MODEL STRUCTURE AND ADJUSTABLE PARAMETER
SELECTION FOR OPERATIONS OPTIMIZATION

By

J. Fraser Forbes, B.A.Sc. M.A.Sc.

A Thesis Submitted to the School of Graduate Swudies in Partial Fulfilment of

g\

the Requirements for the Degree of Doctor of Philosophy

McMaster University

© Cbpyright by J. Fraser Forbes, April 1994



Doctor of Philosophy (1994) McMaster University

(Chemical Engineering) Hamilton. Ontario

TITLE: Model Structure and Adjustable Parameter Selection

For Operations Optimization

AUTHOR: John Fraser Forbes. B.A.Sc. (University of Waterloo)
M.A.Sc. (University of Waterloo)

SUPERVISOR: Professor T.E. Marlin

NUMBER OF PAGES: i, 241

ii



MODELLING FOR OPERATIONS OPTIMIZATION






ABSTRACT

The value of model-based process optimization systems for competitive advantage
in many industries, has been widely recognized. Such model-based optimization
systems include Real-Time Optimization, On-Line Optimizing Control. off-line
process scheduling, and any other economic process optimization scheme which
uses a process model to predict optimal plant operation. The thesis investigates
the design of these model-based optimization systems, particulary with respect to

model structure and adjustable parameter selection..

The main contributions of this work include design phase methods, based on
fundamental ‘principles of optimization and statistics theory, for determining
whether a model-based optimization system can attain the plant optimum, as well
as methods for discriminating between design alternatives. Three necessary
conditions for zero-offset from the optimal plant operation are presenied. These
include Point-Wise Model Adequacy, Augmented Model Adequacy and Point-
Wise Stability. Recognizing that achieving zero-offset from the plant optimum
may not always be possiblé, or may not be the only design objective, a Design
Cost method is presented for selecting among design aiternatives. This Design
Cost method provides a natural "trade-off” between offset elimination and

variance of the predicted optimal manipulated variable values.

Finally, the thesis is completed with a larger-scale case study involving the
Williams-Otio Plant [1960). In the case study selection of a process model and
adjustable parameter set for implementation in a closed-loop Real-Time

Optimization system is investigated.
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1. Introduction

Optimization of steady-state process operations has enjoyed considerable industrial
interest during the past several decades and has assumed increasing importance
as the operation of existing plants has become a dominant factor in achieving
competitive advantage [Cutler and Perry (1983), Darby and White (1988)].
Although there are many different process optimization techniques, they can be
classified into two general categories: direct search and model-based optimization
[Garcia and Morari (1981)]. This thesis considers model-based process
optimization systems. Such systems encompass Real-Time Optimization (RTO),
On-Line Optimizing Control, off-line process scheduling, or any other comroif
methodology which utilizes a process model to determine an optimum operations
policy. The results presented in this work are applicable to all forms of model-.
based process optimization; however, they .are particularly vital in the design of
closed-loop RTO systems and, as a result, investigations will focﬁs on closed-

loop, real-time, model-based process optimization.

Any control system built for optimizing process economics, and not some form
of deviation from setpoints, is commonly called an Online Optimizing Controiler
or a Real-Time Optimizer (RTO). Real-Timé Optimization provides the link
between process scheduling and the process control system. Its purpose is to
maintain an optimal operations policy with respect to process economics, for
processes whose behaviour varies with time. Process variation can be due to
disturbances, such as catalyst deactivation and so forth, or operatior;s changes,

such as feed grade switches. Although the potential rewards for Real-Time

irs
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Optimization are considerable, attempts at impilementation have met with mixed
success [Darby and White (1988)]. One of the major barriers to the successful
implementation of operations optimization systems is the current lack of design
procedures. RTO design decisions include selection of such system components
as: the process model, parameter estimation technique, optimization method,
process measurements and sensors, data filtering techniques, data validation
procedures, and so forth. This thesis develops design methods for Real-Time
Optimization systems derived from fundamental principles of optimization and
statistics theory. The concepts presented in this work provide insight into what
is required of the integrated optimization system to yield a successful
implementation, as well as providing some useful tools for evaluating competing

design alternatives,

The major portion of this chapter is devoted to a review of the current state of
process operations optimization technology, and the motivation for the subject
mater of the thesis. The final two sections of the chapter provide an overview
of the thesis contents, as well as a summary of the terms and conventions used

throughout the work.

1.1  Process Operations Optimization Overview

Currently there are two basic philosophies in optimizing the economic
performance of a plant. These are Direct Search and Model-Based techniques
[Garcia and Morari (1981)]. Direct Search methods explore the response surface
of the plant profit directly for the optimum operating conditions. Model-Based
algorithms use process models to predict process behaviour, and thus the process

model's response surface is searched for the optimal operations policy.
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Regardless of philosophy, all Real-Time Optimization systems have three essential

features:
i) Data Validation, where the consistency of the current data set is
decided,
i) an optimization step, where the optimum operating policy is
determined,

iii) Results Analysis, where the optimization results are validated.
With the exception of Results Analysis, there has been considerable research in
each of these fields, although not always with the goal of integrated RTO system
design. The purpose of this section is to survey the main ideas in each area. The
survey will begin by exploring both classes of process operations optimization
philosophies. It will continue by examining the current state of Data Validation

technology. Finally, the current status of Results Analysis will be reviewed.

1.1.1 Direct Search Methods

The early ideas for on-line optimization concentrated on the various forms of
pattern searching the process response surface. During the 1950s and 1960s, Box
[(1951), (1954), and (1957)] Iaid the basis for on-line process optimization in a
series of application papers, the culmination of which was the formulation of the
Evolutionary Operations (EVOP) technique [Box and Draper (1969)]. The idea
central to EVOP 1s the performance of a set of plant experiments around the
current operating point. Using statistical tests, each experimental point is tested
for a significant improvement in process performance with respect to current
operations. The process is then moved to the point whigh shows the largest plant

performance improvement and the procedure is repeated.



EVOP has several properties which make its use attractive. The method is easily
understood, implemented and maintained. It is particularly useful when little is
known regarding plant operation. As the method proceeds to the optimal
_ operations policy, a large quantity of information can be garnered from the plant
experiments. Finally, with the exception of the required plant experimentation,

every process change which EVOP makes produces improved performance.

The current state of Direct Search optimization consists of splitting the problem
into several phases [Bamberger and Iserman (1978), Garcia and Morari (1981),
and McFarlane and Bacon (1989)]:

i) plant experimentation,

i) dynamic plant model identification,

iiiy  performance function gradient calculation,

iv)  optimizer step determination.
Generally, these techniques differ only in the type of dynamic model being used
to estimate the local dynamic behaviour of the plant. Steady-state information can
then be extracted from the dynamic model and the direction of performance

improvement determined.

The structure of the dynamic model is pre-specified for each of the methods and
is not updated online. In many cases a linear structure is assu‘hiéd [Garcia and
Morari (1981}, and McFarlane and Bacon (1989)] and in some cases a general
nonlinear form is assumed [Bamberger and Iserman (1978)]. The performance
gain in these methods is mainly due to the algorithm's ability to mimic local plant
behaviour. This knowledge can then be exploited to give an improved estimate'
of the direction of the optimum. If some knowledge of the plant physical
‘\phenomena were available and could be incorporated into the dynamic model

structure of the optimization method, then the method could be generalized to:

=



i) estimate the parameters of a dynamic process model based
on plant experimentation,
i1) use the model to estimate the steady-state behaviour of the plant
and. as a result, the direction of the true process optimum.
As Golden and Ydstie [1989] argue, embedding knowledge of the plant
phenomena in the process model would give further: performance gains by
allowing not only the direction but the location of the plant extremum to be
estimated; however, it must be noted that such an algorithm would closely
approximate the methods of current model-based process operations optimization

systems.

All of the Direct Search methods suffer from the same failing, in that they do not
use any a priori knowledge of the process behaviour. Consequently, Direct
Search optimization methods require an extensive amount of plant experimentation
to find the process optimum, which increases geometrically with problem
dimensionality. Since for many of these techniques, steady-state must be attained
between each experiment, processes with large time constants can require an
unacce;;table amount of time to reach an optimum. Thus, the Direct Search
methods can be significantly slower in approaching the process optimum, when

started at a distance from it, than ideal model-based systems.

Plant experimentation is, typically, expensive to perform. Most of the Direct
Search methods discard all but the most recent plant information and, as a result,
are inefficient users of experimental data. Theoretically, model-based process
optimization systems could minimize plant experimentation to the determination
of a few parameters, which would allow the prediction of plant behaviour over
a wide range of operation. Then, convergence speed and minimization of plant

experimentation are the main driving forces for model-based optimization systems.



1.1.2 Model-Based Methods

The underlying idea in model-based process optimization is that optimum
operations policy is computed using some form of a process model. If the model
is very accurate, the true optimum can be found in a very few steps. Generaily
as model fidelity decreases, there is little performance difference between these
methods and the direct search techniques. Typically, a model-based optimization
system has two core components {Roberts (1979)]: one for updating the process
model using measurements, and another for performing the optimization using the

updated model.

Model-based optimization methods can use either steady-state or dynamic models.
Optimization using steady-state models is attractive for finding the optimal steady-
state operating conditions, as it is directly solving the problem as posed.
Optimization using dynamic models [Bamberger and Iserman (1978), Chen and
Joseph (1987), and Golden and Ydstie (1989)] has the advantage of direct
measurement of the process gradients. These are particularly useful in any
gradient-based optimization algorithm; however, dynamic models require some
form of integration to yield an estimate of the steady-state behaviour of the
process. Integration of sets of non-linear differential equations, in real-time, can
drastically increase the required computing resources for optimization system
implementation. Thus, investigations in this thesis will be limited to model-based

optimization using steady-state models.

The model-based optimization strategy may find the true process optimum by:

1) using an accurate model of the process to predict the
optimum process operatioh,

2) moving in the direction of this optimum and waiting for

steady-state,



3) updating the process model to‘wrét‘[ect process behaviour at the new
steady-state,

4 repeating the process.
It is important to note the crucial role that process model updating plays in this
optimization procedure. Arkun and Stephanopoulos [1981] give a good discussicn
of the main problems associated with using steady-state models for on-line
optimization. They point out that:

"Any model-based optimizing control should address directly the problem

of inaccuracies in the model and its parameters"
For operations optimization purposes it is desirable to use simplified process
models which reflect the major physical phenomena of the process, yet are not so
complex as to be prohibitive from a computing point of view. Accuracy of the
simplified models is often ensured by updating them using current process
measurements.  Roberts [1979] has shown that optimization systems using
approximate steady-state models, will not necessarily converge to the actual

process optimum, even with model updating.

P

Rather than addressirig the issue of model adequacy directly, researchers have
concentrated on modification of the optimization problem. Both Roberts [1979],
and Golden and Ydstie [1989]..provide methods which may overcome model
deficiencies; however, their ll‘tc"c\;lfmiques require that process dynamics be
determined by "persistent excitation” of the process inputs. Thus, these methods
suffer from the same difficulties as the direct search methods and as a result have

not been widely accepted by industry.

Then, one of the primary issues in model-based optimization design is mode®
fidelity. Ensuring model fidelity requires selection of a process model with an
adequate structure and a model updating scheme which will maintain model

- accuracy.



1.1.3 Data Validation

In any set of process measurements there are, potentially, two types of errors
present. The first are those due to normal randomness inherent to the process,
sometimes called process noise. The second type are biases caused by such things
as instrumentation failure, leaks, and so forth. Both of these types of error pose
their own unique problems for any operations optimization system. Biases in the
process measurements can cause a failure to close process material or energy
balances, and subsequently a poor estimate of the direction of the arocess
optimum. Random errors create difficulty in uniquely identifying the location of

the process optimum.

To deal with these two separate demands, Data Validation is split into two phases:
Gross Error Detection and Data Reconciliation. Gross Error Detection techniques
attempt to identify and correct any biases in the process measurement data [Crowe
et al. (1983), Crowe (1988)]. Good surveys of Gross Error Detection techniques
can be found in Tamhane and Mah {1985], and Rosenberg et al. [1987].

Data Reconciliation adjusts given sets of data so that procass balances are closed
in some statistical sense with respect to the expected properties of normal process
measurement variation. Unfortunately adjusting the process measurements can
affect the results of parameter estimation. Recognizing this problem, MacDonald
and Howatt [1988] have proposed a method for combining Data Reconciliation
and parameter estimation into a single problem using the Error-In-Variables
Model [Britt and Luecke (1973), and Reilly and Patino-Leal (1981)]. Kim et al.
(1990] presents an approach to solving the combined Data Reconciliation /

parameter estimation problem which they claim is more robust.



Recognizing the interaction between Gross Error Detection and Data
Reconciliation, Tjoa and Biegler [1990] have combined the two problems. There
has been no research to date which addresses the interaction among all three

problems (Gross Error Detection, Data Reconciliation and parameter estimation).

1.1.4 Results Analysis

At the end of each cycle the optimization systém produces estimates of the
setpoints corresponding to the optimal plant operation. Such setpoints may
contain considerable uncertainty. This uncertainty arises due to modelling errors,
measurement errors, uncertainty in parameter estimates, and so forth. Results
Analysis attempts to determine the level of certainty associated with the predicted

optimum setpoints and whether calculated changes should be made.

Sensitivity Analysis [Fiacco (1983)] provides the cornerstone for analyzing the
optimization results. The key idea behind this technique is to determine how the
prediction of the process optimum is affected by changes in the model parameters.
This method allows the variance of estimates for the magnimde of the process
optimum and its location to be estimated in terms of parametric sensitivity and
parameter covariance. Konickx [1988] gives a good treatment of the various uses
to which this variance information can be put. These include on-line accuracy
checks of the expected optimal performance and setpoints, expected gain fromoir-
line optimizarion, and optimizer self-checking. Using the methods proposed by
Konickx [1988], a predicted process optimum can be tested for significant changes
in the expected performance and setpoints. Setpoint change decisions can then be

made on the basis of statistical evidence.
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Process operations optimization research has focussed in each of the individual
system component areas. Although the importance of considering the interaction
of system components has been recognized by some researchers [Roberts (1979),
Krishnan (1990}], there is currently little research on the effects of such
interactions within an integrated optimization system. Design methods and tools,
which consider the optimization: system in its entirety, are required to ensure

successful optimization system implementation.

1.2 Thesis Scope

As discussed in the previous section, this thesis concentrates on the design of
model-based optimization systems for steady-state ‘process operations. In’
particular this work emphasizes the RTO design issues involving process model
and adjustable parameter selection in optimization system design. Thus, to

tacilitate the development of the work the following assumptions are made:

1) it is possible to determine when the process has reached steady-
state,
i) there are no gross errors in the process data reaching the

~ optimization layer,
i) the "best" control technology available has been implemented
beneath the optimization layer.
The last assumption is particularly important so as to ensure feasible operation

regardiess of optimization system output and to provide a fail-safe mechanism.

Figure 1.1 presents the general anatomy of a model-based optimization system.

Typically. a successful design has five basic features:
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1) a sensing system to provide the necessary information to keep the

process model accurate,

2) a process model which is suitable for use within the pptimization
application,
3) a model updating method which is consistent with the process

model and optimization strategy.

4) an optimization algorithm,

5) a flexible control system to enforce the optimal operations policy.
All of these features have received some attention in the literature. Krishnan
[1990] showed that selection of process sensors and model parameter updating
methods for on-line optimization must be considered with respect to the process
model. Roberts {1979] illustrated the necessity of tailoring the parameter
estimation and optimization strategies to the characteristics of the process model.
It follows that for model-based process optimization systems, model selection is
a critical design decision, upon which success of the system depends.
Determination of the suitability of a process model! for use in an optimization
system is one of the main contributions of this work and has been published in
Forbes et al. [(1992a), (1993a), and (1994)]. The Point-Wise Model Adequacy
methods of Chapter 2 have been used to examine the bias update method used in
many model predictive controllers. These extensions form the basis of Chapter 3

and have been published in Forbes et al. [(1992b) and (1993b)].

Figure 1.1 serves to illustrate the inter-dependence of the optimization system
components. Roberts [1979], Durbeck [1965], and Krishnan [1990] have
highlighted the importance of considering some of the subsystem interactions:
however, to date no comprehensive design method is available which considers

the entire closed-loop optimization system.
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estimates

model-based
optimiser

manipulated
variables

measuremenis

process

Figure 1.1: Process Optimization System Anatomy

Chapter 5 develops the Design Cost approach to optimization systems synthesis
based on some fundamentals of statistics and optimization theory, as well as
Process economics. Althougfl, the Design Cost method is applied to model
structure and adjustable parameter selection in this thesis, it can provide a basis
for development of a comprehensive design procedure for the entire closed-loop
model-based optimization system. This structured Design Cost approach to
model-based optimization system design is another major contribution of this
work. The Design Cost method has beer;presented in Forbes and Marlin
[(1993b) and (1994)]. Design Cost is shown to be a function of both offset from
optimal operation and variation in the predicted optimal operation. Chapter 4
gives a set of necessary conditions for offset elimination in steady-state, model-

based operations optimization. These offset elimination conditions have been
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presented in Forbes and Marlin {1993d]. The procedure presented in Chapter 3

for selection of which model parameters will be adjusted in real-time, based on

Design Cost. has been published in Forbes and Marlin [(1993b) and (1994)}.

Although the methods of this thesis have been limited to model structure and
adjustable parameter selection, they are more broadly applicable and can be

extended to the other operations optimization design issues.
1.3  Thesis Conventions

This section serves to document the conventions and terms that have been adopted

to simplify discussions, throughout the thesis.

The process model, or more simply the model, is generally used to refer not only
to the system of equations which describe the material and energy balances,
thermodynamic relationships, and so forth, but also process operating constraints.
This recognizes the possibility of model parameters occurring in both the equality
and inequality constraints of the model-based optimization problem. Further, it
may be necessary to include the actions of the control system / process operator
in the model when these are considered to have a significant effect on steady-state

" process operation.

The process variables are usually split into two sets throughout this thésis.
Manipulated variables (x), or the independent process variables, are considered
to be the set of process variables which can be independently adjusted for
optimizing plant performance. Dependent variables (u) are those process
variables whose values are uniquely determined once values for the manipulated

variables are set. As a results of this division of process variables, extensive use
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is made of reduced space concepts [Fletcher (1987)] throughout the thesis. The
term Reduced Space is taken to mean the space of possible manipulated variable
values, once the dependent variables have been eliminated from the model-based

optimization problem.

Much of the subject matter of this thesis deals with a comparison of plant and
model] behaviour with respect to optimization. In order to avoid confusion when
referring to an optimum: the term true plant optimum, or more simply plant
optimum, is taken to mean-the optimal operations of the process, and model
optimum is used to indicate the optimum of the model-based optimization
problem. This work concentrates on determining whether a model-based
optimization system is capable of predicting the location of the plant optimum.
The location of an optimum refers to the values of the manipulated variables
which correspond to the optimal value of the plant performance. The term plant
profit is used to indicate the actual profit that would be realized by operating the

process at a given set of manipulated variable vajues.

Throughout the thesis, Real-Time Optimization (RTO), On-Line Optimization,
Process Operations Optimization, and so forth, are used interchangeably. Also,
Meodel updating is limited to parameter estimation, without restricting the

possible methods of parameter estimation.

In the Design Cost discussions of Chapter 5, the term Design Cost Metric is used
to describe the objective function in the Design Cost problems presented in the
chapter. In this context, the term "metric” can used interchangeably with the term

"measure”.

‘Throughout this thesis, and particularly in the apendices, conventions are adopted
for differentiation of functions with respect to vectors. In this thesis the derivative

of a scalar-valued function with respect to a vector variable, whose elements are
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organized in a column. is a row vector containing as elements the partial
derivatives of the scalar function with respect to the individual elements of the
vector variable. The derivative of a vector-valued function. which is organized
in a column. with respect vector variable, which is also organized in a column.
is a matrix whose rows are the derivatives of the individual elements of the
vector-valued function with respect to the vector variable. Conversely, for the
derivative of a vector-valued function, whose elements are organized in a row,
with respect 1o a vector variable, whose elements are organized in a clomun, the
results is a matrix whose columns are the derivatives of the individual elements

of the vector-valued function with respect to the vector variable.

Finally, whenever a term or convention is introduced for the first time in this

thesis, it is explained.



2. Point-Wise Model Adequacy

During the development of a model-based Real-Time Optimization (RTO) system,
key design decisions include selection of the process model and adjustable
parameter set. Typically there are many modeliing alternatives, and an important
RTO system design task involves elimination of candidate process models which
are not adequate for the task of process optimization. This chapter deals with the
development of necessary conditions which a model must meet for a successful
RTO implementation. The necessary conditions presented here are the least
restrictive conditions which test the ability of the model-based optirnization system

to have an optimum coincident with the process optimum.

Perhaps the most common currently used method for differentiating among
modelling alternatives is comparison of their accuracy in predicting key process
variables, given a set-of operating conditions. This method would select process
optimization models based on their ability to accurately predict process outputs
given a set of process inputs; however, as Durbeck [1965] showed, and is
reinforced in this work, this method will not guarantee an adequate model for use
in a process optimization system. A more appropriate requirement of a candidate
process model is that it allows the optimization system to predict the manipulated
variable values which coincide with the values of the plant optimum operations.
Under this premise, the only match between the process and the model that is
necessary, for a successful RTO system, is the optimal values of the manipulated
variables. Further, from this perspective, an accurate estimate of profit level of

the process operation is of little value for determining optimal operations,

16
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although it may be useful for monitoring plant performance.

From the preceding discussion, it is evident that an estimate of the optimum
values of the manipulated variables for the true plant is required to evaluate
process models using the model adequacy criteria. One possibility for such
knowledge is when the plant optimum, for some nominal conditions, has been
found by direct process search [Box and Draper (1969), Garcia and Morari
(1980), MacFarlane and Bacon (1989)). More typically, in the design stages of
the process optimization system some nominal model will be used to represent the
process. The nominal model will not be perfect, but will represent important
effects to the extent that it is topologically similar to the real process. This
nominal model will then provide a base-line against which the modelling
alternatives can be compared. In this case, RTO modelling alternatives may
consist of anything from fixing some of the parameters in the nominal model to
various levels of model reduction, (e.g. tray-to-tray, collocation, sectional and
lumped distillation models). Regardless of how the optimum manipuiated variabie
values were determined, they are assumed to be available for the developments

of this thesis and will be referred to as the plant optimum throughout this work.

Then, with the plant optimum available, model adequacy for the system of Figure
1.1 can be briefly stated as:
Jor at least one set of values of the adjustable model parameters,
optimizing an adequate process model will yield the values of the
manipulated variables which are the same as the optimum values
Jor the plant.
Since generally, processes and their models are nonlinear, model adequacy at a
single point is valid for that paint only and will not guarantee adequacy anywhere
else. As some plants may have several sets of "normal" operating conditions, |

corresponding to different feed or product specifications and so forth, the model
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adequacy checks would typically be performed for each condition. Although
checking several sets of conditions increases the effort, this entire procedure is
performed only during the design phase of an optimization system and is intended

to exclude process model alternatives that cannot yield a successful system.

In this chapter, discussions will be broken into two parts. Developments will start
by considering the partially-constrained case, where there are fewer active
constraints than manipulated variables at the plant optimum. Such optimization
problems frequently arise in nonlinear plants when all safety, product quality,
equipment performance and product rate requirements can be satisfied by
adjusting some plant operating conditions, and additional degrees of freedom
exist, which can be used to increase profit. The chapter continues with a
discussion of the fully-constrained case, in which there are as many active
constraints as manipulated variables at the true plant optimum. The chapter

concludes with a discussion of the limitations of the methods.

2.1 Model Adequacy for Partially Constrained Systems

Consider a nonlinear plant with "»" independent manipulated variables, where the
optimum operation occurs at the intersection of "m" constraints, with linearly
independent tangent hyperplanes. Then, the dimension of the operating space for
the plant can be reduced from "n" to "m#-m". That is only "n-m" of the
manipulated variables have to be specified to uniquely determine the process
operation. For any physical plant two possibilities exist:
i) if m = n, the reduced operating space has zero dimension (a point)
and the optimum is uniquely determined by the active constraints.

This is termed the fully constrained case for the purposes of model
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adequacy testing.
ii) if m < n, the reduced operating space has some dimension greater
than zero and the optimum is not uniquely determined by the active
“constraints. This is termed the partially constrained case for the
purposes of model adequacy testing.
In either of these cases there may be more than "m" active constraints at the
process optimum, that do not have more than "m" linearly independent tangent
hyperplanes. The choice of which subset of the constraints to use for adequacy

testing is arbitrary and may be based on considerations other than those which are

the considered in this chapter.

In this section, discussions will concentrate on the determination of model
adequacy when the process optimum occurs strictly within a sub-space, having
dimension higher than zero, of the plant operating region. The fully constrained

case is dealt with in Section 2.2.

2.1.1 Theoretical Development

As indicated in the introduction to this chapter, model adequacy testing is based
on matching the optimal manipulated variable values for the plant. This will
require the model-based optimization system to meet certain optimality conditions
at such manipulated variable values. For the general inequality constrained
optimization problem, optimality is defined by the Karush-Kuhn-Tucker (KKT)
conditions [Edgar and Himmelblau, 1988]. A natural approach to determining the
adequacy of a process model would be to determine whether it is possible for the
model-based optimization to satisfy the KKT conditions at the values of the

manipulated variables which represent the plant optimum.
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Biegler et al. [1985] successfully used this concept in a related problem. They
employed the KKT conditions directly to show that the "inside-out” method of
Boston and Britt [1978], when applied to flowsheet optimization, does not
guarantee convergence to the optimum of the more rigorous model. The "inside-
out" method employs a rigorous process model in the outside optimization loop
and an approximate model in the inner loop. The rigorous model is used to
update a set of adjustable model parameters in the inner loop. Flowsheet
optimization is performed mainly in the inner loop, using the approximate model.
The "inside-out" methodology is similar to the process optimization system
presented in Figure 1.1, where the outer loop includes the process, which
~ provides process measurements for model updating., and the inner loop is the

model-based optimization.

In their work, Biegler et al. required that the optimum of the rigorous model be
a KKT point for the approximate model in the inver loop. Implicit in the
formulation of their adequacy criteria were the following assumptions:

i} all process variables in the rigorous model are included in the
approximate model, -

ii) the process operating constraints (equality and inequality) consist
of the same equations for both the approximate and rigorous
problems,

iii)  the approximate and rigorous problems should have the same KKT
multipliers. '

These assumptions lead to the conclusion that an inner model is adequate for use
in the "inside-out” method, if the gradients of the process model':, with respect to
the process variables and fixed plant parameters, can be forced to match those of

the outer model, by an appropriate selection of adjustable parameter values.

This method was very successful in illustrating the shortcomings of the "inside-
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out" method, but it assumes more correspondence between the approximate and
rigorous models than necessary for plant operations optimization. Typically, a
process model is a simplification of reality and as such may not contain ail of the
process variables. In the extreme, the model could include only those variables
which can be manipulated. Thus, the only necessary correspondence between the
plant and the process model is that they both must contain the same set of the
‘manipulated variables. Similarly, the operating constraint set for a process may
be much more complex than that implemented in an approximation. Since there
may be little direct correspondence between the structure of the plant and that of
the model used in the optimizer, beyond the manipulated variables, the actual
values of the dual and non-manipulated variables should not be used in

determining the adequacy of a process model.

A more app';{ipriate approach to determining model adequacy for operations
optimization would be the use of reduced space concepts [Avriel (1976), Fletcher
(1987)]. The central idea in reducing the optimization space of a problem is the
use of equality and active inequality constraints to eliminate some of the variables
in the optimization problem, thereby transforming a constrained optimization

problem into an unconstrained one.

Consider the general model-based optimization problem (which will be used
throughout this work):

minimize P(x,u,e,p)
x,u

S
—

subject to:

where f is the set of model equations, g is the set of operating constraints, P is

the objective function, u is the set of dependent process variables, x is the set of
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manipulated variables, « and B are the fixed and adjustable model parameters,
respectively. In order to express criteria for Point-Wise Model Adequacy in the
reduced space of the model-based problem, expressions for the reduced properties
of an optimization problem are required (see Appendix A). The main results of
Appendix A give the following expressions for the reduced gradient of the

objective function (P) :

V.p = [VP V,P|z 22
and the reduced Hessian of the objective function:
, ViL VZ,.L 23
V;p = \ ‘
Vixl VL

in terms of partial derivatives of the objective function or Lagrangian (L) with
respect to the independent manipulated variables (x) and the dependent process
variables (u), and a set of basis vectors (Z) for the null space of the Jacobian of
the active constralnt set. In the reduced space, the KKT conditions require
stationarity of the reduced oradlent and the appropriate definiteness of the reduced
- Hessian (positive for a minimum and negative for a maximum), at the optimum

of the resulting unconstrained optimization problem.

From Problem 2.1 it is clear that the relationship between the dependent and
independent process variables depends on both the process model structure and
parameters. It follows from Equations 2.2 and 2.3 that the reduced properties
of the objective function also depend on both of these. Then, a process model
can only be considered adequate if there is a set of adjustable parameters ()
which allows the model-based problem to have an extremum which coincides with
that of the plant, in the reduced operating space. Thus, criteria for determining

adequacy at a given point develop naturally from the necessary and sufficient
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conditions for optimality in the reduced space of the optimization problem.

The main advantage of a reduced space formulation of model adequacy is that
only those variables which determine the location of the process optimum (the
manipulated variables) must be considered. Exact matching of the process
gradients is required only for the reduced gradient of the objective function at the
optimum and the reduced Hessian need only be matched qualitatively. The dual
variables can be disregarded and there need be no correspondence between the
dependent process variables of the plant and process model. Model adequacy can

then be defined as:

Definition 2.1: Point-wise Model Adequacy

For the manipulated variable values X', representing an unique (local) plant
optimum, there must exist at least one set of values for the adjustable parameters
(B) such that the model-based optimization possesses an optimum at X',, in order
Jor the candidate process model to be considered Point-Wise Adequate. Further,
if this (local) optimun of model-based problem is unique with respect to x, then
the candidlate process model is strongly Point-Wise Adequate.

A mathematical expression of Point-Wise Model Adequacy is:

Criteria 2.1: Point-Wise Model Adequacy (Partially-Constrained Case)

If X', is an wnique plant mininum and 3 at least one set of values for the

adjustable parameters (B) such that:
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V.B,| =0
x
and
xTVEPmI_xzo Vxes
x
when:
xTvﬁPp’.x:.O VxeS
*5

then the process model is Point-Wise Adequate. Furthermore, if the inequality
constraints on the reduced Hessian of the model-based problem are strictly

satisfied, the model is strongly Point-Wise Adequate.

Direct use of the Point-Wise Adequacy criteria is illustrated with a simple

example.

Example 2.1.1; Minimal Approximation

In this example, for illustrative purposes, the model adequacy criteria are applied
to a very simple system. A minimal representation, involving only the
manipulated variables (x), for the Williams-Qtto [1960] reactor is examined. For
the reactor, the independent manipulated variables are the reactor temperature
(Tg) and flow-rate of reactant B (Fg). All of the process details are given with the
case studies in Section 2.1.3; however, these process details are not required for
this simple illustration of analytical model adequacy testing, since the use of a
empirical, quadratic model is examined. Consider the case where the model-

based optimizer is a response surface method using the quadratic form:

5!



min -P(x) = -P* - ﬁTx - ExTQx
% 2
where:
FB
x =
TR

In this example P" and Q are fixed, and B is adjusted in real-time. Consider the
specific case where:

Q- 0.3714 1.714><10-3}

T{1.714x10% 2.138x10%

By definition, using the plant optimum given in the case studies section
(x'p=[4.7836 kg/s 89.647 °C]"), this approximation is Point-Wise Adequate if:

V.P| = -fT- (x)TQ =0

b
can be satisfied by at least one set of values for the adjustable parameters.

Clearly, this criterion can be satisfied by § = [1.930 0.02737]". No adjustable

parameters appear in the second-order criterion, since:
ViP = -Q

and the model is strongly adequate since Q is negative definite.

Notice that the adequacy results are independent of the actual profit level, as P’
does not affect adequacy; in fact, the above expressions could be multiplied by
aﬁy posit{ye scalar without affecting the Point-Wise Adequacy of the
approximation. Also, the Hessian of the approximation was chosen as an
arbitrary negative definite marrix, illustrating that the reduced Hessians of the

plant performance and the model-based optimization problem need match only

T
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qualitatively with respect to definiteness. Although this is a trivial example, it is
useful for illustrating what is necessary in an adequate model. The adjustable
parameters (B) must be capable of taking on the values necessary for the reduced
gradient to vanish. Notice that we have not selected a method for determining B
based on plant data; thus, the determination of model adequacy is independent

of the model updating scheme used in the RTOQ system.

