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This thesis is concerned with establishing an 

improved theoretical and experimental, desct"iption of' the 

steady state controlled solidification of, dilute b,inary 

alloys.o In' the present theory, a mathematical model is 
, . 

/ 

d,:,veloped'to describe an experimental situation in which 

alloy solidification is controlle~ by solute diffusion in 

th~ liquid phase. The theory, gives a unique solution 6f 
" 

'the solute di f fusion equation 'and predicts the variation 

of the thermQdynamic properties at the s9lid-liquid inter-. . 
face, particularly at the ~endrite tip, as a function of 

material constants and growth parameters. An experimental 

program was ,tevcloped to investigate t.he dependence on the 

growth paramcters"of the morpholoqical dev'elopment of the 
o 

interface and the concentration variations at the interface 
, I ';) 

ofdn F"e-8 wt. , Ni alloy. Experimental re~ults for this 

• 

. , 

I \., 

p.lrticular system can be successfully rationalized by the _____ -~-
, ~ 

. . -----.-. 
approximate solution of the present theor~, .---~ 
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CHAPTER 1 

INTRODUCTION 

The solidification of ~olten metals is one of the 

most important processes in the production of metals; and 

one which is often considered to mark-the boundary between 

extractive metallurgy and physical metallurgy. Solidification 

processes .may be classifi·ed as single phase. solidification 

and poly-phase solidification according to the nu~er of 

phases being produced. and a.s controlled solidifica·tion 

and unconstrained solidification according to the conditions 

externally imposed. 

The present work is lIIainly concerned with th~ ,/ 

single phase controlled solidification of dilute binary ~/ 

loys. This process has been studied for a long per-iod 

w the objects of il;aProving the struhture and properties 

tings and of broadeninq our scientific understanding 
I . 

of nat Althouqh recent quantitative studies have clari-
o , 

fied many problema of the process (e.g. the marqinal insta-

, 

bility of a planar interface. microseqreqation attending 

dendritic growth, etc.) many important problema remain stlll 

unsolved or only partially solvea, One of these is the 

dependence of the dendrite tip properties on growth parameters. 

The purpose of the present study i\l to. provide a • 

• 

1 , 
\ 



more concrete analysis, 

( 

theoretically ~nd 
2 

experimentally, 

of the steady state single phase controlled solidificat10n, 

wit~ the ultimate view of predicting th~ cell or dendrite tl? 
L , 

) , 

'conceQ:>.tratJ.on and curvature as a function of materials 

constants' and the fixed and controllable groWth parameters. 

The thesis can b,' conveniently divided into four 

parts: In the first part, a number of previous stud1es uf 
, . 

the single phage solidification are ,revLewed. 

part is the formulation and analysis of the dJ.ffuslon 

coritrolled steady state binary alloy salid1fic~tlon as a 

boundary value problem. Our treatment falls short of thc 

ultimate achievement by requiring some semi-empirical lnput, 

a requi rement that is typical of cO,mplex free boundary 

problems which have'one or more lnternal degrees of freedom,. 

An approximate solution to thi~ proble~ is offered thrauqh 

a shape assumption, the general principles of J.rreversible 

thermodynamics and an empirical rule for the dendrite 

spacing vs. growth velocJ.ty. The third part descrioes the 

experimental stu'dy of some Lron base alloy,s" using the 
, 'l 
.' 

technique of CQntrolled unidirec'tional solidification. 

Spcc1fic contributions are the observations of the effects 

of temperature gradient and g'rowth veloclty, each' ~s a, 

separate variable, on the growth morphology and mlcro­

:;c<lregation, and of the ,pr<)found' effect of crystal 

'structure on the homoqenlz"tion kinetics of the ~~cro-

se9re~atlon. In the flnal part. a quantitative 

diScuSSLon on tnc p~esent theory and experime tal ,results 

... 
• 

, 

(~ 
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is presented. '" It is found that the present experimental 

results are in reasonable agreement with the values 

pr<;>dicted by the. present- theory .. ' 

It is expected that the results of the present 

theoretical and experimental investigations will provide 
') 

a clearer understanding of the fundamental aspects of 

alloy solidification processes ~d contribut~ directly to 

the casting industry es a necessary starting point for an 

improved microsegregation theory applicable to directional 

solidification. 

• 

" .. 
. . 

.. 

. r 
\ , 
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CHAPTER 2 

PREVIOUS WORK 

In this chapter, some representative previous work 

on single phase solidification will be briefly reviewed. 

2.1 Controlled Solidification 

With the term ",controlled solidi.fication", we 

defi~e a solidification process in which a positive tempera-

ture gradient and a growth velocity are externally imposed 

as growth conditions. Under these conditions, the liquid­

,so).id interface of a pure 0 metallic melt is always pianar. 

For a binary alloy melt, the interface may be planar, 

cellular or cellul,ar dendritic dePending on the materials 

constants and growth condition~. 

• .-.r 
All the early theoretical work on morphology 

concerns itself with the margin,t;letween a pl'anar and"non-
. 

planar ,interface, i.e. with "marqinal instability". The 

first 'quantitative analysis of this problem Was established 

by Ti ller et' all 1). The redistribution of solute ahead of 

0" planar interface during transient and steady state solidi-
, . 
(ication was'calculated, and from this, the condition for 0 

the onset of constitutional super~oolincj ahead of a planar 

interface waft obtained as 

G -1DC. (-l-kl;l) 
< (11 

v D Ito 

4 ,,0 
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where G is the temperature gradient in the liquid, v is 

the growth velocity, m is the liquidus slope, ko is the 

equilibrium distribution coefficient; Coo is the initial 

\ bldk concentration ,and D is the' diffusion coefficient' of 

~olute in the liquid. For a decade, this condition was 

co.nsidered the sole criterion for the instability of. a \ 

moving planar int'erfa<;e and was' show'n to be in 'fairly good 

agreement with most experiments. It should be noted thdt 

some other physical problems associated ~itn the liquid, 

solid interface, for instance the capillarity ,effect 
, 

(associated with non-planar interfaces), the kin~ic under-

coo~ing at' a moving interfdce, thermal conductivities. of 

both phases, etc., have nOf been'accounted for in the 

criterion. • 

~ Mullins and Sekerka applied 'linear perturbation 

theory to this problem in their already cla,ssic work on the 

morphological stability of a spherical iriterface(2) and a,. 

planar interface (3) •. Of particular, im~.rt~nce of the' w.ork ' 

is the fact that the capillarity effect has been included 
, 

and its stabilizing effect quantified. , A nuinber of extensions 
,.~" \. 

and applica~ons of the theory followed: 

Tarshis and Tiller(4) ;eexamined morphological 

stabil,ity by considering the effect of molecular attacQment 

kinetics. They found alsi4nificant stabilizing effect of 

slow kinetics. 

~h~~(5) has a~plied stabflity theory to'sOlld-

- , I 
solld tr4ns forn4atiens and shown that low inter, facial mob 1 I 1 ty . . 
"nct trans fOrlllation stresses stab! l1ze the inter face, whereas 

, 



6 

impurities enhanc~ the instability. 

Cahn(o) has investigated the. effect of slightly 

anisotropic surface tension and interface kinetics of a 

growing particle, and found that the anisotroptc surface 

tension does not result in a stable particle at any size 

and t.hd., interface kinetics st'abilizes the particle until it 

reaches a size which marks the transition from interface 

kinetics control to diffusion control .. 

An extension of the stability theory to dilute 

ternary alloy solidification has been established by ~ates 
and Purd.y(7). It was demonstrated that multicomponent 

diffu~'tonal interaction may enhance stability Or instability 

depend~ng on t~ shape of liquidus surface and the sign of 

thermodypamic interaction parameters, whereas in binary alloy , 
the solute gradient always' promotes instability. 

Sekerka's. recent paper "Morphological stability· (81 

" ~ 
may be the best review of linear perturbation theory,'with . . . 
a full account of stabilizing and destabilizing factors. 

The ~in fruits of linear theory are the determi~ 

< 
nation C?f marqinal,.ptability and the determination of th\! 

range of the wavele~ftthof 
the spatial pattern of the 

growing initial perturbations. 

growing perturbation is to be 

predicted, if the effect of large perturbation is to b~ 

estimated, or if the ,time lependent evolution of the shape· 
. . 

of a. grOWing initial perturbation is to be estimated, then 

nonlinear terms must be taken into account.' A ndnlinear 

st.1bility analysis has been established by Wollkind and 

segel(91. They deterained an instability criterion as a 

If 

function of wavelength and aaplitude of initial perturbations, 

[ 
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for a given experimental condition, while linear theory 

predicts an instability criterion as a function of wavelength 

only. 

" A quantitative study on the non-planar interface 

morphology and the solute redistribution in the liquid has 

been attempted by Bolling and Tiller(lO). This work has 

shown the free boundary character of the system, and from 

this, limitation several approximate models ha'Je been 

developed(l'l,12)to predict some features of the solute 

segregation i~rms of growth CO~ditions and ma,terials 

constants. , These models are based on rather restrictive 

assumptions about interface geometry. 

Experimental studies of controlled solidification 

have been conducted by many investigato~s. Chalmers and 

~ll.s coworkers have initiated the first quantitative experi.,.'.' 
" 

mental and theoretical studies of this problem, sep~rating 
" 

f} 
the growth velocity and the temperature gradient. Most of 

their work is elegantly sUlllllarized in Chalmer's book 'Princil1les 

of Solidification-(l3). • 

Through-a series of experimental studies of ferrous 

dnd nonferrous alloys, Flemings and his coworkers(l4-l7) 
. . 

have attempted to describe the solute redistribution during 

directio~al dendritic solidification using a simplified mode'! 

.Wh1Ch is based on local equilibriua at the interface, ~egligible 

undercoollng of the dendrite tips, ~ss conservation, complete 

m1xing in the liquid and partial diffusional homogenization ., , 

1n the solid. Although this .adel does not yield detailed 
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insight into the physics of a solidification process, it 

constitutes a good basis for engineering practise. 

various aS~,l!'ts ,of the unidirectional solidifi- 0 

cation of ferrous and nonferrous, alloys, as well as their 

mechanical properties have been investigated by Weinbe~g 

et aI Cl8 ,19J. It has been demonstrated that experimentally 

determined solute distributions across dendrites are in 

good agreement with calculated profiles ba~cd cn complete 
, " J 

mixing in the liquid or diffusional transport of solute in 

the liquid, depending on the system chosen. 

Sh~rp ~d Hellawell(20,2IJ investigated the solute 

distributions ahead of non-planar interfaces which a~e 

developed under well defined growth velocities and tempera-

ture gradients. They "found the undercooling associate, 

with interface curvature is very, small for the conventional 

range of steady state solidification experiments of 'metallic 

system: 

Direct observation of growth morphology during the 

solidification of molten metals is unfortunately 'difficult 

due to the fact that ~tals are opaque. To avoid this 

difficUlt§. ~ny indirect obser~ation techniques have been 

developed., Of special interest is the decanting technique 

employed by Chal_rs et al (l))'. jackson et al (22.2) J have 

used some transparent organic ~unds which have small 

entroples of melting and solidif~like metals. 

o / 
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2.2 Unconstrained Solidification 

The' solidification which occurs i'n an initially 
> 

uni'formly supercooled melt is defined. in the present work 

'" as unconstrained solidification. Under this coridi tion" the 

9 

temperature gradient at the interface is everywhere negative. 

Thus the heat sink. is the melt itself. and the resulting 

dendrites may grow in any direction. 

The first successful mathematical treatment of 

this system was due to Ivantsov(24}. He solved the heat 

,balance equation at the int~rface which simultaneously 
, 

satisfies the thermal diffusion equation in the liquid, 
/ 

leading to the rollowing very,important ,conclusion: The 

surface of a lin~arly growing needle-like crystal is not 

" isothermal if it i~.other than a paraboloid of revolution. 

Horvay and Cahn(25} extended Ivantsov's ~alysis to more 

generalized shapes. 
\ ' 

the limitation of th.is theory was the 
;: 

unattainability of a unique solution·of the diffusion 

equation., Thus the separate determination of growth velocity 

and tip radi"!.,s was impossible.' 

Temlin(26} and, independently, Bolling and Tiller(27}. 

have incorporated the nonisotheraal character of a moving 
, , 

non-planar interface due to curvature (Gibbs-Thomson effect) 

and kinetic effects. IntrOducing this nonisotheraal character 
, ' . 

of the lnterface and the 'condition of aaxi~ grow~ velocity 

(which had been initially proposed'by Zener(28!), the one 

internal degree of freedo. in Ivantaov's solution has been 

eliminated. i.e. a unique growth velocity and:corresponding 

nadius of tip curvature for'a given undercoollng have been 

~X~lncd. In hlS, aathe .. tical operation. Teakin , . 



simplified the p~oblem to ~e Laplace equation in moving 

parabolic coordinates using the fact that the Peclet number 

is small compared with unity. 

K~tler and Tarshis(29) have refined Temkin's 

analysis restoring one of the neglected terms in Temkin's . . 
• 

analysis. A mathematically complete solution has been 

recently obtained by Holzmann(30) and Trivedi(31). The 

sol~tion obtained is complete from a mathematLcal point of 

view. However, the 

the shape ~emaini~g 
problem was fotmulateli on the basis of 

paraboloidal, which is no longer true 

} 

10 

as soon as we take the nonisothermal character into account. 

Hillig(32) has r~examined the steady state growth 

shape using a self-consistent method. His analysis did not 

usually' lead to a unique shape, which may imply the 

absence of a true steady state solution . 

