ON THE APPLICATION OF MULTI-LAYERED PERCEPTRONS TO
NONLINEAR EQUALIZATION FOR FREQUENCY SELECTIVE FADING
CHANNELS AND NONLINEAR PREDICTION FOR TIME SELECTIVE
RAYLEIGH FADING CHANNELS

By

W. R. KIRKLAND, M. Eng, B. Eng

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements

for the Degree
DOCTOR OF PHILOSOPHY

McMaster University
© Copyright by W. R. Kirkland, April 1994



APPLICATION OF MLPS TO FADING CHANNELS



DOCTOR OF PHILOSOPHY (1994) MCMASTER UNIVERSITY
(Electrical and Computer Engineering) Hamilton, Ontario

TITLE: On The Application of Multi-Layered Perceptrons to Non-
linear Equalization for Frequency Selective Fading Chan-
nels and Nonlinear Prediction for Time Selective Rayleigh
Fading Channels

AUTHOR: W. R. Kirkland
M. Eng
B. Eng
SUPERVISOR: Dr. D. P. Taylor

NUMBER OF PAGES: xv, 158

i



Abstract

We show that in the additive white Gaussian noise channel that a single neuron using
the standard sigmoidal nonlinearity function is effectively a Bayesian estimator for
a binary (=1) level signal and establish a link between the weight(s) of the neuron
and the noise variance associated with the signal. This relationship is then extended
to neurons where the sigmoidal nonlinearity function incorporates a gain term. By
extending these results to multi-level signalling we develop a new nonlinearity function
that incorporates a gain term o« which simplifies the structure of the neural network.
We show that this gain term is linked to the noise variance much like the gain term
in a neuron using the sigmoidal nonlinearity for binary signalling.

In applying neural networks to the channel equalization problem for frequency
selective fading we make use of complex neurons in the neural network. We look at
both binary signalling in two dimensions, and higher level signalling as well. Our
results show that while neural nets provide a significant performance increase in the
case of binary signalling in two dimensions this performance is not reflected in the
results for the higher level signalling schemes. In this case the neural net equalizer
performance tends to parallel that of the linear transversal equalizer.

Under the Rayleigh fading channel, we demonstrate the feasibility of using
a simple neural network as a phase predictor to significantly reduce the error rate
for quadrature phase shift keyi:ng signalling in this channel. With this network it is
possible to remove the error floor that is normally encountered in this channel for
average signal to noise ratios of less than 60 dB.
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Chapter 1
Introduction

The purpose of this thesis is to study the application of multi-layered perceptrons
to channel equalization/compensation schemes for two types of channels: the pure
frequency selective fading channel and the correlated Rayleigh fading channel, a pure
time selective fading channel. The goal of this research is not to propose neural
networks as superior structures to present systems but merely to explore the possi-
bilities of their use, to identify suitable network architectures, evaluate their perfor-
mance and to lay down a solid ground work for their application to channel equaliza-
tion/compensation schemes. For this we have chosen to look at multi-layered percep-
tron (MLP) structures using the standard back-propagation (BP) algorithm. While
there are more efficient neural network structures than the standard back-propagation
multi-layered perceptron it has been demonstrated that the MLP is capable of achiev-
ing arbitrary complex functional mappings[1]-[9]. This combined with the fact that
the MLP allows for some interesting signal processing interpretations makes it an
attractive structure to study.

1.1 History and Motivation

The present trend in the communication industry is towards digital transmission of
both analog and digital information over analog channels. The continuous growth of
the telecommunications market has demanded increased spectrum efficiency on band



limited channels. This has been met by the use of higher speed data transmissions
which are more sensitive to channel disturbances. In turn, this has created the need
for more effective equalization schemes to combat the effects of the channel. Channel
disturbances may be of either an additive and/or multiplicative form [10] resulting
from background thermal noise, impulse noise, co-channel and adjacent channel in-
terference and fades which manifest themselves in the form of frequency translation
and attenuation, nonlinear or harmonic distortion and time dispersion.

Our concern is mainly with the effects of time dispersion resulting from fre-
quency selective fading and the effects of thermal noise, however the pure time selec-
tive fading channel (correlated Rayleigh fading) is also considered. Rayleigh fading is
encountered in mobile radio communication channels. Its effect is to cause the trans-
mitted baseband signal to be multiplied by a complex phaser of random amplitude
and phase whereas time dispersion results when the frequency response of the chan-
nel deviates from the ideal response of constant amplitude and linear phase[10]. The
result of time dispersion is that the effect of a transmitted symbol extends beyond
the time interval used to represent that symbol. This is known as intersymbol inter-
ference, i.e. ISL In the telephone channel time dispersion results from the presence
of echoes on the telephone line[10]. In this case the channel is unknown but does
not change with time. In wireless communication, in particular in line-of-sight digi-
tal microwave radio (DMR), (11}, the channel disturbance results from the presence
of multi-path propagation. Multi-path propagation may be viewed as transmission
through a group of channels with differing relative amplitudes and delays [10]. In this
case the equalizer must track time varying channel characteristics.

1.1.1 Frequency Selective Fading

Much of the work on adaptive equalization for time-dispersive channels has been well
summarized by the literature [10]-[16]. Most certainly the invited paper by Quershi
[10] is mandatory reading as it provides a summary of this work up until the early-
mid 80’s and an excellent list of references. For a more comprehensive survey of the
literature (until the early 1970’s) one should consult [12] and [13] and for an extensive
bibliography of the current literature see Haykin[14].



Conventional equalization schemes have normally used an adaptive linear
filter (LTE, a linear transversal equalizer) based upon the LMS (least mean squares)
[17][18] or ZF (zero forcing) [19]{20][21} adaptation algorithms. Most of the present
work on adaptive equalization is based on the method of least squares. The founding
work for this started in 1960 when Widrow and Hoff [17] presented the least mean-
square (LMS) error adaptive filtering algorithm which has been the fundamental
workhorse for adaptive filtering. In the early 60’s work centered on the development
and understanding of the zero-forcing algorithm developed by Lucky [19](20][21]. By
the late 60’s the LMS algorithm had been well described and understood. More recent
work has been in the development of faster learning algorithms such as recursive
least squares [22][23][24] and lattice structures[25]. While these structures are more
computationally efficient than the LMS algorithm, their computational complexity
has prevented their wide spread use[10].

Even though linear structures have demonstrated good performance, in many
instances when the linear equalizer operates in a highly dispersive channel, its per-
formance falls considerably short of the matched filter performance bound obtained
by considering the reception of an isolated transmitted pulse [10][21]. Hence, this
led to the development of nonlinear receiver structures. The optimum (minimum er-
ror probability) equalization scheme, subject to various constraints, has been shown
to be a nonlinear structure either in the form of the maximum-likelihood sequence
estimator [26], e.g. the Viterbi algorithm, or as 2 nonlinear tapped delay line struc-
ture [27][28]. An alternative though sub-optimum nonlinear receiver structures is
the decision feedback equalizer (DFE) [39]{16]. With the development of quadrature
amplitude modulation (QAM) and the realization of its performance benefits all of
these systems have been extended to complex-valued structures suitable for the joint
equalization of the in-phase and quadrature signals for QAM][10].

Attention has also turned to the development of sub-optimum nonlinear re-
ceiver structures. In [16] Belfiore and Park point out that there is much interest in
finding sub-optimum nonlinear receivers that will provide bit-by-bit detection with
significant performance advantages over the linear equalizer without the discouraging
complexity of the optimum solutions. In [28]-[38] Gibson and Cowan et al illustrate



through the use of a simple channel model that the optimal (minimum noise enhance-
ment) combining network for a tapped delay line structure is nonlinear in nature.
To achieve an adaptable nonlinear equalizer structure they have made use of feed-
forward neural network type structures [28]-[38]. In [27] Ungerboeck proposed two
sub-optimal nonlinear equalization strategies, both of which resemble a feed-forward
neural network architecture. Ungerboeck’s motivation for a nonlinear approach is
“...that intersymbol interference between signals with quantized pulse amplitudes is
of a discrete nature. Exploiting this discreteness, nonlinear methods can reduce inter-
symbol interference with less noise enhancement than linear methods.” Both the work
of Gibson, and Cowan et al and Ungerboeck suggest that there is merit in investi-
gating the application of neural networks to adaptive nonlinear equalization. Neural
networks with their ability to form arbitrary complex functional mappings appear
to offer a flexible and adaptable equalization structure that is capable of achieving
performance close to that of the optimum equalizer.

The application of nonlinear neural networks to adaptive channel equalization
is relatively new. The most significant and prolific literature on the subject comes
from Gibson and Cowan et al [28]-[38]. This work seems to have set the standard
for comparison. Here, they have demonstrated that the optimum combining network
for a tapped delay line structure is a nonlinear structure. Gibson and Cowan et al
have demonstrated the superiority of neural network equalizers (both multi-layered
perceptrons and radial basis function networks [28]-[38]) over conventional linear and
decision feedback equalizers through the ability of the neural network equalizer to
approach the performance of the optimum Bayesian signal detector. The problem
with this work is that it has been restricted to PAM signalling through a 2-3 tap,
T' (symbol period) spaced channel filter and is based upon using a minimal decision
delay and minimizing the number of taps in the equalizer. In particular they have
not considered the effects of pulse shaping on aeural network equalizer performance.
What is needed is to extend this work to more accurately reflect an actual transmission
system. Hence a more sophisticated transmission model is needed, one that allows
for the use of pulse shaping, different signal constellations (i.e. extension to the case
of two dimensional signal sets) and 2 more realistic channel model. Such work has



been carried out in this thesis, some of which has been reported in [40). Here the
multi-layered perceptron has been extended to the complex domain to allow for the
equalization of 2 quadrature amplitude modulated signal (QAM) in a DMR type radio
channel {11][41]. Similar work to that in [40] but using decision feedback equalization
has been p:asented in [42]. Additional work has considered the use of polynomial
perceptrons [31], PAO networks [43] and self-organizing networks [44).

With the exception of [32] the above work has focussed on linear channels.
While it has been shown that the optimum equalization solution for a linear channel
is nonlinear the real advantage of neural networks would seem to lie in their ability
to equalize nonlinear channels. In [45] Falconer studied a nonlinear receiver (based
upon a DFE) for a 9600-bps (bits per second) modem on a worse than average set of
voiceband telephone channels. He found that by considering the nonlinear effects in
the channels his nonlinear receiver yielded a lower error probability than a DFE or
LTE for every channel considered. For 13 out of the 17 channels, the improvement in
error rate was equal to or better than about an order of magnitude. The nonlinear
receiver also increased the number of channels yielding a better-than-10~* error rate
from 8 to 15 out of 17 channels.

This is not to say that the application of neural networks to the problem of
equalizing linear channels is not important. Indeed, while maay channels are pre-
dominately linear they include some nonlinear effects as well, e.g. see [45][46}[47][48).
(In [46] it is pointed out that the primary sources of nonlinearity for digital sub-
scriber loops and voiceband data modems are the data converters, the transmitted
pulse asymmetry and the saturation of transformers while in digital radio channels
one must also consider the effects of nonlinearities in the high power amplifiers.) In
improving performance in this channel a neural network equalizer must first demon-
strate that it is at least capable of performing as well as linear techniques in combating
the linear part of the channel disturbance before it will be of use in compensating
for the less dominant nonlinear terms in the channel. The only work in this area
with neural networks appears to be in [32][49] and {50]. In [32] and {49] they consider
a simple polynomial channel nonlinearity while in [50] Benvenuto et al consider the
problem of comﬁensa.ting for the nonlinear effects of a satellite high power amplifier.



With regards to this area, there has been a considerable amount of interest and atten-
tion paid to compensating for the effects of nonlinear transmitter amplifiers [51]-[59].
Other areas of importance are in optical fiber [60]-[63] and the magnetic recording

media.

1.1.2 Mobile Radio - Rayleigh Fading

The work dealing with Rayleigh fading is not nearly as well summarized as that for
frequency selective fading. Much of the work deals with a combination of Rayleigh
and frequency selective fading. This is due to the wide range of communication
systems operating in a mobile environment. Hence, in this section we present a
general overview of mobile communication systems, applicable modulation techniques
and channel compensation techniques.

Traditional users for mobile communication systems have been *the military,
airlines, fishing and shipping companies, the police, fire departments, ambulance ser-
vices and taxi services. The resultant technology developed for these services has
also led to the introduction of personal mobile communications (e.g. cellular radio).
While these systems have relied on conventional analog communication systems the
ever increasing demand for the radio spectrum has necessitated the need for more ad-
vanced and spectrally efficient communication technology, i.e. digital communication
systems. This technology brings the ability to provide mobile personal communi-
cation services anywhere in the world (e.g. the Iridium project being developed by
Motorola [64] and the MSAT, Mobile Satellite, program[65]) but it also brings with it
a large number of technological hurdles that need to be overcome. One of the key com-
ponents of these systems will be the ability to compensate for the fading experienced
by a transmitted signal. The particular type of fading in the mobile radio channel we
are interested in this thesis is known as Rayleigh fading. With Rayleigh fading the
distribution of the amplitude samples of the fading process are Rayleigh distributed.
In this channel there is no line-of-sight (LOS) signal present at the receiver, rather
the received signal consists of scattered components of the transmitted signal. Such
scattering is the result of transmitting around natural and man made objects, e.g.
trees and buildings. For this type of fading to be prevalent the greatest difference in
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delay between the arrivals of the various scattered signals at the receiver is negligible
compared to that of a data symbol period but significant compared to the carrier
wavelength. Such fading is restricted to cases where the channel bandwidth is small
compared to the carrier frequency, e.g. 5 - 30 kHz bandwidths at 800 - 900 MHz as in
the land mobile and satellite radio environments and some cellular radio systems. In
the mobile satellite channel there is generally a line-of-sight component which expe-
riences slow time varying fading as well which results in a log-normal fading process.
The fading rates for the Rayleigh and log-normal processes however differ by at least
one order of magnitude [66] and thus the channel appears to have a Rayleigh char-
acteristic over short periods of time during the deeper fades of the LOS component.
The fading rate is a measure of how fast or often the channel fades and is a function
of the Doppler shift of the signal received at the mobile station. Doppler shiit is in
turn a function of the velocity of the mobile station and the carrier frequency. The
product of the Doppler shift frequency and the symbol time is known as the BT
product and is an indication of the fading rate of the channel, the higher the BT
product the higher the fading rate. Typical rates for a 5 kHz channel at 900 MHz
range from 0.01 to 0.1 depending upon the velocity of the vehicle. The net effect of
the fading process is to cause the received signal to experience random amplitude and
phase fluctuations. There is, however, no frequency selective fading.

Two important types of mobile radio systems are mobile satellite and land
mobile radio systems. In the former case the bandwidths for these systems range from
5-7.5 kHz (MSAT) up to 20 kHz (Inmarsat-B1) for voice data rates from 4.2 kbits/s
to 16 kbits/s[67]. The spectrum allocated to a satellite is divided up into narrow band
channels which permits the satellite to be shared amongst a number of users. This
is known as frequency division multiple access, FDMA. It is desirable to make these
channels as narrow as possible to allow access to the maximum number of users. These
low bandwidths channels are made possible with the development of special speech
coders with data rates in the range of 8 kbits/s - 16 kbits/s[68][69] and lower. For
the 5 kHz satellite channel there is a need for high quality speech encoders operating
at 4.8 kbits/s{70].

These speech coders also find use in land mobile digital cellular systems. The



access scheme in digital cellular radio is predominantly time division multiple access,
TDMA. Here, the low rate speech data is compressed in time and sent in a short
bursts over a much higher rate channel. This time compression allows multiple users
to share the same RF channel. Note that the bandwidth of the channel is by necessity
much higher than for the narrow band satellite channels. The North American digital
cellular standard, I5-54, uses a 30 kHz channe] operating at 48.6 kbits/s. The actual
voice channel is at 8 kbits/s but three voice channels channels are multiplexed onto
a single RF channel. Extra information is also needed for error control, signalling
for control channels, guard times and ramp times. The combined total brings the
effective transmission rate to 48.6 kbits/s. The European digital cellular standard,
GSM, uses an even higher bandwidth of 200 kHz. With these bandwidths, both
Rayleigh and frequency selective fading are experienced. The difference between the
Rayleigh fading seen by land mobile systems and satellite mobile systems is that
the Rayleigh fading for the land mobile systems is much slower due to the larger
bandwidths of these systems.

One of the main problems with the cellular radio standards is that the inter-
national standards are not fully defined and this has lead to the creation of a large
number of different systems with differing data transmission requirements. Upward
compatibility with the present North American cellular radio system demands the use
of 30 kHz bandwidth digital radios, however, to increase the number of available radio
channels a completely different system is likely needed, e.g. a complete restructuring
of the system [69]. The one thing that can be said about standards for mobile radio
is that they are continuously evolving and rapidly changing.

Considerable attention has focussed on determining suitable modulation tech-
niques for mobile communications. A tutorial and introduction to modulation tech-
niques for land mobile satellite and terrestrial systems can be found in [71]. The
application of digital modems for land mobile radio is also discussed by Clark in [72].
Lodge[66] compares data modulation techniques for land mobile satellite channels.
More up to date information for mobile communications is contained in[65][67] and
[68]. These references provide an overview of mobile radio systems for both satellite

and terrestrial systems and provide an idea of their data requirements. Summaries



of modulation techniques in general can be found in [73] and in [74]. Oetting, (73],
provides a general summary of modulation techniques for digital radio from 1960
to 1979. Forney et al [74] summarize efficient modulation systems for band-limited
channels up to about 1984.

Due to the rapid amplitude fluctuations in the mobile radio channel the main
theme for modulation has been the use of constant amplitude signalling. The usual ap-
proach is through some form of phase shift keying (PSK) although there are proposals
for quadrature amplitude modulation (QAM) such as 4-level 7 /4-Luase shift keying
(7/4-QPSK) with root raised cosine spectral filtering{75}[76], 4 and 16 QAM ([77][78]
and 2 variant of 16 QAM based upon a star configuration[79][80]. For /4-QPSK the
signal constellation consists of two 4-QAM constellations shifted by 7/4 radians. The
first data symbol is chosen from one of the symbols in the first constellation. The
symbol for the next data symbol is chosen from the other constellation. Thus, the
minimum phase shift between two transmitted signals is /4 radians and the maxi-
mum is 37 /4 radians rather than 7. This helps to reduce spurious out of band signals.
To further improve the bandwidth of the signal, spectral square root raised cosine
pulse shaping is used. This modulation has been chosen as an interm standard (IS-
54) for the North American digital cellular network. For 16-QAM, Webb et a/[79][80]
propose the use of a star constellation where one bit is differentially encoded onto the
amplitude of the signal and the other three bits are differentially Gray coded onto the
phase of constellation. Oversampling and interpolation are also used to compensate
for the effects of Rayleigh fading. Another method proposed by Webb et al is to
increase the symbol set size from 16 to 64, and to use the extra two bits so gained
to add block coding in the form of RS or BCH codes to the data. These modulation
schemes are driven by two needs: the need to be spectrally efficient and the need
to combat the severe fading encountered in the mobile environment. The latter has
created the intense interest in binary/quaternary constant envelope modulation.

The excessive errors that occur in mobile communication channel are typically
due to the delay spread of the multi-path signals or the Doppler spread due to the
motion of vehicles. One or both of these impairments can be significant depending
on the data rate. For low bit rate systems (e.g. low kbits/s or 10’s kbits/s) the
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catio of RMS delay to the symbol period is small causing very little degradation
but the Doppler spread causes a significant error floor. However, the scenario is
reversed in high bit rate systems [97]. Discussions of channel characteristics and
modelling techniques can be found in [81] - [96]. Stein[81] provides a tutorial on
fading channel issues in system engineering and reviews the character of multi-path-
induced propagational fading along with the interpretations underlying the use of
the Rayleigh fading model to describe the process statistics. Loo and Secord [83]
provide a recent summary of computer models for Rayleigh, Rician, log-normal and
land mobile satellite fading channels. The Rayleigh fading model used in this thesis
is based on the model in [83] which uses a filtered complex Gaussian noise process to
produce correlated Rayleigh fading., This model was developed in [90]-[92] and has
been used in [82] and [89]. Other models are used in [93], which describes a model for
GSM, and in [94], which provides a design and implementation of a channel simulator
for wide band mobile radio. Studies on the effects of delay spread on portable radio
communications channels with digital modulation have been done by Chuang [95][96).

Recently, there has been much work in the area of compensation techniques
for the mobile radio channel. This is due to the increased demand for personal mobile
communication services. Most of this work has been devoted to the wide band (30 kHz
and greater) land mobile systems while work for satellite systems has mainly been in
determining suitable modulation formats, e.g. {65][67][68][71] and [89]. There has also
been work in studying and developing trellis coded modulation (TCM) techniques for
the mobile channel. McLane et ol [89][98] have looked at trellis coded modulation for
mobile satellite communications. In addition, Divsalar and Simon{99)[100], Schlegel
and Costello [101] and Liu and Biglieri [102] have all looked at the applications of
trellis cod=d modulation to Rayleigh fading. In [99] - [101], interleaving/deinterleaving
is used to decorrelate the fading process. To decode the received signal estimates of
the channel fading process are used, however, very little mention is given as to how
these estimates are obtained. The construction of fully transparent phase/Doppler
invariant trellis coded modulation is considered in [102] by Liu and Biglieri.

One way to obtain estimates of the channel fading process is through the use
of pilot symbols or a pilot tone. These are known signals at the receiver and thus
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the receiver can use them as a reference signal to estimate the channel. The problem
with the use of a pilot tone is that additional energy must be sent with the data
signal in the way of the tone signal and that it complicates the filtering that must be
done at the receiver. The problem with the use of pilot symbols is that additional
symbols must be sent which requires the use of a higher rate channel. An advantage
of pilot symbols is that they can be incorporated into the framing format of the signal.
Framing is required for all digital communications systems considered in this thesis.
This is necessary in order to provide synchronization and clocking information. The
use of pilot symbols and pilot tones applied to trellis coded MPSK has been studied
by Chan [103]. Addition studies have been made in [66](77] and in [104] - [105]. With
the use of pilot symbols, the receiver must accumulate enough pilot symbols to make
a good estimate of the channel. Through the use of the Nyquist sampling theorem,
Cavers[104] has determined that the pilot symbol spacing is dependent upon Doppler
fading rate, e.g. for a BT of 0.05 a pilot symbol is needed every 8 symbols, and for a
BT of 0.01 every 20 symbols. This has also been studied in [97]). For channels with
frequency selective fading these pilot symbols allow periodic training of equalizers.
Provided that the training patterns are close enough together it is possible for the
equalizer to track the channel. Examples of such equalization techniques are [107]-
[111}.

