ANODIC SECTIONING AND ION BOMBARDMENT ) B (

STUDIES WITH METALS




Nt

i

ANODIC SECTIONING AND IOb‘l) BOMBARDMENT -

' STUDIES WITH METALS

—— ' , ‘ by

MULK RAJ ARORA, B.,Tech.(Hpna.), M.Sc.

v 'A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requireméntq
for the degree

Doctor of Philosophy

. : McMaster University
APEbruary 1974

7
AR

A © MilkRaj Arora 1974




.

- DOCTCR OF PHILOSOPHY s T MCMAS'J.;ER UNIVERSITY

‘(Metallurgy and Materials Science) Hamilton, Ontario
TITLE:, Anodic Sectioning and Ion Bombardment Studies

with Metals

~AUTHOR: ' Mulk Raj Arora, B. Tech (I.I.T., Bombay)
M.Sc. (McMaster Unlver51ty)

'SUPERVISOR: Profeisdr R. Kelly
NUMBER OF PAGES: xviii, 260 A \§
SCOPE AND CONTENTS: T L \

In this dissertation, the principies of anodic sec-
tioning have been discussed and satisfactory anodic sectio-
ning methods have been developed.for V, Mo, Nb and Ta. In

addition, W has been reconsidered. It will emerge that the

use of suitable non-aqueous electrolftes permits the formation
4
of impurity-containing (dopad) anodic films which have ‘enhanced
' solubillty, .thus permitting anodic sectioning.

{ Thgpknesses of film-formed and metal-removed have

bean determined separataly using a conventiohal gravimetric
;methdg for anodizations at > 10 volts. In the thin-film region

ning small thicknesses, based
)

on ion—range-prbfiles, have been developed leading to a

Y”/(f 100 A), new methods of dete

sensitivity'which is suggested to be as good as, if.tot better
than, ellipsometry. )

~ The stoichiometry of the anodic films has been iﬁ- ‘
ferred from th;.thickness calibrations of metal-rémoved and
film-formed, and the matter has been further inveatigatéd for

V, Mo and W using reflectlon electron diffraction. The results

ii - ' | \



were that the films are V,0g, MoO, and WO, respectively,
Examination of as-formed films showed that,thiﬁ anodic films
on V, Mo, Ta and W are crystalline with likely stoichiome-

.

tries HGV‘Olz, Moo3, Ta205 and(WOB, whereas‘all thick films
.(a d also the thin,t%lmn on Nb) are umorpﬁoua in nature.
The sectionlgg methods déve10ped here have been
ed in de;drmining the rangas profiles of 5-40 keV KrBS
in polycrystalline metals and evidence is presented to show
that the stopping proéﬁsa involved the usual mixture of
random apd channeled ion trajeWtories.
Similar work on range profiles in'amorphopé anodic
films on V has uiao bean pursued with the main result being

‘ -
that ‘the film properties were found to vary as the bombard-

ment dose increased, The properties include solubility (de-

- creasead with dose), sputtering coefficient (dec;::uéd with

dose from 44 to 12 atoms/ion} and étoichiometry (progressed
from vzos to,V203 go Vo). "These results iuggest that all

ion bombafdment work with pxiddi_must be accompanied by - [“
structural investigation, and:in"particulnr makes suspect N
acme of the ﬁrevioun”work on,upﬁt;qrinq coefticiéntl, leéCial-'

WO, and TiO,.

ly that with szo 3 9
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\ ‘ CHAPTER 1
INTRODUCTION

The pionéen work of Gﬁnthekschﬁlze and Betz (1537)
initiateq much of the presen£ d .iﬁterest in the formation
of anodic films.r Such films have been used extensively in
the capacitor industry for over fifty years; with other
important es being in micrqpircuitry chLean, 1960) and
in thin-film technology (Wilcox et al., 1960). More recent-

ly, major indirect uses have emerged for anodic films in

the fields of ion-implantation, radiation damage, low-
temperature diffusion, etc. Thesé new ﬁses all centre around -
the possibility of ancodic sectioning.