If this example is reformulated by fixing an element of B, it is possible to make
the model inadequate by not allowing the reduced gradient to vanish at x'p. The
problem can be made weakly adequate by choosing a negative semi-definite Q.
An indefinite Q will render the model Point-Wise inadequate. In general, since
some adjusiable 'parriméters may appear in the expressions for the reduced
- gradient and Hessian, both the first- and second-order model adequacy criteria

must be checked when assigning values to the adjustable parameters.

The purpose of the Point-Wise Adequacy criteria is to provide the syétem designer
with a tool which can be used to determine and eliminate those modelling
altemativés which cannot suitably approximate the plant behaviour at the process
optimum. The proposed model adequacy tegting procedure requires simultaneous
solution of the active constraint “and redﬁced gradient equations, subject to
restrictions on the reduced Hessian, given the plant optimum manipulated
variables (x'P) and the values of the fixed parameters (a). For the 'general non-
linear case, this will not easily be accomplished analytically; thus analytical
methods will be used for solving only the simplest problems. Most industrial-

scale probiems will require a numerical method due to their complexity.



2.1.2 Numerical Methods

Checking the Point-Wise Adequacy of a process model involves determining
whether or not some adjustable parameter values (B) exist such that the given
fixed point (x',) is an optimum of the model-based optimization probiem. If
values for such a parameter set exists, the process model may be deemed Point-
Wise Adequate at the given point. This criterion requires that an appropriate set
of simultaneous, nonlinear equations must be solved to determine the adequacy

of a process model. Thus, given x', and a, a value for B must be found such that:

£(x,u,ap) =0
g, (x5,u,a,p) =0
d: (xq_;.-um.r arﬁ) >0

n

I
(=]

V,_,P |:5 .

A >0 Vi=l,2,...,n

-

where:

A = eigenvalues of V2P

The non-negativity condition on the eigenvalues of the reduced Hessian is

equivalént to requiring po\Sitive semi-definiteness [Ortega (1988)].

When there is at least one set of values for B which satisfies Equations 2.4, then
the process model is Point-Wise Adequate. If this problem has no feasible

. solution, then the candidate model is not adequate for operations optimization.

Since x, is determined based on the plant and no correspondence between the
dependent variables of the modei-based problem and plant is required, there are

(m+tp) adjustable quantities (u,, and B) available to meet the model adequacy
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criteria. From Equations 2.4, the Point-Wise Adequacy criteria require of the

process model:

i) m independent quantities for feasibility (f and g;),
ii) n independent quantities for stationarity,
iit) n independent quantities to manipulate the problem geometry in

the reduced space.

Then, it follows that for the general Point-Wise adequate model with at least one
independent adjustable parameter in each equation, (m+p) = (m+2n) . Model
structure may ensure that certain principal sub-martrices of the Hessian have the
required definiteness properties; thus it may be possible to have an adequate
process model where (m+2n) > (m+p) = (m+n). The minimal approximation
in Example 2.1 is such a case. The dependent variables were eliminated from the
minimal approximation, thus m = 0. The Hessian of the approximation was
fixed, negative definite. Thus, only two adjustable parameters were required to

ensure stationarity and Point-Wise Model Adequacy.

It is not unusual for a process model to contain at least one parameter for each
model equation. ‘Hence, there are many plant parameters which could be updated
or adjusted on-line to satisfy Equation-2.4. Typically, not all model parameters
are observable from available process meésurements [Krishnan (1990)]; however,
the set of observable model parameters can be large. Further, in the case of real
plants, the manipulated variables can constitute a small subset of the plant
variables. For such situations, it is possible that there may be more adjustable
parameters than manipulated variables, since the number of model equations and
parameters are of the same order. More simply, in many industrial-scale
problems, there are an excess of degrees of freedom for meeting the adequacy

criteria. When there are excess degrees of freedom in the adequacy problem, it
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follows that there exist multiple solutions for B in an adequate process model.

. An adequacy testing method can exploit these excess degrees of treedom to
enhance the predictive characteristics of the process model. When some of the |
process model's dependent variables have physical meaning, a natural choice is
to match those dependent plant variables, for which values are available at the
plant optimum, as closely as possible. Since a process model is a simplification
of actual process behaviour, not all of the dependent plant variables will be
represented in the model (i.e. u,, has lower dimension the u,). Also, some of the
dependent variables within the process model could be composites of plant
variables. Thus, the:numerical problem of Equations 2.4 could be re-formulated
in such a fashion as to allow the adequacy criteria to be met with minimal
adjustment to those dependent variables which can be compared to available plant

data. Such a formulation would be:

min (% - Tw) W - Tw)

subject to:
f(xg,,u,;,u,ﬂ) =0 =
g. (%, u;, @, B) =0 2
g (xgnq;r'ar ﬁ) >0
v.e| =0
T g

Ade 20 Vi=1,2,...,n

The advantage of solving the adequacy problem in this manner lies in the
interpretation of results. When u,, and B have physical meaning, the solution of
Problem 2.5 can be examined for validity (e.g. parameters within plausible

ranges, deviation between plant and model dependent variables reasonable with
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respect to measurement uncertainty, and so forth).

Although the optimization Problem 2.5 will solve the adequacy problem, it
involves the explicit calculation of eigenvalues. These eigenvalue computations
are more complex than are required for use in an adequacy calculation. Since the
reduced Hessian of the model-based problem's objective function is real and
symmetric, the restrictions on its eigenvalues can be replaced by [Horn and
Johnson, 19851:

1 for strong Point-Wise Adequacy,

R4

de >0 Yi=1,...,n 2.6

2) for weak Point-Wise Adequacy,

|Yi[x5 >0 ¥i=1,...,n
max(| Y|} >0
where: v

Y, = principle submatrices of VZP.

The formulation of the model adequacy Problem 2.5 may be further modified by
adding inequality constraints to bound possible parameter and dependent variable
vaiues. Such bounds would be used when elements of u, and § have physical
meaning, with known limiting values. .

Implementation of the numerical method for determining Point-Wise Model
Adequacy, in either Equations 2.4 or Problem 2.5, requires a considerable effort
to produce the necessary derivatives (V. P and V* P) in high-order non-linear
models. These difficulties could be greatly alleviated through the use of symbolic
processing software such as MAPLE [Char et al., 1991] or MATHEMATICA
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[Wolfram, 1991]). If such software is not available and the problem under
consideration prohibits manually determining the various derivatives. it is
possible to generate approximations by finite differences {Gill, Murray and
Wright, 1981]. This will require converging the plant at points about the

optimum, in the reduced space.

The model adequacy problem as posed in Problem 2.5 , Equations 2.6 and 2.7 can
prove difficult for NLP solvers to handle, even with symbolic computation or
difference approximation of the reduced gradient and Hessian. Further, care must
be exercised when the reduced Hessian is semi-definite at the plant optimum. In
such cases higher-order derivatives of the objective function must be checked to
determine the geometry of the model-based optimization problem [Ray and
Szekely, 1973], increasing the difficulty in solving the adequacy problem. An _
alternative formulation, which can avoid the computational complexities of
determining derivatives of the objective function, based on the definition of an

optimum [Avriel, 1976]:

if X" is a minimum of the function P(x) then,
P(x') < P{x"+&6x) VoéxeB

i
where B is some finite neighbourhood of x”,

replaces the conditions on the reduced gradient and Hessian with a set of
inequality constraints. If a mesh of points were to be set up around the plant
optimum (x'p), the constraints on the reduced properties in Problem 2.5 could be
replaced with the provision that the value of the objective function at each of these
grid points must be greater than that of the optimum point. ‘Then, any method
based on this idea eliminates the need for calculation of the reduced properties,

at the expense of converging the plant at points in the neighbourhood of the plant
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optimum. Thus, the model adequacy problem can be posed as:

min (u; - Tup) Wl - Tw)

B
subject to:
f.(g,0,a,p) =0 2.8
g (X%, Un, 2, B) = 0
gy (%, Un, @, B) >0
Plxg,un, a, B) < Plx+dx,un(%5+8%,) , a, B)

i=1,...,n

In order to ensure that x'p is the optimum of the model-based problem, according
to the definition of a local optimum, it is necessary to check every feasible point
in some small neighbourhood about x’,. Since it is not practical to test al
neighbouring points, a grid geometry for some small number of points must be
chosen. For the purposes of testing for model adequacy, a grid was chosen which
contains two points for each element of x and one at the plant optimum. The
distance between grid points (8x;) was selected to be small with respect to the
curvature of plant performance, yet sufficiently large that flowsheet convergence

tolerances are not significant relative to the grid spacing.

The choice of the number and positions of the grid points can be crucial to the
success of this method. Figure 2.1 demonstrates some of the possible difficulties
which can arise when using the numerical adequacy method of Problem 2.8.
Figure 2.1(a) shows the ideal placing of the grid. The optimum of the
approxXimate problem is contained within it. However, even in this case the plant
optimum and the optimum of the model-based problem do not exactly coincide.
This will be of little concern when the grid spacing is sufficiently small. Figure
2.1(b) illustrates a possible solution to the problem of Problem 2.8, which does

not have an optimum that coincides with the plant optimum. Such a situation can



occur no matter how fine the grid is. whenever the condition number of the

reduced Hessian is large. Although it is possible to eliminate the problem by the

addition of grid points, a simpler approach would be to rotate the original grid to

align with the eigenvectors of the reduced Hessian of the profit function, as in

Figure 2

-1(c), and re-solve Problem 2.8. Finally it is also possible that an

inadequate model is a solution to the optimization Problem 2.8, as is shown in

Figure 2.1(d). In this case rotating the grid along the eigenvectors of the reduced

Hessian will help, as will adding extra points to the grid or calculating the

reduced Hessian for the approximate problem and checking its eigenvalues.
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Grid Placement for Adequacy Testing
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Thus, checking model adequacy using the formulation of Problem 2.8 is an
iterative procedure. An initial grid is set up, and the adequacy problem solved.
For this solution to the adequacy problem, the eigensystem of the reduced Hessian
of the objective function is then examined. “If necessary, the grid is modified,

either by rotation or adding grid points, and the entire procedure repeated.

Upper bounds, based on a quadratic approximation to the response surface of the
model-based optimization probiem, for the distance (&) between the plant optimum
(x,) and that of a process model (x,,") which satisfies the adequacy Problem 2.8

are presented in Appendix B. The main results are:

i) for the rectangular grid structure proposed here,
max | 8%,
jef < Texlisxl) 29

V2

i1} for the rectangular grid structure aligned with the

eigenvectors of the reduced Hessian,

max (| 8x,] } 210
\/5_

Of the two proposed numerical methods, that outlined in Problem 2.5 is

lel <

preferable, because of its ability to ensure model adequacy when a solution is
found, along with providing information on the ability of the model to match
procesé outputs and geometry. The method of Problem 2.8 is easier to
implement, so it may be preferable for larger problems in which analytical
determination of reduced properties of the objective function is prohibitive. Use

of this method is illustrated with a simple example.
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Example 2.2:

Example 2.1 used a minimal approximation of the form:

P(X) =P + fx + %xTQx
to illustrate model adequacy for the Williams-Otio reactor. It was shown to be
adequate for the specific value of Q given in Example 2.1. Consider the case

where Q is fixed at another value:

_|2-.518x10* 856.9

Q= ~lgs6.9 12.96

If the numerical adequacy testing procedure of Problem 2.8 is used with a grid
of five points at X', X', +8x, and X', +8%,, for &%, = [0.0126 ke/s 0°C]" and
o, = [0 kg/s 0.556°C]", the Point-Wise Adequacy problem was successfully

solved with:

g o [} 973x10°
5.261x10°

with a profit of approximately $2/s more at x'p than at the other grid points.

Before accepting the model as Point-Wise adequate, the definiteness of the
reduced Hessian of the model-based problem should be checked. The reduced
Hessian (Q) in this example is indefinite, and therefore x'p corresponds to a saddle
point in the reduced space. This situation is illustrated in Figure 2.1(d). The
model is clearly not Point-Wise Adequate according to Criteria 2.1, regardless of
its passing the preliminary numerical testing procedure and serves to illustrate the
care with which numerical adequacy results must be treated. Rather than
checking the reduced Hessian, the same result could be found by rotating the grid

to align with the eigenvectors of the reduced Hessian, and then:re-running the
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adequacy check. When the grid was aligned with the eigenvectors of the reduced

Hessian, the NLP solver did not find a solution to Problem 2.8, also indicating

an inadequate model.

2.1.3 Williams-Otto Reactor Examples
Use of the Point-Wise Model Adequacy criteria can be illustrated using the

reactor from the Williams-Otto plant [1960] as modified by Roberts [1979].

Figure 2.2 provides a flow diagram for the reactor. (The entire Williams-Otto

r-;l 5
R

heating / '
cooling

Figure 2.2: Williams-Otto Reactor

plant is treated in detail in Chapter 6).

This is an ideal CSTR with the reaction sequence:

A+B-C . k, = 1.6599x10°% e75¢%¢-7/%
B+C-P+E cky = 7.2117x108 e85
C+P-G . K, = 2.6745x10%2 g 1%
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In this example instantaneous profit is to be maximized. Profit is expressed as a

function of feed and product tlowrates:
P(x,u) = 1143.38 X ;Fy + 23.92 XF; - 76.23 F, - 11434 F,

As in Roberts [1979], the case study was simplified as follows:

i)  the flowrate of Reactant A to the reactor (F,) is fixed at 1.8275 kg/s,

ii) the recycle stream flowrate in the original problem definition is set
to Zero,

iii) the flowrate of Reactant B to the reactor (Fy) and reactor temperature
(Tg) »re the manipulated variables, thus in this case x = [F, T

iv) all other variables are dependent,

v) upper and lower limits on the manipulated variables are the only
inequality constraints,

vi) excess heat generated by the chemical reactions can be removed from
the reactor without significant cost (i.e. equipment cooling / heating
duties within the reactor are not limiting),

vil) only steady-state operation is considered.

As a result, the reactor model consisted solely of material balances and simple
bounds. Figure 2.3 displays a plot of the profit function of the plant versus the

~ manipulated variables, for a typical operating range.

In the reduced space of the optimization problem, for the given operating range,
the plant profit surface is strictly convex. It has a unique local optimum at :

T = 89.647°C
E, = 4.7836 kg/s.

This was found using MINOS 5.1, in GAMS [Brooke et al. (1988)], based on
cost information supplied in Williams and Otto [1960]. This optimum was
different from that found by Roberts [1979); however, since his costing

information was unavailable, this is expected.
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Figure 2.3: Williams-Otto Reactor Profit Surface

In most cases, the process model used by the optimization system would not have
the same structure as the true plant. Thus, for the purposes of these examples,
two possible approximations to the reaction system are considered for use in an

operations optimization system. These elementary reaction systems are:

D the single reaction approximation, B
A+2B P +E o
2) the two reaction approximation,
A+2B>P+E

A+B+P—>G.

Although there are other elements of the reactor which could be approximated,

discussions are limited to the reaction kinetics to simplify the examples.



39
Single Reaction Approximation

Roberts [1979] approximated the Williams-Otto reaction sequence with a single
reaction. In this approximation, components which are present in small amounts,
and the reactions which produce them, are disregarded. Further, components
which do not explicitly appear in the profit function are neglected. These

considerations produced the single reaction system:
A+2B-P+E ...k=peMn

In a case study, Roberts [1979] demonstrated that operations optimization of the
form shown in Figure 1.1, using the single reaction mode!, does not converge o
the plant optimum. He termed this approach a conventional two-sﬁ?p method
because the model updating and optimization were performed sequentially and
independently during each iteration. In his study, model parameters are estimated
using the common prediction error formulation and the updated model parameters
are used in the model-based optimization to predict the optimal manipulated
variable values at each iteration. The reason this two-step methcd_failed for the
single reaction approximation to the reactor kinetics is apparent from F igure 2.4,
which gives the geometry of the optimization problem. The response surface for
this approximation is negative semi-definite, whereas the actual process response
surface is negative definite. As such, the single reaction approximation is only
weakly Point-Wise Adequate and not appropriate for use in the operations
optimization system of Figure 1.1, as the model-based optimization problem lacks

strict convexity. This result can be shown analytically.
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Figure 2.4: Profit Surface for Single Reaction Model
(using parameters in Table 2.1)

* The model for the single reaction approximation to the Williams-Otto reactor

consists of the following equations:

material balances;
[ /-' . )
18275 -FX, - X, X" =0
FB -FRXB-_erAXBE=O

o

erA XB: "FR XE = 0
I'XA -XB: ‘FR Xp = 0
Fp - 1.8275 - F, =0

_ reaction rate expression, -
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The objective function is:
| P(x.u) = 1143.38 Fy X + 25.92 Fy X - 114.34 F, - 139.31
The manipulated and dependent variables are:
Xx=[F Tel'andu = [Fy X, X; Xe Xp 1T,

respectively.

Then, from Equation 2.2, an expression for the reduced gradient is:

0 0
1 0
0 0
V.p = [-114.34 0] -¢'| O 0
-1 0
-B,/T,
0 _vﬁlﬁze b/
Tr
where:
-1
Xa X X Xe 10 (1143 .83X,+25.92X,]
-Fe-rXE  ~2rX2 2rxd X2 o0 0 0
—2rX Xg -Fr-4rX,X, 4rX, Xy 2rX,X; 0 0 0
c = =
a 0 -F; -~ 0 00 25.92F,
0 Q... 0 -Fy 00 1143.83F,
XX -2xx2 0 0 01 0
simplifying:

CeV B Pe T
TS

VP =[-114.34 Q] + g, -c,

The derivation of this result made use of the observation that the Jacobian of the
constraint equations and the partial derivative of the profit function, with respect

to the dependent variables, are explicit functions of the dependent variables only.
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No model parameters are present in these structures. Thus, their product is a
constant matrix, dictated by the values of the dependent variables necessary to
ensure feasibility. Finally, the Jacobian of the constraint equations with respect

to the dependent variables is full rank and therefore invertible.

Stationarity requires that the reduced gradient of the objective function vanishes

at the optimum. Thus, it follows that at the optimum x';:

c, - C = -114.34

CE v ﬁl Bze"B:/Tn

=0
TR

Since reactor temperature must be finite and the reactor volume is non-zero,

+0 and e™% + 0V |B,| <o

Al

hence:

Bif, = 0.
However, since there is product present in the reactor effluent, some reaction
must be taking place. Therefore the parameter B, must be non-zero. Stationarity
then requires that B, = O and the model must have a reaction rate which is
independent of reactor temperature. The value of the remaining parameter (8,)

can be adjusted so as to make the first element of the reduced gradient vanish.

Since stationarity can only be met when the single reaction approximation is
independent of temperature and reactor temperature appears nowhere else in the
model, the reduced Hessian of the objective function is at best negative semi-
definite for any set of adjustable model parameters. Thus, the single reaction
approximation is only weakly adequate. This example is much simpler than a

typical industrial-scale problem. However, it provides a clear example of the
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importance of structure on model adequacy for operations optimization.

The single reaction approximation was tested using the numerical methods

presented in Section 2.1.2. The results are shown in Table 2.1:

Table 2.1:  Single reaction approximation numerical Point-Wise
Adequacy results.

Method By B,
algebraic (Problem 2.3) 179.8 0.000
erid (Problem 2.8) 179.8 0.000

The results of the two numerical methods agreed with the analytical values, as
shown in Table 2.1. The grid spacing was chosen at the assumed accuracy of the
instrumentation, 0.6 °C for reactor temperature and 0.0126 kg/s for Reactant B
flow-rate. Model convergence tolerances were set to within one-tenth of these
values. The resuits in Table 2.1 were checked by fixing the reactor temperature
at the optimum value and calculating the optimum flow-rate of reactant B. This

produced the same flow as the plant optimum.

Figure 2.4 verifies the results of the model adequacy testing procedures by °

showing that the response surface for the single reaction approximation can have

a max’mum at the plant optimum, but it is not a unique extremum. Setting the .

operating conditions at a flowrate of 4.7836 kg/s and any reactor temperature
would yield the same profit measure. This is a very poorly posed problem for
any conventional optimization algorithm. Thus, this approximation is not adequate

for use in the operations optimization system of Figure 1.1.

)



Two Reacti N

The simplifications which led to the single reaction approximation of the
Williams-Otto reactor, eliminated the curvature of the plant profit surface in the
temperature direction. This can be recovered by observing that.one of the plant
reactions consumes the primary product P. This reaction is much more
temperature sensitive than the others, thus producing strict convexity with respect
to reactor temperature. Perhaps, a more natural plant approximation would

involve the reaction sequence:

A+2B~D+E ook
A+B+P-G Lk

Bl e’B;/TR
Bj e'ﬂ;/TR

with all the ;s adjustable. The response surface for this approximation is given
in Figure 2.5, using the adjustable parameter values in Table 2.2. Figure 2.5
shows that the two reaction approximation exhibits curvature in both directions
and appears to be capable of adequately representing the true process at the

optimum.

The model for the two reaction approximation to the Williams-Otto reactor
consists of the following equations:
material balances,
1.8275 -FeXa - XX LX XX,
Fy -FeXp 2 1 XX X X:Xp
20 X, Xy -Fe X =
3 X XgXp - FpXg =
nLX. X R X =
Fy -Fp  -1.8275 =

reaction rate expressions,

o O O O o o

£



The objective function is:
P(x,u) = 114338 Fy X + 25.92 Fy X; - 114.34 F; - 139.31
The manipulated and dependent variables are:
x=[Fp Tl'andu = [Fy X, Xz Xz X¢ Xp 1, ],

respectively.

200 800
0
p S
2 =
= 8
% a.
1400 -1400

Figure 2.5: Profit Surface for Two Reaction Model
(using parameters in Table 2.2) ..
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Following the procedure described in the single reaction approximation case, the

reduced gradient of the performance function is:

00001000 -1 0 0 cs
- Blpze-pﬂrn - B:ﬁqe-BJT“ Ceg

ap [-114 .34
Ta Ts 0

0 ]"ooooooooo

simplifying:

Cq = Cs
-114 .34 DL -
db . [ } + | Cp BB Pa/: + c,, B;B.8 P/
Ta T%

The second expression can be simplified to:

Blﬁze'ng'ra + -Y Baﬁ‘le_ﬁa/'ﬂi = 0

where:
=5

Y
C1o

—

This has an iﬁfuﬂte number of solutions for finite T, and non-zero B;. Since the
stationarity condition can easily be met with this approximation, the definiteness
of the performance function's reduced Hessian must also be checked. This is not
easily accomplished, analytically, and serves to highlight the need for a numerical
method. However, Figure 2.5 clearly shows that the reduced Hessian is negative
definite. Thus, for an appropriate set of model parameters the two reaction

approximation to the Williams-Otto reactor is strongly Point-Wise Adequate.
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Table 2.2 presents the results of numerical adequacy testing.

Table 2.2: Two reaction approximation numerical Point-Wise Adequacy results.

Method B B: By B,

algebraic (Problem 2.5) | 4.611x10" | 13,153 | 2.582x10™ | 18.808

erid (Problem 2.8) | 4.040x10° | 13,066 | 2.357x10% | 18.749

' The same grid was used as in testing the single reaction approximation, 0.6°C for
reactor temperature and 0.0126 kg/s for Reactant B flow-rate. Several starting
points were chosen for the algebraic and grid methods, in each case they
converged to the values given in Table 2.2. Both methods yielded very similar
results, In comparable convergence times. As expected, the two reaction
approximation yields multiple Point-Wise Adequate solutions for the adjustable
parameters (B). Differences in the calculated adjustable parameter values are of
little concern at this point, since only model adequacy is being checked. These
results were checked by optimizing the model using the parameter values in Table
2.2. In each case the calculated optimum values for the manipulated variables
(reactor temperature and flow-rate) in the two reaction approximate problem

coincided exactly with the plant optimum manipulated variable values.

3
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2.2 Fully-Constrained Point-Wise Model Adequacy

Section 2.1 examined the partially constrained case of Point-Wise Model
Adequacy, where there were excess degrees of freedom for optimization available
after satisfying all of the product quality and plant operating constraints. This
section will examine the situation where optimal plant operation is uniquely
specified by the equality and active inequality constraints. More specifically, for
a (nonlinear) plant with "#" independent manipulated variables, where the
optimum plant operation occurs at the intersection of "m" constraints, with
independent tangent hyperplanes. The fully constrained case occurs when m =
n and the reduced operating space has zero dimension (a point). As mentioned
in the preamble to Section 2.1, there may be more than "m" active constraints at
the process optimum, that do not have more than "m" independent tangent
hyperplanes. Again, the choice of which independent subset of the constraints to
use for adequacy testing is arbitrary and may be based on considerations other

than those which are the considered in this work.

In this section, discussions will concenirate on the determination of model
adequacy when the optimum operations policy is uniquely determined by the
model equations, product quality and process equipment constraints. This
situation is of particular interest since it often occurs when the plant is
approximated by linear models. Common examples are Linear Programming and
Quadratic Programming for operations optimization, such as are found in modern

constraint-handling control systems [Yousfi and Tournier, 1991].
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2.2.1 Theoretical Development

Throughout this chapter model adequacy has been defined as the ability of the
model-based optimization system to match the optimal manipulated variable values
for the plant (Definition 2.1). Since model adequacy is framed solely in terms of
the manipulated variables, adequacy testing is more simply performed in the
Reduced Space [Avriel, 1976] of these manipulated variables. Reduced Space
techniques utilize equality, and in some instances active inequality, constraints to
eliminate dependent process variables from the optimization problem. For the
partially-constrained case of model adequacy (Section 2.1) both the equality and
active inequality constraints were used to reduce the dimension of the optimization
space. If this approach were adopted in the fully-constrained case, the dimension
of the reduced space would be zero and adequacy testing would be framed in
terms of ensuring that the appropriate constraint set was active and intersected at
the plant optimum manipulated variable values. Although this approach would be
viable, it would not provide the interpretive characteristics of the approach used
in this section. These interpretive characteristics are exploited in Chapter 3 to
explore the robustness of model-based optimization systems using bias updating
to modelling errors.

| _lfor the purposes of developing a Point-Wise Model Adequacy test for fully-
Eonstrained systems, the optimization space is reduced using only the equality
constraints in the process model. This eliminates dependent process variables
from the model equations and inequality constraints, allowing adequacy testing to
be framed in terms of the manipulated process variables alone. In this Reduced
Space, the Karush-Kuhn-Tucker (KKT) conditions [Edgar and Himmelblau, 1988]

can be used directly to yield criteria for Point-Wise Model Adequacy:
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Criteria 2.2: Point-Wise Model Adequacy (Fully-Constrained Case)

Given a unique process optimum x,’, the candidate process model, of the form
given in Problem 2.1, is Point-Wise Adequate only if there is at least one set of

values for the adjustable parameter B € B such that:

V.p-uyvg =0 2.11
where:
g; 2 0 V¥V i=1,...,m 2.12

and:

]

£ (x5, un, a, B)
O (X5 Un, &, B)
g; (x5, uq, @, B) >

1]
o O O
2]
—t
(W)

The derivation of these expressions is presented in Ai_)pendix A. Notice that in
this formulation the Lagrange (or KKT) muitipliers for the :;ctive inequality
constraints have been reintroduced into the adequacy problem. T1;1e addition of
these variables to the adequacy problem slightly increases the "complexity of the
testing procedures; however, any increase in complexity is off-set by the
usefulness of the formulation, as will be illustrated in Chapter 3. Further, no
direct correspondence is assumed between the multipliers for the plant and model

constraints, other than their signs.

As explained in Section 2.1.2 for the partially-constrained case of Point-Wise
Model Adequacy, there may exist multiple solutions for the adjustable parameters
(B) which ensure an adequate model. These excess degrees of freedom can be

used, as in Section 2.1.2, for solving the model adequacy problem while
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simultaneously matching the dependent process variables as closely as possibte.

For the fully-constrained model adequacy case the problem can be formulated as:

m%n {(Un - ToR) ™ W (g - Tup)
subject to:

Vx.‘P - P‘Tvrgzx

U

£ (x5, un, a, B)

gA (Jc!;rur;u x, B)

g; (%o, Un, @, B) >

[\

1]
oo o OO

As discussed previously in Section 2.1.2, Problem 2.14 can be further refined
by the addition of bounds on the adjustable parameters and the dependent process

variables when they have physical significance.

The fully-constrained Point-Wise Model Adequacy criteria can be illustrated with
the following simple example.

2.2.2 Fully-Constrained Model Adequacy Example

In this example we will examine the Point-Wise Adequacy of a process model for
several proposed values of the fixed parameter (¢f). Consider the model-based

optimization problem of the form:

maximize 1 0.51)x
subject to:

2 4

4 o¥5 p

where B is the set of adjustable model parameters. Since the adjustable model

parameters all appear in the "bias" term of the constraints, any optimization



52
system of this form is said to use bias model updating. Such systems will be dealt

with in detail in Chapter 3 of this work.

In the design phase of the optimization system, the value of the manipulated
variables at the process optimum were determined to be X', = [1.67 1.67]",
using a detailed nonlinear model. The coefficient matrix in the problem contains
some error-free known values (such as stoichiometric coefficients, etc.) and a
- fixed parameter. The fixed model parameter (@) is estimated infrequently (eg.
daily or weekly), compared to the execution frequency of the optimizing
controller and is therefore considered "fixed". In this case, the estimated
"nominal” value for o is 2. Then, the solution to the model adequacy problem
of Equations 2.11 and 2.13 in Criteria 2.2 yields: '
= [10 10]7, np = [0.0033 0.2483]".

* As both elements of p are positive, the given values of the manipulated variables
(x‘F) are an Op;imum of the model-based problem, and the process model can be

considered Point-Wise Adequate.

Although o is fixed there is some uncertainty associated with its value. Suppose,

because of this uncertainty, o were to have a value of 2.03, then the only value
ﬁ of the adjustable parameters for which X', can be made a solution of Equations
2.13 of the model adequacy problem is:

" = [10 10.083]".
However, for this value of a, the solution to Equation 2.11 of the adequacy
problem yields:

p = [-0.00084 0.2504]°

and according to the Point-Wise Model Adequacy Criteria, the process model
cannot be considered adequate. This conclusion can be confirmed by substituting
a = 2.05 and the calculated value of B into the example, and solving. In this

case the optimum of the model-based problem is at x", = [2.5 0]%, which does
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not coincide with the given process optimum. Thus for this bias update case,
there are values of B for which the given X', is a feasible point, there is no way

to update B to yield the plant optimum.

From this example, it is apparent that model adequacy can be very sensitive to the
values assigned the fixed model parameters, which motivates our desire for a
method to determine permissible ranges of variation in a for which the mode! will

remain Point-Wise Adequate. This is investigated in Chapter 3.

23 Discussions

Previous work has shown that the success of a model-based Real-Time

Optimization system is dependent upon the quality of the process model embedded
within it; however, currently available methods have not provided a way to test
the adequacy of 2 candidate process model. This chapter. has presented local,
necessary conditions for the success of a model-based RTO system, in the form
of Point-Wise Model Adequacy Criteria, where model adequacy has been defined
as the ability of the model to have optimum operating conditions coincident with
the plant optimum, through the adjustment of selected parameters. From this
criterion, methods were developed for determining the Point-Wise Adequacy of
a model-based optimization system. Such methods will allow the system designer
to investigate the suitability of a process model for use in an optimization system

prior to implementation.

The main weakness of the Point-Wise Model Adequacy methods presented in this
chapter is that the values of the manipulated variables, as well as the active

constraint set, must be known at the process optimum. Such knowledge can be

4
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developed through direct plant experimentation, process experience. or using
highly complex process models that may be unsuitable for use in a Real-Time
Optimization system. A further disadvantage of rhe adequacy testing methods is
that results are only locally valid, for the postulated active constraint set. Then
to ensure a process model can adequately reflect many possible plant operation
modes, the adequacy tests must be run for each of these operating points.
Unknown or unexpected changes in the process equipment or active constraint sets
can render an otherwise adequate process model inadequate, regardless of the
extensiveness of adequacy testing during sysiem design, since testing a large

number of points does not ensure adequacy throughout a region.

Despite the possible shortcomings of the model adequacy testing methods
presented here, they allow candidate process models to be evaluated using the best
available process knowledge. As a result, inadequate formulations can be
eliminated without extensive simulation testing of the integrated model update /
optimization system. Inaddition, the Point-Wise Adequacy checks provide insight
for model building and updating, since some adjustable parameters should appear
in the expressions for the reduced properties of the objective function to affect the

success of the operations optimization system.

14




3. Model Accuracy & Bias Update Systems

Chapter 2 presented a general set of Point-Wise Model Adequacy tests, which
could be used for any operations optimization systems, of the form in Figure 1.1,
to determine whether a given model-based optimization system is capable of
having an optimum coincident with the plant optimum. In this chapter, model
adequacy is used to investigate optimization systems which use the bias update

technique for process model updating.

Figure 3.1 depicts one of the simplest forms of model-based optimization systems.
In this configuration the optimizer calculates the optimal steady-state values of the
manipuiated variables, based on process economics, which are fed directly to the
plant. Often there is a model predictive controller between the optimizer and the
plant, which achieves the final steady-state operation determined by the optimizer
[Brosilow and Zhao (1988), Cutler and Ramaker (1979), Yousfi and Tournier
(1991)]; however, since this bhapter considers=the ability of the optimization
system to determine the steady-state optimum operations of the plant; with respect
to economics, these discussions are limited to the case of direct online

optimization, without any loss of generality.

