ON-LINE IMPEDANCE MEASUREMENT OF TRANSMISSION LINES USING A MICROPROCESSOR AND A FAST MULTIPLIER

by

MEERA KULKARNI, M.Tech. (Indian Institute of Technology, Bombay)

A Thesis

Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree

Master of Engineering

McMaster University October 1980 MASTER OF ENGINEERING (Electrical and Computer Engineering)

١

McMaster University Hamilton, Ontario, Canada

TITLE: On-Line Impedance Measurement of Transmission Lines Using A Microprocessor and A Fast Multiplier

AUTHOR: Meera Kulkarni, M.Tech. (Indian Institute of Technology, Bombay)

`&^

(ii)

SUPERVISOR: Dr. R. Kitai, D.Sc.

NUMBER OF PAGES: ix, 83

ABSTRACT

A system is designed for calculating on-line digital impedance of a transmission line using a Microprocessor (Intel 8085) and a Fast Multiplier (TRW TDC 1003J). The approach taken is to use a digital filter to extract the fundamental component of voltage V and current I, then the impedance is given by V/I. The filter is of the sliding or running spectral measurement type. The total time taken for impedance calculation is 1.033 msec for 16 samples in a cycle at the power line frequency of 60 Hz. The maximum absolute error is $\pm 1.52\%$ of the largest possible impedance value.

(iii)

ACKNOWLEDGEMENTS

The author particularly wishes to thank Prof. R. Kitai for his helpful advice and guidance during the course of this work. The author would also like to thank Mr. Munniappan for some very useful discussions, and Mrs. Janet Schell for typing this thesis.

Finally, the author would like to thank McMaster University for financial assistance received during the course of this thesis.

(iv).

TABLE OF CONTENTS

٠,

		4		Page
CHAPTER	I	INTROE	DUCTION	1
CHAPTER	II	DIFFER CALCUL	ENT TECHNIQUES OF DIGITAL IMPEDANCE	3 [.]
		2.1	Introduction	3
		2.2	Fundamental Consideration	.3
		2.3	Differential Equation Approach	4
		2.4	Steady State Approach	7
		2.5	Sliding or Running Spectral Measurement	17
CHAPTER	III	SYSTEM	1 HARDWARE	22
		3.1	Data Acquisition	22
		3.2	Selection of Microprocessor	28 ,
		3.3	Digital Filtering	. 30
		3.4	Choice of the Multiplier	30
		3.5	Hardware Implementation of the Digital Filter	31
		3.6	Sequence of the Filter Operation	35
	~	3.7	Implementation of Division	37
CHAPTER IV		SOFTW	ARE	- 41
		4.1	Introduction	41
		4.2	Initialization	· 41
X.	-n -	4.3	Interrupt	43
		4.4	Subroutine DATAIN	44
		4.5	Calculating [X(n)-X(n-N)]	44
		4.6	Filter Algorithm	44

(v)

Page

- 1. ----

CHAPTER IV	(cont	'd)	
<i>,</i>	4.7	Division Algorithm	48
	4.8	Subroutine DIVIDE16	49
	4.9	Impedance Algorithm	50
	4.10	Fault Routine	50
CHAPTER V	DISCU	SSION	51
*,	5.1	Test Results	51
	5.2	Software Simulation of Filter	51
<i>i</i>	·• 5 .3	Accuracy	54
	5.4	Execution Time	56
۰.	5.5	Size	56
	5.6	Extensions and Improvements	56
APPENDICES			>
• •	APPEN	DIX A	62
•	•	8	63
••••••		C C	66
· · ·		D.	71
	: • •	E	72
а Ф		F	83
. · · · · · · · · · · · ·	· · ·	f G an a	84
• •		H · · ·	[,] 85
· · · · ·			

. .(vi)

LIST OF ILLUSTRATIONS

Figure	· · · ·	Page
2.1	Trip characteristic with typical R,L plot	4
2.2	First sixteen Walsh functions of integral index k	11
2.3	FIR implementation of spectrum analysis	19
2.4	Recursive implementation of spectrum analysis	19
3.1	System block diagram	23
3.2	Analog multiplexer	24
3.3	Block diagram for channel select	26
3.4	Waveforms for channel select	26
3.5	Waveforms for A/D converter	27
3.6	12 bit to 16 bit conversion	27
3.7	Schematic for SDK85 single board microcomputer	29
3.8	Filter block diagram	32
3.9	Control ports	34
3.10	Block diagram for division	38
3.11	block diagram for square-root	38
4.1	Flow chart for digital impedance calculation	42
5.1	Test result	55
5.2	Photograph of impedance-calculation system	57
•		

ſ

•

í

LIST OF TABLES

Table		•	Page
3.1	Control signals for multiplexers		34
4.1	Port assignment		43
4.2	Memory map for data storage	•	45
4.3	Calculation of [X(n)-X(n-N)]		46
5.1	Stored samples of the experiment		52
5.2	Results of the test program		53
5.3	Number of instructions in each section of impedance calculation program		58

-

LIST OF SYMBOLS AND ABBREVIATIONS

Clk	clock
F ₁ ,F ₂	Fourier coefficients
I/0	Input/Output
L	series inductance
N	Number of samplines in one cycle
R	series resistance
RAM	Random Access Memory
ROM	Read Only Memory 🧠
s _n	filtered output of sample X(n)
SAR	Successive Approximation Register
W _k	Walsh coefficients
X(n)	current sample value
X(n-N)	Nth previous sample value
Z	magnitude of impedance

• 1

(ix)

CHAPTER I

INTRODUCTION

The use of a digital computer for distance protection of transmission line was first suggested about a decade ago [1]. This concept requires that digital samples of line voltages and currents be obtained and analysed by a digital computer, using a program (algorithm) that calculate the series impedance of the line. Advances have since been made [2,3,4, 5,6,7] for calculating impedance, off line. The need for a suitable algorithm is complicated by the nature of line voltages and currents during immediate power frequency post-fault cycles of these signals, in that the post-fault waveforms contain a power frequency fundamental component, a transient DC offset component, and transient high frequency components.

There are two approaches for calculating the series line impedance. One uses a differential approach and other a steady state approach. The basic difference lies in their implicit assumptions.

With the advent of economical microprocessors it is now possible to consider a microprocessor based digital distance protection system. The microprocessor based instrument has a number of advantages: It is cheap, small in size and consumes little power. But until very recently the microprocessor has been hampered by slow multiplication and division.

This report describes a system for digital calculation of online impedance of the line using a microprocessor and a fast multiplier. The approach taken here is to use a digital spectral analyser, which is

1

 $\boldsymbol{\Delta}$

equivalent to an finite impulse response [FIR] filter, to extract the fundamental component of voltage (V) and current (I), and then the impedance (Z) is calculated by taking the ratio of V/I.

The spectral analyser used is of the sliding or running spectral measurement type. The system is built using an Intel SDK85 single board computer and a TRW TDC 1003J, a 12 bit x 12 bit fast multiplier-accumulator. Both the microprocessor and the fast multiplier are used for digital filtering of input waveforms as well as for division.

١

Chapter II describes the different techniques used for digital impedance calculation, together with the method that was implemented. Chapter III describes the system hardware. Chapter IV details the digital filter and impedance algorithm and Chapter V discusses the test results, together with suggestions for further improvement.

CHAPTER II

DIFFERENT TECHNIQUES OF DIGITAL IMPEDANCE CALCULATION

2.1 Introduction

The impact of modern development in digital technology has been felt in many disciplines of power engineering. In recent years, strong interest in applying digital methods to protective relaying has been indicated by the appearance of numerous technical articles on the subject.

The basic idea is to investigate the feasibility of utilizing digital techniques for the protection of transmission lines. The criterion for such a protection system is to equal or surpass the performance of existing relaying systems. Explicit points of interest are: operating speed, accuracy and dependability.

2.2 Fundamental Considerations

For the protection of transmission lines, a well known parameter, to determine the character of a fault, is the impedance looking into the line. A small number of current and voltage samples are used to calculate the impedance.

For digital relaying, two possibilities exist for calculating the line impedance. One uses a differential approach, and the other a steady state approach.

2.3 Differential Equation Approach

For most applications, a power transmission line can be represented as a series resistive and inductive branch. From circuit theory the fundamental description of such a branch is the differential equation

$$V = Ri + L \frac{di}{dt}$$
 2.1

This relationship holds under short circuit conditions for both steady state and transient conditions and form the basis for the digital algorithm. It is necessary to note that, transmission lines deviate from the series R, L approximation due to the shunt capacitive effect. The inductances high frequency transients, but they are often short lived and die out fast. The effect can be minimized by filtering. With the differential equation approach a low pass filter is sufficient as opposed to the narrow-bandpass filter required for the impedance approach.

2.3.1 Digital Algorithm For the Calculation of Circuit Parameters R.L

For a circuit, the parameter values of R and L are calculated using numerical methods. The samples are taken at a fixed rate at times say t_0 , t_1 and t_2 . Thus there are two sample periods, the first from t_0 to t_1 labelled as A, and the second from t_1 to t_2 , labelled as B. The average values of current and voltage during these periods are as follows:

$$i_A = \frac{i_0 + i_1}{2}$$
; $i_B = \frac{i_1 + i_2}{2}$ 2.2

$$v_{A} = \frac{v_{0} + v_{1}}{2}$$
; $v_{B} = \frac{v_{1} + v_{2}}{2}$ 2.3

taking the derivatives of Eq. 2.2 and Eq. 2.3,

$$\frac{di_{A}}{dt} = \frac{i_{1} + i_{0}}{t_{1} - t_{0}} \quad \text{and} \quad \frac{di_{B}}{dt} = \frac{i_{2} + i_{1}}{t_{2} - t_{1}}$$

The differential equations of the line for these two periods are

$$V_{A} = Ri_{A} + L \frac{di_{A}}{dt}$$
 2.4

$$V_{\rm B} = {\rm Ri}_{\rm B} + {\rm L} \frac{{\rm d}_{\rm B}}{{\rm d}{\rm t}}$$
 2.5

Thus by taking the samples i_0 , i_1 , i_2 and V_0 , V_1 and V_2 , Eq. 2.4 and Eq. 2.5 can be solved for the two unknowns R and L. Eq. 2.4 and Eq. 2.5 can be programmed to determine R and L from the sampled values of current and voltage.

The characteristic for relay tripping is programmed as a generalized quadrilateral depending on number of zones to be protected, their distance and transmission line characteristic. A typical characteristic used by Breingan, Chen and Gallen [2] for a two-zone stepped distance scheme is shown in Fig. 2.1.

With three successive samples of current and voltage, the circuit parameters R and L are calculated and checked if they lie within the characteristic shown in Fig. 2.1. Normally if four values of R and L lie within the characteristic, a trip signal is sent to circuit breakers.

In this approach of solving the differential equations, the fundamental algorithm for the calculation of R and L along with the relaying requirements imposes numerous restrictions affecting the computer program. The calculation of R and L itself requires many multiplications and divisions which are time consuming operations. So in this type of approach the parameters are normally not calculated in steady state condition, and once fault is detected either by monitoring a voltage or current lines,

Q

Fig. 2.1. Trip characteristics with typical R,L Plot.

. .

the parameters R and L are determined to give a trip signal. Breingan, Chen and Gallen [2] implemented this approach on a minicomputer and achieved a tripping time of 6.12 to 7.4 msec.

2.4 Steady State Approach

In this approach a line impedance is calculated from peak current and peak voltage. Different methods are suggested by different authors and we will consider each method briefly.

2.4.1 Digital Impedance Calculation Using a Predictive Method

In the early stages of digital methods, Mann and Morrison [3] suggested calculation of the line impedance which involves predictive calculation of peak current and peak voltage, the impedance being determined by the division of peak voltage and peak current.

A digital computer, sampling a sinusoidal waveform, can determine the peak values as they occur. However if the peak values can be predicted before their occurrence, a faster fault-detection is achieved.

2.4.2 Basic Theory of Predictive Calculation of Impedance

Consider a sinusoidal waveform, i.e.

$$v = V_{nk} \sin \omega t$$
 2.6

where V_{pk} is the unknown quantity and v is a typical sample value. If the sampling is not synchronized then sinut is also unknown.

By differentiating Eq. 2.6 we get

$$v' = \omega V_{pk} \cos \omega t$$
 2.7

G

If v' can be determined, then the peak value of the sinusoid is determined from Eq. 2.6 and 2.7 as

$$v_{pk}^2 = v^2 + [\frac{v'}{\omega}]^2$$
 2.8

using Eq. 2.6 to Eq. 2.8 for the transmission line currents and voltages, the modulus of line impedance can be determined, given by

$$|Z| = \left[\frac{v_{pk}^2}{I_{pk}^2}\right]^{1/2}$$
 2.9

where I_{pk} is a peak value of current given by

$$I_{pk}^{2} = 1^{2} + [\frac{1}{\omega}]^{2}$$

where i is the current sample value and i', derivative of it. Furthermore the phase difference between the voltage and current waveforms can be determined from,

$$\phi = \arctan[(\omega i)/i'] - \arctan[(\omega v)/v'] \qquad 2.10$$

enabling complete impedance determination.

This method has serious drawbacks: It assumes that the waveforms are pure sinusoids before and after the fault. It does not take into account the transients (including the exponentially decaying DC transients) on current and voltage waveforms. So some kind of analog filter has to be used before processing the voltage and current samples.

The method also requires the derivatives of current and voltage samples which are calculated numerically using digital algorithms, which restrict the accuracy of calculations. Mann and Morrison used three successive samples to calculate the derivatives giving an accuracy of about

+10% in impedance value.

2.4.3 Digital Impedance Relaying Using Fourier Analysis

9

Ramamoorty [4] was the first to propose the use of Fourier analysis rather than the predictive method of Mann and Morrison. The ensemble of samples over a period of one cycle is assumed to repeat periodically and a Fourier analysis is performed on the ensemble of samples. The amplitude and phase angle of the fundamental component are obtained as follows

$$a_1 = \frac{2}{m} \left(\frac{f_0}{2} + f_1 \cos x + f_2 \cos 2x \dots + f_{m-1} \cos(m-1)x + \frac{f_m}{2} \right)$$
 2.11

$$b_1 = \frac{2}{m} (f_1 \sin x + f_2 \sin 2x \dots f_{m-1} \sin(m-1)x)$$
 2.12

where $f_0, f_1, f_2, \ldots, f_m$ are sampled values of input signal over a period of one cycle and $x = 2\pi/m$ is the sampling interval. The factors cosx,sinx, ...,cosmx,sin(m-1)x are constants and can be calculated and stored in the computer a priori, as weighting functions on the sample values. The fundamental quantity g(t) is given by

$$g(t) = \sqrt{a_1^2 + b_1^2} \sin[\omega t + \arctan(b_1/a_1)]$$
 2.13

If this computation is made for both voltage and current, the magnitude of impedance and phase angle can be calculated.