Both the use of coded modulation and pilot tones/symbols requires that re-
dundant information be sent along with the information carrying signal. Under cer-
tain circumstances it is possible to perform non-redundant error correction, e.g. PSK
[112], MSK [113] and =/4 DQPSK [114]. These schemes essentially use a form of
multiple symbol differential detection. Examples of other multiple symbol detection
systems are [115]-{121]). Another form of multi-symbol detection is sequence esti-
mation. In [122], Bune evaluates maximum likelihood sequence estimation (MLSE)
equalization for frequency selective fading in a GSM (European digital cellular) sys-
tem. A survey of results of detecting sequences in non-selective frequency fading
is presented by Haely and Meyr [123]. They also make the point that the estima-
tion of the complex fading distortion is equivalent to carrier recovery. Clark and
Jayasinghe [105] use a search technique that relies on four separate estimation and



prediction processes operating in parallel for symbol detection. One process is used for
each symbol in a 4-QAM signal constellation. Estimates of the channel fading pfocess
are obtained with the use of a pilot tone and a one or two step predictor based upon
a least squared fading memory polynomial filter. This approach is based on tech-
niques developed in [124][125] and [126]. A Kalman filter approach is used by Haeb
and Meyr [123] to estimate the channel. Their process works under the assumption
that the channel is constant over 1 baud interval. This is a simplifying assumption.
Rayleigh fading in the mobile radio channel is correlated and it does change over a
single baud interval[83]{82](89]. By using this information and by sub-sampling (i.e.
over sampling) the received signal it is possible to improve upon the performance of
systems that sample at a rate of one sample per baud. In [127] Makrakis developes
a detection algorithm for MSK (minimum shift keying) signaling based on the maxi-
mum likelihood ratio test which uses sub-sampling (4 samples per baud). This results
in a computationally complex evaluation process. Further, his results do not clearly
indicate the channel parameters that he considered, i.e. no mention is made of the
effect of the BT product on the performance of the receiver. Webb et al[80] also make
use of oversampling and extrapolation methods to compensate for fading. The data
rate used is 64 kbits/s with a 16-QAM star constellation. The fading experienced in
this channel is much slower than that experience in much narrower band channels,
e.g. a5 kHz channel. Optimum quadratic receivers for rapid Rayleigh fading channels
based on sub-sampling the received signal have been developed by Barrett [128] and
Dam and Taylor [82).

In this thesis we wish to look at rapid Rayleigh fading such as that experienced
in a 5 kHz mobile channel, e.g. an MSAT channel. Here, typical fading rates range
from 0.01 to 0.1 (BT). We assume that the Rayleigh fading is correlated and model
it as a low pass filtered complex Gaussian process[83](82](89]. By making use of the
constant amplitude characteristic of PSK signalling and through oversampling the
received signal it is possible to form estimates of the channel fading process. For the
optimum quadratic receiver[128][82] the samples of the received signal are used to
form the inverse correlation matrix {over two symbol intervals) of the channel fading
process. This inverse correlation matrix is then used to detect the phase difference
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between two consecutive data symbols. To maintain an accurate estimate of the
fading process and to track the channel this inverse correlation must be adapted over
time. The samples of the received signal could be used by a neural network to predict
the phase of the next sample. More specifically the network could be used to predict
the complex phaser of the fading process, e?®. By training a small complex neural
network over a group of channel characteristics ranging from slow to fast fading it
could be possible for the network to act as a generalized phase predictor. Provided the
predicted phase jumps are not significantly different from the actual phase jumps due
to the channel correct data decisions can be made. This could result in a significant

reduction in the error rate of the system.

1.1.3 Neural Network History

If one considers a linear combiner to be a single linear neuron then the first appli-
cation of neural networks to adaptive equalization dates back to the 1960’s with the
development of zero-forcing and LMS equalization structures. Note that an LMS
based linear equalizer is a special case of a multi-layered perceptron, as it may be
viewed as a neural network consisting of a single linear neuron. Early work in the ap-
plication of neural network structures to adaptive filtering can be credited to Widrow
due to the development of the LMS algorithm [17][18] and work in nonlinear adaptive
structures, the Adaline [17] (adaptive linear element, a linear combiner followed by a
hard quantizer) and Madalines (multiple adaptive linear elements) [129] [130]. The
most notable contribution of this work was the development of the LMS algorithm as
his work with nonlinear neural networks (Adaline/Madaline) never met with much
success in the area of adaptive equalization. In [129] Widrow credits the first major
extension of the feed forward neural network beyond Madaline I to Werbos [131] in
1974 but he credits Rumelhart, Hinton and Williams [132](133] with making the tech-
nique of backpropagation widely known. A good survey and history of feed forward
type neural networks (perceptons, madalines and backpropagation) can be found in
[129]. For a quick introduction and summary of various types of neural networks the
reader is referred to [134] and for more recent work [135].
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1.2 Scope of Thesis

The second chapter of this thesis provides the necessary general back ground theory.
Basic modulation theory is discussed and the three types of channels that are used
in this thesis are described: the additive white Gaussian noise channel, the frequency
selective fading channel and the Rayleigh fading channel. The last section of this
chapter ptovides a general introduction to neural networks. In dealing with the
networks, the general form of the sigmoidal nonlinearity which incorporates a gain
term is used. It is shown how this gain term affects the learning behaviour of the
neural network and how it is possible to have two equivalent networks, each with a
different value for the gain in the sigmoidal nonlinearity. This section also extends
the neural network into the complex domain.

The third chapter focuses on the AWGN channel. This chapter looks at the
problem of Bayesian estimation of a digital signal in AWGN. While this is a simple
problem it will be shown that it has some important implications in the area of neural
networks. It is shown that there is a link between the weight of a single artificial
neuron trained to estimate a 2-level signal in AWGN and the Bayesian estimator
for the signal. By extending the results to multi-level signalling a new nonlinearity
function is developed that incorporates a gain term o which simplifies the structure
of the neural network. This chapter establishes the link between the variance of the
noise process and the gain term for binary level and multi-level nonlinearities.

Chapter 4 deals with the application of neural networks to channel equaliza-
tion for the frequency selective fading channel. This chapter discusses the problem
of signal detection and estimation. The work in this chapter extends the work of
Gibson and Cowan et al [28]-[38] from 2-PAM to 4 and 16-QAM (from two levels in
one dimension to multiple levels in two dimensions) and includes the effects of pulse
shaping. In particular a widely accepted (and perhaps more realistic) channel model
is used - the Rummler multi-path fading channel model[41] for the DMR channel.

Chapter 5 addresses the problem of Rayleigh fading in the mobile radio chan-
nel. We assume that the Rayleigh fading is correlated. By making use of the constant



amplitude characteristic of PSK signalling and through oversampling the received sig-
nal it is possible to form estimates of the channel fading process. Using these estimates
the feasibility of using a simple neural network as a phase predictor is demonstrated.

With this network it is possible to significantly reduce the error rate for QPSK sig-
nalling in the Rayleigh fading channel.



Chapter 2

General Background Theory:
Transmission, Equaliza-

tion and Neural Networks

2.1 Introduction

This chapter serves as a general introduction and provides a background for the
theory and systems discussed within this thesis. It is not meant to serve as a detailed
discussion of this material but rather to provide introductory information and to
establish the notation which is used throughout this thesis.

The first two sections provide an introduction for digital modulation tech-
niques in one and two dimensions: pulse amplitude modulation (PAM), quadrature
amplitude modulation (QAM) and phase shift keying (PSK) modulation. The follow-
ing three sections discuss the additive white Gaussian noise channel, the frequency
selective fading channel and the Rayleigh fading channel. These are followed by sec-
tions that serve as an introduction to linear equalization theory and neural networks.

16
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2.2 Pulse Amplitude Modulation

In pulse amplitude modulation (PAM) the baseband transmitted signal s(t) is given
as

s(t) =sept—kT), k=0,1,2, ... (2.1)

where p(t) is a rectangular pulse of duration T' seconds (the symbol interval) and
sk is an M-ary (M even) symbol such that sp € {+1,£3,...,£M — 1} = £. In
order to restrict the maximum amplitude of the signal to +1 the values of s; may be
normalized by a factor of 35 without any loss in generality. In doing so, the pulse

amplitudes become

1
T TEEL A3, M - 1]

In an additive white Gaussian noise (AWGN) channel the sampled received signal,
r(kT), is
r(kT) = s + n(kT) (2.2)

where n(kT) is the additive noise with variance o2. For ease of notation we will
denote symbols of the form r(kT) as ri where k denotes the &** sampling instant!
such that equation (2.2) becomes

Tk = S + N (2.3)

The detection of the transmitted symbol is straight forward, one chooses the
detected symbol §; as the symbol in £ that is closest to the received symbol r.. A
more difficult problem is determining the estimate of the transmitted symbol, 3, that
minimizes the mean squared error between si and 3. This is the problem of Bayesian
estimation which is discussed in chapter (3).

If the transmitted signal passes through a non-ideal channel, which does not
have constant amplitude and linear phase[10], then the received signal may be de-
scribed as

r(kT) = syh(to) + 3 ssh(to + kT — T) + n(to + kT). (2.4)
J#k

1Bach sampling instant is a multiple of T, i.e. we are not sampling the system faster than the
baud rate.
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where k() represents the combined effects of the channel and of the transmit and
receive filters 2. Note that term {, is included to account for the channel delay and
sampler phase[10]. The first term on the right hand side is the desired signal s;
weighted by kh(%p). The last term is the additive noise with variance &2 while the
middle sum is the intersymbol interference (ISI) from adjacent symbols. Generally,
h(to) will be handled by the receiver’s automatic gain control system leaving the job
of ISI cancellation to the adaptive equalizer.

To simplify and clarify the above express we may assume that %5 has been

compensated for and that it may be set to zero. The above equation then becomes

rx = spho + Y Sjhk—j + Nk (2.5)

ik
which more clearly shows how one might simulate a transmission system in discrete
time as opposed to continuous time. To simulate such a system, the channel is
represented as a finite impulse response (FIR) filter, a sequence of s;’s is convolved
with the filter response and then noise is added to the resulting signal. This type of

system is used to illustrate some of the basic ideas involved in equalization in chapter

(4)-

2.3 Quadrature Amplitude Modulation and Phase
Shift Keying

The PAM signalling scheme described in the previous section is an example of a one
dimensional signalling system. To make more efficient use of the available transmis-
sion bandwidth two dimensional signalling schemes are used. A general transmission
scheme in quadrature form is shown in Figure (2.1) where the in-phase (I) channel
uses a carrier °, cos (27 f.t) and the quadrature (Q) channel uses a carrier, sin (27 f.t).

%In general, the transmitted signal is filtered at both the transmitter and receiver. This is in
response to the need to meet bandwidth and pulse shaping requirements, and to minimize the
effects of noise.

3For simplicity we normalize the magnitude of all the carriers to unity,
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Figure 2.1: General transmission model.

In such a system the modulating signal s(t) consists of two parts, the in-phase com-
ponent sy() and the quadrature component sg(t) where

s1(t) = 55, plt — kT)
sq(t) = s, p(t - kT)

and p(t) is the pulse from the pulse shaping filter (PSF). The pulse shaping filter
is shown as the low pass filter (LPF) in the in-phase and quadrature channels in
Figure 2.1. The resulting transmitted signal y(2) is

y(t) = s1(t) cos(2r fot) — sq(t) sin(2x f.i)

The band pass filter before the channel in Figure (2.1) is used to limit the spectrum of
the transmitted signal while the band pass filter after the channel is used to provide

receiver selectivity, to reduce or eliminate adjacent channel interference and to reduce
the amount of received noise.
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For simulation purposes, we represented the modulated waveforms in complex

envelope form
§(t) = ls1(2) + 7 s(2)]

which can also be represent as
§(t) =r(t) ¥
where the real envelope (%) is
r(t) = [s3t) + B

and the phase (1) is

= tan-! so(t)
¢(t) =1 81(1‘,)

In simulating the transmission system one uses sample values of §(t) rather than the
bandpass modulated signal.

For M-QAM (quadrature amplitude modulation) transmission [136][137] sy,
and sq, are elements of {1,43,...,2v/M — 1} and the pulse shaping filters are
generally root raised cosine spectral filters defined as

_ 208{(1/T + 2B)xt] + sin[(1/T — 28)xt}(88¢t)*
Pum(t) =86 (wTTE) (607 — 1] (20

where 3 is the “excess bandwidth” parameter. The combined response at the output
of the receiver’s pulse shaping filter is the raised cosine spectral pulse

_ cos2nft (sinwt/T
pro(t) = 1-(4ﬁt)=( 7t/ )

(2.7)

The purpose of these filters is to limit the bandwidth of the signal and minimize or
control intersymbol interference (ISI). Note that both p, /g&(t) and pre(t) are band-
limited to 8 + 1/2T and have an infinite time response but the raised cosine pulse
has evenly spaced zero crossings every T seconds. The pulse shapes and spectrums
of two raised cosine pulses, one with no roll off and the other with 100% roll off, are
shown in Figure 2.2. Provided the receiver samples the signal every T seconds at the
appropriate time instants there will be zero intersymbol interference. In practice the
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receiver will not have perfect knowledge of the proper sampling instants and these
must be recovered from the received signal. This is known as timing recovery. By
sampling the output of the PSF at the proper time instants it is possible to detect the
transmitted signal. If we assume perfect timing and carrier recovery then the output
of the receiver’s PSF will be (in complex baseband)

$(kT) = s1, + j sq,

What is not shown in Figure (2.1) is that the receiver must perform carrier
and phase tracking as well as timing recovery. Unless this is done the carrier generated
in the receiver will not be at the exact same frequency and phase as the carrier used to
transmit the signal. This will cause a performance degradation. How much so will be
dependent upon the magnitude of relative frequency and phase errors. To detect the
transmitted signal the output of the receiver’s PSF must be sampled at the correct
instant every T' seconds. If this is not done properly then ISI results, degrading
system performance. In general the receiver has no knowledge of the proper sampling
instants and this must be derived from the received signal through a timing recovery
circuit. The discussion of carrier, phase and timing recovery systems is beyond the
scope of this thesis. In order to reduce the complexity of the simulation systems
considered it is assumed that there is perfect carrier, phase and timing recovery at

the receiver.

For M'ary phase shift keying (PSK) the phase of the transmitted signal is
modulated such that the resulting signal is

y(t) =cos(2w ft + i), kT <t < (k+1)Tand k=0,1,2,...
where f is the carrier frequency and 8y is the modulating phase such that
O =2mn/M, n=0,1,...,M -1
This may be expressed in quadrature form as
y(t) = sy, cos(2x ft) — sq, sin(2nf:)

in which case
ﬁ(t) =85, +73q, = ei o
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Figure 2.2: Example of a square root raised cosine pulse, a) the pulse spectrum and
b) the time response

With the addition of noise, the received signal »(2) is
r(t) = s +n1(t) +j (sq, +7q(t))

One form of the optimum receiver for this signal is the integrate and dump circuit[138].
Assuming coherent detection (perfect carrier, phase and timing recovery) then the
detected signal §; is

. (k+2)T . (x+1)T
& =1/T ./;‘T (s5, +ns(t))dt +31/T -/kT (sq. + no(t))dt

The effect of this operation is to average the effects of the noise over the duration of
the symbol period which results in the optimum signal to noise ratio for this system.
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For differential detection the integrate and dump circuit can still be used. The
receiver must still perform timing recovery but no phase recovery is needed as the
phase of the detected symbol is taken to be the phase difference between two adjacent
received symbols. If the phase of the receiver’s carrier is 8 which is presumed to be
relatively constant over two symbol intervals then the phase of s; is 8 + 8 and Skt1

is fk41 + 8. The phase of the detected signal is the phase of siy; less that of si
bdetect = Okyr + 80— (6 +6) (2.8)

= Opya — O

2.4 Noise

One deterrent to the correct detection of transmitted signals is the thermal noise aris-
ing within the receiver. Individual circuits contain resistors, inductors, and capacitors
as well s semiconductor devices[139]. The resistors and semiconductor elements con-
tain charged particles subjected to random motion due to thermal agitation. The
random motion of charged particles causes fluctuations in the current waveforms
(information-bearing signals) that flow through these components. These fAuctua-
tions are called thermal noise and are often of sufficient strength to mask a weak
signal and make the recognition of signals a difficult task, i.e. they can cause errors
in the detection of the transmitted signal. This noise process is modeled as a zero-
mean, stationary Gaussian random process that has a power spectral density that
is independent of the operating frequency. Such a process is termed a white noise
process. The two sided power spectral density (PSD) of the noise process is denoted
as Ny/2.

| SNN(f) = Nof2 (2.9)
This spectral density is not physically realizable since it implies infinite average power,
that is

L Suntf)df = o0

However, bandwidths of real systems are always finite, and since

f_ZSNN(f)df=NoB<oo



for any finite bandwidth B, the spectral density given in (2.9) can be used over finite
bandwidths.
If n(t) has a power spectral density of the form

N0/21 Ifl <B

0, 0 elsewhere

Snn(f) = {

then n(t) is called band-limited white noise (with bandwidth B). For an arbi-
trary low-pass filter of transfer function H(f) we may define the noise equivalent
bandwidth{138}, B, as
5 RIHNPE
H*(0)
When white noise is passed through an arbitrary low-pass filter of transfer
function H(f) where |H(f)| = 0,f > B the power spectral density of the noise
becomes

(2.10)

Snn(f) = |H(f)I* No/2

This has the effect of colouring the noise, i.e. the noise at the output of the filter
is now correlated. This has important implications in the simulation of transmission
systems as it says that after the noise passes through the filtering process of the
receiver it can no longer be represented as white Gaussian noise. Thus, this must be
addressed in the simulation of transmission systems.

In QAM receivers the typical receiver pulse shape is a root raised cosine
spectral shape as discussed in section 2.3. It is assumed that the bandwidth of the
noise process is greater than the bandwidth of the pulse shaping filters (which is
generally true) and hence the power spectral density of n(t) is

Snn(f) = |Hme(H)IP No/2 (2.11)
= |Hpc(f)} No/2

In order to detect a received signal the output of the pulse shaping filter is sampled
every T (symbol duration) seconds. Note that the bandwidth of the PSF is greater
than the Nyquist frequency of the sampling process, 1/T. The effect of this is to cause
aliasing, the frequency components of the signal outside of the Nyquist bandwidth



are folded back into the Nyquist bandwidth. Because of the raised cosine spectral
shape of the power spectral density of the noise process this causes the spectral shape
of the sampled noise process to be flat across the Nyquist bandwidth of the signal.
Hence, the sampled noise process is white Gaussian noise. Note that this is only true
if the samples are taken every T seconds. For PSK we make the assumption that
the receivers bandpass filter is ideal in that it has a rectangular frequency response,
hence the noise within the bandwidth of the signal is white, i.e. it is white bandlimited
(Gaussian noise.

2.5 The AWGN Channel

In the AWGN channel we are only concerned with the disturbance caused by the
presence of additive white Gaussian noise (AWGN) on the received signal. The as-
sumption is that the channel is ideal and the filtering of the signal at the transmitter
and receiver is perfect, i.e. no ISI is generated. This results in a simple transmission
model, the received signal, ry, is equal to the transmitted signal, si, with the addition
of some noise component (white Gaussian noise), n,

Tk = Sk + Nk
In the case of M-QAM and M-PSK rj (complex baseband) is given as
Tk = 85, + 1y, + j(sq. +nq.)

As the I and Q channels are independent this model may be broken down into two
PAM systems corresponding to the real (rg,) and imaginary (ry,) parts of rg,

TR, = $SR, + nR,
™h = 8L 4 nn
Thus the study of the detection or estimation of QAM and PSK signals in AWGN

may be reduced to the study of PAM systems®. The estimation of PAM signals is
considered in chapter (3).

“Note that in the case of PSK modulation the values that sy, and sq, may take on are not evenly
spaced as is the case for QAM modulation
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Figure 2.3: Frequency response of the Rummler channel model for a 20 dB notch at
7.5 MHz

2.6 Frequency Selective Fading

When the frequency response of the channel deviates from the ideal response of con-
stant amplitude and linear phasef10] (i.e. frequency selective fading) time dispersion
results. The result of time dispersion is that the effect of a transmitted symbol extends
beyond the time interval used to represent that symbol. This is known as intersymbol
interference, i.e. ISI. In the telephone channel time dispersion results from the pres-
ence of echoes on the telephone line{10]. The chanrel is unknown but does not change
with time. In wireless communication, in particular in line-of-sight digital microwave
radic (DMR), [11], the channel disturbance results from the presence of multi-path
propagation. Multi-path propagation may be viewed as transmission through a group
of channels with differing relative amplitudes and delays [10]. In this case the channel
is unknown and time varying. |
In providing a meaningful study of the effects of ISI we are interested a realis-
tic communications channel. We have chosen to study the line-of-sight DMR channel
through the use of Rummler’s multi-path fading channel modelj41]. This permits the
use of existing software to determine the performance of optimum linear transversal
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equalizers (LTE) based upon the LMS algorithm in order for comparisons to be drawn
between LTE’s and neural networks based on the transversal structure ( tapped delay
line }, i.e. neural network transversal equalizers (NNTE). This follows from the work
of Amitay and Greenstein [140] in their study on the optimum performance of the
LMS linear equalizer in the DMR channel based upon this channel model. While this
model is for a wide band ( 30 MHz ) channel, the overall transmission scheme may be
used to model a lower bandwidth channel by a suitable normalization of transmission
parameters. The channel model has the form

H(f) = o{l — be92U=lolr) (2.12)

A= 20log(a) flat fade component (dB)
B = 20log(l —b) notch depth (dB)

Jo notch location relative to the
center of the channel (MHz) -
T= 63nS a constant, approx. 5 times the

inverse of the channel bandwidth

which displays both a flat fading component (constant level of frequency attenuation
over the whole channel) of depth A (dB) and a frequency selective component in the
form of a notch located at fo MHz from the center of the channel with a depth of B
(dB). The constant 7 is chosen as approximately 5 times the inverse of the channel
bandwidth, e.g. Rummler [41] uses 6.3n.S for a 30 MHz channel. In practice the flat
fade or median fade component of the channel is compensated for by the automatic
gain control (AGC) of the receiver and only serves to change the signal to noise ratio
(SNR). For this reason a may be set to unity and one may concentrate on the notch
characteristics of the channel, namely, the parameters B and f, at 'various signal to
noise ratios.

This is a simplified three path fading model as the delay = is fixed. The
model[41] is assumed to consist of a direct path which is unfaded; a second path similar
in strength and close enough in delay to the first path that their composite response
over the channel width is constant (the flat fading parameter a); and a third path at



relative delay 7 which provides the frequency shaping of H.(jw). For a true three path
model the delay would be allowed to vary. However, unless the channel response can
be determined to an accuracy on the order of 0.001 dB, 2 unique set of parameters, a,
b, T and fo can not be determined for more than half of the faded channel conditions
encountered in Rummler’s propagation experiment[141]. To avoid this problem, it is
necessary to suppress or fix one of the model parameters. Rummler[141] shows that
the delay, T is the only parameter which, when fixed, produces a reasonable model.