In the system of Figﬁre 3.1, plant outputs are compared with those predicted by
the process model. The difference between the actual and predicted plant outputs
is used to update a "bias" or constant term appearing in the constraints of the
model used by the optimizer. (The "raw" updates may be filtered to modify the

dynamic behaviour of the RTO system, providing the steady-state gain of the filter

-
“r

35
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is unity). Then, the updated process model is used to calculate the optimai

steady-state manipulated variable values.

4

optimizer

filter

|

-+

=l

Y

model

plant

Y

Figure 3.1: Simple RTO System with "Bias" Update.

Model predictive control (MPC) systems make extensive use of the bias updating
method [Garcia, Prett and Morari, (1989)]. It has been shown that for linear
systems with model updating at the control fréquency, MPC systems yield zero
steady-state offset for step-like disturbances in processes where the number of
manipulated variables is equal to the number of setpoints. The success of the bias
update method within the MPC structure has motivated control practitioners to
incorporate it into the steady-stﬁte econontic optimization layer [Brosilow and
Zhao (1988), Stadnicki and Lawler (1985), Yousfi and Tournier (1991)].
However, to date there has been no analysis of the merits of bias update in

steady-state optimization.

This chapter concentrates on the steady-state, optimizing control problem
presented in Figure 3.1.. The model-based optimization is generally a nonlinear

programming problem of the form:
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maximize P(x,u)
£u

(%]
—

subject to:
fxua) - p, =0

g(xaua‘!) - Bz <0

where f is the set of process model equations including mass and energy balances.
thermodynamic relationships, et cetera, g is the set of operating constraints, P is
the profit function, u are the dependent process variables, x are the manipulated
variables, « are the fixed model parameters and B; are the adjustable model
parameters. Note that in this expression of the optimizing controt problem, ail

adjustable model parameters appear in the bias terms (B;).

This chapter is restricted to the problem where there are as many independent,
active constraints as manipulated variables at the process optimum (x’)). This
situation merits special attention due to the widespread use of Linear Program
(LP) and Quadratic Program (QP) based optimization systems [Brosilow and Zhao
(1988), Garcia and Morshedi (1986), Morshedi et al. {1985), Yousfi and Tournier
(1991)]. Although this formulation is specific, it is commonly used in optimal,
model-based, predictive control systems and as such has considerable industriai
relevance. Re-writing Problem 3.1 to explicitly show the active and inactive

inequality constraints yields:

maximize P(x,u)
b A
subject to: 39
fxua) - B, = 0 '
gA(x,u,a) - ﬁz,A = 0

g1 (x,0,x) - Bz,l < 0

As discussed in Chapter 2, the constraints which are active at the process

optimum wiil usually be identified by detailed process knowledge, case study or



plant experience.

In this chapter, for the bias update case, methods are developed to determine the
process model's adequacy, (i.e. the ability of the updated model to sufficiently
represent the process geometry so that the plant and model optima coincide) and
to determine the accuracy of the process model, (i.e. its ability to yield the plant
optimum despite uncertainty in the fixed mode! parameters). These methods are
developed for the general non-linear RTO system using bias update; however,
they are also applicable to the linelar case. Since many industrial applications
involve linear process models and c‘bnstraints (e.g. Yousfi and Tournier [1991]),
an analytical method for determining the effects of uncertainty in the fixed
parameters of such linear constraints is presented and the method's relationship
to post-optimal sensitivity analysis discussed.. Finally, all of the methods are
illustrated with an example built around a gasoline blending optimization and

control system,

3.1 Point-Wise Model Adequacy & Bias Update

As discussed in Chapter 2, process model selection is an important step in the
design of an optimization system. Even within the bias update framework, there
are many modelling alternatives, and a criterion is needed to distingnish models
which are adequate for use in a Real-Time Optimization system from those which
are not. Chapter 2 defined an adequate process model as one which would enable
the optimization system to predict the manipulated variable values which give the
location of the piant optimum, regardless of the model's accuracy in predicting
the process outputs or profit measure. This idea is the central concept on which

model adequacy is tested and is the basis of Definition 2.1.
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This chapter examines optimization systems where there are no degrees of
freedom for optimization once the product quality and process operating
constraints are met. In such cases. the optimum is uniquely specified by the
equality and active inequality constraints (see Section 2.2). Thus, the Point-Wise
Model Adequacy Criteria 2.2 for the fully-constrained case is specialized to
optimization problems utilizing bias update. Then model adequacy can be stated

in terms of the reduced properties of the optimization problem as:

Criteria 3.1: Point-Wise Model Adequacy (Bias Update Case)

Given a unique process optinum X, the candidate process model, of the form
given in Problem 3.2, is Point-Wise Adequate only if there is at least one

adjustable parameter set B € B such that:

VP -pu"Vg, =10 3.3

where:

f(xu@) - B, = 0
A%y 0y, @) = Byy = 0 3.5
g(%ya) - By >0

Notice that in the bias update formulation, the adjustable model parametérs {8}

are used only to ensure feasibility and to satisfy the active status of the

appropriate inequality constraints, in Equations 3.5. They do not enter directly
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into the optimality conditions of Equations 3.3 and 3.4. Thus, for the process
model form under consideration and the specific constraints active at the process
optimum, the optimality of the given point in the model-based problem depends
entirely on the fixed model parameters (e). This is a particular weakness of the
bias updating strategy (recall that only B is adjusted). Example 2.2 illustrated
some of the difficulties of providing an adequate model within the bias update

structure.

3.2  Model Accuracy Testing

In general, the plant optimum is unknown and the system designer must make
process modelling choices based on the results of detailed simulations, coupled
with knowledge of likely process variation and modelling errors. One of the
decisions in the design of Real-Time Optimization systems is the segregation of
the model paramefers into adjustable and fixed sets. Selection of the bias updating
method dictates which parameters will be fixed and which are adjustable. Given
that all model parameters are subject to some uncertainty, Section 3.1 and
Example 2.2 clearly showed that bias updating will not guarantee that the model-
based optimization will find the plant optimum when there are errors in the fixed
parameter; however, optimization system performance would be good over a wide
range of operation if results of modei-based optimization are robust to expected

errors in the fixed parameters.

Friedman and Reklaitis [1975 (a) & (b)] studied a related problem in which they
examined the possible set of solutions to a linear programming problem, given the
presence.of parametric errors. However, their interest was in determining the

space of possible solutions given a pre-specified uncertainty in the model
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parameters and then choosing process operations which would provide the
appropriate flexibility to ensure feasible operation throughout the possible range
of model parameter values. .In Point-Wise Model Accuracy testing we are
interested in determining whether the plant optimum will remain the sotution to
the model-based optimization problem throughout the range of possible parameter
errors. Or alternatively, accuracy testing can be used to determine the maximum
amount of parameter error for which the plant optimum remains the solution to

the model-based optimization problem.

Consider the two-dimensional optimization problem illustrated in Figure 3.2. In
this situation the optirnum is found at the intersection of two constraints (g, and
g:). When such a point is an optimum, the reduced gradient of the performance
function (V,P) is contained within the cone bounded by the most limiting reduced
gradients of the active constraint set (V, g4), or equivalently all of the Lagrange
multipliers (i) are positive [Edgar and Himmelblau (1988)]. Then by definition
this model is adequate, if the point of intersection of g, and g, can be made to be

the process optimum (x°;) by an appropriate choice of values for the ad}us[able

parameters.

Given that the process model is of the form in Problem 3.1 for which there are
as many independent active constraints at the plant optimum as manipulated
variables, uncertainty in the fixed parameters is interpreted as uncertainty in the
slopes of the inequality constraints in the reduced space or the reduced gradient
of the profit function. Figure 3.2 shows the case where there is uncertainty in a
fixed parameter on which g, depends. The region through which the fixed
parameter is expected to vary can be represented by an angle of rotation (8) of g,
about the plant optimum (x)), assuming the correspc;nding bias term can be
adjusted so that the constraints intersect at X', throughout the range of possible

values for the fixed parameters. The reduced gradient of the constraint will rotate
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through the same angle. If 8 is large enough then V. g, will cross over V. P,
moving V., P outside of the cone of the constraints, as shown be the dashed line
in Figure 3.2. In such a case X', would no longer be an optimum of the model-

based problem, as one of the Lagrange multipliers would become negative.

Figure 3.2:  Model Accuracy in 2 Dimensions

In the preceding discussions, uncertainty in the fixed parameters associated with
a single constraint has been considered. Typically there is uncertainty in many
of the fixed parameters on which the reduced gradients of the constraints and
prefit function depend. Thus, associated with each constraint gradient (and
possibly the gradient of the profit function) are angles of rotation which depend
upon the uncertainty in the fixed parameters. Clearly, there are many ways in
which the reduced gradient of the profit function may be rotated outside of the

cone of reduced gradients of the active constraints, due to uncertainty in the fixed

A



paramerters.

Ideally, the model-based optimization problem should be posed in such a fashion
and the fixed mode! parameters known to the degree of accuracy, that x'p will
remain the optimum of the model-based problem for all values of the fixed
parameters within the defined region of likely variation (or mismatch from the

plant). Based on these ideas Point-Wise Model Accuracy can be detined as:

Definition 3.1: Point-Wise Mod y

If the model-based optimization recognizes the true process optinnm (X' ) as an
optinuum for every value of the fixed parameters (o) within the expected region of

variation for the estimates of o, then the model is Pointi-Wise Accurate,

Stating that all \t; must remain positive within the allowable region of variation for
the fixed parameter estimates is equivalent to V. P remaining within the cone of
the constraints, for all values of & within this region. Then, the Point-Wise
Accuracy of a process model-based optimization, with respect to an expected
range of errors in the fixed model parameters, can be determined by solving the

optimization problem:

minimize !
. subject to:
VP-pTVg =0 3.6
6 = min ()

@ < ¢S a
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Also, if the adjustable parameters have a fixed range then both upper and lower
bounds on B, as well as the feasibility conditions of Equations 3.5 should be
included in the accuracy test. Since both the process model and constraint
equations can be nonlinear, it is possible that the permissible range of values for
« contain singularities of these equations. In such cases, care should be taken to
ensure that such values of the fixed parameters, which lead to such singularities,
are physically meaningful and the specific values excluded from the problem

where appropriate.

Problem 3.6 may not be solvable using conventional nonlinear programming
(NLP) codes, since O could be nonsmooth. In such cases mixed integer nonlinear
programming (MINLP) can be used to solvc\a‘_the accuracy problem {Balakrishnan
and Boyd (1992), Duran and Grossman Ei986), Arkun and Stephanopouios
(1981)]. Altématively Problem 3.6 could be reformulated to minimize each
individual Lagrange multiplier in turn and the select the smallest of these

minimum values.. This could be written:

[ .
min K,
-4

subject to: 3.6a

VP-pTVg, =0
GISGS(!u

Solving the model accuracy problem in the form of Problem 3.6a requires the
solution of as many individual optimization problems as there are manipulated
variables or independent active constraints at the plant optimum. Typically the
set manipulated variables are a small subset of the plant variables, so Problem

3.6a should be tractable in the design phase.
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Should the solution to Problem 3.6 yield a negative value for S, V,P lies ourside
of the constraint cone for some possible values of the fixed parameters, and the
bias updating method will result in incorrect operating conditions for these fixed
parameter values. If the model is Point-Wise Accurate, the minimum value of &
will be positive. When the constraints of the optimization problem are linear and
the problem is Point-Wise Accurate, it can be shown that the bias updating
method (only B; adjustable in Problem 3.2) leads to the true process optimum for

all expected values of the fixed parametérs. Proof of this is presented in

Appendix C.

If a model-based optimization system fails the Point-Wise Accuracy test, the
accuracy of the fixed parameter estimates must be improved. Alternatively, the
offending fixed parameters can be added to the set of adjustable parameters and
a model updating strategy more complex than bias updating used. Selection of

alternative model updating schemes is not addressed in this work.
Example 3.1

Using the same model-based optimization problem as in Example 2.2:

maximize [1 031]x
X

subject to:

2 4

X <
4 « b

which was shown to be Point-Wise Adequate at the "nominal" value of ¢ = 2.

If Ot is known with accuracy 2.0+0.1, is this system model accurate?

Solving the minimization problem posed in Problem 3.6, with the given range of
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variation in the fixed parameters, yields the minimum value of o = -0.0051,
corresponding to &t = 2.1. In order that the process model be considered Point-
Wise Accurate, O must remain positive. Thus, for this expected range of Clthe
model is not Point-Wise Accurate and there is a possibility that the model-based

optimization system will not yield the plant optimum,

This model can be made Point-Wise Accurate by increasing the accuracy of the
estimate of ¢t to 2.0£0.04. Yielding the minimum value of & as 0.0, which
indicates multiple optima. Thus, the uncertainty in Gt must be less than +0.04 for
the process model to be Point-Wise Accurate, when the uncertainty is symmetric

about the nominal value for CL
3.3  Model Accuracy & Sensitivity Analysis

As discussed in the previous section, fixed model parameters are often estimated
and therefore contain some uncertainty. The Point-Wise Model Accuracy method
of Problem 3.6 deals only with whether or not the model ié: capable of yielding
the same optimal manipulated variable values throughout the possible range of
fixed parameter values. Should a particular model, containing many fixed
parameters, fail the accuracy test, little information is provided as to which
pirameters caused the failure. The Point-Wise Mode! Accuracy test can be re-run
on a trial-and-error basis to determine the permissible errors in the fixed
parameters for which the model is accurate. However, when a process model and
constraint set fails the Point-Wise Accuracy test, it would be valuable to be able
to directly determine the maximumf permissible uncertainty bounds for ‘the fixed
parameters. Such information ci‘@&e used to refine the fixed parameter

astimates. Y
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Post-optimality analysis methods such as Parametric Programming {Gal (1979)]
or Parametric Sensitivity Analysis [Fiacco (1981)] provide insight into the eftects
of variation in the model parameters on the optimum of a given problem. For the
mode! accuracy problem, such methods can be extended to yield bounds on the
permissible variation of the fixed parameters. The development of Gal [1979] can
be extended to all systems which are linear in the fixed parameters. Although the
following developments cannot treat the general nonlinear problem. they are
applicable to models containing linear combinations of functions which may be
nonlinear in the process variables. This analysis could be applied to optimization
systems which contain linear, quadratic or nonlinear programming problems, that
have constraints which are linear in the fixed parameters («). (Examples of such
constraints are polynomials in x). Consider the optimizing coatrol problem:

maximize  P(x)

X

subject to: 37

gix,@) ~ B <0

where the constraints are linear in the fixed parameters (). At-the optimum:

VPl -)'A, =0 3.8

T

where:

A = VrgAL‘; 3.9

In this chapter discussions have been limited to problems where there are as many
independent active constraints as manipulated variables; therefore A, is invertible

and:

po= [vrp : (Ao)'l]T | 3.10

Note that u* are the Lagrange multipliers of the model-based optimization problem
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at the plant optimum, and not the multipliers for the plant. In general, each
element of A, is not a parameter that is subject to error, since the model can
contain known physical relationships such as stoichiometry and so forth. Hence,
perturbations in the selected fixed parameters can be considered as a low rank
correction to A, [Golub and Van Loan (1989)] and the dependence of the

Lagrange multipliers on these perturbations can be written as:

po= [vrPLp. (A°+VET)"]T 3.11

where E contains the errors in the fixed parameters and V is a matrix (containing
I's and 0's) which places these errors in the correct positions in A,. This
expression can be expanded using the Sherman-Morrison-Woodbury formula
[Ortega, 19871 to yield:

po= I-VI-ETA V) IETAS] [VrPI,; (AD)'l]T 3.12

Simplifying using Equation 3.10 gives :

-~

po= 1-v( ny;FA;lV)“‘ETAgl]T oo 3

Equation 3.13 will allow the chenges in the Lagrange mgltipliers to be directly
calculated as a function of specific perturbations in the ﬁﬁéd parameters, which
in turn provides a basis for investigation of model accuracy. It would be
particularly valuable if Equation 3.13 could be used in conjunction with the non-
negativity requirements on the Lagrange multipliers to yield a simple model
accuracy criterion. However, Equation 3.13 is non-linear in the perturbations to
the fixed parameters and little further refinement is possible except when the fixed
parameter errors occur in a single constraiﬁg In this sitvation Equation 3.13 ;:an

be expressed as:
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ol =1
T L S " 314

(1+ €A )t

where e is the vector containing the perturbations in the fixed parameters of a
single constraint and v is the vector of (1's and 0's) which places these

perturbations in the correct tow of A,.

These developments are framed as perturbations to a row of the parameter matrix
A,, since in general the rows of A, represent individual constraints. In situations
where perturbations to columns of A, are of interest, such as when a parameter
appears in several constraints, the following developments can be reformulated by

substituting ev® for ve' and performing the appropriate algebra.

In order thar X', remain the optimum value for the manipulated variables,
optimality theory requires that p 2 0 for all permissible values of e. This

optimality condition can be re-written:

[(1-:- e'A)'W) 1 ~veTA;1]T pe 20 3.15

when (1 + eTA,? v) > 0, which will generally be the case when the errors in the
fixed parameters are much smaller in magnitude than the parameters themselves.
(If (1 + eTA' v) < O then the inequality sign would be reversed.) For this work

we will assume (1 + eTA,' v) > 0, and Inequality 3.15 can be simplified to: .
; -1
Ve I-pvAD e < p 3.16

Since A,, v and p" are known and constant, the set of simultaneous linear
Inéflualities 3.16 can be used to directly calculate the maximum (or minimum)

permissible perturbation (e} to the fixed parameters (o) for which the process
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model and constraint equations will remain Point-Wise Adequate. This method
allows the Point-Wise Accuracy of a problem to be analyzed on a constraint-by-

constraint basis.

Example 3.2

Consider the model-based optimization system of Example 2.2 which was shown
in Example 3.1 to be Point-Wise Accurate for ¢ = 2.00 + 0.04 by trial and
error. To directly determine the allowable range of values for o define:

v =[01],
since the fixed parameter under consideration is in the second row of the
constraint matrix, and e = [0 e,]". Recalling that p° = [0.0033 0.2483]T ,

Inequality 3.16 becomes:

6.2483 0
0 0.2483

0 0.0033
0 0.2483

-1
0 < 0.0033
0.2483

which simplifies to:
0.0833e, =0.0033

or the permissible bounds on the fixed parameter are -c0<q <2.04, which agrees
with the results from the numerical solution of the mathematical programming

accuracy test.
3.4  Gasoline Blending Case Study

This case study is taken trom Crowe et al. [1989], in which two types of

o

\>
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automotive gasoline are blended from feedstocks with the objective of maximizing
profit. Real-Time Optimization for gasoline blending is of particular interest due
to the widespread use linear programming in solving such blending problems
[Leung(1985), MacDonald et al. (1991)] and the common use of the bias update
technique (e.g. Stadnicki and Lawler [19853]) in the real-time control and
optimization of these systems. The process model was written in the bias update
form of Problem 3.1. In the case study, the model consisted of inequality
constraints on maximum and minimum production rates, feedstock availability,
octane and Reid Vapour Pressure (RVP). Product octane and RVP were
calculated as weighted averages of the feedstock properties, with RVP's
represented by their blending indices to yield linear blending correlations [Gary
and Handwerk, (1984)]. Using the product and feedstock data given in Tables
3.1, 3.2 and 3.3., the formulation of the steady-state, economic optimizing control
problem is:
maxgillize X]: X.: (®,-<)F;

subject to:
S QF; <S8 ., E F.+B,  madimum quality limits
Y QF,; 28,2 F,; +B,  minimum quality limits

> F, <D_.*B; mercimum demand limits
t F, 2D,..+B minimum demand limits
Zl: F, SR +B, maxinmum feed availabilities
XJ: F, 2R, *B minimum feed availablilities

i
where: c; are the feedstock costs, D; are the production limits for product "
(regular or premium gasoline), F;; is the flow of feedstock "i" to product "j", p;
are the product values, Q, are the feedstock qualities {octane or Reid Vapour

Pressure), R; are the availability limits for the feedstocks, S; are the product



quality specifications.

This case study will deal with the effects of mismarch in the fixed parameters on
the ability of the optimization system, using bias update, to successfully match the
plant optimum operations. The plant optimum will be taken as the solution of
nominal optimization problem with the bias terms set to zero, using the data in
Tables 3.1, 3.2 and 3.3.

Table 3.1:  Gasoline Blending Production Requirements
Regular Premium
Value ($/bbl) (p) 33.00 37.00
Max. bbls/day (D;.mme | 8000 10000
Min. bbls/day (D; i) | 7000 10000
Min. Octane (Sjmin) | 88.5 91.5
Max. RVP (psi)_ Sime) | 10.8 10.8

- Table 3.2:  Gasoline Blending Feedstock Availability (R;) and Cost (c;)

B Available Cost (3/bbl)
(bbls/day)
Reformate 12000 34.00
LSR Naphtha 6500 26.00
N-Butane 3000 10.30
FCC Gasoline 4500 31.30
Alkylate | 7000 ___|37.00




Table 3.3: Gasoline Blending Feedstock Quality Data (Q))

Octane RVP (psi)
Reformate 91.8 4.0
LSR Naphtha 64.5 12.0
N-Bumane 925 138.0
FCC Gasoline 78.0 6.0
Alkylate 96.5 7.0

Table 3.4: Gasoline Blending Plant Optimum (x"))

Regular Premium
_ (bbls/day) (bbls/day)
Reformate 2747 9253
LSR Naphtha 0 0
N-Butane 283 504
FCC Gasoline 2263 243
Alkylate 1702 0

The optimum plant operating conditions are given in Table 3.4. At the plant
optimum of the problem the active constraints are:

1) minimum production of regular,

2) maximum production of premium,

3) all available reformate used,

4) no LSR naphtha in either blend,

5) no alkyiate in premium gasoline,
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6) maximum RVP for both products,
7) minimum octane for both products.
Since there are 10 active constraints and 10 manipulated variables, the RTO

problem is fully constrained.

The fixed parameters in the process model are the feedstock qualities (octane and
RVP). These qualities are infrequently measured by laboratory testing and can
change frequently since the feedstocks are intermediate products in a refinery,
whbse qualities depend on upstream plant operations. Thus, the range of variation
in feedstock qualities is due to a combination of measurement error and upstream
process variation. As a result the errors in octane and RVP are estimated to be
no more than 0.5 octane number and +0.3 psi, respectively. Solving the
optimization problems as posed in Problem 3.6a, using these expected errors for
the feedstock qualities, gave a negative value for O. (Further analysis using the
fixed parameter values of this solution revealed negative |L 's associated'with the
minimum use of LSR Naphtha). Such negative values indicate the process model
is not Point-Wise Accurate for these levels of uncertainty in the feedstock
qualities. Thus, there are some possible values of the fixed parameters (or some
true process conditions) for which an optimizing controller using bias updating

will not converge to the plant optimum.

By reducing the expected error regions for the product qualities to +0.1 octane
number and 0.1 psi for feedstock octane and RVP, respectively, the solution to
Problem 3.6a yields ad > 0and therefore the process model becomes Point-Wise
Accurate. Thus, a model-based optimization system using bias updating can only
bz successful throughout the range of expected uncertainty in the fixed
parameters, if the accuracy of the laboratory tests are significantly improved or
the frequency of feedstock quality measurement increased. Should such

improvements not be possible another updating strategy should be considered.
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To illustrate the dangers of using an inaccurate process model. simulations were
run with fixed errors in the octane numbers and RVP of the feedstocks. As was
previously stated, the plant was simulated using the equations in the nominal
optimization problem with the bias terms set to zero and feedstock data given in
Table 3.3. The fixed parameter errors used in the optimizing controller are given
in Table 3.5. No noise was added to the process measurements. For the first set
of errors (labelled Inadequate Model in Table 3.5), the plant-model mismatch in
the fixed parameters was sufficient to yield an inadequate model, at the plant
optimum given in Table 3.4. The second set of fixed parameter errors (labelled
Adequate Model in Table 3.5) were sufficiently small so as to yiéld an adequate

model at the plant optimum. In both cases a bias update was used, as in Figure

3.1, with no filter.

Table 3.5:  Fixed Parameter Errors for Gasoline Blending
Closed-Loop Simulations

Inadequate Model Adequate Model

LSR Naphtha octane +0.5 octane +0.1
RVP -0.3 RVP 0.1
FCC Gasoline octane -0.5 octane -0.1
RVP  +0.3 RVP +0.1

The simulation results for the regular gasoline blend are given in Figures 3.3
through 3.6. Figures 3.3 and 3.4 clearly show that both optimization systems
controllers adjusted the manipulated variables to quickly and successfully satisfy
product quality constraints. In this case, the inadequate model was in violation

of both the minimum octane and maximum RVP specifications for the first RTO

step.
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Figure 3.3: Regular Gasoline Octane Trajectory.
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Figure 3.4: Reguiar Gasoline RVP Trajectory.

Figure 3.5 presents the deviation of the feedstock flows from their optimal values
(x'p), as given in Table 3.4, for the inadequate model. Note that all flows exhibit

offset. The major feature of the solution to the model-based optimization using
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the inadequate model is that FCC Gasoline is dropped from the solution basis and
LSR Naphtha is added to the basis. Finally Figure 3.6 shows that the adequate

model-based optimization system quickly converges t¢ the optimal solution.
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" " . LSR " R R
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Figure 3.5: Regular Gasoline Feedstock Flows
(Inadequate Model)
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Figure 3.6: Regular Gasoline Feedstock Flows
(Adequate Model)

The results for premium gasoline are similar to those presented for the regular
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blend and are presented in Figures 3.7 through 3.10.
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Figure 3.7: Premium Gasoline Octane Trajectory
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Figure 3.8: Premium Gasoline RVP Trajectory
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Figure 3.11 presents the true plant profit trajectory for both the adequate and
inadequate models. The inadequate model seems to exceed the optimal plant -
profit during the first control cycle; however, this is due to infeasible Voperation
(see Figures 3.3 and 3.4). The adequate model quickly converges to the optimal
plant profit. Care should be taken in interpreting the results in Figure 3.11, as
mode! adequacy is not dictated by the ability of the model-based optimization to
match the optimal plant profit. Recall that model adequacy is determined by the
ability of the model-based optimization system to match the optimal manipulated
variable values for the plant. In Chapter 2, the two reaction approximation to the
Williams-Otto [1960] reactor was an example of an adequate model-based

optimization which does not match the optimal plant profit level.

infeasible aperation

5 100 ,/ ;
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Figure 3.11: Plant Profit from Implementing RTO Resuits.

In the gasoline blending problem, the same feedstock qualities appear in
constraints for both the premium and regular gasoline blends; thus the fixed
parameters in the quality constraints are not independent of each other and a
constraint-by-constraint analysis is not pbssible. However, consider the revised

situation where the premium blend is completed (i.e., the flows for.the premium
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blend are fixed at the values in Table 3.4). The economic optimization problem
is then reduced to determining the blend for regular gasoline. For this revised
sub-problem for on-line optimization of only the regular blend. the fixed
parameters are now independent of one another and a constraint-by-constraint
analysis is possible. In order to determine the required accuracy of the feedstock
octane and RVP for which the model of the sub-problem is Point-Wise Accurate,

the method of Section 3.3 can be used and Table 3.6 presents the resuits.

Table 3.6: . Quality Perturbations (e) in Regular Blend Fixed Parameters
Octane RVP
Reformate -6.5438 Se <® -0Le £10.7417
LSR Naphtha -0<e £0.5198 -0.8533 e <@
n-Butane -1.785 £e £67.5148 -61.0<e <19.05
FCC Gasoline -0.3075 £e <4.1 -8.767 Se £0.4961
Alkylate -18.39 £e £0.7009 -1.116 Se £

Thus, for this regular gasoline blending problem, wider variation in the fixed

parameters can be tolerated (see Table 3.5) while maintaining model accuracy.

3.5 Discussions

The common model-based optimization system with bias updating can be a
successful tool for solving some steady-state, economic Real-Time Optimization
problerns.' However, care must be taken in order to ensure a successful

implementation. Particular attention must be paid to expected errors in the fixed

vy
T
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model parameters, since these can dictate the ability of the optimizing controller

to find the plant optimum.

Techniques have been presented for determining whether a model-based
optimization system with bias update can find the plant optimum and for ensuring
that the optimization results are robust to expected errors in the estimates of the
fixed parameters. Finally, these methods have been used to determine the
maximum permissible range of fixed parameter errors within which the optimizer

will be guaranteed to successfully recognize the plant optimum.

As with the model adequacy methods of Chapter 2,-testing model accuracy
requires knowledge of the manipulated variable values and active constraint set
at the process optimum. The methods of this chapter further require estimates of
the possibie error in the fixed parameters. Such information can be developed
from plant experimentation, process knowledge, or from detailed process models

which would not be suitable for implementation in a RTO system.

It is possible that some elements of bias vector are dependent on other elements.
Since the optimality conditions of Equations 3.3 and 3.4 do nct depend on the
bias, they are unaffected by the situation. The bias term only appears in the
feasibility portion of the accuracy test (Equation 3.5). Then, when dealing with
a model-based optimization problem where the elements of the bias vector are not
independém, the feasibility test of Equation 3.5 must be included in any model

accuracy testing.

The discussions of this chapter have been limited to the situation where there are
only as many independent active operating and product quality constraints, at the
process optimum, as independent manipulated variables, or the economic

optimization problem is fully-constrained. It is possible, in some constraint sets,
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tfor degeneracy to arise by having additional dependent constraints which are
active at the process optimum. In such cases. it is possible to define many
different fully-constrained optimization problems by appropriately interchanging
various subsets of the entire active constraint set. Then. errors in the fixed
parameters of the constraints may cause some of these subsets of the active
constraint set to fail the accuracy test of Problem 3.6. while the active set as a
whole is Point-Wise Adequate throughout the entire region of expected fixed
parameter errors. A study of each possible subset of active constraints could be
employed to map out the entire region of model accuracy for the active set as a
whole; however, this approach would be time consuming when there are many
extra constraints active at the plant optimum. Further work is required to develop

direct methods for dealing with this situation.

The ideas presented in this chapter have been framed as design considerations and
are important to the eventual success of an optimization system. In addition, the
model accuracy methods could also be used for periodic real-time monitoring of
the "robustness” of the Real-Time Optimization system to occasional changes in
the process economics and in the fixed parameters (¢t) of the active constraint set.
Problem 3.6 couild be solved periodically, in real-time, as changes oceur in the
active set of constraints, fixed parameters or process economics to indicate the
"robustness” of the current""optimization system. However, further study of
solution methods for Problem 3.6 is required to ensure reliability on industrial-

scale problems.



4. Necessary Conditions for Zero-Offset

Elimination of offset from target values in the steady-state has been, and is, a
subject of great interest to both process control researchers and practitioners,
alike. Many control schemes have components included explicitly to provide
offset elimination (e.g. integral action in a PID controiler). Typically, such
control systems have available to them a direct measure of the controi variable,
allowing such reset action to act directly on a measured error. In a model-based
Real-Time Optimization system, plant profit (or operating cost) is the controlled
variable and is usually an inferential quantity, since it is only rarely (if ever)
directly measurable. As discussed in Chapter 2, any model-based Real-Time
Optimization system adapts model parameters with the goal of eliminating offset
from the optimum manipulated variable values (x",) of the plant and not matching
the optimal profit level. As a result, traditional process control offset elimination
schemes will not work. This chapter establishes rigorous criteria for the entire
integrated RTO system, which can be used to evaluate whether it is possible for
the RTO system to attain zero-offset from the plant optimum manipulated variable
values.

Chapter 2 presentea Point-Wise Model Adequacy, which was defined as the
ability of the model-based optimization to have optimal values for the manipulated
variables coincident with those of the plant. Figure 4.1 gives a schematic
representation of Point-Wise Model Adequacy. |
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Figure 4.1: Point-Wise Modet Adequacy

The model adequacy tests developed in Chapter 2 concentrated on determining
whether a set values for the adjustable parameters existed (perhaps within some
permissible range) which would allow the model-based optimization to predict the

optimal manipulated variable values. The adequacy test had the general form:
rninignize (ug - Tug) ™ W (v - Twg)

subject to:

f (x;:ru;tr &, B) = 0
g, (%5, uy. ¢, B) =0 4.1
gI (J:.;ru(;u a, B) >0
V.p| . =0
B 42
vip positive definite
Xp

where Equations 4.1 represent feasibility conditions and Conditions 4.2 are the
required optifnality conditions of the adequacy test. The discussions of this
chapter are limited to the partially-constrained case of model adequacy, as in
Section 2.1; howeverr, the relationships in Conditions 4.2 can be replaced by those
given in Equation 2.11 and Inequality 2.12 for fully-constrained optimization
problems. Thus, although discussions are limited to the partially-constrained

situation, the developments of this chapter are more generally applicable.

