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This thesis is con;erned with establishing an
improved theoretical and experimental descripéipn of' the
steady state éontrolled solidification of  dilute hinar?
alloys.® In the present theory, a méthepatical model ié‘
developed 'to describe an e*perimentai situation in which
alloy solidification is c;ntrolled by solute diffusion in
the=1iqpia phase. The theory gives a ﬁnique solution of
the soiute dif fusion equation.and preéicts the variation
of the thermqgdynamic properties aE;the solid-liquid inter-
face, particularly at the ‘dendrite tip, as a functién of
material constants and growth parameters. An expérimental
program wag Jdeveloped to investigate the dependenée on the
growth parameters-of the morphological development of the

[4

interface and the concentration vapiations at the interface
. . . b
of an Fe-8 wt, % Ni alloy. Experimental results for this

. , ,
particular system can be successfully rationalized by the//,//,/x,,
approximate solution of the present theory, /_,_///‘
.-’/-
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_CHAPTER 1

INTRODUCTION

The solidification of moiten metals is one ef the
most important processes in the production of metals; and/
one which is often considered Eo_mark-the boundary between
extractivgrmetallurqy and physicél ﬁetallurgy. Solidification
processes may be classified as single phase solidification
and poly-phase solidification according to the number of
phases'being produced, and as controlled solidificétion
and unconstrained solidifiéation aécording to ihq conditions
externally imposed. | )

L s
The present work is mainly concerned with the /-

- singfe phase controlled solidification of dilute binary: ’//

#

alloys. This process has been studied for a long period

fied many problems of the process (e.g. the marginal insta-

bility of a ﬁlanar intarfﬁce. microseqregation attending

‘dendritic growth, etc.) many important problems remain still

unsolved or only partially solved. One of these is the

depéndence of the dendrite tip bropcrtiel on growth parameters.
| The purpose of the present study ig to provide a

& -

LY




I¢

more concrete Qnafysis, theoretically\hnd experimentally,

. of the steady state single phase controlled sqiidification,
wit@ the ultimate view of prédicting the cell or dendrite tip

O .

concaﬁtration and curvature as a function of materials
constants and the fixed and controllable grc@th parameters.
A . The thesis can sc conveniently d}vided into four
parts; In the first part, a number of previous studies of
the single phase solidification are.reviewed. The second

part is the formulation and analysis of the diffustion

controlléd steady state bina;y alloy solidification as a

boundary value problem. Our treatment falls short of the
ultimaﬁe achievément by requiring some semi-empirical input,
a requirement that is typical of complex free boundary
problem; which‘h?vefone qumore internal dégreés of freedom,.
An approximate solution to thiq,proble& is offered ﬁhrouqh

a shape assumption, the geﬁeral principles of irreversible

- thermodynami;s and an empirical rule for‘the dendrite
‘spacing vS. gr0wth'veloéity. The third part describes the
experimental study af some iron base alloxgﬁ using the
technique of controlled unidirgétional sofldification.
‘Spccific contributions are the observations of the effects '

.. . . . ..
of{ temperature gradient and growth velocity, each as a-

separate variable, on the growth morphology and micro-
scgregation, and of the,profoundheffcct‘of crystal
“structure on the homogenization kinetics of the micro-

segregation. In the final part, a quantitative

discussion on the present theory and experimental .results

r~




is presented. It is found that,thé present experimental
results ar€ in reasonable agreemgnt with the values
prédiqted by the. present theory. .~

| It is expected that the results of the present
theor%tical and experimental invesgigations will provide

a clearer understanding of the fundameptal aspects of
alloy solidification processes and contribute airectly to
the casting industfy as a necessary starting point for an
improved microsegregation theory applicable to directional

solidification.
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CHAPTER 2

PREVIOUS WORK
In this chapter, some représentative previous work

on single phaSevsblidification will'be briefly reviewed.

2.1 Controlled Sclidification ‘

With the term "controlled solidification", we
‘defiﬁe a solidification process in which a positivé tempera-
ﬁure gradient and a growth velocity are externally imposgd
as growth conditions., Under these conditiong, the liquid-
solid interface 5f a pure. metallic melt is always planar. .
-FbF a binary alloy melt, the interface may be planar,
cel}ula:.or cellular dendritic depending on the materials
constants and growéh'condiiions. .
All the early theoretical work on'morphofsay )
concerns itself with the margin between a planar and non-
planar interface, i.e. with 'm;rginal instability®™. The
first'quéntitative analysis of this problem was established
Qy Tiller etial‘l). The redistribution of solute ahead of
‘a planar inte;face during transient and steady state solidi-
[ication.was'calculated,'and from this, the condition for
.the onset of constitutional superqooling ahead of a planar

interface was obtained,ai-

G -mc,(l-ky)

v © 5 %3 - : : i o (1)
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where G is the temperature gradiept in the liquid, v is
the growth velocity, m is the liquidus slope, k, is the
equilibrium distribution coefficieqt; Ce is the initial
bwlkk concentration and‘D 1s ther diffusion caefficient'of
‘solute 1n the liguid. - For a decade, this condition was
considered the sole criterion for thé'instability ofbé \\.
moving planar intérfage and was shown to be in ‘fairly good
‘agreement with most experiments. It should be noted that
séme other physical problems ;ssociéted with the iiquidr
solid interface, for instance the capillarity effect
(associaﬁed with non-planar interfaﬁes). the kinetic under-
cooling at' a moving interface, thermal conductivities.af
both phases, etc., have no} begn-accqunted for in the
criterion. ' ' _ . _ v

-; Mullins and Sekerka applied’'linear perturbation
theory to this problem in their already clqssic work on.the'
morphological stability of a spherical interface (2) and a .
planar interface(3)r. of particular-impbrtﬁnce of thé work - «
is the fact that the capillarity effect has been includgd | 4
_and its stabilizing effect quaﬁtified.. A number of extensions
and applications of the theory'félléwed:

Tarshis and Tiklef(‘) ;eexamined mprphologicql
stability by considering the effect of'polecular attachment
kinetics. They found a\siynificant atabilizing effect of
slow kincﬁics.

ghewaéz(S) has applied Stabflity thdory to ‘solid-
_solid_transfor*ﬁtibns ;nd shoyn that low 1n§f:£acial nobilaty

-and transformation stresués stabi}ize the irniterface, whereas

A

I
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impurities enhance, the instability.

’ cahn(®) has investigated the. effect of slightly
anisotropic surface tension and interface kinetics of a
growing particle, and found that the anisotropic surface
;ensibn does not result in a stable particle at any size
ana iha\interface kinetics stabilizes the particle‘until_it
reaches a size which marks the transition from inter face
kinetics control to diffusion control.

An extension of the stability theory to dilute

ternary alloy solidification has been established by toates
(7)

’

and Purdy It was démonstrated that multicomponent

diffuqhonal interaction may enhance stability or instability
depending on tﬁé shape of liquidus surface and the sign of
thérmodynamic interaction parameters, whereas in binary'alloy
the solute gradient always promotes instability.

- Sekerka's. recent paper "Morphological stability"(al

may be tﬁe Lést review of linear perturbation theory;'bith
a Eull account of stabilizing and destabilizing factors.

The m@ih fruits of linear theory aré the determi-
nation éf marginaldptabllity and the deterﬁina;ion of the -
range of the waveleﬁ th of gfowing iﬁitial_perturbat;ons. If
the spatial patte;n of the gto;ing perturbation is to be _

- predicted, if ‘the effect of lafge perturbation is to be

estimated, or if the time lependent evolution of the shape-

of a-quwing initial pérturbation is to be estimated, then

nonlinear terms must be taken into account. A ndnlinear
stability analysis has been established by Wollkind and

1(9)
']

Sege . They determined an instability criterion as a

function of wavelength and amplitude of initial perturbations,




for a given experimental condition, while linear theory
predicts an instability criterion as a funétiéh of wavelength
only.

A quantiggtive study on the non-planar interface
morphology and the solute redistribution in the'liquid has
been attempted by Bolling and Tiller(lo). This work has
shown the free boundary character of the system, and from
this.limitation several approximate models have been
deve10ped(ll'12)to predict some features of the solute
segregation in rms of growth conditions éhé ma}erials
constants. ., These models are based on rather restrictive
~assumptions about interface éeometry.

Experimental studies of controlled solidification
have been conducted byrﬁany investigators. .Chalmérg and
hils coworkers have initiated the first gquantitative experifT
mental and theoreqical studies of this problem, sepprating
the growth velocity and the temperatﬁre gradient, Most of
thelr work is eiegantly summarized in Chalmer's book ”Priﬁqrglés

~
of Solidification'(l3), ' :

»

Through -a series of experimental studies of ferrous
and nonférrous alloys, Flemings and his coworkers (14-17)
h;ve.attempted go describe the solute redistribution during
directional dendritic solidification using a simplified modél'
~which is based on local equilibr%pﬂ at the interface, gggligible
undercooling of the dendrite tips, mass conservatioh. coﬁplete
mixing in the liquid and partial diffusional homogenization

in the solid. Although this model does not yield detailed




i?sight into the physics of a solidification process, it
constitutes a good basis for engineering practise.

| ’ Various aspggts of the unidirectional solidifi- g
cation of ferrous and nonferrous. alloys, as well as their
mechanical properties have‘been‘investigated by Weinberg

et a1ll8:19)

It has been demonstrated that experimehtally
determined soldte distributions across dendrites are in
good agreement with calculated profiles based cn complete
mixing in the liquid or i ffusional transport of solute in
the liquid, dependinélon the system chosen.

- Sharp dnd Hellawell (2021} investigated the soluge
distributions ahead of non-planar interfacgs which are
developed under well defined growth velocities and tempera-
" ture gradien‘ts. _ They 'found the undercooling associate.
with lnterface curvature is very small for the conventional
range of steady state solidification eiberiments of metallic
system. ‘

Direct observation of growth morphoioqy during the
solidification of molten metals is unfortunately difficult
due to the fact that metals are opadde. To avoié_this
digficultz, many ind;rect observation teéhpiques have been
developédt: Of apecial interest is the decanting technique

employed by Chalmers et al‘lJ’. Jackson et a1‘22'23) have

Tt

used some transparent organic compounds which have small

entropies of melting and solidify like metals.

- o A
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. 2.2 Unconstrained Solidification

The'solieification which occurs in an initially
uniformly supercooled melt is defined in the present work
as unconstrained solidification. Under this condi:ion, the
temperatuire gradient at the interface is everywhere negative.
Thus the heat sink is the melt itseif,and the resulting
dendrites may grow in any direction. ‘ |

The first successful mathematical-treatment‘of
this system was due to Ivantsov{(24)  He solved the heat
.balance equation at tﬁe ;nterface which simuléaneously
satisfies the thermal diffusion equation ;h the liquid,
leading to the Failowing very- important conclusion: The
surface of a linearly growing needle-lige.crystal is not
isothermai if'it iéxother than a paraboloid of revolution.

(25)

Horvay and Cahn extended Ivantsov's éhalysis to more

generalized shapes. The limitation of this‘theory was the
unattalnabllxty of a unique solutlon of the diffusion
equation.. Thus the separate determxnatlon of growth velocxty

and tip radx:i was impossible.

Te n(26) ang, independently, Bolling and Tiller{(27)

have incorporated the nonisothermal character of a moving °
non-planar interface due to cufvatuie (Gibbs-Thomson effect)
and kinetic effects. Introducxng thi- nonxlothernal character
of the Lnterface and the condition ot laxihun qrowth velocity
(which had been 1n1tially proposed’ by zener {28)), the one

internal degree of freedom in Ivantsov's solutzon has been
climinated, i.e. a unique growth velocity andfcorrelpondinq
nadius of tip curvature for ‘a given undercooling have been

. obfained. In his, mathematical operation, Temkin
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o

simplified the problem to &;e Laplace equation in moving
parabolic coordinates using the fact that the Peclet number

is small compared with unity.

<

Kétler and Tarshis(zg) have refined Temkin's
analysis restoring one of the péglected terms in Temkin's
analysis. A mathematically complete solution has been.
recently obtained by Holzmann(3q) and Trivedi(31l), rThe
'soluation obtained is-complete from a mathemat:cal point of
view. However, the problem was férmulate@ on the basis of
the shape\iemainiﬁg paraboloidal, which is no longer true
as soon as we take the nonisothermal character into account.

Hillig(32) has reexamined the steady stﬁte growth

shape using a self-consistent method. His analysis did not

usually- lead to a unique shape, which may imply the
- absence of a true steady state solution.

" The experimentally observed dendrite shape of ﬁure
tin has been shown to be approximately parabolic(33)- The
growth velocity as a funcfion of melt ﬁndercooling has been
experimentally observed for pure tin(3‘), white phésphorﬁus(3sl

L]

and others. \Shese results are reported to be in reasonable "
agreement with.theoretical predictions, althougﬁ there ‘appear
 some disérep;ncies in the magnitudes of some physical'éara-'
meters of the mat;r;all usea(31) - |

| The_solidi(icatxpn of the central equiaxed region
of motal castings may be one practical_exampie of unconstrained
solidxfication. Among a number of experiments on this sy;tem.

(36)

the works of Bickerud and Chalmers , and Doherty and Feest (37}

/

_ \
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are of special interest. By thermal analysis experiments,

| they have estimated the temperature of the growing dendrite
)tips. This temperature is much lower than the equilibrium
-liquidus temperature of the initial bulk concentration.
Fro% this resu;t, they have concludedrthgt there exists a
significant solute build-up ahead of the dendrite tips.

