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Abstract

A polarimetric radar navigation (PRAN) system makes use of a specially modified marine
radar and polarization rotating twist-grid retroreflectors in order to navigate a confined
waterway, even in inclement weather or after dark. Despite the polarization diversity offered
by such a radar target, depolarization allows significant cross-polar clutter to obscure the
reflector return. The objective of the thesis is to successfully demonstrate the enhancement
and detection of a cooperative cross—polar target.

A field experiment is designed in Hamilton Bay, and 28 scans of real-time non—coherent
HH-pol and HV-pol radar video recorded in a digital format from atop the Canadian Centre
for Inland Waters, in Burlington, Ontario. The two reflectors are located at sites in the
Dofasco area and the La Salle Park area. A conventional cell-averaging CFAR processor is
initially used to give a benchmark against which to compare joint signal processing meth-
ods. A dimensionless normalized target-to-clutter ratio (NTCR) is introduced to quantify
performance, along with standard sub-images to subjectively show the effect of the process-
ing.

An adaptive cross-poler interference canceller is designed which processes the dual-
polarization channels jointly, reducing the nonstationary clutter variance and enhancing
the target. An analog implementation of the processor was granted Canadian and U.S.
patents.

In another approach, mutual information based unsupervised learning of linear and
nonlinear networks is investigated. The RBF network is shown to greatly enha.nce Cross—
polar reflector response in the non-Gaussian statistical environment.

Next, a modular solution integrates all three methods to produce superior reflector
enhancement in average and peak clutter.

Finally, a novel post-detection processor is demonstrated that successfully uses a priori-
information about the reflector location along the water-land boundary of the waterway.
A fuzzy processor combines primary detection information with the output from a vision—
based edge detector to effectively remove false alarms.
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Chapter 1

Introduction :

1.1 Precise navigation problem

Inland confined waterways, such as the St. Lawrence seaway and the Mississippi River,
are of great importance in the transportation of goods by ship. The shipping community
strongly desires to make best use of this resource. However, some factors exist that limit the
time that the waterways may be used. During periods of low visibility, namely fog, heavy
tain, or darkness, the ships cannot navigate by visual aids. The buoys which are used as

" visual aids in navigation are deployed at the beginning of the shipping season, and removed
at the end of the season. To extend the season beyond the times when buoys are available,
and to travel in times of poor visibility, another navigational aid is needed to supplant, or
replace that of visual navigation by the ship’s pilot. It goes without saying that such a
system must be robust and provide an accuracy of navigation comparable to that of the
ship’s pilot. It was judged that a ship’s pilot could navigate visually within an accuracy
of approximately +3 meters from the channel centreline and +7 meters from the channel
limits {12].

One of the conventional solutions is to use microwave transponders. The transponders
are placed into the environment at surveyed locations, and the ship is equipped with the
proper transmission and receiver equipment to interrogate the transponders, along with
an automated navigational computer. A ship traveling the waterway would periodically
transmit a coded RF signal, which would cause a local transponder to transmit back to the
ship a known signal on differing RF carrier frequency. The navigational computer can then
translate the measured delays into ranges to the transponders, and thus use triangulation
to locate the ship within the waterway. The disadvantages of such a system are that the
transponders are relatively complex, expensive, and considered a high maintenance item.
Since the transponders are active, their batteries must be replaced regularly. Other navi-
gational systems such as Loran—C, differential Loran-C, and Navstar GPS are also possible
candidate solutions. These systems, however, are currently limited in their accuracy, which
ranges from 3:15 meters to £50 meters. These accuracies do not meet the abilities of the
ship’s pilot and hence are deemed not satisfactory. :

Rather than using transponders, the use of a marine radar system was investigated as

1~
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: An artist’s depiction of the polarimetric radar navigation system in operation.
From cover of [9).

a-means by which radar ranging to known targets could effect the same operation as a
microwave transponder. The discriminants that are available to the radar systems designer
for the identification of stationary targets are power, frequency, and polarization. Doppler
processing is not applicable since reflector targets are generally fixed, and do not have 2
velocity component relative to the background clutter. Qther forms of coherent processing
are not considered since the complexity and cost of such a system would make it impractical
to the shipping community. The marine radar (e.g. Decca 1229) which most ships are
already fitted with is non-coherent, making use of a cheap X-band magnetron as the high-
power RF transmitter. Preliminary investigations demonstrated that it was not possible to
reliably detect common trihedral reflectors using a typical marine radar system since the
reflectors were obscured by land clutter, and affected by multipath attenuation. To make
the returns from the reflectors greater, the size of the trihedral would have to be greatly
increased, making them impractically large. The use of frequency diversity is possible if the
reflector is designed with a nonlinear transfer function which would then return generated
harmonics that could be received. This idea is also dismissed since a great deal of power
would be needed to be transmitted to operate a nonlinear device (e.g. diode) in the reflector.

" This leaves polarimetric diversity. The polarization of an electromagnetic wave is de-
fined as the direction of the electric field component. Most marine radars transmit with the
electric field linearly polarized in the horizontal plane. A passive réflector target which is
able to rotate the plane of polarization efficiently is obviously needed. It is known that a

v



1.2. POLARIMETRIC REFLECTOR 3

dihedral reflector mounted on a 45 degree angle from the horizontal has the desirable prop-
erty of rotating a linearly polarized field through 90 degrees efficiently. Early studies [20]
showed that the dihedral exhibited the polarimetric characteristics that could be exploited
in navigation. Unfortunately, the dihedral only exhibits its polarization rotating property
over a very narrow azimuthal angle. Further investigations of reflector design resulted in
the invention of the trihedral twist-grid reflector, which has the same polarization charac-
teristics as the dihedral as well as a wide azimuthal response [42, 43]. Using the reflector in
field experiments verified its desirable performance characteristics [4].

The novel polarimetric radar for accurate navigatior (PRAN) system was thus inventad
at the Communication Research Laboratory. The system consists of a set of polarization-
twisting reflectors situated along a confined waterway in known locations so that a ship
with the proper radar equipment can ascertain its position with respect to the shoreline.
Figure 1.1 shows a possible deployment of the system along 2 confined waterway. An
experimental proof-of-concept site was setup in the Hamilton Bay to study an operational
system in a setting which provided varying clutter backgrounds. A typical non-coherent
marine radar transceiver was retrofitted with a dual-polarized antenna, a dual-polar rotating
joint, and a second radar receiver section in order to receive the vertically polarized returns.
The radar is configured to transmit horizontally polarized energy, and receive both linear
orthogonal polarization channels; the conventional horizontally polarized returns as well
as the vertically polarized returns, the latter containing the desired twist-grid reflector
response, are the resultants. The received log video signals then go on to signal processing
stages and plan position indicator (PPI) displays. In an operational system an automatic
detection processor would detect the targets (and false alarms!), and pass on the locations
of the detections to the tracking algorithm. The reflector target detections are input on a
scan-by-scan basis. The tracking algorithm uses the current and past information to locate
the ships’ position on an electronic chart. The unique issues involved in the ship tracking
problem were addressed in the thesis by Lee [36). In experimental trials using a circular
polarized radar to detect the trihedral twist-grid reflectors it was verified that a repeatable
accuracy of better than +3 m could be achieved [47]). The system has been commercialized
by Offshore Systems Limited, of Vancouver, BC and named RANAV.

The interested reader is referred to Haykin [21] which gives a complete historical per-
spective on the development of the FRAN syvstem.

1.2 Polarimetric reflector

As already mentioned, the trihedral twist-grid reflector has the special property of effi-
ciently converting horizontally polarized radar transmissions to vertically polarized returns.
Figure 1.2 shows a diagram of the reflector, with the horizontally polarized incident electric
field being converted to the vertically polarized plane.

The design and operational characteristics of the twist-grid retrodirective reflectors is
described in detail by Macikunas [42, 43, 44, 41]. The normal trihedral reflector operates
or a multiple-bounce principle, reflecting the incident electromagnetic wave from its metal
surface back towards its source, as suggested by Fig. 1.2. This gives the trihedral reflector a
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Figure 1.2: The trihedral twist—grid reflector [44].

high radar cross section (RCS) relative to a flat plate reflector, for example. The unmodified
trihedral does not perform any polarization rotation. To achieve the desirable rotation
property a wire grid was added to one of the faces of the reflector, creating.a hybrid of
microwave devices, namely the trihedral and the wire grid. As is well-known, a grid of
wires in the x-y piane oriented at 45 degrees will rotate an incident wave traveling along

the z-axis with is electric field in x-z {or y-z} plane by 90 degrees. The spacing of the
‘wires is dependent on the frequency of operation. Using the necessary geometric coordinate

transforms, the orientation of the wires on the bottom face of the reflector is found: The
geometrical analysis further specifies that the cross-polar performance is optimum when
the trihedral reflector is mounted with the bottom face rotated 15 degrees counterclockwise
from horizontal, and tilted down 35 degrees from vertical. The wires are mounted in a
dielectric substrate, such as Styrofoam; that operates as a necessary spacer between the
wire grid and the metal face of the bottom trihedral panel. The spacer width turns out
.to be a critical parameter. If chosen incorrectly, destructive interference between the wires
and the metal reflector can result. The hybrid design shows excellent azimuthal response,
maintaining a 10 dB cross-to-like polarized response over a 43.6 degree azimuthal angle.
The design also shows high efficiency: a cross—polarized echo level which is no more than 1
dB below a like-polarized echo of a normal trihedral reference target.

Summarizing the important properties of a trihedral twist-grid reflector: Nk

N

¢ passive device;

» efficient rotation of polarization;

¢ high cross-polar radar cross section;

¢ wide azimuthalfanglf:{ar resf)onse; -

e
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e low cost and simple construction;
» insensitive to alignment errors;
¢ robust.

The twist~grid reflectors have wide angular response, but it is recognized that a constellation
of reflectors may be needed for coverage of an area with a wide angular response requirement.
Also, although the reflectors are robust in operation, a configuration of redundant trihedrals
may be required to overcome multipath problems, as well as failure due to physical reasons
(e.g. damaged by weather).

Limitations in the marine radar system components, as well as multipath and the natural
depolarization characteristics of the environment increase the clutter in the received radar
returns and make the reflectors less visible than is desirable. Several possible approaches
may be taken to make the trihedral twist-grid reflector more visible. An obvious solution is
to make the twist—grid reflectors larger, hence making the radar cross section (RCS) of the
targets larger and thereby increasing the target-to-clutter ratio. This may solve the problem,
but larger reflectors would increase the cost of manufacturing and installing such a system
in proportion to the number of reflectors needed for navigating the waterway. Another
possible solution is to increase the quality of the radar system components. This is also an .
expensive proposition and is subject to diminishing returns. The incremental improvements
in performance come at an increasingly higher cost. The third possible solution and the
one discussed herein, involves processing the horizontally and vertically polarized returns
jointly in an optimum fa.shﬁion to increase the target-to-clutter ratio.

1.3 Signal processmg issues '
In the case of an ideal radar system operating in an environment where therc is httlc
cross-polarized response in the radar returns except from the twist-grid reflector, the plan
position indicator (PPI) display of the vertical polarized channel would be expected io show
a single range cell indicating the position of the reflector, and a background clutter level
at least 10 dB below the target. The experimental system, however, does show significant
clutter returns on the vertically polarized channel, although they are reduced in power
compared to that on_the horizontally polarized channel. The increase of energy on the
vertically polarized channel could occur as a result of degraded cross—polarized {cross-polar)
performance in the antenna or rotary joint, as well as a result of depolarization of the H-pol
(horizontally polarlzed) transmission due to the clutter. The manufacturer’s specifications
given in Appendix A indicate the channel separation of the rotary joint to be 50 dB, and the
cross-polar dlscnmma.tlon of the antenna to be greater than 25 dB. The trihedral twist-grid
reflectors are quotd (44] as having a like~polarized (like-polar) rejection of 16-24 dB. These
system imperfections would account for a portion of the observed clutter, but would not
___account for regions with a response greater than that of the trihedral twist-grid reflector.
"~ Assuming that these components are operating within specification, it is concluded that the
relatively large power response received from the clutter range cells on the V-pol (vertical
polarized) channel occurs due to depolarization.
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The phenomenon which causes a received wave to have a different polarization from the
transmitted wave is called depolarization. The:radar environment generally consists of tar-
gets, land clutter, and sea clutter whose back-scatter has different polarization properties.
For example, a target may consist of various asymmetric objects with partially conductive
surfaces, and this can cause varying polarization qualities. Diffuse scattering is the main
cause for depolarization in land and sea clutter, although man-made objects can cause small
regions to have significant depolarization values. Due to the physical nron-homogeneous na-
ture of various clutter regions, we therefore expect the depolarization values to vary over
some range. Cross—polar returns for land clutter are quoted to be typically in the range of
3-10 dB less than the corrésponding co-polar returns for linearly polarized X—band radar
[16]). The corresponding range for sea clutter is 6-10 dB.

The polarization scattering matrix (PSM) describes the interaction that takes place
between an electromagnetic wave and the target or clutter. The polarized electric field can
be represented by the complex vector [45]

-

— | ¢H (tv z) — . o] — IeH l 76

e(t,z) = [ evt,z) | = hexp[j(wt - kz)] = [ [ey|es ] e, (1.1)
where ey(t, z) is the complex electric field component in the horizontally polarized direction,
ey(t,z) is likewise the vertically polarized component, h is the complex wave polarization,
w is the angular frequency, & is the propagation constant, and § = éy — 6 is the electrical
phase difference between H and V electric field components. The x-direction is designated
the horizontal polarized component, the y-direction the vertically polarized component, and
the z-direction is the direction of propagation of the wave. Assuming a linear polarization
basis, the scattering matrix may be written as [43]

_ | |5uKlexp(i84y) [Svilexp(76yvR)
SHVI= 1 syl exp(ity) ISwleXP(J'va)} ’ (1.2)

where | Sy | denotes the amplitude of the H-pol transmitted and H-pol received component,
8y is the corresponding phase, and likewise for the rest of the parameters. The scattered
wave polarization is therefore

h, = S(H,V)-kr, (1.3)

where hr is the transmitted wave polarization. For the problem at hand, the transmitter
produces only H-pol signals, and the receives both H-pol and V-pol scattered energy non-
coherently. This implies that the information available at the output of the radar receiver
is limited to estimates of the amplitude terms |Syy| and:|Syyl-

The inland waterway scene is one of inhomogeneous clutter, with sea and land clutter,
as well as strong returns from undesirable point targets. The envelope of the radar receiver
output is often approximated by the Rayleigh distribution [62). Land and sea clutter de-
viate from this assumption, especially at higher resolutions. Often the land clutter can be
described by the log-normal or more accurately by the Weibull probability density function

=,

Y
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for various terrain or sea states [18]. In any case, in general the clutter can be character-
ized as having a non-stationary and non-Gaussian probability density functmn. The signal
processing solution must therefore address this important fact.