In the Point-Wise Adequacy tests of Chapter 2, model updating was not
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considered beyond the selection of which parameters would be adjusted. In this
chapter. model updating is shown to be crucial 1o elimination of offset for an
RTO system and methods to test the combination of model updating / model-based
optimization are presented. These tests build on the model adequacy ideas of
Chapter 2. In the first section of this chapter, the Point-Wise Model Adeguacy
tests are expanded to include the model updating system. The second section of
this chapter discusses Point-Wise Stability and introduces the necessity of
considering the interaction between the optimization system and the plant, in any

design for offset elimination.

The combination of Point-Wise Model Adequacy, Augmented Model Adequacy
and Point-Wise Stability provide three necessary conditions for zero-offset in a
given RTO nroblem. A general sequential testing procedure of:

D Point-Wise Model Adequacy,

2) Augmented Model Adequacy,

3) Point-Wise Stability,
is proposed, which concentrates increasing computational effort only on those
designs which have passed the preceding, simpler tests.The chapter concludes

with several examples and a discussion of the limitations of the proposed methods.

4.1  Augtiented Model Adequacy Test

The Point-Wise Model Adequacy tests of Chapter 2 can be used to determine
whether there are any possible values for the adjustable parameters which will
allow the model-based optimization problem to have an optimum at the optimum
manipulated variable values of the plant. These methods do not determine
whether the model update system can produce such values for the adjustable
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parameters from available process measurements.

Figure 4.2 illustrates the necessary condition for a combined model update /
model-based optimization system to predict the optimum steady-state manipulated
variable values (x'p) from the process measurements (z°) available at the process

optimurmn.

Optimizer Xe
B’ Plant
A Model z
Update |

Figure 4.2: Augmented Model Adequacy

In order for the combined update / optimization system to be capable of predicting
the optimal plant manipulated variables from the process measurements, the
adjustasle parameter values B~ must simultaneously meet the Point-Wise Model
Adequacy Criteria, for the given process model, while being the result of the
model updating algorithm. If such values for the adjustable parameters exist then
the plant optimum: (x",) is an equilibrium solution (stationary point) for the model-
based RTO problem. '

;

Consider the situation where the model update problem is a parameter estimation
. problem of the form:
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minimize ¢
P
subject to:

h(zrarﬂ) = 0

where @ is the objective of the parameter estimation problem and the vector h
contains the process model equations, as appropriate for parameter estimation.
Then, an Augmented Model Adequacy Criteria can be developed from a Point-
Wise Model Adequacy criteria by including the optimality conditions of the

parameter estimation Problem 4.3.

Criteria 4.1: Augmented Model Adequacy (Partially-Constrained Case)

If X", is an unique (local) plant minimm and 3 ar least one set of values for the

adjustable parameters (B) such that:

* | 42
Vip|  positive definite
X

- = 0
: 44

Vi¢|  positive definite
.

V.$

then the combined parameter estimation / model-based optimization is adequate
Jor use in a Real-Time Optimization system. '
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Similarly, the Pointi-Wise Model Adequacy test for partially-constrained can be
extended with the Conditions 4.4 to0 yield an Augmented Model Adequacy test:

miniamize (un - Tug) ™ W (ug - Tug)

subject to:

£ (x'_.;ru.;ucr p) =0
gL (}E;;u_;, x, B) =0 41
g1 {.x'::uru;uu: B) >0
V.p|. =0
xg 42
V§P| . positive definite
L]
V.l . =0
) 4.4

V§¢| _ positive definite
z

Equations 4.1 are the feasibility conditions that any candidate value of the
adjustable parameters must satisfy. Conditions 4.2 and 4.4 are the requirements
that [ must meet the Point Wise Model Adequacy criteria and must be the result
of the model updating algorithm, respectively. The reduced properties of the
parameter estimation objective function are calculated in exactly the same fashion
as those of the petformance function of the model-based optimization}; Details of

these calculations are presented in Appendix A. 3

As in the case of Point-Wise Model Adequacy testing, when there are bounds on
the permissible values for the adjustable parameters (or '), the Augmented
Modet Adequacy problem can be suitably modified by including them. For other
forms of model updating which are not optimization-based, such as the bias

update method of Chapter 3, the appropriate conditions can be substituted for
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Conditions 4.4 in the Augmented Model Adequacy test. The examples in Section

4.3 illustrate the use of closed-form model updating techniques.

In Chapter 2 the difficulties associated with calculating the reduced properties of
the performance function were alleviated by the introduction of the grid method.
A similar approach can be taken for the Augmented Model Adequacy test to

yield:

minignize (Up - T} T W (ug - Twg)

subject to:
f (Jc;:uur:u a:ﬂ) = 0
g, (%, U, a,p) =0 4.1
g: (:L;‘lu;l @, p) >0
P(x),un @, PB) <P (%, un(x;+0x,) , a4, B) 4.3
bz, B) < oz, B+8p,) ' 4.6

Then, for Augmented Model Adequacy testing two grids must be selected, one
in the manipulated variables 8x; and one in the parameters 38, The concerns
regarding grid spacing and geometry addressed in Chapter 2 also hold for the
adjustable parameter grid. Also, as in the case of Point-Wise Model Adequacy
testing using the grid method, care must be taken in interpreting the results of a
grid-based Augmented Model Adequacy test, since the solution may not meet the
analytical conditions.

The Augmented Model Adequacy test determines whether the plant optimum (x’,),

with the associated process measurements (2°), is an equilibrium solution to the
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RTO problem. Specifically, this test determines whether a set ot values for the
adjustable parameters eﬁist which simultaneously are the resuit of the model
updating algorithm and allow the model-based optimization to be Point-Wise
Adequate. Augmented Mode! Adequacy testing does not consider the stability of
fhe closed-loop plant / model-based RTO system. This closed-ioop stability is

considered in the next section.

4.2  Point-Wise Stability

The Augmented Model Adequacy test determines whether X', is an equilibrium
solution to the RTO problem. Then, when RTO systems which satisty the
Augmented Model Adequacy criteria are started precisely at the plant optimum,
they will remain there. Equally important to offset elimination is the manner in
which the RTO systems reacts to perturbations in the manipulated variables (x)
away from the plant optimum. The adequacy tests provide no information
regarding the stability of the RTO system with respect to small movements away

from the optimum.

Wiggins [1990] defines stability at a fixed point of an iterated map as:

Criteria 4.2: Point-Wise Stability

A .sys}em of recursive algebraic equations { X" (k) =~ FIx"(k-1),K] } is said to be
asymptotically stable at a fixed point X', if it is Lyaptnov stable and 3 a constant
b > 0, such that if -

X" x'(K)} < b
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then :

lim [x-x:(k)| = O

]

where k is the iteration index.

It follows that stability of the RTO system at the plant optimum is a characteristic
of not only the system components, but also the interaction between the RTC
system and the plant. Figure 4.3 illustrates the feedback nature of the piant /

RTO system interaction.

oz
Xnl) = X, z
~ Optimizer Plant
B Model
Update

Figure 4.3: Point-Wise Stability at the Plant Optimum

Each element of Figure 4.3 can be considered a nonlinear, and not necessarily

differentiable, map. The optimizer is represented by:
% = Z(P 4.7

which predicts the optimum value of the manipulated variables given a value for

- the adjustable parameters. The nonlinear map for the parameter estimation

problem is:



B = @(z) +3

which estimates model parameters from process measurements, Finally, the plant

can be considered as the map:

z = Q(x) +9

which takes manipulated variable values into the set of process measurements.

For arbitrarily small deviations from the plant optimurn, the nonlinear maps of

Equations 4.7, 4.8, and 4.9 can be represented by their first-order

approximations:
B < g, o
5p = ggz. 8z 4.10
§z = _g; Cox
X

when the appropriate derivatives exist. (The existence of these terms is discussed
later in this section). This system of linear equations can be reduced to an
iterative relationship in perturbations to the predicted optimum maripulated

variables (ﬁi';-l):

. dx, dff dz .
8x, (k) = { 8% (k-1) 4.11
I dz )y p ,
The system of Figure 4.3 is suble at the plant optimum (x',) for small
perturbation if: '

dz

4.12
- < 1

S

[Wiggins (1990)).

2
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The first term of Condition 4.12 is the parametric sensitivity of the modei-based
optimization problem. The second term is the sensitivity of the adjustable
parameter estimates to changes in the measurements. The third term is the rate
of change of the process measurements (output variables) with respect to the

manipuiated variables.

Ganesh and Biegler [1987] require that the solution to the model-based RTO
problem strictly satisfies the necessary Karush-Kuhn-Tucker conditions, as well
as the second-order sufficient condition, to ensure the existence of parametric
sensitivity term at the plant optimum. They also provide a method of calculation
for the parametric sensitivity using the Lagrangian of the optimization problem,
which significantly decreases the required computations. Fiacco [1983] gives a
more general treatment of sensitivity analysis, which allows for the relaxation of
some of the conditions, and more recent results can be found in Shapiro [1987]
and Rockafellar [(1988) and (1989)].

The existence of the sensitivity of the adjustable parameter estimates with respect
to changes in the process measurements, in the parameter estimation problem, is
an equivalent problemn to the parametric sensitivity of the model-based
optimization problem, when the parameter estimation has the form of Problem
4.3. The sensitivity of other possible forms of the model updating problem have
to be cousidered on an individual basis. For the differential sensitivity of the
process measurements with respect to the manipulated variables to exist, both the
manipulated variables and the process measurements must be continuous. The
existence of these sensitivities and derivatives is assumed for the developments of
this chapter. )

The Point-Wise Stability test determines whether, for arbitrarily small
(differential) deviations from the plant optimum, the model-based RTO system
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will return to x7,. It should be stressed that this stability test does not guarantee
convergence of the RTO system to the plant optimum and is only locally valid.

Section 4.3 provides examples of the application of the Point-Wise Stability test.

4.3  Offset Elimination Examples

This section contains three examples of the sequential offset elimination testing
method. The first example revisits the fuily-constrained RTO system, using bias
update, of Chapter 3. The second example examines the two reaction
approximation to the Williams-Otto reactor Kinetics used in the examples of
Chapter 2. The final example investigates model-based RTO for a simple heat

exchanger nstwork.

4.3.1 Linear Constraints & Bias Update

As in Chapter 3 and Appendix C, consider the fully-constrained optimization
probiem:

minimize P (x)
x
subject to:
Ax > b+ B

with the bias model update:
B, = F(z) A -A) %X,

where: F(z) is a filter matrix of polynomials in the shift operator z, k is the RTO

interval number, X, ., are the measured values of the manipulated variables at time
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"k-1". This example is interesting since the model updating problem does not
have the form of an optimization as in Problem 4.3 and the RTO problem is an
example of a fully-constrained optimization where the parameter sensitivity matrix
exists. Then the Augmented Model Adequacy criteria requires:

g = (V.p A)T > 0

x
¥

B' = F(z) (A, - A)) x;

Notice that B does not appear in the Point-Wise Model Adequacy test for this
system. Then, if the model-based optimization is Point-Wise Adequate and there
are no constraints on the values the adjustable parameters may take, the combined

optimization / bias update satisfies the Augmented Adequacy Criteria.

For an adequate model-based optimization, the parametric sensitivity is:

The sensitivity of the bias update with respect to the process measurements (noting

that z = x) is:
P - r2) -8

Then, the Point-Wise Stability Criterion requires:

|ALE (2) A, -A)], < 1

for the RTO system / plant to be stable at the plant optimum, This is the same
requirement as Condition C.8 of the convergence proof for these systetns in
Appendix C.

These general results can be used to revisit Example 2.2.2, which had an
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optimum at X", = [1.667 1.667]°. The model-based optimization had the form:
maximize [1 0.51i]lx
x

subject to:
AXx s Py

For this example, the plant coefficient matrix is assumed to be:

S

and the bias model update is:
B = A - A) %,

where the filter matrix F(z) is assumed to be the identity matrix.

Table 4.1 gives the coefficient matrices for three candidate process models, as
well as values for the Lagrange multipliers, adjustable parameters at the plant

optimum, and the point to which the RTO system ultimately converges.

Note that Model 1 does not satisfy the Point-Wise Adequacy Criteria, although
there are values for the adjustable parameters which allow X', to be a feasible
point. Since both Models 2 and 3 meet the Augmented Model Adequacy Criteria,
their Point-Wise Stability should be considered in the next step of the design
procedure.
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Table 4.1:  Candidate Models and Adequacy Results

Model A 1} B X (O

| 2 4 -0.0051] 10.00 0.00

4 2.1 0.2525 10.17 2.50

, 2 4 0.0115] 10. ool 1.67]

- 4 1.9 0.2443 9.833 1.67

3 {8 4] [o : 1242} [2,0} depends on

3 6 0.0022 15 staring poit

Table 4.2 presents the results of stability testing for Models 2 and 3. From the
results it is clear that Model 2 is stable, while Model 3 is not, when F(z) = L.

Table 4.2:

Point-Wise Stability Results

11- A", A L

0.0164

1.554
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To highlight the importance of Point-Wise Stability. closed-loop simulations were
run with both Models 2 and 3, using the starting values for the adjustable
parameters (B) given in Table 4.1 perturbed by -0.1 (i.e. B, = [5.9 9.733]" and
[19.9 14.9]F for Models 2 and 3, respectively). Figures 4.4 and 4.5 present the
simulation results. Figure 4.4 shows that the RTO system using Model 2 quickly

converges to the plant optimum and remains there.

1.8
175
171
x1 1685
18
155 |
o—RTO trajectory
1'51.3 1.4 1.5 1‘.6 1.7 1.8 1.9 2

Figute 4.4: Model 2 Manipulated Variable Trajectory

Figure 4.5 shows that the RTO system using" Model 3 initially moves towatd the
plant optimum, but after several iterations diverges from it and continues to do
so. Then, of the three candidate process models, only Model 2 is acceptable for
gse in the proposed RTO system. In order to use Model 3, the model update
ptocedure must be altered; for example, an RTO system using Model 3 could be
stabilized by adding a filter to the bias update as shown in Appendix C.
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175

185

18}

185 F o—RTO trajectory

Figure 4.5: Model 3 Manipulated Variable Trajectory

4.3.2 Williams-Otto Reactor

In Section 2.1.3, a two reaction approximation to the Williams-Otto reaction
~ sequence was shown to be Point-Wise Adequz{te. In this approximation all of the
kinetic parameters were assumed adjustable. Values for the frequency factors and
activation energies which allow the model-based optimization to have an optimum
coincident with that of the plant are given in Table 2.2.

For the purposes of this example, the parameter estimation problem has the form
given by Box [1970] or Sutton and MacGregor [1977]:
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minimize YTy
B
subject to:

f(z-rurﬂ) = Y

where f(z",a,B) is the set of material balances for the two reaction approximation
given in Section 2.1.3 and v represents the amount by which these balances are
non-zero. Process measurements for all compositions, flows and temperatures are

assumed to be available.

The combined model-based optimization / parameter estimation system was tested
using an Augmented Model Adequacy test containing Conditions 4.2 and 4.4.
The closed-loop system was shown to be Point-Wise Stable at these values of the
manipulated variables, with a spectral nbrm of 0.9164. The sensitivity matrices
of the optimization and parameter estimation problems were determined by finite
difference approximation, as were the plant derivatives. The details of the finite
difference approximations for these terms can be found in Appendix D.

The positive definiteness of the reduced Hessians of the optimization's profit
function and parameter estimation's objective function was ensured by forcing all
eigenvalues of these matrices to be positive, similar to the Point-Wise Adequacy
Problem 2.5. No values were found for the adjustable parameters which satisfied
the Augmented Model adequacy test; thus, the combined optimization / model
update is not capable of eliminatiig offset with respect to the plant optimum.

Closed-loop simulations \#ere run using the combined model-based optimization
and parameter esttmanon system. It was found that the RTO system converges
to & point in thc. renuced space of F; = 4.473 kg/s and T, = 78.02°C. Figure
4.6 demonstrates a typical trajectory, starting at the plant optimum.
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Figure 4.6: RTO Trajectory for Two Reaction
Approximation to Williams-Otto Reactor

To re-design this system for zero-offset, either the model or the update technique
_‘I

must be changed.

4.3.3 Heat Exchanger Network

Figure 4.7 shows a simple heat exchanger network, with the streams numbered.
Associated with each stream is a flow and a temperature. The only manipulated
variable available is the split of the constant feed flowrate (F,) which flows to the
first heat exchanger (F,) and the second heat exchanger (F;). The objective in

this example will be to maximize the outlet temperatute T,.



s

21

Figure 4.7: Simple Heat Exchanger Network
(with stream numbers)

The plant model equations are:

F, = F,+F, = 100.0
F, = rlF
F, = F,
F, = F,
Fo. = Fy = 50.0
Foo = Fu = 120.0
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T, = T, = T,
T. T T
T, = T, ~ [E;".I;D{l ( 111"“ '(I‘(Tﬂ_%;z) )
2 n 13
(T';O"T&)
T = T. + P (T + T - Ty - T,)
: F3 1n{ (T21-T3)
(Tzo_Tsj
T BT, + F,T,
S A
T, = 320.0
_ WPy (T + T, ~ Ty - To)
Ty, Ty - F T..-T,)
10 ln(-u 2
(Tlﬂ_qu
T,y = 341.0
T. = T Wy, (Tyy + T5 - Ty - Ty)
o *0 Fa 1 (Tzz T, )
n(—(—)-
Tzo‘Ts
1
UAHK]. = 1
11.7F;° 24.2F5°
1
UAHZQ = T

Heat capacities for all stteams are assuttied to be unity. The flow dependence of
the heat transfer coefficients is detived using the methods of Holman [1972] as:

hi°=1:"‘g'5

dnd:



This example assumes that heat transfer within the tluids is controlling and
neglects the resistance to heat transfer within the metal. The only manipulated
variable for the optimization is the fraction (r) of constant feed flow F, that passes
into F,. The plant optimum is at r = 0.2904, or 29.04% of the flow in Stream

1 going to Stream 2.

The process model used by the RTO system replaced the expressions for UAy,
and UAy, with adjustable parameters, thus eliminating the flow dependence of
the heat transfer coefficients. Then, the model and plant equations are identical
with the exception that:

WP = B
WPy, = By

1nn

The model update is a nonlinear least squares problem using T,, T;, T,, and T,
as the predictor variables. All flow and temperature measurements were

available. The parameter estimation problem is:

m%n (T-T)2 + (T-To)2 + (T-Tu)? + (T -T2

subject to:
£(z,a,8) = 0

ry

whete ¢ are the predicted .temperatures for stream "i" using the model

equations f_ .
This model can be made Point-Wise Adequate; however, the combination of

model-based optitnization and parameter estimation does not pass the Augmented
Model Adequacy test. If a closed-loop simulation is run, the RTO system using



106

the model and parameter estimation scheme converges to r = 0.30287, as is

shown in Figure 4.8.

31

30.5¢

30f

29.5¢

F, Flow (% F)

29¢

28.5¢

28, ) 2 3 2 5 B

RTO Ilteration Number

Figure 4.8: RTO Trajectory for Model with Heat
Transfer Independent of Flow.

The flow dependence of the heat transfer coefficients was eliminated from the
model equations by making the product of the heat transfer coefficient and the
heat transfer area, an adjustable parameter. Recognizing this deficiency, a
simple flow dependenice was re-introducea into the model; howevet, the modified
model equations shown below were selected to have structural mismatch with
respect to the corresponding plant equations:

[}

Wy,
Wi

png.TGS
Bng.SBS )

with f§ the set of adjustable patatneters. The exponent values for the flowrates
were determined such that the Augmented Model Adequacy criteria could be
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satistied with B = [5.49 9.79]". The Point-Wise Stability test vields:

|l>
}..I
N
E_J

EEE
'dp dz dr

Thus the closed-loop RTO system is stable, at the plant.optimum.

The plant derivatives, as well as the sensitivity matrices of the model-based
optimization and parameter estimation problems, were approximated by finite
differences. The finite difference approximations for the plant derivatives were
checked by comparison to analytically derived values. Appendix D gives the

details of these calculati_ons.

Closed-loop simulations were run and Figure 4.9 shows the results. The RTO
system converges quickly to the plant optimum. Then, the modified model is
suitable for implementation in a RTO system when offset elimination is the design
goal. The resuits of this example are only applicable for the specified operating
conditions (F, Fyg, Fy, T}, Tigs Tap); if these should change, the model may no
longer be appropriate. Then, for a plant which experiences disturbances_‘in the
inlet flows or temperatures, the zero-offset tests must be performed for each

expected set of disturbance values.
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Figure 4.9: RTO Trajectories for Model with Simple
Heat Transfer Flow Dependence (2 different
starting points).

4.4 Discussiotis

This chapter has extended a set of necessary conditions which must be met for a
given RTO system to be capable of exhibiting zero-offset in the manipulated
variables with respect to the plant optimum. The necessary criteria are:

1)  Point-Wise Model Adequacy (as developed in Chapter 2),

2)  Augmented Model Adequacy,

3) Point-Wise Stability.
These three criteria are implemented as sequential tests which concentrate

computational effort only on those RTO systems which have successfully passed

T
i
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previous, simpler tests.

The first test, Point-Wise Model Adequacy which is discussed in detail in Chapter
2, determines the ability of the model-based optimization to possess an optimum
coincident with that of the plant. The second test. Augmented Model Adequacy,
investigates the required steady-state behaviour of the integrated model-based
optimization / parameter estimation systems. Specifically, Augmenied Model
Adequacy determines whether values exist for the adjustable parameters which
simultaneously meet the Point-Wise Model Adequacy criteria and are also the
solution to the parameter estimation problem. The final condition, Point-Wise
Stability, investigates the closed-loop behaviour of the combined RTO system /
plant to determine whether for differential moves away from the optimum

manipulated variable values, the system will return to the plant optimum.

As discussed in Chapters 2 and 3, model adequacy testing requires knowledge of
the manipulated variable values and the active constraint set at the plant optimum.
The'Augmented Model Adequacy criteria further requires values for the process
measurements that will be used for model updating, at the plant optimum. Point-
Wise Stability is determined using sensitivity information and the derivatives of
the process measurements with respect to the manipulated variables. Sensitivities
of the parameter estimation and model-based optimization problerhs are dependent
upon RTO system characteristics only, and can be determined for a given design.
Such sensitivities will typically be determined by finite difference approximation
it industrial scale problems. Smaller problems may allow symbolic determination
of the sensitivity matrices using software such as Maple [Char et al. (1991)]. The
ptocess derivatives, as for the process information required in previous chapters,
must be determined directly from the plant or using a more complex model which
is unsuitable for implementation within a RTO system.
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As stated in the introduction, this chapter discusses necessary conditions for zero-
offset. Successfully meeting all of these conditions is not sufficient to guarantee
convergence to the plant optimum for finite deviations from x°,. Further, the tests
of this chapter are point-wise in nature and any results for a specific point are
valid locally only. Thus, offset elimination testing must be performed on a peint-

wise basis.

These offset elimination tests must be met for any RTO system design to exhibit
zero-offset with respect to the optimum manipulated variables. However, the
requirements placed on an RTO system design by these conditions are quite
stringent and it is likely that, in many situations, zero-offset is not achievable for
all the possible values of the external process variables, with the RTO systewn of
Figure 1.1. The heat exchanger network example of Section 4.3.3 demonstrated
the difficulty of attaining zero-offset from the optimum plant manipulated variable
values, even for simple systems. Since this example was meant to illustrate the
use of the offset elimination tests, the exponents in the flow dependence
relationships were chosen so that the modified RTO system would meet the
necessary conditions for zero-offset, at the nominal external variable (inlet flows
and temperatures) values. In most practical situations, such "reverse engineering”
of RTO systems will not be possible. Further, although the heat exchanger RTO
system could eliminate offset at the nominal external variqble values, it was
unable to at other values of the external variables. Zero-offsé:t_ is not required to
achieve some, and perhaps substantial, economic benefit and a major portion of
the RTO design effort can be selecting among design alternatives that do not
satisfy all of the zero-offset conditions. This selection problem is the subject of
the next chapter.



Chapter 5: Design Cost

The main emphasis of previous chapters has been on determining whether a Real-
Time Optimization system has the ability to match the plant optimum. As was
seen in Chapter 4, for offset elimination, the requirements placed on the
components of a RTO system are quite stringent and may not be met in practice.
When it is impractical to match the plant optimum in all situations, the design
objective in any model-based RTO system design procedure shouid be the
minimization of the cost due to deviation from the optimum values of the

manipulated variables for the plant (x,).

Consider the closed-loop RTO system of Figure 3.1, consisting of model updating
and model-based optimization. The examples of Chapter 4 illustrated that for a
given set of external variables (such as feed qualities and process performance)
and noise-free measurements, the RTO system can have a stable solution at some

point x_°, not necessarily the plant optimum.

N
+
Optimizer X Plant - ¥
B Model
Update

Figure §.1: Closed-Loop RTO System Subject to
Measurement Noise (N).

111



112
Note that in Figure 5.1 noise (N) has been added to the measurements. Such
noise could be the result of random measurement errors, stochastic process
disturbances and so forth. This chapter will consider only those measurement
noise processes which appear to be stationary, of comparatively high frequency
and not autocorrelated, with respect to the RTO cycie. The methods presented
here can easily be extended to other linear measurement noise models. In
general, RTO results will vary around x, due to variance in the process
measurements propagating through the model updating and optimization sub-
systems. Figure 5.2 depicts the profit surface for some plant with constant
external inputs, with an unique maximum profit at x°,. In this figure, the RTO
system of Figure 5.1 has converged to a point X, which has an uncertainty
region associated with it due to the presence of process noise. Then, any measure
of the loss in performance of the RTO system due to imperfect optimization has
two components: one for the difference between the plant optimum (x°,) and the
model-based optimum (x',), and one for the variance of the model-based

optimum,

Plant Profit (P)

Figure 5.2: Example Plant Profit Surface
Ittustrating Design Cost.
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This chapter defines Design Cost as the loss of economic benefits relative to
perfect optimization, in terms of both otfset from the plant optimum values of the
manipulated variables and variance in the predicted optimum optimization variable
values. The main goal of this chapter is to develop a RTO systems design metric

based on such a definition of Design Cost.

For the purposes of this discussion, the goal of the optimization system will be
assurmed to be maximization of profit. All derivations could be reformulated for
operating cost minimization with no change in the results. Further, the
developments of this chapter assume that the plant has some degrees of freedom
for optimization after all product quality and operating constraints are met, or that
the reduced space of the plant optimization problem has dimension higher than
zero. No other restrictions are assumed on the form of the model-based

optimization problem.

This chapter starts by developing the Design Cost Criteria as a general approach
to RTO system design. Examples serve to illustrate some specific uses of the
criteria for adjustable parameter and model selection. A discussion at the end of
the chapter examines sotne of the limitations of the method.

5.1  Design Cost Criteria

As discussed in the introduction, when there is no process noise, the RTO system
of Figure 5.1 would cofivetge to some set of manipulated variable values x°_.
With process noise present, the results at the end of an RTO cycle could be any
point in a region which depends on the properties of the process measutement
variation. Figure 5.2 illustrates such a situation. Then, the loss in RTO system
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performance with respect to perfect optimization should be defined in terms of the
average deviation of model-based optimization resuits from the plant optimum.
An expression for the loss in performance for the RTO system or Design Cost,

at a given set of external variable values is:

C =P(x;) -E[P(Xx,)] 21

where C represents the portion of the theoretically attainable profit that the RTO
system does not realize, E is the expectation operator, and P is the plant profit
gither at the plant optimum manipulated variable values (x’,) or the model-based
optimum manipulated variable values (x".). It must be stressed that P represents
the actual profit the plant would produce by operating at a given set of
manipulated variable values; it does not refer to any model-based prediction of

profit.

The uncertainty in the predicted optimum values of the manipulated variables (X )
can be described by the probability density function f(x,, -§,Q), where Q is the
varianice-covariance matrix of the predicted optimum variable values. Although

the ptobability density function also depends upon the higher moments of the
 distribution of x,', these have been omitted from the notation for brevity.
Providing that both of the functions P and f are Lebesgue integrable on the
domain of interest, the expected profit of the RTO system is:

EfP(] = prm fx},-£,Q) dE 5.2

whete & is an integration vatiable definied on ¥, the space of possible predicted
optium manipulated vatiable values for the given extetnal vartiable values.
Then, the loss in profit due to RTO system impetfections, at the point X, is:

C =Px) - J‘?P(e) f(x5-6,Q) dE 5.3
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The optimization problems with which this chapeer is concerned have excess
degrees of freedom in the manipulated variables for the maximization of plant
profit and as a result the reduced space of the plant optimization problem has
dimension higher than zero. If the response surface of profit is at least €~ in the
reduced space, it can be represented by the truncated Taylor series expansion:

PE) = Px) +%,P| (5 -8) ¢ 5.4
3 -0 ViP|,. 5B + ollx; €

Noting that the reduced gradient vanishes at x;” and neglecting terms higher than

second-order, the expansion of the profit function may be re-written:

T . . . 5 5
P(E) = P(x;) g_- |65 -3 + 0= ©)] VP [y -3 + (- ) 5.5
which in turn can be re-arranged:
P(E) = P(C) + = (x; %) V2P| (%5 -x0) +
5 =l 5.6

(5 -%) VP

* l * T 2
5 m 0+ 568 VP

x1;(3,,.'15)

Then Equation 5.6 cat be substituted into the definition of Design Cost in
Equation 5.3 and simplified. Consider the individual second-order terms:

J - vie

: (-5 fix,-§Q d§ = 0 5.7
since by definition:

Elx,-§ - 0 5.8

The second-order term in (x°,, - &) can be evaluated by recognizing that:
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[ V2P|, (5,8 £, 6Q) dé -
k4

and since:

the right hand side of Equation 5.9 can be written as a function of the Hadamard
product of the reduced Hessian and the variance-covariance matrix of the

predicted optimum:

J;(x;, -§) V2P

o =B f-5Q) dE - eT(VfP[x;oQ)e 5.11
where € = [1 1 ... 1]". Recognizing that:

J; P(x;) fx,-E,Q) d§ = P(x) 5.12
since P(x",) is a constant and by definition:
TR 5.13

Then, combining the results of Equations 5.7 and 5.11 yields an expression for
the expected protit:
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| P®) fx},-E,Q) dE = () +

7
1 . =T 2 - . -
5 %=Xy V,P[x;(:%—xmp 5.14
1 T 2 o
e (VP . Q)e

Then, Design Cost is given by:

_ _1 - .'T 2 _ T a . 515
C - 5[(xp Xpm) Vfo;(xp Xo) * € (VrPL; Q)e]

The objective in any RTO systems design is the minimization of Design Cost with

respect to the available design choices (v):

min C 5.16
b4

Using the Design Cost expression of Equation 5.15, an equivalent design problem
is:

min (5 -x) V7P
1

: (%5 - %) + €T (VP

’;aq)e] 5.17

ot:

min (-5 (-ViP

1

‘;)(g-x;)w?‘(-vpr;oq)e 5.18

The objective of the RTO problem under consideration is maximization of profit.
Thus, the reduced Hessian of the plant profit surface at the plant optimum
manipulated vatiables values (x°,) is at wotst negative semi-definite and for a RTO
problem with an unique optimum the Hessian will be negative definite. Then, the
negative of the reduced Hessian of the plant profit surface is positive definite.
Since the vatiance-covariance matrix of the predicted optimum manipulated
variable values is positive definite by definition and the Hadamard product of any
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two positive definite matrices is itself positive definite [Horn and Johnson (1991}],
the minimum value Problem 5.18 may have is zero. Problem 5.18 can then be

re-written:
e |(x,‘;_x‘:‘)T("V3P|4)("5"‘;)”eT(‘VfPL;“'Q)el i

The solution of Problem 5.19 requires the Hessian of the plant profit surface.
Since such detailed process knowledge may not be available, the plant Hessian can
be eliminated from Problem 5.19 by using an upper bound for the Design Cost.
Consider only the terms inside the absolute value markers. The triangle inequality

requires:

5" (-72e| ) - - (VP
(% - (-ViP

Q)e! <
eT(—VfPL;oQ)e’

£ 5.20

xI;)(xl,-xm)

+

As all of the matrices within this expression are at least positive semi-definite, the
quadratic terms ate positive or zeto by definition and Inequality 5.20 becomes an
equality. Examinibg each of the quadratic terms and utilizing the Cauchy-
Scwharz Inequality [Ortega (1987")'] yields:

< 5.21

-
-
-
-

[CESHRAIRICEE

7Pl

-

and:

(-vePlyQ)e] < o] -wirl Q] <nfmirl ] 1Ql, sz

Inequatities 5.21 and 5.22 give upper bound for the individual tertns of the design
Problem 5.18 and their sutm an uppet bound for Design Cost:
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d*p
dx*

C <

xéllz(ll(x;-&;)i[zmllQll:) 5.23
In the design of a RTO system, only the offset from the plant optimum and the‘
variance of the predicted optimum manipulated variablés can be affected by
system design choices. The reduced Hessian of the plant profit function is fixed
for a given set of external variables. The reduced Hessian can be estimated by
plant experimentation or using models which are too complex for implementation
within an RTO systermn. Alternatively, since the reduced Hessian is generally
unknown, it would be advantageous to remove any dependence of the design
problem on the Hessian. This can be accomplished by minimizing the upper
bound of design cost:

min
T

el s

2

I: +nI|Q||2) 5.24

ot, since the reduced Hessian is fixed, Problem 5.24 i$ equivalent to:

nil H(x;-x{i.)iz+!1|IQ|I2 5.25

The advantage of this formulation of the design problem is that it eliminates the
urknown quantities from the design objective; however, in doing so it eliminates
the possible solutions which take advantage of reduced Hessian properties. Such
special design solutions include aligning offset with the eigenvector corresponding
to the sthallest eigenvatue of the reduced Hessian, and making the vector e lie
within the null-space of the Hadamard product of the reduced Hessian and the
vatriance-covariance matrix. Any such designs would require exact knoWledge of
the reduced Hessian of plant profit sutface, which would be rarely known with
the requited accuracy. In the absence of such detailed plant knowledge, the
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solution to Problem 5.23 will best approximate the minimum Design Cost at a

point.