This conclusion indicates that the microsegregation mode] (14719

<

_ which assumes the tip concentration to be kocm nhbuld ba

considered as a first approximation only.

-~




CHAPTER 3

THEORY P

It i# noted in the previous cﬁapter that among a
number of worké-on single phase'solidification, few research
programs are conéerned with the theoretical description of
the non-planar interface morphology'dnd assoéiated solute
redistribution which occur under most experimentél conditions
of single phase controlled solidification. In this chaptér,
a mathematical analysis is given in order to explain more
fully the physical and thermodynamic propgrties of the
solidification syﬁtem with a moving non-planar interfacé,
particularly around the tip.

3.1 Statement of the Problem .

Consider a dilute binary alloy rod partially melted
in a furnace which has a positive temperature gradient (Fig.
1). "The two phases, solid and liquid, are assumed to be
separated by a Continuous_boundary. the interd&ce.' When
the furnace is moving up with a cbnqiant;velocit& towgrdp
the direction of the positive t?.perature gradient, éhe .
interface will move up constantly except for the‘initial
transient period so that the llquid sé}idifiel‘vith a
constant rate, that is, a first order ﬁhasé'éranofornation,

liquid+solid is in proqfeis under steady state. The Qhostion

v

| ¥
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is: What happens at the interface and what will be the:
resulting structure?‘-Although much has been spoken to the
question by previous investigators (the marginal stability

-

of a planar interface, solute field ahead of-a planar inter-
face, empirical theory of microsegregation, etc.), many
important problems, particularly when the interface is non-

planar, remain only partially solved. Among these ‘are the

curvature and concentration of the tip of a non-planar inter-

face. We shall undertake a theoretical description of this T

—
&
.

problem.

L e

‘By the thermodynamic definition of the first order
phase transition in a multicompanent syétem, the molar Gibbs

functlon is continuous but its derlvatives with respect to

+

temperature and pressure are discontlnuous at the lnterface(38)

~Thus a solldlflcatlon process rnvolves the rearrangement of
L} -

atoms, the change oﬁ composltxon, enthalpy and volume at the

-

interface. Furthqrmore a real solidificatlon process is an

v

irreversible process as long as some eXternal eonstraints “

-P"‘

are maintained, because it 1: impoaaible to traveree a locus

sy R

" of constant entropy in the thermodynamic configuration spaceauiﬂ

PRI T el
RN

Therefore! a complete ‘description of a solidification process

e
oyl

SRS Y e

must involve the kinetics of atomic rearrengementijthe trans- .

s ),'u-'_‘ﬂ' v

port of mass and heat, mass convection by volume change and .

P
Lot

¥ ot
b, SRR

other principles uhxch control the irreverlible process.
To desciibe the given experimental situatxon, we
consxder a model with the following Allunptions.

(i) * The temperature'gradient at the interface is held
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constarit by coupling the solidification sysdtem
to a large thermal reservoir. This assumption
&

Y
can be considered to be reascnable from the fact

that % << 1, where D is the solute diffusion
th

coefficient in the liquid and Dih is the thermal
diffusivity in the liquid.

{11) The convectional mass transport is negligible.
This condition can be approximately met thfough

an appropriate geometrical arrangement of the

a
N -

system.

(iii)- - Diffusion in the solid is negligible. This con-
dition will be rcexamined aftér we obtain the T
solution.

(iv) Solute concentration in the liquid is small.

fv) The extent of the liquid phase is infinite.

(Qi) The effect of interface attachment kinetics is
nogligible.‘ . : *

° - "

Under these assumptiohs, the system can be

considered to be mass diffusion controlled in éhé liquid.
Thus the field equation is the mass diffusion équatibn an; a
. comblete analysis of the sfsteu must be determined bf the
complete solution of thc di:fusion equation which mﬁss also

satisfy all the inpoied boundary conditions. A difficulty

i
i
};
|
l

1n the present problem arises from our lack of knowledgo
concerning the shape and- location of the boundaty itlelf

wh;ch‘nust be found as a part of the solution. We have

BN
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thus to deal with what is commonly referred to as a "free

boundary problem",(39'40)

which simply means a problem whose
solution is defined over a domain that is not given in
~advance. This problem is far too difficult to treat in a,

,satisfactdry way, unless the boundary conditions are very

simple (fo ample, one dimensional melting of semi-

infinite d with constant body and surface’ temperatures—

problem(40)).

. the Stefak
- In our boundary value problem, one of the bound;fy
conéitionsv the mass conservation conditloh qt the inténf
'facg, is non-linear and tﬁis is a.verytéomplex boundary
coéaifion for an arbitrary interface shape. To make the
problem mathematically tractable, we introduce a partially
Afree shape (if the shape is not frée.at-all, the problem
'becomes-frivial), a paraboloid of revolutiohlwhose tip .

' curvature, poaition, and boundary limit {(hypothetical
spacingl are free. ".This shape aasuﬁption is taken due
solely to ﬁhefmathematical simplicity and the fact that

e A
experimentally observed<3hape is very .close to a paraboloid

-

of revolution near the tip. ‘ '
_ For the mathematical simplicity, we°deal with a

single dendrite. This implies that the interaction of mass

v N

diffusion fields by an array of true dendrites is ignored.
This effect can be qhite appreciable ¥ar behind the tip;

however, it is assumed that the interaction does not affect

the tip properties. C
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. -
It should be noted that our model involves three

~undeterpined parameters, the radius of tip curvature, p, the

3 .
' lposition of e interface or the tip concentration, and

ctip'
the boundary limit, X, (Fig. 2). Thus at least three extra
conditions are necessary to obtain a unique solution of the
field equation. One of the conditions is clearly the extra
physical boundary condition at the interface, the mass

13
' conservation condition at the interface. The second con-

dition is the postulated thermodynamic variational principle,
a stochastic component which is always present in nature.
The third condition needed to determine the boundgrf\limit
obtains from a self-consistent method based on our émpirical
knowledge of dendrife spaciﬁgs.
‘ Based on our model, we now wish to attﬁck the
problem with the followiﬁg algorithm: °
(i} dé;cribe the mass diffusion equation‘and boundary
conditions in'moviﬁg p&fabolic coordinates.
(ii) obtain ﬁhe solution of the diffusion equation té
thé free boundary conditions
(ii1) apply the mass conservation condition
(iv) ‘apply the postuluted thermodynamic variational
pringiple and the ehpifical rule for ghe spacing
to determine the boundary liqif and free pafameters.
which leads to a unique‘solution‘of the diffusion
equation. a |

Two specific ‘contributions are given in the present work:

(i) _ Ivantsov obtained the solution of the thermal
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.diffusion equation to the isothermal interfacé )
boundary conditions for the paraboloidal shape,
and Temkin, Trivedi, and Holzmann presented the
solution of the diffusion equation to the non-
isothermal interface boun@ary coﬁditions due to
curvature and kinetic effgéts._ We give the solution
A \
of the diffusion equation, &nde: the same asgump-
' tion of sﬁape preservation, to the non-isothermal
interface boundary conditions due to cyrvature
and kinetic effects and the imposed temperature
gradient, -
Jii) In previous work, the {nﬁérnal degree of freedom
was eliminated by optimizing a particular thermo-
dynamic or physical parameter on a particular point
of ;hé interface. We gmplo} the postulated thermo-' .;
dynamic function and we consider the entire volume,
of the éystem. . | ,/’/i
y

3.2 Diffusion Equation

From the phase diagram of a dilute Qinary alloy, the

equilibrium distribution coefficient, k.. is defined as °

Kk = 5, . - L o(2)
CL‘ -

where Co and c, are the equilibrium solute concentrgtions'

L

of solid and liquid at the planar interface, respectively.

wWhen ko>1g %Plvent rejection is expeqted for the solidifi-
‘.__ 5 - : -n

cation to proceed, whereas solute rejection is expected when

kofl-;é;
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;The‘present theory deals with the case kg <{,and utilizes the -
- assumption that k, is a constant. k, is not necessarily a
‘constant far a given system, however it is often nearly con-
stant over a.wide range of dilute composition.

The redistribution of solute in the liquid phase
rmuét obey the diffusion equation in our convectionless‘

 experimental system. In the fixed cartesian coordinates

(X,Y,2), the diffusion equation is

g—g— (X,Y,2,t) = D 2c(X,Y,2,t), (3) . .

~

where ¢ is the solute cohcentration, t is the time and
D is the solute diffusion coefficient in the iiquid.

For the uniformly moving cartesian coordinates
{x,y,2z) with a constant velocity v whose motion is in the

' positive 2z direction, Eq.(3) has the- time independeht\form
‘Vzc(x y.2) + % ;E(x zf = 0 . ' f;)
ree D 9z 'yf '

In place of ¢, we introduce a, new variable

Q(x,y.z) = c{x,y,2z2) - c, - - "‘ (5)
\ _ s .
“Then” the ‘'diffusion equation (4) has the form : -
. s,
Viaix,y,2) + § Fe(x,y,z) = 0 . : (6)

T Tc make the problem more readily soluble for the
given boundary‘constraints, we introduce the upiformly
moving parabolic coordinat(s (a,8,9) which are related to

L 4

the moving cartesian coordinates by (Fig. 3)




X = pa B coseg

Yy p a B sing | {, o ‘ (7}

p(a®- 87) |,

z
where p is the radius of tip curvature of the paraboloid
= 1, a and B are dimensionless parabolic coofdinates and ¢
" is the azimuthal angle. By the coordinate transformation
to the paraboli; coordinates, the diffusion equation (6}

has the form (see Appendix I)

i |

l 2 ) ) 2

et L0, 8, + (2 + ) La,8,9) + L Y(4,8,¢)
a®+B87 3q2 a D 3a 38?2

1 Ju '
+(B- -\Dé B)E'B'{U:BJ")]"‘ uzéz. g_;g_(u'ﬂ,?) = 0, {‘8)

With rotational symmetry, we finally obtain

2’y 1 au . 3%y 1 My w g
2(0c8') + (= "’ ZPQ)S-O.—A(G'B) + ﬁT (Q:B‘) + (E' = 2?8)5-‘51(3:_8) =0, -

Ja“ . @
19)
where p 18 defined by
vp : . '
P*" 3 . . (10)

'p is a dimensioﬁless'parameter and generally called the

mass Peclet number.
v

3.3 Boundary Conditions ) : ’

~

(i} Interface Temperature and Concentration

There are tproe additive effects which COntgibute

t3 the depression of the actual lntertaci.tenperatu:o below
. . \
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the equilibrium melting temperature of a pure solvent (12)

\ The temperature depression due to solute, ATS, is
[\ : .

given by

aT_ = -mc(1,8), : ; (1)

-where c(1,B8) is the solute concentration at the interface of
- 11&uid side.
The temperature depression due to the interfacial

energy (the Gibbs-Thomson effect), aT_, is
8T =T LY K, (12)

where Ty 1s the melting temperature of a pure solvent for a

planar interface, L is the latent heat of melting, Y is the

interfacial enerqgy and K is a geometrical factor defined by

dA . . ‘
K IV | ' (13)

»

Qhere A is the interfacial area and V is the volume encloéed‘
by A. For a monotonically curved interface, K is equivalent to
the mean curvature of the interfamer

It is further known that ihﬁerface attachmént
kinetics give an additional temperature depression as solidi-
fic&t%on is in progress. The relationship between the '

xinctic undercooling, AT _, and the growth velocity normal

k'’ ,
to the interface, vh,,follows the particgular kinetic law
that is pertinent. Three distinct types are_known‘%J): "For ]
an atomically rough interface,
Vo ATk. - \an\( (1{)'

A ' ¢
=

For the growth on a screw dislocation,
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vy = (aT) 2. | (15)

For the growth by the two dimensional nucleation mechanism

S
a ~

v, = e 8Tk , | (16)

where a 1s a constant.
1

-Metals with small entropies of melting usually

have a rough interface and-may follow the linear relation.

)

Linear growth kinetics can be represented by

v
n A :
AT, = — , (17)
k Uy :
where u, is the linear kinetic-coefficient.. ﬂ

Putting all our information together, the inter~
face temperature T(l,8) can be expressed as

T(1,8) = Ty - (AT, + 8T_ + 4T))

= Ty + mc(L,8) - T x - Vo .- - ae
Mo
From €q. (18) -
' 1 TpY v
(1,8) = = {T(1,8) = Ty + _M nl (19)
) [»4 ) m[ M K+uo]

-

From the imposed constant temperature gradient
T(1,8) = T_ - &4 Gog’, - (20)

where To = T(1,0), the undetermined tip temperature. The

By
normal velocity and mean curvature for the surface of a

41)
- paraboloid of revolution are given respectively by(

v '
- (21)
Vn (1+8%)0
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“and

_ 1 (2+87)

o) (1"‘82)3/2 - (22)
From Egs. (5}, (18), (19), (20), (21) and (22), it follows
that

u(l,B)

I

_ - _ _ Ll 2 ‘
(Ctip mu Co) my pB t

" T mY 3/2 _3/2 T )
* oo B % p ¢ py Y + LM 4 V)l ¢ pst) T
eL He

(23)

where Ceip = c(},O), the -undetermined solute‘concentfatibn
-at the tip.” The formal boundarf condition, Eq.{23), becomes

X lnapproprlate when c(l B8)31. It is considered, however, that
the system remains dilute to a sufficlently large value of 8

that the physical boundary condition around the dendrite tip

is adequhtely represented. : )

J

(ii) -Boundary Condition at Infinity

When a - =, u{(a,B) - -0 3 : {24)
Thlﬂ boundary condition xgnores the interaction
between neighbouring dendrxtes and this is the reason that
'thxs model does not predict any aspécts of the problem of
cooperative phenomena.  However, ;l stated in the previOQS‘
scition, we assume that. it can yield a reasonable description

of the dendrite iip properties.