There is @ priori information that an engineer can use to improve the visibility and
hence detection of the target. The targets are cooperative retrodirective reflectors with
the polarization rotating properties already discussed above. The location of the targets
is controlled by the installers of the system, so the placing of the target adjacent to a
stationary undesirable point target with a large cross-polar response can be avoided. This
can be verified by first surveying the proposed installation area with an operational PRAN
radar system. The path from the ship’s radar antenna to the reflector target must also
be un-obscured by natural objects (e.g. trees) or artificial objects {(e.g. metal towers).
The preferred location for these targets is therefore near the boundary between land and
water. Since it is desired that a detection be performed on a per scan basis, no scan-to-scan
integration is used to improve performance. The tracking algorithm, however, can perform
the integration between scans and thus further improve detection. The momentum and
maximum maneuvering speed of the ships along with the scan period (typically 2 sec) limit

- the relative displacement of the target between scans. A good design should incorporate

this available @ priori information to maximize performance of the system.

I
—

1.3.1 Related previous :work

There have been various attempts at using polarization diversity to improve detection per-
formance, and some of the approaches that reflect on the problem of interest are briefly
described herein. When making use of diversity to gain an improvement in performance,
there is a question of how to combine information ava.ﬂa.ble in the returns in ordcr to come
up with a sufficient statistic for a detection strategy. ' '

In a research study done at CRL, Lewis et al. {37} showed that horizontal like~ and
cross-polarized RCS measurements had a significant variation that could be used as a
discrimirant for ice. Orlando et al. [56] made use of this observation and demonstrated
that ice classification performance increased when the cross-polar channel information was
added.

In [38], Long suggests the use of the ratio of horizontal and vertical like polar returns
as the sufficient statistic. He observes that when transmitting both horizontal and vertical
linear polarizations and receiving like polarizations, the ratio of received target RCS is
approximately unity for simple targets, such as corner reflectors or flat plates, and that the
ratio varies more widely for other forms of clutter, such as sea clutter. This approach seems
to be effective in suppressing sea spikes, as well as interference from other radars.

Similarly, Dunn [11] observes that box-like targets typically contain diplanes and there-
fore are more likely to have a significant cross-polar return. He proposes a technique that
subtracts a fixed portion of the like-polar return from the cross-polar return, and registers a
target detection only if the result exceeds a threshold. This is a simple type of fixed weight
canceller with a hard limiter on the output. \\

Nathanson [51] proposes an adaptive solution referred to a.s\a.n adaptive polarization
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Figure 1.3: The signal processing and detection system.

canceller (APC) for clutter suppression in coherent circularly polarized radars. The circuit
enhances the like-polarized channel by using the cross-polarized channel as an independent
measure of the rain clutter return.

Further investigation of the adaptive filter approach has been done by Giuli et al. [7]
in the context of a circular polarized radar system operating in rain clutter. Using com-
puter simulated data it is shown that an adaptive polarization canceller output, averaged
over independent trials, would improve the proba.b:hty of detecting a ﬂuctua.tmg target by

7. approximately 9 dB.

An extension of thxs work by Gmh et al. {17] is the symmetrical adaptive polarization
canceller (SAPC) designed to suppress jamming interference. Two symmetric cancellers
operating on both polarization channels simultaneously achieve a high degree of suppression
under the conditions that the jammer is highly polarized and at a significantly different
polarization from the desired target. A comprehensive summary of adaptive polarization
processing is provided by Giuli [16)].

1.4 Solutions pursued

The main aim in this thesis is the successful signal processing of the received cross-polar
data in order to enhance the reflector targets, making them more visible to the human
operator, and simultaneously improving the automatic detection performance. Figure 1.3
is a block diagram of the signal processing and detection system.

The radar signal processor accepts video data, zyy and zyy from the logarithmic-
response non-coherent radar receiver and processes the HH-pol and HV-pol data in an
optimum fashion. The signal processor should make-use of adaptive and non-linear ele-
ments to address the non-stationary and non-Gaussian nature of the inhomogeneous clutter

-
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environment. One element of the solution is an adaptive cross-polar interference canceller,
designed to cope with varying clutter regions. Another element is the nonlinear radial ba-
sis function (RBF) network that is trained using a mutual information principle in order
to capture the non-Gaussian nature of the clutter. These two elements perform:well, but
have different desirable characteristics that beg to be combined. A non-learning modular
network is investigated as a possible architecture for incorporating sub-networks together
with the objective of maximum information preservation.

To reduce the clutter a conventional cell-average constant false alarm rate (CA-CFAR)
processor is also investigated. The enhanced image produced by the method (priori to
thesholding) has the property of a constant false alarm rate. The CA-CFAR process is
used as a benchmark against which other methods are judged. The resultant processed
image, yyv, may then be displayed on a plan position indicator (PPI) display alongside a
conventional HH-pol PPI display that is normally used by the operator.

For automatic detection, the image is passed onto the threshold unit. The thresholding
stage maps the continuous image to a binary image, b;. The parameter « sets the threshold
and thus determines the false alarm rate. Finally, a post-detection processor is designed
that uses a priori information about the waterway to remove false targets. Modern image
processing techniques based on human vision are used to determine the land-water bound-
ary. The fuzzy processor only accepts detections that occur in and around such a boundary,
and rejects all other detections as false alarms. The finai detected output, d;, contains the
desired reflecior locations. '

Throughout the processing stages an effort is made to consider solutions which are
implementable in analog neural network architectures. Some of the currently available VLSI
architectures are discussed by Haykin [25]). Only simple elements need to be considered for
use in the neural network architecture, namely: delays, weights (both fixed and adaptive),
multipliers, integrators, summers, threshold units, and Gaussian response units. Using
these basic elements, structures such as adaptive filters, automatic gain controls, and fuzzy
logic functions can be constructed.

1.5 Organization of the thesis

The thesis is organized as follows. The radar field experiment at’the Canadian Centre for
Inland Waters (CCIW) is explained in detail in Chapter 2. It is the data base collected
in this experiment that is used throughout to test the various processing methods. As a
benchmark, the cell-averaging constant false alarm rate (CA-CFAR) process is introduced
and the results calculated for the HV-pol received data. Sub-images containing the target
are chosen. Measures are defined that are used to evaluate the successfuiness of the reflector
enhancement for the various methods. Clutter and target statistics are collected over the
28 available scans.

Chapter 3 details the adaptive cross-polar interference canceller, its learning algorithms
and operational characteristics. An analog hardware implementation of the canceller for
enhancing cross-polarized target returns was granted Canadian and U.S. patents. Digital
simulations are used to evaluate system performance under varying clutter environments.

.‘9‘_2.»
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In order to deal with the non-linear nature of tke clutter distributions, neural networks
based on minimizing mutual information between the outputs are developed and described
in Chapier 4. The networks are trained off-line, and therefore are non-adaptive when
operating. A linear network and a non-linear network based on the radial basis function
(RBF) neural network are evaluated. New unsupervised tra.lmng methods are employed to
learn the parameters in the RBF networks.

It is generally recognized that it is easier to solve subproblems, and then integrate the
results for a complete solution. This philosophy, discussed in Chapter 5, leads to robust
modular network designs that integrate the best characteristics of the sub-networks. The
adaptive canceller and RBF networks are thus combined into a modular network that should
demonstrate the desirable properties of both designs.

Finally, the post-detection problem is tackled. At this stage e priori information is
introduced to eliminate residual false alarms. The desirable locations for the twist-grid

. reflector is along the land-water boundary. A modern edge-detection algorithm (based on

vision research) is adapted for use in the radar environment. Fuzzy set reasoning is used
to combine the primary detections with the land-water boundary information to remove
obvious false alarms. The operation is demonstrated using a sample situation.

The thesis is concluded in Chapter 7 with some final remarks on the subject.
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Chapter 2

Radar experiment

In this chapter the radar experiment is presented, along with the introduction of some
traditional processing techniques. The discussion includes sections on the overall design of
the experiment, the location of the reflectors, the calibration of the radar system, and the
digital acquisition of the data that are used throughout the study. Returning from the field
experiment to the laboratory, the focus is on the retrieval and preprocessing of the data.
Finally, conventional radar processing results are presented as a benchmark to compare with
further processing. Example radar images are presented to subjectively judge the various
stages of processing,.

2.1 Design of the experiment

* Retrodirective twist-grid reflectors were installed at two sites in tha Hamilton Bay, as shown

in Fig. 2.1, demarcated by triangular markers (A) along the shoreline. These reflectors are
referred to by their locations, namely the Dofasco site (the property belongs to the Dofasco
steel company), and the La Salle Park site (the locatian was on the border of the La Salle
Park conservation area, in Burlington, Ontario). The Dofasco site, on the Hamilton side of
the Bay, represents a harsh industrial setting in the sense that there are many large clutter
returns from this area. The La Salle Park site is in a location with milder Ia.ng:clutter; a

g

Dofasco | La Salle Park
Range to reflector 2300 m 3100 m -
Number of reflectors 2 1
RCS of reflector 4846sq. m | 458sq. m
Reflector cell size (range) 7.5m 7.5m
Reflector cell size (azimuth) 2.7m 40m

Table 2.1: Experimental parameters of the radar reflectors.

11 _ :
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N

Figure 2.2: Antenna’s viewpoint, assembled from three wide-angle photos.

park-like setting mixed with residential units. The polarimetric radar was located on the
rooftop of the Canadian Centre for Inland Waters (CCIW) in Burlington, Ontario. This
location is marked by a plus (+) symbol on the topographic map. The composite photo in
Fig. 2.2 gives the “antenna’s eye-view” of the bay area of interest.

The reflectors were attached to poles, approximately 2-3 meters above water level, and
their angular position adjusted to provide 2 maximum cross-polar response on the HV-pol
channel of the radar receiver. For details on the operation and proper installation of the
twist-grid trihedral radar reflector, see Macikunas and Haykin [42]. Table 2.1 summarizes
the experimental setup. The radar cross-section (RCS) given is the value theoretically
calculated from the physical dimensions of the reflector. The given radar cell size values
are calculated from the physical parameters of the radar, as summarized in Appendix A.
These predicted values agree with the experimental measurements done in the field.

Over an extended period of operation, it was observed that the received cross-polarized
return power from the reflector target varied over time. This was 2 a.‘:trlbuted to the changes
in water level and surface roughness which in turn affect signal fzIEhng caused by destructive
interference between two signal paths, the direct path and the one-bounce path from target
to the water surface and the antenna. The common term used in describing such a destruc-
tive interference caused by the addition of signal path differences is multipath fading. There
were no attempts made to compensate for multipath fading, since under normal operating
conditions the radar operator would not be able to control reflector height. If the system
was to be used in 2 confined waterway, it may be necessary to study the effect of target
reflector location and height in order to determine the distribution of installed targets which
would be most robust with respect to multipath, ard the variations in multipath caused
by changes in water height. For example, if a particular target reflector had a reduced
response power due to a multipath fading condition, it would be desirable to have another
reflector in different location which was not in 2 multipath fading null. It is recommended
that a Monte Carlo simulation of target locations, and their sensitivity to water level and
surface conditions be performed. However, the location of target reflectors is primarily an
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Figure 2.3: Diagram of the dual-polar non-coherent radar receiver.

implementational concern, and no further investigation is done here.

2.2 System description

The experimental system consists of three major hardware components: the radar system
(including the reflectors), the digital data acquisition system, and the data recovery system.

2.2.1 Radar system

The experimental radar system was assembled at the Communications Research Labora-
tory (CRL), mostly from standard subsystems available commercially. The radar system
components were commercially available marine radars, chosen to be representative of the
radars currently used by ships. The PRAN system was originally conceived as a low cost
add-om, in hopes that this would make the system financially more attractive to the ma-
rine community. The radar receivers were modified slightly to accommodate dual-channel
operation, and to be able to respond to a higher dynamic range. Appendix A lists the
relevant radar specifications. Fig. 2.3 shows the block diagram of the dual-polar incoherent
radar receiver, with log video output for the HH-pol and HV-pol channels. The photo of the
radar transceivers is shown in Fig. 2.4. The rotary joint and parabolic antenna are located
directly above the radars, as suggested by the microwave waveguide feeds rising through
the ceiling.

An analog PPI display was used in checking the radar’s operation, but no signal process-
ing built into the PPI display unit was used on the data prior to recording. The unadulter-
ated raw video data from the radar’s output was sent to the digital data acquisition system,
along with the azimuthal position information.

H
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Figure 2.6: Block diagram of the experimental data acquisition setup.
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Figure 2.7: Block diagram of the experimental data recovery setup.
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2.2.2 'Data acquisition

The digital data acquisition system was assembled at CRL to record multiple radar video
sweeps at a high sampling rate (30 MHz), along with azimuth and status information. A
multi-channel sampling system, designed and constructed at CRL, was used to digitize the
HH-pol and HV-pol analog video signals. In addition, a programmable synchronous radar

and sampling system trigger system was designed and constructed to derive the necessary

triggers from the master sampling clock provided by the digital tape recorder clock. The
resultant digital data was formatted and recorded on a high-speed digital tape recorder.
This experiment was the first successful digital format recording of live, full-scan radar video
at McMaster University. Figure 2.5 is a photograph showing the digital data acquisition
system in operation. The radar system is located on a stairway landing directly above.

