AN EXPERIMENTAL STUDY OF THE HYDRODYNAMIC TRANSPORT OF SPHERICAL AND CYLINDRICAL CAPSULES IN A VERTICAL PIPELINE

KIN-WAI CHOW, B.A.Sc. (Ottawa)

Вy

£

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fullfilment of the Requirements

For the Degree

Master of Engineering

McMaster University

December 1979

MASTER OF ENGINEERING (1979)McMaster UniversityMechanical EngineeringHamilton, Ontario

್ಗ

TITLE: An Experimental Study of the Hydrodynamic Transport of Spherical and Cylindrical Capsules in a Vertical Pipeline

AUTHOR: Ken K. W. Chow, B.A.Sc. (University of Ottawa) SUPERVISOR: Dr. B. Latto

NUMBER OF PAGES: vi and 151

R.

: (

۰,

ABSTRACT

This thesis is concerned with the flow phenomena associated with the hydraulic transport of spherical and cylindrical capsules in a 7.6 cm-diameter vertical pipeline.

In the experiments, spherical capsules of steel, aluminum and nylon of capsule/pipe diameter ratio d/D = 0.57, 0.65 and 0.82 were investigated. Also, right circular cylinders of aluminum and nylon of d/D = 0.49, 0.65, 0.82, and capsule length/diameter ratio L/d = 4, 7, 10, 14 were investigated. The steady-state capsule velocity V_c and the pressure gradient associated with the capsules were measured. Based on the measured results the velocity ratio R_v , the pressure gradient R_p and the unit energy requirements <u>P</u> for the capsules were calculated. The effects of the individual pertinent variables which affect R_v , R_p and <u>P</u> as indicated by the experiments were discussed.

Furthermore, theoretical and semi-empirical correlations between V_c , $(\Delta P/L)_c$ and the pertinent variables of the systems were derived.

iii

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to Dr. B. Latto, under whose guidance this research was carried out, for his understanding, encouragement and untiring help during the course of this program.

Thanks are also extended to those members of the Department for their continuous inspiration and assistance.

Thanks are also due to Mr. D. Schick and the staff of the Engineering Machine Shop for their advice and assistance in building the apparatus, and to Miss L. A. Oneschuk for her expert typing of the manuscript.

The research was financially supported by the National Research Council and NSERC of Canada to whom the author is grateful.

TABLE OF CONTENTS

	<u>CHAPTER</u>	•		Page
•	1	INTRODUCT	ION	1
	2	LITERÁTUR	RE SURVEY	3
	. 3	THEORY		16
. :•	4	APPARATUS	S AND EXPERIMENTAL PROCEDURE	28
		<u>PART 1</u> -	APPARATUS	
		4.1	The Flow Systems	28
		4.2	The Measurement Systems	34
	ı	4.3	Gapsulos	39
		PART 2-	EXPERIMENTAL PROCEDURE	41
· 1	5	RESULTS,	CALCULATIONS AND DATA REDUCTION	45
	6	DISCUSSI	ON.	51
3		6.1	The Variation of Velocity Ratio R _v	51
	٦	6.2	Correlation for the Prediction of V _c	73
		6.3	The Variation of Pressure Ratio R _p	86
		6.4	Correlation for the Prediction of $(\Delta P/L)_{c}$	91
•		6.5	Energy Requirements	98
-	7	CONCLUSI	ONS	103
	APPENDIĆE	S.		
	Δ	FRROR AN	ALYSTS	107

			-		
				· .	
	B CALIBRATI	DN CURVES		111	
7	B-1 Cal	ibration of Flow	vmeter	111	
•	B-2 Cal	ibration of Pres	sure Transduce	er 118	
	C THE VELOC	ITY PROFILES OF	THE TEST SECTI	ON 119	
	D DATA TABL	ES		120	
	REFERENCES	·	•	148	
	•				
		·		÷	-
				$\sum_{i=1}^{n}$	
		ſ			
			**		
			•		
		•			

:

--

NOMENCLATURE

A '	Area
ā	Empirical constant
Ь	Empirical constant
c	Empirical constant
c <mark>*</mark>	Drag coefficient defined by Equation (3.7) to (3.10)
C _d	Drag coefficient defined by Equations (3.15)
c d'	Drag coefficient defined by Equations (3.15)
c _d	Drag coefficient defined by Equations (3.16)
D	Pipe diameter
d	Capsule diameter
ec	Capsule surface roughness
ep	Pipe surface roughness
£	Energy consumption for capsules
f	Friction factor
9	Local acceleration due to gravity 9.806 m/s ²
К	Capsule to pipe diameter ratio, d/D
L	Capsule length (or L _c)
Lp	Length of test section of pipeline
L/d	Capsule length to diameter ratio
'n	Capsule mass flowr'ate
(AP/L)c	Total pressure gradient across capsule
(ΔΡ ₀ /L)	Pressure gradient due to the presence of the capsule
(ΔP/L) _L	Pressure gradient in the free pipe due to the fluid alone

	•	
<u>P</u>	Unit energy requirements for the capsule	
q	Empirical constant in Equation (3.22)	• .
Rv	Velocity ratio = $\frac{V_{C}}{V_{ave}}$	
Rp	av Pressupe gradient ratio = (ΔΡ/L) _c /(ΔΡ/L) _L	
ReD	Reynold's number based on D and V av	
Re _N	Reynold's number based on (D-d) and V _N	
Sc	Capsule specific gravity	
t	Time .	
T ,	Temperature	
÷	Capsule volumetric flowrate	
Vav	Average water velocity in the test section	
۷ _c	Capsule velocity	
V _N	Water velocity in the annulus space between pi and capsule	pe
WB	Buoyed weight of the capsule	
ρ	Water density ,	
σ	Capsule density	
τ _c (Shear stress on the capsule wall	、 ·
τ _p	Shear stress on the pipe wall	
μ.	Dynamic viscosity of water	
Subscri	ipts	
av	Average value	
с	Capsule	• *
L	Liquid	
N	Annular	

c

v t

ς.

LIST OF FIGURES

	FIGURE		PAGE
	(3.1)	Schematic of the Control Volume in the Test Section	19
	(4.1)	Schematic of Pipeline System for Transport of Capsules	29
	(4.2)	The Pneumatic Plunger Assembly	32
	(4.3)	Phototransistor and Light-Source Assembly	36
	(4.4)	Circuit Used to Measure V _c	37
	(4.5)	Flow and Pressure Diagram	39 [.]
	(4.6)	Cylinder Sections for Varying the Length of a Cylinder	40
	(6.1)	The Variation of Velocity Ratio R _v with V _{av}	52
,	(6.2)	The Variation of R_v with V_{av} ; Nylon Cylinders of K = 0.489, 0.815	53
	(6.3)	The Effect of V on R _v ; Nylon and Aluminium Cylinders of L/d = 10	54
	(6.4)	The Effect of L/d on R _y ; Nylon Cylinders	57
	(6.5)	The Effect of L/d on R _v ; Aluminium Cylinders	58
	(6.6)	The Effect of K on R _y ; Nylon Cylinders	62
	(6.7)	The Effect of K on R _v ; Aluminium Cylinders	63
	(6.8)	The Effect of Density Ratio on R _v ; Cylinders	63
	(6.9)	The Variation of R _v with V _{av} ; Spherical Capsules	66
	(6.10)	The Effect of K on R _v ; Spheres	70
	(6.11)	The Effect of Density Ratio on R _v : Spheres, K=0.815	5 71
	(6.12)	V _c Versus V _{av} ; Nylon Cylinders, L/d = 4	74

· · · · · ·				··· ·· • · ·
	(6.13)	V_c Versus V_{av} ; Nylon Cylinders, L/d = 7	74	
	(6.14)	V _c Versus V _{av} ; Nylon Cylinders, L/d = 10	75	
	(6.15)	V _c Versus V _{av} ; Nylon Cylinders, L/d = 14	75	
·	(6.16)	V _c Versus V _{av} ; Aluminium Cylinders	76	
	(6.17)	The Linear Relationship Between V_c and $(V_{av} - V_o)$; Cylinders, K = 0.489	77	
	(6.18)	The Linear Relationship Between V _c and (V _{av} - V _o); Cylinders, K = .652	77	
	(6.19)	The Linear Relationship Between V _c and (V _{av} - V _o); Cylinders, K = .815	78	
. ·	(6.20)	The Deviation of Experiment from Equation (6.5); Nylon Cylinders	78	
ł	(6.21)	Comparison of Equation (6.5) and Experiment; Nylon Cylinders, L/d = 4	80	
	(6.22)	Comparison of Equation (6.5) and Experiment; Nylon Cylinders, L/d = 10	80	•
	(6.23)	Comparison of Equation (6.5) and Experiment; Aluminium Cylinders	81	
	(6.24)	The Linear Relationship Between V _c and (V _{av} - V _o); Spheres	83	Na ().
	(6.25)	Comparison of Equation (6.9)`and Experiment; Spheres	83	
	(6.26)	The Deviation of Experiment from Equation (6.9); Spheres	84	
•	(6.27)	The Variation of R _p with V _{av} ; Cylinders	87	
	(6.28)	The Variation of $(\Delta P_0/L)$ and $(\Delta P/L)_L$ with V_{av} ; Cylinders	88 .	
	(6.29)	R _p Versus L/d; Cylinders	89	
	(6.30)	R _p Versus K; Cylinders	89	

••• 		-	4 *
(6.31)	R _p Versus V _{av} ; Steel Spheres	92	. •
(6.32)	The Variation of $(P/L)_{c}$ with V_{av} ; Cylinders	92	
(6.33)	Pressure Function Versus K; Cylinders	95	
(6.34)	The Deviation of Experiment From Equation (6.13)	96	
(6.35)	Unit Energy <u>P</u> Versus V _{av} ; Nylon Cylinders	99	s
(6.36)	Unit Energy <u>P</u> Versus V _{av} ; Aluminium Cylinders	100	
(B-1)	Calibration Curve for Flowsensor #1 (By-Pass Loop)	113	
(8-2)	Calibration Curve for Flowsensor #2 (Main Loop)	114	•
(B-3)	Calibration Curve for Flowsensor with M314 Single Conditioner	115	•
(B-4)	Use of Dead-Weight Tester for Calibration of Pressure Transducer	116	
(B5)	Calibration Curve for Pressure Transducer	117	
(C-1)	The Velocity Profile in the Test Section	119	

۰ ۰ ۰ ۰

CHAPTER 1 INTRODUCTION

Over the past two decades there has been an increasing interest in efficient transport of material in pipelines as an alterative to more conventional methods. The transport of capsules has some attractive features in that a specific material can be separated from the transporting fluid.

In the mid 1960's the majority of research on capsule pipelining was being primarly done at the Research Council of Alberta (ARC). In the late 1960's and 1970's considerable exploratory studiés have been underway at McMaster University.

The work done at the Research Council of Alberta were mainly concerned with horizontal pipeline while that carried out at McMaster was concerned with stationary capsules either rigidly mounted or freely suspended in vertical pipelines using water or aqueous polymer solution as the working fluid.

No research, however, had been performed on the dynamic aspects of moving capsules in a vertical pipeline until the present study, in spite of the fact that capsule flow in vertical pipeline could form a major part of capsule and/or regular body pipelining.

Capsule flow in a vertical pipeline could have a wide range of applications in areas such as deep sea or underground mining and chemical processes in general. It is expected that capsule flow in a vertical pipeline behaves considerably differently from that in horizontal pipeline. Therefore, in order to supplement the existing knowledge of capsule pipelining and provide necessary information for the design of future capsule pipeline systems, extensive research on vertical pipeline capsule flow is needed. This is the purpose of the study reported in this thesis.

In the present study, the hydrodynamic effects of some specific variables such as fluid viocity, capsule diameter, length and density on the capsule velocity and pressure gradient across the capsule were studied. Attempts were also made to correlate the afromentioned variables to capsule velocity and pressure gradient for both cylindrical and spherical capsules.

The present investigation was carried out in a llmeter vertical length of 7.6 cm diameter 40-schedule steel pipe using water as the carrier fluid. Spherical capsules of steel, aluminum and nylon of capsule/pipe diameter ratio of 0.57, 0.65 and 0.82 were investigated. Also right circular cylindrical capsules of aluminum and nylon of 0.49, 0.65 and 0.82 diameter ratio and 4, 7, 10, 14 of length/ diameter ratio were investigated. The fluid velocity covered the range from 0.3 to 5.5 m/s.

<u>CHAPTER 2</u>

LITERATURE SURVEY

The idea of transport of material in pipeline in the form of capsules was reinitiated in a paper by Hodgson and Charles (3).

The idea was developed from the observation of the flow pattern of equal-density oil-water flow in a horizontal pipe. They noted that the oil bodies occupied the region of the pipe where the linear velocity in both laminar and turbulent flow was significantly greater than the average velocity for the pipe flow as a whole. Secondly, they observed that the pressure gradient in turbulent flow was somewhat less than that with the carrier liquid flowing alone. Therefore, a favourable velocity and pressure gradient might be anticipated if the oil slugs were substituted by solid bodies which were subsquently called capsules.

These findings led to the proposal of practical capsule pipelining which resulted in extensive theoretical and experimental studies over a fifteen year period at the Research Council of Alberta (ARC). A series of papers concerning these researches was published (3-13, 26, 28, 30-32, 35-37) during the period from 1963 to 1975. In the second part of the series of articles, Charles (4) presented a theoretical analysis of the concentric flow of long cylindrical capsule carried in equidensity liquid in both laminar and turbulent motion. The following analytical solutions for the capsule velocity and pressure gradient across the capsule were obtained:

$$V_{c} = \frac{2}{1+K^{2}} V_{av} \quad (Laminar) \quad (2.1)$$

$$V_{c} = \frac{V_{av}}{[4/7K(1-K)+49/60(1-K)^{2}+K^{2}]} \quad (Turbulent) \quad (2.2);$$

$$\left(\frac{\Delta P}{L}\right)_{c-\ell} = \left(\frac{1}{1-k^4}\right) \left(\frac{\Delta P}{L}\right)_{f-\ell}$$
(2.3)

(For laminar flow in both annulus and free-stream)

$$\left(\frac{\Delta P}{L}\right)_{c-t} = \left[\frac{.82}{(1-K)^{1/7}(T/4K(1-K)+49/60(1-K)^2+K^2)}\right]^{1.75}\left(\frac{\Delta P}{L}\right)_{f-t}$$
(2.4)

(For turbulent flow in both annulus and free-stream)

(2.5)

$$\left(\frac{\Delta P}{L}\right)_{c-\ell,t} = \frac{202}{(1-K)^4 (Re_D)^{3/4}} \left(\frac{\Delta P}{L}\right)_{f-t}$$

(For laminar in annulus and turbulent in free-stream)

(For
$$\operatorname{Re}_{D} = \frac{\rho V_{AV}^{D}}{\mu} > 2000$$
)

where $\left(\frac{\Delta P}{L}\right)$ = pressure gradient with subscripts, c stands for capsule, f for fluid, ℓ for laminar and t for turbulent respectively.

Equations (2.1) and (2.2) show that V_c is always

greater than V_{av} for equidensity capsule flow. Equation (2.3) and (2.4) show that $\left(\frac{\Delta P}{L}\right)_{c}$ is always greater than $\left(\frac{\Delta P}{L}\right)_{f}$ while for the case of laminar flow in an annulus with a turbulent free-stream, i.e. Equation (2.5), indicates that $\left(\frac{\Delta P}{L}\right)_{c}$ does not necessarily exceed $\left(\frac{\Delta P}{L}\right)_{f-t}$ and therefore that the presence of a capsule in an equidensity fluid does not necessarily increase the pressure gradient.

Experiments were then carried out in the ARC to verify the viability of the models set out by this analysis. Since the flow considered in the analysis represents the most idealized case experimental values were expected to be somewhat less than the prediction. However, comparison of the experimental results (5,6,7) showed the reverse. This was particularly evident for some cases when there was turbulent annular and core flow. Attempts by the researchers to explain this discrepancy were unsatisfactory until Kennedy (14) introduced another set of equations.

Kennedy in the analysis of plug flow found that Charles' analysis did not account for the slip which Kennedy termed as slip velocity in the viscous sublayer next to the capsule boundary. Kennedy's argument was that since the capsule boundary is impermable, force transfer by the interchange of fluid momentum is blocked. A viscous sublayer, within which the intensity of viscous shear is sufficiently high to accomplish the transfer, must exit. This led to the following equations developed by Kennedy for the turbu-

lent-turbulent case:

$$V_{c} = \frac{V_{av} + V_{L} [7/4k(1-k) + 49/60(1-k)^{2}]}{[7/4k(1-k) + 49/60(1-k)^{2} + k^{2}]}$$
(2.6)

where

$$V_{L} = \frac{B \sqrt{\frac{r_{c}}{2\rho}} \frac{\Delta P}{L} f}{1.22(1-K)^{1/7} [\frac{7}{4}K(1-K) + \frac{49}{60}(1-K)^{2} + K^{2}] + \frac{BK^{2}}{V_{AV}} \sqrt{\frac{r_{c}}{2\rho}(\frac{\Delta P}{L})} f}$$
(2.7)

and B is a constant with value between 11-13.

$$\left(\frac{\Delta P}{L}\right)_{c} = \left[\frac{0.82(1-K^{2})\frac{VL}{V_{av}}}{\left[\frac{7}{4}K(1-K) + \frac{49}{60}(1-K)^{2} + K^{2}\right](1-K^{1/7}]}\right]^{1.75} \left(\frac{\Delta P}{L}\right)_{f-t}$$
(2.8)

Comparison of Equation (2.6) with (2.2) shows that the value of V_c is higher from the former than the latter, and Equation (2.8) predicts a decrease of $\left(\frac{\Delta P}{L}\right)_c$ with an increase in K, the reverse of the original prediction by Charles neglecting V_L . Comparison of (2.6) to Ellis' experimental result and (2.8) to the observation made in plug flow supported Kennedy's contention.

Nevertheless Charles' analysis, for the other flow regions of concentric equal-density long cylindrical capsule flow, is still useful and in fact formed a basis of comparison for the subsquent experiments.

The main object of the series of research (4-12) was to study the hydrodynamics of capsule flow and to investigate the effects of all the parameters which might affect the capsule velocity and the change of pressure gradient.

The parameters used, in dimensionless form, were namely: Re, $\frac{\sigma-\rho}{\rho}$, d/D, L/d, end shapes, ℓ_c/d , and ℓ_p/D (see Nomenclature).

Some/understandings of the effect of each of the above parameters on the velocity ratio (\forall_C / ψ_{av}) and the capsule pressure gradient were obtained from the ARC research and the results may be classified as follows:

1) <u>The Reynolds number</u>: Several different forms of Reynolds number including the pipe Reynolds number were used in the experimental results. The form of the Re based on the annulus space and velocity i.e. $\text{Re}_{ann} = \frac{\rho V_{ann}(D-d)}{\mu}$ was employed in a correlation with the friction factor, which in effect ottermines the shear force exerted by the fluid on the side of the capsule. Satisfactory results were obtained by using Re_{ann} in the correlation of

 $(fRe^{m})_{ann} = C to predict f_{ann}$ (12, 31)

For practical convenience the Reynolds number is usually based on the conditions in the pipe upstream of the capsule and was consequently used for correlation involving. V_c/V_{av} and $(\Delta P/L)_c$.

The general trend was that the velocity ratio V_c/V_{av} increased with an increase of Re_D . However the pressure gradient, $(\Delta P/L)_c$ might decrease or increase with increase of Re_D depending on the flow in the annulus around the capsule.

2) <u>The apparent density ratio</u> - $\left(\frac{\sigma-\rho}{\rho}\right)$ or $\left(S_{c}-1\right)$ Solid and hollow capsules of different specific 'gravity ranging from 1 to 8 were used in the investigations.

It was found that V_c/V_{av} decreased with increase of density ratio but the effect was not so marked for spheres as for cylinders and $(\Delta P/L)_c$ increased with increase of $(\frac{\sigma-\rho}{\rho})$.

3) The capsule to pipe diameter ratio (d/D):

Apparently V_c/V_{av} increased with increase of d/D for both spherical and cylindrical capsules of density greater than the carrier fluid. But the opposite was the case for equidensity capsules (5, 9). The reason was that in the case where capsule was denser than the fluid, the capsule was sliding along the bottom of the pipe, hence a larger diameter capsule was situated in a higher fluid velocity region. On the other hand, an equidensity capsule was floating and travelling in concentric position, hence a smaller capsule would occupy a higher fluid velocity region.

• 4) The capsule length/diameter ratio (L/d):

It was also observed that V_c/V_{av} increased with a decrease of L/d when $V_c/V_{av} < 1$, but the reverse when $V_c/V_{av} > 1$ (5, 6, 9, 10).

5) <u>The end shape</u>

An ellipsoidal nose was found to increase velocity ratio and to decrease pressure gradient for capsules of

small diameter ratio. There was little effect for d/D > .8 (5, 6, 10).

6) <u>Surface roughness of capsule and pipe</u>

It was also found that usually an increase of roughness for either the pipe or capsule surface or both resulted in reduction of velocity ratio and increased the pressure gradient at low velocity but the effects disappeared at high velocities (6, 10, 30, 31).

In conjunction with the parameters mentioned above several other parameters were introduced into the initial analysis. These parameters were mainly discussed in two theoretical investigations made on eccentric capsule flow the conditions for which most of the experiments were frequently encountered.

In part 6 of the ARC series Newton et al (8) presented results of a numerical analysis for a simplified form of the Navier-Stokes equation for eccentric laminar capsule flow. The velocity ratio and pressure ratio $(\Delta P/L)_c/(\Delta P/L)_f$ were related to the friction factor as a function of the relative displacement of the capsule, which was defined as the rate of the displacement of the capsule axis from the pipe axis to the difference between the pipe and capsule radii. Good agreement with the experimental results was reported.

In part 9 of the ARC series, Kruger et al (11), in another analysis for eccentric laminar capsule flow in horizontal pipelines, introduced another parameter called the theoretical clearance C,which represented the minimum clearance between pipe wall and capsule. By analyzing the previous experimental results they established an expression to predict the value of C, from which the eccentricity ε of the capsule could be calculated from the equation

$$\varepsilon = 1 - K - 2C \qquad (2.9)$$

where ε is the eccentricity. It is then possible to predict the values for the velocity ratio R_V and pressure ratio R_D by substituting ε into the following equations

$$R_{v} = \frac{V_{c}}{V_{av}} = \frac{Q_{c}}{\kappa^{2}(Q_{c}+Q_{A})} \text{ and}$$
$$R_{p} = \frac{(\Delta P/L)_{c}}{(\Delta P/L)_{f}} = \frac{Q_{p}}{(Q_{c}+Q_{A})}$$

where $Q_c = B(\Delta P/L)_c f_1(k,\epsilon)$ (volumetric flowrate of capsule) $Q_A = B(\Delta P/L)_c f_2(K,\epsilon)$ (volumetric flowrate of annulus) $Q_p = B(\Delta P/L)_f$ (volumetric flowrate of pipe) and B is a constant.

Although the developments of both analyses were of significance for some of the flow phenomena in laminar flow, the fact that they were not generalized and lacked simplicity had limited their applications to more general cases.

After clarifying the effects of the more pertinent parameters on capsule flow, the latter part of the research at the ARC was directed towards obtaining correlations for predicting capsule velocity and pressure gradient (12, 31) and to generating information or equations for the design of capsule pipeline systems (28, 30-32, 35-37). They claimed that capsule pipeline systems could be designed and built with complete confidence (26).

The present study is concerned with capsule flow in a vertical pipeline, for which no information was available. Consequently, any data related to vertical pipelines was considered, such as that of stationary bodies in vertical tubes or pipes. The following part of this chapter is a review on this aspect but is confined to research which used high Reynolds number flow.

The earliest study concerning the variation of drag coefficient for stationary spheres in fluid flow in a bound medium at high Reynolds number was that of McNown and Newlin (1). The spheres that they used were rigidly mounted in a tube with uniform air flow with a Re in the range $10^4 - 10^5$. They arrived at the following analytical relationship:

$$C_{d} = \left[\frac{d/D}{1-(d/D)^{2}}\right]^{2}$$
 (2.9)

which neglects the viscous effect, but still closely related to their experimental data especially at d/D > .80.

Following McNown and Newlin, Young (2) Richhorn and Small (45) carried out similar studies. The spheres in these experiments were freely suspended and the tube was inclined to accommodate the need for data for the spheres at different

radial displacements, while at the same time being free of frictional effect.

Round et al (17, 18) carried out two experiments on the suspension of single sphere in water and in air in tubes of various diameters and in various angles of inclination. The angle of inclination of the tubes to the horizontal was varied from 0° to 90° . Measurements were made to determine the liquid velocities required to support the spheres and the pressure drops associated with these velocities. In both experiments they observed that at an angle of inclination between $20-65^{\circ}$, the spheres became still at suspension, but at an angle near to 90° the spheres were unstable and bouncing from side to side in the tube. For the spheres at still suspension they showed that the drag coefficient of a given sphere was constant. In the second part of the experiment they presented two correlations:

a) The velocity function:

$$\frac{(V_{av})^2}{\frac{\partial \partial g(\sigma-\rho)}{\rho \sin \theta}} = \frac{2}{3K} d/D[1-(d/D)^2] \quad (2.10)$$

b) The pressure function:

$$\frac{\Delta P_m - \Delta P_L}{(\sigma - \rho) D \sin \theta} = \frac{2}{3} (d/D)^3 \qquad (2.11)$$

where K is a modified form of the drag coefficient which was determined by substituting 0.54 for the L.H.S. and d/D = 0.47 into Equation (2.10). These values correspond to the maximum condition in the plot of the non-dimensional velocity function versus d/D.

Since 1969, the department of Mechanical Engineering at McMaster University has been actively involved on the research of stationary and dynamic capsules in pipelines.

The initial research was that of Tawo (19) who studied the pressure gradient for sphere trains rigidly fixed to the inside wall of a horizontal pipe with water flowing at Reynolds number ranging from 10^4 to 10^5 . The pressure drop measurements were correlated as a function of diameter ratio and Reynolds number.

Experiments performed thereafter were carried out in a vertical pipeline using both water and aqueous polymer solution as the working fluid.

The use of polymer solution was to study the phenomenon of drag reduction additives on the system.

Latto et al (20, 21) carried out the first experiment in the vertical pipeline to investigate the hydrodynamic suspension of single sphere and sphere train in water and polymer solution. Steel and lucite spheres with d/D ranging from 0.29 to 0.95 were used. Measurements of suspension velocity and pressure drop were made. Results obtained from the measurements for various concentrations were compared to that for water. It was found that the drag coefficient was not affected by the addition of polymer solution for

diameter ratios d/D > 0.7. They established a semi-empirical equation for the pressure drop associated with the capsule at hydrodynamic suspension as a function of d/D in the form

$$\frac{(\Delta P_m - \Delta P_L)}{(\sigma - \rho)D \sin \theta} = 0.633(d/D)^{2.94}$$
(2.12)

which was in good agreement with the data for air and water.

The next work in the series was that of Aly (22), Latto et al (38) who extended the study to include cylinder train with diameter ratios ranging from 0.45 to 0.9. They showed that for nylon spheres and cylinders the drag coefficients approached a constant value as L/d was increased, and that the drag coefficient per (L/d) for cylinder train was smaller than that per unit sphere of an equivalent sphere train. Semi-empirical equations similar to that of Latto's (Eqn. 2.12) were derived.

$$\frac{\Delta P_{m} - \Delta P_{L}}{D(\sigma - \rho)g} = 0.79(d/D)^{3.572} n^{1.003} \text{ (sphere train)} (2.13a)$$

$$\frac{\Delta P_{m} - \Delta P_{L}}{D(\sigma - \rho)g} = 0.933(d/D)^{3.438}(L/d)^{1.099} \text{ (cylinder train)} (2.13b)$$

Latto and Lee (23, 24) extended the research to include the effect of modified end shapes on drag coefficient and pressure drop. They showed that significant pressure drag reduction was achieved by the addition of a hemisphere nose cape.

Alnakeeb (41) performed the study on the drag coeffi-

cient for tethered spheres in the same vertical pipeline with and without polymer addition. The diameter ratios were ranged from 0.439 to 0.87. Semi-empirical correlations were obtained for the drag coefficient and the pressure function in the range of tube Reynolds number of 3.9×10^{3} to 9.2×10^{4} . In the experiments using Reten 423 polymer solution, it was found that a maximized drag reduction occurred at concentration of about 24 wppm for sphere of d/D > 0.74, and that higher drag reduction was achieved for tethered spheres than for untethered ones.

.15

CHAPTER 3

THEORY

In order to model the capsule-pipeline system, it is necessary to obtain relationships between capsule velocity, the pressure gradients across the capsules and the physical variables of the system. The following approaches were adopted to achieve this;

I <u>Dimensional Analysis</u>:

One of the main objects of the research was an investigation of the individual effects of various nondimensional parameters on the variation of capsule velocity and pressure gradient. These dimensionless parameters can be established using the following dimensional analysis.

Considering a rigid cylindrical capsule of any size and density flowing under the influence of a liquid carrier in a pipeline, it is possible to write:

 $V_c \text{ or } (P/L)_c = F_1(V_{av}, \mu, \rho, \sigma, L, d, D, e_c, e_p, \text{ endshape})$ (3.1)

If M, L, T are chosen as the fundamental dimensions and V_{av} , ρ , D are as the repeating variables, then the variables in Equation (3.1) may be related by 8 dimensionless groups or π terms as follows:

$$\pi_{1} = (V_{av}^{a}D^{b}\rho^{c})V_{c} \text{ or } (\Delta P/L)_{c}$$
$$\pi_{2} = (V_{av}^{a}D^{b}\rho^{c})\mu$$

$$\pi_{3} = (\Psi_{av}^{a} D^{b} \rho^{c}) \sigma$$

$$\pi_{4} = (\Psi_{av}^{a} D^{b} \rho^{c}) d$$

$$\pi_{5} = (\Psi_{av}^{a} D^{b} \rho^{c}) z_{c}$$

$$\pi_{7} = (\Psi_{av}^{a} D^{b} \rho^{c}) z_{p}$$

$$\pi_{8} = \text{end shape}$$
For dimensional homogenity the solutions are:

$$\pi_{1} = \Psi_{c}/\Psi_{av} \text{ or } (\Delta P/L)_{c} \frac{D}{\rho \Psi_{av}^{2}}$$

$$\pi_{2} = \frac{\rho \Psi_{av} D}{\mu}$$

$$\pi_{3} = \frac{\sigma - \rho}{\rho}$$

$$\pi_{4} = d/D$$

$$\pi_{5} = L/0$$

$$\pi_{6} = \frac{2}{c}/d$$

$$\pi_{7} = z_{p}/D$$

$$\pi_{8} = \text{end shape}$$
where $(\Delta P/L)_{c} \frac{D}{\rho \Psi_{av}^{2}} \text{ can be written as}$

$$(\Delta P/L)_{c} [\frac{1}{r(L/D)(1/L)} \frac{\rho \Psi_{av}^{2}}{2}] \text{ or } (\Delta P/L)_{c}/(\Delta P/L)_{L}.$$

. j

which is the ratio of pressure gradient across the capsule to that of the free pipe.