(iii) Mass Balance at the Tip . =

¥

The. condition of mass conservation at the tip gives

-D 37 - c (l-ko)v ) | {25)
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,or expressing this in the parabolic coordinates (see Appendix
1)

dc
D
Ja

= c (k,—Llvo. (26}

a=1 tip
B=0

3.4 Solution of the Diffusion Equation

By the method of separation of variables, we obtain

the general solution of Eq.(9) (see Appendix II)

) .
* e P2 (n+l1,1,pa?) -

ufa,B) = L E_ ( P L_(p8?), (27)

n=o e”P u(n+l,1,p) n

where E_ are the arbitrary.coefficients, L, (x) are the

Laguerre polynomialsi42'46) defined by

= G - et alget et
) """(—l)"nl] (28)
~ (integral n)

and U(a,b,z) is the confluent hypergeometric function of the'
second #ind(’3). For b =.1, it has the logarithmic solution

of the form'

Ufa,l,z) = -1 M{a,l z)1n zZ+ E i:lEi: {y(a+r) - 2w(1+r)} .
1] r —(-'TI\ a ] r l\ r-ol(t:)i &l

| . 29
where [ (x) is ;hﬁjﬁanna function , Mla,l,2) is the con-

fluent hyperqeoméiric function of the first kindj‘J’

(44)
which
has the general form

L L S '

M(a,b,z) -'1+ % z + (°)2 :2+ veos * .
. ' (b)22! (b)nn.
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where'(al&\= 1

{31)

Ve

and Y (x) is the psi function (4474®) gefined by

L] ’ ) :

- I*(x) {32)
A ¢ .

In the expression, Eq.(27), we have taken account

of the ‘boundary condition at a = =,

3.5 calculation of the Series Coefficients E/

The arbitrary coefficients of the series, E have

nl

to be evaluated such that they satisfy the interface boundary

condiﬁion. t - ) Hﬁ\f
_ Putting a = 1 in Eq. (27), '

u(l,8) = I E_L(p8?). (33) -
n=0 b .

Eg. (33) has the form of the eigenfunction expansion of a
‘real function. If we assume the seriej/ponverges, then the
, .

coefficients can be evaluated from the orthogonality of the

Laguerre polynomials with an appfbpriate weight function(45).

- - 2 .
Multiplying e P®'L_(p8?) in both sides of Eq.(33) and
integrating term by term over the infinite jinterval (o,~},
~ /
we obtain /

A o
2, : ,
E, t[ e P y(1,8)L_(pB2)d(p8Y). (34)
n (o] o . ' : .
From Eqs.(23) and (34), it follows that : / :

- p 2Ty Y IP -£
. E m (e, =M - N - c )] e "L _(£)dE
- n tip moL my n

o
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Ty 372 (® -3/2 -
+ 2 ‘[ (pre) "> % “L_(£)dE

mpL
(o}
T.Y , = -k
PP O 4 p;’ (p+E) ‘e ELn(E)dE- (35)
m PL u ' N
o (o]
where £ = pB?. Evaluating ‘all four integrals (see Appendix
111}, we obtain
_ 2Ty v (-n" "~ GD (-1)"°
: Mo MHq F(n+l} T (-n+l) mv [{(n+l) T(-n+2)
ZTMY I ) —_
| + p
: pe’ 1 erfc(/p)
mpL 2n+l
Ty b [ (n+k)
1 ™M v p n /D 6
+ E(DL + Fc_’ )p e m Iznerfc(p1| (3 )
. . . . . (46,47)
where Imerfc(x) is the normalized integral error function
defined by
. 2 i
‘ m m, 2 (t-x)® -t . 37)
Iperfoix) = 2 1"(1+2-) ﬁf —=T— e dt : . (
. ,

. < S
Eq.(27) with the coefficients given by Eq. (36)
describes the complete diffusion field for solute in the
liquid. However this expression eiplicitly invoives two
undetermined parameters, Cyjp, and p, which have been intro--
dﬁced in the steady ;tate shape and the corresponding boundary
conditions. To determine thﬁie free parnnetarn,‘lgm. extra
~conditions ﬁust be introdu;éd. In the present Analylis, Qe | -

shall consider all of the elemsntal physical and thermo-

\

P |
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dynamic constraints believed to control the given solidifi-
‘cation process. bne of them is clearly the mass conservation
condition (physical constraint). For the other one, the
maximum interface temperature condition has been used ih a
(10,12,27)

number of prior treatments without critical

justification. This latter will be more closeiy-examined
in the later section.

Special Cases

Before going into further analysis of the problem,
we examine our solution for some special'cases.

(1) Isothermal Interface

Under this condition, the temperatu;e gradient and
the Gibbs-Thomson and kinetic effects are zero. Putting
G =0, vy =0 and Ug = = in Eq.(36), and using the recurrence
relations of the confluent hypergeometric function of the
second kind'43), we obtain the solute diffusion field in the
liquid as
Ey (pa’)

tip ~ Co) S ’ ‘ (38)
EI(P) - .

uf(a) = (c

1(‘6)J This special | -

(24)

where Eltx)Lis the exponential integra

form is the same as that found by Ivantsov

" {1i) Non-isothermal Interface due to the Cigbs-fhpnaon

and xinetié Effects

.or

Putting G-= 0 in Eq.(36), we obtain "

2Ty v Ey (pa?)
ugﬂ - - - - C-)
u _) (Ctip i Bg | —#ITETT |

o
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erfc(v/p)+ =(ITMY + v yp3
‘ oL

. I -

. 2.
. _ -pG : 2
ep I (n+l5) Iznerf'c(/p)] e = U(n+1;1:Pﬂ ) Ln(PB.z) . (39)
. e“Fu(n+l,1,p) .

(31)

*This 1s identical to the Trivedi's solution with the

replacement of concentration parameters in place of

o

temperature parameters.

(iii) Planar Interface
This condition implies that p + = for all finite
grdwth velocities. When p + <, the ratio of the confluent

hypergeometric functions becomes unity via the asymptotic

ekpansions_of U(a,l,x)(4%)_ For large x,

U(a,1,pa?)  (pa®)™@ _ -2a _ . »
BRVICP 77 e o =l | (40)

and the ratio of the exponential functions is’

-, , v, o :
? Pa - _ ep(l—uz) ;‘e‘ﬁz . T (4})

e

whete z' is the new coordinate whigh has origin at the

interface

z' = z -hp. : ’ ; ) (42)
Substituting Eqs.(40f—qndxf41)ainto Eq,(Z?)"and‘putting AN by
1= 0 and u_ = = in Eq.(36), we obtain ’

’ bl - ' v ’
' ’ ' bt : : :

u(z') = (ctip -c,) eV < . . (43)

This Special form is the same as the uoluéidﬁ-ot the steady.

T . : . 3 (1)
state diffusion equation for a plaq!r interface "',

Cey VL PRTT I ST - N P s B
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P.S Physical Constraint; Mass Conservation at the Tip
/ ' ' L
From the mass balance boundary condition at the

tip, Eq.(26), and the solutlon of the diffusion equatlon

Eg. (27), we now seek the exp11c1t form for the tip concen-

tration.

From the identity(43)

a" [ - - |
axD [e xU(a.b:X?] = (=D e (a,ber,x), - (44)
X

the partial derivative of y with respect to a is obtained
as -

Ju

2
® e P® y(n+l,2,pa?)
3u . ¥ (g, (-2pa)

n=0 : e‘PU(n+1,l,p)

L,(pB%). (45)

. T
At the tip, it has the form '

| oo - 2TMY U VY _ oy U,2,p) _Gd{uU(1,2,p) U(2,2.p)
Ja a=}l -~ tip mpL muO ® U 1P mv. U"r P U 1P

b

8=0 .
® U(n+l,2,p) : " (46)
+ & (E)) gTnsT,TI,pr’
n=0 ) . ,
where _ f
' 2T .
E, = ny pep Ionel erfc(/p)
molL
+L Ty ¥ )ph p [inth) 1, erfc(/p). (47)
mor Yo T T'(n +1) '

From Eq.(26) and (46), we obtain the explicit form for the

tip concentration

[e o2y, v L ull,2,p) 6D fU(L,2,p) _ U(2,2,p)
[ 4 = — -
tip = TmoL @ @mug O(I,I,p)  @v |\ UM I,p) U2, TP

o
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© + u(n+1,2,p) U(1,2,p) . h
— io(En) U(n+1’1;pu (ko—l) + m'g] . | (48)

" Using the recurrence relations of the confluent hyper-

d(43,46?’ E

geometric functions of the second. kin q.(48) can

be expressed in the following form

. . _l
C, =[(cm+2TMY+ ")_.L_.___.+GD{ 1 p ~-ePE; (p) ,}

ti
P mpL  mu, pePE; (p) pepEl(p) ePE) (p) (1+p) -
- -F gy Ziadl.2, 1) v — (49)
. nZ0 Uuin+ 'P pepE (p) :
The corresponding tip temperature is
2Ty v
T =T, +me, . - “"M!T - . .
o M tip oL ug - (50)

The equilibrium liquidus temperature gradient in front of the

- tip, GZ, may be expressed as )

0 x — - L du :
e m(az)x-y-O' m (ﬁ)a-l' (51)

z=igp ‘' Bm0

G

From Eqgs.{(46) and (51),

e

o _ mv[,. ~_a2t v . U(L,2,p)
Ge D [(ctip mI:)L - ‘ C”) ull,L,p

muo

- g_%{uu.z,p_p) Uiz, 2, g }+“E ) u(2+1:2:§)]'(52)“

. . n=0
or . ../

o __mwn U 2Ty UV Loy 1 . _ 6D 1 :
Cq D [(ctlp “moL ;;; “ pepzltp) mv . perltpi
-1 _ p - - . . ) ) . .
_ P -eE)(p) } + 1 (g Ynei.2.p) ] TS
ePE, (p) (1+p) -1 n=0 ™" U(n+l,l,p)
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Neglecting the Gibbs-Thomsbn and kinetic effects,

we have the. simpler form

1 GD ‘1 P~1_oPg; (p)
Cp Pt — | - )
®  pe E{T§TAT mv pepEl(p) eptl(p)(l+p)—l
= (54) .,
ctip— - r
k-1 4 ——t
o pepEl(p) .
S 0 P Gb 1 p~-ePr; (p)
e D "= pePE (p) ™V 'pePE (p) ) (53)
petE, (p perLk, \p epEl(p)(l+p)—l
‘and
T, = TM + m Ceip* ' (56)

Special Cases

(i) The Case p + = (planar interface)

Using the asymptotic expansions in x (x==} for

4 ) . :
U(é,b,x)( 3? and Imgrfc(x)(46), wi,dlrectly obtain -
c
Coi - o (57)
tip “o
and ‘ - . ~
c° +~Comv(l-kg) ' . (58)
€ k D _

The special solutions, Egs.(57) and 458)? are the same as

those obtained by planar interface analysiq(ll.

(ii) The Case p » 0 (infinitely sharp dendrite)

Neglecting the Gibba-rhonndn and kinetic effect

and using the asymptotic¢ expansions in x{(x = 0) for U(g.b.x)fi_%\\

-~

~ .

S ' ‘ 59)
ctlp C- . ( .
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G° +—cmmv(1-ko)

e D -

(60)

Egs. (59) and (60) show the tip concentration and the
equllibrium liquidus temperature gradient at the tip of

‘an infinitely sharp dendrite under Qhe condition that the
Gibbs-Thomson and kinetic effects are zero: It is interesting
to note that the equilibrium liqgidus temperature gradient
ahead of an infinitely sharp tip is only k, times the

equilibrium liquidus temperature gradient ahead of a planar

inter face,.

3.7 Thermodynamic Constraint; Minimum Rate ofi Internal

Entropy Production

Turning to Eq. (49), we note thét the expression for
the tip concentra;ion contains one degree of freedom, ctip is \
a function o? p.which is the dimensionless radius of curvature
of the paraboloidal dendrite tip for 5 fixed growth velocity.

Wwe must ask the questibn: which p does nature choose in the

controlled solidification process? We Seek an answer in

/
!

‘the thermodynamics of‘irreversib{e processes.
\ In the mathematical sense, any extra condition will

remove the degree of freedom. For sond‘time-past, the:

* maximum interface temperature éondition_(o; the ﬁiniﬁum. tip

undercooling condition) has 5eeh'uaed Sy certain wo;kers(lo'IZJ.

The Quéhtion of the correctness of the condition has not

been answered. The existence of a maximum in the interface

temperature is due solely to the contribution of thg_Gibbq—
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Thomson and kinetic effects. To obtain the maximum tip

temperature, the radius of the tip must be as small as
possible to minimize the solute build-up while the curvature
contribution remains small. In metallic systems, the kinetic
coefficient is;usually large and thé\raaius of curvature
for a significant Gibbs-Thomson effect is of the order of
1 Qm (typiéal magnitudes for Fe-Ni sfstemg are shown in
later section). Thus thé experimentally observed tip radius
should be of the sameé order of magnitude for any groﬁth
velocity, which does not agfee with observation.

| Sharp and Hellawell(zo'zl) have suggested the
condition of zero constitutional supercooling at the dendrite
tip as a governing criterion based on their experiaental
observations of the controlled solidification of some-non-
ferrous binary alloys. From Egs.(58) and (60), it is clear
that this condition is unattainable yith a large radius of
tip curvature except in the very low velocity regime because
the maximum possible reduction of the equilibrium'tempera-
Yturexgradient at £he'tip without the GiBbs—Thpmson effect  is
oniy by the factor ko'

' The crucial point here is that both ‘the maximum
inter face temperature condition and the zero constithtioﬁal
supercooling condition are concerned with a'particular
thermodynamic variable of a particular point on the in#er-
tace, the dendrite tip. These conditions ignpre all other
'thermodynamic conditions and "‘the entire region behind the

tip. .Clearly, the correct principle, if it exists, must be

a global or an integral principle. While previous concdptl
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may contaln some glg;ents of the truth, becguse‘they may be
proportional to iﬁﬁegrals in their specific aﬁplications,
,they have no general foundation in physics.