2.2.3 Data recovery

After data recordings were brought back from the field, a data recovery system was set
up as shown in Fig. 2.7. The data recovery system is"used to play back the digital tape
recordings at reduced speed. This is necessary in order for the computer system to be able
to transfer the large quantities of data to memory, and then disk. The data were played
back from the digital recorder into the I/Q computer, which then double-buffered the data,
and wrote it to a high-speed disk drive system. Many software tools were developed for the
maripulation of the large data sets, including previewing, formatting and editing the raw

= data. After suitable scans were recovered from the tape, the formatted data were transferred

to a workstation for further processing. -

2.3 Preliminary data processing

2.3.1 System calibration

The digitally recorded data values are related to the signal power at the input of the radar
system. Through careful calibration, the relationship between these two quantities can be
measured. Appendix B describes in detail the procedure followed to determine a lookup
chart, so that given a recorded digital value. the desired input signal power level is obtained

in dBm.
2.3.2 Radar range normalization

Figure 2.8 shows a simple trigonometric model of the radar experiment in the height-range
plane. The radar is located at the top of 2 building approximately 41.1 m above the lake

water. The ranges R; and R give the approximate start and end of the radar range data

collected. The radar range can be determined from the time delay between the transmitted
pulse and the received pulse. If n is the sample number of the sweep, with a sampling

2

N
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Figure 2.8: Simple trigonometric model of the rada.r’s height-range plane.

: 4
frequency of f. (30 MHz), the range can be deter:.mned in meters from the relationship
e
¢’ en
= R——2~§\t}_ 5T, =5-n{(m), (2.1)

where ¢ is the speed of light (3 x 10® m/s), and T is the measured delay time that is equal
to nf fe.

The radar range equation describes the changes in range tha.t occur, and how they are
taken into consideration. Under typical marine radar operating conditions, a sensitivity-
time confrol \b"I'\') circuit is used to compensate for variations in received power with range.
For the purposes of this experiment, the STC circuit was disabled in the radar receiver. The
compensation is applied numerically, calculated from the radar range equation.

The target of interest falls in the class of a point target. The radar range equation for
a point target is defined by [62]

G'§ «gR- A
(43-)3 . R4 ?

where P; is the power transmitted, G, is the antenna gain, op is the radar cross section
(RCS) of the target, A is the wavelength of the transmitted pulse, and R is the range (in
meters) to the target. The RCS of the target is the parameter of interest. Rearranging the
radar range equation yields
(473 RY
E = Pre——
CR=p Gl

P. =P (2.2)

(2.3)
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- : I Dofasco | La Salle Park
=7 TRarget (fi, &) | (16.4, 0.3) dBm | (19.4, 0.6) dBm
clutter (f., d.) | (2.2,1.2) dBm | (-3.2,3.9) dBm
TCR 14.2 dBm 22.6 dBm
normalized TCR 12 6

Table 2.2: Estimated parameters of unprocessed HV-pol sub-images.

The radar equation in Eq. 2.3 can be fE?._"_'if.ign in logarithmic terms, so that
P

or = P.—P.+40log,o(R) +30logyo(dr) — 20logp(A)  (24)
~2010g;0(G.) = Limise (dBm-m?/m?), : (2.5)

where Lp;.. denotes miscellaneous losses in the system that haven’t been accounted for,
e.g. insertion loss of rotary joint and feeds, and VSWR. mismatch. Since these values are
rclatively small (total 1-2 dB effect), they are ignored here. To compensate for these effects,
a calibration sphere of known RCS would need to be used to determine Lpsc, and hence the
absolute power returned. Since our interest is only in the relative visibility of the target,
absolute calibration is unnecessary. Therefore, without loss of generality, it is assumed that
Lumisc = 0 dB for the purposes of this study.

2.3.3 Example images

Figure 2.9 shows the PPI images of an example half-scan of digitized video for the HH-

- pol and HV-pol radar returns, respectively. For the purposes of display, the images are
normalized in amplitude, so that the largest valued pixels in the image are mapped to
white, and likewise the smallest valued pixels in the image are mapped to black.

The orientation of the PPI images is such that top of the display is in the westerly
direction; the left part of the image contains the Dofasco site, and the right part of the
image is in Burlington and contains the La Salle Park site. TieTefiectors are annotated on
the HV-pol PPI image. =

2.4 ‘Traditional processing

In this section the performance of traditional processing techniques is evaluated. Only the
HV-pol image data is used to enhance the reflector target visibility. These results provide a
benchmark by which to gauge the performance of the more sophisticated joint HH-pol and
HV-pol processing techniques described in subsequent chapters.

*  In total, 28 half-scans (equivalent to 1 minute’s worth) of radar data were recovered from
arccording dated November 23,1987, and preprocessed according to the methods described
above. This same data set was used throughout the study. The example sub-images shown
in Fig. 2.10 and Fig. 2.11 are the basis for the visual and numerical comparison of the

A
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Figure 2.11: The HV-pol sub-images with the locations of the reflectors marked.
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p(x) S

|| F?

Figure 2.12: The target and clutter densities and the associated parameters used in calcu-
lating the normalized TCR figure of merit.

various joint signal processing techniques. It is assumed that a ship’s tracking algorithm
window would be initialized to an area of similar (or smaller) size to acquire and track the
reflector target position. The sub-images chosen are 800 X 420 samples, corresponding to a
physical area of approximately 2100 x 2100 = 4,410,000 m?2,"

The target-to-clutter (TCR) estimate is given by the ratio of target power to clutter
power. Since we are dealing with a log receiver with the output calibrated in dBm, the
TCR is given by

TCR = ji; — jic dBm , ' (2.6)

where fi; is the estimated mean target response, and j. is the estimated mean clutter
response. Figure 2.12 shows diagrammatically the probability density functions (pdfs) and
the estimated parameters for the corresponding target and clutter densities.
Unfortunately, the TCR. estimate does not provide a good measure of target enhance-
ment or visibility. Various signal processing methods can scale the logarithmic data, result-
ing in a meaningless estimate of the TCR. For example, simply by scaling the data by a
factor of 2, the TCR. value would also double, without any true enhancement to the target.
To overcome this problem, a dimensionless measure based on the TCR is proposed as a

figure of merit by which to judge the various processing methods. The normalized TCR
(NTCR) is given as

NTCR = #t_He 2.7)

[
where & is the estimated standard deviation of the clutter power in dBm. If we assume
that the pdf’s are Gaussian, the NTCR is equivalent to the threshold used to calculate the
probability of false alarm (Pr4) for this model, where

(2.8)

Pra = Q(NTCR) = %erfc (I‘TCR) :

V2
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Figure 2.13: Estimated histograms of peak target and average clutter of unprocessed data.
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Dofasco site clutter region La Salle Park site clutter region
(180x20 pixels) {180x20 pixels)

Figure 2.14: Representative patches of HV-pol clutter from the corresponding Dofasco and
La Salle Park areas.

where the Q function is itself defined by

0w 7= [Te Py, (29)

and erfc(-) is the complementary error function [72).

The target and clutter estimates are summarized in Table 2.2 for the HV-pol sub-images.
The estimates are computed from the corresponding histograms shown in Fig. 2.13. The
graphs show the histogram of the average clutter (in a representative area), and the his-
togram of peak target values. The clutter patches shown in Fig. 2.14 were chosen to provide
representative areas of clutter from both sites. The clutter patch within the Dofasco site is
approximately 572 m in azimuth and 100 m in range, and the corresponding La Salle Park
clutter patch is approximately 528 m in azimuth by 100 m in range. To make the estimate,
the average clutter response within the patch areas is averaged, and then averaged over all
the scans to estimate a mean clutter level. The mean of the peak reflector target value is

estimated by averaging the peak response within the reflector target cell area over the 28
scans.

2.4.1 CFAR processing

The constant false alarm rate (CFAR) processor is commonly used in radar systems. It
prevents saturation of the detector due to increases in clutter or ncise by adapting the
detection threshold in step with the changing clutter or noise conditions. Likewise, in
the case that the clutter or noise decreases, it lowers the threshold thereby increasing the
detectability of weaker targets which otherwise would be missed. The operation of CFAR
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TARGET
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Figure 2.15: Target a.nd:clutter masks used in CFAR processing.

|  Dofasco | La Salle Park
target (i, o) [ (22.9, 0.3) dBm { (24.0,0.9) dBm
Lutter (fc, 6.) | (2.8,1.2) dBm | (-2.0,3.7) dBm
~1CR : 20.1 dBm 26.0 dBm
normalized TCR 16 7

Table 2.3: Estimated parameters for CA-CFAR processed HV-pol sub-images.
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Figure 2.16: Sub-images of the CFAR processing, prior to detection.
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Figure 2.17: Estimated histograms of peak target and average clutter for CA-CFAR pro-

cessed result.
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systems has been widely studied [18, 48, 52, 62]. The basic idea is to estimate a sufficient
statistic of the clutter, and to use this estimate to control a detection threshold so that a
constant false alarm rate results.

The CFAR processor is now derived. For the purposes of this study, the clutter process

is assumed to be Rayleigh distributed. The Rayleigh probability density function is given
by

2z z?
p(z) =~z exp (-—;) ,  z>0, 2.10)

where z is the voltage amplitude, and o2 is the variance. The ideal logarithmic recciver is
described by the function

y = elog(bz) , - : (2.11)

where @ and b are scale factors. Under these assumptions, Croney [6] shows that the
theoretical variance of the output is
2_2

z 0'3 = dzz )
which is independent of the input signal. The logarithmic receiver therefore has a CFAR-
like operation, in the sense that clutter described by Rayleigh distribution results in a
constant variance in the output. The mean level of the clutter, however, is a function
of the input power, and can be removed either by using a high-pass filter, or by using.
averaging to estimate the mean level and subtracting it. The cell-averaging CFAR (CA-
CFAR) model assumes that the clutter in the neighborhood of a cell under test is a stationary
statistical process, with independent samples, and is representative of the clutter in the test
cell. In practice, these statistical assumptions are often not consistent with the operating
environment, resulting in a loss in performance.

To implement the desired cell-averaging operation, two-dimensional target masks and
clutter masks are used. Two masks are defined: a 23x3 pixel mask for the target, and a
69x9 pixel mask for the surrounding clutter. The target mask size was chosen to reflect the
approximate size of the reflector target, and the clutter mask size was chosen to be large
enough so as to provide a fair estimate of the clutter power, while at the same time being
small enough so as to be in a stationary region of clutter. This is a trade-off in CA-CFAR
processing. The two masks are co-located, centered on the same pixel, the clutter mask
having zero response where the target mask coincides with it. Figure 2.15 shows the config-
uration graphically. The pixels in the mask are all equally weighted, although this need not
be the case. For example, if there is a priori information about the clutter pdf characteris-
tics, or location of the target within the clutter, a particular weighting configuration couid
have better performance. No such assumptions are made here. The masks are convolved
with the image; the clutter-convolved result is subtracted from the target-convolved result.
For a particular location in the image, the function can be expressed as

Ne " Ne
y= witi—y wic;, | - (2.13)
H i

(2.12)
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were y is the output, the ¢; is the set of target pixels, the ¢; are the set of surrounding clutter
pixels, the w! are the set of target—pixel weightings, and the wf are the set of clutter-pixel
weightings. For the purposes of this study, no a priori information is used about the clutter
orientation or distribution. The set of weights in the clutter mask are assigned the equal
values {w§ = 1/N, ,for all i}. Likewise, the set of weights in the target mask are assigned
the equal values w} = 1/N;. The resultant image formed by the CA-CFAR possesses a
greater target visibility as demonstrated by the example sub-images shown in Fig. 2.16. To
improve the contrast of the printed half-tone sub-images, the lower 8% of the image values
are mapped to black for all CFAR. processed images (as estimated from the estimated
histogram).

The enhanced target visibility should be reflected in higher NTCR values. Comparing
results, the normalized TCR values in Table 2.3 show an improvement over the correspond-
ing NTCR values for the unprocessed HV-pol images in Table 2.2. Figure 2.17 shows the
histograms of the CA-CFAR processed target and clutter data.

The detector stage after the CA-CFAR processing performs a threshold function, which
produces a binary result such that

y>«, z=1, target present

y<a, z=0, target absent. (2.14)

-~
-

The constant « controls the false alarm rate.

2:.5 Summary

o
=

The radar experiment, located in Hamilton Bay, is described in detail. In total, 28 scans
of dual-polarized radar data were collected from this area, and used throughout the thesis.
The targets of interest are twist-grid reflectors located in the Dofasco area and the La Salle
Park area. The PPI sub-images of these areas of interest are used throughout the thesis
to subjectively estimate the enhancement performance of the suggested signal processing
technique.

The operational parameters of the radar system, data acquisition system and data re-
covery system were outlined, as well as preliminary data processing techniques to calibrate
‘the radar system and normalize for radar range variations.

Next, traditional radar signal processing techniques were investigated and figure of mer-
its defined to serve as a benchmark by which the advanced signal processing methods may
be compared against. The method of measuring NTCR was defined and shown to be a
dimensionless, objective measure of performance. The traditional CA-CFAR technique was
described and used to process the sub-images of interest. The improvement over the orig-
inal preprocessed HV-pol image could be observed both subjectively, from the displayed
sub-images, and objectively from the histograms and the NTCR values. . -
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Chapter 3

Adaptive cross—polar interference
canceller

In this chapter we address an adaptive signal processing solutior that accounts for the non-
stationary nature of the clutter process. With each new radar sweep, the clutter background
will vary from sea clutter to various forms of land clutter, including large like-polar point
targets in surroundings such as the Dofasco site that has many large metal buildings and
machineries. The signal processor is designed to track these variations in clutter, removing
the correlated portion of the HH-pol clutter from the HV-pol information. The result is
an enhanced cross-polar target response. However, to be successful, the adaptive canceller
must be tuned to the nature of the reflector, and must operate in a robust fashion.