Ramamoorty clajms better results than Mann and Morrison's method for faults on a model line in the laboratory. Sampling the waveform at 20 points per cycle he calculates the impedance on an IBM/7 system in 4.6 msec. Since the sampling interfal is 0.8 msec for 20 points per cycle and the impedance should be calculated within this interval, this method cannot be used for real time operation. Most of the time is consumed in multiplication, square-rooting and division in order to get impedance |Z|

$$|Z| = \frac{(\sqrt{a_1^2 + b_1^2}) \text{ voltage}}{(\sqrt{a_1^2 + b_1^2}) \text{ current}}$$

\$

2.4.4 Digital Impedance Relaying Using Walsh Functions

J. W. Horton (5) suggested the use of Walsh functions to extract the fundamental 60 Hz component of current and voltages. His method does not assume any sinusoidal conditions, before and after the fault.

The time consuming multiplications and even the squaring and square-rooting operations, in the Fourier analysis algorithm used by Ramamoorty can be almost entirely eliminated if the function g(t) is analysed into its Walsh functions Wal(k,t). This is possible because Wal(k,t) has only two values, ± 1 and so Walsh analysis can be performed by the operations of additions and subtractions.

The first 16 of these Walsh functions are shown in fig. 2.2. They resemble "squaring-up" sine and cosine functions and form a complete orthonormal set. Walsh functions are undefined at the points at which they change from ± 1 to ± 1 , but as these points are a set of measure zero, this is of no consequence.

Let t' = $\frac{t}{T}$ and let the Fourier expansion of g(t) in the interval (0,T) be defined as:

$$g(t) = F_0 + \sqrt{2} F_1 \sin \frac{2\pi t}{T} + \sqrt{2} F_2 \cos \frac{2\pi t}{T}$$

and the Walsh function is defined as

$$g(t) = \sum_{k=0}^{\infty} W_k Wal(k,t/T)$$

Wal(0,t')Wal(1,t') + + + + + + - - --Wal(2,t') + + + + - + + + Wal(3,t') + + + + - - - - + + + + - - - - -Wal(4,t') + + ---++++--·+ + - - - + + - - + + + - -Wal(5,t') + + - - + + - - - + + - - + + Wal(6,t') Wal(7,t') + + - - + + - - + + - - + + Wal(8,t') + ---- + + - - + + - - + + Wal(9,t') -+- -• -- + + - --- +

Fig. 2.2. The first sixteen Walsh function of integral index k.

then,

$$F_0 = \frac{1}{T} \int_0^T g(t) dt \qquad 2.14$$

$$F_{1} = \frac{\sqrt{2}}{T} \int_{0}^{T} g(t) \sin \frac{2\pi t}{T} dt \qquad 2.15$$

$$F_2 = \frac{\sqrt{2}}{T} \int_{0}^{T} g(t) \cos \frac{2\pi t}{T} dt$$
 2.16

2.18

9x9

and

$$d \qquad W_{k} = \frac{1}{T} \int_{0}^{T} g(t) Wal(k,t')dt \qquad 2.17$$

The set of components F_k form a vector in Hilbert space and so does the set W_k . The two vectors are related by the orthogonal matrix ^{*}A. Thus,

W = AF

Since

where A' is the transpose of A, we also have

$$F = A'W$$

The matrix A, in part is given by,

Û .90 ò -.300 ·**7**0 . 90 A = .90 • Q Ó -.373 .°0 -.724 .724 .373 0.90 •0 ω 0 0.90

Now let g(t) be a given function. Then using Walsh functions, we first find Walsh coefficients W_k from Eq. 2.17. In actual computation the waveform is sampled (m+1) times in interval (0,t). From Eq. 2.17 we must perform the numerical integration which closely approximate the integral. Once Walsh coefficients W_k are known, then using Eq. 2.18, the Fourier coefficients F_1 and F_2 are calculated. The amplitude of a sinusoid is given by $\sqrt{F_1^2 + F_2^2}$. Thus finding out the Fourier coefficients F_1 and F_2 for both voltage and current waveforms, the impedance can be calculated. The impedance calculation requires four multiplications, one division and one square rooting. To avoid multiplications, Horton has suggested an amplitude and phase theorem [6] which gives the empirical formula for impedance [Z] as

$$|Z| = \frac{\{1.0822(|W_1| + |W_2|) + 0.414(|W_2| - |W_1|)\} \text{voltage}}{\{\text{same}\}_{\text{current}}} 2.19$$

and he has calculated impedance using Eq. 2.19 for 17 samples per cycle in 1 msec, with an accuracy of +8%.

Most of the digital impedance algorithms cited before, were developed prior to the advent of microprocessors and envisaged the use of dedicated minicomputers or larger computers for the implementation of digital distance protection of transmission lines. These implementations generally include programmed logic to first determine the most probable type of fault that exists and then calculate the apparent impedance of the faulty phase or phases off-line. This was done in order to avoid large amount of calculations.

It is now possible to consider a microprocessor based system, which would retain the essential parallelism of existing electromechanical and solid state, phase and ground distance relays. The main problem in using microprocessors' is slow multiplication and division. Advances in integrated circuit technology have provided fast array multipliers.

Using a fast multiplier and other digital hardware, any of the earlier-mentioned steady-state techniques can be used for impedance calculation. One can use Walsh analysis or Fourier analysis to get Fourier coefficients F_1 and F_2 and then a fast multiplier together with additional digital circuit can be used to implement the impedance calculation |Z|.

2.4.4 Digital Impedance Calculation Using Digital Spectral Analyser

The method of the present work is to use a digital spectral analyser to extract the fundamental component of voltage and current. The basic principle of digital filtering is explained in the following sections.

2.4.5 Digital Filtering of Fundamental Component [7]

Spectral analysis can be considered as a problem of evaluting the z transform of a modified version of signal over a region of the z plane.

z transform of a given signal

Given a sequence X(n) defined for all n, its z transform is defined as,

$$X(z) = \sum_{n=-\infty}^{\infty} X(n) z^{-n}$$
 2.20

where z is a complex variable.

The z transform of a sequence may be viewed as a unique representation of that sequence in the complex z plane. Eq. 2.20 indicates that if the z transform is evaluated on a circle of unit radius, i.e. $z = e^{j\omega}$ then

$$X(z)\Big|_{z=e^{j\omega}} = X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} X(n) e^{-j\omega n}$$

which is the Fourier transform of the sequence X(n).

The Discrete Fourier Transform

Consider a case where the sequence to be represented is periodic; then the sequence can be represented in a discrete Fourier series. For a periodic sequence $X_p(n)$ with a period of N samples,

$$x_{p}(n) = \sum_{k=-\infty}^{\infty} x_{p}(k) e$$
 - j2\pi nk/N
2.21

where the only possible frequencies of which $X_p(n)$ can be composed of are

$$\omega_{k} = \frac{2\pi k}{N} ; \qquad -\infty < k < \infty$$

Since ω_k are the only frequencies whose periods are integrally related to N. The quantity $X_p(k)$ in Eq. 2.21 represents the amplitude of the sinusoid at frequency ω_k . Because of the periodicity of the function:

$$e^{j2\pi nk/N} = e^{j2\pi n(k + mN)/N} ; \quad 0 < m < \infty$$

so Eq. 2.21 reduces to

]

$$X_{p}(n) = \sum_{k=0}^{N-1} X_{p}(k) e^{j2\pi nk/N}$$

In a more familiar representation, $X_p(n)$ is expressed as,

$$X_{p}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_{p}(k) e^{j2\pi nk/N}$$
 2.22

Taking the inverse transform

$$X_{p}(k) = \sum_{n=0}^{N-1} X_{p}(n) e^{-j2\pi nk/N}$$
 2.23

Eq. 2.23 is called the Discrete Fourier transform and $X_p(k)$ represents the amplitude of the sinusoid at frequency ω_k .

Eq. 2.22 and Eq. 2.23, show that both the sequences $X_p(n)$ and $X_p(k)$ are periodic with period of N samples and $X_p(k)$ may be determined exactly from one period of $X_p(n)$.

Relation between z transform and DFT

Let X(n) be a finite duration sequence defined as X(n) = $\begin{array}{c} X_p(n) ; & 0 \le n \le N-1 \\ 0 ; & all other n \end{array}$

where $X_p(n)$ is periodic with a period of N samples. The z transform of X(n) is

$$X(z)' = \sum_{n=0}^{N-1} X(n) z^{-n}$$

Evaluation of X(z) at point $z = e^{j2\pi k/N}$ i.e. at a point on the unit circle with angle $\frac{2\pi k}{N}$ gives

$$\begin{array}{c|c} \chi(z) \\ z = e^{j2\pi k/N} &= & \chi[e^{j2\pi k/N}] \\ &= & \sum_{n=0}^{N-1} \chi(n) e^{-j2\pi kn/N} \\ &= & \sum_{n=0}^{2} \chi(n) e^{-j2\pi kn/N} \end{array}$$
 2.24)

Since

$$X_p(n) = X(n)$$
; $0 \le n \le N-1$

Eq. 2.23 and Eq. 2.24 give

$$X_{p}(k) = X[e^{j2\pi k/N}]$$

Thus the DFT coefficients of a finite duration sequence are the values of the z transform of that same sequence at N evenly-spaced points around the unit circle.

2.5 <u>Sliding or Running Spectral Measurement</u>

To find the amplitude $X_p(k)$ of fundamental frequency ω_1 from eq. 2.23, we see that

$$X_{p}(1) = \sum_{n=0}^{N-1} X(n) e^{-j2\pi n/N}$$
 2.25

One complete period is required to obtain the amplitude. For a sliding type of measurement, each time a current sample n and its previous N samples are used for the computation. Thus at any point n, the spectrum is a function of $(n-\ell)$ samples where $0 \le \ell \le N-1$ and N is number of samples in one period. The spectrum for the fundamental component $s_n(z_1)$ can be written as

$$S_n(z_1) = \sum_{\ell=0}^{N-1} X(n-\ell) e^{-j2\pi\ell/N}$$
 2.26

Let $n-\ell = m$, then Eq. 2.26 becomes

$$S_{n}(z_{1}) = \sum_{m=n}^{n-N+1} X(m) e^{-j2\pi(n-m)/N}$$

or

$$S_n(z_1) = \sum_{m=n-N+1}^{n} X(m) z_1^{-(n-m)}$$
 2.27

eq. 2.27 can be expanded into

$$S_n(z_1) = X(n) + X(n-1) z_1^{-1} + (n-2) z_1^{-2} + ... X(n-N+1) z_1^{-(N-1)} 2.28$$

To measure $S_n(z_1)$ for successive values of n, i.e. $S_0(z_1)$, $S_1(z_1)$... etc, a window, of duration N samples, is moved one sample ahead and the measurement is repeated. This type of measurement is called a sliding or running spectral measurement. Eq. 2.28 shows that a sliding spectral measurement at a single value of z i.e. at $z = z_1$ is equivalent to an finite impulse response filter [FIR]. Eq. 2.28 can be written as,

$$S_n(z_1) = h(0)X(n) + h(1)X(n-1) + ...h(N-1)X(n-N+1)$$
 2.29

where h(n) is the impulse response of a filter given by

$$h(n) = z_1^{-n}$$
; $0 \le n \le N-1$ 2.30

Fig. 2.3 shows the direct convolution realization of the spectral measurement of Eq. 2.27.

Considering two successive spectral measurements $S_{n-1}(z_1)$ and $S_n(z_1)$, a recursive relation is obtained of the form

$$S_n(z_1) = z_1^{-1} S_{n-1}(z_1) + X(n) - z_1^{-N} X(n-N)$$
 2.31

Eq. 2.31 is implemented as shown in Fig. 2.4. z^{-N} and z^{-1} in Eq. 2.31 represents the delay of N samples and one sample respectively and z_1 's are complex coefficient multipliers.

Extraction of fundamental component

To extract the fundamental frequency from a periodic waveform Eq. 2.31 is used in which z_1 is given by

$$z_1 = e^{j2\pi/N}$$

v

Fig. 2.4. Recursive implementation of spectrum analysis.

For sixteen samples in one period (N = 16),

$$z_1 = e^{j2\pi/16}$$
$$= a + jb$$

Where 'a' and 'b' are constants given by

$$a = cos 22.5^{\circ} = 0.92388$$
 and

$$b = sin22.5^{\circ} = 0.38268$$

So Eq. 2.31 can be written as

$$S_n(z_1) = (a - jb)S_{n-1}(z_1) + X(n) - X(n-N)$$

since

.

and

$$z_1^{-N} = e^{-j(2\pi/N) \cdot N} = 1$$

 ${\rm S}_{n-1}$ is a filtered output of previous sample and is a complex quantity. Let

$$S_{n-1} = P_{n-1} + jQ_{n-1}$$

Eq. 2.31 becomes

Ŷ

$$S_{n}(z_{1}) = (P_{n-1} + jQ_{n-1})(a - jb) + X(n) - X(n-N)$$

$$= a P_{n-1} + bQ_{n-1} + X(n) - X(n-N) + j[aQ_{n-1} - bP_{n-1}]$$

$$= P_{n} + jQ_{n}$$
2.32

where

$$P_n = aP_{n-1} + bQ_{n-1} + X(n) - X(n-N)$$
 and
 $Q_n = aQ_{n-1} - bP_{n-1}$

The magnitude of S_n is obtained from its real and imaginary part

$$|S_n| = \sqrt{P_n^2 + Q_n^2}$$

bу

Thus to extract a fundamental component, Eq. 2.32 is implemented using digital hardware. X(n-N) is a delayed sample and is obtained by using a microprocessor in which N successive samples are stored and at each discrete time the current sample value X(n) and the delayed sample value X(n-N) are taken out from the memory. A fast multiplier TDC 1003J is used for multiplication. The system block diagram and circuit details are discussed in Chapter III.