-~ .

As reviewed at the beginning of:this chapter, the
controlled solidification system is a nonequilibrium system
with some external constraints: An equilibrium -system
can be completely defined in terms of .free energy. Simi-
larly, 1f kinetic stability exists, and empirically we know
that for certhin growth conditions this is the case, then
there must also exist a thermodynamic péteqﬁial function N
which completely describes the thermodynamics of the non-
equiiibrium situation. For certain simple systems, this
has been identified as the rate of internalrentropy produc-‘

tion(4a'49) . As stated by Prigggj_ne(‘a) and de 'GIOOt(‘.‘g) ¢

a single phase dissipative system with linear phenomeno- |
logical gquétions épproachea the steady sﬁaté phafacterized
by ghe minimum rate of internal entropy produetion. This
,theoreﬁ has been suggested to be applicable in approximation
to the steady state binary alloy solidificatign problem by
Kirkaldy(so-sz)L we propo;e to aph}y‘this postulated
‘principle to remove thé degree of freedom which' we have F
identified, since ‘the gvolution of our model is clearly
associated with pure relaxation process,

In our volume diffusion controlled model, the

—

rate of internal entropy production due to diffusion fields

per unit volume, o, can be expressed after de Groot (4?) as )
1 ~n . -




S

where J is the flux, g and k refer to the thermal and mass

+

variables respectively and X is the thermodynamic force.

The thermodynamic forces in Eq.(61) are (49)
=+ 9T
Xq T | (62)
and )
X, = -1 v (%), (63)
T .

where u is the chemical potential. If the thermal and mass
diffusion are taken as independent,

J_ = - KT (64)

(65)

where ¥ is the thermal conductivity and Ly ; are the phenomeno-
logical coefficients. Eq.(GS) is given with the assumption
that’the fluxes arge linearly related to the thermodynamic

forces. For binary alloys,
= -J° . . ’
Jl J2, (66)
where subscript 1 and 2 refer to solute and solvent respec-

t ively. Hence, \

2

- B = S B * . 7
. Lo 33X, Jl(x1 X5). (67}
‘ k’l

Neglecting the temperature dependence of the chemical

L]
potentials,

. w,
X,~-X, = =Vyu, + Vu /= -RT_____
.l 2 1 2<ﬁ‘ cl(l-cl). . - (68)

where R 1s the gas constant and c, is the solute concentration.

-~
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Using Fick's relation for mass flow,

Jy = -Dic,. | (69)

Substituting Eqs, (68) and (69) into Eq.(67), Egs.(62), (64),
and (67) into Eq.(61), and adjusting the units of all

parameters, we obtain

. - (VT)? d (Ve)?
¢ = 2 PRy (70)

where ¢ refers to the solute concentration {(subscript 1 is
now omitted), d is the density of solvent and M is the mass

per mole of solvert (The dilute solution approximatiod is

’

used) .

The total of the rate of internal entropy
production, dis, is th% volume integral of ¢

dt
ds - ,
- =Ic dv. . (71)
dt -
v

In our single dendrite model, it is more convenient
‘ ction, 933

to define a new thermodynamic function, » the average

rate of internal entropy production per unit cross sectional
arca e -

o}
w

]_ .
= —v g—1-5)

“XL dt ’

i
{72)

2

where nx; is ihc_crbss sectional area of a singlé dendrite.

Y

For given growth conditions and given materials constants,

d,3
G

minimum condition gives

is a function of the mass Peclet number p only. Thus the
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3 ,d;s
55 (ac )
o P=Popt

=0. . (73)

All variables for the calculation of Eq.(73), in
the parabolic coordinates, can be directly obtained from the
experimental conditions_and the solution of the diffusion
equation.

The temperature gradient in-the.liquid can be
expressed as a function of the tip te@perature T§ and the
distance in the growth direction, z, from thé constancy of

the imposed temperature gradient, i.e.,

T =T, + G(z - % ) - (74}~ :

The solute concentration 1s given by

ePS y(n+1,1 pa?)
?E) . ’ L
n

c(a,8) = c_ + 0 e PU(n+l,1,p)

o
n

o8

Li(p8*). (75)

The solute gradient function in the liquid with

rotational symmetry is giﬁen by ' ~ )
) duy? Juy .
(Ve)? = +

where g% is givenwby Eq.(45) and

. .

~pa . 2 (p8)-nL._y (p8%) (77)
(En)(ZpB)e " u{n+l,1,pa") nlp(p8”) i n-1 (P .
e—pU(lH-l.l.P) PB ’

:;J,,
]
Wt B

1

| , P (46)
Eq.(77) is obtained from the identity

{a+l)
d a -
dx Léa)(x) by 00 - ////
m.f(lulx, - (n;’é‘;LéE;(l) (78) []

- - -
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It would appear that a unique p could be determined
by optimizing the thermodynamjic function with respect to b;
However, it should be noted that the boundary limit Xy, in
Eq.{(72) is nof-predetermined. - The problem of determining X

is considered in the following section.

special Case )

At this juncture, we examine the rate of internal

- “entropy production on a particular point of the interface,
the dendrite tip. At this point, Eq.(71) has the simple

form

(Vc);=l
a5 _ k(Vr)? + DR % 620 . (79)
dt ~ T 2 h c,:nfl-c_. ) '
. \ o tip tip 4

When the first term >> the %Econd term, the minimug condition
will be satisfied with the maximum-T . " Thus, the condition
of the hinimum rate of ‘internal entropy production at the

tip is the same as the condition of the maximum tip tgmpéra- '
ture when the growth velocity is very iow, the temperature \Jiﬂ

gradient is high and all the problems behind the tip -are

ignored.

J.8 Boundary Limit

In the last section, it is shown that the'opﬁimi-
zaﬁion of the thermodynamic‘function is possible only if the
volume integration is possible. The iﬁtegration
limit iﬁ the growth direction is clearly from the iﬁgerface

to infinity or to the point where the solute gradient vanishes.



38
However, the limit in the lateral direction, kL' is not
determined. To determine this, we assume that x_ is propor-
- }

L
tional to the true spacing A. The X vs., v relation is given

in most previous studies(8'13'63) by

A= kvTH, (80)
where k is a constant for‘a given temperature gradient and
materials constants. Hence, the relation betweén X, and v

can be represented by

x, = k'vo, (81)

Solving Eq.(73) with the help of Eg.{(8l), we obtain popt as

‘a function of k' and v. Thus the corresponding ctip is

ctip = f (k',v); ,‘82)

To determine k', we apply the steady state planar-nonplanar

interface transition condition

. = Cm
Ctip T =0V € Verit
o
) , , ) (83)
c c_. = . .
tip < == . v > Vpxit . ,
o .
where Verit is the critical veigﬁity for the planar-nonplanar

interface t:anéition. From Eqgs. (82) and (8;), we determine
k' and fina;ly.obtaih_our goal, Ceip’ p and T° as-a function
of growth velocity alone. Substituting these values into. |
Egs. (36) and (27), we obtain‘é unique solution of our

boundary value pgoblem.
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3.9. Computational Problems

The preéent theory has been completed to predict the

Eip concentration ¢ and the tip radius p as a function of -

' tip
growth veloéity. Howevén, as shown in the previous sections
the integration of the thermodynamic function and its
optimization do not simply give an expliciﬁ form. Thus, to
obtain,numerical valueg for a given set of experimental
condiéions, we use the following numerizal computation
scheme:. — -

(1) cgmpu;e Ctip and T, as a function bf‘p and v.
(ii) coméute the rate of internal entropy prod&ction
due to diffusion fields, o, iqx(a,B) space. |
~{iii) integrate o numerically with an arbitrary .,
coefficient, k'. h |

(iv) repeat (iii) applying a general method for finding

a root until k' satisfies Eq. (83).

Fpr désiréd accuracy of the compqtatioﬁ;l results,
the scheme requires a lﬁrge_comguter hemprxland'a very long
computing time. To avoid these_difficultféd, we seek some
simplifications in the lgght of physical details rather than
by reformulation of ihe‘éompuping formulas.

The order of magnitude of.the tip rgﬂius for a
significant curvature effect is less than one micron for
most mctallié systema. The ohserved tip radii in our con-

trolled solidification experiments are quite blunt (Fig.28}.

turthermore, it is well known that the kinetic undercooling
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(53)

is minimal in most metallic systems » Under these
experkmental foundations, the Gibbs-Thomson and kinetic
effects can be neglected without any significant error.
Now we consider a further approximation for the
integration of the rate of internal entropy production.

For a given experimental condition, Eq.(72) has the form in

parabolic coordinates

. ' .0 B
d-.8 1 1 1
17 _ 27 o (a’+8%)a8 Y (a,B,p)dBda, (84)

- dt 2
. X, A s
o)
where Bi = f& and al‘is the point where the solute gradient
Ne
vanishes. To a first approximation, we assume that the

concentration profile in the liquid can be répresented by

a straight line in the diffusional penetration distance i..

’

Then,
d;s 1
S S 0? (L+8%) 82 o (1,8,p)d8, {85)
dt nx* o
L o . o
where & = £(8,p). Putting & = unit length, we can define

diS

another thermodynamic function. (_a_ . the average; rate':

of internal entropy’ productxon on the lnterface per unlt

Cross scctlonal area , Lt

dysSy _ 1 ‘ . L] o

('dt) aier 2n° o (1+8%) 78 Lunlt length) o (1, a.P)dB
L

HA - o (36)

_ ‘ . -
— wWe define a variable T, the average penetration distance of

-
o

the diffusign profile as : _ &q’- : ; ;-

. .\ -
. o - v i
- . . .
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8, . .
[Y2n0% (148%)%82.8,p) a8
) .

X =
(p) B N (87)
‘ f 2mp? (1+87%) "8 4B
when v is small and p is large (blunt tip), &£ = %, near
the tip. Upon substituting this estimate: into Eq. (85),
we obtain
d;s — 7d:S. . ‘
, i = Y (88)
5T = ( t) |
A
and hence, the minimum condition gives -
LB () Lr(R) -0
p €/ 3p “dt A .. ap \ 4t a (89)
or s
_ (dis) 3T
é_.(f;f) I I - (90)
) . o .
P t A I .
dis) and Elare positive definite, and hence the sign of
dt

Sy .
A . ’

o o N
o ..

S (dis) isfentirély‘dépendent‘qn.the’p dependence of T.
Ip dt A °

Note tha; i decreases at the tip.eﬁd.increases behind the

tip as p decreases. Thus we may qualitatively assume that

- ) S . - Y
i is independent of p, and d:g and (&IQ) have the -
at dt A R
minimum at the same p. From this, we shall optimize ( i )
; B dt A

in our computation. It ahould be ,borne™in’ mind ;hat the
above approximation is reasonable for sm&ll v and large p,

however it becomes defective for small p.

L’
t

E
|
;;.
E
_i
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The necessary variables for the computation are::

2 o (Ve)? _
5(1,8) =~ bR § =l (oD
. T(1,8) c(1,8) {izc(1,8))
T(1,8) = T, - %Go8?, (92)

- _n G2
C(lfS)"ctip Lﬁ mB I

2 2
1 b2 (1+8%) sal 2B
) a=1 a=1
5u) 1 DG [ 1
o =(=2p) c,; ¢ }—————— - —({ ————
(” t/ =1 P [ ( tip Ce pepEl(p) mv {pePEl(p)
-1_p ‘
p -e El(p) 2}
\ : (1-p8°%) (94)
epEl(p)(l+p)—l pE. ’
lJand : :
EL S N DG '
(§§Aa=1 -(=2p8) mv ‘ (95)

Y3.10 Application to the Fe-8 wt.% Ni Sjstem

In this section, we Spply the present theory to a
particuiar_system, the Fe-8 wt.% Ni system. This system has
‘beeé chosen from the fact that its thermodynamic data are
“already well establighed‘>4"56) and the diffusion coefficient
in the solid is small. Also the tendency of Ni to oxidize
.preferenfinlly is small, and the liquidus and solidus slopes

(absolute'@.:e) are small, allowing good corfelationl to be.

made between concentration in the solid and temperature.

v
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The relevant part of the Fe-Ni phase diagram is

54) . .. Cy i
reproduced from Hansen's work( Yin Fig. 4. The equilibrium

-distribution coefficient for 8 wt.% Ni, ko' is obtained as

0.68 from Fig. 4. This value can be checked by thermodynamic

b calculation as follows: In a system of solid (y-phase) and

liguid mixture of an'Fe-B wt.% Ni alloy, the condition of
equilibrium gives

Hyi = “Ni ' (96)

 where u;_ is the chemical potential of Ni in phase i.
1l . .