For a transmission model, 4 and 16-QAM where considered. A baud rate of
22.5 MBaud was used with a channel bandwidth of 30 MHz at a signal to noise ratio
(SNR) of 63 dB, a typical value for such a channel. The pulse shaping was achieved
using square root raised cosine spectral pulses with a roll off factor of 0.33.

This may seem like an excessively high speed implementation for neural net-
works but it should be remembered that even though the neural networks were used in
this explicit channel it is only the ratios (baud rate, bandwidth and SNR) that matter,
e.g. this could just as easily represent 22.5 KBaud at 30 KHz. The time/frequency
parameters merely serve to specify the links between various components of the trans-

mission model.

2.7 Rayleigh Fading

A special case of pure-time selective fading is the Rayleigh fading channel (the dis-
tribution of samples of the fading process are Rayleigh distributed). In this channel
there is no line-of-sight (LOS) signal present at the receiver, rather the received signal
consists of scattered components of the transmitted signal. Such scattering is the re-
sult of transmitting around natural and man made objects, e.g. trees and buildings.
For this type of fading to be prevalent the greatest difference in delay between the
arrivals of the various scattered signals at the receiver is negligible compared to that -
of a data symbol period but significant compared to the carrier wavelength. The
result is that although there is no frequency selective fading the amplitude of the
received signal randomly varies in time. The effect of the fading process is to cause
the transmitted baseband signal to be multiplied by a complex phasor of random
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amplitude and phase, a(t). If s(¢) is the transmitted signal then the received signal is
r(t) = a(t) s(2) + n(t)
where a(t} is the complex channel gain. That is,
a(t) = re(t)eft)

where (%) is the time varying amplitude of the channel fading process and f.(t) is the
time varying phase. Such fading is restricted to cases where the channel bandwidth
is small compared to the carrier frequency, e.g. 5 - 30 KHz at 800 - 900 MHz as in
the cellular radio and mobile satellite radio environments.

In the mobile satellite channel there is generally a line-of-sight component
which experiences time varying fading which results in a log-normal fading process.
The fading rates for Rayleigh and log-normal processes however differ by at least one
order of magnitude at least [66] and thus the channel appears to have a Rayleigh char-
acteristic over short periods of time during the deeper fades of the LOS component.
The fading rate is a measure of how fast or often the channel fades ard is a function of
the Doppler shift of the transmitted signal at the mobile station. The Doppler shift is
a function of the velocity of the mobile station and the carrier frequency. The great-
est Doppler shift occurs when the vehicle is moving directly towards or away from an
oncoming radio wave. The Doppler shift will be determined by the vehicle’s velocity
and the frequency of transmission. For a vehicle velocity, v, and carrier wavelength,
Ay

Ja= %

The fading rate is characterized by its time-bandwidth product, BT, where BT is
the product of f; and T (symbol duration). For a 2400 baud mobile channel at 900
MHz typical BT products range from 0.01 to 0.1. This type of fading makes it very
difficult to perform coherent detection as the fading process results in rapid phase and
amplitude changes in the received signal as can be seen in Figures (2.4 and 2.5) which
shows a typical fading channel sequence for a BT product of 0.05. For this type of
channel it is highly desirable to transmit a signal that has a constant envelope, e.g.



30

PSK, and to perform differential detection at the receiver. For PSK signalling the
received signal r(t) is

r(t) = r(t)eMei®r 1 n(p) (2.13)
= ro(t)e’O+o) 4 n(z)

For simulation purposes the complex channel gain, a(t), is generated by fil-
tering two separate white Gaussian noise processes and using the output of one filter
as the real part of a(t) and the other as the imaginary part of a(t). The type of filter
used is a third order Butterworth filter with a bandwidth determined by the desired
BT product for the channel[89).
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2.8 Neural Networks

For our purposes, the goal of using neural networks for channel compensation is to
use their nonlinear capabilities to approach {or achieve) the performance of optimum
channel compensation schemes without the associated complexity. While neural net-
works are more complex and exhibit slower learning times than linear techniques they
offer the advantage of being able to form nonlinear mappings and hence should be able
to achieve improved performance over linear techniques. The networks that seem par-
ticularly suitable to this problem are based upon the feedforward architecture such as
multi-layered perceptron (MLP) and radial basis function (RBF) networks. Indeed,
most of the literature on neural network equalization has been dedicated to these two
structures with some other work being done on the use of Petri Nets[43], Kohonen
networks[44] and Madaline structures{130}[129).

The advantage of the RBF network is that it has only a single hidden layer
of basis functions which are linearly combined to form the output of the network. As
such, RBF networks are generally less complex and exhibit faster learning times than
MLP networks that achieve the same functional mapping. In addition, MLP networks
are more sensitive to the choice of learning parameters and network topology than
RBF networks. Though, both networks are capable of generating arbitrary complex
nonlinear decision regions. The problem that both networks share is in determin-
ing the size/configuration of the network. Chen et af[37] have used an orthogonal
least-squares (OLS) algorithm to solve this problem for the RBF network and have
extended it to multi-output RBF networks. For MLP networks there have been nu-
merous algorithms proposed that determine the allocation of neurons and the pruning
of network weights though none of these schemes have been applied to adaptive equal-
ization. The advantage of using MLP’s is that they are easy to use and that they are
easily extended to the complex domain which makes them suitable for use with QAM
and PSK signals®. MLP networks allow us to achieve some insight into the behaviour
of neural networks. The same behaviour can also be achieved with the use of RBF
networks. Because the inputs to a MLP are connected directly to the weights of the

5For simulations QAM and PSK signals are represented in complex baseband
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first hidden layer of the network it is possible to apply linear filter theory to these
weights. This can not be done with RBF networks as the inputs to the network are
connected directly to the network’s nonlinear basis functions. It also turns out that
the nonlinearity that is commonly used in MLP’s has an interesting signal processing
interpretation which is discussed in Chapter (3.2). It is for these reasons and time
restrictions that only MLP’s are considered in this thesis. The use of only the MLP is
not unreasonable as both RBF and MLP networks are capable of achieving the same

functional mappings.

2.9 Basic Terminology for the MLP

The multi-layer perceptron consists of interconnected layers of neurons with the out-
puts of neurons from one layer only connected to the neurons in the next layer. There
are no interconnections between neurons within a given layer of the network. This
is seen in Figure (2.6). A single neuron is shown in Figure (2.7). The output of an
individual neuron is a fun.tion of the sum of its weighted inputs. This function is
termed the activation of the neuron and is usually a nonlinear function. The meost
common activation function is the sigmoidal or logistic function which is depicted in
Figure (2.8). For the j** neuron of the network this function is given as{134, 133]

fi(net;) = logistic(net;)

- (1+_:-*7*T) (2.14)

= 1/2(1 + tanh (net;))
where
net; = Zwiwij - 9.1'
T = f:(net;)

and where z; is the output of the i** neuron, w;; is the weight linking the 7** neuron
to the j** neuron and §; is a bias term which is similar to a threshold level in a binary
valued neuron. The adaptation of the i** weight of the j** nonlinear neuron, w;;, at
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Figure 2.6: Multi-Layered Perceptron.
time n + 1 is governed by[134, 133}
wij(n +1) = wij(n) + 1 §;(n) zi(n)

where 7 is the learning constant and §;(n) is the error term for the j* neuron at time
n. If the j** neuron is-an output node then §;(n) is defined as

& = [ilnet;){dj(n) - z;(n)) (2.15)
= zj(n)(1 ~ zj(n))(d;(r) — z;(n))
1

W 9
X1
X2 W2
f (net) —
W, net
Xn —

Figure 2.7: A single neuron.
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Figure 2.8: The sigmoidal activation function.

where d;(n) is the desired output of node 7 and z;(n) is the actual output at time n.
Note that the derivative of the sigmoidal function (2.15) is given as:

fi(nets(n)) = fnet;(n))(1 - f(net;(n))) (2.16)
= zj(n) (1 — z5(n))

If the j* neuron is an internal, hidden node, then

8;(n)

fi(net;(n)) ; 6(n) wir(n) (2.17)
= z;(n)(1 - z;(n)) Xk: bx(n) wik(n)

where k ranges over all nodes that connect to the output of node j. The thresholds,
d;, are adapted in a similar manner by assuming them to be connection weights on
links from auxiliary constant-valued inputs. A momentum term is sometimes added to
assist learning. In our experiments we found that provided # was chosen appropriately
the momentum term made little difference, hence we set it to zero.
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Figure 2.9: The effect of the gain term on the sigmoidal nonlinearity.
2.10 The Gain Term

A more general definition of the nonlinearity function allows for the addition of a gain
term, a, such that
f(net) = logistic(anet) (2.18)
This is shown in Figure (2.9) for three different values of « - 5, 1, 0.2.
For a neural network, if o is made a constant then nothing is gained by
introducing this gain term. The reason is that two networks, one with a gain term of

a; and the other with a gain of @, can be made equivalent by appropriately scaling
the weights and bias terms of the neurons such that

Waij = ——wyj (2.19)
O = —by (2.20)

The subscripts 1 and 2 refer to the terms from the first and second networks respec-
tively. Once training is initiated the networks will not remain equivalent unless the

following constraints are placed upon the adaptation parameter 7 and the momentum
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term, u, {Appendix A)
mad = nel (2.21)

I = p2 (2.22)

According to these equations there is nothing that can be achieved with the addition
of the gain term that could not be achieved by appropriately scaling the parameters
of the neural network. If, however, the gain term is allowed to adapt® then what has
been achieved is a means of effectively adapting the adaptation parameter n of the
back propagation algorithm for each neuron in the network. For the j** neuron, if o;
is increased by a factor of 7 then from equation (2.21) the effective change in 5 for
the j** neuron at timen 41 is
Tntl =71

The back lpropagation of the gain term « is easily achieved with very lit-
tle increase in computational complexity as most of the terms associated with back
propagating a are available from the equations associated with the standard back
propagation algorithm[142]. The results in [142] show that adapting the gain term
effectively increases the learning rate of the network. What has been shown here is
that adapting the gain term amounts to adapting the adaptation parameter % of the
standard back propagation algorithm for each neuron in the neural network.

2.11 Complex Neural Networks

In order to use a MLP network with QAM or PSK it is necessary to consider complex
valued MLP’s. The complex neuron is shown in Figure (2.10). The appropriate
equations for a complex MLP are as follows:

i = zRr;+jzy
= Oi
Wi; = WRy + J wr,;

net; = netg; +jnety

SThe derivation of the adaptation equations for e is shown in Appendix B
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XTw=wTx

filnetj) = fr,(netr;) + 3 fi,(nety,)
fr;(z) = f1,(z)
0; oRr, + j oy,
fi(net;)
ej(n) = di(n)—o0j(n)
6;(n) er,(n)fg,(netr,(n)) + j er;(n)f1, (netg(n))
8i(n) fr;(netr;)Real [2 Si{n)w;(n)] +
11, mets,MImag (32 6;muy (o)
i
wi{n+1) = wij(n)+néjoi(n)
where
z; is the complex input to the j** neuron from neuron i

i.e. it is the output of the 7** neuron, o;

w;;  is the complex weight linking neuron ¢ to neuron j

net; is the complex activation of neuron j

;0 is the complex activation function for neuron j

0;(n) is the complex output of the j** neuron at time n

e;(n) is the complex error between the desired response,

d;(n), and the output of the j** neuron, 0;{n) at time n

denotes complex conjugation

In forming the complex neuron the variables used for the real valued neuron simply
take on their complex forms and the rules for complex arithmetic are followed. The
only problem is what form should the activation function take. For our work we
define the complex activation function f(net) as follows”:

f(net) = fr(netr) + j fi(netr)

(2.23)

TThis activation function follows heuristically by applying an Adaline structure to the complex
Ims algorithm[18]. This function satisfies the criterion for a complex activation function as given in
[143] which was published after this work was originally completed
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Figure 2.10: Diagram of a complex neuron.

Following the work of Widrow et al[18] we wish to minimize the average total er-
ror power, E[ee”]. Using this criterion we can show that the following adaptation

equations hold:

5i(n) = ery(n)fh,(netn,(n)) + jer, (n)f} (nety(n)) output layer
6i(n) = fh(netr,)Reall3 &s(nYug(n)] +

I, (netr,)Imag([} " 8;(n)wi;(n)] kidden layers
i
wii(n+1) = wij(n) +ndj0i(n)

Similar equations can be derived when the momentum factor is considered. For our
networks we found that the use of the momentum factor made little difference in the
learning ability of the networks so it was set to zero.

In theory this complex neuron could be represented by two real valued neurons
with- the network trying to learn to form a complex neuron. This would, however,
" not allow for a frequency analysis of the weights connecting the tapped delay line to
the first hidden layer of a neural network in an equalization structure®

8Simulations have been run using real valued neurcns in a MLP equalizer. The results obtained
from these networks agreed with those obtained from comparable complex valued neural networks.



Chapter 3

The AWGN Channel - Bayesian

Estimation

3.1 Introduction

This chapter looks at the additive white Gaussian noise (AWGN) noise channel for
PAM signalling and the problem of estimating the transmitted signal from the received
signal. The goal of the estimator is to ~inimize the expected value of the square of the
difference between the transmitted symbol and the estimated symbol. This is known
as Bayesian estimation. In the AWGN channel this is a simple problem but it has
some important implications in the area of neural networks. We show that a single
neuron using the standard sigmoidal nonlinearity function is effectively a Bayesian
estimator for binary (+1) signalling in AWGN. This establishes the link between
the weight(s) of the neuron and the noise variance associated with the binary valued
signal. This relationship is then extended to neurons where the sigmoidal nonlinearity
function incorporates a gain term [144, 145, 142].

In extending these results to multi-level signalling a new nonlinearity function
is developed that incorporates a gain term a which simplifies the structure of the
neural network. It is shown that this gain term is linked to the noise variance much
like the gain term in a neuron using the sigmoidal nonlinearity for binary signalling.
When « is small this function behaves as a soft limiter with a graded response bounded
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by (-1, +1), much like tank (r). However, when « is allowed to increase it develops
into a stair case function similar to that of a hard quantizer. This behaviour is
characteristic of a N-level { N > 2 } Bayesian estimator when the noise variance is
small. We show that this function can be used to reduce the complexity of the neural
network and that provided that the gain term is back propagated it overcomes some
learning/training problems that occur when the networks use linear output neurons.

This form of nonlinearity was also developed independently in [146]. In addi-
tion, Amit [147] discusses a ternary valued nonlinearity. Si and Michel [148] conduct
an analysis and synthesis of discrete-time neural networks with multi-level threshold-
functions and Banzhaf [149] considers a network of multistate units capable of asso-
ciative memory and pattern classification.

Studying the relationship between these simple neural networks and Bayesian
estimation provides for a more fundamental understanding of the behaviour and per-
formance of neural networks and provides a basis for the work in the next chapter
on neural network channel equalization. In the next section, the Bayesian estimation
problem is outlined and the equivalence betvreen a single neuron and the Bayesian
estimator for binary signalling is established. This relationship provides a basis for
modifying the activation function to include a gain term that is inversely related to
the noise variance. These results are then extended to quaternary signalling and in
general M-ary signalling. Section 3.3 describes the results of computer experiments
to train neural networks as Bayesian estimators and section 3.4 provides a summary

of the work presented in this chapter.

3.2 Bayesian Estimation

Let us consider the reception of 2 PAM signal, s(2) that is corrupted by additive white
Gaussian noise, ( AWGN ). The received signal, z(t), is given as

Tk = Sk + Nk, Sk € {£1,43,..., M -1} (3.1)

For 7 we wish to find the optimum (Baye's minimum mean square error) [150]
estimator §i of si, 8x = B(z4), that is we seck to minimize E (s(t) — 5(2))%. Let us
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define the following:
1: the noise is AWGN with zero mean and variance o? such that
= - 3.2
Paly) = e ()

2: s, s;, and s are iid random variables where

+1 for 2-PAM
1 +1,+3 for 4-PAM
s,—,s,and.s € 7 3.3
d £ S N-1] 11,43,45,47 for 8-PAM (33)
:|:l1, :i:fz, :I:Ia, ey :EINIQ for N-PAM, N > §
p,(z) _ % for = E‘ ilh +l, £, ... ,:|:IN/2 (34)
0 otherwise
Because of the independence of the z;’s
S = E{si|ze}
S = _/; Skps(silzr)dsi (3.5)
where the range of integration is the set £ of all possible values of si.
Using Baye’s theorem
Sk P=(k|sk) Po(sk)
= dsy (—o00< s <0 3.6
G =[BT (~o0 < si < o0) (36)
Because the s; are discrete the above integral becomes
. 8k Pz (Tk|sx) Ps (k)
S =
* zg: p=(zx)
Z Si p=($k|s*) J—l 6(8 - 3_,‘) (3.7)
'N =1 p:(zk)

where s; € £

We now need expressions for p;(zx|sx) and p-(zx). Since the received signal consists
of the desired signal s; with the addition of AWGN we obtain:

1 =(sx=2;3?
P:(mklsk) = \/2_1‘.0 e( 20 ) (3.8)
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Note that p;(zx|s:) is Gaussian with mean s, and variance 2. For p(zy, Sk):

p{Tr, Sk) = Po,o(Tk, Sk)

= pz(zk|sk) ps(sk)

—(:k—ak)z
= 2171'0'8( );Zs(Sk—S

pz(ze) = '/; Pz,(Tky Sk} ds
= 3 Prs(Tk, Sk)
3

N =202
= — $ (T35 (3.9)

2ra i=1

Substituting equations (3.8) and (3.9) back into equation (3.7) we obtain:

L)
gk = Z 21ro 21—1 (
:—1 m 21-1 e

Si — §j)

(a2

(3.10)
_lzp—s)?
Ei-l $i e 2

l- I)'Z
21:1 e 3 z

If we consider 2-PAM, si can take on the values of 1 and this expression simplifies

to

5i = B(z)

s:k----lfl2 (= -t-l)2
= e_gsgmnz +e :k;m? (8.11)

Tk
= tanh (;2-

which is shown in Figure 3.1. As can be seen, this is a limiting type of function with
o? controlling the “hardness” or steepness of the function. When the noise level is
sufficiently small the estimator function effectively becomes a hard quantizer, +/ =1
Note that the tanh function is 2 scaled and shifted version of the sigmoidal function,
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Figure 3.1: The Bayesian estimator function for 2-PAM with SNR’s of 0, 5, 10 and
20 dB.

that is

eF — e~
eF +e”
2
R ——
Gte)
2logistic(z) — 1

wlBl wii

tanh (-g—) =

(3.12)

]

Thus the Bayesian estimator function for 2-PAM appears to be a single MLP with a
tanh nonlinearity and a single input weight, w, of

1

w= ; . (3.13)
such that
S = tanh(wzy) (3.14)

Tk
= tanh (;

It is interesting to note that the requirement for training a MLP to estimate s, from
zy is that the network minimizes E (s(t) — 3(t))* which means that the goal of the
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network is to form the Bayesian estimator function for s;. We have just shown a
single neuron is capable of doing this by using a single weight as given by equation
(3.13) when its threshold value 8 is set to zero. This establishes a link between a
single neuron and the Bayesian estimator for 2-PAM. What happens if we wish to
use more than two signal levels? The Bayesian estimator for 4-level PAM is shown

in Figure 3.2 and is given as
_lzp—ap?®
E?=1 5 € e

G (3.15)
2;:1 e 2

8 = B(zy) =

where

si, 85 € {-1,-1/3,1/3, 1}
Notice that when the noise variance, o2, is large (SNR of 0 dB) this function behaves
as a soft limiter, much like the tank function, yet when the noise variance is small

(SNR of 20 dB) this function acts as a hard quantizer, i.e. it is a stair case function as
shown in Figure 3.2. In forming an estimate of s; for 4-level PAM we are interested
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Figure 3.2: The Bayesian estimator function for 4-PAM with SNR’s of 0, 10, 15 and
20 dB.

in knowing the minimum network size. This may be done intuitively by considering
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the case where the noise variance is small which results in the Bayesian estimator
function acting as a hard quantizer. For 2-level PAM there is only a single step, while
for 4-level PAM there are 3 steps. Each of these steps may be approximated with a
single tanh (z) function that is characteristic of the output nonlinearity function of
a single neuron. Thus 2-PAM would require a single nonlinear neuron and 4-PAM
would require 3 nonlinear neurons. In general N-PAM would have N-1 steps, requiring
N-1 neurons.

All that is left to do is to chose appropriate weights and thresholds for the
neurons and to linearly combine their outputs. The weights and thresholds may be
obtained through network training and a neuron with a linear activation function
is chosen for the linear combiner. Thus the minimum network size for 4-level PAM
is a network of three nonlinear hidden neurons with a single linear output neuron.
This is denoted as a 3017 network. A network is labelled as nynan,ua where: n,
is the number of neurons in the 1* hidden layer, n, is the number of neurons in the
2™ hidden layer, nyu is the number of output neurons and « = nl corresponds to
a network with nonlinear output neurons while o = ! denotes a network with linear
output neurons. Note that in the case of 2-PAM there is no need to have a network
with a linear output neuron, i.e. a 1007l network is sufficient. These networks are
shown in Figure 3.3a2-b.

An alternative to this type of network would be to consider a single neuron
with a multi-level nonlinearity function, as in Figure 3.3¢c. A suitable first choice for
such a function might be the Bayesian estimator function itself as given in equation
3.15 for 4-level PAM where a gain term ¢ would be used instead of 1/¢?. Unfortu-
nately this function has several problems associated with it. The first is that & would
have to be fixed in order to insure the necessary degree of hardness for the activation
function. The second is that this function is expressed in the form of a quotient. Thus
its derivative, which is needed for network training, will be quite complicated. For
practical purposes it is desirable to have a function in which both it and its derivative

are easily evaluated, i.e. they are not computationally complex. This function might
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Figure 3.3: These are the three neural network architectures used in estimating the
Bayesian estimator function, a) 100n! network with a tank nonlinearity, b) 301! net-
work and c) 100nl network with a multi-level nonlinearity.

still be used if its derivative [129] is approximated by

z) — f(z — Az)

fl(m) — f( Az

(3.16)

as f(z) is easily evaluated.
A better alternative is to chose a function of the following form which has
the desired multi-level limiting characteristics:

1 N
flaz) = o1 ;tanh (a(z—6;) (8.17)

where N +1 is the desired number of signal levels and the thresholds or biases, 6;’s,
are the mid-points between adjacent signal points in the signal set, e.g. {+2/3, 0} for
4-PAM. This function is shown in Figure 3.4 and may be compared to the Bayesian
estimator function shown in Figure 3.2 for 4-PAM. In essence we have taken N — 1
neurons, fixed the bias terms to a desired level and linearly combined their outputs to
form a single neuron. The derivative with respect to the activation of the j** neuron,
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net; is easily calculated as

0f;(anet;) _ Tl i dtanh (anet;;) (3.18)
dnet; N-15H Onet;;
where
net;; = net; — 6;
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Figure 3.4: The multi-level nonlinearity function for a’s of 1, 5, 10, and 50.

