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Abstract

Wave Theory proposes that the rcl:;Lionship between sensaton and feeling can be
derived from a single theoretical foundation. The empirical evidence supporting this
proposition is as of yet indirect: it is gleaned from comparative analysis of Weber Fractions
and Stevens’ exponents across numerous experiments of discrimination and magnitude
cstimation. Prior to examining this relationship, an extensive test of the assumptions and
predictions of Wave Theory in the context of a discrimination task involving judgments of
distance between successively presented pairs of dots was conducted. The primary
purposc was to examine Wave Theory’s definition of sensation. This required the
construction of symmetric stimuli which allow for analytic estimates of the model’s
parameters. The model was then tested by determining the correspondence between
predicted and observed performance indices: response proportions and response times, and
further between estimated response times and observed response proportions. The second
experiment was conducted primarily to determine the empirical relationships among
response proportions, response times, and magnitude estimates of the feeling of
cor'npuralivc distance. While the stimuli were again pairs of dots, the subjects also
performed judgments of the magnitude of their perceived difference by squeezing hand held
pressure seasitive devices. These judgments are inherent in the quantitative measure of
feeling proposed by Wave Theory. The findings encouraged replication and consequently
a more extensive experiment was carried out. This seminal work provides a
comprehensive account of sensation ahd feeling and their empiricz{I indices via Wave

Theory analysis.
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Chapter 1

Introduction

The measure of sensation, Gustav Theodor Fechner trumpeted, “is the foundation of
psychic measurement” (1860); 1966, p. xxxi ). Relying upon the work of E.H. Weber, a 19th
century German physiologist, who disco. * ed that “increases in the intensity of [a] stimulus,
that is just noticcably differcnt to an observer is always a constant fraction of the stimulus
intensity” (Gescheider, 1985, p.3), Fechner constructed a method which quantified the just
noticeable difference (JND) in units of sensory error.

Today this unit of sensation corresponds to the amount of stimulus increment necessary
to evoke a correct discrimination between two stimuli 75% of the time. Why 75% of the time
and not 100% of the time or why not just the average increment necessary to detect a
difference? To understand this seemingly arbitrary choice of the unit of sensation one must
consider Fechner’s theory of sensation.

His theory is elegant and simple. The sensation corresponding to a physical stimulus
has an associated quantity of error which is Gaussian distributed. When two stimuli are
compared against each other, the criterion for deciding which has a greater psychological
magnitude is the midpoint of the means of the two sensation magnitude distributions. Since the
probable error or 0.675 standard deviation units from the mean was in Fechner’s time the
accepted unit of error for measuring the sensitivity of physical devices, Fechner chose this
same unit to measure the amount of error in sensation. If two stimuli are identically distributed
as Gaussian distributions and are separated by two units of probable error, with a criterion
placed midway between the two means, then the probability that the stimulus of greater
ma@imdc cxceeds the criterion is 75%.

Fechner further assumed this unit of sensory error was a constant proportion of the

JND discovered by Weber and independent of the magnitude of the physical stimulus
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(Fechner, 1860); in Murray . 1990). He postulated that by adding together INDs one ercated
increasing amounts of scnsation. From this assumption Fechner was able to derive his
Psychophysical law relating psychological magnitude to stimulus intensity. This is

accomplished as follows:

Let ¥ - denote sensory magnitude
Yo - absolute threshold, the point at which sensation is (),
S - physical stimulus intensity
So - is the stimulus intensity corresponding to absolute threshold.
c - a constant

Then Fechner's assumption is

AY =c (8%) (1.1

where, AW is a unit of sensation, proportional to AS/S, where AS is the stimulus increment
that is just noticeably different from any stimulus intensity, S. Assuming as Fechner did that
AW and AS can be treated as differentials the law relating sensation to stimulus magnitude is

revealed through integration of equation 1.1 with the limits defined as above.

W S
IA‘P=CJ-1§AS (1.2)
Yo So
¥-Wo=cln34) (1.3)

Fechner’s Psychophysical Law, equation 1.3, states that sensation grows as a
logarithmic function of stimulus magnitude when the stimulus magnitude is scaled in units of
the absolute threshold stimulus.

Fechner painstakingly collected an immense amount of data to support his law. His
most thorough investigation consisted of 24,576 judgments of lifted weights. This
experiment consisted of six standard weights ranging from 300 to 3000 grams. With cach

standard weight Fechner included two comparison weights which were 4% and 8% greater
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than the standard. ‘The subject, who in this experiment was Fechner himself, was to decide
upon successive lifing of the standard and. comparison weight which of the two was
perceived to be heavier. Fechner's Conjecture, as it is called, stated that the proportion of
correct judgments for a constant proportional increment should remain constant over the
range of standard weights. For example, all comparisons 4% greater than their respective
standard weights are predicted to be identified correctly the same proportion of tmes.
Although the results deviated somewhat from Fechner's prediction, this experiment was
taken as evidence supporting Weber's Law.

While Fechner today is acclaimed the founder of psychophysics, his law has
provided the catalyst for extensive debate and controversy. The polemic surrounding
Fechner's psychophysical law began almost immediately after its publication in the
Elemente der Psychophysik Vol. 2 (1860, 1964). The first to espouse an alternative
Psychophysical law was Plateau (1872 in Murray, 1990) who argued that equal physical
raiios produce equal sensation ratios. The manner Plateau used to demonstrate this notion
contrasted sharply with Fechner's austere experimental method.

Plalcau approached artists and asked them to paint a shade of gray which would
appear intermediate between black and white. The assumption of Plateau's bisection
method was that subjects would produce a shade of gray which would be at the
psychological midpoint of the sensation of black and white. For Plateau the results were
uncquivocal. Despite the differences of illumination among the various artists' studios, the
shades of gray painted were remarkably similar. |

The dissimilarity between Plateau and Fechner's psychophysical laws even
exceeded their methods. Plateau’s argument implied that sensation is a power function of
stimulus magnitude. For example, consider the ratio of light intensity of a particular artist's
painted gray patch to the patch of black Plateau presented for reference as Ig/lIp and denote

as Sg/Sp the sensation evoked by this ratio of illuminations. Now consider another artist's
3



studio where the overall illuminance is greater than the irst artist's by a factor ¢. Given
that the two arusts produced the same shu(ic of gray then the ratio ol sensations of the
second artist, Sg/Sp, must have been produced by a stimulus ratio of clp/clp. Platcau
concluded that because s¢nsation ratios remain constant provided that the ratios of physical
stimulus quantities also remain constant, then Fechner's logarithmic law cannot hold.

However, if it is assumed that subjects are judging sensation differences and not
sensation ratios then it is Fechner's law and not a power law as suggested by Platcau which
acéoums for the invariance of artists’ bisection. More formally, i sensation is a power
function of stimulus intensity, and using the same notation as above, then the sensation
evoked by an artist’s painted shade of gray, Sg, cquals Ip? , the intensity of the physical
illumination to a power, a. Similarly, Sy, the sensation of black presented cquals Ip®, the
physical intensity of black presented. The sensation ratio Sp/Sg remains constant for all
multiples of stimulus intensity, that is (cIp)?/(clg)? = Ip¥1g® where ¢ is any constant. I,
on the other hand, sensation is a logarithmic function of stimulus intensity, then sensation
differences remain constant for all multiples of stimulus intensity, or In(Ip)-In(Ig) =
ln(ch)-In(ch). Therefore, unless one can be certain whether the artists were painting a
shade of gray based upon the ratio of their sensations as Platcau would believe, or upon the
difference between their sensations, as Fechner would assert, it is impossible to validate
either formulation.

However insufficient Plateau's argument was, at least he atlempted to attack
Fechner with experimental fact. The strategy many of his opponents chose was merely
philosophical. The debate centered around the existence: of a threshold; of negative
sensations as some thought the logarithmic law implied; and even of the possibility of a
sensory measure ( Link, 1992; Murray, 1990; and Stevens, 1957).

While the philosophical debate raged, the experimental evidence in favor of

Fechner's law mounted. The most compelling support was reported by Jastrow in 1887,
4 _



who ironically only three years carlier published a paper with C.S. Peirce (1884)
challenging what they thought was Fechner's notion of a threshold.

Jastrow gathered the results of 18,845 observalions on the perceived brightness of
various stars; in fact even Prolemy's 4% century estimations are included. The basis for
these estimates was a 6 point scale devised by Hipparchus (circa 150 B.C.} to catalogue
stars by their apparent brightness. Jastrow then compared these "eye-estimations” with
photometer readings and concluded that the "law regulating the ratio of light between stars
of onc magnitude and those of the next above or below it, is the psycho-physic law as
formulated by Fechner” (Jastrow, 1887, p.127). In other words equal stimulus ratios
correspond to equal psychological intervals.

Carcful examination of Jastrow’s data, however, suggests that the correspondence
between the predicted constancy of Weber's fraction and the observed measure of Weber's
fraction was not achieved exactly. The ratio of light, as measured by photometer, between
stars of successive equal psychological magnitudes increased rather than remaining
constant as Fechner's Law predicts. Nevertheless, the subjects’ estimates of stellar
magnitudes were performed under less than controlled conditions, unencumbered by
theoretical paradigm and prior to the development of photometric devices. This remarkable
relation, between subjective and physical measurement of the luminance of stars in the
hcavens, "did most to suggest to Fechner the formulation of his law [and] as he pointedly
remarks, in this field the psycho-physic problem was solved before it was stated (Jastrow,
1887, p.112)."

It was nearly 100 years after Fechner first proposed his psychophysical law, that a
serious challenge complete with experimental results, was mounted. In 1953 S.S. Stevens
presented a paper before the National Academy of Sciences proposing that the magnitude of
the sensation of light and sound was a cube root of the physical energy and sound pressure

respectively. The law which Stevens resurrected was none other than Plateau's power law.,
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Stevens, like Fechner, devised a methodology which he contended cnabled the
direct measurement of sensation. The "dir;:cl" methods, as they came to be cailed,
stemmed from research demonstrating obscrvers' ability to perform ratio judgments of
sound intensity (Richardson and Ross, 1930; Ham and Parkinson, 1932; Geiger and
Firestone, 1933; Stevens and Davis, 1938). In a ratio judgment experiment the subject, or
observer is presented with a standard stimulus, such as a 70 dB tone, and a number of
other variable stimuli or sound intensities for comparison. The observer's task is to
estimate the ratios of sensations produced from each of the standard and comparison pairs.

It was through amalgamating the above experimental results of subjects’ ratio
judgments of sound intensities together with a new procedure which Stevens then called
absolute judgment that convinced Stevens that sensation is best described as 4 power
function of stimulus intensity.

By 1957 Stevens and Galanter published a compendium of 2 dozen psychological
scales for perceptual continua, including brightness, length, duration, and heaviness. All
of these scales defined perceptual magnitude to be a power function of stimulus intensity,
and although the powers were different for the various continua there was considerable
agreement within each modality. Stevens concluded that all perceptual continua are
governed by a power law and that each continuum has a unique signature evidenced by its
specific power.

The new procedure, referred to now as magnitude estimation, requires subjects 10
simply report on a numerical scale the apparent magnitude of stimulus intensities presented.
Stevens’ recollection of the development of this method, whereby a subject was asked to
read from the “loudness scale in his head”, exemplifies the directness of the method.

“I turned on a very loud tone at 120 decibels, which made my
colleague jump, and which we agreed would be called 100. I'then turned

on various other intensities in irregular order, and for each stimulus he
called out a number o specify the loudness.” (1975, p.25)
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Ta account for Stevens’ power law Ekman (1959) proposed that the “subjective
comelate” of the just noticeable difference is not constant over the range of subjective
magnitudes but rather is proportional to it. This postulate is known as Eckman’s law and is

presented in the derivation of Stevens’ law below.

Let Y - denote sensory magnitude
Wq - absolute threshold (cannot equal 0)
S - physical stimulus intensity
So - the stimulus intensity corresponding to absolute threshold.
a,b - constants
Then Ekman’s law is:
AY =a¥ (1.4)
where AV is the “subjective correlate” of the Just Noticeable Difference (JND).
Weber’s Law is
AS =bS (1.5)
where AS is the stimulus increment that is just noticeably different from any stimulus
intensity, S.
Dividing (1.4) by (1.5),
At s="s: (1.6)

And treating equation (1.6) as a differential equation with limits defined as above,

5 1 3 1
=4 |2
[gav=2 [sas (1.7)
Yo So
Integrating both sides of the above equation yields,

'“(%o)=%m(%o)_ (1.8)



Exponentiating (1.8) results in the usual form ol Stevens” law, where Wy cannot equal O and

a/b is the unigue exponent characterizing a particular modality.

Yoo =(5o)° 19

For many the results of Stevens and his co-workers signified the end to Fechnerian
philosophy and the JND scale fell in disfavor. So strong and pronounced was the support of
Stevens’ law that in 1989 at a conference devoted to the scaling of sensory magnitudes attended
by numerous psychophysists, physiologists and theorcticians, it was concluded that:

“there was no challenge o the hypothesis that the power function conslitutcs

a reasonable good first approximation of the underlying psychological law

defining the relationship between stimulus intensity and psychological

magnitude (Gescheider and Bolanowski, 1991, p.297).”

What these authorities failed to apprehend was he intimate relationship between
Fec.:hner’s and Stevens’ laws. This relationship was uncovered by Link (1992) in “Wave
Theory of Difference and Similarity”. Here, he demonstrates that Stevens’ exponents are
equivalcm to the reciprocal of their respective Weber fractions when both are determined
relative to a standard modality such as length. The values of Steven's exponents and
Weber fractions cited are from Teghtsoonian (1971) who collected them from numerous
studies deemed representative of discrimination and magnitude estimation tasks. Although
the empirical relationship between these measures is significant by itself, of even greater
significance is that for any particular modality, both Weber’s fraction and Stevens’
exponent are related by estimable parameters integral to Wave Theory.

The purpose of this thesis is to test Wave Theory’s predicted relation between
Stevens’ exponents and Weber fractions in the context of subjects” discrimination and
mdgnitude estimation of distance. For the first time data are presented from experiments in

which subjects performed choice judgments and magnitude estimation simultancously.

These performance indices provide quantitative measures of subjects’ scnsation and feeling
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of distance. The accuracy and validity of the theoretical predictions of Wave Theory in
accounting for the obscrved response times, response proportions and magnitude estimates
are examined.

This work proposes to reconcile the competing psychophysical laws of Fechner and
Stevens which for 40 years have prevented a comprehensive formulation of a law of
sensation.

In order to provide both a conclusive test of the random watk model proposed by
Wive Theory, and to verify the putative symmetric properties of the experimental stimuli an
experiment involving the discrimination of distance between pairs of sequentially presented
pairs of dots was conducted. Confirmation of the predicted relationships among response
times and response proportions across stimulus differences allowed for direct tests of the
predicted relationship between sensation and feeling. These tests were conducted on data
gathered from two experiments involving subjects’ estimation of magnitude via hand held

pressure sensitive devices.,



Chapter 2

Wave Theory of Discrimination

Wave Theory (WT) like its predecessor Relative Judgment Theory (RIT) (Link,
1975; . postulates that decisions are the result of sequential sampling of scnsory
information. WT advances RJT by proposing a description of stimulus transduction,
which reduces the number of parameters necessary to account for the decision process. It
incorporates all the features of RIT, which has proven successful in predicting the effects
of variations of stimulus probability (Link, 1975), response deadlincs and stimulus
magnitudes on response times and probabilities (Link, 1978 a,b).

The theory proposes a description of discrimination in terms of a random walk
model. This model is part of a general class of stochastic choice reaction time models
which characterizes the judgment process as consisting of a time dependent accumulation of
information. Random walk models possess a mathematical elegance in that response
prdportions or accuracy of judgments and the accompanying response latencics are derived
from the same quantitative formulation. The basis of these derivations is 2 mathematical
identity proven by Wald (1947).

The Wald identity, derives from the idea of a sequential test procedure. In this test,
the number of necessary statistical observations is determined by the outcome of
observations as they are made. Wald termed this test the Sequential Probability Ratio Test
(SPRT) in which the accumulation of information is used to determine acceptance or
rejection of a hypothesis. As a statistical decision procedure this is the most efficient way
of reaching a decision, that is, "of all tests with the same power the sequential probability
ratio test requires on average the fewest observations" (Wald and Wolfowitz, 1948, p.

326).
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From this statistical procedure and the Wald identity, emerged random walk models
of human decision processes. All random walk models based on the Wald Identity,
assume that upon presentation of the comparison stimulus the subject begins accumulating
cvidenee or information for two alternative responses simultancously. The information at
cach successive segment of equal duration is a random vartable, (Xj). The sum, in
constitutes a random walk with stationary increments, and the process continues until a
fixed amount of information is attained (i.e. Exi 2Aor EXi <-A). The probability of
cach response corresponds to the probability of the termination at either barrier, (A,-A).
Decision time is equated with the duration of the random walk. Figure 2.1 is a pictorial
rcﬁrcscnlution of a random walk in which termination at the A and -A barriers correspond

to the responses “Larger” and “Smaller” respectively.

Figure 2.1, Wave Theory random walk model.

: A

Respond "Larger"

Accumulated B
Difference

Respond "Smaller"
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The difference among random walk models is in the form of the random variable
which is accumulated at successive moments in time. One such modet that gained
considerable attention was proposcd by Stone (1961). He used the same random variable
as in the SPRT 10 provide a model for choice reaction-time experiments. The random
variable accumulated in Stone’s model was thus a log likelihood ratio. The distributions
wiﬁ1in this ratio are the internal stimulus generated densitics. Like Fechner, the internal
representation of a stimulus, in Stone's account, is not a constant value but rather has some
distribution.