Equation (3.1) then becomes:

$$\frac{V_{c}}{V_{av}} \text{ or } \frac{(\Delta P/L)_{c}}{(\Delta P/L)_{1}} = F_{2}(\frac{\rho V_{AV}D}{\mu}, \frac{\sigma-\rho}{\rho}, \frac{d}{D}, \frac{L}{d}, \frac{\ell_{c}}{D}, \frac{p}{D} \text{ endshape})$$

The analysis for the case of a spherical capsule would give the same dimensionless groups except that $\pi_5 = L/d = 1$ for a single sphere of which the significant length would be d.

Since the present experiments are limited to a single liquid in one pipe diameter, the Reynolds number, $\frac{\rho V_{av}^D}{\mu}$ is proportional to V_{av} , and ℓ_p/D could not be varied. If the relative roughness ℓ_c/d for all the capsules was maintained constant throughout the experiments then the independent variables that could be investigated are:

$$V_{c}/V_{av} \text{ or } \frac{(\Delta P/L)_{c}}{(\Delta P/L)_{L}} = F_{2}(V_{av}, \frac{\sigma-\rho}{\rho}, d/D, L/d)$$
(cylinders)
$$V_{c}/V_{av} \text{ or } \frac{(\Delta P/d)_{c}}{(\Delta P/d)_{c}} = F_{2}(V_{av}, \frac{\sigma-\rho}{\rho}, d/D)$$
(3.2)

$$V_{av} \text{ or } \frac{C}{(\Delta P/d)_{L}} = F_2(V_{av}, \frac{D-p}{\rho}, d/D)$$
(spheres) . (3.3)

II <u>General Analysis</u>

1) Overall Continuity Considerations:

Consider the control volume as depicted in Figure (3.1). Mass continuity requires that:

19

2) <u>Capsule Flow Mechanism</u>:

Consider a free cylindrical capsule at rest or in steady motion in a vertical pipeline with a flowing carrier fluid. The free flow of the capsule is governed by the various forces acting on it. These forces are summarized in Figure (3.1) as:

- i) The buoyed weight of the capsule acting vertically downward, W_B.
- ii) The pressure forces in the liquid acting perpendicular to the capsule surface at every point, F_p .
- iii) The shear force due to the liquid acting at each point tangentially to the capsule surfaces, F_c.
 - iv) The forces due to the pipe wall such as the drag forces due to the friction between the capsule and the pipe wall when the capsule is travelling

in contact with the pipe wall. There is also shear force in the fluid due to friction of the pipe wall; this force might not directly affect the capsule velocity but it would affect the pressure gradient.

All these forces may be resolved into transverse and longitudinal components with respect to the axis of the pipe.

The longitudinal component of the forces consists of a pressure force acting at the ends of the capsule and the shear force acting at the side of the capsule. The pressure force always exerts a thrust force on the capsule while the shear force may exert a thrust or a drag force on the capsule. The shear forces considered here are restricted to these due to the fluid or viscous shear forces.

The component of drag force due to the contact of the capsule with the pipe wall should not affect the general analysis since for a vertical pipeline the cylinder is not generally in contact with the pipe wall.

The transverse component of the forces consists of pressure force acting on the sides and the shear force acting parallel to the ends of the capsule. Since there is essentially no flow from side to side the pressure force on each side is equal. The shear forces on the ends of the capsule will be small compared with those on the sides, and in any case will tend to cancel out as regards to their parallel and perpendicular components. Therefore it is the longitudinal component of the pressure force and the shear force that contribute to the motion of the capsule. The summation of these forces is always equal to the buoyed weight of the capsule when the capsule is hydraulically suspended or travelling at steady velocity, that is,

$$F_{p} \stackrel{+}{=} |F_{s}| = W_{B}$$
 (3.5)

where F_p is the thrust due to the parallel component of the pressure force.

 F_s is the thrust due to the parallel component of the shear force.

 W_R is the buoyed weight of the capsule.

The liquid velocity which is just sufficient to suspend the capsule is called the "suspension velocity", N_0 . If the liquid velocity is increased above that of V_0 the capsule begins to move at a constant velocity after an initial acceleration. When the capsule is at steady motion, the total thrust can be no greater than before the increase of liquid velocity since the buoyed weight of the capsule is constant. However, the pressure forces will have increased with the increase of liquid velocity, so that the thrust due to the shear force will necessarily have decreased. This latter result can only be brought about by a decrease of the average liquid velocity in the annulus relative to the capsule, i.e. (V_N-V_C) , since the shear force increases or decreases with this quantity. A decrease of $(V_N - V_C)$ for a given V_{av} means an increase of V_C . Therefore, the effect of increasing V_{av} is to increase V_C .

When the water velocity is further raised to a value such that $(V_N - V_C) < 0$, the shear force is then opposing the capsule motion and acting as a negative component of the thrust force. According to Equation (3.4), a negative value of $(V_N - V_C)$ will give a value of V_C / V_{av} greater than unity. Hence, a negative sign to the absolute value of F_s in Equation (3.5) is added to take into account of the case where $V_C / V_{av} > 1$.

3) Force and Momentum Balance:

In conjunction with the analysis just described, two considerations, which are probably more useful in practical applications, based upon simple overall force balance and momentum balance may be established as follows:

3.a) Force Balance:

For Capsules at Suspension: Considering the control volume as depicted in Figure (3.1), the force balance on the capsule is given by Equation (3.5), that is

total thrust = buoyed weight (3.6) For a cylindrical capsule it is

$$C_{d}^{*} \frac{\rho V_{o}^{2}}{2} \frac{\pi d^{2}}{4} = (\sigma - \rho) gL \frac{\pi d^{2}}{4}$$

$$C_{d}^{*} = (S_{c}^{-1}) \frac{2gL}{V_{o}^{2}} (cylinder) \qquad (3.7)$$

For a single spherical capsule it is

$$C_{d}^{*} = (S_{c}^{-1}) \frac{4}{3} \frac{gd}{V_{o}^{2}}$$
 (sphere) (3.8)

where C_d^* is the overall drag coefficient V_o is the suspension liquid velocity

If the average local liquid velocity in the annular spacing between the capsule and the pipe wall is used instead of the average liquid velocity in the free pipe, then according to Equation (3.4) with $V_c = 0$

$$V_{\rm N} = \frac{V_{\rm o}}{(1-\kappa^2)},$$

alternative forms of the drag coefficient can be defined by:

$$C_d^{**} = (S_c^{-1}) \frac{2gL}{V_o^2} (1-K^2)^2$$
 (3.9)

$$C_d^{**} = (S_c^{-1}) \frac{4}{3} \frac{gd}{v_0^2} (1-\kappa^2)^2$$
 (3.10)

Rearranging Equation (3.9) and (3.10) gives

$$V_{0} = [2gD(S_{c}-1)(L/d)(d/D)]^{\frac{1}{2}}(1-K^{2})/\sqrt{C_{d}} **$$
(cylinder) (3.11)
$$V_{0} = \cdot [\frac{4}{3}g(S_{c}-1)(d/D)]^{\frac{1}{2}}(1-K^{2})/\sqrt{C_{d}} **$$
(sphere) (3.12)

It is seen from the above two equations that the suspension velocity of a given capsule in a given pipeline may be calculated if the drag coefficient Cd** could be

determined. Theoretically, for a capsule of given material, C_d^* varies with L/d, d/D and V_{av} . But since V_{av} varies implicitly with L/d and d/D, C_d^* is in turn a function of L/d and d/D only. Hence, Equations (3.11) and (3.12) may be written as:

$$V_{0} = \sqrt{2gD(S_{c}-1)} (1-K^{2})(L/d)^{a}(d/D)^{b}$$
 (cylinder) (3.13)
$$V_{0} = \sqrt{\frac{4}{3}gD(S_{c}-1)} (1-K^{2})(d/D)^{c}$$
 (sphere) (3.14)

where a, b or c are empirically determined constants.

These two semi-empirical relationships will be incorporated with the actual average liquid velocity V_{av} in the establishment of the correlation between liquid velocity and capsule velocity.

For Capsules at Steady Motion: Under this condition, Equation (3.6) is still applicable but instead of using V_0 as in the suspension case, a relative velocity has to be used. If $(V_{av} - V_c)$ is used, then

$$C_{d_2} = (S_c - 1) \frac{2gL}{(V_{av} - V_c)^2}$$

 $C_{d_2} = C_{d_1} \left[\frac{1}{(1 - V_c / V_{a_1})^2} \right]$

 $C_{d_1} = (S_c - 1) 2gL/V_{av}^2$

 $C_{d_2} = (S_c - 1) \frac{2gL}{V_{av}^2} [\frac{1}{(1 - \frac{V_c}{V_{av}})^2}]$

or

where

(3.15)

If the annular average water velocity relative to the capsule velocity, $(V_N - V_C)$, is used then according to Equation (3.4)

$$C_{d_{3}} = (S_{c}^{-1}) \frac{2gL}{(V_{N} - V_{c})^{2}}$$

or
$$C_{d_{3}} = (S_{c}^{-1}) 2gL \left[\frac{(1 - K^{2})}{(V_{av} - V_{c})}\right]^{2}$$
$$C_{d_{3}} = C_{d_{2}}(1 - K^{2})^{2} \qquad (3.16)$$

Equations (3.15) and (3.16) are both applicable to spheres except that for spheres $C_{d_1} = (S_c - 1)\frac{4}{3} \frac{gd}{V_{-1}^2}$

3.b) <u>Momentum Balance</u>:

Again the control volume in Figure (3.1) is considered, momentum conservation requires that

$$P_{1}A_{1} + (\rho UA)_{1}U_{1} = P_{2}A_{2} + (\rho UA)_{2} + \tau_{p}\pi DL + \frac{\pi}{4}(D^{2} - d^{2})L\rho g + \frac{\pi d^{2}}{4}L\sigma g \qquad (3.17)$$

For steady-state incompressible flow in one-diameter pipe,

$$A_1 = A_2; U_1 = U_2; \rho_1 = \rho_2$$

Hence Equation (3.17) becomes

$$\Delta P_{m} = \frac{4\tau_{p}L}{D} + (d/D)^{2} L(\sigma - \rho)g + \rho Lg \qquad (3.18)$$

Now consider the same control volume with no capsule present in it but with fluid alone flowing at the same velocity, the same consideration will give

$$\Delta P_{L} = \frac{4\tau_{p} L}{D} + \rho Lg \qquad (3.19)$$
$$\Delta P_{m} - \Delta P_{L} = L(d/D)^{2}(\sigma - \rho)g + \frac{4L}{D}(\tau_{p} - \tau_{p})$$
 (3.20)

Here τ_p is not necessarily equal to τ_p since the velocity profile in the annulus is not the same as that in the free pipe, but as a first step, an approximation of $\tau_p = \tau_p$ is assumed to get the following relationship:

$$\Delta P_{\rm m} - \Delta P_{\rm L} = L(d/D)^2 (\sigma - \rho)g \qquad (3.21)$$

Because it is assumed that $\tau_p = \tau_p$, the results computed from Equation (3.21) might deviate from the experimental results. To allow for this descrepancy, an empirical correlation may have the form as follows:

$$\frac{\Delta P_m - \Delta P_L}{L(\sigma - \rho)g} = C(d/D)^P$$

or

0

$$\frac{(\Delta P_o/L)_c}{(\sigma-\rho)g} = C(K)^P \qquad (cylinder) \qquad (3.22)$$

Similar correlation can be obtained for spherical capsules i.e.

$$\Delta P_{m} - \Delta P_{L} = 2/3 \ d(d/D)^{2}(\sigma - \rho)g$$

$$\frac{\Delta P_{m} - \Delta P_{L}}{d(\sigma - \rho)g} = 2/3 \ (d/D)^{2} \qquad (3.23)$$

or
$$\frac{(\Delta P_0/d)_c}{(\sigma-\rho)g} = C^-(K)^{P^-}$$
 (sphere) (3.24)

The above pressure analysis can be applied to both cases where $V_c = 0$ or $V_c \neq 0$.

- 27

CHAPTER 4

APPARATUS AND EXPERIMENTAL PROCEDURE

<u>PART 1</u> – APPARATUS

The apparatus was specifically designed for the present study such that it satisfies the following special requirements for the study of moving capsules.

 The overall system: should be relatively simple such that it can be controlled by a single operator.

2) <u>The flow system</u>: should be sufficiently rigid to withstand impacts and vibration produced by the pump and the moving capsule, and provide a range of flow velocities from 0 to 6 m/s with sufficient pressure head for the transport of aluminum capsules of d/D up to 0.85 and L/d=14.

3) <u>Measurement systems</u>: All the measurement devices should have relatively high precision and fast response with continuous recording where necessary to give an overall accuracy of approximately 5%.

Detailed discussion of various aspects of the system are presented under separated headings as follows:

4.1 The Flow System

A schematic of the entire system is shown in Figure (4.1) with the main components shown in an insert photograph

at the left lower corner.

4.1a) <u>The Flow Path</u>: This apparatus is basically a recirculating flow system with the flow direction as shown by the arrows in Figure (4.1). The water in the reservoir is discharged to a horizontal pipe section by the centrifugal pump. Upon leaving the pump the flow is first regulated to the desired flowrate by the globe valve, and then passes by a surge tank which dampens any flow fluctuations. The flow then passes through either the 5 cm I.D. by-pass loop or continues along the horizontal line to a 9 meter long vertical section. A 1.82 meter diameter circular bend at the basement redirects the flow upward through the vertical test section back to the reservoir.

4.1b) <u>The Pipework</u>: The entire pipe loop is of 40-schedule steel pipe of 7.6 cm I.D. for the main loop and 5 cm I.D. for the by-pass loop. The steel pipe provides the necessary rigidity and strength to the system to withstand the stress created by the pump and the impact of the moving capsules. The vertical sections consisting of various lengths of pipe are assembled together with Victaulic couplings to provide smooth and flexible connections which were necessary for the alignment of the test section. Each pipe section, when passing through a floor, is supported by a pipe bracket resting on the floor, such that individual assembly or disassembly of any of these sections is permitted.

4.1c) <u>The Reservoir</u>: The reservoir is made of aluminum and has a capacity of 900 litres (dimension of .61x1.22x1.22 m). A 2.54 cm I.D. city water supply with and a drain line, both equipped with a gate value, are installed respectively on top and at the bottom of the reservoir. During a normal run these two values were frequently adjusted to maintain at constant head and temperature of the water in the reservoir.

4.1d) <u>The Pump</u>: The centrifugal pump powered by a 15 Kw and 3500 RPM electric motor can deliver a flowrate up to 30 litre/sec at 360 kPa pressure head. The corresponding maximum flow velocity and Reynolds number in the pipeline are 6.4 m/s and 5x10⁵ respectively.

(4.1e) <u>The Surge Tank</u>: The surge tank, having an effective volume of 15 litres, is fitted with two globe valves which are located in the connections to the main loop and to the compressed air supply line respectively. Fluctuations associated with the flow are damped by adjusting these two valves.

4.1f) <u>The By-Pass Loop</u>: A by-pass loop is needed because the flowmeter located at the main loop has a limited range of 12-30 litres. For a flowrate less than 12 l/s, the flow is passed through the smaller flowmeter located in the by-pass loop. Two gate valves located at the entrance to each of these loops can be adjusted to direct the flow

-

through an appropriate path in accordance with the flow range. At the entrance to the by-pass loop a fine honeycomb filter is fixed to homogenize the flow and reduce the effects of the bend.

4.1g) <u>The Test Section</u>: The 11 meters long vertical portion on the return side of the flow system, starting from the first pneumatic plunger located just after the main bend, is designated as the "Test Section". At the top of the test section, the pipe is capped, which permits the insertion and removal of a capsule. A "Tee" piece, which has a perforated sleeve in it, located just 1/2 meter below the cap allows the flow to return to the reservoir.

.

Twenty pairs of adjacent holes having pipe threads to fit 1.27 cm standard brass nipples are located at equal distance up the pipe wall on opposite sides along the test section. These are the locations of phototransistors and light sources for measuring the capsule velocities.

4.1h) <u>The Pneumatic Plungers</u>: Two pneumatically actuated plungers (see Figure (4.2) for detail construction), located at the entrance to the test section and a short distance below the outlet tee, are used to restrain the capsules. The top plunger, which was later replaced by a steel rod in .a swagelock fitting, is used for insertion or removal of capsules. The lower plunger is used for restraining the capsule at the bottom of the test section while the flowrate

or flow equilibrium is being established.

4.li). Miscellaneous: (1) Back pressure gate valve:

This is installed in the horizontal return pipe above the reservoir to regulate the flow and consequently the back pressure to the sytem and ensure that it is higher than the atmospheric pressure. A back pressure of 5 psi was usually maintained for every flowrate . . (2) <u>Pressure</u> <u>gauges</u>: Two pressure gauges, one located immediately after the pump and the other in the return pipe before the back pressure gate valve, are used for indicating the supply and the back pressure of the flow. (3) <u>Solenoid drain valve</u>: This is located at the bottom of the l.81 m-diameter circular loop for draining the pipeline.

4.2 Measurement System

The quantities to be measured in the experiments are: flow velocity, capsule velocity, pressure drop and temperature and consequently four sub-systems were designed to accommodate these measurements.

4.2a) <u>Flow measurement system</u>: It consists of two Signet MK315 paddle wheel flowsensors, a Signet MK365 digital display flowmeter and a "Rikadenki" chart recorder. The flow sensors, which are located in the by-pass loop to cover the range of 0-12 1/s and in the main loop to cover the range of 12-30 1/s, are inserted through special fittings into the pipeline with their wheels axes perpendicular to that of

The rotation of the wheels created by the flow the pipe. produces pulses or beats which are sent to the readout devices. The flowmeter has two channels each of which is pre-calibrated for a particular flowsensor. By selecting one channel at a time, the signals from the corresponding flowsensor are converted into USGPM and the result is displayed by the readout. The signals are pre-amplified into recordable voltage using a signet MK314 signal condi-Hence it is possible to obtain a continuous flow tioner. diagram for each test run by using a chart recorder. A typical flow diagram together with the pressure diagram is shown in Figure (4.5). The flowrate is determined by referring the average voltage, measured from the diagram, to the calibration curve (see Appendix [A]) for the corresponding flow range. All the flowrates which were used to calculate the average velocities (V_{av}) were determined in this way.

•

4.2b) <u>Capsule Velocity Measurement System</u>:

As mentioned in the description of the "Test Section", twenty equi-distant phototransistor-and-light-source (PL) locations are provided along the test section. This arrangement permits the measurement of the time required for a capsule to pass through an individual station or between any two stations. Hence the local velocities of the capsule along the test section can be determined on the basis of

-35

either the capsule length or distance between stations. Not all the stations were used; only even numbers as marked in Figure (4.1) from #4 to #19 were equipped with PL units.

The construction of a PL unit is shown in Figure (4.3). The phototransistor and the light source, being contained separately inside two brass nipples, are installed adjacently to one another in the holes provided in the test section. When two of these PL units are connected to a time counter as shown in Figure (4.4), a measuring circuit is formed.

With this circuit both of the transistors are able to cause a voltage change across the individual resistors by disruption of their light sources. The change of voltage can either be used to start or stop the counter.

The counter used was a Hewlett Packard 2-channel counter which had a sensitivity of 0.1 ms.

4.2c) Pressure Measurement System

The pressure drops due to the water flow and/or the capsule passage were measured by means of a diaphram type pressure transducer which was connected by using copper tubes between stations 15 and 20 (for cylinders with L/d < 14) or stations 15 and 18 (for L/D = 14). A "Rikadenki" chart recorder, also used for recording the flowrates, was used to record the pressure variation. The recorder was calibrated such that the reading from the chart was the value of the pressure in psi. A typical pressure diagram from the chart together with the flowrate diagram is shown in Figure (4.5). The pressure diagram consists of two parts: the pressure drop due to the fluid alone and that due to the capsule. When the fluid is stationary the pressure drop is zero. However when the fluid is flowing alone the total pressure drop due to pipe friction is shown by a rise in ΔP_1 which is a function of the flow velocity. Furthermore when the capsule is present in the section between the pressure taps, a corresponding pressure drop of magnitude of ΔP_0 is measured. This pressure drop is a combination of the capsule buoyant weight, capsule friction loss and the pipe frictional loss.

From the pressure diagram, the pressure drops due to the capsule or the fluid or both are able to be determined.

Figure (4.5) Flow and pressure diagram.

4.d) Temperature Measurement System:

Due to the internal friction the water temperature could rise by as much as 5° C/hr when the system was in operation. Consequently, in order to achieve isothermal water conditions in the system it was necessary to, in most cases, add water from the cold main supply and continually bleed off to the drain. Therefore by careful control of the dilution and bleed off,water isothermal conditions could be maintained. A K-type thermocouple together with a readout device was installed in the horizontal outlet pipe to indicate the water temperature. An arbitary value of 16° C was used throughout the experiments.

4.3 <u>Capsules</u>:

The following capsules were used in the experiments:

4.3a) <u>Spheres</u>: Single spheres of nylon, aluminum and steel were investigated. Their specific gravity, size together with d/D ratio are listed in Table (4.1).

Material	Specific · Gravity	Diameter	d/D		
	S	(cm)			
Nylon	1.15	4.445 + .01	.57		
Aluminium	2:7	5.08 + .01	.652		
Steel	7.82	6.35 + .01	.815		

TABLE 4.1: Specifications of Spheres

4.3b) <u>Cylinders</u>: Only nylon and aluminum cylinders were used. The investigated diameter ratio (d/D) and aspect ratio (L/d) for both materials were: 0.489, 0.652, 0.815 and 4, 7, 10, 14 respectively, and Figure (4.6) shows the type of cylinder sections that were used. For a given diameter and material the cylinder lengths were varied by adding various basic lengths.

Figure (4.6) Cylinder sections for varying the length of a cylinder.

PART 2

EXPERIMENTAL PROCEDURE

1) <u>Preparation</u>:

a) <u>The Flow System</u>: The reservoir was filled to two-thirds of its capacity with city water. Since the temperature was usually at 5 to 8° C, hot water was added to raise the temperature to about 16° C, the arbitary temperature set for these experiments. The pump was then started to circulate water in the pipeline for approximately 15 minutes to allow the system to reach thermal equilibrium. Since the water temperature rose gradually while the pump was running, both cold main water supply rate and the drainage rate from the reservoir were constantly adjusted to maintain the water in the system at 16° C. Meanwhile compressed air was supplied to the surge tank and the pneumatic plungers. The supply air pressure to the plunger was usually kept at 80 psi (552 kPa).

b) <u>The Measurement Systems</u>: All these systems were switched on sometime prior to the experimental runs to allow for warm-up. Checks were carried out to ensure that they were working properly. The time counter was connected to two consecutive PL-units stations via a control box. It was necessary to measure the local velocities of a capsule as it progressed up the test section for each flowrate, therefore each set of experimental runs for a given d/D and

L/d were done starting with the time measurement for the capsule to pass between the first two consecutive stations (i.e. #4 and #6). Then the experiment proceeded with the time between #6 and #8 and so forth.

c) <u>Insertion of the Capsule</u>: Insertion (or removal) of a capsule was done, with the pump stopped, through the top end of the test section. After removing the end cap located at the top end of the test section, the capsule to be investigated was inserted into the pipe and held up by the top plunger. After the cap was replaced, the capsule was released by withdrawing the plunger and allowed to drop to the bottom of the test section. Care was taken at this stage when using heavy capsules because system damage could be incurred in the free fall of the capsule. In order to avoid this the flow was started for a short while when the capsule nearly reached the bottom, which reduced the downward velocity of the capsule and prevented heavy impact by the capsule.

Once the capsule reached the bottom of the test section and it was held by the lower pneumatic plunger, experiment was ready to run.

Removal of the capsule was done in a reversed procedure. The capsule to be removed was pumped to the top of test section and was held by the top plunger. With the

pump stopped and the pipe cap removed, the cylindrical capsule was removed by means of a threaded rod which was inserted into the threaded hole on the top end of the cylinder. The spheres were removed by means of a string trap.

2) Testing Procedure:

While the capsule was held at the bottom of the test section, the pump was started and the flow was regulated to a desired flowrate. The flowrates used were usually in the range from 5 to 22 %/s with increments of 3.2 %/s. The appropriate flow path was selected in accordance with the flowrate. For flow less than 12 %/s, the by-pass loop was used, otherwise it was closed.

Once a flowrate was set and the flow stabilized, the capsule was released from the bottom of the test section and was allowed to pass to the top of the test section. The travelling time of the capsule, measured by the counter, between two selected stations was recorded.

When the capsule reached the top of the test section and was stopped at the outlet tee by the sudden change of flow direction, the pump was switched off and the capsule was allowed to fall back to the bottom of the test section using the previously described procedure. Once the capsule was back to position a "run" was completed.

Usually five runs were repeated, for a given capsule,

for the time measurement for a given set of stations. However for the measurement of flowrate and pressure,only approximately five data records were taken for all the stations for the given capsule and flowrate.

Once the time measurements between all the sets of stations were completed, the procedure was repeated for the same capsule at a new flowrate. Usually 5 or more different flowrates were used for each capsule.

CHAPTER 5

RESULTS, CALCULATIONS AND DATA REDUCTION

<u>Results</u>:

The entire experimental data and calculated results are presented in tabular form in Appendix (D). The graphs based on these data and results are displayed in appropriate places with a general discussion in Chapter 6.

Calculation and Data Reduction:

1. <u>The Average Water Velocity</u>, Vav:

V_{av} was calculated according to the following equation:

$$= Q(USGPM) \left[\frac{\frac{1}{7.481} \times \frac{1}{60} \times 0.0283 \text{ GPM x m}^3/\text{s}}{(0.078)^2 \pi/4 \text{ m}^2} \right]$$

$$= 0.0132 \text{ x } Q (\text{m/s}) \qquad (5.1)$$

where Q is in USGPM and was calculated from either one of the following equations which were obtained from the calibration curves for the two flowsensors (see Appendix (A) for the calibration curves). Q(USGPM) = 8+83.5 V (for $180 \pm 500 \text{ GPM}$) (5.2a)

Q(USGPM) = 3.75+86 V for 30-180 GPM) (5.2b) where V is the average voltage indicated on the

individual flowrate diagram for the period being considered.

In the experiments the water flowrate was adjusted whilst the capsule was held stationarily by the lower plunger. In most cases the flowrates remained constant regardless of whether the capsule was in motion or stationary. However for high flowrates and/or when using larger capsules, it was found that the water flowrate, measured when the capsule was moving, was larger than the stationary capsule value. This variation in flowrate for larger capsules was, expected since the system's hydraulic resistance was different thus affecting the pump output. For smaller capsules this effect was neglectable since the hydraulic resistance was not markedly changed. In order to calibrate the flow sensors, tests were carried out prior to the experiments to compare the flowrates with or without a capsule in the pipeline. It was found that, under the same valve setting, the measured water flowrate for a moving capsule was almost the same as that for no capsule present. Therefore the measured water flowrate for a moving capsule in the test section was considered to be the true flowrate and used ---when calculating the average water velocity for all the experiments.

2. The Capsule Velocity:

2.1) The Local Capsule Velocity: The velocity a

capsule had attained when passing two stations was referred to as the local capsule velocity at that pipe section between the two stations, and was calculated according to the following equation:

 $V_{c} = \frac{\text{Distance between two stations}}{(apsule passage time (Average of 5 readings))}$ $V_{c} = \frac{(n_{2}-n_{1}) \times 0.559}{t} (m/s) (5.3)$

where 0.559 m is the distance between two consecutive stations and n_1 , n_2 are the pertinent upstream and downstream station numbers. The capsule passage time used in Equation (5.3) was the average value of five measurements from five repeated test runs for the same two stations. The time measurements were taken starting from station No. 4 and up along the test section at intervals of 1.118 meters. Usually six or more of such local velocity measurements were taken to obtain the velocity distribution along the test section for a given capsule at a given average water velocity.

2.2) <u>The Average Capsule Velocity</u>, \overline{V}_{c} : A capsule would usually attain a constant velocity, after an initial acceleration, which was taken as the average capsule velocity at that particular water flowrate. Sometimes a series of runs showed an inconsistency in this velocity which was due to the fluctuation of the time measurements. In such a case, the average value of the local velocities in a pipe section,

in which the variation in the local velocities was less than $\pm 2\%$, was taken as the average capsule velocity.

3. The Pressure Gradient Across Capsule:

As mentioned in the section on "Pressure measurement system" in the previous chapter, all pressure drops were recorded in the form of pressure diagrams each of which consists of two parts: the pressure drop due to the fluid alone, and the pressure drop due to the capsule. The individual pressure gradients were hence:

ΔP ₀ /L _c	-	The	pressure	gradient	due	to	the	capsule
∆P _L /L _p	- .	The alou	pressure ne.	gradient	due	to	the	fluid

The sum of these two gradients is the total pressure gradient across the capsule, that is

 $(\Delta P/L]_{c} = (\Delta P_{o}/L_{c}) + (\Delta P_{L}/L_{p})$

where L_c and L_p are the length of the capsule and the distance between the pressure taps respectively. Two different values of L_p were used, they are:

 $L_p = 2.79 \text{ m}$ for capsules of L/d < 14

 $L_n = 1.68 \text{ m}$ for capsules of L/d = 14

As mentioned in the section on the "Average water velocity", the true water flowrate was that which was measured when a moving capsule was present. Hence the true pressure drop due to the fluid alone, ΔP_{L} was the value corresponding the true flowrate.