There is an inherent problem with this type of function, namely, that if the
gain term & is chosen high enough the function will exhibit multiple plateaus. At
these points the derivative of f(anet;), 8f;(anet;)/dnet;, approaches zero. This
poses a learning problem as the change in weights of a neuron is directly proportional
to 8f;(anet;)/Onet;. In order for neurons not to get stuck on or in between plateaus
the network should be started off with a small value of & and trained for a long enough
period of time to allow the neurons to properly distribute their outputs. Once this
has been achieved the network may then be hardened. This suggests that it might be
advisable to back propagate the « parameter in order to “harden” the nonlinearity
function in the neurons. The change in « can be calculated as (Appendix B)

AN (z 5};101;5) QL(;,—'LM (3.19)
k aj
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If o is kept small, then when the weights grow large the resulting nonlinearity function
will be a binary hard quantizer much like that of the tank (az) function. This may
seem to be a problem yet it works to our advantage. It implies that if the multi-
level nonlinearity is placed in an existing neural network the performance of the
neural network will be almost identical to when the network is employing the tank (z)
function provided that « is kept small (i.e. 1). Only if « is allowed to increase will
the network take on a new form.

An interesting problem is to consider what will happen as the number of
signal levels is increased. In the limit a continuous uniform distribution of signals in
the interval of [~1, 1] is obtained. The functional form of this estimator is extremely
complex and will not be detailed here but its form is shown in Figure 3.5. Note that
at low signal to noise ratios this function looks sigmoidal in nature yet at high SNR
the function is linear in the region within [—1, 1]. At high SNR this is to be expected,
as the noise level is small and the signal is uniformly distributed in this interval.

1.0

o
o

Estimator Output, §,
o

05¢

1.0 05 0 0.5 1.0
Input, x,

Figure 3.5: The Bayesian estimator function for a uniformly distributed signal with
SNR’s of 5, 10, 20 and 30 dB.

As an aside, there are several other interesting interpretations of the tanh(a z)
function. In particular, Amit[147] shows that this type of activation function can be
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related to: the mean firing rates of biological neurons, the firing probability of a
two-state neuron operating in a noisy environment, and the probability of a magnetic
moment changing its spin in the Ising spin glass model. For a more detailed treatment
and interpretation of the functions the reader is referred to Amit[147).

3.3 Computer Simulations

3.3.1 PAM Simulation

In this experiment it was desired to see if a neural network could learn to become a
Bayesian estimator for the PAM signal, si. The training pattern consisted of a data
signal, sk, perturbed by AWGN, ny, such that the input to the network at time k,
Tk, Is given as o = si + ng. The training sequence consisted of 1000 samples of z;
where s; was chosen randomly from {+1} for 2-PAM and {1, +1/3} for 4-PAM.
These levels were chosen in order avoid problems associated with input scaling of the
networks.

The networks considered for evaluation are based upon the minimum number
of neurons required to perform the appropriate Bayesian estimation function as was
discussed in the previous section. For 2-PAM, a 100! network was used with a fixed
gain term of a = 1. For 4-PAM, two networks were used: a 301! network with a fixed
gain term and a 100nl network that utilized the multi-level nonlinearity function of
equation 3.17. The multi-level nonlinearity was started with a gain of & = 1 which
was allowed to adapt along with the rest of the nctwork parameters. In training the
networks, the learning constant,n, was set to 0.001 for the weight and bias terms and
0.1 for the gain terms ( when o was allowed to adapt ). The network was allowed to
adapt after the presentation of each input/output pair.

Both of the 100n! networks started off with “soft” nonlinearity functions
and were allowed to adapt until there was very little change in the mean squared
error (MSE) performance of the network. In the case of the 301! network several
values of « ( 1, 10, 50 and 100 ) were tried and the network was allowed to adapt until
there was little change in the MSE performance. That is, the network had effectively
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minimized the MSE between s; and $;. Unfortunately this does not imply that the
networks became Bayesian estimators for sz. Rather, the networks only adjusted
themselves to fit the training patterns. In the case where the signal to noise ratio
was low (SNR = 0 dB) the training patterns are well distributed over the interval
from [-1, 1], however, when the SNR is high the noise level is low and the training
patterns are concentrated around {+1} for 2-PAM and {+3, £1} for 4-PAM. Hence
there is no information contained in the training patterns about the other regions
of the Bayesian estimator function. Thus at high signal to noise ratios the networks
failed to “harden” up as they only adjusted themselves enough to pass through the
data points contained within the training set. This is shown in Figures 3.6 and 3.7
for both of the 100nl networks (2-PAM and 4-PAM). By hardening we refer to the
network’s ability to form the hard quantization levels that are characteristic of the
Bayesian estimator function when the noise variance is small. By softening we refer
to the network’s ability to display a graded response like that of a soft limiter that is
bounded by (—1,1).

It was found that the only way to obtain a Bayesian like response from any
of these networks was to choose a gain term of & close to &. In general, o2 is seldom
known apriori, making it difficult to choose a suitable value for . One way to over
come this would be to choose an & much greater than necessary and allow the network
to adapt a. While this works for the 100n! networks considered it does not work
well for the 301/ network due to the linear output neuron. Allowing the weights
of the output neuron to adapt creates too many degrees of freedom for the network.
Effectively, changes in the weights of the linear output neuron tend to counteract the
changes in the hidden nonlinear neurons. The problem is that the weights of the
nonlinear neurons directly determine the Bayesia.ri behaviour of the network yet they
are hidden from the output of the network by the linear output neuron. Because of
the back propagation algorithm the weights of the linear output neuron adapt faster
than the weights of the nonlinear hidden neurons. Hence they tend to counter-act
the development of the Bayesian behaviour of the network.
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Figure 3.6: These two graphs show the input/output relationship of the 100n] network
after training with a 2-PAM signal. The SNR ratios used are: a) 0 dB and b) 20 dB.
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Figure 3.7: These two graphs show the input/output relationship of the 100n] network
after training with a 4-PAM signal. The SNR ratios used are: a) 0 dB and b) 20 dB.



o<
ot

3.3.2 Uniformly Sampled Bayesian Estimator Function

In this simulation it was desired to see how well the network could approximate the
Bayesian estimator function, B(z). The networks were trained on 300 uniformiy
spaced samples of B (z} where z ranged over the interval {—1.5, 1.5]. These functions
are given by equations 3.12 and 3.15 for 2 and 4-PAM respectively and were evaluated
for signal to noise ratios of 0, 10 and 20 dB. In addition, a SNR of 30 dB was used for
2-PAM. This could not be considered for 4-PAM due to numerical precision problems.
The networks that were evaluated were the same as those used in the previous section,
namely the 1 00 n! network for 2-PAM and the 301! and 100 n! networks for 4-PAM.

From the simulations, both of the 1007/ networks (for 2-PAM and for 4-
PAM) converged to functions that were near optimum. The functions for 4-PAM are
shown in Figure 3.8 for signal to noise ratios of 0 and 20 dB. Obviously the output
function of the 100 nl network is very close to the desired function. In the case of the
30117 network, the same problems that were detailed in the previous section plagued
the performance of this network. Namely, that in order for the 301! network to
approximate the desired Bayesian estimator function it was necessary to choose the
gain term, o, sufficiently close to %. This meant that it was necessary to experiment
with the adaptation constant % in order to obtain satisfactory performance. When
the gain term was allowed to adapt for the nonlinear hidden neurons, improved per-
formance was obtained although nowhere near the performance obtained from the
100n! multi-level nonlinearity network. As was the case in the previous section, this

was due to the adaptation of the weights of the linear output neuron.
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Figure 3.8: These two graphs show the input/output relationship of the 100nl network
for 4-PAM after training with uniformly spaced samples of the Bayesian estimator
function for SNR ratios of: a) 0 dB and b) 20 dB.



(51 ]
-1

3.4 Summary

In this chapter we have established a link between a single neuron and the Bayesian
estimator for 2-PAM in AWGN. Stemming from the Bayesian estimator function
for N-PAM a new activation function was presented that exhibits multiple (> 2)
quantization levels when its gain parameter, @, is chosen sufficiently large yet when
« is small it behaves as a soft limiter much like the tanh (z) function. In order for
a network to learn when using this function the network should be initiated with
a small value of a so that the neural outputs display a soft limiting function. As
the neurons begin to distribute their outputs over the activation function it is then
possible to increase «, i.e. to harden the activation function. This leads to the
need to back propagate the a parameter. With regards to back propagating «, there
has been some work done for binary neurons, tanh (az), that indicates this leads to
faster learning times[142]. What we have shown is that in this case, adapting the
gain term amounts to adapting the adaptation parameter n for each neuron in the
neural network. In the case of a multi-level nonlinearity, back propagating the gain
term leads to an effective change in the adaptation parameter as well as changing the

characteristics of the nonlinearity function.



Chapter 4

Neural Network Channel

Equalization

4.1 Introduction

The goal of using neural networks is to achieve the performance of the optimal sig-
nal detector or estimator without the complexity associated with these structures.
While neural networks are more complex and exhibit slower learning times than lin-
ear equalizers they offer the advantage of being able to form nonlinear mappings and
hence should be able to achieve improved performance, With this in mind, the work
in this chapter extends the work of Gibson and Cowan et al [28]-[38] from 2-PAM to 4
and 16-QAM (from two levels in one dimension to multiple levels in two dimensions)
and includes the effects of pulse shaping. In particular a widely accepted (and per-
haps more realistic) channel model is used - the Rummler multi-path fading channel
model(41] for the DMR channel.

The next section discusses signal detection and estimation and includes work
by Gibson and Cowan et al [28]-[38] to show why the optimum equalizer is a nonlinear
one. This is followed by a section on linear equalization theory which helps to put
the work of Gibson and Cowan in the proper context. The following section details
the neural network equalizer structure. This is followed by a section on simulation
results and a summary of the work presented in this chapter.
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4.2 Signal Detection and Estimation

For the received signal given by equation (4.1), (section (2.2), equation (2.4) ) the
optimum signal detector is a maximum likelihood sequence estimator {26] which at
time k detects the entire data sequence {s,...,s0} based upon the entire received
sequence {r,...,7o} waere

r(kT) = sih(to) + Eks,-h(to + kT — jT) + n(to + kT) (4.1)
P

This receiver is quite complex as it must search through all the possible combinations
of transmitted signals to determine the most likely combination that resulted in the
received sequence. Such a receiver will not be detailed here, rather what is desired
is a sub-optimum structure whose performance may be considered close to optimum.
Note that it is possible to take multiple samples per symbol of the received signal,
however, we shall restrict ourselves to one sample per symbol. The format that we
consider is symbol by symbol detection (or estimation) based upon a small subset of
the entire received sequence. We wish to detect or estimate s;—q4 given the m-element
received signal vector X7 = {7ky...,Tkdy-««,Tk—m+1} Where d is a suitably chosen
decision delay, i.e. at time k, sg_q is detected, not s;. The receiver structure is
shown in Figure 4.1. Aside from the processor function the parameters that we are
free to choose are the number of received signal samples m, the spacing between the
received samples and the decision delay. All of these affect the performance of the
system. Once these factors have been set it is up to the processor unit to make the
most of the situation. If the channel response is known it is possible to determine
the optimum processor function. Generally the channel response is not known so it
is desirable to have a network (e.g. neural network) that can be trained to learn the
desired processing function. Hence, an error signal e; has been included in the system
so that it is possible to train the processor and to allow the processor to adapt to

time varying changes in the channel response.
If the output of the processor is continuously valued or soft quantized then
the equalizer structure is based upon an estimation type of structure as it attempts
to produce an estimate of the transmitted symbol. If the output is hard quantized
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Figure 4.1: General Equalization Structure

then the equalizer is based on a detection type of structure, that is, its goal is to
detect which one of the m signals out of the m-ary alphabet was transmitted. By
soft quantization we mean that if the output symbol is represented by binary bits
then more than log,(m) bits are used, whereas in the case of hard quantization only
logy(m) bits or m decision lines are used.

The rationale for choosing an estimation or a detection type of structure is
arbitrary but is influenced by the architecture following the equalizer. In the case of
convolutional coding and trellis coded modulation (TCM) [151] the decoding structure
following the equalizer is based upon soft decisions at the output of the equalizer.
Hard decisions could be used but this results in a stiff penalty in SNR (signal to noise
ratio) performance of about 2-2.5 dB between hard quantization and soft decisions
(based upon three bits of quantization per symbol interval). This means that we are
interested in equalization structures which make soft decisions on the output symbol
as well as structures which make hard decisions.

4.2.1 Bayesian Detection

To determine the optimum signal detector for a finite impulse response channel filter,
H(z) = Ty kiz™, we consider the optimum signal detector for the m-element tap
input vector xx where X{ = [rg,...,"%-m41] and

n
=9 Sk—jh; +np (4.2)

§=0
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This detector is based upon Bayesian detection theory [152](36][37]. To deter-
mine the Bayesian detector all of the possible states of the tap input vector x) must
be considered. Let Sy denote the set of all possible combinations of the channel input
SEQUENCE [Sk, Sk—1;. .+, Sked; - - -, Sk—m+1-n] Where the desired signal §x_4 = 6. Denote
the resulting set of states for the received signal vector x; for the case of noiseless
transmission as Xy and let X; ¢ represent the j** element of this set. The M Bayesian

decision variables corresponding to the M possible values for §._s are computed as

+ -1
MN m J'a)

—lIxk ~ X6
do kg = : .
S ,-1 \/27r7 [ 202 (43)
The detected symbol is chosen such that 3;_g = § where dj r_q = max(dp, x—a).
The resulting decision boundaries for m = 2, d = 0 and s, € {+1} are shown in Fig-
ures 4.2a, b for the two channels, Hy(z) = 1.02° +0.527! and H,(z) = 0.52° + 1.0z~1.
These two channels have been used extensively by Gibson and Cowan et al [28]-[38]

to illustrate the nonlinear behaviour of the optimum equalizer. In both cases the
decision boundary, the line separating the regions where si.q = 1 and sp_g = —1, is
nonlinear but only in the first case, H(z), are the decision regions linearly separable
as shown in Figure 4.2.

Hi(z) and H>(z) are known as minimum and maximum phase channels re-
spectively. A minimum phase filter in the 2-domain has all of its zeros located within
a unit circle centered at the origin in the z-domain whereas a maximum phase filter
has all of its zeros outside of this unit circle. In the multi-path channel, minimum
phase indicates that the signal from the principle path arrives first as opposed to non-
minimum phase where the signal from one or more of the secondary paths arrives first
at the receiver. The principle signal path or ray is usually taken to be that path with
the greatest signal strength. The significance in the phase of the channel is in how
the decision delay should be chosen. This will be described further in section 4.3.

The main problems with this structure are that it requires knowledge of the
channel impulse response to calculate the channel states and its complexity. While
the complexity grows linearly with the number of states of x; the number of states
grows exponentially with the number of non-zero ISI terms, n, of equation (2.4) and
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that o2 is 0.01 for Hy(z).



63

the length of the tap input vector xi, m. The total number of possible states for x; is
M™**_ In the case of pulse shaping, e.g. a raised cosine pulse, the number of states
can be quite large. Rather than evaluate equation (4.3) directly it is desired to train
a neural network to approximate the action of the Bayes signal detector. This has
been the basis for much of the work of Gibson and Cowan et al [28]-[38].

In mapping the M possible values for s;_y to the output of a neural network
there are two possible choices. The first choice is to use a network with M output
nodes, each node representing one of the decision variables. The detected symbol
is then chosen as in the case of the Bayesian detector. The network is trained by
indicating that the desired node should be at a high level, e.g. 41, and that the
other nodes should be at a low level, e.g. —1. There has been some indication
[153]-[156] that for this type of network the activation levels of each of the M output
neurons correspond to the probabilities that the symbol represented by the neuron
was transmitted

dg, k-¢ ~ P (sx—a = )

If this true then in the case of coded transmission it may be advantageous to feed
the outputs of the neural network to a decoder rather than make hard decisions
on the signal. This would correspond to soft decision decoding and may allow the
system to achieve some of the coding gain that may otherwise be lost by the use of
hard decisions on the signal. At present, no one has considered the effect of neural
network equalizers on code performance.

An alternative mapping is to label each of the M values for sy_g with a binary
number with log,(m) bits of £1’s. The advantage of this is it reduces the number of
output nodes for the network, however, the activation levels will no longer correspond
to probabilities. For binary level signalling {41} this produces a network with a single
output where the desired output is &1 which is equal to s;..q. The network thus acts
as an estimator for the transmitted signal.
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4.2.2 Effects of Pulse Shaping

As has already been alluded to in the previous section 4.2.1 and in section 2.3, the
pulse shaping filters for the data pulse have a significant effect on the performance
of the system. Figure 4.3 depicts the impulse response, p(t), and the normalized
spectrum, 2 BT P( f), for four different pulse shapes: the rectangular (RECT) pulse,
the raised cosine (RC) pulse and the spectrally raised cosine (SRC) pulse with no roll
off and with a roll off of 100 percent. These pulses all meet the Nyquist requirement
for zero inter-symbol interference (ISI), i.e. p(t) is zero for all nT" where n is not
equal to zero. For the rectangular pulse, p(t) is zero for [t| > T/2. For the raised
cosine pulse p(t) is zero for |¢| > T and for the spectrally raised cosine pulse p(2)
is zero for t = nT, n # 0. Provided that the receiver samples at the appropriate
sampling instant, t = nT, then, for all of these pulse shapes, there will be zero ISI
at the sampling instant. However, if the sampling time is off or if there channel is
non-ideal then ISI may occur. The effects of pulse shaping can best be seen with the
aid of an eye diagram. The eye diagrams resulting from the use of these pulse shapes
with binary level (£1) signalling are shown in Figure 4.4. Note that for clarity, the
appropriate sampling instants have been circled.

An eye diagram is a method of displaying the received signal, r(t) by display-
ing samples of the received signal r(t) in an overlapping manner, e.g. by overlapping
samples of #(t — kT') taken over two symbol intervals where

(k=1/2T <t<(k+2-1/2)T, k=0,1, ...

and plotting the result the eye diagrams of Figure 4.4 are obtained. For these diagrams
the required signal for r(t) was generated by digital simulation using 8 samples per
baud. Hence, two symbol intervals corresponds to 16 samples of the received signal.

One way to interpret the eye diagram is to view it as a state diagram. At
any sampling time instant the possible states that the received signal may be in can
be seen from the eye diagram. This may be seen by comparing the eye diagrams
of Figure 4.4 which depict the proper sampling instants with those of Figure 4.5 in
which the sampling time has been offset by T'/8. At the proper sampling instant the
number of states is equal to the number of elements in the signal set, i.e. two for
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binary signalling, and there is a one to one correspondence between a state and an
element of the signal set. In Figure 4.5 with the sampling time offset by T/8 it can be
seen that the location and the number of states is quite different from the previous
figure. This is the result of intersymbol interference (ISI) and can be seen to be a
function of the pulse shape. The amount of ISI is determined by the length of the
data pulse shape and the magnitude of the tails of the pulse. The length of the pulse
shape refers to the time it takes the tails of the pulse to become small enough that
they can no longer be considered significant.

It can be seen from Figure 4.3 that the SRC pulse with no roll off has the
largest and longest tails. This results in it having the most ISI when the sampling
time is incorrect as can be seen in Figure 4.5. By increasing the roll off factor for
the SRC filter the tails of the pulse decay much more quickly and this can be seen
in Figure 4.5 to greatly reduce the amount of ISI. The amount of ISI can be further
reduced by using the pulse shaping with an RC or RECT pulse shape.

To simulate the effects of time dispersive fading the following chanrel was

used
he(t) = 8() +0.56(t — 7)

such that the received signal (t) is given as
r(t) = s(t)+0.5s(t —7)
where T was chosen to correspond to a delay of T'/2 or T and
s(t) = skp(t — kT)

For the case of 7 equal to T this channel corresponds to the channel H;(z) used in
section 4.2.1. The effect of this channel and the effect of the choice of T can be seen
in Figure 4.6, 7 = T/2, and Figure 4.7, 7 = T. When T is equal to T the effect
of the channel is to double the number of distinct states at the desired sampling
instant. Note that each state corresponds to only one element of the signal set and
hence the transmitted symbol can be uniquely determined. The effect of the pulse
shape is as discussed in the case where there was no fading. That is, the pulse shape

determines the amount of ISI that occurs when the sampling instant is incorrect. If
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one assumes perfect timing recovering then in this case (7 = T') the pulse shape does
not affect the signal at the sampling instants. However, for 7 equal to T/2 it can be
seen in Figure 4.6 that pulse shape has considerable effect on the signal even at the
appropriate sampling instants, e.g. for an SRC pulse with no roll off a considerable
amount of ISI results but with an RC or RECT pulse there is only a minimum amount
of ISI.

In general, the signal paths resulting from a time dispersive channel are not
delayed at integer multiples of the symbol time 7'. Hence the data pulse shape
plays a key roll in determining the amount of ISI that results under these channel
conditions. Clearly, a channel model based on delay paths who's relative delays are
integer multiples of the symbol time is insufficient to accurately model an actual
transmission system. Hence, a more realistic channel mode! is desired. As most of
the work on neural network equalizers is based on such a model one must question the
validity of the work as this work relies on a simplifying assumption, i.e. the relative
path delays are integer multiples of the symbol time. What this work [28]-[38] has

been useful in doing is illustrating that the optimum equalizer is indeed nonlinear.
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4.2.3 Bayesian Estimation

An alternative to detecting the signal s;_4 is to estimate it and then to make a
decision on the symbol based upon the estimate. The estimator that minimizes the
mean squared error between the estimate ;g and si_q is the Bayes estimator [152]

given by

Sk-q = -/E sp(s|xx)ds (4.4)

where the range of integration £ is over all possible values of the transmitted signal
Sk-d. As sp_q is an M ary signal this reduces to the summation

M
8k-a = D 5;p(sjlxx) (4.3)
i=1

where s5; € £. For this function a neural network with a single output is used and
the network is trained to minimize the expected value of the error power of e, where
er = Sk_d — Sk—g-

This estimator is subject to the same problems as the Bayesian detector;
the fact that we need to know how to calculate p(s;|x)) and that its computational
complexity increases exponentially with the length of the channel’s impulse response!
and the length of the received signal vector x;. However, the Bayes estimator for the
special case where the signal sy is only corrupted by white Gaussian noise, zx = sp+n;
yields an interesting result. As shown in the previous chapter the estimator function
can be calculated as

tanh (zx/0?) 8 € %1
t)—az 2
5 e— 202 (4.6)
Gl S8 €€
2

Sk = M

M -
yml e

The tanh function may be recognized as a scaled and shifted version of the
sigmoidal nonlinearity commonly used in the back propagation [134][133] algorithm.

