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Abstract

A model of the chemostat involving two populations of microorganisms competing
for two perfectly substitutable resources is developed and analyzed. A general class
of functions is used to describe nutrient uptake, one which allows for the effect that
the concentration of each resource has on the amount of the other resource con-
sumed. The model significantly generalizes those previously studied. The dynamics
of this model are then compared with the dynamics of the classical growth and two-
species competition models, as well as models involving two perfectly complementary
resources.

It is not surprising that the above competition for two resources can result
in the coexistence of the two competitor populations. However, an example is also
given in which the extinction of one population is averted by the introduction of
its competitor. Thus, exploitation of common resources promotes diversity in some
circumstances. This situation is investigated further and a more general description
is given.

A model of single-species growth on two resources is then presented. For a
given dilution rate, the medium in the growth vessel is enriched by increasing the
input concentration of one of the resources. Enrichment is considered beneficial if
the carrying capacity of the environment is increased. Analytic methods are used
to determine the effects of enrichment on the asymptotic behaviour of the model for
different dilution rates. The existence of a threshold value for the dilution rate is
established. For dilution rates below the threshold, enrichment is beneficial, regard-
less of which resource is used to enrich the environment. When the dilution rate
is increased beyond the threshold, it becomes important to consider which resource
is used to enrich the environment. For one of the resources it is shown that, while
moderate enrichment can be beneficial, sufficient enrichment leads to the extinction
of the population. For the other resource, enrichment leads from washout or initial
condition dependent outcomes to survival, and is thus beneficial. |

The growth model is then extended to include a single predator population.
Using the threshold value for the dilution rate established in the growth model, the

iii



effects of enrichment on the asymptotic behaviour of the resultant predator-prey
mode] are investigated. Here, enrichment is considered beneficial if it can lead from
washout for some positive initial conditions to survival of both species for any positive
initial conditions. For dilution rates below the threshold, enrichment is beneficial,
regardless of which resource is used for enrichment. As in the growth model, it
becomes important to consider which resource is used to enrich the environment
when the dilution rate is above the threshold. For one of the resources, moderate
enrichment can be beneficial, while sufficient enrichment leads to a regime in which

washout is possible. For the other resource, sufficient enrichment is beneficial.
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1 Preliminaries

1.1 Introduction

The classical theory of species interaction, attributed to Lotka {32] and Volterra [58], is
an extension of the basic logistic model for single-species growth due to Verhulst {57).
The appeal of this theory lies in its generality and simplicity., For example, in the case
of competition, it seeks to describe how the numbers of coﬁpetitors change without
indicating the resources upon which competition is based or how these resources are
used by the consumer. As it is difficult to estimate the parameters of the classical
competition model governing the extent of interaction without actually growing the
species together, these models are often more phenomenological than predictive.

In response to these deficiencies, a more mechanistic, resource-based theory
has developed (see, for example, [24], [31], [38], [39]). The resources are incorporated
into the models to capture consumer-resource interactions as well as interspecific in-
teractions. The resulting mathematical models may be less general and more difficult
to analyze. {See, for example, [1], [3], [4], [8], [10], [12], {25], {26], [27], [60], and [65].)
However, these models are often predictive, because the parameters can be measured
on species grown alone, in advance of competition (see, for example, Hansen and
Hubbell [22]). The models we consider involve this resource-based approach.

The chemostat is a laboratory apparatus that was developed to provide a con-
trolled environment in which the growth of microbial populations could be studied
under nutrient limitation. (See Novick and Sziliard [39].) It is used for the contin-
uous culture of microorganisms. The apparatus can be thought to consist of three
components: a feed vessel, a growth or culture vessel, and a receptacle. (See Fig-
ure 1.1.) The feed vessel contains near-optimal levels of all required nutrients with
the exception of the nutrients under investigation. These are maintained at growth
limiting levels. The contents of the feed vessel are supplied to the culture vessel at a
constant rate, while the medium in the culture vessel is removed to the receptacle at
the same rate. Thus, constant volume is maintained. The culture vessel, containing
one or more populations of microorganisms, is continuously stirred. Thus, nutrients,

microorganisms, and byproducts are removed in proportion to their concentrations.
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In this thesis we are interested in studying models of population growth and
species interaction under chemostat-like conditions. In all of the models it is assumed

that there are {wo resources supplied in growth limiting amounts.
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1.2 Thesis Outline

In this thesis we consider models of growth, exploitative competition and predation
under chemostat-like conditions. In Chapter 2 we formulate a general model involving
two populations of microorganisms competing for two nonreproducing, growth lim-
iting resources in a chemostat, and then focus on perfectly substitutable resources.
Ledén and Tumpson [31] considered a model of perfectly substitutable resources in
which the amount of each resource consumed is assumed to be independent of the
concentration of the other resource. We extend their analysis and then consider a new
model involving a class of response functions that takes into consideration the effect
that the concentration of each resource has on the amount of the other resource con-
sumed. This new model includes, as a special case, the mode] studied by Waltman,
Hubbell, and Hsu [60] in which Michaelis-Menten functional response for a single re-
source is generalized to two perfectly substitutable resources. Analytical methods are
used to obtain information about the qualitative behaviour of the models. The range
of possible dynamics of model I of Leén and Tumpson [31] and our new model is then
compared. The dynamics of these models for perfectly substitutable resources are
also compared with the dynamics of the classical growth and two-species competition
models as well as models involving two perfectly complementary resources.

One surprising outcome allowed by the competition model is investigated in
further detail in the next chapter. Exploitative competition is usually thought of as
a factor that reduces the diversity of natural ecosystems. In Chapter 3 we consider a
scenario based in a chemostat in which the extinction of a population is averted by
the introduction of a population that interacts only by depleting the common pool of
resources, thus promoting greater diversity.

In Chapter 4, a model of single-species growth in the chemostat on two nonre-
producing, growth limiting, noninhibitory, perfectly substitutable resources is con-
sidered. Here, nutrient uptake is specified to be the two-resource generalization
of Michaelis-Menten functional response for a single resource studied by Waltman,
Hubbell, and Hsu [60]. The medium in the growth vessel is enriched by increasing the
input concentration of one of the resources. Analytical methods are used to determine
the effects of this enrichment on the asymptotic behaviour of the model for different
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dilution rates,

In Chapter 5 we extend the model considered in Chapter 4 to include a predator
population. While the prey-resource interaction is described as above, a general class
of functions is used to describe the predator-prey interaction. Analytical methods
are used to determine the effects of enrichment on the asymptotic behaviour of the

resultant four-dimensional model.
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1.3 Notation

The following notation is used throughout this thesis.
R denotes the real numbers
R” = {(z1,...,2.) :7; € Ryi=1,...,n}
R = {(z1,...,%a) € R":2;20,i =1,...,n}
intA denotes the interior of the set A
clA denotes the closure of the set A
O(X) denotes the entire orbit through the point X
(X)) denotes the omega limit set of the orbit through X
M?(E) denotes the stable manifold of the equilibrium point E

All other notation is either standard or is defined independently for each chapter.
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1.4 Figure
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2 COMPETITION FOR TWO RESOURCES 7

2 Exploitative Competition in the Chemeostat for

Two Perfectly Substitutable Resources

2.1 Introduction

In this chapter we examine a model of competition for multiple resources under
chemostat-like conditions. There are many articles devoted to such studies; as a
very incomplete sample of these, we mention [1], [3], [4], [12], [15], [23], [26], [27],
[31], [36], [41], [49], [53], [54], and [56]. Here we restrict our attention to exploita-
tive competition for two nonreproducing resources. With two resources available, it
is important to consider how, once consumed, they are used by the individual com-
petitors. This leads to the classification of resources as perfectly complementary,
perfectly substitutable, and imperfectly substitutable (see Leén and Tumpson [31]
and Rapport [42]).

This chapter is organized as follows. First we describe a resource-based model
of exploitative, two-species competition in the chemostat for two growth limiting,
nonreproducing resources. We have found that many of the characteristics of such a
model can be described without restricting one’s attention to specific resource types.
We then describe the classification of resources provided by Leén and Tumpson {31]
and Rapport [42] and specify the model in the extreme cases.

For the remainder, we consider the perfectly substitutable case. First, as in
Leén and Tumpson [31], we focus on functional responses that are strictly monotone
increasing functions of resource concentrations. Implicit in their model is the further
assumption that the amount of each resource consumed is independent of the con-
centration of the other resources. Under the assumption that an interior equilibrium
exists, Leén and Tumpson [31] derive necessary and sufficient conditions for its local
asymptotic stability and hence conditions for coexistence of the competitors. In this
setting, restricting our attention to nonreproducing resources {in [31] both reproduc-
ing and nonreproducing resources are considered), we extend their work by giving a
complete global analysis of the three-dimensional subsystems describing the growth of

one species on the two resources. We then provide conditions that are necessary and
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sufficient to guarantee uniform persistence in the full four-dimensional competition
model (i.e., coexistence of both species independent of their initial concentrations).
Thus, these conditions are sufficient to guarantee the existence of a coexistence equi-
librium. We then extend their model to a more general and more realistic setting,
incorporating the possible inhibitory effects that the concentration of one resource
may have on the consumption of the other, since the time spent handling one re-
source may reduce the amount of time available for handling the other resource. The
model studied by Waltman, Hubbell, and Hsu [60] is a special case. They specif-
ically generalize the Monod model involving Michaelis-Menten functional response
for 2 single resource to two perfectly substitutable resources. In the general setting,
under the assumption that the iatrinsic death rate is insignificant compared to the
dilution rate, we give a complete global analysis of the three-dimensional subsystems
describing the growth of one species on the two resources. Assuming differential death
rates in the full four-dimensional competition model, we provide a characterization
of those nutrient concentrations that yield coexistence equilibria. We use this char-
acterization to obtain sufficient conditions for the existence of such equilibria and
then consider local asymptotic stability. We provide an interesting example in which
one species cannot survive in the absence of a competitor but for which there is a
locally asymptotically stable coexistence equilibrium in the presence of a competitor.
Finally, we provide conditions under which the competition model and the related
three dimensional one-species growth models are uniformly persistent. _

We conclude the chapter with a discussion in which we summarize our results
and then examine the similarities and differences in the range of possible dynamics
of our model and the classical model, the perfectly substitutable model studied in
[31], and the perfectly complementary model studied in [31] and [12], restricting our
attention to noninhibitory resources.
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2.2 Two Resource Competition: A General Framework

We discuss exploitative competition in the chemostat for two nonreproducing re-
sources. In the two-competitor case, the dynamical system may be written

S = (5= SOVD - 3 m(Us(50), RO,

RO = (R'= BO)G ~ 3 (e (SO, RO) (1)
Zt) = w(O)(-3¢ +G(SEL RO, i=1,%
5(0) >0, R(0) >0, z:(0) >0, i =1,2.

We identify (S, R, z1,%2)-space with Ri. Assuming, for convenience, that
the volume V of suspepsion in the culture vessel is one cubic unit, the quantities
in (2.1) are described as follows. In these equations, ;(t) is the biomass of the i**
population of microorganisms in the culture vessel at time ¢, : = 1, 2, while S(¢) and
R(t) represent the concentrations of the two nonreproducing resources in the culture
vessel at time ¢. I only one feed bottle is used, §° and R° are the concentrations of
resource S and resource R, respectively, in the feed bottle. The constant D is the
input rate from the feed bottle to the culture vessel as well as the washout rate from
the culture vessel to the receptacle. Thus constant volume is maintained. We assume
that there is perfect mixing in the culture vessel so that nutrients, microorganisms,
and byproducts are removed in proportion to their concentrations. The constant D;
denotes the rate at which population z; is eliminated from competition, either by
death or by removal to the receptacle. Therefore, D; = D +¢;, ¢ 2 0, where ¢; is the
intrinsic death rate of population z;, assumed to ke a constant.

The functions 2s,(S, R) and Ug,(S, R) represent the rate of consumption of
resources S and R, respectively, per unit of biomass of population z; as functions of

the concentrations of S and R in the culture vessel. It is generally assumed that

Us;, U : Ri_ — R, (2.2)
and that

Us;, Ug, are continuously differentiable almost everywhere. (2.3)
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It 1s natural to expect that if the concentration of resource S in the culture vessel
is zero, there will be no consumption of resource S. A similar statement holds for
resource R. Therefore,

Us,(0,R) = Oforall B> 0,

(2.4)
Ur,(5,0) = Oforall §>0.

In focusing on the consumer-resource interactions, we wish to describe each
population’s functional response, that is, how the consumption rate of each popula-
tion changes in response to fluctuations in resource concentrations. We assume that
the rate of consumption of each resource is a monotone increasing function of the
concentration of that resource. Thus,

%usi(s, R) > 0 for almost all (S, R) € intR3,

(2.5)

;Ru&(s, R) > 0 for almost all (S, R) € intR3.

Why we require (2.5) to hold for almost all (S,R) € intR3 rather than for all
(S,R) € intR3 will be explained later when we specify the model in the comple-
mentary resource case.

The function G;(S, R) represents the rate of conversion of nutrient to biomass
of population z; as a function of the concentrations of resources S and R in the
culture vessel. The properties of G;(S, R) will be discussed later when we discuss the
perfectly complementary case and the perfectly substitutable case.

Let S;(S, R) denote the rate of conversion of nutrient S to biomass of pop-
ulation z;. Assuming that the conversion of nutrient to biomass is proportional to
the amount of nutrient consumed, the consumption rate of resource S per unit of
competitor z; is of the form

Si(S, R)

uSi(Sa R) = T“', (? ".)
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where §; is the corresponding growth yield constant. Similarly, the rate of consump-
tion of resource R per unit of competitor z; is of the form

Uri(5,B) = TS B), 2.7)

where R;(S, R) is the rate of conversion of nutrient R to biomass of population z;
and 7; is the corresponding growth yield constant.

An important consideration that arises in the two resource case is how the
Tesources, once consumed, are used by the individual competitors for growth. Rap-
port [42] and Ledn and Tumpson [31] classify resources in terms of consumer needs.
This classification yields a spectrum of resource types and hence a continuum of
competitive situations. At opposite extremes are the perfectly complementary and
perfectly substitutable resources.

Between these extremes, we have the imperfectly substitutable resources. Al-
though more realistic, this situation is more difficult to study as the nature of the cor-
responding conversion functions 8;(S, R), R:(S, R) and G;(S, R) is less clear. Hence,
competitive situations involving the extreme resource types are examined initially.
By understanding the similarities and differences we may be able to increase our
understanding of the dynamics in the intermediate cases,

Perfectly complementary resources are substances that fulfill different essential
needs in terms of growth and so must be taken together by the consumer. These
resources must be used in fixed proportions to maintain a given rate of growth. If
a higher growth rate is to be attained, it is necessary to increase the consumption
rate of both resources. For example, a nitrogen source and a carbon source might be
perfectly complementary for a bacterium. Following Butler and Wolkowicz [12], but
restricting our attention to noninhibitory resources, we now describe the functions
Si(S, R), Ri(S, R) and G;(S, R) in the perfectly complementary case.

Let h;(S) denote the rate of conversion of resource S to biomass of population
z; when resource S alone is limiting. Similarly, let k;(R) denote the rate of conversion
of resource R to biomass of population z; when resource R alone is limiting. It is

assumed that

his kz : R-{- —)R+, (2.8)
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ki, k; are continuously differentiable, (2.9)

and that
ki(S) > 0 for all S > 0 and k!(R) > 0 for all R > 0. (2.10)

For given concentrations of resources S and R, say (5, R), only one resource is, in
fact, limiting, the one that is in relatively short supply, unless 4;(5) = ki(R). The
other resource, in comparison, can be thought of as being in abundant supply be-
cause increasing its concentration would not affect the growth rate. Thus, if resource
S is limiting at (S, R), the conversion rate is given by Gi(S, R) = ki(5). The con-
sumption rate of the limiting resource S is given by Us;(5, R) = (1/£)ki(5), and the
rate of consumption of the nonlimiting resource R is Ug;(S, R) = (1/7;)k:(5). Note
that Ug;(S, B) = (&/n:)Us,(S, R). That is, the rate of consumption of the nonlimit-
ing resource is proportional to the rate of consumption of the limiting resource, the
constant of proportionality being the ratio of the growth yield constants ¢; and ;.

Thus, if the resources are perfectly complementary, the rate of conversion of
nutrient to biomass of population z; is given by G:(S, R} = min{%:(S), k:(R)], the
rate of consumption of S is Us;(S, R) = (1/£;)Gi(S, R), and the rate of consumption
of R is Ur, (S, R) = (1/7:)Gi(S, R). In this case, system (2.1) becomes

S) = (5= SO - 2 X min{h(s), (R,
R() = (R°—R(t))%-éi"—%ﬂmin{h.-(sxk.-(fz)}, (2.11)
) = =l)(~T + min{hi(S), K(R))), =12,

S(0) >0, R(0) >0, z(0) >0, i=1, 2

Note that at points where (S} = ki(R), it is unlikely that Us, (S, R),Ur,(S, R), and
Gi(S, R) are differentiable. It is for this reason that we require (2.5) to hold only for
almost all (S, R) € intR3.

This is precisely Model ITI of Leén and Tumpson [31] adapted to the chemostat.
If D; = D, i =1, 2, that is, the death rate of each population is assumed to be
negligible compared to the dilution rate, then (2.11) is precisely the model studied
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by Butler and Wolkowicz [12] in the noninhibitory kinetics case. If we further assume
that the &;'s and k;’s satisfy Michaelis-Menten dynamics, this is the model studied
by Hsu, Cheng and Hubbell [26]. .

Perfectly substitutable resources are alternative sources of the same essential
nutrient. In this case, the rates of consumption of the different resources can be
substituted in a fixed ratio to maintain a given growth rate. An example for a
bacterium would be two carbon sources or two nitrogen sources.

For the remainder of this chapter we assume that resources S and R of system

(2.1} are perfectly substitutable for both populations z; and z,.

2.3 The Model in the Substitutable Case

The model that we consider 15

s) = (5~ s)p - 3 Es(se), &)
RO = (- RO -2 2R (s0), 70, (212

A1) = @)=+ G, RW), i=12,
S0)20, R©) 20, 2(0) 20, i=1,2.

Since perfectly substitutable resources are alternative sources of the same es-
sential nutrient, the rate of conversion of nutrient to biomass of population z; is made
up of a contribution from the consumption of resource S as well as a2 confribution

from the consumption of resource R. Therefore,
Gi(5(t), R(t)) = 8:(S(2), R(2)) + Ra(S(t), R(2)). (213)
We strengthen hypothesis (2.3) by assuming that
8;, R; are continuously differentiable. (2.14)

The rate of consumption of each resource is assumed to be a strictly monotone increas-
ing function of the concentration of that resource. Thus, hypothesis (2.5) becomes

%S,-(S, R)>0and -;ER,-(S, R) > 0 for all (S, R) € intR2. (2.15)
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It should be noted that with two resources available, both serving the same
need, it becomes necessary to determine how changes in the concentration of one
resource affect the consumption rate of the other. It seems natural to assume that
increasing the available amount of one resource might result in a reduction in the
amount of the other resource consumed. In Holling terminology [24], the handling
time devoted to the processing of a unit of one resource is time no longer available
for the processing of the other resource. This is reflected in the assumption that

d

2 2
sp0i(S,R) S 0and 2=Ri(S, ) <0 forall (S,R)€R}.  (216)

By (2.4), (2.6), and (2.7),

S:{(0,R)=0foral R>0 and R;(5,0)=0forall S> 0. (2.17)
Define

2i(S)=8i(5,0)forall § 20 and ¢(R) =Ri(0,R) for all R>0. (2.18)

That is, p;(5)/&: is the function describing the uptake of nutrient S in the absence
of nutrient R. Similarly, ¢;(R)/n: is the function describing the uptake of nutrient
R in the absence of nutrient S. We assume that both p;(S) and g;(R) are strictly
monotone increasing functions.

Further, define A; and g; so that

Gi(Ai, 0)(= pi(X:)) = Di and Gi(0, i )(= ¢i(:)) = D (2.19)

Thus A; and p; represent the breakeven concentrations for resources $ and R, respec-
tively, when none of the other resource is available. By the monotonicity of p;(S), A
is 2 uniquely defined extended positive real number provided we assume that ); = oo
if Gi(5,0) < D; for all § > 0. A similar statement can be made for z; and ¢(R)
provided we assume that p; = oo if Gi(0, R) < D; for all R > 0.

If the amount of each resource consumed is independent of the concentration of
the other resource, that is, if 8;(S, R) = pi(S) and R;(S, R) = g;(R) for all § > 0 and
R 2 0, then model (2.12) reduces to Model I of Ledn and Tumpson [31], adapted to
the chemostat. However, model (2.12) allows for a more realistic selection of functions
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describing resource consumption — functions that take into consideration the possible
effects that the availability of one resource has on how much of the other resource is
consumed.

With this in mind, we make the following assumptions regarding the functions

that describe the rate of conversion of nutrient to biomass, G;(S, R). Let
ms;, = Slin.}o p:(S) and mp; = }%1_1.130 g:(R) (2.20)

denote the maximal growth rates of population z; on resources S and R, respectively,
when none of the other resource is available. Assume that one of the resources, say
S, is superior in the sense that

ms, > mpi. (2.21)

Then it seems reasonable to assume that the more of resource S that is consumed,
the better, that is,

%gsi >0 forall (S,R)€ intR2. (2.22)

However, if the inequality in (2.21) is strict, a critical concentration of S, say S, is

assumed to exist such that

ags’ c
E{")O forall R>0,0<S <S5,
(2.23)
3_g_,:<0 forall R>0,5> 5
OR ’ o
where S7 is related to mp; in the following manner:
Gi(S§,R)=mpg, forall R20. (2.24)

Thus when both resources are in relatively short supply, increasing the concen-
tration of either resource is beneficial. However, once resource S is plentiful enough
that mp, would be exceeded by consuming only resource 5, the presence of resource
R would actually become detrimental. In any case, the presence of resource B would

never be detrimental enough to decrease G;(S, R) below mpg;.

JEEEO G:(S,R) = 1%1520 gi(R)=mp, foreachfixed S2>0. (2.25)
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It is also assumed that G;(S, R) can never increase above mg,, the maximal growth
rate of population z; on resource S when there is no resource R available, since an

abundance of S and no R would be optimal for the growth of population z;.
slim G:(5,R) = slim pi(S)=ms, foreachfixed R>0. (2.26)

If, instead, mp; > mg;, a critical concentration of R, say R, can be defined in
an analogous manner, making the appropriate changes in assumptions (2.22)-(2.26).
If mp, = ms;, define Rf = 5% = oo.

The following technical lemma summarizes some important consequences of

assumptions (2.19)—(2.26). Also see Figure 2.1. An analogous result holds if mp, >
ms..

Lemma 2.1 (a} If ms; 2 mg,, then

(i) Gi(S,R) <mp;, f R>0and 0 < 5 < S5,
(i) Gi(S,R) > mp, if R >0 and S > S}, and
(ii1) Gi(S,R) <ms, if R>0and S = 0.

(b) If ms, 2 mp, and y; is finite, then

(i} mp; > D;, and
(i) A; is finite and X; < SF.

(¢) If ms; > mpg, and y; = oo, then either

(i) mgr; < D; and X\; > Sf or Ai = 5f = o0, or
(ii) mg, = D; and X; = §¢ < oo.

Proof: Recall that 5f = co if mg; = mp;.

(2)(i,ii) These follow from (2.22) and (2.24).

(a)(iii) If ms, = mp,, then the result follows immediately from (2)(i), since
5¢ = co. Suppose mg, > mp,. 0 £ § < 57, then by (2)(i) and (2.24), G:(S, R) <
mg;, < mg; for 2l R > 0. If § > S, then G;i(S5,0) = Gi(S,R) for all R > 0 and, by
(2:22), Gi(S,0) £ limg.ee Gi(S5,0) = ms;.
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(b)(i) mr; = Gi(SF, i} > Gi(0, i) = Ds.

(b)(ii) See Figure 2.1(a). Since, in (b)(i), ms, > mg; > D, it follows that
); is finite. If ms, = mp,, then Sf = oo. If mgs; > mp,, then S} is finite and
Gi(5%,0) = mg, > D; = Gi(A;,0).

(c) See Figure 2.1(b) and (c). #; = oo implies that G;(0, R) < D; forall R > 0.
This implies that mp, = limp.e Gi(0, B) < D;. If S§ = o0, then Gi(S,0) < mp;, < D;
for all § > 0, and so A; = co. If S¢ is finite, then G;(S5,0) = mp; < D; = Gi{A:,0). B

The functions &;(S, R) and Ri(S, R) in Waltman et al. [60] generalize the
familiar Michaelis-Menten prototype of functional response to a single resource and

are given by

ms-S
Si(S,R) = - R
$B) = %o+ 8/Ks, + REn)
(2.27)
mp R
(S.R} = ,
RilS, B) Kr.(1+ S/Ks, + R/KR;)
where mg,, mg,, Ks; and Kp; are positive constants, so that

14 S/Ks,- + R/KR‘
The functions S;(S, R) and R;(S, R) in (2.27) satisfy all assumptions (2.14)-(2.18)
and G;(S, R) in (2.28) satisfies all assumptions (2.13) and (2.19)—(2.26). In fact,

D‘-‘Ks. . DiKR‘ .
—=— if mg, > D, — ifmg, > D;,
A=< ms—D; Hms and p; ={ mg,—D; A (2.29)
00 otherwise, o otherwise.
Also,

3G _ _ R(ms,—mgp)+msKr
0S =~ KsKr(l+S/Ks, +R/Kgr,)?