3.1 Principle of adaptive interference cancellation

A schematic diagram of the single-tap adaptive interference canceller is shown in Fig. 3.1
for a sampled range (or equivalently, time) series. The canceller processes the HH-pol and
HV-pol radar returns along the range dimension, as they are received, removing a weighted
version of the HH-pol return (interference signal) from the HV-pol return (desired signal).
Various adaptive algorithms have been developed to adjust the tap weight in some type of
optimal fashion [24].

From Wiener filter theory [23], it is known that the optimum tap-weight solution under
conditions of stationarity and a zero-mean Gaussian process is

_ Bypav(0)

wWopy = —HHHVA . 3.1
P Ryn.un(0) (3.1)

“ where Ryy pv(0) is the zero-lag cross-correlation between the two channels, and Ryn nr(0)

is the zero-lag autocorrelation of the HH-pol channel.

For a detailed discussion of the operation of adaptive filter algorithms and noise cancel-
lation, the reader is referred to (24, 71, 70).

31
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Figure 3 1: Discrete time cross-polar interference canceller

3.2 Discrete-time adaptation algorithms

There are two broad types of learning algorithms commonly used for adaptive filtering: the
least-mean-square (LMS) and recursive-least-squares (RLS) algorithms. Both are presented
; here, and a link between the algorithms is developed. A transient response analysis of
i{  the LMS filter suggests a method for, r, iuning the adaptive operation to improve reflector
\\response Finally, the theoretical performa.nce is evaluated, showing the bounds on the
“‘cxncellation performance as a function of the correlation between the HH-pol and HV-pol
ra. a.::tiurns :

3.2.1 T}t\e\LNIS algorithm

The desired resp\onsc in the following equations is set to be the HV-pol range sweep, and
the disturbance to’ ‘we the HH-pol range sweep, as shown by the block dxagra.m in Fig. 3.1.
The LMS update eqtations for the one-tap:-weight case are therefore

ey(n) = zuy(n) — B()eyy(n),  m=0,...,N -1, (32)
w(n+1)=w9(n)+ szH(n)éHV(n) , w(0)=0, - (3.3)

where éy(n) is the cstimated a posteriori error at time n, zyy(n) is the signal containing
the desired response, zyy(n) is the interference that is correlated to zyy(n), (n) is the
estimated tap weight, u is the step-size parameter, and N is the total number of samples.
The weight update algorithm is stable for g in the range

O<pu< 22 , (3.4)

a-’-'HH
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where o2 is the variance of the input zyy(n).

3.2.2 The RLS algorithm

The RLS algorithm is similar. The corresponding update equations for the one-tap weight
case are

&py(n) = zyy(n) - B(n - Dzun(n) , (3.5)
w(n) = ¥(n - 1) + k(n)apy(n) , (3.6)
o(n) = 3P~ Dayn(n) , (3.7)

oy v(n)
) = T e = 38)
P(n) = %P(n — 1) = K(n)o(n) , (3.9)

whé‘e, in addition to the previous definitions, &ny(n) is the estimated a priori error at
time 7, k(n) is the gain, P(n) = 1/6 &3, ()} is the inverse of the recursive variance estimate,
and A is the exponential weighting factor.

To gain insights into the operation of these different a.Igonthms the RLS algorithm
is reinterpreted as a version of the LMS algorithm with a time~ziying adaptive step-size
parameter. Note the similarity between LMS weight update Eq. 3.3 and the RLS weight
update Eq. 3.6. Rewriting Eq. 3.8 and substituting v(n),

oy~ _XP(m=Dzyy(n) 1
kn) =13 IP(n— Dy (m) (A/P(n “1)+ a:'ﬁH(n)) ZHH () - (3.10)

Now substituting &2, (n—1) for 1/P(n — 1), we have
k(n) = (A&E = i) o (n)) zyn(n) @ pzyy(n) - (3.11)

The u term on the right-hand side of Eq. 3.11 is comparable to the corresponding term in
the RLS adaptive gain k(n). It is observed that by adding a recursive variance estimate,
the LMS algorithm can be converted to an RLS algorithm (for the one tap-weight case).
An LMS algorithm modified in this fashion is referred to as being normalized [24]). The
RLS is the more powerful algorithm since its convergence can be shown to be independent
of the eigenvalues of the autocorrelation function of the disturbance, however, from now on
the emphasis is on the LMS version of the adaptation a.lgonthm since its implementation
in hardware is simpler. 2



34 CHAPTER 3. ADAPTIVE CROSS-POLAR INTERFERENCE CANCELLER

Transient response

In the LMS algorithm, the step-size parameter x4 determines the adaptive interference can-
celler transient performance in a nonstationary environment. By studying the impulse
response behaviour of the LMS algorithm, a reasonable choice for u can be made. Since
the LMS weight update is data-dependent, some assumptions have to be made to make the
analysis mathematically tractable. It is assumed that zp(n») = a, 2 constant. The weight
update equation then becomes

B(n + 1) = (n) + paény(n) , (3.12)
and in the z-transform domain,
= (3= )W (z) = paBuy() , (3.13)
Byy(2) = Xy (=) - Xupt(2) + W(z) = Xy (2) — aW (2) (3.14)
Now substituting for Eyy(z) and Xyy(2) in H(2),

()= Bav(?) _ Xuv(@) = pa®Buy(2)/(z— 1)

= " =1- H(z 3.15
XuvG) Xnv () (z—- piE. (19
Rearranging, ]
) 1 _ 1—21 .
H(ﬂ)— 1+#02/(z_1)_ 1‘—(1—#02)2—-1 y IZI>1",U.G - (3-16)
The z-transform pair
21 —fnT -
T—efTm1 < ¢ (3.17)

defines a time constant v = 1/4. Finally, solving for the time constant in Eq. 3.16, it is
found that T

T= —m . (3.18)
The step response of H(z) is therefore determined to be a decaying exponential with time
constant r.

Since the tw:st-gnd reflector can be simplistically interpreted as causing a step-change
in the cross-;aar radar sweep, we can use this result to choose a reasonable 7 for the adap-
tive cross-polar clutter canceller. The pulse width of the radar transmitter fundamentally
determines the length, or response duration of a point target. A good choice for 7 would
be to allow the speed of adaptation to be as high as possible, but long enough so that the
reflector response is not afferted. Choosing a time constant that is too fast would cause
the filter to start adapting to the reflector, and degrade the target-to-clutter ratio on the
output. Choosing a time constant that is too long would impede the ability of the filter to
adapt to changing clutter conditions and allow more clutter than necessary in the output.
This result can also be used to choose a value of A for the RLS algorithm, assuming that a

reasonable estimate of the return power, o‘ﬁﬂu, can be made.
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Figure 3.2: Ideal cancellation performance

3.2.3 Adaptive canceller performance

There is a common principle of operation for the aforementioned adaptive algorithms.
The weight in the adaptive canceller is adjusted so as to reduce the correlation between the
output éyy and the disturbance zyy. This signal processing idea assumes that the desired
signal, zHy, has an unwanted component which is correlated to the disturbance, zyy, and
therefore can be removed. Adaptive cancellation will only work if the clutter between the
cross—polarization channels is correlated. -

The cross-correlation coefficient between the HH-pol and HV-pol received signal is de-
fined to be

pHH HV = ———-—-E[zHHzHV] = ——————RMV(O) . (3-19)
' v E@HR)E(zy) \/R—HH.HH(O)RHV,HV(O)

Assuming that the canceller is operating under stationary conditions and has converged to

the optimum weight value, the reduction in clutter variance in the output is derived to be
equal to

2
aﬂHv

2
C’-'-'-'HV

=1- p?‘[H.HV M (3.20)

Fig. 3.2 is a graph of the ideal cancellation performance, showing the factor by which the
normalized target-to-clutter ratio can be improved, versus the correlation coefficient between
the zy and zyy log video channels. This performance curve cannot be realized in practice,
but it is useful as an indication of the possible bound on the expected performance.

4
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Figure 3.3: Sub-images of ACPIC processed data.
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Figure 3.4: Estimated histograms of peak target and average clutter for ACPIC result.
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|  Dofasco | La Salle Park
target (e, 6¢) | (20.8,2.2)dBm | (25.8,2.6) dBm
clutter (fte, &:) | (-0.4,0.6) dBm | (1.3,0.8) dBm
TCR 21.2 dBm 24.5 dBm
normalized TCR 35 29

Table 3.1: TCR estimate for ACPIC / CA-CFAR processed sub-images.

3.3 Discussion of results

The discrete LMS adaptive cross-polar interference canceller is used to process along the
- range sweep for each azimuth sampling of the scanning antenna. The processing is inde-
pendent from sweep to sweep, and therefore does not take advantage of correlations that
may exist in the azimuthal direction. A reasonable setting for the adaptation constant u
was experimentally determined to be 10™4. This is confirmed by the transient response
analysis. Using Eq. 3.16 and assuming ¢ = —30 dBm, the time constant of the adaptive
canceller is found to be approximately 10.6T, where T is the sample time. The target width
is approximate 2 — 37", so therefore the time constant meets the requirement of being short
enough to adapt quickly to changing clutter conditions, and yet long enough so that the
target is not adapted out.

The sub-images shown in Fig. 3.3 were processed with the adaptive interference can-
celler algorithm, then followed by the CA-CFAR processing. As is easily observed from the
images, both the Dofasco and La Salle Park reflectors show greatly improved visibility. Ta-
ble 3.1 summarizes the factor of improvement for the adaptive cross-polar clutter canceller
output. The NTCR values exceed that of the CA-CFAR only processed images by nearly
* 20, indicating that the correlation between HH-pol and HV-pol radar sweeps is high. This
is also reflected in the good separation between clutter and target histograms, as shown in
Fig. 3.4.

A performance limitation of the canceller is generally observable along the edge of the
sca and land clutter boundary. It takes a finite period of time (proportional to the r of the
adaptive algorithm) for the canceller to respond to a different clutter region, in this case,
land clutter. During this time an increase in clutter power can appear at the output.

3.4 Analog implementation

An analog version of the adaptive interference canceller is now presented. For the video
bandwidth analog implementation of the adaptive cross-polar interference canceller, Haykin
and Ukrainec successfully obtained Canadian and U.S. patents [27, 26). A simplified block
diagram of the analog canceller is shown in Fig. 3.5.
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Figure 3.5: Continuous time cross-polar interference canceller.

3.4.1 Continuous-time adaptation algorithm

The update equations are stated here, and the reader is referred to [33] for a2 more thorough
analysis of the continuous-time LMS adaptive filter. The single tap-weight update equations
are

éHV(t) = Iuv(t) - ﬁ(t):cHH(t) N t= 0,. ey OO, (3-21)
w(t) = pfot ZHR(s)eéy(s)ds + w(0), w(0)=10. (3.22)

The definition of the symbols is analogous to the discrete case, except for the introduction
of the adaptive gain parameter p. It is important to differentiate between p and p. It is
shown in {33] that the stable range of choice for p is not bounded. This result holds for
a stationary, bounded input. In the discrete case the step-size parameter y is bounded,
as stated in Eq. 3.4. These update equations can be extended to include the RLS case
by using a continuous version of the result shown in Eq. 3.11. The only continuous-time
analog adaptation algorithm considered here is the LMS version.

Figure 3.6 shows a block diagram of the analog hardware implementation of the adap-
tive cross-polar interference canceller using the LMS algorithm. Basic analog components,
namely summers, multipliers and integrators are used, and attention is paid to the band-
width necessary to operate with video signals. A wide-bandwidth prototype design was
constructed and tested in the laboratory. The corresponding schematic diagram is shown
in Fig 3.7. Testing with simulated signals, the canceller was found to operate as expected,
up to 2 bandwidth of approximately 12 MHz.

A notable advantage of the adaptive interference canceller is its robust operation. It
deals with changing conditions of operation, such as gain drifts in the radar set, magnetron
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Figure 3.6: Block diagram of analog implementation.
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Figure 3.7: Schematic of analog cross-polar interference canceller.
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transmitter power fluctuations, or multipath fading. Adjustment of the response of the
adaptive canceller customizes its response to that of the reflectors expected signature. These
qualities make it an excellent processor for the detection of trihedral twist-grid reflectors.

3.5 Summary

One method of joint processing both HH-pol and HV-pol radar returns to enhance target
visibility is given by the adaptive cross-polar interference canceller. The canceller is designed
to remove the correlated clutter between the two polarization channels. As a result of
the adaptive nature:of the canceller, it is able to operate in the nonstationary clutter
environment.

The theory of operation for the discrete LMS and RLS algorithms was derived. The
design issues with regards to tuning the transient response to match the reflector and
- stationary performance limits were discussed.

The radar sweeps were processed using the LMS version of the discrete LMS canceller,
and the resultant enhanced sub-images shown. The NTCR values and histograms reflect
what the eye can see, namely the high level of clutter suppression and target enhancement
achieved using this processing method in both the Dofasco and La Salle Park areas.

An analog implementation of the LMS-version of the ACPIC was suggested as a in-
expensive and robust practical signal processing solution. A video bandwidth version of
the canceller was designed, construcied, and tested. Based on this successful hardware
implementation, Canadian and U.S. patents were granted.

!



Chapter 4

Mutual information networks

Gilbert stated that “Information will be a2 measure of time or cost of a sort which is of
particular use to the engineer in his role of designer of an experiment” [15]. In this chapter,
the statistical measures of information theory are used as cost functions in the unsupervised
learning of neural networks. The desire is to process the HH-pol and HV-pol signals jointly
such that the mutual information between the outputs is minimized, under the constraint
that the output variance stays equal to that of the input. The expectation is that the
cross-polar reflector target response energy should be maximized in one of the outputs.