The Design Cost Problem 5.25 represents RTO systems design at a point. In
general, the plant optimum (x,") is a function of some set of external process
variables (w). Thus any specific plant optimum is drawn from a space S of all
possible plant optima. There are no a priori assumptions necessary for this space;
it need neither be connected nor convex. Associated with the optima in S is a
frequency function ¢(w,v) which describes the occurrence rate of a particular
plant optimum. The total uncaptured profit due to the RTO system, for all

possible plant dismrbances, is:
C; = f[P(x;,) - | P(B) f(x;,-£,Q) dE] s (,v) dx, 5.26
4
s

where P and ¢ are both integrable on 8. The maximum theoretically attainable

plant profit is:
P, = f P(x'p) 5(w,0) dx; 5.27
s

Thus the expression for the total loss in profit can be simplified to:

Cr = Py - J[ f?P(E) fx,-6.Q) 4 c(w,u) dx 5.28

S

It should be noted that no relationship is necessary between the two spaces 8 and
¥, except that they both must be contained in the space of feasible manipulated

variabie values.

For model-based RTO system design it is desirable to minimize this total loss in
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profit by selecting the appropriate set of design parameters y. This is equivalent

to:

i —f[j P(E) f(x..~£,Q) dE]q(w,u) dx;, 5.29
Y g 7

Such an optimization problem may be constrained with respect to permissible

values of the design choices (y). The objective function of Problem 5.29 takes

on its maximum possible value P, when v is chosen such that the RTO systein

always finds the plant optimum, with no uncertainty in the predicted optimum.

It is unlikely that the frequency function ¢(w,v) is known at the design stage, if
ever. Thus, the maximization of Problem 5.29 will have to be approximated by
a sum over an expected‘set of values of the external variables (w). If changes in

the external variables are considered to occur as steps, Problem 3.29 becomes:

}Jl
L3 )
o

min Y- | (@ fx,,-£.Q) 8] ow)

The objective in Problem 5.30 is to minimize the weighted sum of the solutions
to the point-wise Design Cost Problem 5.18, for the set of external variable
values. Then using the developments for the point-wise Design Cost problem, the

Total Design Cost problem is:

. i . . |12
min $]eg-x|; +nlQl, sw) 5.31
The solution to Problem 5.31 provides the minimum Design Cost for the expected

set of external variable values. This allows the RTO designer to compare design

alternatives for the entire range of expected operations, rather than one point at

a time.



5.2  Covariance Matrix Approximation

Each of the Design Cost Problems 5.25 and 5.31 contains the variance-covariance
matrix (Q) for the predicted optimal manipulated variables (x",). This covariance
matrix is generally unknown; however, for given values of the external variables,
variation in these predicted optimal manipulated variables is primarily due to

process measurement noise propagating throughout the optimization system.

This section will develop approximate expressions for {Q based on properties of
the RTO system components and the plant. As discussed in Section 4.2, the

closed-loop RTO system in Figure 3.1 can be considered a system of nonlinear

maps:
" = EB
z = Q(x)

which can be represented by linearizations for sufficiently small deviations from
the plant optimum. Then, as discussed in Chapter 4, the linear approximation of

the closed-loop system is the iterated map:
[ ! dz

8 (k) = —_ —
S

For Point-Wise Stable systems excited by process noise and with 6x’,(0) = 0,

Equation 5.33 can be re-written as the infinite sum:

SRR o P
8% 00 2[— a] .[d_



Then, the expectation (E) of the deviations from the plant optimum due to process

noise is:

. _,, 4%, dp dz | Xa df N 535
E[bxm(k)] = Z(E—E—d—z-a—;]‘m“ [-——b- E] E[N(k—l)J 5.35

i=0

and the expectation of the sum of squared deviations is:

sior] - L(G 23], (52,

i=0 ";.-B'J'
E{ Nee-i)( Noke-)T] 5.36
sasl, 5]
dp dz dX /- 5es dp dz 5a

Chatfield and Collins [1980].

In this work the process noise (N) is assumed to be a random variable sampled
from a Gaussian distribution with zero mean, no serial correlation in time and a
covariance matrix U. Such situations occur when process disturbances are
stationtary, approximately normally distributed and occur at a high frequency with
respect to the RTO cycle.

Since by definition:
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h
(9%
~]

Q = E[sxsx.)7]| - Efox |[E[sx. )"
and E[8x’] = 0, the covariance matrix of the deviations from the optimum

manipulated variable values is given by:

Equation 5.38 gives (Q as an infinite weighted sum in ihe powers of the prodﬁcts
of various RTO subsystem sensitivities and the process derivatives. For Point-
Wise Stable systems the effects of higher powers of these products can die out
quickly, allowing Q to be approximated with a small number of terms. However,
as the spectral norm of this product approaches unity, more terms must be
included in the sum to approximate Q closely, which complicatesldesign cost
calculations. When such higher power terms must be included to closely
approximate Q in Equation 5.38, and since Problems 5.25 and 5.31 are based on
an upper bound for Design Cost, an alternative is to frame the Design Cost

problem using the upper bound for the spectral norm of the covariance matrix Q:

o - DG eallg Gy

or for Point-Wise Stable systems:

5.39

o
r4



1 - -
;E-‘_miﬁu[j‘ﬁ@]T
1Ql, < | dz . dp dzj 2 5.40
1_““_-%_922'
dp dz dx,

Using any symmetric decomposition of the covariance matrix of the measurement

noise U, such as a Cholesky Decomposition [Golub and Van Loan (1989)]:

U = LLT 5.41
the upper bound on Q becomes:
”3& ap, |
dp dz |, <
1Ql, < - 5.42

_«Em;_qm
dp dz dx

Py
-
Yy
-

and substituting into Problem 3.25 yields the closed-loop Design Cost Problem:

Closed-Loop

2

2

524
b a1, 5.43
| |95 dB g
| dp dz dx

Then, the Design Cost metric in Problem 5.43 is a function of properties of the

mn |y - %

2
2

RTO systems, specifically the model update and optimization, and the plant. As
discussed in Chapter 4, the sensitivities of the model-based optimization and

parameter estimation are dependent upon RTO system design choices and can be
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calculated using the methods of Fiacco [1983] or Ganesh and Biegler [1987]. The
derivatives of the process measurements with respect to the manipulated variables
must be determined either by plant experimentation or using the best available
complex plant models, which may be inappropriate for use within the RTO

system.

If the plant derivatives are not available, an alternative is to base the Design Cost
metric on the step-ahead prediction of the optimal manipulated variable values.
In this case an approximation to the covariance matrix of the step-ahead

predictions of the optimum manipulated variables is:

o, oo 5.44

s

For the open-loop predictions measurement variance is only propagated through
the model update and optimization; therefore, a suitabie decomposition of the
sensitivity of the predicted optimum manipulated variables to the process

measurements is:

de, _ dx, df N s
df

yielding an approximation to the variance-covariance matrix of:

o b g s d
o- GG e 346

Then, the spectral norm of Q is given by:

Nk

where L is any symmetric decomposition of the process measurement covatriance

5.47




127

matrix U. Substituting into Equation 5.47 into Problem 5.235 yields the open-loop

Design Cost Problem:

One Step-Ahead

+

. I - “m dp 5
N S A P ‘ 248
An important concern when designing RTO systems using the open-loop Design
Cost problem, is system stability. Point-Wise Stability is an integral part of
closed-loop design Problem 5.43; however, there are no such guarantees with the
open-loop problem. Also, by comparing Problems 5.31 and 5.48 it is evident
that, for Point-Wise Stable systems, the open-loop problem wiil tend to
underestimate the contribution of variance to the design metric and thus favour

systems with smaller offset.

A Gaussian noise model (N), uncorrelated in time, is assumed for the
developments of this section and used throughout the chapter. An expression for
the spectral norm of the predicted optimal manipulated variable values covariance
matrix (Q) can be developed using other noise models. In such cases, time series
methods [Box and Jenkins (1976)] can be used to develop expressions for the
necessary expected values, E[N] and E[NNT]. Then, Equations 5.35, 5.36 and
5.37 would be used to determine the closed-loop covariance matrix, or Equation

5.46 used to determine the open-loop covariance matrix.

The Design Cost Problems 5.43 and 5.48 both address RTO system design at a
single set of external variable values. When minimum Total Design Cost is the
objective, expressions for Q have to be developed at each operating point, using
the methods of this section, and Problem 5.31 solved.
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Both the closed-loop Design Cost Problem 5.43 and the open-loop Design Cost
Problem 5.48 approximate Q by decomposing the covariance matrix into
independent terms which are properties of the process measurements (L), the
model-based optimization problem (dx",/dB) and the parameter estimation problem
(dp/dz). In either Design Cost problem, the spectral norm of the covariance
matrix Q can be minimized by designing the model-based optimization subsystem
so that the optimization problem is insensitive to changes in the adjustable
parameters. Similarly, the spectral norm of Q can also be minimized by
designing the model updating sub-system such that the parameter estimates are
least sensitive to changes in the process measurements. Alternatively, the norm
of Q can be minimized by making the rows of the parameter sensitivity matrix for
the model-based optimization orthogonal to the columns of the measurement
sensitivity matrix of the parameter estimation problem, through appropriate design
choices. None of these design objectives is tecommended as the resulting RTO
system will be de-sensitized to systematic changes in the process measurements
due to non-stationary process disturbances, resulting in potentially large offsets
from the plant optimum. Thus, RTO system design will require a trade-off
between disturbance tracking and variance of the predicted optimurn manipulated

variable values.

A final alternative for minimizing the spectral norm of Q is to select those process
measurements, for use by the RTO system, which have the smallest variance /
covariance or to design the RTO system such that the product of the sensitivities
of the optimization ptoblems and the parameter estithation problem ([dx’,/dj)-
[df/dz]) is otthogonal to the directions of variation in the selected process
meastrements (the eigenvectots of the covariance matrix ). Regardless of which
design objective is chosen, care must be exercised to ensute that the RTO system
remains responsive to process changes.
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5.3  Key Parameter Selection Example

Selection of model parameters for updating is crucial to the success of a
model-based Real-Time Optimization system. This section presents an illustration
of the use of Design Cost in a systematic method for determining which model
parameters should be updated in real-time and illustrates the inter-dependence of
the modelling and adjustable parameter selection decisions. The method, which
is applied at the design stage and not within the real-time implementatibn,
involves sequential tests for parameter observability, offset elimination, and
Design Cost. The section concludes with a small example built around the
Williams-Otto reactor [1960].

Parameter observability determines which sub-set, if any, of the model parameters
are observable with respect to the available process measurements. This test was
developed by Krishnan [1990] as an extension of the work of Stanley and Mah
[1981] on state observability for nonlinear, steady-state systems. Consider a
nontlinear plant model consisting of a set of material / energy balances (f), active
consttaints (g,) and output equations (k) :

£ 1,0, 8) 0
g (xu,aB)| = [0 5.49
¥ A

h(x,)

Linearizing these with respect to all variables and patameters within the model
yields:
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Vf U f Vf [ s

Ch
[¥/]
]

VgL Vo8 Vpg||du
Vh VR 0 ||3B oz

Then parameter observability requires that:

Vi Vi Vg
rank ng!. VugL VBgL 2 m+n+p 5.49
Vh Vh o

where: m is the number of dependent process variables (i) in the model, # is the
number of manipulated variabies (x), p is the number of adjustable parameters
(B), z are the available process measurements, and « are the fixed model

parameters / measured external variables.

Parameter observability provides a means to determine whether effects which
manifest Lherhselves in the measured process variables, and are not attributable to
changes in the manipulated variables, can be represented by the model through
apptopriate values of the adjustable parameters. Thus, fot the RTO systetn of
Figure 5.1, any adjustable parameter set must be observable with respect to the
- available process measuretients to ensute that important process changes can be
reflected in the model-based optimization.

Genetatly, ofte of the main design objectives fot the model-based RTO system of
Figure 5.1, is that RTO results correspond to the true plant optimum manipulated
variable values. Chapter 4 presented necessaty conditions for zero-offset of the
model-based optimum (x",) from the plant optimum (x',) manipulated variable
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values. The sequential set of tests provided in Chapter 4 consist of:

1) Point-Wise Model Adequacy, which tests whether there is at least
one set of values for the adjustable model parameters (B) which
will allow the RTO system to predict an optimum at the values of
the manipulated variables which correspond to the (rue plant
optimum,

2) Augmented Model Adequacy, which determines whether the model
updating scheme can produce a set of adjustable narameter values
for which the model-based optimization is Point-Wise Adequate,

3) Point-Wise Stability, which ensures that the closed-loop RTO

. system is stable at the plant optimum.

Although the Design Cost approach to RTO systems synthesis accommodates
designs which do not achieve zero-offset, and therefore it is not riecessary that any
specific design meets these criteria, it is recommended that the Point-Wise Model
Adequacy tests should be used to eliminate those models which produce the wrong
geometry for the optimization problem, as in Section 2.1.3 for the single reaction
apptoximation to the Williams-Otto reactor.

Step3:  Design Cost

Thete may be several sets of adjustable parameters (j3), or none, which meet both
the observability and offset elimination criteria. In selecting from among these
alternative sets, the main objective should be minimizing the cost of deviations
from the optimum plant tanipulated vatiables values x,". The Design Cost

methods of Section 5.1 can be used to select from among competing alternatives.



132

5.3.1 Williams-Otto Reactor Example

In Sections 2.1.3 and 4.3.2, a two reaction approximation to the Williams-Otto
[1960] reaction sequence was examined. The reactor is an ideal CSTR with the
reaction sequence:

A+B —C

B+C =P +E
C+P G

The reactions are all elementary and have Arrhenius temperature dependencies.
As in the previous examples, the manipulated variables were chosen to be the
flowrate of Reactant B (Fp) to the reactor and reactor temperature (Ty), giving

a unique local optimum at: T, = 89.647°C, F; = 4.7836 kg/s.

The two reaction approximation to the plant kinetics is:

A+2B P +E ..k =¢e>™
A+B+ P -G ...k1=¢1e':-=”'

Section 2.1.3 gives the complete set of equations used in the process model. In
this example we compare two of the many possible adjustable patameter sets: ifi
the first case only the frequency factots will be updated (B, = (¢ ¢)™) and in the
secottd case only the activation energies will be updated (B, = [§ &]T). As in the
Section 4.3.2, all process measurements (flows, temperatures and commpositiofis)
were made available to the model updating subsystem and the parameter
estitnation technique which was used is given in Box [1970} ot Sutton and
MacGregor [1977].

Each of the adjustable parameter sets are both observable and have values for
which the model-based optimization is Point-Wise Adequate. From the resuits of
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Section 4.3.2, we known neither alternative successtully meets the Augmented

Model Adequacy criteria and as a result both cases produce an off-set trom the

plant optimum manipulated variable values.

Table 5.1:  Converged Optimum Manipulated Variables Values

(no measurement noise).

Flowrate Reactant B | Reactor Temperature
(kg/s) (°C)
Activation Energies adjustable 4.829 83.20
Frequency Factors adjustable 4.829 83.19
e ——

Table 5.1 presents the manipulated variables values to which the closed-loop RTO
system converges when there is no process noise present. Such manipulated
variable values depend on the values assigned the fixed parameters. Typically,
the fixed parameter values will be determitied from detailed plant studies and / or
engitteeting principles; however, fot illustration purposes, in this case study the
fixed parametet values were set so that the closed-loop RTO system converged
to the same maniptlated variable values for alternative adjustable parameter sets
(see Table 5.1). Table 5.2 gives the fixed parameter values for each RTO
problem. These fixed parameter values will allow investigation of the selection
of adjustable patameters to be based solely on the covariance matrix (Q) of the
predicted optimum manipulated variable values.



Table 5.2:  Model Parameter Values at Model-Based Optimum

Activation Energies Frequency Factors
Adjusted Adjusted
Activation Energies (K) 7307.2 - 8077.6
10448.9 12438.5
Frequency Factors (s ) 1.2808x10’ 1.665x108
7.172x10% 2.611x10"

The Cholesky decomposition of the covariance matrix (U) of the plant noise was

chosen to be:

0.126 © 0 0 0 0 0 0 0

0 LIl 0 0 0 0 0 0 0

0 0 005 0 0 0 0 0 0

0 0 -0025 00433 0 0 0 0 0
L=]0o o o 0 005 0 0 o 0
0o 0 o 0 -0025 00433 0 0 0

0 0 0 0 0 0 005 O 0

0 0 0 -00173 -0.005 -0.00289 O 0.0465 O

0 0 o0 0 0 0 0 0 0.26

with the process measurements organized in the vector 2z = [F; T, X, X; X
Xg X; Xp Fyl". This choice of L reflects the situation there is covatiance
between composition measurements. The relative magnitudes of the assumed
variances for each measurement reflects the greatet uncertainty it the composition
measurements than either the flow or temperature measurements. The actual
values for each measurement were arbitrarily chosen, such that the ssgndard

a
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deviation of the flow, temperature and composition measurements were

approximately 2~2.5%. 0.3% and 12 ~30% of the nominal values, respectively.

The process noise vector at a given instant is:

N, = L diag(G)

G, € N(@,1)

and the process noise was assumed uncorrelated with respect to time.

Table 5.3:  Predicted Design Costs for Different Adjustable Parameter Sets.

Activation Energies Frequency Factors

Adjustable Adjustable
open-loop Q. 84.3 139.3

open-loop Design Cost 211.0 . 3210
dx, df dz 0.2905 0.1871

| P dz dx |,

closed-loop |Q|, 92.1 144.3
“ closed-loop Design Cost 226.5 331.0
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The sensitivities and derivatives required to approximate the covariance matrix
(Q) of the predicted optimum manipulated variable values were determined by
finite difference approximation. These are given in Appendix D. The predicted
Design Costs for the two alternative sets of adjustable parameters are presented
in Table 5.3. The information in this table shows that both the open-loop Design
Cost (Problem 5.48) and the closed-loop Design Cost (Problem 5.43) irdicate that
it is preferable to update the activation energies. Finally, both update strategies

are stable at the model-based optimum.

The predictions were checked by closed-loop simulation, and Table 5.4 presents
the results. The simulations consisted of three inter-connected nonlinear problems
as shown in Figure 5. 1 parameter estimation, modei-based optimization and plant
simulation using a detailed set of nonlinear equations. The open-loop covariance
matrix was determined by starting the simulation at the model-based optimum
given in Table 5.1 with noise added to the measurements, and executing a single
RTO step. The entire procedure was repeated until the desired amount of data
was collected. Calculating the closed-loop covariance matrix required starting the
simutation at the model-based optimum given in Tabie 5.1, adding measurement
noise, and allowing the RTO system to move to the new predicted optimum at
each iteration. Some numerical difficulties, within the RTO system, were
encountered when gathering data for the closed-loop covariance matrix while it
was driven with Gaussian noise of unit variance. These difficulties arose because
process noise propagating through the parameter estimation subsystem caused such
wide variation in the parameter estimates that convergence problems were
encountered in the model-based optimization. This was primarily due to the
unusually large value assumed for the uncertainty in the composition
_ measurements. Such difﬁcultigg would be avoided in an industrial implementation
due to averaging or other smoothing of measurements, and because changes in the

parameter estimates and manipulated variable predictions would be limited to
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some trust region. As a result, the plant noise variance was decreased by a factor

of 100 or each individual innovation by a factor of 10. Thus the closed-loop

results in Table 5.4 were multiplied by the same factor to compensate.

Table 5.4:  Simulation Results for Spectral Norm of Q.

Activation Energies Frequency Factors
Adjustable Adjustable
open-loop QI 139.1 331.2
closed-loop [Ql, 71.6 199.5

Comparison of the predicted and actual spectral norms of the covariance matrix
. Q reveal that the open-loop predictions are approximately a factor of 2 lower than
the simulation results, while the closed-loop predictions are quite close. Since the
RTO problem in this example is nonlinear, any linear approximations are only
locally valid and the predicted results in Table 5.3 would only to be accurate for
small process noise variances. Then it is expected that the open-loop predictions
are more accurate, for a given noise variance, since the open-loop simulation was
re-started at the model-based optimum in Table 5.1 at every iteration; whereas
the closed-loop simulation was allowed to move in the reduced space of the
optimization problem. Despite the expected better accuracy in the open-loop case,
such estimates should only be used if the plant derivatives are unavailable and the

RTO system is expected to be closed-loop stable.

What is of primary importance in this example is not whether the predicted
_ spectral norms of the covariance matrices match those observed, but whether the

predictions indicate the correct choice of adjustable parameter set; although, the
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observed covariance matrix should approach the predicted covariance matrix in
the limit, as the noise magnitude is decreased and the sample size is increased.
It is worth noting that the ratio of spectral norms of the covariance matrices
(1Q|, for frequency factor update divided by [QI, for activation energy update)
agree. The ratio is approximately 1.6 for predictions and 2.6 for observed

values.

Figures 5.3 and 5.4 present the simulation results. In the open-loop simulations
a sample of 30 points was collected for each alternative adjustable parameter set.
For the closed-loop simulations, 50 data points were collected for each alternative
adjustable parameter set. The ellipses are drawn on the figures as guides only.
Recall that for closed-loop simulation purposes the variance of the process noise

was decreased, thus the smaller ellipse area in Figure 5.4 than in Figure 5.3.
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Figure 5.3: Open-Loop Simulation Results
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Figure 5.4: Closed-Loop Simulation Results

The design cost calculations of this example show that for the assumed
measurement error covariance structure, it is better to update the activation
energies than the frequency factors, in the kinetic rate expressions. For the two
reaction approximation to the Williams-Otto reaction sequence, both adjustable
parameter sets produce the same offset; however, updating the activation energies
produces a much smaller variance in the predicted optimum. This conclusion was
verified by simulation studies of the nonlinear plant.

53  Discussionis

Design of RTO systems can be based upon fundamental principles. In this
chapter, Design Cost was introduced as the loss of economic benefits due to

imperfect optimization. The Design Cost method allows selection between
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competing design alternatives, using a metric developed from optimality and

statistical theory.

The Design Cost metric in Problem 5.25 consists of two terms: one for offset
from the piant optimum manipulated variable values and one for the covariance
of the model-based predictions of the optimal manipulated variable values. The
offset between the optimai plant and predicted manipulated variable values is
dependent upon such design decisions as the process model structure and fixed
parameter values, the optimization method and its tuning, the adjustable
parameters, the parameter estimation technique. The second term of Problem
5.25, the covariance of the predicted optimum manipulated variable values,
depends upon the manner in which process noise propagates through the

integrated RTO systein and the RTO systern / plant interaction.

In developing the Design Cost Problem 5.23, the plant profit surface was
approximated by a second-order Taylor series and the reduced Hessian of the
plant profit was eliminated by minimizing an upper bound for Design Cost.
Truncaticn of the Taylor series may cause desigﬁs to be eliminated which take
advantage of the higher moments of the predicted manipulated variable's
distribution, such as skewness and kurtosis. In order to take advantage of these
distribution properties the third- and fourth-order detivatives of the plant profit
surface would have to be known with considetable precision. Since such
precision in the higher derivatives is unlikely and these derivatives would typically
changé with time, any design which capitalizes on some nominal value for them
would be particularly susceptible to changes in the plant profit sutface. If the
reduced Hessian of the plant profit surface were known, then the Design Cost
Problem 5.18 could be used. As with the third- and highe}-order derivatives, the
reduced Hessian would have to be accurately known to ensure that any design

which takes advantages of its properties is an appropriate choice. Such
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specialized design is untikely given some imprecision in the Hessian and changes

with time.

The major difficulty encountered by eliminating the reduced Hessian of the plant
profit surface from the Design Cost problem is that the problem becomes scale
dependent. More precisely, by removing the reduced Hessian of the plant profit
surface from the Design Cost Problem 5.18 to yield Problem 5.25, the assumption
has been made that the curvature of the profit surface is approximately constant
with respect to direction. It is not unusual for profit to be much less sensitive to
variations in some manipulated variables than it is to others. In these cases, the
advantages of aligning offset or variance of the predictions in the directions which
the profit function changes slowly is lost. For such situations, when the reduced
Hessian of the plant profit surface is unknown, the scaling problem can be
alleviated by selecting units of measure for the manipulated variables which
ensure that the curvature of the plant profit surface is approximately constant with
respect to direction. Such scaling of the manipulated variables will require
ptocess knowledge or plant experimentation. Gill, Murray and Wright [1981]

present a detailed discussion of scaling for optimization problems.

Two interpretations of the Design Cost problem are presented in this chapter.
Closed-loop Design Cost approximates the spectral norm of the covariance matrix
Q with an exptession containing the patametric sensitivity of the model-based
optimization problem, the sensitivity of the parameter estimation problem with
respect to the process measurements, the detivative of the process measurements
with respect to the manipulated variabies from the plant and the variance structure
of the process measurement noise. The open-loop Design Cost, or the Design
Cost associated with the step-ahead prediction of the optimal manipulated variable
values, is the product of two sensitivities and the covariance of the process

‘measutements. These decompositions of the covariance mattix { provide insight
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into how design decisions affect the performance of the RTO system and how
such decisions are inter-dependent. For example the parametric sensitivity of the
optimization problem is dependent on the objective function used in the
optimization problem, the mode! structure and all parameter values. Whereas, the
sensitivity of the parameter estimates to the process measurements is dependent
on the estimation method used (Least Squares, etc.), the process model, the
available measurements, the experimental design, and all fixed parameter values.
The covariance matrix (U) and the process derivatives both depend on which
- measurements are selected for use by the RTO system. From this discussion it
can easily be seen that since each RTO design decision has a potential impact on
other aspects of the system, and as a result none of these decisions can be made

in isolation.

The case study of Section 5.3 showed that the estimates of the spectral norm of
the covariance matrix Q approximated the simulation results reasonably well.
Both the open- and closed-loop approximations for Q are linear. The accuracy
of these approximations could be improved by incorporating sotre measures of the
nonlinearity of the plant, parameter estimation and optimization problems, such
as the curvature measures of Bates and Watts [1988).

Section 5.3 ptesented a systematic method for selection of which model
parameters should be adjusted by the RTO system based on Design Cost;
however, since Design Cost also depends on the sefisor system, estimation
method, experimental design, process model, uticettainty in the fixed parametets,
and so forth, it also provides a method to capture the interaction between the
various RTO design decisions. Hence, Design Cost provides a getieral framewotk
in which such decisions can be made. Despite the ability of the Design Cost
metric for capturing the relative economic impact of a given design decision, it
cannot form the sole basis of any RTO systems design. The ability of a RTO
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system to track unexpected non-stationary process disturbances is equally

important. Thus, any good RTO design must balance Design Cost minimization

and disturbance tracking for unexpected process changes.



Chapter 6: Williams-Otto Case Study

Chapters 2 through 5 introduced a variety of useful ideas for design of process
operations optimization systems. These were all illustrated with examples which
consisted of a relatively small number of equations, having only a few degrees of
freedom available for optimization. Industrial process optimization problems often
encompass integrated plants, which have process models containing sets of
equations and operating constraints numbering in the thousands. Thus, although
the examples presented so far were useful for illustration purposes, they are not

representative of a typical industrial operations optimization problem.

The purpose of this chapter is to test the methods presented in the previous
chapters, for model structure and adjustable parameter selection, on a problem
mote representative of those encountered in industry. The Williams-Otto [1960]
was selected for this case study, since it is an integrated process which features
unit operations found in many chemical industry processes. In this chapter a set
of equations is used to represent the plant and a different set of model equations
is used in the model-based optimization.

The chapter begins by discussing the plant and the set of equations which are used
to represent it. The second section of the chapter deals with possible process
model structures. These alternative modet structutes ate examined for Point-Wise
Model Adequacy and the most promising is selected for further testing. The
chosen model structure, along with several alternative sets of adjustable
parameters, are tested for their ability to eliminate offset and the Design Cost of

144
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each is calculated based on approximations to the covariance matrix Q of the
predicted manipulated variable values. The chapter concludes with some closed-
loop nenlinear simulation results. from which the covariance matrix Q can be

estimated for comparison to the predicted values.

6.1 Williams-Otto Plant

The plant chosen for this case study was originally proposed by Williams and Otto
[1960] as a test problem for computer control strategies and has been well studied
in the optimization literature [Ray and Szekely (1973)]. Modified versions of the
Williams-Otto plant have been studied by many researchers, including DiBella and
Stevens [1965], McFarlane and Bacon [1989], and Roberts [1979]. Figure 6.1
is a flow diagram for the Willtams-Otto plant which depicts the four main pieces
of equipment: a reactor, a heat exchanger to cool the reactor effluent, a decanter
to remove an unwanted reaction by-product, and a distillation column to separate
the desired product. The stream narming convention skown in Figure 6.1 and used

in this case study adheres to that in the original Williams and Otto [1960] paper.

Two feed streams and a recycle stream enter the reactor. The reaction vessel is
a cofitinuous stitred tark reactor in which a constant amount of material is
mdintdined at all times. The three reactions which take place in the reactor are
all exothermic and their reaction coefficients possess an Arrhenius temperature
dependence. Table 6.1 gives the details for each individual reaction. Heat is
provided to ot removed from the reactor by heating and cooling tubes within it,
as is required for a given operation. The heating tubes use steam and the cooling
tubes use cooling water.
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Figure 6.1:

Williams-Otto Plant

Tdble 6.1:  Williams-Otto Reaction Data

Reaction

}

Frequency
Factor (s)

Activdtion
Etiergy (K)

Heat of
Reaction (kI

A+B —-C

1.6599x10°

6,666.7

-263.8

B+C - P+E

7.2117x10°8

8,333.3

-158.3

C+P -G

2.6725x10"

11,111

-226.3

The molecular weight of cofnponents A, B and P is 100, for components C and
E it is 200, and fot compotent G it is 300.
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The reactor effluent is cooled in a heat exchanger, to stop the reaction and reduce
the eftluent temperature below the point where the undesirable by-product
component G becomes insoluble (37.8°C). A decanter is used to remove all of
the by-product component G from the distillation column feed. The distillation
column is used to concentrate the desired product component P in the overhead
stream. The bottom stream from the column is split into a recycle stream, which
Is returned to the reactor, and a small purge stream, which can be burned for

fuel. Table 6.2 gives physical specifications for the process equipment.

The objective of Real-Time Optimization for this process is to maximize the -
percentage return on investment given as:
return = 7940.77F, + 179.991F, - 604 .32F, -

906 .480F, - 302.160F; - 4.57470F, - 6.1
2.66807F, .. - 665.961F, . - 9.92806

| where F, are the flowrates of the indicated stream (kg/s), F,, and F_ are the
total plant cooling water and steam usage (kg/s). The main plant disturbance, as -
proposed in Williams and Otto [1960], consists of step-like changes to F,, the
flow of reactant A into the reactor. The plant disturbances are characterized as
departures of +0.264670 kg/s from the nominal feed rate of reactant A to the
reactor. The disturbances can occur approxitmately every 20 minutes.

In this study, the Williams-Otto plant was modified as follows, with respect to that
ptoposed in the original paper:
i) situlations were performed on a steady-state basis,
ii) all heat exchange equipment was modelled using a log-mean-
tempetatute dtiving force,
iti)  all heat transfer coefficients were made flow dependent as in
Holman [1972] with flow exponents set to 0.8,

iv) the heat transfer coefficient for the reaction cooler had to be set at
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vii}

viii)

ix)
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1.338 J/°C/m*/s to match the nominal operating conditions given
by Williams and Otto [1960] (Krishnan [1990] also had to make
this modification),
the distillation column was modelled using tray-by-tray equilibrium
relationships [Luyben (1973)] and assuming constant molal
overflow,
the separation was represented as pseudo-binary with a constant
relative volatility,
the relative volatility was set at 2.8 in order to simulate the nominal
operating conditions given by Williams and Otto [1960],
the distillation column has a total condenser, with heat transfer
controlled by both cooling water flow and liquid level,
the minimum acceptable concentration of product component P in
the distillation column overhead stream is 95 wt% (Krishnan [1990]

aiso made this assumption).