CHAPTER III

SYSTEM HARDWARE

A block diagram for the impedance calculation of a transmission ine is shown in Fig. 3.1.

3.1 Data Acquisition

Voltage and current waveforms on a transmission line are fed to a preprocessor, which scales the signals to a range suitable for the analog to digital converter used. Preprocessed voltage and current waveforms are multiplexed in an analog multiplexer and then sampled and digitized in an analog to digital converter. The digitized samples of voltage and current are then stored into the read/write memory of the microcomputer, for further analysis.

3.1.1 Analog Multiplexing

Since the A/D converter is an expensive component, multiplexing analog inputs to A/D is an economical approach. The analog multiplexer timeshares an A/D converter among two analog channels, one for voltage and one for current. The multiplexer used is DG172BK, the pin diagram for which is shown in Fig. 3.2.

Preprocessed voltage and current waveforms are fed to the two inputs of the analog multiplexer. Channel select signals are derived from the sampling pulses from a circuit shown in Fig. 3.3. Sixteen samples are

;::

ì

Pin No.	Destination	Description of Function
1,2,13,14	I/P3,I/P4,I/P1,I/P2	Analog inputs
3 _	O/P	Multiplexed output
4	NC	Not connected
5	v _{nD}	Negative <pre>\$upply (-15V)</pre>
6,7,8,9	CH4,CH3,CH2,CH1	Channel select signals
10,11	V _{CC}	Positive supply (+5V)
12	v _{REF} ·	Reference voltage (+10V)

Fig. 3.2. Analog multiplexer.

taken in one cycle. So the sampling period T_s is 1.042 msecs, for a power line frequency of 60 Hz. The pulse duration T_1 of the first monostable Ml in Fig. 3.4 is decided by the time taken for A/D conversion and for storing the digitized sample into the microcomputer memory. The pulse duration of the second monostable M2 is 5 µsec. The output of M2 and the sampling pulses are fed to an OR gate, the output of which is used as a convert command for the A/D conversion.

Q1 and $\overline{Q1}$ outputs of M1 are used as channel select signals for the analog multiplexer such that during time T_1 , the voltage waveform is present and during T_2 , the current waveform is present on the multiplexed output of the analog multiplexer.

3.1.2 Analog to Digital Conversion

The selection of the A/D converter is based on accuracy, speed and cost. For calculating on-line impedance, it is essential to have a fast A/D conversion. The converter used is a Burr-Brown ADC85KG. This is a 12 bit converter with a conversion time of 10 μ sec. CTC (Complement Two's Complement) logic is used. The pin connections and specifications are given in Appendix A.

The multiplexed output from the analog multiplexer is fed to the analog input of the A/D converter. The convert command is derived from the sampling pulses as shown in Fig. 3.3. The A/D converter gives a status word output which is "HIGH", during conversion and goes "LOW" when the conversion is complete. Fig. 3.5 shows the A/D converter waveforms. T_c is the conversion time.

··. .*

Fig. 3.3. Block diagram for channel select .

Fig. 3.4. Waveforms for channel select.

Fig. 3.5. Waveforms for A/D converter.

Fig. 3.6. 12-bit to 16-bit conversion.

.
When the conversion is complete a pulse of duration $T_{\rm I}$ is derived. This is used to interrupt the microprocessor to indicate that a digitized sample is ready to be stored in the memory and initiates the data-storage routine.

3.1.3 Storing the Data Into Memory

The Intel 8085 is a 3 bit microprocessor and the 12 bit digitized sample must be stored in two successive words. A 12 bit to 16 bit conversion is done using "AND" gates and is shown in Fig. 3.6. This 16 bit word is then stored in memory using a software program called datastorage subroutine stored in the ROM of microcomputer. The subroutine is discussed in detail in Chapter IV

3.2 Selection of the Microcomputer

The microcomputer system used is an Intel SDK85. One of the major factors in selecting this system is its relatively faster speed, availability and on-board peripheral devices which include 0.5K RAM, 2K ROM, I/O ports, keyboard and display. There is also an area for expansion. Because of the keyboard and the display, together with monitor routines in ROM, it is easy to edit and debug programs. Two interrupts are available for the user. The 8085 has an instruction cycle time of 1.3 µsec. The instruction set is very broad and includes some 16 bit instructions.

The schematic diagram for the SDK85 system is given in Fig. 3.7. The instruction set for the 8085 microprocessor is given in Appendix B.

1. 29 I

h

. . .

3.3 Digital Filtering

The digital filter to be used is described in section 2.5. This is a time based design and its implementation requires several components including multipliers, adders and registers. These registers are used to hold the present and past values of samples fed to the filter and the previous output of the filter itself. Even though the cost of adders and registers had dropped rapidly during past few years, the multipler is still considered to be an expensive component. Therefore in any kind of direct implementation, with cost as one of the significant factors, the objective is to keep the number of expensive components to a minimum, and a design with a single multiplier is attractive.

3.4 Choice of the Multiplier

Since the digitized voltage and current samples are 12 bit with dual polarity, a 12 bit x 12 bit fast multiplier is required capable of 2's complement multiplication. For the digital filter implementation of Eq. 2.31, many additions and subtractions are required during filter operation and it is advantageous to have an accumulator included in the multiplier.

TRW TDC1003J, a 12 bit x 12 bit multiplier-accumulator, with a typical multiply and accumulate time of 175 nsec is used. A data sheet for the device is given in Appendix C. \Im

30

o

3.5 Hardware Implementation of the Digital Filter

The filter equation to be implemented is discussed in Section 2.5, and is given by

$$S_n = (P_{n-1} + jQ_{n-1})(a - jb) + X(n) - X(n-N)$$
 3.1

where P_{n-1} is the real part of the previous filtered output S_{n-1}

 Q_{n-1} is the imaginary part of the previous filtered output S_{n-1} a = cos(2 π/N) = 0.92388

 $b = sin(2\pi N) = 0.38268$

X(n) is a current sample and X(n-N) is the Nth previous sample.

Sixteen samples are stored in designated memory locations of the microprocessor. After receiving voltage and current sample values for each sampling pulse, [X(n) - X(n-N)] for both voltage and current are calculated and sent to output ports. Separating the real and imaginary parts of Eq. 3.1 we get

$$S_n = aP_{n-1} + bQ_{n-1} + X(n) - X(n-N) + j[aQ_{n-1} - bP_{n-1}]$$

= $P_n + jQ_n$ 3.2

where $P_n = aP_{n-1} + bQ_{n-1} + X(n) - X(n-N)$ and

$$Q_n = aQ_{n-1} - bP_{n-1}$$

Implementation of Eq. 3.2 is achieved using the circuit shown in Fig. 3.8. M1 and M2 are two 4:1 multiplexers [SN74157], to multiplex various inputs required for the sequential multiplications. The output registers R1 through R10 are used to store previous values (P_{n-1}, Q_{n-1}) , and the

present values (P_n, Q_n) of real and imaginary part of the filtered output of voltage and current, and to store filtered V² and I² quantities.

 R_1 through R_6 are Hex D type shift registers with clear [74LS174] and R_7 through R_{10} are tristate D type shift registers [74173]. The tristate registers are used so that the same output bus can be used for voltage and current filtering. While voltage samples are filtered, the output registers for current $[R_9, R_{10}]$ are disabled offering a high imedance to the bus. Similarly when current samples are filtered, the voltage output registers $[R_7, R_8]$ are disabled.

The multiplier requires certain clock signals for its operation. C2kX and C2kY are required to take the data present at inputs X and Y. C2kP clocks out the multiplication on a bus. ACC and SUB are two clocks, which decide whether addition or subtraction is to be done.

Prior to multiplication, valid data has to be present at the inputs X and Y, before C&kX and C&kY occur. Data at the input of the multiplier is selected by selecting appropriate control signals A, B, A' and B' for multiplexers M_1 and M_2 respectively. Table 3.1 gives the truth table for the multiplexers M_1 and M_2 .

All of these control clocks for the multiplier as well as for the multiplexers are derived from the microprocessor. Two output ports [port 29 and port 2A] of 8 bits each are used as control ports, and are shown in Fig. 3.9. Clock pulses are sent out in required sequence using OUTPUT [PORT] instructions.

The output of the multiplier is a bus which is connected to the registers R_1 to R_6 . The multiplier output is stored in one register at a time, depending on which one of them is clocked. These clock pulses

	Clock for R4
1	Enable signal for R7 to R10, clock
	Clock for R5 for R3
	 Inîtial clear
i	 Clock for successive approximation
l	Clock for R6 register

Fig. 3.9,	Control	ports.
-----------	---------	--------

 Table	3.1		Control	Signals	for Multiplexers	
В	A	output	B.	A	output	
0	0	Q _{n-1}	0	-0-	b	
0	1	a	0	, J	P _{n-1}	
1	0	Pn-1	1	0	Q _{n-1}	
]	1	I ²	.]	1	А	

.

 Cl_1 to Cl_6 are also microprocessor controlled. Control port 2A is used for these clocks as shown in Fig. 3.9. Bit 5 of port 2A is a "CLR" bit which clears all the output registers from R_7 to R_{10} .

Bit 6 of port 2A is a clock for successive approximation register used for division and is discussed in Section 3.7.

Bit 3, which is Cl_3 is also used as an enable signal M for tristate registers R_7 through R_{10} .

3.6 Sequence of the Filter Operation

1. Initially output registers R_7 through R_{10} are cleared [which makes $S_0 = 0 + j0$].

Filter Operation Derived Expression

Enable voltage registers.
 Disable current registers.

' r

4

÷

Input 'b', ' P'_{n-1} ' to multiplier. $b \cdot P_{n-1}$ Multiply and store in the accumulator.

Input 'a', ' Q_{n-1} ' to multiplier. Multiply, subtract the previous product $a \cdot Q_{n-1}$ from it and output to the register R_1 . $aQ_{n-1} - bP_{n-1}$

3. Input 'a', ' P_{n-1} ' to multiplier. Multiply $a \cdot P_{n-1}$ and store in the accumulator. Input 'b', ' Q_{n-1} ' to multiplier. Multiply. $b \cdot Q_{n-1}$ Add previous product to it and output to register R_2 . $aP_{n-1} + bQ_{n-1}$

- 4. Add " $X_{(n)} X(n-N)$ " for voltage from microprocessor to contents of register R_2 in adder. The $+ [X_{(n)} - X_{(n-N)}]_V$ contents of R_1 to R_7 . Move contents of adder to R_8 .
- 5. Input ' Q_{n-1} ', ' Q_{n-1} ' to multiplier. Multiply Q_{n-1}^2 and store in accumulator. Input " P_{n-1} ", " P_{n-1} " to multiplier. Multiply. P_{n-1}^2 Add previous product to it and output to register R_2 . $(P_{n-1}^2 + Q_{n-1}^2)_V$
- δ .Disable voltage registers and enable currentregister i.e. R_4 to R_6 .Input 'b_1', 'P_{n-1}' to multiplier. Multiply and $b \cdot P_{n-1}$ store in the accumulator.Input 'a', ' Q_{n-1} ' to multiplier. Multiply. $a \cdot Q_{n-1}$ Subtract previous product from the accumulatorand output the result to register R_4 : $aQ_{n-1} bP_{n-1}$

ſ

- 7. Input 'a', "P_{n-1}" to multiplier. Multiply $a \cdot P_{n-1}$ and store in the accumulator. Input 'b', 'Q_{n-1}', to multiplier. Multiply. $b \cdot Q_{n-1}$ Add previous product to it and output to register R₅. $aP_{n-1} + bQ_{n-1}$
- 8. Add " $X_{(n)} X(n-N)$ " for current from the micro- ${}^{aP}_{n-1} + {}^{bQ}_{n-1}$ processor to the contents of register $R_5 + [X_{(n)} - X_{(n-N)}]_I$ in adder. Move contents of R_4 to R_9 .

Move contents of R_5 to R_{10} .

9. Input ' Q_{n-1} ', " Q_{n-1} " to multiplier. Multiply Q_{n-1}^2 and store in the accumlator. Input ' P_{n-1} ', ' P_{n-1} ' to multiplier. Multiply. P_{n-1} Add the previous product to it and output the result to register R_8 . $(P_{n-1}^2 + Q_{n-1}^2)_1$

After this sequence, the filtered outputs of voltage and current are available in registers R_3 and R_6 respectively.

The operation after filtering is the division of peak amplitude of square of voltage (v^2) by peak amplitude of square of current (I^2) . The division is implemented using a successive approximation register and the fast multiplier.

3.7 Implementation of Division

The block diagram for implementing the division is given in Fig. 3.10.

The successive approximation register used is a 12 bit DM2504. The data sheet and truth table are given in Appendix D.

3.7.1 Principle of Operation

Initially when \bar{s} goes from 'Low' to 'High', Q_{11} bit is set to 'low' and all other outputs go 'high'. This state is equivalent to 0111,1111,1111 in binary. This output A of successive approximation register (SAR) is fed to the multiplier input. Other input to multiplier

<.

Fig. 3.10. Block diagram for division.

٤.

Fig. 3.11. Block diagram for square root.

is I^2 , The product AI^2 is compared with V^2 in an magnitude comparator [7483]. If V^2 is greater than AI^2 , then 'D' (Appendix D) is set to '1'. If V^2 is less than AI^2 or equal to AI^2 then 'D' is set to '0'.

At the next clock pulse Cp, the output of SAR is DOll,1111,1111. This is multiplied by I^2 and AI^2 is compared with V^2 and so on. The total number of clock pulses required for complete division is n+2 where n is number of bits. For 12 bit SAR the total number of clock pulses required is 14. After that, the output of SAR gives the result of division. For a 12 bit SAR, the maximum number that can be handled is 4095.

The same principle of division can be used for square rooting. The result of division gives z^2 . The block diagram for square rooting is shown in Fig. 3.11.

3.7.2 Sequence of Operation for the Division

OperationOutput of SAR1. Initially "
$$\bar{s}$$
" is set "LOW".XXXX,XXXX,XXXX2. Clock SRASet " \bar{s} " "HIGH".OlineClock SRASet " \bar{s} " "HIGH".OlineJ. Input "A", and "I²" to multiplier.OlineMultiply, output the result on themultiplier bus.Compare AI² and V². Set D appropriatelyto D_i.