• 
The experimental].y observed dendrite shape of pure 

tin has been shown to be &pprox~mately parabolic(3!). The 

growth velocity as a functigll of melt undercoolinq has been 

experimentally observed for pure tin (34), white ph6sphor~ulI OSl 

and others. ~hese reaul ts are re~rted to be in rea'lIonable 

agreement with theoretical predictionll, althouqh there 'appear 

some discrepancies in the magnitudes of some physical para­

meters of the materials used(3l).'-

The solidification of the central equiaxed region 

of motal castingll may be one practical example of UnConstrai~ed 

solidlfication. ~n9 a number of experiments on this system, 

the work. of 84ckerud and Chalmera(36), and PPherty and ()7) 

• 
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• 
are of special interest. By thermal analysis experiments, 

they ha~e estimated tne temperature of the growing dendrite 

tips. This temperature is much lower than the equilibrium 

liquidus temperature of the initial bulk concentration. 

Fro~ this result, they have concluded that there exists a 

significant solLite bui ld-up ahead of the dendr"ite tips. 

11 

Thin conclusion indicates that the microsegregation model(l4-19l 
, 

wh ich assumes the tip concentration to be kuCo. !Jhould be 

con~idered as a first approximation only. 

D 

• 

\ 
- , . 

r~ " . 

) 

• 



CHAPTER 3 

THEORY • 

It is noted in the previous chapte~ that among a 

,number of works on single phase solidification, few research 

programs are concerned with the theoretical dQscription of 

the non-planar interface morphology a'nd associated solute 

redistribution which occur under most experimental conditions 

of single phase controlled solidification. In .this chapter, 

a mathematical analysis is given in order to explain more 

fully the physical and thermodynamic properties of the 

solidification system with a moving non-planar interface, 

particularly a59~und the tip. 

3.1 Statement of the Problem , 

Consider a dilute binary alloy rod partially melted 

in a furnace which haa a positive tempe~ature gradient (Fig. 
,\ 

1). The two phases, solid and liquid, are assumed'to be 

separated by a continuous boundary, the inter~ce. When 

the furnace is moving up with a cOnstant. velocity towards 
. / 

the direction of the poaitive ta.perature gradieri~, fhe 

Lnterface will move up constantly except for the initial 

tranSient period so that the liquid solidi.U •• , with a 

constant rate, that i., a 'first order ph.se· transto~eion, 

liquid·solid ia in proqi-•• s unci'ez steady state. The question 

12 



is: What happens at the interface and what will be the' 

resulting structure? Although much h~s been spoken to the 

question by previous investigators (the marginal stability 
• 

of a planar interface, solute field ahead of'a planar inter-

face,'empirical theory of microsegregation, etc.), many 

important problems, particularly when the interface is non­

planar, remain only partially solved. Among these are the 

curvature and concentration of the tip of a non-planar inter-

face. We sball undertake a theoretical description of ~is 

problem. 

By the thermodynamic definition of the first order 

phase transition in amulticomponent system, the molar Gibbs 

function is continuous but its derivatives with re~pect to 

tem~erature and pressure ar~ disconti~uous at the inte~face(38). 

Thus a, solidification process invo).ves the rearrangement of 
<> , 

atoms, the change o~:" composition, enthalpY' and volume at the 
, -t· . • 

~.-... 
interface. Furth~rmore a re,al solidification process is an 

irreversible process as long as s~me ~ternal constraints 

" 
are maintained, because it is impOssible ,to traverse a locus . ... . 

of constant entropy in th~ thermodynamic configuration spa'ce.' 

Therefore, a complete" description of a solidification proC8JSs 

must involve the kinetics of atomic rearrangement, 'the trans-, 
" ' -" 

port of mass and heat, 'mass convectic:in by volume change and, 

other principles which control the irreversible process.' 
• . . t 

To, desct1be the given experimental situation, we 

consider a model with the foilowing a.s\mlltions,: 

(i) ,\ The telllP*rature "gradient at the interface is held 

" 

I 
;j 
:1 .. ,. 

" 



constartt by coupling the solidification system 

to a large thermal reservoir. This assumption 
r. , 

can be considered to be reasonable from the fact 

that D 
« 1. where D is the solute diffusion 

Dth 

coefficient in the liquid and D4h is the thermal 
• 

diffusivity in the liquid. 

(ii) The convectional mass transport is negligible. 

(iii)' 

This condition can be approximately met throu9h 

an appropriate geometrical arrangement of the 

system. 

Diffusion in the solid is negligible. This con-

dition will be reexamined after we obtain the 

solution. 

(iv) Solute concentration in the liquid is small. 

(v) The extent of the liquid phase is infinite. 

(vi) The effect of interface attachment kinetics is 

negligible. 

Under these assumptions, the system can be 

considered to be mass dift~sion controlled in the liquid. 
> ~ 

14 

Thus the field equation is the mass diffusion equation and a 
" 

complete analysis of the system must be determined by the 

complete SOlution of tho di: fusion equation "'bich mus. ",Iso' 

sat.isfy all the im,posed ~undary conditions. A difficulty 
, , 

ln th,e present ,problelll arises frolll our lack C?f knowledgo 

concerning the shape and ,location of the bo~ndary itself. 

whl.ch !DUst be found as a part of the solution. We have 

,-.. 

\ '". ':i. 
~ , , 

. ' 
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thus to deal with what is . commonly referred to as .a "{ree 

boundary problem". (39.40) which simply means a problem whose , 

solution is defined over a domain that is not given in 

advance. This problem is far too difficult to treat in a 

satisfactory way, unless the. boundary conditions are very 

simple (eamPle. one dimensio'l)al melting of semi­

infinite sol'd with constant body and surface'temperatures-­

the Stefa problem(40». 
, , 

In our boundary value problem. one of the boundary 
, 

condi tions·. the mass oonserva tion condi tion at the inter,,": 

face. is non-linear and this is a.very complex boundary 

cod~~t'ion for an arbitrary interface shape. To make the 

problem mathematically tractable, we introduce, a partially 

free shape (if the shape. is not free. at ·all. the problem 

'becomes trivial), a paraboloid of revolution whose tip . 

• 
curvature, position, and boundary limit (hypothetical 

, 
spacing~ are free •.. This shape assumption is taken due 

solely to the, 'mathematical simplicity and the fact that 
f 

.experimentally observed (shape 1s -very .close to a paraboloid 

" 
of revol.ution near the tip. , 

For the mathematical simp~icity. weodeal with ~ 

single dendrite. This implies that the interaction of mass , 
diffusion fields by an array of true dendrites is ignored. 

, 
ThlS effect can be quite appreciable ~ar'behind the tip; 

however. it is ass~d th.at the interaction'd?Cs not affect 

the tip properties. 
• • 

• 



IF 
It should be noted that our model involves three 

16 

',undete~d parameters, the 

\position Of~ interface or 

/the boundary limit, XL (Fig. 

radius of tip curvature, p, the 

the tip concentration, c tip ' and 

2). Thus at least three ext~a 

conditions are necessary to obtain a unique solution of the 

field equation. One of the conditions is clearly the extra 

physical boundary condition at the interface, the mass 

conservation condition at the interface. The second con-

dition is the postulated thermodynamic variational princ'ipl.e, 

a stochastic component which is always present in nature. 
, 

The third condition needed to determine the boundary limit 

obtains from a self-consistent method based on our em~irical 

knowledge of dendrite spacings. 

Based on our modei, we now wish to attack the 

problem with the following algorithm: 
r-

(i) describe the mass diffusion equation and boundary 

conditions in moving parabolic coordinates. 

(ii) obtain the solution of the diffusion equation to 

( iii) 

(iv) 

the free boundary conditions 

apply the mass conservation condition 

apply the postul~ted thermodynamic variational 

principle and the empirical rule for the spacing 

to determine the boundary limit and free parameters, 

~hich leads to a unique solution of the diffuslon 

equation. 

Two specific Contributions are given in the present work: 

(i) Ivantsov obtalned the solution of the theraal 



.. (ii ) 

. dLtfusion equation to the.isothermal interface 

boundary conditions for the paraboloidal shape, 

and Temkin, Trived~ and Holzmann presented the 

solution of the diffusion equation to the non-

isothermal interface bouLdary conditions due to 

17 

curvature and kinetic effects. We give the solution 
, ~ . 

. . , 
of the .diffusion equation, under the same assump-

tion of shape preservation, to the non-isothermal 

interface boundary conditions due tll ,=.,.rv.:lturc 

and kinetic effects and the imposed temperature 

gradient. 

In previous work, the internal degree of freedom , 
was eliminated by optimizing a particular thermo-

• 
dynamic or physical parameter on.a particular point 

of the interface. We employ the postula;.ed thermo-

dynamic function and we consider the entire volume, 

of the system. 

3.2 Diffusion Equation 

From th'e pnase dl.aqram of a dilute 0nary alloy,. the 

equilibrium distribution coefficient, to' is defined as 

k -o 
Cs 
cL 

• (2 ) 

where C s and c L are the equ,ilibrium s~lute concentrations 

of soli~ and liquid at the planar interfilce; respectively. 

When ko>l",,,lvent r~jection i,s expected for' the solidifi­

cation to proceed, wbereas solute rejection ia expected when 

It '1..(. 
o ~ 

. ' 
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The, present theory deals with the case ko <I., and utilizes the 

assumption that ko is a constant. ko is not necessarily a 

'constant for a given system, however it is often nearly con-

stant over a.wide range of dilute composition. 

The redistribution of solute in the liquid phase 

must obey the diffusion equation in our convectionless 

experimental system. In the fixed cartesian coordinates 

(X,Y,Z), the diffusion equation is 

dC 2 IT (X,Y,Z,t) = D',' c(X,Y,z,t), ( 3) 

• where c is the solute concentration, t is th~ time and 

Q is the solute diffusion coefficient in the liquid. 

For the uniformly moving cartesian coordinates 

(x,y,z) with a constant velocity v whose motion is in the 

positive z direction, Eq. ( 3) has the, 'time il)dependent form 
\ 

2 
'l c(x,y,z) + v 

o 
jc \ 
yz(x,y,z) • 0 • 

In,place of c, we introduce a,new variable 

u (x, y , z) - c (x, y , z) - c... • 

, 
'Thpn' the 'diffusion equation, (4) has the form 

2 Vall"'''! v u(x,y,z) + n rz(x,y,zl a 0 • 

(4) 

(5) 

/ 

(6) 

To make the problem more readily soluble for the 

lJi'ven boundary' constraints, we introduce the u,niforml), 

moVing parabolic coordinatts (a,S,.,) which are related to 

• 
the moving cartesian coordinates by (Fig- 3) 

, 
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x = p a B cos '!] 
y = p a fl sin" 

z = ~p(a2_ B:) , 

,. 
(7) 

where p is the radius of tip curvature of the paEaboloid 

o = I, a and B are dimensionless parabolic coordinates and ~ 

is the azimuthal .angle. By the coordinate transformation 

to the parabolic coordinates, the diffusion equation (6) 

au -(a,B,.,) 
aa 

with rotational symmetry, we finally obtain 

(8) 

• 2 

~(a,B) + 
J a 2 • 

(~+ 2pa)~ ·(0,8) + (a,~) + (~- 2P8)~(a,8) • 0, 

(.9) 

where p is defined by 

VP 
p.- 10 

P 1S a dimensionless parameter and generally called the 

mass Pe'clet number·. 

\/ 

3.3 Boundary conditions 

Ii) Interface T!!perature and Concentration 
• 

(10) 

There are three additive effects vhich contribute . ~ 

to the depression of .the .~tual interface. temperature belov 
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t,he equilibrium melting temperature of a pure sOlvent(12J. 

\ The temperature depression due to solute, l'lTs' is 
I 

given by -, 

l'l T = -me ( 1 , B) , 
s 

(11 ) 

·where c(l,B) is the solute concentration at the interface of 

licruid side. 

The temperature depression due to the interfacial 

energy (the Gibbs-Thomson effect), l'lT , is 
·c 

(12) 

where TM is the melting temperature . .of a pure solvent for a , 
" 

planar interface, L is the lat~nt heat of melting, y is the 
• 

interfacial energy and K. is a geometrj.cal factor defined by 

dA 
K - (IV , (13 ) 

where A is the interfacial area and V is the volume enclosed 

by A. For a monotonically curved interfa~e, K is equivalent to 

the mean curvature of the interfame. , 

It is further kno .... n that interface attachment 

kinetics give an additional temperature depression as solidi­

fication is in progress. The r~lationship bet .... een the 

Jonetic undercooling, I'lT
k

, and the growt.h velocity normal 

to the interface, v
n

' folloWs the partic;ular kin"otic law 

th.1t is pertinent. Three distinct types are.known(l3): 'For 

.. n atomically rough interf.1ce. 

v • 
n 

For the growth on a screw dislocation. 

(14 ) 
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(15 ) 

For the growth by the two dimensional nucleation mechanism 

(16) 

where a 1S a constant. 

,Metals with small entropies of m~lting usually 

have a rough interface and.may follow the linear relation. 

Linear growth kinetics can be represented by 

,',T = 
k 

where ~o 1S the linear kinetic coefficient., f 

(l7 ) 

Putting all our information together, the inter~' 

face temperature TU,a) can be expr~ssed as 

• 

(l8) 

From ~q. (18) 

cll,B) - ~ [T(l,B) - TN + ~ It + ::]. (19) 

From the imposed constant temperature gradient 

(20) 

where To - T(l,O), the undeterained tip temperature. The 
... 

nonn.sl velocity and _an curvature for the surface'of a 

by 
(41) 

paraboloid of revolution are given respectively 

(21 ) 
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and 

1 (2+6 2
) 

K = 
P (1+6 2 )3/2 (22) 

From Eqs. (5), (18), (19), (20), (21) and (22), it follows 

that 

u (1. 6) = (c. _ 2THY _ 
t~p mpL 

!.(THY + 
m pL 

/ 

(23) 

where ctip = c(l,O), the ~ndetermined solute concentration 

at the tip: The formal boundary condition, Eq. (23), becomes 

inappropriate when c(l,B)~l. It is considered, however, that 

the system remains dilute to a sufficiently large value.of S 

that tht;. physical boundar~' condition around the dendrite tip 
\. 

is adequately represented. 
u • 

(ii) . Boundary· Condition. at Infinity 

When a +., u(a,S) +·0 (24) 

This boundary condition ignores the interaction. 

between neighbouring dendrites and this is the reason ~hat 

~his model does not predict any aspects of the problem ·of 

cooperative phenomena. Ha-ever, aa stAted in the previous 

settion, we assume that. it can yield a reasonabl~ description 

of the d~ndrite tip properties. .' 