1The length of the channel’s impulse response refers to the time it takes the tails of the impulse
response to become small enough that they can no longer be considered significant.



o -
o o

Estimator Qutput, §,
[om ]

-0.5

10 20 B

10 -05 0 0.5 1.0
Input, x,

Figure 4.8: The Bayesian estimator function for 4-PAM with SNR’s of 0, 10, 15 and
20 dB.

The Bayes estimator for s € {£1/3, £1} is shown in Figure 4.8. While the estimator
for an M’ary signal is quite complex it may be closely approximated with

1 M=
flaz) = V=i 21 tanh (a(z - 6;)) (4.7)

where o is a gain term chosen to reflect the noise level present in the system and the
8.’ are thresholds or biases chosen as the mid-points between adjacent signal points
in the signal set ¢, e.g. {£2/3, 0} for 4-PAM. From section 3.2 this function may
be seen as the sum of M — 1 neurons each with a tank activation function with a
gain of o, weights of unity and appropriately chosen bias levels. Evidently the back
propagation neural network seems well suited to signal estimation. For low noise
levels a minimum network would consist of the linear combination of the outputs of
M —1 neurons in a single hidden layer. An alternative would be a single neuron using
the multi-level nonlinearity given in 4.7. This would seem to make a case for neurons
with multi-level activation functions.



4.3 Linear Equalization Theory

We have already seen how the optimal decision boundary can be nonlinear particularly
when the decision delay d is minimal but what has not been established is the effect of
the number of taps m and the length of the decision delay on equalizer performance.
For this we look at linear filter theory. To illustrate the principles involved let us
consider the the minimum and non-minimum phase channels considered previously.
These two channels, Hi(z) and H,(z) are given as:

Hi(z) = 1.02°+0.5271 (4.8)
Hy(z) 0.5z% + 1.0z71 (4.9)

If one ignores the constraints of causality and stability and is only concerned with
eliminating ISI then the optimum ISI cancelling filters for Hy(z) and Hz(z) would be:

1

1.02° + 0.5z
1

-1 = - -

B2 = smytoa (4.11)

H{'(2)

(4.10)

Note that these filters are infinite-impulse response (IIR) filters and that H;!(z) is
unstable as its pole lies outside of the unit circle.

While the optimum ISI cancellation filter is generally an infinite-impulse re-
sponse (IIR) filter, adaptive IIR filters are generally not used in practice due to a lack
of guaranteed stability, lack of a quadratic performance surface and a minor perfor-
mance gain over transversal equalizers[10]. Generally, adaptive transversal equalizer
structures are used. The output of this filter is the weighted sum of the tap outputs
of a tapped delay line, where the output may be written as

3::-& = fok (4.12)

and w; is the tap weight vector at time k defined as w¥ = {wgk,...,Wmn-1,4}. If the
criterion for adjusting the tap weights is to eliminate IS then this is known as a zero-
forcing (2f) equalizer[21]. Essentially the transversal zero-forcing equalizer tries to
approximate the inverse channel response using a finite number of taps. The problem
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with a zero-forcing equalizer is that when there are deep notches in the frequency
response of the channel, the zero-forcing equalizer can lead to excessive enhancement
of the noise present on the received signals. The least mean-square (LMS) equalizer
is more robust as it maximizes the signal to noise plus distortion ratio. That is,
it minimizes the mean-squared value of the error signal, ey, determined from the
equalizer’s output, i.e. E[{sy_¢ — $x-4)*] is minimized through a linear combination
of the components of x;. This is simply a linearization of the Bayesian estimator.

For real valued data, the adaptation of the i** tap weight at time k, wy x, is
governed by the following equations:

Wikl = Wik —TNerT;i

ek Sk — s

where 7 is an adaptation parameter controlling the step size of the change in weights,
ey, is the error signal at time k.

If the values of the channel impulse response at the sampling instants are
known then the optimum m element tap weight vector w, can be obtained by solving

a set of m linear simultaneous equations [14] given by

Rwo=p (4.13)

where R is the auto-correlation matrix of the tap input vector x, E[xx7], and p is
the cross-correlation vector formed from the desired equalizer response d and the tap
input vector x, E[dx]. Equation 4.13 is known as the normalequation [14]. The
minimum obtainable mean-squared error is given as

Jenin = 03 — P Wo. (4.14)

where o7 is the variance of the desired response.
The performance of this filter is limited by three factors[15}: the presence of
noise on the received signal, the necessity for the inclusion of a delay in the equalizer

response, and the finite number of taps used to approximate the ideal response. The
reason for the inclusion of a delay in the equalizer response is that the transmitter,
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receiver and channel filters are causal systems. This means that the transmitted
signal will be delayed in time as it passes through these filters. The use of a delay of
d samples permits much lower values of minimum mean-squared error and causes the
converged adaptive impulse response, when convolved with that of the overall channel
response, to approximate an impulse with a delay of 4 [13]. A delayed inverse is also
advantageous whenever the channel is non-minimum phase[15]. A reciprocal transfer
function would have poles outside of the unit circle. In order for such an inverse
to be stable, the impulse response would need to be left-handed in time (i.e. non-
causal}. A delayed non-causal response can be approximated, however, by a causal
impulse response truncated in time. Widrow{15] indicates that when the inclusion of
a delay is not critical, a good rule of thumb is to choose a delay equal to half the
time length of the filter. Generally, the choice of the delay time is not critical as long
as it corresponds to roughly the middle area of the filter. With the use of equations
(4.13) and (4.14) we can evaluate the effect of the delay d and the number of taps on
equalizer performance for Hy(z) and H,(z). Figure 4.3a shows the effect of decision
delay on equalizer mean-squared error (MSE) performance for a 16 tap delay line.
For the minimum phase channel, the optimum delay corresponds to the beginning
of the equalizer tapped delay line. For the maximum phase channel, the optimum
delay corresponds to the end of the equalizer tapped delay line. Clearly, the optimum
decision delay is a function of the phase of the channel, yet, from Figure 4.3a it can
be seen that a delay corresponding to the middle of the tapped delay line results in
good MSE performance. Figure 4.3b shows the effect of increasing the number of
taps on equalizer MSE performance where the optimum decision delay was used for
each equalizer. Here, equalizer performance levels off with the use of about 9 taps.
The work of Gibson and Cowan et al [28, 33, 34] is useful in showing why the
optimum transversal structure is nonlinear. For the two channels Hy(z) and H;(z)
the plots of z;_; versus z; from section 4.2.1 (Figures 4.2a and 4.2b) show that the
decision boundary is nonlinear and that the signal points are only linearly separable
by a single line for the case of the minimum phase channel Hj(z). However, it can
be seen from the reduction of the mean-squared error in Figure 4.3a that the signals
become linearly separable as the decision delay is allowed to increase for H,(z). This
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is not to say that the optimal decision boundary is a linear one when the optimum
decision delay is chosen rather that even though the signals may be linearly separable
a nonlinear equalizer may still offer improved ISI and noise performance. What must
be noted is that the optimum decision delay is a function of the phase of the channel.

The use of the Bayes signal detector forms the optimum signal detection
scheme and allows for a minimum number of taps and minimum decision delay but at
the cost of complexity. With the addition of a few more taps and a slightly increased
decision delay the complexity of the system can be greatly decreased with only a slight
degradation in system performance provided that the decision delay is appropriately
chosen.

The performance of the LTE may be further improved through the use of
decision feedback equalization (DFE) [16]. In this case the signals preceding ri_q,
[Pk=d-1,- -, 'm-1], are replaced with the detected symbols of [§x-g-1,- .. ,8m—1]. Pro-
vided the detected values of [§x—g4-1,...,8m—1] are correct the output noise is only a
function of [ro, ..., 7k—g] rather than of [rg, ..., t—m.s1]. The effect of this on Bayesian
detection/estimation is to reduce the number of states in X thereby reducing the
complexity of the detector/estimator. A DFE generally performs better than a LTE,
however, the DFE suffers from the problem of error propagation. If the output sym-
bol of the DFE is in error then feeding it back into the equalizer will likely produce
another symbol error. Hence the output of a DFE is subject to bursts of errors. The
theoretical aspects of the DFE are beyond the scope of this chapter. The interested

reader is referred to [16].

4.4 Neural Network Equalizer Structure

The neural network equalizer structure is identical to that shown in Figure (4.1)
where the processor function represents the neural network. The outputs of the
tapped delay line are the inputs to the neural network and the output of the network
is a representation of the transmitted symbol 5;. The objective of the network is to
minimize the average mean squared error between the output of the equalizer, §; and
the desired signal, s;. We are not interested in sequence estimation nor the application



of decision feedback equalization as in[33]. The type of setup where the tap outputs
from the delay line are the inputs to the neural network and the output of the neural
network is a representation of the signal s, seems ideally suited to the application
of feed-forward neural networks. This application is particularly appealing when one
realizes that the structure of the LMS transversal equalizer is that of a neural network
transversal equalizer consisting of a single neuron with a linear activation function.

A similar approach has been used by Gibson and Cowan et al {28)-[38] for
binary signalling (2-PAM) however their channel model is based upon a multi-path
fading model where the relative delays between paths are integer multiples of T, the
symbol period. In effect their model does not take into account the effects of pulse
shaping. A spectral raised cosine pulse has zeros every T seconds, hence in their
model only adjacent pulses will cause ISI whereas in general if the path delays are
non-integer multiples of T' numerous pulses will interfere with each other due to the
rather long (theoretically infinite but practically finite) tails of the raised cosine pulse.
Furthermore, their approach is to utilize the neural network structure to minimize
the decision delay discussed in section 4.3. In particular they fix the reference tap
as the second tap of the delay line, a delay of one symbol. In the case of [31] they
compare their nonlinear equalizer structure to various orders (number of taps) of
linear transversal equalizers with a fixed symbol delay of 2 regardless of the equalizer
order. It has already been shown in section 4.3 that the optimum delay is a function
of the channel phase. Hence it is undesirable to choose a minimal delay and simply
increase the order of the linear equalizer to improve performance unless the channel
has a minimum phase response. If one has a priori knowledge of the channel then it is
a simple task to determine a suitable symbol delay, however, in general no knowledge
of the channel is known and in fact it may be randomly varying as in the case of
the DMR channel. Here a more suitable strategy is to choose the center tap as the
reference tap, representing a symbol delay of %"—1 where N is odd and to choose a
sufficient number of taps to ensure satisfactory performance. For our channel model
(the Rummler channel model[41]), Amitay and Greenstein [140] indicate that with
this delay strategy the performance of a 9 or 11 tap equalizer is quite close to that of
an optimum infinite tap linear equalizer.



This neural network structure is strikingly similar to a sub-optimum nonlin-
ear equalizer structure proposed by Ungerboeck{27]. Ungerboeck derives the opti-
mum nonlinear equalizer based upon a maximum aposteriori probability approach.
The optimum equalizer is shown to consist of a matched filter followed by a very
complex nonlinear filter. Ungerboeck’s type I sub-optimum structure[27] is shown in
Figure 4.10. It conmsists of a matched filter followed by a tapped delay line. Each
of the off center tap outputs is fed to a weighted squashing function much like a
sigmoidal function. The output of the equalizer consists of the sum of the outputs
of the squashing functions and the weighted value of the center tap. This structure
is similar to a feed forward neural network with a linear output node which suggests
the need to consider neural networks with linear output neurons. The difference be-
tween Ungerboeck’s type-I structure and our approach with a neural network is that
the tap outputs are fed to all of the input neurons in the neural network and we
let the neural network sort out the appropriate weighting of the tap inputs through
network training. The following work in this chapter extends the work of Gibson and

MF yo_, oL

Y2 Y1 Yo Ya Y.2

Y

Figure 4.10: Ungerboeck’s Type I nonlinear equalizer structure

Cowan et al [28]-[38] from 2-PAM to 4 and 16-QAM (from two levels in one dimen-
sion to multiple levels in two dimensions) and includes the eﬁgk:ts of pulse shaping.
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In particular a widely accepted (eud perhaps more realistic) channel model is used
i.e. the Rummler model[41] for the DMR channel. Further, we remove the restriction

of trying to minimize the decisior delay of the equalizer.

4.4.1 Neural Network Definition

Unless otherwise noted all networks considered here are based upon a 5-tap tapped
delay line with the reference tap taken as the center tap. A neural network is labelled
as nynangy[nl, [} where ny number of reurons in the 1 st hidden, n, number of neurons
in the 2 nd hidden, n,y; is the number of output neurons, and where the suffix nl
denotes nonlinear output neurons while a suffix of [ denotes linear output neurons.
The basic nonlinear activation function used in this work is a scaled and
shifted form of the logistic or sigmoidal activation function with the inclusion of a

gain term o

f(net) = logistic(anet)
1
1 + e~ net
where net is the activation of the neuron. If this is suitably scaled and shifted the
activation function becomes :

f(net) = 2logistic(anet) —1 -
2

14 e-anet
= tanh{anet/2)

This allows the use of outputs of =1 which are more appropriate for use with our
transmission schemes.

An alternative to the above Bina.ry level function is the multi-level function
considered in section 4.2.3 which is shown below.

N
flanet) = ﬁ > tanh (o (net = ) (215)

Here, o is used to control the ‘hardness’ of the function. When o is small the function
looks much like the tank function but as « increases the function becomes more like



a hard quantizer, i.e. a staircase like function. For both of these functions it may be
desired to vary « to change the characteristics of the network, in which case, it may
be desirable to backpropagate a. This is derived in Appendix B.

For use with two dimensional signalling systems the complex neurons dis-
cussed in section 2.11 are used, effectively the variables used for the real valued
neuron take on ikeir complex forms with the rules for complex arithmetic followed.

The complex activation function is given as:

f(net) = Sfr(netp) + 7 fi(nety) (4.16)

Here, the in-plase (I} channel corresponds to the real value of the complex output

neuron and the quadrature {Q) chanmnel corzesponds to the imaginary values of the

complex output neuron.

4.4.2 Input - Output Mappings

There are essentially two types of output mappings for the neural network equalizers;
those based on estimating the transmitted signal, e.g. making a soft decision, and
those based on detecting the transmitted signal, e.g. making a hard decision on the
data symbol. For our work the estimation mapping uses a continuously but sometimes
limited range variable output. This is achieved through the use of either a single linear
or nonlinear output neuron. An alternative is to represent the output symbol by soft
quantizing it and using the quantization bits to form the output mapping for the
network. This is not considered in this work as one gets into the problem of just how
many bits should one use. For networks that are ba.:sed upon signal detection, the
output neurons use the nonlinear functions describe in the previous section. These °
mappings are discussed further below.

4.4.3 Estimator Networks

Two types of estimation networks are considered here. In one, the output neuron uses
a linear output function instead of the nonlinear sigmoidal or tanh functions. This

is labelled as a nin21l network and is denoted as a linear neural network transversal
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equalizer, LNNTE as opposed to0 a ninan.,n! network which is denoted as a neural
network transversal equalizer, INNTE. Note that a neural network equalizer with
a single neuron with a linear activation function degenerates to a LMS equalizer
structure. The other network uses a multi-level activation function (equation (4.7) )
and is labelled as a nynslnl network. When this function is broken down into I and

Q channels it is given as (section 4.2.3):
f(anet) = tanh(anet/2) (4.17)

for 4-QAM and s
flanet) = 41T1 > tanh (a(net —6;)) (4.18)

i=1
for 16-QAM. In both of these functions « is used to control the ‘hardmess’ of the
function. From the Bayesian estimator theory discussed previously, o can be related
to the amount of noise present with the received signal.

These types of networks may be desired if the equalizer is followed by a soft
decision decoder, e.g. the use of the Viterbi algorithm for the decoding of convolu-
tional codes or in some cases soft decision block code decoder.

A network with the tanh nonlinearity might be considered for multi-level sig-
nalling (e.g. 16-QAM) but this is not done here as it may be viewed as a combination
of a linear and nonlinear activation function. The extremes of +1 are based upon
the nonlinearity, the limiting part of the tank activation function, while the values in
between +1 fall along the linear like section of the tank function.

4.4.4 Detector Networks

Detector networks make hard decisions on the transmitted signal and make use of
nonlinear output neurons. For QAM the I channel corresponds to the real part of the
output neurons and the Q channel corresponds to the imaginary part of the output
neurons. In this way a QAM signal is broken down into two channels with each
channel using signalling levels of {+1} for 4-QAM and {1, +1/3} for 16-QAM.
A symbol is detected by using the detected symbols from the I and Q channels to
determine the corresponding QAM symbol, e.g. if a 1 is detected in the I channel and
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a —1/3 is detected in the Q channel then the corresponding detected QAM symbol
is {1, —1/3} or in complex notation 1 — 7 1/3.

The first hard quantization functional mapping maps each of the signal levels
of {£1} (4-QAM) or {£1, £1/3} (16-QAM) on to a single complex output neuron,
i.e. for a signal with m signal levels in the I and Q channels m complex output neurons
are used, with each neuron assigned one of the m symbols. The detected symbol for
the I chanrel is chosen as the symbol associated with the neuron that has the highest
(or lowest) real valued output. The symbol for the Q channel is determined in an
identical manner except that the imaginary outputs of the neurons are used.

For the case of binary level signalling in the I and Q channels this is similar
to the work of Gibson et al [28, 31, 34] in that their network is based upon taking the
sign of a cost function that is derived from Bayesian detection theory. That is they
chose

my 1fCy <C;
117 Zf Ca < Ci
where C) is the cost associated with making an error by choosing symbol m, if
symbol m. was transmitted and C; is the cost associated with choosing m; if m,; was

transmitted, e.g. a nynz2nl network. For the I and Q channels for 16-QAM this
becomes

(4.19)

my if Ch <0y C <C5,C < Cy
my tfC2 < (1,02 <C3,0:<Cy
m3 1fCs< (1,03 <Cy,C3<Cy
my 1fCi<C,Cy < 02;04 < Cs
for each channel, e.g. a nj np 4n! network. These mappings are shown in Table 4.1
As mentioned in section 4.2.1 there has been some indication [153)-[156] that
for this type of network the activation levels of each of the m output neurons corre-
spond to the probabilities that the symbol represented by the neuron was transmitted
which in the case of coded transmission it may be advantageous to feed the outputs
of the neural network to a decoder rather than to make hard decisions on the signal.
This would correspond to soft decision decoding and may allow the system to achieve
some of the coding gain that may otherwise be lost by the use of hard decisions on
the signal. This has not been investigated in this thesis.

(4.20)



Output symbol | Condition for Qutput Neurons (n;)
=1|n >ns
4+l ns>m

Output symbol | Condition for Quiput Neurons (n;)
—liny>ng,n >n3, ng>ny
=1/3|npg>ny,npg>n3, ny>ny
+1/3 | ng > ny, nz > na, n3 > ng4
+1 ng > N1, N4 > N2, NIg4 > N3

Table 4.1: The mapping of m data symbols (from either the I or Q channels) onto
the outputs of m neurons

The conditions for the binary case can be re-arranged so that we chose

my (—1) ifsgn(C1—C2) <0, ie —1

: : (4.21)
ma (+1) if sgn(Ci~C2) >0, ie +1

Thus, the output function of the network is equivalent to sgn(C; — C2), e.g.
a ny na Inl network, which for binary signalling (£1) amounts to having the NNTE
make hard decisions on the received data. It is not readily apparent as to how to apply
this to more than two signal levels as it is impossible to combine the above conditions
into one analytic expression f(Cy,Cz, Cs,C;) to choose the appropriate message. In
training a network to produce sgn (€, — C:) it should be realized that the network
is actually being trained to minimize the mean squared error between the output of
the network, the estimate §;_q4, and s;_4. This effectively means that the network is
being trained as a Bayesian estimator rather than as a Bayesian detector. With this
in mind it is possible to have a neural network rearrange equation {4.20) into 2 single
analytical expression by using a network with a multi-level output neuron. In which
case the network is acting as a Bayesian estimator.

f? An alternative mapping is to label each of the m signal values for the I and Q
channels with a binary number consisting of log,(m) bits where a bit has a value of
+1. The advantage of this is it reduces the number of output nodes for the network,
however, the activation levels will no longer correspond to probabilities. For binary
level signalling {1} this produces a network with a single output where the desired
output is 1. Hence, for binary level signalling this network is equivalent to the



Bayesian estimator network, a n, n, 1n! network.

Another approach is to use m — 1 neurons and order their outputs. Such a
mapping is shown in Table 4.2 using networks of the form n, n, 1n{ and n, n. 3n! for
4 and 16 QAM. Note that if we consider the function 1 /3T, Niow we obtain the
mapping {£1,£1/3} = {*1,+1/3}. Thus a n; n;3nl network is very similar to a
ny 311 or a 301/ network with the output neuron acting as a linear combiner.

Transmitted | Output neuron
[ Transmitted Output neuron || Symbol n, | na | n3
Symbol n -1 —1|=1=1
-1 -1 -1/3 +1|~1]-1
+1 +1 +1/3 +1i+4+1} -1
+1 +1§+1] 41

Table 4.2: The mapping of m data symbols (from either the I or Q channels) onto
the outputs of m — 1 neurons
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4.4.5 Minimum Numnber of Neurons

Ore of the ‘arts’ in neural networks is determining an appropriate network size. While
a smull network will be less complex and demonstrate faster learning times than a
larger network, the larger network may offer improved performance through its abil-
ity to generalize better than a small network. The question is how large or smali
should a network be? The answer is generally determined by experimentation. This
combined with the numerous possibilities for input/output mappings and trying to
determine suitable adaptation parameters for each network can turn one’s search for
the ideal network size/configuration into a horrendous problem. There are algorithms
that can assist in doing this but the approach taken here is based on intuition. While
this approach does not have a strong theoretical background it is intuitively pleasing.
The approach is based on considering the Bayesian estimator for an M-ary signal (in
one dimension). This was dore in in sections 3.2 and 4.2.3 where it was demonstrated
that the minimum MLP network configuration for the estimation of an M-ary signal
in white Gaussian noise consists of the linear combination of M — 1 neurons arranged
in a single hidden layer or alternatively, a single neuron with the multi-level activa-
tion function of (3.17). For M-QAM this corresponds to /M — 1 complex neurons
or a single complex neuron with a multi-level nonlinearity function. Hence, the min-
imum network size for 4-QAM is a single complex neuron, e.g. 0 01nl or 001/, and
for 16-QAM, three nonlinear complex neurons in one hidden layer or one complex
neuron with a multi-level nonlinearity function, e.g. 3011, 302nl, 303rl, 304n! or

30 lnlmultl'-lcuel-

4.5 Simulation Results

4.5.1 SNR

This section investigates neural network equalizer performance as a function of SNR
for 4 and 16-QAM. The equalizer consists of a 5 tap delay line with the reference
tap corresponding to the center tap. Networks of the form 001n! and 95 1nl were
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considered for 4-QAM and 303nl, 304nl, 953n! and 954n! were considered for 16-
QAM. Ir addition, a 00 1n/ with a multi-level nonlinearity was also used for 16-QAM.
The smaller networks represent the minimum size networks for 4 and 16-QAM while
the more complex 95 n sl networks were used to determine if increased performance
resulted from the use of larger networks.