A great amount of work is being carried out on ios-
implantafion of metals and semiconductors. A major. problem
in such studies is £hat a detailed kndwledge of the depth
distribution of the ions is required. For ekample, with im-
. Planted semiconductors the debth distribution directly deter-
minés the junction depth (Rj), peak impurity concentration depth
‘(Rp), and base width (w) (Dearn;ley, 1970) as shown schema-
tically in figure 1-1, and indirectly determines the depth
of‘amorphtzatiqp (Lam and Kallx, 1970). A more fundamental
reason for neasuriﬂg dep£h di#kributions of iqns is to provide
4accurate experimantal data to test the theoretical predictions

of such groups as those of Lindhard or Sigmund or Winterbon

!

1 >

H
1



| N

depth, x -

Fig. 1-1 Representative depth distribution of
dopant for an initially channeled ion

beam. corresponds to the peak dopant
concentration, R:. to the depth at which
the junction i ted and 'w' is the
base width,

on the slowing down behaviour of ions in soliés. However,
in the energy range below 1 MeV, experimental data have
until now been obtainable only with a limited number of
target materials. This is mainly due to the difficulties

- e
involved in accurately measuring the extremely small
depths of penétration: for example, the projected mean range

of 40 keV As ions in silicon, according to the LSS theory
(Lindhard, Scharff and Schigtt, 1963), is about 271 A

{Fohnson anMd Gibbons, 1970).

A closeiy related problem 1s that of determining
diffusion profiles under extreme conditions involving small
thicknesses, For ex&mple, the seif4diffuaion/coefficients
in the bcc metals Ti, Nb, U and Zr have beeﬁ found to have
two components (Leclhirﬁ, 1965) as shown in figure 1-2. 1In
the case of another bcc metal V, Lundy et al.(1964) and‘

Peart (1965) seem to disagree on the extent of the ancmaly -

=& substrate doping level
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at,lower‘temperatures (< 1500°C) though Lundy et al. regard
\_//the;r results onlé as_being preliminary. There has there-

fore been recent intereat‘in extending diffusion measurements
\; th vanadium and other 4;; metals to the lowest'possible
tgmperatures (Pawel and Lundy, 1965), thench in using an
ejtremely precise sectioning technique. As example for
comparing theivarious methods conventionally empldyed to
determine self—diffusion.coefficients, use of lathe sectioning
permits measurements of D down to about 10 13 cmz/sec,_
chemical etching enables one to go to about 10-15 - 10"16
cm?/sec,whereas anodic sectioning (where posgible) permits
méasurements to about 10”18 _ 10717 éhz/sec. In addition,

Pawel and Lundy (1965) point out that when measurements are

made using polycrystalline specimens, the concentration pro-
file due to lattice diffusion is restricted to a rather
shallow zone, and the "tails" of these curves entirely re-
.flect the behaviour of the.short-circuiting paths, as shown in
figure 1-3.  ghus, according to these authors, the high
sensitivity of anodic sectioning can be utilized to study the
charagteristics‘o! lattice diffusion in the near suréﬁce
region at low temperatures. The present work will be seen
to open up this possibility !og a total of four previously
unstudiable bcc metals (V; Nb, Ta, Mo}, Qith_only W being
previpualy étudiablq.\

, Tﬁe previous statement could .perhaps be qualified

b )

in that both Nb and Ta allowed the mechanical stripping of !
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Fig. 1-3 Activity profiles f
polycrystalline Ta
and Lundy, 1965)
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or diffusion of Nb,s into mono- and
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paE)

anodic films (Pawel, 1965). Thia-procedure is fairly cumber-
- some, however, and in addition falls for films thinner than
about 200 i. Moreover, Nb permitted an imperfect form of
anodic sectioning (Lam, 1971). This imperfection 1ay in the
stripping step as shown in figqure l 4. Indeed, such stripping
behaviour is typical with any unperfected form of anodic
sectioning and hence is the .type of result that formed one
of the major experimental hurqlen in the present work.