Stone's model was criticized on two accounts. The first problem was that it could
not account for the unequal error and correct response times frequently observed in
psychophysical data (Townsend and Ashby, 1983). Laming (1968), however,
demonstrated that the SPRT model could predict unequal response times by introducing
variability in the starting position of the walk. Laming suggested that the variability is
induced by subjects' beginning the decision process in anticipation of the stimulus.
Empirical support for this hypothesis comes from Noreen (1979), who in studying subjects
ability to discriminate the relative frequencies of previously displayed stimuli, found that
bias towards a particular response could be induced by subjects’ perception of the
probability of stimulus presentation. A much simpler explanatiun is offered by Link
(1992), and moreover, accounts for the constant error typical of two choice tasks : the
starting position like all cognitive processes has inherent variability, and the distribution of
starting position is a product of averaging across trials.

The second problem and really the downfall of Stone's model was the assumption
that decisions involved computing a likelihood ratio statistic at successive moments in lime,
which implied an awareness on part of the subjects of the underlying densitics associated

with each stimulus. It is possible, bul rather unlikely, that after practice subjects may
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derive an accurate knowledge of the psychological distributions of stimuli and thus
determinge this statistic, but nevertheless, n'o such evidence exists.

In contrast to Stone’s model, Wave Theory assumes the random variable
accumulated is the difference between internal stimulus values. The internal representation
of a stimulus is characterized over time by a stimulus wave form, whose mean amplitude is
a similarity transform of the physical intensity of the stimulus. While the variation in
amplitude is considered 1o be Poisson distributed, the subject need not be aware of the
underlying densitics. Link states that it is “sequeniial comparisons between electrical wave
forms [that] are the gencsis of mental judgment.” (1992, p.180)

To illustrate the model consider a discrimination task in which the subject must
decide whether a comparison distance is larger or smaller than some standard distance. The
decision process occurs as follows. The standard stimulus generates a wave-form, whose
amplitude over time is Poisson distributed. The mean amplitude of this wave-form is equal
lo a constant multiple of the physical stimulus intensity. Similarly, the comparison
generates another wave-form, with Poisson distributed amplitude, again with mean
amplitude proportional to its physical intensity. At each epoch in time, the difference
between these two wave form amplitudes is computed; these differences are accumulated.
The process of sampling information continues until the sum exceeds either of two subject
controlled response thresholds, A or -A. The accumulated difference of Poisson
distributed random variables corresponds to a random walk between two absorbing or
response barriers, denoted A and -A in Figure 2.1.

Also under subject’s control is the parameter B, the starting position of the random
walk which is not necessarily equidistant from the two barriers. Psychologically itis a
measure of response bias and its positive value in Figure 1 indicates a propensity to

respond “Larger”. Consequently larger positive B values reduce the overall distance to the
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A barricr, thereby increasng the probability of the “Larger” response while decreasing the
time to respond “'Larger™. .

The rate of accumulation or drift, ¢lt, is equal to a constant, ¢, times the expected
value of the momentary difference of the standard and comparison stimulus amplitudes.
Hence, |, is the difference between the means of Poisson random variables representing
these stimulus amplitudes. As the comparative difference between two stimuli increases, p
increases, resulting in faster response times,

The fourth parameter of the model, in addition to A, B and p, is denoted by 6.
This parameter in the Wald Identity is the non-zero root of the moment generating lunction
set equal to one of the random variable accumulated in the walk. In Wave Theory,
however, this variable represents a specific psychological entity. It is a measure of
discriminability, and in the experimental analysis presented here, is defined as vhe natural
logaﬁthm of the ratio of the comparison to the standard stimulus. Theoreticaily, as the
difference between a stimulus pair increases, 9 increases, producing an increased
probability of correct discrimination. The derivation of the value of 8 for any given

comparison-standard pair is presented in appendix A.
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Chapter 3

Experiment I. Symmetric Thetas

The experiment described herein used stimuli generated by creating symmetric

valucs of 8. The experimental design tests the appropriateness of the fundamental
assumption of Wave Theory: that the natural logarithm of the ratio of the comparison to the
standard stimulus provides a mcasure of discriminability.

The motivation for this study arose from the application of Wave Theory
(unpublished progress report, Karpiuk, 1990) to a previous experiment on discrimination
of dot distances (Yeung, 1986). The design in the Yeung study was the Method of
Symmetric Differences, MSD, first used in a study of numerical comparisons (Azzarello,
1985). For each standard stimulus ranging from 33 to 77, 11 pairs of comparison stimuli
were constructed. Each pair was equal in terms of absolute difference from the standard.
For example, the numbers 45 and 65 would be a symmetric comparison pair for a standard
ol 55. In the study of numerical comparisons, these pairs of symmetric stimuli were
cqually discriminable and therefore deserving of their symmetric status.

However, in the case of judgments of distance the assumption that comparison
stimuli symmetric with respect to absolute difference would be symmetric in terms of their
clfects upon discrimination was questionable. This was affirmed when analytic parameter
cstimation of the Yeung (1986) data, based on putative symmetry, turned out to be
unacceptable. Nevertheless, non-analytic parameter estimation produced promising results

and inspired the Mcthod of Symmetric Thetas and this thesis.
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METHOD I
Experimental Design I
The design is entitled the Method of Symmetric Thetas, (MST). To construct
comparison stimuli, symmetric with respect to a standard, the following cquation was

satisfied:

1n(companson) _ _ln(compunson ] 3.1

standard standard
Where each comparison and comparison” represent a symmetric comparison stimulus pair,
denoted Dj and D_j and when coupled with the standard, Dy are denoted as 6; and 6..
From the standard and comparison stimuli satisfying these constraints, a representative
sample of the range of possible standard stimuli, each with four pairs of symmetric
comparison stimuli were selected. Because the display was only capable of presenting
stimuli ranging from zero to 1024 dot distances apart it was necessary to select only integer
valued stimuli within this range.

The design is presented in Table 3.1. The 15 standards, cach with 9 comparison
stimuli, range from 14.4 t0 66.0 mm. and run down the {irst column. Each standard
consists of two dots displaced horizontally from each other by the number of distance units
of the XY display screen which had a total width of 1024 units or approximately 102.4
mm. The table contains two rows for cach standard. The first row are the comparison
stimuli in units of the display screen and the second row are the corresponding 6 values.
Foxl' example, comparison stimuli for the standard of 14.40 mm arc contained in the first
row of the matrix and ranged from 8.10 mm to 25.60 mm. The corresponding theta values
for the standard of 14.40 mm are in the second row and range from -0.58 to 0.58. Each
set of nine comparison stimuli derive from four symmetric comparison pairs and one

additional comparison equal to the standard. The complete set of comparison stimuli
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presented range from 8,10 mm in the upper left hand comner of the comparison stimulus
matrix 1o 99.0{) mm in the lower right hand corner of the comparison stimulus matrix.

The frequency distribution of the 135 (15 x 9) comparison stimuli in mm are
presented in Figure 3.1, The distribution of stimulus distances is positively skewed. This
occurs because symmetric stimuli are not symmetric in physical distance about their
respective standard. The mean comparison stimulus distance is 37.9 mm, slightly greater

than the median standard distance of 36.00 mm.

Subjects 1

The subjects were five female undergraduate students at McMaster University.
Subijects were paid $25 dollars for participating in this experiment for four, one hour
sessions over four consecutive days. Four of the five subjects were right-handed. All

possessed normal or correcled to normal vision.

Procedure I

Each 1-hour subject session was split into two blocks of trials. For the first 3 days,
cach block of trials consisted of 45 practice trials followed by three complete sets of 135
randomized, standard-comparison stimulus pairs. The 45 practice trials consisted of a
random sclection of 1/3 of a complete standard comparison stimulus set. Each of these
¢xperimental sessions thus consisted of (3 X 135 experimental trials + 45 practice trials) X
2 blocks or 900 trials. These data were treated as practice and do not enter into the analysis
reported here,

On the {ourth day, cach block contained 20 practice trials which were representative
of the range of stimuli presented in test, followed by three sets of 135 randomized standard
comparison stimulus pairs. Therefore, the fourth day session consisted of (3 X 135

experimental trials + 20 practice trials) x 2 blocks or 850 trials.
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A Subject sat in a darkened room one meter from a Tektronix 602 (P4 phosphors
whiic on a black background) display screen (8 cm in height and 10 cm wide). The display
screen height was at approximately eye level and was surrounded by 2 61 em high by 71
cm wide flat black screen to mask other objects on the table supporting the display screen.
A Digital Equipment PDP-11/44 compuler utilized a Focal program to record response
choice and response times, accuralc to on¢ msec.

Subjects were instructed to "decide if the second distance is larger or smaller than
the first...Make your response as quickly and accurately as possible.” To start a rial, the
subject depressed and released both response buttons simultaneously. Then the first pair of
dots, the standard stimulus, appeared for 1000 mscc, followed by an inter-stimulus interval
of 500 msec in which the display screen was empty. The sccond pair of dots, the
comparison stimulus, then appeared and remained visible until the subject responded.
Subjects were not given feedback on whether their response was correct or incorrect.
Trials in which the subject's response occurred prior to comparison stimulus onset
produced the message, "TOO SOON". These trials were aborted at that point and then re-

presented at the end of the block of trials.
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Table 3.1. Symmetric Theta Design Matrix

Standards Comparison stimuli

14.40 8.10 | 9.60 | 10.80 | 12.80 | 14.40 | 16.20 | 19.20 | 21.60 | 25.60
-0.58 | -0.41 | -0.29 | -0.12 | 0.00 | 0.12 | 0.29 | 0.41 | 0.58

16.80 11.20 | 12.60 | 14.40 | 14.70 | 16.80 | 19.201 19.60 | 22.40 | 25.20
-041]-029]-0.15]-0.13 ] 0.00 | 0.13 | 0.15 | 0.29 | 0.41

18.00 12.00 | 13.50 | 15.00 | 16.20 { 18.00 | 20.00 | 21.60 | 24.00 | 27.00
-0.41 | -0.29-0.18 | -0.11 } 0.00 | 0.11 | 0.18 | 0.29 | 0.41

21.00 14.00 | 15.00 | 17.50 | 19.60 { 21.00 | 22.50 | 25.20 | 29.40 | 31.50
-0.41 ] -0.34 | -0.18 | -0.07 | 0.00 | 0.07 | 0.18 | 0.34 | 0.41

24,00 16.00 { 18.00 | 20.00 { 22.50 | 24.00 | 25.60 | 28.80 | 32.00 } 36.00
-0.41 1 -0.29 | -0.18 | -0.06 | 0.00 | 0.06 | 0.18 | 0.2% | 0.41

28.00 17.50 | 19.60 | 22.40 | 24.50 | 28.00 | 32.00 | 35.00 | 40.00 | 44.80
-0.47 1 -0.36 } -0.22 | -0.13 | 0.00 | 0.13 | 0.22 § 0.36 | 0.47

33.00 | 22.00 | 24.20 | 27.50 j 30.00 | 33.00 ] 36.30 | 39.60 | 48.40 | 49.50
-0.41 ] -0.31 | -0.18 | -0.10 | 0.00 | 0.10 § 0.18 | 0.38 | 0.41

36.00 | 24.00 | 27.00 ]| 30.00 | 32.40 | 36.00 | 40.00 | 43.20 | 48.00 | 54.00
-0.41 1 -0.29 | -0.18 ] -0.11 | 0.00 { 0.11 | 0.18 | 0.29 | 0.41

39.60 | 26.40]29.70 | 32.40 | 36.30 | 39.60 | 43.20 | 48.40 | 52.80} 59.40
-0.41 | -0.29 ] -0.20 } -0.09 | 0.00 | 0.09 | 0.20 | 0.29 | 0.4]

42.00 28.00 | 31.50 | 35.00 | 39.20 | 42.00 1 45.00 | 50.40 § 56.00 | 63.00
-0.41]-0.29 | -0.18 | -0.07 | 0.00 | 0.07 | 0.18 | 0.29 | 0.41

- 46.20 30.80 | 36.30 | 39.60 | 44.10 | 46.20 | 48.40 | 53.90 | 58.80 | 69.30
-0.41 ] -024 | -0.15(-0.05) 0.00 | 0.05 [ 0.15 | 0.24 [ 0.41

48.00 | 32.00| 36.00 | 40.00 ] 45.00 | 48.00 | 51.20 | 57.60 | 64.00 | 72.00
: -0.41 } -0.29 | -0.18 | -0.06 | 0.00 | 0.06 | 0.18 { 0.2% | 0.41

54.00 36.00 | 40.50 | 45.00 | 48.60 | 54.00 | 60.00 | 64.80 | 72.001 81.00
-0.411-0.29] -0.18 | -0.11 | 0.00 | 0.11 | 0.18 | 0.29 | 0.41

63.00 | 42.00]49.00} 54.00 { 58.80 | 63.00 | 67.50 | 73.50 { 81.00 | 94.50
-0.41]-0.25]-0.15|-0.07 | 0.00 { 0.07 | 0.15 | 0.25 | 0.41

66.00 | 44.00 | 49.50 | 55.00 | 60.50 | 66.00 | 72.00 | 79.20 | 88.0C | 99.00
-0.41 | -0.29 | -0.18 | -0.09 | 0.00 | 0.09 1 0.18 | 0.29 | 0.41
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Frequency

Figure 3.1. Mcthod of Symmetric Theta stimulus distribution.
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Results 1 '

Only subjects’ responses from the fourth day of the experiment were entered into
the analysis. The first three days were considered training. The effect of training is
demonstrated by the reduction in mean response time from 1061 msec on the first day to
727 mscc on the fourth or test day which is shown in Figure 3.2. This reduction in mean
responsc time also translates into a reduction in the number of outliers in the data, which
can seriously affect the response time analysis which depends only on mean values.

The results of all five subjects were combined together to yield 30 observations for
cach cell of the design matrix. Therefore, the initial combining of subjects’ responses
produced, for cach standard and comparison stimulus pair, larger and smaller response
proportions and corresponding larger and smaller mean response times.

To illustrate response proportion data as a function of standard stimulus value,
responsc proportions for 3 standards selected from the ends and the middle of the range of
standard values are plotted in Figures 3.3, 3.4 and 3.5. The observed Psychometric
functions, which show the proportion of larger responses as a function 9, are for the
standard distances of 14.4, 36.0 and 63.0 mm respectively. Also included in these figures
are the predicted Psychometric functions derived from the parameter estimates.

The two critical features of response proportion data are revealed by the slope and
position along the abscissa of these functions. The slope of the Psychometric function
provides a measure of subjects’ accuracy; steeper slopes indicate greater accuracy. The
displacement of the function along the abscissa indicates subjects’ bias towards larger or
smaller responses. A function that is not displaced would have the median larger response
at a value of 6 equal to zero. In other words, the subject would be equally likely to

respond larger or smaller given a comparison equal to the standard.
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The slopes of the three Psychometrice functions shown are similar w the
Psychometric functions for all standards il{ that they are approximately equal. This
suggests that for all standards an equal increment in © produces the same incremient in
larger responses. Because 6 values are on a logarithmic scale, this indicates that relative
and not absolute increments in comparison stimuli produce equal performance increments.

The amount of shift of the Psychometric function is best indicated by the Point of
Subjective Equality (PSE). In this experiment it is the value along the abscissa which
corresponds to a larger response frequency of 15. In Figure 3.3 the PSE extrapolated from
the predicted function is (.08 0 units. Another indication that the Psychometric function is
displaced along the abscissa is that the response frequency at  equal to zero is not 15. In
Figure 3.3 the frequency of larger responses at 8 equal to zero is 10. For a standard of
14.4 mm, subjects were more apt to respond smaller than larger when the comparison was
equal to the standard.

The Psychometric functions shown in Figures 3.4 and 3.5 show the opposite shift
along the abscissa. For standard stimuli of 36.0 and 63.0 mm. the PSE’s extrapolated
from the predicted functions are approximately equal at -0.03 6 units. The response
frequencies at 8 equal to zero, or when the comparison equals the standard are 19 and 20
for the standards of 36.0 and 63.0 mm respectively. For these standards subjects were
more likely to respond larger when there was no difference between the standard and
comparison stimuli.

Figure 3.6 illustrates the proportions of times subjects responded in error 1o
comparison stimuli larger than the standard, depicted in the figure as (smaller |+8),
decreases as the magnitude of the standard increases. Conversely, for comparison stimuli
smaller than the standard, the proportion of errors, (larger I-8), increase as standard values
increase. Together these error proportions are demonstrative of an overall increase in the

proportion of larger responses with a concomitant increase in standard stimulus value.
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‘The proportion of times subjects responded larger to comparison stimuli equal in
magnitude to standard sumuli is shown in-Figurc 3.7. Note that from equation 3.1 in these
cases 0 equals zero . As the value of the standard increases subjects respond larger with
greater frequency. The proportions for the first five standards are less than 0.5, indicating
subjects are responding smaller more often than larger when these standards are presented.
For the remaining standards there is an increasing trend to respond larger.

The moving average response times for larger and smaller responses as a function
of standard stimulus values are shown in Figure 3.81. Definite trends are evident in this
figure. As the magnitude of the standard stimulus increases, the average time to respond
“Larger” decreases, whereas the average time to respond “Smaller” increases. The trend for
“Smaller” responses is more pronounced than the trend for “Larger” responses.

The Chronometric function in Figure 3.9 shows the mean response times, including
correct and crror responses, as a function of 6. Although response times vary
considerably, in general the mean response times diminish as the absolute magnitude of 6
increases. The function asymptotes at theta values corresponding to errorless responding.
In general, as the natural logarithm of the ratio of comparison to standard stimuli increases

in absolutc magnitude subjects make faster responses.