(iii) Mass Balance at the Tie . 

The. condition of _aa conaerva~ion at the tip glves 

ac 
-0 dz • c Il-k Iv 

tlP 0 
(25) 

• 

• 
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or express1ng this 1n the p~rabolic coordinates (see Appendix 

I) 

D ac 
da 0=1 

8=0 

3.4 Solution of the Diffusion Equation 

( 261 

By the me~od of separation of variables, we obt~in 

the general solution of Eq.(9) (see Appendix II) 

u(a,8) 

2 
e-pa U(n+l,l, po 2) 

e-P U(n+l,l,p) 

where En are the arbitr·ary.coefficients, Ln(x) are the , . 

Laguerre polynomials.<42 ,46) defined by 

L (x) 
n 

(-1) n 
• --=-r­n. 

\ 

n-2 
x 

••..•• (-llnn!] 

(integral n) 

( 27) 

(28) 

and U(a,b,z) is the confluent hypergeometric function of the i . . 
second 1ind(~3). For b .·1, it haB the logarithmic solu~ion 

of the form' 

-1 U(a,l,z) Q f1"4T Z+ r <a) rzr 
r-O. (r!) J 

{~(a+rl -

(29) 

whero r(x) is .ttla·.G~ function(44) , M(a,l,z) is the con­

fluent hypc"cgeomct.ric functi.on of the first kind.(4) which 

h'dS the general forlll 

H(a,b,z) - 1+ ~ z 
n z +... , ( 301 



: 

where (a)~ = 1 

"-( a ) ",- a-t-a.-Ht:1 
n 

, 
(a+2) . (a+n-l) 

and W(x) is the psi functio~(44,46) defined by 

r' (x) 
ljJ(x) =, r (x) 

24 

(31) 

( 32) 

In the expression, Eq.(27), we have taken account 

of the boundary condition at a = 00 

3.5 Calculation of the S'eries' Coefficients En 

The arbitrary .coe ffiC,ients of· the series, En' ha ,.'" 

to be evaluated such that they satisfy the interface boundary 

condition. 
• 

Putting a .. 1 in Eq. (27), 

00 

u(l,S) .. 1: En~ (pS'). 
n-O 

Eq. (33) has the form of the: eigenfunction expansion of a 

'real function. If we as~ume the se~ie~OnVerges, then 

coefficients can be evaluated from 'the orthogonality of 

( 33) c, 

the 

the 

, 1 '1 i' h '.,' . h f ,(45) Laguerre po ynom1a s w t an appropr1ate we1g t unct10n 

MUltiplying e-PS'L (pS') in both sides of Eq.(33) and n ' 

integrating teI1D by term o.ver the infinite interval (0,"), 
I 

we obtain I 

, 
.. 2 

En -J e -pB Ii (1" S) Ln (pS 2) d (pS 2) • (34) , 

, '0 

From Eqs. (23) and ( 34) • it follows tlUlt I 

.E _ (c ' _2TM'r' v c·)re-(Ln«(}d( 
n t1,P -- Dlllo moL 0 

• 

\ 



~~ 100 !; e-!;L
n 

(Od!; 

o 

THY 3/21
00 

-3/2!; + - p (p+!;) e - L (f;)df; 
mpL n 

o. 

+ 1 
m 

, 
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(35) 

where F, ; pa 2 • Evaluating 'all four integrals (see' Appendix 

I II), we obtain 

GD (-1) n 

mv r (n+l) r (-n+2) , 

+ 2TMY \eP 1-) .. 1 2n+ l J;!r"-fc ( P 
mpL 

, , 

1 T;ry 
+ _(...!L + v 

m pL u
o 

) p~eP r (n+~) I erfc (IP? 
r{n+l) 2n .' 

(36) 

where Imerfc(x) is the normalized integral error' function(46,47) 

defined by 

x 

2 
-t d e t 

Eq. (27) with the coefficients given by Eq. (36) 

descr.ibes the complete diffusion field for solute in the 

(37) 

llquld. However this expression explicitly involves two 

undetermined parameters,'cti-p and p, which have been intro"'-
, 

duced in the steady state shape and the corresponding boundary 

conditions. To deterain .. these free p41r_ters, s~ extra 

conditions must be introduced. In the present analysis, w. 

shall consider all of.the .le.ental physical and th.~-
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dynamic constraints believed to control the given solidifi-

cation process. One of them is clearly t~e mass conservation 

con~ition (physical constraint). For the other one, the 

maximum interface temper~ture condition has been used 1n a 

number of prior treatments(lO,l2,27) without critical 

justification. This latter will be more closely examined 

in the later section. 

Special Cases 

Before going into further analysis of the proble'm, 

we examine our solution for some special cases. 

(i) Isothermal Interface 

Under this condition, the temperature gradient and 

the Gibbs-Thomson and kinetic effects are zero. Putting 

G = 0, y = 0 and uo - ~ in Eq.(36), and using the recurrence 

relations of the confluent hypergeometric function of the 

second kind(43), we obtain the solute diffuSion field in the 

liquid as 

(38) 

where El (x) __ is the exponential integral (46); This special 
, 

form is the same as that found'by Ivantsov(24). 

(ii) Non-isothermal Interface due to the Gibbs-Th_~on 

and Kinetic Effects 
, 

PuttingC--- 0 in Eq. (36), _ obt&in '. 

2TMY 
u(a,B) -(ctip - iiiDL'" -, c.) 

, 

- , 

, 



+ E 
n=o 

. p r(n+l:i) 
. e r (n+1) 

. ~ , . -pa .. . , 
I erfc(/p) e U(n+l,l,pa) 
2n. e-PU'(n-tI,I,p) 

'This is identical to the Trivedi's solution(31) with the 

rep~ac~ment of concentration parameters in place of 

temperature parameters. 

(iii) Planar Interface 

27 

(39) 

·This condition implies that p -+ m for all 'finite 

gtowth velocities. When p -+ m, the ratio of the confluent 

hypergeometric functions becomes unity via ,the asympt-e.tic 

. . (43) 
expansions of U(a,l,x) " For large x, 

U(a,l,pa') 
U(a,l,p} '" 

(p~') -a -2a 
-~ -a ,,1 
p-a 

and the ratio of the exponential functions iii 

, 

where z' 
, ' 

is the new coordinate wh~¢h has oriqi~ at the 

interface 

Substituting Eqs. (40t- ~d-'(41') ".into Eq.(27) 'and putting 

in Eq.(36),,"'e obtain 

u (z ' ) 

This special form i8 the 

sta~diffu8ion equation for a planar intertaee(l). 
~ 

-' 

(40) 

(4).) 

(42) 

'( 43) 
,> 

., 
• 



.6 Physical 'Constraint; Mass" Conservation at the Tip 
.¢ 

From the mass balance boundary c~ndition at the 

Eq.(26), and the solution of the diffusion equation 

28 

Eq. (27), we now seek the explicit form for the tip concen-

tration. 

th "d ' (43) From e ~ ent~ty 

(44) 

the partial derivative of ~ with respect to a is obtained 

r, 
as 

-pa 2 2 
e U(n+l,2,pa) L (pS2). 
e-Pu(n+l,l,p) n 

(45) (-2pa) 

At the tip, it has the form 
" 

=(c" - 2TMY 
, t~p mpL (1=1 

_ ~ _ c ) U(l,2,p) 
muo 00 U(l,l,pl 

U(2',2,p)1 
U(2,l,pl). 

co 
+ l: 

where 

E .. 
n 

1 
+ -m 

• U(n+1,2,p) 
(En) U(n+l,l.p} , 

2TMY peP 12n+1 
erfC'( {p) 

mpL 

(THY '+' ...Y ) pit e P r(n+;) 

OL Uo rln+l) 

(46) 

12nerEciIP) • ' (47) 

From Eq.(26) and (46)., we obtain the explicit form 'for the 

tlP concent·ration 

. [ 2T Y 
c t1p - Ic. + ~ 

aoL 

v 
+ --I 

auo 

UI1,2,p) 
U(l,l,p) 

GD 
+ {

UIl,'2,P) 

Un,l,p) 
UI2,2,P)} 

- U(2,l,p) 

, 



+ U(1,2,p)] 
U(l,l,p)] . 

Using the recurrence relations of the confluent hyper­

geometric functions of the secon~ kind(43,46!, Eq. (48) 

be expressed in the following form. 

1 

The corresponding tip temperature is 

v 

29 

(48) 

can 

(49) 

( 50) 

The equilibrium liquidus temperature gradient in front of the 

tip, GO, may be expressed as 
e 

From 

or 

GO s m(~) - m 1 (a u) 
e az.x-y-O- p an a-l· 

z-Itp a-o 

(51) 

Eqs. (46) and (51) , 

GO =_~ [(C
ti

· - 2~MY_ 
e 0 P mpL 

v U(1,2,p) 
-. coo) U(l,l,pJ 

milo 

GO {U(1,2,P) 
iiiV U(l,l,p) 

... 

p-l -oPEl (p) 

ePEl (p) (l~p)-l 

-
U(2,2,P)} +r(E') 
O(2,I,p) 0 n. n-

U(n+l,2,p)] (52)" 
U(nH,I,p) . 

] . ' + i (E') Uln+l,2,p) 
n-O n. U(n+l,l,p) 

(5) ) } 
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Neglecting the Gibbs-Thomsbn and kinetic effects, 

we have the. simpler form 

1 GO 

pePE;.~ mv 

P-l-ePE1(P) 

ePEl (p) (l+p)-l 

ctip----------------------------------------------------

GO = 
mv 

[Coo 
1 GO 1 p-l-ePE1(P) ] 

( e 0 pePE l (p) mv pePEl (p) ePE
1 

(p) (l+p) -1) 

and 

T = T + m ctip . 
0 M 

Special Cases 

(i) The Case p + 00 (planar interface) 

Using the asymptotic expansions in x (x+oo) for 

U(a,b,x) (43) and Imerfc(x) (46), w~ dir~ctly obtain 

and 

c ... 
c. + 
t~p u­

"0 

GO + -C..,JIIV (l-kol 
e k 0 

o 

(56 ) 

(57) 

(5"S) 

The speci~l solutions, Eqs.(57) and ~5S), are the same as 

those obtained by planar interface analysis(ll. 

(ii) The Case p .. 0 (infinitely.'sharp dendrite) 
o ' 

Neglecting the Gibba-Tho.aon and kinetic effect 

(54) 

(55) 

and using the asymptotic expansions in xix .. 0.1 for U(a,b,xl, ~-------..... 

(59) 

-
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and 

-c mv(l-k ) 
... ~ 0 (60) 

D 

Eqs. (59) and (60) show the tip concentration and the 

equilibrium liquidus temperature gradient at the tip 

an infinitely sharp dendrite under ~e condition that 

of 

,the 

Gibbs~Thomson and kinetic effects are zero. It is interesting 

to note that the equilibrium liquidus temperature gradient 
< ' 

ahead of an infinitely sharp tip is only ko times the 

equilibrium liquidus temperature gradieqt ahead of a planar 

interface. 

"-
3.7 Thermodynamic Constraint; Minimum Rate ofl Internal , 

Entropy Production 

Turning to Eq.(49), we note that the expression for 

the tip concentration contains one degree, of freedom, c tip is \ 

a function of p which is the dimensionless radius of curvature 

of the paraboloidal dendrite tip for a fixed growth velocity. 

We must ask the question: which p does nature choose in th,e 

controlled solidification process? We seek an answer in 

the thermodynamics of irreversible processes. 

In the mathematical sense, any extra condition will 

remove the degree of freedom. For some' time past, the 
, 

maximum interface temperature condition (or the minimum, tip 

undercooling condition) has been' used by certain workers(lO,l2). 
, , , 

The question of the correctness of the condition has not 
" 

bee~ answered. The existence of a maxi.um in the interface 

temperature is due solely to the contribution of the Gibba-
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Thomson and kinetic effects. To obtain the maximum tip 

temperature, the radius of the tip must be as 'small as 

possible to minimize the solute build-up while the curvature 

contribution remains small. In metallic systems, the kinetic 

coefficient is usually large and th~ radius of curvature 

for a significant Gibbs-Thomson effect is of the order of 

1 ~m (typical magnit,udes for Fe-Ni syste~s are shown in 

later s'ection). Thus the experimentally observed tip radius 

should be of the same order of magnitude for any growth 

velocity; which does not agree with observation. 

Sharp and Hellawell(20,2l) have suggested the 

condition of zero constitutional supercooJing at the dendrite 

tip as a governing criterion based on their e~perimental 

observations of the controlled solidification of some non-

ferrous binary alloys. From Eqs. (58) and (60}, it is clear 

t~at this condition is unattainable wit~ a l~rge radius of 

tip curvature except i.n the very low velocity regime because 
. 

the maximum possible reduction of the equilibrium tempera-

ture, gradient at the' tip without the Gibbs-Thomson effect· is 
l' 

only by the factor ko ' 

The crucial point here is that both -the maximum 

1nterface temperature condition and the zero constitiltio~al 

supercooling condition are concerned with a particular 

thermodynamic variable of a particular pOint on the in-~er-

t acc, the dendri te tip. These conditions icjnpre all other 

thennodyn4ffiic conditions and'the entire region behind the 

lip, .Clearly, the correct principle, if it exi.ts, IIIUSt be 

~ global or an integral principle. While previoU8 concept. 
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may contain some ~ments of the truth, because they may be 

proportional to integrals in their specific applications, 

,they have no general foundation in physics. 