Expressing chemical potentials as

1 io
. = : 97
MNi WNi (97

1 1 '
+ RT 1ln YNi cNi' +

where u19 is the free energy of nickel at the standard state

N1

in phase i, Y;%'is the activity coefficient of nickel in
. i ‘

phase 1 and c&i is the atomic concentration of nickel “in

phase i, Egq. (96) has the form

So

+ RT lny'$ c'S - uLF>+ RT lnY'L c'L . {98)
Ni ‘ N

H Ni Ni i “Ni

Y

From Eq. (98), the equilibrivém distribution coefficient for

. , — .
the atomic concentration, ko' cin be reﬁiesenteq as

[ 'L 0 [
, c Y du . : .
Kk = I.if - I:i exp( N"l) ’ T (99)
o L v S RT :
Ni Ni '
DT - T * - So
where &uui uNi uNi_'

Expressing k; in terms of weight cpncentratlon.
. ) ’ 4

-
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' 1
k = i
o] 5 _
100-cR;  Myj 100-cy; My
1+ S 1+ 0
°Ni Mre °Ni Mre
100 :Nl + k(- M
Fe y M1 Fe
= kg 5 . (100)
Ni s M.... .
100 E—— + cNi(l— Ni
Fe |
Fe
For 8 wt.% Ni alloy,
k = 0.9988 k = k (101)
Q [0} O.

Substituting values of wvarious thermodynamic

variables into Eq. (99%9), we obtain

k = 0.662 i - (102)
0

. . . (8% ' v
In this estimate, we have used Y'L = 0.67,( ) YN? = 0.97(56)

augi =-128.2188 cal/mole (calcualted from Ref. 57) and

T = 1781.16°K . The value in Eq. (102) is in good agreement
with that obtained from Hansen's phgse diagram.

Some other values of necessary parameters for the

. i
present calculation are obtained from various sources as

follows:
\
Ty © 1802.5°K(1529.5°C), the melting temperature’
of y iron obtained by extrapolation of vy iron-

ligquid transition in Hansen's phase diagram.

This value is iﬁ?éood agreement with the

: , - 58).
thermodynamically calculated value -of Hone(, .
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m : —2.65°K/wt.% Ni, the liquidus slope obtained
from Hansen's phase diagram.

Yy : 220 erg/cm2 (=5.3 x 10—6cal/cm?), solid-

liguid interfacial energy of pure iron(sg).
r oy

u_: 200 cm/sec OK, the linear kinetic coefficient,

S

by assumption.

L : 3873 cal/mole (=485.5 cal/cmB). the latent
heat of fusion of pure y iron(60)-
D :'r5 x 10”2 cmz/sec, the diffusion coefficient
of Ni in dilute Fe-Ni melts at 1600°C(61)-
d : 7 g/cm3, the density of pure iron at 1564°C(78).
xk : 0.1 cal/sec cm °Kk, the thermal condﬁctivitf
of pure liquid iron at 1600°¢(62)

Experimental conditions were adjusted to give

c

- -

8 wt.% Ni, the bulk concentration of the ligquid.
G : 3l°C/cm, the imposed temperature gradiént.
The variations of the tip concentration_as a
function of solute Peclet number have baq) evaluated for
varidus growth velocities from Egs. (54) and (49). Results

are shown in Fig. 5 and 6. - The tip concentration of the-

~

L - 8 , : “ _ - ' .
solid phase, Ceip’ 18 defined bx ‘ . |

S 2 . 03).
The Ciip in Fig. 5 is the one which limultaneouslj/satisfies
the solute diffusion equation, local equilibrium boundary

condition and mass balance at the ﬁip, whereas, the Ciip in

Fig. 6 is the one which satisfies all the above conditions

—
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plus the Gibbs-Thomson and kinetic effects. It should be
noted that the Gibbs-Thomson and kinetic effects are signi-
ficant when p < lum for most growth wvelocities.
From Egs. (50) and (104), the tip undercooling, . A
4T(1,0), has been evaluated for some growth velocities and

shown in Fig. 7, where AT(1,0) is defined by

il

aT(1,0) Ty ~ To

AT (1,0} + AT (1,0) + AT, (1,0). (Lod)
S c k

It 1s noted in this 1llustration that the cor}espondinq
radius of tip curvature, p, to the maximum TO'(orrminimum
4T(1,0)) is of the order of 1 pym or less for most growth
velocities and is an increasing function of the growth
velocity in the low velocity regime.

» We define an index of thé amount of constitutional

supercooling at the tip, .3(1.0), by

J(1,0) < G2 - G. \ (105)
The variations of (1,0) as a function of p are evaluated (

from.Eqs. (105) and (53) for some growth velocities and shown

in Fig. 8. It is shown that the p depé€ndence is not strong

in the regime where the Gibbs-Thomson and kinetic effects

(:\arn minimal, compafed with the velocity dependengc._

s

e

We now examine the thermodynamic properties behind
the tip. The rate of internal entropy production at the,
interface has been evaluated from Eq. (91) ignoring the Gibbs-
Thomson and kinetic effects. Computed results for two

di1fferent growth velocities are plotted in Fig, 9 and Fig. 10.

These figures show that the calculated rate of internal

*
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entropy production decreases at the tip, but increases behind

47

the tip, with decreasing radius - of tip curvature. Physically,
the smaller tip radius provides a more relaxed tip but
simultaneously creates a less favorable situation behina the
tip. From this, we can qualitatively understand ‘why a
growing dendrite does not adopt a very sharp tip. 1In Figs. 9
and 10, it is also observed that the variation of c({1,3) 1is
not monotonic in the higher velocity regime. We suspect

that 1t might indicate the tendency of éide branching in

the higher velocity regime: however the critical analysis of

this problem is beyond the scope of the present- work.

Finally, from Eq. (86), we compute the average rate
d;s

' of internal entropy producticn on the interface,(
dt

) , as a
funttion of p and v. Computed results for some A
quWth\Kiijities are shown in Fig: 11. The minimum condition
gives a unhique p and we obtain éorresponding optimuﬁ Cfip

from Fig. 5. Thus Célp and o ‘can~be plotted as a function

of v alone for a fixed G. These are shown in Fig. 12 and

13 respectively. It is noted that bothCZiip and o are.
rapidly decreasing functions with increasing v .for low v
(célluiar regime) and slowly decreasing functions for higher

(dendritic regime). Also noted is the significant amount -

ot solute build-up ahead of the dendrite tip. .

1
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CHAPTER 4 ~

-

EXPERIMENT

4.1 Experimental Program

Since the first success of .the gquantitative descrip-

¥

tion of the solidification process by Chalmers ot al.(l{ thé
technique of coﬁtrolled unidirectional solidi;ication has est-
ablished a firm place in solidification ﬁ&teraturé. Although
this technique has been applied by a number of workers(l3'18'20)
to ferrous and ﬁonferrous alloy systems and organic compounds}
few studies have been.conductéh systematically to correlate the
morphological development and the varigtion of the solute seg-
regation.in‘terms of the imposed temperaiure éradient and growth
velocity. Thus i£ was decided, in the presen£ experimental study,
to separate the growth parame£ers by using a controlled gradient
mqvihg furnace to investigate théifol}owing problems: o
(i The growth velocity deqendéncq - ?he first object&ve
of the present experiment was to cbserve the evolution
of the interface morphology and the variation of the
miérosogreéationf as a function of growth velociéy
in the range of 5-400 mm/hr for a fixed temperature
.gradient.:

"{ii) The temperature gradient dependence - The above var-

iations were examined by varying the temperature

48 - ‘_ .
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gradient and fixing the growth velocity approsimately

constant .

(ii1) The homogenization kinetics of the.microsegreqation
in solid - The miqfosegregaﬁion hpmdgenizes after
solidification by diffusive processes This problem
in the Fe—Bwt.%ﬁi, Fe-18wt.3%Cr-Bwt. %Nl and Fe-18wt¥Cr-
8wt.¥N1i-0.35wt.%C systems was examined by quantit-
at;vé detesmination of the seqregation profiles.

In the present controlled solidificstion experiments,
the Fe-8wt.%Ni system has been chosen from the reasons mentioneﬁ
in the precedigg chaptsr and with the additional objecs of in-
creasing our‘knswledqe of the steady high temperature solidific-
ation process. |

4.2 Specimen Preparation ) _ “;////r

Fe-awt ¥Ni alloy specimens were prepared from U.S.

Steel Ferrovac-E iron (99.9%4wt. tFe) and Palconbrldge electrolytlc
nickel (99.97wt 8Ni). Electrolytxc chromium (99.8wt.Cr) and
Union Carbide graphxte (99 98wt .3C) were used for Fe- let.\C;-
Bwt . ¥Ni alloy specimans and Fe-l18wt.VCr-8wt. lNi 0.35wt, %C alloy
specimens. The chemxcal analyses of pure iron and nickel are
given in Table 1. .
wéighed materials (about 40g) were melted in an argon
arc melting unit and quenched in a water céoled.copper mold of
‘the same unit t6'give a high degree of long range chem<fal homo-
Jenity. By this neltiné technique, the long rahqs homogenity of
the quetiched ingots was proved to be satisfactory by wet analysis

of both ends of the ingots, and the chanqe'of the concentration
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of nickel and chromium during the process was minimal. The
carbon concentration was determined by the combustion analysis
technique after the ingot making proc%fs. The quenched ingots
were swaged into 4.5 mm dia. rod to fit the alumina tube used
as a sample container in the solidification experiments.

4.3 Controlled Scolidification . -

A molybdenum wound vertically travelling furnace was

used, which was built originally by Hone (59[

It was rebuilt
with slight modifications in the furnace winding and power supply
to give a wider range of power inputs. The overall assembly
consists of a furnace drum, an evacuation unit, a furnace travel-
ling unit, pGWer supply. gas suéply and water éqoling system.
The sectional view of the furnace is shown ;p Fig. 14. The
allowable vertical travel rates were from.5 to 500 mm/hr. The
three internal molybdenum windings were controlled so as to
prdduce differeﬁt thermal éradi‘entsT The positive temperature
gradient with vertical furnace design was chosen so-as to give
the growth condition iéself al to minimife the natural con-
vection of the melt due té qubitatiOnal field.

The characteri;tics of the fﬁrnace\are:

(1) Close control over the growth paraméters. G and v, is
permitted. ' )

(11) Thé temperature stabilitf at any_givep point is better
than 29C during the tinofrequiréd for typicaf solidif~
ication expariyents.

(iii) Convective stirring is negligible, this was proved b;\)

a semiinfinite liquid diffusion couple, Fe/Fe-Bwt.WNi

te
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(5 mm in diameter), held in the Yfurnace for two hours

at 1550°C. The diffusion coefficient obtained from

this ;analysis was precisely that determinedﬂby Purdy

and Subramanian{6l) in capillary diffusion experiments,

indlcating that mixing in tﬁe furn;te under these con-

ditions was by diffusion only.

The solidification experiment invclved melting the
specimen in a high purity alumina tube (sometimes containing
thermocouPles inside the specimen) under’;rgon atmosphere and
moving up the fdrnace at a desired velocity. After the furnace
travelled the desired distance, usually about 50 mm, the specimen
was quenched by dropping it intd water. The temperature profiles E

. p '

of the furnace and specimen were measured using a Pt/Pt-13wtiRh N
thermocouple. The overall ‘temperature profile of a 5pecimen . E
was slightly different from the temperature profile of the fgr—-
nace, and the difference was dependéht on thé geometrical arrange- i
ment of the specimen. It.ﬁas,found that, with the geometrical
arrangement of about 8 cm melt im-a toth{ 30 cm length specimen,
the temperature gradient of the specimen at the liquidus temp- .
erature-was nearly the same as that of the fq;nace. After this,
all the'soiidification experiments were carried out with the

same¢ geometrical arrangement.

A series of Fe-éwt.lui aliqy solidification experiments
were carried out for. various temperature gradients and growth
velocities. Some of them are summarized in Fig. 15 to show the

velocity dependence of the.;blidification structure fo; a constant
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temperature gradient. (31°C/cm). ° Three specimens which solid-
ified with different temperature gradients and nearly the same
growth velocities are shown in Fig. 16. In both figures, the

top and bottom rows show the transverse and longitudinal sections,
regpectively. The morphological development may be inferred

from the observed segregation pattern. The cellular solidif-
ication a£ low velocity is evident. Increésing the growth vel-
ocity, the stronger development of cells, the transition to the

€

cellular dendritic morphology with secondary arms and the cellular |

-

dendritic structure with tertiafy arms - appear in sequence.

" The velocity dependence of the observed‘spacing of cells and
celiular dendrites is in reasbqable agreement with the prediction
of previous work(18'13'63) for dendritic growth, but stfongly
deviates in ‘the low vefocity r?gime. The éffect of temperature
gradient on the morphological development is shown in Fig. 16.
Itris observed that\the spacing deéreaaes,with increasing temp-
erature gradient and side br;nching is.ig;dﬂnt with low gradient -
for this particular growth velocity. \ | P

Figs. 17 -and 18 show the longitudinal sections of

Fe-Bwt.8Ni, Fe-18wt.3Cr-8wt.WNi and Fe-18wt.VCr-8wt.WNi-0.35we.3C
specimens which solidified under approximately.samceqrowth.con-/”/
ditions. These res&lts indicate that Fe-18wt .3Cr-8wt.¥Ni alloy
sulidified initially as é-phase and subsequently-;ransformedﬁto )
'-phase, ;nd nearly cqmplbte homogenization occurécd under tﬁe
given experimental qondition, as expected from the large diffusion

~cocfficients of substitutional solutes in S-phase. On the other
%

\




hand, negligible homogenization is gualitatively observed in
the-specimens of Fe-8wt.3%Ni and Fe~-18wt, %Cr-8wt.%Ni-0,35wt.3C

alloys which solidified directly as Y—phase-from the melt.