! Each value shown is the average of response time across three standard stimulus values,
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Figurc 3.2. Mcan responsc time across days.
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Figure 3.3. Observed and predicied Psychomeiric functions for standard cqual to 14.4 mm,
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Figure 3.4. Observed and predicted Psychometric functions for standard stimulus equal o
36.0 mm.
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Figure 3.5. Observed and predicted Psychometric functions for standard stimulus equal o
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Figure 3.6. Error proportions across standard stimulus values.
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Figure 3.7. Response proportions at 8 equal (o zero across standard stimulus valucs.
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ioure 3.8, ing : ¢ for larger and smaller response tmes across standard stimulus
Figure 3.8. Moving average for larger and smaller response t wross standard stimul
valucs. .
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Figure 3.9. Chronometric function.
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Theoretical Analysis 1

The random walk model of Relative Judgment Theory (Link, 1975) has eight
parameters (A, B, 1, H-is 6i. 0-i, 11, ¥-i)- The ¥ and 7y.i parameters refer (o the step size
densities of the random walk when stimulus i or -i is presented. Mathematically, they
measure the asymmetry in the moment generating function of the distribution of differences
or step size densities.

As stated above, Wave Theory posits that the process of stimulus transduction
produces an electrical wave form whose mean amplitnde is a similarity transform of the
physical stimulus intensity. Again, this amplitude is Poisson distributed. The description
of stimuli in these terms allowed for the construction of stimuli which were thcoretically
symmetric with respect to a standard value, that is comparison stimuli had symmetric
values of 8. From the assumption that the difference between amplitudes of Poisson wave-
forms is accumulated, the expected drift rates J1j and JL.j were replaced by the difference
between the standard and comparison stimulus magnitudes. Last, from the symmetry of
the moment generating function for the difference between Poisson random variables the y
parameters equal one and as such were no longer necessary. Thus, the model applied here
necessitates estimating from the data only two parameters, A, the resistance to respond, and
B, the response bias. The derivation of formulae used in this analysis are presented in
Appendix A,

The formulae used to obtain estimates of A and B for each standard stimulus are
presented below. Since four symmetric pairs of comparison stimuli were presented for
each standard, there is a maximum of four separate estimates of A and B. The overall
estimate of the A and B parameter for each standard can be calculated by averaging these
four estimates. For example, the estimates of A and B for a standard of 180 was calculated

as follows. The observed proportion of responses replaced the theoretical probabilities in
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Equations 3.2 and 3.3. Thus Pr(LIDj) and Pr(SIDj) are the larger and smaller response
proportions respectively for a given comparison stimulus,Dj, with a discriminative value of
0i; similarly, Pr(LiD_j) and Pr(SID_j) arc the larger and smaller response proportions for

the symmetric comparison stimulus D_j, with discriminative value, 8_j.

il ] X]n(Pr(LIDi)xPr(SlD-i)]

T Pr(LID.;) x Pr(SID;) (3.2)
and,
B - 1 I Pr(LID ;) x Pr(SID_;)
26; Pr(LID;) x Pr(SID;) (3.3)

where i = 1,2,3,4
and, 61 = 0.41, 82 =0.29, 63 =0.18, 84 = 0.11.

As can be seen from the denominators, equations 3.2 and 3.3 show that estimates
are invalid whenever errorless responding is achieved for either pair of symmetric stimuli.
The first method of recourse was to correct for errorless responding by subtracting or
adding 0.5 responses from these cells. For example, in Table 3.2, for a standard of 14.4
and 8 equal to 0.58, the 30 responses was corrected to 29.5 producing a response
proportion of 0.98. The second method was to simply drop these cells and use only the
remaining cells for parameter estimation. This method produced at least two separate
estimates of A and B for each standard stimulus. A third non-analytic method of pafametcr
estimation was also performed. This involved minimizing the Sum of Squared error
between the observed and predicted response proportions for A and B simultaneously. The

cquation which was minimized is shown below.
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4 0;A 63 Y]
X3 C -C ‘
SSE=2 1 | 5a oA (3.4
e

where,
Xi = the number of larger responses for comparison stimulus i,

n = the number of presentations of comparison stimulus i, and,
0jA -BiB

e -e a . e .

BA A - Pr{LargerlD;} = Predicted probability of responding Larger.

e -

The estimates for A as a function of the standard stimulus values for the three
methods are shown in Figures 3.10. The A values from the method utilizing only valid
response proportion cells are denoted in the legend by A. The parameters obtained from
correcting for errorless responding and from minimizing the sum of squared error are
denoted A-corrected and A-min. The three methods all produce similar results. The
estimates exhibit a considerable amount of variability but no trend. The largest range of
estimates results from the SSE procedure which produces A values ranging from 9.02 to
17.20. These estimates correspond to standard values of 39.60 and 54.00 which are the
same standard values which produce the minimum and maximum estimates of the other two
procedur:s. The mean values of A, A Correcled and A Min are 11.98, 11.62 and 12.85.

The estimates for B as a function of the standard stimulus values for the three
methods are shown in Figures 3.11. The parameters from the three methods are denoted as
B, B Corrected and B Min corresponding to the same procedures as for A, Again the three
procedures all give similar results. The estimates of B increase as the magnitude of the
standard increases up to the standard value of 54.00 mm, the same value at which the A
estimates peak. The B estimates then show a slight decline for the largest two standards.

While in general all three methods agree, only the method ulilizing valid responsc

proportion cells are used to obtain predicted Psychometric functions and response times.
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The predicted probability of responding larger given any value of 8j is obtained by
substitution of the A and B estimates into Equation 3.5 below. These values are then
plotted as a function of 8 to yield the predicted Psychometric Functions shown in Figures
3.2, 3.3,and 3.4. The goodness of fit is excellent. The 2 statistic from pooling the three

independent %2 values of 0.002, 0.535, and 3.000 is 3.537 with 4 d.f.

6;A -06;B
f’r(mspond larger | D;) = %—e__eﬁ_ (3.5)
e -¢
Mecan response time (including correct and error responses) is assumed to equal
mean decision time plus mean non-decision component, K. Equation 3.6 which derives
[rom the Wald Identity shows that response time is a function of A, B and the response

probability (Link and Heath, 1975; Link, 1992).

Ax(szr(LlDi)—l)—B+K

E(RT!D;)= " _ (3.6)

By subtracting the motor component K this equation can be rewritten as follows,
which indicates that decision time or the expected number of steps to absorption for a given
6i value equals the average displacement or distance to the barriers divided by the expected

drift ratc. Equation 3.7 defines this relationship.

E(Decision Time | D) = (A B)XPrLID) = (A + B) x Pr{SID,) an
CH; .

where, U, equals (a-[3), the expected value of the difference between stimulus wave-forms
whose mean amplitudes are ¢ and 3. Because ¢ and P are similarity transformations of
physical values there must be a constant of proportionality, which is denoted ¢. The

analysis converted directly the interdot distance of the stimuli into Poisson rate parameters.
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For example, for the comparison between a standard stimulus of 14,40 mm. and a
comparison stimulus of 8,10 mm., the Poisson rate parameters o and B were 8.10 and
14,40 respectively.

Finally, the expected response time can be written as a lincar equation in Z, a
function of the parameters of the model and the observed response proportions.

E(RT I D;) =(})xZ; +K (3.8)

where Z; is defined as

A i)-1)-
7 x(szr(:lDl) )-B (3.9)
1

For each of the 120 cells in the design matrix where the standard was not equal to
the comparison a separate value of Z was estimated using the observed response
proportions, the estimates of A and B, and | as defined above. For the 15 cells in which

the standard was equal to the comparison the estimate of Z was calculated from equation

3.10.

A2_pg2
Z= -
2 X the Standard Stimulus Value, (3.10)

Equation 3.9 indicates Z is a function of response probability and in turn Equation
3.8. shows that the expected response time is a linear function of Z.

The regression of observed response time on estimated Z values provides the
definitive test of the predicted relationship between response probability and response time.
This is performed by first calculating average response times and Z values for each value of
8. Since some 8 values occurred with only one or two different standards the response

times for these cells were not introduced into this analysis. In total, 7 values of @ which
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are representative of the range of 8 values presented in the design contribute to this
analysis. The values are 8 = -0.41, -0.29, 0.18, 0, 0.18, 0.29, 0.41.

Figure 3.12 shows that mean response time increases linearly with Z. Using the
method of least squares, the best fitting linear function is also presented. The proportion of
variance in response time accounted for by the linear relation with Z is 0.87. The intercept

from the linear regression equals 629 msec.

A Test of Weber’s Law
To test whether discriminability remained constant over the range of standard
stimuli presented, 6, at the point where subjects' unbiased responding produce correct
responses 75% of the time, was estimated for each standard stimulus. These estimates rely

on the foiiowing approximation :

0 = In (comparison / standard stimulus value)
0 =1n (1 + (As/S))
0 = As/S (3.11)

where, As equals the difference between the standard and comparison stimulus and S
equals the standard stimulus value, and As/S equals Weber’s fraction.

For each standard the estimates of Weber’s fraction were attained by setting the
probability of responding larger in equation 3.5 equal to 0.75, substituting the
corresponding A and B estimates and solving for 0. This is repeated for the probability of
responding larger equal to 0.25. The difference between these two 8 values is divided by
two to arrive at Weber's fraction for unbiased responding. This method is analogous to
Luce and Galanter’s (1963) method of determining what they call the JND.

The obtained estimates across standard stimulus values are shown in Figure 3.13.
The values lie between 0.084 and 0.119, with an average value of 0.097, and further do
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not vary consistently across standard stimulus values. This result supports Weber's law.

It shows that across the range of standard stimuli a constant proportional increment in
stimulus intensity is necessary for a constant increment in performance. In this experiment,
the comparison stimulus must be approximately 9.7 % greater than the standard in order
produce 75 % correct responding. This is exactly the result Fechner anticipated over 130

years ago!
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Figure 3.10. Estimates of’ A across standard stimulus valucs.
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Figure 3.11. Estimaitcs of B across standard stimulus values.
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Figure 3.12. Mcan response times as 2 function of Z estimates (r2 = 0.87).
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Figure 3.13. Estimates of Weber's traction across standard stimulus values.
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Discussion I

The random walk model of Wave Theory denotes the distance to the *“Larger”
response barrier as (A-B) and the distance to the “Smaller” response barrier as (A+B) with
the swanting position of the walk , B. As shown in Figures 3.10 and 3.11, the A parameter
remains constant while the B parameter increases steadily across the range of standard
stimuli. Hence, subjects’ performance across standards can be evaluated almost completely
in terms of B, the subjects’ response bias.

The Psychometric functions presented in Figures 3.3, 3.4, and 3.5 exhibita
successive negative shift suggesting subjects are more likely to respond larger as the
magnitude of the standard increases. This increase in propensity to respond larger is more
apparent in Figure 3.7 where the overall proportion of larger responses, at 8 equal to zero,
increases as the magnitude of the standard increases. The concomitant increase in the
estimate of B and standard stimulus value corroborate this result (Figure 3.11): as the value
ol B increases, the distance to the larger response barrier, (A-B), decreases, resulting in the
walk terminating at the A or “Larger” barrier more frequently.

The error proportions for “Larger” and “Smaller” responses (Figure 3.6) reflect the
rclative distance from the starting position to the response barriers, In terms of the model
these errors occur when the random walk terminates at the larger response barrier when the
comparison stimulus is in fact smaller than the standard, or when the walk terminates at the
smaller response barrier when the comparison is larger than the standard. The likelihood of
terminating at the incorrect barrier increases as the distarice to this barrier decreases. The
distance to the larger response barrier equals (A-B) and the distance to the smaller response
barrier equals (A+B). These distances extrapolated from Figures 3.10 and 3.11 indicate
(A-B) dcereases dramatically from 16.87 to 11.63 across the smallest three standards,

14.40, 16.80 and 18.00 mm. respectively. The distance (A-B) then continues to decrease
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to a standard of 40 then platcaus, remaining at approximately 10.50. Thevefore “Larger”
responses given negative 8 values should incrcasc rapidly across the first three standards,
then remain constant across the largest 12 standards. The pattern of results, in general
support this prediction: *“Larger” errors first increase, then plateau as the standards
increase. The distance (A+B) increases, across the first 13 values of the standard, then
declines for the last two or largest standards. The “Smaller” error responscs, in general
reflect this patiern: errors diminish as the magnitude of the standard increases. Error
responses are, however, infrequent and consequently, can produce highly variable
patterns.

The relative distance to the response barriers less accurately manifest in the mean
moving-average response times. The “Larger” response times should parallel the distance
to the larger response barrier because as the distance to this barricr increases so does the
time taken for the walk 10 terminate at this barrier. Conversely, as the barrier distance
decreases, the time taken for the walk to terminate at this barrier also decreases. “Smaller”
response times operate in exactly the same manner: as the distance (A+B) increases so does
the average time for “Smaller” responses. Figure 3.8 shows that the mean “Larger”
response times decrease and then stabilize, while those for the response smaller, increase as
standard stimuli increase in value. These patterns are reflected in the distance to the larger
response barrier (A-B) and the distance to the smaller response barrier (A+B).

Both the Yeung (1986) and Azzarello (1985) data cvidence changes in bias across
standard stimulus values that are similar to the present study. The results of these three
studies, suggest that bias is not due to changes in discriminability or unequal prescntation
probabilities. First, in Yeung (1986) and Azzarello (1985) the Method of Symmetric
Differences ensured that the likelihood of larger or smaller comparison stimuli for all
standards was constant. Bias was still observed regardless of whether discriminability was

held constant (Azzarello, 1985) or was variable (Yeung, 1986). Second, when
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discriminability was held constant, as in the Azzarello (1985) and present study, the same
trend in the estimate of bias was found, degpile a symmetric distribution of stimuli
(Azzarcllo) or a skewed distribution of stimuli in this experiment (Figure 3.1).
Furthermore, if an increase in the presentation probabilities of particular comparison stimuli
increases subjects’ anticipation of these stimuli (Noreen, 1979), then the positively skewed
distribution of comparison stimuli inherent in the current study should have resulted in a
greater likelihood of responding smaller as the magnitude of the standard increased;
however, subjects' performance was opposite to this expectation.

It is possible that given a particular standard, bias is a function of L1, the expected
difference between the random variables representing the stimulus intensities. The values
of it and the cstimates of bias, conditioned on the standard stimulus distance are shown in
Figure 3.14. Although both increase with standard stimulus distance, a theoretical
connection does not yet exist.

Bias may also be the consequence of subjects dichotomizing the range of stimuli
according to the response categories imposed by the task. In other words, standard stimuli
are categorized as cither large or small and subsequent response bias congruent with this
categorization results. This bias, which is laheled the semantic congruity effect begs the
question of the actual source of biased responding.

The purpose of Experiment I was to determine the applicability of Wave Theory and
its corresponding model to distance discrimination. The viability of the model was
addressed by examining the correspondence between empirical and predicted results for
response probabilities and response times. The obtained and predicted Psychometric
Functions shown in Figures 3.3, 3.4, and 3.5 are in exceliént agreement suggesting the
model characterizes response proportions well. The linear relation between mean response
times and the Z values, or decision time estimates (Figure 3.12) provide stronger support

for.Wave Theory because they validate the predicted relationship of response times to
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response proportions. In summary, the rcs.ulls ol Experiment I demonstrate subjects’
performance of dot distance discriminutiox{ can be chareterized by Wave Theory. The
theoretical parameters 6 and p and the parameters A and B estimated from the data provide
an accurate account of subjects’ response proportions and response times. While the source
or explanation of bias remains unanswered, the magnitude ol its effect is captured by the

model.
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Figure 3.14. it and B estimates across standard stimulus values.
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Chapter 4

Wave Theory of Sensation and Feeling

A fundamental assumption of Wave Theory was tested in Experiment 1. This
assumption, that the natural logarithm of the ratio of the comparison (o the standard
siimulus provides a measure of discriminability is the chiel advancement of Wave Theory
and provides for the representation of sensation and feeling.

A subject’s sensation is defined as the product of discriminability and the subject’s
resistance to respond. That is,

Sensation = In[comparison/standard] X A. 4.1)
This relation is simply Fechner's law, however, it derives from a very dilferent theory.

Feeling is closely related to sensation and is defined in Wave Theory by the
following relation.

Feeling = e(ln[comparison/standard] XA)_

= e(8XA) (4.2)
Simplifying the right hand side of 4.2 reveals a relationship between feeling and physical
magnitude with the same form as Stevens’ psychophysical law.

Feeling = (comparisonlstandard)A 4.3)

As Equations 4.1 and 4.3 show, Fechner’s JND scale and Stevens’ scale of
“sensation” are not necessarily contradictory psychophysical scales, but rather, in Wave
Theory terms, are scales of sensation and feeling respectively. Mathematics aside, Wave
Theory is in accord with the differentiation of sensation and feeling of Wundt (1896) who
describes the former as the objective factor and the latier as the subjective factor. In other
words, sensation is the “awareness of a stimulus” and feeling is the subjective “measure of

awareness”(Link, 1992, p. 240).
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While it is evident from 4.3 that Stevens’ exponent is equivalent to the parameter A,
the relationship of A to Weber’s fraction is not transparent from 4.1. However, if we
consider 4.1 for the specific case of a comparison stimulus that is of an intensity producing

correct responses 75 % of the time, then the relation derives as follows:

Let AS/S = Weber’s fraction, where S is the standard stimulus intensity and AS is
the increment necessary 1o produce 75 % correct responding. Then, in units of 8, Weber’s
fraction becomes, In((AS+S)/S), which can be written as In(14+AS/S). From the property
of near lincarity of the logarithmic function near zero and from the observation that for most
modalities empirical values of Weber's fraction are in the range of 0.02 to 0.083

(Teghtsoonian, 1971} it is clear that Weber’s fraction is closely approximated by the

parameter 8 of Wave Theory.
AS/S = In(1 + AS/S)=0 4.4)

The value of A which corresponds to 75 % correct responding, for an unbiased
subject, is derived by setting the equation for the probability of correctly identifying a

comparison as greater in intensity than a standard to 0.75 and solving for A .

075 = 2 =1
WPT A —0A (4.5)
A = 1.0986/0 (4.6)

Substitution of Weber's fraction for 0 in 4.6 exposes the identity of Stevens’
exponent: it is approximately the reciprocal of Weber’s fraction.