4. Clock (SRA) D_i011,1111,1111

 \mathcal{C}^{1}

Repeat steps 2 to 4 eleven times. The output of SRA gives the result of division, z^2 .

CHAPTER IV

SOFTWARE

4.1 Introduction

The operations required for on-line digital impedance calculation such as data-acquisition, calculating [X(n) - X(n-N)] values for filtering, filtering of voltage and current sample and division are all governed by a software program which is stored in the 4K EPROM. A flow chart for the process is shown in Fig. 4.1. A brief description of major steps involved in the digital impedance calculation process is given below.

4.2 Initialization

The first block in the flow chart corresponds to initialization. At the beginning of a program, the ports of the SDK85 are assigned as Input or Output. Table 4.1 lists the assignment of different ports used and their functions.

The next operation is to clear ou tput registers R_7 to R_{10} shown in Fig. 3.8. The pointers are then set, which indicate the starting addresses for memory locations in which data is to be stored, the total number of samples to be stored, and the locations in which calculated impedance values are to be stored. Memory locations 2070 to 2087 of a 512 byte RAM are used for storing digitized samples of voltage and current. The interrupt is enabled. The microprocessor then executes a

Fig. 4.1.Flow chart for Digital impedance calculation.

Table 4.1

ويرجو المراجع والمتعاد والبريسة وتركب أخطا المتاب		
PORT	ASSIGN	DESCRIPTION
00/01	Output	To output $[X(n) - X(n-N)]$ for filter.
29/2A	Output	Used as control ports.
21/22	Input	To input data X(n) from A/D converter.
09	Input	To take in impedance value z from SAR.
02/03		Control status registers for ports 00/01.
20/28		Control status registers for ports 29/2A.

wait loop until an interrupt occurs.

4.3 Interrupt

The SDK85 system has five interrupt inputs: INTR, RST5.5, RST6.5, RST7.5 and Trap. The three restart interrupts have programmable masks and these interrupts cause the internal execution of RST, saving the program counter in the stack and branching to the restart address. INTR and RST6.5 are the two interrupts available for users and RST6.5 is used in the implementation of the present system. This interrupt is high level sensitive, and points the control to monitor-reserved RAM location 20C8. So when the interrupt occurs, the instruction stored in location 20C8 is executed. Serving of this interrupt disables all future interrupts until the EI instruction is executed.

As discussed in Section 3.1.2, the interrupt signal is issued after every A/D conversion. Once the interrupt occurs, control passes to location 2008 where a 'JUMP' instruction is stored: This takes the control to a subroutine called DATAIN, which stores the data sequentially in memory locations 2070 to 2087.

4.4 Subroutine DATAIN

This subroutine takes in the data present on port 21 and port 22 and stores it in memory locations addressed by a pointer. Since the data is a 16 bit word and is in complemented form because of CTC logic used for A/D conversion, it is complemented before storing in two successive locations.

4.5 <u>Calculating [X(n) - X(n-N)]</u>

For calculating [X(n) - X(n-N)] for voltage and current, 17 samples are stored in particular pattern. The memory map for data storage is given in Table 4.2. The first sample for voltage and current is stored in locations 2070 to 2073 as well as in locations 2084 to 2087 for easy subtraction.

Thus the expression [X(n) - X(n-N)] for voltage is obtained by subtracting the contents of the next two memory locations for the voltage sample from the present two memory locations. The same applies for current samples. This operation is shown in Table 4.3, for samples seventeen, eighteen and nineteen.

4.6 Filter Algorithm

- The sequence of operation for the filter is explained in Section

- 44

Ta	b	1	e	4	2

Memory Location	l6 bit Word (2 bytes); cycle l	16 Bit Word (2 bytes); cycle 2	16 Bit Word (2 bytes); ¢ycle 3 .
2070/71	X _{1v} (MSB)/X _{1v} (LSB)	X _{18v} (MSB)/X _{18v} (LSB)	X _{35v} (MSB)/X _{35v} (LSB)
2072/73	X _{]I} (MSB)/X _{]I} (LSB)	X ₁₈₁ (MSB)/X ₁₈₁ (LSB)	X ₃₅₁ (MSB)/X ₃₅₁ (LSB)
2074/75	X _{2v} (MSB)/X _{2v} (LSB)	X _{19v} (MSB)/X _{19v} (LSB)	X _{36v} (MSB)/X _{36v} (LSB)
2076/77	$X_{2I}(MSB)/X_{2I}(LSB)$	X ₁₉₁ (MSB)/X ₁₉₁ (LSB)	X ₃₆₁ (MSB)/X ₃₆₁ (LSB)
2078/ 79	X _{3v} (MSB)/X _{3v} (LSB)	$\dot{x}_{20v}(MSB)/\dot{x}_{20v}(LSB)$	X _{37v} (MSB)/X _{37v} (LSB)
•			•
•	•	•	•
•	•	• '	· • •
•	•	•	•
•	, .	•	· · .
•	•	۲	•
20AC/AD	$x_{16v}(MSB)/X_{16v}(LSB)$	X _{33v} (MSB)/X _{33v} (LSB)	X _{50v} (MSB)/X _{50v} (LSB)
20AE/AF	X _{16I} (MSB)/X _{16I} (LSB)	X _{33I} (MSB)/X _{33I} (LSB)	X ₅₀₁ (MSB)/X ₅₀₁ (LSB)
20B0/B1	x_{17v} (MSB)/ x_{17v} (LSB)	x_{34v} (MSB)/ x_{34v} (LSB)	$X_{51v}(MSB)/X_{51v}(LSB)$
20B2/B3	X ₁₇₁ (MSB)/X ₁₇₁ (LSB)	X _{34 I} (MSB)/X _{34 I} (LSB)	X ₅₁₁ (MSB)/X ₅₁₁ (LSB)
2084/85	X _{lv} (MSB)/X _{lv} (LSB)	X _{18v} (MSB)/X _{18v} (LSB)	X _{35v} (MSB)/X _{35v} (LSB)
2086/87	$X_{1I}(MSB)/X_{1I}(LSB)$	X ₁₈₁ (MSB)/X ₁₈₁ (LSB)	X ₃₅₁ (MSB)/X ₃₅₁ (LSB)

₽,

•

(n) current sample value	memory locations	16 bit data stored	output on port 0 ₀ & 0 ₁
17	20B0/B1 20B2/B3 20B4/B5 20B6/B7	x _{17v} x ₁₇₁ x _{1v} x ₁₁	$X_{17V} - X_{1V}$ $X_{17I} - X_{1I}$
18	2070/71 2072/73 2074/75 2076/77	X _{18v} X ₁₈₁ X ₂ v X ₂₁	$x_{18v} - x_{2v}$ $x_{181} - x_{21}$
19	2074/75 2076/77 2078/79 2080/81	X _{19v} X _{19I} X _{3v} X _{3I}	X _{19v} - X _{3v} X ₁₉₁ - X ₃₁
20	2078/79 2080/81 2082/83 2084/85	x _{20v} x _{20I} x _{4v} x _{4I}	$x_{20v} - x_{4v}$ $x_{201} - x_{41}$

Table 4.3

46

. •

iş.

* **

 ω^{4}

3.6. Memory location 2002 of RAM is used as a pointer, which decides whether the sample is for voltage or current and selects either the voltage filter subroutine or current filter subroutine, appropriately.

The filtering algorithm consists of writing appropriate data to the control ports; port 29 and port 2A shown in Fig. 3.9 and then sending these control signals out using an OUTPUT instruction.

To explain in brief, the program for step 5 in the sequence of operation for the filter in Section 3.5, one needs to get Q_{n-1}^2 first. Thus we enter ' Q_{n-1} ', to both of the multiplier inputs by selecting the proper controls for multiplexers M₁ and M₂ from table. For these inputs the control port 29 in Fig 3.9 becomes

0 1 0 0 0 1 1 0 Port 29

and the instructions are,

MVI A,46 move word 46 to accumulator,

OUT 29 ; send out the contents of accumulator.

After the output instruction is executed the multiplier takes in the data and multiplies it. The product Q_{n-1}^2 is clocked out to the output register of the multiplier. At the same time, the next data is made available at the inputs of the multiplier, which in this case is P_{n-1} . This is done by the instructions,

MVI A, A8

OUT 29

The next operation is to take in new data, multiply it and add to it previous product Q_{n-1}^2 . To do this we use

MVI A, C8

, OUT 29.

So now the multiplier accumulator contains $P_{n-1}^2 + Q_{n-1}^2$. To move this value to the output bus of multiplier we use

MVI A, E8

OUT 29.

To transfer this value in register R_3 of Fig.3.8. R_3 is clocked by setting bit 3 of port 2A,

MVI A, 2B; move word 2B to accumulator

OUT 2A; clock R₃

These instructions complete step 4 of Section 3.5.

The filtering algorithm is self explanatory. A complete listing of the program is given in Appendix E.

The value [X(n) - X(n-N)] for voltage or current is calculated before the filter algorithm starts and is sent to the adders in Fig. 3.8. The filter algorithm is the same for voltage and current except for the clocking of the registers. The filtered outputs of voltage $[V^2]$ and current I^2] are stored in registers R_3 and R_6 respectively. Then the processor proceeds for the division algorithm.

4.7 Division Algorithm

The sequence of operations discussed in Section 3.7.2 is followed. \bar{s} is set low initially during the first clock pulse and then set high until the division is complete. Fourteen clock pulses are required for complete division, after which it stores the impedance value 7^2 in successive approximation register. The division algorithm is again straightforward and is listed in Appendix E.

4.8 Subroutine DIVIDE16

For the first sixteen samples the past values of voltage and current are zero and the filter Eq. 2.32 reduces to $\frac{1}{2}$

 $S_n = (P_{n-1} + jQ_{n-1})(a - jb) + X(n)$ 4.1 since X(n - N) = 0; $0 < n \le 16$.

Eq. 4.1 shows that the filtered output is sixteen times the peak value of voltage or current. This requires either scaling down of input waveforms or it restricts the input range of the A/D converter. To use the maximum range of the A/D converter without overloading it the first sixteen samples are divided by sixteen, so that Eq. 4.1 becomes

 $S_n = (P_{n-1} + jQ_{n-1})(9 - jb) + [X(n)/16]; \quad 0 < n \le 16$

In the program, the first sixteen samples are divided by 16 and sent out on port 00 and port 01, which for the rest of samples, outputs [X(n) - X(n - N)].

Subroutine DIVIDE16 takes the sample in register pair H and L, shifts the contents of this register pair to the right four times using instruction "RHL". The most significant bit is duplicated and the lowest bit is shifted to the carry, keeping the sign bit unchanged.

4.9 Impedance Algorithm

Once the division is complete, the contents of the successive approximation register are taken into the accumulator of the microprocessor. This value is then compared with a reference impedance value which is the normal impedance of the power line. If the value changes by more than +5%, the fault is 'detected' and calls a fault routine.

4.10 Fault Routine

Once a fault is sensed, the microprocessor stores the next 50 values of impedance in the memory locations 282ϕ to 2851 of RAM.

CHAPTER V

DISCUSSION

5.1 <u>Test Results</u>

The signal used for testing the system is $v = 4 \cos(2\pi \times 60t)$ volts.

The current waveform is derived from the voltage using a voltage divider. Data is stored in locations 2070 to 20B7 of RAM for voltage and current. Impedance values are stored in locations 2820 to 2851 of RAM. Data values and the impedance values are given in Table 5.1 and Table 5.2 respectively. The program is written in assembly language and is listed in Appendix E.

5.2 Software Simulation of Filter

The filter Eq. 2.32 discussed in Section 2.5 was simulated on a Hewlett Packard graphic terminal 2647 A. Test signals for voltage and current are taken as

> $V = X(J) = 1024 * \sin\omega_0 t + 102 * \sin 3\omega_0 t$ and $I = Y(J) = 102.4 * \sin\omega_0 t$

These equations are chosen for two reasons. 1. To find the effect of the third harmonics on the filter operation and 2. To find how fast the fault alarm can be issued to give an advance indication of the fault.

To simulate the fault, the voltage amplitude was reduced by a

Table 5.1

Memory Location	16 Bit Data Stored
2070/20 71	F9C5
2072/2073	FUE5
2074/2073	FA98 FE39
2078/2077	FC 38
207A/207B	FFC7
207C/207D	FE67
207E/207F	FF87
2080/2081	00D8
2082/2083	004F
2084/2085	0325
2086/2087	010B
2088/2089	04F1
208A/208B	0196
2086/2080	0150
2000/2001	0615
2092/2093	0113
2094/2095	0540
2096/2097	0188
2098/2099	0394
209A/209B	00F8
209C/209D	0150
209E/209F	00 3C
20A0/20A1	FEE8
20A2/20A3	FF 70
2044/2045	FCA2
	FEB8
2040/2049	r Gor FED1
2000/2000	
20AE/20AF	FF27
2080/2081	F9D7
20B2/20B3	FDDE
2084/2085	F9C5
2086/2087	FDE5

•

•	Ta	61	6	5	.2	2

Memory	Impedance	Memory		Impedance
Location	[Z2]	Location		Z ²
2820	00	2839		09
2821	• FF	283A		09
2822	OB	283B		09
2823	00	283C	5	09
2824	0C	283D	0	09
2825	00	283E		0A
2826	OF	283F		0A
2827	OE	2840		09
2828	OA	2841		~ 09
2829	09	2842		09
282A	OA	2843		0.9
282B	٥Λ	2844 4		09
282C	OA	2845		0A
282D	OA	2846		0A
282E	OB	2847		0A
282F	٥A	2848		0A
2830	OA	2849		. 09
2831	OA	284A .		09
2832	OA	284B		09
2833	09	284C		09
2834	OA ·	284D		09
2835	٥٨	284E		09
2836	ΟΛ	284F		0A
2837	OA	2850		09
2838	09	- 2851		09

53

•

factor of 1.17 and current amplitude was introduced by a factor of 8.5. These factors are obtained using a circuit shown in Appendix G. The fault is simulated by shorting the load. After the fault, the voltage and current waveforms are,

$$V = X(J) = 870.4 * \sin\omega_0 t + 87.04 * \sin 3\omega_0 t$$
 and
J = Y(J) = 870.4 * $\sin\omega_0 t$

The program is written in basic language and is listed in Appendix F. The impedance vs. number of samples is plotted in Fig. 5.1. For a $\pm 5\%$ variation of impedance from its normal value, it is seen that a fault can be sensed as early as the 3rd sample, i.e. within 3.12 msec.