4.4 Metallography

| To investigate the solidification structure, solidifed
specimens were cut into parallel (l&ngitudinal) and vertical
(transverse) section to the groﬁth dirsction and prepared by
conventional metallographic procedures,.mounting; grinding, pol-
ishing and etching. Metallographic etching techniq&es commonly |
found in the litgrature(64i66) were applied to show the solute
segregationsu The results wéfe not quite patisfactory partfcula:ly
with Fe-18wt.8%Cr-8wt.%Ni alloy speciméns and weakly segregatéq
iron-nickel alloy specimens sclidified in the low velocity regime.
A higg contrast etching condit#on may be developed in principle

by optimizing the formation df™-local electric cells for a given
inhomogenity of oxidation potentials due to solute segregation

of a specimen. The condition depends on £he kind, concentration
and mobility ofu;nions and cations which are con:&ikad §n the
ctching reagent. It is not a simple problem to find the con-.
dition by‘a quantitative theory. With a qualitative knowlgdqe,

4 serics of experiments were carried o;t {pd an improved condition
has been obtained for iron-nickcl'alloygzby an adjustment of the’
CTomposition of the Oberhoffer's reagent (67), In addition, an
ctching reagent for 18-8 steels has also been developed based bn

the sulfide film cont:as; technique (68'59L Details are included

in Table 2, and improved results using these new reagents are 55
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shown igy Fig. 19 for Fe-8wt.3$Ni alloy specimens and in Fig. 20

for an Fe-18wt.%Cr-8wt.8$Ni alloy specimen.

4.5 Electron Probe Microcanalysis

Al

Electron.probe microanélysis was employed for the
quantitative determination of the segregation profile. Foliowinq
metallographic examlnatloﬂ(of the specimens, reg1ons were sel-
ected for mlcroanalisls and marked with a microhardness
indentor. “After indentaﬁion,'tﬁe specimens were photographed
and slightly repolished to remoyé‘the éurface film and roughness
which resulted from the etchlné process.,

The concentratlon proflle of nlckel of the selected
regipn was determined on ‘an hcton-Cameca mlcroanalyser. The
operating condition for the opgimuh'x—éﬁyﬁoﬁtput of Ni K, was
found to be '15 kv of accelérating vqltage.and-lsd na of. specimen -
current'. Measu;ements were carried out by poiﬁt counting for

20 seconds at an increment of 5.4 um.

[T
-

The measured countlng rates were corrected by Haworth s
cofrection'procedure{70) whlch utilizes the atomic_number cor-

rection of Duncumb and Reed (71), absorption correction of
PhLllbcrt(72h and fludrescence correction by the modified .

A

Cdéiaing's procedure(73). The meahu;ed dbunFing:rate of a point
Q?s converted into the measured in}ensiﬁy rgtio. and the con=-"
‘contration of nickel was obtained by inﬁe}polating the measured’
lntensxty ratio to thercaiculated 1ntensity ratio vs. concentrat101
.rwlation uhxch uaa "obtained via atomic number’ cortection and .

1bsorptxon correction (fluoroscence correction is not necessary

for nickel deternination in iron- -nickel binary alloys.and tron-

.
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nickel-chromium ternary alloys).

The micrographs. of the selected regions and the var-

iations of the solute segreg;\ion profiles as a function 5f
growth velocity under a fixg&ytemperature gradient are shown‘in
Fié. 21..  The aﬁ&lysed transverse sections‘in thié experiment
are aboutla mm below the final solid-}iquid intgrface. From
?ig. 21, the variation of the minimum (at the tips) énd the max-
imum solute concentrations (at the interdendritic regions) as

a function of growth velocity is summarized in Fig. 22. The~ -
probable error in the experlmentally determined coPcentratlon

is typlcally £0.13wt.%Ni, and the error in.the estimation of

kK C=, which arises from the uncertalnty of. the phase dlagram, is

-
30.25wt.8Ni. It ;s.noted in Fig. 22 that the minifwm n1cke1

concentration at the tip ;Ebfeaags-rapidly with increasing growth

velocity in‘the-cellular regime; however, there is }ittle var-
iation 1in thé a@ndritic-régime. AIt is also noted tﬁat..under

our experimental conditions, the experiment&lly determined mini-
mum concentration at the.tip is much hiqher th;h koC= even if
homogenlzatlon after solldlfxcatlon is taken into account (the
effect of homoqenlzatxon is consxderif,in the next section).

Thus, we have experimental evidence that tpere ex;sts a signifi-‘
cant Amount of solute build-up in front of the tip~even in the
dendritic dgrowth regime (like Backerud (36) and_Dohertf's(3 )
experimeptal observation but unlike the assumpﬁio& of mos  micr9-
segregﬁtion models) (14,13) |

Some of the probe results are QuJ;:;iigd in Fig. 23 to

show the temperature gradient dependence og the mlcrosegregacxon

!gﬁ
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Clecarly observed is the decreased segregation intensity with
higher gradient,

4.6 Homogenization Kinetics in the Solid

To avoid the uncertainty of the exac¢t final steady

state interface position qf the solidified specimené,-electron
f ™
probe microanalysis was carried out on sections approximately

8 mm below the approximated final interface. Therefore, the

Qbservéd concentration profile has been influenced by solid ﬁtate \

diffusion after solidification. The nature of homogenization
‘ .

due to diffusive processes in the solid phase has been studied

'
by many workers. Purdy and Kirkaldy's recent review paper(74)

-'d

is a good sumﬁary of the related work.

The segregation pattern arising from a unidirectional
solidification process may be approximated as eylindrical,
provided the imposed témperature gradient is relatively high
or the growth velocity is relatively low.: This is tﬁg,case for
most of our experimental operations. The ﬁime dependent diffusion X
equation in cylindrical coordinates (r,8) with rotatiphal
symmetry has the form |

_C.=D(3° 12g, " (106}

‘;T r 9r i
ahe;e Dy 1s thelsolute dlffusion coefficient in solLd phase. Dsl
15 assumed as a constant from the fact that the temperature and

concentration variations are small in our consideration. The

impermeable wall boundary condition gives S \

-

-~

3¢ . 0, at r=0 and r=r;, t > 0, ' (107} -
3T ) . .
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where r) 1s the radius of the cylindrical sedregation profile.
Any arbitrary initial solute distribution give;;the initial con-
ditzion )

c(r,0) = f(r), t =0 o (108)

bt ]

The solution cf Eq. (106) for the initial and boundary conditions

given has been obtained by Crank{753) as

e |
clr,t) = L j r' f{r')dr’
. r12

9 AY

o =D a‘t J_ (ra.)
. +i e ST 2 M r'f(r')JO(anr')dr'J, (109) 1
‘ n=1 J_“(rjap)y H
© . :l
L 3
where a, are the roots of E
. ¢
Ji{rya /= 0 : , (110) z

b

and Jp (x) is the’ Bassgel function of order n (42f45'46h

LW L R

A typical example of the decay of an initial profile

-

o . ", i (o] B
of an Fée-8wt.%Ni specimen solidified wi G = 31 C/cm and vl=

370 mm/hr is shown in Fig. 24. .In this csécugation, we have
‘ 257 (76) ‘
used T = 1753.169 and Dg = 3.41 x 1077 cm?/sec . In Fig. 24, .

»

we clearly see that there is no significant chayge of the profile

in the central rdgions where the gradient is small, whereas the

interdendritic region (where the concentration .gradient is\high) - _1§
shows relativély fast decay. Calculations for various velocities

L W g
S vs Bty A

show that the same is true for any_growth velocity. This is due

to the fact that the homogenization time and thy cell spacing




- -.hn Eq- (10&)4
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increase and the average solute gradient of the profile decreases
as the growth velocity gecreases. This analysis\indigates that
in austeritic iron-nickel alloy tﬁe diffusional homogenization

is minimal and specifically that no significant change of the
solute concentration occurs 1in the épntral region of dendrites
during cooling down. Fig. 25 shows micrographs and typical \
concentration profiles resolved by electron probe ﬁicroanaiysis
of two transverse sections of unidirectionally grown Fe-8wt.&Ni1
élloy specimens. Fig. 25a is 0.3 mm below the tip of a speéimén
grown with G'= 316C/cm and v = 51 mm/hr (where the interdendritic
region is still liquid) and Fig. 25b is 8 mm below the tip of

a specimen.grpwn with G = 31°%C/cm and v = 58 mm/hr. The tip
concentrations in the solid are ﬁearly the same-.

Turning to the liquid to & iron solidification, we

have qualitatively observed nearly complete homogenization with

—an Fe-1l8wt.%cr-8wt.®Ni alloysspecimen. This is due to the much

:

greater diffusion coefficient of a subdtitutional solute in the
f phase. The strong dependence of the diffusion coefficient on

the homogenization kinetics is evident by its exponential relation

[

A technique for the approximate determination of the
diffusion coefficient in a high temperature phase can be dev-

-loped by a combination of the steady state unidirectional solid-

.

1fication and the homogenization kinetics of cylindrical solute

13

distribution. A solidification condition gives the values for rj
N

and t 1n Eq. (109). 1f we experinentally measure the initial

-

and final-concentration profile for a given time, Dg is the only

[ )
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) )
parameter which should satisfy Eq. (109). T@ks technique\mﬁy
??\?Brticula ly useful for the determination of the diffusion
coefficient in the high temperature 6;;5e of a multicemponent
system where the diffusion couple experiment is\technically
difficult. A good example is the § phase of an Fe-18wt.&%Cr-
8wt .¥N1 alloy which exists in a narrow temper&ture range (about
509C) right Below its solidification temperature. Andggélication
of this technique to the alloy is illustrated in fig. 26 and
gives 1.3 x 10-7 cmz/sec for the diffusion coefficient‘of Ni at
1480°C (6-Phase). It is interesting to note that this value is
close to the diffusion coefficient of Ni extrapolated to that
temperature in the expression for the diffd%ion coefficient 5f
Ni in a-iron (1.045 x 10”7 cm2/sec) (76),

The main objeét 6ﬁ'Fhi? section has been to demonstrate
that thé minimum concentrations heasured correspond closely to
those which efisted at_the'dendrite tips (in Fe-Bwt.%Ni)-dufing
growth. However, the importance of the §J vy tramsition in
inflyencing diffusional homogenization of steels is well est-

ablished by these observations.

-
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5.1 Tip Concentration and Curvature as a Function of

CHAPTER 5

DISCUSSION

Growth Velocity

In the physical sciences, the interplay of theory

and experiment is sufficiently important that advances on

‘the one front should ideally be complemented by developments

on the other, in order that both may be kept honest. 1In the
present work; the tip concentration and curvature have been
theoretically and experimentally obtained as a function of

growth velocity alone under a fixed temperature gradient.

In this section, we shall compare our theoreticaliy predicted °

values with our experimental results.

The Tip Concentration .

We first consider the tip concentration. The
. g, T
theoretically predicted and experimentally determined tip-
concentrations are compared in Fig. 27. Alsc shown in the

same figure are the predicted walues of the tip concentration

by the minimum undercooling and the zero constitutional

‘supercouling conditions. It is clearly shown that these

latter values do not agree with experimental results in.any

senso. -

60
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In spite of many épproximations in the present
theoretical development and computation, the growth velocity
dependence of the tip concentrgtion has the ééme character;
very rapidly decreasing with increasing v in the low v regime
{cellular) andtminimal v dependence iﬁ the high v regime
(dendritic). éood agreement between the theory and experL;
ment 1s also seen in the ‘significant amount of solute
build-up ;head of the dendrite tip. However, in thelr
magnitudes, ;he theory and experiment do not agreé parE}cuiarly
well. The theoretically ,predicted tip concgktration Lg about
1 wt.% Ni lowef than the experimentally determinedctip _
concentration. This deviation ;ould be due to the following \
factors:

(1) Interface shaée - To avoid mathematical difficulty;
we have described our boundary value problem with-the‘sﬁape
of a paraboloid of revolution which is exact only-if the;
interface is isothermal and the growing dendrite is'comgletely
1solated in an infinite field. 1In actual1gr6wth processes
dufing the controlled solidification‘experiments, the inﬁer—
face is nonisothermal due maiﬁly to the’imposed tgmperﬁture
yradient, and the growth front includes .an array-of dendriteé.

Furthermore, in the high growth velocity regime, side-

branching occurs behind the tip. Clear'ly the effect of .

1.

pusitive temperature gradient gives higher rates.of internal
esntropy production beﬁind the tip and the gffect of the
array of dendrites and side branches giveQ lower rates of
internal entrogy production behind the tip, resulting a net

deviation, A, from the average rate of internal entropy

A
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production on the interface, (dis) + estimated in the present
dt '
theory. Thus the true value of the average rate of internal
_ = T )
cntropy PdeUCtlona(igg.)‘ + Can be represented as
d;S T d.s
(G- (R)
: A A B g
L d:s T
At the minimum of the ( 1 ) VvS. p curve,
e
" - :
d__(dls) _a__(d_})+g_3_=0$ (112)
P T 9P\ g Ip '
at 7 p T A
P popt
or
'i_(d's) __3, (113)
Jp\ dt op ~ T
A

a. When %E A4 < 0, the slope of the calculated curve

" based on our theory is positive at the true minimum,

and hence pl > . A higher tip concentration
opt Popt ; \

1s expected.

| 3 T
b. when — a4 =0, p

opt - Popt* The calculated tip
P _

concentration is the true tip concentration.
c. whén %E A > 0, ngt.( popt' The true tip concen-
ﬁration will be lower than the calculated value.
A rigorous analysis of the propertiés of A is a Qery complex ]
problem and beyond the scope of the present work. Qualitatively
W assume that the temperature gradient effect is stronger than

the 6ther effects. Then.the case falls into the criterion a.