1t is important to note that an estimate of Weber’s fraction from a discrimination
experiment does not provide a direct prediction of what Stevens’ exponent would bein a
magnitude estimation task. The relationship between Weber’s fraction and Stevens’

cxponent described above is valid only for values which are standardized with respect to
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Weber's fraction and Stevens’ exponent for line length. However, this is casily
accomplished by dividing the Weber fmctibn obtained in a discrimination cxperiment by
0.029, the Weber fraction for line length; and by dividing Stcvens’ exponent obtained in a
magnitude estimation procedure by 1.04, the Stevens’ exponent {or line length, For
example, an estimate of Stevens’ exponent for dot distance discrimination can be calculated
as follows. Dividing the Weber's fraction estimate for dot distance discrimination, 0.097,
by 0.029 gives a relative Weber fraction of 3.34. The reciprocal of this value is the relative
Stevens’ exponent, 0.229. Multiplying by 1.04 provides the expected Stevens’ exponent

for dot distance in 2 magnitude estimation procedure, 0.238.
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Chapter 5
Experiment Il. Magnitude Estimation and Discrimination of

Symmetric Thetas

To determine whether the remarkable relationship between Weber’s fraction and
Stevens’ exponent would hold, first it was necessary to design an experiment in which
both Stevens’ exponent and Weber’s fraction could be obtained during the same judgment.
Sccond, an accurate measure of Weber's fraction required stimuli which are not perfectly
discriminable. Third, a suitable magnitude estimation procedure had to be incorporated into
the design. And fourth, the uniqueness of the experimental procedure required an intricate
and specilic set of equipment, apparatus and software,

The design deemed suitable is the Method of Symmetric Thetas which assured
judgments would be made on a set of symmetrically discriminable stimuli. Further, the
range of stimuli were near that of Experiment I where discriminative performance is
imperfect, a condition necessary to obtain an estimate of Weber's fraction. Subjects
reported their responses by squeezing pressure sensitive devices rather than pressing keys.
These devices enabled subjects to report both their choice of whether the comparison was

smaller or larger than the standard and their subjective magnitude or feeling of difference.

Method 11
Apparatus 11
A Digital 386 PC ran Turbo Pascal Version 5.0 programs which presented and
recorded subjects’ response times, response proportions and magnitude estimates. Stimuli
were presented on a Darius VGA color monitor. Subjects responses were produced by
applying force to hand held dynamometers containing pressure transducers whose analogue

voltage output was interfaced to the PC via an analogue to digital board.

51



Dynamometers

Subjects responses were produced by applying pressure to Jamar Hydraulic Hand
Dynamometers, model BK-5030 PT, cquipped with Mediamate 500 transducers designed
to produce a linear voltage of zero to live millivolts in response (o foree from zero (o SO0
pounds (lbs). Company specifications state the error of these devices due to non-lincarity
and hysteresis is +/-1% of full scale.
Amplifier

The voltage output of the dynamometers was fed into a pair of amplifiers built by
the Science and Engineering Electronics (SEE) laboratory of McMaster University. Both
amplifiers had 5 gain settings of 100, 200, 400, 800, and 1600. These amplification
ranges allow force measurements in the following ranges: 0-100, 0-50, 0-25, 0-12.5, and
0-6.75 lbs. In addition to the above, the amplifiers incorporated the following design

specifications:
1) Two internal pots to allow adjustment of baseline output for each channel.
2) The common mode rejection ratio was specified to be a maximum of 0.1%. (i.c.
the resisters were all matched precisely.)
3) The power supply rejection ratio equals 100 db. This minimizes cross talk

-between channels.

4) Individual power supplies for the sensors (housed in the dynamomelers) are
contained within the box shielding the amplifier in order to minimize power
fluctuations.

Analogue to Digital Board

The analogue signals from the amplifiers were digitized by a London Rescarch and
Development Corporation (LR&D) 8 bit converter board. Therefore, the digitized signal
range was from 0 - 255 decimal. The maximum error of the converter board specified by
LR&D is 0.75% of the full scale input voltage. In units of voltage, this states that
maximum error is 0.75% of 5 volts or +/-37.5 millivolts and in terms of the digitized signal

this is equivalent 1o an error of +/- 2 units.
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Calibration of Instruments: Experiment I

Performance of the instrumenwlim; - the dynamometers, the amplifiers and
analogue o digital board - was measured by clamping the dynamometers to a table in the
experimental room, setting known weights on the dynamometers and outputting the AD
board's converted signals to the computer screen. The weights were obtained from the
Department of Electrical Engineering and are used specifically to calibrate pressure devices.

Baseline for.each channel, that is output without any weight applied was achieved
by manually adjusting the internal pots of the amplifiers. Baseline was set to a non-zero
value to allow the variancé of the output to be observed. The amplifiers were set to their
lowest gain, 100, during this adjustment.

Weights were then continually added, beginning with the dynamometer handle,
then a 1-bar apparatus which would hold the remaining weights, and finally up to 10
additional weights of 10 lbs. each. At each weight 500 samples were taken, one every five
mscc. The weights were then successively removed and sampling was repeated. This
procedure was repeated for the gain settings of 200, 400, 800, and 1600. The average and
variance of the digitized output of 500 samples, taken for each weight, both ascending and
descending, for both channels are presented in Tables 5.1 and 5.2. The averages for the
ascending and descending test sequences are plotted in Figures 5.1 and 5.2. Values which
reached or exceeded the maximum digital output of 2535 are not plotted.

From these results it is clear that for all gain settings and for both channels the
dipitized output is a lincar function of the weight applied. Examination of Table 5.1 reveals
that the maximum variance is 0.84 for the right channel with the gain set at 1600 and with
10.54 1bs applied. The 95% confidence interval for this cell is 182.23 +/- 1.80. This
indicates that the error of the instrumentation is less than the +/- 2 units specified for the

A/D board.
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Table 5.1. Instrument calibration of right channel.

Right Gain =100 Gain = 200 Gain = 400 Gain = 8§00 Gain = 1600

channel

Weight| Mean | Variancel Mean { Variance| Mean |Varance] Mean [Vasance] Mean | Vartanee
000 078 0.177 146} 0.321 280 0.24] 535 037 10.69] 0.47
0.06| 098] 0.07) 2.13| 0.12§ 4.12| 0.1l 7.75] 0.36] 12.00f 0.6%
0.54| 2.88}% 0.10] 6.02| 0.09] 11.041 0.19} 22.56| 0.41| 4395 0.64
10.54 1 12.04] 0.05] 23.15| 0.32] 46.12| 0O.11] 93.39| 0.33/182.23] 0.84
20.54] 20.93| 0.09] 42.39| 0.24] 84.75 O.26rl72.40 0.37}255.00f 0.00
30.541 30.92| 0.15] 62.13 0.29]124.13| 0.12{251.93| 0.42

40.54 1 40.30| 0.30] 80.10| 0.09/159.71] 0.53]255.00| 0.00

50.54 | 50.18| 0.15] 99.54| 0.36/198.76] 0.55

60.54 1 59.95| 0.14{118.30| 0.29/236.35| 0.38

7054 69.14| 0.22|137.47] 0.31]1255.00] 0.00

80.54| 77.51 0.34]156.80; 0.19

90.54 | 86.30| 0.27(173.49] 0.30

100.54] 95.50| 0.34/191.58| 0.57

90.54 | 88.30| 0.31}{177.19| 0.27

80.541 79.25| 0.28/159.02] 0.62

70.54] 71.35| 0.40]141.74] 0.35/255.00| 0.00

60.54 1 61.091 0.18(122.40] 0.24}244.83| 0.27

50.54| 50.07| 0.06] 99.99| 0.09(206.38] 0.28

40.54 | 42.06| 0.06] 83.80| 0.23]167.22} 0.57

30.54| 32.06| 0.06] 63.34| 0.32/126.27] 0.20{255.00| 0.00

20.54 | 22.07| 0.08| 43.99| 0.08] 87.02] 0.33]176.71| 0.39|255.00] 0.00
10.54| 12.06| 0.06| 23.87| 0.23| 47.87| 0.25] 97.07| 0.28/190.47| 0.81
0493 2861 0.12| 593| 0.15] 11,93 0.25| 23.26| 0.34] 41.73] 0.82
0061 0.89] 0.10, 2.01 0.11] 297 0.22] 536| 0.41} 8.83| 0.56
0.00] 086] 0.12| 160 056/ 2.83| 0.17] 559| 0.39 10.81| 0.45
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Table 5.2. Instrument calibration of left channel.

left Gain =1} Cain = 200 Gain = 400 Gain = 800 Gain = 1600
channel

Weight| Mean | Varance| Mecan | Varance| Mean |Varance| Mean |Variance| Mean | Variance

0.00] 0741 0.19] 249 0.25] 6.15] O0.15( 13.93] 0.32] 27.85] 0.48
006] 090 0.09 286} 0.13] 690| 0.24] 15.06] 0.25| 30.64| 0.50
0.54| 2.22| 0.17] 6.03| 0.04] 1279 0.21§ 27.11| 0.23| 54.48] 0.41
10.541 10.13| 0.12f 21.75| 0.22] 44.24| 0.19] 91.75]| 0.38]180.811 0.51
20.54| 18.88| 0.11| 38.93| 0.18 78.77| 0.30{161.25] 0.39{255.00; 0.00
30.54 | 26.60| 0.24| 54.30| 0.24{110.19] 0.15/226.30| 0.35
40.54| 34.11| 0.10] 69.09| 0.12{139.43] 0.30/255.00] 0.00
50.54 | 42.04| 0.05| 84.541 0.25/170.271 0.21
60.54 | 49.57| 0.30§100.15; 0.13/200.91| 0.30
70.54| 56.961 0.07]115.71] 0.27|1232.46] 0.75
80.54| 64.89| 0.11]130.50| 0.27|255.00] 0.00
90.54 | 72.36{ 0.34/145.91| 0.16
100.54} 80.12| 0.10/161.58] 0.29
90.54} 72.89( 0.10/146.57| 0.25

80.54] 65.07| 0.121131.93] 0.19|255.00f 0.00

70.54 | 57.72| 0.29]|116.32] 0.22|233.64| 0.36

60.54 | 50.04| 0.04{100.82] 0.16]202.95| 0.77

50.54 | 42.181 0.15] 85.50] 0.29|172.16] 0.21

40.54 | 34.50] 0.25] 70.16| 0.14/141.12] 0.32)255.00| 0.00

30.54 | 26.84| 0.14] 54.84| 0.22]110.78] 0.33{226.99}] 0.3

20.54 | 18.83] 0.14] 38.73| 0.27] 78.38| 0.24{160.75] 0.39255.001 0.00
10.54] 10.05] 0.05| 2094 0.09 43.06| 0.15] 89.34| 0.34/176.39] 0.40
049 2.03( 0.03] 485| 0.13] 1091 0.22| 23.03| 0.33] 45.42| 0.48
006} 022 0.17 201| 0.05f 442| 0.24) 10.37| 0.33] 21.15| 0.45
0004 0.12| 0.11 1.22] 0.21} 4.10{ 0.09] 894 0.31] 1843| 0.46
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Figure 5.1. Dynamometer output of right channel as a function of weight applicd. Averages

Digitiied dynamomeler output

for ascending and descending test sequences.,

g

o]
Lh
o

g

150

100

Ln
<

0 20 40 60 80 100 120

Weight in lbs
Gain x 100
= 1 o 2 * 4 O—38

“ar—=== 16

56



Figure 5.2. Dynamometer output of left channel as a function of weight applicd. Averages
for ascending and descending test sequences.
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Computer Programs I

To ensure the data were comparable to previous psychophysical rescarch, response
times were measured 10 an accuracy of one millisecond. That is, the computer’s recorded
time of depression by the subject on the dynamometer was required to be within one
millisecond of the actual time of response. On the PC this measurement has been a topic of
research in itsell. Nevertheless, the algorithm chosen approximates the procedure
presented by Hasselman (1992). This algorithm was translated into Turbo Pascal Version
5.0 code and is contained as a timer function in the main program, entitled Dynamp.pas,
which presented stimuli, sampled from the analogue to digital board and recorded subjects’
response choices and magnitudes.

Response choices and magnitudes were recorded by two separate subroutines
(procedurcs) and depended directly upon pre-sct response thresholds. The response
threshold for each channel equaled the average, integer valued, digitized output of 86{1.8
grams resting force on the dynamometer's handle. The first channel to exceed its
corresponding threshold output, after the initial moment of comparison simulus display,
was recorded as the response choice for the current trial. The magnitude responsc
subroutine executed immediately after the response choice was recorded. This routine
instructed the computer to sample both channels, once every 50 or 100 mscc, for 1.5 or 3.0
seconds, or until both channels’ output was at least 3 units below threshold. The
procedure then produced two 30 element vectors, one for each channel, containing the time
sequence of force exerted on each dynamometer for each trial. The 100 msec sampling
interval and 3.0 sec duration were used for the first day of test for each subject. Analysis
of this first day indicated that the time interval from initiation to completion of subjects’
responses was always less than 1.5 seconds. Hence, on subsequent days the sampling

interval and duration were reduced to 50 msec. and 1.5 sec. respectively.
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A separate program, Stimcrea.pas, was used to create randomized sets of trials.
The algorithm implemented in this program is designed to ensure cach element of an n

clement set has a 1/n probability of occupying any of the n positions (Castellan, 1992).

Experimental Design Il

The design, the Method of Constant Stimuli, consisted of one standard and 15
comparison stimuli, seven pairs of symmetric comparisons and one comparison equal to
the standard. Each stimulus consisted of two horizontally appearing dots separated by 34
to 136 mm. with the standard stimulus equal to 68 mm. Symmetric comparison stimuli, C;
and C.j, satisfied the following relation: Ci and C-i are symmetric if and only if
In(Cj/Standard) = -In(C.i/Standard) where Cj, C.j and Standard are the distances between a
pairs of dots. The natural logarithm of the ratio of the comparison to standard distance is
defined as a standard-comparison's theta value, 6. The distances in mm, the angle
subtended at one meter viewing, and the corresponding 6 values of the pairs of dots

defining the stimuli are presented in Table 5.3.

Subjects 11

Five subjects, four male and one female, all students enrolled in Psychophysics at
McMaster University, were paid $35 dollars for participating in five, approximately 43-
minute sessions over five consecutive days. All subjects except one, a male, were right-
handed. All possessed normal or corrected to normal vision. Subjects’ ages range from 22

t0 32 with mean 24.4 years.
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Table 5.3. Method of Constant Stimuli

34.00 1.95 -0.6Y
37.78 2,16 -0.59
42.50 2.43 -0.47
45.33 2.60 -0.41
51.00 2.92 -0.29
56.67 3.25 -0.18
61.20 3.51 -0.11
68.00 3.89 0.00
75.56 4.33 0.11
81.60 4.67 0.18
90.67 5.19 0.29
102.00 5.84 0.41
108.80 6.23 0.47
122.40 7.00 0.58
136.00 7.78 0.69
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Procedure 11,

At the beginning of cach cxpcrimc;lml day the output of the instrumentalion was
calibrated using the method described above. Since the outputs of the amplifiers are linear
functions of the weight applied to the dynamometers, only three separate weights were
deemed necessary Lo obtain calibration functions. These weights were: 2.17, 12.64 and
22.64 Ibs.

Each 45-minute subject session consisted of one block of 315 trials, one
randomized set of the 15 standard-comparison stimulus pairs which were deemed practice
trials followed by the experimental trials, 20 randomized sets of the 15 standard-
coﬁ'lparison stimulus pairs.

Subjects sat in a darkened room one meter from the Darius monitor. The
dynﬁmomelers hung freely from a flat, black, aluminum bar at the height of the arm rests of
the subject's chair. Subjects were adapted to the ambient white noise and darkness of the
experimental seiting for three minutes. Then the word "sampling” flickered for
approximately three seconds indicating the sampling of subject's resting hand-pressure.
This was performed to ensure subjects were not exceeding the response thresholds prior to
stimulus display.

Subjects were instructed to “decide if the second distance is larger or smaller than
the first” and to report the “magnitude by which you FEEL the second distance is larger or
smaller than the first” by “SQUEZING” the pressure sensitive devices or dynamometers
at the pressure corresponding to your feeling. |

The experiment began with a message cueing the subject to “squeeze BOTH
dynamometers.” Upon squeezing both dynamometers simultaneously, the first pair of
dots, t'.h_rc_,standard. appeared and remained on for 0.5 sec. Following a 0.5 sec. inter
stimulus interval, the second pair of dots, the comparison stimulus appeared and remained

on until the subjcct’s response output returned to at least 3 units below threshold.
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Subjects were not given {eedback on the magnitude or correctness ot their
responses. Trials in which the subject's response occurred prior o the comparison
stimulus onset produced the message, “TOO SOOM.” Thc trial was aborted and then the

stimuli for these trials were then re-presented at the end of the block of trials.

Results 11

Only subjects’ responses of the fifth day were entered into the analysis. Again
training is necessary to reduce the overall variability in response time. As in Experiment I,
mean response time diminishes considerably from day one up until the fifth day, the test
day. The training effect is not observed in the overall proportion of correct responses
which remain constant at approximately 97.5 %. These results are shown in Figure 5.3.

The response choice and response time results of all five subjects were combined
together to yield 100 observations for each cell of the design matrix (5 subjects x 20
repetitions). One observation was inexplicably not recorded, hence onc cell corresponding
to a comparison equal o 122.40 mm contains only 99 observations. Onc subject’s
magnitude judgments contained a substantial number of responses with a [orce less than the
threshold value indicating that the duration of these magnitude responses werc less than 50
msec and consequently too fast for the program to detect. Therefore, the magnitude
judgments are based upon 80 observations (4 subjects X 20 repetitions).

The summary measures which enter into the analysis are presented in Table 5.4
below. The proportion of Larger and Smaller responses are, again, the pooled result of
five subjects. Mean Larger and Smaller response times are average times conditioned upon
response. The category All is the marginal mean response time. And finally, mean Larger
and Smaller response forces are geometric averages conditioned upon response, across

four subjects.
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Table 5.4. Response proportion, time and force data.