(2.30)
8G: _ _ S(mm,—ms,)+mpKs,
dR ~ KsKr(l+S/Ks + R[Kr)*

If mg, > mp,, then
mp,Ks;

Sf=-m_'_
5 — MR,
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If S;(S,R) = pi(S) and Ri(S,R) = (R) for all $ > 0and R > 0, as in
Model I of Leén and Tumpson [31}, then (2.13)-(2.22) hold but (2.23)-(2.26) do not
hold. Since Gi(S, R) = pi(S) + ¢:i(R), 8G:/OR > 0 for all R > 0 and S > 0, and
SUP(s,R)eR2 G:(S, R) = mg, + mpg; in this case.

2.3.1 The Scaled Version: Some Preliminary Results

It follows immediately from (2.12) that if S° and R° are both zero, then neither
species survives. Also, if only one of 5° or R° is zero, say 5° = 0 and R° # 0, then
2
(2
5'0) = =Sty — 3= “si(s(e), Be)) < -5

= &
Therefore, S(t) < S(0)e~%*, and so for sufficiently large ¢, (2.12) is approximated by
S'(t) = o,
RO = (- B)G -3 2y )

) = O~ +alBE), i=1,2,
5(0) =0, R(0) 20, z;(0) >0, i=1, 2.

This is the model of exploitative competition in the chemostat for one limiting re-
source studied by Wolkowicz and Lu [65]. They considered n competitors and allowed
both monotone kinetics and inhibitory kinetics. They extended some of the results
of Butler and Wolkowicz [10}, who restricted D; = D for i = 1,...,n. Under the addi-
tional assumption that ¢; assumes the form of Michaelis-Menten kinetics, the model
is the Monod model examined by Hsu, Hubbell and Waltman [27] in the case D; = D
for ¢ = 1,...,n and by Hsu [25] in the differential death rate case. For our purposes,

we assume that neither 5° nor &° is zero.
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It will be more convenient to analyze the model after the following substitu-

tions: D 5 B
t=tv, S='§, R=—R;,
5(5,8) = L5 R) 75,0 YEOR), g5 0 - VEER - (o)
e=b = s B
Q—D, |'—'S°g i S,,’?.
Removing the bars to simplify notation, we obtain
2 ..
s@) = 1-50)- 3 Zs(s0), Rt
=1 $
2 zi(t)
R(t) = 1-R(t)—- ETRi(S(t):R(t))! (2.32)
=1 i

zi(t) = =) (-Di +G:(S(E), B(t)), i=1,2,

$(0) 20, R(0) 20, z(0) >0, i=1,2,

All of the corresponding assumptions hold for this version of the model, so there
will be no loss of generality if we study (2.32) instead of (2.12). Our results can be
reinterpreted in terms of the unscaled variables using (2.31).

We first note that all solutions of (2.32) are positive and bounded. These are

minimum requirements for a reasonable model of the chemostat.

Theorem 2.2 (a) All solutions S(t}, R(t), zi(t),i = 1,2, of (2.32) for which z;(0) >
0, i = 1,2 are positive and bounded fort > 0.

(b) Given any & > 0, for all solutions S(t), R(t) of (2.32), S(t) < 1+6 and R(t) <
1+ & for all sufficiently large .

(c) If there exzists a t, > 0 such that S(1,) < 1, then §5(#) < 1 forall t > t,. A
similar result holds for R(t).

Proof: The proof of (a) is similar to the proof given in [10]. In fact, by considering

2(t) = S(1) + B(t) + max'[g) my maaffg) m}’
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it can be shown that

2 if (0} < 2,
) < { z{(0) otherwise.

The proofs of (b) and (c) are immediate from (2.32). &

Remark concerning Theorem 2.2:

Suppose
& = & (2.33)
h N
D;=1,:i=1, 2, (2.34)
and define

#(8) = &S0+ mBL) + :(8) + o),

Then from (2.32), 2'(t) = ({14 m)— 2(2) so that z(2) = [2(0) = (& +m)let + (&1 +m)
and z(¢) — (&1 +m) as t — oo. Therefore, under assumptions (2.33) and (2.34),
system (2.32) is conservative in the sense that the simplex

{(Sy R, Iy, 3:2) € R:_ : 615 + IhR +z + %zz = (61 + 711)}

is a global attractor for (2.32). Although there is some biological merit in assumption
(2.33), our analysis does not require (2.33) or (2.34).

Theorem 2.3 The equilibrium solution E, = (1,1,0,0) is locally asymptotically sta-
ble for (2.32) if Gi(1,1) < D; fori=1,2, and E, is unstable if Gi(1,1) > D; fori=1
or 2.

Proof: See Section 3.3 for the local stability analysis. B
The next result concerns competition-independent extinction of a population.
It gives conditions under which there is total washout of both competing species.

Theorem 2.4 Define T, = {(S,R): 0 < S <1+¢0< R<1+ ¢} Assume that
mg; Z mRg,.

(a) If either (g; is finite and Gi(1,1) < D;) or (i = 0o and A; > 1), then there
ezists a 6; > 0 such that max(srjer;, Gi(S, R) < D;.
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(b) If either (y; is finite and Gi(1,1) < D;) or (p; = o0 and X; 2 1), then z:(t) = 0
as t — oo, in (2.32).

(c) If zi(t) = 0 as t — oo fori = 1,2, then E, = (1,1,0,0) is globally asymp-
totically stable for (2.32) with respect to all solutions satisfying z;(0) = 0 for
1=1,2.

Proof: (a) Since ms; = mp,, it follows from Lemma 2.1 2(b) that if p; is finite, then

A; is finite. Therefore, it suffices to consider the following three cases:

1. p; and ); are both finite,
2. p; = o0, but J; is finite,

3. p;:ooandA;:oo.

Case 1. By hypothesis G;(1,1) < D;. By Lemma 2.1 (b)(ii), \; < S¢ and
so D; = Gi(A,0) < Gi(Mi,1). If Ay £ 1, then D; < Gi(Ai1) < G:(1,1) < Dy, a
contradicticn. It follows that A; > 1. Therefore, §; > 0 can be chosen sufficiently
small that §f > 1+ §; and, by the continuity of G;, so that Gi(1 + &;,1 + &) < D;.
Therefore, max(s,R)ers, Gi(S,R) = Gi(1 + 6:,1+ &) < Ds.

Case 2. By hypothesis, A; > 1. By Lemma 2.1(¢c), A; 2 S%, and so either
A>1280r X285 >1LIA>12 57 then Gi(1,1) £ g,‘(l,O) < g;(A;,O) = D;
and if A; > §¢ > 1, then Gi(1,1) < Gi(S57,1) = mpg, £ D;. In either case, it follows
that G;(1,1) < D;, and hence, by the continuity of G;, there exists §; > 0 such that
G(l+6,1+6)<D;and \;>1+6. A >12> 5S¢, then MaX(s,R)ers, g;(S, R) =
G:(146;,0) < Gi(X,0) = D;, and if X; = 57 > 1, 6; can be chosen so that 57 > 1+6;,
and so max(s,rjery, Gi(S, R) = Gi(1 + é;,1 + &) < D;.

Case 3. In this case, since y; = co and A; = 0o, mg; £ mg, < D;. Therefore,
for any fixed 6; > 0, if (5, R) € Ts,, then Gi(S, R) < lims—.co Gi(S, R) = ms, < D;.

(b) Suppose that either ; is finite and G;(1,1) < D;, or g; = o0 and A; > 1.
Choose §; > 0 as in part (a). By Theorem 2.2(b), S(t) < 1+ &; and R(t) < 1+ 6;
for all sufficiently large ¢, and so, by (2.32), zi(2) < 0 for all sufficiently large t.
Also, z(2) is bounded below. It follows, by a result of Miller [37], that z!(¢) — 0 as
t — co. However, lim sup,_,., Gi(5(t), R(t)) < max(s,rjery, Gi(5, R) < D;, and so the
only possibility is that z;() — 0 as ¢ — eo.
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Suppose that y; = oo and A; = 1. Without loss of generality, assume that
1=1,

First, consider mg, = D;. Then §¢ = ),. By Theorem 2.2(c), either S(¢) > 1
for all £ > 0 or 5(t) < 1 for all sufficiently large 2.

Suppose 5(t) > 1 for all ¢ > 0. Then S'(t) < 0 for all ¢ > 0, so that
S(E) N\ S* 2 1. If §* > 1, then S'(t) 1~ 5(t) £1- 5 < 0, so that S(t) = —co
as ¢ — oo, a contradiction. Therefore, S(2) \, 1 as t — co. Since S(f) > 1 for
all t > 0, G1(S(2), R(t)) > D, for all ¢ > 0 by Lemma 2.1(a)(ii). Then z(t) > 0
for all ¢ > 0, so that z,() / 27 > 0. Define Rmax = sup{R(t) : ¢t > 0}. Then
Bmax < max{R(0),1}, so

.‘B]_(t)

5t £1-8(t) - 'n_l'sl(s(t),R(t)) < _z(0)

L/}

81(1, Rma.x) < 0,

so that S(¢) — —oo as t — oo, a contradiction.

Therefore, S(t) < 1 for all sufficiently large t. By part 1(a) of Lemma 2.1,
G1(S(%), R(t)) < Dy for all sufficiently large ¢, so that z(t) < 0 for all sufficiently
large ¢. Therefore, z;(t) \, #; = 0. Since z¥(¢) is bounded, z|(t) — 0 as ¢ — co. If
z3 > 0, then G1(S(2), R(t)) — D1 as t — oo, implying that S(t) — 1 as ¢t — 0. But
then §’(2) < 0 for all sufficiently large ¢. Since 5(t) < 1 for all sufficiently large ¢,
S(t) cannot decrease to 1. This contradiction implies that z = 0.

Now consider mp, < Dy. Then 8¢ < A; = 1. Again, either S(t) > 1 for all
t >0 or S(t) <1 for all sufficiently large ¢.

Suppose S(t) > 1 for all t > 0. As above, S(t) \, 1 as t — 0. If

liminf; .., z1(t) > 0, then there exists € > 0 such that z1(t) > e for all sufficiently
large t. Then

s <1-50) - sy, Bty < - L5401, Rmax) < 0

for all sufficiently large ¢, so S(t) —+ —oo as ¢ — oo, a contradiction. Therefore,
liminf, .o, z1(2) = 0.
Suppose lim sup,_,, z1(2) = 2] > 0. Then there exist sequences of consecutive

local minima {7z}52, and consecutive local maxima {0}, of z,(t) satisfying 7, —
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00, Oy — 00 85 N — 00, Ty, < On < Tn4l < Onyly

2'1(7'11) = 0= zj(on),

2t} 20 if 7, <t<on,
.‘.'C;(t) S 0 if On < i< (ES

Therefore, since z,(t) > 0 for all £ > 0,

Gi(S(), (7)) = Dy = Gi(S(ow), R(en)),
Gi(S@),BE) = D1 if 7a<t<om (2.35)
Gi(S(t),R)) <Dy i op<ti<Tapr.

But then R(m) = ¢1(S(7.)) for all n. Since ¢1(1) = 0,¢,(S) is continuous, and
S(7w) — 1 as n — oo, R(7,) — 0 as n — co. Now,

Ri(r) =1~ R(r) - 2R, (500, Bir)) - 2 y(5(r), R,
Since R(r,) —* 0 as n = oo, Ri(S(7s), R()) = 0,i=1,2, as n — o0 by (2.17), and
since z;(t) is bounded for all ¢ > 0, R'(7,) — 1 as n — co. Therefore, 5'(7,) < 0 and
R'(7) > 0 for all sufficiently large n, and so there exists an N > 0 and an ¢(N) > 0
such that G:i(S(t), R(t)) < Gi(S(7x), R(rn)) = Dy for all 7y < t < 7n + €(N),
contradicting (2.35). Therefore, limsup, ... z:(¢) = 0, and hence lim;—. 21(2) = 0.

If S(¢) <1 for all sufficiently large ¢, then the proof of z;(¢) = 0 as { — oo is
similar to the proof given for mp, = D;.

(c) Take @ € {(S,R,z1,22) € R :z; > 0,2, > 0}. Let Q(Q) denote the
omega limit set of the orbit through Q. By the hypothesis, any P = (S, R, z,,z,) €

AR L F_4]

Q) satisfies ; =0 and z; = 0. On {(S,R,0,0) € Ri} the system reduces to
S'(t)=1-5(),
R'(ty=1-R(),

and hence S(t) — 1 and R(t) — 1. Therefore, {E,} € ©(Q). By Theorem 2.2, Q(Q)

is a nonempty, compact subset of R{. If P € Q(Q), then the entire trajectory through
P is in (Q). Hence, E, is the only candidate ®
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Remarks concerning Theorem 2.4:

1. An analogous result holds if mp; > mg,. Just interchange the roles of ); and p;
in the previous theorem.

2. It can be shown that if 5i(S, R) = p;i(S) and Ri(S, R) = ¢;(R) for all § > 0 and
R > 0, as in the model of Leén and Tumpson [31], then Gi(1,1) < D; implies

z;(t) — 0 as t — oo regardless of the relative values of msg,, mg;, and D;.

Next we discuss subsistence curves, ;(S) and o;(R), in the (S, R)-plane. These
are curves that give the concentrations of S and R at which the biomass of population

z; in the culture vessel is neither increasing nor decreasing,

Lemma 2.5 (a) If A; and p; are both finite, then there ezist C* functions p;(S)
and o;(R) satisfying

wi: [07 Ai] — [Oa Pi]r g ¢ [Oa P";] — [0: At'],
Gi(S,9i(S5)) = D;, Gi(o«(R), R) = D;,
wi(S) <0, gi(R) <.

(b) If ms, > D; > mp;, and 0 < X; < 1, then there ezist C functions ¢;(S) and
oi(R) satisfying

wi: (A Mas] — [0,1], i : [0, t,a,-(M;g)] — [/\;,M,-S],

g{(S, (Pi(s)) = Dia g,'(O'{(R), R) = D.‘,
©i(S) >0, gi(R) >0,
where

M = max S. (2.36)
A5,

Gi(5,1) < D;
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(c) If mp; > D; > ms;, and 0 < p; < 1, then there ezist C* functions ¢i(S) and
o;(R) satisfying

g;: [Fl'a MsR] — [Oa 1]1 ¥ - [0, al(MsR)] - [ﬂia M;R]i

Gi(S,v:(8)) = Di, Gi(oi(R), R) = D;,
wi{S) > 0, ai(R) > 0,
where
MR = max R (2.37)
Bi<R <1,
gl(I r -R) < -D!'

Proof: (a) By Lemma 2.1 and (2.19), Gi(5,0) < D; and Gi(S,p;) > D; for each
S € (0,X;). Therefore, by (2.14), (2.22), and (2.23), to each fixed S € (0, );), there
corresponds a unique RBs € (0, u;) such that G;(S, Rs) = D;. Define ¢; : [0, ] —
[0, ;] by setting ¢;(S) = Rs. Then Gi(S,¢i(S)) = D; for all 0 < S < A;. In view of
(2.22) and (2.23), by a straightforward application of the Implicit Function Theorem,
it follows that ; € C* and ¢}(S) < 0 forall 0 < § < ;.

In a similar manner, one can define a function o; : [0, i) — [0, A;] such that
Gi(o:(R), R) = D; for all 0 < R < p;, with 07 € C* and o{(R) < 0 for 2ll 0 < R < p;.

(b) In this case, by Lemma 2.1(c), A; > SF and so Gi(X\;,1) < D;. Thus,
Gi(S,0) > D; and Gi(S,1) < D; for each S € (\;, M?). Therefore, by (2.14), (2.22),
and (2.23), for each fixed S € [);, M7), there corresponds a unique Rs € [0, 1} such
that Gi(S, Rs) = D;. Define ¢; : [;, M7] — [0,1] by setting ¢;(S) = Rs. Continue
now as in the proof of (a).

(c) The proof is similar to the proof of (b). B
Remarks concerning Lemma 2.5:

1. Note that M = 1 if and only if G:(M?,1) = G;(1,1) < D;. This implies that
0i(MF) < 1. Also, Mf < 1 if and only if Gi(1,1) > G:(MF,1) = D;. This
implies that ¢;(MF) = 1.



2 COMPETITION FOR TWO RESOURCES 26

2. For the functions (2.27) and (2.28), the subsistence curves

i(5) = (“'S (DD;KT‘)) (mﬁjffR‘b")

oi(R) = (1 +R (DD,-KTZ?)) (mls):f‘(sb")

are both linear functions.

Before proceeding, we discuss the function G;(S, R} described above in the
context of the classifications given by Rapport [42], Leén and Tumpson [31], and
Tilman [56] and relate the subsistence curves to what they call indifference curves.

Assume mg; > mpg,. Consider

’

&(S,R) = :— =Gi(S,R) - D; =C,

where C is any constant such that —D; < C < ms,— D;. The curve $;(S, R) = C pro-
jected onto the (S;(S, R}, Ri(S, R)) plane gives an indifference curve, that is, a curve
along which any combination of values of S;(S, R) and R;(S, R) gives the same rate of
growth C. By (2.13), these curves are linear and decreasing, precisely as in Figure 1D
of [42] and Figure 1(a) of [31]. Since ®:(S,R) = 0 = 8;(S,:(S)) = ®:(o:(R), R),
these curves can be projected into the (S, R) plane. Under our assumptions, Fig-
ure 2.2 depicts the indifference curves in the (S, R) plane in the case that ms, > mp,.
For C = mpg,; — D, the indifference curve in (S, R)-space is the vertical line § = S%.
For C < mp, — D;, the indifference curves are decreasing, and for C > mp, — D;,

they are increasing. If mg; = mpg,, so that §f = Rf = oo, then the indifference curves
in the (5, R) plane are decreasing. In the special case that the indifference curves
in the (S, B) plane are linear, as is the case when G;(5, R) is defined by (2.28) (see
Remark 2 following Lemma 2.5), then resources S and R are perfectly substitutable
in the sense of Tilman [56]. In the classification in [56], the resources S and R ate
considered perfectly substitutable if S and R, rather than the rates of consumption

of § and R, can be substituted in a fixed ratio in order to maintain a given growth
rate.
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2.3.2 Single Species Growth —
The Three Dimensional Subsystems

There are only two three-dimensional subsystems of (2.32) of interest. Each involves
one population of microorganisms consuming the two nonreproducing, perfectly sub-
stitutable resources. Due to symmetry, both subsystems exhibit the same set of
possible dynamics. Throughout this section, the same notation as in the previous

sections is used, but the subscripts are omitted. We examine the system

S = 1-56) - Zs(s(, B0,
B = 1- ko) - "Br(s), rw) (2.38)

7
() = =(t)(~d+39(S(t), R(t))),

5(0) = 0, B(0) 20, z(0) > 0.

Here, d represents the rate of removal of the microbial population from competi-
tion, that is, d = 14 ¢, € > 0, where ¢ is the intrinsic death rate. The functions
S(S(1), R(2)), R(S(t), R(?)), and G(S(t), R(t)) are assumed to satisfy all of the as-
sumptions (2.2)-(2.10) and (2.13)-(2.26).

By Theorem 2.2(a), all solutions S(t), R(t),z(t) of (2.38) for which z(0) > 0
are positive and bounded for all £ > 0. By Theorems 2.3 and 2.4(b), if 4 is finite and
G(1,1) < d,orif p = o0 and A > 1, then E, = (1,1,0) is globally asymptotically
stable for (2.38) (with respect to solutions for which z(0) > 0).

Besides E, = (1,1,0), any other critical points must be one-species survival
equilibria. A one-species survival equilibrium of (2.38) is a solution (5, R,z) of the
system

z8(S,R) = £(1-28),
zR(S,R) = 7(1-R), (2.39)
G(S,R) = d,

with (5, R,z) € intR3.
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Lemma 2.6 Assume that ms > mg. Suppose that a one-species survival equilibrium
(5,R,Z) of (2.38) ezists.

(a) If p is finite, then 0 < § < min{1,A} end 0 < R < min{1, p}.
(b) If g = 0 and A < 1, then either

mR<d,andsoS°<Aand,\<.§'<M351,0<R<§o(Ms)Sl,
or

mp=d, andso =X and A\ =5 <1,0<R<],

where MS is defined by (2.36).

Proof: First, note that, from (2.39), £ > 0 implies that 0 < S <1l and 0 < R < 1.

(a) If g is finite, then, by Lemma 2.1(b)(ii), X is finite and A < S°. Therefore,
G(S,R) > G(5,0) > G(A\,0) = dfor all § > \,R > 0; and G(S,R) > G(0,R) >
G(0,pz)=dforall S>0,R> p; andso 0 < § < min{l,A} and 0 < R < min{1, u}.

(b) In this case, by Lemma 2.1(c), $¢ < A. First, consider 5° < \. Then
G(S,R) S G(S°R)=mrp<dforall0 < S < 5,R>0; G(S,R) < G(\R) <
G(A,0) =dforall ¢ < S < A\, R > 0; and G(S, R) > G(M5, R) > G(M5, o(M5)) = d
for all § > M%,o(M5) > R>0;andso A < § < MS <1 and 0 < R < o(M5).
If, on the other hand, §° = A, then G(S°,R) = d = mp for all R > 0 and, by
Lemma 2.1(a)(i,ii}, G(S,R) # d for any R > 0,5 # S% and so A = § < 1 and
0O<R<l.m

Theorem 2.7 Assume that ms > mg.

(a) If u is finite, then a one-species survival equilibrium of (2.38) ezists if and only
if G(1,1) > d. When a one-species survival equilibrium ezists, it is unique. In
particular, if A <1 or p < 1, then G(1,1) > d.

(b) Suppose y = co.

(i) If A 2 1 or X = oo, then (2.38) has no one-species survival equilibrium.
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(ii) Ifmp = d, then G(1,1) > d if and only if A < 1, end a one-species survival
equilibrium of (2.38) ezists if and only if G(1,1) > d. When a one-species
survival equilibrium ezists, it is unigue.

(ili) If mp < d, then G(1,1) > d if and only if M <1, and if G(1,1) > d, then

(2.38) has ot lecst one one-species survival equilibrium.

Proof: (a) First we show that if 4 is finite and a one-species survival equilibrium
(5, R,Z) exists, then G(1,1) > d. By Lemma 2.6, 0 < § < min{},1} and 0 <
R < min{g,1}. By Lemma 2.1(b)(i,ii), mg > d and §¢ > X > 5. If 5° > 1, then
d=G(5,R) < G(1,R) < G(1,1). If 5° <1, then d < mgr = G(5%,1) < G(1,1).

Next we show that if G(1,1) > d, then a one-species survival equilibrium exists.
For S € (0,7), define

1-5 1-(S
= SR ) = R (240
where, by Lemma 2.5, G(S,(S)) =dforall0 £ § < A. If 4 > 1, then G(0,1) < d,
and since G(A,1) > d and G(1,1) > d, there exists a unique 5§ € (0,min{1,A}) such
that G(5,1) = d and ¢(5) = 1. By Lemma 2.5, 0 < ¢(S) < g for S € (0,min{1, A})
if 4 <1,and 0 < ¢(S) < 1for S € (§,min{1,A}) if 4 > 1. In both cases, by
(2.15), {2.16), and Lemma 2.5, z5(S5) is a decreasing function, zr(S5) is an increasing

.‘.Bs(S)

function, and both functions are continuous. There are four cases to consider.
Case 1. A <1 and p <1 (see Figure 2.3(2)).

z5(0) = oo and zgr(0) = ’7—(1—(;—_-#—),
zs(A) = éa d_ A) and zg()\) = oo.
Case 2. A> 1 and g > 1 (see Figure 2.3(b)).
q_0=8) o e E
zs(5) = SG.D) >0 and zg(5)=0,
zs(1) =0 and  za() =107¢0) o

-~ R(Le(1))
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Case 3. A <1 and g 2 1 (see Figure 2.3(c)).

o §0-9) ool E) =
zs(8) = SG) >0 and zp($8)=0,
zS(A)=ﬂ;—") and zg()) = oo.

Case 4. A > 1 and p <1 (see Figure 2.3(d)).
zs(0)=c0 and =zg(0)= -n(—-ld_i),
_ 1y = 11— (1))
z5(l)=0 and =zg(l)= RLeD)
Therefore, in each case there exists a unique § € (0, ) such that zs(8) = za(9),
and hence a unique one-species survival equilibrium, with § = $, R = ($), and
z = z5(5) = zr(S).
In particular, since §¢ > A, if A < 1, then G(1,1) > G(A,1) > d, and if p < 1,
then G(1,1) > G(0,1) > G(0, 1) = d.
(b)(i) By Theorem 2.4(b), if 4 = 0o and A > 1, then z(t) = 0 as ¢t — o0, and
so there can be no one-species survival equilibrium.
(b)(it) If mpr = d, then §¢ = A
Suppose that G(1,1) > d = mp. If A > 1, then mg = G(5¢,1) = G(),1) >
G(1,1) > d = mpg, a contradiction. It follows that A < 1.
Suppose A < 1. Then d = mp = G(S5%,1) = G(A,1) < G(1,1), s0 G(1,1) > d.
Next we show that if G(1,1) > d = mp, then there exists a unique one-species
survival equilibrium. Since $¢ = ), by Lemma 2.6(b), 5 = A, and so G(}, R) = d for
all R > 0. Therefore, by (2.39), a one-species survival equilibrium exists if and only
if R satisfies

£(B) = £(1 - NR(A, B) = n(1 — R)S(\,R) = g(R).