4. <u>Others</u>: The calculation of other variables such as d/D, L/d, ∇_c/V_{av} , Reynolds numbers etc., were in accordance with the individual definition listed in the Nomenclature. Sample Calculation:

A copy of a work sheet together with the corresponding flowrate and pressure drop diagrams is shown on Table (5.1).

The general information concerning the specific test are given below:

Material of the capsule: Aluminum

Specific gravity: S=2.7

Diameter: d=5.08 cm $d/D = \frac{5.08}{7.79} = 0.652$ Length: L=50.8 cm $L/d=\frac{50.8}{5.08} = 10$

Measurements from diagrams:

Voltage for flowrate: V = 2.65 VPressure drop due to capsule: $\Delta P_0 = 0.66 psi$ Pressure drop due to fluid: $\Delta P_L = 0.42 psi$ Calculations:

1) Local capsule velocity:

For example consider stations No. 8 - 10, the local capsule velocity in the pipe section between stations 6 and 8, according to Equation (5.3), is:

 $\lambda_{c} = \frac{(8-6)0.559}{0.8604} = 1.2994 \text{ m/s} = 4.2631 \text{ ft/sec}$ 2) <u>Average capsule velocity</u>:

By inspection all the local velocities it is found that the capsule attained a constant velocity after reaching

49(a).

•										-				
		TYPE		Cri	CYLINDER		FLOW -		2″				DONE	
		MA	MATERIAL		HINUM	I RATE		LOOP				BY		
		DI	AMETER	2	2.0*	Q .		3″				K. CHOW		
	L/d			10	(US GPM)		L00	0P 929		28				
$V_{AV} = 9.951 + 195$														
		THE COUNTED DE						VG.	Vc		PRES	SS.	TEMP.	
STAT'N		(SEC.)			READING		(SEC) FT		./SEC	(PSI.)		່ (° C)	
	1		2 ·	3	4	5								
4-6	0,88	5	0.874	1.889	0 ,870	0,880	1.8	8796	4.	1689	<i>∆</i> β_= •	42	16	
6-8	0,86	0	0.860	0.854	0.867	0,861	1.2	860	d.	261	4Po =	. 66	·····	
8-10	0,85	8	0.860	0.864	0.842	0.847	0.	854	4.	293			· 75	
10-12	0,83.	2	0.842	0.839	0,835	0.837	0.	837	4.	381	1			
12-14	1.83	4	0.844	0,837	0.842	0.838	0.	839	4.	370	Vc :	= 175	16	
14-16	0,83	3	0.839	0.835	0.838	0.837	0.	836	4	.384	(FT/	SEC)	
16-19	دد /	/	1,276	1.274	1.261	1.260	1.	مهد	4	.363	<u> </u>]		16	
							·				Rv=0.	44		
6-19	5.4	32	5.626	5.245	5.532	5.632	5	.493	4	.339			16	

DATE 5-04-79

TABLE (5.1):

...

SAMPLE

WORK SHEET

station No. 10. The differences between each velocity in the section between 10 and 19 do not exceed $\pm 2\%$. Hence the average capsule velocity is

 \overline{V}_{c} = (4.3808+4.3703+4.3839+4.3637)÷4 = 4.375 ft/sec

= 1.3335 m/s

3) The Average Water Velocity:

Since the indicated flowrate is 230 GPM, Equation (5.2a) is used with the voltage V=2.65 (volts).

 \therefore Q = 8+83.5x2.65 = 229.28 (USGPM)

From Equation (5.1)

 $V_{av} = 0.01322x229.28 = 3.032$ (m/s)

4) The Velocity Ratio:

 $\frac{\overline{V}_{c}}{V_{av}} = \frac{1.335}{3.032} = 0.4398$

5) <u>The Pressure Gradient Due to the Fluid Alone</u>: Since L/d = 10 < 14 $L_p = 2.79$ m is used

 $\therefore \Delta P_L/L_P = \frac{0.42(psi) \times 6.895 (KPa/psi)}{2.79 m} = 1.0380 KPa/m$

6) <u>The Pressure Gradient due to the Capsule Alone</u>: $L_c = 20" = 0.508 \text{ m}$ $\Delta P_o/L_c = \frac{0.66 \times 6.895}{0.508} = 8.9581(KP_a/m)$ 7) <u>The Pressure Gradient across the Capsule</u>:

 $(\Delta P/L)_{c} = (\Delta P_{o}/L_{c}) + (\Delta P_{L}/L_{p}) = 8.9581 + 1.088 = 9.9961 (KPa/m)$

CHAPTER 6 DISCUSSION

A dimensional analysis of the system showed that for a given vertical pipeline with water, the capsule to average water velocity ratio $Rv(=\frac{V_c}{V_{aV}})$ and the pressure gradient ratio R_p are each a function of four independent variables: average water velocity (or Reynold's Number), diameter ratio, capsule length/diameter ratio and capsule to water density ratio.

This chapter will be mainly concerned with the discussion of the effects of these four variables on $R_{\rm V}$ and $R_{\rm D}$ on the basis of the experimental results.

6.1 The Variation of Velocity Ratio R

6.1.1 Cylindrical Capsules

Figures (6.1) and (6.2) show plots of R_v versus V_{av} respectively for nylon and aluminum cylinders. Such plots may be regarded as characteristic curves for capsule flow since they illustrate the effects of the different independent variables on the velocity ratio over the range of water velocities. However, in order to give a more clear picture of the individual effects, representative curves with R_v plotted against the individual variables are shown on separated graphs.

6.1.1.1 The Effect of Vav on Rv

Figure (6.3) shows the representative curves of R_v versus V_{av} for the largest and the smaller capsules of the same L/d ratio. From Figures (6.1) to (6.3) the following observations were obtained:

(i) The characteristic curves are qualitively of the same general shape for both nylon and aluminum cylinders. This implies that a general correlation between R_v or V_c and the other independent variables may exist.

(ii) Each of the curves when extrapolated intersects the V_{av} axis. The intersection represents the minimum average water velocity needed to suspend the particular capsule. The value of the suspension velocity is directly proportional to the capsule's length and density but is inversely proportional to the diameter of the capsule.

(iii) Once the capsule begins to move, R_{γ} increases with increase of V_{av} . This is a result of the increase of the pressure forces on the capsule, (Cf. Equation (3.5)). It must be born in mind that the velocity ratio is based on the average capsule velocity and water velocity. Hence the curve of R_{ν} versus $V_{a\nu}$ for a given capsule represents the equilibrium state at each water velocity. At the equilibrium state the total thrust force, which is equal to the buoyed weight of the capsule, is the sum of the pressure and shear forces. The pressure force will increase with increase of

 V_{av} , so that the thrust due to the shear force-will have to decrease. This latter result can only be brought about by a decrease of the average water velocity in the annular space since the shear force is dependent on it. From Equation (3.4), which can be rewritten as:

$$R_v = V_c/V_{av} = 1 - \frac{(V_N - V_c)}{V_{av}} (1 - K^2)$$
 (6.1)

It is seen that a decrease of $(V_N - V_C)$ with an increase of V_{av} will lead to an increase of R_v , for a given capsule.

(vi) Over the entire range of V_{av} employed, R_v for the nylon cylinders reach maximum values ranging from 1.15 to 1.25, while those for alumimum cylinders never reached a value greater than unity. This is due to the effect of the density of the capsule and will be dealt in detail in the discussion of density effects.

For nylon cylinders the R_{γ} ratio tends to become constant after they have attained $R_{\gamma} > 1.0$. The reason appears to be that under this condition a capsule behaves as though it had neutral buoyancy. A neutral buoyancy capsule would be carried along the pipeline at the same velocity as that of the carrier fluid which immediately follows it. In other words the velocity of the capsule is dependent on its position with respect to the flow velocity profile or the region of the pipe cross section it occupies. Hence the maximum velocity which a capsule

•

· · ·

đ

could possibly attain is the average value of the part of the profile at which the capsule is situated. Hence, if the capsule reaches the maximum velocity, the velocity ratio is invariant with V_{av} but dependent on K only.

6.1.1.2 The Effect of L/d on R

A.

Figures (6.4) and (6.5) are the representative plots of R_v versus L/d respectively for nylon and alumimum cylinders for three K at two different V_{av} 's. Data for these curves were derived from Figures (6.1) and (6.2).

Both Figures (6.4) and (6.5) show that, when $R_{\gamma} < 1.0$, for the same material and K, the longer capsules move slower than the shorter ones at a constant $V_{a\gamma}$. However this condition is reversed when $R_{\gamma} > 1.0$. This phenomenon is also clearly shown in Figures (6.1) and (6.2), in which the curves for the longer capsules of the same K always lie below that for the shorter ones when $R_{\gamma} < 1.0$, but is reversed and lie above when $R_{\gamma} > 1.0$.

The reason for the different effects of L/d ratio on R_v at low and high V_{av} is thought to be due to the fact that eddies formed at the ends of the capsule change ends thereby changing the direction of the force arising from the eddies on the capsule. Normally eddies are formed after the trailing end of a body. However for bounded media, such as capsule-pipeline flow, this phenomenon can be reversed since the fluid in the annular space may be at a velocity greater than the body, thus producing a situation where the eddies are created at the leading face of the body. Similar situation can be happening at a capsule since the direction of the annular fluid velocity relative to the capsule $(V_N - V_C)$, or the relative velocity of V_{av} with respect to V_c , $(V_{av} - V_c)$; can be reversed. Hence if $V_c < V_{av}$ the eddies are formed on the nose, however, if $V_c > V_{av}$ they are formed at the tail. Thus the force anising from the eddies exerts a thrust force on the capsule if $V_c < V_{av}$ and a drag force if $V_c > V_{av}$. In both cases the shorter, and therefore the lighter of the capsules that were used, were more affected by this force since for a given K and V_{av} this force is constant regardless of the capsule length. Therefore at low V_{av} the shorter capsules move faster and at high V_{av} move slower than the longer ones.

The effect of increasing L/d ratio on R_v when $R_v < 1.0$ is more pronounced as V_c is decreased. This is shown in Figures (6.1) and (6.2), in which the curves for the capsules of constant K tend to be more divergent as the suspension velocity is approached. This may be explained by the fact that the eddies effect on the capsule is at its greatest at the suspension velocity because $(V_{av}-V_c)$ is then at its greatest value, causing the largest difference in R_v between the different lengths of capsules. As the capsule starts to move the value of $(V_{av}-V_c)$ decreases and so does the effect of the eddies, hence causing a smaller difference

60 ·
in R_v . This indicates a decrease in the importance of variation of the length of a long capsule of constant K as the length is increased especially when $K \ge 0.65$. This point is significant in regard to the use of long trains of capsule.

(iii) The Effect of K on R_v

Figures (6.6) and (6.7) give plots of R_v versus K for both nylon and aluminum cylinders for all L/d ratios investigated at various V_{av} .

At constant L/d and V_{av} , R_v increases with increase of K at all water velocities. The reason, which also explains the variation of suspension velocity with diameter, is that the increase of base pressure force due to the increase of base area of the capsule is larger than the corresponding increase of weight. The effect of the diameter ratio can be explained by referring Equation (3.5) which can be written, in terms of the total pressure drop ΔP across the capsule and the wall shear stress τ_c on the capsule, as

 $\Delta P \frac{\pi d^2}{4} \pm \pi dL\tau_c = (\sigma - \rho)g\frac{\pi d^2}{4}L$ or $\left[\frac{\Delta P}{(L/d)K}\right]^{\pm} \frac{4\tau_c}{K} = (\sigma - \rho)gD$ (6.2)

In which $(\sigma-\rho)gD$ is constant for a capsule of given material in a given diameter of pipe. However the pressure drop is not constant for different capsules of different

•

diameter at a constant V_{av} . In fact it increases with an increase of K and in such a way that it always produces a net increase in the pressure drag, so that the first term of Equation (6.2) always increases with increase of K. The τ_c/K term also changes with K. The change due to K, however, is insufficient to compensate for the increase of the pressure term, because the shear force is usually much smaller than the pressure force for a capsule with K approaching 1.0. Hence τ_r may decrease or increase to satisfy Equation (6.2). Since V_{av} is kept constant, the decrease or increase of $\boldsymbol{\tau}_{c}$ can only be brought about by an increase or decrease in V_c. Therefore with an increase of K, V_c has to increase for $R_v < 1.0$ and decrease for $R_v > 1.0$. Although the latter effect in the region of $R_v > 1.0$ is not obvious in the figures, the curves for smaller capsules do have a tendency to cross those of the larger ones at high V_{av} .

¥

The effect of varying K on nylon cylinders at constant L/d and V_{av} is much less than that on aluminum cylinders. This is evidently due to the lower density ratio of the nylon cylinders.

(iv) The effect of $(\frac{\sigma-\rho}{\rho})$ on R_v

The effect of increasing σ , other parameters being constant, is to decrease R_v , but the effect gradually decreases as V_{av} increases. Figure (6.8) shows data for nylon and

aluminum cylinders of K = 0.815 and L/d = 14 for various V_{av} 's. At low V_{av} , e.g. $\leq 2 \text{ m/s}$, R_v for the nylon cylinder is 2.44 times that for the aluminum cylinders, but at a higher V_{av} , e.g. $V_{av} = 4$ m/s, R, for nylon cylinder is only 1.33 times greater than that for the aluminum one. The reason for decreasing R, by increasing σ is obvious since an increase in σ , other parameters being constant, means an increase in weight of the capsule, and a heavier capsule requires a higher suspension velocity than the lighter ones In a latter section (6.2.1) we will introduce a new do. velocity term, $(V_{av} - V_o)$, which is the net increase of water velocity above the suspension velocity. It is found that R_v is directly proportional to $(V_{av} - V_o)$. Hence a heavier capsule will be subjected to a smaller value of $(V_{av} - V_0)$ than the lighter ones will, and hence having a lower R_v at a fixed V_{av}.

The phenomenon of decreasing effect of σ on R_v with an increase of V_{av} indicates that the importance of σ becomes less at high V_{av}. This point is significant in regard to the transport of high density of capsules.

6.1.2 Spherical Capsules

A dimensional analysis showed that the velocity ratio, R_v , of a single sphere being carried by water in a given pipeline is a function of three independent variables: V_{av} , K, and $(\frac{\sigma-\rho}{\rho})$. The effect of the individual variables as

.66

indicated in the experiment will now be discussed.

6.1.2.1 The effect of Vav on Rv

Figure (6.9) shows a plot of R_v versus V_{av} for single spheres of three different materials and diameter ratios. As was observed for cylindrical capsules, the curves may be considered as characteristic plots for capsule flow of single spheres.

In general R_y for any diameter spheres increases with an increase of V_{av} , the same trend as that of cylindrical capsules. It has been previously stated in connection with the cylindrical capsules that the increase of V_{av} causes the pressure force to increase in Equation (3.5), resulting in an increase of capsule velocity. The same reasoning is followed for spherical capsules because Equation (3.5) holds for any regular shape capsules in a vertical pipeline.

As was the case for cylindrical capsules, only the curves for nylon spheres reach R_v greater than unity. Aluminum and steel spheres had never reached $R_v > 1.0$ for the range of V_{av} 's.

At a V_{av} of about 2.5 m/s, $V_c > V_{av}$ for all the nylon spheres. With V_{av} greater than that, the largest diameter ratio (e.g. 0.815) nylon sphere attains a constant R_v of 1.02, but for other diameter ratios (0.652 and 0.57) R_v still increases and becomes larger than that for K = 0.815 when $V_{av} \simeq 3$ m/s. The phenomenon, that the larger capsules would eventually be overtaken by the smaller ones at high V_{av} 's, has been pointed out for the case of cylindrical capsules to be the result of increasing the diameter ratio in accordance with Equation (3.5). The reason that this phenomenon was not observed for cylindrical capsules but was so for spheres is thought to be the consequence of the difference in the capsule erd configurations. The spherical capsules have more streamlined noses than cylindrical capsules and the effects of the nose geometry are more pronounced on the R_v ratio as K approaches zero. Therefore it may be expected that the tendency for small capsules to overtake large offes would be more pronounced for spherical than cylindrical capsules. Studies of the effects of capsule and configurations have been made by Ellies (6), Round et al (10) and Lee (23). They reported that the effects of modifying the noses of capsules on R_v increased as diameter ratio K approached to zero.

Comparison of the curves for nylon capsules in Figures (6.1) through (6.9) shows that the spherical capsules have a higher R_v than that for cylinders for low V_{av} (i.e. $R_v < 1.0$) but is the reverse for high V_{av} ($R_v > 1.0$). For instance, the nylon sphere of K = 0.652 and the nylon cylinder of the same K at L/d = 4 have R_v 's of 0.86 and 0.75 respectively when $V_{av} = 1$ m/s, and R_v 's of 1.06 and 1.16 when $V_{av} = 4$ m/s. This difference is evidently due to the length or viscous effects of the capsule, since the spheres have in effect an

L/d = 1.0 and are therefore the shortest capsules that were studied. It has been pointed out in connection with the cylindrical capsules that a shorter capsule moves faster at low V_{av} 's but is slower at high V_{av} 's than the longer capsule of the same K and material at a given V_{av} . The same reasoning explains why the aluminum spheres always move faster than the aluminum cylinders for the same V_{av} .

6.1.2.2 The effect of K on R,

Figure (6.10) shows a plot of R_v versus K for nylon, aluminum and steel spheres having K's of 0.57, 0.652 and 0.815 at various V_{av} .

In general the effect of increasing K is to increase R_v at a decreasing rate for constant V_{av} . This is evidenced by the decreasing slope of each curve as V_{av} increases in the region of $R_v < 1.0$ on Figure (6.10). However, in the region of $R_v > 1.0$, an increase of K has a reverse effect on the R_v ratio. The latter phenomenon suggests the possibility of using a more streamlined nose to increase the R_v ratio for smaller diameter capsules at high V_{av} 's.

During the experiments with spheres, noise was created by the sphere violently knocking against the pipe wall as it progressed up the test section. Unfortunately, it was not possible to observe the motion of the spheres. However, it is believed that the sphere was travelling in a spiral eccentric path and colliding with the pipe wall. As V_{av} and

K were increased the noise level increased. This meant that the frequency of contact between the capsule and the pipe wall increased, which resulted in an increase of drag force on the sphere due to the erratic motion and impacts. As a result the rate of increase in R_{γ} for the larger spheres decreases with increase of $V_{a\gamma}$. This might be considered as one of the reasons why the larger spheres moved slower than the smaller ones at high $V_{a\gamma}$'s.

6.1.2.3 The effect of $\left(\frac{\sigma-\rho}{\rho}\right)$ on R_v

Figure 6.11 is a plot of R_v against the density ratio $\left(\frac{\sigma-\rho}{\rho}\right)$ for nylon, aluminum and steel spheres of the same K (i.e. 0.815) at various V_{av} 's. The effects of increasing the density ratio at any particular V_{av} , as for the case of cylindrical capsules, is to decrease R_v . The density effect is much more pronounced at low than at high V_{av} 's, the same trend as seen in the case of cylinders.

6.2 <u>Correlations for the Prediction of V</u>c

One important part of the study was to find the correlations between V_c and the pertinent parameters so that the value of V_c can be predicted for a given capsule-pipeline system. Much effort was put into this aspect and empirical correlations based on the experimental data were established. The correlations for both cylindrical and spherical capsules are presented as follows:

6.2.1 Cylinders

Graphs of V_c versus V_{av} are presented on Figures 6.12 to 6.16. The curves for each capsule is a straight line and the intersection of which with the V_{av} axis gives the suspension velocity V_{n} for the capsule. However, the most useful graphs in correlating V_{c} to V_{av} are those with V_{c} plotting against the net increase of water velocity above the suspension velocity, $(V_{av} - V_{o})$, as shown in Figures 6.17 These graphs show that: (1) The curves, for most to 6.19. of the range of V_{av} investigated, are straight lines passing through the origin; (2) Most of the data points of nylon and aluminum cylinders of the same K and L/d ratio fall on the same line. This indicates that the slope of the line is independent of capsule density; (3) The slopes of the straight lines increase with an increase of L/d and decrease with increasing K ratio. An equation for the straight lines with the slope, m, is hence obtained as:

 $V_c = m(V_{av} - V_o)$ where $m \propto (L/d)/(K)$

or $m = (L/d)^A/(K)^B$

6.3b

6.3a

By means of log-log plotting both constant A and B were found to have a value of 0.128. The Prore Equation (6.3a) becomes

$$V_{c} = \frac{(L/d)^{0.128}}{(\kappa)^{0.128}} (V_{av} - V_{o})$$

6.3c

In order to find the suspension velocity, V_o, Fquation (3.13) is used, which is

$$I_{o} = \sqrt{2gD(S_{c}-1)} (1-K^{2})(L/d)^{a}(K)^{b}$$
(3.13)

In order to find the values of a and b, the experimental values of V_0 , obtained from Figures 6.12 to 6.16 were fitted into Equation (3.13) using a mini-computer. The final equation for V_0 is found to have the following form:

$$V_{o} = \sqrt{2gD(S_{c}-1)} (1-K^{2})(L/d)^{0.37}(1-\frac{1}{S_{c}})^{0.05}$$
(6.4)

The addition of the term $(1 - \frac{1}{S_c})^{0.05}$ to Equation (6.4) is intended to take account of the surface roughness effect which was found to increase with density in the experiments. Good agreement between the experimental and the predicted values given by Equation (6.4) was found. In order to verify Equation (6.4), data from Lee's work (23) have been used. It was found that the predicted values were 15 - 20% larger than the measured values. This deviation may be due to the fact that the values of V₀ used in establishing Equation (6.4) were larger than the actual suspension velocities. Close examination of the data points presented in Figures 6.12 to 6.16 for very low V_c has revealed that the slopes of the curves are usually smaller in low V_{av} than that in medium and high V_{av}, consequently, the extrapolated values which gave the suspen-

sion velocities, were larger than the actual values.

By substituting Equation (6.4) into Equation (6.3c) and after rearranging, the following semi-empirical correlation for V_c is obtained.

82

$$V_{c} = \frac{1}{\kappa^{0.128}} \left[(L/d)^{0.128} V_{av} - \sqrt{2gD(S_{c}-1)(L/d)} (1-\kappa^{2})(1-\frac{1}{S_{c}})^{0.05} \right] (6.5)$$

Figure (6.20) shows the percentage discrepancy between the experimental values and the values predicted by Equation (6.5). Figures (6.21) to (6.23) show graphs of the experimental data together with Equation (6.5) These graphs show that Equation (6.5) is especially good in the range of medium and high V_{av} 's.

6.2.2 Spheres

The procedure employed to establish the correlation between V_c and V_{av} for spheres is similar to that used for cylinders. Again, a linear relationship between V_c and $(V_{av}-V_o)$ is obtained, (Figure 6.24), i.e.

$$V_{c} = m(V_{av} - V_{o})$$
 (6.6)

The slope m of the V_c versus (V_{av}-V_o) curves was found to obey the following relationship:

$$m = \frac{1}{\kappa^{0.34}}$$
 (6.7)

The value of the constant C in Equation (3.14) which is the equation for the suspension velocity for spheres, is found to have the value of -0.5. Equation (3.14)

Ś

then is re-written as:

$$o = \sqrt{\frac{4}{3}gD(S-1)/K} (1-K^2)$$
 (6.8)

The empirical correlation for predicting V_C for spheres was found to be

$$c = \frac{1}{\kappa^{0.34}} \left[v_{av} - \sqrt{\frac{4}{3}gD(S_c - 1)/K} (1 - \kappa^2) (1 - \frac{1}{S_c})^{0.05} \right]$$
(6.9)

It is interesting to notem the striking resemblence between Equations (6.9) and (6.5).

The values of V_c predicted by Equation (6. 9) together with the experimental data are plotted in Figure 6.25 against V_{av} , and the percentage deviation of the experimental results from Equation (6.9) is shown in Figure (6.26). Good agreement between the experimental and generated data is shown by these graphs.

6.3 <u>The Variation of Pressure Ratio, R</u>p

The pressure ratio, R_p , which is defined as the ratio of the capsule pressure gradient, $(\Delta P/L)_c$, to the pressure gradient, $(\Delta P/L)_L$, required in the free pipe for the same average velocity, is a convenient comparison of the energy consumption for the capsule flow to that for the free pipe flow of the same flow rate.

A dimensional analysis shows that R_p is a function of four independent variables: V_{av} , K, L/d and $(\sigma-p)/\rho$, which are the same variables as those used for the velocity ratio. The individual effects of these four variables on R_p are discussed in the following sections.

6.3.1 Cylindrical Capsules

The variation of R_p with V_{av} for cylinders is presented in Figure (6.27). The resulting curves may be regarded as characteristic for capsule flow since they illustrate the effects of the different independent variables on R_{p} . It is apparent that, as V_{av} increases, R_{p} decreases at a faster rate initially but tends to become constant later at high V_{av} 's for nylon cylinders, although for aluminum cylinders R_p continues to decrease at the highest V_{av} investigated. A decrease in R_p with an increase in v_{av} is to be expected since for a capsule in suspension, V_{av} is small resulting in a small ($\Delta P/L$)₁ which is much smaller than the required $(\Delta P/L)_c$ for the particular capsule. As V_{av} is increased, however, ($\Delta P/L$), increases in proportion to the applied $(\Delta P/L)_c$ thereby reducing R_p . The tendency of R_n to become constant at high V_{av} is also to be expected, because if Equation (5.4), which defines that $(\Delta P/L)_{c}$ is the sum of $(\Delta P_{0})_{1}$ and $(\Delta P/L)_{L}$, is divided by $(\Delta P/L)_{c}$, it becomes

 $R_{p} = (\Delta P_{o}/L)/(\Delta P/L)_{L} + 1 \qquad (6.10)$ Experimental results have shown that $(\Delta P_{o}/L)$ is relatively invariant with V_{av} (Figure 6.28). $(\Delta P/L)_{L}$, however, is proportional to the square of V_{av} . Hence the

FIGURE (6.28) THE VARIATION OF (AP./L) AND (A/L) WITH VAV : CYLINDERS

. -

 $\langle \rangle$

significance of $(\Delta P_0/L)/(\Delta P/L)_L$ decreases as V_{av} increases, resulting in R_p approaching a constant value.

Figure 6.27 indicates there is almost no effect of L/d ratio on R_p , and most of the data for a given diameter capsule may be correlated with a single curve irrespective of L/d. The same result is observed on a plot of R_p versus L/d (Figure 6.29), in which the curve for any given diameter capsule at any V_{av} is a horizontal line. This indicates that the end effects (if there are any) are negligibly small for the L/d range used in the experiments.

The effect of the diameter ratio, K, on $R_{\rm p}$ is shown in Figure 6.30 for various V_{av} 's. As may be expected, R_{p} increases with an increase of K at any particular V_{av} . Obviously the capsule pressure gradient $(\Delta P/L)_c$ increases as K is increased because of the increase of capsule base However, since the pressure gradient, $(\Delta P/L)_1$, area. required for the same flow rate through a free pipe is independent of K, R_n increases with an increase in K for a fixed V_{av} . The effect of K on R_{p} noticeably decreases as V_{av} is increased. For example, consider the nylon cylinders, by varying the value of K from 0.489 to 0.815 at $V_{av} = 1.0$ m/s, the variation of $R_{\rm p}$ is from 4.0 to 9.0 which represents an increase in R_p of 225 %. While at V_{av} = 5.0 m/s the increase in $R_{\rm p}$ is only 36%. The reason for the decreasing effect of increasing K on $R_{\rm p}$ as $V_{\rm av}$ increases, is again

related to the fact that the significant term $(\Delta P_0/L)(\Delta P/L)_L$ in Equation (6.10) approaches zero as $V_{av} + \infty$.

Figure 6.27 also shows the effect of density on R_p . An increase in R_p with an increase of (S_c-1) is to be expected since a denser or heavier capsule requires a larger $(\Delta P/L)_c$ at any particular V_{av} .

The effects of the four independent variables on R_p may be summarized as follows: R_p decreases with an increase in V_{av} but increases with an increase in K and (S_c-1), and there is essentially no effect of L/d on R_n .

6.3.2 <u>Spherical Capsules</u>

Since only single spheres were used in the experiments, it was virtually impossible to accurately measure $(\Delta P)_{C}$ across a sphere other than the steel ones because it was very small for nylon and aluminum spheres.

Figure 6.31 gives a plot of R_p versus V_{av} for the steel spheres for K's of 0.57, 0.652 and 0.815. From which it can be observed that R_p decreases with an increase in V_{av} and increases with increasing K, the same trend as in the case of cylindrical capsules.

6.4 <u>Correlations for the Prediction of</u> ($\Delta P/L$)_c

Due to the fact that only a limited amount of data for spherical capsules was obtained, the correlations for predicting $(\Delta P/L)_{\rm C}$ presented are only for the cylindrical capsules.

The variation of the total pressure gradient across the cylinders, $(\Delta P/L)_{c}$, with V_{av} , K and L/d is presented in Figure 6.32. It can be seen that all the curves have the same shape and that $(\Delta P/L)_{c}$ increases with V_{av} and K but is virtually independent of L/d. This implies that a single equation for correlating the data of $(\Delta P/L)_{c}$ as a function of K and V_{av} may exist.

It has been mentioned in Chapter 5 that $(\Delta P/L)_{\rm C}$ consists of two components: $(\Delta P_{\rm O}/L)$ - the increase in pressure gradient due to the presence of the capsule in the test section and $(\Delta P/L)_{\rm L}$ - the free pipe pressure gradient due to the fluid alone. That is

$$(\Delta P/L)_{c_{\pm}} = (\Delta P_{o}/L) + (\Delta P/L)_{L}$$
(5.4)

These two components have been separately plotted against V_{av} in Figure 6.28 which shows that $(\Delta P_o/L)$ is a function of K only and that $(\Delta P/L)_L$ at any particular V_{av} is the same for every capsule. Based on this fact we may treat these two pressure components separately. The compoent $(\Delta P_o/L)$ may be determined empirically, and $(\Delta P/L)_L$ can be predicted using standard procedures for pipe flow.

a) Correlation of $(\Delta P_0/L)$

In Chapter 3, an empirical correlation was presented for the prediction of the pressure gradient due to the capsule alone, of the form

$$\frac{(\Delta P_o/L)}{(\sigma-\rho)g} = CK^q$$
(3.19)

or p* = CK^q

where C and q are universal constants to be determined empirically.