5.3 Accuracy

The accuracy of the impedance calculation depends on the number of bits used for A/D conversion. This is the digitization error in voltage sample, current sample and in coefficients 'a' and 'b' of the digital filter. The most significant bit is a sign bit for A/D' conversion, hence the maximum possible error is $\pm 1/2$ of 2^{-11} , i.e. $\pm 2^{-12}$. Let this quantization error be denoted by ϵ . Other factor affecting the accuracy of the truncation error introduced by each multiplication. This error is also $\pm 2^{-12}$.

Total error is calculated by calculating the error introduced in obtaining filtered voltage-and current outputs and then calculating error introduced in division and square rooting. Complete error analysis is given in Appendix H and is found to be +1.52% of the maximum possible

55

• • • • •

impedance value.

5.4 Execution Time

To compute the execution time, the number of instructions have to be counted. A state time for the 8085 microorcessor is 0.33 usec. Table 5.3 lists the number of states in each section of the program, the number of times the set is looped, and the total number of states.

To calculate the execution time, the time taken for initialization is not considered. The execution time for the program to calculate z^2 is 758 µsec. The number of states required for the square rooting is the same as that for the division. Hence z is calculated in 1.933 msec, which is within one sample period at 60 Hz.

5.5 Size

The entire system comprises an SDK85 single board computer and an additional 9x5 inch board. A fast multiplier, an A/D converter and multiplexers are wire-wrapped on the expansion area of SDK85 board. The additional board has 40 IC's which include the successive approximation register, other registers and adders. This board is connected to the SDK85 board via two 50 pin flat cables.

A photograph for the complete system is shown in Fig. 5.2.

5.6 Extensions and Improvements

The main consideration ≱n designing a system for on-line

`			
Section	No. of States	No. of Timer Executed	Total No. of States
Initialization	338	٦	338*
Routine X _n - X _{n-m}	142	2	284
Filter I	302	1	302
Filter V	302	1	302
Division	59	14	826
Impedance Storage	106	1	106
Divide 16	172	` 1	172**
Rst 6.5	10	2	20
Ințrpt.	159	2	318
DataIn.	58	2	ʻ116

Total number of states to calculate $|z^2|$

* Initialization is done at the beginning of program only and hence is not accounted in total number of states.

2274

**Divide16 occurs only for the first 16 samples when $X_n - X_{n-m}$ is not done, since DIVIDE16 takes less states than for $X_n - X_{n-m}$, DIVIDE16 is not considered in the total number of states.

58

ſ

Table 5.3

้ พ

impedance calculation is speed. Hence it is advantageous to use a faster microprocessor. Since a 12 bit word is used for the digital processing, it would be more appropriate to use a 16 bit microprocessors; these are now becoming available (Intel 8086, Motorola 68000, Zilog Z8000).

The Intel 8086 has a clock rate of 5MHz compared to 2MHz for the 8085 microprocessor and if used, the execution time would be reduced to 618 usecs.

The fast multiplier TDC 1003J takes typically 175 nsec for multiplication and accumulation. Though the multiplier by itself is capable of operating at such a high speed, in the present system the speed is effectively reduced since the multiplier is controlled by a relatively slow microprocessor. The microprocessor has an instruction cycle time 53 1.3 µsec, and one multiplication, in effect is achieved in about 2.6 µsecs. (each multiplication takes two instruction cycles). To take better advantage of the fast multiplier, the control and clock signals should be derived from a clock drive circuit using faster digital hardware.

Recently Howard, Mitra and Mahbod [8] have shown that using such a clock driven circuit and fast multiplier a second order FIR filter function can be implemented in about 750 nsecs.

The work undertaken has shown that it is possible to monitor the on-line impedance characteristics for a single phase transmission line. The next task is to investigate the monitoring of three phases using a single microprocessor as a controller. To achieve this using serial processing, it is essential to cut down the execution time to about a third of the sampling period. If a digital filter is designed using an external clock drive as discussed by Howard [8], the filtering can be achieved in

about 875 nsec. Division and square rooting will take about 2.45 μ sec. each. Hence a complete impedance calculation can be achieved well within 300 μ secs, taking into account the time taken by A/D conversion and the data storage routine.

 l_{k}^{*}

APPEHDIX A

1

3

3

Timing diagram for ADC85

.

•

APPENDIX B

8065A INSTRUCTION SET SUMMARY

.