As reviewed at the beginning of,this chapter, the 

controlled solidi~ication system is anonequilibrium system 

with some e~ternal constraints. An equilibrium-system , 
can be completely defined in terms of ,free energy. Simi-

larly, if kinetic stability exists, and empiric~lly. we know 

I , 
- that for certa1n growth conditions this is the case, then 

there must also exist a thermodynamic pote~tial function 

which completely describes the thermodynamics of the non­

equilibrium situation. For certain simple systems, this 

has been identified as the rate of internal entropy produc-
" r 

t ' n(48,49) 
10 . As stated by prigogine(48) and de 'Groot(49), 

a single phase dissipative system with linear phenomeno-

logical equations approaches the steady state characterized 

by the mini~um rate of internal entropy production. This 

theorem has been sugqested to be applicable in approximation 

to the steady state binary alloy solidification problem by . ' 

Kirkaldy(50-52). We propose to apl\ly this po.t~lated 

principle to remove the degree of 'freedom which'we have 

1dentified, since \:.he evolution of our model is clear,ly 

~ssociated with pure relaxation process. 

In our volume diffusion controlled model, the 

r:'te of internal entropy production due to difflaionfields 

per uni~ volume. 0, can be expre.sed after de Groot(49) as 

o (61 ) 

'. 
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where J is the flux, q and k refer to the thermal and mass 

variables respectively and X is the thermodynamic force. 

The thermodynamic forces ~n Eq.(61) are(49) 

and 

= - VT 
T 

= -T V (~), 
T 

: 

(62) 

(63) 

where U is the chemical potential. If the thermal and mass 

diffusion are taken as independent, 

n 
J k = L LkiX i , 

i=l 

(64) 

(65) 

where K is the thermal conductivity and ~i ar~ the phenomen~­

logical coefficients. Eq.(65) is given with the assumption 

that'the fluxes a!f linearly related to the thermodynamic 

forces. For binary alloys, 

, 
(66) 

where subscript l"and 2 refer to lIolute and solvent respec-

t i vely. Hence, 

('67) 

Neglecting the temP,erature dependence of the chemical 

putentials, 

(68) 

where R ~s the gas constant and c 1 is the solute concentration. 
d 

,. 
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using Fick's relation for mass flow, 

(69) 

Substituting Eqs, (68) and (69) into Eq. (67), Eqs. (62), (64), 

and (67) into Eq. (61), andadjustiI;ig the units of all 

parameters, we 9btain 

a = K 
(IlT) 2 d (Ilc) 2 

T2 + DR M c(l-c) , (70) 

where c refers to the solute concentration (subscript 1 is 

now omitted), d is the density of solvent and M is the mass 

per mole of solver.t (The dilute solution approximation is 

used) . 

The total of the rate of internal entropy 

dl.· S production, ___ , is the volume integral of a 
dt } 

di S = fa dV. 
dt 

V 

(71)' 

In our single dendrite model, it is more convenient 

to define a new th~rmodynamic function,· diS , 
err 

the average· 
I . 

rate of internal entropy production per unit cross sectional 

art:!d 

(72) 

where nx' is the cross sectional area of a single dendrite. 
L 

For 9iven growth conditions and given materials cOJ\stants, . 

d-;S is a function of the _ss Pee-let nu.ber p only. Tnus the 
crt 
ml.nl.mum condition gives 



_a (diS) 
ap dt 

P=Popt 

= O. 
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(73) 

All variables for the calculation of Eq. ('73), in 

the parabolic coordinates, can be directly o~tained from the 

experimental conditions and the solution of the diffusion 

eq.u<;ltion. 

The temperatur~ gradient in the liquid can be 

expressed as a function of the tip temperatl'.re 'i' and t.he 
. 0 

distance in the growth direction, z, from the constancy of 

the imposed temperature gradient, i.e., 

P 
T = To + G(z - I)" 

The solute concentration is given by 

.. 
c(~,S) = Coo + [ ~En) 

n=O 

( 7 4) , 

(75) 

The solute gradient function in the liquid with 

~u 
where dci" is givell"by Eq. (45) and 

2 
~ -pa "",-2) 

:.u ~ Z (E ) (2pS)e . U(n+l.l~ 
~ n=l n e-Pu(n+l,l,p) 

(76) 

nLp(pS2)-nLn _l(pS2) .(77) 

pSl 

Eq. (77) is obtained from the identity(46) 

d L1a) (x) __ L(a+1l) (x) 
ax n' n-

(78) 
= • 

x 

• ... 

\ 
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It would ap~ear that a unique p could be determined 
'\ 

by optimizing the thermodynam~c function with respect to p. 

However, it should be noted that the boundary limit xL in 

Eq. (72) is no·t predetermined. The problem of determining xL 

is considered in the following section. 

Special Case ) 

At this juncture, we ex.amine the rate of internal 

'entropy production on a particular point of t..!1e interface, 

the dendrite tip. At this point, Eq.(7l) has the simple 

form 

IC(VT)2 + D R 

\ To2 
( 79) 

\ 
When the first term » the ~cond term, the minimum condition 

will be satisfied with the maximum.To : Thus, the condition 

of the ~inimum iate'of'internal: entropy production at the 

tip is the same as the condition of the ·maximum tip tempera-

ture when the growth velocity is very low, the temperature 

gradie.nt is high and all the problelllB behind the tip ·a·re 

ignored. 

J,8 Boundary Limit 

In the last section, it is sh.own that the· optimi­

zat10n of the thermodynamic function is possible only if the 

volume integration is possible. The integration 

limit in the growth direction is clearly from the interface 

, 

to infinity or to the point where the solute gra~ie~t vanishes. 
~ 

, 

" 
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However, the limit in the lateral direction, xL' is not 

deterIT\ined. To determine this, we assume that x is propor-
L - \ 

tional to the true spacing A. The A vs. v relation is given 

in most previous studies(8,l3,63} by 

(80) 

where k is a constant for a given temperature gradient and 

materials constants. Hence, the relation between xL and v 

can be represented by 

xL = k' v -~ • ( 8ll 

Solving Eq. (73) w(th the help of Eq.(8l), we obtain p as opt 

a function of k' and v. Thus the correspondi.ng Ct. is . ~p 

c tip = f (k', v) . ( 82) 

To determine k', we apply the steady state planar-nonplanar .. 
interface transition ~ondition 

Ctip = c~ v , VO<H] it":"" ' 
0 

, • (83) 
ctip ,< .s.. v > v . 

ko 
crlt " 

where v . is the critical velocjty 
crlt ./ 

for the planar-nonplanar 

interface transition. From Eqs.(82) and (83), we determine 

k' and finally obtain our goal, c tip ' I) and To as· a ,function 

of growth velocity alone. Substituting these values into. 

!:=qs.(36) and (27) .. we obtain'a unique solution of oUf 
, 

boundary value ptoblem. 

., 
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3.9. Computational Problems 

The present theory has been completed to predict the 

't{p concentration 'ctip and the tip radius p as a function of 

growth velocity. However, as shown in the previous sections 

the integration of the thermodyn~mic function and its 

optimization d6 not simply give an explicit fODll. Thus, to 

obtain,numericalvalue~ for a given set of experimental 

conditions, we use the following nlllTl<~l:"i<:al cc.mputation 

scheme: 

(i) 

(i i) 

compute c tip· and To as a function 'of p and v. 

~ 
compute the rate of internal entropy production 

due to diffusion fields, cr, in,(a,S) space. 

(iii) integrate cr numerically with an arbitrary 

coefficient, k'. 

(iv) repeat (iii) applying a general method. for finding 
. . , 

a root until k' satisfies Eq. (83). 

Fpr desired accuracy of the comP.qtational results, 

the scheme requires a large co~uter mem.ory. and a very long 

computing time. To ~void these difficulties, we seek some 
.~ 

simplifications in the light of phy~ical details rather than 

by re formulation of the. compu~ing formulas. 

The order of magnitude of the tip radius for a 

significant curvature effect i. less than one micron 'for 

most metallic systems. The oq.erved tip radii in our con­

trolled solidifiqation experiment. are quite blunt (Fiq.2BI. 

Furthermore, i"t. i. well known that the kinetic undercooling 



, "1' II' (53) ~s m~n~ma 1n most meta 1C systems . Under these 

exper,mental foundations, the Gipbs-Thomson and kinetic 

effects can be neglected without any significant error. 

Now we consider a further approximation for the 

lntcgration of the rate of internal entropy production. 
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For a given experimental condition, Eq. (72) has the form in 

parabolic coordinates 

d-:-§ 
1 

. dt 

b 

where 6 1 

vanishes. 

= _,1_ 

= 

1IX
2 

L 

xL 
p 

To a 

and u 1 

first 

concentration profile 

pS(a 2 +S 2 )aS O(u,S,p)dSda, (84 ) 

is the point where the solute gradien't 

approximation, we assume that the 

in the liquid can be represented by 

a straight line in the diffusi·onal penetration distance L ' 

Then, 

1 . 
~x' ., L f l 

211 O'(l+62)~~1 
o 

o(l,6,p)d6, 

• 
(85 ) 

where t ; £(6,p). Putting 1 = unit length, we can define 
:' - , 

another thermodynamic function, (d~:) , the awerage, rat,e 
, , ·A " 

of internal entropy production on the interface pe'r' unit 

cross sectional area 

( 
d {5) ; 
, dt 

.;'bA 

1 

"X' L 

'. 
," 

',( 86) . " 
We def lne a vari.able T, the average ~netrati:on ~Ustance of 

the diffusiQn profile as 
,I 

, 

,', 

, 



-.~ (p) = 
JB12rrp2(1+B2)~B dB 
o 

(87) 

r 

When v is small and p is large (blunt tip), ~ ~ ~, near 

the tip. Upon substituting this estimate-into Eq. (85), 

we obtain 

,d~~ ~ ~ (d~:) .-
A 

and hence, the minimum condition gives 

or 

'0 (d i S)~ oI (diS) 
ap dtop (it 

. A 

_ ~ (d?,) 
+ i a dt 

"P A 

(88) 

= 0, 
(89) 

(90 ) 

(
diS) and ~ are positive definite, and hence the sign of 

at A ~ 

(d~~)' is'entirely dependent "on the' p dependence of T. 
A 

Note that i decreases at the tip and increases behind tho' 
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tip as p decr,eases: Thl.\s we qualitatively- assume that, 

• is independent of p, and and (diS ) ha';'e the 
dt A -_, 

m1nimum at the same p. From this, we shall optimize (¥) 
at A 

In our computation. It sh9uld be,borne"in"lIiind t;hat the 

~ove approximation is reasonable for .. all v and large p. 

however it becomes defective for small p. 



The necessary variables for the computation are: 

a(l,B) ; 

K(VT) , 

T(l,B)' 
d 

+DR M 

T(l,B) ; To - ~GpB2, 

(1 0 ) _L~B2 C ,,,=c. .., 
tl.p m 

(Vc) 2 
:1;1 

( ~u) = (-2p) 
-j r.t ').::: 1 

= 

-1 P P --e El (p) 

ePE l (pl (l+p)-l 

un =, (-2pB) ~ • 
(1=1 

(Vc) 2 (1;1 ' 

c(l,B) {l..,:::,c(l,B)} 

(l-PB')) ] 

> 

I 3.10 Application to the Fe-8 wt.' Ni System 

(91) 

(92 ) 

(9 J) 

(94) 

(95) 
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,In this section, we apply the present theory ,to a 

particular_system, the Fe-8 wt.' Ni system. This system has 

'been chosen from the fact that its thermodynamic data are . . 

<llready well estabU,hed (54-56) and the diffusion coefficient 

• 
ln the solid is small. Also the tendency of Ni to oxidize 

preferentially is small. and the liquidus and solidus slopes 

(absolute ~e) are ... 11. allowinq q,ood correlations to be 

made between concentration in the solid and temperature. 
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The relevant part of the Fe-Ni phase diagram is 

reproduced from Hansen's work(54)i~ Fig. 4. The equilibrium 

distribution coefficient for B wt.% Ni, ko' is obtained as 

0.68 from Fig. 4. This value can be checked by thermodynamic 

calculation as follows: In a system of solid (y-phase) and 

liquid mixture of an Fe-B wt.% Ni alloy, the condition of 

equilibrium gives 

(96) 

i where ~ is the chemical ,potential of Ni ~n 
Ni 

Expressing chemical potentials as 

phase i. 

(97) 

io where ~Ni is the free energy of nickel at the standard state 

in phase i, y~~ is the activity coefficient of nickel in 

phase i and c~t is the atomic concentra~on of nickel "in 

phase i, Eq. (96) has the form 

So "5 LO 'L 'L ~Ni + RT lny 5 eNJ.' - ~ + RT lnYNi c , • ( 9a) 
• Ni Ni' NJ. 

From Eq. (9B), the equilibri&n distribution coefficient for 

the 

C 1 
N i ' 

atomic concen'tration, k', c&t be repres'ented as o ' 
'L 0 

YNi 6~Ni --rs- exp (-) 
Y

Ni 
RT 

(99) 

, 
Expressing k 

o 
in terms of veight concentration. 

\ 

,,' 

'-
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t. 
1 

~i ] [ 1 k 
0 100-cs L 100-cN , ~i J Ni ' l. 