In logarithm form Equation (6.11) is written as

 $ln P^* = lnC + qlnK$ (6.12)

Equation (6.11) expresses the linear relation between the pressure function P* and K, hence a straight line is obtained when P* is plotted against K on a logarithmic plot as shown in Figure (6.33) for both nylon and aluminum cylinders. Since $(\Delta P_0/L)$ is virtually invariant with V_{av} (cf Figure 6.28) a single point is obtained in the graph for a given cylinder of constant L/d and K. Figure 6.33 reveals that a single line is adequate to express Equation (6.12) and the same values of C and q are for both the nylon and aluminum cylinders.

Using linear regression the present data for cylinders were fitted with Equation (6.12) and the constant C and q were found.

The resulting fitted equation for cylinders is

 $(\Delta P_0/L) = 1.15 (K)^{1.84} (\sigma-\rho)g \qquad (6.13)$ b) Correlation of ($\Delta P/L$)

In steady incompressible pipe flow, the equation generally adopted for the calculation of the friction loss due to the pipe wall is the Darcy-Weisbach equation:

$$(\Delta P/L)_{L} = f \frac{\rho V_{av}^{2}}{2D}$$
(6.14)

where f is the friction factor of the pipe wall.

(6.11)

There are a number of empirical correlations available in the open literature for the calculation of f. Among them the one developed by Colebrook (44) for flow in commercial pipes was chosen for the present purpose, i.e.

$$\frac{1}{\sqrt{f}} = \int 0.86 \ln \left[\frac{E/D}{3.7} + \frac{2.51}{R_e\sqrt{f}}\right]$$
(6.15)

where \mathcal{E}/\mathcal{D} is the ratio of the roughness of the pipe wall to the pipe diameter. In the present experiment $\mathcal{E}/\mathcal{D} = 0.0002$ was adopted.

With f calculated from Equation (6.15), $(\Delta P/L)_L$ for a given V_{av} can be determined from Equation (6.14).

By means of Equations (6.13) and (6.14) the pressure gradient across a capsule can be predicted.

A complete calculation of $(\Delta P/L)_{\rm C}$ by using Equations (6.13) and (6.14) together with the experimental results is listed in Appendix (D). A comparison of the results indicates that the majority of the calculated values of $(\Delta P/L)_{\rm C}$ do not deviate from the experimental results more than $\frac{1}{5}$ %.

Lastly the percentage deviation of the experimental results from Equation (6.13) for the cylinders is shown in Figure 6.34 which indicates that the majority of the data are within the range of $\frac{1}{-}5\%$ of the fitted equation and that the chosen pressure function is less accurate as K decreases.

6.5 Energy Requirements

The energy consumption for capsule transport is given by the relation

$$E = (\Delta P/L)_{c} Q_{w}$$
 (6.16)

where E is in kilowatt per meter (KW/m), $(\Delta P/L)_c$ and Q_w are in KN/m³ and m³/s respectively.

The unit energy requirement based on the volumetric rate of capsule is

$$E/\Psi = (\Delta P/L)_{c} (\frac{D}{d})^{2} (\frac{V_{av}}{V_{c}}) \frac{KW/m}{m^{3}/s}$$
(6.17)

The unit energy requirement based on the mass rate of the capsule is

$$\underline{P} = E/\dot{m} = (\Delta P/L)_{c} \left(\frac{D}{d}\right)^{2} \left(\frac{V_{av}}{V_{c}}\right)^{\frac{1}{\sigma}} \frac{KW/m}{kg/s}$$
(6.18)

Figure 6.35 presents a graph of <u>P</u> versus V_{av} to show the variation of <u>P</u> with V_{av} , K and L/d for nylon cylinders, in which for clearity, only the curves for L/d = 7 are shown. The curves show that <u>P</u> first decreases to a minimum at values of V_{av} for which R_v is unity and then increases with increasing V_{av} . The reason for this behaviour is that at low V_{av} the ratio $(\frac{Vav}{V_c}) \rightarrow \infty$; V_c being very small. However a finite and relatively large $(\Delta P/L)_c$ is required even at very low V_{av} for any cylindrical capsules, consequently a very high value of <u>P</u> results under this condition. As V_{av} increases, the ratio $(\frac{\Delta P}{V_c})$ decreases at a faster rate than the increase in $(\Delta P/L)_c$ when $R_v < 1.0$ (cf Figures

6.1, 2, and 32), therefore, the required <u>P</u> decreases with increaase of V_{av}_{V} in this velocity range. On the other hand, when $R_{V} > 1.0$, $\frac{V_{c}}{V_{av}}$ tends to become constant so does the ratio of (V_{av}/V_{c}) . However $(\Delta P/L)_{c}$ continuously increases as V_{av} increases, thereby an increasing <u>P</u> results. Figure 6.36 is a similar plot of <u>P</u> versus V_{av} for aluminum cylinders. Since none of the aluminum cylinders ever reached the condition for $R_{V} > 1.0$, <u>P</u> always decreases with increasing V_{av} for these cylinders.

The effect of L/d on <u>P</u> is also shown in Figure 6.35 and 6.36. Figure 6.35 shows that as L/d is increased <u>P</u> increases when $R_v < 1.0$, but it is the reverse when $R_v > 1.0$, i.e. <u>P</u> decreases. The reason for such behaviour is due to the fact that $(\Delta P/L)_c$ is constant for constant K capsules, but the ratio $(\frac{Vav}{V_c})$ for a longer capsule is lower when $R_v > 1.0$ and is higher when $R_v < 1.0$ than that for the shorter ones of the same K and material, (cf section (6.1.1.2)).

Both Figures 6.35 and 6.36 also show the effects of K on <u>P</u>. In general <u>P</u> decreases as K is increased. The reasons for this are obvious if we refer to Equation (6.18). As K increases, the slight increase in $(\Delta P/L)_c$ is offset by a decrease in $(\frac{V_{av}}{V_c})$ and (D/d) itself. Thus the energy requirements per unit capsule discharge may be minimized by transporting a capsule of nearly the same diameter as the pipeline. Practically, of course, physical considerations such as the maneuverability of the capsule through the bends in the pipeline will limit the capsule diameter.

As may be expected a heavier capsule requires more \underline{P} than the lighter ones, since $(\Delta P/L)_{C}$ increases as the capsule weight increases.

To conclude this section the effects of the various variables on <u>P</u> may be summarized as: when $R_v < 1.0$, <u>P</u> decreases with increasing V_{av} and increases with L/d ratio; when $R_v > 1.0$, <u>P</u> increases with V_{av} and decreases with increasing L/d; and the effect of increasing K is always to decrease <u>P</u> at any V_{av} .

CHAPTER 7

Ń

CONCLUSIONS

On the basis of the analyses and the experimental results presented in this thesis, the following conclusions can be made:

103

(1) For both of the cylindrical and spherical <u>capsules</u> hydrodynamically driven in a vertical pipeline: (a) The velocity ratio R_v is dependent upon four independent variables: V_{av} (or Re_D), L/d, K and (S_c-1) ;

(b) R_v increases as V_{av} increases and the rate of increase in R_v is large at low V_{av} but is small at high V_{av} 's. Only nylon capsules ($S_c = 1.15$) were observed to reach the state of $R_v > 1.0$. Also when $R_v > 1.0$, R_v tends to become constant, hence increasing V_{av} in this velocity range has virtually no effect on R_v .

(c) The effect of K on R_v is to increase R_v for a given capsule of constant L/d and σ at a fixed V_{av} . But when $R_v > 1.0$, the smaller K capsules tend to have a higher V_c than the larger K ones of the same L/d and σ . This phenomenor is more pronounced for spheres than for cylinders with blunt ends, and therefore suggests the effect of the capsule end configuration on R_v and the possible increase of R_v for smaller K capsules by using capsules with streamlined noses, at high V_{av} 's. (d) An increase of (S_c-1) for a capsule of constant K and L/d always decreases the R_v ratio at a decreasing rate with increasing V_{av} .

(e) The steady-state V_c at any given V_{av} can be predicted by the following semi-empirical formulas: For cylinders:

$$V_{c} = \frac{1}{\kappa^{0.128}} \left[V_{av} (L/d)^{0.128} - \sqrt{2gD(S_{c}-1)(L/d)} (1-\kappa^{2})(1-\frac{1}{S_{c}})^{0.05} \right] \quad (6.5)$$

For spheres:

$$V_{c} = \frac{1}{\kappa^{0.34}} \left[V_{av} - \sqrt{\frac{4}{3}} gD(S_{c} - 1) / K(1 - \kappa^{2}) (1 - \frac{1}{S_{c}})^{0.05} \right]$$
(6.9)

Both of which are found to be especially good for the median and high $R_{\rm v}$ ranges.

(f) The pressure gradient ratio R_p , is a function of four independent variables: V_{av} (or Re_D), K, L/d and (S_c-1) . The effects of these four variables on R_p are: R_p decreases with an increase in V_{av} , but increases with increasing K and (S_c-1) , and there is essentially no effect of L/d on R_p .

(2) For the cylindrical capsules:

(a) For a cylinder of the same σ and K at a constant V_{av} , R_v decreases with increase in L/d when $R_v < 1.0$, but increases with increase in L/d when $R_v > 1.0$. The effect of varying L/d on R_v decreases as V_{av} is increased. Furthermore due to the fact that the spheres have in effect a L/d = 1.0 and therefore are the shortest capsules that were studied, the spheres have a higher R_v than the cylinders of the same K and σ when $R_v < 1.0$, and a lower value when $R_v > 1.0$. (b) The total pressure gradient ($\Delta P/L$)_c associated with a cylinder can be expressed by the equation of

 $(\Delta \dot{P}/L)_{c} = (\Delta P_{o}/L) + (\Delta P/L)_{L}$

The component $(\Delta P_0/L)$, which is the increase of the pressure gradient due to the presence of the capsule, can be predicted by the following semi-empirical formula

$$(\Delta P_{o}/L) = 1.15(k)^{1.84} (\sigma - \rho)g$$
 (6.13)

The component $(\Delta P/L)_L$, which is the free pipe pressure gradient due to the fluid alone, can be calculated by the Darcy-Weisbach equation

$$(\Delta P/L)_{L} = f \frac{\rho V_{av}^{2}}{D}$$
(6.14)

where f can be determined by using standard procedures for pipe flow.

 $(\Delta P/L)_{\rm C}$ for a given cylinder at any V_{av} can be predicted by means of Equations (6.13) and (6.14) with a precision of better than $\pm 5\%$.

(d) The unit energy requirements based on the mass flow rate of a cylinder, <u>P</u>, is a function of four independent variables, and their individual effects on <u>P</u> are: When $R_v < 1.0 \ \underline{P}$ decreases with increasing V_{av} and increases with increasing L/d; When $R_v > 1.0 \ \underline{P}$ increases with increasing V_{av} and decreases with increasing L/d; and the effect of increasing K or decreasing σ is always to decrease <u>P</u> at any V_{av} . (3) Finally, in order to obtain universal correlations of the flow of capsule in a vertical pipeline, it is apparent that there is a need for more research on spherical and irregular geometry capsules as well as on the effects of the physical properties of the carrier fluid.

APPENDIX A

ERROR ANALYSIS

Listed in Table (A-1) are the estimates of relative uncertainty of the primary measurements made in the present work. They include factors such as instrument error, calibration error, reading error and manufacture's quotations etc.

By using the "most probable" method, the relative errbr of each of the important variables used in this study are determined as follows:

(1) Error in V_{av}

For a given variable M, which is a function of x, y..., the relative error in M may be expressed by the equation

$$\frac{dM}{M} = \left\{ \frac{1}{M^2} \left[\left(\frac{\delta M}{\delta x} dx \right)^2 + \left(\frac{\delta M}{\delta y} dy \right)^2 + \ldots \right] \right\}^{1/2}$$
or $E_M = \left[(E_X)^2 + (E_Y)^2 + \ldots \right]^{1/2}$ (A-1)
where Ex, Ey ... are the relative uncertainty in x, y,...
Since V_{av} is calculated from
 $V_{av} = \frac{4Q}{\pi D^2} = \frac{CQ}{D^2}$ where Q is the flowrate
 $\therefore \frac{dM}{M} = \left\{ \left(\frac{dQ}{Q} \right)^2 + \left(2 \frac{dD}{D} \right)^2 \right\}^{1/2}$
Hence, from Table (A-1), the relative error in V_{av} is
 $E_{V_{av}} = \left[(E_Q)^2 + (2E_D)^2 \right]^{1/2} = \left[4^2 + (2x1)^2 \right]^{1/2} \neq 4.5\%$

TABLE (A-1)

Uncertainty estimates in the measured primary quantities.

· · · · · · · · · · · · · · · · · · ·		and the second se	
	DESCRIPTION	SYMBOL	UNCERTAINTY ± %
	Pipe inside diameter	D	· 1.0
	Capsule diameter	d	1.0
	Length between pressure taps	Lt	1.0
	Length between PL units	L _D	1.0
	Length of capsules.	L _c	1.0
	Flow rate measurement	Q	4.0
•	Pressure drop measurements	ΔP	6.0
		' ΔΡ.	4.0
	Capsule passage time measurement	t	3.0
	Capsule density	σ	1.0
(جمل)	Water temperature	Т	6.0
		1	

(2) Error in
$$V_c$$

Since $V_c = L_p/t$
The relative error in V_c is
 $E_{V_c} = [(E_{L_p})^2 + (E_t)^2]^{1/2} = [(0.5)^2 + (3)^2]^{1/2} = \frac{1}{3.0\%}$
(3) Error in R_V
Since $R_V = \frac{V_c}{V_{aV}}$
The relative error in R_V is
 $E_{RV} = [(E_{V_c})^2 + (E_{V_{aV}})^2]^{1/2} = [(3)^2 + (4.5)^2]^{1/2} = \frac{1}{5.4\%}$
(4) Error in $(\Delta P_0/L)$
Since $(\Delta P_0/L) = \frac{P_0}{L_c}$
 $\therefore E(\Delta P_0/L) = [(E_{\Delta P_0})^2 + (E_{L_c})^2]^{1/2} = [6^2 + 1]^{1/2} = \frac{1}{6.1\%}$
(5) Error in $(\Delta P/L)_L$
Since $(\Delta P/L)_L = \frac{\Delta P_L}{L_t}$
 $\therefore E(\Delta P/L)_L = [(E_{\Delta P_L})^2 + (E_{L_t})^2]^{1/2} = [(4)^2 + 1]^{1/2} = \frac{1}{4.1\%}$
(6) Error in $(\Delta P/L)_c$
Since $(\Delta P/L)_c = (\Delta P_0/L) + (\Delta P/L)_L$
The relative error in $(\Delta P/L)_c$ is
 $E_{(\Delta P/L)_c} = \frac{d(\Delta P/L)_c}{(\Delta P/L)_c} = \{[\frac{d(\Delta P/L)_c}{(\Delta P/L)_c}]^2 + [\frac{d(\Delta P/L)_L}{(\Delta P/L)_L}]^2\}$

Since the uncertainty in ΔP_0 is larger than that in P_L , it is expected that the maximum relative error in $(\Delta P/L)_C$ would occur at a capsule for which $(\Delta P_0/L)$ is the maximum and $(\Delta P/L)_L$ is the minimum. The capsule which is under such condition is an aluminum cylinder of K = .815 and L/d = 4 at $V_{av} = 1.074$ m/s. For this capsule the pressure components are: $(\Delta P_0/L) = 13.027$ and $(\Delta P/L)_L = 0.1604$ KPa.

Hence the maximum relative error in $(\Delta P/L)_c$ is:

 $E(\Delta P/L)_{c} = \left[\left[\frac{0.06 \times 13.027}{13.187} \right]^{2} + \left[\frac{0.04 \times 0.1604}{13.187} \right]^{2} \right]^{2} \times 100 = \pm 5.9\%$ (7) Error in K and L/d Since K = d/D and L/d = $\frac{L}{d}$

 $\therefore E_{(K)} = [(E_d)^2 + (E_D)^2]^{1/2} = (1+1)^{1/2} \approx \pm 1.4\%$ and $E_{(L/d)} = [(E_L)^2 + (E_d)^2]^{1/2} = (1+1)^{1/2} \approx \pm 1.4\%$

APPENDIX B

CALIBRATION CURVES

(B-1) Calibration of Flowmeter

There were two flow-sensors used for the measurement of the water flowrate in the pipeline. The one located in the 5 cm by-pass loop is good for the range of 0-12 litres/s, (0-180 USGPM) and the other one located in the main line is good for 12-30 litres/s (180-500 USGPM).

Prior to the experiment, these two flow sensors were calibrated by comparing the indicated GPM by the readout device to those obtained by the pitot-tube measurement.

The results are listed in Table (B-1) and the calibration curves are presented in Figures (B-1) and (B-2). These curves show excellent agreement between the indicated and the calculated (true) GPM.

Since the flowrate measurements were recorded by a recorder, a calibration curve with indicated GPM against voltage output from the recorder was needed. Figure (B-3) shows such a curve, and the data of which are listed in Table (B-2).

The two equations, established from the data on Figure (B-3), which represent the two calibration curves of the flowmeters were used for the calculation of the flowrates throughout the experiments.

T	a	b	le	(B-1)
			_	

Calibration data for MK 315 flowsensors

·	·		· · · · · · · · · · · · · · · · · · ·				
.F	LO-SENSOR #	1	FLO	-SENSOR #	2		
(By-pass loo	p)	(main line)				
INDICATED GPM	MANOMETER READING	CALCULATED*	INDICATED GPM	MANOMETER	CALCULATED*		
	∆h(cm)			∆h(cm)	u. m		
			•				
47	0.25	48	148 -	2.2	143		
59	.0.4	61	163	2.7	158		
97	.1.0	96	176	3.2	172		
122 [·]	1.6	122	181	3.5	180		
142	2.2	143 _,	193	4.1	195		
159	2.7	158	.224	5.4	- 224		
174	3.2	172	278	8.4	279		
184	3.5	180	305	10.2	308		
201	4.1	195	329	11.8	331 -		
			367	14.7	369		
	•		385	15.9	384		
	Ņ		423	19.5	425		
			430	19.6	426 _.		
	۰.	•					

ΰ

* Calculated GPM = 96.284 $\sqrt{\Delta h(cm)}$

۶.

Table (B-2)

Calibration data for flowsensor with recorder

FLO-S	SENSOR #1	FL	_O-SENSOR #2
VOLTS	CORRESPONDING USGPM	VOLTS	CORRESPONDING
0.40	36 ,	2.05	182
0.63	58	2,98	257
0.88	84	3.15	272
1.18	108	3.50	300
1.46	129	3.70	321
1.82	160	3.90	333
2.05	186	4.20	359
		4.60	393
	v	4.87	409

•

.

(B-2) Calibration of Pressure Transducer

The calibration of the pressure transducer with a -5 psiD diaphram was done using a dead-weight tester with a set-up as shown in Figure (B-4).

FIG.(B.4): CALIBRATION OF PRESS. TRANSDUCER

By varying the pressure inside the tester, a corresponding variation of the manometer fluid column and a direct pressure reading from the pressure transducer were obtained. The true pressures calculated from Equation (B-1) were plotted against the transducer reading to obtain the calibration curve of the transducer with the particular diaphram (Figure (B-5)).

.

.

t

APPENDIX C

The Velocity Profile of the Test Section

One important condition under which the experiments were performed was that the free pipe flow in the test section must be fully developed and symmetric. In order to confirm this, the free pipe flow velocity profiles at the*pL*unit stations #6 and #19 along the test section were determined by using the pitot-tube traverse method.

The measured results are listed in Table (C-1) and .

Table (C-l)

Cross-sectional Velocity Distribution of the Test Section

	STATIO	N #6		STATION #19				
r/R	Pitot-tube Measurement (cm)	.u (m/s)	u umax	r/R	Pitot-tube Measurement (cm)	u (m/s)	u umax	
.83	6.7	4.072	.81	.83	7	4.16	.84	
.`67	8.3	4.53	<u>.9</u> 1	.67	7.8	4.39	.88	
.50	8.9	4.69	.94	.50	9	4.72	.95	
.33	9.3	4.80	. 96	.33	9.5	4.85	.97	
.17	9.7	4.90	.98	.17	9.8	4.92	.99	
0	10.1	5.00	1.00	0	10.0	4.97	1.00	
17	9.9	4.95	.99	17	9.9	4.95	.99	
33	9.5	4.85	.97	33	9.2	4.77	.96	
50	9.2	4.77	.95	50	8.9	4.69	.94	
67	· * 8.6	4.61	.92	67	7.8	4.39	.88	
83	7.2	4.22	.84	83	6.8	4.10	.82	

APPENDIX D

DATA TABLES

LIST OF TABLES

TABLE

PAGE

(D. 1)	EXPERIMENTAL DATA - NYLON CYLINDERS K= 489	121
(D. 2)	EXPERIMENTAL DATA - NYLON CYLINDERS K=. 652	122
(D. 3)	EXPERIMENTAL DATA - NYLON CYLINDERS K= 815	123
(D. 4)	EXPERIMENTAL DATA - ALUMINUM CYLINDERS K= 489	124
(D. 5)	EXPERIMENTAL DATA - ALUMINUM CYLINDERS K=. 652	125
(D. 6) 🐪	EXPERIMENTAL DATA - ALUMINUM CYLINDERS K=. 815	126
(D. 7)	PREDICTION OF VC (EQN. 6.5)- NYLON CYLINDERS K=. 489	127
(D. 8)	PREDICTION OF VC (EQN. 6, 5)- NYLON CYLINDERS K=, 652	128
(D. 9)	PREDICTION OF VC (EQN. 6. 5)- NYLON CYLINDERS K=. 815	129
(D. 10)	PREDICTION OF VC (EQN. 6, 5)- ALUNINUM CYLINDERS K=. 489	130
(D. 11)	PREDICTION OF VC (EQN. 6.5)- ALUMINUM CYLINDERS K=.652	131
(D. 12)	PREDICTION OF VC (EQN. 6, 5)- ALUMINUM CYLINDERS K=. 815	132
(D. 13)	PREDICTION OF VC (EQN. 6, 9)- NYLON SPHERES	133
(D. 14)	PREDICTION OF VC (EQN. 6.9)- ALUMINUM SPHERES	134
(D. <u>1</u> 5)	PREDICTION OF VC (EQN. 6, 9)- STEEL SPHERES	135
(D. 16)	PREDICTION OF (DP/L)C (EQNS. 6, 13 & 6, 14)	
	NYLON CYLINDERS K=. 489	136
(D. 17)	PREDICTION 0F (DP/L)C (EQNS. 6.13 & 6.14)	
	NYLON CYLINDERS K=. 652	137
(D. <u>1</u> 8)	PREDICTION 0F (DP/L)C (EQNS. 5.13 & 6.14)	
	NYLON CYLINDERS K=. 815	138
(D. 19)	PREDICTION OF (DP/L)C (EQNS. 6. 13 & 6. 14)	
	ALUMINUM CYLINDERS K=. 489	139
(D. 20)	PREDICTION OF (DP/L)C (EQNS. 6. 13 & 6. 14)	
	ALUNINUM CYLINDERS K=. 652	140
(D. 21)	FREDICTION OF (DP/L)C (EQNS. 6, 13 & 6, 14)	
	RLUMINUM CYLINDERS K=. 815	141
(D. 22)	PRESS. RATIO & UNIT ENERGY - NYLON CYLINDERS K=. 489	142
(0, 23)	PRESS. RHIIU & UNIT ENERGY - NYLUN CYLINDERS K= 652	143
(D. 24)	PRESS. KHIIU & UNII ENERGY - NYLUN CYLINDERS K#. 815	144
(D. 25)	PRESS, KHITU & UNIT ENERGY - HLUMINUM UYLINDERS K= 489	145
(D. 26)	FRESS, KHITU & UNIT ENERGY - HLUMINUM CYLINDERS K= 652	146
(0, 2i)	- PRESS. RHITU & UNIT ENERGY - HEUMINUM CYEINDERS K= 315	- 147

ŧ

(D. 1) EXPERIMENTAL DATA - NYLON CYLINDERS

K= . 489 S= 1. 15

VAV	, VC	RY	DPO	DPL	(DPO/L)	(DP/L)L	RE(D)
(M/S)	(M/S)	(-)	(KPA)	(KPA)	(KPA/M)	(KPA/M)	(-)
<l d="4</td"><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td></l>)						
1, 858 1, 728 2, 483 3, 886 3, 696 4, 386 5, 877	. 769 1. 636 2. 51 3. 34 4. 196 5. 03 5. 892	7268 9468 1. 0445 1. 1111 1. 1353 1. 1468 1. 1605	0689 0689 0689 0689 0689 0689 0689 0689	4138 9662 1. 8273 2. 758 4. 0681 5. 7221 7. 5857	4523 4523 4523 4523 4523 4523 4523 4523	1481 3458 654 9871 1, 456 2, 648 2, 715	73700 120300 167400 209400 257400 305500 353600
(L/D= 7	7)					•	
1. 045 1. 722 2. 37 2. 95 3. 696 4. 303 4. 988	605 1.454 2.4 3.234 4.23 5.063 5.919	5789 8444 1.0127 1.0963 1.1445 1.1766 1.1866	131 131 131 131 131 131 131 131	. 4345 . 9653 1. 7926 2. 5512 4. 1379 5. 7277 7. 5857	. 4911 . 4911 . 4911 . 4911 . 4911 . 4911 . 4911	. 1555 . 3455 . 6416 . 9131 1. 481 2. 05 2. 715	72800 119900 165100 205500 257400 299700 347400
KLZD= 1	10)						
1, 898 1, 711 2, 371 3, 833 3, 696 4, 386 5, 82	519 1, 407 2, 366 3, 347 4, 29 5, 288 6, 232	4727 8223 9979 1, 1035 1, 1607 1, 2057 1, 2414	1723 1723 1723 1723 1723 1723 1723 1723	. 4138 9307 1. 7583 2. 6889 4. 0681 5. 1717 7. 2923	. 4523 . 4523 . 4523 . 4523 . 4523 . 4523 . 4523 . 4523	1481 3331 6293 9624 1.456 1.851 2.61	76500 119200 165100 211200 257400 305500 349600
<l d=":</td"><td>14)</td><td></td><td></td><td></td><td></td><td></td><td></td></l>	14)						
1.098 1.728 2.371 3.006 3.694 4.414 5.022	. 347 1. 316 2. 34 3. 33 4. 325 5. 439 6. 363	. 316 .7616 .9869 1. 1078 1. 1708 1. 2322 1. 267	. 224 . 224 . 224 . 224 . 224 . 224 . 224 . 224	. 4599 . 9771 1. 7815 2. 9086 4. 1379 5. 9764 7. 8159	42 42 42 42 42 42 42 42	. 1646 . 3497 . 6376 1. 041 1. 481 2. 139 2. 7974	76500 120300 165100 209400 257300 307400 342800
DPO & DPL & RE(D):	(DP0/L): (DP/L)L: PREE PIN	PRESSURE PRESSURE PE REYNOL	: DROP & F : DROP & F DS NO. M=	PRESSURE (PRESSURE (METER S=	GRADIENT D GPADIENT D SECOND F	Due to cap Due to wat Pa=pascal	PSULE TER

xd. 2> EXPERIMENTAL DATA - NYLON CYLINDERS

K= . 652 S= 1. 15

 VRV	VC		DP0	DPL	(DP0/L)	(DP/L)L	RE(D)
(M/S),	(M/S)	(-)	(KPR)	(KPA)	(KPA/M)	(KPR/M)	(-)
<l ⊅="4</td"><td>Э</td><td></td><td></td><td></td><td></td><td></td><td></td></l>	Э						
. 619 1. 074 1. 733 2. 315 3. 066 3. 696 4. 392 5. 076	. 345 . 824 1. 694 2. 582 3. 424 4. 252 5. 136 5. 995	5574 7672 9775 1.0808 1.1168 1.1504 1.1504 1.1694 1.181	1585 1585 1585 1585 1654 1654 1654 1654	1724 4688 1. 0343 1. 7926 2. 9644 4. 2748 5. 5154 7. 5857	7803 7803 7803 7803 8142 8142 8142 8142 8142	. 0617 . 1678 . 3702 . 6416 1. 061 1. 53 1. 974 2. 715	43100 74800 120700 161200 213500 257400 305900 353500
(L/D= 7	~)						
. 676 1. 045 1. 768 2. 371 3. 006 3. 641 4. 331	. 243 . 729 1. 654 2. 49 3. 385 4. 22 5. 16	. 3595 . 6976 . 9355 1. 0502 1. 1261 1. 159 1. 1914	2757 2757 2757 2757 2964 2964 2964	1724 4138 1. 0894 1. 7926 2. 8946 4. 0681 5. 1717	7754 7754 7754 7754 8336 8336 8336	0617 1481 3899 6416 1.036 1.456 1.851	47108 72808 123100 165100 209408 253600 301600
(L/D=)	10)						•
1, 045 1, 733 2, 427 3, 033 3, 706 4, 386	. 664 1. 603 2. 53 3. 412 4. 36 5, 34	6354 925 1. 0424 1. 125 1. 1765 1. 2175	3791 3791 3791 3791 3929 3929	. 3791 9653 1. 7236 2. 6199 3. 9982 5. 3785	. 7464 . 7464 . 7464 . 7464 . 7464 . 7735 . 7735	1357 3455 6169 9377 1.431 1.925	72800 120700 169000 211200 258100 305500
(L/D= :	14)	-					
1. 074 1. 711 2. 37 3. 054 3. 752 4. 362	587 1.52 2.466 3.458 4.453 5.401	5466 8884 1. 0405 1. 1323 1. 1368 1. 2382	5169 5169 5169 5169 5169 5169 5514	5172 1. 0919 1. 7242 2. 875 4. 0234 5. 8613	727 727 727 727 727 727 727	. 1851 . 3908 . 6171 1. 829 1. 44 2. 898	74800 119200 165100 212700 261300 303800
DF0 &	(DF0/L):	PRESSURE	DROP &	PRESSURE	GRADIENT	DUE TO CAI	PSULE

DPU & (DPO/L): PRESSURE DROP & PRESSURE GRADIENT DUE TO CHPSULE DPL & (DP/L)L: PRESSURE DROP & PRESSURE GPADIENT DUE TO WATER RE(D): PREE PIPE REYNOLDS NO. M=METER S=SECOND PR=PASCAL K= .815 S= 1.15

VRV.	VC.	· RY	DPO.	DPL	(DPO/L)	(DP/L)L	RE(D)
(M/S)	(M/S)	(-)	(KPR)	(KPA)	(KPA/M)	(KPA/M)	(-)
(1.2D=	4)						· · · · · · · · · · · · · · · · · · ·
	77		•			•	
. 397	. 208	. 5239	. 2931	0861	1, 154	. 0308	27680
. 661	522	. 7897	. 2931	. 2414	1.154	. 0864	46000
1.045	994	. 9512	. 2931	. 4482	1. 154	. 1604	72800
1, 711	i. 761	1. 0292	. 2931	. 9824	1. 154	. 3516	119200
2, 453	2, 685	1. 0946	. 2931	1, 9857	1, 154	. 7107	178880
3, 143	3, 527	1. 1222	. 2931	3, 0343	1, 154	1.086	218900
3, 834	4. 433	1, 1562	. 3101	4, 3447	1. 221	1, 555	267080
(L/D=	7)						2 × .
419	16	3819	5169	8897	1 167	A721	29200
675	472	6993	5169	1724	1, 163	9617	47000
1.044	954	9138	5169	4482	1. 163	1684	72700
1.651	1.782	1.0309	5031	97.97	1 132	2221	115888
2, 392	2.613	1.0924	5031	1.7926	1. 132	6416	166600
3. 143	3. 664	1. 1658	5169	3. 0008	1, 163	1. 874	218900
3. 806	4 492	1. 1882	5169	4. 4816	1, 163	1.604	265100
(L∕D=	10)			Ň	•		
662	45	6891	7278	1971	1.1.1	9691	46100
1 079	9.43 9.43	8691	7278	2998	न नच	1421	72400
1 688	1 796	1 964	7238	. 2520	1 14	3146	117600
2.508	2 853	1 1376	6901	1 7937	1 087	642	174700
3 171	3 777	1 1911	7409	2 8946	1 167	1 836	220800
3.861	4, 793	1. 2414	7409	4. 4117	1. 167	1.579	268900
(L/D=	14)						
661	407	6154	9994	1724	4 424	061 7	45100
1 079	יישיד . סַסַ	8566		2725	1 124	1777	72499
1 669	1 791	1 9677	0257	2105	1 985	- 1001 -	116200
2 520	2 657	1 1774	0702	1 9922	1 047	. 3271 2760	174700
2,000	7 200	1 2075	9657	7 1044	1 096	. 0100 4 444	220200
2 972	J 627	1 2579	1 0777	5 A500	1 147	4 044	220000
2, 212	7, 20	1. EU20	1. 0221	9.0022	1. 103	7, 977	210000
	(000 //)						
DPU &	(DEO/L):	LKE220KE	DKOL 8	PRESSURE	GRHDIENI	NOF IN CH	SULE

DPO & (DPO/L): PRESSURE DROP & PRESSURE GRADIENT DUE TO CAPSULE DPL & (DP/L)L: PRESSURE DROP & PRESSURE GPADIENT DUE TO WATER RE(D): PREE PIPE REYNOLDS NO. M=METER S=SECOND PA=PASCAL <u>]</u>23

A.