The plant operating constraints consist of:

1)

2)

3

4)

a maximum production rate for the distillation column overhead
stream of 0.600297 kg/s,

a minimum conceniration of ptoduct component P in the distillation
column overhead streatn o-f—\95 wt%,

a maximum available distiflation column condenser heat transfer
area of 458.94 m’,

no by-product component G present in the distillation column feed
stream and any subsequefit process streams.

The manipuiated variables available in the plant are: fresh feed rate of reactant B

to the reactor (Fj), recycle flowrate from the distillation column bottoms (FD,

reactor operating temperature (Ty), flowrate of by-product G from the decanter
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bottoms (Fg). flowrate of the column overhead product stream (F5). condenser
heat transfer area, cooling water and steam tlowrates in the heat exchange
equipment. The fresh feed rate of reactant A to the reactor (F,) is fixed by

upstream processes and is subject to disturbances.

Table 6.2:  Williams-Otto Equipment Physical Data

Equipment Specifications Notes
Reactor - | capacity = 2,105.2 kg an ideal continuous stirred tank.
Area = 9.2903 m*

U = 23.082 F*® J/m*°Cs

Cooler Area = 352.862 m” maximum allowable decanter

U = 43.794 F*® I/m’*°Cs | feed temperature is 311.111 K.

Column ideal stages = 21 pseudo-binary distillation with
relative volatility = 2.8 | constant molal overflow and

constant relative volatility.

Reboiler Area = 257.42 m’ heating medium is hot water at
U = 30.378 F*® I/m*°Cs | fixed flowrate. Water is heated

by steam injection.

Condenser Area = 458.94 m* (max) | total condenser with variable
U = 40.623 F*® J/m*°Cs | area.

An analysis of the plant equations for the nominal value of feed rate of reactant

A (1.82749 kg/s) indicates there are three degrees of freedom available for
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optimization after all of the process operating constraints. thermodynamic
relationships, mass and. energy balances are satisfied. Then. the reduced space
of the plant optimization problem has three dimensions. The three independent
manipulated variables selected for this study were the fresh feed rate of reactant
B to the reactor (Fp), the recycle flow rate from the column to the reactor (F)
and the reactor operating temperature (Tg). Table 6.3 gives the plant optimum
manipulated variable values and objective function value for the three disturbance

values of the fresh feed rate of reactant A to the reactor (F,).

Table 6.3:  Williams-Otto Plant Optima.
F, (kg/s) Fy (kg/s) F_ (ke/s) Ty K) return (%)
1.56282° 3.39170 13.0966 353.737 28.5900
1.82749 3.58565 13.3940 352.748 25.8212
2.09216 3.58446 12.8837 350.778 18.5565

T in this case F, is no longer at its maximum constrained value,
(i.e. Fp = 0.367957 kg/s).

The constraints active at the plant optima are: the maximum allowable temperature
at the reaction cooler exit (Ty). all by-product G removed in the decanter, the
entire distillation column condenser area used for heat exchange, the maximum
production rate of distillation column overhead stream (Fp) and the minimum
allowable concentration of the product component P in the distillation column

overhead stream.



6.2  RTO Design Alternatives

The model used in this case study contains relationships for each piece of
equipment; however, the model was chosen to ensure both structural and
parametric mismatch with the plant. As in Chapters 2. 4 and 5. the reactor in the
Williams-Otto plant was approximated with a continuous stirred tank reactor in
which the following two reactions occur:
A+2B—->P+E
A+B+P—>G

with Arrhenius temperature dependencies for each reaction.

All heat exchange equipment was modelled with log-mean temperarure driving
forces and constant heat transfer coefficients. (Recall that the plant equations had

heat transfer coefficients as a functions of flow through the heat exchanger).

The distillation column was represented using the modified Smoker's equation

proposed by Jafarey, Douglas and McAvoy [1979]:

1n| % (1-%,)
1I-x,) %,

ln_;f_m

NERE

where X, Xg and Xy, are the mole fractions of product component P not in the
azeotropic mixture for the distillate, feed and bottoms streams, respectively, R is
the reflux ratio and ¢ is the relative volatility. Douglas, Jafarey and Seeman

[19791 propose tlgjs equation for both process design and control.

The process model contains structural mismatch in the reactor, in the heat transfer
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equipment and in the distillation column equations. The model parameters
available for adjustment in real-time are: the frequency factors (¢ and activation
energies (£) of the Arrhenius reaction rate relationships, heats of reaction (AH,,,),
the heat transfer coefficients (U) for all heat exchange equipment, the relative
volatility (0) of the mixtre in the distillation column and the number of ideal

trays (N) in the distillation column.

Preliminary Point-Wise Model Adequacy tests were performed on process model
with all model parameters available for adjustment. The adequacy test was
performed at the optimal plant operation, for the nominal disturbance value. The
Point-Wise Model Adequacy test used the grid method developed in Chapter 2,
with the grid spacing given in Table 6.4. Adequacy testing revealed that the
procesg i'nodel was inadequate; thus, there are no values of the model parameters
for which the manipulated variable values of the plant optimum and the model-

based optimum can be made coincident.

During preliminary Point-Wise Model Adequacy testing, it was observed that the
model-based optimization problems consistently under-estimated the utilities
flowrates (both cooling water and steam). The objective function of the
optimization problem directly costs utility flowrates rather than the heat
transferred, as would usually be the case. Recall that in the plant, heat transfer
coefficients are dependent upon the utility flowrates. Thus, for the plant, the
incremental cost of heat transfer decreases as the process flowrates increase. The
mode! with constant heat transfer coefficients does not contain such structure. In
the model, heat transfer coefficients are constant, and as a result the costs
associated with heat transfer are independent of flow. In order to mote closely
match the piant sttucture, flow dependence for the moel heat transfer coefficients
was re-introduced. In the modified model, the heat transfer coefficients were set
to be:
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which gives a parametric mismatch with respect to the exponent in the plant heat

transfer coefficient flow dependence.

Point-Wise Model Adequacy testing was performed on the model modified to
include flow dependence for the heat transfer coefficients, using the grid given in
Table 6.4. The adequacy testing yielded an adequate model with the adjustable

parameter vaiues given in Table 6.5.

Table 6.4:  Grid Spacing for Williams-Otto Model Adequacy Test.

Nominal Value Grid Spacing

Reactant B Flowrate (Fp) 3.58565 kg/s +0.01891 kg/s

Recycle Flowrate (F)) 13.3940 kg/s +0.01891 kg/s

“ Reactor Temperature (Ty) 352.748 K +0.2777 K

The remainder of the case study will examine the selection from among three
alternative subsets of the possible adjustable parameters (in Table 6.5), for use in
the closed-loop Real-Time Optimization system. In order to simplify discussions,
the three alternatives are labelled Modell, Model2 and Modei3. In Modell the
adjustable parameters are: the frequency factors (¢;) in the Arrhenius reaction rate
constant telationships, the heat transfer coefficients (U and the relative volatility
(o). In Model2 the adjustable parametets are: the activation energies (C;) in the

Arrhenius reaction rate constant relationships, the heat transfer coefficients (U)



and the relative volatility (u).

Table 6.5:  Adjustable Parameter Values for Point-Wise Adequate Model.
Parameter Value Notes
Reactor g = 783056 K
£, = 103289 K heats of reaction could be

o, = 5.72367x107 5"
&, = 3.51404x10° s
AH, = 348.816 kl/kg B
AH, = 488.343 kJ/kg G

I

modified significantly

without affecting the

results of adequacy testing. |

Reaction Cooler { U = 35.513 F*" J/m*°Cs
Column ¢ =295
N =240
Condenser U = 37.631 F*7 J/m*°Cs ll
Reboiler U = 27.679 F*" J/nt* °Cs

The adjustable patameters were chosen for Model3 using the key parameter
selection method of Krishnan [1990]. Krishnan's method uses the parametric
sensitivity of the optimal value for the objective function in the model-based

optimization for selecting which parameters will be adjusted on-line. Table 6.6

gives the parametric sensitivity of the objective function in the model-based

optimization. For this adjustable parameter selection method, any parameters

which, when varied slightly, cause an active constraint set change, are also

selected for on-line adjustment. Since there were no active constraint set changes,
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the adjustable parameters with the largest effect on the objective function were
chosen for Model3. The adjustable parameters used in Model3 are: the
frequency factors (¢;) and activation energies () in the Arrhenius reaction rate

constant relationships, the number of ideal trays (N) in the distillation column and

the relative volatility (¢).

Table 6.6:  Parametric Sensitivity of Model-Based Optimization.

AB (%) Areturn (%) | Areturn / AR rank
t, 1.066 3.289 3.085 3
s 0.7824 -1.722 -2.201 4
£, 0.0709 -1.440 -20.30 1
- 0.1076 1.301 12.097 2
AH, 1.333 0.3551 0.2663 7
AH, 0.9524 0.05315 0.05581 ; 10
* Uooter 1.110 0.1646 0.1483 9
U ongenser 0.9937 0.1599 0.1609 8
U cnoiter 0.9752 0 0 11
o 1.017 1.274 1.253 5
“ N 0.8333 0.4414 0.5297 6



The parameter estimation method, used for this case study, was originally
proposed by Box [1970], as well as Sutton and MacGregor [1977], and has the

form:

min €Te
B

subject to:
£(z,B) = ¢

- The process measurements (z) available for parameter estimation are:

1) flowrates of Streams A, B, G, L, and P,

2) flowrates of all utility streams through each piece of equipment,
3) temperatures of Streams R and X,

4) temperature of all utility streams at the equipment exit,

5) compositions of Streams D and P.

Only the current set of measurements are used for parameter estimation.

Table 6.7 gives the variance of the measurements. The standard deviations of
the measurement errors assumed for this plant correspond to approximately 0.2%
to 1.0%, 0.3% and 5% of the nominal values for the flowrates, temperatures and

compositions, respectively.



Table 6.7:

Williams-Otto Plant Process Measurement Variance.

Variance

flowrates of Streams
ABand L

3.57399% 10 (kg/s)*

flowrates of Streams

Gand P

3.57399%10° (kg/s)

water flowrates

3.57399x 107 (kg/s)*

steam flowrates

3.57399 % 10°% (kg/s)

x 107

temperatures 7.71605 %1072 (°C)?
0.748 -0.811  © 0 Q )
-0.811 3.52 0 0 0 -1.06
~a 0 0.0357 -0.177 0  -2.03157
Stream D 0 0 -0.177 5.52 0 a
. 0 0 g 0  0.0357 0
composition 0  -1.06 -0.0357 0O 0 0.506
x 107
0.025 -0.025 0 a 0 2
-0.025 0.1 0 0 0 -1.42
0 0 0.001 -0.005 0 -0.0475
Stream P 0 ¢ -0.005 0.1 0 0
" 0 0 G 0 001 0
composition 0 -1.42 -0.0475 0@ o 225




6.3 Zero-Offset Tests

Chapter 4 introduced a set of three necessary conditions which must be satisfied
in order that a model-based real-time optimization system eliminate offset from
the plant optimum manipulated variable values. These necessary conditions are
implemented as a set of tests for Point-Wise Model Adequacy, Augmented Model
Adequacy and Point-Wise Stability. Point-Wise Model Adequacy testing
determines whether values exist for the adjustable parameters which will yield
optimal manipulated variable values from the model-based optimization problem
which are also optimal for the plant. Augmented Model Adequacy tests determine
the ability of the model update system to produce adjustable parameter values,
from available process measurements, for which the model-based optimization
problem is Point-Wise Adequate. Finally, Point-Wise Stability testing ascertains
whether the closed-loop RTO system will return to the optimum for arbitrarily

- small deviations from it.

The three modelling alternatives are Point-Wise Adequate, for the nominal
disturbance value (see Table 6.5 in the previous section). As proposed in Section
4.1, Augmented Model Adequacy testing was perfortned using two gtids: one grid
for the independent manipulated variables (8x) in the model-based optimization
problem and one grid for the adjustable parameters (8f) in the parameter
estimation problem. The grid spacing for the manipulated variables is contained
in Table 6.4 and Table 6.8 gives the grid spacing for the adjustable parametets.

The Augmented Adequacy tests were performed for each alternative adjustable
parameter set and for all disturbance values. All three of the alternative
adjustable parameter sets failed the Augmented Adequacy tests at each disturbance
value, despite attempting a variety of starting points and grid spacings. Thus the
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combined model update / optimization system is not capable of eliminating offset

with respect to the plant optimum. for any of the alternative adjustable parameter

sets.

Table 6.8:  Parameter Grid Spacing in Augmented Adequacy Tests.

Adjustable I;ameter Grid Spacing
frequency factor first reaction (9,) +2.8618x10° s
frequency factor second reaction (3,) +1.7570x10* 5!
activation energy first reaction (§)) +39.152 K
activation energy second reaction {£,) +51.645 K
cooler heat transfer coefficient (U, +0.177565 F*7 J/m* °Cs
condenser heat transter coefficient (U jeqser) +0.188155 F*7 J/m*°Cs
reboiler heat transfer coefficient (U, .0 +0.138395 F*7 J/m*°Cs
“ number of ideal column trays (N) +0.5
relative volatility (a) +0.1

The results of the Augmented Model Adequacy tests were confirmed by
closed-loop simulation, with noise-free process measurements. The closed-loop
simulations were performed for all of the alternative adjustable parameter sets
and for each disturbance value. Table 6.9 gives the points, in the reduced
space of the model-based optimization problem, to which each alternative

converges for various values of the process disrurbarf:ces. During Point-Wise
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testing it was found that success in solving the model-based optimization was very
sensitive to initial conditions; as a result, a filter was introduced on the parameter
estimates to limit the amount the closed-loop RTO system would move in a given
step. The simple low-pass filter used during simulation had the form:

B,= 0.1 B, + 0.9 B,
Alternatively, the output from the model-based optimization could have been
filtered or a trust region approach employed to limit the changes in the

manipulated variable values.

The closed-loop simulations showed that the model-based RTO systems all over-
estimated the actual rate of return from the plant. The model-based optimization
predicted rates of return in the range of 27% to 45%, while the actual rates of
return for the predicted optimal variable values ranged from -10% to 6%. It
should be noted that for all disturbance values, the model-based optimization
problems predicted that the constraint for the maximum flowrate of the column
distillate stream was active at the predicted optimum manipulated variabie values;
however, feasible operation of the plant at the predicted independent manipulated
variable values was only possible at distillate overhead flowrates less than the
maximum permissible value. Thus, the model-based optimization problems did
not predict the correct active constraint set for any of the process operating points
given in Table 6.9, despite model updating. Feasible plant operation was
maintained at these points by a process control system which maximized the
distillation column overhead product flowrate (Fp).



161

Table 6.9:  Equilibrium Points of the Model-Based RTO System
(compare with Table 6.3).

Disturbance (F,) Modell Model2 Model3

F, = 3.6040 | F, = 3.6208 F, = 3.5842
1.56282 ks F, = 10656 | F_= 10472 F, = 10.93
Ty = 353.46 | Ty =353.20 | T, = 352.89

i
w
Il

3.5886 | F, =3.5890 | F, = 3.5706
1.82749 kg/s F.=97299 | F,_=9.7895 F, = 9.7457
349.95 | Ty =349.65 | T, = 349.45

—
-~
i

]
w
H

3.5180 | Fy=3.5315 | F, =3.5075
2.09216 ke/s F = 10444 | F_=10529 | F_= 10.528
Te = 34749 | T,=34735 | T,

Il
(7S]
=
_--J
o
E

* the units of measure are Fy (kg/s), F_ (ka/s), Ty (K).

Although the Augmented Model Adequacy tests showed that none of the
modelling alternatives was capable of eliminating offset from the plant optimum,
each alternative was tested for Point-Wise Stability at all disturbance values.
Point-Wise Stability testing requires the parametric sensitivity of the model-based
optimization problem, the sensitivity of the parameter estimates to the process
measurements in the parameter estimation problem, and the derivatives of the
ptocess measurements with respect to the independent manipulated variables. All
of these derivatives were determined by finite difference approximations
determined from perturbation studies of the appropriate RTO subsystem. Details

of these fihite difference approximations can be found in Appendix D.
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Table 6.10: Point-Wise Stability Results ( ‘ :c% _2% _2_: 2 ).
Disturbance (F,) Modell Model2 Model3
1.56282 kg/s 0.6904 0.7282 124.6
1.82749 kg/s 0.1948 0.1835 27.26
2.09216 kg/s 0.2048 0.1898 13.83

Point-Wise Stability testing showed that Model3 is unstable and would require a
stabilizing filter for implementation in a RTO system. (Note that the filter used
for the estimates of the adjustable parameters in the closed-loop simulations was
not included in the stability tests.) Thus, Model3 was not considered in further
testing. The results in Table 6.9 do not clearly identify a difference between
Modell and Model2. The Design Cost method of Chapter 5 is required to
differentiate between them. Finally, if zero-otfset from the plant optimumn were
the RTO design goal, either the model or the update strategy would have to be
changed.

6.4  Design Cost Calculations

The Design Cost method developed in Chapter 5 provides a means for selecting
among RTO systems design alternatives based on fundamental principles of

l“f‘_\ statistics and optimization theory. The Design Cost method is framed as an.

/,
£

. optimization procedure in the form of Problem 3.31:
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where n is the number of independent manipulated variables, Q is the covariance
matrix of the predicted optimal manipulated variable values (x',). X, are the
optimal manipulated variable values for the plant. w is the set of possible plant
disturbances, v are the RTO design choices, and Cis the frequency function for

the plant disturbances.

Design Cost consists of two terms: one for the offset from the plant optimum
manipulated variable values and one for the variation of the predicted optimal
manipulated variable values. This variation in the predicted optimal manipulated
variable values is due to measurement noise propagating through the closed-loop
RTO system and is characterized by the covariance matrix Q. Chapter 5 provided
two ways for approximating the covariance matrix Q from: the plant derivatives,
and the sensitivities of the parameter estimation and model-based optimization
problems. In this case study, the closed-loop approximation for Q of Inequality

5.42 is used.

Table 6.11: Closed-Loop | Q . Approximation for Modelling Alternatives

Disturbatce (F,) Modeill #Modelz
1.56282 kg/s 47.431 61.133
1.82749 kg/s 9.2380 9.5636
2.09216 kg/s 8.6804 9.6300

______.____—L__———J————

Table 6.11 provides the calculated values of the closed-loop approximations to the
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covariance matrix Q for the various plant disturbances. The values used for the

various derivative and sensitivity matrices are given in Appendix D.

In order to calculate the Total Design Cost for a modelling alternative, a
frequency function () for the possible plant disturbances (w) is required. In this
case study the only plant disturbances are step changes in the fresh feed rate of
reactant A to the reactor (F,). The frequency function used for this case study
assumed that the plant operated at the nominal disturbance value twice as often
as the other disturbance values. Thus the frequency function of the plant
disturbances is assumed to be :
{F,=1.563) = 0.25, F,=1.827) = 0.50, QF,=2.092) = 0.25

Table 6.11 summarizes the total Design Cost for the two modelling alternatives.

Table 6.12: Total Design Cost for Modelling Alternatives

Total Desigh Cost (C;)

Modeli | 72.277

Model2 84.841

From the results in Table 6.12, Modell has a lower Total Design Cost than
Model2. As a result, Modell would be chosen for implementation in the model-
based RTO system. Examining the rézults in Tables 6.9, 6.11 and 6.12 show that
there was little difference between Modell and Model2 in terms of offset from the
plant optimum, and that the difference in the Design Cost for the two models was
primarily due to Model2 consistently having a higher covariance;‘ among its
predicted optimal rcanipulated variable values. Recall that the approximations

used for the covariance matrix (Q are linear and since the underlying systems are
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nonlinear. care must be taken in interpreting the results. The Design Cost results

were checked by closed-loop stmulation which tncorporated measurement noise.

6.5 Simulation Results

In the Design Cost calculations of Section 6.4, the covariance matrix (Q) of the
predicted optimal manipulated variable values was determined using numerical
approximations to the required first-order derivatives. The results of such an
approximation are only accurate in some small neighbourhood of the point at
which the derivatives are taken, due to the nonlinearity of the equations which
make up both the plant and the model in this case study. The results of the

approximation of { were checked by closed-loop simulation.

The closed-loop simulation of the RTO system consisted of a set of three inter-
connected nonlinear problems for parameter estimation, model-based optimization,
and plant simulation. The process measurements used for parameter estimation
are given in Section 6.2 and had measurement noise added to them. Measurement
noise was simulated by scaling innovations sampled from a M0,1) distribution
using the variances given in Table 6.7, with the assumption that the measurement

noise was uncorrelated with respect to time.

Preliminary attempts at closed-loop simulation encountered difficulties in solving
the model-based optimization problems, associated with the adjustable parameter
variation caused by the process noise. These studies showed that success in
solving the model-based optimization problem is very sensitive to starting
conditions, for the model structure used in this case study. Adjustable parameter

variation can cause any solution from a previous model-based optimization to be
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sufficiently distant from the current solution, so as not to provide a sufficiently
good starting point. The closed-loop simulation was designed to utilize previous
solutions as starting points for the solution of the current model-based problem.
This difficulty was overcome by dividing each innovation of the process noise by
a factor of 5 and as a result decreasing the variance of the process measurement

noise by a factor of 25.

The closed-loop simulations were performed with the reduced measurement noise
variance for Modell and Model2, as well as each of the possible disturbance
values for the feed rate of Reactan: A to the reactor. Each of the simulations was
started at the appropriate conditions given in Table 6.9 and allowed to execute 50
complete RTO cycles. The covariance matrix Q was then calculated from the
simulation results and multiplied by 25 to compensate for the measurement noise
reduction necessary for closed-loop simulation. The spectral norms for Q are

given in Table 6.13.

Table 6.13: Closed-Loop Simulation Results for | Q Iy .

Disturbarice (F,). Modell Model2
1.56282 kg/s 28.857% 28.384
1.82749 kg/s 11.699 13.253 "
2.09216 kg/s 10.534 12.505

i

As was shown by the approximation method for the closed-loop covariance matrix

Q. Modell seems to provide a smaller covariance among the predicted
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manipulated variable values. Comparison of the results in Tables 6.11 and 6. 13,
show that the results agree well, with the exception of the approximation of Q at
the lowest disturbance value. As expected for small process noise magnitudes,
the observed values for the covariance matrix spectral norms agree well with the
predicted values. Differences between observed and predicted values could be
due to nonlinearities, as well as the set of innovations used to simulate process
measurement noise. As was discussed in Chapter 3, what is most important is
that the approximation procedure for the covariance matrix Q indicates the correct
modelling alternative. The closed-loop simulations confirm the results of the

Design Cost calculations.
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Figures 6.2 through 6.4 present plots of the simulation results. These values
were multiplied by 5 to compensate for the noise reduction necessary for
successful closed-loop simulation. Note from these figures that before re-scaling,
the predicted optimal operation actually varied through a range of approximately
8% to 11% of the nominal flowrate values and 1% of the nominal temperatures
(or 4°C), respectively. A 4°C variation in the reactor operating temperature
corresponds to a variation in the predicted reaction rates in excess of 25% of the
nominal values. This range of variation should be large enough to excite some
of the nonlinearities of the closed-loop system and provide a significant test of the

approximations used to predict the covariance matrix Q.

The closed-loop simulations confirm that there is little difference between the two
modelling alternatives with respect to implementation in a closed-loop RTO
system. Modell consistently has a smaller spectral norm for the covariance
matrix Q, than does Model2;: however, the differences between the two

alternatives seem small when other implementation factors are considered.

The case study of this chapter provides insight into the challenges of applying the
methods presented in this thesis to _industrial-scaié:"‘problems. As with the
examples in previous chapters, the case study confirms the merits of the Design
Cost of approach to RTO system design. Further, this study has illustrated the

shortcomings of an existing adjustable parameter selection method (Model3).

Finally, several observations regarding the process model should be made. For
the adjustable parameter sets chosen and the assumed plant disturbances, the
model-based optimization had significant offsets from optimal plant operations.
These offsets produced very low, and sometimes negative, rates of return. The
model-based optimization problems did not identify the active constraint sets

accurately. They consistently over-estimated the maximum feasible production
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rate for the distillite Stream P. The model-based optimization problems were
much more difficut to solve than optimization problems based on the equations
used to simulate the plant. As a result, while the model structure provided a
useful basis for this case study, it may be inappropriate for implementation in a

Real-Time Optimization systzm.



Chapter 7: Summary & Conclusions

Econormic optimization of steady-state process operations has become increasingly
important for establishing and maintaining competitive advantage in many
industries. Model-based process optimization has garnered particuiar interest,
due to the promise of faster convergence speeds and decreased amount of plant
experimentation. This thesis is concerned with design of such model-based
optimization systems, which include model-based Real-Time Optimization (RTO),
On-Line Optimizing Control, off-line process scheduling and so forth. The
available literature provides little information regarding design methods for
integrated model-based optimization systems, such the system of Figure 1.1. The
main objective of this work is the development of a sequential approach to
integrated model-based optimization system design, based on fundamental
principles of optimization and statistics. This thesis provides both insight into the
model-based optimization system characteristics necessary for successful

implementation, as well as useful design tools.

The importance of process model quality to the success of a model-based
optimization systems has been shown by such researchers as Roberts [1979],
Arkun and Stephanopoulos [1981], and Durbeck [1965]. Despite this no methods
were available for determining whether a process model is adequate for use within
a RTO system. Much of this work has focused on design phase process

modelling issues related to model structure selection and on-line model updating.

Chapter 2 defined Point-Wise Model Adequacy as the ability of the model-based
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optimization to possess the same manipulated variable values as those
corresponding to the plant optimum, for some value of the adjustable parameters.
The Point-Wise Model Adequacy criteria focused on the manipulated variable
values as the most critical match between the model and the plant, necessary for
successful process optimizarion. In Chapter 2, design phase tests were also
provided for determining the adequacy of a process model for RTO system

implementation.

In Chapter 3, the Point-Wise Model adequacy methods were extended to the
analysis of systems using bias updating for the process model. Such bias update
systems are important since they include many of the Model Predictive Control
systems used by industry. Inthis chapter, methods for determining the robustness
of the model-based optimization system to errors in the fixed parameters were
presented. For model-based optimization systems with constraints which were
linear in the fixed parameters, criteria were presented which guarantee

convergence to the plant optimum.

It can be readily recognized that all optimization system components in the
feedback loop have an impact on the ability of the system to find the plant
optimum operation. Chapter 4 presents three necessary conditions for the
elimination of offset from the plant optimum, by a model-based optimization
system. The three necessary conditions are Point-Wise Model Adequacy,
Augmented Model Adequacy and Point-Wise Stability. Augmented model
Adequacy is defined as the ability of the model updating system to provide values
for the adjustable parameters, from the available process measurements, which
.allow the model-based optimization system to be Point-Wise Adequate. Point-
Wise Stability requires that an integrated model-based optimization system retutn
to the plant optimum for small perturbations away from it. Design phase testing

procedures are presented for each of the necessary conditions.
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Although much of this thesis is concerned with the abilitv of the model-based
optimization system to find the optimal plant operation, it is recognized that zero-
offset may not be the only design consideration and in many cases may not be
possibie using available process measurements and data. Chapter 5 presents the
Design Cost approach used for making design decisions for an integrated model-
based optimization system. Design Cost "trades-oft™ between zero-offset and the
variance of the predictions for the manipulated variable values, based on statistical
principles. The chapter uses Design Cost in a sequential procedure for selection

of which mode! parameters should be adjusted on-line.

The concepts of each chapter are illustrated with small examples, containing few
equations and variables. Chapter 6 provides a larger-scale case study using the
Williams-Otto {1960] plant. This case study investigated both mode! structure and
adjustable parameter selection for model-based optimization using the concepts of

the Chapters 2 through 3.

This thesis serves to highlight several points regarding the design of model-based
optimization systems. In general, considerable plant knowledge is required for
successful implementation of the model-based optimization system Figure 1.1,
Zero-offset from the plant optimum manipulated variables may not always be an
attainable design goal, particularly when the process is subject to a variety of
disturbances. Such disturbances could include feed grade / quality changes,
equipment performance degradation and so forth. Finally, the effects of
interaction between the components of an integrated model-based optimization

system should be considered, to ensure a successful design.

In this thesis significant progress was made toward a systematic RTO design
method; however many challenges and research opportunities remain. Much of

this work was concerned with the testing of candidate design choices for model-
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based optimization systems. The generation of these design alternatives has been
left to the system engineer. Although the tests presented in this thesis are useful
for determining the ability of an optimization system to succeed, diagnosing the
inadequacies of systems which fail the test has not been addressed. Since offset
elimination is often desirable in a model-based optimization system, particularly
for plants which experience unexpected disturbances, further work is required to
develop sufficient conditions for zero-offset. Many of the testing methods used
in this thesis are numerical and may not provide the most efficient methods for
a given problem. Further investigation of these numerical methods should be
undertaken to provide the model-based optimization system implementers with the
most efficient design tools possible. Finally, the techniques presented in this
thesis were applied to investigations of the inter-dependence of the model updating
and model-based optimization steps of the RTO cycle shown in Figure 1.1. A
comprehensive design procedure would have to consider data validation, command
conditioning, the process control system, the sensor system, and so forth. The
Design Cost approach can provide the framework on which such a comprehensive

design procedure could be built.



Nomenclature:

=]

I o me

Jacobian of active constraints.

space of permissible adjustable parameter values.
Design Cost

"n" times continuousty differentiable.

constant vector.

cost of feedstock "i" in gasoline blending problem.
product "j" demand limits in gasoline blending problem.

matrix containing fixed parameter variations in decomposition of
perturbations to A.

vector containing fixed parameter perturbation in a single row of A.
flow of reactant A to reactor in Williams-Otto plant.

flow of reactant B to reactor in Williams-Otto plant.

total outlet flow from reactor m Williams-Otto plant.

flow-rate of feedstock "i" to p;oduct "j" in gasoline blending problem. -
filter matrix used in Appendix C and Chapter 3.

equality constraints.

inequality constraints.

reduced Hessian of objective function.

Cholesky decomposition of the measurement covariance matrix U.
Lagrangian of optimization problem

number of dependent variables in true process.

number of dependent variables in process model.

process measurement noise.

N(0,1) normal or Gaussian distribution with zero mean and unit variance.
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number of independent (or manipulated) variables in process model.
objective or profit function.

product "j" pricing for gasoline blending probiem.

number of adjustable parameters in process model.

covariance matrix of predicted optimal manipulated variable values.
feedstock "i" qualities in gasoline blending problem.

feedstock "i" availability limits in gasoline blending problem.

rate of reaction for single reaction approximation to Williams-Otto
reaction sequence.

space of permissible values for manipulated variables.

product "j" quality limits in gasoline blending problem.
transformation matrix (R —R™).

reactor temperature in Williams-Otto plant.

covariance matrix of process measurements ().

dependent variables € ™.

matrix assigning position of parameter variations in decomposition of
perturbations to A.

vector assigning row position in rank one decomposition of
perturbations to A.

reactor volume in Williams-Otto models.
weighting matrix.
concentration of component "i".

manipulated variables & ‘K"

basis vectors for null space of active constraint Jacobian.
process measurement vector.

forward shift operator.

-fixed model parameters.

adjustable model parameters € R".
distance vector between i" grid point and true process optimum.

distance vector between model-based optimum and process optimum.
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Uy nonlinear map representing model-based optimization problem.
n weighting vector.
8 angle between 3x; and €.
K condition number of a matrix. based on L, norm.
A eigenvalues of reduced Hessian.
n Lagrange multiplier vector.
v weighting vector.
© nonlinear map representing parameter estimation problem.
G frequency function for distribution of x',.
b 4 nonlinear map representing the plant.
operators
\Y gradient.
V:  Hessian.
IR | determinant of matrix R.
R"  transpose of matrix R.
pR) spectral radius of matrix R
x| L, norm of x.
subscripts

component A, Williams-Otto plant.
component B, Williams-Otto piant.
component C, Williams-Otto plant.
component E, Williams-Otto plant.
component G, Williams-Otto plant.

= o MmO w >

inactive.

[y

feedstock index for gasoline blending problem.
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product index for gasoline blending problem.
iteration index.
active.
lower limit.
model-based property.
component P, Williams-Otto plant.
process property.
reduced property.
total.

upper Hmit.

optimal value.
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Appendix A: Derivation of Reduced Properties for

Model-Based Optimization “ioblems

This appendix presents the derivation of expressions for the reduced gradient and
Hessian of the performance function in a model-based optimization problem.
These reduced properties were used extensively in Chapters 2 and 3. The
derivations are split into two main parts, which follow the discussions of Chapter
2. In the first section the reduced gradient and Hessian are derived for the
partially-constrained case, where there are degrees of freedom for optimization
after all of the plant operating constraints are met. The second section deals with
the fully-constrained case, where the active constraint set uniquely defines the
plant optimum. Both of these sections follow the reduced space conventions given
in Fletcher [1987] and Gill et al. [1981]. The appendix concludes with a
derivation of expressions for the reduced properties using the Implicit Function

Theorem, as an alternative to the more traditional methods.