(i1) Inconstancy of ko, - In the present theoretical

i

analysis, the distribution coefficient ko was assumed to be -




a constant. The actual Fe-Ni phagse diagram shows that
ko'increases with increasing solute concentration; reaching
about 0.76 at 10 wt.% Ni and qnityiat 65 wt.® Ni. Cleafly
this will give a positive deyiation of the tip concentration
from the calculated value.

The Tip Curvature

Exéerimental measurement of the tip radius
presents a rather difficult problem because the decantiny
and direct observation techniques are essentially inapplic—

~able for iron base alloys, and the quenching operation during
solidification usually does not allow oné to retain the
exact shape of the growth front. Only approximate shape
observation is possible, and we employed tﬁéuQUenching
technique for this purpose. Fig. 28 shows the longitudinal
section éf an Fe-8 wt.% Ni specimén quenched during éteady

Q;state growth with G = 31°C/cm and v = S5lmm/hr. A comparison
bf the experimental result with the variéus predicted tip
curvatures is shown in Fig.29. Here, the order of ﬁagnitude
aqreementfbetween our theory and experiment is clearly
observed. 'In our theofy. it is demonstrated that the.qibbs-
Thomson effect is significant when ¢ < lum. If the dendrite
:lp adjusts itseif in such a way that it maximizes the tip
temperature, it should become sﬂ&fper and éharper to reduce

. .

the undercooling due to solute build—dp'ahea&-of the tip until
the Gibbs-Thomson effect starts id plsy a significant role,

which 1s at most lum. This is clearly not the case in Fig,

'_29. Thé curvature apparent in Fig. 28 also supports the

PR



- This computation has been carried out from Eqs. (105) and

hypothesis that the Gibbs-Thomson effect can be neglected
without any significant error. in the velocity regime under

consideration.

5.2 Solute Field in the Liquid

Having determinéd Crip and p as a function of
growth velocity, it now is possible to evaluate the scolute
concentration profile in the liquid as a function of growth
velocity alone.  Typically we shall examine th2 concentration
profile in the axis of-x = 0 Qnd y = 0, ignoring the
Gibbs-Thomson and kinetic cffects. The equation of this
profile can be obtained simply by putting B8=0, y=0 and

v in Egs. {27) and (36).

_ E, {(px’) GD Ey (pa?) El(puz)(l+pJ:)—e_p“
C(J,O)=Cm +(cti _Coc) —_ — - _ .
P E, (p) mv L By (p) E; (p) (1+p)-e”P
' (114)

Computed results for some growth velocities are plotted in
Fig. 30. Parti&ularly to be noted is the simultaneous
representation of thelincreased soluté gradient and decreased
diffusional penetration in the liquid and‘the decreased tip

. . : 3
concentration as growth velocity increases.

5.3 Constitutional Supercooling

| The physical details around a growing dendrite tip
are clari%iediin the prescnt investidation. - _we shall
now examine the variation c:-the‘amount of constitutionaf

supeicooling, .3(1,0), as a function of growth velocity.

(55), ignoring the Gibbs-Thomson and kinetic effects. The
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.

result is shown in Fig. 31. The amount of the constitutional
supercooling for the virtual li@iting cases, planar inter-
face and infinitely sharp tip, are also-shown in the same
figure. It is noted that, as discussed by Tiller(77), there
remains a significant amount of constitutional supercooling
ahead of a growing tip except for the very low velocity
regimé. o

The reduction of d(l;O) by introducing two extreme
inter face curvatures can be estimated'by considering the
cegquilibrium temperature gradient. From Egs.(58) and (60)
we see that.the equilibrium temperature gradient in front
of an infinitely sharp tip is reduced from that at a planar
interface simply by the factor_ko, i.e. ,

)

o )
o = Ko(Gg) - (115)

D:m

(G
p=0

Hence, the ratio of the amount of constitutional super-

~

coolling is

. [o] /

1.0 |,y %6 pew = G N (116)
- 1,0 T (69 -G

P )|D=” | e’ pum

When Gg >> G (all cases except for the very low v regime),

"

J.0) | o
k.
o E i L R

(117)

. Further reduction is due to the contribution of the Gibbs-

Thomson effect; the magnitude of the constitutional super-
cooling with the infinitely sharp tip approaches -=. Thus
zero constitutional supercooling at the tip is possible fqr

r

any \growtR velocity but it requires a very sharp tip except

/
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for the very low velocity regime. For the growth geometry in
which local equilibrium is cleself held, the constitutional

supercooling in front of a growing tip cannot be eliminated.

J

5.4 C2l1 and Dendrite Spacings . —

In the present theory, the boundary limit of a
single dendrite, Xy has been determined by a self-consistent
method using an empiricdl.rule‘for the spacing vs. growth .
velocity relation. The physical significance of X, can pe
interpreted as the half spacing of the hypothetical para-
boloidal dendrite array. In an array of realdendr;tes, as in
our experiments, there exist the intéraction of the.solute
field behind the tip and the effect of the temperature
gradient. Thus, the spacing of the real dendrites, \, must.
be smaller than 2xL, In Fig. 32,rl and 2xL are shown as a
function of growth velocity.for a fixed temperature gradient
(31°C/cm). Two important features are noted in the figure:

(i) As expected, X and 2x, are in the.samﬁ order of
magnitude, and clearly A < ZxL.
(ii) Experimentally observed spacings roughly obey

the inverse squ;re root dependence of 1 on v 'in

the high velocity reqimc:'gowever, strong deviatdon

is observed in the low ﬁblécity regime.

The strong deviation kn the low velocity reqime_TAy
be rationalized in terms of the rate of iﬁterqal entropy '
sroduction. Close examination of Fig. 11 shows that for low

growth velocities the variation of (Eé;)' nearkthe minimum

1s very small in a wide range of p,whereas that for high




67

veloclities 1is quite strong. Thus small deviation of (dis)
dt A
from its minimum may permit a wide range of p values, giving
rise to a wide scattering of cell shapes in the low velocity
regime. In fact, the experimentally gbserved morphology

(Fig. 15) shows fairly uniform dendrites in the high vqlocity

regime and nonuniform cell sizes in the low velocity regime.

5.5 The Effect of Temperature Gradient

Up to this point, we have mainly investigated the
growth velocity depéndence of the tip properties for a fixed
temperature grédiept. Let us finally examine the effect of
temperature'grédient on the tip proéerties and the cell or'
dendrite spacing. This investigation can be made in a
straightforward way simply Sy computing all the formulas
with VariOLS-G. Computed results with G = 42°C/cm\are shown ' <
"in'Figs. 12, 1é and 32. It is ndted in the fiéures that,
when G is increased, ;hé tip concentration and raq{is of
tip curvature increase in the low velocity regime and the
spacing decreases in the en;iré velocity regime. Comparing
the theoretically predicted vafiations with the experimentally
observed-qradient_dependeﬁce‘Qf the ti;jéoncentration (Piqf
23) and spaciﬁbzﬂfig. 16), we find that these predicted \

cffects of varying temperature grﬁdient are indeed borne out

by experiment.

;s




(1)

¢2)

_CHAPTER 6
SUMMARY REMARKS

A mathematical model 'has been developed to describe

the controlled solidif@éation of dilute binary alloys
using a paraboloidal shape assumption. This'ope¥apion
is essentially an approximate transforﬁatiqn of a
complex free boundary problem to a similar one Qith

the consequent introduction of f;ee parameters.

A unique solution of the solute diffusion eguation

has been obtained by applying all the physical bouﬁdary
conditions aﬁd_one!additional optimal statement. ﬁe;e
the minimum rate of internal entropy production has
beeﬁ‘inggked.

The generalized phase tr&nsformation, as a freefboundary.
problem, is a variational problem in which the optimi- ]
zation coendition is indispensable; The rate of internal
entropy production is the only thetmodyﬂamiﬁ potential®
funct;on which completely describes the non-equilibrium
situation.and is a minimum at the atead; state of a U
pure relaxation process. |

The vgriptions of the thodretically éalculated tip

concentration and the tip radius as a function of growth

68
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velocity, for a fixed temperature gradient, are in ‘

reasonable agreement with experimental results.

]

”

(4) The theoretically predicted and experimentally observed
temperature gradient effects on the tip properties and
the cell (or dendrite) gpacing are in good agreement;

with increasing temperatufe gradient, for a fixed

—

growth velodity, the spacing decreases for any growth

velocity and the tip concentration and radius increase

I3

in the low velocity regime. .

(5) .The maximum tip temperature conditied (or the minimumf

tip undercboling condition) is one of the special cases

e

of_éhe condition of the mjnimum pate of internal entropy
Y proauction (i.e., when it is applied at a particular ‘ [\T\
_poiht, the dendrite tip). , S oL

(6) There exists a gignificént amount of constitutional super- o

o '
1

codling:in front of the dendrite tips. In usual

”) experimental conditions, béth the minimum tip under-
cdoling'conditipn and the zero constitutional super- .

‘\ R " ] . . - . .
cooling condition require tip radii less than 1 um,
which is not observed.

'{7) The amount of.undercooling at the dend:ite'tip in

4

&
RS L

columnar growth is a necessary starting poiht for

LTI

Sny rigorous theory of nicrosegregation 1ﬁ’di:@ctlona1
qouchl solidifi-
E : A
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These results, therefore, indicate that the departure
of the dendrite tip concentration from k_.c_ has
practical as well as theoretical implications, which
must be accounted for in subsequent advances in the
theory of microsegregation.

(8) In the Fe-8 wt.% Ni system, diffusional homogenization
is‘minimai while nearly complete homogenization occurs ' v
in the Fe-18 wt.% Cr-8 wt.% Ni system for the conditions

J

of the present investigation. This result therefore

emphasizes the importance of qhe 6 ¢ y transition in

the post-solidification homogenization of steels,

) - r g‘%
4




APPENDIX I

DIFFERENTIAL VECTOR OPERATIONS IN PARABOLIC
COORDINATES (&,B,¥)

In generalized orthogonal curvilinear coordinates

(q1.95¢94) .

Grad (V) = I %_ a. o, (Al-1)
i 0d ot egy -,

- .. £
where a; is the unit vector and the coefficient, hfq.has

aythe relation with caArtesian coordinates (x,y,z)

3z
h. + (X)) o+ (2H) . v (Al=-2)
R ) (3q1) (a2

For dimensionless parabolic coordinatg§ (a,B,¥), the trans-

formation relations are

- x = paB cosy, ] ‘AI"B)
y = paB sineg , ‘ - (Al-4) _ f
and | _ |
o(a? - 8L, (A1-5)
“;ifd his have thé form . i - .

a n, = pla® + g?)* | o (AL-6) )
' hy = ola’ Py R | K AL '
and o |

he = a8, L w1
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Thus

> 1 + 3 1 3 ) B 9 (A1-9)

T S T 52 .1y 2
b(a?+82)5 992 T (a24p2)d 938 paB O 39

- + ] .- . L -
where o, §O and ¢ , are unit vectors 1n parabolic coordinates.

-

nat s * . :
B and ¢0 in cartesian components,

N
Resolving ageBg

\
! {

-1

o =(;?:E?;H (IBcos¢ + EBsinQ + iu), ‘ ' (Al-10)
B = —L L (iacosy + Jasing - k8), (A1-11)
(a?+87%)
and a
p = -1 sing + J cos¢ ‘ (A1-12)
tPo . . ’ . )

ot g . : '
where 1, )] and k are cartesian unit vectors.

: ‘ /
‘Substituting Egs.(Al-10) - (Al1-12) into Eq.(Al-9) and equating

gradient expressions in cartesian and. parabolic coordinates,

we obfain . o .
’_ =1 ____1_.3 cosg A _._..1___0 cosy 5% -1 siny E%]..;-i_hl-ln-
dy Q2+82 30 024'82 GB - -;;_. -

P

. 3 ‘
7-1 = £[ 1 gingp% + 2 o sing 5-2- +£cos~p W] (Al-14)

S alitp? al+g?




The Laplacian'in general coordinates has the form /
o &_ ' Rg
or o L a3 (hab3 ) . 2 (h3h1 3 ) L 0 (hlh2 3 )]
= " (A1-16)

In parabolic coordinates, (Al-16) leads to

2 2 ) 2
o 11 [a NP R LA O ) [P | @ S LS
2 aa’ d3a  ap? .B 3B 2

0% a?4g? a p? a%g? a¢?