7_;n 8till other work, anomalous nearfsuiface diffusion
behaviour has been detected for noble metals (Styris and
Tomizuka, 1563; Mortlock, 1968; Lundy and‘Padgett, 1968)

such that the impurity diffusion rate in the surface region

(0.2-0.5 u, was found to be roughly one thousandth of thnt in
the bulk -material. Results obtained for.cobalt_in gold and
nickel in gold are shown in figures 1-5 and 1-6.: Only at suf-
ficiently large depths are the diffusion rates fnund to be.normal.
Mortlock (196%3) has tentatively attributed such anomalous
behaviour to the Gibbs adsorption effect but the nature of

——

forces behind such behaviour is still not known exactly.
Simil;r anomnly is also expected to occur close to internal
su}faces such as grain boundaries. It is perhaps worth
noting that, in spite of their rather different behaviours~
in gold, both cobalt and nickel have virtually the same
Goldschmidt atomic diameter so that elastic forces alone can-
not account for the results. Clearly, much more work needs
to be done in order to adequately explain the observations.
\&i\,i_\\l ,

/
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Since the depths involved in such studies will be only about
0.2-0.5 u, sectioning techniques which permit the removal

: N *
of thin (< 100 A) uniform layers from the surfaces of metals

have to be developed. (

' Several possibilities have been explored with a vieQw
‘to removing thin uniform films from the surfaces of aolids in
a precise ang reEFoducible manner based on phfsical, chemical,
and electrochemical means. For example, Andersen and S¢rénsen
(1969) have demonstrated that well-defined halide films can
be formed and stripped from silver and copger. Vibratory
polishing (Whitton, 1965) and sputtering (Kelly, 1968a) are

\ - il
nearly universally applicable. However, the most sensitive
: \ ¢

sectioning method probably still remains that based on the

use of anodic films, namaly:}hat generally known as anodic

sectioning. ‘

In anodic sectioning, use is made of the fact‘that
when anodic oxidation iaAéar;ied out at constant voltage,
then within a few minutes the £ilm thickness approaches an
almost constant value and the ragulting film is extremely
uniform (Charlesby, '1951). If such films can be removed
without affecting the substrate, then it should be possible to
remove uniform layers of metal, with thicknesses down to
10-20 A. Whitton (1969), while discussing the preparation of
completely damage-free target surfaces for heavy=-ion channé-l
ling, proton scattering etc., conéluded ihat of all the |

meth avyajilable for target preparation, such as mechanical

N



s\ * | o n
. | {
polishing, spark erosion, acia etching, vibratory;polihhinj,
electropolishing, and anodic soctioning,'phe last one, name-
ly anodic sectioning, produces perhaps the ﬁost dhmage free
a?d uniform surface. The only éroblem with anodic sqptiéning

is that each substance has to be investigated separately and -
the mathod has till now been fully per¥ected only for two

metala [Al (Davies et al, 1960) and W (HcCargo et al, 1963)])

and partly perfected for only a further five [Ag (Lam et al,
1372a), Au (Whitton and Davies, 1964), Cu (Lam et al, 1972b). -
Nb (Lam, 1971) and Si (Schmidt and Michel, .1957; Dubrovskii |
et al., 1962, Wilkins, 1968)]:

In this Qissertatiéh; the princiﬁles of perfect

anodic sectioning will be described for the first time for

. four new metals (V, Mo, Nb and Ta) and, in addition, impfﬁve-
ments will be suggeited for the sectioning of W.: It will
emerge that, with a suitable choice of electrolyte, doped
anodic films (and not pura oxides) may be formed on metals
which have deairable chemical properties, thus leading lo
anodic sectioning. It will also be seen. that anodic sectioning.
whose main advantage over other. methods lies in the possibility ‘
of its extreme resolution, normally does not yield satisfac-

tory results in the thin-film range (< 100 i) using cén- .

é

ventiohal methods of calibration. To ovnrcoﬁn such difficul-
§0 of determining small thicknenses, based

ties, new techniqu
on ion depth distributionl, have been developed, leading to
‘a resolution which is suggested to be as good as, if not

A
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©  better than, that of ellipsometry.