By (2.15) and (2.16), f(R) is an increasing function and g(R) is a decreasing function
on [0,1], with f(0) = 0, f(1) = £(1 — A)R(A, 1) > 0, ¢(0) = nd > 0, and g(1) = 0.
(See Figure 2.3(e).) Hence, there exists a unique R satisfying f(R) = g(R), and hence



2 COMPETITION FOR TWO RESOURCES 31

a unique one-species survival equilibrium, (}, &, ), where

(1-2) _1(1-R)
50.E) ~ ROLR)

=

Finally, by (b)(i), if a one-species survival equilibrium exists in this case, then A < 1,
and hence G(1,1) > d.

(b)(iii) If mg < d, then S° < A

Suppose mg < d and G(1,1) > d. Since M5 < 1 and M® = 1 implies that
G(1,1) £ d, it follows that M° < 1.

Suppose mp < d and M5 < 1. Then G(1,1) > G(M5,1) = 4.

Next we show that if mp < d and G(1,1) > d (and hence A < M5 < 1), then
at least one one-species survival equilibrium exists. Define z35(S) and zg(S) as in
(2.40) for S € (A, M5}, where by Lemma 2.5, G(S,¢(S)) = d for all § € [A, M5},
Then ©(X) =0, p(MS) =1, and 0 < ¢(S) < 1forall § € (A, M¥), and so z5 and zx
are continuous for all § € (A, M®). Since (see Figure 2.3(f))

zs(A) = &-‘;—,\) >0 and zgr(}l) =00,
£(1 — M%)

:!:S(Ms) = S(Ms,].)

>0 and zr(M°)=0,
there exists at least one point § € (A, M%) such that z5(5) = zgr($). Hence, there

exists at least one one-species survival equilibrium, (5, ¢(S5), zs(5)). B
Remarks concerning Theorem 2.7:

1. If ms < mp, an analogous result holds. Just interchange the roles of A and g
and those of mg and mpg.

2. If p is finite, it is possible for A > 1, p > 1, and G(1,1) > d. For example,
consider

_ 4543R . 13
g(S’R)"1+S+R’d"—6"‘
G(i,0) =2 < d,and so A > 1, G(0,1) = 3/2 < d, and so g > 1, and

G(1,1)=7/3 > d.
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3. If 4 = oo with mg < d, then A < 1 need not imply that G(1,1) > d. Rather, it is
possible that M*® =1, and so G(1,1) < d. There may or may not be one-species
survival equilibria in this case, and multiple one-species survival equilibria are
possible. For example, consider

4S5+ R 11
SR =1z i= 5

Then mgp =1 <d, G(11/18,0) =d,so A =11/13 <1, but §(1,1) = 5/3 < d.

For a one-species survival equilibrium (5, R, £) to exist, by Lemma 2.6(b), A <
§ <1and 0 < ¢(8) < 1. Thus § € (11/13,1), and since ¢(S) = (135 —
11)/5,¢(S) € (0,2/5). Also, since S must satisfy £5(5) = zr(8), where zs(S)
and zr(S) are given in (2.40),

£ 45(16-135)
7 Q=585 -11)

Since § € (11/13,1), it follows that £/n > 190.628 must hold. Therefore, if
&/n <190, then there is no one-species survival equilibrium. However, if {/n >
191, then there is at least one one-species survival equilibrium. In particular,
if £ = 1/2 and n = 1/384, so that £/n = 192, then there are exactly two

one-species survival equilibria:
(E 1 23 ) an (EH 153)
13’ 571040 47’ 47 82727
4. Note that if S{(S,R) = p(S) and R(S,R) = ¢(R) for all § > 0 and R > 0,
then, regardless of the relative values of mg, mg, and d, a one-species survival

equilibrium exists if and only if G(1,1) > d, and if one exists, then it is unique.

Let us denote a one-species survival equilibrium, when it exists, by E =
(5, R,Z). Next we investigate the local stability properties of the equilibria of (2.38)
through an examipation of the linearized sysiem about each equilibrium.

The eigenvalues of V5(1,1,0), the variational matrix of (2.38) evaluated at
E, = (1,1,0), are oy = a2 = —1 and a3 = G(1,1) — d. Thus, if G(1,1) > d, then

E, is unstable, and by Theorem 2.7 at least one one-species survival equilibrium
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exists. Also, if G(1,1) < d, then E, is locally asymptotically stable and, provided
that mg > d and ms > d, no one-species survival equilibrium exists. In fact, by
Theorem 2.4, E, is globally asymptotically stable in this case. However, if mg < d or
ms < d, it is possible for a one-species survival equilibrium to exist even though E, is
locally asymptotically stable. For an example, see Remark 3 following Theorem 2.7.

Let us assume that a one-species survival equilibrium E = (5, R, z) exists, and
examine the local stability properties of E. The characteristic equation of Va(S, R, %),
the variational matrix evaluated at E, is given by o + 4;0? + Az + As, where

A = 2+% (; 6655(5, R+ —-—'R(S R)) (2.41)
Ay = 143 (-2--5%3(.? R)+1 9 S=R(5, R)) (2.42)
( =505, B g(s R)+ ’R.(S R) =65, R))
:2 ( 5(3, R) aR’R(S R) - s(s Ry S’R(S R))
As = ( £S5 B) asg(s R)+- R(S R) =63, R)) (2.43)

+5d (-6?9(5', R)yz=R(5,R) - 3(3 R) Sn(s R))

If mp < d or mg < d, the stability of E is, in general, difficult to determine.
However, if mg > d and mgs > d, then by hypotheses (2.13), (2.15), (2.16}, (2.22},
and (2.23), it follows that

0 oz s @055 O 0

%S(S, R)éTRR(S’R) aRS(.S' R)— 35
Hence, A;, A, and Aj are all positive so that, by the Routh-Hurwicz Criterion, to
deiermine the stability of E it suffices to determine the sign of A; A2 — As, where
AjAg — A is given by

R(S,R) > 0. (2.44)

10
(5633(3 R)+= ~3F

‘s (.E.S(g,m%g(m+5R(§,R)5§9(§,R))

2 + 3z —R(8, R)) (2.45)
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+ 52%%8(5 )( =8(5, R) G(S R) + 'R(S R) G(5, ))
_,1

26, (1506, P65, + ;R(s R)3p0(5. )

£9S noR
10 .,= =08 ..~ = 8 =~ = 9 ..~ =. 0 = =
+ 2126 (;,ES(S, AR5, R) - 253, BYER(G, R))
71 0 m= e @ o= = O = = 0 .~ = O —
+ am’“m’ (556 B (5,8) — 2(5 YRS, )
d 7]

+ 2 Zo_q ( 2:5(8, R =R(3, B) — 5253, R)-E%R(S, R)) .
Assuming that mgr 2 d and mg 2 d, a superficial examination of this expression
yields a range of values of the intrinsic death rate ¢ for which A;A; — A3 is positive
and hence F is locally asymptotically stable. In particular, a sufficient condition for
the local asymptotic stability of £ is d < 2 (so that ¢ < 1). For example, if it is
assumed that the intrinsic death rate is insignificant compared to the dilution rate,
then d =1, and so E is locally asymptotically stable. Moreover, if, by increasing d,
FE can lose its stability, it can do so only by means of a Hopf bifurcation, since A3 > 0
implies that no root can equal zero. However, given p(a) = o® + 4;0? + Ao + As
with Aj, A, and A3 positive, if A;42 — Az < 0, then p has one negative real root
and a pair of complex conjugate roots with positive real part. Since, by Theorem 2.7,
parts (a) and (b)(ii), F exists only if G(1,1) > d, 2 Hopf bifurcation can occur only
for 2 < d < G(1,1). Therefore, if ms > d, mg > d, and G(1,1) < 2, then no change
in stability can occur. Although we have not ruled out the possibility of a Hopf
bifurcation, this was not observed in any of the specific examples we studied.

If we assume that S(S,R) = p(S) and R(S,R) = q(R) for all § > 0 and
R >0, as in Model I of Leén and Tumpson [31], as long as E exists, A;, A3, and Az
are always positive, and A; A; — As is given by

9 4+ 3 {3 (#(5') +q’(nR)) L PEF ) +q(R)4'(R)}

: 7 - (2.46)
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5 =\ \2 a2 BN 2

+ { (E'-gi) + i(;:l)) +2(5) (g_(és_)) +q(R) (%2—) + %p’(g)q'(fi)}

+ z° (@ + M) 7(5)d(R)-

£ U]
Clearly, A;A; — A; is also always positive, regardless of the relative values of ms, mpg,
and d. Therefore, by the Routh-Hurwicz Criterion, whenever F exists, it is locally
asymptotically stable.
Before examining the global properties of system (2.38), we define the terms

persistent and uniformly persistent, as in [17]. Let f = (f1,..., fu) be a continuously
differentiable function from R" to R" such that

fi{w) = 0 whenever w = (wy,...,w,) satisfies w; =0 and w; 2 0, i # j.
Consider the system
w'(t) = flw(t)), wi(0) 20, :=1,...,n. (2.47)

The conditions on f guarantee that (2.47) defines a dynamical system that leaves the
positive cone in R" positively invariant.

Definition 2.8 If every solution w(t) = (wi(t),...,wa(t)) of (2.47) with wi(0) >
0, i = 1,...,n, satisfies liminfy ., w;(t) > 0, i = 1,...,n, then system (2.47) is
persistent.

Definition 2.9 If there ezists a number § > 0 such that every solution w(t) =
(wi(t),...,wa(t)) of (2.47) with wi(0) > 0, i = 1,...,n satisfies liminf; .o, wi(t) 2
5, i=1,...,n, then system (2.47) is uniformly persistent.

Theorem 2.10 Suppose G(1,1) > d. Then system (2.38) is uniformly persistent with
respect to all solutions for which z(0) > 0.

Proof: Identify (S, R, z)-space with R}. Choose X = (5(0), R(0), z(0)) € intR3. By
Theorem 2.2(a), (X)) is a nonempty, compact invariant set with respect to (2.38),
and z(t) > 0 and bounded. Thus, by (2.14) and (2.17), §(2) > 0 if S(t) is sufficiently
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close to zero and R'(t) > 0 if R(t) is sufficiently close to zero. Since S(t) and R(t)
are also bounded by Theorem 2.2(a), it follows that any point in 2(X) must satisfy
Liminf e S(t) > 0 and lim infy.eo R(2) > 0. If we can show that liminf,_ z(t) > 0,
then (2.38) is persistent.

Suppose {E,} € (X). Since G(1,1) > d, E, is an unstable, hyperbolic critical
point. From (2.38) it is clear that E, is globally attracting with respect to solutions
initiating in its stable manifold, M*(E,) = {(5, R,0) € R3}. Since X ¢ M*(E,),
{E.} # ©(X). Therefore, by the Butler-McGehee Lemma (see Lemma Al of [17]),
there exists P € (M*(E,)\{E,}) N UX) and hence clO(P) C Q(X), where O(P)
denotes the entire orbit through P. But then, as ¢ — —oo, either O(P) becomes
unbounded or one of the § or R components becomes negative. In either case we
have a contradiction, and therefore {E,} ¢ Q(X).

Suppose liminf;_o, z(t) = 0. Then there exists a point P = (S,R,0) € 2(X),
which implies that cO(P) C Q(X). But then {E,} € (X), a contradiction. Thus
lim inf;—.co z(2) > 0, and so (2.38) is persistent. It now follows from the main result
of [8] that system (2.38) is uniformly persistent. B

If in (2.38) the intrinsic death rate is assumed to be insignificant compared
to the dilution rate, so that d = 1, and mg > 1 and mp > 1, then the results

of Theorem 2.10 can be significantly strengthened. We will require the following
lemnma.

Lemma 2.11 Assume d =1 in (2.38). The simplez
L={(S,R,z)€ RL:£S+nR+z=¢+7}
is a global attractor for system (2.38).

Proof: Define z(t) = £S(t) + nR(t) + z(t). Then, since d = 1, 2'(t) = (¢ +5) — 2(2),
s0 2(t) = [2(0) ~ ({ + )™ + (£ +n). W
Theorem 2.12 Assume d =1 in (2.38) .

(2) Suppose that ms 2 1 and mp > 1. If G(1,1) > 1, then there ezists a unique

one-species survival equilibrium E, and E is globally asymptotically stable with
respect to all solutions for which S(0) > 0, R(0) > 0, and z(0) > 0.
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(b) If no one-species survival equilibrivm E ezists, then E, is globally asymptotically
stable with respect to all solutions for which ${0) > 0, R(0) > 0, end z(0) > 0.

Proof: (a) The existence and uniqueness of the one-species survival equilibrium E is
given by Theorem 2.7, parts (a) and (b)(ii).

By Lemma 2.11, the simplex £ is a global attractor, so we restrict our attention
to L. Since L is positively invariant, let z(¢) = £(1— S(t))+n{1— R(t)), and consider
the system

S = 1-5(t) - £l&(1 - SE) + (2 ~ REIS(SE), B,
R() = 1-RE)- €0 - S0)+ 10 - ROIRGSO,RE),  (248)

5(0) = 0, R(0) = 0,£ + 7 2 £5(0) + nR(0).

There exist precisely two equilibria for system (2.48), E? = (1,1) and E? = (5, R),
where the superscript 2 denotes the two-dimensional system (2.48). From the local
stability analysis it follows that E® is locally asymptotically stable and that E? is
unstable.

Fix S(¢) = 1 in (2.48) and define
F(R(t)) = 5'¢) = =31~ RE)S(L, R())

Then Fi(1) = 0, and by (2.2) and (2.16),

d

__Mq_m8 1
TRER) =50~ RzpS,B) + 25(1, R) >0

for all 0 < R < 1. Therefore, S’(f) < 0 at all points (1, R) where 0 S R < 1.
Fix §(t) = S in (2.48), and define

F(R®) = S'0) =1 5 - Zle( - 5)+ (1 - ROIS(, R
Then Fz(R) = 0, and by (2.2) and (2.16),

2 F(R) = _%[5(1 —8)+ (1 - RI=S(5,B) + 55, >0
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for all 0 < R £ 1. Therefore, S'(t) < 0 at all points (5, R) where 0 < R < R, and
5'(t) > 8 at all points (5, R) where R< R < 1.

Similarly, fixing R(t) = 1 and R(f) = R, we obtain the partial vector field
shown in Figure 2.4. It is clear that no periodic orbits exist in £. Since liminf,., z(t) >
0, it follows from the Poincaré-Bendixson Theorem that E? is globally asymptotically
stable for (2.48) with respect to all solutions for which S(0) > 0, R(0) > 0, and
£+ > ES(0) + 7R(0) > 0 (i.e., 2(0) = £ + n — £5(0) — nR(0) > 0). It follows from
Theorem 1.5 of {55] that E = (5, R, %), where £ = £(1~5)+79(1— R), is in the omega
limit set of any solution of system (2.38) with S(0)} > 0, R(0) > 0, and z(0} > O.
Since E is locally asymptotically stable for (2.38) with d = 1, it follows that it is the
only point in the omega limit set, and so it must be globally asymptotically stable
for (2.38) with d = 1 with respect to all solutions satisfying S(0) > 0, R(0) > 0, and
z{0) > 0.

(b) The proof is similar to the proof of (a). B

If in (2.38) S(S,R) = p(S) and R(S, R) = ¢(R) as in Model 1 of Leén and
Tumpson [31] (with d not necessarily equal to 1), then the results of Theorem 2.10

can again be significantly strengthened, regardless of the relative values of ms, mg,

and d.

Theorem 2.13 Assume that S(S, R) = p(S) and R(S,R) = g(R) for all § > 0 and
R2>0.

(a) IfG(1,1) < d, then E, is globally asymptotically stable for (2.38) with respect
to all solutions for which S(0) 2 0, R(0) > 0, and z(0) > 0.

(b) If G(1,1) > d, then there ezists e unique one-species survival equilibrium E,
and E is globally asymptotically stable for (2.38) with respect to all solutions for
which S(0) > 0, R(0) > 0, and z(0) > 0.

Proof: (b) The proof of existence and uniqueness of the one-species survival equilib-
rium E is similar to the proof of Theorem 2.7(a). To prove the global stability of this
equilibrium, define L : intR3 — R by

L(S,R,z) = f_/; :Iii)T:-)L(QdT +7 '[RR ______“Q(IZ)(T'; q(r)d'r t+T—%— ..'?:ln(-z-).
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Since p(S) and g(R) are continuous on intR3, we have L € C'(intR3). Also,
E = (8, R,z) is the global minimum of L on R}, and L(5,R,z) = 0. The time
derivative of L computed along solutions of (2.38) is

U5 Re) = ¢ (XL 1o g)g (LRI oy

—z(—d + G(S, R))
+z(—d+ G(S, R) — (p(S) — p(5)) — (a(R) ~ a(R)))-

Noting that - =
__ e(;(;)S) _ n(;(—R )R) and d = p(3) + ¢(R),

]

we have
. 1-§ 1-S§
s, R2) = €005 - 2680 (15 - 222) _
—R 1-R
#a(alR) - o®) (T - )
For 0 < § < 8, p(8) — p(5) < 0 and (1 — S)/p(S) - (1 —~ §)/p(5) > 0, whereas for
§> 5, p(S)—p(S) >0 and (1 - S)/p(S) — (1 — 5)/(8) < 0. A similar result holds
for R.
Thus, L(S, R,z) < 0, and so L is a Lyapunov function for (2.38) in intR3.
Note that L(S, R, z) = 0 if and only if § = § and R = R. Hence, by Theorem 2.2(a)
and LaSalle’s Extension Theorem [30], every solution of (2.38) for which z(0} > 0
approaches M, where M is the largest invariant subset of {(S,R,z) € R} : § =
S,R = R,z > 0}. But then M = {E}, a single point, since by Theorem 2.7 the
one-species survival equilibrium is unique and since = # Z implies that either 5 3 0
or R # 0, z # Z would violate the invariance of M. This completes the proof.
(2) Take

L(S, R, z) gj ——L”(—a!qL ] L(*“)Q("ld T+,

and argue as in (b). B

In the next section we use the information from this section to determine
existence and local stability properties of the equilibria of the four dimensional system
as well as to determine criteria for uniform persistence of the four dimensional system.
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2.3.3 Two-Species Competition —
The Four Dimensional System

We now return to a study of the full four-dimensional system; that is,

S = 1—5(t)— éx’;)S(S’ (t), R(£)),
R(t) = 1-R()- ;”‘ HO(s0, RO, (2.49)

7it) = z()(-Di+G(S(t), R(t))), i = 1,2,
5(0) =20, R(0) 2 0,z;(0) 2 0,i = 1,2.
Three of the critical points of (2.49) are readily determined and will be denoted

EO = (1a110’0)3
EI = (S'h Rhil: 0):
E2 = (521 R210:£2)'

Conditions for the existence, and in some cases the uniqueness, of equilibria of the
form E;, ¢ = 1,2, are given in Theorem 2.7 (with the appropriate subscripts included
and d replaced by D;).

We first determine the local stability properties of these equilibria of (2.49)
through an examination of the linearized system about each equilibrium point.

The eigenvalues of V4(1,1,0,0), the variational matrix of (2.49) evaluated at
E, = (1,1,0,0), are oy = ap = ~1, a3 = G1(1,1)— Dy, and 4 = G5(1,1)— D,. Thus, if
either Gy(1,1) > D; or G»(1,1) > Dy, then E, is unstable, and by Theorem 2.7 at least
one one-species survival equilibrium exists. Also, if G1(1,1) < D, and G,(1,1) < D,
then E, is locally asymptotically stable and, provided that mg, > D; and mp, > D;
for i =1 and 2, no one-species survival equilibrium exists. In fact, by Theorem 2.4,
E, is globally asymptotically stable in this case.

Now assume that G,(1,1) > D, so that E;, = (&), Ry, Z;,0) exists. The char-

acteristic polynomial of V4(S1, R1,%1,0), the variational matrix of (2.49) evaluated at
E,, is given by

(@ = (Ga(51, R1) — Da))(0® + Are? + Az + As3),
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where o® + Aj0? + Aya + Aj is the characteristic polynomial of ¥5(5;, Ry, Z,) given
in (2.41)-(2.43) with (S, R) = &1(S, R), R(S, R) = Ri(8, R), G(S, R) = G:(S, R),
and d = D). From this, together with a local stability analysis of the one-species
equilibrium in (S, R, z,)-space, we see that if mg, > Dy,mga, 2 D;,G:1(1,1) <2, and
G2(51, 1) < Dy, then E is locally asymptotically stable.

In the special case that Si(5, R) = p1(S) and Ry(S,R) = qu(R) for all § > 0
and R 2> 0, E, exists if and only if G3(1,1) > D; and is locally asymptotically stable
if G281, Ry) < D. A similar result holds for E;.

H any other equilibria of (2.49) exist, they must be interior equilibria. An

interior equilibrium of (2.49) is a solution E* = (S*, R*, z7,23) of the system

Gi(S,R) = Dy,

(2.50)
G:(S,R) = D,
together with the system
215,(S,R) + 285(S,R) = 1-8,
& &2
(2.51)

RS, R+ 2Ry(S,R) = 1-R,
n 2

with (S°, R",2},z3) € intR}. As in Lemma 2.6, one can show that §* and R*
must satisfy the inequalities in Table 2.1. The following theorem is an immediate
consequence of Theorem 2.4(b).

Theorem 2.14 If (A\; = oo and p; 2 1) or (g = o0 and A; > 1) for at least one
i € {1,2}, then no interior equilibrium E* ezists.

Theorem 2.15 (a) If E* ezists and, fori =1 or 2,mg, > D; and mg, > D;, then
E; exists and is unique.

(b) If E* ezists and, for i = 1 or 2, (mg; < D; and M7 < 1) or (ms, < D; and
MR < 1), then at least one E; exists.
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Proof: (a) Suppose ms; > mgp,. If mp, > D;, then 0 < §* < min{1, A;} < S¢ and
0 < B* < min{l,;}. By (2.22) and (2.23), D; = Gi(S",R") < Gi(1,1). Therefore,
by Theorem 2.7(a), E; exists and is unique. If mp, = D;, then S§=M5=8"<1
and 0 < B* < 1, so that D; = G(S",R*) = Gi(5",1) < Gi(1,1). Therefore, by
Theorem 2.7(b)(ii), E; exists and is unique.

The argument is similar when mpg; 2 ms, 2 D;.

(b) Suppose mp, < D;. Since E* exists, \; < 1 and so D; < ms,. From
Table 1, A; < §* < M7 and 0 < R* < pi(MF). f MF < 1, then wi(MF) =1, and by
(2.22) D; = Gi(S*, R") = Gi(M?,1) < Gi(1,1). Therefore, by Theorem 2.7(b)(iii), at
least one E; exists.

The argument is similar when ms; < D; and MR < 1. @

Remark concerning Theorem 2.15:

As Theorem 2.15(b) would indicate, the cases (mg; < D; and MF = 1) and
(ms; < D; and MP = 1) are special. In these cases, it is, in fact, possible to construct
examples in which one species cannot survive in the absence of competition and
yet a locally asymptotically stable coexistence equilibrium exists when a competitor
population is present. We now describe one such example.

In this example, population z; cannot survive in the absence of competition,
but population z; can. If we take

(9/4)S + (1/2)R
1+5+R
then (as in the example described in Remark 3 concerning Theorem 2.7), provided
that £1/m < 119, no equilibrium of the form E; exists. By Theorem 2.12(b), E,

is globally asymptotically stable with respect to (S, R, z1)-space, and so species z,
cannot survive in the absence of competition. If we take

gl(S’ R) =

and D1 = 1,

35+ 3R 3
gz(S, R) = m and Dz = ‘2-,

then G(1,1) = 2 > D,, and hence by Theorem 2.7(a), 2 unique equilibrium of
the form E; exists. Moreover, E; is locally asymptotically stable with respect to
(S, B, 22)-space and is unstable with respect to (S, R, T1,Zz)-space. In this case, a
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coexistence equilibrium, E*, exists if and only f §* = 6/7, K’ = 1/7, and

o = 46171 (&2 — 36m2)
ST 3(9am — 261ms)
26212(162m; — &) >0
9(9m — 26m2) ~

Assuming that & /m < 119, then z§ > 0 and z3 > 0 if and only if {2/7, > 36. If we
wish to assume as well that & /n; = £2/72, then this condition becomes 36 < & /m =

>0,

z, =

&/n2 < 119. In any case, it can also be shown (using a standard linear analysis
involving the Routh-Hurwicz criterion) that whenever E” lies in the positive cone, it

is locally asymptotically stable.

To investigate under what conditions E* exists in general, we begin with an
examipation of system {2.51). Note that for fixed values of S and R, a solution (z3,z3)
of (2.51) with both z7 and z3 positive is required. Define

for (S, R) € R3. It follows from (2.51) and Cramer’s rule that

o = L/mIRe(S R)(A = 5) = (1/6)5(S, B)(1 — R)
- A(S,R) :

(2.53)
(1/&)5(S,R)(1 = R) = (1/m)Ra(S, R)(1 = S)
AS,R) ’

-—
T, =

provided A(S, R) # 0. The following lemma is a di.:ct consequence of (2.52) and
(2.53).