(D. 4) EXPERIMENTAL DATA - ALUMINUM CYLINDERS

K= . 489 S= 2.7

VAV	VC	RV	DPO	DPL	(DPO/L)	(DP/L)L	RE(D)
(M/S)	(M/S)	(-)	(KPA)	(KPA)	(KPA/M)	(KPR/M)	<-> *
(L/D= -	4)						
2. 381 3. 054 3. 696 4. 362 5. 078	471 1. 282 2. 102 3. 135 4. 108	. 1978 . 4198 . 5687 . 7187 . 809	. 7926 . 7926 . 7926 . 7926 . 7926 . 7926	1. 7915 2. 8946 4. 0681 5. 5154 7. 446	5, 202 5, 202 5, 202 5, 202 5, 202 5, 202	. 6412 1. 036 1. 456 1. 974 2. 665	165800 212700 257400 303800 353700
(L/D=	77			u.	. ·		
2. 778 3. 042 3. 347 3. 704 4. 258 4. 696	. 447 . 796 1. 171 1. 664 2. 451 3. 087	, 1609 2617 . 3499 . 4492 . 5756 . 6574	1. 3095 1. 3442 1. 3783 1. 3783 1. 3783 1. 3783 1. 3783	2. 3377 2. 9309 3. 7915 4. 2748 5. 5601 6. 7559	4, 911 5, 041 5, 169 5, 169 5, 169 5, 169	. 8367 1. 049 1. 357 1. 53 1. 99 2. 418	193500 211900 233100 258000 296600 327100
(L∕D≑	18)			•		-	
2. 978 3. 641 4. 331 4. 994	. 199 1. 156 2. 238 3. 129	. 0668 . 3175 . 5167 . 6266	1.8955 1.8955 1.8955 1.8955 1.8955	2, 8275 3, 9312 5, 1717 7, 7925	-4, 976 4, 976 4, 976 4, 976	1, 012 1, 407 1, 851 2, 789	207400 253600 301600 347800
<l d="</td"><td>14)</td><td></td><td></td><td></td><td>. •</td><td></td><td></td></l>	14)				. •		
3. 696 4. 331 5. 022	723 1. 702 2. 744	. 1956 [.] . 393 . 5464	2. 5849 2. 5849 2. 5849	4. 1379 6. 035 7. 1834	4. 847 4. 847 4. 847	1. 481 2. 16 2. 571 '	257400 301600 349800
DP0 & DPL & RE(D):	(DPO/L): (DP/L)L: PREE PIF	PRESSURE PRESSURE PRESSURE	DROP & F DROP & F DROP & F	PRESSURE (PRESSURE (PRESSURE (GRADIENT (GPADIENT (SECOND)	DUE TO CAP DUE TO WAT	PSULE TER

(D. 5) EXPERIMENTAL DATA - ALUMINUM CYLINDERS

K= 652 S= 2.7

								_
VRV	YC.	RY ·	DPO	DPL.	(DP0/L)	(DP/L)L	RE(D)	_
(M/S)	(M/S).	(-) ¹	(KPR)	(KPA)	· (KPA/M)	(KPR/M)	. (-,)	-
					· 		1	-
1, 756	775	1988	1 8264	9653	8 99	3455	122300	
2.343	1.076	4592	1. 8264	1. 7239	8, 99	. 617	163200	
3. 06	2.003	. 6546	1. 8264	2. 5856	8, 99	. 9254	213100	
3, 729	2. 852	. 7648	1. 8264	4. 1379	8, 99-	1. 481	259700	
4. 436	3. 773	. 8505	1. 861	5. 6886.	9.16	2. 036	308900	
5. 098	4. 626	. 9874	1. 861	8. 0998	9. 16	2. 899	355100	
(L/D= 7	~)				•			
2 197	269	1272	3 1797	1 4876	8 918	571	152000	
2.47	. 623	. 2522	3. 1707	1.9307	8, 918	691	172000	
2. 729	. 983	. 3602	3, 1787	2. 3442	8.918	. 839	190100	
2, 922	1. 426	. 488	3. 1707	2. 7577	S. 91S	. 987	203500	
3, 42	2. 025	. 5921	3. 1707	3, 5847	8. 918	1, 283	238200	
3, 74	2. 498	. 6679	3. 2393	4. 3447	9. 111	1. 555	260500	
4. 358	3, 281	. 7529	3, 2393	6. 0909	9/111	2, 18	303500	
(L/D= :	10>							
2 77	405	1709	4 5488	1 7239	8 956	617	165100	
3. 033	1. 334	. 4398	4, 5488	2. 8946	8. 956	1.036	211200	
3. 673	2, 252	. 6131	4, 5488	4. 1379	8. 956	1, 481	255800	
4. 359	3, 249	. 7454	4. 5488	5, 6886 (. 8. 956	2. 036	303600	
5. 076	4. 211	. 8296	4. 5488	7. 7226	8. 956	2, 764	353500	
(L/D= :	14>		•					
	·							
3. 033	. 943	. 3189	6. 3755	2. 875	8. 966	1. 029	211200	
3, 696	1, 932	. 5227	6. 4103	4. 3111	9.815	1, 543	257400	
4.414	2: 968	. 6724	6. 5475	6.035	9.208	2.16	307400	
5. K54	4. 821	. 7956	6. 547 5	8. 0467	9, 208	2, 88	322000	

DPO & (DPO/L): PRESSURE DROP & PRESSURE GRADIENT DUE TO CAPSULE DPL & (DP/L)L: PRESSURE DROP & PRESSURE GRADIENT DUE TO WATER RE(D): PREE PIPE REYNOLDS NØ. M=METER S=SECOND PA=PASCAL 125

 $\xi \in \mathcal{J}$

(D. 6) EXPERIMENTAL DATA - ALUMINUM CYLINDERS

K= . 815 S= 2.7

•			·				
VAV	VC	R Y	DPO	DPL	(DP0/L)	(DP/L)L	RE(D)
(M/S)	(M/S)	<->	(KPR)	(KPA)	(KP8/M)	(KPA/M)	(-)
لك في دل نير بن به هد بر ا							· • • • • • • • • • • • • • • • • • • •
(L/D= 4	D I			•			•
4 974	255	2204	7 7007	4492	47 007	4504	74999
4 (00)	. 200	. 2307	3. 3003	4 4074	13.021	, TOO4	440200
1.639	. 380	. 3803	3.3083	1, 1051	13.027	. 3348	118200
2.408	1.812	. (S(2 DDC)	3. Z(4 7. 071	1.8213	12.892	634	171200
3.116	2.75	. 8761	5.274	5. 0545	12.892	1.086	217000
3. 861	3. 716	. 9624	3, 274	4. 4816	12. 892	1.684	268900
(L/D= 7	7)						
1 33	792	2947	5 6863	5515	12.795	. 1974	92600
1 643	701	4267	5 6863	8619	12 795	3985	114400
2 912	1 161	577	5 6863	1 2101	12 795	4589	140100
2 491	1 787	7197	5 6867	1 896	12 795	6786	172800
2.701	2.103	7707	5 2927	2,4472	42 795	. 6766	197500
2.112	2.103	. ((Q2) 0700	5 7005	2.4132	40.070	4 497	220500
7. 702	2.000	. 9728	J. (200	3. 3444	12.0(2	T. 726 '	220200
<l d=":</td"><td>10)</td><td></td><td></td><td></td><td></td><td></td><td></td></l>	10)						
• •							
1, 756	. 714	. 4066	8. 2706	. 9997	13. 027	. 3578	122300
2. 453	1. 623	. 6616	8. 2706	1, 896	13. 027	. 6786	170800
3. 171	2, 592	. 8174	8. 2706	2, 9644	13.027	1. 061	220800
3. 972	3, 745	. 9428	8, 2706	4. 7582	13. 827	1, 703	276600
(L/D= :	14)						
4 700	<u></u>	2404		4 0242	40.000	7700	400200
1.728	. 602	. 3484	TT' 0407	1.0243	12. 707	. 2102	120200
2. 203	1. 324	. 6089	11.0401	1.9341	12.989	. 6334	114398
5.171	2.527	. 7969	11. 5451	3. 1041	12, 989	1. 111	220800
4. 049	3. 811	. 9412	11. 7167	5. 3449	13. 182	1. 913	282000
4. 524	4. 511	. 9971	11. 5451	6. 4374	12. 989	2. 304	315100 、
						· ·	

DPO & (DPO/L): PRESSURE DROP & PRESSURE GRADIENT DUE TO CAPSULE DPL & (DP/L)L: PRESSURE DROP & PRESSURE GPADIENT DUE TO WATER RE(D): PREE PIPE REYNOLDS NO. M=METER S=SECOND PA=PASCAL 126.

(D. 7) PREDICTION OF VC (EQN. 6. 5)- NYLON CYLINDERS

•	К=	. 489	S= 1.	15	
---	----	-------	-------	----	--

.

YAY	VC	RY	VC1	RV1	Ĕ	RE(D)
(M/S)	(M/S)	(-)	(M/S)	(-)	(-)	(-)
(L/D= 4)	>					
1. 058	. 769	. 7268	. 6634	. 627	. 1592	73790
1. 728	1. 636	. 9468	1. 5402	. 8913	. 0622	12030
2, 403	2. 505	1.0424	2. 4235	1, 0085	. 0336	16740
3. 806	3, 34	1. 1111	3. 2127	1, 0688	. 0396	20940
3, 696	4.196	1. 1353	4, 1157	1, 1135	. 0195	25740
4. 386	5.033	1, 1475	5.0186	1, 1442	2.9E-03	20550
5. 077.	5, 892	1. 1605	5. 9229	1. 1666	-5.2E-03	35360
(L/D= 7)	`				
1 045	สตร	5789	5151	1929	1746	7280
1 722	1 454	8444	1 4668	8518	-8 7E-93	11990
2.37	2.4	1.0127	2 3778	1 0033	9 3E-03	16510
2.95	3.234	1. 0963	3. 1932	1.0824	. 0128	20550
3. 696	4. 23	1. 1445	4 242	1 1477	-2. SE-03	25740
4. 303	5, 063	1, 1766	5. 0953	1 1841	-6. 3E-03	29970
4. 988	5. 919	1. 1866	6. 0583	1. 2146	023	34740
(L/D= 1	0)					
1. 098	. 519	. 4727	4754	. 433	. 0917	7650
1. 711	1. 407	. 8223	1, 3775 /	. 8051	. 0214	11920
2, 37	2, 366	. 9983	2, 3472	. 9904	8E-03	16510
3 033	3, 347	1. 1035	3, 3228	1. 0956	7.3E-03	21120
3. 696	4, 286	1, 1596	4, 2984	1. 163	-2.9E-03	25748
4. 386	5. 288	1. 2057	5, 3138	1.2115	-4.9E-03	30550
5. 022	6, 232	1. 2409	6, 2497	1. 2445	-2.8E-03	34980
(L/D= 1	4)					
1, 098	. 347	. 316	. 3376	. 3075	. 0279	7659
1, 728	1. 316	. 7616	1, 3055	. 7555	8.1E-03	12030
2. 37	2.34	. 9873	2, 2918	. 967	. 0211	16510
3. 01	3. 33	1. 1063	3. 275	1. 988	0168	20960
3. 694	4. 325	1. 1798	4, 3258	1. 171	-2E-04	25730
4.414	5. 439	1. 2322	5. 4319	1. 2306	1. 3E-03	30740
5. 1922	6. 363	1.267	6.366	1.2676	-36-04	4986ک

VC & RV: EXPERIMENTAL VC1 & RV1: EMPERICAL(EQUATION(6.5)) RE(D): FREE PIPE REYNOLDS NUMBER E:DEVIATION OF VC1 FROM VC (D. 8) PREDICTION OF VC (EQN. 6. 5)- NYLON CYLINDERS

	•					
VRV	VC	RV	YC1	RV1	E	RE(D)
(M/S) .	(M/S)	(-)	(M/S)	·(-)	(-)	(-)
(L/D= 4	>					
				.•		
. 619	. 345	. 5574	. 2556	. 4129	. 3499	43100
1.074	. 824	. 7672	. 8295	. 7723	-6. 6E-03	74800
1.733	1.694	. 9775	1. 6607	. 9583	. 82	120700
2. 315	2. 502	1. 0808	2. 3948	1.0345	. 0447	161200
3. 066	3. 424	1. 1168	3. 3421	1. 0901	. 0245	213500
3. 696	4. 252	1. 1504	4. 1368	1, 1193	. 8279	257400
4. 392	5. 136	1. 1694	5. 0147	1. 1418	. 0242	305900
5. 076	5. 995	1. 181	5. 8775	1. 1579	. 82	353500
(L/D= 7)					
676	243	3595	2212	3272	8985	47100
1.045	. 729	. 6976	7212	6982	. 0108 .	72800
1. 771	1. 654	. 9339	1.705	9627	- 8299	123300
2.37	2, 49	1. 0506	2, 5166	1.0619	- 0106	165100
3, 886	3. 385	1. 1261	3. 3784	1, 1239	1. 9E-03	209400
3.641	4. 214	1. 1574	4, 2389	1, 1642	-5. 9E-03	253600
4.331	5.16	1, 1914	5, 1738	1, 1946	-2.7E-03	301600
4, 966	5, 98	1, 2042 \	6. 0343	1. 2151	-9E-03	345900
<l d="1</td"><td>.0)</td><td>1 ; ;</td><td>i I</td><td></td><td></td><td></td></l>	.0)	1 ; ;	i I			
4 04E	cc.	CDE 4	· ~=+ ~	6076	04.00	
1.040	. 664	. 6334 :	(. 6317 . 4 . 6375	, 0230 1000	- 0189	422200
7 425	2 57	, 720 1 0100	1. 6273	. 2321	- 0101	120700
2.420	2.03	1,0423	2.6104	1.076	- 0171	169000
3.033	3. 412 A 76	1 1752	3. 4113 A 4977	1.1940 4.1947	- 0171	211200
4, 386	5.34	1, 1762	5. 3903	1, 229	-9. 3E-03	305500
(L/D= 1	.4)					
1. 074	. 587	. 5466	. 6077	. 5659	- 0341	74800
1. 711	1, 52	. 8884	1, 551	. 9065	82	119200
2. 37	2, 466	1. 0405	2, 5268	1. 0662	0241	165100
3, 054	3. 458	1. 1323	3, 5396	1. 159	0231	212700

K= .652 S= 1.15

VC & RV: EXPERIMENTAL VC1 & RV1: EMPERICAL(EQUATION(6.5)) RE(D): FREE PIPE REYNOLDS NUMBER E:DEVIATION OF VC1 FROM VC

4. 5732

5. 4764

1. 2189

1. 2555

-. 0263

-. 0138

261309

303800

3, 752

4. 362

4. 453

5. 401

1, 1868

1, 2382

PREDICTION OF VC (EQN. 6.5)- NYLON CYLINDERS

	•			
K=	815	S=	1.	15

VAV	VC	RY	VC1	RV1.	E	RE(D)
(M/S)	(M/S)	. (-)	(M/S)	(-)	(-)	(-)
(L/D= 4	>					· ·
707	2002	5044	1005	1710	4047	07600
. 357	5224	. 3244 7903	5122	7748	. 1043	45000
1.045	. 994	9512	. 9829	. 9486	. 0113	72800
1. 711	1. 761	1. 0292	1, 7993	1, 0516	0213	119288
2. 453	2. 685	1. 0946	2. 7089	1. 1043	-8. 8E-03	170800
3. 143	3. 527	1. 1222	3, 5547	1. 131	-7. 8E-03	218900
3. 843	4. 433	1. 1535	4. 4128	1. 1483	4. 6E-03	267600
(L/D= 7	> .					
. 419	. 16	. 3819	. 1574	. 3756	. 8166	29200
. 675	. 472	. 6993	. 4945	. 7326	0455	47000
1. 044	. 9543	. 9141	. 9804	. 9391	8267	72700
1. 651	1. 702	1,0309	1, 7798	1, 078	0437	115000
2. 392	2. 613	1. 0924	2. 7556	1. 152	-, 0517	166600
3. 143	3. 664	1. 1658	3, 7446	1. 1914	0215	218900
3. 806	4. 492	1. 1802	4. 6176	1. 2133	0272	265100
(L/D= 1	.0)					
. 661	. 45	. 6808	. 4397	. 6653	. 0233	46000
1. 039	. 983	. 8691	. 9688	. 9247	0601	72408
1. 688	1. 796	1.064	1. 8553	1, 0991	- 032	117600
2. 508	2.853	1. 1376	2. 9856	1. 1904	0444	174700
3. 171	3. 777	1. 1911	3, 8995	1. 2297	0314	220888
3. 861	4. 793	1. 2414	4. 8506	1, 2563	0119	268908
(L/D= 1	.4)			•		
. 661	. 407	. 6157	. 3935	. 5953	. 0344	46000
1. 039	. 89	. 8566	. 9374	: 9823	0506	72400
1. 668	1. 781	1. 0677	1. 8426	1. 1047	0334	116200
2. 508	2.859	1. 14	3. 0514	1. 2167	- 0631	174700
3. 171	3, 829	1. 2075	4. 0055	1. 2632	0441	220806
3. 972	4, 98	1. 2538	5. 1582	V. 2986	0345	276688
					-	

(D. 10) PREDICTION OF VC' (EQN. 6. 5)- ALUMINUM CYLINDERS

K= . 489 S= 2. 7

VAV	VC	RY	VC1	RV1	E	RE(D)
(M/S)	(M/S)	(-)	(M/S)	(-)	(-)	<->
(L/D= 4	>)	
2.381 3.055 3.696 4.362 5.076	4709 1, 282 2, 1016 3, 135 4, 108	1978 4196 5686 7187 8093	. 4892 1. 3712 2. 2101 3. 0817 4. 0161	. 2055 . 4489 . 598 . 7065 . 7912	0374 0651 0491 . 0173 . 0229	165800 212800 257400 303800 353500
<l∠ɗ= 7<="" td=""><td>Э.</td><td></td><td></td><td></td><td></td><td></td></l∠ɗ=>	Э.					
2, 778 3, 043 3, 347 3, 704 4, 258 4, 696	. 4465 . 7964 1. 171 1. 664 2. 451 3. 087	. 1607 . 2617 . 34 <i>3</i> 9 . 4492 . 5756 . 6574	4306 . 9031 1. 2305 1. 7324 2. 5113 3. 127	. 155 . 2639 . 3676 . 4677 . 5898 . 6659	. 037 -8. 4E-03 0484 0395 024 0128	193500 211900 233100 258000 296600 327100
2, 978 3, 641 4, 331 4, 994	. 1987 1. 156 2. 238 3. 129	. 0667 . 3175 . 5167 . 6266	2289 1. 2045 2. 2199 3. 1955	0769 3308 5126 6399	132 0403 8. 2E-03 0208	207400 253600 301600 347800
(L/D= 1	L4)					
3. 696 4. 331 5. 022	. 7233 1. 702 2. 744	. 1957 . 393 . 5464	7639 1. 7394 2. 801	2067 4016 5577	- 0531 - 0215 - 0204	257400 301600 349800
				EMPERICA		

RE(D): FREE PIPE REYNOLDS NUMBER ... E:DEVIATION OF VC1 FROM VC

(D. 11) PREDICTION OF VC (EQN. 6.5)- ALUMINUM CYLINDERS

and a march the

1

.

. .

K= 652 S= 2.7

VAV	YC	RV	VC1	RV1	Ε	RE(D)		
(M/S)	(M2'S)	(-)	(M/S)	(~)	(-)	<->		
	·							
(L/D= 4	,							
1, 756 2, 343 3, 06 3, 729 4, 436 5, 098	535 1.076 2.003 2.852 3.773 4.626	. 1908 . 4592 . 6546 . 7648 . 8505 . 9074	, 302 1, 0424 1, 9468 2, 7907 3, 6825 4, 5175	. 172 . 4449 . 6362 . 7484 . 8301 . 8861	. 1093 . 0322 . 0289 . 022 . 0246 . 024	122300° 163200 213100 259700 308900 355100		
<l d="7</td"><td>)</td><td></td><td></td><td></td><td>•</td><td></td></l>)				•			
2, 183 2, 47 2, 729 2, 923 3, 42 3, 74 4, 358 4, 988	. 2697 . 6233 . 9833 1. 426 2. 025 2. 498 3. 281 4. 241	1235 2523 3603 4879 5921 6679 7529 8502	4274 8163 1. 1673 1. 4302 2. 1036 2. 5372 3. 3746 4. 2283	. 1958 . 3385 . 4277 . 4893 . 6151 . 6784 . 7744 . 8477	- 369 - 2365 - 1576 -2.9E-03 - 0374 - 0155 - 0277 3E-03	152000 172000 190100 203600 238200 260500 303500 347400		
<l∕d= 1<="" td=""><td>(8)</td><td></td><td></td><td></td><td></td><td></td></l∕d=>	(8)							
2, 37 3, 033 3, 673 4, 359 5, 076	. 4051 1. 334 2. 252 3. 249 4. 211	. 1709 . 4398 . 6131 . 7454 . 8296	. 3368 1. 2771 2. 1849 3. 1579 4. 1748	. 1421 . 4211 . 5948 . 7244 . 8225	. 2028 . 0445 . 0307 . 0289 8. 7E-03	165100 211200 255800 303600 353500		
(L/D= 1	.4>							
3, 033 3, 696 4, 414 5, 054	. 9427 1. 932 2. 968 4. 021	. 3108 . 5227 . 6724 . 7956	. 9123 1. 894 2. 9572 3. 9049	. 3008 . 5125 . 67 . 7726	0333 02 3.6E-03 0297	211200 257400 307400 352000		
VC & RV RE(D):	VC & RY: EXPERIMENTAL VC1 & VR1: EMPERICAL(EQUATION(6.5)) RE(D): FREE PIPE REYNOLDS NUMBER E:DEVIATION OF VC1 FROM VC							
(D. 12) PREDICTION OF VC (EQN. 6. 5)- ALUMINUM CYLINDERS

K= . 815 5= 2.7

VRV	YC	RY	VC1	RV1	E	RE(D)
(M/S)	(M2'S)	<->	(M/S)	(-)	(-)	(-)
(L/D= 4	>					
1, 074 1, 7 2, 459 3, 116 3, 861	256 9863 1.812 2.73 3.716	. 2384 . 5802 . 7369 . 8761 . 9624	2307 9981 1. 9285 2. 7339 3. 6472	2148 5871 7843 8774 9446	1895 - 0118 - 0604 -1.4E-03 0189	74800 118400 171300 217000 268900
(L/D= 7	>					
1, 33 1, 643 2, 012 2, 481 2, 779 3, 309	. 3923 701 1. 161 1. 783 2. 163 2. 888	295 4267 577 7187 7783 8728	. 315 . 7272 1. 2131 1. 8308 2. 2232 2. 9211	2369 4426 603 7379 8	2452 - 0361 - 043 - 0261 - 0271 - 0113	92600 114400 140100 172800 193500 230500
(L/D= 1	0)					
1, 756 2, 453 3, 171 3, 972	. 7141 1. 623 2. 592 3. 745	. 4067 . 6616 . 8174 . 9428	. 7036 1. 6644 2. 654 3. 7581	. 4007 . 6785 . 837 . 9462	. 0149 0248 0234 -3. 5E-03	122300 170800 220800 276600
(L/D= 1	4)					
1, 728 2, 503 3, 171 4, 049 4, 524	602 1. 524 2. 527 3. 811 4. 511	3484 6089 7969 9412 9971	4553 1. 5706 2. 5318 3. 7953 4. 4789	. 2635 . 6275 . 7984 . 9374 . 99	3222 0296 -1. 9E-03 4. 1E-03 7. 2E-03	120300 174300 220800 282000 315100

VC & RV: EXPERIMENTAL VC1 & VR1: EMPERICAL(EQUATION(6.5>) RE(D): FREE PIPE REYNOLDS NUMBER E:DEVIATION OF VC1 FROM VC

.

