (14) may
dar :
be 1ntegrated to glve ;
\
3/2 5/2
s41-0-=( (2D, 2 a-n 2y (3 (= AV (W) 2 -
H 35T 4 ‘lew
- v 292y e - (15)
36T .

We may re-arrange (15) using (6), (7), (8) and (9)

and include the factor.J; (Em} to see that:

18 2
2 2 A 1/2 2
H.0. 2m 2k 1.4¢ 2 2 Ve
54 = {( (T————Vp)——kp+ ( ) (5 —Y_
4 i Zm 35 10572 K2 3 Ay
9 (vv) 2 ' : :
+ ~————77ﬂ)}e(A-V). (16)
(x-V) :

f
If we compare (16) with (12) we see that they are

L
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‘identical.-
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We may do a similar calculation for the 's® coefficient.  We
3 . ‘

neglect the factor - E%E (2%) and write:
' ‘ a
(-] -] . 2 .
SGH'O' = [ J T(r") - %-gﬁ Vip(c™ ))#—— dr“_%%T dr! (17)

Q x'

If we use (9) in the integrand; the first integral is

_simply (15). .We then note that:

: 2 3/2 42 g
-5 S {(l—V)3/2(Vv) be g /A (@ oLy 4y
: .

dar

 This may be used to integrate (15) with the result that:

- 3/2 1/2
H.O. 2m 4 5/2 2m 1 3/2 2
S6 L= () —— (A-V) + (=) —= (X-V) (V) ") 8 (A-v).
o 3157 : a2 2an?
: (18)
Using (6} through (9) we may re-arrange (8) in the
foilowing from, including the factor - L (EE)“:
| +ng Rrof - 76 .2
s _ 1 \h\—ﬂ L4 14 ¥2p) - 2 1654 K (gﬂ)l/Z(VZV
37 N2 7 4 Zm 35 losm% K2 oey
S 2 : ~ '
(A-V) | :

Upon comparing(ljn with (12), we see that the 86 co-

efficients are identical. Therefore we see that if we make a
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seml-claSSLCal approxlmatlon on the 1ntegrand in (l 53), and fur-

ther assume V V = 3y" = constant; then at least up-:to the 36

coeff1c1ent (1.53) reduces to (12).

iii) The Connection with the Approach of Negele and Vautherin

The form of (5) and (1) ‘are similar. Using the recur-

rencd relatlon between Bessel functlons, we may rewrite (5)

- 'p} L2
as: - = 2l
—ﬁz 2m . 3 .2 .- 2
p (Q ) = {p(Q)Jl(ks) + 1 [(4 T p-'r) -i‘i_2-+§ k 0133(kS)S
o1t 2_m)1/2(2_<1u2__+3_22_v_)5 xS) +
126 07 12 4 -v)372 T3 Ty 33 |
2 2 :
kK™ 2m o 1A 2. 3 2 . 4 y
+_3_(,§§(T-E_mv0) gkp)34(k5)]s
1/2 2 2 :
6 ,2m 1 (W 1 péy A 6
- 1 k™ (=) [= += 13,(kS)s”}e (a-vV).. (20)
1536002 - Ko 2 )T 3 77 . '

Note that the first line is identical in form to (5) and hence,

if we neglect all terms which go to zero faster than 82, we

have:. ;

oo

3 2 2 N ‘
07(Q,5) = {o(@) 3, (ks) + L(2y2p-q M, 3 k%013, (ks)s2{e(A-v). (21)
== < 1 64 ﬁ2 5 3
-~ .
We see that {21) has the -same form as’ (5) but the fol—
lowing dlfferences Occur: p and T are given by their semi-
lclassical expressions, and k does not equal kF, since p is not

the Thomas Fermi P, but the extended Thomas Fermi p. Hence

k # (3n2p)1/3. Also, since we are using semi-classical quan-



tiﬁies, (21) is valid only to the turcing point. If we accept

¢{21) as the proper way to write pN‘V'(g,g) in_the-semi—classi;

cal approximation, we ﬁay then use the results of the pfevious'

.section, ' ) ' .
If we expand (20} in a serles of Sz, we will have the

" same result as (12). Therefore, the expansion of (20) is equi-

valent to our harmonic approxlmatlon, as shown 1n section ii).

We then subtract off the contributions from the terms’ neglected

in going from (20) to (21) to find:

: 2
H.O0. 1 2 .,2m _i4x 2 . 1 4 _ R
Sf (I3§ k _{gi)(T 2 om Vop) - S04 k'ple(a-v). (22) ,T
and
2 o
H.O0. 1 1 4 2m _1H 2 jL
S6 = - 133 (Ii k = (7 7 7m Vop) 77 k P& {A-V) (23)A

~which are the corresponding terms to (10)

Hence, we'have shown that Wlthln the seml‘c1a551cal
approxlmatlon, if certaln terms are neglected (1.53) may be
reduced to the Negele-Vautherln form, at 1east to the sixth

order coefficient.
a

“ iv) The Connection with the Campi-Bouyssy  Approach

It was not possible to reproduce the Campi-Bouyssy ex-
Pression when one uses. expressions (6) through (9). However,
if we use the Thomas~Fermi expressions for the relevant quan-

tities, which are simply the first terms in (6) through (9),
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- we can derive (3) from (1.53).