Lemma 2.16 Let (27, z3) be a solution of (2.51) for fized S, R satisfying 0 < S < 1
and 0 < R < 1. Then zi > 0 and z3 > 0 if and orly if the numerators of z} and z3

as given in (2.53) ere nonzero and of the same sign.

For the remainder of this section we study the existence and stability of E*.

As in the one-species growth model, it is difficult to determine criteria in the case
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that mg, < D; or ms; < D;, i = 1 or 2. In what follows we assume that mp, > D:
and mg, > D; for i =1 and 2.

Using Lemma 2.16 we are now able to provide a characterization of the solu-
tions (5*, R*) of equations (2.50) that yield an interior equilibrium.

Theorem 2.17 (a) Suppose (mg, > ms; 2 D;, i =1 and 2) or (ms, > mp, >
D, end mp, 2 mgs, 2 Dy) or (mp, > ms, = D, and ms, > mg, = Di).
Suppose further that there ezists a solution (5", R*) of (2.50) and that E; exists,

=1 and 2, with 5y # 5. If A is finite and ;(0) > 1, then let 5; be
the unique solution of the equation @;(S) = 1; otherwise, take §; = 0. Take
i, 7 €{1,2}, i # 3. For 3; < S;, define

Ifj = [S';, miﬂ{l, A;}] N [S'J, SJ].

Then the corresponding solution (z3,23) of (251) satisfies 27 > 0 and 23 > 0
if and only if S* € intl;;.

(b) Suppose (ms; > mp, > D;, i =1 and 2) or (mp, > ms, > Dy and mg, >
mpg, > D) or (ms, > mg, = D; and mp, 2 mg, > D1). Suppose further that
there ezists a solution (S*, R*) of (2.50) and that E; exists, i = 1 and 2, with
Ry # Ry. If p; is finite and 0;(0) > 1, then let R; be the unique solution of the
equetion oi(R) = 1; otherwise, take R; = 0. Take i, j € {1,2}, i # j. For
R; < R;, define

L = [R., min{L, :}] N [ijRJ']'
Then the corresponding solution (z],z3) of (2.51) satisfies 2} > 0 and z5 > 0
if and only if B € intl;.

(c) Take i, j € {1,2}, i # j. Suppose ms; > mp, = D; and mp; > ms; =
D;. Suppose further that there ezists a solution (S*, R*) of (2.50) . Then the
corresponding solution (z3,z3) of (2.51) satisfies z} > 0 and z3 > 0 if and only
if (M < 5; and p; < B;) or (5; < Xi and R; < ;).

Proof: {a) Note that by Theorem 2.15(a), there is no loss of generality in assuming
the existence of F; and F,. Suppose first that X; and g; are all finite, i = 1 and 2.
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Define
Nzy(8) = &(—S’nf'*'(—s))a _5)- 32(5’ ""2(3)) S22, 220)) () _ y(8)), 0<5< A,
and

Nay(s) = B0 _ (5 - TS _5), 0g52n

3!
Then Nz;(S) is the numerator of z} as given in (2.53) with R replaced by ¢;(S),
where 7,7 = 1, 2 and ¢ # j. By Lemma 2.5(a) and hypotheses (2.15) and (2.16),
Nz(S) is a decreasing function of S and Nz,(S5) is an increasing function of §
provided § <1 and ¢:(S) £1,i=1,2.
Recall that at Ej = (5;, R,,0,22), 0 < §; < min{1, )z}, 0 < Rz < min{l, g2},
and

5. = &(1—-5) _ m(l—e(5))
2 5250 0(52)  Ra(5r0a(52))

Therefore,

Noa(5y) = Rz(-gz:soz(gz))(l _ &) - 32(32:902(32))( — a(5)) = 0.
7 &
Similarly, N'z,(5,) = 0.

Note that 5; € [0, 5;), since 0 < ;(5;) = R; < min{1, s} and 0 < ¢4(5) <1
for all § € [5;, AJ.

If 5, < 5, then v1(S) < 1 for all § € [Si,min{l, \;}] and ©2(S) < 1 for
all § € [S;,min{1, )z}]. Therefore, N'z;(S) and Nz,(S5) are both positive for all
S € inths.

If 5, < 5y, then ©2(8) < 1 for all § € [S;,min{1, Az} and ¢1(S) < 1 for
all S € [y, min{1, \1}]. Therefore, N'z;(S) and A'z3(S) are both negative for all
S € intly. Combining this with Lemma 2.16, the result follows.

For the other cases, define N'z;(S) as follows. In the numerator of z} as given
in (2.53), if A; is finite, then define N'z,(S) as above; otherwise take

Nzy(S) = 3-2(-;:"2’&1(1 —5)- ﬁ%@u —m), S>0.

Define N'z;(S§) similarly, and proceed as above.
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(b) Define Mz;(R) as follows. In the numerator of z} as given in (2.53), if u;
is finite, then let

Nz(R) = R*—“",%R’—'@(l —ar) - 2B R by o< R

§2
otherwise take
Nzi(R) = M(l —Xg) — M(l —R), R>0.
72 {2
Define M'z2(R) similarly, and proceed as in (a).
(c) Proceed as above. B

Remarks concerning Theorem 2.17:

1. Note that under the hypotheses of Theorem 2.17, 5; < 5, if and only if R, < Ry,
and 5, < 5, if and only if R, < R,.

2. (a) If 8 < 5, then either (Mz,(S) > 0 and Nzy(8) > 0 for all § € inily,)
or (Mz1(R) > 0 and Mzy(R) > 0 for all R € intl};). Therefore, by
Lemma 2.16, A(S*, R*) > 0 for any solution (5*, R*) of (2.50) with 5" €
intliz or R* € intly,.

(b) If S; < §,, then either (Nz,(S) < 0 and N'zo(S) < 0 for all S € intly)
or (Nzy(R) < 0 and Nzz(R) < 0 for all R € intly). Therefore, by
Lemma 2.16, A(S5*, R*) < 0 for any solution (S5*, R*) of (2.50) with 5" ¢
intly or R® € intly.

The next result links the existence of an interior equilibrium E* with the stabil-
ity of the one-species equilibria E; and E,. We will require the following hypotheses:

Ai and p; are finite, ¢ = 1 and 2; and ;(5) is linear, ¢ = 1 and 2; (2.54)
A; or y; is infinite, =1 or 2. (2.55)

Theorem 2.18 Suppose mg;, > D;, mp; 2 D;, and the E; exist, i = 1 and 2. Suppose
Jurther that for i € {1,2}, at least one ); is finite and at least one p; is finite.
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(2) If G1(8:, R) < Dy and G2(51, 1) < Da, then E° exists. If (2.54) or (2.55)

holds as well, then E* is unique.

(b) If Gi(S2, Ry) > D1 and Go(S1, B1) > Da, then E* ezists. If (2.54) or (2.55)
holds as well, then E* is unique.

(C) I_f either (gl(.gz,Rz) > D1 and 92(5'1, R]_) < Dg) or (g1(§2,R2) < .D1 and
G2(51, R1) > Di), and cither (2.54) or (2.55) holds, then E* does not exist.

Proof: (a) Suppose A; and g; are finite, ¢ = 1 and 2. Without loss of generality, assume
that 5y < S;. Since Ga(Sy, Ry) < Da, 2(81) > ¢1(51) = Ry. Since Gi(S5,, Rz) < Ds,
©1(52) > ©2(5;) = R; > 0 and )y > Sp. This implies that a solution (S*, R*) of (2.50)
exists, with §; < 5* < 8. If ¢3(51) < 1, then Iy = [5y, 52)- If 2(51) > 1, then
Iiz = [52, 55, where S, € (51, 5;) because p5(52) = Ry < 1. Also, p1(S) < By <1
and ¢2(S) = 1 for all 5, < 8§ < 8, so v and o do not intersect on [5'1,52].
Therefore, ¢; and ¢, must intersect at some S* € intlys, so, by Theorem 2.17, E*
exists. If, in addition, ¢, and ¢, are linear, then S* is unique, so that E* is unique.

In the other cases, the existence of £* is proved similarly, and its uniqueness
is immediate.

(b) Suppose A; and g; are finite, { = 1 and 2. Without loss of generality, assume
that §; < 5,. Since gz(él,Rl) > D, it follows that ,(5:) < tp1(§1) =R <1
and S, < 51. Since Gi(Sz, Ry) > Dy, either ¢ is defined at 5, (so A = 5;) and
©1(52) < ©2(5;) = Ry, or ¢y is not defined at S; (so A; < 53). Then I = [54, 5]
if A} > 8;, and Ii; = [5), \] otherwise. In either case, ©; and w2 must intersect at
some S* € intlis, so, by Theorem 2.17, E® exists. If, in addition, ¢; and ¢, are
linear, then S* is unique, so E* is unique.

In the other cases, the existence of E* is proved similarly, and its uniqueness
is immediate.

(c) Consider G1(Sz, R;) > Dy and G2(S5,, Ry) < D; and suppose that (2.54)
holds. Without loss of generality, assume that S, < §,. Since G:(5,, Ry) > Dy,
1(82) < 2(S2) = Ra, and since G2(Sy, B1) < Ds, By = ¢1(81) < 2(5:). Since ¢y
and (, are linear, ¢1(S) 5 ¢2(S) for every S € intly,, so, by Theorem 2.17, E* does
not exist.
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The other cases, where the linearity hypothesis is not required, are proved
similarly. B

Remark concerning Theorem 2.18:

From the characteristic polynomial of Vi(8, Ry,Z,0), it follows that if
G2(8), R1) < D,, then E, is attracting from the interior, and if Go(5y, By) > Da,
then E, is repelling into the interior. A similar result holds for E,.

Now, assuming that a solution E* = (§*, R",z},z3) € RY of (2.50)-(2.51)
exists, we Investigate its stability. Define

0 a 0 0
V(S: R) = Eggl('g, R)'ang2(Sa R) - ﬁgl(ss R)5§Q2(S: R)'

Evaluating the variational matrix V4(E*), the associated characteristic polynomial is
o' + Bye® + B:a® + Bya+ By, (2.56)

If ms, < D; or ma; < D; for i =1 or 2, it is difficult, in general, to provide
even a partial analysis of the roots of (2.56). However, if mg; > D; and mp, > D;
for : =1 and 2, then some conclusions can be reached. By hypotheses (2.13), (2.15),
(2.16), (2.22), and (2.23), it follows that By > 0, B; > 0, and B3 > 0. Also,

By =275 (S°, R*) A (S R,

where A(S, R) was given in (2.52), and so by the Routh-Hurwicz Criterion, a neces-
sary condition for the local asymptotic stability of E* is that 7(5*, R*) and A(S", R*)
have the same sign.

Suppose that ms; > D;, mp, > D;,i=1and 2, 5; < 5;, and (§°,R*) is an
isolated solution of (2.50). By Remark 2 following Theorem 2.17, A(S*,R") > 0. If
[PA(S)] < ph(S")l, then, since

2a.
() = ~E o)
3R
it follows that

2%01(5", B*)
'a‘aﬁgl(s‘i R-)

2592(S", R*)
';EG2(S'1 R-) ]

<
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After rearranging,
(5 B) = 2015, B2 0y(5%, BY) — 26u(57, B -2e0a(57, B < 0.
AR T At T A T A TR
Therefore, By < 0, and E” is unstable. If |¢1(S5*)| > [¢%(S*)], then

20,(5F) | AG(S"F)
%gl(S‘, R') 5-’}—292(5‘, R')’

fle
i; S- R‘ — g S‘ R‘ g S- R. - g S- R‘ g S. R- . 0

Since A(S®, R*) > 0, then B4 > 0. A similar result holds when 5, < 5.

For example, suppose the hypotheses of Theorem 2.18(a) and hypothesis (2.54)
hold. Then E* exists and is unique. If §; < 5, then |¢}(S*)| < [¥4a(S*)], so
(5%, R*) < 0 and E* is unstable. Similarly, if 5; < ), then |@4(S*)| < |¢4(S5*)), so
V(8" R*) > 0 and, since A(S*, R*) < 0, E* is unstable.

Suppose the hypotheses of Theorem 2.18(b) and hypothesis (2.54) hold. Then
E* exists and is unique. If §; < 53, then |¢4(5*)| < |©4(S")], so 7(S*, R*) > 0 and
By > 0. Similarly, if §; < S, then |} (S*)| < |¢5(S*)}, so ¥(S*, B*) < 0and B; > 0.

If 8;(S,R) = pi(S) and Ri(S,R) = g;(R) forall S > 0,and R 20, i =1, 2,
then as shown by Leén and Tumpson [31], By > 0 is a necessary and sufficient
condition for all roots of (2.56) to have negative real part, and hence sufficient for the
local asymptotic stability of an interior equilibrium. This follows from the fact that,
in this case, the characteristic equation of V;(E*) satisfies all other conditions of the
Routh-Hurwicz Criterion. As in [31],

= (), ), - (5),. (8),)
« (Ih(S') a(R)  p(SY) QI(R')) .
SU &2 m

Therefore, two species competing for two perfectly substitutable resources will coezist
stably at equilibrium if ot that point each competitor removes at o higher rate that

resource which contributes more to its own rate of growth.
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Finally we study a global property of the model. In the following, let
Jq.= {(Sa R, 0:0) € Ri]‘,

Jr = {(S, R, z1,%2) € R:_ i3y >0, 32 =0},
Jz = {(5, R, z1,22) € R} : 2, =0, 22 > 0).

Theorem 2.19 Assume that G;(1,1) > D;, i = 1 and 2. Assume also that E; is
globally asymptotically stable with respect to all solutions initiating in J; for i = 1
and 2 and that G\(S2, Rz) > D, and Go(Sy, By) > D,. Then system (2.49) is uniformly
persistent with respect to all solutions for which z,(0) > 0 and z,(0) > 0.

Proof: Since G;(1,1) > D;, ¢ = 1 and 2, by Theorem 2.7, at least one E; ex-
ists for each ¢ = 1 and 2. Identify (S, R,2),2,)-space with R4, and choose X =
(5(0), R(0), z1(0),z2(0)) € RA. By Theorem 2.2(a), 2(X) is a nonempty, compact,
invariant set with respect to (2.49).

By an argument similar to that given in Theorem 2.10, it follows that any point
in (X} must satisfy lim infy_.c S(2) > 0 and liminf; e B(t) > 0. Therefore, to show
that (2.49) is persistent, it remains to show that liminfe oo 2;(¢) >0, =1, 2.

Note: that E, is globally attracting with respect to all solutions initiating in
Jo- By an argument similar to that used in Theorem 2.10, E, ¢ Q(X).

Suppose {E,} € Q(X). Since G3(51, Ry) > Da, B, is an unstable hyperbolic
critical point, and therefore dim(M*(E,)) < 4. Since M*(E;) D> Jy, dim(M*(E,)) >
3. Therefore, M*(E;) = J; and hence does not intersect intRY. This implies that
{E1} # Q(X). Therefore, by the Butler-McGehee Lemma (see Lemma Al of [17]),
there exists P € (M*(Ey)\{F1}) N UX) and hence clO(P) C Q(X). But then, as
t — —o0, O(P) either becomes unbounded or leaves the positive cone or clO(P) D
{Eo}. In any case, we have a contradiction, and therefore {E,} ¢ Q(X). Similarly,
{E:} & (). ”

Suppose liminf; .o zi(t) = 0, i =1 or 2. Then there exists a point P € (X )
such that P € 7; for some i € {0,1,2}. Now, P € Q(X) implies that lO( P) c 9(X).
However, if P € J;, then {E;} € clO(P), because E; is globally attracting with respect
to all solutions initiating in the set J;, implying that {E;} € Q(X), a contradiction.
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Thus liminfic zi(t) > 0, i = 1, 2, and so (2.49) is persistent. It now follows from
the main result of [8] that (2.49) is uniformly persistent. B
Remark concerning Theorem 2.19:

Note that since system (2.49) is dissipative and uniformly persistent, there is a
compact set in intR} which is a weak global attractor with respect to intR}. Thus,
by Theorem 3.9 of [5], there exists at least one coexistence equilibrium.

Note also that if mg, > Di,mg; 2 D;, and D; = 1 for i =1 and 2 or if
Si(S, R) = p;(S) and R;(S,R) = g:(R) for all $ > 0 and R > 0, i =1, 2 (regardless
of the relative values of mg,, mp; and D; and with D; not necessarily equal to 1), then
by Theorem 2.12(a) and Theorem 2.13(b), respectively, E; is globally asymptotically
stable with respect to all solutions initiating in {(5, R, z1,z2) € R : z: > 0, z; = 0},
where i # j € {1,2}. Therefore, Theorem 2.19(a) gives necessary and sufficient
conditions for uniform persistence in these cases.

2.4 Summary of Results and Discussion

In this section we summarize the results of our analysis in terms of the original un-
scaled variables, both for model I of Ledn and Tumpson [31] and for model (2.12). We
then compare the dynamics with the dynamics of the classical growth and two-species
competition models and the corresponding models for perfectly complementary re-
sources. For convenience, we retain the notation of Section 3 for the equilibria E,, E;,
and E°. However, it is to be understood that by the scaling (2.31), the S and z; com-
ponents of the equilibria of (2.12) should be multiplied by S° and the R components
of the equilibria of (2.12) should be multiplied by R°. To facilitate the description
of the quantities governing the dynamics of (2.12), we assume that the volume V
of suspension in the growth vessel is one cubic unit. In (2.12), D, D, and D, are
divided by the actual volume V.

2.4.1 Model I of Leén and Tumpson Adapted to the Chemostat

We obtain our most complete results when the amount of each resource consumed

is assumed to be independent of the concentration of the other resource, that is,
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Si(S,R) = pi(S) and Ri(S,R) = ¢i(R), for { = 1 and 2. First we consider the
one-species growth models (the (S, B, z;) subsystems of (2.12), i € {1,2}). We show
that for each ¢ € {1,2}, z; avoids extinction if and only if Gi(S°,R°) > D;. In
other words, if a species cannot consume enough resource to compensate for the
rate D; at which it is being removed, even if the growth vessel is maintained at the
input concentrations 5° and R° of resources S and R, then that species will become
extinct. Otherwise, there exists a unique one-species survival equilibrium that is
globally asymptotically stable. Next we consider the two-species competition model
in this setting. In Table 2.2, we summarize the criteria for existence of the equilibria in
the nonnegative cone, as well as the criteria that guarantee local asymptotic stability
of these equilibria. For the two-species competition model, if Gi(S°, R°) < D; for
¢ = 1 and 2, then E,, the washout equilibrium, is globally asymptotically stable.
On the other band, Gi(S5;, R;) > Dy and G2(51, R;) > D; is necessary and sufficient
for solutions of the two-species competition model to be uniformly persistent, thus
ensuring that both species survive in the presence of competition, regardless of the
(positive) initial concentrations.

In this setting, we now compare the dynamics of growth on perfectly comple-
mentary resources with the dynamics of growth on perfectly substitutable resources.
In both cases either the washoui equilibrium is globally asymptotically stable and
hence the carrying capacity of the environment is zero, or there exists a one-species
survival equilibrium that is globally asymptotically stable, and the species compo-
nent of the equilibrium gives the carrying capacity of the environment. The major
difference in the criterion that determines whether the species will survive or wash
out is precisely as expected. For perfectly complementary resources, both resources
must be above some threshold (see Table 3 of Butler and Wolkowicz [12]), whereas for
perfectly substitutable resources, the threshold (see Thecrem 2.13) depends on the
combined amount of the resources. The classical, or logistic, model due to Verhulst
predicts that as long as the initial population is positive, the population size will
approach the carrying capacity of the environment, which must be known in advance
because it is a parameter in the model that is always assumed to be positive. Thus,

an advantage of both of the resource based growth models over the classical model is
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that they predict the carrying capacity of the environment.

Using graphical techniques to examine the local stability properties of two-
species competition for two resources, Tilman [56] conjectured that the type of re-
sources for which competition occurs will not lead to major, qualilative differences in
the ecological patterns that can result from competition between two species for two re-
sources. Butler and Wolkowicz {12}, who extended the work of Ledn and Tumpson {31],
in the perfectly complementary resource case, found that in the case of monotone
response functions, each of the outcomes of the classical theory for two-species com-
petition is possible. We show that each of the outcomes for perfectly complementary
resources is also possible in the perfectly substitutable case. Competition-independent
extinction, an impossibility in the classical model, can occur in the resource-based
models. Both for perfectly complementary resources and in the classical model, coex-
istence always occurs at a globally asymptotically stable critical point. For perfectly
substitutable resources in this setting, we are only able to show uniform persistence.
(Note that uniform persistence of a system implies that at least one coexistence equi-
librium exists.) In fact, multiple interior equilibria are possible, and so coexistence
need not always occur at a globally asymptotically stable equilibrium. It is even
possible for the outcome to be initial condition dependent in the sense that for cer-
tain initial conditions there is coexistence whereas for others there is competitive

dominance, that is, one population drives the other population to extinction.

2.4.2 Model (2.12)

While Tilman’s conjecture appears to be true for the most part, there seems to be a
wider range of possible dynamics in the perfectly substitutable case. What also seems
to make a difference is the strategy used for consumption, in particular, whether or not
the concentration of each resource affects the amount of the other resource consumed.
We extend model I of Ledn and Tumpson to incorporate handling time in the sense of
Holling [24] and hence allow the concentration of one resource to act as a competitive
inhibitor on the consumption of the other resource (see assumptions (2.16)-(2.26)).
Here it becomes important to consider the relative values of mg; and mp,, the maximal

growth rates on resource § and R, respectively, and D;, the combined washout and
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specific death rate. When the maximal growth rate of population z; on one resource,
say resource S, is larger than the maximal growth rate of population x; on the other
resource, then there is a threshold, S§, for resource S. (See Figure 2.1.) If the
concentration of resource S is below this threshold, increasing the concentration of
either resource is beneficial to that population. However, once the concentration of
resource S is above this threshold, so that the maximal growth rate on resource R is
exceeded by consuming only resource S, increasing resource S is beneficial, but the
presence of resource R becomes detrimental to that population.

In this setting, we again considered the one-species growth model. As in
model I of Ledn and Tumpson, we find that Gi(S°, R°) > D; is necessary and sufficient
for this model to be uniformly persistent, regardless of the relative values of ms;, MR,
and D;. H fnsi > D; and mg; > D;, so the rate of removal from competition does
not exceed the maximal growth rate for each resource, then if G;(S°, R°) < Dy, the
environment is not rich enough to support population z;, and it is driven to extinction.
On the other hand, G:(5°, R°) > D; is a necessary and sufficient condition to ensure
that 2 unique one-species survival equilibrium E; exists. We have only shown that
the criteria for the local asymptotic stability of E; (see Table 2.2) apply under the
added assumption that G;(S°, R°) < 2D. However, if the intrinsic death rate is
assumed to be insignificant compared to the dilution rate (D; = D), then E; is
globally asymptotically stable with respect to the interior of (S, R, z;)-space.

The growth model exhibits more unusual dynamics when ms, < D; < mp, or
mp; < D; < mg,. If, in addition, G;(S°, R°) < D;, there may or may not exist a
one-species survival equilibrium, and if one exists it need not be unique. In fact, we
provide an example (see Remark 3 following Theorem 2.7) in which mp, < D; < mg;,
and Gi(5°, B°) < D; so the washout equilibrium is locally asymptoticaily stable. By
treating the ratio of the growth yield constants, ¢;/n;, as a bifurcation parameter
while fixing all of the other parameters in the model, one can obtain either zero, one,
or two one-species survival equilibria. In this example, for at least one one-species
survival equilibrium to exist, &/n; must be sufficiently large. To see this, consider
all concentrations S, R of resources S and R satisfying Gi(S5, R) = D;. Since ihe
concentration S of resource S is abeve the threshold 5§, resource R is detrimental.
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One would expect thiat the faster resource R is depleted the better. If the ratio & /n;

is too small, then _ -
(B = RYD/V) _ (1fn)Ri(5,R)
(S°=S)(D/V) ~ (1/&)S(S, R)’

and so the ratio of the net supply rate of resource R to that of resource S exceeds

(2.57)

the ratio of the consumption rate of resource R to that of resource §. As species z;
cannot deplete resource R quickly enough, no one-species survival equilitrium exists.
In this example, if at least one one-species equilibrium exists, then at least one of
them is locally asymptotically stable, and so whether the species survives or washes
out depends on the initial conditions. Multiple one-species survival equilibria and
initial condition dependent survival is not possible in any of the other growth models
discussed in this chapter.

We then consider the two-species competition model. If, for each species,
either (both breakeven concentrations, A; and p;, are finite and G;(5°, B°) < D;) or
(A; = oo and g; > R°) or (A 2 5° and p; = ), then E,, the washout equilibrium,
is globally asymptotically stable, that is, both species become extinct. On the other
hand, we find that if £, and F; are globally asymptotically stable in their respective
three-dimensional subsystems, then a necessary and sufficient condition for the two-
species competition model to be uniformly persistent is that Gy(S2, R2) > D; and
Ga(S1, 1) > D,;. We examine the existence and stability of coexistence equilibria
under the assumption that mg, > D; and mg;, 2 D; for i = 1 and 2. The results
in this case are summarized in Table 2.2. (Note that the condition for the local
asymptotic stability of E* only ensures that the constant term in the characteristic
equation of the variational matrix of (2.12) evaluated at E* is positive.) We first
show that if a coexistence equilibrium exists, then E; and E, exist and are unique.
We then characterize those resource concentrations that yield coexistence equilibria.
Using this characterization, we prove that if F; and E; exist and either both repel into
or both attract from the interior, then at least one coexistence equilibrium exists. We
also show that G1(S, R) and G2(S, R) can be chosen so that these conditions on the
stability of E; and E; yield precisely one coexistence equilibrium. In particular, when
the subsistence curves are linear, as in Waltman et. al. {60], we find that if both E;
and E, attract from the interior, then E* is unique and unstable, and if both F; and
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E, repel into the interior, then E* is unique and the condition for the local asymptotic
stability of E”, given in Table 2, is satisfied. Also, if E; and E, exist and one attracts
and the other repels with respect to the interior, no coexistence equilibrium exists.
However, if the subsistence curves are nonlinear, multiple coexistence equilibria are
possible, and, as in model I of Leén and Tumpson, the outcome of competition may
depend on the initial conditions.