1+ 
5 L c Ni MFe c

Ni ~e 

100 
~i L ~i 
MFe +~i(l--' ) 

= ko 
1 Fe (100) 

MNi 
100 + c~i (1- MNi 

MFe M 
Fe 

For 8 wt,% Ni alloy, 

k = 0.9988 k = k ( lOll 
o 0 Q. 

Substituting values of various thermodynamic 

variables into Eq. (99), we obtain 

k = 0.662 o 
(102) 

In this estimate, we have used Y'~ 
, Nl. 

= 0.67,' (55) '5 YNi 
= 0.97 (56) • 

tlJ~i =-128.2188 cal/mole '(calcualted from Ref. 57) and 

T = 1781.16oi. The value in Eq. (102) is in ~ood agreement 

with that obtained from Hansen's ph@se diagram. 

Some other values of necessary parameters for the 
i 

present calculation ate obtained from 'various sources as 

follows: 
'. 

TM l802,.5Q!t(l529.50 C). the melting temperature 

of y iro,n obtained by extrapolation of y iron­

liquid transition in Hansen's phase diagram. 

This value is i'1qood agre_nt with 

the~odynamically calculated value 'of 

the 
(58) 

Hone . . 

• 

, 
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m -2.~50K/wt.% Ni, the liquidus slope obtained 

from Hansen's phase diagram. 

y 220 erg/cm2 (=5.3 x 10-6cal/cm2), solid­

liquid interfacial ,energy of pure iron(59). 
, '" 

w: 200 cm/sec oK, the linear kinetic coefficient, o 

by assumption. 

L 3873 cal/mole (=485.5 cal/em3 ), the latent 

heat of fusion of pure y iron(bO). 
( 

D 5 x 10- 5 cm2/sec, the diffusion coefficient 
, (61) 

of Ni in dilute Fe-Ni melts at 16000c . 

d 7 / 
3 h d ' f" 0 (78) g cm , t e ens1ty 0 pure 1ron at 1564 C . 

K 0.1 cal/sec em oK, the thermal conductivity 

of pure liquid iron at 1600oC(62). 

Experimental conditions were adjusted to give 

coo: 8 wt.% Ni, the bulk concentration of the liquid. 
" 

G: 31oC/em, the imposed temperature gradient. 

The variations" of the tip concentration as a 

function of solute Peclet number have be~evaluated for 
, 

various growth velocities from Eqs.(54) and (49). Results 

are shown'in Fig. 5 and 6. The tip concent-ration of the,' 

solld phase, S 
c tip ' is defined 'by 

s c , 
t1P 

(103), 

The c S , in Fig. 5 is the one which simultaneously'satisfies 
t1P 

the solute diffusion equation, i~cal equilibrium boundary 

S condition and mass balance at the tip, whereas, the c tip in 

Fig. 6 is the one which satisfies all the above conditions 
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plus the Gibbs-Thomson and kinetic effects. It should be 

noted that the Gibbs-Thomson and kinetic effects are signi-

ficant when p < l~m for most growth velocities. 

From Eqs. (50) and (104), the tip undercooling, 

lIT(l,O)-, has been evaluated for some growth velocities and 

shown in Fig. 7, where lIT(l,O) is defined by 

lIT(l,O) =TM - To 

= lIT
s

(l,O) + lIT
c

(l,O) + lIT
k

(l,O). ( 104 ) 

It is noted in this illustration that the corresponding 

radius of tip curvature, p, to the maximum T (or minimum o 

AT(l,O)) is of the order of 1 ~m or less far most growth 

velocities and is an increasing function of the growth 

velocity in the low velocity regime. 

, We define an index of the amount of constitutional 

supercooling at the tip, J(l,P), by 

J(l,O) = G~ - G. (l 0..,) 

The variations of J(l,O) as a function of p are evaluated I 
from.Eqs.(105)and (53) 

in Fig. 8. It is shown 

in the regime where the 

for some growth velocities and shown 

that the p d~p~ce is not strong 

Gibbs-Thomson and kinetic effects 

,u" minima l, compared wi t.h the velq,ci ty dependen,ce._ 

We now examine th~ thermodynamic properties behind 

th., tip. The 'rate of internal entropy production at th£\c..",. 

interface has been evaluated from Eq. (91) ignoring the Gibbs-

Thomson and kinetic effects. Computed results.for two 

(!lfferent growth velocities are plotted in Fig. 9 and Fig. 10. 

These figures show that the calculated rate of internal , 



47 

entropy production decreases at the tip, but increases behind 

the tip, with decreasing radius' of tip curvature. Physically, 

the smaller tip radius provides a more relaxed tip but 

simultaneously creates a less favorable situation behind the 

tip. From this, we can qualitatively understand 'why a 

growing dendrite does not adopt a very sharp tip. In Figs. 9 

and 10, it is also observed that the variation of ell;';) 1S 

not monotonic in the higher velocity regime. We suspect 

that it might indicate the tendency of side branching in 

the higher velocity regime; however the critical analysis of 

this problem is beyond the scope of the present· work. 

Finally, from Eq. (86), we compute the average rate 

of internal entropy production 

function of p and v. Computed 

on the interface,(diS) , 
at A results for some 

as a 

growth ~e~ocities are shown in Fig. 11. The minimum c:ndition 

gives a ~ique p and we obtain corresponding optimum ctip 

from FLg. 5. Thus ~p and Dcan ba plotted as a function 

of valone for a fixed G. These are shown in Fig. 12 and 

13 respectively. 
. "'s 

tt is noted that both c tip and Dare 

rapLdly decreasing functions with increasing v ·for.low v 

(cellular regime) and slowly decreasing functions for higher;. 

': (dendritic regime). Also noted is the significant amount 

at solute build-up ahead of the dendrite tip. L 



CHAPTER 4 • 

) 

EXPERIMENT 

4.1 Experimental Program 

Since the first success of .the quantitative descrip-

tion of h l 'd'f-" b h '(1) t e so 1 1 lcatl0n process y C alm~rs et al. • the 

technique of controlled unidirectional solidification has est­

aqlished a tirm place in solidification l\terature. Although 
(13,18,20) 

this technique has been applied by a number of workers 

to ferrous and nonferrous alloy systems and organic compounds, 

• 
few studies have been,conducted systematically to correlate the 

morphological development and the variation of the solute seg-
, , ' 

regation in terms of the imposed temperature gradient and growtn 

velocity. Thus it was decided, in the present experimental study, 

to separate the growth parameters by using a controlled gradient 

moving furnace to investigate the fol~owing problems: 

( i ) The 

of 

growth veloci ty de~endlmce - The first object~.ve 

the present experiment was to observe the evolution 

of the interface morphology and the variation of the 

microsogregation," as a function o't growth velocity 

in the range of 5-400 mm/hr for a fixed temperature 

. gradient., 

(i i) The temperature gradient dependen'ce - The above var­

lations _re eXlUIlined lly varying the teaperature 
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gradient and fixing the growth veloci~y approximately 

constant. 

(iii) The homogenization kinetics of the microsegregation 

in solid - The mic~osegregation homogenizes after 

solidification by diffusive processes. This prob~em 
~. 

in the Fe-Bwt.%Ni, Fe-lBwt.%Cr-Bwt.%Ni and Fe-lBwt%Cr-

Bwt.%Ni-O.35wt.%C systems was examiQed by quantit-

ativri determination of the segragat!onproflles. 

In the present controlled solidification experiments, 

the Fe-Bwt.%Ni system has been chosen frQm the reasons mentioned 

in the preceding chapter and with the additional object of in-. ; , 

creasing our knowledge of the steady high temperature solidific-

ation process. 

4.2 Specimen Preparation 

Fe-Bwt.%Ni alloy specimens'were prepared from u.s. 
\ 

Steel Ferrovac-E iron 

nlckel (99.97wt~. 
(99.94wt.'Fe) and Falconbridge electro~ytic . 

-./·0',,--

Electrolytic chromium (99.Bwt.'Cr) and 

union Carbide graph~te (99.9Bwt.'C) were used for Fe-1Bwt.'Cr-
. "-

8wt.\Ni alloy specimens and Fe-lSwt.'Cr-Bwt.'Ni-O.35wt.\C alloy 
, 

specimens. The chemical analyses of pure iron and nicKel are 

glVen in Table 1 • 
. 

Weighed materials (about 40g) were melted in an argon 

~rcmeltingunit and quenched in a vatQr cooled copper mold of 

the same unit to give a high degree 
r 

-lenny. By this _It:ing technique, 

of long range che~cal homo­

the long range homogenity of 

the quenched ingots va. proved to be satisfactory by wet analysis . . 
of both ends of the ingots, and the change of the concentratl0n. 

.' 
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ot nickel and chromium during the process was minimal. The 

carbon concentration was determined by the combustion analysis 

technique after the ingot making process. The quenched ingots 
\ 

were swaged into 4.5 mm dia. rod to fit the alumina tube used 

as a sample container in the solidification experiments. 

4.3 Controlled Solidification 

A molybdenum wound vertically travelling furnace was 

(Sf) used, which was built originally by Hone It was rebuilt 

with slight modifications in the furnace winding and power supply 

to give a wider range of power inputs. The overall assembly 

consists of a furnace drum, an evacuation unit, a furnace travel-

ling unit, power supply, gas suppl~ and water cooling system. 

The sectional view of the furnace is shown in Fig. 14. The 

allowable vertical travel rates were from·S to sao mm/hr. The 

three internal molybdenum windings were con~rolled so as to 

produce different thermal gradients 7 The poSitive temperatur~ 

grad~ent with vertical furnace design was chosep so as to give 

the growth condition itself a~ to minimi~e the natural con­

vection .of the melt due to gravitational field. 

The characteristics of the furnace are: 

(i) Close control over the growth parameters, G and v, i~ 
permitted. 

(iiI The telllperature stability at any given point is better 

than 2~ during the ti.e required for typica( solidif-

ication experi.ents. , 

was proved b;J (i ii I convective stirring is negligible. this 

a seaiinfinite liquid diffusion couple. Fe/Fe-&wt.'Ni 

(,' 
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(5 mm in diameter), held in the~urnace for two hours 

at l550CC. The diffusion coeffi6ient obtained from 

this ,analysis was p'recisely that determined by Purdy 

and Subramanian (61) in capillary diffusion experiments. 

indicating that mixing in the furn~~e under these con-

ditions was by diffusion only. 

The solidification experiment involved meltinq the 

speclmen ln a high purity alumina tube (sometimes containing 

thermocouPles inside the specilllen) under'argon atmosphere and 

moving up the furnace at a desired velocity. After the furnace 

travelled the desired distance, usually about 50 rom, the specimen 

was quenched by dropping it into water. The temperature profiles 
, 

of the furnace and specimen were measured using a Pt/Pt-13wt\Rh 

thermocouple. The overall 'temperature profile of a specimen 

was slightly different from the temperature profile of the f!lr­

nace, andtbe di f ference was dependlf'nt on the geometrical arrange-

ment of the specimen. It.wasfound that, with the geometrical 

arrangement of about 8 em melt i1O-4 total ~ em length specimen, 

the temperature gradient of the specimen at the liquidus temp- ~ 

erature·was nearly the same as that of the furnace. After this, 

',.11 the solidification experiments were carried out with the 

same geometrical arrangement . 
• 

A series of Fe-8wt.'Ni alloy solidification experiments 

were carried out for. various temperature gradients and growth. 

velocities. Some of tHem are su..arized in Fig. 15 to show the 

:velocity d~pendencc of the .solidification structure fpr a constant 

. r 
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tem'perature gradient (31 °C/cm) .. Three specimens which solid-

ified with different temperature gradients and nearly the same 

growth velocities are shown in Fig. 16. In both figures, the 

top and bottom rows show the transverse and longitudinal section~ 

respectively. The morphological development may be inferred 

from the observed segregation pattern. The cellular solidif-

ication at low velocity is evident. Increasing the growth vcl-

ocity, the stronger development of cells, the transition to toe 

cellular dendritic. morphology with secondary arms and the cellul.:n 

dendri tic structure with tert.iary arms· appear in sequence. 

The velocity dependence of the observed spacing of cells and 

cellular dendrites is in reasonable agreement with the preqiction 

of previous work(lB,13,63) for dendriliic g,rowth, but strongly 

deviates in 'the low velocity regime. The effect of temperature 
• 

gradient on the morphological development is shown in Fig. 16. 

It is observed that the spacing decreases. with increasing temp-

erature gradient and side branching is e~nt with low gradient 
-"~ 

\ 
for this particular growth velocity. 

Figs. 17 -and lB show the longitudinal sec~ions of. 

Fe-Bwt .. %Ni, Fe-lBwt.'Cr-Bwt.'Ni and Fe-lBwt.'Cr-8wt.'Ni-O.35wt.\C 
• 

"pecllnens which solidified under approximately s4IIICq-g rowth .con-......-------­

d 1 bons. These res~lts indicate that Fe-lBwt. 'Cr~8wt. 'Ni' all~y 

:;ulldif ied initially as 6-phase and subsequently ·t.rAnsfcrmed,"to 

--phase, and nearly cqmplC'te homoqenizAtion occurred under the 

~lven experimental conditlon, .s expected from the lArge diffus~on . f 
-cnefficients of substltutional solutes in 6-ph"se. On the oth ... r , 
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hand, negligible homogenization is qualitatively observed in 

the specimens of Fe-8wt.%Ni and Fe-l8wt.%Cr-8wt.%Ni-O.35wt.%C 

alloys which solidified directly ,as y-phase from the melt . 
• 

4.4 Metallography 

To investigate the solidification structure, solidi fed 

specimens were cut into parallel (longitudinal) and vertical 

(transverse) section to the gra./th dir~ction and ,prepared by 

c"onventional metallographic procedures"mounting, grinding, pol­

ish ing and etching. Metallographic etchi,ng techniqu-es commonly 

found in the literature(64-66) we\e applied to show the solute 
< 

-' 
segregations .. The results were not quite ~atisfactory particularly 

", , 
with Fe-18wt.%Cr-8wt.%Ni alloy specimens and weakly segregated 

iron-nickel alloy specimens solidified in the low velocity regime. 