The general term in ourfharmonic_app;oximation is:

H.O. = 2 ap 7 ) | a
SN =-——ln_ (T? [ o.o-J’ (T(rn_l) -

3.4"n! ¥ ,
r r._,
1 6% 2 dv av
-7 5 v D(rn_l)) drn—l drn_l vee EEI drl . (2§)

In the Thomas-Fermi,approximation'we have:

2 3/2 )
1H° .2 2m 1 5/2
T-3>5%e = (= —= (A-V} . (25)
4 2m 'ﬁZ : 5n2

If we integrate (25) (n-1) times with respect to V, ‘we

obtain:

I - - 2n43/2
L .— — 5/2 - a s - 3 2 2n l — .
JJ [ (A-Vv) av__, av, = Toned T (A-V) (26)

and therefore our general term becomes :

( (2n#3)/2° . (2n+3) /2
sn-0s o 1 (22 (A-V)

. (27)
2%n! (2n+3) 11 K2 L2 -

-We note that pT'F‘ is:

-

TP 1 ,2m 372
P = (—5)

(x-v)3/2 o (28)
3t ©un : )

o aed?
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and therefore we may write (57) as:

H.O . 'n+1 i 5 n 2m s _f%‘H
SN =6 = Tne )T (5) )

»

where we have rewritten (2n+3)!! as (2n+3)!/((n¥1)!2n+1)

We note that the S'th term of fi(x) is:

. . _S¥1 28 - :

® " TmsenT ¢ - (30}

and then substltutlng this for the n'th order Campl-Bouyssy

term given by (3), we have.'

2 n

- 1l H 2
- : (T - 2 3= V)
C.B. n+l 4 2m
(2n+l)! ;I R

which is identical to (29).

Hence we have shown that under the Thomas-Fermi approxi-

mation (1.53) can be reduced to the Campi-Bouyssy form to all

orders in sZ. ' )-

“y



CHAPTER 3

NUMERICAL RESULTS

i)} One Dimen;ion
It is intereéting to see how good én approximation’
(1.35), the HOA, is, compared to the exact result in one di-
mention (1.15). wWe also' compare the one dimensiénal forms
of the Negele Vautherln (NVA) and Camp1 Bouyssy (CBA) ap-
proximation. Since they all agree up to the 52 coeff1c1ent
we shall limit dlscu531on in this section. to the s4 coefficienﬁ.
The NVA in one dimension is derived by Sprung, et al |

{1975) and is given in equation (1).

2 .
NV _ ~ ® 2m 1t a0(q) 1 2 ~
P {g,s) =p(q) JO(kFS) +“'i—~ (:12-(‘&‘ >m —(;q—ig—‘ 1{q) +§' kF p_(q))32(sz)

(1)
where kF = 7p(q).

It is also easy to write down the CBA in one dimension

B(q.S) = p(q)go(ﬁs'-) . (2)

In this case the effective momentum k is given by:

1/2
= (3 2m _ l-ﬂ a? p(q) ‘
= (ETET,Ey (1{q) 7 7m -;;59—)) (3)

39
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'We expand the one dimensional forms (1), (2), (1.39i and

(1.15) in a Taylor series and denote the s4 cogfficients as fol-

lows:
- ’ 2
N a'vo@ avi (@ @@ audq) .
: EX _ 1 i 1 1 1
Vo8 =gy Lo (@ g4 aq 37+ 7
i=1 dq 9 dq dq
13) saf0 < 1 EL P B 1) L)) dv
T 16 2 7 2m  dr I 9
q
2
: 2 .2
i1i) 4B o 3 __ @‘)2 (t{q) ‘%‘ﬁ_mdp( 2
40p(q) 2 dq )
2 : 2 .2 4 .
. NV _ 5”2, 2m 14 a%i(q), _ ' 5
iv). 54 75 ° {q) 7 (t{q) 7 om 5 ) 586 © (q) . (4)

It is not possible to analyze equations (4) in general, .
so a model potential was chosen. The Eckart potential,given

in equation (5) was used in one dimensional calculations.

Q Y(y+l)sech2(ux) . | (5)

2

where « is-the effective range.parameter and y is a well depth
parametér. The ﬁak&mum number 6f bound states is less than or
equal to (y+l1l).

ASince there are no one dimensional nuclei, the parti-
cular values of a and y are somewhat arbigrary. We chose to

fit them to the values given by Easson, et al (1979) for nuclear

matter in one dimension. They assume a binding energy per par-
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ticle of 5 MeV and a saturation dens;ty of 1. 44 nucleons per
'Fermi for' the case of 4 nucledns per level. These values are
satlsfled by fixing the well depth S0 that E— a y(y+1) = 30

2m
Mev with:

j+]
I

2.540/A £m L o (6)

-

Y =/l.0+0.896A2 - 0.5 . . (7)

v

A is the number of particles in the model ﬁucleus

The elgenfunctlons of a Hamiltonian with a; Eckart
potentlal are known analytlcally (Nleto, 1978) The (unno:-r
malized) wavefunctions have the fqrm: ch T(ax) multiplying
a hypergeometric polynomial in sh{ax). These. analytic wavé—
fﬁnctions were used in evalpating equations (4).

A suﬁmary of the calculations may be found in table
I and figures (1) and (2) . When there are 4 occupied levéls,\
with 4 particles.per level, both SdHO and s4°B are quite
accurate, with errors typically less tﬁan 5% out to several
Fefmis. However, as can be seen from f;gure l(a) and table IA,
when only 2 levels are obcupled the error is around 15% in
the interior and the HOA is not even of the correct order of
magnitude beyond 4 or 5 Fermisl " It was found that as A in-
creased, both s4“B apg S4H0'improved, both in accuracy, and
the region over which they were accurate.

In the case of CBA this is to be expected from the

nature of the approximation made in deriving the formula. In
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relative error =

y

Derivatives

2 levels
relative error

.147

.146

.118

.007

=~0.376

-4.80

2.13
1.15.

. 1.04

4 levels
relative error

0.039
0.039
0.037
0.035
0.033
0.026
0.008
-—-0.026
-0.084
-0.184
-0.363
-1.75
3.92

’

centre of rmass co

are defined in equation (8).

TABLE. I

‘of the Egkart Potential

s

g2

1.38
1.09
0.11
-1.98
-6.06
-13.82"
-28.49
~108.49
-393.38

V(Z)

1.38
1.31
1.10
0.71
0.11
-0.75
-1.98
-3.69
-6.06
-9.32
-13.82

. -2Bu40

-56.20

ordinate

(S4EX _ S4HO)/S4EX

vi3)

0.00

T -2.46

-4.84
-4.93

8.32.