As in the growth model, the competition model exhibits more unusual dynam-
ics when ms; < D; < mp; or mp; < D; < mg; for at least one i, We provide an
example (see the remark following Theorem 2.15) in which one species is unable to
survive in the absence of a competitor even though there exists a locally asymptot-
ically stable coexistence equilibrium when a competitor is present. Thus, in some
circumstances it seems that a population can be better off with a competitor than

without one. This situation will be examined in further detail in the next chapter.



e

(W1
-3

2 COMPETITION FOR TWO RESOURCES

2.5 Figures and Tables

Figure 2.1: Schematic Diagram for Lemma 2.1 (a) ms, > mp, > D;; (b) ms, > D:i >
mp,; (¢} D; > ms, > mpg,.



2 COMPETITION FOR TWO RESOURCES
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Figure 2.2: “Indifference” curves in the (S, R) plane and the “subsistence™ curve for

ms, > mpg,. Since 8;(S, R) = 0 = 9,5, i(5)) = ®i(e:(R), R), the indifference curve
with C' = 0 gives the subsistence curve.
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Figure 2.3: Schematic Diagram for Theorem 2.7. For ms >2'mg > d: (2) A <1 and
<L ®A>land g>1;(c) A <land g2 1 (d))\>1a.ndy<1 .For
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Figure 2.4: Partial Vector Field for Theorem 2.12. Vectors parallel to the § axis

indicate the sign of S’(t) along the indicated line. Vectors parallel to the R axis
indicate the sign of R'(t) along the indicated line.
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ms, 2 mp,
l‘= 1.2 mg, - D| mge, = Dl mp, < D|
0<5 <min{l,2;,4;] |[A =5 <min{l, )} Ay < 57 < min{As, M)
mp, > D,
0 <R <min{l,py,pa} | 0< R <min{l,p,)} 0 < R" < min{e,(MF), pa)
A;=5'<m.in{l,¢\.} Al=);=$‘<1 4\|<A2=S.<f'{i§
mp, = D]
0< R < min{l,p) 0O< R <1 0 < R < o MF)
ha< S <min{MM7) | A =S <M max{}, A} < §° < min{M], M)
mp, < D-‘-
0 < " < min{paAMF) 1} | 0< R < wrM3) 0 < B < min{p (M7), 02 MF))
ms, 2 mp,
mg, < Mg, mpg, > D, mg, = Dy mg, < Dy
<SS < min{l,Al,A:_} Ay = §° < min{l, A} A < 8 < min{;, M)
mg, > D: -
0 < R < min{l,py,pua} 0 < A" < min{l, u3} 0 < R < min{e, {MF},pa)
0 <S5 <min{l, A} AA=5<1 A< S <M}
ms, = D, '
p;=R‘<min{l,,u1} 2= R <} p:=R-<gﬂ1(ﬁ{f]
0 <5 <min{e2M5*), M1} | M =8 < o3(MF) A €57 < min{M],0a(AF)}
mg, < D;
#3 < R < min{u,, MF) #3 < RB- < Mf 1 < R° < min{p(M7), MF}

Table 2.1: Necessary conditions for a solution (5%, R*) of system (2.50) to be an
interior equilibrium of (2.49). If mp; > mg; fori =1 and 2, replace A; by y;, S* by
R, M7 by ME,0;(MF) by ©;(MF), and vice versa, in the first portion of the table.
If ms, < mg, and mgs, > mg,, replace 1 by-2 in the second portion of the table.
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CRITICAL EXISTENCE CRITERIA FOR
POINT CRITERIA ASY MPTOTIC__STABILITY
gl(soa Ro) < %
E, always exasts and
gz(SO,Ra) < %2'
Ey Gi(8°, R°) > %" g?(gl;ﬁl) < %1
E; Go(S°, R} > %1 gl(‘S‘Z:Rz) < %L
(i) gl(Sz,wz(Sz)) <5 (ii) holds and either
E- and G3(51,1(51)) < B2 23 (571 > |e3(5°)
( not necessarily _or Hs <3,
unique ) (ii) G1(52,102(S2)) > %‘ or |y (S*)] < la(S7)
and g2(51,(,01(51)) > T} if Sy > S,

Table 2.2: Summary of Local Stability Analysis of (2.12) Si(S, R) = pi(S) for all
R 20;Ri(S,R) =qgi(R) forall § > 0.
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3 Competition Can Lead to Diversity

3.1 Introduction

It is well known (see for example [4], [10], [25], [27], [66], [60], [65]) that models
of exploitative competition in a chemostat with constant input by » populations of
microorganisms for a single, essential, nonreproducing, growth limiting resource pre-
dict competitive exclusion. That is, they predict that at most one population avoids
extinction. Hence, exploitative competition is usually thought of as a factor that
reduces the diversity of natural ecosystems. On the other hand, predation is usually
assumed to be one of the factors that promotes diversity (see for example [11], [40],
[51], {63], [64]). In fact, Wolkowicz {63] considered a model of a food web in a chemo-
stat in which an arbitrary number of competitor populations compete exploitatively
for a single resource and an a.rbitréry number of predator populations predate on the
competitor populations. The model predicts that invasion by a competitor popula-
tion or removal of a predator population can cause a drastic reduction in the number
of populations in the system.

In this chapter we describe a scenario based in a chemostat in which the in-
troduction of a population that exploits common resources actually promotes greater
diversity. As in the previous chapter, we consider two populations that interact sim-
ply by consuming the same two perfectly substitutable resources. It is not surprising
that competition for two resources can result in the coexistence of two competitor
populations. What is surprising in the example considered is that one of the popula-
tions cannot survive in the absence of its apparent rival. However, survival is assured
provided both populations are present initially, regardless of the initial concentra-
tions. This example seems to indicate that exploitation of common resources in some
circumstances promotes diversity. A similar situation occurs in Butler and Wolkow-
icz [12], where competition is for two perfectly complementary resources. Examples
are given (see examples 3.9 and 3.11 in [12]) predicting that when both resources
are limiting at low concentrations and at least one of the resources is inhibitory at

high concentrations, two populations can coexist even though neither one can survive
without the other.
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3.2 | The Model

The model that we consider is precisely model (2.12), discussed in the previous chap-
ter, under the assumption that species-specific death rates are insignificant compared
to the dilution rate. We assume for convenience that the volume V in the growth

vessel is one cubic unit. Under these assumptions the equations become

s = (5= 500 -3 250, R,

R() = (& - B -3 2R (50, R, @)

:’:;(t) = zi(t)(-D+ g,(S(t),R(i))), 1=1,2,

The functions 5;(S, R) and Ri(S, R) are assumed to satisfy all of hypotheses (2.2)

and (2.14)-(2.18), while G;(S, R) is assumed to satisfy all of hypotheses (2.13) and
(2.19)~(2.26).

3.3 The Main Result

As shown in Chapter 2, intR} is positively invariant for all solutions of (3.1) and all
solutions are bounded.

‘We maintain the notation of the previous chapter for the equilibria of system
(3.1). Therefore, the washout equilibrium is denoted E, = (5°, R°,0,0). When
they exist, the one-species survival equilibria are denoted E; = (5, Ry, %,0) and
E; = (5;, Rs,0, %;) and the coexistence equilibrium is denoted E* = (S*, R, z3y,%5).

Lemmas 2.1, 2.5 and 2.11 as well as Theorems 2.7 and 2.12 will be used to
prove the main result of this section. Where necessary, they are used with the obvious

modifications so that they can be applied in terms of the original unscalzd variables.

Theorem 3.1 Consider system (3.1). Let j,k € {1,2} with j # k. Assume that
no one-species survival equilibrium of the form E; ezists. Assume also that there

is a unique one-species survival equilibrium of the form E, and that E; is globally
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asympiotically stable with respect to the positive cone in (S, B, zi)-space, but that it
is unstable with respect to (S, R, z1,%2)-space.

(a) If z(0) = 0, then limy_oz;(t) = 0.

(b) System (3.1) is uniformly persistent with respect to all solutions for which
71(0) > 0 and z2(0) > 0.

Proof: (a) This follows immediately by Theorem 2.12(b).

(b) Define X = (S(0), R(0),z1(0), z2(0)) € intR4. Since all solutions of (3.1)
are nonnegative and bounded, £2(X) is a nonempty, compact, invariant set contained
in the nonnegative cone in (5, R, z1, z2)-space.

First we show that E, & (X). Suppose E, € Q(X). Since M*(E,) =
{(S, R, z1,22) € R} : z =0} and z:(0) > 0, (X)) # {E,}. By the Butler-McGehee
Lemma, there exists P? € (M*(E,) \ {E.}) N Q(X). However, since P° € Q(X),
clO(P?) € (X). By Lemma 2.11, (M*(E,) \ {E,}) is two dimensional. Since no
equilibrium of the form E; exists, it follows from the Poincaré-Bendixson Theorem
that clO(P*) is either unbounded or leaves the nonnegative cone in (S, R, z1, Z2)-
space, a contradiction.

Next we show that E; € Q(X). Suppose Ex € Q(X). Since M*(E;) =
{(S,R,z1,22) € RY :z; =0,z > 0}, QX) # {E:}. By the Butler-McGehee
Lemma, there exists @* € (M?*(Ex)\ {E:})NQ(X). By Lemma 2.11 and the Poincaré-
Bendixson Theorem, cl@(Q?) either contains E,, becomes unbounded, or leaves the
nonnegative cone in (5, R, z1, z2)-space, a contradiction.

Let Xo = (8, R, z,,2,) be 2 point in (X). Then lO{Xp) C UX). lfz;, =0
and z; > 0, then E, € (X), a contradiction, and if z; = 0 and z; > 0, then
Ei € (X)), again 2 contradiction. Thus, iminfy .., z;(t) > 0, i = 1, 2, and so (3.1)
is persistent. It now follows from the main result of [8] that system (3.1) is uniformly
persistent. @

Corollary 3.2 Consider system (3.1). Let j,k € {1,2} with j # k. Assume
R-R_ (1/5)R;(5,R)

So—-85  (1/£)5:(S, R)

satisfying g,-(S', f?) = D.

for all § €(0,5°), R € (0,R°) (3.2)
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Assume also that mp, > D, ms, > D, Gi(5°,R°) > D, and G;(Sk, By) > D.
(a) If zx(0) = 0, then limioz;(t) = 0. {:‘,'*

(b) If z;(0) > 0,i =1,2, then liminfi2:(t) > 0.

Proof: Condition (3.2) implies that no one-species survival equilibrium of the form
E; exists. By Lemma 2.12(a), the conditions mg, > D, mg, > D, and Gi(5°, R°) >
D imply that Ey exists and is globally asymptotically stable with respect to the
positive cone in (8, R, zx)-space. By a standard linear analysis (see Section 2.3.3),
G;(Sk, Rx) > D implies that Ej is unstable with respect to (S, R, z1,z,)-space. The
result now follows immediately from Theorem 3.1. 8

Surprisingly, then, the exploitation of resources § and R by population z
helps population z;. We offer an explanation of this rather carious behaviour in the

discussion. The following results are required.

Lemma 3.3 Consider system (3.1). Let j,k € {1,2} with j # k. Assume (3.2)
holds. Assume also that G;(Sk, Bx) > D. Then G;(8°,R°) < D and ms; > D > mp,.

Proof: By (3.2) and (2.38), no one-species survival equilibrium of the form E; exists.
Therefore, by Theorem 2.7, G;(5°, R°) < D.

To prove that ms; > D > mg; we exclude the following three cases:
1. D 2 ms; and D > mp;,
2. ms; > mg; = D,
3. mg; > D,

(2) D > mg;

(b) ms; 2 mg; > D,

(c) mg; > ms; > D.

Case 1. By Lemma 2.1(a)(iii), G;(S, R) < D for all (S, R) € R2, a contradic-
tion.
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Case 2. By Lemma 2.1 parts (a) and (c)(ii), G;(Sk, Bx) > D implies }; =
5% < 8. Since i < 5°, it follows from Lemma 2.1(a)(ii) that G;(5°, R°) > mg; = D,
a contradiction.
Case 3(a). In this case, g; < oo and A; = oo. Since G;(0, ;) = D,
R—pi R—p

. ~ . (1/n;)R5(S, u5) _
e = B s Em

we have a contradiction to (3.2).

Case 3(b). By Lemma 2.1(b)(ii), A; < S§. Note that, by Lemma 2.5(a),
¢}(S) < 0 for 2ll S € (0, ;). B

S <8 <)< 5%, then R > @i(Sk) > ©;(5°), so D = G;(5°,¢;(5°) <
Gi(S°, R°) (by (2.23)). If J; < 8° < 8%, then D < G;(5°,0) < G;(S°, R°) (by (2.23)).
If X; < S8 < S5°, then G;(S°, R°) > mg; > D (by Lemma 2.1(a)(iii)).

Case 3(c). The proof in this case is similar to previous one. Simply replace
A; by p; and 5% by R;. W

Lemma 3.4 Under the assumptions of Corollary 3.2, there ezists precisely one co-
ezistence equilibrivm E* = (S*, R", 3, 23) for system (3.1) and

(/n)RA(S"B) | RO B
(/6)545% ) ~ 5 =5

(3.3)

Proof: Since system (3.1) is uniformly persistent, at least one coexistence equilibrium
E* exists. By (3.1), Gi(S*,R*) = D for i = 1,2. By Lemma 2.5(a), ¢%(5) < 0 for all
S € (0, Ax) and by Lemma 2.5(b), ¢}(5) > 0 for all S € (;, M7). Therefore, there is
exactly one coexistence equilibrium in this case.

Without loss of generality, assume k = 1. Then, by Theorem 2.7(a), E, exists
and is unique. By Lemma 3.3, ms, > D > mp,. Note that 0 < §* < S§° and
0 < R* < R°. From (3.1), zj and zj must satisfy

o = (1/n2)Ra(S, R*)(1 — §°) — (1/&2)S2(S*, R*)(1 - R*)
1 NG !

(1/£)8:(8%, R*)(1 = B*) — (1/m)Ra(S*, B)(1 - §7)
A B ’
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where £4(S*, R*) is as in (2.52). Recall that, by Lemma 2.16, the numerators of Ty
and z3 must be nonzero and of the same sign. By (3.2), the numerator of z] is

negative, implying that the numerator of z} is negative, and the result follows. The
proof for k = 2 is similar. B

3.4 Discussion

Why should exploitation of resources S and R by population z; help population x;7?
Under the hypotheses of Corollary 3.2, ms; > D > mp, by Lemma 3.3. Therefore,
the rate at which population z; is removed from competition by dilution exceeds its
maximal growth rate on resource R. As well, there exists a critical concentration
5% of resource S beyond which the presence of resource R becomes detrimental to
population z;. Since § > (); >)5¢ for all ($,R) satisfying G;(5,B) = D, the
presence of resource R is detrimental to population z; when the concentration of
resource S is close to any such concentration 5. One would expect that the faster
resource R is depleted, the better. However, for all § € (0,5°), R € (0, R°) satisfying
Gi(8,R) = D, . .

(B = RD _ (/n)Ry(3,B)

(S°=5)D ~ (1/£)S8;(S,R)
Therefore, the ratio of the net supply rate of resource R to that of resource S exceeds

the ratio of the consumption rate of resource R by population z; to that of resource

S close to any subsistence concentrations (S, R) Therefore, population z; cannot
deplete resource R quickly enough and so no one-species survival equilibrium of the
form E; exists. In the absence of population zy, the washout equilibrium E, is globally
attracting and population z; dies out.

Now, for population zx, ms, > D and mg, > D. Since Gi(S°, R°) > D, E,
is unstable, and in the absence of population z;, population z; would survive at a
globally asymptotically stable one-species survival equilibrium E; = (5%, Ry, %1, Z,)
(where Z; = 0). At the resource concentrations of this one-species survival equilib-
rium, G;(Sk, Rx) > D. Thus, population z; would be able to compensate for the
rate at which it was being removed from competition by dilution and E; is unstable
with respect to (S, R, zy,z2)-space. Also, A; < §; < )., and so population z; would
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outcompete population z; driving it to extinction if no resource R were available.
Under these conditions, a unique coexistence equilibrium E* exists. Since

(1/m)Re(S*, R*) S (R°— R*)D
(1/€x)Sk(S*, R*) (5°= 59D’

we see that at Tesource concentrations near (S5*, R*), the ratio of the consumption of
resource R by population zj to that of resource S would exceed the ratio of the net
supply rate of resource R to that of resource S. Thus, population z; would deplete
resource R quickly enough so that coexistence is possible.

That the hypotheses of Corollary 3.2 can be easily satisfied is shown in the

following example:

¢ - 1_g :1:1( £.258 )_ﬂ( 215 )

TG \1+S+R/ £ \1+S+R
0.5R T 2.1R
* - 1on-2 () -2 ()
m\l+S54+R/ mn\1+S5+R
C (_1 2.258 +0.5R)
T = 1 1+S+R )
. _ 2.1S+2.1R)
T2 = "“2( YT sTR )

In Corollary 3.2, j =1, k=2, S°=R =D =1, mg =225 >1> 05 =
MR, Mg, = 2.1 = mp, > 1, A = 4/5, p1 = o0,Ay = pp = 10/11, Gi(1,1) =
11/12 < 1, Ga(1,1) = 1.4 > 1, S = 2/7, BS = S5 = RS = co. Provided £ and n
are chosen so that (3.2) holds, i.e.,

& 9(20 — 11/10) 2 119.9210,

m o 40-13V10
and £; and 7, are chosen so that (3.3) holds, i.e.,

é > -@ =2 58.2564,
n2 39

then the hypotheses of Corollary 3.2 are all satisfied by this example. The coexistence
equilibrium, E* = (64/77,6/77, 23, z3), where

. _ 161m (22727, — 3%;)

o= 5€an2(—3408n; + 134,)
17 176(26102 — 9més)

176(2€172 — Iméa)

'n—-
and z; =
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can be shown to be locally asymptotically stable, and is probably globally asymptot-
ically stable. In the absence of population z3, population z; dies out. However, if
both populations z; and x, are present at some time and in any amount, then both
populations persist.

Note that resource R is not inherently detrimental to population z;. If nothing
were changed in the above example except that the dilution rate D were reduced so
that D < mp,, then it would not be possible to satisfy the hypotheses of the Corollary.
In the absence of population z», population ; would survive at a globally stable one-
species survival equilibrium. I fact, if D is sufficiently small and no z, is present, z,
could survive by consuming resource R exclusively, even if resource S is eliminated.
With this in mind, the following scenario is possible. If D is sufficiently small, z,
could survive with or without z,. If D is suddenly increased, z; could be forced to
extinction unless some r; is present. (For example, the dilution rate often changes
significantly due #o spring run off.)

The above example also provides support for the so-called paradoz of enrich-
ment introduced by Rosenzweig [44] — “Man must be careful in attempting to enrich
ecosystems in order to increase its food yield. There is a real chance that such activity
may result in a decimation of the food species that are wanted in greater abundance.”
One could imagine the following scenario. In the above example, fix £ /7, < 45/2 and
take z,(0) = 0. If S° = 1 and R° = 0, then the model predicts that z;, approaches
a positive equilibrium concentration. However, if the environment is enriched by in-
creasing K° above a critical value R?, z, is no longer able to avoid extinction. This

scenario will be investigated in further detail in the next chapter.
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4 An examination of the thresholds of enrich-

ment: A resource-based growth model

4.1 Introduction

In [44], Rosenzweig considers six mathematical models of predator-prey interaction.
He shows that sufficient enrichment of the environment supporting the prey species
can cause destabilization of an otherwise stable coexistence equilibrium. Integrating
his equations numerically and using a truncation for the sake of biological reality, he
obtains extinction of the predator population. Consequently, he issues the following
warning. “Man must be very careful in attempting to enrich an ecosystem in order
to increase its food yield. There is a real chance that such activity may result in
decimation of the food species that are wanted in greater abundance.”

A number of authors have raised objections to Rosenzweig’s results. Gilpin [20]
and May [35] show that the destabilization of the coexistence equilibrium results in
the birth of an asymptotically stable periodic orbit. Freedman [16] shows the destabi-
lization of the equilibrium to be the result of a Hopf bifurcation. Rosenzweig [45, 46]
points out that if the amplitude of the periodic orbit is sufficiently large, a random
perturbation could result in the extinction of one or both populations when sections
of it come close to the axes.

McAllister, LeBrasseur and Parsons [34] suggest that Rosenzweig’s results
might have better been used to prompt questions concerning the critical values of
enrichment and how they relate to the other parameters. They object to the ex-
trapolation of Rosenzweig’s mathematical results to natural ecosystems, providing
experimental evidence that moderate enrichment can be beneficial. However, there
is experimental evidence in support of Rosenzweig’s results. (See, for example, 28],
[33], [48].)

In most of the work dealing with the paradox of enrichment, two-species models
are considered. As a very incomplete sample, we mention [2], [6], [14], [16], [18], [20],
(34], [35], {43], [44], [52], [66]. In this paper we deal with a single-species growth
model, and show that enrichment of the system via an increase in the availability of
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a noninhibitory resource can lead to the extinction of the species. In so doing, we
begin to answer some of the questions posed by McAllister et al. {34].

This chapter is organized as follows. First, a resource-based model of single-
species growth in the chemostat on two growth limiting, nonreproducing, nonin-
hibitory, perfectly substitutable resources is described. Members of the microbial
population are assumed to compete only by decreasing the common pool of resources,
so that there is no mutual interference. All species-specific parameters of our model
are considered fixed, while the quantities under the control of the experimenter are
varied. For a given dilution rate, the environment is enriched by increasing the input
concentration of one of the resources. It is then shown that there exists a thresh-
old value for the dilution rate which depends on the maximal growth rate of the
species on each of the resources. Provided the dilution rate is below this thréshold,
enrichment is beneficial in the sense that the carrying capacity of the environment
is increased, regardless of which resource is used to enrich the environment. When
the dilution rate is increased beyond the threshold, it becomes important to consider
which resource is used for enrichment. For one of the resources it is shown that, while
moderate enrichment can be beneficial, sufficient enrichment leads to the extinction
of the microbial population. For the other resource, enrichment leads from washout or
initial condition dependent outcomes to survival, and is thus beneficial. We conclude
with a discussion in which we summarize and interpret our results, and indicate the
implications for resource management.

In the next chapter the thresholds established here are used to study the effects
of enrichment in a resource-based predator-prey model.

4.2 The Model

We consider a model of single-species growth in the chemostat on two essential, nonre-
producing, perfectly subtitutable resources. It is an example of the one-species growth

submodels treated in Chapter 2, and is given by the following system of differential
equations:
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s() = (S°-—S(t))D—x(t)§8(5(t),ﬂ(t)),

R(t) = (B —R()D— z(t)%R(S(t), R()), (4.1)
#'(t) = =z(t)(—D+G(S(t), R())),

5(0) > 0, R(0) >0, z(0) > 0.

We identify (5, R, z)-space with R}. For the purposes of this chapter we restrict our
attention to the response functions in Waltman, Hubbell and Hsu [60]. Again, they
are a generalization of the familiar Michaelis-Menten prototype of functional response

to a single resource, and are given by

_ msKgrS
S(5.8) = KsKp+ KrS+ KsR’
4.2)
_ mpKsR
RIS,R) = KsKn+ KnS+ KsR’

Thus, the resources are noninhibitory, as the consumption of each resource is a strictly
monotone increasing function of the concentration of that resource. Since recources
S and R are perfectly substitutable, the rate of conversion of nutrient to biomass
of population z, denoted G(S, R) in (4.1), is made up of a contribution from the

consumption of nutrient S as well as a contribution from the consumption of resource

R. Therefore,

. msKrS + mrKsR
95 B) = g gt KaS + KoF' (4:3)

System (4.1) is precisely the unscaled version of system (2.38) restricted to the func-

tional responses described above and the assumption that the species-specific death
rate is insignificant compared to the dilution rate.

We assume that resource S is superior to resource R in the sense that
mg 2 mp. (4.4)

When the inequality in (4.4) is strict, the partial derivatives of G(5, R) satisfy the
following conditions:
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%g(s, R}>0 forall (S,R)e intR2,
;R.g(s, R)>0 forall R>0,0<S<8, (4.5)

3 ‘
sE9(S,R) <0 forall R>0,5> 8,

mRKs
mg— mgp

where 5¢ = is related to mg in the following manner:

G(S°,R) =mpgr forall R>0. (4.6)

Thus, when both resources are in relatively short supply, increasing the concentration
of either resource is beneficial. Once resource S is plentiful enough that mz would

be exceeded by consuming only resource S, the presence of resource R could actually
become detrimental. However,

Rlim G(S,R) =mp for each fixed § > 0, (4.7)

so that the presence of resource R would never be detrimental enough to decrease
G(S, R) below mp. Since an abundance of S and no R would be optimal for the

growth of population z, mg can never be exceeded, so that

slim G(S,R) =mg for each fixed R > 0.