A high contrast etching condittonmay be developed in principle 

by optimizing the formation 6I'local electric cells for ~ given 
" , 

inhomogenity of oxidation potentials due to solute segregation 

of a specimen. The condition depends on the kind, concentration 

and mobility of anions and cations which are con~ed in the 

etching reagent. It is not a,simple problem to find the con-

d1tion by a quantitative theory. With a qualitative knowledge, 

,I ser1es of experiments were carried out and an improve<;l condition 

hJS been obtained for iron-nickel 'alloy. 'by an adjustment of the' 

';omposition of the Oberhoffer's reaqent (67). In addition, an 

etching reagent for 18-8 steels has also been developed based on 

Detai"ls are i~cluded 

~ 1n Table 2, and improved results using' these new reagents are ~7 

the sulf1de film contrast technique (68,69). 
I 
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shown ~ Fig. 19 for Fe~8wt.%Ni alloy specimens and ~n Fig. 20 

for an Fe-l8wt.%Cr-Bwt.%Ni alloy specimen. 

4.5 Electron Probe Microanalysis 
, 

Electron probe ~icroanalysis was employed for the 

quantitative determination of 

metallographic e~aminatio/o~ 
the segregation profile. Following 

the specimens, regions were se1-

ected for microanalysis and marked with a microhard'ness 

indentor. -After indentation ,the specimens were photographed 

and slightly repolished ~o remo:.re- the surface film and roughness 

which resulted from the et·chfng process. 

The concentration profile of nickel of the selected 

regl0n was determined on an kcton-C~ca microanalyser. The 

operating condition for the optimum X-ray output of Ni K~ was 

found to be IS kv Of accelerating vqltage and' 150 na of· specimen 

current'. Measurements were c:arri.ed out by po{nt counting for 

20 seconds at an increment of 5.4 'urn. 

The measured co~nting rates were corrected by Haworth's 

correction procedure (70) whi~h utilizes the atomic number cor­

rection of Duncumb and Reed (71), absorption correction of 

'1' '(72) '. . '. b" h d'f'd Phl, lbert , and fluOrescence carre.ctlon., y t e mo 1 1e 

Cl~taing' s procedure(7). The meaaure4 counting .. rate of 4 point 
, '. 

1o',1S converted into the _.,sured in,tensity ratio. and the con-' 
.' 

c .. ntration of ni.ckel was obtained by in(erpolating the measured' 
( : . ' 

lntensity ratio to the calculated.'intensity ratio vs. con~e·ntratlo:, . 

. r" 1 a t ion, which was' Qbtained via' atoaic nu.ber· .c<>rrect ion and 

,\bSorptlon correction" (fluoresc.ence' correction 'is not necessary 

for nlckel determination ln i,ron-nickel binary alloys,~ tron-
,.... I. 
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nickel-chromium ternary alloys). 

, 

} 

The micrographs of~he selected regions and the var­

iations of the solute segregajion profiles as a function of 

g~owth velocity under a fix~ temperature gradient are shown in 
-,' 

Fig. 21., The analysed transverse sections in this experiment 

are about B rom below the final solid-~iquid interface. From 

Fi~. 21. the variation of the minimum (at the tips) and the max-

imum sol'ute concentrations (at the inte,rdendritic regions) as 

a function of growth velocity i:s' summarized in Fig. '22. The', 

pro.~able error in the experimentally determined cor.c.:entratipn 
- ' -. 

is typically ±O.13wt.%Ni. and the erro'r 'in-the estimation of 
, r, 

k oc"". which arises from the "uncertainty C!f, the phase diagram. is 
, /". -

±O.25wt.%Ni. It is,noted in Fig. 22 that the min~fuum nickel 

concentration at the tip ~eas~s ,rapidly with increasing growth, 

velocity in the cellular regimel however. there is little var-

iation in the d~ndritic 'regime. It is also 'noted that. under 

our experimental conditions. the experimentally determined mini-
1 

mum concentration at the tip is much higher ~han.koC"" even if 

homogenization after solidification is taken into account (the 

effect of homogenization isconsidered'-in the next section). 
'- ' 

Thus. we have experimental evidence that there exi,sts a signif i-, 

cant amount of soiute build-up in front of the t:r-'even in the" . 

dendriti:'~owth regime (like Backerud(36) and ,Do~ertY.s(t) 
exper~me~tal observation but unlike the assumption of mos m~cro­
s.~gregation models) (14.19) , r ,. 

Some of the prob~ results are s~rized in Fig. 23 to 

'! 
1 '. '. 
" 

< . 
I 
! 

show the temperature grad~ent depende~ceo~ the micro.egregation. 
, ' , "~",, i: 

"1M" , 
: .. --:' 
. '. 
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Clearly observed is the decreased segregation intensity with 

higher gradient. 

4.6 Homogeniz,ation Kinetics in the Solid 

To avoid the uncertainty of the exact final steady 

state interface position Rf the solidified specime~,.electron 
(\ " 

probe microanalysi~ was carried out on sect{ons approximately 

B mm below the ~pproximated final interface. Therefore, the 

\ observed concentration profile has been influenced by solid ~tate \, 

diffusion after solidification. The nature of homogenization 

due to diffusive processes in the solid phase bas been studied 

by many workers. Purdy and Kirkaldy's recent review paper(74) 

is a good summary of the related work. 
" 

The segregation pattern arising trom a unidirectional 

solidification process may be approximated as €ylindrica1, 

provided the imposed temperature gradient is relatively high . . 
or the growth velocity is relatively low.' This is the case for 

most of our experimental operations. The time dependent diffusion 

equation in cylindrical coordinates (r,e) with rotational 

symmetry has the form 
2 

JC = 0 Cd c 
~t s a?" 

+ 1 a C) , 
r; a r 

(106) 

'",here Ds 1S the solute diffusion coefficient in solid phase: OS 

1S assumed as a constant from the fact that the temperature and 

concentration variations are small in our consideration; The 

impermeable vall boundary condition gives 

3c _ 5 0, 
:;r 

(107)· at r-O and r-rl' t > 0, 

.~ , 

.: , 
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where rl is the radius of the cylindrical segregation profile. 

Any arbitrary initial solute distribution gives'the initial con-

di:':ion 

c(r,O) = f(r), t = 0 (l 08) 

The solution of Eq. (106) for the initial and boundary conditions 

given has been obtained by Crank(75) as 

-, 

c(r,t) = ; ,[jqr' f(r')dr' 

1 0 

00 

+ Z 
n=l 

where an are the roots of 

(l09 ) 

(110 ) 

.:md I n (x) 

Jl(rlCl(O 

is the Bessel function of order n (42,45,46) . 

A typical example of the decay 0 an initial profile 
o -.. 

of'an Fe-8wt.\Ni speci~n ~olidified wi 

370 mm/hr is shown in Fig. 24. In this 

used T = l753.l6~ and Ds = '3.41 x 10-9 
, 

G D 31 C/Clll and v = 

c~cUl,ation, we have 
-......---' (76) 

cmZ/sec • In Fig. 24, 

we' cl,early see that there is ~osignificant change of the profile 

1n the central r~gions where the gradient is small, whereas the 

1nterdendritic region (where the concentration ,gradient is\high), 
, ( '\ 

shows relativEity fast decay,. Calculations for various velocities 

show that the same is true for any growth velocity. This is due 
, . 

to the,fact that the homogenization ti~ and th~ cell spacing 

• 

~ , 
,-: 
• 
" 

c 

" 
< • , 
! 

" 

I 
» , 
• 

• 
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increase and the average solute gradient of the profile decreases 

as the growth ve::.ocity decreases. This analysis'> ind~ates th.J.t , 
1n auster,itic iron-nickel alloy the diffusional homogenization 

is minimal and specifically that no significant change of the 

solute concentration occurs 1n the s,entral region of dendrites 
\ 

during coolirig down. Fig. 25 shows micrographs and typical 

concentration prqfiles resolved by electron probe microanalysis 

of two transverse ,sections of unidirectionally grown Fe-8wt.%Ni 

alloy specimens. ,Fig. 25a is 0.3 rom below the tip of a specimen , 

grown with G = 31Oc/crn and v = 51 mrn/hr (where the interdendritic 

region is still liquid) and Fig. 25b is 8 mrn below the tip of 

a specimen grown with G = 3lDt/cm and v = 58 mrn/hr. The tip 

concentrations in the solid are nearly the same'. 

" -Turning to the liquid to 6 iron solidification. we 

have qualitatively observed nearly complete homoge,nization with 

-an Fe-18wt.%cr-8wt.%Ni alloy specimen. This'is due to the much 

greater diffusion coefficient of a sub~titutional solute in the 

;< phase. The strong dependence of the diffusion coefficient on 

the homogenization kinetics is evident by its exponential relation 

,ltn Eq. (109)( 

ulffusion 

A te1niqUe 

coeffl.cient 

for the approximate determination of the 

in a high 'temperature phase can be dev-

'! , · · • 

• 
· 
( 

• ! · 
" 

t • 
~ , 

eloped by a combination of the steady state unidirect'ional solid- , 

lfication and the homogenization kinetics of cylindrical solute 

dlstribution. A solidification condition gives the values for q 

,ma t l.n Eq. (109). If we experimentally measure the initial 

,>nu final-concentra'tion profile for a <;liven time. D. i. the only 

, . 
~ •.. 

. ~ 
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I 
I 

parameter which should satisfy Eq. (109). Th1s technique may 

b.e,}jlrticularlY useful for the determ7ation 

coefficient in the high temperature phase of 

of the diffusion 

a multicomponent 

system where the diffusion couple experiment is technically 
L 

difficult. A good example is the a phase of an Fe-18wt.%Cr-

8wt.%Ni alloy which exists in a narrow temperature range (about 

SOOC) right below its solidification temperature. An_~plication 

of this technique to the alloy is illustrated in Fig. 26 and 

gives 1.3 x 10-7 cm2/sec for the diffusion coefficient of Ni at. 

It is interesting to note that this yalue is 

close to the diffusion coefficient of Ni extrapolated to that 

temperature in the expression for the diffu\ion coefficient of 

Ni in a-iron (1.045 x 10-7 cm2/sec) (76) 
'0 

The main object o~i~ section has been to demonstrate 

that the minimum concentrations measured correspond closely to 

those which existed at the dendrite tips (in Fe-8wt.%Ni), during 

gro~h. However, the importance of the 6: y transition in 

infl~encing diffusional homoge~zation of steels is well eS,t-: 

ablished by these observations. 

I . 

-' 
\ 

\ 

l 
< , 
I 
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< 
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1 • , 
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CHAPTER 5 

DISCUSSION 

5.1 Tip Concentration and Curvature as a Function of 

Growth Veloci ty 

In the physical sciences, the interplay of theory 

and experiment is sufficiently important-that advances on 

'the one front should ideally be complemented by developments 

on the other, in order that both may be kept honest. In the 

present work, the tip concentration and curvature have been 

theoretically and experimentally obtained as a function of 

growth veloci~y alone un~er a fixed temperature gradient. 

In this section, we shall compare our theoretically predicted 

values with our experimental results. 

The Tip Concentration 

-We first consider the tip concentration. The 
~, . , I 

experimentally dete,rmined tip-theoretically predicted ~nd 

concentrations are compared in Fig. 27. Also shown in the 

Silllle figure arc the predicted .values of the tip concentration 

1,1' the minimum undercoaling and the zero 'constitutional 

~upcrcouliny condition~. It is clearly shown that these 

LItter values d.o not agree with experimental results in. any 

sense,. 0/1 

60 
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In spite of many approximations ~n the present 

theoretical development and' computation, the growth velocity 

dependence of the tip concentration has the same character; 

very rapidly decreasing with increasing v in the low v regime 

(cellular) and minimal v dependence in the high v regime 
" " 

(dendritic). Good agreement between the theory and exper\­

ment is also seen in the significant amount of solute 

build-up ahead of the dendrite tip. However, in their 

magnitudes, the theory and experiment do not agree particularly 

'" well. The theoretically ~redicted tip conc~ntration ~s about 

1 wt.% Ni lower than the experimentally determined tip 
< 

concentration. This deviation could be due to the following 

factors: 

(i) Interface shape - To avoid mathematical difficulty, , 
we have described our boundary value problem with ·t,he shape 

of a paraboloid of, revolution which is exact only· if the 

interface is isothermal and the growing dendrite is completely , 
~solated in an infinite field. In actual growth processes , 

during the controlled solidification 'experiments, the inter-
. \ . 

face is non isothermal due mainly to the imposed temper~ture 

yradient, and the growth front includes an array of dendrites. 

furthermore. in ,the high growth velocity re~ime. side· 

or .inching occurs behind the tip. Clealfly the effect of 

l'usitive temperature gradient gives higher rates of internal 

'"ntropy production behind the tip and the ;ffect' of the 

~rray of dendrites and side branches gives lower rates of 

~nternal entro~ production behind ~e tip. resulting a net 

deviation. 6. from the average rate of internal' entropy 

• 

\ 



62 

production on the interface, 
(
diS) , estimated in the present 
dt A 

theory. Thus the true value of the average rate of internal 
-.- T 

entropy production,(dl.S)" , 
dt A 

can be represented as 

= (d!:) + t1 • ( 111) 
A 

At the minimum of the (diS)T vs. p curve, 
Crt A 

or 

a. 

b. 

(diS) T 

dt A 

~p(d~~) = 
. A 

.. 

