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ABSTRACT

A techniqhe has been developed for the assessment of
the magnitude and direction of the principal finite strains
from measufemqpts m&de on a deformed pair o¢f lines. The
analytical procedure 1leads to the establishment of o
symmetr&c second order tensor which 1is neot one of the

classical large deformetion tensor defined in meny Continuum

A

Mechanics texts, but is much simpler in form and readily
N

apprlicable to the determinatioE\Qi natural strains in sheet

metal forming operations. ~—

—~.

Another scpect of this work has been an\§;p€ﬁpf\¢9¥\\y

provide a new method (Geomgtric Modelling) for blank

PN

develgpmenp and the invegtigation of poss%%le strain
distributiéns in forming sheet metal components. It }s a
computer technicue simulating the traditional manual
calculations performed by experienced tool designers.

The present work describes the formulation of the
fundamental theory of the method and the basic geometric
assunptions which are employed. Two pagticular examples
have been considered; one is forming a2 sheet on a smoothly

analytically defined surface and the other is forming the

corner section of an autom¢tive stamping.

J
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The detailed analytical procedurz is implemented 1in
FORTRAN code. The analysis heas ‘been performed without
access to advanced computef grephics. However; the results
suggest that the basic approach is feasible and that future
modelling using interactive computer graphics mzy well kbe

attainable.
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CHAPTER 1 ]
INTRODUCTION
Blank development is the process of finding the size
and shape for cutting the initial sheet or blank in order to
make a given stamping. For simple shapes such as
cylindrical cups and rectangular boxes, a number of
geometric and semi-empirical relations can be found in sheet

\

These permit manuali

-/

Many stamped parts have arbitrary rather

4

metal texts [1,2 calculation of

suitable blanks
than simple analytical shapes, hence other techniques must
be employed. Geometric modelling is one of such technigues,
which will be developed in this present work.

During the past decade 1investigators have studied
nunerical methods of modelling the entire sheet metal
forming process in order to obtain a suiltable blank shape.
Some of these methods w}ll be reviewed and applications to

\
metal working process will also be presented in the next
Cﬁapter. Amongst those, the most popular approach is the
finite element method in which the inputs are:
- the mechanical properties of the sheet;
- the geometry of the tooling;
- friction between the sheet and the tooling;

- an assumed- initial blank configuration;

- other process data such ‘as clamping pressure and



boundary condition§‘

Using this approach, the sheet forming process 1s
modelled incrementally. At each step, compétibility and
equilibrium conditions are satisfied within narrow limits
and the approximation is co;iinued until the.final shape 1is
achieved or unti1l some unsatisfactory conditions such as a
failure strain is 1indicated. If this occurs, changes are
made in the input conditions; for example, by changing the
boundary conditions or the éool geometry or the blank shape;
the modelling is then repeated until a satisfactory final

result is obtained.

The above approach is capable of accurate modelling

-
[

within one percent of error and much useful information has
been obtained. However, extensive computation is required
even for parts of simple geometry. At the present time, the
technique 15 not suitable for an interactive computer-aided
design system where the designer feeds a particular shape
into a timesharing <omputer terminal and within a short time
receives a solution satisfying the initial and final
constraints he has imposed. Although future generations of
computers may permit this computatién to be executed within
a reasonable time limit, 1t is wunlikely that the
computational efficiency required to solve a sheet metal
problem wusing the method described can ever be Iimproved

drasticélly.



\\

Traditionally, tool geomctry has been determined by
experience or by an experimental procesﬁ\fjlled "TRYCUT" 1in
which an initial blank is drawn through an 2ssumed punch
shape. If wrinkling occurstdqring the process then draw
beads c¢an be incorporated into the tooling in order to
reduce the tendency of the material to drsw-in. The process
is then repeated many times until a f{nal correct result 1s
achieved. However, the technique tends to become very
tedious when dealing with more complex gecmetry and requires
skills on the part of the tool designer.

In light of these situations, the present work has
been undertaken. q It is the first step in an entirely
different approach to computer-aided blank development,
namely geometric modelling. This approach differs from
finite element mo@elling, but the general techniques used in
minimizing computer. storage are common to both models. The
wOork does not aim to provide, in the maethemstical sense, a
solution to the forming problem but rather it 1is a
computer~-aid for the tool designer in dealing with some
traditional geometric problems. It is'hoped that this study
will provide a good starting point for csubsecuent analysis
such that many of the procedurés embodied in the techniques
described previously can be eliminated. The author does not
intend in any sense to propose an alternative or a

modification of the existing methods. There are three



particular features of the proposed method and these are

summarized below:

(1)

O
As already mentioned, other analytical methods are
based on the specification of boundary conditions and
material behaviour and involve finding a solution in
terms of a stress or strain distribution. The
decsigner then chahges the input data until a
satisfactory, solution 1is achieved. In the new
method, the approach is turned around and the
designer specifies the most desirsble end result of
the forming process. This can be done essentially in
geometrical terms. The method utilizes a computer
technique for finding a suitable blank shape and a
strain distribution which are geometrically

compatible with the constraints imposed by the

designer.

Forces, equilibrium and mechanical properties of the
sheet are not accounted for and hence the resulting
strain distribution is kinematically acceptable but
not necessarily physically possible. Only geometric

constraints are satisfied in the model.



The surface geometry of the component is described by

flat triangular facets, the analysis deals only with

these elements and the surface to

conform after the stamping operation

It is not an incrementzl analysis.

The technigque provides

which it must

is completed.

a more efficient way of

utilizing the skill and experience of the designer, it does

not aim to replace this by a "black box" computer system for

tool which does not require

N

understanding of the process on the part of the us&y.
) Y

)

///g
e £
o ;
‘ /
) 1

\n«/’

sheet metal design
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CHAPTER 2

APPLICATIONS OF NUMERICAL METHODS TO FORMING PROCESSES

2.1 INTRODUCTION

When dealing with numerical methods, it is 1mportant
to realize what is necessary for, and what is required from,
a final solution. If the requirement is an estimate of a
load or pressure to carry out a forming operation, or if it
is required to know how the load is affected by changing
certain process parameters, a rigid-plastic analysis is
often suitable. Slab or force balance methods [1, 2, 3, 4],
upper bound and lower bound approaches (1, 4, 5, 6], slip
line field (s.l1.f.) analyses {4, 7] and finite element
methods [1, 8, 9] are some of the solution procedures that
nave contributed 1in this regard. For a more detailed
discussion see Ref. [21].

An elastic-plastic analysis is valuable for the
determination of residual stresses and in problems where the
elastic strain is of the same order as the plastic strain.
It has also been widely applied in bifurcation studies. In
these cases, it 1is necessary that the method of solution be
capable of establishing a current distribution of stress as
a function of the deformation history. The constitutive

equation 1s usually formulated in terms of stress rates and



strain rates. A more detailed discussion on these points
are found in the articles by, Lee et al. [1, 10], dealing
with the development and applications of finite clement

methods to metal forming problems. ,

In this chapter some of the merits and limitations of

S

certain numerical techniques which have been the most widely
used 1in metal form@ng analyses are discussed. The
theoretical fundamentals are to be found'in many texts on
plastﬁcity and will not be given here. Instead an
application of the methods is provided by solving a plane
s%rain drawing ‘problem. The ;olutipn prdcedureé are given

in detail in Appendix A.

2.2 NUMERICAL TECHNIQUES FOR SOLVING FORMING PROCESSES

2.2.1 The Slab Method

* e <

The elementary theory/of the free body equilibrium
approach' i.e. the slab or rce balance method was first
developed by Siebel (1925) [f]. The technique relies on
dividing the workpiece into a number Gf finite regions
(strips, slabs, disks), the geometrf of whiéh depends on the
nature of the problem. Each region is placed in force
equilibrium. Thé method usually invokes the Tresca yield

. . i . . .
criterion and considers the material to be non-hardening

(although allowance for work hardening can be made in an



approximate manner by using a mean value of yield Stress).
It also permits an account to be taken of either Coulomb or
constant shearing friction, it is to be noted that friction
has often been treated as an adjustable paraméter in order
to provide the best correlation between théoretical
predictions and experimental results.

Sachs [11] employed this technique to calculate the
stress required.to draw rod or wire through conical dies.
Other investigatofs %éVe"sought improvements to Sach's
equation by attempting to assess the influence of redundant
work or work hardening, or both, on the drawing stress [12].

N
The application of this technique to analyse the direct
drawing of extrusion of strip has been favourable [2, 6].
The method can also be used to estimate forging loads for
quite“éomplex forgings. The workpiece is divided into a
number of modules, each of which is analysed separately and
then recombined to provide estimate of the forging load. A
recent review article by Altan and Naépel [13] provides a
comprehensive coverage of the current state of aft on
impression and closed die forging.

The slab method provides an unrealistic represeéta—
tion of the stress distribution within the deforming
material because it is only obtained as a one-dimensional
distribution. No account is taken of the inhomogeneity of

the deformation, temperature and strain rate effects.



2.2.2 The Bounding Methods

Two extremum principles due to Hill {[14]) can be usecd
to obtain "upper" and "lower" bounds for the loads to cause
plastic flow. The practical applications of these
principles has generally been restricted to rigid non-

hardening solids deforming under plane strain conditions.