APPENDIX II

' GENERAL. SOLUTION OF THE DIFFUSION EQUATION N
. ) /
A mathematically rigorous general solution of

the-diffusion equation expressed in paraboli¢ coordinates

(30)_ An

was obtained by Trivedi(3l) and Holzmann
independent approach to the solution is presented in this
appendix to provide a convepience for readers of this’
. ghesis and to strengthen confidence in the previous work. -
The steady state diffusion equation in paraﬁolicj

coordinates with rotational symmetry was represented in

chapter 3 as ' ‘ ‘ '

2 ' 2 L
Q_?+(£ +2pa) au ¥ i_% +(%‘2p8)%§ = 0, '(A2-1)_

:
f o’ a " Ja
|
|

Introducing new variables &l and B, related to a and 3 by

ay =—pa2 P
-1, AN (A2-2y
- 2 LY
B 1 - p B \\/? > ‘,
. Eq. (A2-1) takes the form '
T L du 2 3%u du _ -3}
. a2+ (l=q )= -~ B~ - (1-8,) — =0, (A2
. 1342 g 1 day ! 1331 1 gy

1 '
If we '‘assume that u can be written in the form

u = ala)) *B(8;),
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then, Eq. (A2-3) has the form

Llg 452 _ayy dA ) . 1}g.d°B ooy dB [ 2-5
KW%lHE}__+-(l 1) dal]: 5 [Blagf‘ + (1-84) EFI] = 0. (A2-5)

To have the solution .at all, each term on the left of Eq. (A2-5)

must be equal to a constant, say A. Then we obtain two ordinary

\

differential equations. g

aa dA  _ p = ; PN
@y o + (1—al)aaz AA 0. (A2-6)
1
2 . _q
and By d B, (1-87) %g_ - ip = 0. (A2-7)
d812 . . 1 '

-

\ . {
Egs. (A2-6) and (A2-7) are of special form of the confluent hyper-
geometric equation. The general form of the donfluent hyper-

jeometric equation is
: | ' ) (A2-8)
x d_l’..,.(b_x)‘_il-ayno._
dx? dx

Using the method of Frobenius, we obtain two %ndependent solutiofis

\\ (a) px"

o0

(A2-9) -

Y, =’M(q,b,x) =ni0 TET;—H:'
(b f 0, <1, =2, «uv-).
and Yo = x}bb M(l+a-b,2-b, Xx), . .y - (A2-10)

1

(b ¥ 0, 11, *2, .0,
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Further solutions are obtained by variable transformation of

the differential egquation

y3 = e*M(b-a, b, -x), (A2-11)

and Yq = x1-PeXM(1-a, 2-b, -x). (A2-12)

second forms of solutions may be deduced ﬁ@ﬁlinear combinations

ys. = Ula,b,x) = Tum vy Q:r(b‘l) Yoo (A2-13)
T.(l1+a-b) r(a)

ye = x!"Pu(l+a-b, 2-b, x), | (A2-14)

y, = eU(b-a, b, -x) - (A2-15)

and  yg = e*x!1*Pu(l-a, 2-b, -x). :  (A2-16)

Wwhen b=1, the Frobenius method gives only ohe solutlcn Another .

‘linearly 1ndependent solution for this case is the logarithmlc‘

solution o | " o
B 12
(yo) = yylnx + (= -5 + ...
2 bal 1 al (l:f a T
r
(a) _x . '
l I 1 l - 2 e - z + ..
) + ( l)‘ (:if’.na"'I '.‘-...+ a+r-I I . r) ! .
r. - ‘ (A2-17)

(a g0, -1, =2, ...).

~

The correspond1ng solutions for Yg and yq follow directly from

1

the® deflnltlon of these funct10n3 g

= Uf{a, 1, x)

| ) @ (a) | _
L [M(a 1, x)lnx+ Z _(—:T {w(ur)-zwuﬂ;)}] , (A2-18)
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where v(x) is the Psi function defined by

I (x) .
1% = , _
{(x) T %) (A2-19)

and  (y ) _, = e* U(l-a, 1, -x). (A2-20)

The general solution of Eq. {A2-8) may be any linear combination
\ *©

of the solutions under the condition that their Wronskian does

not vanish, in general

y = C; M{a,b,x) + C,U(a,b,x). (A2-21)

We shall consider now our differential equations (A2-6i
and (A2-7). Tge parameter b=i}and the other parameter a can
be defined imposing the boundary condition at infinity to Eq.
(A2-7). Our boundary conéitibn at infinity impl}es that B is

finite when By * = (=) for any value of a except for a=1l. The

asymptotic expansion of M(a,l,x) for large x 1is

M(a,1,x) = T%ET eX xa-l{ 1+ ()lxl‘l}. : (A2-22)

The condition for a finite M(a,l,x} with x+= is.

a=0, -1, -2, ceen S . | (A2-23)

Examining the Wronskians of yj and yj under the conditions of
b=1 and a=-n (integral ‘n), we find that y] and Yy are independent
solutions. Thus the geﬁe;al solution of Eq. (A2-7) is

8 | .
B = C1M(-n,1,8;) + Cye U(l+n,1,-8;). (A2-24)

When g, - =, the second term becomea.infinity, therefore C, must

“
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Using the identity
M{-n,1,x) = L (x), (A2-25)
the general solution of Eq. (A2-7) 1is

B, = Cynlp (PB?) - (A2-26)

Similarly, the general solution of Eq. (A2-6) may be given by

1

a
A = C3M(-n,l,al) + Cae U(l+n,l,—ul). (A2-27)

When o+« (al+-w), H(-n,l,al) pecomes infinity. To satisfy the

boundary condition u=0 when a*= , Cy must be zero. Thus

2
A =C e—pu U(l+n, 1, pa?) (A2-28)
. n 4n r r p -

Wwithout loss of generality, we choose -the coefficient C,4, suéh |

that A, = 1 with a=1l. Then

A = e~P2 y(n+l,1,pa?) - . (A2-29)
n - - .
P
e PU(n+1,1,p) _ N
. : Y .

From Egs. (A2-4), (A2-26) and (A2-29), we finally obtain

l.d . . " G;P02U(n+l'l’paz) "..2 - -
TN ~ Y(a,B) = I E: L, (p87). (A2-30)

=0 " .o-Py(n+l,1,p)




APPENDIX IIi

SOME INTEGRALS Ry
In this appendix, some integrals encountered in

chapter 3 are evaluated.

(f) ‘Evaluate the integral

7, Il = j e X kan(x) dx. {A3-1)

©
By definition, Laguerre polynomials have the form

-a n
(a) x4 (e7X P+, n=0,1,2,""" 0. (A3-2)
L. (x) e 0

n n. dxn ' .

Substituting Eq.(A3-2) into EgQ. (A3-1)

($ 5

n .
I, =-£,j' x¥ & (e7X xM) dx.
nt ax” . .

o .

Integrating by parts n times

i 1, = 3, nMv-1) (v-2) 00 (u-n+l)J e xVax.  (A3=4)
. o ’ .
Using the identity” i i
. - ™~
[ (x) =J et X1 ae, ) (A3=3) -
‘ o \
we finally obtain
n [revend]? : (A3-6)

1 'i(-l) T (a+l)F{v-n+l) _
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(2) Evaluate the integral

[+ )

I, =’J (pre) * e b L (6) ac. (A3-7)

e}

The integral representation of Laguerre polynomials has the
form w0

2

e n -t
= . A3-8
L (&) 1T J t JO(?.JEE) e  dt ( )
O
Substituting Eq. (A3-8) into Eq.(A3-7) and putting § = x°

o

. J £ e tae J 2x J_(2/F x) dx. (A3-91
{( :
o (&)

t
3 -
.

/5)2+x2}H '0

“s1ng the identity

® _ T T (2)
) ‘J e Pt ¢2-1 4¢ = (z , (A3-10"
P .
(@]
we find the relation
1 . o~ L(/P) 4x?le g -k 4q (A3-11)
(/) 2ex?tY T (W) :
s . , Fa \ . 0
Hence o = ' = L
2 A
2 ' - 2 - -G X ' -
I, = = lﬁj fN oot dtje (vp) S g I’dsJe "Jo(z'.t x) dx.
- o fo) . . LY .
© (A3-12)

‘ r . -
The last integfal is a special form of the Weber's integral

y fa e S
whuse general form 1is
N « N bz -
= 22 +1 . bY - 4al (A3-13
-a“x v a
e J. (bx)x dx = e . _
a j W ., - ‘zal‘) \)+1 . . .
fo] v -
' : >
b ‘ -
‘ o B
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Thus ,
o 1 _g
J e 3% x Jo(z/E x) dx = 30 e . (A3-14)
o
substituting Egq.(A3-14) into Eqg. (A3-12)
, (" w /5) s £ _% |
.1 n _-t - T s g < ds. (A3-15)
L, n:ﬁte dtlsJe :
0
0
Putting ps = )
- ,BE 3 |
. = _/_P—- netar x| e M7 g (A3-16)
2 /F
o o]
Representing the last integral by the modified Bessel
function of the third kind (Macdbnald‘s function) whose
integral representation is given bf
! g | (A3
-t- Lo=v=1 ’ A3-17)
K\J(z) =%(%)viet"-ﬁt dt , - :
1, has the form’ : o - .
=2 ) n g7t '.(?P_B(JE) o (2/pt) dt | .- (A'3-:-'181
2 = n! t e }, P . .
The table of cylinder functions Of half integral order gives
- kX i v (A3-19)
K (x) = (3x) € - | o s -

From Eqs. (A3-18) and (A3-19),

n: ) ‘ "

.Putting t = (q-/s)ig i ' _ . , | +




Qo

~ (2n}! 2 P 2n  -q2 ‘
L= 7nr o e-J (a-/p) " e dg. (A3-21:
/s .
\m . |
This integral has the form of the repeé%ed ;ntegralé_of the
error function defined by By .
n +1 2_ 2 - ., ,
(11" erfe(x) == ar | (=)™ ™t at (a3-oo
./ , |
X - 4
Thus, .
1= 2000 GPuro11n erfe(/p). C (a3-23)

2 n!

Using the definition of the normalized integral error function

I_erfc x = me(i+§f{l}m erfc(x), . T az-2d
we finally obtain c ] BT .
p [{n+4) erfc(/p) . EE . (A3f2§‘

Iz = e [tn'.'Ij 12n -

(3) - Evaluate the integral o .

t

Lot

U =J et (pre) 2 L (8) 4. (A3-26)
‘ o ' o . . R e
This fﬂkegral can be straightforwardly evaluated by differen-

. . o 3

. f - . - -F -7 ) I
: re-'E(p‘ﬂ.) * Ln(E’dg] i -&j e Hpery T Lp (o) At

2} . ¢ . .

tiating Izrwith'fespect to p-

o : o o0 °
VA2
ilence, ’
0 ; ~ \tt\‘ a2
) - -2
. = - (I )- Lt
13 2 ’5‘5 2 ‘ ot
. » li:
. A
'a‘b -




-

1t follows ffom the definition of the function I erfc(x)

that
d o L L - '
I= Lnerfc(x) = (-l)in I,_jerfc(x), ! (A3-29)
n-1 ‘ ‘
where A = 2" T(1 + .. - (A3-30)
Then , _ . ) ~‘
| 3 -| ,p I'(n+k) ) "'
B_a[e F_(ﬁ.’. I, erfc(/ﬁ)] .
_T(n+k) | p ' Pl T(n+l) '
= Tin+ .[e I, enfc(/p) -e 7 TR I,0-1 erfc(/ﬁi].
. ~ . |
: : . (A3-11) .
From Eqs.(AB-ZB)-and (A3-31), it follows .,
. N g Y . o .
1, = 2P| & r(nek). 1. erfe(vp)|.  (A3-32)
. 3 . : ‘(E 2n—.1' erfc'(/s) - n+ 2 ) ] ’.‘\\\ _ .

0 .

Using the recurrence relatxon of the nqrmalxzed inteqral error

/

functlon, we obtain

‘ - 9uP g - - f (A3-33)
/. I, 2e_ Ion+l erfc({s)- P (A3~
. _ .
/ .o RN ¢ _
- ' -
- - - , 7 ‘ 4
L1 >3 -
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Chemical Analysis of Pure Fe-and Ni

Fe fFerrovac E)

Impurities
C

Si

. Cu
- Ni

Cr

<

0.01

0.00046

. .0.00005

0.0002

Al

TABLE 1

X<

f~r

-

-

—

-

.l Ni (Electrolytic Ni)

..'I -

Impurities

C

-

si

Pe
Co
Cu
ca
Al

- Bi

Pb

Ta

o

wt.?

0.0050

<0.0006
0.0002
0.0012
0.0002

<0,0005

<0.0003 .
<0.06005

. <0.0005

<0.0004
<0.005

<§.005

«0.0017

. 0.00028
.0.0004

0.00213
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T TABLE 2
o O"L‘
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New improved etching Reagents

(1) Etching Reagent for Fe-Ni alloys (1~15 wt.% Ni)

Composition

_ Remarks

R
e

f
Ferric chlpride . (FeCly-6H,0) :30g

Cuéric\chloride(guCl "2H,0) : 8g

2
Stannous.chldride'(SnC12°2H20h:4g
Hychochloric acid (s.g.l.lﬁ):36cc

- Distilled water:500 cc

Ethanol:SOOcc

‘.1‘?
Iron rich ‘areas become -
darker color.
- Etching time is about

5-10 séconds

(2) Etching reagent for Fe-18% Cr - 8% Ni a}loy

Composition

),_‘ " Remarks - .

Stocf‘sdlutiOn:

Sodium thiosulfate
(N525203'5H20):15pg
Distilled water:500cc’

. '’

L )

Hydrochloric acid(s.g.l1.19).
R : .

-

7cc of HCl is added .to

50cc of stock solution.

¢

before use.
‘Etching time is 3-8 seconds.

This reagent remains active

only for about 20 seconds.
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Dendrites
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. Figl 3

Relation between parabolic {(a.8,¢) and-caftesian
(x.y.z) coordinates. :
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Fig. 16 Variation of solidification structure of Fe-8 wt.%Wi alloy
) - as a function of temperature gradient for approximately the
same v, x 22, reduced 47% for reproduction.
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reduced 61% for reproduction.
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Fig. 20 E!fgétiveneu of the improved etching reagent
. .. for Fe-18 wt.$§ Cr-8 wt.% Ni alloy. Micro-
segregation of a quenched floating zone, x 22°
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