Response Mean Response Time Mean Response
Proportion {msec) Force (Ibs)
Distance | O value | Larger Smaller | Larger Smaller All Larger | Smaller
(mm.)
34.00 | -0.69 | 0.00 1.00 584 584 24.85
37.78 | -0.59 t 0.00 1.00 594 594 22.83
42,50 | -0.47 | 0.00 1.00 611 611 2294
45.33 | -0.41 0.00 1.00 638 638 20.19
5100 | -0.29 | 0.03 0.97 677 674 675 3095 17.14
56.67 | -0.18 | 0.01 0.99 903 754 755 21.341 1405
61.20 | -0.11 0.18 0.82 929 929 929 13.55| 11.14
68.00 | 0.00 0.57 0.43 1074 1009 1046 1408 | 9.42
75.56 0.11 0.90 0.10 797 901 808 18.52| 10.16
81.60 | 0.18 0.95 0.05 705 703 705 2334 5.92
90.67 0.29 1.00 0.00 612 612 28.98
102.00 | 0.41 1.00 0.00 579 579 32.73
108.80 | 0.47 1.00 0.00 545 545 3497
122,40 | 0.58 0.99 0.01 549 560 550 42,541 4.58
136.00 | 0.69 1.00 0.00 534 534 48.13

Figure 5.4 shows the proportion of “Larger” responses as a function of the

comparison stimulus value in millimeters. This empirical Psychometric function is

prototypical of psychophysical judgment data (Urban, 1910): the proportion of “Larger”

responses tend 10 increase monotonically as the magnitude of the comparison stimulus

increases. The proportion of “Larger” responses increase rapidly near the standard value,

rising from 0.01 at 56.67 mm to 0.95 at 81.60. The proportfon of “Larger” responses at

the comparison equal to the standard is 0.57, indicating a sraall tendency for subjects to

respond “Larger”.

63




The mean response times, conditioned upon response, as i function of the
comparison stimulus values, shown in Fighrc 5.5 are also representative of response time
data from a Method of Constant Stimuli design. Maximum mean response tme tor smaller
and larger judgments, 1009 and 1074 msec, respectively, occurred when the comparison
equaled the standard. The response times for both larger and smaller responses dimii'sh as
the comparison deviates from the standard. This occurs even for grror responses. For
example, the mecan “Smaller” response time for the comparison cqual to 75.56 mm is 901
msec and for the comparison equal to 81.6 the mean “Smaller” response time is 703 msee.
These mean values, however, are based on only 10 and 5 responses respectively.

Figure 5.6 shows the conditional response force across comparison distance. The
pattern of results for both larger and smaller correct responses are the same. Increased
force is applied as the comparison becomes greater or less than the standard. This figure
also shows that subjects use greater force when responding “Larger” rather than “Smaller.”
The error responses are not similar. Subjects “Larger” responses, for the smallest two -
comparisons in which subjects made errors, jncrease as the comparison decreases. When
the comparison is larger than the standard subjects’ smaller response magnitudes, or errors,
decrease with increasing values of the comparisons. The results for “Larger” crror
responses are based on only four observations, while the “Smaller” error response resulls

include a total of 16 responses.
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Figure 5.3.
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Figure 5.4, Obscrved Psychometric function,
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Figure 5.5. Observed Chronometric functions for larger and smaller responses.
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Figure: 5.6. Geometric mean force for lar g,u and smaller responses as a function of
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Theoretical Analysis Il

The pooled response frequency data of the five subjects, shown in Table 5.4, were
used to ohtain estimates of the response barrier distance, A, and the starting position of the
random walk, B. The estimates of A and B are 17.04 and 0.28 respectively and are

calculated as lollows:

~

A==YA; (5.1)

1

(VT

3
1=

and,

B= -}[i B, + (2 x A x (Pr("larger"ID; = Dy} “yz))] (5.2)

i=1

where D; and Dy are the comparison and standard stimuli and,

A ( . .
A= L vin Pr(LID;) x Pr(SID;) (5.3)
26; \ Pr(LIDj) X Pe(SID;)
1 . .
B, = I o[ PrCLID.1) X Pr(SID.;) (5.4)
20; ~ | Pr(LID;)xPr(SID;)

Each Ai and f3i are independent estimates from the response proportions of a
symmetric pair of stimuli, with parameters 6; and 6_j, Although there are seven pairs of
symmetric stimuli, only responses from three pairs produce defined estimates. Data from
the other pairs contain errorless responding and consequently zero values in the
denominators of equations 5.3 and 5.4.

An additional estimate of either A or B can be obtained from the response
proportion data corresponding 10 6 equal to zero. Because the B parameter is more closely
assaciated with the shift of the Psychometric function along the abscissa, while the A

parameter corresponds to the slope of this function, it is deemed more appropriate to use
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the data from the 8 cqual to zero condition o estimate the B, or bias parameter. This
cstimate, contained in cquation 5.3, appears as, (2 x A X (Pr{" larger”ID; = Dy} - %))

As in Experiment I, the predicted probability of responding larger given any value
of G, is obtained by substitution of the A and B estimates into equation 5.5.

8iA -6;B

[1] it . — c e ——————s
Pr{"larger"|D;} = eeiA —c-BiA ) (5.5

Figure 5.7 shows the observed and predicted response proportions as a {unction off
8, the natural logarithm of the ratio of the comparison to standard stimulus distance. The
observed Psychometric function and the predicted function are not significantly different
(x2 = 4.91, d.f. = 3).

Plotted in Figure 5.8 is the mean response time as a function of Z values. The “best
linear fit” line is the estimated least squares (it to the data. There arc 15 data points in this
ﬁgﬁre, one for each cell of the design. Again, as in Experiment I, two diflerent equations
are used to calculate Z. Equation 5.6 corresponds to judgments whereby the comparison is
unequal to the standard, and equation 5.7 is used to calculate Z when the comparison is the
same as the standard. This is termed the zero drift case because the expected value of the
step size distribution of the random walk, denoted {1, is zero. The parameler, 6, is of

course also zero when the comparison equals the standard.
[Zi ID; # Ds] = (AX(2xP("Larger”16;) - 1) - B)/y; (5.6)
[21D; = D] = (A2-B2)/(2 x the standard stimulus valuc) (5.7)
Figure 5.8 shows the relationship between mean response time and Z. The

predicted linear relation is clear by inspection. This association as measured by 12 is 0.92.
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Another method of viewing the relationship between response time and Z s
presented in Figure 5.9. These Chronomeiric functions plot the observed response time
and predicted responsc time as a function of 6. The predicted response time function is
determined from the regression equation of response time on Z. The Z values inherent in
the least squares estimate are calculated using the predicted response proportions. The
purpose is to obtain a predicted Chronometric function uncontaminated by the non-
monotonic nature of the observed Psychometric function.

While overall the agreement is close, of particular note are the response times for 6
values not equal to zero: both the observed and predicted response times are consistently
longer for negative than for positive 6 values. Response time data such as this suggests
subjects are biased to respond larger. In concordance with the observed data the estimate
of B or Bias is positive, indicating the starting position of the walk is nearer the “Larger”

responsc barrier.
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Figure 5.7: Observed and predicted Psychometric functions.
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Figure 5.8. Mcan response time as a function of Z estimates (12 = 0.92).
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Figure 5.9. Observed and predicted Chronometric functions.
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Magnitude Estimation Analysis: Experiment II.

The compound task of discrimination and magnitude estimation was designed to
bring data to bear on the purported relationship between Stevens’ exponent and Weber's
fraction in the context of a single experiment. Again, Link (1992) demonstrates that
Stevens’ cxponents, when scaled relative to line length, are equal to the reciprocal of their
respective Weber's fractions, also scaled relative to line length. Recall that Stevens’
psychophysical law relating psychological magnitude and physical intensity can be

expressed by the following equation:

In(%po) = §1n(3%60)

where, ¥ - denotes sensory magnitude
Yo -isthe absolute threshold of sensation not equal to zero.

(5.8)

S - isthe physical stimulus intensity
So - is the stimulus intensity corresponding to absolute threshold.
a,b - are constants

In this experiment, subjects are required to match their psychological magnitude of
dot distance to their psychological magnitude of force. Therefore, Stevens’ Law would

predict the linear relation between distance and force described by equation 5.9.

ln(F%O) = Ir]l_ll2 X In(D%)O) (5_9)

where, D; - is the comparison distance for stimulus i = -4, -3...., 3, 4.
Dy - is the standard distance.
F; - denotes force applied to match the comparison distance Dj.
Fy -is the force applied to match a comparison distance equal t/) the
standard distance.
np and ny are the Stevens’ expenents of distance and handgrip
respectively.
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To estimate the Stevens' exponent for dot distance, npy, in a matching experiment,
the exponent for force of handgrip must b;.: known. If we assume, as Stevens did, that the
exponcnt for handgrip is unique and independent of the stimulus set, then we can substitute
the value 1.7 for np. This value is the median exponent from both magnitude estimation
and magnitude production procedures on 19 subjects reported by Stevens and Mack
(1959).

The unique design of this experiment allows for two separate «stimates of the
exponent for dot distance, one for Larger judgments and another for Smaller judgments.
The exponent for Larger judgments is cstimated from subjects” “Larger” responscs to
stimuli greater or equal to the standard, whereas, the exponent for Smaller judgments is
from “Smaller” responses to stimuli less than or equal to the standard. The exponents lor
dot distance are then obtained by estimating the ratio, np/ng, from the regression of
In(Fi/Fo) on In(Di/Do) , then multiplying by np, the exponent for handgrip. The
estimates of npy are 2.90 and -2.46 for stimuli greater than or equal to the standard and less
than or equal to the standard respectively. Error response magnitudes were now used
because they violate monotonicity, a necessary condition of any mode! of magnitude
estimation. The observed data and the best fitting line across @ values are presented in
Figure 5.10.

The negative value of the exponent for “Smailer” judgments docs not imply that the
subjective feeling of dot distance is decreasing with increasing stimulus intensity. Smaller
judgments produce a negative exponent because the calculation is based upon stimuli which
are less than or equal to the standard. If the estimates are calculated using the absolute
deviation of the comparison stimuli from the standard, then “Smaller” judgments would

produce a positive exponent.
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Figure 5.10. Ln(Comparison force/Standard force) as a function of 6 values.

Ln{Comparison Force/Standard Force)

1.4 o

1.2 4+ /'

0.8 +

0.6 1

04 +

0.2 +

0 % . : |
-1.00 -0.50 0.00 0.50 1.00

Ln(Comparison Distance/Standard
Distance)

"Snlallcrfl
1esponses

Slope=-1.45
"Larger” responses

Slope =1.711

77




The above estimates obtained by applying Stievens’ law to the data are among the
highest exponents ever determined; they suggest that the growth in pereeived magnitude ol
dot distance is comparable to that of ¢lectric shock! Nevertheless, by Wave Theory's
account, these exponents, when scaled relative to the exponent for line length should equal

the reciprocal of their Weber fraction, scaled relative to line length. In other words,

np 1

== (5.10)
"L (5%

T

where, np and nf_ are the exponents for dot distance and line length respectively, and
A%D and A%L are the Weber fractions for dot distance and line length respectively.

Substituting 2.68, the average of the absolute values of the estimated exponents for
np, and 1.04 for n_ produces a value of 2.58 for the left hand side of cquation 5.10.
Substituting 1.0986/ ADOI. Distance for AS/Sp and 0.029 for AS/Sy, produces a value of
0.49 for the right hand side of equation 5.10 above? . This result suggests that in the
context of experiment Ihe relationship between Stevens’ exponent and Weber’s Fraction
does not hold.

However, this conclusion depends upon the assumption that the exponent for force
of handgrip is 1.7. While Stevens (1975) argues that exponents are uniquc to cach
modality, a recent review by Poulton (1989) indicates that the exponents are influenced by
almost every variation in experimental procedurc and design. The conditions of experiment
I such as the speed at which subjects perform the magnitude cstimaltes as well as the
concurrent task of discrimination are different from the conditions of Stevens and Mack

(1959). Furthermore, the values of the exponents used by Link (1992) are from Stevens, .

3 Values for Stevens” exponent and Weber's [raction for line length are from Tehgtsoonian (1971).
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Mack and Stevens (1960) Cross-Modality Matching experiments whereby the range of
stimuli were large and casily discriminable.

If, in Experiment I1, the exponent for force of handgrip is not 1.7, is there a
reasonable method of determining it? This is accomplished by assuming equation 5.10 to
be correct, then calculating directly the values in the expression. This assumption is
reasonable on both theoretical and empirical grounds other than the evidence provided by
Liﬁk (1992). Firstly, on theoretical grounds, if we assume Ekman’s Law to hold (equation

1.4), then Stevens’ Law can be written as,

A
ln(w"'A%):-%é’xln(S*'A%). (5.11)

Consequently, in matching force to dot distance the observed relation between force and

distance should be,

Ay Ay
Axln F+AP7 /”xln D+A%) (5.12)

Straightforward algebra on (5.12) gives,

]n(F—bAF 1 D+AD) (5.13)

E ) AD xln( D
(_EHAF}
\/ F

whc-rc
/ AF

the reciprocal of the ratio of Weber fractions for dot distance ar:d force of handgrip, is the

i

exponent for matching dot distance to handgrip. Secondly, on empirical grounds, evidence

for Ekman’s Law derives from the same set of experiments cited by Link (1992), however,
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they are used by Teghtsoonian (1971) o demonstrate Eckman's fraction, AW/ | is
constant and equal to approximately (0.329.

Equation (5.10) can be rearranged as,

np x-’-%b =nL XA%L (5.14)

Replacing ng by 1.04 and A%l by 0.029 gives,
np x A% . = 0.030 (5.15)

Substituting 1.0986/Apot bistance = 0.064 for As/Sp where Apey Distance = 17.04 into
5.15 gives the value of the exponent for dot distance, 0.46. The value of the Weber
fraction is 0.064. These values are for “Larger” judgments; “Smaller” judgments values
are obtained by simply changing the sign.

The exponent for force of handgrip, np, can then be computed by setling  np/ny,
equal to the slope estimate of the regression of In(Fj/Fo) on In{Dj/Dg) , and replacing np
with 10.46 from above. There are two estimales of njz, one for “Larger” and one for
“Smaller” responses.

np/nf = 1.71 | "larger" response and © 2 0, (5.16)
np/ng = —1.45 "smaller” response and 6 < 0. (5.17)

Substituting, np with 0.46 from above, gives,
ng = 0.28 | "larger" response and 6 2 0, (5.18)

nr = 0.33 | "smaller" responsc and 8 < 0, (5.19)

The Weber fractions for force are then easily computed from 5.15 as,

AS/ 0030/ = " "
Sk AF 0.11| "larger" response and 6 2 (), and (5.20)
A%F = O'OS%F =0.09 | "smaller" response and 6 < (), and (5.21)
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Although the above results can be obtained without relying on Wave Theory’s
formulation of Fecling, can they be inlcrpr;:tcd in its context. Recall that Wave Theory
posits,

Feeling = exp(In[comparison/standard] X A) = exp(BXxA) (5.22)
and conscquently,

In(Feeling) = In{comparison/standard)A (5.23)
Therefore, in a matching experiment,

Comparison stimuli
Standard stimuli

In(Feeling of Matched stimuli) = ln( )x AModatity (5-24)

Comparison Force
Standard Force

In(Fecling of Force exerted) = ln( ) X Aporce (5.25)

and equating fecling gives,

n(Comparison Force) _ AModality . ln(Comparison Stimulus)

- (5.26)
Standard Force AForce Standard Stimulus

Equation (5.18) shows that the exponent in a matching experiment is the ratio of
AModality 10 AForce. Furthermore, it has been shown that Weber's fraction, AS/S, is

approximately the reciprocal of the resistance to respond, A (Link, 1992). Therefore, it

appears that there are two values of AfFgece, one for larger responses,

AForce | "larger” response and 82 0 = g =9.09 (5.27)
SF
and another {or smaller responses,
AForee | "smaller” response and 0 <0 = Kgl"_ =1111. (5.28)
SF

The relatively low values of these resistances to respond are indicative of hurried
responding, such as when subjects are under a response deadline condition (Link and

Tindall, 1971) . In order to respond quickly subjects set a low resistance to respond, and
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because response time is directly proportional to the distance to the response barrier, a low
resistance 10 respond results in relatively fast response times, 1t appears that subjects
respond to the demands of the simultancous task of discrimination and magnitude

estimation by holding their resistance to respond to force relatively fow.

Discussion 11

The compound task of discrimination and magnitude estimation required of subjects
in Experiment II is without precedent. Consequently the principal aim was to delermine
subjects’ magnitude estimation performance in the context of a two-alicrnative {orced-
choice (2-AFC) task. The secondary aim was to test the relationship between Stevens’
exponent and Weber's fraction. The prerequisite of the second aim is a satisfactory account
of discriminative performance by the random walk model of Wave Theory.

Using only two parameters and the definition of discriminability, the model’s
account of discriminative performance is impeccable. There is ncar perfect correspondence
between the observed and predicted Psychometric functions using A equal to 17.04 and B
equal to 0.28 (Figure 5.7).

Further support for Wave Theory’s description of discriminative performance is
provided by the unequivocal linear relation between observed response time and Z (Figure
5.5). This relation is not only a strong test of the model but also reveals the relationship
between response times and response proportions.

The ability of subjects to perform discriminative judgments is rclatively unalfected
by the additional requirement of magnitude estimation. The gencral form of the
Psychomeuric function and the overall mean response times are similar to Experiment 1. The
slope of the Psychometric function is slightly steeper than the average of thosc in

Experiment I. This is ascertained by comparing the A paramelters which are directly related
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to the slope of the Psychometric function. In Experiment 11, A equals 17.04, while in
Experiment I the average A estimate is | l..ﬁl. This indicates discrimination performance is
in fact betier in this second experiment. Similarly, the overall mean response time of
Experiment I1 is less than in Experiment I, again, suggesting better performance despite the
extra demand of magnitude estimation.