79.88

1380.01

5803
77000

v

0.00
-1.22
-2.46
-3.71
-4.83
=-5.50
-4.93
-1.44

8.32

31.07

79.88
-380.0

1534

42

v(3) 4 (2)

0.0
-2.26
-4.4

2.49
-1.40
-5.78
~13.0
~54.0

~196

v(3) ()

0.0
-0.93
~2.24
~5.23
~43.9
7.33
2.48
0.39.
~1.40
-3.33
~5.78
~13.3
-27.3



Figgre 1

The s coefficients of the density matrix in a one
dimensional Eckart potential as a function of the

centre of mass coordinate.

Solid line : s4%%
Dotted line: s B0 - . ‘
'Dashed-line: S4CB
Dash dot : S4Nv

where these terms are given by equations. (4).

(a) 8 particles in. 2 levels T

(b) 16 particles in 4 levels.

TNote_that the kink in figure (a) is an interpolation

error,

. ream
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'FIGURE Ia)

5 fm:
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(a)

(b)

nate, q

Figgre 2 :

Relétive error of;the various approximations to
: the,S§ coefficient'of the density matrix for 16
'.partlcles in a one dimensional Eckart potentlal | Jﬁ
. as a functzon of the centre of mass coordinate. -
Solid line : (sq®%_g M0y /g, BX
‘Dashed line : (S4Ex B)/S4EK

N

Dotted°lfne

(54F¥ g4V /g EX

Derivatives of the Eckart potential with 16 par-

ticles as a functlon of the centre of mass coordi-

v {2

Solid line

Dotted line . : ,V(3)
Dashed line : VS4)
where'V(n) are defined in équatiqp (8). S -
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FIGURE 2b)

10 fm-
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the case of the HOA one might expect that this ls because the po—

tential well becomes more "flat" in the bottom as. A 1ncreases,

and hence becomes more like a harmonlc oscillator petential.

In table I, we may note that V( ) (see equation 8)) changes much

more slowly for 4 levels, and hence is more nearly a constant

as is the case for the harmonlc osc1llator, when compared with
( ) for 2 levels. This effect is due to the‘l/A cependence

of a. Aas A 1ncreases, a decreases, and hence V(z) varles

‘more slowly. This is a common feature of smooth one body

nuclear potentlals (e.g., the Woods Saxon), due to the occurence

of saturation. Hence we may expect ‘the HOA to be rmore’ accurate'
for heavy nuclei. .

Since the HOA is based on the fact that the second
derivative of the potehtial was cohstant and hlgher deriva-
tives yanish, it is useful to see the correlation between the
accuracy of.the HOA and the magnitude of the derivatives,

We used nondlmen51onallzed derlvatlves in table I and figqure

2b), as given by (8).

g _d% 1
n  n,n

(8)

where a, given in (6), defines a length-ecale.'-, ' ' T
Table IB and figure 2b) show that when the ratio

V(B)/ch) is less than 10, the HOA g1VeS at least the correct

order of magnitude, with one exception, at 4 Fermis. This is due'

to the fact that V( ) is changing sign here, and hence haef3_

- F
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]

very small magnltude. However,‘gnelcan see in f;gu;e 2b) that
both V{ ) and V(3) are seootﬁ and not very large at this point.
It is difficult to draw any quantﬁtative cqnclusions‘
from this, but qualitatively we see that when V varies.slowly
as a function of x, the HOA does give a good approximation to

.theé fourth ‘order coeff1c1ent

Finally,- we may comment on the very poor agreement

between s4™Y. and sS4 x ' The case where Y=1 - and only *one level

is occupied may be done ea511y and hence it is instructive to

- look at thls case.

- Lom /
. ] 1' "-- L]
ch(2ag)+ch(as)

plg,s) = % (for one particle per level). (9)

We may expand (Q)Q.and note that:

2‘2 . .

2m _1K4° d%(q), _ 2 ;

=3 (@ - 3735 ) - oPpq) o

A dq . o

to write
0 ' G uBX _ 203 _ a3p2
- T T4 24
. 23
i HO _ a'p
11} ! 54 = 13
2.3
s s CB _ 3a%p
iii) 54 = 20
1

iv) snY - nzap4/28 - n4p5/280. {(10)

For the values of p(q) used, it was found that 10 iv)

»
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overestimafes the exact s coefficient by about‘two orders
of magnltude in the ;nterlor, and is of the wrong SLgn It :
also falls off much more qulckly than 10 i) in the tail. This
is understandable §1nce 10 iv) has‘a much stronger dependence
on p than 10 1), 10 11) or 10 iii); all of whlch agree to
within 20% or better for several Fermls and for different
.numbers of levels. Hence it appears that the Negele—Vautherln
form is not suitable for one 41men51ona1 calculatlons, at
least for a model potentlal similar to the Eckart pntential
Also, since the Eckart potential is 51m11ar to a har-
monic oscillator potential, at least in the 1nter10r,!3?e aﬁé:;
analysis sheds light on some speculations of Sprung, et al |
(1975A) €y analyzed the Negele- -Vautherin expansion u51ng
. the Bloch':5£51ty matrix for the harmonic 050111ator in one.‘

dlmen51on (see equatlon 1.32). " our analysis shows that for

the sharp Fermi surface case this expansion is' not accurate.
state), the fourth order coefficient is’ actually larger than
the leading term.

Hence we may, conclude that. the HOA and the CBA can be LS

uThe NVA does not appear to be very good at all in reproduc1ng

.the one dimensional densxty matrix (at least to fourth order).

O
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ii) _Three Dimensions

k3 : . . . hd
. In this section we have checked the various approxi-

mations 1n three. dlmen51ons, expanded in a Taylor series to
s4. The exact angle averaged denslty matrix, p(Q,s), up to

S4 is given. by (B28) The HOA in three dimeqsions is given
by (1.53). We also truncated (2.i0), the CBA, and (2.11), the
NVA, to fourth order. In this section when we'refer to the
above expressions,.we sﬁall'mean the. expansions truncated to
fourth order in S. As menfioned above, the three approxima-

.tions ‘are exact up to s2 and differ only in the S4 and hlgher'

_ coefflclents We reproduce the S4 coefficients belcw.