(D. 13) PREDICTION OF VC (EQN. 6. 9)	>- NYLON	SPHERES
--------------------------------------	----------	---------

Š= 1. 15

				··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··		
. VN	VC	YR .	VÇ1	VR1	E	RE(D)
(M/S)	(M/S)	、(-)	(M/S)	(-)	<->	(-)
			}			
(K= , 57	·)				,	
. 3968	. 1371	. 3455	. 8981	. 2473	. 3971	27600
1, 0583	. 8819	. 8333	. 8989	. 8494	019	73700
1 7461	1.6327	9351	1.7316	9917	- 0571	121600
2, 3811	2. 3842	1.0013	2, 5993	1. 8581	- 0464	165800
3. 8425	3. 2327	1.0625	3, 391	1, 885	- 8297	211900
3, 7839	4, 048	1, 8929	4, 1017	1. 1074	- 0131	258000
4, 3653	4. 8677	1. 1151	4. 9024	1, 123	-7. 1E-03	304000
(K= .65	52)			,		
. 4365	. 2267	. 5194	. 2141	. 4904	. 859	20400
1, 8583	. 9372	. 8856	. 9332	8818	4. 3E-03	73788
1.7461	1. 6935	. 9699	1. 7287	. 99	0203	121600
2, 3811	2, 4365	1. 8233	2, 4631	1. 0344	- 0108	165899
3.0108	3 1711	1.0532	3 1913	1.96	-6 3E-83	209700
3.6736	3 9164	1.0551	3 9579	1 0774	- 6165	255900
4. 3584	4 8846	1 1824	4 7499	1 0898	0105	200500
		2		2	. 0140	201000
(K= . 8:	15)					
					,	
. 3968	. 2869	. 723	. 2846	. 7172	8.1E-03	, 27600
1. 6847	1. 0527	. 9785	1. 022	. 9422	. 03	75500
1. 7594	1, 7951	1. 6203	1, 7453	. 992	. 0285	122500
2, 424	2. 5267	1. 0424	2, 4578	1, 0139	. 628	168800
3. 122	3. 333	1.0676	3, 2061	1, 0269	. 0396	217400
3, 9262	4. 1546	1. 0582	4.0682	1,0362	. 0212	273400
4. 671	4, 996	1.0696	4. 8667	1.0419	. 8266	325300

VC & RV: EXPERIMENTAL VC1 & RV1: EMPERICAL(EQUATION(6.9)) RE(D): FREE PIPE REYNOLDS NUMBER E: DEVIATION OF VC1 FROM VC

(D. 14) PREDICTION OF VC (EQN. 6. 9)- ALUMINUM SPHERES

S=	2.	7
----	----	---

٧M	ΥC	VR	VC1	YR1	Е	RE(D)
(M/S)	(M/S)	(-)	(M/S)	(-)	(-)	(-)
(K= .)	()					
1, 7561	7816	. 4451	. 7338	. 4178	. 8652	122300
2, 3978	1, 4962	. 624	1.5106	. 63	-9. 5E-0 3	167088
3, 8685	2, 265	. 7401	2. 3129	7557	0207	213200
3. 6957	3, 0709	8389	3. 8819	. 8339	-3. 6E-03	257400
4, 4136	4. 87	. 9221	3. 9589	. 8952	. 0301	307400
5. 1316	4.,868	. 9486	4. 8282	. 9393	9. 9 E-0 3	357400
/V	501					
\ N ≓ .0.	327			,		-
. 9597	1829	1986	. 651	. 8531	2, 5898	665388
1. 4717	6685	4542	. 6431	. 437	. 0395	102500
2. 8485	1, 2925	6334	1. 3089	6376	-6.5E-03	142100
2, 3811	1.665	6993	1. 6948	. 7118	0176	165800
2, 7568	2. 0871	. 7571	2, 1293	. 7724	8198	192000
3. 1936	2. 5432	, 7963	2. 6345	. 8249	0347	222400
3. 6113	3. 118	. 8634	3, 1176	. 8633	1E-84	251500
4. 0823	3. 7152	. 9101	3. 6623	. 8971	. 0144	284300
4, 5793	4. 2797	. 9346	4. 2371	. 9253	. 8101	318900
4, 966	4. 8043	. 9674	4. 6843	. 9433	. 0256	345988
(K= . 8	15)					
1 0719	5829	5649	5977	575	- 9176	71900
1 7276	1 1932	6997	2977 1	7752	- 1091	129399
2, 4254	1. 901	. 7838	2. 0873	8686	- 0893	168909
3.1434	2. 7976	39	2, 857	. 9889	- 0208	218989
3. 9632	3, 8127	. 962	3. 7359	. 9426	. 0206	276000
4, 8598	4.732	. 9737	4.6971	. 9665	7.4E-03	338500
	-					

VC & RV: EXPERIMENTAL VC1 & RV1: EMPERICAL(EQUATION(6.9)) RE(D): FREE FIPE REYNOLDS NUMBER E: DEVIATION OF VC1 FROM VC

(D. 15) PREDICTION OF VC (EQN. 6. 9)- STEEL SPHERES

S= 7.82

'YM	ŶĊ	٧R	· VC1	VR1	Ē	RÉ(D)
(M/S)	(M/S)	(-)	(M/S)	(-)	(-)	(-)
(K= . 57	 ۲۶	-				
3, 988	. 895	. 2898	. 9841	. 2928	- 0101	215100
3. 4473	1, 229	. 3565	1. 3391	. 3884	0822	240100
3. 9167	1.8826	. 4807	1. 9873	. 487	- 013	272800
4. 3309	2. 3287	. 5377	2, 4088	. 5562	- 0332	201600
4. 8555	3	. 6179	3. 8438	. 6269	0144	338200
, , , , , , , , , , , , , , , , , , , ,	501					
	527			1		
2, 315	5837	. 2176	5215	. 2253	0341	161200
2. 6818	\$222	3066	9457	3526	- 1306	186800
2.9764	1, 2306	. 4135	1. 2864	4322	0434	207300
3. 4747	1.8612	5356	1. 8627	5361	-8E-84	242000
3, 889	2, 3798	6119	2.3418	6822	. 8162	278988
4. 3915	2. 9443	6785	2, 923	6656	7. 3E-03	305800
4. 8555	3, 4805	7168	3. 4596	7125	6E-03	328200
(K= . 8	15)					
1 9842	89	1485	1 8872	5459	- 1787	138288
2 4254	1 3492	5563	1.5561	6416	- 133	163999
2 812	1 7904	6367	1 9796	7998	- 8914	195800
7 1796	2 1936	6899	2 3647	7477	- 9723	221488
3 5854	2 7823	7537	2 7997	7889	- 8343	249788
3. 9718	3. 147	7923	3. 2139	8092	- 8288	276600
4. 4136	3, 5616	. 807	3. 6876	. 8355	0342	307400
				_		
VC & R RE(D) -	V: EXPERIN	ENTAL V		EMPERICA	L(EQUATION)	6.9)) FROM VC

(D. 16) PREDICTION OF (DP/L)C (EQNS. 6, 13 & 6, 14)

NYLON CYLINDER

	K≖		489	S≃	1	15
--	----	--	-----	----	---	----

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						•	· ·		•
$ \begin{array}{c} (IL/S) & (KPR/H) & (KPR/H) & (KPR/H) & (-) & (KPR/H) & (KPR/H) & (KPR/H) & (-) \\ (IL/D=4) \\ \hline \\ \\ \\ (IL/D=4) \\ \hline \\ \\ \\ (IL/D=4) \\ \hline \\ \\ (IL/D=4) \\ \hline \\ \\ \\ (IL/D=4) \\ \hline \\ \\ \\ (IL/D=4) \\ \hline \\ \\ \\ \\ (IL/D=4) \\ \hline \\ \\ \\ (IL/D=4) \\ \hline \\ \\ \\ \\ (IL/D=4) \\ \hline \\ \\ \\ \\ \\ \\ (IL/D=4) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ (IL/D=4) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	VRV	(DP0/L)	(DP/L)L	(DP/L)C	. F	(DP0/L)+	(DP/L)L*	(DP/L)C*	E
$ \begin{array}{c} (L/D=4) \\ 1.658 & 4523 & .1481 & .6804 & .021 & .4536 & .1509 & .6044 & -6.7E-03 \\ 1.728 & .4523 & .3458 & .7981 & .0188 & .4536 & .3603 & .0139 & -0.0129 \\ 2.403 & .4523 & .9871 & 1.4594 & .0174 & .4536 & 1.0118 & 1.4554 & -0178 \\ 2.403 & .4523 & .9871 & 1.4594 & .0174 & .4536 & 1.0118 & 1.4554 & -0178 \\ 3.696 & .4523 & 1.456 & 1.9083 & .017 & .4536 & 1.4905 & 1.9441 & -0184 \\ 4.386 & .4523 & 2.048 & 2.5003 & .0166 & .4536 & 2.4096 & 2.5032 & -1.2E-03 \\ 5.077 & .4523 & 2.715 & 3.1673 & .0163 & .4536 & .1472 & .6008 & .0762 \\ 1.722 & .4911 & .1555 & .6466 & .0188 & .4536 & .5778 & .0114 & .031 \\ 2.37 & .4911 & .6416 & 1.127 & .016 & .4536 & .1472 & .6008 & .0762 \\ 1.722 & .4911 & .9131 & 1.4042 & .0174 & .4536 & .9719 & 1.4255 & .015 \\ 3.696 & .4911 & 1.9131 & 1.4042 & .0174 & .4536 & .9719 & 1.4255 & .015 \\ 3.696 & .4911 & 1.9131 & 1.4042 & .0174 & .4536 & .19728 & 2.4264 & .0473 \\ 4.303 & .4911 & 2.65 & 2.5411 & .0163 & .4536 & 1.571 & .6197 &0168 \\ (L/D=10) \\ 1.098 & .4523 & .1481 & .6004 & .0203 & .4536 & .1571 & .6197 &0168 \\ 1.303 & .4523 & .024 & 1.4417 & .0174 & .4536 & .1571 & .6197 &0168 \\ 3.363 & .4523 & .1456 & .0983 & .018 & .4536 & .1572 & .0318 & .0668 \\ 3.363 & .4523 & 1.456 & .0983 & .0163 & .4536 & 1.5782 & 2.0318 & .0668 \\ 4.386 & .4523 & 1.456 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .4523 & 1.351 & 2.3033 & .0166 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .4523 & 1.456 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .4523 & 1.456 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .4523 & 1.456 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .422 & .1646 & .5346 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .422 & .1646 & .5946 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .422 & .1646 & .5946 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .422 & .1641 & 1.461 & .4536 & .2693 & .1331 &0472 \\ .006 & .42 & .1641 & .1674 & .4536 & .0692 & .1633 & .0543 & .0643 & .128-03 \\ .696 & .42 & .1646 & .5946 & .0205 & .4536 & .2635 & .1033 &0673 \\ .696$	(M/S)	(KPA/M)	(KPA/14)	(KPR/11)	(-)	(KPR/N)	(KPR/11)	(KPR/N)	(-)
$\begin{array}{c} 1.858 & .4523 & .1481 & .6004 & .021 & .4536 & .1509 & .6044 & -6.7E-03 \\ 1.728 & .4523 & .544 & 1.1063 & .016 & .4536 & .6671 & 1.1207 &0129 \\ 2.403 & .4523 & .544 & 1.1063 & .016 & .4536 & .6671 & 1.1207 &0128 \\ 3.01 & .4523 & .971 & 1.4534 & .0174 & .4536 & 1.4108 & 1.4654 &0178 \\ 3.686 & .4523 & 1.456 & 1.9003 & .017 & .4536 & 1.4905 & 1.9441 &0184 \\ 4.386 & .4523 & 2.048 & 2.5003 & .0166 & .4536 & 2.0496 & 2.5032 & -1.2E-03 \\ 5.077 & .4523 & 2.715 & 3.1673 & .0163 & .4536 & 2.6967 & 3.1503 & 5.4E-03 \\ (L./D= 7) \\ 1.045 & .9111 & .1555 & .6466 & .021 & .4536 & .1472 & .6008 & .0762 \\ 1.722 & .9411 & .3455 & .6466 & .021 & .4536 & .1472 & .6008 & .0762 \\ 1.722 & .9411 & .3455 & .6466 & .021 & .4536 & .1472 & .6008 & .0762 \\ 1.722 & .9411 & .9435 & .8666 & .018 & .4536 & .5576 & .0114 & .031 \\ 2.37 & .4911 & .6416 & 1.1327 & .018 & .4536 & .1472 & .6008 & .0762 \\ 1.725 & .4911 & .9131 & 1.4042 & .0174 & .4536 & .1472 & .6008 & .0762 \\ 2.595 & .4911 & .9131 & 1.4042 & .0174 & .4536 & .19728 & 2.4264 & .0473 \\ 3.983 & .4911 & 2.715 & 3.2061 & .0163 & .4536 & 2.603 & 3.0566 & .0489 \\ (L/D= 10) \\ 1.098 & .4523 & .1481 & .6004 & .0203 & .4536 & .1571 & .6107 &0168 \\ 1.711 & .4523 & .3331 & .754 & .0188 & .4536 & .1571 & .6107 &0168 \\ 1.711 & .4523 & .3033 & .0166 & .0179 & .5782 & 2.0318 &0668 \\ 1.728 & .422 & .1481 & .0013 & .0163 & .4536 & 1.5782 & .25182 &0799 \\ 5.62 & .4523 & 1.456 & 1.9083 & .018 & .4536 & 1.5782 & .25182 &0799 \\ 5.62 & .4523 & 2.61 & 3.0623 & .0163 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .42 & .3497 & .7697 & .0188 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .42 & .1491 & .0174 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .42 & .1491 & .0676 & .018 & .4536 & .1683 & .0133 & .0674 \\ 2.066 & .42 & 1.041 & 1.461 & .0174 & .4536 & .16992 & 1.4623 & -1.26-03 \\ 2.671 & .42 & .5376 & 1.0576 & .018 & .4536 & .2695 & .1031 &0412 \\ 3.066 & .42 & 1.041 & 1.0614 & .0744 & .4536 & .16992 & 1.4623 & -1.26-03 \\ 2.692 & .42 & 2.797 & .3.217 & .0163 & .4536 & .2695 & $	(L∕Ɗ=	• 4)							· · · · · · · · · · · · · · · · · · ·
1.728 .4523 .3458 .7381 .0124 .4535 .1605 .0174 .0174 .0174 2.403 .4523 .9671 1.4594 .0174 .4536 1.6051 .4139 .0174 .6561 1.1207 .0129 3.61 .4523 .9671 1.4594 .0174 .4536 1.64654 .0178 3.696 .4523 2.048 2.5003 .0166 .4536 1.4905 1.9441 .0174 4.536 .4523 2.048 2.5003 .0163 .4536 2.6967 3.1593 5.4E-03 (L/D= 7) 1 .0455 .6466 .021 .4536 .1472 .6008 .0762 1.722 .9911 .1555 .6466 .021 .4536 .9719 1.4255 .015 1.722 .9911 .9131 1.4042 .0174 .4536 .9719 1.4255 .015 3.656 .9111 .9127 .017 .4536 .1571 .6107 .0168 1.710 .913 .14024 .0174 .4536<	1 858	4222	4 484	6004	924	4576	1589	6944	-6 75-97
2.485 .4523 .654 1.1065 .018 .4556 .6671 1.1207 -0125 3.01 .4523 .9671 1.4394 .0174 .4556 1.018 1.4654 -0178 3.696 .4523 1.456 1.9083 .017 .4556 1.4985 1.9441 -0134 4.386 .4523 2.048 2.5003 .0166 .4556 2.0496 2.5032 -1.2E-03 5.077 .4523 2.715 3.1673 .0163 .4556 2.0496 2.5032 -1.2E-03 (L/D= 7) 1.045 .4911 .555 .6466 .021 .4556 .1472 .6008 .0762 1.722 .4911 .5455 .8366 .0188 .4556 .3578 .8114 .031 2.37 .4911 .6416 1.1327 .018 .4556 .6489 1.1025 .0274 2.95 .4911 .9131 1.4042 .0174 .4556 .9719 1.4255 .015 5.696 .4911 1.481 1.9721 .017 .4556 1.9728 2.4264 .0473 4.988 .4911 2.715 3.2061 .0163 .4536 2.603 3.0566 .0489 (L/D= 10) 1.098 .4523 .1481 .6004 .0203 .4536 .1571 .6107 -0168 1.721 .4523 .3331 .7854 .0188 .4536 .3533 .8069 -0266 2.371 .4523 .6293 1.0816 .0179 .4536 1.0274 1.401 -0447 3.696 .4523 1.4451 .6004 .0203 .4536 1.5762 2.0318 -0608 (L/D= 10) 1.098 .4523 .1481 .6004 .023 .4536 1.5762 2.0318 -0668 4.366 .4523 1.456 1.9083 .018 .4536 2.6459 1.0955 -0163 3.033 .4523 .9624 1.4417 .0174 .4536 1.0274 1.401 -0447 3.696 .4523 1.456 1.9083 .018 .4536 1.5762 2.0318 -0608 4.366 .4523 1.456 1.9083 .0163 .4536 2.6459 1.0955 -0163 3.033 .4523 3.0241 1.4417 .0174 .4536 1.0274 1.401 -0447 3.696 .4523 1.651 2.3033 .0166 .4536 2.6365 3.09961 -9E-63 (L/D= 14) 1.098 .42 .1646 .5846 .0285 .4536 .1586 .6122 -0451 1.728 .42 .3497 .7697 .0188 .4536 .5645 1.1081 -9E-73 3.0961 .9E-76 .0576 .018 .4536 1.0623 .4536 1.0623 .0991 -9E-03 (L/D= 14) 1.098 .42 .1646 .5846 .0285 .4536 .1586 .6122 -0451 1.728 .42 .1399 .7597 .0163 .4536 1.0602 1.4628 -12E-03 3.694 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -12E-03 3.694 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -12E-03 3.694 .42 1.481 1.901 .0169 .4536 1.0602 1.4628 -12E-03 3.694 .42 1.481 1.901 .0169 .4536 2.0759 2.5255 .0117 5.622 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0444 4.141 .42 2.139 2.559 .0166 .4536 2.0759 2.5255 .0117 5.622 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0444	1 728	4523	7458	- 7981	B188	4536	7697	8179	- 9194
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.483	4523	654	1 1865	. 0100 A18	4576	6571	1 1297	- 8129
$\begin{array}{c} 3.696 & .4523 & 1.456 & 1.9883 & .017 & .4536 & 1.4985 & 1.9441 &0184 \\ 4.386 & .4523 & 2.048 & 2.5003 & 0166 & .4536 & 2.0496 & 2.5032 & -1.2E-03 \\ 5.077 & .4523 & 2.715 & 3.1673 & .0163 & .4536 & 2.6967 & 3.1503 & 5.4E-03 \\ (L/D=7) \\ \hline 1.045 & .4911 & .1535 & .6466 & .021 & .4536 & .1472 & .6008 & .0762 \\ 1.722 & .4911 & .3455 & .8366 & .0188 & .4536 & .3578 & .8114 & .031 \\ 2.37 & .4911 & .6416 & 1.1327 & .018 & .4536 & .6489 & 1.1025 & .0274 \\ 2.95 & .4911 & .9131 & 1.4042 & .0174 & .4536 & .14985 & 1.9441 & .0144 \\ .303 & .4911 & 2.65 & 2.5411 & .0166 & .4536 & 1.9728 & 2.4264 & .0473 \\ 4.988 & .4911 & 2.65 & 2.5411 & .0166 & .4536 & 1.571 & .6107 &0168 \\ 1.711 & .4523 & .3331 & .7854 & .0188 & .4536 & .1571 & .6107 &0168 \\ 1.711 & .4523 & .3331 & .7854 & .0188 & .4536 & .1571 & .6107 &0168 \\ 1.711 & .4523 & .3331 & .7854 & .0188 & .4536 & .1571 & .6107 &0168 \\ 1.714 & .4523 & .3331 & .7854 & .0188 & .4536 & .1571 & .6107 &0168 \\ 1.721 & .4523 & .0523 & 1.0816 & .0179 & .4536 & 1.0274 & 1.481 &0447 \\ 3.696 & .4523 & 1.4861 & .0923 & .018 & .4536 & 1.0274 & 1.481 &0447 \\ 3.696 & .4523 & 1.456 & 1.9083 & .018 & .4536 & 1.0274 & 1.481 &0447 \\ 3.696 & .4523 & 1.851 & 2.3033 & .0166 & .4536 & 2.0496 & 2.5032 &0799 \\ 5.02 & .4523 & 2.61 & 3.0623 & .0163 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .42 & .1646 & .5846 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .42 & .1646 & .5846 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .42 & .1646 & .5846 & .0205 & .4536 & .1586 & .6122 &0451 \\ 1.728 & .42 & .1646 & .5846 & .0205 & .4536 & .1680 & .9139 &9543 \\ 2.371 & .42 & .6376 & 1.0676 & .018 & .4536 & 2.6363 & .0139 &9543 \\ 2.371 & .42 & .6376 & 1.0676 & .018 & .4536 & .26363 & .0139 &9543 \\ 2.371 & .42 & .1646 & .5846 & .0205 & .4536 & .1686 & .0139 & .017 \\ 3.006 & .42 & 1.041 & 1.461 & .0174 & .4536 & 1.0092 & 1.4628 & -1.2E-03 \\ 3.694 & .42 & 1.491 & 1.901 & .9169 & .4536 & 1.4092 & 1.3338 &917 \\ 3.006 & .42 & 1.041 & 1.061 & .0163 & .4536 & 2.6395 & 1.$	3. 91	4523	9871	1 4394	. 8174	4536	1 8118	1. 4654	- 0178
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3, 696	4523	1, 456	1. 9883	. 017	4536	1. 4985	1. 9441	- 0184
5.077 4523 2.715 3.1673 0.163 4536 2.6967 3.1503 5.4E-03 (L/D= 7) 1.045 4911 1555 6466 0.21 4536 1472 66008 0.762 1.722 4911 3455 8366 0.188 4536 5578 8114 0.61 2.37 4911 6416 1.1227 0.18 4536 5469 1.1025 0.274 2.95 4911 9131 1.4042 0.174 4536 9719 1.4255 - 0.15 3.696 4911 2.05 2.5411 0.166 4536 1.9728 2.4264 0.0474 4.303 4911 2.05 2.5411 0.166 4536 2.603 3.0566 0.0489 (L/D= 10) 1.098 4523 1.481 6004 0.203 4536 1.571 6107 - 0.168 1.711 4523 3.331 7.854 0.188 4536 3533 8069 - 0.266 2.371 4523 .6293 1.0816 0.179 4536 6.459 1.0995 - 0.163 3.636 4.523 1.456 1.9083 0.18 4536 1.5762 2.0318 - 0.026 3.636 4.523 1.456 1.9083 0.18 4536 1.5762 2.0318 - 0.026 3.636 4.523 1.456 1.0063 4536 2.636 3.0991 - 9.0266 4.386 4.523 1.456 1.0079 4536 6.459 1.0995 - 0.163 3.633 4523 9624 1.4147 0.174 4536 1.0274 1.461 - 0.447 3.696 4.523 1.456 1.9083 0.18 4536 1.5762 2.0318 - 0.699 5.02 4523 2.61 3.0623 0.163 4536 2.6365 3.0991 - 9.0260 3.636 4.523 1.456 1.0576 0.188 4536 3.663 0.1396 - 0.0543 2.371 4.2 6.376 1.0576 0.18 4536 1.586 6.122 - 0.451 1.728 4.2 3.497 7.697 0.188 4536 3.663 0.139 - 0.0543 2.371 4.2 1.646 5.946 0.205 4.536 1.1886 6.4129 - 0.0451 1.728 4.2 3.676 1.0576 0.18 4536 1.9695 1.1031 - 0.0412 3.694 4.2 1.0441 1.461 0.074 4536 1.0092 1.4628 -1.2E-03 3.694 4.2 1.941 1.901 0.169 4536 1.4002 1.9328 - 0.175 3.694 4.2 1.941 1.461 0.074 4536 1.0092 1.4628 -1.2E-03 3.694 4.2 1.941 1.461 0.074 4536 1.0092 1.4628 -1.2E-03 3.694 4.2 1.941 1.461 0.019 4536 1.4002 1.9328 - 0.17 5.022 4.2 2.797 3.217 0.163 4536 2.6386 3.0922 0.0494	4.386	4523	2 848	2. 5883	. 0166	4536	2 8495	2 5932	-1.2E-83
$ \begin{array}{c} (L/D=7) \\ \hline 1.045 & .911 & .1555 & .6466 & .021 & .4536 & .1472 & .6008 & .0762 \\ L.722 & .4911 & .3455 & .8366 & .0188 & .4536 & .5578 & .8114 & .031 \\ 2.37 & .4911 & .6416 & 1.1327 & .018 & .4536 & .6489 & 1.1025 & .0274 \\ 2.95 & .4911 & .9131 & 1.4042 & .0174 & .4536 & .9719 & 1.4255 &015 \\ 3.696 & .4911 & 1.481 & 1.9721 & .017 & .4536 & 1.4905 & 19441 & .0144 \\ 4.303 & .4911 & 2.05 & 2.5411 & .0166 & .4536 & 1.9728 & 2.4264 & .0473 \\ 4.988 & .4911 & 2.715 & 3.2061 & .0163 & .4536 & 2.603 & 3.0566 & .0489 \\ (L/D=10) \\ \hline 1.098 & .4523 & .1481 & .6004 & .0203 & .4536 & .1571 & .6107 &0168 \\ 1.711 & .4523 & .3331 & .7854 & .0188 & .4536 & .1571 & .6107 &0168 \\ 1.711 & .4523 & .3331 & .7854 & .0188 & .4536 & .1571 & .6107 &0168 \\ 3.033 & .4523 & .9624 & 1.4147 & .0174 & .4536 & 1.00274 & 1.481 &0447 \\ 3.696 & .4523 & 1.456 & 1.9083 & .018 & .4536 & 1.5782 & 2.0318 &0608 \\ 4.386 & .4523 & 1.456 & 1.9083 & .018 & .4536 & 1.5782 & 2.0318 &0608 \\ 4.386 & .4523 & 1.851 & 2.3033 & .0166 & .4536 & 2.6365 & 3.0901 &90079 \\ 5.02 & .4523 & 2.61 & 3.0623 & .0163 & .4536 & .5866 & .6122 &0451 \\ 1.728 & .42 & .3497 & .7697 & .0188 & .4536 & .56455 & 1.1031 &0412 \\ 3.096 & .42 & 1.041 & 1.461 & .0174 & .4536 & 1.0095 & .1031 &0412 \\ 3.096 & .42 & 1.041 & 1.461 & .0174 & .4536 & 1.0095 & .1.031 &0412 \\ 3.096 & .42 & 1.041 & 1.461 & .0174 & .4536 & 1.0095 & .1.031 &0412 \\ 3.096 & .42 & 1.041 & 1.461 & .0174 & .4536 & 1.0095 & .1.031 &0412 \\ 3.096 & .42 & 1.041 & 1.461 & .0174 & .4536 & 1.0095 & .1.031 &0412 \\ 3.096 & .42 & 1.041 & 1.461 & .0174 & .4536 & 1.0095 & .1.033 &057 \\ 3.654 & .42 & 1.041 & 1.461 & .0174 & .4536 & 1.0095 & .1.033 &057 \\ 3.694 & .42 & 1.041 & 1.06169 & .4536 & 2.0759 & 2.5295 & .0117 \\ 5.022 & .42 & 2.797 & 3.217 & .0163 & .4536 & 2.6386 & 3.0922 & .0404 \\ \hline \ (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR FRETER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=$	5. 877	4523	2.715	3 1673	0163	4536	2. 6967	3, 1583	5. 4E03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(L/D=	: 7)							
1 043 4911 1055 6466 0158 4536 1472 6008 0762 1 722 4911 3455 8366 0158 4536 3578 8114 031 2 37 4911 6416 1 1327 018 4536 6489 1 1025 0274 2 95 4911 9131 14042 0174 4536 9719 14255 015 3 636 4911 1481 9721 017 4536 14905 1.9441 0144 4 303 4911 2.05 2.5411 0166 4536 1.9728 24264 0473 4 988 4911 2.715 3.2061 0163 4536 1571 6107 0168 1.098 4523 1481 6004 0203 4536 1571 6107 0168 1.711 4523 3331 7854 0188 4536 3533 8069 0266 2 371 4523 6293 1 0816 0179 4536 6459 1 0995 0163 3 093 4523 9664 1417 0174 4536 1 0274 1481 0447 3 696 4523 1.456 1.983 018 4536 1.5782 2.0318 066 4.386 4523 1.456 1.9083 018 4536 1.5782 2.0318 066 4.386 4523 1.456 1.9083 018 4536 1.9782 2.0318 0664 4.386 4523 1.851 2.3033 0166 4536 2.0496 2.5032 0799 5:02 4523 2.61 3.0623 0163 4536 2.6365 3.0901 -9E-03 (L/D= 14) 1.098 42 1.646 .5846 0205 4536 1.586 6122 00451 1.0728 42 1.041 1.461 0174 4536 1.0692 1.0318 0.643 2.371 42 6376 1.0576 018 4536 3.6495 1.1031 0.0412 3.006 42 1.041 1.461 0174 4536 1.0692 1.4628 -12E-03 3.694 42 1.041 1.461 0174 4536 1.0692 1.4628 -12E-03 3.694 42 1.041 1.461 0174 4536 1.0692 1.4628 -12E-03 3.694 42 1.041 1.461 0174 4536 3.030 013 0.0543 0.000 000 000 000 000 000 000 000 000								6000	0760
L 722 . 4911 . 4433 . 8366 . 0188 . 4336 . 5376 . 6114 . 041 2 37 . 4911 . 6416 1 1327 . 018 . 4536 . 6489 1 1025 . 0274 2 95 . 4911 . 9131 1 . 4042 . 0174 . 4536 . 9719 1 . 4255 015 3 636 . 4911 1 . 481 1 . 9721 . 017 . 4536 1 . 4905 1 . 9441 . 0144 4 . 303 . 4911 2 . 05 2 . 5411 . 0166 . 4536 1 . 9728 2 . 4264 0473 4 . 988 . 4911 2 . 715 3 . 2061 . 0163 . 4536 2 . 603 3 . 0566 0489 (L/D= 10) 1 . 098 . 4523 . 1481 . 6004 . 0203 . 4536 . 1571 . 6107 0168 1 . 711 . 4523 . 3331	1.045	. 4911	. 1555	. 6466	. 621	. 4536	. 1472	. 6868	. 0/62
2.37 . 4911 . 6416 1 1.327 . 618 . 4035 . 6489 1 . 1623 . 6274 2.95 . 4911 . 9131 1 . 4042 . 6174 . 4536 . 9719 1 . 4255 615 3.696 . 4911 1 . 481 1 . 9721 . 017 . 4536 1 . 4905 1 . 9441 . 0144 4.303 . 4911 2. 615 2 . 5411 . 0166 . 4536 1 . 9728 2 . 4264	1. (22	. 4911	. 1400	. 8366	. 0188	. 40.56	3218	. 8114	. 031
2.53 .4511 .911 1.4042 .0174 .4536 .9719 1.4233 -0.013 3.696 .4911 1.481 1.9721 .017 .4536 1.4905 1.9441 .0144 4.303 .4911 2.05 2.5411 .0166 .4536 1.9728 2.4264 .0473 4.988 .4911 2.715 3.2061 .0163 .4536 2.603 3.0566 .0489 (L/D= 10) 1.098 .4523 .1481 .6004 .0203 .4536 .1571 .6107 -0168 1.711 .4523 .3331 .7854 .0188 .4536 .5533 .8069 -0266 2.371 .4523 .6293 1.0816 .0179 .4536 .6459 1.0995 -0163 3.033 .4523 .9624 1.4147 .0174 .4536 1.0274 1.481 -0447 3.696 .4523 1.456 1.9083 .018 .4536 1.5782 2.0318 -0608 4.386 .4523 1.456 1.9083 .018 .4536 1.5782 2.0318 -0668 4.386 .4523 1.851 2.3033 .0166 .4536 2.0496 2.5032 -0799 5.02 .4523 2.61 3.0623 .0163 .4536 2.6365 3.0901 -9E-03 (L/D= 14) 1.098 .42 .1646 .5946 .0205 .4536 .1586 .6122 -0451 1.728 .42 .3497 .7697 .0188 .4536 .6493 .1031 -0412 3.006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -12E-03 3.694 .42 1.481 1.901 .8169 .4536 1.4082 1.9338 -017 4.4i_{2} .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0992 .0167 4.4i_{2} .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 	231	. 4911	. 6416	1.1327	. 618	4026	. 6489	1.1020	. 6274
3. 655	2, 30	. 4511	. 9131	1.4042	. 01/4	. 4036	. 3(19	1. 4233	015
4. 303 .4911 2. 03 2. 3411 .0106 .4336 1. 9726 2. 4264 .0473 4. 988 .4911 2. 715 3. 2061 .0163 .4536 2. 603 3. 0566 .0489 (L/D= 10)	3.020	. 4911	1.481	1.9721	. 017	4036	1.4505	1. 5441	. 0144
(L/D= 10) (L/D= 10) 1.098 .4523 .1481 .6004 .0203 .4536 .1571 .61070168 1.711 .4523 .3331 .7854 .0188 .4536 .3533 .80690266 2.371 .4523 .6293 1.0816 .0179 .4536 .6459 1.09950163 3.033 .4523 .9624 1.4147 .0174 .4536 1.0274 1.4810447 3.696 .4523 1.456 1.9083 .018 .4536 1.5762 2.03180608 4.386 .4523 1.851 2.3033 .0166 .4536 2.0496 2.50320799 5:02 .4523 2.61 3.0623 .0163 .4536 2.6365 3.0901 -9E-03 (L/D= 14) 1.098 .42 .1646 .5846 .0205 .4536 .1586 .61220451 1.728 .42 .3497 .7697 .0188 .4536 .6495 1.10310412 3.096 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3.694 .42 1.481 1.901 .8169 .4536 1.0092 1.4628 -1.2E-03 3.694 .42 1.481 1.901 .8169 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS (6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	4 202	. 4911 . 4911	2,00	2.0411	. 61,66	. 4036	1 3728	2 4204	6473 0960
(L/D= 10) 1. 098 4523 .1481 6004 0203 4536 .1571 6107 - 0168 1.711 4523 .3331 7854 0188 4536 .3533 8069 - 0266 2.371 4523 .6293 1.0816 0179 4536 .6459 1.0995 - 0163 3.033 4523 9624 1.4147 0174 4536 1.0274 1.481 - 0447 3.696 4523 1.456 1.9083 018 4536 1.5782 2.0318 - 0608 4.386 4523 1.456 1.9083 0166 4536 2.0496 2.5032 - 0799 5:02 4523 2.61 3.0623 0163 4536 2.6365 3.0901 -9E-03 (L/D= 14) 1.098 42 .1646 .5946 0205 4536 .1586 .6122 - 0451 1.728 42 .3497 7697 0188 4536 .3603 8139 - 0543 2.371 42 .6376 1.0576 018 4536 1.6092 1.4628 -1.2E-03 3.694 42 1.041 1.461 0174 4536 1.0092 1.4628 -1.2E-03 3.694 42 1.041 1.901 0169 4536 1.4602 1.9338 - 017 4.41, 42 2.139 2.559 0166 4536 2.0759 2.5295 0117 5.022 42 2.797 3.217 0163 4536 2.6386 3.0922 0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PR=PRSCAL	ч. <i>э</i> оо	. 4911	2. (1J	3. 2001	. 0103	. 4020	2,003	2. 0000	. 0705
1.098 .4523 .1481 .6004 .0203 .4536 .1571 .61070168 1.711 .4523 .3331 .7854 .0188 .4536 .3533 .80690266 2.371 .4523 .6293 1.0816 .0179 .4536 .6459 1.09950163 3.033 .4523 .9624 1.4147 .0174 .4536 1.0274 1.4810447 3.696 .4523 1.456 1.9083 .018 .4536 1.5782 2.03180608 4.386 .4523 1.851 2.3033 .0166 .4536 2.0496 2.50320799 5:02 .4523 2.61 3.0623 .0163 .4536 2.6365 3.09019E-03 (L/D= 14) 1.098 .42 .1646 .5846 .0205 .4536 .1586 .61220451 1.728 .42 .3497 .7697 .0188 .4536 .3603 .81390543 2.371 .42 .6376 1.0576 .018 .4536 .6495 1.10310412 3.006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3.694 .42 1.481 1.901 .0169 .4536 1.4682 1.9338017 4.419 .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14>) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PRSCAL	(L/D=	= 10)							
1.711 .4523 .3331 .7854 .0188 .4536 .3533 .80690266 2.371 .4523 .6293 1.0816 .0179 .4536 .6459 1.09950163 3.033 .4523 .9624 1.4147 .0174 .4536 1.0274 1.4810447 3.696 .4523 1.456 1.9083 .018 .4536 1.5782 2.03180608 4.386 .4523 1.851 2.3033 .0166 .4536 2.0496 2.50320799 5:02 .4523 2.61 3.0623 .0163 .4536 2.6365 3.09019E-03 (L/D= 14) 1.098 .42 .1646 .5846 .0205 .4536 .1586 .61220451 1.728 .42 .3497 .7697 .0188 .4536 .3603 .81390543 2.371 .42 .6376 1.0576 .018 .4536 .6495 1.10310412 3.006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3.694 .42 1.481 1.901 .0169 .4536 1.4802 1.9338017 4.41., .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	1. 098	. 4523	. 1481	. 6004	. 8283	. 4536	. 1571	. 6107	- 0168
2 371 .4523 .6293 1.0816 .0179 .4536 .6459 1.0995 -0163 3.033 .4523 .9624 1.4147 .0174 .4536 1.0274 1.481 -0447 3.696 .4523 1.456 1.9083 .018 .4536 1.5782 2.0318 -0608 4.386 .4523 1.851 2.3033 .0166 .4536 2.0496 2.5032 -0799 5:02 .4523 2.61 3.0623 .0163 .4536 2.6365 3.0901 -9E-03 (L/D= 14) 1.098 .42 .1646 .5846 .0205 .4536 .1586 .61220451 1.728 .42 .3497 .7697 .0188 .4536 .3603 .81390543 2.371 .42 .6376 1.0576 .018 .4536 .6495 1.10310412 3.006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3.694 .42 1.481 1.901 .0169 .4536 1.4802 1.9338017 4.4i+ .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14>) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	1. 711	. 4523	. 3331	7854	. 0188	. 4536	. 3533	. 8869	0266
3. 033 . 4523 . 9624 1. 4147 . 0174 . 4536 1. 0274 1. 481 - 0447 3. 696 . 4523 1. 456 1. 9083 . 018 . 4536 1. 5782 2. 0318 - 0608 4. 386 . 4523 1. 851 2. 3033 . 0166 . 4536 2. 0496 2. 5032 - 0799 5. 02 . 4523 2. 61 3. 0623 . 0163 . 4536 2. 6365 3. 0901 - 9E-03 (L/D= 14) 1. 098 . 42 . 1646 . 5846 . 0205 . 4536 . 1586 . 6122 - 0451 1. 728 . 42 . 3497 . 7697 . 0188 . 4536 . 3603 . 81390543 2. 371 . 42 . 6376 1. 0576 . 018 . 4536 1. 0692 1. 4628 -1. 2E-03 3. 694 . 42 1. 041 1. 461 . 0174 . 4536 1. 0692 1. 4628 -1. 2E-03 3. 694 . 42 1. 481 1. 901 . 0169 . 4536 1. 0692 1. 4628 -1. 2E-03 3. 694 . 42 1. 481 1. 901 . 0169 . 4536 1. 0692 1. 4628 -1. 2E-03 3. 694 . 42 2. 139 2. 559 . 0166 . 4536 2. 0759 2. 5295 . 0117 5. 022 . 42 2. 797 3. 217 . 0163 . 4536 2. 6386 3. 0922 . 0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS (6. 13) & (6. 14>) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PR=PRSCAL	2, 371	. 4523	. 6293	1.0816	. 0179	. 4536	. 6459	1, 0995	0163
3. 696 . 4523 1. 456 1. 9083 . 018 . 4536 1. 5782 2. 0318 - 0608 4. 386 . 4523 1. 851 2. 3033 . 0166 . 4536 2. 0496 2. 5032 - 0799 5: 02 . 4523 2. 61 3. 0623 . 0163 . 4536 2. 6365 3. 0901 - 9E-03 (L/D= 14) 1. 098 . 42 . 1646 . 5846 . 0205 . 4536 . 1586 . 6122 - 0451 1. 728 . 42 . 3497 . 7697 . 0188 . 4536 . 3603 . 8139 - 0543 2. 371 . 42 . 6376 1. 0576 . 018 . 4536 . 6495 1. 1031 - 0412 3. 006 . 42 1. 041 1. 461 . 0174 . 4536 1. 0092 1. 4628 -1. 2E-03 3. 694 . 42 1. 481 1. 901 . 0169 . 4536 1. 4602 1. 9338 - 017 4. 4i,	3. 033	. 4523	. 9624	1. 4147	. 0174	. 4536	1. 0274	1. 481	8447
4.386 .4523 1.851 2.3033 .0166 .4536 2.0496 2.50320799 5:02 .4523 2.61 3.0623 .0163 .4536 2.6365 3.0901 -9E-03 (L/D= 14) 1.098 .42 .1646 .5846 .0205 .4536 .1586 .61220451 1.728 .42 .3497 .7697 .0188 .4536 .3603 .81390543 2.371 .42 .6376 1.0576 .018 .4536 .6495 1.10310412 3.006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3.694 .42 1.481 1.901 .0169 .4536 1.4802 1.9338017 4.4i+ .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS (6.13) & (6.14>) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	3, 696	. 4523	1, 456	1. 9083	. 018	. 4536	1 5782	2. 0318	8688
5:82 .4523 2.61 3.0623 .0163 .4536 2.6365 3.0901 -9E-03 (L/D= 14) 1.098 .42 .1646 .5846 .0205 .4536 .1586 .61220451 1.728 .42 .3497 .7697 .0188 .4536 .3603 .81390543 2.371 .42 .6376 1.0576 .018 .4536 .6495 1.10310412 3.006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3.694 .42 1.481 1.901 .0169 .4536 1.4802 1.9338017 4.4i+ .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404	4, 386	. 4523	1, 851	2. 3033 1	. 0166	. 4536	2, 0496	2. 5032	-, 8799
(L/D= 14) 1. 098 .42 .1646 .5846 .0205 .4536 .1586 .61220451 1. 728 .42 .3497 .7697 .0188 .4536 .3603 .81390543 2. 371 .42 .6376 1.0576 .018 .4536 .6495 1.10310412 3. 006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3. 694 .42 1.481 1.901 .0169 .4536 1.4802 1.9338017 4. 4i+ .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5. 022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 CDP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	5:02	. 4523	2.61	3. 0623	. 0163	. 4536	2. 6365	3, 8981	-9E-03
1. 098 .42 .1646 .5846 .0205 .4536 .1586 .6122 0451 1. 728 .42 .3497 .7697 .0188 .4536 .3603 .8139 0543 2. 371 .42 .6376 1.0576 .018 .4536 .6495 1.1031 0412 3. 006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3. 694 .42 1.481 1.901 .0169 .4536 1.4802 1.9338 017 4. 4i+ .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 COP/L.C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS (6.13) & (6.14>) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PRSCAL	(L/D=	= 14)							-
1. 728 .42 .3497 .7697 .0188 .4536 .3603 .8139 0543 2. 371 .42 .6376 1.0576 .018 .4536 .6495 1.1031 0412 3. 006 .42 1.041 1.461 .0174 .4536 1.0092 1.4628 -1.2E-03 3. 694 .42 1.481 1.901 .0169 .4536 1.4802 1.9338 017 4. 41 .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 .217 .0163 .4536 2.6386 3.0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CRPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) #: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PRSCAL	1.098	42	1646	5846	8285	4536	1586	6122	- 6451
2. 371 . 42 . 6376 1. 0576 . 018 . 4536 . 6495 1. 1031 - 0412 3. 006 . 42 1. 041 1. 461 . 0174 . 4536 1. 0092 1. 4628 -1. 2E-03 3. 694 . 42 1. 481 1. 901 . 0169 . 4536 1. 4802 1. 9338 - 017 4. 41-,	1.728	. 42	3497	7697	0188	4536	3683	8139	- 0543
3. 006 .42 1. 041 1. 461 .0174 .4536 1. 0092 1. 4628 -1. 2E-03 3. 694 .42 1. 481 1. 901 .0169 .4536 1. 4802 1. 9338 017 4. 41-, .42 2. 139 2. 559 .0166 .4536 2. 0759 2. 5295 .0117 5. 022 .42 2. 797 3. 217 .0163 .4536 2. 6386 3. 0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6. 13) & (6. 14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PR=PRSCAL	2 371	42	6376	1 0576	A18	4536	6495	1 1031	- 0412
3. 694 .42 1. 481 1. 901 .0169 .4536 1. 4802 1. 9338 017 4. 4i+ .42 2. 139 2. 559 .0166 .4536 2. 0759 2. 5295 .0117 5. 022 .42 2. 797 3. 217 .0163 .4536 2. 6386 3. 0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6. 13) & (6. 14>) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	3, 806	. 42	1.041	1. 461	. 0174	4536	1. 0092	1. 4628	-1. 2E-03
4.4i+ .42 2.139 2.559 .0166 .4536 2.0759 2.5295 .0117 5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14>) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT	3, 694	. 42	1. 481	1. 981	0169	4536	1. 4882	1. 9338	- 617
5.022 .42 2.797 3.217 .0163 .4536 2.6386 3.0922 .0404 (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	4.41.	42	2 139	2,559	0166	4536	2, 8759	2 5295	. 8117
(DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	5. 822	. 42	2. 797	3. 217	. 0163	4536	2, 6386	3. 8922	. 0404
(DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: PIPE FRICTION FACTOR *: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL							·		
*: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14)) M=METER E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=SECOND PA=PASCAL	 (DP/1	.)C: TOTAL	L PRESS.	GRADIENT	ACROSS	Capsule	F: PIPE	FRICTION	FACTOR
	*: E1 E: DE	MPERICAL V EVIATION (VALUES (B' OF EMPERI	Y EQUATIO CAL YALUE	NS(6.13 FROM E) & (6.14) XPERIMENT	> M=METER S=SECON	D PA=PASC	AL.