Define
KsD | KrD
D, f ;
A=!ms—D if mg > and p=! mp-D ifmp>D
[ = otherwise, 00 otherwise,

where A is obtained by solving the equation G(5,0) = D when ms > D and p is
obtained by solving the equation G(0, R) = D when mp > D. Thus A and p represent
the breakeven concentrations for resources S and R, respectively, when none of the
other resource is available.

Suppose mp # D. Setting G(5, R) = D and solving for R we obtain
(A=) foral0<S <X ifmgp>D,

p(S) = 5 (4.8)
X(,\—S)fora.llsza\ if mg < D < mg,

>
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so that
G(5,¢(5)) = D. (4.9)

Then the curve ¢(S) gives the concentrations of resources S and R at which the
biomass of population z is neither increasing nor decreasing. For mg = D, 5S¢ = A
and

G(A,R)=Diorall R > 0.
Note that if mg < 7, then the solutions of the equation G(S, R) = D lie outside the

positive cone in (S, R)-space.
Finally, for notational convenience we define
= 1msKR
§mpKs’
Note that if the dilution rate is slow enough so that A < §° (¢ < R°), then
species z could survive on resource S (respectively, resource R) alone and the higher
S° (respectively, R°), the better. (See, for example, [59].) In this respect, neither

resource is inherently detrimental.

(4.10)

For system (4.1), the coordinate plane in which species z is absent is invariant.
If S(f) = 0 (respectively, R(f) = 0) for some %, then §'(f) = §°D > 0 (respectively,
R'(f) = R°D > 0). From this, and the uniqueness of initial value problems, it follows
that intR3 is positively invariant for solutions of {4.1). Further, by considering
z(t) = €5(2) + nR(t) + z(2) it scllows from (4.1) that the simplex

M= {(S,R,z) e R} :{S+ R+ z =£S° + R’} (4.11)

is a global attractor. Thus, all solutions are positive and bounded.

Besides the washout equilibrium E, = (S5°, R°,0), any other equilibria of (4.1)
must be survival equilibria. A survival equilibrium of (4.1) is a solution E = (&, R, z)
of the system

z8(S,R) = £(S° - S)D, | (4.12)
zR(S,R) = n(R°— R)D, (4.13)
G(S,R) = D, (4.14)

with §>0, R> 0 and Z > 0.
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4.3 Below the Threshold

First consider the case where the dilution rate, D, is relatively small.

Lemma 4.1 Consider (4.1). Suppose that ms > D,mp > D, and G(5°,R°) > D.

The species component of the survival equilibrium, Z, is a strictly increasing function

of both 5° and R°.

Proof: Since G(S°, R°) > D implies that at least one of the inequalities, mg > D or
mpg 2 D, must be strict, we assume, without loss of generality, that ms > D,mp > D,
and mg 2 mpg.

Motivated by equation (4.12), define
_Es°-5)D
~ S8(S,¢(5)
for S° > 0 and 0 < S < min{}, S°}, where §(S, R) is as in (4.2) and ¢(S) is as in
(4.8). Then

Is(S, So)

0 oy £D . o
ggzms(S,S )= 3G.o0) > 0 for all § € (0,min{}, S°}).
Also, ( ' 5 ]
a o\ fD mg— mR) 54— §°8¢
3535(3’ 5 = mg(mp — D)S5? ’

Since 0 < § < min{}. 5°} and X < 5°, §% < §°5°, so

a%ss(s, $°) < 0 for all § € (0, min{), S°).

Similarly, define
(R —(S5))D
R(S,¢(S5))

-'BR(S': Ro) =

for R > 0 and 0 < § < min{}, 5°}. Then

d _ 1D . 0
W:BR(S,RQ) = 'R,(S,(,D(S)) >0forall S e (O,mm{)\,s })

Also,

9 3 R°K%mgs(mpr — D) Kr
Egzﬂ(s’ B) = nD {Ksmn(ms — D)) - 5)? t S¢(mp— D)
> 0for all § € (0,min{}, $°}).
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Define
9(8,8°, R®) = z5(8S, 5°) — zr(S, B°).

By Lemma 2.6(a) and Theorem 2.7(a), there exists a unique 5§ € (0, min{}, $°}) such
that g(5, 5°, R?) = 0 for each fixed (5°, B°) such that G(S°, R°) > D. Note that

9
OR®

For fixed R°, § increases as §° increases, so zgr(S, R°) increases. For fixed 5°, S

s o 9 o o
ﬁg(S,S Ro) <0,@§(S,S ,R°)>0, and g(S,S ,Rc) < 0.

decreases as R° increases, so z5(5, §°) increases. The result follows.
When mp = D, define

§° - \)D

zs(R, 5°) = 5(s(J\, R) T

and zr(R,R°) = RO
for 0 < R < R and proceed as above. 1

Thaus, if ms > D, mg > D, and G(S°, R°) > D, enriching thc environment by
increasing either $° or R° cannot destroy the global stability of the unique survival
equilibrium, E. Also, identifying the carrying capacity of the environment with the
species component of the survival equilibrium, Z, it follows that the carrying capacity
is always an increasing function of both S° and R°. Thus, provided the dilution rate

is sufficiently slow, enrichment using either resource is always beneficial.

4.4 Above the Threshold

We now consider what happens when the dilution rate D is increased subject to
mg > D > mp. Note that

)\— KsD > Ksmn

ms-.D ms —mMp

= g (4.15)

in this case. For mathematical convenience only, we define

KrD
mR—D

§= < 0; (4.16)

& is not intended to denote a resource concentration. We begin by examining the

existence of equilibria of system (4.1) when mgs > D > mg. The washout equilibrium,
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E, = (5°, R°,0), always exists. A standard linear analysis shows that E, is unstable
whenever G(S°, R°) > D and islocally asymptotically stable whenever G(5°, R°) < D.
(See section 2.3.3.) Any other critical points of (4.1) must be survival equilibria. Note
that if a survival equilibrium of the form E = (5, R, Z) exists, then, by (4.12), (4.13),
(4.14), (4.8), and the positivity constraint or Z,

A<S <8 (4.17)

The following theorem examines the existence of survival equilibria as a function of
R°, the input concentration of resource R. Clearly S° > ) is a necessary ccudition
for the existence of a survival equilibrium.

Theorem 4.2 Consider system (4.1). Assume mgs > D > mpg and fix 5° > ).
Define
f &

B = p(5%) = 3 (A - 5°),

(WP -vE) i Py <,

R otherwise,
where P is as in (4.10).

(2) If0 < R° < RS, then there ezists a unique survival equilibrium E of (4.1).
(b) If R° > RS, then no survival equilibrium ezists.

(c) If B < R° < RY, then there ezist precisely two survival equilibria for sys-
tem (4.1).

Proof: Note that (PS°)/(S° — A\) <1 implies P < 1, so RS is well-defined. If R° =0,
then it follows immediately from (4.1) that the unique survival equilibrium is given
by E = (),0,6(5° — X)). |

If an equilibrium of the form E =(5, R, z) exists for R° > 0, then it follows
from (4.14) that R = ¢(5), where ©(S) is as in (4.8). From (4.12) and (4.13), define
a §(5°- 5D a 7(R° - ¢(8))D

=5(8) = 5570 (5)) R(,0(5))

and zg(S,R°)
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for $ > A and R° > 0. Note that z5(5) = zr(S, R°) where, by (4.17), A < § < §°.
By (4.2), (4.15), and (4.8), z5(S) = zr(S, R°) if and only if

(SBR[ - oSS = 35S =~ S)A-5) B g(s).  (418)

By (4.16) and (4.8), f(S,R°) and g(S) are parabolas opening downward for each
R° > 0. Fixing R° and setting f(S, R’} = 0 we find that S=0or

S=8§(rR)2 %(6 - R°).

Note that $(0) = A, §(R°) > 0 and S(R°) < §° if and only if R° < R:. Also,
g(S8) > 0 for all S € [A,5°]. Therefore, to cach R° € (0, R3) there corresponds a
unique 5 € (), 5°) such that f(5, R°) = ¢(5). This proves (a).

Consider R° = R?. Noting that S(R?) = $°, we find that

f(S,R}) = g(S) whenever S=5° or §=5} 2 Hj—P)-, (4.19)

where
A < $° ifand only if Peeom
(1-P) A Ty

Since g%;f(s, R°) = S, parts (b) and (c) now follow. See Figure 4.1. B

A< < 1.

Remarks concerning Theorem 4.2:

1. Note that 5°/(5° — A) > 1 is decreasing in §° for S > A. Therefore, if P > 1,
R} = Rj for all $° > A. However, if P < 1, then R = R} for all A < §° < 5%,
while RS > R for all 5° > S7. Here, 57 is as in (4.19).

2. The reader is referred to section 4.6 for a derivation of R{ and RS.

We now examine the global properties of system (4.1}). To begin, we show
that enriching the environment by increasing the R° leads to the extinction of the
population when mg > D > mp. Theorems 2.10 and 2.12(b) will be used ir the
proof, with the obvious modifications to the former so that it can be applied in terms

of the original unscaled variables.
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Theorem 4.3 Consider system (4.1). Assume ms > D > mp and fizr §5° > A, Let
R} and R be as in Theorem 4.2.

(a) If 0 < R® < R2, then there exists a unique survival equilibrivm E and E is

globally asymptatically stable with respect to all solutions for which S(0) > 0,
R(0) 2 0, and z(0) > 0.

(b) If B° > R3, then E, is globally asymptotically stable with respect to all solutions
for which S(0) >0, R{0) >0, and z(0) > 0.

(c) If B{ < R° < R3, then the asymptotic behaviour of system (4.1) is initial con-
dition dependent. Any solution either epproaches E° or approaches a survival
equilibrium.

Proof: (a) The existence and uniqueness of E is given by Theorem 4.2(a). We first
note that, by (4.8), G(5°,R}) = D. By (4.5) and (4.15), G(S°, R°) > D for all
0 < R° < Ry, so E, is unstable. Also, by Lemma 2.10, liminf;_.o, z(t) > 0.

We restrict our attention to the globally attracting simplex M given in (4.11).
Since M is positively invariant, let z(t) = £(5° — S(t)) + (R° — R(2)) and consider
the system

§'(t) = (525D -5~ 5@) + %(R" — B())}5(5(2), R()),
R(t) = (B -R())D - [%(-5"’ = S()) + (B° — R())NR(S(E), R(1)), (4-20)

S(0) 20, R(0)20, £S°+nR° 2 £S(0)+nR(0).

Since 0 < R° < R, there are precisely two equilibria for system (4.20), E? = (5°, R?)
and E? = (8, R) where the superscript 2 denotes the two-dimensional system (4.20).
Sample isoclines and a partial vector field for (4.20) are shown in Figure 4.2(a). (A
derivation of the form of the isoclines can be found in section 4.7.) Noting the direction
that solutions must cross the isoclines we conclude that no periodic orbits exist on
M. Since liminf;_., z(t) > 0, it follows from the Poincaré-Bendixson Theorem that
E? is globally asymptotically stable for system (4.20) with respect to all solutions for
which S(0) > 0, R(0) = 0, and £(S° — S(0)) + n(R° — R(0)) > 0. It follows from
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Theorem 1.5 of [55] that E = (S, R, Z), where Z = £(5° ~ §) + n(R° — R), is in the
omega limit set of any solution of (4.1) with S(0) > 0, R(0) 2 0, and z(0) > 0. Since
E is locally asymptotically stable, E is the only point in the omega limit set and so
it must be globally asymptotically stable for (4.1) with respect to all solutions for
which S(0) > 0, R(0) > 0, and z(0) > 0.

(b) The result follows from Theorem 4.2(b) and Lemma 2.12(b).

(c) We again restrict our attention to M and consider system (4.20). Since
R < R° < RS, it follows from Theorem 4.2(c) that there are precisely three equilibria
for system (4.20), two of which correspond to interior equilibria of system (4.1). The
equilibria will be denoted E? = (S°, R°) and E? = (5;, R;), i = 1, 2. The isoclines,
equilibria, and a partial vector field for (4.20) are shown in Figure 4.2(b). (The reader
is again referred to section 4.7 for a derivation of the form of the isoclines.) Noting
the direction that solutions must cross the isoclines we conclude that there can be no
periodic orbits. All solutions initiating off the stable manifold of EZ must eventually
enter region I, I or . By the Poincaré-Bendixson Theorem, those entering regions 1
and II approach E? while those entering region I approach EZ. Thus E? and E? are
locally asymptotically stable while E? is a saddle. It follows from Theorem 1.5 of [35]
that (51, R1,z;) and (S5°, R°,0) are locally asymptotically stable while (52, Rz, z2) is
unstable with two-dimensional stable manifold. (Here z; = £(S° — S;) + n(R° — R)),
¢ = 1, 2.) Therefore, whether the species survives or washes out depends on the
initial conditions when R < R° < R3. @

We are now prepared to offer the following bifurcation analysis of system (4.1)
for mg > D > mpg and fixed S° > ), based on the parameter R°. There are two cases
to consider.

go
GEDE

When R° = 0 the survival equilibrium £ = (),0,£(S° — ))) in the B = 0
plane is globally asymptotically stable. The critical point E,, corresponding to total
washout, exists and is unstable. As R® is increased subject to 0 < R° < R?, E enters
the positive cone while maintaining its stability. When R° = R, E and E, coalesce
(see Figure 4.1(a)) and the washout equilibrium is globally asymptotically stable. As

Case 1: P 1.
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R is increased above R?, E leaves the nonnegative cone and loses its stability to E,,
so E, is globally asymptotically stable for all B° > R}. Thus, there is a transcritical
bifurcation at R° = Rg. See Figure 4.3(a).

o

S
Case 2: P(—S-"_;_)\_) < 1.

For 0 £ R° < R}, E, and the survival equilibrium E; behave as above. The
second survival equilibrium, E, cannot exist in the nonnegative cone. (See Fig-
ure 4.1(b).) When R° = R}, E, and E, coalesce. As R° is increased subject to
R} < R° < R3, E,, a saddle, enters the positive cone. E, and E, are locally asymp-
totically stable. Thus we have initial condition dependent outcomes with the stable
manifold of F; acting as the separatrix. When R° = R, E, and E, coalesce, resulting
in a saddle-node. If R is increased beyond RS, E, and E, no longer exist and E, is
globally asymptotically stable. Thus, there is a saddle-node bifurcation at R° = RS.
Sece Figure 4.3(b). Note the hysteresis effect in Figure 4.3(b). If the input concen-
tration of resource R exceeds R3, the biomass in the culture vesse! decreases. If the

quantity of species is very low, the input concentration must be decreased below RS

before extinction can be avoided.

The question that remains is how the species component of the survival equi-
libria are affected by an increase in the input concentration of resource R. Figure 4.4
is the bifurcation diagram for system (4.1) exhibiting the change in Z as a function
of R°. In Figure 4.4(a) we used the parameter values Ks = Kp = 1, mg = 2.25,
mr=0.5,D=1,8=1,{=70and 5 =1. Then

So
Pm ~ (.32 <1.

Thus, there are two critical values of R°: R = 0.5 and R3 =~ 0.7066. For 0 <
RB° < Rj, the carrying capacity of the environment is a decreasing function of R°.
For R} < R° < R3, the species component of the locally asymptotically stable sur-
vival equilibriumn is also a decreasing function of R°. This would indicate that even

moderate enrichment is detrimental to the species. However, this is not always the

case.
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In Figure 4.4(b) we used the following parameter values. The growth param-
sters are mg = 01452, Kg = 1.00uM, £ = 25.6 g dry wt/mol, mp = 0.08527,
Kp = 1.00uM, and n = 6.40 g dry wt/mol. (These values correspond to a facul-
tatively chemolithotrophic Thiobacilus species vhich can grow heterotrophically on
acetate (S), autotrophically on thiosulfate (R), and mixotrophically on both. See
[21).) Fixing D = 0.10h7%, so that mg > D > mpg, we have A ~ 2.22uM. If

5° =20.00uM, then g0

(§°—A)
Again, there are two critical values of R°: R} ~ 53.33pM and RS = 78.62pM. For
0 < R° < R}, the carrying capacity of the environment is an increasing function
of R°. Also, there exists B° € (RZ, R3) such that, for RS < R° < k°, the species

component of the locally asymptotically stable survival equilibrium is an increasing

P ~ 048 < 1.

function of R°. Itis only when R° is increased beyond R° that the species component
of this equilibrium begins to decrease until, for B° > RS, we have washout. Thus, in
some cases, moderate enrichment can be beneficial.

Given the input concentration of resource S aad the growth parameters for
species z, it is possible to anticipate the response of system (4.1) to moderate enrich-
ment. Consider the function S(R°) satisfying

6AS° 4 [6A(P = 1) — 65° — AR°P)5(R°) — 6(P —1)S(R°)* = 0.

This equation follows from (4.18) and gives the equilibrium concentration of S for a
fixed value of R°. Differentiating with respect to R° we obtain

[6A(P — 1) — 65° — AR°P]3'(R°) — AP (R®) — 26(P —~ 1)§(R°)§'(R°) = 0,

SO

APS(R°)
[6A(P — 1) — §5° — AR°P] — 26(P — 1)5(R°)’

S(R?) =

Since S(0) = A,
AP

§0) = gy am >

Next, consider the function

_ &8 =S(R)D
G, $BE))

z5(R°) = zs(5(R%))



4 ENRICHMENT THRESHOLDS FOR GROWTH 84

which gives the equilibrium concentration of species z. The sign of r5(R°) is deter-
mined by

—65’(R°)S(§(R°),¢(5(R°))) —§(5° - g(R"))D-&%S(-‘?(R"), ©(S(R"))).
Note that

TS EE)L SN = (Kn+olS(R) +500)3)

. msKsKpS'(R%)
(KsKr+ KrS(R°) + Kso(S(Ro)))?

Again, 5(0) = }, so ¢(5(0)) =0 and

TSGR0 - e (14+2) 510y

(Ks + A)? X K_q.
Therefore,
] —- a o __ - m_SKS_ i
z5(0) = —£DS(0) {D +(5° = 1) (Ks + 07 (1 + KR) } .
Define

(Ks+ A)? Kr
Then even moderate enrichment will be detrimental in the (S, R, z)-subsystem when
T > 0, while moderate enrichment will be beneficial when T < 0. Note that T =~
0.9573964 for Figure 4.4(a), while T' ~ —16.228829 for Figure 4.4(b).

T=D+(S°—A)—m-§-K—S—-(1+ 6 )

We note that when s > D > mpg, enriching the environment by increasing
S°, the input concentration of resource S, is beneficial. This can be seen by viewing
R as a function of 5°. Fix §° > A and R° > R3(S5°). Then, by Theorem 4.3(b,c),
we have either washout or initial condition dependent outcomes. Note that Rg(S°)
is an increasing function of $° and limse_co R$(S°) = co. By increasing the input

concentration of resource S, two values of 5° distinguish themselves:

A
1011 =.§(b_R°)’
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-% (@+\/5(P-1))2 if P(ﬁoﬂ%@< 1,

1

Ra
Sz, otherwise.

For 53, < §° < S%,, there exist two survival equilibria for system (4.1) and the be-
haviour of the system is initial condition dependent. Any solution either approaches
E, or approaches a survival equilibrium. When $° > S§ , R3(S°) > R°. By Theo-
rem 4.3(a) it follows that there exists a unique survival equilibrium E and E is globally
asymptotically stable with respect to all solutions satisfying S(0) > 0, R(0) > 0, and
z(0) > 0. As in Lemma 4.1 it can be shown that the carrying capacity of the en-
vironment is an increasing function of S° once the system enters this regime. (See
Figure 4.5.) The reader is referred to section 4.6 for a derivation of S, and Sg,.

Finally, we note that if the dilution rate satisfies D > mg > mpg, then E°
is globally asymptotically stable for system (4.1), regardless of the input concen-
trations of the resources. This follows from equations (4.2), (4.3) and (4.14), and
Lemma 2.12(b).

4.5 Discussion

In this chapter we consider a resource-based model of single-species growth in the
chemostat on two growth-limiting, nonreproducing, noninhibitory, perfectly substi-
tutable resources, 5 and R. We do not allow for mutual interference, so that the
members of the microbial population compete only by depleting the common pool
of resources. Except for S° and R°, the input concentrations of the resources, and
D, the input and washout rate, all parameters of the model are fixed. Therefore,
all species-specific parameters are fixed while the quantities under the control of the
experimenter are varied.

It is important to note that neither resource is inherently detrimental. Re-
sources S and R are alternative sources of the same essential nutrient. Therefore, at
least one of these resources must be supplied in sufficient amounts in order for the

species to survive. Even if only one of the resources (S or R) is supplied, species
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z would survive provided the dilution rate is sufficiently slow. In fact, in this one-
resource case, the carrying capacity of the environment (given by the species compo-
nent of the survival equilibrium) is an increasing function of the input concentration
of that resource.

If there are two perfectly substitutable resources, our results seem to indicate
that the predictions of a model in which only one resource is assumed to be limiting
can be misleading if the two-resource model is to be robust enough to remain valid
for reasonable ranges of the parameters. In the two resource case one must consider
the relative values of ms and mpg, the maximal growth rates of species z on resources
S and R, respectively, and D. We assume that resource § is superior to resource R
in the sense that mgs > mpg, so that there is a critical value, §¢, for resource S. If
the concentration of resource S is below S¢, an increase in the concentration of either
resource is beneficial. However, once the concentration of resource S is above this
critical value, the presence of resource R actually becomes detrimental.

First, assume that the dilution rate does not exceed the maximal growth rate
on either resource, so mg > D, and equate enrichment of the environment with an
increase in the input concentration of one resource. In this case, G(5°, R°) > D is nec-
essary and sufficient to ensure that a unique survival equilibrium exists and is globally
asymptotically stable with respect to the interior of (S, R, z)-space. Moreover, the
carrying capacity of the environment is an increasing function of both input concen-
trations. Thus, provided the input rate is sufficiently slow, enriching the environment
by increasing S° or R° is beneficial.

If D is increased subject to ms > D > mp, the scenario changes dramatically.
First, equate enrichment of the environment with an increase in the input concen-
tration of resource R. In this case, we identify two critical values of R°, R} < R,

where
nmgsKr S°

EmRK s(S°—A)
When 0 < R° < Ry there exists a unique survival equilibrium that is globally asymp-
totically stable. For R} < R’ < R; the species survives or washes out depending on
the initial conditions. Increasing R° beyond RS leads to extinction. Thus we provide
more support that Rosenzweig's {44] warning is valid. We give two examples which

R} < Ry if and only if <1l
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indicate that moderate enrichment via an increase in the input concentration of re-
source R can be, but is not always, beneficial in the sense that the carrying capacity of
the environment is increased. However, enriching the environment by increasing the
input concentration of resource S is beneficial. If R° > Rg, increasing 5° leads from
washout or initial condition dependent outcomes (with washout possible} to survival.
Once the system enters this regime, the carrying capacity of the environment is an
increasing function of S°.

Why should increasing the inpul concentration of resource R lead to extinction
when ms > D > mpg? Consider all concentrations 5, B of resources § and R satisfying
G(5,R) = D. The concentration § of resource S is above the critical value S¢. For
any fixed S > S¢, the growth rate, given by G(S, R), is a decreasing function of
resource B. One would expect that the faster resource R is depleted, the better.
However, when R° > RS,

(R°—R)D _ (1/9)R(S,R)

(§°=8)D = (1/)S(5,R)"

Thus, the ratio of the net supply rate of resource R to that of resource S exceeds

the ratio of the consumption rate of resource R to that of resource S. As species

cannot deplete resource R quickly enough, no survival equilibrium exists.

More intuitively, resource S is more nourishing than resource R in the sense
that the maximal growth rate on resource S is assurned to be higher than on resource
R. Thus, resource R can be thought of as junk food. Even though resource R is
adequately sustaining when the dilution rate is sufficiently small, it is not nourishing
enough when the dilution rate is high because the species cannot grow fast enough
on it in this case. Its presence also reduces the consumption of the more nourishing
resource S because the species wastes time consuming resource R. Thus, moderate
concentrations of resource R can be beneficial (see Figure 4(b)), but sufficiently high
concentrations can cause washout.

Perhaps motivated by the methods of Rosenzweig [44], Brauer [6] states that
“enrichment of the prey’s environment ... may be described mathematically by an
increase in the carrying capacity.” For dilution rates below the threshold the results

of our resource-based study would support this relationship between enrichment of
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the prey’s environment and the carrying capacity. However, for dilution rates above
the threshold, the validity of this relationship depends on the resource used for en-
richment. The relationship remains valid for the superior resource. (See Figure 5.)
However, it can only hold for moderate enrichment when the inferior resource is used.
(See Figures 4(a) and 4(b).)

We stress that we have considered a constant dilution rate D rather than a
time-dependent dilution rate D(t). The latter may be more appropriate for species
at higher trophic levels, where seasonal fluctuations come into play. We feel that a
bifurcation approach using a constant dilution rate may actually be a better approxi-
mation for the lower-level microbial species considered here. We are motivated by the
shorter generation times typical of such species. (For example, the generation time
of the prey species paramecium aurelia considered by Luckinbill [33] is approximately
0.26 days.) Usually the dilution rate remains relatively constant within a season, and
the time required for the chemostat to equilibrate is relatively short compared to the
length of a season.