Zm

EX _ 1 o2 . -
S4°" = 555 {-1? (e (Q) 77V (Q)-Vp (Q) .Vv(o))
e N (z(vm)#e; %R 2 . (©) 3‘3—?—4 viQ)-€_ )
%2. n,L n,2 T v '% )
2 1 ywt ( 7y ;
. Yng, (@) wn,ﬂ,m(g)} | (L)
sqfO o 1 2m 2 ) (r(e) M G R)Y ¥ ar (11
w® N2 | - azm ' P R (11(id))
@
sa® o S 2mf g o L (@)%/0 (@) 1i1))
,‘—_gﬁz"gf f Q 7 2m ¥ PQ /D Q (11 (iii)
2 : .
X kg
NV _ "F 2m 1 42 . .
S4 = Tog 2 (7@ ‘Eﬁv o(Q))—m P(Q) .. (11(iv)

2 (@)
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p(g,S) and the three approxlmatlons were tested on

two potentials; the"’ harmonlc osc1llator Wlth-Hm = 41/A1/3

MeV and ‘the Woods Saxon with a well depth of 44 Mev. and an
‘effectlve range parameter of 1.27 Al/3 m. The scaling in

the exponentlal, ao,-was chosen to be 0.67 fm. ;?Ee harmonic
oscillator potential was chosen asla.test case, since analy—
tic expressions could be calculated, and since the HOA would

be exact in this case. 'The wOods Saxon was chosen as a more
ﬂrealistic" potential for the nuclear case, as we are 1nterested
in checking thisg’ approxlmatlon for nuclei. Al}l calculations
assumed equal numbers of protons and heutrons, and 1gnored

the coulomb energy ‘and spin orbit splltting.

| For both potentlals we calculated p(Q S) and the three
approxlmatlons, and then normallzed the result to the local '
- density p(Q). This enabled us to compare the accuracy of the
approxlmatlons as a function of S for varlous values of Q

measured from the centre of the nucleus. We show the results

for.160 and 4oca; both considereqd in .a Woods Saxon potentlal

in figures 3) and 5) respectlvely. o

J. Equations (11) were also calculated separately and
analyzed as a function of the centre of mass coordlnate Q
The results for 160 and 40Ca are shown in flgures 4) and 6).
'Although these flgures show Now well each approxlmatlon re-
produces the shape of_S4 . it is dlfflcult to establish how
accurate the approxlmatlon was. Therefore we 1ntegrated S4Ex |

and the approxlmatlons as a function .of Q. These appear in



Fiqure 3

" The angle averaged density matrix of 16OIin a Woods

-A

‘Saxon potential

Solid line : 5(Q,851/0(Q)
Dotted line = : p230,55/p(0)-
Dashed line : HQQ(E(Q).

Dashed single

dot : CBA/p(Q)
- Dashed double’
. dot ¢ :  NVA/p(Q)

where ET@T?T ig‘given up to fourth order in S by (B28)
E;T67§) is {B28) truncated at s?
._HOA~i; given up to fourth order in (1;53)
CBA is (2.190) . truncated to fourﬁh order

" NVA is (2.11) truncated to fourth order
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_Figure (4a}

Figure '(4b)

Figure 4
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Solid line
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Dashed line
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to 5 fm.
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to 10 fm.
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The angle averaged density matrix for 3°

Woods Saxoh potential
: [

s

" Seolid line

Dotted line -

Dashed line :

Dashed single .
dot

"

Dashed double
dot

o
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Figgre 5

p(Q,S)/p(Q)
- p,(Q,8)/p(Q)
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Figgre 6

The SJl coefficients of the angle averaged -density -

matrix for-qOCa in a Woods Saxon poténtial as a func-

tion of the centre of mass coordinate.

\5011@. line

: S4Ex
_ " . ) HO
P | botted line : S4
Dashed line : S4CB
‘Dash dot : S4NB .
) ™
Figure 6a : to 5 fm.
Figqure 6b : ‘to 10 fm.
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Table 11, for several different nudlei;“énqﬂbqnh potentials.
All these results are siﬁiia; to the one dimensidnal

‘results. As A increases,_the accuracy of $47° improves‘éﬁam“m-

“the region over which it is accuraté increases (for.the Woods

Séxbn, since it is already exaét for the harmonic oscillatdr

potential). -It_ appears thatrs4H9his accirate to about 0.2

to 0.5 fm. pasﬁ‘the r.m.s. radius of the nucleg}

In the extreme surface reglon, the HOA beglns to
underestlmate p(Q S) by a large amount. This is probably re-
lgtea to the fact that thls form is exact for harmonic oscil-
lator wavefunctions which are gaussians asymgtot%cqlly.
However, realistic wavefunctions in a finite,potghtial well
have wavefunctions thch-are exponentials asymétotically.
Therefore, a large distance from the centre of the nuciéus
one might expect this approximatiQn to be too small. However,
as can be seen in table TII, tﬁé_integral of 5410 is more aé—
curatésthan for either of the othef approximations: Thefe-‘
.fore, it appears that this underestimate in the tail does
not have a large effect in the overall result.

As mentioned in chapter 2, the CBA expression isvthe
most accurate approximation in the tail. This is confirmed by
our study as can be seen from figures 4 b) and 6 b), where we -
see that S4C underestlmates sq=X by. about 30% in the tail
but follows the correct trend. ' The'feaSOn for S4Ho'unde§—

. estlmatlng in the tgll has been mentioned above.
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The expressions for S4® ana saV are given below:

Y B 1 4 . .
saWV o 2o2m o0 1 o2 @k 2= 25 k_%0(Q) - (12(i1))
o8 .2 2T 4 m P(Q) ke = 257 kp P (Q

' ﬁtere kF;hnd k are defined in etaptef 2. as can be seen
from table III, k cuts off much more slowly than k; past the
+1/2 density radius, and hence (12(i)) is likely to be much
larger there. This has .been shown to be true also for the
ﬁarmonic oscf&latot potential by Campt-and Bouyesy (197§hf.
- One unexpected point of interest,tame out inh this
aealysis. If one looks at figure '7) we can see that -|VV|

‘40 16

and V2V are more smooth for Ca than for "0, particularly

in the interior of the nucleus. Yet out to about 2 fm, 5410
is more &%curate for }60 than for 40Ca, although 40¢, is

' more accurate overall. This indicates that the smoothness of
the derivatives is not of sufficient crlterlon for deciding
on the appllcablllty of the HOA.