The effect of discrimination on magnitude estimation which would manifest in the
size of the dot distance exponent is more difficult to ascertain becauvse the estimate of the
exponent depends on how the exponent for handgrip is determined. Nevertheless, one
might expect the exponent for dot distance 10 be near the line length exponent of 1.0,
because the judgment of dot distance and line length are very similar.

If the Stevens and Mack (1959) estimate of 1.7 is taken as the force of handgrip
exponent, then the exponents for dot distance are - 2.46 and 2.90 for “Smaller” and
“Larger” judgments respectively. While these exponents for dot distance judgments are
quite large, Teghtsoonian (1973) would assert that they are not inordinate, considering the
relatively small range of distances presentted. There is considerable evidence that the
smaller the stimulus range the greater the observed exponent ( Teghtsoonian, 1973; Foley,
Cross, Roley and Reeder, 1983; Marks, 1988; Ahlstrom and Baird, 1989).

The evidence that smaller stimulus ranges produce larger exponents is not
incompatible with Wave Theory. For example, a reduction in the range of stimuli
presented would invariably make discriminations more difficult. The subject’s natural
response would be to increase A, the distance to the response barrier. In a magnitude
cstimation task, this increment in A would be observable as an increase in Stevens’
cxponent, Data supporting this assertion is contained in a dot distance discrimination
cxperiment conducted by Yueng (1986). Yeung presented various standard stimuli, each
with a range of comparisons which differed from the standards by a fixed absolute amount.

Analysis of Yeung’s data indicates that as standards increased so do the estimates of A,
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The results of Experiment 1 indicate that for dot distance, Weber's Law holds, and
therefore, discrimination of comparison su'.muli in the Yeung experiment must increase as
the magnitude of the standard increased.

If, on the other hand, we do not assume the exponent for force ol handgrip is 1.7,
then the exponents for dot distance are H).46. Ignoring the sign, this result suggests the
feeling of dot distance grows as a power tunction comparable to taste (n ={.41) and
brightness (n = 0.36) (Teghtsoonian, 1971). Again, there is a Wave Theory interpretation.
The relatively small cxponents may arise from a decrease in the distance to the response
barrier because of the requirement that subjects perform the discrimination and magnitude
estimation as “‘quickly (and accurately)” as possible. Link (1978) has shown that, *‘the
effect of imposing a time deadline is to force subjects 1o reduce the total comparative
difference [i.e. A] as the RT dcadline is reduced (p.137).”

The method which does not set the exponent for force of handgrip at 1.7 is
preferable, firstly, because it is theoretically motivated, both by Wave Theory and
Eckman’s Law. Secondly, it does not suggest an immutable handgrip exponent, which is
more plausible given the wealth of evidence showing the variability of other exponents.
Thirdly, it generates a prediction for the handgrip exponent for other modalitics under
similar compound-task conditions. And lastly, as will be shown in the analysis of the third
experiment it is testable by way of a predicted relationship between force parameters and

responsc time.
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Chapter 6

Experiment I1I. Magnitude Estimation with Range Cues

The results of experiment IT jeopardize Stevens™ assertion that cach sensory
continuum has a signature exponent. However, to discount Stevens’ claim, which is based
on numerous experiments from the results of one experiment would run counter 1o
scientific tradition. Moreover, the magnitude estimation results shown in Figure 5.5 do not
increase monotonically as predicted by both Stevens’ Law and Wave Theory’s account of
magnitude cstimation. That is, both accounts state that magnitude estimates are power
functions of stimulus magnitude. However, the geometric mean “Larger” responsc forces
for comparisons of 56.67 and 51.00 mm arc 21.34 and 30. 95 Ibs respectively. Both of
these comparisons result in response forces greater than the response lorees for
comparisons of 61.20, 68.00 and 75.56 mm. This result violates the theoretical functions
postulated by Wave Theory and Stevens’ Law, but arc based on only a total of four
observations.

To obtain better resolution of the function relating force to dot distance, a more
extensive experiment was conducted. This experiment was designed 1o

1) determine if a substantial increase in practice would producc a more stable

monotonic relation between magnitude estimation and dot distance;

2) test further predictions of Wave Theory which rely on more stible estimates of

magnitude estimation, such as the relation between response time and force

parameters;

3) observe if Stevens’ exponents could be influenced from trial to trial by cucing

subjects about the possible range of stimuli presented.
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Method II1

Apparatus 111
The apparatus, the Digital 386 PC, Darius VGA Color Monitor, Dynamometers,

amplifiers and Analogue to Digital board were unchanged from Experiment II.

Computer Programs III

The program to present stimuli and record responses used in Experiment I1,
Dynamp4.pas, was modified to include a visual cue, called a range cue, at the onset of each
lria'l. Specifically, this modification is a subroutine, enﬁtied CUETHEM, which instructs
the computer to present one of three characters, an "L" , "M", or "S" depending on whether
the éompun'son stimulus for the current trial is from the Large, Medium or Small stimulus
range. These characters are approximately 8 mm high by 7 mm wide, and presented
approximatcly 10 mm above the middle of the display screen.

The timer function, response choice and magnitude estimate subroutines remain
unchanged from Experiment II and are contained in the program, Profund.pas. The
program Stimcrea.pas from Experiment II was altered to produce a program,

Blockerea.pas, which creates randomized sets of 35 trials.

Experimental Design III

The design, the Method of Constant Stimuli with Variable Ranges, consists of one
standard and three sets of comparison stimuli. Each stimulus consists of two horizontally
appearing dots. The standard stimulus is the same for all ranges and equals 68.00 mm.
The threc comparison sets are denoted as the Large, Medium, and Small ranges are
comprised of comparison stimuli ranging from 37.78 to 122.40 mm, 45.33 to 102.00
mm., and 51.00 to 81.60 mm respectively. The Large comparison set contains six pairs of

symmeltric stimuli, while the Medium and Small sets contain four and two symmetric pairs
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respectively. Symmetric comparison stimuli, Cj and C.j, satisty the Tollowing relation: Gy
and C.j arc symmetric il and only if ln(CifStandard) = -In(C.i/Standard) where Ci. C.j, and
Standard are the distances separating the pairs of dots defining the stimuli. Each range also
includes a comparison cqual to the standard stimulus.

The natural logarithm of the ratio of the comparison to the standard distance is
defined as a standard-comparison's theta value, 8. The distances in mm, the angle
subtended at one meter viewing, and the corresponding 0 values of the pairs ol dots
defining the comparison stimuli are presented in Table 6.1. Also presented are the
stimulus presentation frequencies for each range of comparisons for a single sct of 35 trials
which comprise 17 comparisons from the Large range, 13 from the Medium range, and 5

from the Small range.

Table 6.1. Method of Constant Stimuli with Variable Ranges.

Comparison Stimuli Presentation Frequency
mm sﬁ{;%]did Ovalue | Large | Medium | Small Total
37.78 2.16 -0.58 2 2
42.50 2.43 -0.47 2 2
45.33 2.60 -0.41 1 2 3
51.00 292 -0.29 1 2 3
56.67 3.25 -0.18 1 1 1 3
61.20 3.51 -0.11 1 1 1 3
63.00 3.89 0.00 1 1 1 3
75.56 4.33 0.11 1 1 1 3
81.60 4.67 0.18 1 1 1 3
90.67 5.19 0.29 1 2 3
102.00 5.84 041 1 2 3
108.80 6.23 0.47 2 2
122.40 7.00 0.58 2 | 2
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Subjects 11

Five subjects, four {emale and one male, all students at McMaster University, were
paid $70 dollars for participating in 10 approximately one-hour long sessions over 12 days.
A weekend separated days 5 and 6. All subjects were right-handed and possessed normal

or correcled to normal vision, Subjects’ ages ranged from 22 to 25 with mean 22.8 years.

Procedure 11

At the beginning of each experimental day the output of the instrumentation was
calibrated using the method described above (see Calibration of Instruments). As in
Experiment ! only three separate weights were used to obtain calibration functions. These
weights were: 2.17, 12.64 and 22.64 lbs.

A onc hour subject session consisted of 630 trials divided into three blocks of 210
trials cach. Each block consisted of six sets of the 35 element design matrix shown in
Table 6.1, the first set being practice trials, and the remaining five, test trials. The stimulus
presentation ovder of each set was randomized.

Subjects sat in a darkened room one meter from the Darius monitor. The
dynamomcters hung freely from a flat-black, aluminum bar at the height of the arm rests of
the subject's chair. Subjects were adapted to the ambient white noise and darkness of the
cxperimental setting for three minutes. Then, the word "sampling” flickered on the screen
for approximately three seconds indicating sampling of the subject's resting hand-pressure.
As in Experiment 11, this was performed to ensure that subjects’ resting pressure on the
dynamometers did not exceeding the response thresholds prior to stimulus display.

Subjects were instructed to “decide if the second distance is larger or smaller than
the first” and to report the “magnitude by which you “FEEL” the second distance is larger
or smaller than the first” by “SQUEEZING” the pressure sensitive devices or

dynamometers at the pressure corresponding to your feeling.
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The experiment began with 2 message cucing the subject to “squeeze BOTH
dynamometers.” Upon squeezing both dyﬁumomctcrs simultancousiy, the letter “S™, “M”,
or “L"” appearcd and remained on for 750 msec. Subjects were instructed that the letter was
a cue indicating the “range of possible difference” between the comparison and standard
stimulus on that trial. A 500 msec delay in which the screen remained blank preceded the
first pair of dots, the standard, which then remained on for 500 msec. Following a 500
msec. inter-stimulus interval, the second pair of dots, the comparison stimulus, appearcd
and remained on until the subject's response output returned to at least 3 digitized units
below threshold.

Subjects were not given feedback on the magnitude or correctness of their
responses. Trials in which the subject's response occurred prior to the comparison
stimulus onset produced the message, “TOO SOON.” The stimuli for these trials were then

presented again at the end of the block of trials.

Results III

Only subjects’ responses of the tenth day were entered into the analysis. Shown in
Figure 6.1 are the overall mean response times and proportion of correct responses {rom
Day one up to Day 10, the test day. Similar to Experiments I and II is the marked reduction
in response time over the first four days, from 983 to 601 msec. After Day four, the
response times show a general decline, going as low as 494 msec on Day 8. The response
proportions, stable for the first five days around 97 % show some decline afier day five,
reaching a value as low as 94 % on the ninth day.

The response choice, response time and magnitude estimates of all 5 subjects were

combined together to yield 150 observations for the two larpest and smallest stimuli of the
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Large and Medium range (5 sutjects x 30 repetitions) and 75 observations for cach of the
remaining cells of the design matrix (S subjects X 15 repetitions).

The summary measures which enter into the analysis are presented in Table 6.2
below. The proportion of “Larger” and “Smaller” responses aie, again, the pooled result
of five subjects. Mean “‘Larger” and “Smaller” response times are average times
conditioned upon response, while the category “all” is the unconditional mean response
time. Mean force is the gcometric mean response force conditioned upon the response
across all live subjects.

The Psychometric functions are shown in Figure 6.2. The proportion of larger
responses across comparison stimuli in mm for each of the three range cues are all quite
similar. All three functions increase at the nearly the same rate across comparison stimulus
values. All show the subjects’ propensity to respond larger. This tendency is most evident
at tﬁe AS cqual to zero, or the point at which the comparison equals the standard. The
proportions of larger responses at this point are 0.65, 0.68 and 0.75 for the Small, Medium
and ‘Largcr ranges respectively. This tendency to respond larger occurs throughout the
range of comparisons. As an example, the point of subjective equality, or the comparison
distance corresponding to the median of the larger responses, is approximately 64 mm,
which is lgss than the standard stimulus distance of 68 mm:.

The observed Chronometric functions are shown in Figure 6.3. While the response
times for the three ranges across comparison stimulus distance deviate from each other
more than the response proportions, the patierns among the response times are generally
the same. Response times are greatest at the comparison distance equal to the standard, and
arc greater for stimuli less than the standard than for stimuli comparably larger than the
standard.

And finally, for all range cues the magnitude of force exerted across comparison

stimulus values is the same (Figure 6.4). When subjects responded larger their force of
20



response increased with increasing magnitudes of the comparison. And similarly, smaller
response forces decrcase, in the same manner for all range cues, as the magnitude of the
standard decreased. The intersection of all six functions, (3 cucs X 2 responses) is at

nearly the same point, approximately 61.20 mm, 6.80 mm less than the standard.
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Figure 6.1. Mcan response time and proportion of correct responses across days.
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Table 6.2. Experiment 111 Response proportion, time and foree data.data .

Small Range Response Mean Response Time Mean Response Force
Proportion {msec) {lbs)
bistance | Angle Larger | Smaller | Larger { Smaller All Larger | Smaller
{mm) |sublended
37.78 2.16
42.50 2.43
45.33 2.60
51.00 2.92
56.67 3.25 0.09 0.91 610 590 582 3.41 4.60
61.20 3.51 0.29 0.71 601 563 574 4.69 4.37
68.00 3.89 0.65 0.35 600 633 611 4.90 2.98
75.56 4.33 0.89 0.11 472 816 508 8.46 2.35
81.60 4.67 0.99 0.01 451 1109 459 9.36 1.68
90.67 5.19
102,00 5.84
108.80 6.23
122.40 7.00
Medium Range Response Mean Response Time Mean Response Force’
Proportion {msac) {lbs)
Distance | Angle Larger | Smaller | Larger | Smaller All Larger | Smaller
{(mm) |subtended
37.78 2.16
42.50 2.43
45,33 2.60 0.01 0.99 352 478 477 2.48 7.10
51.00 2.92 0.03 0.97 535 514 5156 2.25 5.87
56.67 3.25 0.08 0.92 603 547 551 3.34 5.04
61.20 3.51 0.21 0.79 481 622 592 4.10 3.61
68.00 3.89 0.68 0.32 575 654 601 5.42 3.45
75.56 4.33 0.83 0.07 480 878 506 7.36 3.61
81.60 4.67 1.00 448 448 9.73
90.67 5.18 1.00 452 452 12.21
102.00 5.84 1.00 450 450 14.72
108.80 6.23
122.40 7.00
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Table 6.2. continucd.

Large Range Response Mean Response Time Mean Response Force
Propartion {msec) (ibs)
Distance | Angle Larger | Smaller | Larger Smaller All Larger | Smaller
{mm) |subtended
37.78 2.16 1.00 483 483 8.42
42.50 2.43 1.00 493 493 7.34
45.33 2.60 0.01 0.99 679 487 489 1.68 6.77
51.00 2.92 0.04 0.96 517 511 511 4.92 5.75
56.67 3.25 0.16 0.84 770 573 606 3.43 5.37
61.20 3.51 0.31 0.69 527 608 583 4.95 4.09
€68.00 3.89 0.75 0.25 §28 779 592 5.64 2.69
75.56 4.33 0.93 0.07 487 1200 534 8.36 2.92
81.60 4.67 0.96 0.04 453 861 469 9.85 3.08
890.67 5.19 0.99 0.01 440 721 444 12.75 1.68
102.00 5.84 1.00 451 451 15.47
108.80 6.23 0.99 0.01 451 1557 458 16.86 1.18
122.40 7.00 1.00 457 J 4357 21.62
All Ranges Response Mean Response Time Mean Response Force
Proportion {msec) {Ibs)
Distance | Angle Larger | Smailler | Larget | Smaller All Larger | Smaller
{mm) |sublended
ar.78 2.16 1,000 483 483 8.42
42.50 2.43 1.000 493 493 7.34
45.33 2.60 0.009 0.991 516 481 481 2.04 6.99
51.00 2.92 0.031 0.969 528 513 514 3.15 5.83
56.67 3.25 0.111 0.889 685 570 582 3.40 4.98
61.20 3.51 0.271 0.729 541 599 583 4.62 3.99
68.00 3.89 0.693 0.307 566 680 601 5.33 3.05
75.56 4.33 0.920 0.080 479 840 516 8.04 2.81
81.60 4.67 0.982 0.018 450 923 458 9.64 2.65
90.67 5.19 0.996 0.004 448 721 449 12.40 1.68
102.00 5.84 1.000 450 450 14.97
108.80 6.23 0.993 0.007 451 1557 458 16.86 1.18
122.40 7.00 1.000 g 457 457 21.62
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Figure 6.2. Obscrved Psychometric functions for small, medium and large presentation

Fanges.
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Figure 6.3. Obscrved Chronomeltric functions for small, medium and large presentation
ranges.
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Figure 6.4.

Conditional response force for range cues as a function of comparison

distance.
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Theoretical Analysis II.

The results depicted in Figures 6.2, 6.3, and 6.4 clearly show that the range cues
did not influcnce the response measurces. Therefore the estimation of parameters was
performed on the data collapsed across these cues.

The cstimation of A an. B, denoted A and B used the same methed as in
Experiment I1. While there are six pairs of symmetric stimuli, only responses from three

pairs produce defined estimates. Therefore, i = 1, 2, 3. The estimates are obtained as

follows:
- 1 3 -~
A=§2Ai =16.12 (6.1)
i=1
where,
Ai _ 1 % In Pr{"Larger"|D;} » Pr{"Smaller"|D_;} 6.2)
20; Pe{"Larger"ID_;}  Pr{"Smaller"|D;}
and,
B= % > B +(2 x A x (Pr{"larger"ID; = Dy} -1/2)) = 4.26 (6.3)
where,
= 1 In Pr{"larger"D.;} x Pr{"smaller"{D_;} (6.4)
26; Pr{"larger"ID;}  Pr{"smaller"|D;}

v)\gain. as in Experiment I, each Ai and ﬁi are indcpendent estimates from the
response proportions of a symmetric pair of stimuli, D; and D, with parameters 6 and
-8i. The additional estimate of B, calculaied from the response proportions at 6 = 0,

appears in Equation 6.3 as (2 x_zf}'-.(Pr{" larger"ID; = Dy} — %))
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As in Experiments 1 and 11 the predicted probability of responding lavger given any

valuc of 6 is obtained by substitution of the A and B estimates into Equation 6.5 below.