(a) Upper Bound Method

As the name implies, the technique provides an
overestimate of the load(s) to effect plastic flow. The
usual procedure is to @ivide the deformation region into a
number of finite zones. The material moves as a rigid mass
within each zone but is shéared as 1t crosses the boundary
from one zone to another. The bounding lines are usually
straight and a.discontinuity in thg tangential component of
velocity occurs across each of these lines. From the
pattern of discontinuity lines in the "physical plane" a
corresponding velocity diagram (or hodograph} can be
constructed. Certain velocity boundary conditions have to
be satisfied, but no attempt 1is made to ensure that the
material in each zone satisfies a yield criterion and there
is no requirement that the individual zones are to be in
equilibrium with each other. The rate of external workiné
of the unknown traction (or load) is eguated to the internal

energy dissipated as material is sheared across each of the



) 10
-

.
discontinuity lines. The method is usually adopted in the

study of metal working problems since it provides an

overestimate of the energy requirements to be delivered by a

machine or press in order to execute the forming process.

(b) Lower Bound Method

Here again the material is divided up into a number

of finite zones, similar to the discontinuity liné\ pattern

in the  Upper Bound Method. However, in this cas the

v

emphasis is on establishing a statically admissible stdess
field (as opposed to a kinemafically admissible velo¢ity
field). Eéch zone 1is placed in force equilibrium with IXs

neighbour and it is stipulated that no zone has to exceed

the yield criterion (the Tresca and Von Mises criteria tak

the same form under plane strain conditions). The unk
surface tractions are revealed through the equilib }ﬁm
stress field.

The technique is often épplied to structural analyses
since it provides an underestimate of the load to cause
plastic collapse.

It is to be noted that in general the Upper Bound and

<
Lower Bound methods do not reveal a 'unique solution.

However, adjustments can be made to the shape of the
individual zones to reveal the lowest Upper Bound and the

highest Lower Bound solution, for a basic zone pattern.

-
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Upper bound solutions far outweigh Lower Bound
solutions in metalworking studies. In Refs. [1, 4, 6, 15,
16) there is to be found Upper Bound solutions for disc:
ring and slab forging; wire and étrip drawing; indenting;
tube sinking and gube expansion; rolling of strip; direct,
indirect, backward and hydrostatic extrusion; cutting and
piercing. The readers' attention is drawn to the texts by
Avitzur [6, 17), where emphasis is placed on Upper Bound

Methods for other than plane strain deformation problems.

2.2.3 Slip Line Field Theory

Slip line field theory has been most widely applied
(/“‘/fg\\fhe study of plane strain deformatidn of rigid,
non-hardening, solids. It contains features of both the
Upay{ and Lower Bound methods, in that it permits a
kinematicallyr‘hdmissible velocity fieid along with a
statically admissible stress field which satisfies the
yielding condition within the deformation zone. It follows

that the solutions obtained by the Upper and Lower Bound

method f}fgddle (or bound from above and below) the slip

line 14 solution.
The governing stress and velocity equations are
hyperbolic and can be solved by the method of

characteristics. It transpires that the characteristics for

stress and velocity are identical and “-they lie in the

~
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direction of the maximum shear stress. Hence the

deformation =zone 1is coveged by a network of orthogonal
+ .

characteristics, and these are commonly referred to as the
and slip lines.

Many similarities appear to exist (in fact these tend
to be superficial) between a slip line field and upper bound
solution. In both ﬁethods the physical plane is covered by
a network of lines, from which a velocity diagram can be
constructed, However, with the slip line field solution the
network 1is orthogénal (i.e. the characteristics) and
furthermore not all the slip lines have a diskontinuity in
the tangential component of velocity across them (this is
aiways the case with the Up#er Bound Method) .

In statically determinate problems the usual
procedure has been to build up a pattern of slip lines
(based 1largely on experience) and té obtain the stress
distribution within the deforming zone via the so called
Hencky equa£ions, “i.e. the equilibrium equations

N .
reformulated along the characteristics. It is not always

possible to proceed in this manner, in which case the slip
line 'figld and the hodograph have to be constructed
simultaneously. In the past, this has led to laborious

trial and error procedures (usually graphical) before an

acceptable solution is obtained. A recent innovation, which

. obviates much of .the labour with trial and error methods, is

-
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the matrix operational method due to Collins [18] and its
subsequent development into a systematical computa%ional
procedure by Dewhurst and Collins [19]).

oy As mentioned in the preceding section the Upper Bound
Method has been appliéd to a variety of® metal working
operations. These same processes can also be studied using

slip liné field theory and in Refs. {1, 4, 7) a large number

of examples are to be found.

One -of the main criticisms levelled against slip line-

field theory is that it treats non-hardening solids only and
ignores strain-hardening, strain-rate and temperature
effects. Allowance can be made for strain hardening (see
Ref. [20]), gut the resul%iﬁg stress equations along the
characteristics lose théir simplicity and recourse has to be
made to numerical procedures to effect a solution. A

similar situation arises when dealing with axi-symmetric

problems involving rigid, non-hardening, solids*. The

method of-characteristics applied to plane stress problems

is to be found in the recent text by Szczepinski [23].

* An interesting parallel can be drawn between the
design of ideal (or streamlined) dies for both plane
strain and axi-symmetric drawing (or extrusion) of a
rigid, non-hardening, solid and the design of ideal
gas nozzles (22], 1i.e., expansion nozzles, used in
the supersonic flow of compressible gas. Both are
constructed using the method of characteristics.

N
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2.2.4 The Finite Element Method

The finite element method has been increasingly
employed as an analytical tool in dealing with metal forming
processes. However, its applications have largely been

rconfined to problems with relatively simple geometry and to
Problems with small plastic deformation. It has only been
within the last decade or so that a proper formulation to
account for large strain and/or large displacement problem
has been embodied in a finite element code [10, 27]).

The finite element approach involves the
representation of a body or a structure by an assemblage of
subdivisions called finipe elements. These elements are
interconnected at joints which are called nodes or nodal
points, Simple displacement functions are chosen to
approximate the distribution or variation of the actual
displacement over each element. Other nodal quantities such
as forces are usually considered. The principle of minimum
potential is usually employed to obtain a set of equilibrium
equations for each element; these equations, for the entire
body, are ﬁhen ogtained by combining the equations for the
individual elements in such a way that continuity of
displacements or forces is preserved at the interconnecting
nodes, the overall stiffness matrix for the whole body thus
results,. A lot of @ork has gone 1nto 1investigating

«

different types of elements and also the numerical
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procedures for solving the resulting matrix. Herver, this
is outside the scope of the present survey, the interested
reader is referred to the book by Zienkiewicz (8] for a more
detailed discussion.

When dealing with metal working o¢perations, the
analysis is formulated in terms of either elastic-plastic
solid (which 1s usually based on the elastic-plastic stress-
strain matrix devaloped by Yamada et al. [24])) or
rjgid—plastic solid-~-the so-called matrix method developed
b;\iﬁe and Kobayashi [25). It*uses the Lagrange multiplier
in a&variational formulation and-linearization of nonlinear
stiffness equations.

In hot forming processes the material 1is often
treatea as an incompressible non-Newtonian fluid, where the
viscosity 1s related to the strain rate and possibly
temperature and total strain. See the discussion in Ref.
[26) which employs the finite element method to study }he
forming of superplastic alloys. The solution of 1large
strain and/or large displacement problems are the subject 8f
Refs. [10, 2}41 the reader is also referred to the atticle
by Johnson and Sowerby ([21] who review many metal forming

processes solved by finite element methods.
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2.3 DISCUSSICN

Of the technigues discussed herein the finite element
method 1s the most powerful (and also becoming the most
widely emplo?ed) analytical tool for the study of bulk and
sheet metal forming processes. It permits a more flexible
material description, capable of accounting for
elastic-plastic behaviour, temperature and strain raté
effects. In addition, many more computer packages are
becoming available which have the facility to deal with
large strain and displacement problems. However, 1in metal
forming processes the interfacial frictional conditions

between tools and workpiece and certain boundary conditions

are Kknown imprecisely, and there is always some deubt about

the appropriateness of any constitutive ecquation. -

particular&y when temperature and strain rates are involved.
Consquently; even the most rigorous analytical procedure is
controlled by the reliability of tgé input data. It is also
to be noted that computer costs can become cexcessive and
therefore the investigator must ask what he requires from a
solution before embarking on more rigorous analytical
techniques.

The bounding methods are relatively crude and in
general deal with rate insensitive, rigid, perfectly plastic

solids. However, solutions for the loads to effect plastic

flow can be easily arrived at and in the first instance this
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may be the principal requérement of a designer of a press or
forming machine.

Within the assumption of the plane strain deformation
of a rigid non-hardening solid, slib line field theory 1is
mathematically rigorous.. It can provide insight into lozds,
stress distribution, material flow and the like for the two
dimensional analog of many metal forming processes. The
technique "is usually restricted to Steady state processes,
otherwise incipient fields only are revealed. It has also
been criticized because of the limited material description.
However, if an attempt 1is made ta incorporate strain
hardening into the analysis the simplicity of the technique
is lost and recourse has to be made to numerical procedures

to effect a solution.