The importance of single-species microbial population dynamics to ecology is
beautifully detailed by Williams [61]. In the same study he asserts that the chemostat
provides a good laboratory idealization of nature, Qur results may provide important
implications for the management of aquatic systems. In managing the microbial
populations of such systems, it may be necessary to take into consideration when and
how much to enrich. In the summer the natural dilution rate may satisfy D < mg
and I} < mp, so enrichment with either resource is beneficial. However, the natural
dilution rate is higher during spring run-off. Success with enrichment in the summer
can lead to the false conclusion that enriching the environment in the spring will
be equally beneficial. In fact, if the dilution rate is so high that mg > D > mR.,
it becomes necessary to consider which resource is used for enrichment. When the
superior resource is used, enrichment is beneficic]. When the inferior resource is
used, moderate enrichment can be beneficial, while increasing the nutrient input to
the system sufficiently actually leads to washout.

The results in this chapter may also help to explain some of the effects of

fertilizer runoff and industrial waste on the microbial populations of certain lakes.
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4.6 Appendix A: The Derivation of RS, R3, Sk,» and S% .

In this section we indicate how the quantities R2, RS, SR,, and S}, are derived. In
equation (4.18), consider g to be a function of § and S°. Then

f(S,B°) SR ~ <P(S)]5'=——-(S° SHA-5)Lg(55).  (42)

To find R, fix 5° and increase R° until the rightmost roots of f and g coincide. This

yields the equation

A
S(6-F) =

which is then solved for R°. The quantity S%, is obtained similarly.

Again fixing S°, Rj is the value of R® for which f and g intersect uniquely in
(A, 8°). From (4.21),

6AS° + [6A(P —1) —85° - AR°P)§ — §(P — 1)5% = 0.
In solving this equation for S uniquely, the discriminant must be zero. Thus,
(PAP(R)? +2PX6[S° + AM1=-P)+ &S+ MP-1)P=0.

For P < 1 this yields

R=-31 5 (VB ha-) .

The S value corresponding to @ is

ASe
S=- m(ﬂ,

which is inadmissible. If

-5 (- ).

then § = /A5°/(1 — P), and we have

(]

) ] . S
S < 5° if and only if P(S"—A)

<l
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Fixing R°, 5%, is the value of S5° for which f and g intersect uniquely in (X, 5°].
For P <1 this yields

2

. A
§° =~ (\/PR" +/8(P - 1))
The S value corresponding to © is

PRe
S=2=2A S(P—_l)"(A,

which is inadmissible. If

82, = —% (\/PR° +/8(P - 1))2,

then

_ PR . . P(R°—10)
p(S)=-6 _E(P—1)<Ro if and only if -R_°<1.

4.7 Appendix B: The Isoclines of (4.20)

In this section we examine the general shape of the isoclines for system (4.20). First,
consider the case R} < R° < Rj. Since PS°/(§° ~A) < 1 and mgs > D > mp, it
follows from (4.10) that

nmsKp {mrKs
§mDKs <1andq DKx > 1.
Setting §' = 0 in (4.20) and solving for R we obtain
5% 4 apS + b
&(5) = K.
(5) = Ko { T AT Hle
where
ap = _{g%fgu,ws"}w,
bg = S°A>0,
-1
—_ o _EmSKR o
cy = S(l EDKS) > 8% and

_ Kp nmsKr\ ™
Ky = (1 ¢ DEs > 0.
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Similarly, setting B = 0 in (4.20) and solving for S we obtain

E(R):KE{R2+02R+53},

R—cg
where
§ mpS°
ax —{T]DK36+6+RO},
by = R6<0,
_ _§mpKs\~
cx = R°( TJDKR) 0, and

-1
Ky = 5 (I—E“D_ff;) > 0.

Note that ®(0) = —Kg and Z(0) = — K.
Both ®(S5) and Z(R) are of the form

2
f(z) = g teztbd

Ir—c

, K >0,

so that both functions have slant asymptote with positive slope. For each, the graph
is either concave up for z < ¢ and concave down for z > ¢, as in Figure 4.6(a), or
concave down for < c and concave up for z > ¢, as in Figure 4.6(b).

First, consider ®(S5). The vertical asymptote occurs at § = cp > S°. By
Theorem 4.2(c) the points E? = (5, R), i = 1, 2, and E? = (5°, R®) lie on &(S).
Since the E? lie on the line (), given by (4.9), and R° > ¢(5°) = RS, ®(S) must be
concave up on the interval (—co, c), as in Figure 4.6(a). Similarly, the curve S(R)
must be concave down on the interval (cz,00), as in Figure 4.6(a), where ¢z < 0.
Therefore, for B} < B° < Rj the isoclines of (4.20) are as in Figure 4.2(b).

For 0 < R° < Rj, the precise shape of the isoclines cannot be stated, since
there is insufficient information to determine the concavity of the corresponding func-
tions ®(5) and Z(R). There are nine possible pairings, one of which is depicted in
Figure 4.2(a). However, regardless of the concavity, the asymptotic behaviour of
system (4.1) for 0 < R° < Rj is determined as in Theorem 4.3(a).
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4.8 Figures

(a)

{b)

Figure 4.1: Schematic Diagram for Theorem 4.2
(a) PS°/(Se=A)>1
(b) PS°f(Se~- N <1

In'each of (a) and (b), the parabolas with roots 0 and A correspond to R® = 0 while
the parabolas with roots 0 and $° correspond to R° = RS.



4 ENRICHMENT THRESHOLDS FOR GROWTH 93
R

(b)
Figure 4.2: Partial vector fields for Theorem 4.3

() 0<R° < RS
(b) R < R° < R

 Vectors parallel to the § axis indicate the sign of S(t) along the indicated line.
Vectors parallel to the R axis indicate the sign of R/(t) along the indicated line.
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Figure 4.3: Bifurcation Diagrams R° vs § for System (4.1) where ms > D > mp and
5°> A

(a) PS°/(S° - A) > 1
(b) PSe/(S° =) < 1

Note that values of S satisfying 5 < A correspond to R < 0, while values of §
satisfying § > S° correspond to % < 0.
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Figure 4.4: Bifurcation Diagrams R° vs % for System (4.1) where ms > D > mp and
S5e> A

(2) ms =2.25, Ks=1.00,£ =70, mg=0.5, Kp = 1.00,p =1, D=1, §° = |

(b) ms = 0.14587, K5 = 1.00uM, £ = 25.6 g dry wt/mol, mg = 0.085h~, K =
1.004M, 5 = 6.40 g dry wt/mol D = 0.16~~1, S° = 20.00xM
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Sk, Sk,

Figure 4.5: Bifurcation Diagram S5° vs # for System (4.1) where ms > D > mp and
P<1
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I=c

(b)
Figure 4.6: Schematic Diagram for the Nullclines of System (4.20)
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5 A’h“";axamination of the thresholds of enrich-

ment: A resource-based predator-prey model

5.1 Introduction

In this chapter we extend the model considered in Chapter 4 to include a single
predator species. Models of predator-prey interaction involving a single resource have
been studied by a number of authors. For exaraple, simple food chains are considered
by Canale [13], Gard [19], Jost et al. [29}, Saunders and Bazin [47], and Sell [50], and
occur as submodels in the systems analyzed by Butler, Hsu and Waltman [9], Butler
and Wolkowicz [11], and Wolkowicz [63).

This chapter is organized as follows. First we describe a resource-based model
of predator-prey interaction in the chemostat involving two nonreproducing resources
which are growth limiting, noninhibitory, and perfectly substitutable for the prey.
As in Chapter 4, a generalization of the Michaelis-Menten prototype of functional
response to a single resource is used to describe the response of the prey to changes in
resource density. However, we allow a general class of functions to describe predator-
prey dynamics. Only the quantities under the control of the experimenter are varied;
all species-specific parameters of our model are considered fixed.

To begin, we completely characterize those nutrient concentrations that yield
coexistence equilibria and show that when a coexistence equilibrium exists, it is
unique. We then provide conditions that are necessary and sufficient to guaran-
tee uniform persistence of the model (ie., coexistence of both species independent of
their initial concentrations). Thus, these conditions are sufficient to guarantee the
existence of a unique coexistence equilibrium.

Using the thresholds established in Chapter 4, we consider the effects of en-
richment on the asymptotic behaviour of the inodel. For the purposes of this chapter,
enrichment is considered beneficial if it leads from washout for some positive initial
conditions to the survival of both species for any positive initial conditions. ¥or dilu-
tion rates below the threshold, enrichment is beneficial, regardless of which resource

is used to enrich the environment. As in the growth model, it becomes important to
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consider which resource is used to enrich the environment when the dilution rate is
above the threshold. For one of the resources, moderate enrichment can be beneficial,
while sufficient enrichment leads to a regime in which washout is possible. For the
other resource, sufficient enrichment is beneficial.

5.2 The Model

We consider a model of predator-prey interaction in the chemostat involving two non-
reproducing resources which are growth limiting, noninhibitory and perfectly substi-
tutable for the prey. The model is an extension of the one considered in Chapter 4,

and is given by the following dynamical system:
St) = (5°—S(E)D— fg—”scsa),R(tn,
R(t) = (R - R()D - ”‘—ff—’n(sm, R(Y)),
2(t) = z(t)(-mg(S(t),R(t)))—%‘lq(:c(t)), (5.1)
) = y(t)(=D+a(z(t))),
5(0) 2 0, B(0) > 0,z(0) > 0,y(0) > 0.

We identify (S, R, z,y)-space with RY. In these equations, y(1) is the biomass
of the microbial predator population in the culture vessel at time ¢. We assume that
S(8, R) and R(S, R} have the form given in (4.2). In the absence of the predator,
this model reduces to model (4.1). Therefore, S(:), R(t), z(t), S°, R°, D, £, and g
have the same biological meaning as in Chapter 4. Also, we assume that resource S
is superior to resource R in the sense of equation (4.4).

The function %q(m) represents the rate of consumption of species z per unit
biomass of the microbial population y as a function of the biomass of species z in the
culture vessel. Just as we assumed that the conversion of nutrient S (respectively, R)
to biomass of species z is proportional to the amount of nutrient S (respectively, R)
consumed, we assume that the biomass of specics ¥ produced is proportional to the
biomass of species z consumed, with growth yield constant 4. Thus, ¢(z) represents

the rate of conversion of species = to biomass of species y as a function of the biomass
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of species z in the culture vessel. We make the following assumptions concerning the

function g¢:

g: Ry — Ry,
g is continuously differentiable, (5.2)
g'{(z) > 0 for all z > 0,
q(0) =0.
Define 8 so that
¢(6) = D. (5.3)

Thus 6 represents the breakeven concentration of prey. By the monotonicity of ¢(z),
this concentration is a uniquely defned extended positive real number provided we
assume that 8 = co if g(z) < D for all z > 0.

If one of the resources is not made available to species z, say R° = 0, then

system (5.1) is approximated for large ¢ by

S = (5°-5@)D - 25,

R(t) = 0,

2(0) = =D+ BSE) - v(Oa(=(0), (5.4)
/@) = (=D +q(=®)),

S(0) 2 0, R(0) 20, =(0) >0, y(0) 20,

where p(S) satisfies Michaelis-Menten kinetics. This is a model of a simple food chain.
It is a special case of the model studied by Gard [19]. When ¢(z) is also assumed
to satisfy Michaelis-Menten kinetics, (5.4) arises in the more complicated context of
competing predators studied by Butler, Hsu and Waltman [9]. It was also discussed
by Bungay and Bungay (7], and studied by Jost et al. [29] and Sell [50]. Jost et
al. [29] also considered the case in which p is assumed to satisfy multiple saturation
kinetics. When ¢(z) = zh(z) is monotone nondecreasing and p(S) is given by any
continuously differentiable monotone increasing function with p(0) = 0, system (5.4)
also occurs as a submodel of th~ food web examined by Butler and Wolkowicz [11].
We will assume that neither S° nor R° is zero.
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5.3 Preliminary Analysis

We first note that all solutions are positive and bounded. These are minimum re-

quirements for a reasonable mode] of the chemostat.

Theorem 5.1 (a) All solutions S(t), R(t), =(t), y(t) of (5.1) are nonnegative and
bounded for ¢t > 0.

(b) The 3-dimensional simplez

M ={(S,R,z,y) € RL: €S + R+ vz +y = (£5° + nR°)}

is a global attractor for (5.1).
Proof: The proof of (a) is similar to the proof given in [10]. For (b), consider

2(t) = ¥€5(2) + mR() + v=(t) + y(2),
and proceed as in the proof of Theorem 2.11. B

In fact, the following theorem holds:

Theorem 5.2 (a) Given € > 0, for all solutions S(t), R(t) of (5.1), S(t) < 5° +¢
and R(t) < R° + € for all sufficiently large t.

(b) Givene> 0, for all solutions z(t) of (5.1), z(t) < £S°+qR°+¢ for all sufficiently
large t.

(c) If there ezists a t, > 0 such that S(t,) < §° (R(t,) < R°), then S(t) < S°
(R(t) < R°) forallt > t,.

Proof: The proofs of (a) and (c) are immediate from (5.1). For (b}, let € > 0 be given.
By Theorem 5.1(b), M is a global attractor for (5.1). Therefore

HESQR) +nR(t) + 2(t)} + y(t) < 7{€5° +nR° + ¢}

for all sufficiently large . The result now follows immediately from Theorem 5.1(a).
|

The next theorem concerns the extinction of the populations; it gives condi-
tions under which there is total washout of both microbial species.
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Theorem 5.3 Consider system (5.1).

(a) If either (mp > D and G(S°,R°}) < D) or (mp < D and A > 5°), then z(t) — 0
ast — oo in (5.1).

(b) If£S° +gR° < 6 or @ = oo, then y(t) — 0 ast — oo in (5.1).
(c) Ifz(t) —» 0 ast — oo in (5.1), then y(t) = 0 as t — oo in (5.1).

(d) If z{t) — 0 and y(t) — 0 as t — o, then E, = (S° R°,0,0) is globally
asymptotically stable for (5.1).

Proof: The proofs of (a) and (d) are similar to the proofs of Theorems 2.4(b) and (c),
respectively.

(b) Suppose £5° + nR° < § < oo and choose € > 0 such that £5° +3R° +¢€ < 4. By

Theorem 5.2(b), z(t) < £5° + nR° + € for all sufficiently large ¢. Since ¢(z) < D for
0Lz <E8° + nR° + ¢, we have

é=max{g(z) —D:0<z<¢S°+9R° +¢} <.
Therefore,
y'(8) = y()(=D + o(=(8))) < y(2)é
implies that y(t) — 0 as t — oo.

Suppose 6 = oo. Then ¢(z) < D for all 0 < z < co. By Theorem 5.1(a), z(t)
is bounded above, so there exists an zmax such that

z(t) € zmax for all ¢ > 0.
Thus, y'(t) < y(2)é for all £, where
¢ =max{q(z) —D:0 <z € zmax} < 0.

Therefore, y(t) — 0 as ¢ — co.
(c) Note that, by (5.1),

y(®) = v exp{ [ (=D +a(a()ir).

Taking the limit as t — oo, part (c) follows. B



5 ENRICHMENT THRESHOLDS FOR PREDATION 103

5.4 The Main Results

Thus far we have seen two types of equilibria cf system (5.1): the washout equilibrium
E, = (5°,R°,0,0) and prey survival equilibria £ = (3, R, z,0). It is clear from (5.1)
that E, always exists. Conditions for the existence and, in some cases, uniqueness of
equilibria of the form £ were given in Theorems 2.7 and 4.2.

We first determine the local stability properties of equilibria of the form E,
and E through an examination of the linearized system about each equilibrium point.

The eigenvalues of V4(E,), the variational matrix of system (5.1) evaluated
at E,, are —D (of multiplicity three) and G(S°, R°) — D. Thus, if G($°, R°) > D,
then E, is unstable and, by Theorem 2.7 parts (a) and (b)(ii) and Theorem 4.2(a), a
unique prey survival equilibrium exists. Also, if G(5°, R®) < D, then no prey survival
equilibria exist, and E, is locally asymptotica.lly stable. If, in addition, mg > D, then
E, is globally asymptotically stable by Theorem 5.3.

Assume that G(5°, R°) > D, so E exists uniquely. The characteristic polyno-
mial of V4(E) is given by

(w — (g(2) — D))(w* + A1w® + Azw + 4y).

Here w® + Ajw? + Ayw + A; is the characteristic polynomial of Vs(8, R, Z), the vari-
ational matrix of the (5, R, z)-subsystem evaluated at the prey survival equilibrium.
By Theorem 2.12(a) and Theorem 4.3(a), E is globally asymptotically stable with re-
spect to all solutions initiating in 7 = {(5, R, z,y) € R} :z > 0,y = 0}. Therefore,
E is locally asymptotically stable for (5.1) if ¢(z) < D and unstable if ¢(z) > D.

If any other equilibria of (5.1) exist, they must be coexistence equilibria. Such
an equilibrium is a solution E* = (5°, R*,z*,y*) of the system

zS(S,R) = £(S°— S)D, (5.5)
zR(S,R) = y(R°- R)D, (5.6)
zy(—~D+G(S,R)) = yq(z), (5.7)
o(z) = D, (5.8)

with (5%, R",z%,y") € intR}. By (5.8), ° = 0, where 4 is as in (5.3). Therefore, by
(5.5), (5.6), and (4.2),0 < §* < S°and 0 < R* < R°.
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The following theorem is an immediate consequence of Theorem 5.3(a,b).
Theorem 5.4 (a) Ify = o0 and X > S°, then no coezistence equilibrium E* ezists.
(b) If£S° +nR° < 8 or 6 = oo, then no coezistence equilibrium E* ezists.
Theorem 5.5 (a) If E” ezists and mp > D, then E ezists and is unique.

(b} If E* ezists, mp < D, and 0 < R° < R}, then E exists and is unique.

Proof: (a) I G(5°, R°) £ D, then G(S,R) < Dforall 0 < § < §° and 0 < R < R°,
implying G(5, R"} < D and violating the positivity constraint on y*. Therefore,
G(S°, R°) > D, and the result now follows from Theorem 2.7(a) and (b)(ii).

(b) Since E" exists, A < §° and so D < mgs. The result now follows from Theo-
rem 4.2(a).

We now investigate the conditions under which E* exists and is unique. From
(5.5) and (5.6) we must have

£(S°- S)D _ n(R°—R)D

S(5,R) _ R(S,R) (5.9)
Define ROPS
@(S)QSDHP_I)S, 0<S5<8e, (5.10)

where P is as in (4.10). Then (5.9) is satisfied for 0 < S < 5° by taking R = &(S).
From (5.5) and (5.6) we now have

§(5°=5)D = 05(S,%(3)),

(5.11)
R’ —8(S))D = 6R(S,®(S)).

Clearly, the two equations are equivalent.

Theorem 5.6 There ezists a unigue solution S* of (5.11) and it satisfies 0 < S* < §°
and 0 < $(5*) < R°.



5 ENRICHMENT THRESHOLDS FOR PREDATION 105

Proof: Define

f(S) KsKpS°+ [KsKp(P —1) + KrS° + KsR°P]S + Kp(P - 1)§5?
ap + a15' + 0252,
£D(5° = S)f(S),

#msKrS[S°+ (P - 1)5].

91(5)
92(5)

e e e e

Then (5.10) and (5.11) yield, by (4.2),

91(5) = g2(S). (5.12)

We will examine equation (5.12) for all values of P.

Case 1: P> 1.

In this case, gz(S) is a parabola opening upward with roots at S = 0 and
S = §°/(1 - P) < 0. The function g;(S) is a cubic satisfying #1(8) —+ *oo as
S = Foo, g1(S°) =0, and ¢,(0) = £DKsKrS°? > 0. Note that the quadratic f(S)
satisfies ao, @1, 2and a2 > 0. By the Routh-Hurwicz Criterion, the two remaining
roots of ¢:(5) have negative real part. In fact, a? — daga, > 0, so that these roots are

negative. Jt follows that g, and g, intersect uniquely in (0, 5°). Clearly, 0 < §* < § e

and
PSe

®(5*) =
<) =R e e

< R

Case 2: P=1

In this case, g2(§) is the line through the origin with positive slope 8mgKpS°.
The function ¢,(S) is a parabola opening upward with roots at § = S° and § =
—KsKpS°[(KrS° + KsR’) < 0. Thus, g; and g, intersect uniquely in (0, 5°), and
the result follows.
Case 3: P<1

In this case, g;(S) is a parabola opening downward with roots at § = 0 and
S = 8°/(1 - P) > S°. The function g;(S) is a cubic satisfying g,(S) — oo
as § — koo, g1(5°) = 0, and ¢,{0) = ¢DKsKrS*? > 0. Note that g1(5°) =
—¢{D{(Kr + R°)KsPS° + KrP5°%} < 0. Therefore §1(S) has one negative root and
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one positive root beyond 5°. This implies that g, and g, intersect uniquely in (0, 5°).
The result now follows. B

The following is an immediate consequence of (5.5}, (5.6}, (5.7), (5.8), and
Theorem 5.6.

Theorem 5.7 When e coezistence equilibrium for system (5.1) ezists, it is unique.

Lemma 5.8 Consider system (5.1).

(a) If mp > D and G(S°,R°) > D, then ¢(8) and &(S) intersect uniquely in
(0, min{}, 5°}) et (S, R).

(b) If mg = D and G(5°,R°) > D, then ®(5) intersects the line S = S at R.
(¢} Suppose ms > D > mp and §° > A,
(i) If G(S°,R°) > D, then ©(8) and ®(S) intersect uniguely in (A, S5°) at
(S, R).
(ii) If G(S°, R°) < D, then ¢(S) and ®(S) intersect 0, 1 or 2 times in (), 5°),

depending on the number of prey survival equilibria. Any such intersection

occurs at the (S, R) coordinates of a prey survival equilibrium.

Proof: (a) Since G(S°, R°) > D, E = (3, R, %,0) exists uniquely by Theorem 2.7(a).
The quadratic

pAS® + [pA(P —1) — pS° = AR°P)S = u(P-1)52 =0

is obtained both by setting ¢(5) = ®(S) and from the equation for 5,

£(S° = 5)D _ (B> = p(S))D

S(S,e(S))  R(S,e(S))
using (4.2) and (4.8). If $§° < A, note that G(S°, R°) > D implies (5°) = R° > ¢(5°)
by (4.5), since X < §°. If A < 5°, note that §(A) = R°PA/{{§°—X)+AP} > 0 = ().
Since $(0) = 0 < g = p(0), the result now follows.




5 ENRICHMENT THRESHOLDS FOR PREDATION 107

(b) For mp = D it can be shown that § = A = §¢ < Se. (See Lemma 2.6(b).)
The fact that ®(A) = R follows from the equation for &,
ED(S° - A) _ 1D(R° — R)
S(A, R) R(\R)

using (4.2).

(c) As in part (a), both the equation for the intersection and the equation for

S yield
6AS° +[6A(P — 1) — §5° — AR°P)S — §(P - 1)§* = 0.

For (i), note that G(S°, R°) > D implies 0 < R° = ®(S°) < ©(5°) = R} by
(4.5), since 5° < A < §°. Therefore, E exists uniquely by Theorem 4.2(a) and the
result now follows.

For (ii), note that G(S°, R°) < D implies R* > R? by (4.5). TP > (5°—A)/8°,
then B} = R} so that, by Theorem 4.2(b), no prey survival equilibria exist, If
P < (8°— ))/S°, then R3 > R3. By Theorem 4.2(b,c}, there exist 0, 1 or 2 prey
survival equilibria, depending on the value of R° relative to R and R5. We need only
observe that, for R° = Rg,

¥(5°) = pos >~ fand enly it P < 22,
where ¢'(S) = —-6/). n

Consequently, we have the following theorem.

Theorem 5.9 If ms > D > mp and R° > IS, then no coezistence equilibrium E*
ezists.

Proof: If E* exists, then G(S*,R") > D, so that ¢($*) > #(5*) = R* by (4.5).
Since ®(0) = 0, (4.8) implies that »(S) and ®(S) intersect at least once. Thus, by

Lemma 5.8(c)(ii), there exists at least one prey survival equilibrium, contradicting
Theorem 4.2(b). B

Theorem 5.6 indicates that there is always a solution S* € (0, 5°) of (5.11).
However, the corresponding solution y* of (5.7),

v = 2D +6(5", r),

need not be positive. This is the content of the following theorem.
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Theorem 5.10 Let S* satisfy (5.11) and let B* = ®(5").

(a) If mp > D, then there ezists a coexistence equilibrium E* = (S*, R*,z",y") for
system (5.1) if and only if E ezists and § < $ < S° and R < R* < R°.

(b) Suppose ms > D > mp and §5° > ).
(1) If0 < B° < R}, then there ezists a coezistence equilibrium E* = (§*, R*,z",y*)
Jor system (5.1) if and only if E ezists and § < §* < S° and R < R* < R°.

(i) If B} < B° < B3, then there ezists a coezistence equilibrium E* = ($*, R*,z*,y")
for system (5.1) if and only if E; ezists, i = 1, 2, and min{5),5,} < $* <
maz{S51, 5.} and min{Ry, R} < R* < maz{R;, R,}.

Proof: For part (a), the existence of E is given by Theorem 2.7 parts (a) and (b)(ii).
For part (b)(i), the existence of E is given by Theorem 4.2(a). For part (b)(ii), the
existence of the E, i = 1, 2, is given by Theorem 4.2(c).