4.1 Information—theoretic principles

A few definitions are presented: first. The differential entropy of a continuous random
variable may be written as [5]

A(x)= [ f(z)1og (775) 2= == [ f=dtog ez, (4.1)

where f(z) is the probability density function (pdf) and § is defined as the support set,
the set of values where f(z) > 0. The relative entropy, or as it is sometimes called, the
Kullback—-Leibler distance, is defined as

D(fi £ = [ e tog (1)) aa, (1.2
where the support set of fj(z) contains the support of fo(z) for the measure to be finite.
The measure can be thought of as an oriented measure of distance between two probability
density functions. A special case exists when the relative entropy between the joint proba-
bility density function fyy(z,y) and the independent function of its respective probability
density functions fx(z) and fy(y) is considered. The mutual information between two
random variables is defined to be )

1Y) = DUxr (e} | e ) = [ [ frevtarayion (2D Y ey . (89

43
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Equivalently, in terms of differential entropies,
I(X;Y)= H(X)— H(X|Y) = H(Y) - H(Y|X), (4.4)

where JJ(X) is the differential entropy of X, and H(X|Y) is the conditional entropy of X
given Y. The entropies H(Y) and H(Y|X) are similarly defined. In communications theory
the mutual information is often used to measure the information capacity between the input
and output of a noisy, band-limited channel.

The specific case of Gaussian pdf is now considered. The differential entropy of a zero—-
mean, multivariate Gaussian distribution is found to be

1

Ho(X1,X2y..., X)) = He(X) = 3

log(27e)*|R] , (4.5)

- where R = E(XX7) is the autocorrelation matrix of dimension n x n. This also gives the
upper bound on the differential entropy of continuous variables in that

H(X) < Hg(X), (4.6)

for X zero-mean, given the same autocorrelation matrix [5]. Assuming that the joint
distribution is a bivariate Gaussian pdf, the mutual information is found to be equal to [34]

I(6;Y) = ~3log(1 = £%) (4.7)

where p is the correlation coefficient between z and y. In the Gaussian case, minimizing the
mutual information is equivalent to driving the outputs to being statistically uncorrelated.

Some properties that are useful to computing information-related quantities in network
architectures are now presented. The mutual information is equal to

IX:Y)=0, (4.8)

if and only if X is independent of Y. The entropy of a random variable remains unchanged
after translation, ¥ = X + k, so that

HY)=HX +k)= H(X). (4.9)

Under the linear transformation Y = WX, the entropy change is increased, such that

H(Y)= H(WX) = HX)+log(W]). & S (4.10)

For any continuous transformation of a random variable Y = F(X), the entropy is equal
to [69] "

H(Y) = H(X) - Elog(|TF(X)I)] , - (4.11)

where Jp(X) is the Jacobian of the transformation.
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Figure 4.1: Linear neural network architecture.

4.2 Unsupervised learning of neural networks

Two types of networks are considered: a linear network, and a non-linear radial basis
function (RBY) network. The linear network is easily trained and implemented, and is
optimum in the case that a Gaussian pdf describes the data. The nonlinear RBF network is
more difficult to train, however; it has more degrees of freedom to find nonlinear mappings
that satisfy the optimization conditions. Both networks are static after they are trained;

once the transformation is learned, the parameters are not changed during normal feed-
forward operation. :

4.2.1 Linear network

The linear network architecture is shown in Fig. 4.1. The transformation may be written
as E
Y = WX +wg, (4.12)

where X = [xyy | xyy] is the original data, Y = [yyy | ¥qv] is the output of the network,
and W is the matrix of weights, and wg is a constant bias vector. The desired mapping
can be Jearned by finding the solution to a variational problem with constraints [13]. The
weight solution is given by finding the solution to the gradient vector equation

Vol + AV,J =0, (4.13)

where I is the mutual information cost function, and J is the the constraint function that
prevents trivial solutions (e.g. all weights equal to zero). The mutual information cost
function that is to be minimized is therefore

'
EAY

I C(W)=I(Yyu; Yuy) + MIWWT| - 1] T (4.14)

o

The wy is set. equal to the negative of the mean, and therefore does not appear in the
cost function. The constraint term is introduced to ensure that the output covariance is
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constant, a.nd—Tzilual to the input covariance. This is easily verified. From the properties of
determinants, it is known that

[YYT| = [WXXTW]| = [WwWT|xXT] . (4.15)

The property given in Eq. 4.10 shows that this is equivalent to keeping the input and
output entropy constant, as long as the determinant of the transformation is kept constant,
no change in entropy occurs from input to output.

The linear transformation is restricted to effect first— and second- order statistics only.
As a direct consequence of this fact, the best result that can be expected is to decorrelate the
data. This is not as strong a condition as statistical independence. Independence implies
uncorrelated behaviour, but uncorrelated behaviour does not imply independence, except
for the case of Gaussian variates. From Eq. 4.7 it is known that the mutual information
between two Gaussian variates achieves a minimum when they are uncorrelated. The task
. can therefore be reduced to finding an orthogonal transformation to decorrelate the output.
A well-known statistical technique based on eigenvector decompositior is called principal
components analysis (PCA) projection [31]. The PCA projection is a data-dependent
transformation that applies a linear, orthogonal rotation to the original data, so as to
remove the correlation between the dependent variables. Writing the equivalent equations,

Y = WX+ W, suchthat E[YYT]=R,, (4.16)
where . -
Ri=0d? Ri=0, i#j. (4.17)
The weights are then determined from the eigenvector decomposition
R, =UDUT, D=diag(ds), i=1,...,n. (4.18)

The weight matrix is therefore set equal to the eigenvector matrix, U, and the wy vector is
set equal to the mean of the input data. A singular value decomposition (SVD) may also
be used [19]. '

The PCA approach has been cast into a connectionist framework, using 2 Hebbian
learning rule to achieve optimal (in the linear sense) unsupervised learning. Oja [55], Sanger
[61] and ethers have demonstrated online versions of the PCA algorithm. The linear network
has the advantage of being guaranteed (under reasonable conditions) to converge to a single,
global maximum. Kung [35] provides an extensive survey of PCA learning techniques for
neural networks. The Oja learning algorithm,

W(n+1) = W(n) + B [x(a)y(n) - $(m)y(aY] , @19)

was used to find the principal component [35]. The parameter § is the learning rate. The
orthogonal component to the estimated principal component is

Wy = [-5(2) @(1)]. (4.20)

The complete weight matrix is therefore

W= [ w ] _ (4.21)
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Figure 4.2: The radial basis function neural network architecture.

4.2.2 Radial basis function neural network

An early work study by Ukrainec and Haykin showed that a multilayer perceptron
neural network was able to perform difficult signal processing tasks, such as prediction on
a nonlinear time series [65, 22]. Radial basis function (RBF) neural networks have also
been successfully used by several researchers to solve difficult problems in signal processing
(2, 3, 32, 40, 39, 50, 49, 60, 22]. The RBF network architecture used here is presented in
Fig. 4.2. The inputs connect to a nonlinear hidden layer. The hidden layer, in turn, is
connected to the output by a linear layer. The hidden layer nonlinear functions are of a
type called radially symmetric basis functions. These functions can be chosen to be one of

many different forms possible. Here only the Gaussian form will be used. The nonlinear
functionals in the hidden layer are given by v

d;:-(x) = e-%(x—c,-)TS,(x—c,-) = e—::,—llx-C,‘Ili, (4_22)

where x % (T1,---,Zn. )T, 9;(x) is the 7** radial basis function evaluated at the input

vector X, c; is the j** RBF center, and S; is the j** multidimensional width, or spread.
The term in the exponential is known as the Mahalanobis metric, or weighted Euclidean
metric . The functional form of the RBF network is therefore given by

¥i= “Zh w;$;(x) + wo (4.23)

7=1
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where 3; is the i** output function evaluated for the input vector x, and w; is the linear
output weight corresponding to the j** hidden unit. The hidden layer has a total of n,
radial basis functions. The weight wy is the bias term. Given a set of input data vectors
and output data, {x;, ¥ |i=1,...,n,7=1,...,1,},

1 1 $1(x1) d2(x1) -+ énn(xa) nov oowne
x={ 2| &= 1 ¢1(.xz) : Cy= 3{% - :
Xn 1 $i(xa) - G () B i gl

where n, is the number of outputs. Rewriting Eq. 4.23 in matrix form,

Y = 3(X)W. (4.24)

Network design strategies

The determination of the hidden layer parameters is a challenging task. Various procedures
have been experimented with to learn the centres and widths (or spread) of the hidden layer
of RBF units.

Several non-adaptive strategies have been used to determine the RBF centres and spread.
The most straightforward choice for the location of the centres is to place them on an evenly
spaced grid, spanning the input space. Unfortunately, a very large number of RBF units may
be needed, since the number of units required grows exponentially with the dimensionality
of the input space. As the dimensionality of the input grows, most of the input space
becomes devoid of samples, and therefore. a large percentage of the centres lie in an area
where there are no date. Another more effective choice for the RBF centres is to set the
centres equal to a random sampling of the input data. This strategy ensures that centres are
located only in areas where there are data. 1t has been shown that as long as a sufficiently
large number of centres are used, good prediction performance on a chaotic time series is
achieved([2]. In either case, the RBF spreads arz chosen using some heuristic method.

Supervised adaptation of the RBF centres, spreads, and output weights using optimiza-
tion techniques have been used [40, 50). This strategy can give a minimal RBF network
configuration. Some of disadvantages with using optimization techniques are considerable
computational cost, poor scaling of learning as network complexity grows, and the pres-
ence of sub-optimal local minimum solutions. Lowe[40] points out that the same final error
performance can be achieved with a network with a larger number of non-adaptive centres,
with the same generalization performance.

The investigations of hybridized unsupervised/supervised training sckemes have shown
promise [50, 49, 60, 54]. Some of the advantages are computational efficiency, good scaling of
learning as network size grows, and faster convergence. The hybrid procedure consists of two
stages of learning: an unsupervised clustering algorithm is used to determine the parameters
of the hidden layer, followed by a supervised least-squares solution to the lirear output
weights. Moody and Darken[50, 49] suggest the use of the k-means clustering algorithm
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to find suitable positions for the centres. As a result, a smaller number of RBF units are
required. After clustering, heuristic methods are used to choose the spreads of the RBF
units. The k-means algorithm is an approximate version of the maximum likclihood (M-
L) solution for determining the location of the means of a mixture density of component
densities. The expectation maximization {(EM) algorithm can be used to find the exact M-L
solution for the means and covariances of the density. A comparison of these two Iéa.rning
strategies on a classification problem was done by Nowlan[54, 53], with the EM algorithm
shown to be superior. Saha and Keeler also studied the use of the k-means clustering for
the adjustment of RBF centres, and suggested an approach which they termed as ertended
metric clustering[60], where clustering is done in an augmented input-output space. Once
learning is complete, the cluster locations are projected back ontc the input space, and
used as the RBF unit centres. In recent studies by Ukrainec and Haykin [67, 22] the
hybrid training was applied successfully to signal processing functions. It was shown that a
combination of EM training and extended metric clustering, named EMX clustering, gave
the best overall performance in the example prediction and cancellation signal processing
problems. .

This same concept of projecting the parameters onto a lower dimensional space is
used here to learn the hidden layer RBF parameters. The EM learning is performed on
the 2-dimensional input space, and then the parameters are projected down onto two 1-
dimensional hidden layers. The linear layer then combines the localized representations to
provide the desired mapping.

Unsupervised clustering algorithm

The expectation maximization (EM) algorithm is a general approach to_iteratively com-
puting the maximum-likelihood (ML) estimate of parameters of mixture density problems.
This algorithm has had broad application in the areas of study of ML estimates from in-
complete data [8], estimating mixture densities [57], and unsupervised clustering [10]. Here
we will concentrate on the application of the EM algorithm for unsupervised clustering, to
learn the RBF centres and spreads.

A mixture distribution of Gaussian pdf’s is given by

xl6) = 3 P()p(xili,65) (4.25)

j=

. 1 -t =t YT (%~
p(xk|7, 0;) = Wc (= )T (X 2,) (4.26)
where 8 = (84,...,0y,)is the vector of parameters (means and covariances) to be estimated,
d is the dimensionality of the multivariate Gaussian density, g; is the mean, and Z;is
the covariance. The EM algorithm iteratively converges to 2 maximum of the likelihood
function, yielding an estimate of the parameters of the component densities. Although the
algorithm is guaranteed to converge, there is no guarantee that it will converge to a global
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maximum. The update equations are given as follows:

Bli)=1 3 B(ilxe, §) (4.27)

; Zk—l P("'-le, B)xk (4-28)
St P(ilx, 8)

- k= f’(‘lxk,f’)(ftk - #;-)(xk - i
Y= P(i|x, 8)

B(ilxe. & P(i)p(xili, 8;)
POk ) = o Gypxelis ) (4:30)

)‘I‘

(4.29)

. An additional step was added to these standard update equations to ensure that the algo-

rithm learned localized representations. The test
SH=xf, wiisyf, (4.31)

ensures that the spread is limited to a maximum giver by ;. Without this extra step, the
algorithm may converge to solutions where one or more of the components of the mixture
distribution span a large area of the sample space, overlapping other components. Although
these are valid solutions, they are not desirable when the parameters are to be transferred
to a RBF network that presupposes localized representations.

The equations describe a batch processing algorithm, where all the data are used for
each jteration. An on-line version of the EM algorithm was suggested by Nowlan [53], where
the density parameters can be continuously updated as new data become available. This
may have application if the input space is slowly changing, and the representations need to
be fine tuned. For the purposes of this study, the batch update algorithm is used exclusively.

It is evident that the RBF given in Eq. (4.22) and the Gaussian component density in
Eq. (4.26) have almost the same form. It is hypothesized that the individually learned i;
of the component uensities should give a good location for the centres of the RBF units.
Likewise, the estimated:covariances can give the required spread of the RBF units.

The hybrid learning procedure is therefore given as follows:

1. choose the number of RBF units (and hence the number of component densities);
2. initialize the density parameters;
3. iterate the EM algorithm until convergence;

4. transplant the estimated pa.ra,meters of the component densities into the RBF units,
so that ¢j « fi;, S; «—aE ,where 0 < a < 1;

5. forward-propa.ga.te the input data to the output of the RBF hidden layer;

6. compute solution to linear weight layer.
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The factor « is introduced to increase the spreads in order to smooth the interpolation
performance of the network. As shown by Ukrainec and Haykin [67], the performance
increases as a is decreased, although localization of response decreases.