The channel is a 20 dB notch placed either in the center of the channel,
fo =0 MHz, or half way to the band edge, fo = 7.5 MHz. The purpose of these two
choices is to provide two channel cases, one where the channel response is symmetric
about the center frequency, hence the I and Q chanrels are mutually independent,
fo = 0 MHz, and the other where the channel response is asymmetric, hence the I
and Q channels experience cross talk (they interfere with each other). The notch level
and locations were chosen to so that equalization is required but that once equalized
performance is dominated by the sigaal to noise ratio at low SNR’s, e.g. 5 to 25 dB.
This allows one to achieve error rates of around 10~ - 103 where most of the errors
are due to noise and not ISI which allows one to see if neural networks provide
increased signal to noise performance in the presence of fading. Simulation of lower
error rates is not desirable as this would greatly increase the required simulation time.
To determine the error rate, the channel was simulated until 100 symbol errors were
collected. Note that when discussing error rates, we are referring to the symbol error
rate not the bit error rate. This makes the error rate independent of the mapping of
bits onto the signal set. It is also easier to count symbol errors than bit errors.

The simulation involved two phases - one, the training of the equalizer net-
work, the other, determining its performance. In training a network for a particular
channel 4096 symbols were generated and passed through the channel simulator. This
resulted in a training pattern of 4092 symbols for the equalizer. This is less than the
original 4096 symbols that were generated due to the buffering effect of the tap de-
lay line and the associated symbol delay of the equalizer. Each equalizer structure
was allowed to adapt over the entire training sequence. Once the training sequence
had been passed through, training was repeated using the same sequence until the
equalizer converged. Convergence was said to have occurred when the MSE between

successive training sequences was less than 10~*. To evaluate the performance of the
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equalizer, blocks of 4096 symbols were generated (each block different) until at least
100 symbol errors had been accumulated in the symbol error counter. At ihis point
the simulation was stopped and the symbol error rate was calculated.

The results are presented in Tables 4.3-4.5. The overall result is that al-
though numerous network configurations were tried none of them offered significantly
improved performance over the LMS i*uear equalizer. While in some cases it appears
that some of the networks converged faster than the LMS equalizer it should be re-
membered that there other adaptation algorithms for linear equalizers such as the
recursive least squares {RLS) algorithm that exhibit significantly faster convergence
rates, e.g. an order of magnitude or more, albeit with an increase in complexity. The
advantage of the LMS algorithm over these other algorithms is its simplicity. The
advantage of the use of neural networks over these linear techniques is its non-linear
behaviour. '

Statistically speaking, the results might be considered insignificant in that
only one run was done for each trial but (with the exception of the backpropagation
of @) the networks exhibit stable behaviour and all of them converged. From the
tables one can see that there is a consistent behaviour and a pattern in the perfor-
mance of the networks. That is the MSE decreases as the SNR, is increased and
the performance of the neural networks closely parallels that of the LMS equalizer.
If anything, these results suggest that there may be a slight improvement in error
performance with the use of neural networks, i.e. a small percentage inci‘ zase. This
seems to contradict the results of Gibson and Cowan et al [28]-[38]. Hov ever, their
work is based on far simpler channel models with their equalizer structures based
upon minimizing the decision delay of the equalizer. In contrast, we have chosen a
more general approach in making the reference tap the center tap of the equalizer
which corresponds to z decision delay of N—g‘—-l- symbols (N odd) for an N tap equalizer.
This likely allows the decision regions to be well separated by hyper-planes thereby
limiting any improvement that might be possible with a nonlinear equalizer structure.
Furthermore, they do not consider the effects of pulse shaping.
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Symbol Error Rate
fo | SNR | Ims Ims 001nl 001inl 951nl 951nl
p=0025 [ p=0.0025 | 7 =0.05 |  =0.005 |  =0.05 | n = 0.063
5 5.7e-1 5.4e-1 5H.4e-1 5.de-1 5.6e-1 5.4e-1
10. | 4.2e-1 4.le-1 4.0e-1 | 4.0e-1 4.9¢-1 | 4.9e-1
0 15 2.3e-1 2.0e-1 2.1e-1 2.1e-1 2.2e-1 2.1e-1
20 5.5e-2 5.0e-2 5.1e-2 4.9e-2 6.2e-2 5.1e-2
25 | 1.8e-3 1.6e-3 2.0e-3 | 2.0e-3 3.2e-3 |1i.7e3
5 5.0e-1 4.8e-1 5.0e-1 4.9e-1 4.9e-1 4.8e-1
10 | 3.3e1 3.1e1 3.2e-1 3.%e-1 3.5e-1 3.1e1
7.5 |15 |15e1 1.4e-1 1.3e1 [1l.4el 1.5e-1 | L.de-1
{20 [2.6e2 2.3e-2 2.7e-2 [ 2.7e-2 3.3e-2 | 2.6e-2
25 9.5e-4 9.le-4 8.1e-4 9.4e-4 1.2e-3 9.6e-4
_éonvergence (epochs)
fo | SNR [Ims Ims 001nl 001nl 951nl 951nl
g =0.025| p=0.0025 | p=0.05 |  =0.005 | » = 0.05 | 3 = 0.005
5 3 9 3 4 14 7
10 |3 34 3 12 20 17
0 [15 |3 25 12 55 18 12
20 |3 63 54 162 200 22
25 |3 89 59 153 13 37
5 3 19 3 5 81 7
10 |3 32 4 15 203 24
7515 |3 35 15 65 203 22
20 |3 70 55 143 87 29
25 |3 65 48 125 12 31

Table 4.3: This table shows the symbol error rate and the number of epochs required
for convergence as a function of SNR and notch location for 4-QAM for various
equalization structures. The channel is a 20 dB notch located at either of 0.0 MHz
or 7.5 MHz.
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Symbol Error Rate
fo | SNR | lms Ims 303nl 303nl 304nl 3u4nl
p=0025 | p=0.0025 | =0.005 { n =0.05 |  =0.005 | » = 0.05
5 8.2e-1 8.3e-1 8.3e-1 8.2e-1 7.4e-1 7.5e-1
10 6.7e-1 6.7e-1 6.5e-1 6.5e-1 6.0e-1 6.2e-1
0 15 4.0e-1 4.0e-1 3.5e-1 3.6e-1 3.8e-1 3.8e-1
20 8.1e-2 7.8e-2 7.4e-2 8.5e-2 1.8e-1 1.9e-1
25 9.le-4 9.6e-4 2.0e-3 2.8¢e-3 1.0e-1 1.2e-1
5 7.9e-1 7.8e-1 7.7e-1 7.6e-1 7.0e-1 T.le-1
10 |[6.1el 6.2e-1 5.6e-1 57e-1 | 5.de-l 5.8e-1
7.5 |20 5.4e-2 5.8e-2 5.1e-2 5.1e-2 1.8e-1 1.6e-1
25 1.3e-3 1.2e-3 1.7e-3 1.8e-3 1.5e-1 1.5e-1
Convergence (epochs)
Jo | SNR | lms Ims 303nl 303nl 304nl 304nl
g =0.025 | p=0.0025 | =0.005 | n =0.05 | p =0.005 | n = 0.05
5 3 4 7 8 89 25
10 3 7 g 7 65 25
¢ |15 3 9 18 7 145 94
20 3 10 37 12 308 57
25 |3 10 29 11 135 84
5 3 4 7 8 o8 19
10 3 6 12 8 67 35
7515 |3 8 20 9 153 78
20 3 9 36 14 152 71
25 3 9 29 11 151 39

Table 4.4: This table shows the symbol error rate and the number of epochs required
for convergence as a function of SNR and nutch location for 16-QAM for the LMS
equalizer and the 303nl and 304n! networks. The channel is a 20 dB notch located
at either of 0.0 MHz or 7.5 MHz.



Symbol Error Rate
fo | SNR | lms lms 953nl 953nl 954nl 954nl
#=0.025 | p=0.0025 | » = 0.005 | p =0.05 | n = 0.005 | = 0.05
D 8.2e-1 8.3e-1 8.3e-1 8.1e-1 7.4e-1 T.5e-1
10 6.7=-1 6.7e-1 6.4e-1 6.4e-1 6.le-1 6.3e-1
0 15 4.0e-1 4.0e-1 3.6e-1 3.7Te-1 3.7e-1 4.0e-1
20 8.1e-2 7.8e-2 8.0e-2 1.2e-1 1.2e-1 1.de-1
25 0.1e-4 9.6e-4 9.4e-1' 1.1e-3 4.2e-2 4.9e-2
5 7.%e-1 7.8e-1 7.6e-1 7.6e-1 7.0e-1 7.2e-1
10 6.1e-1 6.2e-1 5.6e-1 5.6e-1 5.4e-1 5.7e-1
75|15 3.0e-1 3.ie-1 2.8e-1 2.9e-1 2.9e-1 3.2e-1
20 5.4e-2 5.8¢-2 9 4e-1! 6.9e-2 1.2e-1 9.2e-2
25 1.3¢-3 1.2e-3 1.7e-3 1.7e-3 l.1le-1 1l.1e-1
Convergence (epochs)
fo | SNR | lms lms 953nl 953nl 954n] 954nl
p=0.025 | p =0.0025 | n = 0.005 |  =0.05 | = 0.005 | » = 0.05
5 3 4 8 6 72 34
10 3 7 15 9 123 31
0 [15 3 9 19 7 142 141
20 3 10 31 9 274 31
25 3 10 2 8 254 46
5 3 4 14 7 99 14
10 3 6 13 9 202 105
75|15 3 8 21 10 237 61
20 3 9 2 10 245 131
25 3 g 21 9 210 a9

Table 4.5: This table shows the symbol error rate and the number of epochs required
for convergence as a function of SNR and notch location for 16-QAM for the LMS
equalizer and the 95 3n! and 954n! networks. The channel is a 20 dB notch located
at either of 0.0 MHz2 or 7.5 MHz. 'Note that these networks did not converge properly.
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It was also desizable to experiment with the effects of backpropagating the
gain term o for both 4 and 16-QAM but for reasons of simplicity only the 001nl
network was used. These results are shown in Tables 4.6-4.8. In Table 4.6 the results
are for 4-QAM with a starting value for o of 1.0 and represent the symbol error rate
and convergence time (in epochs) of the network. Three values for the adaptation
parameter 7, for a were tried, 0.005, 0.05 and 0.5. In the latter case this resulted
in network instability as an 7, of 0.5 is ten times grezter than the value which was
used for 5, 0.05. Therefore, only the results for 5,’s of 0.005 and 0.05 are given. The
results for 16-QAM are shown in Tables 4.7 and 4.8. Here, due to the results for
4-QAM only two values of 7, were used, 0.005 and 0.05, but three different starting
values for a were used, 1, 10 and 25. The output of the network is quite soft for
an o of 1 and progresses to a hard quantization function when « is increased to 25.
This causes the initial network to display three different characteristics owing to the
three different initial values for &. Two tables are presented for 16-QAM as it was
discovered that there was a convergence problem with these networks as can be seen
in Table 4.7 where there are several cases where networks did not convergence. For
these situations a ‘not’ is entered as the time taken to convergence. What happened
was that with each change in « the weights cf the network would change and with
each of the weights o« would change. Even though' the network would move towards a
solution the constant pull between the change in a and the change in weights would
cause the MSE to continually change by an amount greater than 10~4 which was the
convergence criterion. Hence the network was never seen to converge. The problem
that one is faced with is how to alleviate this problem. It was decided to let & adapt
for the first 20 epochs and then freeze it for the rest of the training period to allow
the weights to adapt. The entire training period was chosen to be 50 epochs as this
seemed to allow for adequate convergence time as seen from the results in Table 4.7.

The overall result is that none of these networks provided a significant im-
provement in SNR performance compared to the LMS equalizer. However, these
experiments did bring to light some interesting characteristics and problems when
one tries to backpropagate o. When the network is moving towards a solution the
MSE gets smaller and « gets larger. The effect of increasing a causes two things to
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happen. The first effect is to increase the effective learning rate of the network, that
is the effective value of 7 is increased in praportion to the square of the ratio of the
new & to the old «. This is undesirable when the network is nearing a solution as one
wishes to decrease  not increase it in order to refine the solution. The other effect
is that the network will tend to quantize the signal which may lower or reduce the
MSE of the network even though the symbol error rate is not being reduced. This can
lead to false convergence when the change in MSE is used as a convergence criteria
or when a threshold MSE level is used to indicate convergence.

4.5.2 Outage Performance

To further evaluate the performance of the equalization schemes the outage performance[157)
of various equalizers was evaluated. An outage event is said to occur when the bit er-
ror rate exceeds a specified threshold value for not more than ten consecutive seconds.
If the BER, exceeds this threshold for more than ten consecutive seconds the data link
is said to be unavailable. The outage threshold chosen here is for 2 BER of 10-3.
Thus, the outage performance of a radio system is based upon those combinations
of B and fo where the BER is 10~3. To find the outage region for a radio the notch
depth is varied for each value of f; until a bit error rate of 10~2 is achieved. For these
simulations the notch depth was varied in steps of 1 dB. As the bit error rate is quite
sensitive to the notch depth parameter near the outage region it is possible to count
symbo] errors rather than individual bit errors to determine at which notch depth
the bit error rate will be 1073 (to within 1 dB). If one draws a line through all the
points (fo, B) where the error rate becomes 10~2 then the outage region corresponds
to the area above this line, assuming that as one moves upwards on the vertical axis
the notch depth is increasing.

The outage performance for the networks listed in Table 4.9 is shown in
Figures 4.11a, and b, for 4QAM and Figure 4.11c for 16-QAM where the system
signal to noise ratio is 63 dB, a typical value for the DMR channel. Note that here
networks of the form 101 are used rather than 001. This was desired so that when the
frequency response of the weights in the first hidden layer was evaluated the networks



Symbol Error Rate
fo [SNR [Ims Ims 001nl 001n]
p=0025| p=00025 [ p=005 |n=005
o = 0.005 | 7, = 0.05
5 5.7e-1 5.4e-1 5.4e-1 5.4e-1
10 | 4.2e-1 41e-1 4.0e-1 Z.0e-1
0 [15 [23el 2.0e-1 2.1e-1 2.1e-1
20 | 5.5e-2 5.0e-2 4.9e2 4.9e-2
25 | 1.8e-3 1.6e-3 2.4e-3 3.1e-3
5 5.0e-1 4.8e-1 4.7e-1 4.7e-1
10 [3.3e1 3.1e1 3.2e-1 3.2¢-1
7.5[15 | 1.5e-1 1.4e-1 1.5e-1 1.5e-1
20 | 2.6e-2 2.3e-2 2.6e-2 2.6e-2
25 | 9.5e-4 9.1e-4 8.2e-4 1.6e3 |
Convergence (epochs)
fo | SNR [Ilms Ims 001nl 001nl
p=0025| up=00025| =005 |%=0.005
e = 0.005 | 5o = 0.05
5 3 9 20 5
10 |3 34 28 15
o 15 |3 25 30 27
20 |3 63 24 36
25 | 3 89 20 10
5 3 19 25 6
i0 |3 32 31 17
7515 |3 35 36 31
20 |3 70 14 33
25 |3 65 20 12

Table 4.6: This table shows the symbol error rate and the number of epochs required
for convergence as a function of SNR and notch location for 4-QAM for the LMS
equalizer and the 001nl network. For the neural network both the weights and gain
terms of the neurons were allowed to adapt with adaptation parameters of 5 = 0.05
for the weights and either an 7, of 0.005 and 0.05 for the gain terms. The channel is

a 20 dB rotch located at either of 0.0 MHz or 7.5 MHz.
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Symbol Error Rate
fo | SNR | lms Ims 001nl 00laml [ OOlam} 001am10 | 001am25 | 00lam325
p#=0.025 ] p=0.0025 | =0.005 [ n=0.05 | n=0.005 | n=0.05 | n=0.005 | n=0.05
5 8.2e-1 8.3e-1 8.2e-1 8.1e-1 8.1e-1 8.1e1 8.0e-1 8.1e-1
10 6.7e-1 6.7e-1 6.4e-1 6.40-1 6.3e-1 6.4e-1 6.4e-1 6.4e-1
0 15 4.0e-1 4.0e-1 3.5e-1 3.6e-1 3.7e-1 3.7e-1 3761 371
20 8.1e-2 7.86-2 9.0e-2 8.3e-2 T.8e-2 B.3e-2 7562 7802
25 9.1c-4 9.6e-1 2.50-3 1.36-3 1.2¢-3 1.3c-3 2.16-3 2.1e-3
5 7.9e-1 7.8e-1 T.50-1 7.5¢-1 7501 7.5e-1 781 7601
10 6.1c-1 6.2e-1 5.66-1 5.6e-1 5.60-1 5.6e-1 5.8¢-1 5.50-1
7.5 | 15 3.0e-1 3.1e-1 2.8e-1 2.7e-1 3.0e1 2.76-1 2.8e-1 2.7e-1
20 5.4e-2 5.8e-2 6.66-2 5.1e-2 4.5¢-2 5.1e-2 5.60-2 5.66-2
25 1.3e-3 1.2¢-3 2663 1.2e-3 1.1e-3 1.2e-3 3463 3.4c-a
Convergence (epochs)
fo | SNR | Ims Ims 001nl 001am1 | OOlami 00iaml0 | 00lam25 | 00lam25
p=0025| p=00025 | #n=0005 | n=0.05 | =0005 | n=0.05 | n=0.005 ] n =0.05
5 3 4 18 13 not 23 48 33
10 3 T 4 12 not 25 a7 35
0 15 3 9 4 14 3 7 22 24
20 3 10 4 17 13 10 ] 3
25 3 10 not 20 [1 12 K] 3
5 3 4 16 14 not 23 not 32
16 3 6 4 15 53 30 18 43
7.5 [ 15 3 8 4 14 3 3 36 28
20 3 9 4 17 20 10 ) 3
25 3 9 not 21 3 13 3 3

Table 4.7: This table shows the symbol error rate and the number of epochs required
for convergence as a function of SNR and notch location for 16-QAM for the LMS
equalizer and the 001n! network with a multi-level nonlinearity. For the neural
network both the weights and gain terms of the neurons were allowed to adapt with

adaptation parameters of 7 = 0.05 for the weights and either an 7, of 0.005 and 0.05

for the gain terms. The initial starting values of o for the multi-level nonlinearity
were 1 (denoted as the 001aml network), 10 (denoted as the 001am10 network), and
25 (denoted as the 001am25 network). The channel is a 20 dB notch located at either

of 0.0 MHz or 7.5 MHz.
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Symbol Error Rate
Jo | SNR | Ims kms 001nl 00laml | 00laml | 00laml0 | 0Olam25 | 0Olam25
w=0025 | u=00025 | n=0005 n=005| n=0005 ]| =005 | n=0005 ] n=0.05
5 B.2e1 B.3e-1 8.2e-1 B.2e-1 B.le1 B.de-1 8.2e-1 B.le-1
10 6.7¢-1 6.7¢-1 6.4e-1 6.3e-1 6.d4e-1 6.3¢-1 6.5e-1 6.4e-1
0o [15 d.0e1 q0e-1 3.5c1 3.601 .71 3.601 T.8e1 Boel
20 8.1e-2 7.80-2 8.9c-2 B.20-2 | 7.80-2 8.20-2 70e-2 B.2e-2
25 G.1c-4 9.6c-4 5.1e-3 1T.3e-3 1.1e3 T.663 2.28-3 2.263 |
5 79e-1 T.8e-1 T.7e-1 7661 7561 76561 7.9¢e-1 7601
10 Guie-1 6.2e-1 5.5¢e-1 5.5e-1 5.66-1 5.56-1 5.1 5.6e-1
7.5 [ 15 3.0e-1 a1e1 2.60-1 2760 2.80-1 2.80-1 7801 2761
20 5.de-2 5.5e-2 TAe-2 5.86-2 5.06-2 7.56-2 5.60-2 5.60-2
25 1.3¢-3 1.2c-3 5.36-3 1.3e3 1.3e-3 1.3¢-3 3.4e-3 3.56-3
Table 4.8: This table shows the symbol error rate as a function of SNR and notch

location for 16-QAM for the LMS equalizer and the 00 1nl network with a multi-level
nonlinearity. For the neural network both the weights and gain terms of the neurons
were allowed to adapt with adaptation parameters of 7 = 0.05 for the weights and
either an 5, of 0.005 and 0.05 for the gain terms. However, o was allowed to adapted
for only the first 20 epochs and then it was frozen while the network weights were
allowed to adapt for an additional 30 epochs. After which time training was stopped
and the network’s performance was evaluated. The initial starting values of o for
the multi-level nonlinearity were 1 (denoted as the 00laml network), 10 (denoted as
the 001am10 network), and 25 (denoted as the 001am25 network). The channel is a
20 dB notch located at either of 0.0 MHz or 7.5 MHz.
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4-QAM 16-QAM
Network [ Training Epochs || Network | Training Epochs
Opt. LMS Opt. LMS
LMS 200 LMS 200
1011 200 3011 200
101nl 200 303nl! 200
102nl 200 404nl 200
951nl 500 953nl’ 500
1591n]* 1000 954nl 500
Opt 9 Tap Opt 9 Tap
LMS LMS

Training pattern size 4 k symbols
Testing pattern size 16 k symbols

Table 4.9: This is a listing of the neural networks which were evaluated for outage
performance and the training information for the networks. All of these networks
were trained with a learning constant, 5, of 0.05. These networks were simulated
but their results are not shown here as they are not significantly different than for
the simpler networks

for 4-QAM would have the same number of hidden layers as the networks for 16-
QAM. The results for 4-QAM yielded some surprising results. Although the 1011
LNNTE performed similarly to the LTE, the 101n] network shows substantial outage
improvement over the LTE and the 1011 LNNTE. The only difference between the
1011 and the 101nl networks is in the output activation function, one being linear, the
other nonlinear (tanh). This might suggest that it is better to use a nonlinear output
activation function, however, a 9511 LNNTE was evaluated and yielded comparable
performance to the 951nl NNTE. Although the 951nl and 9511 networks offer greatly
improved outage performance, the cost for this is increased complexity and training
times.