(2) If mp > D, (5.10), (4.8), and Lemma 5.8(a) imply that

B(S) < p(S) for all 0 < S < § and &(3) > () for all § < § < min{}, 5°}.
By (4.5) and (4.9),
G(S,®(S)) < Dforall 0 < S < 5 and G(8,8(5))>Diorall §<§ <5,
since S° > A, Note tha;t if § < 8 and R < R*, then

£S° +qR° > %
68"~ 8) + 1R ~ B)
§(S° - ) +n(F° — BY)

£(5° = 57 + (e~ ) =y

T

A\

1

vV Vv

I mp=D,t>an § = A =3§. The result follows immediately from (4.5) since

G(S,R)< Dforall R>0,0<5<SandG(S,R)>Dforal R>0, §<§.
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(b) After noting that 5¢ < ), the proof follows as in (a). m

We now present a global property of the model. The terms persistent and
uniformly persistent are used here as in {17), and are given in Definitions 2.8 and 2.9
of section 2.3.2. The following notation will be required:

T ={(S,R,z,y) € R} :2> 0,y =0}. (5.13)
Theorem 5.11 Assume G(S°, R°) > D.
(2) If z(0) > 0, then liminf,_., 2(f) > 0.

(b) System (5.1) is uniformly persistent with respect to all solutions Sor which z(0) >
0 and y(0) > 0 if and only if g() > D.

Proof: Since G(S°,R°) > D, E, is an unstable hyperbolic critical point. By Theo-
rem 2.7(a) and (b)(ii) and Theorem 4.2(a), E exists and is globally asymptotically
stable with respect to all solutions initiating in 7", where 7 is as in (5.13). Choose
X = (5(0), B(0),2(0),y(0)) € intR}. Since all solutions are positive and bounded,
Q(X) is a nonempty, compact, invariant set with respect to (5.1).

Suppose E, € X). E, is globally attracting with respect to all solutions
initiating in its stable manifold. Since M*(E,) = {(S,R,z,y) € R : z = 0}
and z(0) > 0, X) # {E}. By the Butler-McGehee Lemma, there exists Q €
(M*(E,) \ {E.}) N Q(X) and hence ddO(Q) ¢ N(X), where clO{Q) denotes the
closure of the entire orbit through Q. But then as ¢ — —oo, O(Q) either becomes
unbounded or leaves the positive cone. In either case we have a contradiction and
therefore {E,} & O(X).

For part (2), suppose liminf;_,o, z(t) = 0. Then there exists a point Q € Q(X)
such that @ € M*(E,). Since dO(Q) C UX), {E,} € OX), a contradiction.
Therefore, liminf;., z(2) > 0.

For part (b), suppose {E} € UX). Since ¢(z) > D, E is an unstable hyper-
bolic critical point. Since M*(E) = 7 and y(0) > 0, Q(X) # {E}. By the Butler-
McGehee Lemma, there exists @ € (M*(E)\{E})NQ(X) and hence clO(Q) C Q(X).
But then, as ¢ — —oo, either O(Q) becomes unbounded or leaves the positive cone
or clO(Q) D {E°}. In any case, we have a contradiction, and therefore {E} ¢ 9(X).
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Suppose lim infi..o () = 0. Then there exists a point @ € Q(X) such that
Q € M*(E). Since dO(Q) C 2(X), {E} € (X)), a contradiction. Therefore, (5.1)
is persistent, and it now follows from the main result of [8] that (5.1) is uniformly
persistent.

Note that E is locally asymptotically stable with respect to (S, R, z, y)-space
when ¢(Z) < D, so that (5.1) is not uniformly persistent. If ¢(Z) = D, then E and E*
coalesce and there is no equilibrium in intR4. It follows as in the remark concerning
Theorem 2.19 that (5.1) is not uniformly persistent when ¢(Z) < D. B

Remark concerning Theorem 5.11

When ms > D > mp and R} < R° < Rj, there exist precisely two prey
survival equilibria by Theorem 4.2(c). Note that G($°,R°) < D for all R° > Rg.
Since E, is locally asymptotically stable, it follows that there is no result analogous
to Theorem 5.11 in this case. Therefore it is possible for a coexistence equilibrium to

exist for system (5.1) even though the system is not persistent.

Theorem 5.12 If G(5°, R°) > D, then a coezistence equilibrium of (5.1) ezists if
and only if (%) > D.

Proof: If ¢(Z) > D, then, by Theorem 5.11, (5.1) is uniformly persistent with respect
to all solutions for which #(0) > 0 and y(0) > 0. Thus, at least one coexistence
equilibrium E* exists.

Suppose E* exists. Then, by Theorem 5.10 parts (a) and (b)(i), S < §* and
R < R’. As shown in the proof of that theorem, > 4. Therefore, D = ¢(0) < ¢(z)
by (5.2). B

Consider mg > D and fix 5° < A\. We give the following bifurcation analysis
of system (5.1) based on the parameter R°. For all 0 < R° < (5°), G(S°,R°) < D
and, by Theorem 5.3, E, is globally asymptotically stable for (5.1). Neither £ nor E*
exists in the nonnegative cone. If R° is increased to ¢(5°), then G(S°, R°) = D and
the critical points E, and E coalesce. If R is slightly increased, E bifurcates into
T ={(S,R,z,y) € R} : >0,y = 0} and E, loses its stability. By Theorem 2.12(a),
E is globally asymptotically stable with respect to all solutions initiating in 7. Now,
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by Lemma 4.1, the species component of the prey survival equilibrium, Z, is a strictly
monotone increasing function of both S° and R°. Therefore there exists a unique
Re € (p(5°), 00] such that Z = § when R® = E°. For 0(S°) < R° < R, q(2) < D, so
E is locally asymptotically stable for (5.1). If R? is increased to &°, E and E* coalesce.
If RB° is increased beyond Ao, then q(Z) > D, E* bifurcates into {(S, R, z,y) € RY:
z >0,y > 0}, E becomes unstable, and system (5.1) s uniformly persistent. In this
case sufficient enrichment with resource R is beneficial in the sense that it lea.ds from
total washout to survival of both species.

For mp > D and X < §°, the initial configuration of the equilibria may differ,
but the bifurcation proceeds as above with increasing R°. Note that a bifurcation
analysis can be done based on the parameter $° with similar outcome, Thus, sufficient
enrichment with resource S is also beneficial in this case. Also, for mr = D we must
have §° > X = S°. Then G(5° R°) > D for all R® > 0 and the series of bifurcatjons
proceeds similarly.

In Chapter 4 it was shown that, for mg > D > mp, suflicient enrichment with
resource R leads to the extinction of species z in the (S, R, z)-subsystem. However,
moderate enrichment with resource R may or may not be beneficial there. As a
result, tracking the evolution of E* is more difficult in this case. Some conclusions
can nonetheless be reached concerning the effects of cnrichment on the asymptotic
behaviour of (5.1).

If 0 < R° < B3, then G(5°, R°) > D, and E, is unstable. Also, there exists a
prey survival equilibrium which is globally asymptotically stable with respect to all
solutions initiating in 7. When R° = 0, the prey survival equilibrium is given by
(A,0,€(5° — A),0).

Suppose {(5° — A) > 6. Then E* exists in the nonnegative cone and system
(5.1) is uniformly persistent. This remains the case initially as R° is increased. How-
ever, for B®° > R}, G(5°, R°) < D, so E, is locally asymptotically stable. Therefore,
enrichment with resource B may be detrimental for system (5.1) in the sense that it
can lead from survival of both species for any positive initial condition to washout

for some positive initial conditions.

Suppose instead that £(5° — A) < 8. Then there is no coexistence equilibrium
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in the nonnegative cone and the prey survival equilibrium is locally asymptotically
stable. Thus, solutions of the model do not persist. If even moderate enrichment is
detrimental in the (S, R, z)-subsystem, this situation cannot be improved. However,
suppose moderate enrichment is beneficial in the (5, R, z)-subsystem and there exists
Fee (0, R?) such that Z = § when R° = Re. As R is increased beyond K¢, E* enters
the nonnegative cone and system (5.1) is uniformly persistent. Therefore, moderate
enrichment with resource R may be beneficial for system (5.1).

Note that increasing 5°, the input concentration of resource §, is beneficial.
As in the previous chapter, this can be seen by viewing RS as a function of §°. Fix
$°=5">Xand R° > R‘{(S") Then G(5°, R°) < D, so E, is locally asymptotically
stable for (5.1) and total wasliout can occur for some positive initial conditions. By
(4.5), increasing S° sufficiently destabilizes E,, that is, G(S°, R°) > D. By Theo-
rem 5.11(a), total washout is then impossible for any positive initial conditions. If
¢(Z) < D, then increasing 5° further leads to uniform persistence of (5.1). In the
(S, R, z)-subsystem, enrichment with resource S leads from washout or initial condi-
tion dependent outcome to survival. Once the (S, R, z)-subsystem enters this regime,
the carrying capacity of the environment is an increasing function of $°. Thus, if
the enviromment supporting the prey is sufficiently enriched with resource S we have
T > 6, so that ¢(Z) > D.

In what follows we examine the local stability properties of the coexistence
equilibrium E* in the case mg > D. Let us assume that G(S°, R°) > D so that E
exists and is globally asymptotically stable with respect to all solutions initiating in
T. Further, assume ¢(Z) > D so that E* exists.

By Theorem 5.1(b) the simplex M = {(S, R,z,y) € Ri : v¢S+ypR+yz+y =
7(£S5° 4+ nR°)} is a global attractor for (5.1}, and so we may restrict our attention to
M. Since M is positively invariant, let y(t) = v{£(5° — S(¢)) -+ n(R° — R(2)) — z(2)}
and consider the system
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§@ = (5 - 5@ - *Bs(s), ryy),

§
R = (7 -R0)D-Lr(s, ry)
#€) = o(t)(~D+ (S ) + a(z(t) (539

+(E(S(2) = 5°) +n(R(t) — R°))g(=(2)),

5(0) 2 0, R(0) = 0,2(0) 2 0,£(5° — S(0)) + (R® — R(0)) ~ =(0) > 0.
Both (5.1) and (5.14) will be used in the examination of the local asymptotic stability
of E*. The variational matrix of (5.1) evaluated at E* will be denoted Vi(E®). The
critical point of (5.14) corresponding to E* will be denoted Ej3, while the variational

matrix of (5.14) evaluated at E3 will be denoted V4(E3).
From (5.1), V43(E*) is given by

( -D - = 2.5(5", ") = 5SS R) -15(s", r") 0 \
-5 %R(SR)  -D-=ZR(S",R) —7R(S",R) 0
z* &G(5", R*) TGS R -D4G(S R - L) ~Lez)
\ 0 0 y'¢(z") ~D+4(z") ]

Noting that ¢(z") = D, the characteristic equation of Va(E®) is given by ps(w) =
w' + Ajw® + Arw? + Azw + Ay, where

-1 f [ - _]'.i
A = y';y'Q(z)-!-z (53.5'

+3D — (5™, R")
y-%q'(z-) (3D +z° (%%5(3-,1?) + %E%R(S‘, R‘))) (5.16)
+D* +2D(D - (5", R*)) + 2Dz" (

. 18 ..
S(5"R")+ 2 ER(S ,R")) (5.15)

Az

10 . 10 .
E@S(S,R‘)-I-;EER(S,R‘))
a

z a . i -~ . a . Do
> (-5§8(S Bz RST B = 528(8 Rz R(S™, R ))

z . F; . . a .
+_£. (3(3 B z5R(S", )~ R(S 1) 55S(S ,R‘))

w2
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z" . 4 . - i .
+; (R(S’R')EES(S’R.) S(S‘,R‘) 'R.(S,R'),):

Az = y'%q'(z') {3D2+2Dz (f aSS(S' )+ 19 'R(S" R')) (5.17)
z* {9 . , . 3 . .
+2 (RS VRIS B - e S(S™ RV R ) )

+D*(D - G(5, B*)) + D*z* ( T + R(S',R‘))

£aS

.7'.,-2

+DZ ((%—,S(S‘,R‘)%R(S‘,R‘) =S(5 B) 2 ‘R(.S" R‘))
+Dz€—' (3(5-,3-)53-5-12(3-,3-) -R(s-,R')-a?S(s-,R-))
+D%' (‘R,(.S", R‘)-(,%S(S‘, R - 8(5", R‘)E%R(S‘, R‘)) ,

A = y'D%q'(m‘) {D2 + Da" ( 5555 B + I%R(S' R")) (5.18)
+%:- (%3(3-, ) R(S" B) = 2eS(5", B SER(S", R'))}

Since mg > D we have, by (4.2), (4.3), and (4.5),

%S(S',R')BB—RR(S‘,R‘) - 56}-25(3-,3-)%72(3-, BY>0.  (5.19)

For R° = R°, E and E* coalesce, so A, = 0. Since E is globally asymptotically

stable in (S, R, z)-space, A, > 0, Az > 0, and (4;42 — Aa) > 0. Thus, the three
nonzero roots of ps(w) have negative real part. As R° is slightly increased beyond
Re, E* bifurcates into the interior of (S, R, z,y)-space. By (5.19), A; > 0. By the
continuity of the roots of the characteristic equation as a function of its coefficients,

it follows that ps(w) satisfies the Routh-Hurwicz Criterion at least initially, that is,
Ay > 0,43 > 0, As{ Ay Az — A3) — AZA, > 0,4, > 0.

Therefore, E* is initially locally asymptotically stable.
To continue the discussion we turn to (5.14). Noting that ¢(z") = D, it follows
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from (5.14), Va(E3) is given by

(-D-2S(S"B) -=&S(S°R) -1s(s" R )
—SHR(SVE)  -D-ZER(SR)  -1iR(S",R") ,
\ 2°%G(SR)+€D  ="FG(S", B)+9D G(S*,R*) - ¢'(z")y" /

where y* = {£(5° — §*) + n(R° — R*) — z"}. The characteristic equation of Va(E3) is
given by pa(w) = w® + Byw? + Byw + Bs, where

B, = —q'(::: )+2° (; 755(5", R‘)+ ‘R.(.S",R‘)) (5.20)
+2D G(S*, R"),
tl () L] 1 a - 1 a -

B, = y;q(z)(2D+z (6653(3 R")+ SER(S" ))) (5.21)

+D(D - G(S*,R")) + Dz" (E 358(5. R*) + —-—'R(S‘,R'))
z** (3 . i} . .
Vo (356 BIgRis ) - stk m(s )

z* . 0 - -

+F (5(3 y B) 2 R(S™ BY) = R(S™, B )

z* . d . . . De

+Z (RS R (5, ) = S(5% RV R(S" R)),
By = y'%Q'(z-){Dz‘i'D” (535

+’;n (6%3(5-, )RS B) - ﬁS(S‘,R‘)ﬁ’R(S','R‘))}.

S(S",R) + ——'R s* R‘)) (5.22)

We first note that, as with Ay, B; > 0. Also, E* and E3 have the same stability.
Therefore, for values of R° > R° such that E* is locally asymptotically stable, ps(w)
satisfies the Routh-Hurwicz Criterion. Then B, > 0, B, > 0 and BB, — B; > 0.

Therefore, if E* can lose its stability, it can do so only by means of a Hopf bifurcation.
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Let V3(E3) = [vi;),4,7 = 1,---,3. The signs of the entries are as follows:

— + -_—
+ -_ -
+ + 7
Also,
By = —(v11+ va2 + v33),
B, = (011‘022 - 012021) + (011033 - ‘013!»‘31) + (Uzzvaa - Uzsvaz),
By = —|Va(E3),
and
BBy — B3 = — (v11+ vz + vas){(v11va3 — v13031) + (va2v33 — V23V32) }

~ (v +v22 + G(S*, R*))(v11v22 — v12v91).

Note that vy3v23 — vizvy = (7/(¢'(z")y*)) Bz > 0.
If G(5°, R°) < 2D, then G(S§*, B*) + vy + vp < 0. If, in addition, vs3 < 0, it
follows from the signs of the v;; that ByB; — By > 0, and no Hopf bifurcation can

occur.

However, a Hopf bifurcation may occur. Consider the system

§) = 1-50)- x(st) T Sglf)(g 0%

R() = B -R()- zg.t) 1+ .5?(%(2 R(t)’

2(t) = a(t)(-1+ 13f(;,)(;; ﬁgz) ) - y(t)%%, (5.23)
Y0 = -1+ ),

5(0) > 0, B(0) 2 0,z(0) > 0,3(0) > 0.
The symbolic manipulation package MAPLE was used to show that

Bi(R°)By(R°) — Bs(R°) =0 when R°= R° = 0.2114675777.
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(The program is included in section 5.6.) Then E* is locally asymptotically stable for
0 < B° < R; and is unstable for B° > R?. At R° = R?, p,(E") can be shown to have
two real, negative roots and two pure imaginary roots. The real part of the complex
conjugate pair of roots crosses zero transversely at B® = R? since (B, B, — B3)'(R?) #
0. Thus, the change in stability at R® = R? is via a Hopf bifurcation. Numerical
evidence indicates that it is a supercritical Hopf bifurcation. In Figure 5.1(a}, R° =
0.1 < Rg and the solution converges to E*. In Figure 5.1(b), R° = 0.3 > R? so
that E* is unstable. This figure seems to depict a stable periodoc orbit. As further
evidence, an (z,y) projection for R° = 0.3 > R? is shown in Figure 5.2.

5.5 Discussion

In this chapter we consider a resource-based model of predator-prey interaction in the
chemostat involving two nonreproducing resources, S and R, that are growth limiting,
noninhibitory, and perfectly substitutable for the prey. As in the previous chapter,
only the parameters under the control of the experimenter are varied. These are §°
and R°, the input concentrations of the resources, and D, the input and washout
rate.

We first examine the question of the existence of a coexistence equilibrium,
E*, for our model. This leads to a complete characterization of those resource con-
centrations that yield coexistence equilibria. We show that when such an equilibrium
exists, it is unique. The condition G(5°, R°) > D is sufficient to guarantee the sur-
vival of the prey. Thus, so long as the resources are sufficient to ensure that the prey
can consume eno. ch to more than compensate for the rate D at which it is being
washed out, it will survive predation. We find that G(S°, R°) > D and ¢(z) > D is
necessary and sufficient for the model to be uriformly persistent, thus ensuring that
both species survive, regardless of the (positive) initial conditions. Consequently,
when G(5°, R°) > D, ¢(Z) > D is necessary and sufficient to guarantee the existence
of a coexistence equilibrium.

As an investigation of the effects of enrichment on a predator-prey system, this
chapter again addresses issues raised by Rosenzweig [44]. Investigations involving a

single resource have been carried out by a number of authors. (See, for example, [9],
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[11), [13], [19), [29], [47], [50], and [63].) We compare our results in the two-resource
case for ms 2 D and mp 2> D to those of Butler and Wolkowicz [11] for the (S, z,7)
food chain. There, the predator response function, q(z) = zh(z), is continuously
differentiable and monotone nondecreasing, and the prey response function, p(S), is
any continuously differentiable, monotone increasing function satisfying p(0) = 0.

There are three possible steady states in both the one-resource model and the
two-resource model: the washout equilibrium E,, the prey survival equilibrium E, and
the coexistence equilibrium E*. For given values of D and the input concentration(s),
no more than one of these steady states can be locally asymptotically stable. The
washout equilibrium is locally asymptotically stable if and only if G(5°, R°) < D for
two resources, p(5°) < D in the one-resource case. The prey survival equilibrium
exists if and only if G(5°, R°) > D (p(5°) > D), and is locally asymptotically stable
when ¢(Z) < D. Though we suspect it is true, we are unable to show, as they do
for the one-resource model, that E is globally asymptotically stable when it is locally
asymptotically stable. Both models are uniformly persistent if and only if E exists
and ¢(z) > D, and this condition is necessary and sufficient for the existence of E°.
For both models, E* is at least initially locally asymptotically stable, and examples
exist in which E* loses its stability via a Hopf bifurcation. (Here, the bifurcation
parameter is the input concentration of one of the resources; in [11], this is only one
possible choice for the bifurcation parameter.} In the food chain, then, enrichment
is beneficial in the sense that it leads from total washout to the sole survival of the
prey, and then to the survival of both species, for any positive initial condition. The
progression is the same in the two-resource case for dilution rates below the threshold,
regardless of which resource is used for enrichment.

That system (5.23) exhibits a supercritical Hopf bifurcation is consistent with
the results of Rosenzweig [44], May [35], Gilpin [20], and Freedman [16]. Rosen-
zweig [44] examines six models of predator-prey interaction and shows that sufficient
enrichment of the environment supporting the prey results in the destabilization of
then otherwise stable coexistence equilibrium. May [35] and Gilpin [20] show that
the destabilization results in the birth of an asymptotically stable coexistence equi-
librium. And Freedman [16] shows the destabilization of the equilibrium to be the
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result of 2 Hopf bifurcation. Wolkowicz [62] proved that depending on the form of
the response functions, the Hopf bifurcation could be supercritical or subcritical, and
hence there could be more than one periodic orbit.

As was the case for the growth model, it becomes important to consider which
resource is used to enrich the environment when the dilution rate is increased be-
yond the threshold, that is, when ms > D > mp. First, equate enrichment of the
environment with an increase in the input concentration of resource R, Initially (for
R° = 0), E, is unstable, so that total washout is impossible when z(0) > 0 and
¥(0) > 0. Also, at least the prey species can survive at £ = (5°,0,£(8° — A),0). If,
in addition, g(£(S°— X)) > D, then the system is uniformly persistent. Increasing R°
beyond RS stabilizes E,,, so that washout is possible. Thus, sufficient enrichment with
resource R is certainly detrimental. Now, if g(£(S° — A)) < D, then the system is not
uniformly persistent. It may respond well to moderate enrichment provided the car-
rying capacity of the environment supporting the prey increases sufficiently when R°
is increased. If even moderate enrichment is detrimental in the (S, R, z)- subsystem,
the situation will not be improved by increasing R°. On the other hand, enriching the
environment by increasing the input concentration of resource S is beneficial when
ms > D >mp. If R° > R, increasing $° destabilizes E,, so that washout is impos-
sible when z(0) > 0 and y(0) > 0. Suppose ¢(Z) < D and there exists a unique prey
survival equilibrium, that is, R° < R3(S°). Then increasing S° sufficiently increases
the carrying capacity of the environment supporting the prey beyond #, so that the
predator-prey system is uniformly persistent.



5 ENRICHMENT THRESHOLDS FOR PREDATION 120

5.6 Appendix: Maple Program

The following maple program was used to verify that system 5.23 exhibits a Hopf
bifurcation.

d:=1:

so:=1:

ms:=3:

mri=2:

mx:=3:

ks:=1:

kr:=1:

kx:=1:

xi:=3:

eta:=2:

gam:=1:

theta:=kx*d/(mx-d):
p:=(eta*ms*kr)/(xi*mr*ks):
with(linalg):
ss(s,r):=(ms*kr*s)/(ks*kr+kr*s+ks*r):
rr(s,r):=(mr*ks*r)/(ks*kr+kr*s+ks*r):
q(x):=mx*x/(kx+x):
fl:=(s0-s)*d-x*ss(s,r)/xi:
f2:=(ro-ry*d-x*rr(s,r)/eta:
f3:=x*(-d+ss(s,r)+rr(s,r))- (xi*(so-s)+-eta*(ro-r)-x)*q(x)/gam:
Phi(s):=ro*p*s/(so+(p-1)*s):
sstar:=solve(subs(r=Phi(s),x=theta,f1)=0,s):
sstar:=sstar(2)]:
rstar:=simplify(subs(s=sstar,Phi(s))):
A:=[f1,1213):

v3:=jacobian(A,[s,r,x]):
poly:=collect(charpoly(v3,a),a):
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det:=coeff(poly,a,2)*coeff(poly,a,1)-coeff(poly,a,0):
detcrit:=simplify(subs(s=sstar,r=rstar,x=theta,det):
rocrit:=fsolve(detcrit=0,ro0);
Sstar:=simplify(subs(ro=rocrit,x=theta,sstar):
Rstar:=simplify(subs(ro=rocrit,x=theta,rstar):
Bone(xo):=subs(s=Sstar,r=Rstar,x=theta,coeff(poly,2)):
Btwo(ro):=subs(s=Sstar,r=Rstar,x=theta,coeff(poly,1)):
Bthree(ro):=subs(s=Sstar,r=Rstar,x=theta,coeff(poly,0)):
f(ro):=Bone(ro)*Btwo(ro)-Bthree(ro):
fprime(ro):=diff({(ro},ro):

transcalc:=simplify (subs(ro=rocrit,fprime(ro)));
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5.7 Figures
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Figure 5.1: Numerical simulations of system (5.23).

(a) Time series for R° = 0.1 < R? and initial condition (S(0), R(0),=(0),y(0)) =
(0.75,0.1,0.45,0.2). BE* is asymptotically stable.

(b) Time series for R° = 0.3 > R? and initial condition (S(0), R(0),z(0),y(0)) =
(0.8,0.4,0.6,0.21). E* is unstable.
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Figure 5.2: Further numerical simulations of system (5.23). (=z,y) projection for
R =03 > RZ. (5(0), R(0),z(0),y(0)) = (0.1,0.7,0.8,0.6) for the outer orbit while
(5(0), R(0),z(0), y(0)) = (0.8,0.4,0.55,0.25) for the inner orbit.
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