Minimum mutual information learning

The mutual information cost function for the RBF network is similar to that of the linear
network. The objective is to minimize the mutual information between the outputs, while
keeping the output entropy fixed. Once the basis functions are trained using the unsuper-
vised method described in the previous section, they are fixed and only the output layer of
weights need to be learned. The cost function is therefore

C(W) = I(Yy; Yyy) + MH(Y) - H(X))] . (4.32)

The constraint term explicitly ensures that the output entropy is constant, and equal to the
total input entropy. The advantage in using a nonlinear network over the linear network is
in the increased degrees of freedom in the mapping. The entropy of the output is given by

H(Y)= H(X) - Elog(I/r(X)|)} +log(IW]) , (4.33)

where Jr(X) is the Jacobian of the hidden layer transformation. The RBF network has an

advantage here over other neural networks, such as the multilayer perceptron, in the sense™

that it has a set of fixed basis functions, or in other words, a non-adaptive hidden layer.

The numerical estimation of I(Y}y; Yyy) requires either a @ priori assumed distribution
model or a model-free estimate. A model-free estimate is possible but is computationally
expensive (order NlogN [14]), and must be recomputed on every iteration of the opti-
mization routine used to minimize the cost function. Previous researchers Becker [1] and
Zemel [73] have used the Gaussian distribution model assumption when attempting to esti-
mate mutual information. Preliminary studies done by Ukrainec and Haykin [66, 68) have
shown that it is possible to use the Gaussian-based mutual information measure given in
Eq. 4.7 as an estimate of the mutual information. The advantage is that it is easy to com-
pute. However, since the distribution is known to be non-Gaussian, it is also inacurate. At
best, this is an upper bound on the mutual information, since we know that by the prop-
erty in Eq. 4.6 that for a given autocorrelation function, the differential entropy is upper
bounded by the Gaussian distribution.

The cost function that is used is therefore

1
C(W) = —5log(1 = pyy av) + MIYYT| = IXXT| 4 e - (4-34)
Through experimentation it was found that putting additional constraints on the output

mean, variance, and skew improved convergence and helped to avoid undesirable local
minima. The additional terms of Jye. are

[Bysn] + 1By (4.35)

b
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Figure 4.3: Scatter plotf,o'f' the output of the linear network.

to insure zero-mean output. An equal output variance term,

I&WHI - &UHVI H (4'36)

is introduced to encourage a circularly symmetric distribution. Finally, the third-order
moment, or skew, is constrained. The additional penalty term is

Yumnl + Fuvl (4.37)

The quantity is normalized for the Gaussian distribution so that zero skew is equal to the
skew of a Gaussian distribution, which has maximum entropy. In summary, constraints
are introduced on the moments of the output so as to force the output to approximate a
Gaussian pdf. A constrained optimization routine is used to minimize the cost function.

4.3 Experimental results

4.3.1 Linear network

_ PCA trained lincar networks have been used in the past to enhance the contrast and

target-to-clutter ratio of polarization targets [63, 37]. The principal component is the vector
direction that has the largest variance when the data are projected onto it. It is assumed
that this projection will contain: most of the like-polarized clutter energy, and that the
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| Dofasco | La Salle Park
target (2, &¢) (19.6, 1.38) | (22.2,1.65)
clutter (i, 5c) | (4.26,0.553) | (4.01, 1.08)
TCR 15.3 18.2
normalized TCR 28 17

Table 4.1: Estimated parameters of linear network processed sub-images.

projection ‘onto the direction orthogonal to the principal component, w; will contain the
desired reflector target response.

A representative 200 x 200 pixel training sub-image was chosen that did not overlap
either Dofasco or La Salle Park sub-images. After mean removal, the Oja algorithm was
aused to estimate the weight matrix. The sub-images of interest were then processed by the
linear network and viewed. The resultant orthogonal images did not contain an enhanced
reflector target, but rather had a much enhanced sea clutter component. After observing
the scatter plot of the output of the linear network, it was obvious that this is a result of
the non-Gaussian nature of the distribution. The sea clutter data values are more denscly
represented than the land clutter values, and therefore the orthogonal transformation was
biased in the direction of the sea clutter. To overcome this problem, the orthogonal pro-
jection was biased so that a residual correlation remained. The scatter plot of the resulting
output is shown in Fig. 4.3. This biased projection results in a residual correlation ctitl:ﬂi-
cient of approximately 0.53 in the output data, corresponding to a mutual informatiosi'rate
of approximately 0.1 bits.

Figure 4.4 shows the processed sub-images of interest, after the additional CFAR pro-

cessing. The images show an enhanced target, although not nearly as prominently visible
against the clutter background as that of the adaptive interference canceller. This is re-
flected in the estimated histograms in Fig. 4.5 and the normalized TCR results in Table 4.1.
The NTCR values show that by comparison with the adaptive interference canceller, the
performance is poorer. This is attributed to the adaptive nature of the canceller process'mg.
In general, PCA techniques are applied against a single type of clutter background. The
clutter process in these sub-images can be thought of as a mixture distribution, where the
differing regions of clutter require a different projection.

4.3.2 The RBF network

After initial explorations, a mixture density is learned using the EM algorithm, as
described in Sec. 4.2.2. Again, the same 200 x 200 clutter region is used for training. The
scatter plot of the combined Dofasco and La Salle Park input data is shown in Fig. 4.7, with
the learned ellipsoidal standard deviations of the components of the mixture of Gaussian
densities superimposed. The number of components in the density used to mode! the clutter
is chosen to be 7, with 2 extra units introduced to represent the reflectors. These extra

Y
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units were introduced: manually in order to have a response from the target as well as
the clutter. The manual introduction was necessary since the number of target samples
is under-represented in the available data; a statistical learning method gives the target
samples little weight, leaving the targets unrepresented. The locations of the centres is
approximated from scatter plots of the target samples, and set equal to (13,18) and (6,14)-
The covariances are chosen to be circular, equal to = diag(4,4). with a standard deviation
of approximately 25% size of the clutter densities, Having adequately modeled the clutter
~ and targets, the parameters of the two—dimensional mixture representations are projected
onto both HH-pol and HV-pol axes, resulting in 18 one~-dimensional RBF units. To improve
the interpolation guality of the network, a factor of & = 0.01 is applied to the clutter spread
parameters.

The next step is the mutual information training to learn the weights. A subsampled
data set from Dofasco and La Salle park regions isused. The data set is the same as shown
. in the scatter plots, with the same area coverage as the sub-images, except subsampled in

range by a factor of 4 and in azimuth by a factor of 10. The weights are initialized to give

the same mapping as the linear network. The constrained optimization routine is used to
minimize the cost function given by Eq. 4.34 subject to the constraints. After convergence,
the residual mutual information is estimated to be equal to approximately 0.036 bits, The
scatter plot of the output of the network is shown in Fig. 4.7. As can be observed, the data
distribution is more clustered around a single point, rather than distributed over a large
range, as in the scatter plot of the input data. Figure 4.8 shows the resultant nonlinear
* mapping learned by the RBF network. The inputs are along the x— and y-axes, and the
z-axis height is the yyy output.

The output of the network is processed by the CA-CFAR algorithm, as in the previous
processing cases. The resultant sub-images in Fig 4.9 show much enhanced target visibility,
in both Dofasco and La Salle park areas. The clutter is generally well suppressed. However,
some false targets are visible as well. The histogram data in Fig. 4.10 show good separa-
tion between target and clutter distributions. The statistics in Table 4.1 verify the higher
visibility of the target. The normalized TCR values are the highest of all the individual
methods considered thus far, for both Dofasco and La Salle Park areas.

N

4.4 Summary

The unsupervised training of liear and norlinear networks with information-theoretical
measures is investigated. The principle of minimizing mutual information between the
outputs is used to separate the clutter from the desired targets in a non-Gaussian pdf. For
the case of a linear network, it is shown that this condition is equivalent to decorrelating
the output using PCA techniques. A nonlinear RBF network was proposed as a method
by which to improve the mapping in the non-Gaussian clutter environment. The RBF
network is trained using a novel hybrid method, where the hidden layer is-determined using
a mixture density modeling techrique, and the output linear layer is learned by minimizing

the mutual information cost function that is based on a Gaussian pdf assumptlon Both

lincar and RBF networks are static once trained.
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The PCA-trained linear network solution was found to be inadequate. By biasing the
solution and thereby leaving a residual correlation in the data, the NTCR result is improved,
but is still less than that of the ACPIC result. Next, the RBF hidden layer was trained on
clutter data, and RBF functionals were added to represent the target response as well. A
constrained optimization routine was then used to train the output linear layer to minimize
the mutual information functional, resulting in a residual mutual information of 0.036 bits.
The sub-images show an enhanced target and reduced clutter, which is verified by high
NTCR values. -

A disadvantage of using the RBF network, and nonlinear networks in general, is the
manifestation of local minima. With linear networks, there is a guarantee of a single, global
maxima or minima. Not so with nonlinear networks. The experience gained training these
networks has shown that the more e priori information is used to design and train the
network, the less the probability of converging to a local minima solution.
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Chapter 5

Modular neural _network

In the previous two chapters, various adaptive and neural network solutions have been
proposed to combine the HH-pol and HV-pol radar images in order to enhance the cross-
polar performance of a precise radar navigation system. The solutions employ learning net-
work parameters from training samples, based on unsupervised principles. In this chapter, a
non-learning modular network approach is presented that combines the two learning-based
networks to produce a result that is better than® either network used on its own. A non-

learning method is defined as a method that uses information other than that contained in
the training samples [28). -

5.1 Network design

For a modular network to perform better than its paris, each sub-network must provide
some independent information. Two processing methods discussed in previous chapters
which meet this criterion are the adaptive cross-polar interference canceller and the RBF
network. The ACPIC is a linear network, capable of adapting to the cross—polar variations
in the clutter environment. It functions well under conditions of varying clutter power;
however, it does not suppress clutter as well the RBF network. The RBF network, on
the other hand, provides a stationary nonlinear mapping that enhances the cross-polar
performance..It provides an excellent enhancement of cross-polar reflectors; however, it also
enhances natura.lly occurring crOas—poIa.r clutter point targets. Judging from a subjectwc
inspection of the two radar images produced by these two methods, and their operation, it
is hypothesized that a modular network should capture the desirable characteristics of both
these networks. '

Figure 5.1 is a diagram of the modular network. After the data is processed by the
respective methods, the results are normalized (based on the estimated histogram) making
the data ranges a.pprox;mately the same. The normalization is such that

N
SoA(E) = N, (5.1)

=1

= 63
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9 processor output
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Figure 5.1: Modular neural network. :

Dofasco | La Salle park
target e, o0 | (2.06, 0.10) | (2.68, 0.18)
clutter (e, &.) | (0.522, 0.034) | (0.556, 0.067)
TCR 1.54 2.12
“normalized TCR 46 32

Table 5.1: Estimated parameters of modular network processed sub-images.

iﬁ(i)ﬂ\ﬂ ~ 0.02, (5.2)
e
'Z a()/Ne = 0.02, (5.3)

where #(4) is the estimated histogram, N is the total number of histogram bins, n is the
lower (black) 2% bin, and n,, is the higher 2% bin (white) bin. Based on the n; and the n,,
values, the data are scaled to the [0,1] interval. The normalized data is then weighted and
summed together, and the result processed by the CA-CFAR algorithm. The un-informed
choice for the weights is to set them to be equal, and so they are both set to a value of 0.5.

5.2 Experimental results

The sub-images in Fig. 5.2 show an example of the resultant output from the modu-
lar network. The images retain desirable characteristics of both the individual processing
techniques, suppressing both average and peak clutter while enhancing the target. Fig-
ure 5.3 shows the corresponding histograms of the average clutter and peak target over the
28 scans. The estimated normalized TCR in Table 5.1 shows an improvement for the La
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Salle Park area, while the value for the Dofasco area stayed essentially constant. It is likely
that no further improvement is possible in the Dofasco area in terms of the average clutter
performance.

The normalized TCR was introduced as a measure useful for quantifying the visibility
of the target against the average background clutter. A new measure is now introduced,
namely the estimate of the receiver operating characteristic (ROC), which plots the esti-
mated probability of detection against the estimated probability of false alarm for a partic-
ular processor. The ROC is reflective of the suppression of peak clutter phenomenon, which
drives the false alarm rate. A thorough statistical analysis for estimating the ROC requires
many independent data sets containing target and clutter. Unfortunately, this experiment
limits the analysis to 2 single scene averaged-over 28 scans. Proceeding with this limitation
in_mind, the ROC’s are plotted for the adaptive interference canceller network in-Fig. 5.4,
for_the RBF network in Fig. 5.5, and for the modular network shown in Fig. 5.6. The
dotted Lines show the 90% confidence intervals for the estimated probability of detection,
" and false alarm. The computation of these confidence intervals is described in Appendix C.
The number of target samples is low; accordingly the graph to the left of the dotted line is
regarded as not statistically significant. However, the overall trends indicated in the graph
still provide useful information.

As can be observed from .these plots, the ROC for the modular network shows an
improvement for the Dofasco area, yet no improvement is noted for the La Salle Purk

area. This is in contrast to the NTCR estimates which indicated improvement in the La
Salle Park area but not in the Dofasco area. The average visibility is increased in the case

of the La Salle Park area, and the peak clutter that is responsible for false alarms is reduced
in the Dofasco area (as suggested by the ROC plots). This shows that the modular network
is able to integrate the performance aspects of both networks to give an improved overall
result.

5.3 Summary and discussion

A non-learning modular neural network is presented. From the above analysis it is clear
that the modular network is able to integrate the desirable qualities from the ACPIC and
RBTF network methods to achieve an overall enhanced reflector result that is superior to

either network alone. The estimated NTCR values and ROC plots verify that the overall -

average and peak clutter suppression performance has been improved. As a side benefit, the
modular network should also be more robust in operation, since'the network would continue
to function even if there was a complete failure of one of the network sub-modules.

In this presentation the modular network was described a*non—learmng, and a knowledge—
based heuristic argument was given to justify summing of the individual network module -

outputs. Modular network weights can also be learned by minimizing a cost function, as is
commonlTused in feature extraction tasks. For example, weights computed from a principal
component analysis (PCA) could be used to combine the outputs to produce 2 maximum
(or minimum) variance projection of the data.