The performance of a 9 tap LTE is also shown and it can be readily seen
that with the addition of four more taps the performance of the equalizer is greatly
improved though still less than that achieved with the 951 NNTE's, However, this
improvement is accomplished with far less complexity and training time than that of
the NNTE’s. Amitay and Greenstein {140] indicate that the performance of a 9 or
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Figure 4.11: Outage performance for 4-QAM (top two graphs) and 16-QAM (bottom
left graph). Each curve shows the notch depth, B (dB), as a function of notch
frequency, fo (MHz), where the bit error rate for the receiveris 10~2. (Notch frequency
is measured relative to the center of the channel, 0 MHz). The outage region for a
curve is represented by the area above the curve. Performance of the optimum LMS
equalizer “opt lms” (5 taps) is shown by the solid curve while the performance of the
simulated LMS equalizer “lms” (5 taps) is shown by the dashed curve. These results
are accurate to £1 dB.
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11 tap equalizer is quite close to that of an equalizer with an infinite number of taps.
Thus one would expect that there would not be much more improvement in outage
performance through the use of more than 9 taps for an LTE. Hence, any improvement
through the use of more taps is likely to be less than that achieved with the 951(n)l
networks. The results for the use of NNTE’s with higher level signal constellations tell
a different story. Figure 4.11c shows the results for 16-QAM. It is clearly indicated
here that there is very little improvement in outage performance for the NNTEs.
Larger networks were tried, i.e. 9511, 953n], 954nl, and although their performance
is not displayed they were found to yield no improvement over the networks depicted
here. Nevertheless, note the performance improvement obtained with the 9 tap LTE
over the 5 tap LTE for 16-QAM, approximately a 5 dB improvement in notch depth.
This pretty much indicates that the better way to go is to increase the number of
taps rather than to consider NNTE’s for use with higher level signal sets. Ungerboeck
offers an interesting comment on the application of nonlinear equalizers to higher level
signal sets in that he says

The investigation in this paper was restricted to binary antipodal signals.
One might think of a generalization to multilevel signals. However, it is
felt that then nonlinear methods will lose much of their attraction, not
only because of the complexity of such schemes but also because the inter-
symbol interference will more and more approach a Gaussian distribution
as the number of levels is increased. In the latter case a linear equalizer
will be optimum. |

This may belp to explain the performances differences between 4 and 16-QAM.

4.5.3 Frequency Response

When a multi-layered perceptron is used in conjunction with the tapped delay line it
may be seen that the linear parts of the neurons in the first hidden layer appear as a
system of linear transversal equalizers with the output of each equalizer being fed to
the activation function used in each neuron. The system thus appears to be a linear
transversal filter followed by a Bayesian estimator for s in white Gaussian noise.
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The purpose of the weights in the first hidden layer is to approximate the inverse
channel filter to remove the effects of the channel from the transmitted signal. The
rest of the network then may be viewed as the Bayesian estimator or detector for the
received signal, sx-4, depending upon how the output of the network is configured.
By looking at the weights of the first hidden layer as weights of a FIR filter it is
possible to interpret these weights in the frequency domain in exactly the same ways
as is possible to do so for the weights of a linear transversal equalizer.

The problem with this interpretation is that the weights of neurons in the
first hidden layer will colour the noise on the received signal through their filtering
action. Thus the noise on the signal at the input to the neural activation functions
will be coloured (correlated) noise rather than white. Hence the optimum Bayesian
estimator function is no longer the tanh(si-4/02) function, however, for moderate to
high signal to noise ratios it is a good approximation. Such is usually the case in
practice where usable error rates demand moderate to high signal to noise ratios even
when there is no frequency selective fading.

To examine why the NNTE performed so much better for 4QAM the fre-
quency response of the linear part of the first hidden layer for various networks was
plotted. These are shown in Figures 4.12 to 4.19. Figutes 4.12, 4.13 and 4.14 show
the frequency response of various networks to a 20 dB notch at 0.0 and 7.5 MHz.
Obviously the frequency response of the linear part of the first hidden layer compares
quite favourably with that of the LTE's. Any magnitude discrepancies may be at-
tributed to the use of nonlinearities and the multiple layers of neurons used in the
networks. In trying to determine why the 101lnl and 951nl networks exhibited the
dramatic improvement in outage performance, their frequency response (first hidden
layer) was evaluated for a 40 dB notch at six channel locations equally spaced from
fo=0MHz to fo = 10 MHz for comparison to the response of the LTE, Figures 4.16-
© 4.19. Most of these channel conditions corresponds to an outage condition for the
LTE. Notice the dimple in the LTE response at f; for notch locations of 0.0, 2.0 and
4.0 MHz which sharply contrasts with the NNTE’s response and the response of the
channel. The channel’s frequency response, which is not shown here, is a smooth
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continuous function and has no dimple in it, so why should the response of the equal-
izer? Obviously the NNTE provides for a better frequency interpolation for the 5
tap delay line than the LMS algorithm for the LTE. This is more clearly seen in
Figure 4.16 which depicts the responses of the 101nl network. The 404n1% and 301}
networks for 16-QAM are shown in Figure 4.19. Observe that with the use of more
than two signal levels per I and Q channel the NNTE is unable to provide a better
interpolation of the frequency response than the LTE. This does not fully explain
why the NNTE’s do not offer any improvement over LTE’s for 16-QAM as the outage
area for 16-QAM is much lower than the 40 dB notches considered here. Rather the
notch depth ranges from 18 to 23 dB where the frequency response of the LTE does
not display the 'dimples’ associated with the deeper notch depths (40 dB).

2A 404 network was used in this case as it was believed that the number of hidden umts should
be equal to or greater than the number of output units
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Figure 4.12: Frequency responses for the 4-QAM 101! and 101n! networks for a
20 dB notch at 0.0 MHz (left) and 7.5 MHz (right).
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Figure 4.13: Frequency responses for the 4-QAM 101n! and 95 1n! networks for a
20 dB notch at 0.0 MHz (left) and 7.5 MHz (right).
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Figure 4.15: Frequency responses for the 4-QAM 10 1n! network for a 40 dB notch
at 0, 2, 4, 6, 8, and 10 MHz.
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Figure 4.17: Frequency responses for the 4-QAM 95 1nl network for a 40 dB notch
at 0, 2, 4, 6, 8, and 10 MHz. The frequency responses of the optimum LMS (solid
line) and simulated LMS (dashed line) equalizers are as shown. The rest of the curves
correspond to the frequency responses of the neurons of the first hidden layer of the
95 1nl network.
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Figure 4.19: Frequency responses for the 16-QAM 404n! (left) and 303n! (right)
networks for a 40 dB notch at 0 MHz.
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4.6 Summary

We have shown the application of a complex neuron to neural networks for adaptive
channel equalization and have evaluated several neural network structures for both
their SNR performance and outage performance. It was found that neural network
equalizers offered equivalent SNR performance to the linear transversal equalizer.
In terms of outage performance, it was found for 4-QAM (binary signalling in two
dimensions) that even very simple neural networks (e.3. 101nl) offered better out-
age performance than linear transversal equalizers. Unfortunately, this result is not
reflected in higher level signalling schemes. Rather, the performance of the neural
network equalizer tends to parallel that of the linear equalizer. It is known that the
performance of the linear equalizer can be significantly improved (within limits) by
increasing its order, i.e. the number of taps and using a suitably chosen decision de-
lay. This is done with very little increase in complexity as compared to an equivalent
order neural network. Hence for constellations larger than 4-QAM it would appear
to be better to improve system performance through the use of a linear equalizer
with a sufficient number of taps. All of this assumes that one makes an appropriate
choice for the equalizer decision delay. Typically in the case of an unknown channel
response a sufficient number of taps (e.g. 9) is chosen and the decision delay is chosen
to correspond to the middle tap. When one is interested in minimizing the decision
delay of the equalizer Gibson and Cowan et al [28]-[38] have shown that neural net-
work structures offer superior performance over linear equalization schemes through
their ability to achieve the functional mappings of the optimal Bayesian detector or
estimator. However, much of the performance of the optimum detector/estimator
may be achieved without the complexity of neural networks through the use of a
linear transversal equalizer or decision feedback equalization by simply increasing the
size of the tapped delay line(s) (number of taps) within reasonable limits and us-
ing a suitably chosen decision delay. This is particularly so when data pulse shapes
are used that extend over numerous symbol intervals such as the spectral raised co-
sine pulse. Such pulses give rise to a very large number of channel states, reducing
the effectiveness of practical Bayesian detection/estimation systems over conventional
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equalization systems, especially when the number of signally levels is large.

In extending neural networks to the use of complex data, the use of complex
neurons in MLP structures has allowed an interpretation of the weights of the first
hidden layer in the frequency domain. This has shown that the frequency response
of this section tends to have an inverse channel response that is characteristic of the
response of a linear transversal equalizer. The exception is in the case of very deep
notches when 4-QAM is used. Here the frequency response of the MLP has a better
inverse channel response than the LTE.

This suggests some possibilities for increasing the performance of the NNTE.
One way might be to precede the NNTE with a LTE. This has been tried for a fixed
optimum 5 tap LTE followed by an adaptive 5 tap LNNTE (101! and 3011). It was
found that this did improve performance but that it was still less than that achieved
with 2 9 tap LTE. Note that if one convolves the response of the 5 tap LTE with that
of the linear section of the 5 tap LNNTE the overall structure is a 9 tap equalizer.
Even though both structures are 9 tap equalizers the 9 tap LTE will be superior
because it has more degrees of freedom in choosing its weights than the combined
structures of the fixed optimum LTE and the adaptive LNNTE (or NNTE).

Another approach would be to initialize the weights of the neurons in the first
hidden layer to be those of a LTE (within an amplitude scaling factor) for a given
channel. This poses several problems. Such as: the channel response is generally
unknown and thus so is its inverse, how to choose the bias levels for the neurons,
what should the relative amplitude scaling factor be and how does one organize the
other hidden layers and the output layer? This is a risky approach but none the less
it may have possibilities.



Chapter 5

Rayleigh Fading

5.1 Introduction

The work in this chapter utilizes work by Dam and Taylor[82]. That work developed
an adaptive maximum likelihood receiver for differential quadrature phase shift keying
(DQPSK) for rapid Rayleigh fading channels based on sub-sampling the received
signal. It was assumed that the Rayleigh fading was correlated and could be modeled
as a low pass filtered complex Gaussian noise process, as described in [89].

In this chapter we look at the feasibility of using a neural network as a phase
predictor to reduce the error rate for DQPSK signalling in rapid Rayleigh fading.
With this network it is possible to remove the error floor that is normally encountered
in this channel for average signal to noise ratios of less than 60 dB. By making use
of the constant amplitude characteristic of PSK signalling and through oversampling
the received signal it is possible to form estimates of the channel fading process.
These estimates may then be used by the neural network to predict the phase of
the next sample. It is assumed that the band limiting filters used in the transmitter
and receiver are wide enough not to significantly affect the signal characteristics.
By training a small complex neural network over a group of channel characteristics
ranging from slow to fast fading it is possible for the network to act as 4 generalized
phase predictor. Once the network has learned the training set training may be
stopped. The network may then be used in a fixed form to act as a generalized phase
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predictor over the channel characteristics of interest. Provided the predicted phase
jumps are not significantly different from the actual phase jumps due to the channel
correct data decisions can be made. This results in a significant reduction in the error
rate of the system.

The next section describes the channel model that has been used to simulate
the Rayleigh fading process. This is followed by a section on the detection of signals
in the Rayleigh fading channel. Under this section the optimum maximum likelihood
(ML) quadratic receiver is discussed and the development of the neural network phase
predictor is presented. This section is followed by sections on network training and

simulation results. A short summary is presented at the end of this chapter.

5.2 Channel Model

The channel model is based on the Rician model presented in [89]. In our case we
are only interested in Rayleigh fading, hence the direct signal path has been removed
from the Rician model. The resulting complex baseband channel model is a low pass
filtered complex Gaussian noise source. For a PSK signal the effect of the channel
is to multiply the transmitted baseband signal, e7%("), by the output of the filtered
noise source, r(t) e %) resulting in a received signal r{t) of the form

r (t) = re(t) €% %) 4 (1) (5.1)

where r¢(t) is the magnitude of the channel fade, /() is the phase rotation caused
by the channel, e/%() is the complex baseband PSK signal with phase 64(t) and n ()
is the complex Gaussian noise present in the received signal. The filter for the channel
is chosen to be a third order Butterworth filter [89] with a bandwidth dependent upon
the BT product of the fading process. The chosen filter BT products range from 0.01
to 0.1 which corresponds to the range of fading experienced by a 2400 bps DQPSK
signal at 900 MHz in mobile radio communication. The work in [89] is based upon
using one sample per baud to simulate the transmission system. The Butterworth
filter is an infinite impulse response (IIR) filter whose z-transform function, H.(z), is
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given as:

1
1-TN apz—F
where NN is the order of the filter which in our case is 3 and the als are the real valued
coefficients of ™.

H.(z) =

(5.2)

For our purposes it was desired to use 8 samples per baud rather than a
single sample so that it would be possible to sub-sample the received signal. To
simulate this system, third order Butterworth filters (operating at the baud rate)
were calculated based on BT products in the range of 0.01 to 0.1. The process used
to generate the filters for 8 samples per baud is shown in Figure 5.1. To generate
a filter, the frequency response of the third order Butterworth filter, H.(e2=fin/V),
was evaluated for 512 points (N = 512, n = 0,...,512 — 1) over the entire unit circle
in the 2-domain. This resulted in samples of the frequency response being taken in
increments of 512/, where f, is equal to the baud rate. As the bandwidth of the
filter is much less than the bandwidth of the signal, the frequency response of H.(z)
very quickly falls off to zero, e.g. approximately 0.01 to 0.1 times f,. Effectively, by
sampling at the baud rate we are sampling at a frequency that is much higher than
the highest frequency component of the channel filter H.(z). By suitably scaling
H (/2" fi7/512) it is possible to calculate the sampled frequency response of H.(z)
based on 8 samples per baud, e.g. H,(e2*8/:%/40%) by using 8 x 512 (4096) samples and
setting the first 256 samples of H(ei%78f"/49%6) equal to the first 256 scaled samples
of H,(e/27fi7/512) and setting the last 256 samples of H,(ei2*8fm/40%8) equal to the last
256 scaled samples of H,(e7fi%/512), The scaling of the samples of H, (27 fin/612)
is necessary due to the properties of the discrete Fourier transform used to evaluate
the frequency responses of the filters. The rest of the samples of H,(e/278/m/40%) are
zero as these samples correspond to frequencies that are higher than the bandwidth -
of He(z).

To generate samples of the fading process a 4096 point sample of a complex
Gaussian noise process is filtered by taking the FFT of the sample, multiplying it by
the 4096 point frequency response of the channel filter, H,(e/2%8/i%/40%) and then
taking the inverse FFT of the result. Note that it is necessary to scale the variance
of the noise so that the mean value for the depth of the fading process is 1.
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Figure 5.1: Process showing the generation of the frequency response of the channel
filter based on 8 samples per baud.

To simulate the transmission system, 512 random signal points of a 4-PSK
signal were generated. This signal was then eight times over sampled resulting in a
signal with 4096 samples. The resulting samples were then multiplied by the samples
from the channel fading model to form the faded signal. Additive white Gaussian
noise was added to this signal to simulate the noise in the receiver.

To simulate systems using less than eight samples per baud the received signal
was decimated by averaging together the required number of samples. For example,
to simulate a system using four samples per baud, the eight samples of the received
signal during one baud period are broken down into four pairs which are averaged
together to form the four samples the received signal. To use 1 sample per baud, all
eight samples during one baud period are averaged together to form a single sample.
This is equivalent to using an integrate and dump system that over samples the
received signal at a multiple of the baud rate. This is shown in Figure 5.2

5.3 Signal Detection

To remove the effects of rapid amplitude fluctuations due to the channel a constant
amplitude signal is desired. In such a signal the information is transmitted in the
phase of the signal rather than in'its amplitude. The only effect amplitude fluc-
tuations have on such a signal is to change the instantaneous signal to noise ratio.
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Unfortunately not much can be done about this. As it is difficult to perform coherent
detection due to the rapidly varying! phase of the signal due to the channel, differ-
ential detection can be used. To perform differential detection the receiver effectively
integrates or averages the received signal over a symbol period and compares this
result with the result obtained during the previous symbol period to determine the
phase difference between the two symbols. The receiver makes the assumption that
the phase of the signal due to the effects of the channel is relatively constant over
this time, i.e. it varies by less than 7 /4 radians for DQPSK.

Our fundamental assumption is that the phase change resulting from the
channel is not constant over a symbol interval[124]{125][126][128][82]. To compensate
for this, it is desirable to take multiple samples (say N) of the signal during a symbol
period. To perform differential detection a vector r is formed consisting of these
samples taken over a period of two symbols intervals, j to j + 1 such that r¥ =
[r], rl,;]. That is, r is a vector of 2N elements where the i** element is given as

ri =T, 1% % 4, (5.3)
The i* elements of r] and r],, are given as

Tii  =Tg:€ Peia & %45 T 1<:i<N

. . 5.4
Titld = Pejpa prLTIRR: &’ %4541 +n4 N+1L5:5 oN ( )

respectively. Note that the energy of the transmitted PSK signal has been normalized
to unity over the sampling instant.

1By rapidly varying we mean that the phase changes significantly over a few symbol periods.
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For ordinary differential detection the receiver detects the phase difference
between the average of the first IV elements of r and the last N elements of r. The

maximurn likelihood quadratic receiver [82] utilizes the decision variables, I,

In = K 'r
In = v¥8, K'sHr

where H denotes Hermitian transpose, m represents one of the 4 possible phase
differences for DQPSK, K. is the 2N x 2N channel correlation matrix and

g = | <N 0
m = .
0 efmInen

for constant amplitude DQPSK where 8,, is the m*® element of {0, z,7,3%}. Note
that

K'=8,K*s?

This receiver requires knowledge of the channel correlation matrix, K., and
the ability to track it over time [82]. We are interested in the application of neu-
ral networks to compensate for the phase rotation introduced by the channel. The
approach considered here is to use a neural network to predict /% based upon N
previous channel samples, re,_,, €/%5-¥, ... r._ ei%-1, Provided that the predicted
phase rotation, e’ bc; , is reasonably accurate, it is possible to remove the effects of the
channel phase rotation by multiplying the ith received sample by e~1%;,

The predicted phase rotation ef%: may be equivalently represented as cos f,+
78in é,_.‘.. As both the cos and sin functions are nonlinear and bounded by +1 the
complex backpropagation network with a tanh nonlinearity would appear to be an
ideal choice for such a predictor. An advantage to using a neural network predictor
is that it may be possible to use the generalization capability of neural networks to
help track the changes in the fading process, i.e. as the BT product varies within the
range 0.01 - 0.1 due to vehicular motion

The use of a predictor is predicated on the assumption that estimates of the
channel fading process are available. This posses a problem as the only estimate
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of the channel in a conventional DQPSK receiver is the received signal which is a
combination of the channel fading process and the desired data signal. As the data
signal has constant amplitude, it is then possible to use the received signal to estimate
the channel fading process by removing the effects of the transmitted data phase. In
a practical situation one does not have prior knowledge of the transmitted signal so
that the effects of the data phase can not be removed from the channel estimates.
The received signal samples during the j* data symbol, 8y, are given as

Tid = Te; e e ¢ i 4 N
Note that 8y, is constant for 1 <1 < N (i.e. b4, = 6y;) andfor N+1 < i < 2N
(i.e. 04;,; = 04;,,). The effect of the data phase on the first N samples may be
overcome by removing the average phase, fr;, of the first N samples of r from all of
the elements in r. This leaves the relative phase changes from one sampling instant
to another.
The reference phase 6,, is the phase of ;e where ajei%i is given as

g 1 X
ajeJ T o= Fzr‘i“‘ _ (5.5)

=1

L&, e,
F D (regae’ ¥+ ny)

=1

by letting n;; = '®i7;; where #1;; = ™ %iin;; and using the fact that 64;; = b4,
then

; 1 & O HBa. . L 30y
ajel¥ = ¥ S (re; € Bejit0a;; 4 @iy 75.4) (5.6)
=1 '
e.i od" N 6

= N D (1o € " 4 7ij)
i=1

eJ 96_,' _
N

where a; = iz /N and 6, = ggﬁ,- + 64;.

eJ acﬁ,'

Upon removing the average phase, ;; from the 2N samples of r the first V
samples of r (1 < ¢ < N) become

j {Oe; ;+0a,—0r; -3 Br;
Pia = ey @ Castbei™0n) L pj it (5.7)
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7 [(Be; i =Ben; ) +{Ba,; ~64; )] + nj.‘,e—.i b,

. ed (Bej i—ben;) +nj; g3 b,

= To

= Tg,

rc_.'..‘ eJ‘Asc_,".' + nj".e-j er‘
and the last NV samples (/V < i < 2N) become

 (Be; s g ;+0a:yy =B, Ty
Titli = Ty e Ceivnitios ")+n.1‘+1.s‘e 7 (5.8)

L L

¢ [Bejyri=Fen; ) +A 04544 ]

-
Teipr + njpe

el (BOejpy i+ by, ;)

_ -ty
= Tejpy + g7

Note that the effect of the data signal is removed from r; but not from r;;;. The
samples in rj;; contain the desired channel information offset by A 6y, , the desired
phase difference between r; and rjj. A#fy,,, . is determined by searching over the
set of possible values for Ay, .. For each of the m possible values for AN FTN
its effect e ®%mis1i is removed from the last N samples in r to form the channel
samples for the phase predictor. The resulting predicted phase estimate based upon
these channel estimates is e/ %mii. The performance of the predictor, {,,, based upon
the removal of A gy, ., ; is measured by calculating the sum of the squared distances
between the predicted phase rotations and the phase rotations of the channel samples
weighted by the squared magnitude of the channel samples

I = T8 reppnsP {(&78% it 8% gongy eI A0miny  offemji})

x{(e7 A Peit1at0%ani sy i) eI Almin _ gFfemjiye

where * denotes complex conjugation and Afup,,; € {0,%,7,3%} for DQPSK.
A By, ; is chosen as the A fym,,,; With the smallest [,,. The latter constitutes the
receiver’s decision.

5.3.1 Network Training

To train the neural network predictor a suitable training set must be determined. This
poses an interesting problem in this case. It is desired to predict the phase changes
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frorn one sample to another. In doing so it is more important to compensate for the
phase jumps from one symbol period to another where the absolute phase changes by
more than 7 /4 radians than when it changes by less than 7 /4 radians as this is when
a symbol error will occur. The problem is that the these phase jumps occur relatively
infrequently, anywhere from 1 in 10 to 1 in 1000 symbol periods depending upon the
signal to noise ratio and the fading rate. If a continuous sample of a channel fading
process is used as a training pattern then the number of “good” phase jumps (< 7 /4)
is much greater than the number of “bad™ phase jumps (> 7/4). When a network is
trained with this set it will tend to predict in favour of the good phase jumps rather
the bad ones. What is required is to skew the training set so that the training set
is more evenly weighted between good and bad training patterns. To do this it was
decided to split the channel examples evenly between cases where the phase jump
between symbols was less than £ ( no data decision error } and examples where the
phase jump was greater than %, i.e. the channel phase rotation was great enough to
produce a data decision error. In order for the network to generalize its training the
training set consisted of 10 channels corresponding to BT products from 0.01 to 0.1 in
steps of 0.01. For each BT product 200 examples of the channel fading process were
taken. Each example consisted of channel samples taken over a period of two symbols.
This resulted in 2000 examples of the channel fading process. For each example the
average phase over the first symbol interval, 6,, was calculated and removed from all
of the samples by multiplying them by e=7%r. This normalized the samples so that
the average phase was centered at zero. The sampling rate was determined by the
~order of the predictor. For an N** order predictor N samples per baud were taken.
The sampling rates of interest were 2 and 4 samples per baud.