memory Discription 0					last	ruct	ion (sbe	64		Clock(?)	ł				Inst	ructi	es (Cede			Cieck(?)
MOVE, LODE, AND STORE CPE CPE and pointy open in the point open in the p	Maerianic	Description	07	0,	0,	0.	C	0;	0,	00	tycles	Macmonic	Orscription	0,	Qs	05	De	0	, Oz	0,	Øg.	Cycles
VCVI-W Mose register register is grant, regrant, regrant, regr	MOVE, LOAD.	AND STORE										CPE	Call on panty even	,	1	1	٥	1	1	0	0	9/18
UCV M Wee register fragmenty 0 1 0 S S FETURE Number of the second	NOV-1-2	Mave ceaster to recister	G	1	D	D	Ď	s	s	s	4	CPO	Call on parity odd	1	,	1	٥	0	1 1	o o	â	9/18
UCV M More membrais registry 0	NOVAL	Hove register to memory	· 0	1	,	1	0	s	s	s	7	RETURN		•			•			•	•	2
UVI. More omediate monitor 0 </td <td>NOV c M</td> <td>Move memory to recister</td> <td>0</td> <td>1</td> <td>D</td> <td>۵</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>7</td> <td>HET</td> <td>Return</td> <td>,</td> <td>· .</td> <td>•</td> <td>^</td> <td>,</td> <td>•</td> <td>•</td> <td>,</td> <td>.0</td>	NOV c M	Move memory to recister	0	1	D	۵	0	1	1	0	7	HET	Return	,	· .	•	^	,	•	•	,	.0
UVIX More modeling removes 0 <td>MVL 7</td> <td>Move immediate register</td> <td>0</td> <td>a</td> <td>5</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>7</td> <td>BC</td> <td>Return on cause</td> <td>;</td> <td>÷</td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>5/17</td>	MVL 7	Move immediate register	0	a	5	0	0	1	1	0	7	BC	Return on cause	;	÷	0				0		5/17
Last anmediate register Dial Dia Dial Dial <	APPL M	Move immediate memory	Ď	a	- 1	ī	٥	1	5	ō	10	ANC	Relivio on contra			0	:	م	. a		~	6/12
Park B & C Park B	LXI 8	Load immediate register	ō	0	0	Ô	0	Ó	à	ĩ	10	87	Return on revo	;		0		,	0		~	6/12
Lifi D Log anomediate register J J J I D <th< td=""><td></td><td>Pau B & C</td><td>-</td><td>•</td><td>Ť</td><td>•</td><td>•</td><td>ĩ</td><td>•</td><td>-</td><td></td><td>ANZ</td><td>Return on person</td><td>,</td><td>÷</td><td>0</td><td>0</td><td></td><td></td><td></td><td>0</td><td>6/12</td></th<>		Pau B & C	-	•	Ť	•	•	ĩ	•	-		ANZ	Return on person	,	÷	0	0				0	6/12
Pair D & E Pair D	LXID	Load immediate recister	э	э	٥	1	٥	0	a	1	10	RP	Reluin on any zero	1	;	1		ں د		~	٥ ٥	5/17
LLI # Load Immediate register 0		Pau D & E	•	•	•		•	•	•			BN	Relivin on minut				÷	,	~	~	Å	6/12
Pare H & L Pare H	LXI H	Load immediate register	0	Ĵ	1	0	٥	0	0	1	10	RPF	Return on name even	;	÷					• •	0	6/17
(2) 5.9 (2) 6.0 (2) 7 (2) 6 (2) 7 (2) 7 (3) 7 (4) 7		Paw H & L										RPO	Return on party odd	,	,	i	ő			۰ ۱	0	6/12
pointer	LXI SP	Load immediate stack	0	Ģ	}	1	0	0	0	1	10	RESTART		,		•	v	Ŭ	v	v	•	01.12
SIAZ B Sine A Andrect 0 2 C 0 0 0 7 Network Netw		pointer										AST	Restart	,	۰,	4	د	۵	,			17
STAR D Sine A indirect 0 C 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0	STAX B	Store A indirect	0	5	:	G	0	0	I	0	7		541 T		'	î	-	<u></u>	•		'	'4
LCAA B LCAA B <thlcaa b<="" th=""> <thlcaa b<="" th=""> <thlcaa b<="" td="" th<=""><td>STAX D</td><td>Store A indirect</td><td>0</td><td>i</td><td>C</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>7</td><td>INPUT/UUT</td><td>rui</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></thlcaa></thlcaa></thlcaa>	STAX D	Store A indirect	0	i	C	1	0	0	1	0	7	INPUT/UUT	rui									_
LOAX D Load A mereti 0 0 1 1 1 1 0 0 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>	LOAX B	Load A indirect	0	G	Q	0	1	0	ŀ	0	1		Inpul Obta		1	0		1	0	1	1	10
SiA Slote A direct 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	LOAX D	Loud A indirect	0	Ģ	0	1	1	0	1	0	1	001	Uoipui	'	1	U	1	0	0	1	1	10
LDA Load A direct 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1	SIA	Store A direct	0	0	1	1	0	0	1	0	13	INCHEMENT	AND DECREMENT									
SHUD Stere M & Lorent O	LUA	Load A duect	0	9	1	1	1	0	1	0	13	INR (Increment register	0	0	0	0	0	1	0	0	4
LNUD Load M & Lichereint memory 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 <t< td=""><td>SHLD</td><td>Store H & L direct</td><td>0</td><td>e</td><td>1</td><td>0</td><td>0</td><td>٥</td><td>1</td><td>0</td><td>16</td><td>DCA /</td><td>Decrement register</td><td>Û</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>٥</td><td>1</td><td>4</td></t<>	SHLD	Store H & L direct	0	e	1	0	0	٥	1	0	16	DCA /	Decrement register	Û	0	0	0	0	1	٥	1	4
DUM Exchange D & E H & L 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 <th1< th=""></th1<>	LHLD	Load H & L direct	С	0	١	0	1	0	1	0	16	INA M	increment memory	0	0	1	1	0	1	0	0	10
TACK OP3 Interment B 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 PUSN B Pusn register Par B 4 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 <	TCHG	Exchange D & E H & L	۱	:	1	0	1	0	1	١	4	OCR M	Decrement memory	0	0	1	1	0	1	0	1	10
ATAX MUTS Push register Push R 1 0 0 1 1 0 0	STACK OPS	negisters.										INX 8	Increment 8 & C	0	0	0	0	0	0	1	۱	5
Public register Value 6 1 0 0 1 <td>STALK UPS</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>{</td> <td>registers</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	STALK UPS	0										{	registers									
PUSH D Push register Par D 6 1 1 C 1 0 1	1030 8	Constack	1	1	Q	0	0	3	Q	1	12	INXD	Increment 0 & E	0	0	٥	1	0	0	1	1	6
Constact Formatic Formatic <th< td=""><td>FUSH D</td><td>Push register Pau D.A.</td><td>,</td><td>•</td><td>c</td><td>T</td><td>۵</td><td></td><td>•</td><td>•</td><td></td><td></td><td>legisters</td><td>•</td><td>^</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></th<>	FUSH D	Push register Pau D.A.	,	•	c	T	۵		•	•			legisters	•	^		•					
PUSH H Push requister Pair H & 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 <th< td=""><td></td><td>E on stack</td><td>•</td><td>1</td><td>٠</td><td></td><td>•</td><td>·</td><td></td><td>•</td><td>16</td><td></td><td>recisiers</td><td>U</td><td>v</td><td>'</td><td>v</td><td>U</td><td>ų</td><td>1</td><td>1</td><td>0</td></th<>		E on stack	•	1	٠		•	·		•	16		recisiers	U	v	'	v	U	ų	1	1	0
Lon stack OCX B Decrement 0 & C 0 0 0 1 1 6 PUSH PSW Push A and Flags 1 1 1 0 1 0 1	PUSH H	Push register Pair H &	1	٠	1	٥	0	ĩ	0	1	12	INX SP	Increment stark onwher	٨	۵	1	1	٥	٥	,	,	6
PUSH PSW Push A and Flags 1 <td></td> <td>L on stack</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>OCX B</td> <td>Decrement B & C</td> <td>ō</td> <td>õ</td> <td></td> <td>0</td> <td>ĩ</td> <td>ň</td> <td>÷</td> <td>÷</td> <td>6</td>		L on stack					-		-		-	OCX B	Decrement B & C	ō	õ		0	ĩ	ň	÷	÷	6
on stack POP 6 Pop register Pair B 4 1 1 0 0 0 1 10 DCX H Detrement H 4 L 0 0 1 0 1 0 1 1 6 POP 6 Pop register Pair B 4 1 1 0 0 0 1 10 Detrement H 4 L 0 0 1 1 1 6 POP 6 Pop register Pair B 4 1 1 1 0 0 1 10 A00 A00 A00 A00 A00 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0	PUSH PSW	Push A and Flags	1	1	Ŧ	•	0	1	0	ŧ	12	OCX 0	Decrement D & F	0	0	ů.	1	,	õ	,	÷	6
POP 6 Pop requester Pair B & 1 1 0 0 0 1 10 DCX SP Determent stack pointer 0 0 1 0 1 1 6 1 0 0 1 10 DCX SP Determent stack pointer POP 0 Pointer Pair B & 1 1 1 1 1 1 0 0 0 1 10 ADD POP 0 Pointer Pair B & 1 1 1 0 0 0 1 10 ADD AD		on stack										OCX H	Decrement H & 1	ň	ň	ĩ	'n	ì	ň	÷	÷	6
C 01 stack POP 0 PC rearregister Pau D 6 1 1 0 0 0 1 10 A00 A00<	POP 6	Pop register Pair B &	1	ľ	e	0	0	0	0	1	10	DCX SP	Decisment stack	0	0	÷	1		ň		÷	Ä
Purpure Possibility Part 0 & 0 1 1 1 1 1 0 0 0 1 10 ADD POP H Possibility Part 0 & 1 1 1 1 1 1 0 0 0 1 10 ADD Add register 10 A 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1		C OIT STACE	-					_					pointer	•	•		-	•	•	•		•
POP H Pop register Pair H 4 1 1 1 0 0 0 1 10 ADD r Add register to A 1 0 0 0 S S 4 POP PSW Pop A and Flags 1 1 1 0 0 0 1 10 ADD r Add register to A 1 0 0 0 1 1 0 0 1 10 0 0 0 1 1 0 0 1 10 0 0 0 0 1 1 0 0 1 10 0 0 0 1 1 0 0 1 10 0 0 0 1 1 0 0 1 10 0 0 1 1 0 0 1 10 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 10 0 1 10 10 10 10 10 10	POP 0	Foll stack	1	'	Ģ	1	a	0	0	١	10	ADD	· ·									
Loidistack Loidistack Loidistack ADC r Add register to A 1 0 0 1 S S S 4 FOP SW oil stack Pop A and Flags 1 1 1 0 0 1 10 ADC r Add register to A 1 0 0 1 1 0 7 XIML Exchange top of stack 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 <td>POP H</td> <td>Pon register Paul H &</td> <td></td> <td></td> <td>,</td> <td>•</td> <td>^</td> <td>•</td> <td>•</td> <td></td> <td>10</td> <td>A00 r</td> <td>Acd register to A</td> <td>1</td> <td>٥</td> <td>Û</td> <td>υ</td> <td>0</td> <td>s</td> <td>s</td> <td>s</td> <td>4</td>	POP H	Pon register Paul H &			,	•	^	•	•		10	A00 r	Acd register to A	1	٥	Û	υ	0	s	s	s	4
FOP PSW OII stack Pop A and Flags OII stack 1 1 1 0 0 1 10 Wilh Carry XTHL Exchange top of stack 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0<		L oll stack	•			0	v	v	v	r	10	ADC	Add register to A	1	0	0	¢	1	s	S	s	4
olf stack A00 M Add remory 15 A 1 0 0 0 1 1 0 7 XTHL Exchange top of stack H & L 1 1 1 1 0 0 1 1 0 7 SPHL H & L to stack pointer 1 1 1 0 0 1 1 0 7 JUMP Jump unconditional 1 1 0 0 1 1 0 0 1 1 0 7 JMP Jump unconditional 1 1 0 0 1 1 0 0 1 1 0 7 JMC Jump on carry 1 1 0 0 1 1 0 7 7 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 </td <td>FOP PSW</td> <td>Pop A and Flags</td> <td>1</td> <td>1</td> <td>,</td> <td>1</td> <td>0</td> <td>٥</td> <td>0</td> <td>1</td> <td>10</td> <td>1</td> <td>with carry</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	FOP PSW	Pop A and Flags	1	1	,	1	0	٥	0	1	10	1	with carry									
XTHL Exchange top of stack H & L 1 1 1 1 1 1 1 1 0 0 1 1 1 0 7 SPHL H & L to stack pointer 1 1 1 1 1 0 0 1 6 Ald intenery to A 1 1 0 0 1 1 0 7 JUMP Jump unconditional 1 1 0 0 1 1 0 0 1 1 0 7 JMP Jump unconditional 1 1 0 0 1 1 0 0 1 1 0 7 JMC Jump on carry 1 1 0 0 1 0 7 7 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 7 1 0 0 1 <t< td=""><td></td><td>oll stack</td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>-</td><td></td><td></td><td>AOD M</td><td>Add memory to A</td><td>1</td><td>0</td><td>0</td><td>ð</td><td>Û</td><td>1</td><td>1</td><td>0</td><td>7</td></t<>		oll stack					•	•	-			AOD M	Add memory to A	1	0	0	ð	Û	1	1	0	7
stack H & L stack H & L with Carry SPHL H & Lio stack pointer 1 7 JUMP Jump unconditional 1 7 JUMP Jump unconditional 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1	XTHL	Exchange top of	1	:	٠	0	0	0	۲	٢	16	ADC M	Add memory to A	1	0	0	0	۱	1	1	0	7
SPFL H & L to stack pointer 1 <th1< th=""> 1 <th1< th=""> 1 <th1< th=""> 1<td></td><td>stack H & L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>with carry</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<></th1<></th1<>		stack H & L											with carry									
JUMP Jump uncenditional 1 1 0 0 0 1 1 10 Act Mathematic memory 1 1 0 7 JMP Jump on carry 1 1 2 1 - 1 - 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 <td>SPHL</td> <td>H & L to stack pointer</td> <td>1</td> <td>;</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>6</td> <td>401</td> <td>Aud imiliaciate to A</td> <td>!</td> <td>2</td> <td>0</td> <td>0</td> <td>9</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td>	SPHL	H & L to stack pointer	1	;	1	1	1	0	0	1	6	401	Aud imiliaciate to A	!	2	0	0	9	1	1	0	1
JMP Jump unconditional 1 1 0 0 0 1	JUMP	1										~~	AGO IMMEDI HE 'O A	'	'	v	U		'	1	Q	1
JC Jump on carry 1 C 1 1 C C	JMP	Jump uncenditionat	1	3	0	0	0	0	1	1	10	DAD 8	AG1 8 & L 10 H & L	0	0	0	0	1	0	0	1	' 0
JNC Jump on no carry 1 1 0 1 0 1 0 7/10 DAD H Add H & L to H & L 0 0 1 0 1 10 10 10 7/10 DAD H Add H & L to H & L 0 0 1 0 1 10 10 7/10 DAD H Add H & L to H & L 0 0 1 10 0 1 10 10 7/10 DAD H Add H & L to H & L 0 0 1 10 0 1 0 10 7/10 DAD H Add H & L to H & L 0 0 1 10 0 1 0 7/10 DAD H Add H & L to H & L 0 0 1 10 7/10 SUB TRACT JM Jump on parity even 1 1 1 0 1 0 7/10 SUB T Subtract register 1 0 1 1 0 7 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0<	JL	Jump on carry	1	•	2	۲	1	~	1	ç	16	OAU O	AUD DISE IN HISL	ð	õ	0	1	1	ò	3	1	10
JZ Jump on zero 1 1 0 1 0 1 0 7 10 JAZ Jump on no zero 1 1 0 0 1 0 7 10 JAZ Jump on no zero 1 1 0 0 1 0 7 10 H & L 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 7 10 H & L H & H & L H & H & L H & H & L H & H & L H & H & L H & H & L H & H & L H & H & L H & H & H & H & H & H & H & H & H & H &	JNC	Jump on no carry	1	1	0	1	0	0	١	0	7/10	DAD H	Add H & L to H & L	0	ò	1	٥	1	ò	0	1	10
JAZ Jump on no zero 1 1 0 3 0 0 1 0 7/10 H & L JP Jump on positive 1 1 1 0 0 1 0 7/10 SUBTRACT JML Jump on memory 1 1 1 1 0 1 0 7/10 SUBTRACT JPE Jump on memory 1 1 1 0 1 0 7/10 SUB r Subtract register 1 0 0 1 0 5 S 4 JPE Jump on parity even 1 1 0 0 1 0 7/10 SBB r Subtract register 1 0 0 1 S S S 4 JPC Jump on parity even 1 1 0 0 1 0 7/10 SBB r Subtract register from 1 0 1 1 7 CALL Call unconditional 1 1 0 1 1 1 1 1 1	JZ	Jump on zero	1	۱	0	0	ł	0	1	0	7+10	DAD SP	Add slack pointer to	ō	0	1	1	1	ā	õ	11	10
JP Jump on positive 1 1 1 1 1 0 0 7/10 SUBTRACT JM Jump on minus 1 1 1 1 1 0 0 7/10 SUB TRACT 1 0 0 1 0 5 S 4 JPE Jump on parity even 7 1 0 0 1 0 7/10 SUB TRACT 1 0 0 1 0 SUB TRACT JPE Jump on parity even 7 1 1 0 1 0 7/10 SUB TRACT 1 0 0 1 1 0 0 1 0 7/10 Irom A JPD Jump on parity even 1 1 0 0 1 0 7/10 SBB I Subtract register from 1 0 0 1 1 0 7 CALL Call unconditional 1 1 0 1 1 0 9 1 1 0 9 1 1 0 1	JHZ	Jump on no zera	3	1	0	Э	0	0	1	0	7/10		H&L .	-	•				-	•	•	
JM Jump on minus 1 1 1 1 1 1 0 1 0 7/10 SUB r Subtract register 1 0 0 1 0 5 S 4 JPC Jump on parity odd 1 1 1 0 1 0 7/10 SUB r Subtract register 1 0 0 1 0 5 S 4 JPC Jump on parity odd 1 1 0 0 1 0 7/10 SUB r Subtract register from 1 0 0 1 1 S S 4 JPC Jump on parity odd 1 1 0 0 1 0 7/10 SBB r Subtract register from 1 0 0 1 1 5 S 4 PCHL H_4 L to program 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 <t< td=""><td>JP</td><td>Jump on positive</td><td>1</td><td>ı</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>7/10</td><td>SUBTRACT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	JP	Jump on positive	1	ı	1	1	0	0	1	0	7/10	SUBTRACT										
JPE Jump on parity even 1 1 0 1 0 1 0 7/10 Iram A JO Jump on parity odd 1 1 1 0 0 1 0 7/10 SBB / Subtractiregister from 1 0 0 1 1 5 5 4 PCHL H_&L to program 1 1 1 0 0 1 0 1 6 1 6 7 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 7 1 0 0 1 0 7 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 <th< td=""><td>JUL .</td><td>Jump on minus</td><td>1</td><td>1</td><td>1</td><td>3</td><td>1</td><td>0</td><td>1</td><td>0</td><td>7/10</td><td>SUBI</td><td>Subtract register</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>s</td><td>s</td><td>\$</td><td>4</td></th<>	JUL .	Jump on minus	1	1	1	3	1	0	1	0	7/10	SUBI	Subtract register	1	0	0	1	0	s	s	\$	4
JPO Jump on parity odd 1 1 0 0 1 0 0 1 0 7/10 SBB / Subtract register from 1 0 0 1 1 SS 4 PCHL H_6 L to program 1 1 1 1 0 0 1 6 1 6 1 1 1 0 0 1 1 5 S 4 PCHL H_6 L to program 1 1 1 0 0 1 6 1 6 1 1 0 1 1 0 1 6 1 6 1 6 1 1 0 1 1 0 7 1 1 0 1 1 1 0 7 1 1 0 1	JPE	Sump on parity even	1	1	1	0	1	0	1	0	7/10		Irom A									
PCHL H_&L to program 1 1 1 0 0 1 6 A with borrow CALL Call Call unconditional 1 1 0 0 1 1 0 0 1 6 SUB Subiract memory 1 0 0 1 0 7 CALL Call unconditional 1 1 0 0 1 1 0 1 1 0 1 1 0 7 1 0 0 1 1 1 0 7 1 0 0 1 1 0 7 1 0 0 9 1 0 1 1 0 7 1 0 0 9 1 0 1 0 9 1 0 1 0 9 1 1 0 0 9 1 1 0 1 0 7 1 0 0 9 1 1 0 1 1 0 7 1 1 0 9<	JPO	Jump on parity odd	1	1	1	0	0	0	t	0	7/10	S88 (Subtract register from	1	0	0	1	1	S	S	S	4
counter counter SUB M	PCHL ·	H,& L to program	1	1	1	э	1	0	٥	1	6	C 110 44	A with borrow	• .	_							_
CALL Call unconditional 1 0 0 1 0 1 0 1 1 0 7 CALL Call unconditional 1 1 0 0 1 1 0 1 1 0 7 CALL Call unconditional 1 1 0 0 1 1 0 7 CC Call on carry 1 7 7 1 1 0 9 18 SUI Subtract immediate 3 1 0 1 1 0 7 CNC ' Call on no zero 1 1 0 0 9/18 SUI Subtract immediate 3 1 0 1 1 0 7 CAL Call on no zero 1 1 0 0 9/18 SUI Subtract immediate 1 1 1 0 7 CMZ Call on no zero 1 1 1 0 0 9/18 L0GICAL - CM Call on motws 1 1		counter										208 M	Subliact memory	1	0	0	1	Q	1	1	Q	7
CALL Call unconditional 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1	CALL											SAR M	Subtract memory from	,	•	^	٠.				^	,
CC Call on carry 1 7 9 1 1 0 9,18 SUI Subiract immediate 3 1 0 1 0 7 CNC ' Call on no carry 1 1 0 1 0 9,18 SUI Subiract immediate 3 1 0 1 1 0 7 CNC ' Call on no carry 1 1 0 1 1 0 9/18 SUI Subiract immediate 3 1 0 1 1 0 7 CAC	CALL	Call unconditional	1	1	Ø	0	١	۱	0	3	18	300 4	. A with boriow	'	v	v	1	•	ſ	•	v	(
CNC * Call on no carry 1 0 1 0 9/18 from A CZ Call on zero 1 1 0 9/18 SSI Subtract immediate 1 0 1 1 0 7 CHZ Call on zero 1 1 0 9/18 SSI Subtract immediate 1 0 1 1 0 7 CHZ Call on no zero 1 1 0 1 0 9/18 Ifrom A Indicate 1 1 1 0 7 CHZ Call on positive 1 1 1 0 1 0 9/18 Itroin A with borrow Itroin A 1 0 1 0 5/18 LQGICAL Itroin A 1 0 0 S S 4 CH Call on minus 1 1 1 0 9/18 AMA r And register with A 1 0 1 0	CC .	Call on carry	۱	;	ç	1	1	1	Ø	0	9,18	ទមា	Subtract immediate	3	1	0	1	٥	1	1	ø	,
CZ Call on zero 1 1 0 9/18 SBI Subtract immediate 1 1 0 1 1 0 7 CHZ Call on no zero 1 1 1 0 0 9/18 SBI Subtract immediate 1 1 1 1 1 0 7 CHZ Call on no zero 1 1 1 0 0 9/18 L0GICAL .	CNC	Call on no carry	۱	:	0	1	0	1	0	0	9/18		from A	·	•	•	·	Ĭ	·	•	•	'
CNZ Call on no zero 1 1 1 0 0 9718 froin A with borrow fr	cz .•	Call on zero	1	1.	e	0	1	1	0	0	9-18	SBI	Subtract immediate	1	1	0	ı	1	1	1	0	7
CP Call on positive 1 1 0 1 0 5/18 LOGICAL CM Call on minus 1 1 1 0 9/18 ANA r And register with A 1 0 0 S 5 4	CNZ	Call on no zero	١	۱	ų,	C	0	١	0	0	9/18		from A with borrow									
CM Callian minus 1 t 1 t 1 0 0, 9/18 AllAr And register with A 1 0 1 0 0 S S S 4	CP	Call on positive	1	٦	;	1	0	1	C	٥.	5.18	LOGICAL	• • •									
	cu	Call on minus	1	:	1	٠	١	1	٥	0.	9/18	ANA 1	And register with A	١	0	۱	0	0	S	s	s	4

Ċ,
8085A INSTRUCTION SET SUMMARY (Cont.)