Finally, ra.thér’{;han summing the outputs of the individual network modules, another

Ry
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—

opticu=is to choose the network result with minimum output. This operation is related
to the fuzzy set intersection operator, where the fuzzy intersection between two fuzzy sets
is the minimum value between the two fuzzy measurement functions {64]. In practice, it
was found that the result of using the minimum operation was similar to that of using the
simpler summing function. The use of minimum (or maximum) operators is mentioned
here since a competitive learning algorithm could be constructed based on which module
provided the best operation for a particular type of training input.
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Chapter 6 =~

Post—detection processing

6.1 Motivation for post—detection processing 2

The radar environment contains various forms of clutter, both natural and man-made,
which may have high cross-polar radar returns. This type of clutter causes false alarms,
reducing the overall performance of the detection system. Up to this point, the processing
has not made use of any a priori information about the target location. A prioriinformation

" about the target position will now be used in a post-detection processor to réduce the false
alarm rate to 2 very small number.

There is one observation that can be readily made about the location of a reflector target.
The reflector must be visible to ships navigating the confined waterway, and is therefore
assumed to be located near an unobstructed water-land interface. Although other choices
further inland are possible, natural and man-made obstructions are more likely to limit
target visibility, and therefore make these locations a poor choice, in general. It is assumed
that the reflector will always be located at a preferred location near the water-land interface,
and therefore detections which are distant from this boundary can be discounted as likely
to be false alarms.

Another observation about the reflector target position is that the locations chosen for
the reflectors would not be adjacent to an area containing clutter with high cross-polar
radar returns. It is perceived to be an easy task to ensure that the reflectors are located in
an area where cross—polar clutter is minimal, since this is under the control of the installers
of the navigational system.

The post—detection processor described in this chapter is designed to combine a priori
location information along with the primary detection results, thus giving an improved final
detection.result. In this manner, false alarms can be virtually eliminated.

iy

6.2 Descriptior:f of the approach

Figure 6.1 is a block diagram of the stages in the post—detection process. The output of the
HH-pol and HV-pol modular network processing stage is presented to a threshold detector.

73
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The output of the threshold detector is a binary map of the location of tke detections. If
the threshold is set sufficiently low, both targets and false alarms are included in the set of
detections. The water-land interface of interest is determined automatically using a vision—
based edge detection algorithm, known as the CARTOON algorithm [58]. The algorithm is
tuned to the radar environment, accepting the HH-pol radar image as input and producing
an edge map at the output.

6.2.1 The CARTOON algorithm

A block diagram u’“e CARTOON algorithm is shown in Figure 6.2. The basis of the
algorithm is the detection of zero-crossings of an image after being filtered by the Laplacian
operator

V2G(z,y),  Glsy)= e sE/FHE), (6.1)

The location of the zero-crossings correspond to edges in the image. This Laplacian oper-
ator is discussed in detail by Marr[46]. In general, the operator is chosen to'be circularly
symmetric. The algorithm was generalized in this particular application to use‘olliptically
symmetric Gaussian operators, since the resolution of the radar image is genera.]]y”_c.‘gffercnt
in range and in azimuth. The Laplacian of the Gaussian operator (normalized) is thercfore

2 2 2
ViGa(r) = (1- T)ei?, 2 E 4L ,
Gn(r)=(1 2)3 T, r _a§+a;_, (6.2)

The parameters of the CARTOON algorithm need to be adjusted to match the resolution
of the radar system, and the scale of the desired edge map. The masks need to be chosen to
be fine enough to preserve the desired detail in the edges, yet coarse enough so that noise
and small objects do not get recognized as edges. The scale was purposefully chosen so that
small objects, such as ships, do not get detected as edges. For the fine mask, parameters
oz = 6 and o, = 24, and for the coarse mask, parameters o = 12 and o, = 48 are used.
The Gaussiau smoothing mask used is chosen to be half the size of the fine mask, so that
oz = 3 and oy = 12 for the operator. -

The CARTOON algorithm makes use of the fine and coarse operator masks to achieve
a robust edge map. After filtering with the masks, the positive and negative bitmaps are
AND’ed together, and then smoothed by a Gaussian mask. The smoothed bitmaps are then
AND’ed together. Only edges that are common to both fine and coarse filtered bitmaps
appear in the final output.

Figure 6.3 shows the results for the scenes of interest. Note the false edge artifacts found
in the La Salle Park image. These are due to the finite support of the image, and do not
pose a serious problom. They can simply be ignored since the the likelihood of false alarms
as a result of sea clutter in a confined waterway is extremely low. In practice, we need only
choose an image slightly larger than that required to avoid these artifacts.

Since we are only interested in the first water-land interface, the edge map produced
by the CARTOON algorithm is presented to a “first-edge” detector, which responds to the
first edge it finds along each radar sweep; the resulting edge map is shown in Fig. 6.4.

I
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Figure 6.2: Block diagram of the CARTOON algorithm.
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6.3. EXAMPLE OF POST-DETECTION PROCESSING T

6.2.2 Fuzzy detection processing

Fuzzy set theory is next used to combine the two pieces of information, specifically,
that of detection locations and first~edge locations. The intersection of these two fuzzy sets
effectively combines the detections with the edge information, resulting in a greatly reduced
false alarm rate.

The crisp set of primary detections is fuzzified by choosing a Gaussian form for the mea-
surement function of the location of the detection. In a similar fashion, a Gaussian {orm for
the measurement function is used to specify the degree of “edginess” at a particular location
in the radar image. This is done by superimposing a Gaussian function at each pixel in
the corresponding detection and edge images. The two dimensional Gaussian measurement
function is centred on each white pixel. Since adjacent pixels will cause the measurement

functions to overlap, the fuzzy union operator is used to combine these subsets. Explicitly,
we have

u6(z,¥) = Vi pr(z — 25,y — %), (6.3)

where z; and y; are'the locations of the non-zero pixels in the radar images,-and the fuzzy
union operator

Vi pr(zi,g) = m?-xFF(xiayi) (6.4)

is defined as being equivalent to finding the maximum value over the set of overlapping
measurement functious at the image location (z,y) [64].

We are interested in the case where a detection is the vicinity of an edge, or in other
words, when a target and an edge are present together. It follows that the desired resultant
set can be found by taking the intersection of the fuzzy set of detections with the fuzzy set
of image edginess, such that

pH(z,y) = pea(z, y) A 1Ge(Z,¥), ((5.5)-.‘7;

which is equivalent to determining the minimum value between the two sets at each (z,y)
location [64]. Finally, since we are interested in a binary result, we need to defuzzify the set.
A threshold is chosen in order io make the set of post-detections crisp, or in other words,
binary valued. The final binary result contains only detections that are near edges, which
should be our reflector targets. Since edges (as defined in this section) generally occupy i

small percentage of the total area of interest, this post-detection processor greatly réduces
the probability of false alarm.

6.3 Example of post-detection processing

To demonstraie the operation of the post-detection processor, a threshold level was
chosen for the primary detection stage such that the false alarms would be present in the
output. The fuzzified detections and edges are shown in Figs. 6.5 and 6.6, respectively.
The final post-detection results after fuzzy processing are shown in Fig. 6.7, where they
are superimposed on a reduced intensity HH-pol image as a guide to the location of the

h

It
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Figure 6.4: Result after radially proceséed first edge detection.
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Figure 6.5: Gaussian measurement function applied to detections.
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Figure 6.7: Final post-detection resuit.
visual aid.

% v v Y i
: La Salle Park

The original HH-pol image is superimposed as a
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detections. The false alarms present after primary detection have been effectively removed,
leaving only the targets of interest; this is a significant engineering accomplishment.

Only the first—edge areas are considered suitable locations for the reflector targets. As
long as this assumption holds true, it is obvious that the false alarm rate is reduced by
the factor of first edge area over the total area of interest. Since the first-edge arcas are
estimated to be approximately 10% of the total sub-image land clutter area, the false.alarm
is reduced by a factor of 10 or more.

6.4 Implementational issues

The entire post-detection process can be implemented using a neural network architecture,

consisting of radial basis functions, tapped-delay lines, weights, and simple thresholding
devices. =

The CARTOON algorithm requires 2-dimensional convolvers, threshold devices, and logic
devices arranged in the fashion described in Fig. 6.2. A 2-dimensional convolver may be
constructed from parallel tapped-delay lines, with the weights programmed with the de-
sired mask values. It has been shown that the Laplacian operator can be approximated
by a difference of Gaussians (DOGs) [46]. Therefore, a 2-unit RBF network can be used
to implement the DOG. Likewise, the Gaussian mask used for smoothing can also be con-
structed using single RBF function. The simple AND and inverting logic functions are
easily constructed using appropriate weights and a threshold unit.

As shown by Jang and Sun [29], a fuzzy decision system can be implemented by an RBF
neural network. The measurement functions can be constructed using a single RBF unit.
Minimum and maximum functions have been constructed using neural networks with feed-
back connections. A simple threshold device can perform the defuzzification, by mapping
the fuzzy values to a crisp binary value.

The intent here is not to give a detailed implementation, but merely to point out that it is
indeed feasible to implement the post-detection processor using simple analog components
in a neural network type of architecture. This is an advantage in radar signal processing,
since high bandwidths and data rates limit the amount of digital signal processing that can
be accomplished.

6.5 Summary

A post—detection processor was described that makes use of a priori information about the
reflector target locations to reduce the false alarm rate significantly. This is accomplished
by combining primary detection results with the location of the water-land boundary, where
it is known that the reflectors should be located. The location of the water land boundary
is determined a.utomatica.lly-'hsing the CARTOON algorithm, modified to work in the radar
environment.

An example scenario is described with each stage of the post-detection process dlsplayed
After edge detection, a first-edge detector removes all edges except those at a water-land
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~

boundary. A fuzzy set processor applies a Gaussian measure function to the%edge and
primary detections, and then combines the results with an intersection operator. After
making the results crisp, it is shown that only the reflector locations remain. Since only
the water-land boundary areas are considered valid locations for detectors, the false alarm
rate is greatly reduced. '

Finally, a neural network architecture is suggested for implementing the post-detection
processor. e
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specially modified to perform with radar resolutions. The fuzzy set reasoning combines the
edge information corresponding to the water-land boundary with primary detection results
to remove false targets. A demonstration using example images successfully eliminates false

~ targnts from the image, leaving only the desired reflector target locations.
The entire signal processing and detection system is implementable with relatively simple
analog processing elements. The novel analog hardware implementation of a wide bandwidth

design of the adaptive “ross—pola.r interference canceller was granted Canadian and U.S.
patents.

B
el

7.2 Contributions of the thesis

o First direct digital data recording of full scan radar data in the field (dual-channel)
at McMaster University, including the design and construction of support hardware
to achieve the desired goal.

o Plan and design of a radar field experiment, including making special modifications
to the commercial radar receiver to improve data. integrity, and thereby increasing IF
dynamic range. o

e Development of i'ea.l-time software to acquire data from a digital tape recorder to
microcomputer.

RS . .
o Canadian and U.S. patents obtained for-the adaptive cross-polar interference canceller

based on simple, robust, analog implementation; operation studied and quantified by
digital simulation.

¢ Prior to the development of the ACPIC, no established methods existed for the en-
hancement of twist-grid retroreflectors.

» Demonstration of application of neural network techniques to nonlinear signal pro-
cessing, representing one of the first publications of this fact,

¢ First dual-channel polarimetric processing documented using neural networks.

¢ Demonstration of superior modeling performance of extended metric expectation max-
imization algorithm clustering for choosing hidden layer parameters of an RBF neural
network in signal processing problems, which is important for finding minimal config-
uration RBF networks.

e Development of novel neural network structure for the unsupervised learning of non-
linear projections, based on minimizing mutual information content of data.

¢ A unique modular network approach that successfully combines the desirable proper-
ties of various signal processing blocks to achieve a superior target enhancement.

» Vision-based image processing edge detector modified to work at radar resolutions.
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Conclusions

7.1 Summary of results

The objective of this thesis was to demonstrate the successful enhancement and detection of
a cooperative cross—polar target. The estimated normalized target-to-clutter ratio results
for the signal processing methods are summarized in Table 7.1. Each of the individual pro-
cessing methods has a distinct character. The CA-CFAR processor uses a two dimensional
local estimate of clutter to achieve a constant falee alarm rate performance at the output.
The ACPIC processor reduces clutter in a non-statiorary clutter environment. The RBF
network uses a nonlinear mapping to overcome the non-Gaussian nature of clutter statistics
and provides a superior target enhancement. By integrating the desirable characteristics of
these sub-network solutions into a modular network structure, a final average (and peak)
clutter suppression performance is achieved that is better than any one of the methods used
by itself. The resultant enhanced images are presented to the operator, as well as to the
primary threshold detector. -
The post-detection stage strives to imitate human reasoning. It successfully incorporates
a priori information about the context of the waterway and the likely location of the radar
reflectors. The solution involves a novel combination of a vision-based image processing
technique and a fuzzy processor. The vision-based edge detection algorithm, CARTOON, is

Type of processor NTCR .
Dofasco | La Salle Park
CA-CFAR 16 7
ACPIC / CA-CFAR 35 29
RBF net / CA-CFAR 46 30
modular / CA-CFAR 46 32

Table 7.1: Summary of NTCR. performance of signal processors.
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S .

e Introdaction of a novel post-detection strategy incorporating a priori information
about reflector locations along the water-land boundary of a waterway to reduce-false
alarms. '

B
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Appendix A

PRAN systerh specifications

‘}é\: |

\
\

A.1 Radar system

Modified RACAL-DECCA RM1229 transceivers

Transmit frequency 9.488 GHz
Peak power —— 25 KW
Pulse width - 7 50nS
Pulse repetition frequency 3400 Hz

Receiver bandwidth - 15 MHz

Kevlin 2204 2-channel rotary joint

Channel isolation 50 dB

Andrew PXL4-107ST 4-ft. dual-polarized parabolic antenna

Dual-polarized linear feed

Beamwidth . 1.6 degrees
Gain 38.5 dBi @ 9.4 GH=z
Cross—polar discrimination 25 dB

Scan rate 28 RPM

89
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A.2 Sampling system

~sampling frequency
quantization
range offset
range swath
- azimuth position encoder

30 MH=z
linear, 8 bit
320 samples
520 samples
12 bit

2

W
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Appendix B

~

Calibration of radar system

g

Figure B.1 (a) shows 2 block diagram of the signal path from the X-band input of thc
radar receiver to the digital output of the sampling system. The 75-ohm attenuators were
used to control the amplitude of the video signal before it entered the sampiing system.