136

Ξ.

(D. 17) PREDICTION OF (DP/L)C (EQNS. 6. 13 & 6. 14)

NYLON CYLINDER

K= . 652 S= 1. 15

Ċ

VRV	(DP0/L)	(DP/L)L	(DP/L)C	F	(DP0/L)*	(DP/L)L*	*(DP/L)C*	E
(M/S)	(KPA/M)	(KPA/M)	(KPR/M)	(-)	(KPR/M)	(KFA/N)	(KPR/N)	(-)
<u>د ار ار ا</u>	4)							•
	+ /		• •		·			
. 619	. 7803	. 0617	. 842	. 823	. 7791	. 0566	. 8266	. 0186
1. 074	. 7883	. 1678	. 9481	. 8285	. 7701	. 1518	. 9219	. 0284
1, 733	. 7893 1	. 3782	1, 1505	. 0188	. 7701	. 3624	1, 1325	. 0159
2. 315	. 7883	. 6416	1. 4219	. 018	. 7701	. 6192	1. 3893	. 0235
3. 866	. 8142	1. 861	1, 8752	. 0173	. 7701	1, 0438	1. 8139	. 0338
3. 696	. 8142	1.53	2. 3442	. 8169	. 7781	1. 4818	2. 2519	. 041
4. 392	. 8142	1. 974	2, 7882	. 0166	. 7791	2. 0553	2. 8254	0132
5. <mark>87</mark> 6 ·	. 8142	2, 715	3. 5292	. 0163	. 7781	2. 6957	3, 4658	. 0183
(L∕Ɗ=	7)			*				
676	7754	0647	0774	602	7704	0/75	0776	-65-04
. 010		. 0017	. 8371	. 023		. 0073	. 0370	-02-04
1.040	4C11.	. 1481	. 9235	. 621	. (181	. 1472	9175	6. 8E-03
1.768	. 7734		1. 1654	. 0188	. (701	. 5112	1,1475	. 0158
2.371	. 7754	. 6416	1. 417	. 018	. 7701	. 6495	1. 4196	-1.8E-0.
3. 666	. 8336	1.04	1. 8736	. 0174	. 7701	1.0092	1.7793	. 853
5.64	. 8226	1.456	2, 2896	. 017	. 7791	1. 4457	2. 2158	. 0333
4. 331	. 8336	1. 851	2. 6846	0166	. 7701	1. 9986	2. 7687	0304
(L/D=	10)							÷
1.045	. 7464	. 1357	8821	8285	7701	. 1437	9138	- 8347
1 733	7464	3455	1 0919	019	7791	3663	1 (354	- 9791
2 427	7464	6169	1 3633	. 0 <u>1</u> 8	7791	6505	1 4506	- 0602
דדת ד	7464	9377	1 6841	017J	7791	1 0274	1 7975	- 8671
3 786	7735	1 471	~2 2945	A17	7791	1 4986	2 2687	- 4297
4. 386	. 7735	1. 925	2. 6985	. 0166	. 7701	2. 0496	2. 8197	~. 043
(L/D=	: 14)		•					
1 074	727	。 1851	91.21	0205	7784	1518	9219	- 0104
4 714	707	2988	1 1179	A192	7701	. 1910	1 1274 :	
2 27	707	2171	4 2334	040	7704	2100	, TCALL, ',	- 0500 - 0500
2. Jr 7 051	- 141 797	1 0272	1 754 1 754	0177	. ((94 7704	1 0757	1 0050	0020 _ 0074
3.004	· (2) 707	- 34 V627 - 1 1 1	2 4 4 7 7	C110	7704	4 540	1.0000	- 0500 - 0500
3. (32)	. (Æ) 7754	7 600	2,101 10771	0155	, (101 7704	1. 318	2.2001	5225
7. 202	. (134	2 U70	2, 0134	. 9700		2.0213	2.1214	. 6272

E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT

S=SECOND PA=PASCAL

• •	•		NYLON	CYL	INDER		• • •	
**			K= . 8	15 S=	1. 15	•	۱ <u>۰</u>	
YRY	(DP0/1_)	(DP/L)L	(DP/L)C	 F	(DP0/L)*	(DP/L)L*	(DP/L)C*	È
(M/S)	(KPR/M)	(KPR/M)	(KPR/N).	(-)	(KPA/11)	(KPR/M)	(KPR/M)	(-
· · · · · · · · · · · · · · · · · · ·				<u> </u>			· · · · · · · · · · · · · · · · · · ·	
<l d="</td"><td>4)</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></l>	4)		•					
. 397	1 154	. 0308	1. 1848	. 824	1. 161	. 8243	1. 1853	-4E
. 661	1.154	`. 0864	1. 2484	. 023	1. 161	. 0645	1. 2255	.`0
1. 845	1. 154	. 1684 °	1. 3144	. 8285	1. 161	. 1437	1. 3047	7.4E
1. 711	1. 154	. 3516	1, 5856	. 0188	1, 161	. 3533	1. 5143	-5. 7E
2. 453	1. 154	. 7187	1. 8647	. 0179	1. 161	. 6913	1. 8523	6. 7E
3, 143	1.154	1. 886	2.24	. 0173	1. 161	1. 8969	2. 2579	-7. 9E
3. 834	1. 221	. 1. 555	2.776	. 0168	1. 161	1.5851	2.7461	· .0
(L/Ɗ=	: 7) .					•	·	
. 419	1. 163	. 8321	1. 1951	824	1 161	. 827	1.188	5. 9E
. 675	1. 163	. 8617	1. 2247	. 623	1. 161	. 0673	1. 2283	~2. 9E
1. 044	1. 163	. 1694	1. 3234	. 8285	1. 161	. 1434'	1. 3844	.`8
1, 651	1. 132	. 3331	1. 4651	8189	1, 161	. 3397	1. 4917	0
2. 392	1, 132	. 6416	1. 7736	. 618	1, 161	. 661	1.822	0
3, 143	1. 163	1. 074	2, 237	. 0173	1. 161	1. 0969	2. 2579	-9. 3E
3. 806	1. 163	1. 684	2, 767	. 0168	1. 161	1.562	2, 723	.0
(L/D=	- 10)	· .		•	N			
:662	1. 14	. 0691	1. 2091	. 023	1. 161	. 8646	1. 2256	0
1.039	1.14	, 1431	1. 2831	. 8285	1. 161	. 142	1. 303	8
1. 688	1, 14	. 3146	1, 4546	. 0188	1. 161	. 3438	1. 5048	0
2. 51	1, 087	. 642	1, 729	. 018	Į. 161	`. 7279	1. 8889	0
3. 171	1. 167	1 036	2, 203	. 0173	1, 161	1. 1165	2. 2775	8
3. 861	1. 167	1, 57	2, 737	. 8166	1.161	1. 5883	. 2. 7493	-4. 5E
(L/D=	= 14)		•		· .		•	
. 661	1. 124	. 6617	1. 1857	. 823	1. 161	. 8646	1. 2256	e
1, 039	1, 124	. 1337	1. 2577	. 0205	1. 161	. 142	1. 303	e
1. 668	1.986	. 3291	1. 4151	. 0189	1. 161	°• . 3375	1, 4985	8
2. 588	1, 847	. 6788	1. 7258	. 0178	1. 161	. 7186	1. 8796	i –. e
3. 171	1.086	1. 111	2. 197	. 0173	1. 161	1. 1165	2. 2775	e
3: 972	1 163	1. 811	2, 974	. 0168	i. 161	1. 7012	2. 8622	. 8

(DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULEF:*: EMPERICAL VALUES (BY EQUATIONS(6.13) & (6.14))M=ME: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENTS=S

F: PIPE FRICTION FACTOR M=METER S=SECOND PR=PRSCAL

(D. 19) PREDICTION OF (DP/L)C (EQNS. 6. 13 & 6. 14)

	- m
MELLINIAUN LITEINU	<u>- R</u>

Nº . 407 - 2	K= . 485	9 S	≐ 2.	7
--------------	----------	-----	------	---

VRY	(DP0/L)	(DP/L)L	(DP/L)C	F	(DP0/L)*	(DP/L)L*	(DP/L)C*	E
(M/S)	(KPA/M)	(KPA/M)	(KPA/M)	· (-)	(KPA/M)	(KPR/M)	(KPA/N)	(-)
	• · · · ·	· · · · · · · · · · · · · · · · · · ·	• .					
(୮⁄ው=	: 4)	,	;	•				
2. 381	5. 282	. 6412	5. 8432	. 8179	5. 1484	. 6513	5. 7917	8. 9E-03
3. 854	5.282	1. 036	6. 238	. 0173	5. 1404	1. 0357	6. 1761	. 01
3. 696	5. 282	1, 456	6. 658	. 0169	5. 1494	1. 4818	6. 6222	5.4E-83
4. 362	5. 282	1. 974	7. 176	. 0166	5. 1404	2. 0273	7. 1677	1. 2E-03
5. 078	5, 282	2.665	7. 867	. 0163	5. 1404	2. 6978	7, 8382	3. 7E-03
(L/D=	: 7)	•	,					_
2. 778	4, 911	. 8367	5. 7477	. 0175	5. 1404	. 8668	6, 0072	0432
3. 842	5. 041	1.049	6, 09	. 0173	5. 1404	1. 0275	6. 1679	- 0126
3. 347	5 169	1.357	6. 526	. 0171	5, 1404	1, 2295	6. 3699	0245
3. 704	5. 169	1. 53	6. 699	. 0169	5, 1404	1, 4882	6, 6286	. 0106
4. 258	5. 169	1, 99	7, 159	0166	5, 1404	1. 9318	7. 0722	. 0123
4. 696	5.169	2.418	7. 587	0165	5. 1404	2. 3355	7. 4759	. 0149
~(L/D=	: 10)							
1 978	4, 976	1. 012	5, 988	. 618	5, 1404	1. 0246	6, 165	0287
3. 641	4, 976	- 1, 407	6. 383	. 0176	5. 1404	1. 4976	6. 638	0384
4. 331	4. 976	1, 851	6, 827	. 0175	5, 1404	2, 1069	7. 2473	058
4. 994	4, 976	2. 789	7. 765	. 0171	5. 1404	2. 7373	7. 8777	- 0143
(L/D=	= 14)			. '	-		ł	· .
7 696	4 847	1 481	6 728	R169	5 1494	1 4819	6 6222	- 0444
4 771	4 847	2 16	7 997	0105 0166	5 1494	1 9986	7 179	. – A185
5. 022	4. 847	2. 571	7. 418	. 0163	5. 1404	2. 6386	7. 779	- 0464
				-				

(DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULEF: PIPE FRICTION FACTOR*: EMPERICAL VALUES (BY EQUATION(6.13) & (6.14))M=METERE: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENTS=SECONDS=SECONDPA=PASCAL

(D. 20) PREDICTION OF (DP/L)C (EQNS' 6, 13 & 6, 14)

ALUMINUM CYLINDER

K= . 652 S= 2.7

, 7 11 7		(DP/L)L	(DP/L)C	· F	(DP0/L)*	(DP/L)L*	(DP/L)C*	Ε
(M/S)	(KPR/11)	. (KPA/M)	(KPR/M)	(-)	(KPA/M)	(KPA/M)	(KPR./M)	(.)
(L/D=	• 4) (%	•						•
1. 756	8. 99	. 3455	9. 3355	. 0188	8. 7274	. 3721	9. 0995	. 0259
2, 343	8, 99	. 617	9, 607	. 018	8. 7274	. 6342	9. 3616	. 8262
3.86	8. 99	. 9254	9, 9154	. 61,73	8, 7274	1. 0397	9, 7671	. 0152
3. 729	, 8, 99	1, 481	10. 471	. 0169	8. 7274	1. 5084	10. 2358	. 023
4. 436	9.16	2, 036	11. 196	. 0166	8.7274	2, 0966	10.824	. 0344
5. 098	9. 16	2, 899	12. 059	0163	8. 7274	2.7191	11. 4465	. 0535
(L/D=	: 7)							
2. 183	~ 8. 918	. 531	9, 449	. 0182	8. 7274	. 5567	9, 2841	. 0178
2.47	8. 918	. 691	9, 609	0178	8. 7274	. 697	9. 4244	. 0196
2,729	8. 918	. 839	9, 757	. 0176	8, 7274	. 8413	9, 5687	, 0197
2. 922	8. 918	. 987	9, 905	. 0174	8. 7274	. 9535	9, 6889	. 8231
3. 42	8. 918	1: 283	10, 201	. 0171	8. 7274	1, 2838	10. 0112	. 019
3.74	9. 111	1. 555	10.666	. 0169	8, 7274	1, 5173	10. 2447	. 0411
4. 358	9. 111	2.18	11, 291	. 0166	8, 7274	2, 0236	10.751	. 0502
(L/D=	= 10)		•				•	•
	0.057		0 577	04.0	0 7074	C 400	0 7757	0.04
ינ. 2 רקע ד	0.300 0.950	1 076	2. Jr.3 9. 992	. 010	9,7274	1 0215	7. 3103 9:7489	021 0249
2.033	8.208 8.956	1 481	10 177	0169	8 7274	1 4674	10 1908	. 0240 8242
3.013	8 956	2 936	10 992	9166	8 7274	2 0245	18 7519	8223
5. 876	8. 956	2. 764	11.72	. 0163	8. 7274	2. 6957	11. 4231	. 026
(ር/ው	= 14)			. •				
	· · ·						•	
3.033	8. 965	1.029	9. 995	. 0173	8. 7274	1. 0215	9, 7489	
696 ک	9.015	1, 543	10.558	. 0169	8. 7274	1. 4818	10.2092	. 0342
4. 414	9, 208	2 16	11. 368	. 0166	8. 7274	2. 0759	10. 8033	. 8523
5. 85 4	9. 208	2.88	12, 088	. 0163	8. 7274	2 6723	11, 3997	. 0604

(DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE F: *: EMPERICAL VALUES (BY EQUATION(6.13) & (6.14)) M= E: DEVIATION OF EMPERICAL VALUE FROM EXPERIMENT S=

F: PIPE FRICTION FACTOR M=METER S=SECOND PA=PRSCAL

(D. 21) PREDICTION OF (DP/L)C (EQNS. 6. 13 & 6. 14)

ALUMINUM CYLINDER

VRV	(DP0/L)	tdp/L)L	(DP/L)C	, F	(DP0/L)*	(DP/L)L*	(DP/L)C*	Ε
(M/S)	(KPA/M)	(KPR/M)	(KPR/11)	(-)	(KPA/M)	(KP8/M)	(KPR/M)	(-)
<l∕d=< td=""><td>4)-</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td></l∕d=<>	4)-		· · · · · · · · · · · · · · · · · · ·					
1. 074 1. 699 2. 458 3. 116 3. 861	13. 027 13. 027 12. 892 12. 892 12. 892	. 1604 . 3948 . 654 1. 086 1. 604	13. 1874 13. 4218 13. 546 13. 978 14. 496	. 0205 . 019 . 018 . 0173 . 0168	13, 1583 13, 1583 13, 1583 13, 1583 13, 1583 13, 1583	1518 352 698 1.0781 1.6075	13, 3101 13, 5103 13, 8563 14, 2364 14, 7658	-9.2E-03 -6.6E-03 0224 0182 0183
(L/D=	7)				. •	2		•
1. 33 1. 643 2. 012 2. 481 2. 779 3. 309	12, 795 12, 795 12, 795 12, 795 12, 795 12, 795 12, 872	. 1974 . 3085 . 4689 . 6786 . 8637 1. 197	12.9924 13.1035 13.2639 13.4736 13.6587 14.069	. 0197 . 019 . 0184 . 0178 . 0175 . 0172	13, 1583 13, 1583 13, 1583 13, 1583 13, 1583 13, 1583 13, 1583	. 2237 . 3292 . 4781 . 7032 . 8675 1. 2088	13, 382 13, 4875 13, 6364 13, 8615 14, 8258 14, 3671	0291 0285 0273 028 0262 0207
<l d="</td"><td>10)</td><td>•</td><td>é.</td><td></td><td></td><td></td><td></td><td></td></l>	10)	•	é.					
1. 756 2. 453 3. 171 3. 972	13.027 13.027 13.027 13.027 13.027	. 3578 . 6786 1. 061 1. 703	13. 3848 13. 7056 14. 088 14. 73	. 0188 . 0179 . 0172 . 0168	13, 1583 13, 1583 13, 1583 13, 1583 13, 1583	. 3721 . 6913 1. 1101 1. 7012	13, 5304 13, 8496 14, 2684 14, 8595	0108 0104 0126 -8. 7E-03
(L/D=	: 14)							
1. 728 2. 503 3. 171 4. 849 4. 524	12, 989 12, 989 12, 989 13, 182 12, 989	. 3782 . 6994 1. 111 1. 913 2. 304	13. 3592 13. 6884 14. 1 15. 095 15. 293	0188 0178 0172 0167 0165	13, 1583 13, 1583 13, 1583 13, 1583 13, 1583 13, 1583	. 3603 . 7158 1. 1101 1. 7573 2. 1675	13, 5186 13, 8741 14, 2684 14, 9156 15, 3258	- 0118 - 0134 - 0118 . 012 -2.1E-03
(DP/1 *: EN E: DE	.)C: TOTRU IPERICAL \ EVIATION (L PRESS. (YALUES (BY OF EMPERI(RADIENT A CEQUATION CAL VALUE	CROSS ((6.13) FROM EX	RPSULE & (6.14)) PERIMENT	F: PIPE M=METER S=SECON	FRICTION	FRCTOR

- 147-

(D. 22) PRESS. RATIO & UNIT ENERGY - NYLON CYLINDERS

. . .