CHAPTER 3

EXPERIMENTAL STRAIN DETERMINATION

N

x
1

3.1  INTRODUCTION \

This Chavter is concerned with finiﬁgrdeformation but
it 1is not the intention to approach the ‘topic inﬂ the
traditional manner, as can be found in many texts on finite
elasticity. The goal 1is the evaluation of the principal
strains from measurements taken of a deformed grid of lines
on a sheet metal pressing. With sheet metal components iF
is not unreasonable to ignore any variation in stress or
vstrain through the thickness of the material and to treat
the problem as one of plane stress*. In evaluating the
principal strains some simplifying assumptions are made
about the deformation mode, and hence the treatment is not
completely general. However, as explained below these
assumptions are implicit in the current practice of
ascertaining the maximum strain level from measurements made

on industrial pressings.

* Not necessarily a good assumption in the case of high
contact stresses between tools/dies and workpiece,
but these regions tend to be very localized and small
in size compared to the overall size of the
component.

18
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3.1.1 Grid Measurements and Forming Limit Diagrams

The classical theory of plasticity is an incremental
theoryy/;n particular the J/increment of plastic strain in any
deforéétion process is }related to the current deviatoric
stress state. In gqug;l the straining path followed by a
general element 1in ; plastically deformiﬁg body is not a
proportional path. In other words, the principal axes of
plastic strain (or strain increment) rotate with respect to
the material element. Under these- circumstances it |is
necessary to use an incremental approach and to sum (or
integrate) in some manner each increment of plastic strain
over the entire strain path, to arrive at the total
(effective) strain. There are however, processes in which
the straining path of an element is proportional, or nearly
proportional., Thus in a pressing‘'the situation could arise
where it may not be unreasonable to aEsum; that each element
has attained i€s final configuration by a proportional
straining path, although, in general, this path would not be
the same for all elements.

While this assumption may be very much in error, it
is the basis on which Forming Limit Diagrams (F.L.D.'s) are
constructed. In this .technique a grid of circles |is
photographically printed or electrochemically etched on a

sheet metal blank. After deformation the circle has taken

on a shape which is assumed to be an ellipse, and the major

T o~
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and minor diameter of an ellipse in the immediate vicinity
of any fraéture site on a pressing provides the principal
(Limit) strains and a point on the Forming Limit Diagranm.
If the straining path was proportional then it is
permissible to measure the final shape of the deformed grid

circle to compute the strains since

g
= in( =) (3.1)
10

In the above equation !, represents the initial
diameter of the nth grid circle and & is either the major or
minog diameter of the deformed ellipse.

Under laboratory considerations it 1is possible to
arrange that the straining process is proportional up to the
point of fracture. Thus by altering the ratio of the
principal strains a Forming Limit Diagram can be determined
under these idealised conditions. Figure 3.1 provides a
schematic representation of a FLD.

It has been reported from many sources that there can
be a good correlation between an experimentally determined
FLD and limit strains as measured on industrial pressings.
However, this is not to say that such a correspondence would
apply for all pressings, discrepancies have been noted ang
these usually attributed to non-proportional straining paths

in that region of the pressing.
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22

While the grid circle provides a convenient means of
measuring strains, other types of grid patterns are
employed. Common amongst these is a square or rectangular
grid ofAlines, and Danckert and Wanhem [29] considered the
problem of evaluating the strains from measurements made on
75xaéferm§q%square grid.

In tﬁ;\fbilowingAsgctions some general comments are

made about finite strain. Solution-procedures are presented

for evaluating the principal strains from meaédréments_made

on a deformed grid of lines. The simplifying assumption is
that the straining path is linear throughout the deformation

*
process.

3.2 FINITE ENGINEERLNG STRAIN

3.2.1 General Concepts

A body v0 as shown in Figure 3.2(a) is deformed to
some configuration V. The deformation varies from point to
point in the body and is considered to be large, However,
in a small region b, surrounding some point P, it is assumed

that:

(i) The deformation is monotonic and homogeneous within a

sufficiently small volume;
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(ii) The principal axes I (1, 2 and 3) do not rotate

relative to the material element so that points

initially on such an axis move only along the axis;

(iii) The components of the total displacements of a point
with respect to the principal axes can be described
as a linear function of the initial coordinates Xy

within the region b, i.e.,

(3.2)

coefficients.

The orientation of the principal axes together with
the three elongation coefficieq5§ EI completely define the
final shape of the body, and the ébove conditions imply that

‘éh‘initial cube will deform into a parallelepiped. 1If £he

original cubic element in Figure 3.3 has side L then the

current length of a side is

L. =L_ +U_=1L_ (1 + EI) (3.3)
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where the increment is

-——

d&_ = L_ dE (3.4)

It .is required that 21 changes smoothly and monotonically

and that the total principal strains are defined by

L
. jz d I _ I dEI
1 o) 2I 0 l+EI
= tn(l + EI)

3.2.2 Elongation Coefficients

It is shown below that by idenfifying a new form bf
elongation coefficient, the principal strains and direc;ions
can bé evaluated\ from measurements made on any pailr of
intersecting lines of arbitrary orientation to the principal
axes. For illustrative purposes the initial grid is taken
as square and the problem is assumed two dimensional, i.e.,
the third principal axis is taken perpendicular to the plane
of the deférmedigpid. - This 1;ter assumption would apply to
most sheet metal formation problems.

As~shownlin ?igure 3.4(a), a square grid of sides Lo
within a region b0 in the undeformed state is considered.

It is aligned with non-pridcipal orthogonal axes x and y.
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After deformation the grid is displacéd to a new
configuration involving translation and rotation, as shown
in Figure 3.4(b).

- The original x, y axes are now superimposed on the

deformed grid such that -
v, = U (3.5)

see Figure 3.4(c). Under a homogeneous deformation mode the
material does deform such that (3.5) is satisfied. Note
that this does not imply that the x and y axes are egually
inclined to OA' and OB'.

In terms of the configuration of Figure 3.4(c), the
elongation coefficients, or finite strain parameters ([30,

31}, are defined by:

EXX = UA/LO
By = Va/lo . (3.6)
Esx = Yp’lo
Eyy = Vp/To

By virtue of (3.5)

E.=E _. . (3.7)
Xy yx
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It is the above property whabh permits the principal
axes to be identified and reconstructed in the deformed
state. This is illustrated in Figure 3.5 in which the
z-axis coincides with the third principal direction.

3.2.3 Transformation of Finite Strain Parameters

For the two dimensional problem it is demonstrated in

Appendix B how the finite strain parameters can be
=Y

transformed from one set of orthogonal axes to another. The

resulting expressions are

E + E E- - E
E, , = XX DA QUNES . Y c0s26 + E_ sin2e
X'x 2 2 Xy
(3.8)
E - E
E, ., =- “2E Y sin2e + E_'cos2e
x'y 2 Xy

which are thé transformation equations for any symmetric
second order tensor. It follows that there exist principal
values for the finite strain parameters (i.e. when Ex'y' =
0) and for the two dimensional problem the transformation
relationships "~are embodied in a Mohr's circle
representation. This 1is discussed at greater length in

Appendix B. In the wusual manner the expression for the

principal parameters is
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EM+EW+ /( E.x ~ E

Yy

E = = JJ . 0 4

1,2 2 2

and their orientation is given by

and the maximum value for Exy is

Exylmax = ~ =7

)2

+

2

Exy {3.9)
(3.10)
(3.11).
(3:12)

For the three dimensional problem it follows in tﬁe

usual manner (2] that the principal values are given by

-~

E - E
XX I Xy X2
det E E - E =0 3.13
YX Yy I Yz ( )
E E E -
ZX zZy 22 I
3.3 FINITE DEFORMATION OF OTHER PLANAR ELEMENTS

In this section the preceding analysis is extended to

cover the deformations of both a rectangular grid and a



32

-

quadrilateral element. .A more detailed derivation can be

found in Appendix C.

3.3.1 Deformation of a Rectangular Grid

The assumptions made in the preceding section
regarding the deformation mode still hold but the
displacements must now be related to the ratio of the

original side*lengths of the element, see Figure 3.6

The strain parameters can be defined as:

EXX = o coSa - 1
Exy = g%l sing
(3.15)
_ _ OB' _
ny = o5 C\OS(e' a)
1
Eyy= gﬁ" sin(¢' - «) - 1

where ¢' is the angle subtended by the deformed length OA'

and COB', and

1 -0A * OB' * cosd'
( OA'" * OB + OA * OB' * sina' ) (3.16)

a = tan

~
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Figure 3.6 Deformation of a rectangular element
(&) Initial unstrained element within
a small region b
{b) pDeformed configu?ation of the
element in (a)
(c) Deformed element together with
the reconstructed axes
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Again equation (3.14) 1leads to symmetric shear

components i.e.

Exy = ny ‘(3.17)

3.3.2 Deformation of a Parallelogram

A morc detailed derivation is given in Appendix C,
but a few comments can be made here.