We may also note that S4 HO teproduces the ehape of
sa®% more aceurately than S4B or sV, :Theretore, when
integrals such as.exchange ;ntegrals are used,‘the HOA may
- .given even better results than indicated. by table II.

As a flnal p01nt, 1t should be mentioned that .the HOA

was derived only for the ground state of a system, since we



Table III,

~

61

. Fermi Momentum and the C.B. Modified Mghentuﬁ

10.0

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

%6 in a Woods Saxon potential .

kF.
1.65
1.56
1.12
. 643
.338
.17%
.0938
.0506
.5%;1-

. 0153

8Ca in a Woods Saxon potential
l%gl
1.65
1.56
1.18
, .704
R
.200
.108 |
.0590
0329

1.32
1.13
1.01
.833
.679
.583
. 521

. 476

- 441
.412

- 1.32

1.32
1.16
1.03
.852
. 689

.584 &

.515
.466
.428
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Figgre 7

The Woods Saxon potential and its derivatives

for 16O-and 4OQa-
Solid line_ : Woods Saxon potential
Dotted line : IVV[ ‘ ’ }fiﬁfl
Dashed line : }|v2v|

Figure 7a : 164

Figuxe 7b : 40Ca'.
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FIGURE 7 by
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-‘changlng summlng of the series and integration is not legi-

Laplaoe invert to the Fermi energy fsee Chapte} l). There-
fore we do not ifpect the-approximasioh to giye good results
for excited states. It was found that the HOA did not repro-
duce ST§T§T-very well fo: spherically‘Symmetrio excited states,

even in a harmonic oscillator potential.

iii) Discussion and .Conclusion

We have'showh that as a Taylor series expansion up to
fourth q}der in §q the-RHOA is more accurate iﬁ the interior
of the nucleus considered in a ﬁoods Saxon potential than
either the CBA or the NVA in 3 dimensions.lln one dimension it
was also reasonably accurate with the Eckart potential. As
it is also exact for the harmonic oscillator potentia;, one
might hope that.this_approximqtioﬁ would be very good for
nﬁclear calculations. This is particularly hopeful in view -
of the fact that nelther the Eckart potential nor the Woods
Saxon potential have small high derlvatlves in the region over
which the HOA is good. However, in its present form 1t is

not a useful calculatlonal tool. .

X

Although the Taylor series gives the small s behavio%
very well, the density matrix blows up very rapidly Qhen S

is greater than 2 fm (see flgures 3) and 5)). Thus, even

for a short range force" such as a Yukawa with a range of 0.7

“£m (for 2 pion "exchange) , the exchange integral will be very
inaccurate it the calculation is done using a Taylor series

x - +

expansion. This is basically because the process of inter- . i
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ey L . .
timate over an infinite interval, .since we don't shave uniform

. ’ . - . .
» . A

. convergence of the series on this interval.
‘ . : Thlsﬂshows the necessity of :.ncludlng the long range
| S behaV1our of the denszty matrix. One may hope-that it is
possible to write down a form for tﬂe deneity matrix whos
Taylor series- reproduces the HOA up to fourth order, and sums

" Al

S up to infinite order, w1th hlgher than fourth order coef-

; - flclents belng undetermlned _The simplest'approach to this L
problem is to use the theory of Padé approxlmants (Baker, 1975)
to estlmate the’TBng range behaviour of the den‘:ty matrlx.

" Using a Taylor series expansxon up to S4 one can
fix the. asymptotic behaviour to be at most JE. it was‘found\'
) lthat this did not-produce enough damplng tOSglVE anseccurate
r;sult in the case of . 4He 1n a harmonlc oscillator ootentlal'

for which p(Q, Si is knowh in closed form.
Some form must be proposed in whlch the long range .7

._,,behav1our in S is heav1ly damped so that reasonably accurate o
]

1ntegrals may be calculated.‘ In Negele—Vautherln s theory they
» ‘
expand in a plane wave basis afid get Bessel functions for

the form of the density matrix. It is the artificial damping .
;ntroduced by the Bessel functlons whlch allows the exchange

' lntegral to be calculated using their form. It may be possible

-] ‘
to fIX°up the NVH'to produce the HOA up to S4 and still retain

bl

the Bessel functiom form for damping.out the long range behaviour.

-

. " . 1 S Th



- .Since flnlte nucle1 have wavefunctlons which more closely re-

'5'6_ -

Another approach may be more successful than thls.

semble harmonlc osc1llator wavefunctions thajfﬁiane waves, }
the harmonlc»osclllator basis may be a better basis for .

expansion of the density matrix. (1. 48) sums up s to infinite
order; but cannot be Laplace inverted analytically. If it
could be approxlmated in a way which sums § up to 1nf1n1te
order, but may be Laplace|1nverted analytically we will have
achleved this aim. ‘Such a theory should probably reproduce
the HOA up to a given order in §, W1th differing hlgher K ; ‘.

coeff1c1ents.

A second problem which hasn'¢ been looked at in this .
thesis is the error 1ntroduced by assumlng p2(Q S) = p(Q,S)2 )

~ e

when calculatlng exchange lntegrals..It is really o (Q S)

which 1s needed in this calculatlon whereas the HOa approxi-

mates 576—57.. It 1s easy to verify that beyond the s2 term,

all other coefflclents differ. This dlgference has not neen

looked at humerically, so no quantitative results may be

Presented. LHowever, if one looks at table II we can seé that

the s? coefficient of 376__T is about 6% of the size of the 82
coeff:.c:r.ent ‘I‘hus, any difference in the S“‘l coefficient ofy . r
p(Q, S) due to the above ;ot being equal must produce _a small

effect on the flnal result of an integral.