8iA -t;B
B " " c -
Pr{ largcr |D1} = ﬁ (6.5)
c —¢

Figure 6.5 shows the observed and predicted response proportions as a function of
8, the natural logarithm of the ratio of the comparison to standard stimulus distance. The
agreement is near exact. The %2 statistic based on 4 d.f. is 3.98. Also shown in Figure
6.5 is the predicted response proportions with the influence of bias removed. This
function, the unbiased Pscychometric function is determined from Equation 6.6. below.
The shift along the abscissa of the observed data and the predicted function demonstrates
that bias, that is B = 4.26, affects discriminative performance for all comparisons.

9;A
131'{“larger“lDi} = —-é%——ié—l,r (6.6)
e -¢
The relationship between response proportions and response times is tested by
regression analysis of the response time on Z estimates. Recall that the model predicts a
linear relationship between response time and Z, where the expected response time given a

comparison-standard pair is,

E(RT1D;)=(})x 7 +K (6.7)

and Z; is defined as

Z = Ax(2><Pr(:|Di)-1)—B 6.8)
i

or Zi = (A2-B2)/(2 x the standard stimulus value). (6.9)

Equation 6.8 corresponds to judgments whereby the comparison is unequal to the standard,

and Equation 6.9 is used to calculate Z when the comparison is the same as the standard
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and Pr(LID;) is the observed proportion of larger responses for the ith comparison-
standard pair.

Figure 6.6 shows the observed mean response times as a function of estimated Z
values. There are 13 data points in this figure; each Z is calculated using the observed
response proportions, A equal to 16.12, and B equal to 4.26. Also shown is the *best
linear fit” or regression equation line. The relationship is unmistakably linear (2 = 0.89).

Presented in Figure 6.7 are the observed and predicted Chronometric functions.
The predicted function is simply the least squares fit from the regression of response time
on the Z cstimates. The visible skew of the observed response times, accurately accounted
for by the predicted function, is due primarily to response bias.

To demonstrate the effect of response bias the Chronometric function for unbiased
responding was determined. The unbiased Chronometric function is calculated using the
same coellicient and intercept from the above regression. The Z values are computed by

omitting the bias term in Equations 6.8 and 6.9,
Ax(2xPr(LID;)-1)
Hi
or Z; = (A2)/(2 x the standard stimulus value). (6.11)

Z; (6.10)

Similar to the biased Z calculation, Equation 6.10 corresponds to judgments whereby the
comparison is unequal to the standard, and Equation 6.11 is used to calculate Z when the
comparison is the same as the standard. The differences between 6.10 and 6.8; and
between 6.11 and 6.9 are the removal of the B estimate and the replacement of observed
response proportions, Pr(LID;) , with Pr(LID;), the predicted unbiased response
proportions where,

9;A
2 e -1
Pl‘(l..'Di) = "T)iA——_-ei—A. (6.12)
c
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This function together with the observed and predicted Chronometric functions e
shown in Figure 6.8. The response bias, (']uamiﬁcd in the model as B, and equal 10 4.28,
proauces faster response times for the symmetric stimuli that are larger than the standird.
Morcover, compared to the unbiased Chronometric function, response times for stimuli
larger than the standard, are considerably faster. For symmetric stimuli smaller than the
standard, bias produces slower response times compared to the unbias:d Chronometric
function, but this difference is less than for stimuli larger than the standard. Finally, the
“unbiased” Z values when regressed against the observed response times account for less

of this relationship (r2 = 0.74 ), than the “biased” Z values (12 = 0.89).
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Figure 6.5: Observed and predicted Psychometric functions.
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Figure 6.6.
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Figure 6.7.
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Figure 6.8. Obscrved and Predicted Chronometric functions under biased and unbiased
conditions. .
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Magnitude Estimation Analysis: Experiment IIL

The above analysis of Experiment III demonstrates how response bias affects
response proportions and response times. It is conceivable that this bias would exist in the
magnitude estimation responses, and thereby manifest in the matching exponents. In
Experiment II, the matching exponent for “Larger” responses was greater, in absolute
magnitude, than the “Smaller” response exponent, but, the response proportions and
responsc limes did not exhibit any measurable response bias (B = 0.28). This suggests
lha't there cxists a magnitude estimation response bias which can manifest independently of
other response measures. An account of the asymmetry in matching exponents can be
provided by modifying the basic Wave Theory equation describing feeling. The basic
cquation is,

Feeling = c(ln[comparisonlstandard]XA) = e’(B XA). (6.13)
It is proposed that under biased responding,

Feeling = 8% (A £ B), (6.14)
The sign of the parameter B is negative for “Larger” responses and positive for “Smaller”

responses. In a matching experiment, with performance bias, it is assumed that for stimuli

larger than the standard,
In(Feeling of Distance) = 1n(c°““p’“'is°n Dis“‘“ce) % (Apist — Bpist)
Standard Distance Dist = Dist/  (6.15)
and,
. _ [ Force _
In(Feeling of Force exerted) = ln( Forceg ) x (AF — BF). (6.16)

Therefore, because the feeling of distance equals the feeling of force,
In (Feeling of Force exerted) = In (Feeling of Distance) (6.17)

-or for “Larger” responses,
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( Forcc)_ (Apist — Bpist) 1 (Comparisun Dismncc)

Forceo /™ (AForce — Broree) Standard Distance (0.18)
Similarly, for comparisons “Smaller” responses,
inf Foree ) (ADigt + Bpist) Comparison Distance
Forceg )~ (AForce + BForce) Standard Distance (6.19)

The estimate of (AForce — BForce) is the reciprocal of the coeflicient obtained by

regressing In(Force/Forceg) on 8 X (Apjs; — Bpig ) for “Larger” responses. The estimate

of —(AForce + BForce ) is the reciprocal of the coefficient of the regression of

In(Force/Forceg) on 6 X {Ap;g +Bpjg) for “Smaller” responses. These two estimates are

then used to determine, AFgrcc and f?.pomc as follows:

AForce = {(Arorce — BForce) + (AForce + BForcc% = 7.93 (6.20)
Brorce = _((AForce = Brorce) ~ (AForce *+ BForce % = 295 6.21)

The viability of the force parameters can be examined by comparing the observed
and predicted relationship between response force and dot distance. The predicted

relationship for “Larger” responses is obtained by exponentiating equation 6.18.

C :<on Di (ADisl-BDisl)
Force )_ {Comparison Distance }(4 = _p
(Forcem)"( Standard Distance )( Foree™Brore) (6.22)

Where Forcey g is the exerted when the comparison equals the standard and the response is

Larger. Similarly, the relation for “Smaller” responses from Equation 6.19 is,

C . Di (ADisl+BDisl)
_Force \ _ { Comparison Distance } 4 +B
(Forceso)"( Standard Distance ) (AForee*Brorer) (623)

Where, Forcegg is the exerted when comparison equals the standard and the response is

Smialler.
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Figure 6.9 shows the remarkable agreement between data and theory, unobscured
by the common log-log plot of magnitude ;:slimation results, “Smaller” response force
grows as a power {unction of distance with exponent, n, equal to -1.87, while “Larger”
response force is a power function with exponent, n, equal to 2.38. The force and distance
values are scaled relative to their respective standard values; consequently the functions
intersect at (1,1). Again the matching exponents are from the regression of
In(Force/Forceg) on In{Comparison/Standard Distance) for larger and smaller judgments
(r2 = 0.99 and 0.98 respectively). Of particular note is that both functions include error
response forces as well as correct responses.

An equally impressive relationship uncovered in this analysis is between response
force and responsc time. The estimates of Ag, BF, the paraniaters corresponding to the
magnitude estimation of distance, can be substituted into Equations 6.8 and 6.9 above to
determine Z values for force. This is plausibie because of the direct mapping between the
dot distance parameters and the force parameters in a matching experiment. This is evident
in Equation 6.17 whereby, In{(Feeling of Dot Distance) is equal to In(Feeling of Force
exerted). Further inspection reveals that the left hand side of equation 6.17 is a function
AF, BF and the comparison and standard forces while the right hand side is a function of
A, B and the comparison and standard distances.

The relationship between these Z values, or Zp, and response time should be linear,
and, the linear regression equation can be transformed into a Chronometric function relating
predicted response time to distance. The Zg values are computed as,
Apx(2x Pr(LID;) 1) - Bp

F;~Fro

[Zr 1 D; > Dg] = (6.24)
Apx(2xPr(LID;)-1)-Bp

[Zr:i | D-i < DS] = F_i — FSO

(6.25)
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2.2 7 .2

A~ L) A -

Ay -Bp = B
[Zp 1 D; = Dg] = Pr(L ID; = Do) x =2—L + (1-Pr(L ID; = Ds))xM (6.20)
2XFL0 2)(1330

where,

Pr(LIDj=Ds) is the observed proportion of “Larger™ responses given the comparison
equals the standard,

0; = —ln(Fi FL 0), for comparisons greater than the standard,

0; = ln(F%SO), for comparisons less than the standard,

6; =0, for the comparison equal to the standard,

Fy g is the force exerted when the comparison is equal to the standard and the
response is LARGER, and,

Fgq is the force exerted when the comparison is equal to the standard and the

response is Smaller.

Figure 6.10 shows the results for this analysis and demonstrates a strong lincar
relation between response time and estimated Z valves. The association as measured by 12
is 0.89, which is the same 12 value to two significant digits as obtained from the regression
of response time on Z values . Moreover the predicted intercept from the RT vs Zp
regression, 443 msec, is nearer the asymptotic response time for larger judgments of
approximately 450 msec than the intercept of 413 msec from the RT on Z regression.

The predicted Chronometric function, the solid line in Figure 6.11, is obtained by
plotting the least squares estimates as a function of comparison stimulus distance. The

predicted function closely agrees with the observed response times. Captured particularly
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well is the rapid decline then asymptotic behavior of respunse times for comparisons

greater than the standard.
A Measurement of the Point of Equal Feeling

Another test of the validity of these estimates is achieved by comparing the
observed point of equal feeling (PEF) for magnitude estimation with the predicted PEF
based on the parameter estimates. The PEF for magnitude estimation has not been
recognized in the psychophysical literature because, until now, discrimination and
magnitude estimation have not been measured simultaneously. The definition proposed for
the point of cqual feeling is the physical magnitude corresponding to the point of
intersection of the observed conditional response forces. The observed value is

approximalely, 61.20 mm. (Figure 6.4). The predicted PME is attained by substituting the

estimates f\pom and Brorce into equation 6.22 below and solving for 0.

BfaFon:c - ‘eﬁf-‘orce
0.5=2 ¢

eBAForcc - e"eAForce

(6.27)

The solution to 0 is obtained numerically by implementing an iteration routine in
Excel 4.0. The value of 0 is approximately -0.1038 theta units. Since 8 equals
In{(comparison distance/standard distance), and the standard distance is 68.00 mm., the
estimated PEF in millimeters is easily calculated as 68.00x ¢°0-1038, or 61,29 mm, which
is only 0.09 mm different from the observed value of 61.20 mm. It is also different from
the point of subjective equality determined from the response proportion data. This further
supports the notion that response bias can manifest differently in magnitude estimation

than in response choice.
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Figure 6.9. Observed and predicted (Comparison Foree/Standard Foree) as a function ol
{Comparison/Standard Distance).
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Figure 6.11). Mean response time as a function of Z force cstimates.
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Figure 6.11. Obsecrved mean response time, and predicted Chronometric function using

Response Time (msec)

700

=
Ch
[=]

g

Lh
Lh
<

g

oS
[
[=]

g

estimated force parameters.

?

20 40 60 80 100
Comparison Distance (mm)

. RT Exp. 111 —~~—— Best Linear Fit

113

140



Discussion III

The most common method of obtaining magnitude estimates is to simply ask
subjects to report, using numbers, the perceived magnitudes of randomly presented
stimulus intensities. The size of Stevens’ exponent has been shown to be dependent upon
the range of stimuli presented: smaller ranges produce larger exponents ( Teghtsoonian,
1975; Foley, Cross, Roley and Reeder, 1983; Marks, 1988; Ahlstrom and Baird, 1989).
Experiment I1I addresses whether this “range effect” could be induced from trial to trial by
cueing subjects about the range of stimuli. Figure 6.4 clearly demonstrates that subjects’
magnitude cstimation performance is not affected by information about the possible
comparison stimulus range. The simplest explanation is that subjects merely did not attend
10 the cues and treated all comparison stimuli as if they were from the same set. The
absence of any difference in response proportions or response times across range cues
further support the inertness of the cues(Figures 6.2 and 6.3). It is possible that subjects
did attend to the range cues, but because of the relative frequencies of these cues subjects
may have based their A values on the Large range. The Large range cue appeared on 17/35
of the trials, while the Medium and Small cues appeared on 13/35 and 5/35 of the trials.

A change in the exponent was sought only to provide a greater challenge for the
model. If a change in the exponent did occur however, it would have been possible to
determing if the source was due to a change in either the Apot distance OF AForce parameter.
For example, if the matching exponent increased, then by the model’s account, the ratio,
Apot distance / AForce, must also increase. There are a number of ways changes in the
numerator or denominator or both could produce this increase, however, because
Apot distance can be estimated independently from the response proportions the exact nature

of the change could be computed.
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The primary objective of Experiment 11T was to obtain more reliable estimates off
subjects” magnitude cstimation pcrl‘ormanéc. Figure 6.4 and Table 6.2 - All Ranges,
indicate this objective was achieved. Subjects’ “Larger” magnitude estimates increase
while their “Smaller” estimates decrease monotonically across distance. When responses
from all ranges are considered, this result holds even for response-choice errors.

A feature of subjects’ magnitude estimation performance of Experiment Il which
is similar to the results of Experiment 11, is that the range of force subjects use for “Larger”
judgments is greater than that used for “Smaller” judgments (Figures 5.6 and 6.4). The
magnitude of this difference is determined by comparing the gbsolute value of the cstimates
of the matching exponents for “Larger” and “Smaller” judgments. These values arc tabled
below. In both Experiments, the matching exponents for “Larger” judgments are greater

than the exponents for “Smaller” judgments.

Table 6.3. Matching exponents and Stevens’ exponents for Experiments 1I and 1L

Experiment H Experiment 11
Matching Exponent Matching Exponent
“Larger” 1.71 2.38
“Smaller” -1.45 -1.87

The matching exponents listed are coefficients of the linear regression of
In(Comparison Force/Standard Force) on In(Comparison Distance/Standard Distance).

While response bias was not expected to occur in Experiment III, its appearance
demanded the inclusion of a bias component in the Wave Theory model of feeling. Recall
the revised expressions for the exponent for “Larger” magnitude estimates in the case of

biased responding equals,

(Apist — BDist)
(AF-BF) (6.28)
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and the exponent for “Smaller” magnitude estimates

__(Apist +Bpist)
(AForce + Brorce) . (6.29)

This parameterization allows for the exponents for “Larger” and “Smaller” judgments to be
unequal. As Table 6.3 shows this occurred in both Experiments I and ITI. Without bias
the original model could not account for this observation.

The validity of this parameterization and of the force parameters was determined by
comparing the estimated Point of Subjective Equality for magnitude estimation with the
point at which the conditional response force functions intersected (Figure 6.4); and
further by measuring the association between observed response time and Z values based
upon these force parameters (Figure 6.9). Both methods support the inclusion of bias to

the Wave Theory model of feeling.
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Chapter 7

Summary and Conclusions

It is accepted among psychologists and laymen alike that there is structure to the
prdcessing of mental information. Throughout the history of psychophysics, mathematical
models have been used to describe, explain and derive further hypotheses about the
structure of this processing. Common to all mathematical models is a rule of
correspondence which links the theoretical structure to observable behavior. The
dependent measures or observable behavior which has been theorized to manifest the
structure of mental processes are response choice, response time, and response magnitude.
Never before have all three of these measures been gathered within one experimental task
or theory, yet all have been used extensively to infer mental processes. Response choice
dates back to Gustav Theodore Fechner who used them as evidence for psychology's first
theory of sensation. As early as 1868, F. C. Donders suggested that response time under
specific procedures could be used to measure mental stages of processing( in Woodworth,
1938). And finally, G. S. Fullerton and J. M. Cattell in 1892 constructed the first
dynamometer and gathered magnitude estimation data in order to test the basic premise of
Fechner's theory, Weber's law.

This thesis examined the Wave Theory of discrimination and magnitude estimation.
The theory postulates that physical stimuli are represented as Poisson distributed wave-
forms and that discrimination and magnitude estimation judgments result from mental
processing of these wave-forms. This mental process is characterized by a random walk
between two absorbing barriers with the step-size distribution equal to a difference between
the two stimulus-generated wave-forms. The mathematical properties of the random walk
and the associated Poisson distributed random variables provide the rule of correspondence

to observable behavior.
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Three experiments were conducted. The first experiment focused on Wave
Theory's definition of discriminability. Underlying the definition that discriminability
equals the natural logarithm of the ratio of the comparison to standard stimulus intensity, is
the assumption that stimulus magnitude is represented as a Poisson distributed wave-form
with mean amplitude equal to a similarity transformation of the physical stimulus intensity.

This assumption was examined as follows: First, pairs of "symmetric" stimuli
were constructed. Then, observed response proportions to these symmetric stimuli were
used to estimate analytically the parameters of the model. Close correspondence between
the observed and predicted response proportions, using the parameter estimates, provided
the first test of the above definition of discriminability. Agreement between the analytic
estimates and sum of square error estimates further established the validity of the model.
Finally, support for the predicted relation between mean response time and Z, a function of
response proportion, buttressed the connection between response time and the definition of
discriminability.

Wave Theory’s definition of discriminability is fundamentai to more profound
relationships. The psychophysical function relating sensation to physical intensity
proposed by Fechner is a natural consequence of the Poisson wave-form representation of
stimuli (Equation 7.1). The only difference is that in Wave Theory, the multiplicative
constant is part of the structure of the model and equals A, the response barrier distance
(Equation 7.2).