Imagine that OB is part of a fictitious rectangular
element as shown 1in Figure 3.7 such that a simple
proportional defdrmation exists. This 1is the condition
which allows the deformed configuration of the fictitious
element to be determined. The finite strain parameters are

given by:

_ OAI a -
EXX = W COSa 1

_ oa' .
Exy = EX— Sing

(3.18)

_ oC! 1 _
ny = - 50— COS(el a)

..0C"

Eyy_ GE-Sln(ei.— a) — 1
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y b, ( Undeformed b ( Deformed
? K_ State) . State)
v N

Figure 3.7 Deformation of a parallelogranm
) (a) Initial undeformed element
(b) Deformed state of the element
(c)} Local coordinate axes of the
b element is reconstructed after
deformation
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where

e' - tan_l ( QA_+* OB' » sins!
1 OA - OB' « c0s6' — CA' +* OB <« coseo

) (3.19)

8. 1s the original angle between sides OA and OB:

6' is the deformed angle substained by sides OA' and OB';

!
-1 -OA - OC' . COSg,
« = tan ( =) (3.20)
OA' - OC +0A . OC' . sinel

OC = OB +* sins

OB' * sino’
oc' = 10

sine,
The finite strain parameters developed in these two
. 4 .
sections follow exactly the same transformation rules

described previously.

3.4 DISCUSSION

The present Chapter has illustrated how the magnitude
and direction of the principal strains can be determined
from measurements made on a deformed pair of lines. The
application to the assessment of strains on a sheet metal
component is obvious., It is emphasized that the éhalysis is
applicable strictly'to alhomogeneous deformation mode where

the principal axes do not rotate with respect to the
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-material element. However, the deformed qonfiguration could
be predicted by the present analysis if the state was
reached by a discrete number of finite deformation steps
i.e., strain in one particular homogeneous mode, followed by
another and so on.

The reader may have a tendency to draw a conparison

between the finite strain components Ex , E etc. and the

X xy’
components defined for infinitesimal strains. However, the
strain tensor defined here is truly a large strain
(symmetric) tensor. It is not one of the classical finite
strain tensors described in many texts on Continuunm

Mechanics. It is much simpler in form but can be shown to

yield exactly the same values for principal strains [32].



CHAPTER 4

GEOMETRIC MODELLING

4.1 INTRODUCTICN

A sheet metal pressing is wusually produced by a
combinationkof drawing and stretching. Having decided upon
the basic form of the tooling/dies and the 1like, there
usually results a series of press trials which decide the
level of clamping (through drig rings) and the location of
draw beads in order to produce a successful pressing. It
will be appreciated that there is a complicated interplay of
die geometry, lubrication cogaitions and the properties of
th sheet material wh&ch’governs the amount of effective
clamping, i.e. the clamping has to be sufficient to offer
resistance to the material and so prevent wrinkling or
buckling, bué at the same time allowing the material to
"draw-in". If the material is over—restfained the material
will not draw-in and all the deformation will take place by
stretching; only very shallow parts could be formed by this
technique. Although it is customary to use an initial sheet
metal blank of simple geometric shapes sucgias rectangular
or circular, this 1is usually not the optimum shape. The

blank shape can promote or inhibit the inward flow of

material in certain parts of the flange, and the amount of

38
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éiscrap‘which arises in the trim operation can be min%mized
with a correétly designed blank shape.

Traditionally the design of dies for sheet metal
forming operations has relied more on technical exéertise
than detailed analysis. Quite often the designer envisages
the die to bé comprised of modules of simple geometric
shepes, and significant dimensions are regafbed as contour
(line) lengths across different sections of the die. These
contour lengths are used to interpret the size of the
initial blank. Although the design methods appear crude it
will be recognized that the tooling can be (and often 1is)
very complex, apd a successful pressing ihdicates the skill
of the designer.

Finite difference and finite element procedures
(particularly the latter) are being increasingly employed as
analytical tools in the study off sheet metal forming
problems. In such studies it is ;sual to consider that the
basic shape of the tooling is known at the outset, along
with the frictional conditions, material properties 'and
boundary conditions. Given this information, the numerical
procedure attempts to assess whether the sheet metal can be
formed into the part without the occurrence of wrinkling,*a
fracture of the material - these two failure conditions are
also regarded :as known a priori. It will be appreciated

that a lot of information is assumed known at the outset,
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apd it is a moot point és to how well the assEmptions

correspond to the actual.conditionsl If, in the course of‘
the computations the material is deemed to have failed

before "the component is fully formed, the only recourse is

to alter one or more of the input conditions and regeat the

calculation., At this time the only reported solutions dsing

lhe finite elemeﬂt technique are for lvéry simple

axi-symmetric shape€es. It can bhe anticipated that this

numerical procedure wiil.be applied to more complex shapés,

provided that the computational costs can be kept within

reasonable limits. A more interactive system(s) can also be

envisaged where the critical regions of a pressing can be

displayed on a screen as the deformation proceeds, thus

aiding in assessing adjustmeﬁts which may have to be made to

the geometry of the tooling, the boundary c¢onditions and the

like,

In the present work results aré presented of a
preliminary investigation into a new approach for assessing
the shape of a blank for a sheet metal ‘pressing. The
technique is one of geometric modelling and‘is intended as a
éomputer aid for the experienced gool designer. No attempt
i's made to satisfy force equilibrium at point to point '

within the material, in fact the mechanical properties of

. ¥ 0 .
the sheet material are not even considered.
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4.2 GEOMETRIC OBJECTIVES IN SHEET FORMING

Geometric modelling allows the designer to specify
the deformation mode he would like to achieve. The
modelling then predicts a strain distribution for the sheet
me;al which would satisfy this objective‘geometrically. In
principle this leaves the designer with a great deal of
flexibility, however, in the initial stages of this work
attention is restricted to one particular type of
deformation mode.

Stamping operations consist of tranéforming the local
elements of a flat sheet usually into a nén—developable
shape.* 1In practice this shape .is achieved by a combinétion
of two deformation processes - dfawing and stretching.
Drawing is a process of plastic shear in‘ the plane of the
.sheet in which the principal strains are equal and opposite
and distortion occurs withoué change of thiékness, as shown
in Figuré 4.1(a). Stfetching implies exténsioh in both
principal directions and thix is obviously accompanied by
thinning, as shown in Figure 4,1(b). It is assumed that
each. element in the sheet reaches its final state by a‘
linear path. In some instances, this is not true and such

stampings‘must be analyzed differently; in many cases, the

o

* A "developable" surface 1§ one onto which a plane
sheet can be applied witheut distortion and purely by
bending or-curving. '
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Figure 4.1 Diagrams showing two common types of

sheet metal forming processes.

(a) Drawing process
(b) Stretching process
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assumption 1is appropriate. It has become customary to
indicate- sheet metal forming processes in terms of the
forming limit diagram, as shown in Figure 4.2(a). In this
diagram proportional straining of any element can be
represented by a straight line radiating from the origin, as
seen 1in Figure 4.2(b); b;axial stretching is represented by
the right-hand diagonal while pure drawing by the left-hand
diagonal. It is also found that for any one material, the
onset of localized necking can be described by a forming
limit curve as shown. This curve was first proposed by
Keeler [34]), but its origins lie in the work of Keeler and
Backofen [35]. It is strongly dependent on the ratio of
major and minor strains, but less dependent on other process
variabies. ’

Many materials with a low inherent ductility m;y fail
shaﬁenly before necking occurs and attempts have been made
to describé this by means of a fracture map which is also
shown in Figure 4.2(a). A third mode of failure is that of
wrinkling but this appears to have received less attention,
ﬂevertheless it is not difficult to envisage that a
wrinkiing limit may exist, see reference [36].

An examination of the schematic diagram of Figure

4.2(a) indicates that ' the pure drawing 1is one of the

deformation modes which is the least likely to be terminated
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"by failure of any kind. This is then taken as the ideal
forming mode because of the reduced possibility of failure.
The concept of geometric ﬁo%;lling may be thought of
as finding how a flat sheet can be deformed to cover a
partiéular surface in such a way that every element 1is
deformed in pure shear without change in area and thickness.

This 1is the assumed deformation mode which is employed in

the present modelling.

4.3 THEORETICAL BASIS OF THE .COMPUTER PROGRAM

To make the analytical model applicable for tool
designers in sheet metal forming industries, a computer
program called "MAPP" has been developed. The present
program has been implemented without access to advanced
computer graphics facilities and is generalized so that it
can be incorporated into other programs or readily adapted
to an interactive computef—aided design system.

A number of flow charts which display the logistics
of the model are given in Figures 4.3(a) to (g). These
provide a better understanding of the simulating procéaures
of the process. An explanation of the function of each
sub-program and their variable names is given in Appendices
D and E respectively. The program developed is by no means

a

a fimal one, further. modifications and improvements are

necessary in order to account for other modes. : N
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4.3.1 Distance Between Two Points

Line 1lengths of a stamped -surface in ;hrée
dimensiona; space are calculated by coordinates of points in
the chosen fréme of reference, as seen in Figure 4.4.