Thefﬁh;ure of the ancdic films on V, Mo and W has been
inferred from the metal and film thickness data and has been e
further investigated tsing reflection—eﬁectron-diffraction
@icrosccby. Racher unexnected results have been obtained for
the composition of the vacuum he&t-treated anodic films of

V and Mo, hamely that- the stoichiometries are Vge 3. and Hoo2

A knowledge of the composition of these. films, besides permit-
ting the estim&tion of anodizing efficiency, is cldeely relevant
to the synthesis of oxides with inteneeting electrical proper-
ties but which cannot be formed convenientlxxby other means.

As another major topic, the use of sectioning teCh-
niques is described in connpction with determining the depth
distributions of energetic K83 ions in V,.ﬁo W, Nb and Ta
at high doses, and the effect of prebombarding specimens with
inactive Kr ions -on the distribution profiles has been studied
in the 5-40 keV_range. The gmin result here was that all
behaviour was as expected, i.e., the qtcpping process in-
volved the usual mixture of random &7id channeled trajectories)
this result is similar to that obtained for W by other workers
. but is, in contrast, different from that obtained for "alkali
halides which show too much channeling. Another, and a more

novel, topic studied concerne-fhe_rather elusive quantity,

the sputtering coefficient at low doses. This has been esti-
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mated using both the structural. information and the depth
distribution profiles and a rather startling result of 's’

lying ih the region 4419 atoms/ion has been observed.

LY

'.Due to the interdiacipiinary nature of this investi-
) [}

E gation, a geﬁeral review of the presént state oflknowledge
is giveh separately for each of -the following topics: the
anodic ogidatidn of metals, structure of anodig films, and
range profiles of energetic ions in solids. 1In the next

cﬁapter, therefore, we start with a review of éhe'anodic .7

oxidation of metals.

e - - -



CHAPTER 2

'ANODIC OXIDATION

PART I - CKGROQUND
. BACKGRO

Most metals are thermodynamically unstahle at room
.yemperature in contact with oxygen at atmospheric partial
pressure and should kend'to form oxide until prevented by
~kinetic cdns;derations. This leads to oxide thicknessés of
about 50 i (Hasa, 1947; 1957). 1If the oxide~coated metal
is made ‘the anode of an electrolytic cell, then if the -
oxide is a poor electronic conductor and the electrolyte

does not attack the oxide, the applied voltage sets up an

.electrostatic field in the oxide (or increases the already
éxiating field) and prodyces a continued growth of the film
by causing mefal and/or oxygen ions to migrate through the
film. Thus, the growth of anodic film is basically a problem
in the ionic éonduc£ivity of oxides aﬁ“ﬁigh fields combined
with domplications due to the processé% occurring at the !
metal/oxide and oxide/éleétrolyte~interfacea. Many of the

‘ phenomena were established s;mi-quantitatively by Gunther-
schnlze and Betz (1937), though during the past forty years,
our understanding of anodic films has advanced greatly.

Since excellent reviews already exist on the subject [Hoar,

. .

14
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1959; Young, 1961; Vermilyea, 1963; Dignam, 1972, etc.],

a ccmpiete review is not attempted for individual metals and
only some of the classical theories of anodic oxidation are
.discussed. Some additional relevant information sych as

the mechaqism of film growth and parameters that li;it the
final f}lm thickness are also discussed. All the classical
theories of anodic oxidation are based on the assumption of

an idealized.\homogeneous, and a parallel-sided film which

is.free.from flaws.

2.1.1 Verwey's Model:

Verwey (1935) madé)the following assumptions addi-

tional to those stated above: °

(i) Metal ions at iﬂterstitiai sites are the mobile entity.
(This is now known to be a highly restrictive assump-
tion and will be discussed later.)

(ii) All intersti§161 ions are equivalently placed as
regards their ease of movement. (This is again only
an approximation since‘there must be a range of site
‘ty;es, jump distances, and potential barriers due to
the amorphous nature of ﬁosﬁ anodic oxides.)

(1ii) No interstitial ion blocks the path of anptﬁer.
(iv) The concentration of mobile species cofreséonds to

electron?dirality of the bulk