A.1 Partially-Constrained Optimization Problems

In Section 2.1, Point-Wise Model Adequacy criteria were developed around
expressions for the reduced gradient and Hessian of the performance function of
the model-based optimization problem. Section 2.1 dealt exclusively with the
situation where there are fewer active constraints at the plant optimum that
manipulated variables available for optimization. Thus, after using the active

constraint set to eliminate dependent variables from the optimization problem, the
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reduced space of the optimization problem has a dimension higher than zero and

the problem has degrees of freedom for optimization.

As a basis for the developments of this appendix section, consider the general

nonlinear plant optimization problem:

minimize P (x,u)
x,u

subject to: A.l

0
0

£ (x,u)
g (x,u)

Wl

where the functions P, f and g are at least C* in x and u. Although the functions
P, fand g may contain parameters, these have been excluded from the notation

for clarity.

We assume that the problem is well posed for the plant, under any given
operating policy; thus, there is a unique process optimum. This extremum will
have an associated set of active operating constraints. Such active inequalities
can be identified either by process knowledge or using the Karush-Kuhn-Tucker
multipliers from the nominal problem. Once the active operating constraints have

been identified, the equality constraint set can be reformulated as:

h(x,u) = [ £ (x'“)] -0 A2

The null space ot the Jacobian of the active constraint set can be defined as
[Fletcher (1987), Gill et al. (1981)]:

[Veh Vyh]2 = 0 A3

where Z are a set of basis vectors for the null space. Then the reduced gradient

of the profit function is given byv:



V.2 = [V,D V,212 At

where L is the Lagrangian of the optimization Problem A.1 (i.e. Lix.u,p)=
P(x,u)-p"ia(x,m)). These developments allow expression of the reduced properties
of an optimization problem in terms of the partial derivatives of the active
constraints and the objective function. Such expressions provide a basis for
determining the adequacy of a process model in terms of reduced space optimality

conditions.

Sufficient conditions for a minimum require:

and
V:P positive definite.

The reduced Hessian must be negative definite for an unique maximum.

A.2  Fully-Constrained Optimization Problems

Section 2.2 presented Point-Wise Model Adequacy criteria for the fully-
constrained sitation, where there are as many independent active constraints at
the optimum as manipulated variables. In this case the equality constraints and

active inequality constraints uniquely determine the optimum. Thus, if the
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optimization space were reduced using the active constraint set, the resulting
reduced space would have zero dimension (a point) and model adequacy testing
would require ensuring the intersection of the active set at the plant optimum. An
alternative approach which provides more interpretive capability, uses the equality
constraints to reduce the dimension of the optimization space to concentrate only
on the manipulated variables. Then, the approach of this section requires the

elimination of the dependent variables from the active constraint set.

For the purposes of this section, consider the optimization problem:

minimize Pl(x,u)
. u

subject to: A6

)
)

)

’
1

o 00

f(x
g; (X
gp X

= J o
Voo

’

As in the previous section, the model parameters have been eliminated from the
notation for clarity.
Section A.1 defined the recaced gradients of the profit function as:

vV.p = [V,P VP2 A4
Elimination of the dependent variables from the active inequality constraints gives:

v:: g]‘_, = [Vx gt, v'(.1. gL] Z AT

where Z is a matrix containing the set of vectors which form a basis for the nuil
space of the Jacobian of the equality constraint set. Specifically, for a set of

nonlinear model equations:
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the matrix Z must satisfy:
V.t V,£]Z = 0 A9

At the optimum, the Karush-Kuhn-Tucker conditions {Edgar and Himmelblau

(1988)] require stationarity of the Lagrangian or:
V.p - Vg, = 0 A.10

which define p in the reduced space as a function of x alone. The optimality
conditions further require that the Lagrange multipliers associated with the active

inequality constraints be non-negative or:

4os 0 Al

where p is defined in Equation A.10. Finally, any candidate optimal values for

the variables also must be feasible:

£{(x,u) = 0
g (x,u) = 0 Al2
g; (x,u < 0

Then Expressions A.10, A.11 and A.12 are the basis for determining Point-Wise

Adequacy in fully-constrained optimization problems.

A.3  An Implicit Function Theorem Approach to Reduced Properties

In this section an alternative approach to eliminating the dependent variables from

the optimization problem is examined. Expressions for the reduced gradient and

Hessian of the performance function are derived using the Implicit Function
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Theorem. The derivations will be posed for the partially-constrained optimization
problem of Section A.l; however, they can easily be modified for use in ihe

fully-constrained case.

As in Section A.1, consider the general plant optimization problem:

minimize P (x,u)

x,
subject to: A.13
f(x,u} = 0
g, (x,u) = 0
gr{x,u) > 0

where the active operating constraint set is known. Once the active operating
constraints have been identified, the equality constraint set can be reformulated

as:

h(x,u) = [ f(:illxlﬂ -0 A.l4

Since all remaining inequality constraints are inactive at the point of interest, they
can be ignored. The optimization is reduced to an equality constrained problem,
which in turn can be simplified to an unconstrained problem by using the active
constraint set to eliminate some variables, which reduces the dimension of the

optimization space by the number of independent equality constraints, h(x,u).

The Implicit Function Theorem (Rudin, 1976) states that the set of equality

constraints can be solved for u as a function of x if:

ch -
il A.l15
‘ u "0

x"u

Note that Equation A.15 is equivalent to stating the Jacobian of the equality
constraints, with respect to the dependent process variables, must be full rank and

therefore invertible. More simply, these gradients must be linearly independent.



Then, the relationship between the dependent and independent process variables

can be expressed as:

s R A6
‘e gu., OX ox,

In matrix form, this is:

&h
- 17
T ax o ° Al
or.:
du _ _(ch\*ch A.18

In the reduced space, the first-order necessary condition for optimality requires
that an optimum is a stationary point or that the reduced gradient of the objective
function vanishes at the optimum. An expression for the reduced gradient can be

derived using the definition of an exact differential:

vp = & @(ah)*@ A.21

The second-order necessary condition for optimality in the reduced space, requires
that conclusions be drawn regarding the reduced Hessian of the objective function.

The reduced Hessian must be positive definite for an unique minimum or negative
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definite for an unique maximum. An expression for the reduced Hessian is
obtained by differentiating the reduced gradient expression (Equatiog A.21) in the

reduced space of the optimizaiion problem, as foliows:

e L(Z)- (L Az
but:

SHES IR
and:

i( 3p du) i} ( &p . duT &P o d*u A.24

x|\ ou ax xou  ox E)E " 23 axe

After performing the appropriate substitations and simplifications the expression

for the reduced Hessian of the profit function becomes:

+ -

au dx2 Shee ox ?—mu
CniE e TR EENS

gp d®u;  g%p ahT(o T) 62P

Txduldu) & ox

These developments allow expression of the reduced properties of an optimization
problem in terms of the partial derivatives of the active constraints and the
objective function. Such expressions provide a basis for determining the adequacy

of a process model.

Notice that all of the terms required for the evaluation of the reduced Hessian are

either easily evaluated or have been previously determined, with the exception of:



197

=

§* co dzu-; A6
ol dx-:

The Hessians of the dependent variables, with respect to the independent
variables, can be determined by reapplication of the Implicit Function Theorem
to each the row of Equation A.18. Considering the "i"" row, corresponding to

the "i*" element of h:

9 |\, hidu), duTd o dhiduy o A
ox| ox cu dx dx ou| ox du dx
Equation A.27 can be expanded to yield:
T Ty e I A,
o g2 0w dx A28
duT aghl du~ a?.hl du

which is a set of linear equations with the only unknown terms as the elerlnents of
the Hessians of the dependent variables. There are m dependent variables with
each Hessian containing /7 elements, for a total of m#r unknown quantities. Since
Equation A.28 represents a set of m matrix equations (each containing #
elements) and the Jacobian of the active constraint set with respect to the
dependent variables is nonsingular (Equation A.15), the Hessians of the dependent

variables can be uniquely determined.

Finally it is worthwhile to note the equivalence of Equations A.25 and A.5 in
representing the reduced Hessian of the profit function. To show this
equivalence, comparison of Equations A.4 and A.21 gives a possible realization
for Z of:
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I
Z = | du A29
dx
Then expanding Equation A.5 yields:
gip - ¥, duT ¥ PP du, duTFP du_
: ox? dx oudx oxdu dx dx gy? dx 430
T |30, Fhodu, dut Ohy, quT B du |
& Tt ox? axaudx dx cdudx dx Ju? dx |
Using Equation A.28, Equation A.30 simplifies to:
vip - &R, gut &2 . &P du, duTFp gu,
: x? dx ocuox oxou dx ax 2 dx
A3l
= T oh, d%u
s - 3}
Z; "‘Lz du; dx?
Equation A.31 can rewritten as:
y2p - &P, dut &p &P du  duT P du .
i ox?  Ox Cuox  Oxou dx | dx o dx
A.32
3 a4y
j=1 auJ dxz

Comparison of the first derivative of the Lagrangian with respect to the

independent variable (x) and Equation A.21 gives:

pr o= 2 (_@B)‘l A.33

Then, Equation A.32 becomes:
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vip . &2, duT ¥ ¥ du cutde du,
=T ox? dx dudx oOxou dx dx gu? dx
A4
i 8P ydhy g 47y
&= au(au) du, dx?
which simplifies to:
Vip = 22:13+ET Cals + o°p $+§Erazp_@_§+
i Ox? dx Jdudx Jdxdu dx dx gu? dx
A.35
y 22 2y
f7 duy ax?

Equations A.25 and A.35 are easily shown as equivalent by making use of
Equation A.18. Then, the approaches of Section A.l and A.3 yield the same
results for the reduced Hessian of the profit function, with one possible
representation for the null space of the active constraint set (Z) given in Equation
A29.



Appendix B: Derivation of Upper Error Bounds For
Grid Adequacy Method

In Section 2.1 {Problem 2.8) a grid method was presented for numerically
determining Point-Wise Model Adequacy. Inequalities 2.9 or 2.10 gave bounds
for the possible errors using this method. In this appendix, the expressions for

theses bounds are derived in detail.

The numerical method of Problem 2.8 for determining Point-Wise Model
Adequacy does not guarantee an optimum of the model at the given plant optimum
(x'p). The grid method generates a value of the adjustable parameters () for

which:
P(x,+8x,,B) > Pix;, B) B.1
The dependent variables (u) and the fixed parameters () have been eliminated

from the notation in this section for clarity, Minimization has been assumed for

these derivations; however, developments are applicable to maximization as well.

In order to determine the effects of grid spacing and problem geometry on
uncertainty in the tocation of the model-based optimum, consider the model-based
minimization which has been shown to be Point-Wise Adequate using the grid

method of Equation 2.8, where the grid has been selected sufficiently small that:

P(x) = P, +cTx +%xTHx + o] x-x5 |*) B.2

and [x-x’, P is negligible within the neighbourhood defined by the grid. Using

200
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Equation B.2 to expand Inequality B.1 vields:

D, +et (% +8x,) +

i

{x;+0x,)TH (x,+6x,)

1 )y = -
P reiXy + = (X;) THX;
Simplifying:

[T+ (x])TH] bx, + %Bfo bx,

Although the adjustable parameters (B) have been set so as to satisty Inequality

>

> 0 B.4

B.1, consider the situation where the minimum of the model based optimization
(x% is some distance from the true process optimum (x'p), then:

X0 =x,+e€

Substituting Equation B.5 into Inequality B.4 yields:
Lo (x'- ) TH] bx; + £ dx{ HOx,

At the optimum of the model-based optimization problem:

V.P

. cT+(x"H = 0
<
Reduces Inequality B.6 to:

~eTHbx, + —5xTHOX, > 0
- 2

or:

dx;Hox, > 2eTHOx,

Since the reduced Hessian (H) of the modei-based problem is real and symmetric

> 0 B.6

B.7

B.8

B.9

and the model-based problem is strongly Point-Wise Adequate, the Hessian has

a complete set of orthonormal eigenvectors (V) such that:



202

HV = VA B.10

Using these eigenvectors as a basis for the reduced space, the grid perturbations

can be expressed as:

6x, = Vnq B.11

and the difference between the true process and model-based optimum as:
€ = Vv B.12
Substituting Equation B.11 and B.12 into Inequality B.9 yields:
nTV HVY > 2vTVIHV B.13
Using Equation B.10 to simplify Inequality B.13 gives:
nTAn > 2vTAq | B.14

The left-hand side of Inequality B.14 can be rewritten as:

AT = Y Ay B.15
=1
but:
Ini? emax{[A;]} > Y A;nj B.16
1=

The right-hand side of Inequality B.14 can be rewritten as:
n
2vTAR =2) Ayv;n, B.17
i=1

but:



23 A v,n. > 2viinfcosBemin{|i,]} B.18
y=1

where 6 is the angle betrween the vectors v and n.

Using the relationships in B.14, B.16 and B. 18 t0 get an upper bound estimate for

the magniude of v:

- i maxi|Ay} B
< A9
i 2cosb min{|i,[}
An expression for the condition number (K,) of the matrix H is:
max{|A;|} .
X, = H)ep(H™? — B.20
2 p{E)ep (H™) min{|A;[}
It can easily be shown that:
18z, = in|
lel = |vi B.21
(0x;)Te = qv

Combining the expressions in Inequality B.19, Equations B.20 and B.21 produces:

"6xi”

X B.22
2cosh ?°

Tel <

This expression gives an upper bound for the distance between the given process
optimum and the solution to the model-based optimization problem. From
Inequality B.22 it is evident that this distance depends on the grid spacing, the
angle between perturbations in the grid and the conditioning of the reduced

Hessian for the model-based problem.
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The grid design used in the case studies was set such that adjacent perturbations

were orthogonal. Thus:

D
Ik
N
(ws]
13
19D

j11=ine

Hence, Inequality B.22 becomes:

max{]dx, [}

V2

B.24

Then, using the grid method for determining Point-Wise Model Adequacy will
yield a set of adjustable parameters (B) for which the model-based optimum (x%)
is contained within a hypersphere centred on the plant optimum (x,), with radius

given in Inequality B.24.

Finally, it was recommended that when possible the grid should be aligned with
the eigenvectors of the performance function's reduced Hessian. When this is
done, the estimate of the maximum distance between the plant optimum and

model-based optimum can be reduced to its smailest value. Consider that when:

3x, = n;v; B.25
so that Inequality B.9 becomes:
n.viEvV.n, > QETHvini B.26
but by definition:
Hv, = A, v, B.27

Thus, Inequality B.26 reduces to:
lvilA;ni > 2€%v A n, B.28

Simplifving:



v ¥n. > leliv.|cosH B.29

Recalling that the eigenvectors of the reduced Hessian are orthonormal and that

the maximum angle is given by Equation B.23, Inequality B.29 becomes:

max{{6x; [}

lel <

—

v
Thus, when the grid is chosen to align with the eigenvectors of the reduced
Hessian, the resulting uncertainty in the location of the model-based optimum is
independent of the conditioning of the optimization problem. In this case, using
the grid method of determining Point-Wise Model Adequacy will produce a set
of adjustable parameters such that the model-based optimum lies within a

hypersphere centred on the plant optimum, where Inequality B.30 gives the

maximum radius.



Appendix C: Bias Update Convergence

In Section 3.2 it was stated that in some cases a Real-Time Optimization system
using bias update can be guarauteed to converge to the plant optimum. This

appendix presents a Bias Update Convergence Theorem and its proof.

A model-based Real-Time Optimization system, using bias model updating, will
converge to the true plant optinnun providing: i) all model equations and
constraints are linear, ii) the active constraint set uniquely defines the solution of
the model-based optimization problem (i.e. the model-based optimization problem
is fullv-constrained as defined in Section 2.2), and iii) the model-based

optimization is Point-Wise Accurate according to Definition 3.1 in Section 3.2,

Proof:

Consider the Real-Time Optimization problem with Bias Update, as in Figure 3.1,
with linear constraints operating an open-loop stable plant. The underlying

model-based optimization problem is:
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min 2 ({x)
x
subject to: C.1
Ax:=>b +p
Q. x 2 b; + B

with plant-model mismatch in the coefficient matrices of the inequality constraints
(A and Q). If the process model is Point-Wise Accurate, with the constraints
associated with A, active at the plant optimum, the RTO system will converge to
the plant optimum providing the bias term is appropriately filtered in the update
phase, providing that the optimization problem is fully-constrained (i.e. rank(A )

= dim(x)). This can be shown by considering the operations performed at the k™

iteration:

I} bias update,
B = Flz) (A~ A ) x,, C.2

) followed by an optimization, which is equivalent to solving the set

of simultaneous linear equations given by the active constraint set,
A.x,.=b + B C3
Substinuing Equation C.2 into Equation C.3 and simplifying yields:
X, = Ayb, + A F(2) (A, -A,) x,, C.4

but the optimum of the model-based problem with zero bias can be defined:

x, = A'Db, C.5
and if we define a transformed filter:
F(z) =A_G(z) A C.6

then Equation C.4 becomes:



x, =X+ G(z) (I-AFA))X C.7

4 x-1
This difference equation will converge as k —><C providing the filter is designed

such that:

|G(z) (T-a'a,) ], <1 C.8

z

to give the final value of:
x, = [I-G6(1) (I-a7a)]| " x; C.9

If the fifter is designed such that it has unity steady-state gain, Equation C.9

simplifies to:

X, = [A;nlAp]-l x> C.10
or:
X, = AjA x| C.11
Since:
A_x, =b, cC.12

Equation C.11 can be rewritten:
x, = A)D, C.13
since b is the same for both the plant and model:

x‘D = A—pl bL C.14

and:
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X, = X C.15

More simply, for the linear constraint case, the Point-Wise Model Accurate
system of Problem C.1 will converge to the plant optimum providing the filter is
designed to ensure stability of the matrix product in Inequality C.8 and has unity
sieady-state gain. These results are not unexpected due to the similarity between
the model-based optimization system of Figure 3.1 and a multivariable IMC
controller {Garcia and Morari (1985)]; however, there are significant differences
between these two technologies, since the system of Figure 3.1 contains a model-
based optimization at its core, instead of the conventional set of controiler

equations found in the IMC design.



Appendix D: Numerical Derivative Data

This appendix contains the data used for finite difference approximation to the
derivatives required for the Point-Wise Stability calculations and the
approximation of the covariance matrix Q for the predicted optimimal manipulated
variable values. Each section of this appendix presents, for a specific example,
tables containing the parametric sensitivity of the model-based optimization
problem (dx’ /dp), the sensitivity of the parameter estimation problem to the
process measurements (dp/dz) and the process measurement derivatives (dz/dx).
The tabular data of this appendix was used to perform the calculations for the

examples in Chapters 4, 5 and 6.

The general approach to finite differencing used for producing the tabular data in
this appendix inciuded solving a given problem (optimization, parameter
estimation or simulation) after perturbing a specific problem variable. The
perturbations were selected to be small with respect to the magnitude of the
problem variable which was perturbed, yet large with respect to the convergence
tolerances of the specific problem which was to be solved. The linearity of the
resulting finite difference approximations were tested by comparing the results of:
both positive and negative perturbations, as well as a reduction of the perturbation

size.
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D.1  Williams-Otto Reactor (Chapter )

The following tables give the data used in the finite difference approximations to
the sensitivities of the model-based optimization and parameter estimation
problems, as well as plant derivatives, for the Williams-Otto reactor example of

Section 4.3.2. The nomenclature used in the tables given in this section is:

Fy = feed rate of Reactant B to the reactor (kg/s).

Fg = effluent flow rate from the reactor (kg/s).

Ty  =reactor temperature (K).

X, = weight fraction of component "i" in the reactor effluent.

o, =frequency factor in Arrhenius relationship for reaction "i" (s7).
G =activation energy in Arrhenius relationship for reaction "i" (K).

The data in Table D.1 were produced by varying the adjustable parameters used

in the model-based optimization problem by +0.1% of their nominal values.

Table D.1:  Williams-Otto Parametric Sensitivity of Optimization (dx’_/df).

ol 0, & &

Fy 4.026 x10° 4.159x 10" -1.079%10° | -4.476x10°

Tx 1.329x10*® 6.695x 10" | 4.440x10° | 4.056x10°
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The data presented in Table D.2 were produced by perturbing the process
measurements used in the parameter estimation problem by 0.3%, 0.15% and

0.5% of nominal values for flows, temperatures and compositions, respectively.

Table D.2:  Williams-Otto Reactor Sensitivity of Parameter Estimation (dp/dz).

o b, G &
F, 7.3376x10* | 1.014x10% -273.9 -942.3
Ta -1.5901x10* | -2.416x10° 59.34 224.3
X, -2.822x10° | -3.396x 104 1.053x10* 3.340x10°
X, -2.019x10° | -1.968x10" 7539 1.828x10¢
X, 4.651x10° 0 -1731 0
X, 0 1.929 % 10" 0 -1.792 % 10*
X, 1.233x10° | -2.455x10% -460.3 2.280% 10*
Fy -1.1059x10* | -4.243x10° 41.28 394.1

The data given in Table D.3 were developed by perturbing the independent
manipulated variables of the plant simulation by 0.3% and 0.15% of the nominal
values for the feed rate of Reactant B (F) and the reactor Temperamre (Tp),

respectively.
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Table D.3: Williams-Otto Reactor Measurement Derivatives (dz/dx).

Fq Tx

Fa 1.000 0.000
Tx 0.000 1.000
X, -2.222x 107 -2.945x 10
X, 8.222 %10 -5.051x10°
X, -2.684 % 10 4.213x10°
X, - 2.421x10° 4.005x107
X, -5.348x10° 7.717x 10"
Fq 1.000 0.000

D.2 Heat Exchanger Network (Chapter 4)

The following tables give the data used in the finite difference approximations to
the sensitivities of the model-based optimization and parameter estimation

problems, as well as plant derivatives, for the heat exchanger network example

of Section 4.3.3.

The data in Table D.4 were produced by varying the adjustable parameters used
in the model-based optimization problem by +1.35% and +0.809% of their
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nominal values for B, and B,, respectively.

Table D.4: Heat Exchanger Parametric Sensitivity of Optimization (dx_/dB).

By B

r=F,/F 1.5463x10° -1.0825x10°

The data in Table D.5 were produced by varying the plant measurements used in

the parameter estimation problem by +0.333% of their nominal values.

Table D.5: Heat Exchanger Sensitivity of Parameter Estimation (dp/dz).

B, 178.4408 3.3746 0 -1.7436 0
B, 132.6660 0 3.6456 0 -2.1050

The data in Tale D.6 were produced by varying the fraction (r) of exchanger
network total feed rate F, that is diverted to F, by +0.333% of its nominal

value, in the plant simulation.
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Table D.6:  Hear Exchanger Plant Measurement Dertvatives (dz/dx).

r=F/F, T, T, T, T,

r=F,/F 1.0000 -74.3830 | 42.7560 | -67.3990 | 30.1430

D.3  Williams-Otto Reactor (Chapter 5)

The following tables give the data used in the finite difference approximations to
the sensitivities of the model-based optimization and parameter estimation

problems, as well as plant derivatives, for the Williams-Otto reactor example of

Section 5.3.1. The nomenclature used in the tables given in this section is:
Fy = feed rate of Reactant B to the reactor (kg/s).
Fr = effluent flow rate from the reactor (kg/s).
Tg = reactor temperature (K).
X, = weight fraction of component "i" in the reactor effluent.
o} = frequency factor in Arrhenius relationship for reaction "i" (s).
g =activation energy in Arrhenius relationship for reaction "i" (K).

The data in Table D.7 were produced by varying the adjustable parameters used
in the model-based optimization problem by +0.1% of their nominal values. The
data presented in Table D.8 were produced by perturbing the process
measurements used in the parameter estimation problem by 0.3%, 0.15% and

0.5% of nominal values for flows, temperatures and compositions, respectively.
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Williams-Otto Parametric Sensitivity of Optimization (dx " /dB).

Frequency Factors Adjustable

Activation Energies Adjustable

&, , G Ca
Fy 7.309x107 2.940% 106 -9.867x10* | -3.953x10°
Ty 3.405 %107 -3.935% 10" 4.112x10° 3.287 %107
Table D.8: Williams-Otto Reactor Sensitivity of Parameter Estimation (dp/dz).
Frequency Factors Adjustable || Activation Energies Adjustable
o 3 4 &
Fp 3.641x10 1.218x10" -269.9 -897.6
Te -1.124x107 | -4.060x10% 69.50 249.5
X, -1.793 % 10° -5.567x 10" 1.329x10° 4.102x10*
X, -1.051%x10° -2.513%10% 7787 1.852x10°
X, 2.423x 10 0 -1796 0
X, 0 2.432x10" 0 -1.792x10*
X, 5.900%x 10’ -3.309x 10" -437.0 2.438%10°
Fq -5.414x10° -4.785%x 10" 40.13 352.6
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The data given in Table D.9 were developed by perturbing the independent
manipulated variables of the plant simulation by 0.3% and 0.15% of the nominal

values for the feed rate cf Reactant B (Fy) and the reactor Temperature (Tg),

respectively.

Table D.9: Williams-Otto Reactor Measurement Derivatives (dz/dx).

F, T,
F, 1.000 0.000
T, 0.000 1.000
X, 1.784x 107 2.697x 10°
X, 7.802% 10" T ase 10"
X, -2.670% 107 3.578x10°
X, -2.609% 107 3.985 % 10°
X, 4.654%10° 4.607 % 10
F 1.000 0.000
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D.4  Williams-Otto Plant (Chapter 6)

The following tables give the data used in the finite difference approximations to
the sensitivities of the model-based optimization and parameter estimation
problems, as well as plant derivatives, for the Williams-Otto plant case study of

Chapter 6. The nomenclarre used in the tables given in this section is:

Fg = feed rate of Reactant B to the reactor (kg/s).

Fow = flowrate of cooling water through the condenser (kg/s).

Fg = flowrate of by-product stream G from the decanter (kg/s).
F. = flowrate of recycle stream L to the reactor (kg/s).

F, = flowrate of product stream P from the column (kg/s).

Frs  =tlowrate of steam through the reactor heating coils (kg/s).
Fe.w = flowrate of cooling water through the reaction cooler (kg/s).
N = number of ideal trays in the distillation column.

Tixps = iniet hot water temperature to reboiler (K).

Tourps =outlet hot water temperature from reboiler (K).

Tourpw = outlet cooling water temperature from condenser (K).
Toyr.xw = outlet cooling water temperature from reaction cooler (K).
Ty = reactor temperature (K).

U..,¢ = heat transfer coefficient of the condenser (J/mKs).

U., = heat transfer coefficient of the reaction cooler (J/m’Ks).

U, = heat transfer coefficient of the reboiler (J/m*Ks).

X,; =weight fraction of component "i" in Stream "J".

o = relative volatility of the mixture in the distillation column..

t; = frequency factor in Arrhenius relationship for reaction "i" (s™).
G =activation energy in Arrhenius relationship for reaction "i" (K).

The data in Tables D.10 through D.18 were produced by varying the adjustable
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parameters used in the model-based optimization problem by +0.1% of their
nominal values. The darta presented in Tables D.19 through D.27 were produced
by perturbing the process measurements used in the parameter estimation problem
by 0.3%, 0.15% and 0.3% of nominal values for flows. temperatures and
compositions, respectively. The data given in Tables D.28 through D.36 were
generated by perturbing the independent manipulated variables of the plant
simulation by 0.3%, 0.3%, and 0.15 % of the nominal values for the feed rate
of Reactant B (Fy), the flowrate of the recycle siream (FL) and the reacor

temperature (T;), respectively.

Table D.10: Williams-Oto Plant Optimization Parametric Sensitivity (dx’_/dp)
for Modell at F, = 1.563 kg/s Disturbance Level.

Fs F. T,
o -1.507x 10* -8.320%10° -1.042x107
%, 1.309x 10" 8.213x10™ -5.293 x 10"
a -0.3771 4.6624 -2.0206
Ucond -4.483 %107 6.718x10™ 3033 %10
Ve -9.152% 107 -2.628%10° -6.533%10°
Ueon -1.522%10? 0.3433 5.371x10?
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Table D.11: Williams-Otto Plant Optimization Parametric Sensitivity (dx"_ /dB)
for Modell at F, = 1.827 kg/s Disturbance Level.

F, F, T

&, -1.651 %103 2.624x10° -8.370x10?

0, 1.264 x 101 2.616x10% -5.374% 10"
a -0.3127 -9.671x10-2 -2.413

Uorg -1.443x 107 -2.885%x10° -1.859%x10™

U, -1.153%x 107 2.057x10°% -3.461x10°

U oal -3.1057x 10" -1.744x 107 7.266x102

Table D.12: Williams-Otto Plant Optimization Parametric Sensitivity (dx’,/dpB)
for Modell at F, = 2,092 kg/s Disturbance Level.

Fa F, Tq
o, -1.391x10°% 1.953x10°8 -6.447%x 10
s 1.055x 10" 3.263x10M -5.725x 10"
a -0.2873 -0.2997 -1.977
U -1.443%x10% -1.376x10° -1.761x10%
Uy 9.940% 107 1.102x 10 2.753x10°
Ueoul -3.106 x10™ -1.672%10° 8.003x10*
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Table D.13: Williams-Otto Plant Optimization Parametric Sensitivity (dx,/dB)
for Model2 at F, = 1.563 kg/s Disturbance Level.

F, F, Tq
¢ 1.165x 107 6.579% 107 1.229%10°
L -5.586x 10 -3.379x10° 2.800%10°
o -0.4181 - 4.8738 -2.222
Uons -4.883x10? 7.105x 10 -3.326x10°
U, -2.870x10°% -5.904 % 10 1.710x 10
Urool -1.462x10? 0.3246 5.687x 10"

Table D.14: Williams-Otto Plant Optimization Parametric Sensitivity (dx",/dB)
for Model2 at F, = 1.827 kg/s Disturbance Level.

F, F, Te

¢, 1.574x 107 -2.783 %107 1.081x 107

ts -6.199%x 10" -1.332x10° 1.074x 10

a -0.3447 5.682x10° -2.809
Ueona -1.798 X 10 1.332x10° 2.544 %10
U 2.389%x10°¢ 2.389x10°¢ -4.879x 107
Ueoal -1.672 %10 -2.962x10° 7.372%10?
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Table D.15; Williams-Otto Plant Optimization Parametric Sensitivity (dx"/dB)
for Modei2 at F, = 2.092 kg/s Disturbance Level.

Fy F, Tq
¢, 1.452 %107 -2.368 %107 9.321x10°
L -5.828 %10 -1.882x107 1.789 %103
a -0.3641 -0.3086 -2.6583
Uy -1.820%10° -1.176x10° -2.250%10°
U 2.389%x 106 4.778x10¢ -1.121x10%
B U -7.167%10° 3.297%10° 7.898 X 107

Table D.16: Williams-Otto Plant Optimization Parametric Sensitivity (dx ,/dp)
for Model3 at F, = 1.563 kg/s Disturbance Level.

Fp F, Ty
o -1.833x 10 -1.024x107 -1.282x107
o 1.406x10™"! 9.074x10" -6.009x 10"
& 1.215x107 6.624 x10° 1.155 x 102
& -5.513%10* -3.458x10° 3.840x 10"
a -0.3051 4,035 -1.644
N -1.332x10% 0.1240 -7.761x 10
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Table D.17; Williams-Ouo Plant Optimization Parametric Sensitivity (dx’,/dB)
for Model3 at F, = 1.827 Kkg/s Disturbance Level.

Fg F, Tx
9, -2.254x10° 3.746x10° -1.175% 107
B 1.399x 10" 6.083 %10 -6.857x 10°"
g, 1.260x10° 4.029x10? 1.073x 107
& -6.268% 107 -1.336x 10 1.059x 107
o -0.2000 3.239x 107 -1.806
N -1.497 %107 4.092x10 -9.850x 107

Table D.18: Williams-Otto Plant Optimization Parametric Sensitivity (dx’,/dp)
for Model3 at F, = 2.092 kg/s Disturbance Level.