= £...... (diS) + 
op dt 

T 
P=Popt 

A 

ot1 = o,~ 
op 

(112 ) 

(113 ) 

d 
When dp t1 < 0, the slope of the calculated curve 

based on our theory is positive at the true minimum, 

and hence P6pt > Popt' A higher tip concentration 

is expected. 

o ,T When ~ A = 0, P 0p 1.1 opt = Popt' The calculated tip 

~oncentration is the true tip concentration. 
. 3 T 

c. When dP t1 > 0, Popt < Popt' The true tip concen-

tration will be lower than the calculated value. 

,\ r 19orous analysis of the properties of !J. i's a very complex 

problem and beyond the scope of the present work. Qualitatively 

We aSllume that the temperature gradient effect is stronger than 

the other effects. Then the case falls into the criterion a. 

(ii) Inconstancy of ko - In the present theoretical 

<In<llySis, the distribution coefficien~ Ito was assUllled to be ,; 
.1. 
I , ... 

" 
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a constant. The actuaL Fe-Ni pha~e diagram shows that 

ko increases with increasing solute concentration, reaching 

about 0.76 at 10 wt.% Ni and l,1nity' at 65 wt.% Ni'. Clearly 

this will give a positive deviation of the tip concentration 

from the calculated value. 

The Tip Curvature 

Experimental measurement of the tip radius 

presents a rather difficult problem because th£' decant:'n" 

and direct observation techniques are essentially inapplic-

able for iron base alloy~ and the quenching operation during 

solidification usually does not allow one to retain the 

exact shape of the growth front. O~ly spprox~ate shape 

Observation is possible, and we employed the quenching 

technique for this purpose. Fig. 28 shows the longitudinal 

• section of an Fe-8 wt.% Ni specimen quenched during steady 

~ state growt~ with G = 3loC/cm and v m 5lmrn/hr. A comparison 

of the experimental result with the various ~redicted tip . 
curvatures is shown in Fig.29. 

, 
Here, the order of magnitude 

agreement between our theory and experiment is clearly 

observed. In our theory, it is demonstrated that the Gibbs-

Thomson effect is significant when ~ < l~m. If the dendrite 
.. 
up adJusts itself in such .J. way that it maximizes the tip 

temperatur~; it should become sharper and ~harper to reduce 
c' 

the undercooling due to solute build-up' ahead of the tip until 

the Gibbs-Thomson effect starts to play a signi ficant .role, 
:,. 

WhiCh is a-t most IlJm. This is clearly not the case in Fig, 

28. The curvature apparent in Fig. 28 also supports the 

\ 

J 

, 
.' 



hypothesis that the Gibbs-Thomson effect can be neglected 

without any significant error in the velocity regime under 

consideration. 

5.2 Solute Field in the Liquid 

Having determined ctip and p as a function of 

growth velocity, it now is possible to evaluate the solute 

concentration profile in the liquid as a function of growth 

64 

velocity alone.' Typically we shall examine L'l" concentrat1on 

profile in the axis of x = 0 and y = 0, ignoring the 

Gibbs-Thomson and kinetic effects. The equation of this 

profiLe can be obtained simply by putting S=O, y=O and 

== in Eqs. (27) and (36). o 

c{J,o)=c 
00 

GD [El (pa
2

) 

mv El (p) 

El{p( 2
) {l+p" , )-e- P '·]. 

El (p) (l+p) -e-P 

(114 ) 

computed results for some growth velocities are plotted 1.n 

1-'1g. 30. Particularly to be noted is the simultaneous 

representati6n of the increased solute gradient and decreased 

d1ffusional penetration in the liquid and the decreased tlP 

concentration as growth velocity increases. 

". Constitutional supercooli~9 

The physical -deta·ils around a growing dendrite op 

clarified in the present investigation. We shall 

now examine the variation c: the amount of constitutional 

supc~cooling, .dI1,O), as a fun'ction of growth v~locity. 

Th1s computation has been carried out frc., Eq •. (lOS) and 

(55), ignoring the Gibbs-Thomson and kinetic effects. the 

i 
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result is shawn in Fig. 31. The amount of the constitutional 

supercooling for the virtual limiting cases, pl~~at inter-
,-

face and infinitely sharp tip, are also shown in the same 

figure. It is noted that, as discussed by Tiller(77) , there 

remains a significant amount of constitutional supercooling ., 
ahead of a growing tip except for the very law velocity 

\ 

regime. 

The reduction of ~(l,O) by introducing two extreme 

interface curvatures can be estimated by considering the 

equilibrium temperature gradient. From Eqs.(58) and (60) 

we see that the equilibrium temperature gradient in front 

of an infinitely sharp tip is reduced from that at a planar 

interface simply by the factor "ko' i.e. 

(115 ) 

Hence, the ratio of the amount of constitutional super-

cooling is 

"sJ(l,O)lp=o 

.,(1,0) I p=ao 

kO(G~)p_ao - G II (116 I 
= (Go) -<G 

e p.oo 

When GO » G fall cases except"for the very low v reg).mel, 
e 

( 117) 

Further reduction is due to the contri·bution of the Gibbs-

Thomson effect; the magnitude of the constitutional super-

cooling with the infinitely sharp t1P approachell --. Thus 

zero constitutional super~ooling at the tip is possible f~r 

.my A velocity but it requires a very sharp tip except 

• 
( 

, 
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for the very low velocity regime. For the growth geometry in 

which local equilibrium is cl~selY held, the constitutional 

supercooling in front of a growing tip cannot be eliminated. 

5.4 C,~ll and Dendrite Spacings 

In the present theory, the boundary limit of a 

single dendrite, xL' has been determined by a self-consistent 

method using an empirical rule for the spacing vs. growth 

velocity relation. The physical signif~cance of xL can De 

interpreted as the half spac1ng of the hypothetical para-

boloidal dendrite array. In an array of realde~dr~tes, as in 

our experiments, there exist the inte"raction of the solute , 

field behind the tip and the effect of the temperature 

gradient. Thus, the spacing of the real dendrites, \, must 
r 

be smaller than 2xL . In Fig. 32, A and 2xL are shown as a 

function of growth velocity for a fixed temperature gradient 

(31 °C/cm). Two important features are note.din the figure: 

(i) f\.s exp,ected, A and 2xL are in the sa~ order of 

magnitude, and clearly A < 2xL. 

(ii) Experimentally observed spacings roughly obey 

the inverse square root dependence of Aon vin 

the high velocity regime; however, stronq'deviat~on 
. "\ 

is observed in th .. low v&l6ci ty regime. 

I .' The strong deviation in the low veloc1ty regullem.1y 

be rationalized in terms of the rate of inter~al entropy 

production. Close examination of Fig. 11 shows that for low 

qrowth velocities the v'ariation of ~~~)' near the minimwn 
, . A 

is very small'in a wide range of p,whereas that' for high 
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velocities is quite strong. Thus small deviation of r-~: )A 
from its minimum may permit a wide range of p values, giving 

rise to a wide scattering of cell shapes in the low velocity 

regime. In fact', the experimentally QPserved morphology 

(Fig. 15) shows fairly uniform dendrites in,the high v~locity 

regime and nonuniform cell sizes in the low velocrty regime. 

5,5 The Effect of Temperature Gradient 

Up to this point, 'We ha)le mair.ly investigated the 

growth velocity dependence of the tip properties for a fixed 

" 
temperature gradient. Let us finally examine the effect of 

temperature gradient on the tip properties and the cell or 

dendrite spacing. This investigation can be made in a 

straightforward way ,simply by computing all the formulas 

with various G. Computed results with G - 42 oC/cm,are shown' 

in' Figs.; 12, 16 and 32. " It is noted in the -figure; thae, 

when G is increased, t,he tip concentration and ra1{us of 

tip curvature increase in the low velocity regime and the 

• 
spacing decreases in the entire velocity regime. Comparing 

the theoretically predicted variations I(ith the experimentally 

observed gradient. dependenceot the ti~ncentration (Fig: 

23) and spacing \( Fig. 16), we find that these predicted 

effects of varying temperature gradient are indeed borne out 

by experiment. 

/ 

" , 



,CHAPTER 6 

SUMMARY' REMARKS 

(1) A mathematical model has been developed to describe 

the controlled solidification of dilute binary alluys 

using a paraboloidal shape assumption. This.oper~tion 

is essen'tially an approximate transformatiqn of a 

complex free boundary problem to a similar qne with 

the consequent i.ntroduction of free parameters. 

(-2) A unique solution of the solute diffusion equation 

has been 'obtained by dpplying all the physical boundary 

condl.tions and one.' additional optimal statement. Here 

the minimum rate of internal entropy pr6tluction has 

been invoked. ,,-
• 

The generalized phase transformation, as a free-boundary-

problem, isa variational pr"Oblem in wh,ich the optimi-

z~tion-cQndition is indispensable. The rate of internal 

entropy production is the only thermodynamic' potcnti~l­

function which completely describes the non-equilibrium 

situation and is a rdnilllUlll at the steady state of 01 \.. 

pure relaxation process. 

()) The variations of the theoretically calculated tip 

concentration and the t.ip radius aa a function of growth 

68 
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velocity, for a'fixed temperature gradient, are in 

reasonable agreement with experimental results." 

(4 ) 
j~' ~ 

The theoretically predicted and exper~mentally observed 

temperature gradient effects on the tip.properties and 

the cell (or dendrite) spacing are in good agreement; 

with increasing temperature gradient, for a fixed 

growth velocity, tne spac,ing decreases for any growth 

velocity and the tip concentration and radius increase 

in the low velocity regime. 

(5) ,The maximum tip temperature conditi~ (or the minimum 
. " 

tip undercooling condition) is one of the special caSES 
V' 

of the condition of the rn~nimuni Fate of internal eritr,opy 
" . , 

production (i'-e.; when it is applied at a particular 

.poiht, the dendrite tip) • . ' 
(6) There exists a significant amount of constitutional ~uper-

" 

cooling'in front of the dendrite tips. In usual 

experi~ntal conditions, bO.th the min'imum tip under-
, . 

cooli,ng conditi,on and the zero constitutional super­

cooli~g condition require tip .radii less than 1 ~m, 

which is not observed, 

(7) The amount of.undercoaling at the dendrite' tip in 
-

c<l>.1umnar growth is a necessary starting point for 
'i 

"'~n'y rigorous ,theory of .icroaegregation irf'di~.,ctional' 

~ I 



These results, therefore,indicate thit~ the departure 

of the dendrite tip concentration from kocoo has 

practical as well as theoretical implicati~ns, which 

must be accounted for in subsequent advances in the 

theory of ·microsegregation. 
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(8) In the Fe-8 wt. % Ni system, diffusional homogenization 

is 'minimal while nearly complete homogenization occurs 

in'th,e Fe-18 wt.% Cr-8 wt.% Ni system for the conditions 

of the present inv~stigation. This result therefore 

emphasizes the importance of ~e 6 ~ y transition in 

the post-solidification homogenization of steels. 

, 

! 

., 

! 
i 

. -~, 
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APPENDIX I 

DIFFERENTIAL VECTOR OPERATIONS IN PARABOLIC 
COORDINATES (a,8,~) 

J 

In generalized orthogonal curvilinear coordinqtes , 

--Grad (11) = 1 -- a 
E nl.' aI.' i aqi 

(Al-ll 

• 

where ~i is the unit vector and the coefficient, h~, nas 

:::::,the re lation wi th cartesian coordinates (x, y , z), 

~hi 
(Al-2) 

For dimensionless :parabolic coordinates/Ja,S,f), the trans-, ~~ Ie 

formation relations are 

x z paS cos." 

y ~ paS sin" , 

and 

and hiS have the form 
~ 

and 

.GUi~.t;ure • 

(Al- 3) 

(Al-4) 

(Al- 5) 

(Al-6l 

(Al-7 ) 

• 

r 

.'.' 
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Thus 

1 1 + 
+ -<f 

pClB 0 alP 
(Al-9) 

P(Cl 2 +B2)1i 

where ao ' Bo and ;0 are unit vectors in parabolic coordinates. 

+ + + 
Re~olving Clo .8

0 
and ~o in cartesian components, 

tio 
·1 -t + + 

(1.8cos~ + j8sinq:> + kCl) , (AI-IO) 

1 + + + 

(iexcoscp + jexsin~ - kB), (Al-ll) 

and 

= .,,1 sin~ + 1 cos'i, 

where 
T -t + 
1, ) and k are cartesian unit vectors. 

I 
.. Subs:tituting Eqs. (AI-lO) - (Al-~2) into Eq.0\1-9) and equating 

gradient expressions in.cartesian and. parabolic coordinates, 

·and 

• , 

.. 

1 8 sin~ a! + 
a'+6 2 

l--==--

1 ex 
'1 

(A1-14 ) 

(Al-lS) 
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The Laplacian in general coordinates 
; , t . ... 

has the form ) 

,"" 

- (Al-l6 ) 
In parabolic coordinates. (Al-l6) leads to 

1" 1 1 [ a
2 

!".2. + a2 
+ ! 

a:] 
l~ a2 

(Al-l7) , = ~ -- + 
+ ;> a a 2 a.,2 • 2 a 2+ 6 2 aa 2 a a ex aa 2 . a p 

~ 

" 
~ 

l . 
• 

\ . 

• 

(. 
. \ . 

• 

. \ -. 
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APPENDIX II 

GENERAL, SOLUTION OF THE DIFFUSION EQUATION 

A mathematically rigorous general solution of 

the, di f fusion equation expressed in parabolic c'oordinates 

b ' db' d' (31) d Ho' 1 zmann ( 30 ). An ~as 0 ta1ne y Tr1ve 1 an 

independent approach to the solution is presented in this 

appendix to provide a convenience for readers of this 

~hcsis and to strengthen confidence in the previous work. 