			1	nstr	wein	# C	ad at	ų –		Clock.22	1	·		1	Instru)Clia	n C	pdet	J.		Clorest
Mnemenic	Description	٥,	0.	Ø9	01	0,	07	0,	00	Cycles	Masmooic	Oescriphen	0,	0 _A	05-	0.	03	Q	Ot	By	Cycles
XRA r	Exclusive Or register with A	1	0	۱	0	1	S	S	Ś	4	RAL	Pointe Alleft in Align Carry	э	0	0	1	0	ł	۱	1	4
ORAI	Or register with A	1	0	1	1	۵	s	S	S	1	R46	Relate A sight through	0	Û	0	1	1	1	1	1	L
CAIPI	Compare register with A	1	0	1	1	t	s	\$	s	4		Carry									
ANA M	And memory with A	1	0	1	0	0	Ŧ	1	0	7	SPECIALS										
XRA M	Exclusive Or memory	1	0	1	0	1	1	1	0	7	CUA	Comprement A	a	Û	T	0	1	1	1	1	4
	WIT A		•			~			•		SIC	Set Carry	0	0	T	1	0	1	1	1	4
URA M	Or memory with A			1	4	U	+	1	0	_	CVC	Com, Amenicar a	0	0	1	1	1	1	,	ŧ	4
смр м	Compare memory with A	1	0	1	1	1	1	1	0	•	3:1	Derimat a fjust A	C	Û	1	0	0~	t	1	ŧ	4
ANI	And immediate with A	Л	1	Ŧ	0	0	1	t	0	7	CONTROL										
XRI	Exclusive Or immediate with A	1	1	1	0	1	1	1	0	-	E	Enat a interrupto	1	T	t	ŧ	t	0	t	ł	4
0RI	Or immediate with A	1	1	1	1	0	1	1	0	7	Di	Diversion		1	i.	1	0	0	1	;	4
CPI	Compare immediate	I	ł	1	ı	1	1	1	0	•	•.0> - 1	No nomation N	;	0 1	a ,	0	0 C	0 1	0	Q J	4 2
ROTATE											NEW 8085 A	INSTRUCTIONS									
RLC	Rutate A tel:	0	0	0	0	0	t	1	t	:	÷.,	Ange mugt the	•	¢	1	0	0	0	٥	ŵ	4
RRC	Potate A-right	0	0	0	C	۱	1	ł	1	:	5 7	Schrightugt Mass	;	0	:	1	0	0	0	9	÷

NOTES 1 000 or SSS 8 000 C 001 0 010 E 011 H 100 L 101 Memory 11, 4 111 2 Two possible cycle limes 16/12) indicate instruction cycles dependent of condition flags

"All mnemonics copyright #Intel Corporation 1977

SUMMARY OF 8085A INSTRUCTIONS

.

INSTR	STATES	CYCLES	NOTES	INSTR
AR r	4	1		OUT
AR I	7	2		PCHL
AR M	7	2		POP
CALL	18	5	2	PUSH
CCN	9/18	2/5	2,4	ROT
CMC	4	1		RET -
СМА	4	1		RCN
DAA	4 `	. 1		RIM*
DAD	10	3		RST
DCR r	4	1	3	SHLD
DCR M	10	3		1
DCX	6	1	2	SIM
DI	4	1		STA
E:		•		STAX
HIT	4 6	•	۲	STC
IN	10	, ,	, ²	
	4	3	7	XCHG
INR M	10	, ,	.	XTHL
INX	5	,	2	SPHL
JMP	10	· *	4	
JCN	7/10	2/3	4	New Josten
LDS	13	4	•	
LDAX	7	2		NOTES
LHLD	16	5		cundition
LXU	10	3	•	during M1
MVIM	10	3	• -	3 Decreased
MVLr	. 7	2		fatse,
MOV M,r	• 7	2		5. 5 cycles to
MOVIM	7	2		A HLT.
NOVI	4	T	3	1
NOP	4	1	س	
		<u> </u>	S.	1

INSTR	STATES	CYCLES	NOTES
OUT	10	3	
PCHL	6	1	2
POP	10	3	
PUSH	12	3	2
ROT	4	1	
RET -	10	3	
RCN	6/12	< 1/3	2
RIM*	4	1	
RST	12	3	. 2
SHLD	16	5	
SIM'	4	T	
STA	13	4	
STAX	7 .	2	
STC	4	1	
XCHG	4	1	
XTHL	16	5	
SPHL	6	٦	2
		· · · · · · · · · · · · · · · · · · ·	

۲

iction

ble state-cycle : mus indicates dependence on flag.

n states over ECED due to necessity of a Tg

from 6 to 4 states due ng Mg n branches over last badress fatch if condition

get a HLT state. I excle necessary to get out

.

4. 11

:)0

NEW CONDITION CODES. V ~ 60.1 X5 • 6it 5

•		Con !	tion cod	n for	rat		
S	4.	>5	٨C	0	ţ,	v	с

DSUB (double subtraction)

(H) (L) + (H) (L) - (B) (C)

The contents of register pair B and C are subtracted from the contents of register pair H and L. The result is placed in register pair H and L. All condition flags are affected.

ARHL (arithmetic shift of H and L to the right)

(H7=H7), (Hn-1) = (Hn)

(L7=Ho), (Ln-1) + (Ln); (CY) = (Lo)

The contents of register pair H and L are shifted right one bit The uppermost bit is duplicated and the lowest bit is shifted into the carry bit. The result is placed in register pair H and L. Note: only the CY flag is affected.

0 (10)	00010
2	ycles.
register	ddressing.
7 register CY	tates: duressing, lags:

RDEL (rotute D and E left through carry)

(Dn+1) = (Dn), (Do) = (E7) (CY) = (D7), (En+1) = (En); (Eo) = (CY)

The contents of register pair D and E are rotated left one

position through the carry flag. The low-order bit is set equal to the CY flag and the CY flag is set to the value shifted out of the high-order bit. Only the CY and the V flags are affected.

00011	000	(18)
cycles.	3 10 -	
addressing.	register CY. V	

LDHI (load D and E with H and L plus immediate byte) (D) (C) = (H) (L) + (byte 2)

The contents of register pair H and L are added to the inmidiate byth. The result is placed in register pair O and E. Note: no condition flags are affected.

COSI (load D and C with SP plus immediate byte) (0) (0) + (SPH1(SPL) + (byte 2)

The contents of my ster pair SP are added to the immediate tyte. The result is placerf in register poir D and E. Note no condition flags are afterned

2's completiont overflow Underflow (0, 2) or overflow (114X) X5 = 01-02 + 01+ R + 02+ R, where 01 = sim of operand 1, 02 + sign of operand 2, R = sign of result. For subtraction and comparisons, replace 02 with 02.

RSTV (restart on overflow)

$$\begin{array}{c} \text{if } (V)^{\circ} \\ ((SP) - 1) = (PCH) \\ ((SP) - 21 = (PCL) \\ (SP) - (SP) - 2 \end{array}$$

(FC) = 40 hex

If the overflow fleg V is set, the actions specified above are performed, otherwise control continues sequentially

11001	011	1353	(CE)
cycles.	-1 or 3		
states	6 or 12		
addressing.	register indirect		
flags:	none		

SHLX (store H and L indirect through D and E)

((D)(E)) = (L) ((D)(E)+1) = (H)

The contents of register L are moved to the memory location whose address is in register pair O and E. The contents or register H are moved to the succeeding memory location

JNX5 (jump on not X5)

If (not X5) (PC) = (byte 3) (byte 2)

If the X5 flag is reset, control is transferred to the instruction whose address is specified in cyte 3 and byte 2 of the current Instruction, otherwise control continues sequentizity

(DD)

11011	101
low order up	Idress
high order ad	adress
ycles:	2 or 3
ales:	7 cr 10
ddressing:	immédiate
Ags:	none

LHLX (load H and L indirect through D and E)

(L) = ((D)(E))(H) = ((D)(E)+1)

\$1 30 fI

The content of the memory location whose address is in D and E, are moved to register L. The contents of the succeeding memory location are moved to register H

	11101	101		(ED)
	cycles:	3		
•	uddressing: flags.	register	indirect	

JX5 (jump on X5)

II (Y5). (PC) + (hyto 3) (byte 2)

If the X5 flag is reset, control is transferred to the instruction whose audress is specified in tight 3 and byte 2 of the current instruction; otherwise control continues sequenticity

11111	(FD)
have under a	2 to 3 2 to 3 7 or 10
a slidronging flees	ite is transfer and a second s

APPENDIX C

FAST MULTIPLIER-ACCUMULATOR

Model: TDC1003J

The TDC1003J is a multifunction arithmetic unit capable of performing 12 x 12 multiplication as well as product accumulation. It has an additional feature of permitting the accumulator contents to be subtracted from the next product instead of being added, if desired. Input registers are provided in addition to the product accumulation register.

The TDC1003J is directly implementable as the central building block for digital filters, particularly FFTs, for complex multipliers, and for recursive and nonrecursive filter elements.

FEATURES

- 12 x 12 Bit Parallel, Two's Complement Multiplication
- Controllable Accumulation Either + or —
- 175 nsec Typical Multiply and Accumulate Time
- Much Lower Power/Faster Speed than Equivalent MSI Multiplication—Accumulation Systems
- Round Control
- 27-Bit Accumulation Capacity
- Single Chip, Bipolar Technology
- Asynchronous Mode Multiply
- Radiation Hard
- TTL Input and Output
- Three State Outputs
- Single Power Supply, +5 Volts
- Dual In-Line Package of Flat Pack
- 2.5 Watts Power Consumption

TDC1003J

(NOTE 3) ×_-5 ×_-6 ×__8 ×_9 ×_10 ×_11 ×__3 ×_4 ×_1 ×_2 X INPUT ×__7 XSGN 2⁻² 2⁻³ 2⁻⁵ 2⁻⁹ 2-1 2-4 2⁻⁶ 2-7 2⁻¹⁰ 2-11 SGN 2-Y__1 Y__3 Y_4 Y__6 Y__7 Y__8 Y_9 Y_11 ^Y-5 ^Y-10 Y__2 Y INPUT Y_{SGN} OUTPUT FORMAT WHEN NONACCUMULATING PRODUCTS (ACC = 0) FOR PINOUT DIAGRAM 0, = PR SGN SGN SGN SGN +4 +3 0 -2 -3 -4 -5 +2 +1 -1 -16 -17 -18 -19 -20 -21 -22 2⁻²⁰ -2⁴ 2⁰ 2⁻² 2⁻³ 2-4 2⁻⁵ 2⁻¹⁶ 2-17 2-18 2⁻¹⁹ 2-21 2-22 2¹ 2³ 2-1 2² SGN SGN SGN SGN NOTE 1 OUTPUT FORMAT WHEN ACCUMULATING PRODUCTS (ACC = 1) FOR PINOUT DIAGRAMO = S SUM S S s S S S S S S S s S S S S S SGN 2 c 17 _10 -A 10 . 19 - 70 21 1.4

						<u> </u>								-20		
SGN				< +												
-24	2 ³	2 ²	2 ¹	2 ⁰	2-1	2-2	2 ⁻³	2-4	2-5	2-16	2-17	2-18	2-19	2 ⁻²⁰	2-21	2-22
NOT	E 2			•												

NOTE 1. When nonaccumulating, all four MSB will indicate the sign of the product. The PR-0 term will also indicate the sign except for the one exceptional case when multiplying -1 + -1. Note that, with the additional significant bits available on this multiplier, -1 + -1 is a valid operation yielding a +1 product.

NOTE 2. There is no change in the format whether one is accumulating the sum of products or simply doing single products. However, the three additional most significant bits are provided to allow valid summation beyond that available for a single multiplication product. For further clarification, no difference exists between this organization and one which would have the product accumulation off chip in a separate 27-bit wide adder. Taking the sign at the most significant bit position guarantees that the largest number field will be used. In operation the sign will be extended into the lesser significant bit positions when the accumulated sum only occupies a right hand portion of the accumulator. As an example, when the sum only occupies the least three bit positions then the sign will be extended through the 24 most significant positions.

The latter factor allows one to detect imminent overflow/underflow should this be desired. Using an off chip exclusive OR gate connected to the sign and the next most significant bit will flag imminent overflow/ underflow. When the two inputs are different, the exclusive OR gate gues to a logic one state. In this case four more multiply-accumulate cycles would be allowable without overflow/underflow, but a fifth could possibly cause overflow/underflow depending upon the magnitude of the sum steps.

NOTE 3.

Format is shown using a 2s complement fractional notation. In this notation the location of the binary point signifying separation of the integer and fractional fields is just after the sign, between the sign and the next most significant bit for the multiplier inputs. This scheme is carried over to the output format, except that an extended significance to the integer field is provided (to extend the utility of the accumulator). Consistent with the input notation the output binary, point is located between the PR-0 and PR-1 bit positions (for the nonaccumulate mode). For the accumulate mode the binary point position is the 'same between the S+0 and S-1 bit positions.

It is arbitrary where the binary point is considered located as long as one is consistent with both input and output formats. One can consider the number field entirely integer, i.e., with the binary point just to the right of the least significant bit for input, product, and accumulated sum.