Applying the Pythagorean theorem to the right angle

triangle P,BP,, gives

>

\

L2 L2 2 R .
(PyP,) (PyB)“ + (BP,) 3

= (x, - xl)2 + Yy - yl)z + (24 - zl) )

Hence the distance, d, between points P1 and P2 in

4£hree dimensional space is

da = /<x2 = 31)2 + (y2 - yl)2 + (22 —izl)z (4.1)

4.3.2 Basic Properties of A Triangle

In order to ensure that a triangular element is Well

defined, its basic properties must be determined completely

z

for subsequent calculations in the program.
The angle & of a triangle ABg/ﬁzzﬁ\sides a, b and ¢,

as shown in Figure 4.5, can compute from

=

., <
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a2 = b2 + ¢ - 2bcecose,
2 2 2
or , 8 = cos 1 [ b {2§c a ], (4.2)
2 _ _ 2 B 2 _ 2
where ar = (x3 x2) + (y3 y2) + (23 22)
2 _ _ 2 _ 2 _ 2 —
bY = (X3 - x)) "+ (Y3 - yy) " (25 - zy)7

.02 = (x2 - Xl)2 + (y2 - yl)2 + (z2 - zl)2

The surface area can be obtained from

S = % + ¢c + b sine. (4.3) .

The above variables are computed by SUBROUTINE ‘CAL.

s
7
/

4.3.3 Proportional Mapping - ‘

A quadrilateral element IJKL is,assumed to represent
a small facet on a curved surface in three dimensional
space, see Figure 4.6(a).‘-Assume for the moment that part
of the mapbing process has been completed and the points i,
j and k have been located in the flat plane xoy, as shown in
Figure 4.6(b). The area of the triangle ijk is known- and
the- vertical height, h, of the new triangle kil can now be

determined, since this must satisfy the condition of egqual
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Figure 4.6 (a)‘Quadrilateral element on the

curved surface
(b) Locating the fourth node in the
plane surface
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area for the initial and final gquadrilateral. The area of
the individual triangles IJK and KIL do change in this
mapping process but the sum of their areas is constant.

The position of 1 along the line shown in Figure
4.6(b) must now be found. Proportional displacement is
assumed, and this'will be apparent from Figure 4.7 where the
initial triangle KLI and the final triangle kli are shown
superimposed. The position of m along ki is determined by
the assumption that the displacement of M will be

proportional, such that* -

=

5= (4.4)

=

-
]

-

The new node 1 can now be located with respect to the local
frame of reference x'-y', it is ‘then transformed back to the
global coordinate axes X-Y by the following transformation.

As seen in Figure 4.8,

X ‘cosg  sing X'
= (4.5)
Y ~-sing cosg y'
‘where 8 is the angle of rotation from the local coordinate

axes to the global axes.

o This assumed mode of deformation minimizes the strain
in triangle kli.



Figure 4.7 Diagram illustrating the assumed
proportional deformation
Y
A
0,
Fiqure 4.8 Transformation of the fourth node 1

from the local axes to the global
axes

‘4———-—-—~:r——>
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The mapping of other elements is conducted in the
same fashion. Several sub-programs have been developed to
accommodate these calculations, such as SUBRCUTINE SCLV,

SUBROUTINE LOCAT and SUBROUTINY CAL.

9{&

|



CHAPTER 5

APPLICATION OF THE MAPPING PROCESS

5.1 INTRODUCTION

In the preceding chapter a proposed geometric
modelling technique was discussed in general terms. The
assumptions on which the method is based were stated and a
brief illustration of the mapping procedure was provided.
It is ‘recognised that many of the assumptioné are both
simplifying and a;bitrary and therefore the method is
unlikely to produce satisfactory answers for a wide range of
industriél pressings. However, it is possible to introduce
alternative geometric rules if the ones adopted herein are
recognised as being unsuitable to the problem under review.

To test the feasibility of the method, the mapping of
two particular surfaces is studied in this chapter. The
first study case is that of an analytical surface
represented by the eguation of an ellipsoid. 'For the second
study case an actual sheet metal component (part of an
automobile passenger seat) was employed. As will be seen,
the pressing is sufficiently complex in form such as to

provide a very realistic test of the method.

690



5.2 GEOMETRIC MODELLING CF AN ANALYTICAL SURFACE

5.2.1 Mesh Generation

. A curved surface which comprises part of an ellipsoid
has been chosen for consideration. The surface is described

by the eguation

SRR SERIE L (5.1)
That ﬁart of the surface bounded by the planes of symmetry

X0Z2 and Y02, as shown in Figure 5.1, and within the range of
X € (0, 4); Y € (0, 4} and z > O,

is isolated for analytical purposes.

A topologically rectangular mesh 1is generated to
cover this surface as shown in Figure 5.1. In the analysis,
the surface is approximated by the contiguous triangular
" elements and each guadrilateral element is £folded along one
particular set of\aiagonals. -The generated mesh serves as
an initial error check of the input data. SUBROUTINE CHECK
has been developed for such a purpose, and it employs the

Versatec 1200A plotter to generate the required mesh,



Figure 5.1 Portion of an ellipsoidal surface
1 which is modelled by a 4x4 mesh
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5.2.2 PBoundary Conditions and Proportional Transformation

Some appropriate displacement boundary conditions
nust be spe;ified for certain nodes. In this case, planes
X0Z and Y0Z are planes of symmetry and hence the component
of displacement perbendicular to these planes will be zero.
In the present example it 1is also specified that the
distance between these boundary nodes does not change, i.e.
the sheet deforms without extension along these lines of
symmetry. This particular boundary condition 1is an
arbitrary one. If the designer considers that the spaéing
between the nodes changes along the axes’of symmetry _he -€an
impose such a condition; hence the designer may change the
input conditions in light of his own experience.

The boundary nodes can now be mapped in the X0Y plane
as 1illustrated in Figure 5.2. There must always be a
.starting point in which three vertices of a gquadrilateral
have been fixed at the intersecting corner of the axes of
symmetry. The probiem now is to map each of the nodes onto
a flat plane such that the quadrilateral elements remain of
constant area and that the continuity of the elements 1is
maintained. ¢

The mapping can proceed in a number of ways and three
possible seqﬁences are illustrated in Figure 5. 3. In the

present anlaysis the free nodes are located by diagonal

traverses only, as indicated in Figure 5.3(c). The general
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O -

Figure 5.2

LBoundary Nodes&

Diagram showing the boundary nodes
and the order of mapping of each
element which is employed in the
analysis

> X
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> <
> <

—» X
5.3(b)
. - X
Figure 5.3 Mapping sequence for locating the
fourth node of a guadrilateral

element S
(a) Column-wise mapping

(b) Row-wise mapping

(c) Diagonal traverses
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. N

Figure 5.4 The same portion of the ellipéoidal
surface which is now modelled by a

finer 8x8 mesh
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procedure for locating the’fourth node of a guadrilateral
element follows exactly the . same procedure %utlined in
section 4.3.3 of the previous chapter. L
With the same strategy of proportional deformation,
equation (4.4) can be expressed in terms of elongation of
point M. A different, way of interpretation of the

proportional deformation can be observed, again from Figure

4.7 the following expression is deduced, i.e.

- = o - (5.2)

The free node can now be located and transformed back to the
global coordinate axes using equafion (4.5), and the next

element is mapped in the similar manner.

v

5.2.3 Results of the Mapping Process /P”"’//”

The result of the mapping process for the/ surface
. Aa)

. - The

shown in Figure 5.1 is given in Figure 5
practical importance of this is that the flat shape shown in
Figure 5.5(a) could be considered as an initial blank. This
_blank, at least theoretically, can be made. to conform to the
ellipsoidal surface in Figqure 5.1 in such a way phat the
criteria imposed above aré ;atisfied. It should be noted

that the blank generated in Figure 5.5(a) is not the only

one which would satisfy the imposed conditions but it is a

T
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" Figure 5.5

Y
A
|
‘ > X
5.5(a)
Y

>

— — X

-¥

5.5(b)

(a) The resulting transformation of
" the ellipsoidal surface shown
in Figure 5.1 '
(b}  The resulting transformation of
the same ellipsoid using a finer
m © in 7 4524
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ot
possible one. Obviously if different geometric rules are

incorporated into the analysis then a different blank shape
would ensue,

A more refined mesh with 128 triangular elements has
been applied to cover the same ellipsoidal surface; this
mesh provides a better and closer épproximation to the true
geometry of the surface, as shown in Figure 5.4. The same
mapping procedure is employed to transform the elements onto
a flat plane. The result of the transformation for this
surface is shown in Figure 5.5(b). 1In thi; case therg is no
significant difference between the resulting transformation,
as can be seen from Figures 5.5(a) and 5.5(b).

' 4
However, for parts with a more complex geometry it

8

may be advisable to employ a finer mesh in order to provide

a better representation of the surface. '

5.3 DISCUSSION

| " Two mesh sizes, shown in Figures 5.1 and 5.4, were
employed’ in the transformation of the ellipsoidal surface to
a plane. The results of the mapping are shown in Figures
5.5(a) and 5.5(b). It will be appreciated that the finer
mesh provides a better representation of the curved surface, °
and in turn the generated flat blank possesses a smoother
contour. However, as can be seen from f&gures 5.5(a) and

(b) the developed blanks are very similar in appearance.