In conclusion, we-have shown the HOA to - -be accurate

in one and three dimensions, even for potentials not similar

T F i
IR,
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to the harmonic oscillator. Its aecuracy, for a given poten-

"~ tial, increases with pafticle number, and hence is approgrlate

for heavy nuclel. It w111 probablg be the most accurate ap-

proximation for short range forces which die off before the

1l/2 den51ty radlus, whereas the CBA is probably more accurate

-

for 1ntermed1ate and long range forces whlch extend beyond the

l/z,den51ty radlus. More work is neede@ﬁ%% put the HOA in a

IR

form amenable to calculation.




APPENDIX A = = : )

THE DENSITY MATRIX FOR LINEAR AND QUADRATIC
POTENTIALS

b

It is possible to show that the deﬁéity matrix for the

linear potential V = kx may also be wrltten in the same form

" as (1.3%9). The wavefunctlons for this potent1al are {Landau

‘and Lifshitz, 1971 )

_ . _ =3 .
/% OAi (-0 (E-V(x))) = /% Z J et (B30 BVt g

-
-

where Ai(x) is_the Airy function and ¢ = (————) . Since the

ﬁ k
§pectrum of the Hamiltonian is contlnuous, we must integrate

the square of (l) to obtain the density.

-

p{g,s,u) =

I'd

A |

n : .
02 J Ai[-d(E—kq—-%?}}Ai{—c(E—kq~t%§)]dE
0

. (2)

We may rewrite (2) in a more convenient form by noting

that (1) doeSn't change under the transformation t -+ -+ .

Then
we write:
Ai[-0 (E~kq - Ezi) JAi[-0 (E-kq + £“"3) ]
[+ o 3
1( (t -t! ) -0 (E- kq)(t—t )~+c (t+t'))
=—.1.5J J e z dtdt'.  (3)
47 ‘ . '

L Y., . | +

which becomes:

®

N

N e I Y
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2

3
~iv & e-icr ’-‘f-' u

3 _-[“’ iy - o(E-kq)v) [
— e‘ . N
aré ' o

-0 -

e dudv (4)

where v=t-t', u=¢t+t', A second change of variables, v + iy’

produces
T 2
1 [T 5+ otEkgyv [ - T oken
—— e =] €os (—=——}dudv . A5)
214 2
‘ -jiw 0

The u integral may be done analytically to yield: -

Ai[-0 (B-kq - £2) Al -0 (E-kq + X2)]
R

iw 5 =

N VO (E-kq) el

2/1? 21‘[1 /‘?

1 _iw
| V3 5222 .

1 -1 eI’Z qv ‘,..
= — L7 - .+ V * 0 [E-kq) 1.3 (6)

2/n v . -

This allows us to write the density matrix:

. 3 ! - 02k252
w2 M 1 [ 11’7 * o(E-kq)v v ) .
p(q,s,p) =mh -Zn_i [<] 7 /{; dvdg . (7)

0 =je
Since the off-diagonal terms are independent of the dia-

gonal terms the expansion in s is trivial. .
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. ¥ X ——-+0'(.E—kq)v L
olg,sw = ko J = J\\Elz ' et N S +
f 21r377 2“1_ /v | 4# 32V2 ,
0 "i‘:' . .
2n, 2n_2n _ :
AT Ay gaE g . (8)
: n!'4sy , oo ..

We may easily write the diagonal term by setting s=0

in (7). 3 )
o2 [ e %2 + 0 (E-kq)v _
(q,u) = =S = g : - dvdE
plg, 2“'372 211-3: e .
0 -iw
S, 2 (¥ . ' S
= 5%— J, Aiz[-G(E-kq)]dE .l (9)
5 ,
_ =(n + %j
From (9) W€ can see that powers of v may be
generated by integration with?ﬁespect to qg.
v3
ﬁ + VO’(E—kq)
1l e av -
2mi 1
2Y7 Yn t 5
v3
i ® e + vo (E-kx_).
- L L | en | L] e ™ av dx -+ gy gy (19
- 211 1 ax n dx 1"
C2vT ) . VI'I + 5 n 1
T q xn-—l :
where av k.
ax;

/

Then we have for the s2P coefficient:

~

e e ay i e e

POR T B TR S St




A |

).
-A,

n ) o u
_ | 2 ,
n (o°k?) A xe* 1 ..2 av o -
O R I I e { Aif(-0(E-kx ) JAE =T ax_° T dx, ! (11)

4"n1 . 9%
q xn—l . 0
We may then reduce this to the form of (1.39) if wekkan
show that | _ 3 'ﬁ
' I 2 .2 '
1 dv - 1-H° d%
0] [ p{x) Ix dx ='1(q) ry Eg—f .
d
. . q N - (' , L
‘To do. this we write the Block density matrix:
. : 2 oo . ) .
ko . ) ks . g ks, —-BE
Clg,s,B) = 373 Al [-0(E-kg - =7) JAi [-a (E~kqg + 32) Je
.r Fl __2“3 2 J 2 T -
0 3
o LB 532 ~
0 3 - 2 . o
_ k02 elzq ‘é "_E_ s° SRR ‘ (12)
213 " YoB
where the last line follows from (6) 1f one notes: that (l2) is
a Laplace transform
% %2 L o322 ‘ |
(g,B) = > ( 3 + 28 ) C(qu).‘ . (13)
d®c(q,B) _ .Z2 o I
—5= = g%x%c(q,B) (14)
_ dg L - .
2 : 3.2 Y - oo
L4 d%c(q,8) _ a2 o3 _1 av
32. d . | | ' |
We may note that 0°k“ = (~7) and that (15) is linear in
the transformed quantities to wrlte (11) as: - -
(i_f_ corr 142 a2 d
n_. 14 dp , av w9V
(=) aPq1 J J (T(xn—l) 42m 4 2 ) dxn_l X1 dxl'dxl (16)
. . -1 ‘
'q Xn-2 '



-

and hence we write (2) as:

: 2 .2 .
. Y _ 1 ,2m 1K d(q), 2
pld,s,u} = p(g,u) 3 ?)(T(q) -7 'm_n_dgzg,_)s
i m ) 2 " .
2 d%p (x,) : : ' ’
1l 2m “ . 1 1 av ol - _
+1g (5 [ (T(xll-4 ) ax- dxy s o+
H dxl o 1
q
2(-2—m)n o ™ .
. 2/ : d%p (x )
n- A 1l K n-1 dv dv 2n
+ ()" - s (t(x Y ) dx s = dx.s
4%t J j n-1 ;§L2m i-l dxnrr q—l dxl‘ 1=
T X )
-+ -..‘t T e ) " . . I (17)

L] %

which is identical in form to (1.39).