M=METER

S=SECOND

PR=PASCAL

W=WATT

7

KG=KILOGRAM

K= . 489 S= 1. 15 .

VAV ·	. VC	RV	(DP0/L)	(DP/L)L	(DP/L)C	RP	P
(M/S)	(M/S)	(-)	(KPR/N)	(KPA/H)	(KPR/M)	(-)	KW-S/KG-
(L/D= 4	•				•		• ,
	- -						·
1. 058	. 769	. 7268	. 4523	. 1481	. 6004	4. 054	3. 0039
1. 728	1.636	. 9468	. 4523	3458	. 7981	2, 308	3. 0655
2.403	2.51	1.0445	. 4523	. 654	1. 1063	1. 6916	3.8516
5.000	اک ک	1,1111	4525	. 9871	1.4394	1.4582	4.7109
3.636 4.705	4.196	1.1303	. 4525	,1.435	1. 9085	1.3106	0.1120
4. 300, 5. 077	5. 892	1. 1605	. 4523	2. 715	2. 3683 3. 1673	1. 2266	9. 9247
(17D= 7	?)		•				.'
	-				•		•
1. 045	. 685	. 5789	. 4911	. 1555	6466	4. 1582	4.0614
1.722	1, 454	. 8444	. 4911	. 3455	. 8366	2. 4214	3, 6031
2. 37	2.4	1. 0127	. 4911	6416	1. 1327	1. 7654	4. 0676
2, 95	3. 234	1, 0963	. 4911	9131	1, 4042	1. 5378	4. 658
3.696	4. 23	1. 1445	4911	1.481	1.9721	1. 3316.	6. 2662
4. 583	5.063	1.1766	. 4911	2.05	2.5411	1. 2396	7.8536
4. 988	5, 919	1, 1866	. 4911	2 715	3, 2061	1, 1889	9. 8252
<l d="0</td"><td>10)</td><td></td><td>χ.•</td><td>۰.</td><td></td><td></td><td>• ,</td></l>	10)		χ.•	۰.			• ,
1, 098	. 519	. 4727	. 4523	. 1481	. 6004	4, 054	4, 6191
1.711	1.407	. 8223	. 4523	. 3331	7854	2. 3579	3. 4732
2.371	2.366	. 9979	. 4523	. 6293	1.0816	1, 7187	3. 9416
3. 033	3. 347	1, 1035	. 4523	9624	1 4147	4. 47	4. 6619
3. 696	4. 29	1, 1607	. 4523	1, 456	1. 9883	1, 3106	5, 9787
4.386	5. 288	1, 2057	. 4523	1.851	2.3033	1. 2444	6. 9472
· 5. 02	6. 232	1.2414	4523 -	2. 61	3. 8623	1, 1733	8. 9703
(L2'D=- :	14>)
1. 098	. 347	. 316	. 42	. 1646	. 5846	3. 5516	6, 7269
1.728	1. 316	. 7616	. 42	. 3497	. 7697	2. 201	3. 6753
2.371	2.34	. 9869	. 42	. 6376	1. 8576	1. 6587	3. 8969
3. 006	3, 33	1, 1078	. 42	1.041	1, 461	1. 4035	4, 796
3. 694	4, 325	1, 1708	` . 42	1, 481	1. 901	1. 2836	5. 9044
4, 414	5. 439	1, 2322	. 42	2, 139	2. 559	1, 1964	7. 5521
5. 022	6, 363	1, 267	. 42	2, 7974	3. 2174	1. 1501	9, 2343
	•		• •		•	¢	

(D. 23) PRESS. RATIO & UNIT ENERGY - NYLON CYLINDERS

K= . 652 S= 1. 15

VAV	VC ,	RV	(DPD/L)	(DP/L)L	(DP/L)C	RP	P · _	
(M/S)	. <m∕s></m∕s>	(-)	(KPR/M)	(KPA/M)	(KPR/M)	(-)	KW-S/KG-M	
(L/D= 4	4)							. ~
619 1.074 1.733 2.315 3.066 3.696 4.392 5.076	. 345 . 824 1. 694 2. 502 3. 424 4. 252 5. 136 5. 995	5574 7672 9775 1.0808 1.1168 1.1504 1.1504 1.1694 1.181	. 7803 . 7803 . 7803 . 7803 . 8142 . 8142 . 8142 . 8142	. 0617 . 1678 . 3702 . 6416 1. 061 1. 53 1. 974 2. 715	. 842 . 9481 1. 1505 1. 4219 1. 8752 2. 3442 2. 7882 3. 5292	13. 6467 5. 6582 3. 1078 2. 2162 1. 7674 1. 5322 1. 4125 1. 2999	3. 0902 2. 5278 2. 4076 2. 6912 3. 4347 4. 1681 4. 8772 6. 1125	
(L/D=)	7)						·	
676 1.045 1.768 2.371 3.006 3.641 4.331	243 729 1. 654 2. 49 3. 385 4. 22 5. 16	. 3595 . 6976 . 9355 1. 0502 1. 1261 . 1. 159 1. 1914	. 7754 . 7754 . 7754 . 7754 . 8336 . 8336 . 8336 . 8336	. 0617 . 1481 . 3899 . 6416 1. 036 1. 456 1. 851	8371 9235 1.1653 1.417 1.9696 2.2896 2.6846	13, 5673 6, 2357 2, 9897 2, 2085 1, 8046 1, 5725 1, 4504	4: 7635 2: 7079 2: 548 2: 76 3: 3961 4: 0409 4: 6092	
(L/Ɗ= .	10)							
1. 645 1. 733 2. 427 3. 033 3. 706 4. 386	. 664 1. 603 2. 53 3. 412 4. 36 5. 34	6354 925 1. 0424 1. 125 1. 1765 1. 2175	. 7464 . 7464 . 7464 . 7464 . 7735 . 7735	: 1357 . 3455 . 6169 . 9377 1. 431 1. 925	. 8821 1. 0919 1. 3633 1. 6841 2. 2045 2. 6985	6, 5004 3, 1603 2, 2099 1, 796 1, 5405 1, 4018	2, 8397 2, 4147 2, 6751 3, 0622 3, 833 4, 5337	
(L∕Ɗ= :	14)							
1. 074 1. 711 2. 37 3. 054 3. 752 4. 362	587 1.52 2.466 3.458 4.453 5.481	. 5466 . 8884 1. 0405 1. 1323 1. 1868 1. 2382	. 727 . 727 . 727 . 727 . 727 . 727 . 7754	. 1851 . 3908 . 6171 1. 029 1. 44 2. 098	. 9121 1. 1178 1. 3441 1. 756 2. 167 2. 873	4. 9276 2. 8603 2. 1781 1. 7065 1. 5049 1. 3696	3. 4136 2. 5738 2. 6424 3. 1723 3. 7349 4. 7469	
(DP0/L) (DP/L)C: RP: PRES M=METER	& (DP/L) TOTAL P S. RATIO S=SECO	L: PRESS. RESS. GRI I(=(DP/L) IND PR=	GRADIENT ADIENT ACF C/(DP/L)L) PRSCAL F	DUE TO (ROSS CAPSI P:UNIT	CAPSULE & JLE (=(DP ENERGY F (G=KILOGR	WATER RE O/L)+(DP/ OR CAPSUL AM	SPECTIVELY L)L) E(EQN. (6.18) D

(D. 24) PRESS. RATIO & UNIT ENERGY - NYLON CYLINDERS

1

K= .815 S= 1.15

YAV	VC	RY	(DP0/1)	(DP/L)L	(DP/L)C	RP	P
(M/S)	(M/S)	(-)	(KPA/M)	(KPA/11)	(KPA/11)	(-)	
<l d="4</td"><td>D ·</td><td></td><td></td><td></td><td></td><td></td><td>.*</td></l>	D ·						.*
797	208	5239	1 154	8788	1 1848	38 4675	2 9695
661	. 522	7897	1 154	0200	1 2404	14 3565	2 8563
1.045	. 994	. 9512	1. 154	. 1604	1. 3144	8.1945	1, 809
1.711	1, 761	1.0292	1, 154	3516	1.5056	4, 2821	1, 9151
2. 453	2, 685	1.0946	1, 154	7107	1. 8647	2, 6238	2, 2302
3, 143	3, 527	1. 1222	1. 154	1.086	2.24	2.0626	2, 6132
3. 834	4. 433	1.1562	1. 221	1. 555	2. 776	1. 7852	3. 1431
<l d="7</td"><td>7)</td><td></td><td></td><td></td><td>· ,</td><td></td><td></td></l>	7)				· ,		
. 419	. 16	. 3819	1. 163	. 0321	1. 1951	37, 2305	4, 0972
. 675	. 472	6993	1. 163	. 0617	1, 2247	19.8493	2, 2929
1. 044	. 954	. 9138	1, 163	. 1604	1. 3234	8, 2506	1, 896
1. 651	1. 792	1. 0309	1, 132	. 3331	1. 4651	4. 3984	1, 8606
2. 392	2, 613	1, 0924	1. 132	. 6416	1. 7736	2.7643	2, 1255
3. 143	3. 664	1, 1658	1. 163	1.074	2, 237	2, 0829	2. 5121
3. 806	4, 492	1. 1802	1. 163	1, 604	2, 767	1,7251	3, 0692
<l d=".</td"><td>18)</td><td></td><td></td><td></td><td></td><td></td><td></td></l>	18)						
. 662	. 45	. 6801	1.14	. 0691	1. 2091	17. 4978	2, 3275
1.039	. 903	. 8691	1.14	. 1431	1. 2631	8, 9665	1, 9327
1. 688	1, 796	1. 864	1.14	. 3146	1. 4546	4, 6236	1, 7898
2. 508	2.853	1. 1376	1. 087	642	1, 729	2, 6931	1, 9898
3, 171	3. 777	1. 1911	1, 167	1.036	2, 203	2, 1264	2. 4213
3.861	4. 793	1. 2414	1. 167	1.579	2, 746	1, 7391	2, 8959
<l d=":</td"><td>14)</td><td>•</td><td></td><td></td><td></td><td></td><td></td></l>	14)	•					
. 661	. 407	. 6154	1, 124	. 8617	1. 1857	19. 2172	2. 5225
1. 039	. 89	. 8566	1. 124	. 1337	1, 2577	9, 4869	1, 9222
1. 668	1, 781	1.0677	1. 086	. 3291	1, 4151	4, 2999	1, 735
2. 508	2. 853	1. 1376	1. 047	. 6788	1, 7258	2 5424	1, 9861
3. 171	3. 829	1. 2075	1. 086	1. 111	2, 197	1, 9775	2. 3819
3. 972	4. 98	1, 2538	1, 163	1. 311	2, 974	1, 5422	3. 1053
PO/L)	& (DP/L)	L: PRESS	GRADIEN	T DUE TO O	CAPSULE &	NATER RE	SPECTIVEL
₩7L)C:	IUTRL P	KESS. GR	HUIENT ACT	KUSS CRPSU	JLE (=(DP	U/L)+(DP/ 00.000071	1)L)
. FRES	5. KHIIU	ミー・レビアレン	していりてきしうし。	/ F:UNII	ENERUY !	UK LHYSUL	ELEUN (6.

(D. 25) PRESS. RATIO & UNIT ENERGY - ALUMINUM CYLINDERS

K= . 489 S= 2.7

VAV	VC	RY	(DP0/L)	(DP/L)L	(DP/L)C	RP	P
(M/S)	(M/S)	(-)	(KPR/11)	(KPA/M)	(KPA/M)	(-)	KW-57KG-M
()/D= 4	 ۱۵						
						ىپ	
2. 381	. 471	. 1978	5. 202	6412	5, 8432	9, 1129	45, 7518
3. 054	1.282	. 4198	5. 202	1. 036	6, 238	6. 0212	15, 5363
3. 696	2. 182	. 5687	5, 202	1, 456	6, 658	4. 5728	12, 2395
4. 362	⁻ 3. 135	. 7187	5. 202	1.974	7. 176	3. 6353	10. 4389
5. 078	4.108	. 809 1	5. 202	2. 665	7, 867	2. 952	10.167
(L/D= 7	"						
2. 778	. 447	. 1689	4. 911	. 8367	5, 7477	6. 8695	29, 8766
3. 042	. 796 .	2617	5. 041	1, 049	6.09	5. 8055	24. 3324
3. 347	1. 171	. 3499	5. 169	1.357	6, 526	4. 8091	19. 5015
3. 704	1. 664	. 4492	5. 169	1, 53	6, 699	4. 3784	15, 5901
4. 258	2.451	. 5756	5. 169	1, 99	7, 159	3, 5975	13, 0028
4. 696	3. 087	. 6574	5. 169	2. 418	7. 587	3, 1377	12.0666
<l d="_1</td"><td>10)</td><td></td><td></td><td></td><td></td><td>-</td><td></td></l>	10)					-	
2. 978	. 199	. 0668	4, 976	1012	5, 988	5. 9 1 7	93. 6862
3.641	1. 156	. 3175	4. 976	1. 407	6, 383	4. 5366	16. 8151
4. 331	2. 238	5167	4. 976	1.851	6, 827	3, 6883	13. 8128
4. 994	3. 129	. 6266	4. 976	2. 789	7, 765	2, 7842	12, 9571
<l d="1</td"><td>L4) ·</td><td></td><td></td><td></td><td></td><td>•</td><td></td></l>	L4) ·					•	
3, 696	. 723	. 1956	4. 847	1. 481	6. 328	4. 2728	33. 8207
4. 331	1. 702	. 393	4. 847	2. 16	7. 007	3, 244	18. 6416
5. 022	2, 744	. 5464	4. 847	2.571	7, 418	+ 2. 8853	11. 3551
DP0/L> (& (DP/L)L	.: PRESS	GRADIEN	T DUE TO (CAPSULE &	WATER RESI	PECTIVELY

(DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE (=(DP0/L)+(DP/L)L) RP: PRESS. RATIO((DP/L)C/(DP/L)L) P: UNIT ENERGY FOR CAPSULE(EQN. 6. 18) M=METER S=SECOND PA=PASCAL W=WATT KG=KILOGRAM

	;						
VRV	YC	R¥	(DPQ/L)	(DP/L)L	(DP/L)C	RP	P
(M/S)	(M/S)	(-)	(KPA/M)	(KPAZM)	(KPR/M)	(-)	KW-S/KG-M
(L/D= 4	4)			1 · ·		•	
1. 756 2. 343 3. 06 3. 729 4. 436 5. 098	. 335 1. 076 2. 003 2. 852 3. 773 4. 626	. 1988 . 4592 . 6546 . 7648 . 8505 . 9074	8.99 8.99 8.99 8.99 9.16 9.16	. 3455 . 617 . 9254 1. 481 2. 036 2. 899	9, 3355 9, 607 9, 9154 10, 471 11, 196 12, 059	27, 8283 15, 5785 18, 7147 7, 8782 5, 499 4, 1597	42, 6342 16, 4033 11, 9778 10, 7353 7, 7413 6, 2523
(L/D=)	7)			·			
2. 183 2. 47 2. 729 2. 922 3. 42 3. 74 4. 358	269 623 983 1.426 2.025 2.498 3.281	. 1232 . 2522 . 3602 . 488 . 5921 . 6679 . 7529	8, 918 8, 918 8, 918 8, 918 8, 918 9, 111 9, 111	531 691 839 987 1. 283 1. 555 2. 18	9.449 9.609 9.757 9.905 10.201 10.666 11.291	17, 7947 13, 9059 11, 6293 10, 0355 7, 9509 6, 8592 5, 1794	45. 8954 29. 8724 21. 2398 15. 9147 13. 5891 9. 3913 8. 8198
2. 37 3. 033 3. 673 4. 359 5. 076	. 405 1. 334 . 2. 252 3. 249 4. 211	. 1709 . 4398 . 6131 . 7454 . 8296	8, 956 8, 956 8, 956 8, 956 8, 956 8, 956	617 1. 036 1. 481 2. 036 2. 764	9, 573 9, 992 10, 437 10, 992 11, 72	15, 5154 9, 6448 7, 0473 5, 3988 4, 2402	32, 9447 17, 8136 10, 0109 8, 6728 8, 3082
(L/D= 3. 033 3. 696 4. 414 5. 054	14) . 943 1. 932 2. 968 4. 821	. 3109 . 5227 . 6724 . 7956	8, 966 9, 015 9, 208 9, 208	1. 029 1. 543 2. 16 2. 88	9, 995 10, 558 11, 368 12, 088	9, 7133 6, 8425 5, 263 4, 1972	18. 9055 11. 8782 9. 9425 7. 1481

(D. 26) PRESS. RATIO & UNIT ENERGY - ALUMINUM CYLINDERS

K= + 652 S= 2.7

(DP0/L) & (DP/L)L: PRESS. GRADIENT DUE TO CAPSULE & WATER RESPECTIVELY (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE (=(DP0/L)+(DP/L)L) RP: PRESS. RATIO((DP/L)C/(DP/L)L) P: UNIT ENERGY FOR CAPSULE(EQN. 6. 18) M=METER S=SECOND PR=PASCAL W=WATT KG=KILOGRAM

(D. 27) PRESS. RATIO & UNIT ENERGY - ALUMINUM CYLINDERS

					۰ 		
YRY	YC	RY	(DPO/L)	(DP/L)L	(DP/L)C	ŔP	P
· (M/S)	(M/S)	(-)	(KPA/M)	(KPA/N)	(KPA/M)	(-)	KW-5/KG-M
<l d="4</td"><td>4)</td><td></td><td></td><td></td><td></td><td></td><td>· .</td></l>	4)						· .
4 674	05.C	0201	12 007	4.004	42 4024	00 0457	, 20 0400
1.074	. 236	. 2304	13.027	7064	12.1014	82. 21J7	30.0472
1.699	. 986	. 5803	13.027	3948	15.4218	. 33. 9965	11.6062
2,458	1. 812	. 7372	12, 892	. 654	1.546	20.7125	9, 2214
3.115	2.73	8761	12.892	1, 686	13, 978	12.8711	8.0065
3, 861	3. 716	. 9624	12. 892	1. 604	14.496	9. 0374	7, 5585
(L/D= 7	77						• .
در ۱	292	2947	12 795	1974	42 9924	65 9176	16 5913
1 547	. 352	.1267	12.720	7095	47 4075	42 4749	15 1124
.1.043	. (OL 	. 4201	12.(30	. 2000	13, 1630	42.4(42	10.4124
2.012	1.161	. 377	12.790	. 4683	13.2037	20.2013	11. 3335
2. 481	1. 783	. 7187	12.795	. 6/86	13.4736	19.800	9, 4080
2.779	2. 163	. 7783	12.795	. 8657	15.6587	15. 8142	6.6049
3, 309	2, 888	. 8728	12. 872	1, 197	14.069	11, 7536	8.0896
(L/Ɗ≓ :	10)			•	·		
1 756	714	4866	13 027	3578	13, 3848	37, 4086	16. 5197
2.453	1.623	· 6616	13 027	6786	13, 7856	28, 1969	10.3954
3 171	2 592	8174	13 027	1 061	14 088	13 278	8 6492
7,972	3 745	9428	17 827	1 793	14 77	8 6494	5 8801
2.216	2.140	. 2420	40. UCI	T. 105.	A	0. 042 1	0,0001
<l d=":</td"><td>14)</td><td></td><td></td><td></td><td></td><td></td><td></td></l>	14)						
1. 728	. 602	. 3484	12. 989	. 3702	13, 3592	36. 8864	14, 4329
2, 583	1. 524	6089	12, 989	. 6994	13. 6884	19.5716	11, 2822
3.171	2, 527	7969	12, 989	1. 111	14.1	12, 6913	8, 8792
4.049	3.811	9412	13 182	1.913	15, 095	7 8997	8 0483
4 524	4 511	9971	12 989	2 384	15 293	6 6376	5 7725
	. ved			,			0

(DPO/L) & (DP/L)L: PRESS. GRADIENT DUE TO CAPSULE & WATER RESPECTIVELY (DP/L)C: TOTAL PRESS. GRADIENT ACROSS CAPSULE (=(DPO/L)+(DP/L)L) RP: PRESS. RATIO((DP/L)C/(DP/L)L) P: UNIT ENERGY FOR CAPSULE(EQN. 6. 18) M=METER S=SECOND PA=PASCAL W=WATT KG=KILOGRAM

REFERENCES

- McNown, J. S. and Newlin, J. T., "Drag of Spheres within Cylindrical Boundaries", Proc. 1st. U.S. Nath. Congr. Appl. Mech. Chicago, 801-806, (1951).
- 2. Young, D. F. "Drag and Lift on Spheres with Cylindrical Tubes", Proc. ASCE, V. 86, 47-57, (1960).
- Hodgson, G. W. and Charles, M.E., "The Pipeline Flow of Capsules, <u>Part 1</u>: The Concept of Capsule Pipelining", Can. J. Chem. Eng., <u>41</u>, 43-45, (1963).
- Charles, M. E., "The Pipeline Flow of Capsules, Part 2: Theoretical Analysis of the Concentric Flow of Cylindrical Forms", Can. J. Chem. Eng., <u>41</u>, 46-51, (1963).
- 5. Ellis, H. S., "The Pipeline Flow of Capsules, <u>Part 3</u>: An Experimental Investigation of the Transport by Water of Single Cylindrical Capsules with Density Equal to that of the Water", Can. J. Chem. Eng., 42, 1-8, (1964).
- 6. Ellis, H. S., "The Pipeline Flow of Capsules, <u>Part 4</u>: An Experimental Investigation of the Transport in Water of Single Cylindrical Capsules with Density Greater than that of the Water", Can. J. Chem. Eng., <u>42</u>, 69-76, (1964).
- 7. Ellis, H. S., "The Pipeline Flow of Capsules, <u>Part 5</u>: An Experimental Investigation of the Transport by Water of Single Spherical Capsules with Density Greater than of the Water", Can. J. Chem. Eng., 42, 155-160, (1964).
- Newton, R., Redberger, P. J. and Round, G. F., "The Pipeline Flow of Capsules, <u>Part 6</u>: Numerical Analysis of Some Variables Determining Free Flow", Can. J. Chem. Eng. 42, 16--173, (1964).
- Ellis, H. S. and Bolt, L. H., "The Pipeline Flow of Capsules, Part 7: An Experimental Investigation of the Transport by two Oils of Single Cylindrical and Spherical Capsules with Density Equal to that of the Oil", Can. J. Chem. Eng., 42, 201-206, (1964).
- Round, G. F. and Bolt L. H., "The Pipeline Flow of Capsules, <u>Part 8</u>: An Experimental Investigation of the Transport in Oil of Single Denser than Oil Spherical and Cylindrical Capsules", Can. J. Chem. Eng., <u>43</u> (4), 197-205, (1965).

- Kruyer, J., Redberger, P.J. and Ellis, H. S., "The 11. Pipeline Flow of Capsules, Part 9", J. Fluid Mech., V. 30 (3), 513-531, (1967).
- Ellis, H. S. and Kruyer, J., "The Pipeline Flow of Capsules, Part 10: Empirical Pressure and Velocity 12. Correlations for Cylindrical Capsules Conveyed in Pipelines up to 4 inches in Diameter", Paper C2, Hydrotransport 1, (1970).
- Hodgson, G. W., Kruyer, J., Roehl, A. A., Round, G.F., and Ellis, H. S., "Practical Projection of Capsule 13. Pipelining: Edmonton-Hardisty Trunkline Test", J. Can. Petrol. Technology, Jan-Mar., 1-5, (1967).
- 14. Kennedy, R. J., "Towards an Analysis of Plug Flow Through Pipes", Can. J. Chem. Eng., <u>44</u>, 354-356, (1966).
- 15, Figueiredo, O. and Charles, M.E., "Critical Fluid Velocity and Power Requirement for the Startup of a Capsule Pipeline", Can. J. Chem. Eng., 46, 62-65, (1968).
- Garg, V. K. and Round, G. F., "Capsule Pipeline Flow a Theoretical Study", Thermodyn. & Fluid Mech. Conv., 16. Inst. of Mech. Eng., London, England, Proceedings 1969-70, 184, 3G(1), pp. 89-100.
- 17. Round, G. F. and Kruyer, J., "Experiments on the Suspension of Spheres in Inclined Tubes - I, Suspension by Water in Turbulent Flow", Chem. Eng. Sci., Pergamon Press Ltd., Oxford, England, V. 22, 1133-1145 (1967).
- Round, G. F. and Kruyer, J., "Experiments on the Suspen-18. sion of Spheres in Inclined Tubes - II, Suspension by Air", Chem. Eng. Sci., V. 29, 397-401, (1974).
- 19. Tawo, E. N., "An Experimental Study of Incompressible Turbulent Flow in Pipes Containing Sphere Trains", M.Eng. Thesis, McMaster University, (1969).
- Anzenavs, R. A., "An Experimental Study of the Hydro-20. dynamic Suspension of Spheres and Sphere Trains in a Vertical Pipe Using Water and Polymer Solutions", M.Eng. Thesis, McMaster University, (1973).
- 21. Latto, B., Round, G. F. and Anzenavs, R., "Drag Coefficients and Pressure Drops for Hydrodynamically Suspended Spheres in a Vertical Tube With and Without Polymer", Can. J. Chem. Eng., 51, 536-541, (1973).

•	
22.	Aly, S. L., "The Hydrodynamic Suspension of Sphere and Cylinder Trains in a Vertical Tube Using Water and Polymer Solutions", M.Eng. Thesis, McMaster University, (1974).
23.	Lee, S. W., "An Experimental Study of the Hydrodynamic Suspension of Cylinders in a Vertical Pipeline", M.Eng. Thesis, McMaster University, (1974).
24 .	Latto, B. and Lee, S. W., "The Drag and Pressure Drops for Hydrodynamically Suspended Cylinders in a Vertical Tube With and Without Polymer Addition", Can. J. Chem. Eng. <u>56</u> , 304-309, (1978).
25.	Lazarus, J. H. and Kilner, F. A., "Incipient Motion of Solid Capsules in Pipeline", Hydrotransport 1, Paper C3, Sept. (1970).
26.	Jensen, E. J., "Capsule Pipelining - The System and its Potential", Hydrotransport 3, Paper Gl, May (1974).
27.	Duckworth, R. A. and Singh, G., "An Analytical Treatment of the Flow Through an Annular Channel", Hydrotransport 3, Paper G2, May (1974).
28.	Ellis, H. S., "The Effect of the Density of Cylindrical Capsules on the Pressure Gradient in Capsule Pipelines", Hydrotransport 3, Paper G3, May (1974).
29.	Lazarus, J. H., "Power Optimization of Hydraulic Trans- port of Solid Capsules", Hydrotransport 3, Paper G4, May (1974).
30.	Kruyer, J., "Friction and Surface Roughness Effects in Capsule Pipelines", Hydrotransport 3, Paper G5, May (1974).
31.	Kruyer, J. and Ellis, H. S., "Predicting the Required Liquid Throughput from the Capsule Velocity and Capsule Pressure Gradient in Capsule Pipelines", Can. J. Chem. Eng., <u>52</u> , 215-221, (1974).
32.	Ellis, H. S. and Kruyer, J., "Minimizing the Pressure Gradient in Capsule Pipelines", Can. J. Chem. Eng., <u>52</u> , 457-462, (1974).

.-

33. Latto, B. and Lai, A., "The Separation Angle for Spheres in a Pipeline", Proceedings of the 4th Biennial Symposium on Turbulence in Liquids, 302-311, (1975).

- 34. Button, B. L. and Ma, T. H., "Hydraulic Transport of Single Spheres in a Horizontal Pipe", J. Fluid Eng., Trans. ASME, 243-245, (1975).
- 35. Ellis, H. S., Kruyer, J. and Roehl, A. A., "The Hydrodynamics of Spherical Capsules", Can. J. Chem. Eng., <u>53</u>, 119-125, (1975).
- 36. Ellis, H. S., "An Analysis of the Lift-off of Pipeline Capsules", Hydrotransport 4, Paper Cl, (1975).
- 37. Kruyer, J. and White; L. M., "Hydrodynamics of the Design of a Capsule Pipeline", Hydrotransport 4, Paper C2, (1976).
- 38. Latto, B., Round, G.F. and Aly, S. L., "The Hydrodynamic Suspension of Sphere and Cylinder Trains in a Vertical Tube With and Without Polymer Addition", Hydrotransport 4, Paper C3, May (1976).
- 39. Lazarus, J. H., "Incipient Power Requirement for Capsule Pipelines", Hydrotransport 4, Paper C4, (1976).
- 40. Garg, V. K., "Capsule-Pipelining An Improved Theoretical Analysis", J. Fluid Eng., Transaction ASME, 763-771 (1977).
- Alnakeeb, H. A. R., "Drag Coefficient for Tethered Spheres in a Vertical Pipeline With and Without Polymer Addition", M.Eng. Thesis, McMaster University, (1977).
- 42. Van den Kroonenberg, H. H., "A Mathematical Model for Concentric Horizontal Capsule Transport", Can. J. Chem. Eng., 56, 538-543, (1978).
- 43. Chan, S. and Fung, D., Undergraduate Project Report, McMaster University, April (1979).
- 44. Streeter, V. L., "Fluid Mechanics", 5th Edition, McGraw-Hill.
- 45. Richhorn, R. and Small, S., "Experiments on the Lift and Drag of Spheres Suspended in a Poisenille Flow", J. Fluid Mech., V. 20, Pt. 3, 513-527, (1964).
- 46. White, F. M., "Vi<u>sco</u>us Fluid Flow", McGraw-Hill, (1974).
- 47. Schlichting, H., "Boundary-Layer Theory", McGraw-Hill, (1968).
- 48. "System Design Manual Part 3 Pipeline Design", Carrier Air Condition Company, Syracuse, New York.