70

Each of these blanks can be deformed, at least in principle,
to the ellipsoidal surface such that the predicted strain
distribution 1is geometrically compatible with the
constraints imposed by the designer. This strain
distribution may not be one which is entirely possible
physically; it is only kinematically acceptable. The author
believes that the higher the order of approximation, 1i.e.
the larger the numbers of elements, the better the results
and the closer and more accurate the correspondence of the
strain distribution to reality.

The mesh size does have an effect, but it is not
critical in the current example. The method seems to pe
highly successful in transforming the ellipsoidal surface
into a flat sheet. A more stringent test of the method is
presented in the nexti?section where the surface under

investigation is part~of an actual pressing and is not

smooth and regular,

5.4 MODELLING OF PART OF A STAMPING

The corner of a passenger car seat stamping was then
selected for study. The metal blank had been gridded with
circles prior to forming, and upon egamination of the
deformed part it was observed that a corner of the pressing

could be isolated for study, i.e. there existed two
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orthogonal planes across which the displacement was

nedligible.

5.4.1 Mesh Generation

A grid of gquadrilateral =lements was drawn {reehand
on the part using a marxer pen. The only restriction was
that the elements should be topologically rectangular, 1.e.
they should.form the requireé rectangular array of rows and
columns. A photograph of the briginal stanping, from which
the corner section was removed, 1s shown in Figure 5.6(a).
Figure 5.6(b) shows a photograph of the piece removed from
the corner for modelling. The gri “of lines marke en—Lhe
surface of the component are f[clearly VL in the
photograph.

The part was then placed u1 a coprdinate measuring
device and the -location of the vertlces of the hand-drawn
quadrilateral elements was recorded. The readings were
taken with respect to a fixed cartesian reference frame and
the data points stored in a computer. A reconstituted
picture of the mesh, wusing a 1200A plotter is shown in
figure 5.7; the diagram provides a visual check on the
digitizing. As part of the plotting routine the diagonals
of the quadrilaterals were inserted on Figure 5.7,

¥ The boundaries of the part are located on the planes

O -
-of symmetry X0Z and Y0Z, and as before the displacement of
e "



5. 6(a)

5.6(b)

Figure 5.6 Photographs: (a) of a seat stamping and
(b) the area removed from
the corner for modelling
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the nodes along the lines of symmetry can be specified. For
the part under inspection it was found that the length
changes between the nodes along the axes of symmetry was, in
the hain, negligible. The nodal positions along the 0X and
0Y axes in the plane were therefore readily established.
The mapping procedure was then carried out in the same
manner as that élready described. 1In the present case each
of the three mapping sequences of Figure 5.3 was employed to
ascertain what effect this might heve,

~
5.4.2 Results cof Mapping

It traonspired that the mapping sequence had
negligible effect* on Ehe final shape of the flat blank,
hencelonly the results obtained b& diagonal traverses are
presented. The result of the mapping P;ocedure is shown in
Figure 5.8. The uneven edge at the top and rightl hand
boundary suggests that the,modelling is not very realistic,
A more serious problam is the overlapping o£ elements in the
vicinity of the upper right hand corner,iand points to an
unacceptable instability in the mapping process. It is
interesting to observe that the non—conformﬁng elements
-occurred in a region where‘ﬁhe triel stempings showed severe
wrinkling. - ‘ ’

| The existing .mepping preocedure, although found

wanting, may serve as a warning system at the preliminary

* The three mapping secuencet of 5.
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Figure 5.8 Transformation of the mesh in Figure
: 5.7 into the flat plane showing the
area of instability
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design stage. The appesrance of non-conforming elements
would imply that large surface area chenges are likely Yo
take place in the sactual pressing with the possibility of
failure by wrinkling or tearing. The mapping procedure will
have to be performed on an additional number of industrial
pressings before the preceding ascertion can be justified.

The non-conforming elements indicate that there is a
deficiency in the imposed geometric strategy, 1i.e. ‘the
requirement that the deformed and undeformed quadrilateral
elementg'maintain the same surface area, and the mepping
process which serves to satisfy this hypothesis. The
instability in the mapping technique becomes evident when
individual guadrilaterals begin to develop very acute or
obtuse included angles. This often resulted in the two
triangular regions making up the guadrilateral, showing very
different surface areas*.

In an attempt to overcome this difficulty, an
arbitrary limit was imposed on the change in the apex angle
of any triangle during the mapping process. This tended to
dampen‘(aut severe changes in the shape of a triangular
element, and a preliminary result is shown in Figure 5.9.
This is free from overlapping but deficiencies are still

evident.

N
AN

* A possible physical interpretation ;E‘the existence of a
region(s) of high strain gradient on the pressing.
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5.5  DISCUSSION

The corner of a3 passenger seat  stamping shown in
Figure 5.6(b) was modelled, using a 14 x 14 quadrilaterel
‘mesh., The results have exposed deficiencies in the proposed
mapping procedure, the most serious of these being
non-conformiﬁa elements. There are probably three

explanations for this pheﬁomenon:

(i) The-array of grids which were drawn freehénd on the
stamping are highly irreqular, particularly in the
regions of drawing-in and re-bending. These produce
large errors in the calculations of the basic
variables of a friéngle. In fact, aﬁy extreme
irreguiarity betweén an element and its neighbouring
facets, it is likely to cause overlapping of élements
during the transformation process.

X
(1i) It was mentioned in Section 5.2.3 that the mesh size
is 1likely to play a more important role when’
attempting to represent the surface geometry ‘of a
complex prqséing. It can be seen from Figure 5.7(b)
that the hand drawn elements are relatively large.

‘ Bétter results-migh£ have been obtained if  smaller

"elements had been embloied; particularly in the
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regions where sharp bends were present, Further work

needs to be perforﬁed to verify the preceding remark.

]

-

(iii) Finally, ié is ‘doubtful whether -the modelling
procedures adopted here can ever adequaﬁely describe
the deformation undergone by such a complex part. It
may be necessary to impose other criteria in order to

improve the performance of the mapping process.

The pressing selected for study in this section is
reasonably compléx In shape, and therefore provides a very
"realistic test for the geometric modelling technique.
Certain deficiencies in the téchniqqe have been revealed and
it may be necessary to modify the present strategy.
Howéver, the author believes the modelling proceduré
possesses many of the Ehgredients which will aid the
designer, if an gppropriate strategy can be determined. The
execution time, for the mapping procedure is very quick. 1In
the preseﬁt case it took only a few seconds on the'McMaster
CDC 6400 central computer to provide the results shown in

Figures 5.8 and 5.9.



CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

>

CONCLUSIONS

A technique has been developed for the determination
of the magnitude and direction of the .principal strains from
measurements performed on a deformed grid of lines. The
method is applicéble for the assessment of the strain
distribution on the surface of the sheet‘ metal pressiﬁg,
where a grid of lines e.g. a pattern of -either squares;
rectangles or.parallelograms, has been‘previously marked on
the undeformed blank. (It is. standard practice to
photographically print of‘electrochemically etch grid
patterns on sheet metél blanks for ;ubsequgnt’sfréin
determination in pres§ shop trials.)

The techniéue is strictly applicabie to a homogeneous
deformation mode, where straight liﬁes are "deformed into
" straight lines without rotation of the principal strain axes
with respect to the material element. As remarked in the

b

text the entire surface of a sheet 'metal component is -

*..unlikely to follow this type of deformation, but there may

be many regions on the pressing which, to a good approxi-

mation, obey this mode of deformation.,. It is to be noted



"ﬂ i >

.y | | 3!
. w
that a homogeneous defofméQion ‘mode is {implicit in the
widely employed "grid circle method". The undeformed grid
is assumed to deform "into an ellipse and the principal
strains are determined by measuring what are deemed to be
thefmajor‘and minor diameters.
" The present method improves upon the accuracy of the
grid circle method, since, if a grid circle éircumsctibe% a
square, then measuring the deformed pairs of sides leads to
both a better. averaging procedure and the S;Sessment of the
maximum strain values.
The analyticél procedures have given fisé to a

symmetric second order finite strain tensor. This is

simpler in form than the finite strain ‘tensor (GREEN or

FINGER) defined in many texts on Coptin;dm Mechanics. The

present_analysis does not rely on-tensor aléebra per se, and

this should - prove to be a welcome simplification to many

engineers Qbo frequently encouﬁ%gf difficulty with the
i

notation and also éhe concepts, particularly when finite

deformatons are being discussed.

<

Another aspect of the present work bés been an

attempt to provide a technique to aid in blank development

for complex press<formed parts. The starting point is the

specification; by the dgs?gner, 9f the finai shape of the.

cbmponént Herein a first ‘attempt has been made to

establish a procedure for transformlng or mapplng the

4 deformed component back to an undeformed blank shape.,-Thé



mappfng'procedure is assumed to obey certain geoﬁet:ic rgies
oﬁly, agé\the present work has concentrated on an equal area
hypothesis.