It is also easy to show that the quadratic potential -_

V(x) = a'+ bx + cx2

has the same form for its .density matrix. The eigenfunctions
are:

2

1 2, p
b,,. 2@ (x*357)
¢ (x) = a Hyle(x + ) le (19)
- v 2nnl(1r)l/4 . \

corresponding togthe ei envalue :
P g .Oﬁ‘ g : :

[\

o 1 b |
. .En = -lfm(n + 5} +.a E—- v - (20)

Q

where we have written



Then it ig easy tofwriterthe_Block Density‘matrixé | ' ' .

BB | 2 .
S e I exp(- % ((x%4x'2) +

/2w51nh(Bﬁm)

b b2 b b2 '
+ = (x+x') + 2==)coth(Bfiv) - 2(xx' + 5—(x+x") +-—-—5}csch(8iﬁo)}) .
¢ 4c? 2c 4c”

L Te—t—— .

(21)° |
and in q and S space we have-

8a-b5 2
(@,s,B) = e dc a exp[—azjq-hg%) tanh (
v2rsinh (ffw)
; 2 ‘
+ expl- of S_ coth(Bley; (22)

Cquad. Bt

o)

i
We now show that a relatlonshlp 31m11ar to (35) holds for

(22). Note that Q% =Db + cx. If we Write x' = x + %, then we

can integrate (22) in the following form-

—B(a———-)

2
I qxp(—uz(x‘f %%) tanh(ggg)2cx'dx"

0l

ae
vYZ2usinh (BHiw)
q

oler

2

-B(a- )

dc 2

= 3B L coth(pru) %8 ' exp{-a’(q + 2) tanh(s*f“’)) (23)
h? 20 /2T SInk (BRS)

wherxre 2cx' = %¥ . “ .

-Again we can show a repeated integration gives higher

‘

N -
. ' /
.
~ -

. powers of coth (Biw) cq“ad(q.s)»\simila'r to (1.37)..
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LA Do £ i i s

We can also wrj.té the transformed kinetic energy " SR
density: ‘
quad, - 4 b2 qua'd- o
T {q.B) e lg+zl)cC (q.8) L (29) |
and ;
: i
‘ 2.2 quad A
_ uad 1 H° d“c B8 _ 1 2 ad i
1,8 - 2T LB oL 20quad o .
dg - :
o
=2 | cmady, oy av g (25)
2 . adx
q
Hence, in anélogy;ith (1.39) we writé: ‘
.:’? s
' 2 quad .
A 1 2m uad, ' 1 -h’z d p (q), .2
p318d(q,5) = pMad(g) 1 2n  quad s Timo st
o A dq :
2 ‘ o . 2 2 quad ) . '..‘:
L1 2m quad, _, 1 h" 4% Q) 'av. 4.4, .
Y (-Ifz) j (T; , (q)4 >m I ) aﬁ}. s ‘+ seroe (26)
, Ty , :‘-:.
. E*;"
- ,"Vr
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APPENDIX B

‘ANGLE AVERAGING

In the independent particle approximation the density

- matrix is a sum over occupied states.

N Siotia S
(see eﬁuation (1.1)). . o . _"

The wavefunctions may be expanded in a Taylor series

in the relative coordinate S.

S o '
v+ =1 S (5.9 ) (2a)
- n=0 2'n! - '
* N -1 n yn* |
v Q-3 = I . Gy (smyty ) . (2b)
- n=0 2'n! o ~

where the gradient acts only on the centre of mass coordinate.

Using (2), we may rewrite (1) in an expansion in powers
of S to obtain:
P(QS) = T g (4 @V (@) + S0 (@ (5-0) %, (@)
='Z j=1 L TLTEIYACE 471D iZ

* ) R R
TSI @S T @)+ s @) (s m Yy, (@ -

- 4T (51 (@ + 35 1 2 () (5) 20,(@)) + +e)

(3)
{ . -.
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Slnce we are 1nterested ln cases where only the magnitude

of. S is 1mportant " (3) must be angle-averaged over the direc-'

tion of S. We denote’ the angle average of the quantity A

by A Then we angle average u51ng the folloang prescrlptlon-

2T
_§=21?I f A(8,¢)sin6d6ds . (4)
' 0 o
In angle averaging (3), it is convenient to use momen-

tum space wavefunctions (Flugge .1974):

S O ik-Q 3,
v(Q) = 377 [ e . Jf(k)d'k . (5)
Then gradients become the vector k, and the procedure
for angle averaglng then becomes more clear.

We flrstvset Up a coordinate system:

sy - (v T
ii) k' = (k',3,y)
g ’ +
iti) S = (s,8,9) (6)

The folIOW1ng relation is useful 1n evaluating scalar™

products (Arfken, 1970).

cosf = cosalcose,2 + s;neysine cos (¢ —¢2) (7)

-
-

where B is the included angle between two vectors of angular

coordlnates (61,¢l) and (82,¢2).
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The scalar products in {3) are then easy to evaluate.
To angle average the first term is trivial since there is no

S dépendence.