The neural network was trained upon the presentation of each channel sample.
Experimentation showed that the minimum network size is a network consisting of 2
hidden layers of 2 complex neurons and 1 complex (nonlinear) output neuron. This
is shown in Figure 5.3. Figures 5.4 and 5.5 show the learning curves for the 221
networks for 2 and 4 samples per baud with 3’s of 0.001, 0.01 and 0.1 for an average
SNR of 60 dB. Figure 5.6 shows the learning curves for the network with 4 samples per
baud at an average SNR of 40 dB. These curves represent the averaged performance
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of 50 networks. The figures show that the learning speed increases as 5 is increased
and that the residual mean squared error ( MSE ) is decreased. The networks trained
with the higher 7’s while showing lower MSE on the training set actually performed
worse when used on new channel data. The performance criterion for a network is
based upon the symbol error rate of the receiver when the network is used as a phase
compensator not on the MSE of the network when used on the training set. It is
viewed that the networks with the faster learning times and lower MSE performance
on the training set have over trained themselves. Best performance in terms of symbol
error rate resulted when this network was trained with an adaptation parameter of
n = 0.001 for 4000 presentations of the training set. Note that the learning rate for
the network using 4 samples per baud appears to be faster than the network using 2
samples per baud. This is because there are twice as many training samples in the

training set as the sampling rate is double that of the network using 2 samples per

baud.

2 Samples per Baud 4 Samples per Baud

Figure 5.3: Diagram of the neural network phase predictor for 2 and 4 samples per
Baud
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Figure 5.4: Mean squared error performance versus the number of training epochs 2

samples per baud with an SNR of 60 dB.
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Figure 5.5: Mean squared error performance versus the number of training epochs 4
samples per baud with an SNR of 60 dB.
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Figure 5.6: Mean squared error performance versus the number of training epochs 4
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5.4 Simulatiocn Results

To determine the performance of the phase predictor a network was first trained
at a specific average SNR and then evaluated at that SNR with the training mode
disabled. This was done for average SNR's ranging from 20 to 60 dB. These networks
were evaluated for BT products of 0.1 and 0.04. Evaluation was accomplished by
simulating the transmission of DQPSK through the channel at a fixed average SNR.
At the receiver the affect of the data phase was removed from the channel estimates.
The resulting channel estimates were then used by the predictor to compensate for
channel phase rotation experience by the next signal sample. As the assumption was
that the effects of the data signal were removed from the channel estimates it was not
necessary to actually generate a data signal in this simulation. All that was necessary
was to generate the channel fading process and to add in the appropriate amount of
noise. A symbol error would only occur if after phase compensation the average
residual phase of the signal (channel fading process + noise + phase compensation)
during a symbol period was greater than = /4 radians.

" This first system assumes that one has prior knowledge of the data signal
so that its effects can be removed from the channel estimates. In general, this is
not so but this allows us to form a lower bound on the performance of the system
and to determine the accuracy of the phase p;.edlctor by comparing its performance
with that of a receiver with perfect phase rrcovery Figures 5.7 and 5.8 show the
performance of the receiver with the neur;.l network phase predictor compared to
the performance of a receiver that has complete knowledge of the channel phase but
which is still subjected to the magnitude of the fading process, i.e. a receiver with
complete carrier recovery. Obviously the performance of the receiver with perfect
phase recovery is superior to the neural network phase predictor but both receivers
are capable of moving the error to below 1075, It can also be seen that the use
of 4 samples per baud results in better predictor performance than for the use of 2
samples per baud. This is to be expected as the predictor is predicting over a smaller
sampling time interval. One might expect that by increasing the number of samples
per baud even further, e.g. 8, that there would be a further improvement in predictor
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performance but what must be remembered is that for every doubling of the sampling
rate the signal to noise ratio of the samples decreases by 3 dB as the noise is averaged
over a smaller amount of time. There is obviously a trade off between the number of
samples per baud and the signal to noise ratio of the samples.

The problem with implementing this type of system is how does one obtain
accurate estimates of the fading process? One way to look at it is to assume that there
is a “black box” that is capable of providing channel estimates for the last N samples
but not for the present sample. This is, however, not a very realistic assumption but
these results do serve to show the capability of the neural network predictor given
accurate estimates of the channel fading process and hence form a lower bound on
the performance of the predictor.
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Figure 5.7: Performance of a receiver with perfect phase recovery and performance
of the neural network with knowledge of the channel phase for BTs of 0.1 and 0.04
for 2 samples per baud.
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of the neural network with knowledge of the channel phase for BT"s of 0.1 and 0.04
for 4 samples per baud.
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The performance of the predictor based upon the search technique described
in section 5.3 is shown in Figures 5.9 and 5.10. Also shown in these figures is the
performance of the optimum quadratic receiver[82] from section 5.3. During the
simulation neither the neural network or the maximum likelihood receiver was allowed
to adapt as they were being evaluated at a sp.-ific BT product and signal to noise
ratio. Under normal conditions the channel characteristics would be changing due in
part to vehicular motion. Under such circumstances the maximum likelihood receiver
would have to adapt to track the channel but a receiver using the neural network
phase predictor would not have to adapt due to the generalization capabilities of
the neural network. For the simulation K. was calculated for each BT product at a
specific signal to noise ratio by averaging over a large number of channel samples for
that channel. The neural network, however, was trained at a specific signal to noise
level over the range of BT products from 0.1 to 0.01.

As can be seen from the figures the performance of the neural network is
quite close to that of the maximum likelihood receiver but tends to diverge slightly as
the signal to noise ratio increases. For both the ML-receiver and the neural network
the performance of the 4 samples per baud systems is better than that for 2 samples
per baud. What can also be seen is that the performance of the neural network
phase predictor is not as close to the performance of the ML-receiver for a BT of 0.04
as it is for 0.1. This suggests that the performance of the neural network predictor
deteriorates from that of the ML-receiver as the BT product decreases. The important
point here is that even with a fixed meural network (no training) it is possible to
significantly lower the error floor of these systems. These results are consistent with
results in [109] which show a bit error of 10~3 in the range of 35 to 40 dB for binary
level partial response continuous phase modulation at BT products from 0.005 to
0.001.
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Figure 5.9: Performance of the maximum likelihood receiver and the neural network
phase predictor for BT’s of 0.1 and 0.04 for 2 samples per baud.
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5.5 Summary

Lowering the error floor for signalling in a rapid Rayleigh fading channel is a difficult
problem. The work presented within this chapter has shown that with the use of a
2 x 2 x 1 complex network it is possible to remove the error floor that is normally
encountered in this channel for average signal to noise ratios of less than 60 dB. The
performance of this predictor has been evaluated both in the case where the neural
network has knowledge of the channel fading process and where estimates of the fading
process must be obtained from the received signal. In the former case the performance
of the neural network has been compared to that of a receiver with perfect phase
recovery. In the latter case the performance of the neural network has been compared
to that of the optimum maximum likelihood quadratic receiver and has been shown to
be within 3 dB of the ML-receiver at a symbol error rate of 10~ 3. The neural network
phase predictor has demonstrated that for the differential detection of a QPSK signal
it is capable of lowering the error floor normally encountered in this channel by
several orders of magnitude. The advantage of the neural network is its simplicity
and its generalization capabilities. Once the network has been trained it does not need
to adapt to track changing channel characteristics whereas the maximum likelihood
quadratic receiver must track changing channel conditions and continuously update
its estimate of the inverse channel correlation matrix. However, the problem with
a neural network phase predictor is that the network must be trained and used at
a specific SNR. This is not a serious problem as it is possible to train a group of
networks at various SNR’s and to store their configuration information in memory.
By determining the SNR. of the signal the appropriate network configuration could
be used. Determination of SNR could easily be achieved by looking at the automatic
gain control characteristics of the receiver.



Chapter 6
Conclusions

The purpose of this thesis has been to study the application of multi-layered percep-
trons to channel equalization/compensation schemes for two types of channels: the
pure frequency selective fading channel and the correlated Rayleigh fading channel, a
pure time selective fading channel. The goal of this research was not to propose neural
networks as superior structures to present systems but to explore the possibilities of
their use, to identify suitable network architectures, evaluate their performance and
to lay a solid ground work for their application to channel equalization/compensation
schemes. For this it was decided to look at multi-layered perceptron (MLP) structures
using the standard back-propagation (BP) algerithm.

6.1 The AWGN Channel - Bayesian Estimation

To lay the ground work for work in the frequency selective fading channel the first
part of this thesis considered the problem of Bayesian estimation of a digital signal
in AWGN. While this is a simple problem it has been shown that that it has some
important implications in the area of neural networks. Within this section, the link
between a single neuron and the Bayesian estimator for 2-PAM in AWGN has been
established. Provided that the weight of a single neuron (with one input) is appro-
priately chosen, the neuron is equivalent to the Bayesian estimator for 2-PAM. The
choice of this weight is related to the noise present on the signal such that the weight
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is proportional to the inverse of the noise variance.

By considering the Bayesian estimator function for N-PAM an activation
function was presented that exhibits multiple (> 2) quantization levels when its gain
parameter, «, is chosen sufficiently large yet when it is small it behaves as a soft
limiter much like the tank (z) function. The use of this function may have significant
implications in the area of multi-level nonlinear signal processing. However, to make
full use of this function it is necessary to adapt the gain parameter of the function.
This led to the idea of back propagating a. In regards to this, there has been some
work done for binary neurons, tenh (az), that indicates this leads to faster learning
times[142]. This thesis establishes the exact link between the gain term o and the
adaptation parameters for the back propagation algorithm. It is shown that adapting
the gain term is equivalent to adapting the adaptation parameter n for each neuron
in the neural network. In the case of a multi-level nonlinearity, back propagating the
gain term leads to an effective change in the adaptation parameter as well as changing
the characteristics of the nonlinearity function.

Further research needs to be done in determining the usefulness of applying
the modified activation function, tenh (az), and the multi-level activation function
to more complicated problems. An application of the Bayesian estimator function
- and hence possibly neural networks, is in the area of blind equa.liza.tion[158]; In
blind equalization a transmitted data sequence is convolved with an unknown channel
disturbance and it is the job of the equalizer to de-convolve the receive sequence
to obtain the transmitted sequence without any knowledge of transmitted sequence
other than its probability distribution. In this case the use of Bayesian estimator
functions falls under the heading of Bussgang techniques{158, 159]. In addition, other
application areas for neural networks are in image processing, multi-valued logic[146]
and in analogue to digital conversion[160).

6.2 Neural Network Channel Equalization

In studying the application of MLPs to the problem of nonlinear equalization in
the frequency selective fading channel, previously published work [28]-[38] has been
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extended from 2-PAM to 4 and 16-QAM (from two levels in one dimension to multiple
levels in two dimensions). Of particular importance is that the work presented within
this thesis includes the effects of pulse shaping and makes use of a widely accepted
more realistic channel model than has been used in published work on neural network
equalization.

It was found that neural network equalizers offered equivalent SNR perfor-
mance to the linear transversal equalizer. In terms of outage performance, it was
found for 4-QAM (binary signalling in two dimensions) that even very simple neu-
ral networks (e.g. 101nl) offered better outage performance than linear transver-
sal equalizers. Unfortunately, this result is not reflected in higher level signalling
schemes. Rather, the performance of the neural network equalizer tends to parallel
that of the linear equalizer. It is known that the performance of the linear equalizer
can be significantly improved (within limits) by increasing its order, i.e. the number
of taps and using a suitably chosen decision delay. This is done with very little in-
crease in complexity as compared to an equivalent order neural network. Hence for
constellations larger than 4-QAM it would appear to be better to increase system
performance through the use of a linear equalizer with a sufficient number of taps.
All of this assumes that one makes an appropriate choice for the equalizer decision
delay. Typically in the case of an unknown channel response a sufficient number of
taps (e.g. 9) is chosen and the decision delay is chosen to correspond to the middle
tap. When one is interested in minimizing the decision delay of the equalizer Gibson
and Cowan et al [28)-[38] have shown that neural network structures offer superior
performance over linear equalization schemes through their ability to achieve the
functional mappings of the optimal Bayesian detector or estimator. However, much
of the performance of the optimum detector/estimator may be achieved without the
complexity of neural networks through the use of a linear transversal equalizer or de-
cision feedback equalization by simply increasing the size of the tapped delay line(s)
(number of taps) within reasonable limits and using a suitably chosen decision delay.
This is particularly so when data pulse shapes are used that extend over numerous
symbol intervals such as the spectral raised cosine pulse. Such pulses give rise to a
very large number of channel states, reducing the effectiveness of practical Bayesian
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detection/estimation systems over conventional equalization systems, especially when
the number of signally levels is large.

In extending neural networks to the use of complex data, the use of complex
neurons in MLP structures has allowed an interpretation of the weights of the first
hidden layer in the frequency domain. This has shown that the frequency response
of this section tends to have an inverse channel response that is characteristic of the
response of a linear transversal equalizer. The exception is in the case of very deep
notches when 4-QAM is used. Here the frequency response of the MLP has a better
inverse channel response than the LTE.

Overall, neural network equalizers seem particularly well suited to binary sig-
nalling schemes, 2-PAM, 4-QAM and 4-PSK (binary in the in-phase and quadrature
channels) or systems where the data pulse shape exists for only a single symbol period
or a small number of periods. Such pulse shapes lead to significantly fewer and more
defined channel states. Hence they are more suitable for Bayesian detection and thus
the application of neural network equalizers. It is apparent that what really needs to
be studied are the performance differences between linear equalization, decision feed-
back equalization, Bayesian detection/estimation and maximum likelihood sequence
estimation in a realistic transmission model in order.to accurately define the benefits
of using Bayesian detection/estimation and hence neural network based equalizers.
An important aspect of this work will be to determine the affects of pulse shaping on
equalizer performance.

Neural network structures will likely be significant in their application to
nonlinear channels. In many cases nonlinearities in the transmission system limit
the efficiency of the system. Neural networks with their associated nonlinear prop-
erties would seem to be likely candidates to achieve improved system performance.
Such applications are in the linearization of power amplifiers and in the areas of
magnetic recording media and fiber optics. In looking towards the future, neural net-
works may be of use in a combined coding-modulation-equalization or equalization-
demodulation-decoding system. Ungerboeck has already shown the benefits of com-
bined coding and modulation. It is only a natural step forward to add further systems
to this. This will obviously lead to increased computational complexity and require



more detailed theory, but neural networks may offer a desirable short cut.

6.3 Rayleigh Fading

The application of multi-layered perceptrons in the fast correlated Rayleigh fading
channel environment has led to the development of a neural network ptase predictor
which for the differential detection of 2 QPSK signal is capable of significantly reduc-
ing the error floor that is normally encountered in this channel. This predictor relies
on the fact that for fast correlated Rayleigh fading the phase rotation introduced
by the channel changes significantly over one symbol interval. By over sampling the
received signal and by making use of the constant amplitude characteristic of PSK
signalling it is possible to form estimates of the channel fading process. These es-
timates when used with the neural network phase predictor yield a receiver whose
performance is close to that of the optimum maximum likelihood quadratic receiver.
The advantage of the neural network lies in its simplicity and its generalization capa-
bilities. Only a 2 x 2 x 1 complex network is needed, i.e. two hidden layers consisting
of two complex neurons and an output layer consisting of one complex neuron. The
maximurm likelihood quadratic receiver on the other hand, requires the calculation
of the inverse channel correlation matrix which for a sampling rate N times the
baud rate is a 2N x 2N matrix. Once the neural network phase predictor has been
trained it does not need to adapt to track changing channel characteristics whereas
the maximum likelihood quadratic receiver must do so and it must continuously up-
date its estimate of the inverse channel correlation matrix. The advantage of the ML
quadratic receiver is that it can track changing SNR conditions as opposed to the
neural network which is trained at a specific SNR. This could easily be overcome by
allowing the neural network to adapt when in use and developing a suitable training
strategy. An alternative would be to train a group of neural networks to cover a range
of SNRs and to store them in memory. A specific neural network could be retrieved
for use depending on an estimate of the present SNR of the system. The neural
network is small enough that a large number of networks could easily be stored in a
small memory chip, e.g. 2 2x 2 x 1 complex network using 16 bytes for each complex
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weight {8 bytes per real number) requires only 304 bytes.

This work has shown that it is possible to remove the error floor that is
encountered in Rayleigh fading channel conditions for SNRs of less than 60 dB. Ad-
ditional work needs to be done to determine how feasible it is to actually implement
such a structure. In particular, both the application of the neural network phase
predictor and the ML quadratic receiver need to be studied under real channel fading
conditions, not simulated ones. Further work could be done in studying the appli-
cation of these techniques to the case where the transmitted signal experiences both
Rayleigh fading and frequency selective fading such as is the case when the signal
bandwidth is much larger than that considered here, e.g. greater than 30 or 50 kHz.
Work also needs to be done to extend this work to the more general case where the
amplitude of the signal is not constant and the length of the data pulse is not limited
to the duration of a single symbol interval. Under these circumstances the estimation
of the channel fading process is a much more difficult problem as more unknowns are
introduced into the problem. Further, allowing the data pulse to extend outside of
the symbol interval removes the assumption that the samples taken during a symbol
interval are uncorrelated with those taken from another symbol interval, adding to
the complexity of the problem.



Appendix A

Requirements for Equivalent
Networks

In order to determine the necessary conditions for two networks based upon two
different values of « to be equivalent during the learning process consider two networks
with the same topology but with differing gain terms. With no loss of generality we
may denote the gain term of the first network as alpha, and we may set the gain term
of the second network to unity. The variables of the first network are denoted with a
subscript of 1 and those of the second network with a subscript of 2. The outputs of

the j** neurons for the two networks zy;, 2,;, are given as

ml,' = fa; (netl,')

Ty; = f(ﬂetzj)

where
Ju(z) = -(-1-:,_%,—) (A.1)
@) = Gres (A2)
and

i
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neth = z IgiT.Uzl-, - 92,

H
and where z; is the output of the #** neuron, w;; is the weight linking the i** neuron
to the j** neuron and 6; is the bias term.
In order for the networks to be equivalent, that is they achieve the same

functional mapping from the input space to the output space, we specify

Wy, = Oy, (A.3)
0, = by, (A4)
hence
nety; = oy nely; (A.5)
Ty, = Iy, (A.6)

Note that the activation functions are of the logistic (sigmoidal) type. This is done
for clarity and simplicity. These results are easily extended to the tanh (z) function.

In taking the derivative of the activation functions we obtain

o e T
;:1(-'17) (1 + e-o1 ,)2
' e
f (3) (1 + e_x)z
hence
fi() = aif(az) (A7)
fllaz) = 1/ f(z) (A.8)
The adaptation equations for the networks (no momentum term) are given as:
Awl,‘,’ =1 61,'31.'
sz.-,- = M 52,-32.-

If the j* neuron is an output neuron then &;; and &;; are defined as

6, = fiylnety)(dy; —ay;) (A9)
ba; = ['(nety;)(dz; — 3)) (A.10)
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where d), and d,, are the desired responses for the j** output neurons. As the two

networks are considered to be equivalent, then for identical inputs to the networks

di, = ds,

J 3

(A.11)
(A.12)

T, = Iy

Substituting equations (A.11) and (A.12) into equation (A.10) and by making use of
equations (A.5) and (A.8) we obtain

62j = f'(a;netlj)(dl,. - 271,-) (A.13)

= 1/ey fo,(nety;)(dy; — z1,) (A.14)

= 1/0!1 61j (A.15)

These equations can be recursively applied to the hidden layers of the networks. In
this case

61,- = f;j(netl_.;) Z 61* wlﬂ (A.lﬁ)

k
621- = f'(netz,-) 2 62k wz_,.,‘ ) (A.17)
k

where k ranges over all neurons that are connected to the output of the j** neuron.
Substituting equations (A.15) and (A.3) into (A.17) yields

52,- = f'(netz,-) 2 1/0151,‘ ay U (A.].S)
k
= 1/e &y (A.19)

From equations (A.15) and (A.19) we may write

A wl,.,. = T"h 61,-31‘-
A Wy, = /ey ma 51,'3:2,-
= 2
= v A Wy (A2U)

which gives the following update equations:

gy = Wiy~ Awy; at timen +1 (A21)
w2.','n+1 — wzi"n - sz‘l at time n + 1



In order for the networks to be equivalent at time n + 1 we need to have

Wil = O Wiingd

= qUWygpn — o Au’l..',‘

hence we need

Awyy, =y Awy,,
From equation (A.20) this will be satisfied if
2= a?'h
If we choose to include a momentum term, g, then

A Wikl =M 61_,'3-'1.- + i Awl.‘,‘n
Awyynir = 126222, + p2 Awyyn
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(A.25)

For the two networks to remain equivalent at time ¢ = n+1 we require from equation

(A.23)
A wgﬁ =0 Awh.,.

hence
Ay n = nDuwyn

Thus, by choosing p1 = pa we satisfy (A.23).

In general, for two networks with &; and a; to be equivalent, we require

2 2
M = on

B2 = M

(A.26)
(A.27)



Appendix B
Back Propagation of o

The change in the gain parameter, a, of a neuron is directly proportional to the
negative of the gradient of the error power, that is

OE
Aa; 5, (B.1)
where E is given as )
E=33(dj - z)" (B.2)
i
O0F /0a; may be written as
OF _ OF Oz;
90; ~ Ba,;0a; (B3)
where 9 of( )
T; jlaynet;
6a,- - aaj (B.4)
When the j** neuron is an output node, dE/8z; is given as
aFE
" Ba; = % — %) (B.5)

In the case where the j* peuron is in a hidden layer let us consider 8E/ dnet; where
0E  QE 0x;

 Bnet; " 8z; Onet; (B-6)

= §; (B.7)
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where
9fi(ajnet;)

5,' = 6net J) 26" Wik (B.S)

where k ranges over all nodes that connect to the output of node 3. If the j** neuron
is an output node then §; is defined as

af;(ajnet;)

5 = dnet;

(d; — z;) (B.9)

where d; is the desired output of node j and z; is the actual output.

By rearranging the terms in equations B.6 and B.7 we obtain

0E 6;
0z;  Oz;/0net; (B.10)
9
= 7 8fila; net;)/Onet; (B.11)
Substituting equations B.4 and B.11 into B.1 we obtain
&; 61',-(o:jnet,-)
; J2
Aaj o 0fi(a;net;)/Onet;  Ooj (B-12)
If the jt* neuron is an output node then from equations B.9 and B.12
Aa; o (d; ,)af’("""et’) (B.13)

o

otherwise, if the §** neuron is an internal, hidden node, then from equations B.8 and
B.12

Aaj; x (z kak,-) afJ—(;JEe—tJ—)- (B.14)
k o

where &k ranges over all nodes that connect to the output of node j.
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