The technidue appeared to work quite well on a
deformed curved surface the shape of which could be
described ranalytically. It was, found wanting when applied
to an actual industrial pressing, the mapping procedure
failed in severely ﬁeformed reéions of the component which

3

had also proved to be areas prone to wrinkling in the part."

~
N

It 1is recognized that the equal area hypothesis
" imposed in this work is likely to be too restrictive for
many components. However, this condition can be relaxed and

it is here that the ‘experienced tool designef can use the

technique in an interactive mode. The designer imposes

alternative geometric rules which he d;ems are more suited
to certain areas of the pressing, at tﬁe same time certain
boundary conditions might be specified, i.e. certain
sections of the boundary may be restricted from drawihg—in
as freely as other regions dué to the use of draw beads and
the like. i

The method will not give rise to a unique s@lution to
a problem, but its possibilities are worth pursuing,
barticula}ly when being/manipulated by an expert tool

< . Vo . . o
designer. The execution time is likely to be minimal when

© compared with more rigorous analyses, such as finite element

o
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procedures. As yet this latter technigque has been

restricted to simple geometric shapes' (e.g. axisymmetric

components), fnd‘the process is modelled from the undeformed
blank to the final deformed shape. The analytical
procedures are not straight forward, furthermore the
interfacial ﬁrictional co;ditions between tool and the
workbiece and also certain boundary conditions are not known
precisely. Tﬁese parameters tend to be adjusted in an ad
hoc manner until some acceptable solution is arrived at,

These comments are not meant to minimigze -the worth of more

v

involved analytical procedures, but rather to suggest there
LYt

may be much to be.gained by first attempting the less

rigorous geometric podelling method.

.

PROPOSED AREAS OF FUTURE WORK

In light of the inadequacies of the modelling the
following‘major areas of improvement should be studied in
more detail.

(1) The -assumption of constant area ¢of a quadrilateral
element is limited only to forming operations when no

thinning occurs_ in the through thickness direction.

When deadling with processes such as hydrostatic’

bulging of a §heet‘metal.diaphragﬁ, the area of an

element changes at the pole. Consequently control
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features should be&gdded to the computer program, So
that the designe;§ may change the area of /5
guadrilaterial- according to his own experienceﬁ 7
The strategy used for locating the foufth node for
any quadrilateral element would be ph?siéélly correct
if the diagonal happened to 1lie in a principal
direction. This is unlikely gnd hence other
strategies should be developed. Intuitively it seems
that some method wﬁich minimizes the effective strain

for the whole element would be appropriate.’

As indicated pré@iously,'the present mapping methéd
can lead to large changes in the area of one half of
a quadrilateral element and consequently large, but
opposite changeé, in the other half for compensation.
This causes overlapping of material elements. Some
relaxation procedure or smoothing techniqueé should

be developed in addition to the alternative strategy

proposed in (1).

The résulting grid obtained by the transformation
does not provide much information to the designer

other than to delineate a possible boundary for the

" blank. Two further steps would be useful.
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Calculate for each node the principal strains
and the p;incipél directions imposed on the
sheet in tfansformi?g from the ﬁlane to the
curved surface and illustrate these by contours
%i.a plot. The’fundamental total large strain
theories described in Chapter 3 permit these

extensions.

Obtain from the solution shown, say in Figure

‘5.9, the displacements of each node and use this

to transform a regular array of sqguare grids in
the plane durface onto the curved surface. This
transformation should <closely follow the

geometric rules for the original transformation

of the haﬁa—drawn grid and, with experience, one.

could interpret ;\gggﬁure of the deformed

reqgular mesh plotted in a similar fashion to
Figure 5.7.  Such a diagram can readily be
rotated and enlarged in & computer graphics

system and examined for problem areas.

ot



APPENDIX A

Four of the numerical methods described in Chapter 2 are employed
below to solve the plane strain sheet drawing of a rigid non-hardening
solid through a frictionless wedge shaped die. A detailed account of

each technique is provided.

A THE SLAB METHOD

A.1.1 Analysis - X v

Setting up horizontal equilibrium of forces, see Figure At,

. (o, + dox)‘“ 2(h + dh) + 2qdh - 2ho = O (1

P

neglecting infinitesimal higher order terms, (1) simplifies to

(qx + q)dh + hdox =0 , : - (2)

-
i

Since oy = =q, the Tresca yield criterion‘bquggg,

1o, +q91 = k _ (3)
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Figure Al (a) Sheet drawing through a frictionless

wedge-shaped die
(b) Free body diagram of a
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By substitution equation (2) gives

kdh + hdo, = 0

or i b

. 1

By integration, gives

tn{ch) = X 5)

where ¢ is a constant of integration. Solving for Oy

o, = -k gnfch) ' (6)

Conside% boundary conditions:
At the entry: h = H2 and o, = 0,

The constant of integration, c, is found to be

¢ = —

1
H2 &

The axial stress distr’ibution'ox becomes

-

-

_ h
Gx = =kan( HE )
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The drawing stress at the éxit, when h = H1, gives

" In the present example H1

1.05", H2 = 1.80". Therefore the required

drawing stress is

)
! _ 1.80
o, = k2n( T8 )‘
= 0,539k A
€ x |
A.2 THE UPPER BOUND SOLUTION
A.2.1 ﬁnalxsis
. Considéring the geometry shown in Figure A2.
H2 - ]
Bz —Soup=1,10666H
sin59 2
. H )
- . . o _ 2 sin71°
B - BC = i7oe SInTVT = 51590 sinjod - 1739 M,
,// From velocity diagram
v
' V= —L . sin20° = 0.5435 V
AB ~ sin39° - 1
*
Y

VBC = T1n50° sin59°



sin20° , sin59°
3 — —= = 0. 1V,
sin39° sin50° V1 0.608 1

volume flow rate: V1H2 = V2H1

The energy dissipated is:

. * *
Aw =’k(VAB * AB + Vy. * BC)

k4

rate of work done by the drawing stress, 9y

Equating the two work rate, yields

* %
o " H1 . V2 = k(vAB * AB + VBC * BC)

ko eyt B0
x THNV, AB - * Ve

X _ * ' *
5T, (0.5435V, * 1.1666H, + 0.6081V, * 1,17394,)

n

= 1.3479 k
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LEGEND
H,=105"
Hp=1.80"

J
|

Figure A2

(a) 'An upper bound solution for
sheet drawing

(b) Velocity diagram to (a)

A2(a)
\
- V2 ‘;l
- \/| ;
20° 59° '50°
V*
Vac - Vac
A2(b)
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A3 THE LOWER BOUND SOLUTION

.A.3.1 Analysis

Geometric consideration, see Figure A3.

- $in20
T 5130 ¥k {sihce ap, = K)o\
) P1P
P1P3 = Sing0 51n71
_ sin20 . 8inT1 K
" sin39 sink0
. = 0.6708 k

or o, = 0.6708 k

Al THE SLIP LINE FIELD TECHNIQUE

AU Analysis
The slip line field shown in Figure Al(a) is constructed and the

die reduction ratio r is defined as,

_ entry height - exit height
- entry height




LEGEND
H | = |.05"
H2= 1.80"

L

* Domain I

Domain IT

Fiqure A3

' /_j—-// to BC’
Pz > 0

(2)a A lower bound solution for sheet

drawing through a frictionless

wedge-shaped die
(b) Stress circles to (a)
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Figure A4

(a) A simple slip-line field solutlon for
sheet drawing 3

(b) Hodograph to (a)
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(H1 + AD sina) - H
H1 + AD sina

1

(H1 + 2H1 sina) - H 1

i

H1 + 2H1 sina ’ .
_ 2sina }
“ 1 +-28ine

It is easy to establish that AB is an-a-line g¢hd BCD a B8-line.

Along AB the hydrostatic pressure, PB’ is compressive but not equal® to

k. From Figure Ald(a).

?

o k - P

Applying the Hencky equation to B~line . BCD

Py - Koy = P, = 2Ke.

‘therefore . ) PC = PB + 2Ka i

The pressure on the die wall q is given by

q = PC + K

Pﬁ + 2Ka + K



to be

' {5 %
L . . :

For equilibrium

/

Substituting for o, and q interms of Py

-

or PB = K(1-2r) - 2kar

Since ox =K ~-P

2Kr + 2kar

2K‘f‘(1+u)

e ]

Substituting r = (2sina)/(1+2sina), the drawing stress is found

- sing
I = 4k (1+a) (1+2sina)

3



Now o« = 20°, yields

.-

o, = 1.0?6.k

Final Remarks

\\\\J/ The preceding example reinforces some of the statements made in
]

Chapter 2. It is verified that in the absence of friction the Slab

method provides the homogeneous work solution, and therefore does not

account for redundant work. Friction could be incorporated into the

af\aly3ais, but the present, solution serves to emphasize the neglect of

¥
+

A
nt work.

k4

"The results from the upper and lo@er bound method§ straddle the
Slip Line Field solution from above and below respectively. This i
consistent with.the underlying theory. No attempt has been made ¢
optimize the results from the bounding techniques, i.e., to obtain the
lowest upper bound and highest lower bound. However, the aim was to
illustfate the solution procedures.