/ 

The steady state diffusion equation in parabolic} " 

coordinates with rotational symmetry was represented in 

ch,a:pter 3 as 

~(~ +2po) au + 
ao 2 0 ao 

(A2-1) 

Introducing new variables a1. and B1 related to a and '6 by 

,Eg. (A2-1) takes the form 

. a 2 u 
'I --. laa ~ 

1 

- (1-8 ) 
1 

If we 'assume that u can be written in the form 

(A2-2t"" 
• 

3u • O. (A2-)) 
~51 

, , 

I 

, 



. : .... ~ .. 

then, Eq. (A2-3) has the form 

(l-a ) dAj _ !. [Sld'B + 
1 da 'B ;w;-1 1 

, 
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~~J ; O. 
(A2- 5) 

To have the solution,at all, each term on the left of Eq. (A2-S) 

must be equal to a constant, say \. Then we obtain two ordinary 

\ 
differential equations. 

...../ 
J 

al 
d'A + (l-a IdA - AA ; o • 

a 1 dci:" 
dal 1 

(A2-6) 

and 1>1 
d'B + (l-B 1) dB - AB 0: o . 
dB ' .dB 1 

1 

(A2-7) 

\ Eqs. (A2-6) and (A2-7) are of special form of the confluent hyper-

geometric ~quation. The general form of the cOQfluent hyper-

geometric equation is ., 

x 
d'v d ~ + (b-x) ~ - ay » O. 

dx 

(A2-8 ) 

dx' 

Using the method of Frobenius, we obtain two independent solutions , 

. \~ (a)nxn 

and 

0: M(a"b,x) 0: l: 
naO (b) n n: 

, 

(b ". 0, -1, -2, .... ), 

1'-b "12 0: x" M(l+/S-b,2-b, x), 

(b ,.0, ±l, ±2, ••• ) • 

(A2-9) 

.• (A2-10) 
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Further sol'utions are obtained by variable transformation of 

the differential equation 

(A2-11) 

and (A2-l2l 

Second forms of sOlutions may be deduced ~linear combinations 

·,r (l-b) 

~ 
r (b-l) 

YS, = \J(a',b,x) = Yl Y2' (A2-13 1 
r.( l+a-b) r (a) 

Y6 = xl-bU(l+a-b, 2-b, x) , (A2-14) 

• 

Y7 = eXU(b-:-a, b, -x) (A2-1S) 

and YS =' eXxh·bU (l-a, 2-b, -x) • (A2-16 ) 

.\ 

When b=l, the Frobenius method gives only one solution.. Another, 
i , 

'linearly independent solution for this case is the logarithm1C 

solution 

+ 

r 
·(a) rX 

(r: )" 

" ! 

+ 

1 
+.'.+ a+r-l 

(a -,J 0, -1, -2, ... ). 

2 _ ••• _ 
r 

2 -) + •• , 
r 

(A2-17) 

The corresponding solutions for Ys and Y7 follow directly from 

\ 

the'"definition of these functions 

, 
( 
.j 

... 

. [ , .. ta) xr { ~] :,b M(a,l,x)ln x +.1: _~ ljI(a+r)-2lj1(l+r) 
I \a/ r.O(r!~ 

• 

(A2-1S) 



where ~(x) is the Psi function defined by 

Iji (x) = 

and 

r' (x) 

r(x) 
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(1\2-19) 

(A2-2O,) 

The general solution of Eq. (A2-B) may be any linear combination 
, ,p 

of the solutions under the condition that their Wronskian does 

notvanisp. in general 

(A2-21l 

We shall consider now our differential equations (A2-6) 
) 

and (A2-7). The parameter b=l and the other parameter a can 

be defined imposing the boundary condition at infinity to Eq. 

(A2-7). Our boundary condition at infinity irnt:rlies that B is 
• 

finite when 8 1 .. '" (0""') for any value of a except for a-l. The 

asymptotic expansion of M(a.l.x) for large x is 

(A2-22) 

The condition for a finite M(a.l.x) with X"'" is.-

a = O. -1. -2. . . .. . (A2- 23) 

EXi'miniRg the Wronskians of yj.. and Yj under the conditions of 

b~l and a=-n (integraln). we find that Yl and Y7 are independent, 

solutions. Thus the general solution of Eq. (A2-7) is 

8 
B = C1M(-n.l.8l) + C2e lU(1+n.l.-8 l )· (A2-24) 

When 61" "', the second term becOIII6& infinity, therefore C2 must 

be zero. 

- ~, 

" 
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using the identity 

M(-n, 1 ,x) ~ Ln (x) , 
(A2-25) 

the general solution of Eq, (A2-7) 1S 

(A2-26) 

Similarly, the general solution of Eq. (A2-6) may be g1ven by 

(A2-27) 

When ~+~ (al+-~)' M(-n,l,al) becomes infinity. To satisfy the 

boundary condition u=o when a-+-~' , C3 must be zero. Thus 

'. 
Z -pa . 

~ C
4n

e U(l+n, 1, paz). (A2-28) 

without loss of generality, we choose -the coefficient C4n sutil " 

that An ~ 1 with' ~=l. Then 

Z . 
= e-pa ~+l,l,paz) 

e-PU(n+l,l,p) '­
'\ 

" 

From. Eqs. (A2-4), (A2-26) and (A2-29), we finally obtain 

. .. 
t,J(a,S) 7 1:0 n= 

.. a 2 

t~ e-P U(n+l,l,pa') 

n 'e-PU(n+l,l,p) 

-, , 
, 

I. . " -t,., •. ',: :." ;.-.. , .•. .-.. ,".;..>~ ••.. , .• -'" ' .• , ..... ...... ".' .• ,L·_-"'':!'~-'-:··.'· . ..i-~·.~~i: .:'" 

(A2-29) 

(A2-30) 



APPENDIX I II 

SOME INTEGRALS 

In this appendix,. some integrals encountered in 

chapter 3 are evaluated. 

(1) 'Evaluate the integral 

By definition, Laguerre polynomials have the form 

(a) x-a 
L (x) = eX --n n! 

substituting Eq. (A3-2) i·nto Eq. (A3-1) 

11 
1 ro v d n 

(e -x xn) dx. = x 
n! dxn 

0 

,Integrating by parts ntimes 

1 . f'" D -,ll 11 = - (-lInv (v-1I (v-2)'" (v-n+l) v n: . 

using the identity 

we finally obtain 

I = 
1 

n 
(-1 ) 

x-l t dt, 

.L[ r:...;(~v:..:.+.::.l ):...11 ... 1
_' _- ; 

rh'l+l)r(v-n+l) . 

o 

, ' 

• 

(A)-i) 

(A3- 2) 

"",­
(AJ-5) 

(AJ-6) 



(2) Evaluate the integral 

I2 = J=(P+U-~ e-~ Ln(~) dE;. 

o 

80 

The integral representation of Laguerre polynomials has the 

form 

o 

substituting Eq. (A3-8) into Eq. (A3-7) and putting ~ = x 

I = 
2 

'sing the identity 

we find the relation 

1 -
Hence 00 

r (z) 

z 
p 

J o (2/tx) dx. 

1 

r (~) 

00 j e - ( (/p) 2 +x 2 } S s -; 

o 

00 w 

ds. 

(A3-7 ) 

(A3- 8) 

(A3-91 

(A3-10' 

(1\3-11 ) 

-. I 
., 

~".~ 

~J 2 J _(/P)2 S J -sx' 
12 = t n -t -, ds e x J o (2.'t xl dx. 

n: e dt ' e s 
0 • 

0 
0 

(A3-121 

The last integral is a special form of the Weber'S integral' 

whuse general form is 

b V 
b 2 in 2 l v+l - 4~. e-a X JV(bx)x d)!: 2 e 

0 \2a 2.> V+1 . • 0 , 
," ..Y 

(A3-13) 

• ,. 

c' 

• , , 
,~, ' \': ., I' r. ~ ',._-, ./ . ,:' , 

," 



-

o 

Thus 

e x J
o

(2.1t x) 

J
oo -sx' 

o 

dx 

t 
1 -s­

;::: 2s e 

substituting Eq. (A3-14) into Eq. (A3-12) 

J
'" -(;P)'s -!:. -~ 

e s s ds. 

o 
o 

putting ps = u, 

'" 
~ 1'" e 

E.!:. 3 

~ ~ Jt
n e- t dt 

-u- u -2" 
I2 = 

u du 
n. In 

0 
0 

Representing the last int~gral by the modified Bessel " 

function of the third kind (Macdonald's function) whose 

integral representation is given by 
\ 

I2 has the form' 

2 
I = 2 n~ 

-t 
e 

-\1-1 
t dt 
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(A3-14) 

(A3-1S)-'C 

(A3-16) 

(A)-lS! 

Tne table of cylinder functions of half inte.gral order gives , -. 
n ) ~ -x .-, K, (x) = (2x e 

From Eqs. (A3-1S) and (A)-H), 

I "'!. [tn-~ 
2 n~ 

.putting t = (q_;P) 2 '. 

... 
. ' 

'.' .~ 
• 

.. ::'!. 

(A3-19) 

.. ,t, 

(A3-20) 

, ,;, 

".;;"; "' 

i ',. _ ;'::.:~~, :',' v c" ' .. ',,'j[~~t! 



I 
2 

\ -

2 
(2i1)": 

;, 
82 

-q2 
e dq. (A3-2l : 

Th~s integral has the form of the repeated i~tegral9 of thv 

error function defined by 
. ......-... ...... 

\ 

2 foo

, -t 2 
n: (t~X)n e 4t. 

x ., 
{ll

n 
erfc (x) 

.. ,:r 

Thus, 

(.:'13-23) 

Using the definition of the normalized integral error function 

'(A3-2~1 

we finally obtain 

(;1.3-:-25' 

u) '.: Evaluate the integral 

=l~e-~ 
o 

., 

, " 

(A)-26) , 

• 
This i~egral can be straightforwardly evaluated by differcn-

t~ating 12 with ~espcct to'p. 

Ht..!nce, 

\-~' .. 
, , 
0" 

-;.,~ 

• 

.'.'1 
'0 , , -" , .. " ,,".,-;: '. " 



~ 

I 
• 

It follows from the defipition of'the function 1nerfc(x) 

that 

where ~ 

Then 

d 
ax \terfC(x) = -(-1) ~ 

An-l 

n n 
2 r (1 + "2)", 

r (n+l:i) [ P 12n elllfc (/P) = r(n+l) , e 
J 

-eP 1 

7P 

From Eqs. (A3-281 ,and (A3-3i) , it follows 
'-

I3 = 2e P [ 1 'I ' erf~(IP) r(n",?) -, {p 2n-;1 r(n+ ) 
;> , 

r ~n+l) 
12n- l r (n+"i·j 

\ 

'-

12n ertc(/p)] " 
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(A3-30) 

erfC(/p>]. 

(1.3-31) 

I 

(1.3-32) , 
, ' ' ..... 

using the recu~rence relation of the nQrmalized inteqral error 

function, we obtain - -
/p. 13 = 2eP 'I2~+l erfc(/p). , (1.3-33) 

. ' 
" 

; 

, , . 
, , 

, ' 

" 

f , 
" 

, 
" 

, , 

, " 

'. 
,,!..) 

,9 

. 

/' 

• 

,-
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TABLE 1 
~ 

.,;;.r> 

-
Chemical Analysis of Pure Fe-and Ni 

F'i' (Ferrovac 

Impurities 

C 

s-i 

M" 

P 

s 

Cu 

-- - Ni 

Cr 

V 

Me 

w , 

Co 

°2 

Hi' 

N2 

El 

wt. % 

0.003 

. ~.(j06 

0.001 

0.003 

O. 005,-

<o.ooh 

<0.014 

<0.01-

<0. 004 

<0. 001 

0.01 

0.01' 

0.00046 

0.00005 

0.0002 

) 

. , 

.A. .( 

'I Ni (Electrolytic ",'( 

I'· 
Imp).!rities 

C 
• -, 

Si , ~-

Fe 

Co 

Cu 

Cd 

Ai 

.. Bi 
" ' 

B 

t ., Pb 

Ta 

N 

zr .. 
'H 2 

N2 
, 

°2 

90 

I / 

Nil 

wt.% 

0.00:'6 

<0.-0006 

0.0002 

0.0012 .-

0.0002 

<0.0005 
'\ 

<0.0003 _ 

<0.0005 

.<0.0005 
• 

<0.()004 

<0. 005 

«f. 005 

.:a.0017 
., ! 

.0.00028 

,a .0004 

0.00213 
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TABLE 2 

New improved etching ~eagents 

(1) Etching Reagent for Fe-Ni alloys (1-15 wt.% Ni) 

Composition 

Ferrie chlprid~(FeCl;·6H20):30g 

Cupric chloride(CoCl ·2H 0):8g , ,2 2 

Stannous chloride' (SnC12·2H20):4g .. , 

lIychochloric 3cid (s.g.1.19):36cc 

Distilled water: 500 cc 

Ethanol: 500cc 

Remarks 

• 
Iron rich~reas become 

darker color. 

" Etching time is about 

~-l(i seconds 

.... 

(2) Etching reagen~ for Fe-18' Cr - 8' Ni, ~~loy 

Composition 

, . 

Stock Solution: 

Sodium thiosulfate 
. (Na 2S

2
0 3 ·SH 20) :15,Og 

Distilled water:SOOcc' 

, 
• 

Hydrochloric acid(s.g.l.l9). 
• 

. 1 

./ RellUlrks • 

icc of Hel is added ·to 

SOcc of' stock solution· 

before .use. 

Etching ti_ is 3-8 seconds. 

This rea.qent relllains active 

only for about 20 seconds • 
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