Sensation = ¢ In (Comparison/Standard stimulus intensity) (7.1)
Wave Theory:
Sensation = A In (Comparison/Standard stimulus intensity) (7.2)
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The psychophysical power function (Equation 7.3) which Stevens (1975) contends
is the true law relating sensation to physica-l stimulus intensity is in Wave Theory terms
(Equation 7.4) a description of Feeling or the “psychological magnitude...in units of the
physical world...of the stimulus generating the sensation (p. 240, Link, 1992).” Wave
Theory’s definition of Feeling is the same as Stevens’ law except that “*Sievens exponent”

is, again, part of the structure of the theory.

Stevens’ Law;
Sensation = (Comparison/Standard stimulus intensity)3/b (7.3)
Wave Theory:

Feeling = (Comparisor/Standard stimulus intensity)A (7.4)

The focus of Experiment II was to examine Wave Theory’s parameterization of
Fechner’s and Stevens’ laws, specifically by testing the relationship between Stevens'
exponents and Weber’s fractions uncovered by Link (1992).

Relying upon Stevens’ assertion that the exponent for force of handgrip is constant
and equal to 1.7, the results of Experiment II indicated that, for dot distance, the reciprocal
of Stevens’ exponent does not equal Weber’s fraction, when both are scaled relative o their
respective line length values. However, the literature is replete with studics showing the
conditions under which exponents change (Poulton, 1989). Two conditions of Experiment
II are almost certain to have affected the value of the force of the handgrip exponent: the
range of stimuli presented and the concomitant task of discrimination.

With these considerations in mind, it was necessary to resort to theory and its
application to this type of experimental task. The results from this analysis generaied much
smaller Stevens’ exponents. In addition, though, a testable prediction of the force of

handgrip exponent was also revealed.
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The results of Experiment I dcmopstralcd that the magnitude estimaton results of
Experiment 1l were not epiphenomenal. Tiw additional five days of training for subjects in
Experiment III produced much more stable magnitude estimation performance and must be
considered as a more accurate depiction of subjects’ perceived magnitude of dot distance
than Experiment II. It was shown that with further training subjects’ magnitude estimates,
as measured by force of handgrip are monotonically related to dot distance: a condition
necessary for all current theories of magnitude estimation. In general, the matching
exponents obtained by a different set of subjects after nine days of practice are similar to the
exponents obtained in Experiment II. Larger judgments tend to produce greater exponents
than smaller judgments. This suggests that the feeling of dot distance grows more rapidly
for increasing than for decreasing dot distance. To account for the asymmetry of “Larger”
and “Smaller” magnitude estimation functions the parameter Brgree Was introduced to Wave
Theory’s cquation for feeling,

The increased stability of magnitude estimation performance afforded an
opportunity to test the theoretical relationships among performance indices. Specifically, it
was shown that magnitude estimates, response proportions and response times are
functionally related.

The contributions to the field of psychophysics of this thesis are both theoretical
and empirical. While this model will surely incur further development as it attempts to
broaden its range of applicability, the empirical results will remain a substantive
contribution to the study of psychophysics. The procedure, and particularly the
cxperimental apparatus should spawn an immense amount of research. In addition to
determining directly the exponent for force of handgrip under conditions in which subjects
are required to perform discriminative judg;nents and magnitude estimates simultaneously,

this procedure can be extended to other modalities such as Ioudness, brightness and even
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clectric shock. This line of rescarch would be akin to Stevens, Mack and Stevens (1960)
seminal work on cross modality matching.'

The extensions of this thesis are certainly not confined to physical stimuli. Many
other mental phenomenona have close, if not direct relationships to sensation and fecling,
Emotions such as delight and rapture, or sorrow and anguish all have magnitude, however
differently we may feel they are colored by our thoughts. It is this “detecrmination of the
relation of one magnitude to another [that] makes of psychology an exact science (Fullerton

and Cattell, 1892, p. 9).”
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APPENDIX A. D:erivation of Formulae.

This appendix presents methods used to obtain: 1) the response probabilides that
define the theoretical Psychometric Function; 2} the equation for the estimate of mean
absorption or decision time; 3) the equation for the parameter 8; and 4) the equations for
obtaining estimates of the parameters A and B. The mathematical approach for the
derivation of response probabilities and absorption times is detailed in Cox and Miller

(1965) and Link and Heath (1975); the technique for deriving the parameter 0 is presented
in Link (1992); and the method for estimating the parameters A and B is contained in Link
and Heath (1975) and Link (1990).

The process we are concerned with is a random walk constrained between two
barviers. The random walk is assumed to occur in discrete units of time or epochs. Qur
first interest is in calculating the conditional probabilities of absorption at each of the two

barriers. Let,

A and -A be the values of the barriers,
N be the number of time units or epochs at absorption,

i be the the units of time or epochs, {i=0, 1, 2,... }
‘Y be a Poisson distributed random variable with parameter o,

W' ¢ be a Poisson distributed random variable with parameter B,
d(i) be the difference between W and g atepoch i, {0 <i < N},

d(0) = B be the starting position of the random walk such that A > B > -A,
Ap be the sum of d(i) fromi=1ton, {n=1,2, 3,..., N},

Md(8) = E[e‘ed] be the moment generating function (mgf) of d(i) for all i,
6 be the dummy variable in the mgf of d(i) for all i,

P(AID;) be the probability of absorbing at barrier A given comparison Dj; and,
P(-AlD;) be the probability of absorbing at barrier -A given comparison Dj.

The moment generating function {mgf) for d(i), the difference of two Poisson

distributed random variables with parameters o and B is a convex upward function of 6.
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The derivative with respect to 9 of the mgl evaluated at 8 = 0 equals -E(d) and is denoted

-H. For convex moment generating functions, there is another value 8 = 8% = (0 where the
derivative of the mgt is equal to E(d). The value of the mgfat® =0 and 6 = 0™ is equal
one. Setting Md(8) = 1 is the key step in desiving the response probabilitics from the Wald

(1947) 1dentity:
Ef(e"0AN)x Mg(®)N] = 1. (1)

In order to calculate the response probabilities, Md(8) is set 1o unity and the Wald
idehtily is expanded by conditioning on the barrier of absorption. We ignore overshoot of

the barriers by setting AN = (A-B) or (-A-B).

E[(c"9AN)IAN=(A-B)]Pr(An=(A-B)ID;)+
E{(e"9AN)IAN = (-A-B)]Pr(AN=(-A-B)IDy)=1. (2)

Substituting (A - B) and (- A - B) for Ay in the exponents and rewriting the

probabilities in terms of the absorption barriers yields,

BB Pr(AID;)+ ARl Pr(-AID;) = 1. (3)

Solving (3) for Pr(AIDy) yields,

eBA e—BB
PI(A'DI) = T-_BA-' (4)
c -

And also from (3), the probability of absorption at -A given comparison D,
6B -6A
Pr(-AlD;) =

A A (5)
e -e
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The derivation of the expected number of steps 1o absorption is also facilitated by
the Wald Identity. Let,

8 be the two real roots of Md(8) = 1, {j=1, 2} such that 6y =Q and 62 = 8",

z be the reciprocal of My(8),

E[A] be the expected number of steps to absorption at A,

E[-A] be the expected number of steps to absorption at -A,
EA[zN] be the probability generating function (pgf) for the number of steps to

absorption at A,

E-A[2N] be the pgf for the number of sieps to absorption at -A, and

E[N] be the expected number of steps to absorption.

The Wald Identity is first expanded by conditioning on the response barrier and

again ignoring overshoot of the barriers. The expansion is,

El(e-8,AN)x ZNIAN=(A-B)IPr(An=(A-B)IDj}+
E[(c"8;AN)x NIAy = (-A-B)]Pr{AN=(-A-B)ID;)=1 =12} (6

Solving (6) simultaneously, ignoring the overshoot of the barriers at A and -A,

yiclds,
82(A+B}  91(A+B)
EA[ZN]= L ° —¢ )
Pr(AID;) | [(G2(A+B)-61(A-B)} _ (01(A+B)-62(A~B))
and,

-01{A-B) -82(A-B)
c bl -

R 1
E'A[L ]_[Pr(-AIDi)} c(GZ(A‘*'B)“el(A“B))_6(91(A+B)-62(A—B)) .

@®

By differentiating (7) and (8) with respect to z and then setting z = 1, the marginal
expected number of steps to absorption, E[A] and E[-A] can be attained (Link and Heath,

1975). The expected number of steps to absorption, E[N], is then computed by (9).

E[N] = P(AID;)x E[A] + P(-AlD;)x E[-A]. )
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Substitution of the results for P(AID;), P(-AIDy), ElA], and E[-A] viclds the

cxpression which in this thesis is referred 10 as Z,
Z = {(A-B)x P(AID;))— (A+B)x P(-AID)) }/E(d). (1

In the Wald Sequential Probability Ratio Test the valuc of 6™ is determined by
properties of the distribution of d(i). In Wave Theory however, it is a parameter which
defines the discriminability of a standard-comparison stimulus pair. This measure of

discriminability is denoted 6* and is obtained as follows. Let,

‘¥~ be a Poisson distributed random variable with parameter o,
¥ ¢ be a Poisson distributed random variable with parameter f such that B # o,

d be the difference between W and Ws.

Then the mgf for d is,
- 0
o{e ® —1] B(e -—l]
e . (11)

Setting Md(0) equal to 1, and taking the natural logarithm of (11) yields,

My(9)=e

[oe-B - 1)] +[BeB - D1 =0. (12)

Substituting x for 8 in (12), multiplying by x, then solving the resulting quadratic

equation, gives two values of 6, where the non-zero root of Md(8) = 1 is,

0* = In(o/B). (13)

The value of 8 which equals -6* is defined as the Symmetric Theta for 6. In

addition, there is a Poisson distributed random variable, C' with paramelter o', such that,

In(o/B) = -In(c:/P). (14)
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The ability to compute Symmetric Thetas from the mgf of the difference of Poisson
distributed random variables allows for Lhé construction of symmetric stimuli. The
observed proportion of responses to a pair of symmetric stimuli enable estimates of A and
B as follows: First, we substitute for 0 in Equations (4) and (5) the Symmetric Theta, -8,

which yields the probabilities of absorption at A and -A given -8 and B.

c-eA _ eBB
PF(A|D1) = “BA_ OA (15)
] il
and,
cGB CBA
PF(-AlDi) = ~BA  OA " (16)
4] -C

From Equations (4), (5), (15) and (16) the expressions for the estimates of A and B are,

A=oox In(P(AN =(A-B)ID;)xP(Ay = (-A-B)ID-i)]

26" P{Ay = (A-B)D)xP(Ay = (-A-B)ID;) 17
and,
N B P(AN = (A-B)ID;)xP{An = -A-B)ID ;)
20 P(An = (A-B)ID;)xP(An = (-A-B)D;) ). (18)

Replacing the probabilities in (17) and (18) by observed response proportions gives us

cstimates of the starting position, B and the absolute value of the barriers, A.
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APPENDIX B. Mathematical Summary of Decision Process

The Wave Theory Random Walk model proposes the decision process on cach trial
occurs as follows:

1) The subject initiates an approximately 750 millisccond presentation of the
standard stimulus which is a pair of horizontally aligned dots. These dots are separated by
a distance of S millimeters.

2) The standard stimulus distance, S, is converted into a memory signal, whosc
magnitude is a Poisson distributed random variable (r.v.). The physiological processes
which produce this r.v. occur during discrete units or epochs of time, i, {i = 1,2,3....).
Let the Poisson distribution of the magnitude of the standard stimulus, ¥g, be,
e-BﬁWs

¥ =vsl= g

{ws=0,12,.},

where, the parameter {3 of this Poisson distributed r.v. is assumed o equal a constant
multiple of the physical stimulus distance, S. Thatis, B =m S, and m is a constant.

3) After the presentation of the standard stimulus there is a 500 millisecond inter-
stimulus interval in which no stimuli are presented. Immediately thercafter, the comparison
stimulus is presented. The comparison stimulus is a pair of dots separated by a distance of
C millimeters. The comparison stimulus is converied by physiological processes
immediately into an available signal which is also a Poisson distributed random variable.

Let the Poisson distribution of the magnitude of the comparison stimulus, ¥¢ , be,

~,

e-(xa‘l'c X

Pl‘{‘PC =WC}= \IIC! R - {‘PC =0,1.2,...},

where, the parameler o is assumed to be a similarity transform of the physical distance
separating the pair of dots which make up the comparison stimulus. In other words,
o =m C, m being the same constant as above.
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4) Upon presentation of the comparison stimulus the accumulation of the difference

between Y and g begins. Letthe difference between these random variables be,
di) = \PC - lPs.

5) The accumulation of values of d(i) continues until the sum equals, or is greater or
less than either of two subject controlled response thresholds, denoted A and -A. The
accumulation of the difference between Poisson distributed random variables up to and
including epoch n is defined as,

A, = _ild(i), {n=1,23 .. N}.

j=
The value of n when the accumulation terminates is denoted N.

The decision of the subject occurs when the accumulation reaches either of the two
response thresholds. The subject either responds LARGER or SMALLER. If the sum,
Ap=N, equals or exceeds A, the subject responds LARGER, or if the sum, Ap-N, equals
or is less than - A, the subject responds SMALLER. That is,

A 2 A subject responds LARGER,
N1<-A  subject responds SMALLER.
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APPENDIX C. Instructions for Subjects.

Experiment I, Symmetric Theta Instructions

This is a choice reaction time experiment. Two pairs of dots, a physical distance apart, will
be presented in succession on the black display screen in front of you, Your task is to
decide if the second distance is larger or smaller than the first. Responses are made on the
panel in front of you.

The left button is for the response.
The right button is for the response.

Remember:  Left " "
Right

At the beginning of the experiment you will be dark adapted for 3 minutes. The word
"begin" will then appear on the screen. The response panel has 2 buttons. Place the index
finger of each hand on these buttons by resting you arms across the box and your hands
over the end of the box.

To start a trial, depress and release both response buttons simultancously. The first pair ol
dots will then be presented. After the first pair a second pair of dots will appear and remain
on the screen until a response is made. You respond by depressing the button if the
second distance is larger than the first. If the second pair is smaller than the first you arc to
depress the button. After your response the second pair of dots will disappear and
you are to depress both buttons simultaneously to initiate the next trial.

Make your response as quickly and accurately as possible. If you respond to a trial by
depressing both buttons, the words "make only one response"” will appear on the
screen. Depress both buttons simultaneously and a new trial will begin.

A session consists of 2 blocks of trials. One block ends when the word "done" appears on
the screen. Between each block, you will be given a 2 minute break. Please remain in the
darkened room so that you do not lose you dark adaptation. Start the second block of trials
when the word "begin" appears on the screen.

Each day the experiment will take approximately 1 hour.

You should stop whenever you become inattentive and restart when ready. Please keep
alert throughout the whole experiment.

It is important that you fully understand the instructions!

DO YOU HAVE ANY QUESTIONS ?
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In this cxperiment your task is to make judgments about small distances. Two pairs of
dots, a physical distance apart, will be presented in succession on the computer screen.
You will be required to decide if the second distance is larger or smaller than the first.

The magnitude by which you FEEL the second distance is larger or smaller than the first is
reported by SQUEEZING the pressure sensitive devices or dynamometers at the pressure
corresponding to your feeling.

The left dynamometer is for the response.
The right dynamometer is for the response.

You will first be dark adapted for 3 minutes, after which the computer will test the
dynamometers. The word “sampling” will flicker during the test.

The experiment will begin with a message cueing you to start. It will say, “To start the
experiment, squeeze BOTH dynamometers.”

Upon squeezing both dynamometers simultaneously, the first pair of dots will appear and
remain on for a brief interval. There will be a short delay in which the screen will be blank
and then the second pair of dots will appear.

You respond by squeezing the LEFT dynamometer if the second distance is than
the first. If the second pair is than the first you are to depress the RIGHT
dynamomeler.

The second pair of dots will remain on the screen until you have eased off both
dynamometers.

After you response is made you are to depress both dynamometers simultaneously to
initiate another trial.

Make your responses as QUICKLY and ACCURATELY as possible.

You should stop whenever you become inattentive and restart when ready. Please keep
alert throughout the whole experiment.

1t is important that you fully understand the instructions!

DO YOU HAVE ANY QUESTIONS?
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In this experiment your task is to make judgments about small distances. Two pairs of
dots, a physical distance apart, will be presented in succession on the computer screen,
You will be required to decide if the second distance is larger or smatier than the first.

The magnitude by which you FEEL the second distance is larger or smaller than the first is
reported by SQUEEZING the pressure sensitive devices or dynamometers at the pressure
corresponding to your feeling.

The left dynamometer is for the response.
The right dynamometer is for the response.

You will first be dark adapted for 3 minutes, after which the computer will test the
dynamometers. The word “sampling” will flicker during the test.

The experiment will begin with a message cueing you to start. It will say, “To start the
experiment, squeeze BOTH dynamometers.”

Upon squeezing both dynamometers simultaneously, the letter “S”, “M”, or “L” will
appear. This will cue you to the range of possible differences which will be used on that
trial. This letter will appear for 3/4 of a second, then afier 1/2 sccond the first pair of dots
will appear and remain on for 1/2 of a second. There will then be a 1/2 second delay in
which the screen will be blank and then the second pair of dots will appear.

You respond by squeezing the LEFT dynamometer if the second distance is than
the first. If the second pair is than the first you are to depress the RIGHT
dynamometer,

The second pair of dots will remain on the screen until you have cascd off both
dynamometers.

After you response is made you are to depress both dynamomcters simultancously to
initiate another trial.

Make your responses as QUICKLY and ACCURATELY as possible.

You should stop whenever you become inattentive and restart when ready. Please keep
alert throughout the whole experiment.

It is important that you fully understand the instructions!

DO YOU HAVE ANY QUESTIONS?
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