Note that the Slip Line solution does account for redundant work,
as/gi}l be seen by comparing the result for the drawing stress with that

obtained uéing the Slab method.
7/

<



APPENDIX B

B.1 TRANSFORMATIONS OF FINITE STRAIN PARAMETERS

Consider the element OABC shown in Figure B,1(a) with a diagonal

of length XO and sides of length
Y

0A

Xo CO0sS6
(B. 1

0C

Xo sineg

»

(//“‘\

the element is now deformed to element OA'B'C', by the strains Exx' Eyy'

Exy' and ny. Point B is moved to B' and when referred Fo the x'- and
y' axes the strain must give the same displacemgnt. 3y

Consider the component of displacement of ‘B! along x'-axis.
Equate this to the components of displacement of BT aleng x- and
y~directions as shown in Figure B.1(b) where it is seen that

-

E

x,x,-xo = EXX'OA°cose + Exy'OA'51ne + Eyy‘OC'sine + ny'OC'cose

by substitutink OA and OC from equations (B.1) into the above equation,

gives

98
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Transformation of the finite strain

parameters

(a) Relative deformation of an element

(b) Components of the displacement of
point B with respect to the two

orthogonal coordinate axes
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“\-~\>

. - . . 2 . 3 3 e Y -9 2 . . A 3
Ex‘x' Xo = Exx Xo cos 6+EXy XO cos9s1p6+Eyy XO ¥in e+ny Xo ¢osésing
\\“_ (1+¢0526) sin28 (1-c0s828) s5in26 </A
Ex‘x’ - Exx 2 * Exy > Eyy 2 * ny 2
1 ) /\
E +E E_ -E E E
= 2 vy, Xx : W aos2s » > X sin2e (B.2)

%;3 Now consider the component of displacement of B! along the

y'-axis to that along the x- and y-directions, gives

E

Ex'y"xo = —EXX-OA-Slne + Exy-OA-cose + Eyy'OC-COSQ - ny-OC-51ne

~

Y

By substitutions, obtains

3

N . 2 . .2
Ex'y' Xo = --Exx Xo 005651ne+Exy Xo cos e+Eyy XO 005951ne—ny Xo sin"e
_ sin2e sin2 (1+cos2g) (1-cos29)
Ex'y‘ = kT3¢ Eyy z  ~ Exy 2 - ny 2
E. -E E .+ E E . -E
E3 X , Xy X cos2g - XX VY sin2g (B.3)
2 2 2
If the shearing strains are defined so that Exy = ny. the
transformation equations becomes -

/
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E +E . E -E
E = XX W XX W 0520 + E * sin26
x'x! 2 2 Xy o
(B.4)
, E -E "
E z - XX YY 5in29 + E  +cos2
x'y! 2 Xy
B.2 'S CIRCLE OF FINITE STRAINS

A carefuy study of equations (B.Y4) shows that they represent a
™

circle in space,/ which can be rewritten as

E._+E E..-§

XX y . XX AL cos28 + E *sin2¢
2 2 Xy

(B.5)
E - E
= - —55—5——1X sin2e + Exy'cos2e

Then by squaring bothr of these equations, adding, and multiplying

E - E 5 5
-=<-2‘-l‘-§—!-‘i>+z _ (B.6)

E + E 5 5
(E - S 1 )T + ET,
2 Xy

x'x! x'y!

equation (B.6) may be written in more compact form as

(E -a) +E = b (B.7)

E +
where a = _EE_E__!X and

o
n
L1
o
821
»
>
1
™
e
n
\
+
x]
>, N
~3
)
=
1]
[£]
Q
b=
]
ct
W
=]
cr
/2
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Shear Strain
A EXX -
S
I'4 Emax
E2 Exy
o\ A
\ Linear Strain
E
|
i 4
yy
2 min

Figure B2 Mohr's circle of finite strains
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B
This equation is the familiar expression for a circle of radius b
with its centre at (agg 0). Hence a Mohr's circle can be constructed
with the ordinate of a point on the circle as the shearing strain Ex'y"
and the abscissa is the linear strain Ex'x" The cirele so constructed
is called a circle of strain or Mohr's circle of strai;, as shown 1in

Figure B.2.

S

»



APPENDIX C

C.1 FINITE STRAIN PARAMETERS OF A RECTANGULAR ELEMENT

S~

The straiﬁ parameters are determined by the following definition

{see Figure C.1).

E = (0A" ~ OA)/0A
XX
. E = ATA"/0A (c. 1)

Xy
E = B'B"/0B

yX .

E = (0B" -~ 0OB)/0B

vy ( )

The shear angle « is obtained from the condition that

hence OB * DA > sina = OA * OB' * sinf[6' - (90 + )]

Expanding gives

OB * OA' « sing = OA ¢ OB' + (-sing' sina - cose' cofq)

N

-
OB * OA' *» sina = -~ OA + OB' ¢« sing' sina

- OA *» OB' * cosb' cosa

104
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(OB * OA' + OA * OB' * sine')sino = —OA * OB' * cos6' cosa

-04 * OB' * cos?®'’
OA' * 0B + OA * OB' ° sine'

tan

_ -1 -0A * OB' * cosf'
“=tan { GET 0B + 0A * 0B' * sind’ ) (c.3)

c.2 FINITE STRAIN PARAMETERS OF A PARALLELOGRAM

~

By Viftually the same procedures as section C.1, the following

quantities are determined.

n

(0OA™ - 04)/04

XX

E.. = A'A"/0A (c.¥)
Xy

E = c'cn/0C
yX .

E = (OC" - 0C)/0C
yy

Assuming proportional deformation of point B, such that

the fictitious angle between sides OA' and OC' can easily be shown to be

given by

o - -1 OA +0B' * cose'
OA*OB'*cos8' - OA'*OB°cos®

)
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by employing equation (C.3) the shear angle can then be evaluated

-

)
~0A « OC' « cose
-1 . 1
¢ = tan (

1
0A'°0C + OA"OC"sinG1

)

See also Figure C.2 to aid in interpreting the above notation.
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Be X
o) > X
A
Figure C1 Diagrams showing the deformation of
a rectangular element
¥
y y
A
3
' ’/’ll
. B ”’/’ //
C B C .- 7
| Zinniaint Shsinteininky ) ; i \ /o
a AR L
- ./Ie \\e' -
1
9 i /N E Doy
A Y > x 0,0 £ > X
N A
Figure C2 Diagrams, illustrating the fictitious

line length 0OC' and ei
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" APPENDIX D ~
LIST OF SUBPRdGRAMgiz | B
- - K
MAIN PROGRAM - to generate and calculate the basic required
storage .for each principal variable. . }

7/
SUBROQUTINE GENMH‘ - %o input sets of orthogonal coordinates, X, Y and Z
’ of a formed part. To calculate element

connectivity, nodal 'connectivity and to set up

R by
e boundary conditions of a surface]///fa. Coc

SUBROUTINE CHECK - to check input data Zy plotting the geometry of a

deformég part in 3D space using the Versatec 1200 A<g

jl plotter.
SUBROUTINE SOLV - to print results previously ‘generated by {GENMH,  and

to organize data for sequencial mapping

SUBROUTINE LOCAT - to locate the coordinates of the fourth node of a

A

quadrilateral in tgo dimensional space

(
, ™

108 K



SUBROUTINE CAL

SUBROUTINE BLANK

SUBROUTINE RES

_SUBROUTINE FRAM

SUBROUTINE DIAGEN

1

[
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an auxiliary subroutine for LOCAT, which computes

the area, the sides and the .angles of a triangle.

to plot the developed blank using the Versatec

plotter.

to output the final X and Y coordinates of the

transformed nodes of a blank.
an auxiliary subroutine for plotting results.

to transform the coordinates in a diagonal-wise

fashion.



APPENDIX E

PROGRAM GLOSSARY

fE() ~ Element connectivity of triangular elements &
- Storage required ~ 3%LE
- Function - to store node numbers of each triangular
element in an anticlockwise direction
IR() — Element connectivity of quadrilateral elements

- Storage required -~ 2%¥LE

- Function

identical to array IE, but for a

quadrilateral element

-

110



wmo -

N7Bal connectivity
Storage required -

Funetions -

I1, I2, 13, I4 -

LE -

LR -

LU, LV -

LW -

9¥LW

to store element numbers which are
connected to a common node with a
maximum of eight triangular elements,

and to store code numbers for

displacements u and v

Node numbers of a quadrilateral

Total number of triangular elements

-

Total number of rectangular elements

Displacement codes for any nodes on a surface in X and ¥

directions, where:

0 -~ indicates nodes

with zero component of displacement

1 - denotes free displacements

Total number of nodes
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NW1 - A constant calculated by 3*LW -
NW2 - A constant of value 5*LW
Nif3 ~ The sum of NW1 and NW2
RW() - Storage required - 8¥LW + 3¥LE
Functions ~ to store the coordinates X, Y, Z of each
node in 3D space, the nodal coordinates
Y
X and Y in 2D space, and the resultant
principal nodal straias e{ and €g¢
RE() - Storage required - 2%*LE
- Functions - to store principal element strain € and

principal angle
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