Fg F, Ty
o, -2.027x10°® 3.088x 10 -9.690x 10
s 1.371x10" 4,524x 10" -7.980x 10!
g, 1.423x107 -2.336x 107 9.314%x 10"
() -5.855x 10" -1.905x 10" 1.794x 10"
a -0.2363 1.2017 -1.833
N -1.468x10% -1.324x% 107 -9.750x 107
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Table D.19: Williams-Otto Plant Parameter Estimation Sensitivity (df/dz)
for Modell at F, = 1.563 kg/s Disturbance Level.

b, s a Uond Ut Ueoal
8 1.912x107 | 4.153%x10° |-1.784 % 107 0 0 6.072x 10
G 5.393x10° | 2.459x 10" | 4.491x 107 0 0 3.110x10%
F, -1.104x 10%| 3.078x10° | 2.213x 10 0 0 5.954% 10°
F. -2.058% 107 | 5.458x 10" | -0.2283 0 0 -5.776 % 10°
Fpow |-2.057x10°| 5.457x10° |-4.708x10° | 0.1658 552x107 |-5.776 x 10°
Fps -8.959 x 10° |-2.424 x10'°| -1.505 % 10° 0 0 2.093x% 107
Fow ]-2053x10°} 5.392x10% |-2.291 % 107 0 0 -1.456x 10
Tg -6.010% 10° | -6.254 % 10° | -6.108 X 10" 0 0 2.320%10-3
Tieps | ~+667x10°| 1.238x10° |-9.453x10°|  3.9761 0.1528 |-1.310x 107
Tourps | ~+669%10°| 1.238x10° [ 8.625x107 | -3.9761 0.4176 [-1.310x107?
Touyrpw | +667x10" | 123810 |-1.364 %107}  85.09 532x107 |-1.310x 10°

Tourxw | -+361%10°| 1.075%10* [-5.382x 107 0 0 0.1120
Xp.a 7.747x 107 [3.673x10" [ -3.211 124.96 -1.507  [2.084x10?
Xob 1.215x 10 [ 4.424% 10" | -1.312 124.96 -1.507 |8.668x 107
Xpo [4048x10°]|5.799x10"{ 18.79 62.50 -0.7533  {8.072x10?
Xp, |2:072x10° |-4.124x10"| -95.65 124.96 -1.507 [9.981x 107

Xpy [|-1-526x10°[-1.809%10°|  56.46 -99.67 -1.200 -1.200

Xpp [1:264x10°|-1.190x 10"  17.73 -99.67 -1.200 2.975

Xpe 9.786x10° |-1.133x 10"| -18.38 -49.82 0.6002 2.759




Table D.20;

for Modell at F, = 1.827 kg/s Disturbance Level.

Williams-Otto Plant Parameter Estimation Sensitivity (dp/dz)

0 0, a Uons Ui Ul
Fy 2.301x 107 | -2.007x 10" [2.989% 10" |-1.028 x 10 0 6.316x 10°
G 9.564x10°| 2.631x10" |6.432x [07 |-1.079x 107 0 3.252x10°
. -1 138%10°| 2.793%10° {2.425% 10° |-4.505% 10 0 6.151x10°
o 2.304x1071-6.233% 10" 12,220 x 10" |-1.351 x 107 |-1.723 % 10%|5.734 < 10"
Fow -3.666x10'| 9.732x10* [-2.223x [0°Y] 1.658% 107 [1.504% 10" 0
Fps -7.043%10°§-3.202x 10" |7.417 X 10 | -1.351 x 10 }-1.835 X 10| 9.250 % 10
Fw 3.432x10°| -6.826 X 10 |-6.268 % 10°®| -9.011 % 10° 0 -1.612x10?
Tq -6.747%10°} -7.279% 10° [-8.535 % 10 0 0 3.183%10°
Tps [6:093%10% | 2.143x10° |-8.215x 107  3.858 1.481x 10" 0
Tour.ns -2.041 5.359x10° [8.401x 10| -3.858 |-4.052x 10" 0
Tourow |6:093x107 | 2.143x10° {-1.251X107] 8.864x 10' [8.602x 10” 0
Touraew | 7-799%10° [ -1.541 X107 |-1.434 X 10°| 1.226x10* [ 1.899% 107 | 1.130% 10"
Xpa 8.497x107| 3.580x10"] -2.290 1.251x10°| -1.501 [3.750%10?
Xos 1.489x10°| 3.854x10"| -1.087 1.251x10*| -1.501 [8.571x10?
Xpe -3.894x10°| 5.468%10"{2.158%10' | 6.256x10'|-7.502% 10"| 8.678 x 10
Xp,p 2.651%10°[-5.613x10" |-1.009x 10°*| 1.853x10*| -1.501 |1.026x 10"
Xp, -1.305% 10" -1.829x 10" | 4.346x10'] -1.005x10*| 1.203 -1.507
Xon -1.457x10%] -1.332% 10" | 1.944x10'} -1.004x10*| 1.203 -2.897
Xp, 1.049x 10" -1.260x 10 |-1.678x 10'] -5.023x10'|6.019x10" | .2.842
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Table D.21: Williams-Otto Plant Parameter Estimtaion Sensitivity (dp/dz)
for Modell at F, = 2.092 kg/s Disturbance Level.

o, 4, a Ucond U Ueal
Fy 22532107 | 2.831%10° {-8.965 % 107-9.011 <107 [-1.416x10%{5.921 x 102
F; 9.722 % 10° |2.944 10" {6.373% 107 |-9.011x10% [-1.442x10%2.431 x 107
F, -1.047 % 10° | 2.839x10° [2.367x 107 | 6.307 x 10 0 5.813%107
F, 2.505x107 |6.995x 10 |2.248x 10" |-2.703 x 10" {-3.712x 10°|4.897 % 102
Fow -5.505 9.449x10° |-2.308x 10| 1.690x 10" |1.500% 10 0
Frs -8.257x10% [3.611x 10" [8.722x 107 1-9.011x 107 {-1.005x10%}9.041 % 10~
Fyw [-2.332x10° [ 6.697x10" |-5.554x10° 0 0 -1.582x10°
Te -7.520x 10° | 8.134x 10° ]-1.076x 10| 3.066 X 10 0 4.028x 10
Tinos -9.048 4.758x10° |-8.543x 107 3.819  [1.479x10" 0
Tourps |-3:655%10' [ 3.001x10° |8.734x10% | -3.819  |4.051x10" 0
Tourpw | -1-888 5.359%10° |-1.312x107( 8.744x 10" [8.670x 107 0
Tourxw |-5-340%10° | 1.585x 107 |-1.326%10°[-9.199x 10° 0 1.168 % 10"
Xp, |8132x107 j4.627x10" | -2.151 | L.241x10° | -1.494  [4.695% 107
Xps 1,891 x 10% [4,257x10" | -1.394 1.242%10° -1.494  |4.670% 102
Xp.e -4.488%10% [6.321x10" |2.007x 10" | 6.211x 10" |-7.469x10"(8.388 X 10
Xp, |3-040x10° |6.903x10" |-9.850x10'| 1.242x10° | -1.494 |9.395x10°
Xp, [-1.191x10" | 1.967x10" |3.938x 10 [-1.004%x10° | 1.206 -1,778
Xpp |-1.760%10" | 1.520x10° |2.531x10' |-1.004X10° | 1.206 -2.604
Xpo [-1:207x10% | 1.450x10% |-1.713x10'{-5.020% 10" |6.035x 10" | -2.735
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for Model2 at F, = 1.563 kg/s Disturbance Level.

Williams-Otto Plant Parameter Estimation Sensitivity (dp/dz)

& G a Ucona U Ucool
Fy -2.308x10° [ 9.600%x 10" |-1.745% 10 6.307 x 10™ [8.371x 10" |6.129x 10
Fg -6.858x 10! | 5.558% 10° |4.486x 107 1 7.208x 10* |8.371% 10" |3.177x 10”
F, -1.368x 10" {1 7.079x 10" |2.218x 107 |-4.505 % 10 0 6.006x 10°
Fp -2.522x 107 | 1.253%10° [-2.276 X 107"[ 7.659% 107 |1.255x10™ |-5.8i8> 10"
Fow -2.522 1.253x 10" [-4.669% 10| 1.660x 10" {1.549% 10" |-5.818% 10°
Fps 1.083x 10 | 5.590% 10" |-1.498x% 107 7.659x10° [:.255%107 |2.427 % 10
Fiw -2.518 1.238x 101 |-2.283% 107 9.011 %109 |1.255%x 10" |-1.479% 10"
Ty 7.259x10° | 1.437x10° |-6.080% 107 4.088 % 10" 0 2.369%10°
Tps |5724x107 | 2.844  [9.340x10°|  3.967  {1.522x10" |-1.319x 10"
Toyrps |-5:723x10" | 2.843  |8.512x10° | -3.967  |-4.162x10"|-1.319x 10"
Tourow |-3-723%10" 2.843 -1.352%107] 8.911x 10" [8.561x10% |-1.319x 10°
Tourxw |-3-605%10" 1 2472 |-5.360x10%] 1.226x 10° 0 LLU17%10"
Xp.a -9.180x 10 | 8.416x10° -3.149 1.247 % 10° -1.509  |2.046 % 107
Koy |-L423X10° | LOI3x10* | -1.270 | L.247x10° | -1.509 {8.683x10”
Xpe [-4-890x10° | 1.314x10° |1.916x10"' | 6.240% 10" {-7.541x10"|8.082x 10"
Xp, |2.534x10°)9.317x10° [-9.651x10'[ 1.247X10° | -1.509 |1.003x 10"
Xp, |[2:009%10° | 4.658x10° {5.533x10' [-9.970x10' | 1.203 -1.196
Xos 1.627x10° | 2.941x10° |1.697x10' [-9.969x10' | 1.203 -3.002
X -1.130%10° [ 2.783x10° [-1.795%x10'}-4.983x10' {6.022x10" | .2.783
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Table D.23: Williams-Otto Plant Parameter Estimation Sensitivity (dB/dz)
for Model2 at F, = 1.827 kg/s Disturbance Level.

& Ca o Ucond U S
Fy 2.439%10° | 3.874x 10" [3.099x 107 |-3.153% 10" 1-4.185% 10%]6.201 % 107
Fq -1.012x10° | 5.082x10° [6.440% 107 |-3.153x 107 [-4.604 x107(3.218% 107
F -1.183x10' | 5.401x 10" [2.422x10° |-1.351 %107 0 6.126 % 10
Fo |-2455x10° | 1.215x10° |2.224x107 [-1.802x 107 {-2.651x 10%|5,650 x 107
Fow -4.408x 10 | 8.816x 10" [-2.231x107} 1.662x 10" [1.506x 102 0
Fas 7.560% 10" | 6.328x10° |7.600%107 |-1.802% 107 |-2.754 x10®[9 334 % 10"
Fyw 22.027%x10° { 1.132x 10" |-6.982%x 10°%| 1.072x 10" |1.548x10% |-1.613x 10
Ty 7.007x10" | 1.396%10° |-8.796x10°%|-4.088x 10 0 3.273x 107
Taps  |3-407x10° | 3.000x10% |-8.247x10%|  3.857  [1.481x10" 0
TOUT_DS -1.000x 10% | 3.000x 10° |8.433%x 107 -3.857 -4.054 x 107 0
Tourow 0 5.900x10° |-1.256%10% 1.064x 10° [8.622%107 | ¢
Tourxw |-7-790%10% | 2.998% 107 |-1.465x10%] 0 0 1134 10"
Xpa |-9:086x10° | 7.062x10° | -2.304 | 1.248x10° | -1.502 [3.745x10°
X -1.393x 10 | 7.583x 107 -1.083 1.248 x 10° -1.501  |8.636% 107
XD.c -4.175%10° | 1.066 X 10* {2.144x10' | 6.243x 10" 1-7.506 %1018 678 x 10
Xpp |-2:829%10° | 1.092x10° |-1.O07X10°| 1.248x10° | -1.501  [1.022x 10"
Xpy | 1472X10° | 3.970x10° |4.370%10" |-1.004x10° |  1.205 -1.505
Xpp | 1-660x10° | 2.812%10° [1.936%10" |-1.004x10° | 1.205 .888
Xpe SLO7T1IX 10 | 2.653%10% [-1.675%x 10! -5.020x 10" [6.031x10" [ .2.838
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Table D.24: Williams-Otio Plant Parameter Estimation Sensitivity (dp/dz}
2.092 kg/s Disturbance Level.

for Model2 at F,

Gy Ca a Usons U Ui
Fy 2379107 | 4.724x 10" |-6.363 %X 10°[ -1.351 %107 [-1.744 x 10 5.889 x 10~
F; 9.129% 10" | 4.945x10° [6.363% 107 [-2.252x 10" {-3.184 x 10°[2.411 % 10
F, -9.673 4.786x 10" [2.363x 107 [-9.011 x10° 0 5.781 % 10°
Fp 2.366%10° | 1.187x10° 12.248% 10" |-1.802% 107 |-2.870x 10%|4.813 % 107
Fow |-1.763x107 [8.375x10% |-2.323%107| 1.698x 107 |1.504 % 10° 0
Fig 7.867x 10" | 6.204x 10> [8.908% 10 [-1.802x 10" [-2.592 % 10™|9.083 % 10~
Fw [-1-763%10° | 1.119x10" [4.919%10°|-9.011% 10" 0 -1.375%10°
T, 6.845x 10" | 1.3d0x 10? |-1.105% 10*|-3.066 % 10* 0 3.084x 10
Tups 0 9.693%10° {-8.395x 107 3.830  |1.480x 10" 0
Tourps |2:000x107 | 1.100x 10" 18.788x10° | -3.830  |4.055x10" 0
Tourpw |-1-000% 107 | 5.000x10* |-1.318x 107 1.131x 10" [8.678x 107 0
Tourxw |2-670%107 [2.699x 10" |-1.305x10%|-4.088x 10° 0 1171 % 10"
Xp, |-7713x 10? | 7.905x 10# -2.175 1.243x 108 -1.495 4653 %107
Xob -1.793x10° | 7.305x10° -1.389 1.243%10* -1.495 | 7.665x 107
Xp. 4.273x 10 | 1.074x10* |1.980%10° | 6.216x 10" |-7.474x107|8 377 x 10
Xp, [-2881X10° | L173x10° |-9.794x10'| 1.243x 107 | -1.495 19358 10"
X [.189x10° [ 3.721x10° |3.983x10' }-1.006x10* | 1.208 -1.766
Xos 1.792x10° | 2.803%10° |2.519%x10' [-1.006% 10 1.208 -2.599
Xpo |-1:092x10° | 2.667x10° |-1.709%10'|-5.030% 10" 16.045x 10" | 2,728




Table D.253:
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for Model3 at F, = 1.563 kg/s Disturbance Level.

Williams-Otto Plant Parameter Estimation Sensitivity (dp/dz)

b o g Ca o N

. 3.048%10° | 6.761 x 10" [-2.322%x 107 | -1.928x 10* {7.916x10' | 4.191

F, -1.477x10° | 8.588x 10" |-6.000% 10| -3.042x 10* |-2.880% 10| 1.704

F. 2.712%10° [4.253x10° |1.976x10° | 2.559x 10° |2.745%x10' | 5.452
F, -1.779%10° [2.049% 107 [2.471X10° | -6.804 x 10° 3.953 % 10 {-2.173x 10}
Fow |-4294x10° |6.691x10 | 2.561 -1.910x10° 1.203 [-7.217x10?
Fps  |-3-857x10° 1 1.234x10" | 1.056x 10" | -3.634x10* | 3.144 |-1.952x10°
Fyw 1.237x10° |5.563%x 10" [ 2.511 1.400x10° | 7.641 |-4.061x10"
Ty -LO77TX QY [ 2.696x 109 |7.217x 10" [-6.733%x10° [4.991x 10" |-2.823x 107
Tips |-1-497%10° |4.635x 10" |5.889x 10" | -1.538x10° |-2.089%10"'(7.913x 10°
Tourps |6-145%10° [1.199x10 {4.754x10" [ -3.383x 10° {-1.113x10"(-1.608 x 10”
Tourpw |-5-638%10° |4.686x10 15.751x 10" [-1.559x10° | 1.657 |-3.984x10°
Toyrxw |-7-335%10° [2.668x10° |5.795x 10" [-8.005%10° | 1.883  |-9.957x 107
Xp, |-1895x10" |3.000x10% |-9.727x10%|-9.025% 10" [2.360x10* |-[,728x 10"
Xpp |8764x10° [1.279x10" [-1.533x10°]-3.860x 10° |4.261x10° |-2.493 x 10"

Xp. -3.436%10° |3.336x 10" |5.026%10° {-1.044 x 107 }3.881 %107 2.471
Xpp |-1:831x10° [2.829x10% |-2.510X10°(-6.748x 10" [-4.985%10°}2.117x 10
Xp., -2.590x107 | 7.051x10" 11.984x10° | 2.650x10° [8.719%10° |2.842 % 10
Xpp |-2-186%107 13.094x10" |1.654x10° | 3.765x10° {1.015x10° |-2.964x 10’
Xpe 1.593x 10" |6.483% 10" [-1.148x10° | 4.470%x 10° |7.916x10° 1-6.589% 10!




Table D.26:
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for Model3 at F, = 1.827 kg/s Disturbance Level.

Williams-Otto Plant Parameter Estimation Sensitivity (df/dz)

ol 0, g Cs o N
Fg -3.759x10° | 7.902% 10" |-2.146x10°| -1.623x 10° {5.830x 10" | -3.051
G 2.912%10° | 1.547x 10" [-7.275% 10| -3.879%10° | 4.163  |.1.703 % 10"
FL -4.076x10% | 2.698x 10" |1.488% 10" |-6.563x10° | -1.309 |1.004x10"
Fp 2.285% 10° | 1.306 X 10" [2.789x 10° | -2.790% 10° {2.380x 107 |-1.296% 10"
Fpw |-3.917x10° |2.681x10" | 3.023 [-6.457x10° | -1.171 {5.875x10°
Fqs -2.171x10° 11,296 10" {1.033%10° | -2.704 x 10* [1.756x 10" |-9.588x 10"
Fyw ]-1.947x10* | 1.047x10" 2,737 |-2.194x10* | 4374 |-2.323%10"
Ta S2.733X 107 [4.614%x 10" [7.051% 10" [-9.109%10° |-2.401 x 10| 1.232 ¢ 10
Tinps |-7-43¢X10° |3.899x10% {5.689% 10" |-8.610% 10" [1.239 10" |-1.021 % 10"
Tourps |-6-001x107 13.303x10" [4.719x10" | 5.795%x10° |9.872x 10" |-5.881 x 10
Tourpw |+745X10° | 2.674x 10" [6.264x 10" | -5.660% 10" |4.995x 10 |1.828 x 10°*
Tourxw |2-764%10° |5.122x10° |5.992x 10" |-1.185% 10* {2.776 X 10" |-1.557% 10
Xp, |[-2-875x10° | 1.499% 107 |-5.488x 10°|-3.246 X 0¥ |1.464 % 10* |-1.121x 10"
Xpp |-1-318%10° [1.276x 10" |-1.261%10°[-2.744 % 10° |1.546X 10* |-1.008x% 10"
Xp, [4:040x10° |3.318x10 [4.537x10" |-8.061x 10" [5.131x10* |-1.023x 10"
Xpsp -2.878%10% | 1.419% 10" [-2.474x 107 | -2.882 % 10° [6.698x10° [-1.606% 10?
Koy |-1-841X107 [4.191x 107 | 1.458x10° [ -6.836x 10° [1.809x 10° |4.668x 101
Kpy, |-1.969x107 [1.382x107 |1.661%10° |-9.438x10° |7.956x 10" | 2.107x 10'
Xp.e -1760X107 | 1.782x 108 [-1.065%10°]-1.185x 10° |2.221x 10* |-3.376x 10"
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Table 12.27: Williams-Otto Plant Parameter Estimation Sensitivity (dp/dz)
for Model3 at F, = 2.092 kg/s Disturbance Level.

9, O S & a N

Fp  [-1.474x10° [2.371x10% |-2.357x107| 5.954%10° |2.332x10° | -1.298
F, 3.595%x10° |9.537x10" |-6.229x10'[-2.143x10° | -4.050 |2.781x10"
F,  |-1.252x10° [1.345x 10" |1.014x 10" [-5.127x10° | -2.202 |L.519%10"
F,  [-6.317x10° | 6.544x10" |1.458x10° [ 1.926X10" |-2.265x10%| 1.244 X 10"
Fpyw [3.363x10° | 9.836x10° 1981 -3.252x10° | -1.466 |7.660% 107

Fps |-2.234x10° |2.466x10" [1.059%x10° |-7.487x10° |-2.251x10'| 1.248
Fow | 1445x10° [4.624x10° | 4401 | 1.372X10° [-7.364X107%3.792% 10
T -2.909%10° | 5.251x10° |6.848x10' [ <.872x 10" |-7.887 x 1071j4.397x 10*
Twps | 1691x10° [2.847x10" 17.760x 10" | 7.851x10° |-3.053%10"(1.338x10°
Tourps |-3:272%10° | 4.688x 107 |5.843%10" |-1.539x10° |-3.165x 10| 1.024 x 10
Tourpw | 7-084x10° | 1.158x 10" |5.483x 107 | 3.422X10° |8.504x 10" }9.542x 10"
Tourxw |-3-335%10° | 1.826x10° |5.860x10" | -6.079x 10" {-3.991X10"|2.168 X 107
Xpy |-8744%10° |3.146x 107 |-5.957x10°|-1.115%10° [-5.504x 10" |-1.480x 10"
Xpp | 4706107 |2.399x 10" |-8.465x 10°| 6.180X10° |-4.367x 10%|2.259x 10'
Xp, [-1:482x107 {1.206x10" [4.793x10° | 4.412x10° [-3.705% 10| 2.801 x 10’
Xp, [5-399%10° | 1.487x10Y |.2.659x10|-5.358x 10° {-5.544%107|-1.023 X 10°
Xp, |=4406x107 [1.327x10% |1.172%10° | 3.294x10° [1.692x10° [-3.490% 10"
Xpy [-3.616x107 |2.643x10% |1.793%10° | 9.596x10° ;9.521% 107 |-1.717 X 10"
Xpo ]3.544x107 [6.360x10" |-1.086x10°] 1.597x10° [-2.645x10°| -7.762
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Table D.28: Wiiliams-Ouwo Plant Measurement Derivatives (dz/dx)
for Modell at F, = 1.563 kg/s Disturbance Level,

Fy F Tq
F, 1 0 0
Fe [-9.932x107 | 6.248x107 2.087x 10"
F, 0 1 0
Fo |7.990%107 | 4.876x10° | 2.354x107?
Fow 2.332 1.008 -8.907 x 10"
Fps | 4.743x107 | 3.368x10° | 3.008x10°
Fyw 1.997 1.998 4.433%x 10"
Te 0 0 1
Twps [-8.353%x10" | 5.932x 10" -5.299% 10
Tourps [-3.574%10" | 2.539x10" | -2.268x107?
Tourow |4.760%x107 | 2.688x10° | 8.879x10?
Tovrxw |-1.437%x1070 | 1.431x10" 6.658 x 10"
Xp. [-3.546x107 | 3.968x10% | -3.052x107
Xpp, |[-1.188x10" | 1.342%x10° -4.230% 107
Xpe |[-7.009%107 | 1.522x103 7.578x10°
X, |-6.856x10° | 2.274x10* | 7.605x10"
Xea |-1.895%10% | 1.912x10-5 | -1.539x10-4
Xpp [-6.039%107 | 6.498x10° | -2.037x10™
Xpe [-3.802x10° | 8.426x10° | 4.116%x10°
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Table D.29: Williams-Otto Plant Measurement Derivatives (dz/dx)
for Modell at F, = 1.827 kg/s Disurbance Level.

Fa FL T
Fy 1 0 0
F, [-8.761x107| 6.681x10° 2.448x10%
F, 0 1 0
F, |[8.924x10% | 5.538x10° | 3.437x10°
Fow -1.948 1.521 4.076x10"
Fes | 3.499x10° | 3.073x107 | 5.496x10°
Few 1.854 1.855 4.397x 10"
Ta 0 0 1
Twps |-6.607x10% | 5.416x10" | -9.690%10°
Tourps |-2.640%10" | 2.319%10" | -4.150x10°
Toyrow |-1-807%107 | 7.749x107 5.260x10°
Towrsaw |-1.472%107 | 1.467x107 | 6.732x10%
Xp. |4.734x10% | 4.874x10* | -3.193x10°
Xppy |-1.141x10" | 1.470x10% | -5.119x10°
Xp. |-3.297x107 | 1.715x10° 8.689x107
Xp, |[-5.163x107 | 2.361x10% | 8.708x10"
X,, |-2.509%x10% ] 2.308x10° | -1.580%10”
Xy |-5.830%10% | 7.172x10° | -2.487x10*
Xpe |-2.860%10% | 9.402%x10° | 4.698x10"*




Table D.30:

-
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Williams-Otto Plant Measurement Derivatives (dz/dx)

for Modell at F, = 2.092 ko/s Disturbance Level.

F, E Tx
F, 1 0 0

Fe |-7.315x10° | 6.054x107 2.665%x10*
F, 0 1 0

F,  19.832x107 | 4.951x10° | 4.385x%10°
Fow -1.746 1.094 -3.510% 10"
Fps | 2.220x10° | 2.877x10% 0
Faw 1.787 1.788 4.884x 10"
Tw 0 0 1
Tups |-3.909%10" | 5.070x10" 0
Tourps |-1.673X 107 | 2.171x10" 0
Tourpw |-2.644x10% | 1.415%X10% | -5.700x107
Tovrxw |-1.348x10" | 1.344x10" 6.618 % 10*
Xpa. |-5.808x107 | 4.492x107 -3.100x 107
Xpp [-1.095%x10" | 1.277x10° | -5.756x107
Xp. |-3.727%107% | 1.480x10° 9.283x 107
Xp, [-3.581x10° | 2.151x10% | 9.309x10*
X,, |-3.055x10% | 2.078x10° | -1.500%10*
X, |-5.616x10° | 6.236x10° | -2.817x10°
Xp. [-2.002x10% | 8.101%x10° 4.999 x 10
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Table D.31: Williams-Otto Plant Measurement Derivatives (dz/dx)

for Model2 at F, = 1.563 kg/s Dismurbance Level.

F, F, Ta

F, 1 0
Fo |[-9.726x107 | 6.303x10° | 2.069x10?

F, 0 1 0
F, |7.780x10% | 4.935x10% | 2.557x10°
Fow -5.606 9.669x10" | -1.195x 10"
Fps | 4.742x107% | 3.345x107 | 2.855x10°
Few 1.983 1.984 4.390x 10"

Te 0 0 1
Twps |-8.335x10% | 5.893x10" | -5.030x107
Tourps |-3.574%X10" | 2.522x10" | -2.153%x 107
Tourpw |-6-431x107 | 3.328%10% | -5.068 %107
Tovrxw |-1.450%10% | 1.446x10" | 6.677x107
Xp, |[-3.513x107 | 4.043x10" | -3.053x10"
Xp, |-1.180x10" | 1.359%10° | -4.246x10°
Xp. |-6.969%x10%| 1.546x10° | 7.597x10°
Xp, |-6.822x10°| 2.282x10" | 7.626x10"
Xp, |-1.877x10°% | 1.951x10° | -1.539x10°
Xpy |-5.996x10° 1 6.577x10° | -2.043x10°
Xe. |-3.776x10% | 8.553x10° | 4.123x10°




Table D.32:

Williams-Otto Plant Measurement Derivatives (dz/dx)

for Model2 at F, = 1.827 kg/s Disturbance Level.

Fs F, Tx
Fy 1 0 0
Fe [-8.573x107 | 6.560x10° | 2.420x10%
F, 0 1 0
F, [8.727x107 | 5.438x10° | 3.682x10°
Fow -1.934 1.155 4.140x 10"
Fos  |3.495%x10° | 3.049%x10° | 5.957x10*
Fyw 1.845 1.846 4.436 X 10"
T 0 0 1
Taps |-6.158X10" | 5.373x10" | -1.049%107
Tourps |-2.636x10" | 2.301x107 | -4.500x 107
Tovrow [-1.675x107 | 1.467x107 | 5.860%107
Tovrxw |-1.467X10" | 1.458x10" | 6.724x107
Xp. |[-4.712x107 | 4.802x10* | -3.196x10?
Xpp [-1.138x10" | 1.445x10° | -5.156x 107
Xp. |-5.284%x107 | 1.685x10° | 8.731x10°
Xp, |-5.151x10% | 2.332x10* | 8.753x10°
Xpo |-2.497x107 | 2.277x10° | -1.580x10°
Xpp |-5.810x10° | 7.045x10° [ -2.504x10"
Xp, [-2.851x107 [ 9.235x10° | 4.719x10*




238

Table D.33: Williams-Otto Plant Measurement Derivatives (dz/dx)
for Model2 at F, = 2.092 kg/s Disturbance Level.

F, F, Tx
F, 1 0 0

F. [-7.228x10° ] 5.962%x10° [ 2.639x107
F, 0 1 0

Fo }9.667x10% | 4.871x10° | 4.607x10?
Fow -1.738 1.145 | 4.051x10"
Fos [2.255%10% | 2.866x10° | 7.758x10°
Few 1.784 1.786 4.930x 10"
Tr 0 0 1
Tiwps [-3.971x10" | 5.050x10" | -1.360x 107
Tourps |-1.701x10" | 2.163x10" | -5.900x 10
Tourow | -2.600x107 | 2.380x10% | 3.190x10°
Tourxw |-1.340x10" | 1.333x10" | 6.606x10?
Xp, |-5.755x107% | 4.421x10* | -3.106x103
Xps |-1.091x10" | 1.256X10° | -5.445x10°
Xp. [-3.750x107 | 1.455x10° | 9.300x10°
Xp, |[-3.604x10° | 2.132x10" | 9.329x10*
Xp, |-3.027x10° | 2.047x10° | -1.503x10*
Xpy [-5.597x10° | 6.133%x10° | -2.822x10°
Xp. |-2.014x10°% | 7.958x10° 5.006%x 10™




Table D.34: Williams-Otto Plant Measurement Derivatives (dz/dx)
for Modet3 at F, = 1.563 kg/s Disturbance Level.
Fs F, Tx
Fy 1 0
Fo ]-9.684x10%| 5.957x10° | 2.062x107"
F, 0 1 0
F, | 7.865x107 | 4.626x10° | 2.534x10?
Fow 2,128 1.448 -5.323x 10"
Fps | 4.654x107 | 3.322%x10% | 3.172x10°
Fyw 1.984 1.985 4.534x10"
Ta 0 0 1
Twps [-8.194%107 | 5.851x107 | -3.588% 10
Tourps |-3-508x107 | 2.504x10° | -2.392x10?
Toyrpw |-1.057x107 | 5.668x10% | 2.200x10*
Touraw |-1.406X107 | 1.398x10" | 6.632x107
Xpa. [-3.615x107 | 3.811x10* | -3.074x10°
Xpp [-1.192x10" | 1.284x10° | -4.326x10°
Xpe |-6.967x10* | 1.452x10% | 7.701x10°
Xp, |-6.811x107 | 2.219x10* | 7.734x10°
Xp, [-1.930x10° | 1.832x10° | -1.548x10™
Xop |[-6.061x10° | 6.204x10° | -2.084x10*
Xp. |-3.776%10° | 8.045%x10° | 4.181x10°
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Table D.35: Williams-Otto Plant Measurement Derivatives (dz/dx)

for Model3 at F, = 1.827 kg/s Disturbance Level.

Fy F, Tx

F, 1 0 0
Fo |-8.503x10%| 6.542x10° | 2.414x10?

F, 0 1 0
Fo |8.738x10°% | 5.432x10° | 3.741x10°
Fow -2.206 1.073 -4.888x 10"
Fos | 3.444x107 | 3.032%x10% | 5.483x10*
Fyw 1.836 1.837 4.426x10"

Ta 0 0 1
Tiwos |-6-069%10" | 5344107 | -9.660x10°
Tourps |-2.600x10" | 2.288x10" | -4.140x10?
Tovrow |-6.259%10% | 1.057x10% | 1.891x10?
Tourxw |-1.467%X10" | 1.462x10" | 6.731x107
Xp. |-4.771x107 | 4.822x10* | -3.197x10%
Xpp |[-1.141x10" | 1.447x10° | -5.189x10°
Xp. [-5.254%107 | 1.689x10* | 8.768x103
Xpp |-5.122x10° | 2.328x10" | 8.789x10*
X,, [-2.527x10° | 2.285x10° | -1.580x10"
Xp, |-5.830x107| 7.053%x10° | -2.520%10°
Xp. [-2.834x10° | 9.251%x10° 4.738x10™
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Table D.36: Williams-Outo Plant Measurement Derivatives (dz/dx)
for Model3 at F, = 2.092 kg/s Disturbance Level.

Fy F, Te
F, 1 0 0
F, |-7.094x107 | 5.889x10° | 2.615%10?
F, 0 1 0
Fp | 9.646x10° | 4.811x10° | 4.748%107
Fow -1.883 9.837x10-1 | -3.823x10-1
Fps | 2.185x107 | 2.842x10° | 9.029%10°
Frw 1.772 1.773 4.942 10"
T 0 0 1
Taos [-3-848%107 | 5.008x10" | -1.590x 107
Tourps |-1.648%107 | 2.144x10" | -6.800x 10
Tourow |-4.981x10% | 2.997x10° | -1.100x 107
Tourxw |-1.340%10" | 1.332x10" | 6.606x10?
Xp. |-5.831x107 | 4.394x10* | -3.100%10°
Xpy (-1.095X10" | 1.245X10-3 | -5.810%10-3
Xpe [-3.700x107 | 1.441x10% | 9.336x10?
Xpp [-3.556X10° | 2.111x10% | 9.366x 10"
Xp, [-3.065x107 | 2.031x10% | -1.498x10*
Xpp, [-5.617x10° | 6.069%x10° | -2.842x10*
Xpe |-1.987x10% | 7.878x10° | 5.024x10*