B.1 Radar receiver modeling e
To determine the relationship between input power and video voltage, a pulse modulated
X-band signal of similar parameters to that of the transmitted radar pulse was injected
into the input ports of the radar receiver, as shown in Fig. B.1 (b). The resultant video

‘voltage was monitored on an oscilloscope, and the peak voltage recorded. This procedure

was carried out on both polarization channels. Figure B.2 shows the measured data points,
along with a fifth order polynomial curve that was fitted to the data. As can be observed
from the graph, the middle section of the response is approximately linear, while both the
low and high ends become increasingly nonlinear. The video response to a large input
eventually saturates.

A model is needed to fit the response curve of the radar receiver. The behavioural model
discussed by Rinehart [59] provides a good fit to the logarithmic receiver. The model is
given as

alogyo [(p,. + Pn) l + b]] = Wideo (B.1)

Pr+Ds

| HH-pol channel | HV-pol channel
a -0.6217 -0.4330
b -7.1234 -5.0271
Pn | 6.3322x 10712 | 9.5332 x 10~12
ps | 3.5301x10~% | 9.7638 x 10~°

Table B.1: Parameter estimates for behavioural model of radar receiver.

91
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Figure B.1: (2) Block diagram of signal path in the system. (b) Radar receiver calibration.
(c) Sampling system calibration.

| HF-pol channel | HV-pol channel
m.g »-0.0208 = -0.0147 z
b 1.0922 . 0.7701

Table B.2: Parameter estimates for linear model of the sampling sys;t'ém.
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B.1. RADAR RECEIVER MODELING
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where p, is the power input to the receiver, p, is a noisf.'.;power parameter, p, is a saturation
power parameter, ¢ is a scaling parameter, and b is an offset parameter. The maximum
likelihood (M-L) method was used to find the parameters of the model (a Gaussian den-
sity model for the noise is assumed). To achieve a good model fit, data values beyond the
maximum power response point in Fig. B.2, are not used in the fitting procedure. These
data points violate the monntonically increasing assumption in the model. This reduction
in output voltage response with increasing input power is due to energy increasing in the
harmonics of the test signal and the corresponding lessening of energy in the fundamental
of the test signal. This is a common observation in systems that are driven into saturation,
resulting in a decrease in output response with further increases in input. The resultant fit-

ted curve is shown in Fig. B.3. The estimated parameters for both channels are summarized
in Table B.1.

B.2 Sampling system modeling

The block diagram in Fig. B.1 (c) shows the manner in which the sampling system was
calibrated. A signal generator was used to generate sine waves with peak amplitudes as
shown in Fig. B.1 {c), and with a frequency of approximately 1 MHz (946.4 KHz). The sine
waves were injected into the sampling system and recorded onto tape so that a relationship
could be determined between the input voltage and the digital value produced by the A/D
converter. The data was recovered from tape into the computer, and a sine wave was fitted
to the data using the M-L method. It is assumed that the sine wave is in additive white
Gaussian noise (AWGN). The data and the resultant fitted sine wave are shown in Fig. B.4
for both channels. Channel 1 corresponds to the HH-pol channel, channel 2 to the HV-pol
channel.

~ A linear relationship between video voltage and recorded data values is assumed. There-
fore, the relationship is given as

Dpn = ﬁx[_(m1 -guH)Vun + b (B.2)
Dgv = fix[(m2-guv)Vav +b2], (B.3)

where D is the recorded 8-bit digital value, g is the attenuator gain, m is the sampling
system scaling parameter, b is the sampling system offset parameter, and V is the video
. voltage. The fix operator truncates the data to an integer value. The estimated parameters
are summarized in Table B.2. The sampling system gain and attenuator gain are combined
into a single parameter.

B.2.1 Resultant calibration curve

Finally, the overall model needs to be inverted, so that given a digital value, the corre-
sponding input power is determined. Before this can be accomplished, a decision has to be
made on how to deal with the two nonlinear regions, namely the noise floot region and the
saturation region.

o
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hex | HH-pol HV-pol hex | HH.pel HV-pol bex ]| HH.pol

0 | -103.6 +105.3 64 B1.4 ) 128 -59.4

1 | -1033 ~104.9 [13 -31.1 -52.¢ 129 -59.0

2| -102.9 -104.6 1] -80.7 -82.2 130 -53.7

3| -102.8 -104.2 67 -80.4 -81.9 bR -58.4

4 | -102.2 -103.9 [ ] ~30.0 -8L5 132 «58.0

s | -10t9 -103.3 65 STOT -31.2 133 -87.7

6 | -101s -103.2 T0 -T9.3 -80.8 134 -57.3

7 | -01.2 -102.8 41 -79.0 -80.5 135 -57.0

& | -100.8 -102.5 T2 -78.6 -30.1 136 -56.7

9 | -100.% -102.1 ko] -T8.3 -79.8 137 -56.3
10 | -100.1 -301.8 T | -7T9 -T9.4 138 -56.0
11 -99.8 -101.4 ™ -77.6 =791 139 53,7
12 994 -101.1 16 772 787 140 »55.3
13 -99.1 ~100.7 ked -76.9 -78.4 1 -55.0
14 -98.7 -100.4 78 «78.5 -T8.0 142 -54.7
15 984 -100.0 79 -76.2 <TTT 143 ~54.3
16 -98.1 ~99.7 30 -75.8 -T7T.3 144 «54.0
17 -97.7 893 81 +75.5 -77.0 145 -53.7
18 974 -99.0 82 -75.2 -76.6 146 ~53.3
19 -37.0 -98.8 83 74,8 -76.3 147 -33.0
20 -50.7 -08.3 B4 -T4.5 -75.9 148 -52.7
21 6.3 -97.9 85 -T4.1 -75.8 149 -52.3
22 -96.0 07.6 36 -73.8 -75.2 150 -52.0
23 -95.6 -87.2 87 -T34 749 151 -51.6
2 -95.3 -06.9 1] =731 745 152 -51.3
25 «94.9 -08.% 89 “T2.7T -T4.2 153 -51.0
26 9.6 «96.2 80 -T24 728 154 -50.6
27 94,2 -05.8 81 +72.0 -T3.5 158 -50.3
28 -93.9 -05.5 92 -71.7 -73.1 156 -50.0
29 -93.5 -55.1 93 -71.3 -T2.8 157 -49.6
30 -93.2 04,8 M -T1.0 -T2 158 -49.3
an -02.8 ~04.4 18 -70.6 -T2 159 -49.0
a2 -92.5 04,1 86 +70.3 -71.7 160 -48.6
3 -92.2 93,7 97 -70.0 aT14 161 -48.3
34 «91.8 034 o8 -69.6 -7T1.0 162 48,0
38 915 -83.0 9 -60.3 ~T0.7 163 -47.6
36 -01.1 -02.7 100 ~68.9 70,3 164 47,3
a7 -90.8 -92.3 101 «68.6 <700 185 «46.9
a8 P04 -92.0 102 -68.2 «CB.6 166 «46.6
a9 -90.1 -91.6 103 -67.9 «68.3 187 «46.3
40 «80.7 -91.3 104 675 -68.9 168 «45.9
41 -804 |. .91.0 105 -67.2 -68.6 169 “45.6
42 -89.0 -90.6 106 -C6.5 -68.2 170 «45.3
43 -88.7 «50.3 107 «66.5 «87.9 n 44,9
44 -88.3 -89.9 108 «66.1 «67.5 172 «44.6
45 -88.0 -89.6 109 -65.8 672 173 ~44.2
46 -87.6 -89.2 110 -£5.5 -66.8 1 -43.9
4T «87.3 -88.0 11 -65.1 «66.5 175 -43.6
43 -87.0 -88.5 112 64,8 -68.1 176 -43.2
49 -86.6 -88.2 113 «64.4 -65.8 177 -42.9
50 -88.3 -87.8 114 +84.1 -65.4 178 -42.6
51 -85.9 -B7.5 118 -63.8 -65.1 179 -42.2
52 -55.6 -87.1 116 83,4 -64.7 180 -41.9
53 -85.2 «BE.8 117 «63.1 644 181 415
54 -840 -86.4 118 «62.T -64.0 182 -41.2
55 | 845 -36.1 119 62,4 «63,7 183 -40.3
56 -B4.2 -85.7 120 62,1 634 134 40,5
57 -83.8 -835.4 1 «81.7T -63.0 18% -40.2
58 -83.5 -85.0 122 614 -62.7 186 -39.8
59 -83.1 «B4.T 123 -61.0 «62.3 187 -39.5
60 -82.3 -84.3 124 60,7 -62.0 183 -39.1
o1 +82.4 «84.0 125 -60.4 -61.6 189 -38.8
62 -82.1 -83.6 126 +80,0 +61.3 190 -38.4
63 -81.7 -83.3 127 -50.7 -60.9 191 -38.1

HV-pet
-60.6
.60.3
.59.9
-59.8
.59.2
-58.9
.58.6
-58.2
-57.9
8T8
-5T.2
.56.8
-56.5
-56.2
558
55,5
~5%.1
-54.8
-54.5
-54.1
-53.8
-53.5
-53.1
2.8
524
-52.1
-51.8
S1d
“51.1
-50.7
504
50,1
-49.7
494
-49.0
-48.7
e
-48.0
AT.7
-47.3
-AT.0
6.7
-46.3
-46.0
-45.6
«45.3
«45.0
e
-£4.3
-43.9
-43.6
-43.3
-42.9
-42.6
422
-41.9
416
412~
400”7
-40.5
-40.2
-39.9
-39.5
-39.2

CALIBRATION OF RADAR SYSTEM

hex HH.pol | HV.pol |
192 -37.7 «-38.8
193 =37.4 385
194 «37.0 P18 §
195 =36.7 -37.8
196 -36.3 «I7.4
197 «36.0 -27T.1
198 -35.6 38,8
199 =35.2 -36.4
200 -34.9 -36.1
201 -34.5 35.7
202 -34.1 -35.4
203 -33.8 -35.0
204 =33.4 347
205 -33.0 -34.3
206 -32.6 «34.0
207 -32.2 -33.6
208 -31.8 -33.3
209 -31.4 -32.9
210 -31.0 32,5
211 «30.6 -32.2
212 -30.2 -31.8
213 -20.8 -31.5
214 «29.3 -31.1
212 -28.9 -30.7
216 18,4 =304
217 -27.9 -30.0
213 «27.5 -20.6
219 -26.9 -25.2
220 «26.4 -28.9
2 -25.8 -28.5
22 «25.2 -28.1
223 ~24.6 -27.7
224 «23.9 -27.3
228 «23.1 -26.9
226 -22.3 «26.5
227 214 «-26.0
228 «20,2 «25.6
229 -18.8 «25.2
230 -17.0 -24.7
231 -17.0 -24.3
232 «17.0 -23.3
23] -17.0 -23.3
21 -17.0 -22.8
235 -17.0 -22.3
236 -17.0 -21.7
237 -17.0 -21.1
238 -1T.0 -20.5
239 =17.0 -19.8
240 =17.0 -19.1
241 «17.0 -18.3
242 -17.0 -17.3
243 -17.0 -16.3
244 -17.0 «15.0
245 -17.0 =133
248 «17.0 -10.9
U7 -17.0 -10.9
248 «17.0 «10.9
243 -17.0 «10.9
250 -17.0 -10.9
251 =17.0 -10.9
252 -17.0 -10.9
253 -17.0 -10.9
254 «17.0 -10.9
255 -17.0 -10.9

Table B.3: Look—up table relating digital values to input power in dBm.
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The measurements made at low power levels are dominated by noise in the receiver,
making signal measurements below this noise floor difficult. Since there are signal com-
ponents (and hence digital data values) recorded below this noise floor, some extension to
the model must be made. The noise floor at the low power end of the curve is removed by
projecting a straight line from the linear region of the model, below the noise floor. This
is accomplished by estimating the slope and intercept in the linear portion of the curve, as
shown in Fig. B.5. This makes it possible to invert the response curve in the region below
the noise floor.

The saturation region is dealt with as follows. If digital values occur which are larger
than the maximum saturation power value given by the response curve {due to noise or
data error), they are truncated to the maximum allowed value given by the response curve.

Using this modified model, a look-up table is constructed relating the recorded digital
samples to the input power at the receiver. The table consists of the digital values 0 to 255,
and the corresponding input power. A numerical estimation technique is used to invert the
model for each digital data point, hence determining the corresponding power. Table B.3 -
is the resultant look-up table used.

N
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Appendix C

Confidence of the estimator

The probability of detection and probability of false alarm estimators compare the desired
output of the decision device with the known class valve. The estimate of the-probability
becomes

p= (NN, (C.1)

where n is the counted number of events out of N trials. As N — oo, the estimated
probability p converges to the true probability p. Specifically, we are interested in

50 =np(Np)/Np,  pra=nra(Nra)/Nra, (C.2)

where np is the counted number of detections, and Np is the total number of possible
detections for the data set. Likewise, nr, is the counted number of false alarms, and Npy
is the total number of possible false alarms for the data set.

The confidence interval for the estimated probabilities is found using the normal ap-
proximation to the binomial distributed np [30]. The confidence interval is equal to

Plys <p<y)=1-a, (C3)
where p is the true value, 1 — a is the confidence, and the confidence interval (y;,y-) is
given by ,
__N | & -5, &\
yi—N+d§ p+ﬁ¥d"(T+Ef\?' o (C.4)
The parameter d, is defined by
1 do _12/2 da ) -
(2_77)-1/_2-/;1.,8 dt—erf(—ﬁ =l=-c. (C.5)
Therefore,
do = V2erf~1(1-a). (C.6)
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