N —_— ' \
Log; v (@9 (Q) = plQ) . - (8 .
“i=X ~ b ~ :

Ny
«

The,néxt term contains two terms which need to be angle

.averaged:

| r :
* ) 2 * -
v Q) (S-V)T¥{(Q) - S* VY (Q)S-VY(Q) = -

=2 ” e KV a0 £ (k) (18- 2 = seks-k1a%kaSk' . (9)
(2m) =T s SR ‘-

*
[3

2T (T . :
ez 1 . 3 2 2.2 1 .22
(5-k) " = EF [ [ sin gﬁecos dAPS k" = 3 5Tk (10)
0 0
%
27w .
(§'§)(§'E')==£? J sin36d8c05¢(cos@cosy+sin¢siny)d¢82kk'
0 o
! » q . .
=3 kk's? . | . | (11)

Hence in coordinate space we have:
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'J."

= = §

12

2

4

=_12m
: 6

l < -.- * l‘. ’.
7 .59 {w (Q) (s V) “’1‘9"5 V5 (Q)s-vy, ()}

N

it

m
2

z 9; {¢ (Q)V v, (Q)- V¢ (Q) Vo, (Q)]
=],

2 -t

(t(@ - 38 92 (g))s? " oa

b

In the fourth order term we need to angle'average:

L

b7(@ (529 (@) -4 (s 1 v* (@) (=970 (@) +3(5+ 112" () (5-9) 24 ()

Sk (5°Kk)3 = =

27 T
“ J
0

U~

k

(5+k)? =

-

_ 27 ¢ .
(s-x)? = i%-l 1 sin®8dscos{gass it =

LA

st (1g

(S0 ]

[ sinsede'cos 3¢ (cos¢cosY+s:lan¢sin~(') dok ’k3S4

0
k%t S (15)
éL f [ sin” edecos ¢cos (¢~ y)d¢k'2 2 st

0 0
3 k%2, + % kek'kext)sd . (16)

(2m) L L. ~ ~ e -:,«-:
4 3(§.}f)2(.§\]§.)2}d3kd3k, | . 15

BTN



"Hence in coordinate space we‘hﬁve:

N . ' ) .
4. - 4 * 2. .
(59 @y @-avh (@) w2y, (@)

v

557

+ v2 Wi(Q)V wi(o)+2vvwi(o) VV¢1(Q)} - (17)

whexre VV is a rank 2 tenaor Operator and : ndiéatea contrac-

tion across both indices.

In cartesian coordinates the tensor vV is easy to write

: 2 ‘ .
-down; it has components () . The contraction above is
Bt ‘ . axiaxj - _ |
also easy
ETAC ST S Lo 9y (18)
v 1,3m1 X 9%y Tx T _
4

dpon performing the scalar products in (16) it is clear,that

(19) corresponds to the_ term k- k'k k' "in nementum space.

 mi e

Since we are working with spherically symmetric systems, it b

'would be convenient to obtain the tensor in a spherical basis.

Since it is a symmetric tensor we reproqti? the ‘upper half only.

~ 2 .2 2 -

" d 1l 1l 3 1 1 9
\ e r 38ar ;I.ae rsind Jra¢ ~ rzsine EY)
_— 13 1 3 1 3% cote o
x 9Y ;7 302" r251n6 803¢ rzsine 99
Lo s |
1 3  cot® 3 1 9 :
= a4 =+ _— (19)
i ror T2 39 2aing 302 _

In a system where the wavefunction is separable in-a

spherical coordinate system we write:



g0

.' L S .w‘n'm(:,e,cp) - 'Rm',:(rw',',-‘(t_i.d’)

the term:

C oWl a2 T S S
" ' 2 6
TRy 40T Rap)¥pYy 4 (2R + 55 esc®ory, - 2 QALY
m2 | m* lRl?l!. ' L m | |
Zoinls Yoy N S v Bmﬂ,“*’z * ("2‘ ha 3 an nt* K%. .
m* 2 . s
+ cs026 R2 )8Y'; BYR. 2&12. m aYm am£+4cot9 R R'Ym* 3}!'; :
r 36 a0 rzsinza !55 C ng n"4 38
2 - : ) w
ScotlRy, 2!(.11*”!:;l s 2R gy R . Rpg 22y 2] (22):
- m v . -
rzsiln??m LD ;3 neFne¥e 392 24 YIYYS

It would be most convenient E}A‘;m T4 1if there

were no angular dep?.ndence in it, Since we are mainly' interested

in working with filled shells, we find that summing over m for

. ] .
" a fixed & achieves this aim. Below we reproduce: I T4 for
2 =0, L=l, 2 = 2,
L (a2 2 :
T4, = 3 (R -—2- R ) : . . (.23)

-~



™, = w2 .14 .2 36 o422,
T4, Aﬁtnn2+?n,;2.*.";-‘_‘n'z‘¥;2 "_'fFRnZ‘)f (a8}

(23), (24) and (25) are valid for 1 particle per level
For the case in which they are g particlee per level, we multiply:

- T4 by g.
It is also poseible to obtain the other terme iT (17)

G

without any angular dependence. To do .this one notes that: .

L, | ' .- .
o - 2m S :
nom' Wngm = 53 T:?z o (26)

* me-g H

and also makes use of Schrédinger's equation to obtain:

. o |
—g— {“2 (pV V + Vp- Vv) + {Er) T (vhen,ﬁlznﬁg 2ﬁf1

- 4( _2. Ve vy + (2’“) T (V-e, VT )

n,.?.
2 \ - :
+ (3?) ‘'L (V—enz)znﬁg 3%;5 t2 I m4) (27y °
ﬂ nfg' nllplm : -

where V ig g spherically symmetric potential, :
| Then to fourth order in s wWe can write the angle

average of (3) as:



A S

B L B C PR 2
. _v;-p(g,g) - p(g)\-,.—-l 2 (r-(g) =T 3 VelQ))st

.1 g2

550 (p(Q)V V(Q)"VD(Q) VV(Q)) + ( ) E (Z(V(Q)-E )

r 2-(0-, 2z+1 . o | -

‘ " : 4
nef@) Savi@-s ,1‘9“ t2ox anzm@mwm‘ei s
. . : I3 ‘ n'z'm ! *

Nevs

\+ t.k‘... .
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