FORMAT: 2'S COMPLEMENT FRACTIONAL NOTATION

TDCI003J

absolute maximum ratings over operating temperature range

Supply voltage	•	•	•	•	•	•	•	•	•	•	۰.	•	٠	٠	•	•		•	•	•	•	•		•	•	•	-	0.5 to 7.0 V
Input voltage	•	•			•	•	•	•	•	•	•		•	•	•	•		•	•	•		•	•	•		•	•	.0 to 5.5 V
Output voltage	٠		•		•			•		•		•				•	•	•								•	•	0 to 5.5 V
Operating temperature range .	• ,			•				ىر	•		•			•		•			•			•		•	•		. (0°C to 70°C
Storage temperature range		•	•		•	•	•		•					•	•	•	•	•	4			•		•	•	-	·65`	°C to 150°C
Lead temperature (10 seconds)		•	•	•	•					•						•	:			•	•	•		•			•	300°C
Junction temperaturé	•	٠	•	•	•	•	•	•	•	•	•		•	•	~	. .	•	•	•	•		•	•		•		•	175°C

recommended operating conditions

	T	DC100	3	UNIT
×	MIN	NOM	MAX	
Supply voltage, V _{CC}	4.5	5.0	5.5	v
Clock pulse width (measured at 1.5 V level)	25			ns
Input register setup time, T _S (see Figure 1)	5			ns
Input register hold time, $ au_{ m H}$ (see Figure 1)	15			ns
Operating ambient temperature	0		70	°C

electrical characteristics over recommended temporature range

	DADAMETED	TEST CONDITIONS	ר	DC10)3	INIT]
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX		
V _{IH}	High-level input voltage		2.0			v]
ν _{IL}	Low-level input voltage				0.8	v] `
VOH	High-level output voltage	$V_{CC} = NOM, i_{OH} = -0.4 \text{ mA}$	2.4	2.7		V	
VOL	Low-level output voltage	V _{CC} - MIN, I _{OL} = 4.0 mA		0.3	0,5	V	
• I _{IH}	High-level input current	V_{CC} = MAX, V_{IH} = 2.4		-2	75	·μA	
I _{IL}	Low-level input current	V _{CC} - MAX, V _{IL} - 0.4		5	-75	μA	
t _{in}	Clocks	V _{CC} = MAX, V _{1H} = 2.4			76	μA	
I _{IL}	Clocks	V _{CC} - MAX, V _{IL} - 0.4			-0.75	mA	\backslash
'cc	Supply current	V _{CC} = NOM		500	750	mA	

At T_{ambient} = 25°C, V_{CC} = NOM.

* Clock P is two equivalent clock input loads.

switching characteristics, $V_{CC} = 5.0$, $T_A = 25^{\circ}C$ (see Figure 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Multiply accumulate time, input register clock To output register clock, TMA	See Figure 5		150	175	ns
Output delay	Load 1, see Figures 3, 6		40	50	n s
Three state output dalaý Output cnable Output disable	Load 2, see Figures 4, 6 Load 2, see Figures 4, 6		40 30	50 40	រាន រាន

TDCI003J

AMBIENT AIR TEMPERATURE, ^OC

Figure 8. Icc Versus Tcase

Tcase, OC

ć

APPENDIX D

SUCCESSIVE APPROXIMATION REGISTER

DM2502, DM2503, DM2504 successive approximation registers ----general description The DM2502, DM2503 and DM2504 are 8-bit and 12-bit DM2503 and DM2504 operate over -55°C to +125°C; TTL, registers designed for use in successive approximathe DM2502C/ DM2503C and DM2504C operate over 0°C to +70°C. tion A/D converters. These devices contain all the logic and control circuits necessary in combination with a D/A converter to perform successive_approximation analog-to-digital conversions., _____ features. وو مار ا The DM2502 has 8 bits with serial capability and is not ----Complete logic for successive approximation A/D expandable. in some . converters The DM2503 has 8 bits and is expandable without serial = 8-bit and 12-bit registers capability. Capable of short cycle or expanded operation - Continuous or startistop operation The DM2504 has 12 bits with serial capability and Compatible with D/A converters using any logic code expandability. • • . . Active low or active high logic outputs All three devices are available in ceramic DIP, ceramic . Use as general purposé serial-to-parallel converter or flatpak, and molded Epoxy-8--DIPs, The DM2502, - - ring counter logic diagram Σ, 85 10 85 84 88 m 81 84 L connection diagrams (Dual-In-Line and Fix Packages) 0M2502, DM2503 PM2504 T (all verbe 125021, OM2502CJ, DM2503J DM2504F or DM2504CF er CM2503CJ See Package 17 See Package SA W DM2502CN er DM250DCN nber DM2504J or DM250ACJ See Pockage 23 See Preisage 17A DM2502W, DM2502CW, DM2503W, Order Number DN2504CN See Print age 28A See Package 41

APPENDIX E

72

IMPEDANCE CALCULATION PROGRAM

_Ci

COMMENT						ver the intervept mack		Assign the input -	, output Ports:		-	-							DIX UGNOMIL EN IDAN		A Der The Pointers as shown	in following table.				
MNEMONIC			LXI SP. C230	MUT A AR	SIM SIM	MVI A. 3C	OUT 20	MUT A. 35	OUT 28	MVT A EE		** 150	OUT \$3	MUI A, 44	AA THO	OUT DR	MUT A GA	A-1	LXI H. 4420	MVT M A&			44 WINW	LXE H, 4224	MVI M, 44	TNX H
LABEL			TNITIAL:		-	1		•						·	1									MATN		•
DATA OR INSTRUCTION	•	- 	316224	3648	34	3E 3C	, D32¢	3E3F	D328	3EFF	D342	Dada		зефф	D3¢A	D3¢B	ЗЕфф	DZZA	21 44 24	3640	23.	3600	21 0220	30.05	**	7.2
ADDRESS			ф 8ф¢	4843	\$845	2945	8984	\$8.0A	2084	58¢F	\$814	\$812	AOIA		Ú.	81	Ă	81 c	781 E	821	P 823	4824	P 826	28.29	979	60~0

ţ

73 . •

			,
	•		*
			•
	•		
••••	-	ĺ	

「いい」というないないない

•	CO	Pointer 1	2004 Checks	2001 Checks	Scimole	Pilter	2002 Check P	2003/ Points	2004 data 2	2001 POINTS	200 6 OPENat		Location	2074/ Data	2007 and cur	2824/50 Impedi					Check for fire	F X(m) <16 ; ju	Loud somple 1	reacter pair 1	
•	MNEWONIC	HUT M TH	H XNT	MUT, M, 24	T KNT	MUT: M, 70	H XNT	DE W IN	H XNH	MVI M, 20	T X X X X	- W.T.W. 2.8.	H XNH	. MVI M, 40	нШ	HLT.	Ш.	HLT	LHLD \$\$ 24	Mov A, L	CPI 24H	JM DIVIDEIS	02.24 CHAN	MOV. D, M	
	· LABEL			 				•	•		•	·. (1 1 400 T		L00P2: .	÷ .				•	
- - -	DATA OR INSTRUCTION	36 <i>7</i> Ф	23	* 3626	23	3674	εr	36,26	. '23.	3620	с.	3€ 28	, 23	3644	Е Р	-7t	Ч Ч Ч	76	2A \$\$2\$	F	FE 24	FAZE¢9	2A 4524	sċ	
	ADDRESS	\$82C	4 <i>8</i> .7E	¢ 82F	ф 831	¢832	4834	4835 ⁻	\$837	4838	483A	\$83 8	\$83D	P.83E .	p.8.4 0	1484	p842	843	84 4	-847	P848	84.4	84D	.85¢.	

												75	.	•	•			•				•	•				
COMMENT			Increment pointer	and restore the value.			load 15th previous scimple in	rechater pair B and C	· · · [CN - w) *]		(W)X MOY [CN KU)X] MONTAUS		output the result						Check ter voltage or current	sample. If voltage jump to FLTRV	-	Filter Current somple.	Input to multiplicy b': P.		004 400	1-11-1 Product	
MNEMONIC	Mov R M			JULU 9520	HXNT	I X Z H	Mov B, M	L XNH				I'N A' L	10 100	MOV A,H	047 04	CHLD 4124	MOV A.L				6210 1 TV-	DCR M	- MVI A, 42	047 29	MVE A 42	1 62 700	
LABEL			a				•					•			· · ·	LOOP 3 :											
DATA OR INSTRUCTION	SE	E	22 4520	24	22	4	23	46.	EB	48	Pź	Dami			. \$\$ EA	244124	74	μEφΦ	CA E348	2101241	35	35.4.2	140	D3 29	36+2	D3.29	•
ADDRESS	\$852	ф 853	¢ 854	\$857	\$858	\$859	\$85Å	¢853	\$ 85c	. 485D	\$85E	485F /	\$861	C250		\$\$64	\$8.67	\$858	Ф86А	ΦβέĎ	\$874	4871		4040	4875	\$457,	

•

4

•

7

1.

.....

•

COMMENT		thous a an-1		gel a Qn-1 - b Pn-1			output the result agn-1- bPn-1	to RI. Input &, Pn.1.		get a. Pn-1		input 'b' Quri			jer ban-1 + apn-1		input an-1, an-1	•	output ban-1+ aPn-1 to R2.		3et Qn-1-		indut 'D 'I C '	1-12 (1-12) M-1		Bet Prit + Qu-1	
MNEMONIC	MUT A, 89	047 24	MUT & Da			CH (H T 1)		47'H TAM	047 24	St'Y TNN	04T 29	MVI A, A4	0UT 29	MUT D CA		241 24	MVI A, A6	0UT 29	MUT A, 3F	OUT 2A	MVIA,46	047 29	AD A TW			1141 716	64 100
LABEL																		•									_
DATA · OR INSTRUCTION	3E89	D3.29	3E.D9	D329	BE AS	D329	3E 2 F.	DJAR	3E45	D329	35.04		1841	ЗЕсф	. D3 29	3F.Ac	Da 24	2626	D12A	3646	01.76	77.40	3E.A8	· D3 29	3EC8	D329	
ADDRESS	¢ 839	\$87B	\$ 87D	°¢87F	1884	\$883	\$85	4887	4889	0.888	\$88D	L L L L L L L L L L L L L L L L L L L	1005	1684	¢813	0.84S	\$897	\$\$99	Ф89В	Q1584	\$89F	¢ k A I	11/2 -	4.8A3	48AS	ф8А7 .	

• •

٠

.

.

a ser and a ser a se

warman in the second

,,**, ™**¢

to 23 times 4 ちゃちりつ Pn-1-+ 2 n-7 100P. 14 A. . . H COLVER Set , f multiplier . •† Output the result the ž Himes couter High 301 SAR AIA division Decement † f the $| \mathfrak{P} |$ ŝ Clock tuput door さの 501. 56. and and 564 DWISION 1 9 A, BF **B**, **¢** E A, 2F A,4F TEST MVI A, 6F A, E8 A, 2F MVZ A, AI 2 4 29 с Ц 5 4 u A ď 79 AL THO ц 2 C HŽU 470 トゴロ 470 オフビ TNU HNW THO 470 50 ていて HAW CALL FUE DCp HNW O'UT さいこち :NoISINIO DATA OR INSTRUCTION C28F48 CD 10 20 3668 Ф6ФE 3EGF 3645 3E BF 0329 D32A D32A BEZF D329 356F DZZA D32A 3641 D329 D329 3E2F D329 ф С \$8 A 8 \$8 A 9 **QA 8**9 **98 AF** क 8 8.5 \$884

7[.]7

COMMENT

MNEMONIC

LABEL

ADDRESS

\$ 8 B3

4881

\$884 \$ 98.89 \$8 BD 48 84

ф8с3

\$8C5

\$**8**68 \$84D

6284

\$8C7

p8 cl

ひく

4220 H IV7

219220

.48 D4.

\$D1 080 F

34

Q 807

ЭF.

80 80

MOV A, M

JUR 3

•	1		•				-	<i></i>				. 7	8. 1	•	- -	a to 1975 1 9	•,	•		• .		•			÷
	COMMENT	if one cycle is complete,	jump to routine MAIN.	Else wait with interrupt occurs	to store voltage sample.	Jume to Loopi		Filter the voltage sample.				Take 'b', Pn-1'		Bet D.Pn-1, Product		input 'a', 'an-i'		96t a gn-1 - b 8n-1				output the result a Qn-1 - bP1-1	to R4. Input "c', 'Pn.1'	ger a. Pn., Product	
	MNEMONIC	CPT I H	JZ - MALN	ET	· HLT ·	TMP LOOPI	•	LXI H, 4124	TNR M	MVI PIZ4	04T 24	. MVI A, Ф2	04T 29	MVI A.42.	. 62 JNO	MVI A, 89.	04T 29.	. MVI A, D9	· 047 29	WY T A' AS	PL 100	MVI A.21	0UT 2A.	MVIA, 45	047 29
	LABEL	*		·				FLTRV:						•	•			•			-		•		
	DATA OR INSTRUCTION	FEII	CA 26 48	Fb.	76	C342¢8		214124	/34	3E2¢	D32A.	· 3E42	Darg	3E42	D3:29	3e84	0329.	3609	יסבכט	BEAS	D327	123E -	DER	· 3E45	D329
	ADDRESS .	¢825	ቆያይ	O BUE	48DF	98EI	· · ·	\$\$E3	98EG	48 É7	48E9	48EB	ØSED.	48EF	08F1	\$8F3	\$ 8FS	4847	\$8F9	48FD	F-124	4-18¢7	\$7¢1	6456	\$ 7.2 S

たいろうぎ ひいがいしょう アイデン・ションシュアクロテク あいたい ままえいがいまた いまいみ あいかい あい しょう たいまままま

and the state of the second second

•

المارين المارية والمعالمان والمعالم والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمناوعات

COMMENT	input 'b', 'Qn-1'	•	yet ban-1 + a Pn-1		input "Gn-1", "Qn-1"		Output the result bonnit africi	to RS	get Qn-12	input Pr. "Pn. "			3et Pn-12+ Qn.2				out put the result Pn. 2+ Qn. 12 to	Re	Jump to Loopz.			· ·		
MNEMONIC	MVI A, A¢	04T 29	MVI A, C¢	OUT 29	MYI A, AG.	out 29	MUT A, 23	CHT 2A	MVT A.46.	047 29	MVI A, A8	045 29	MVI A, CB	OUT 29	MVI A, E8	94 TUO	WLE A, 28	OUT' 2A	JMP LOOP,2				ð	
LABEL								•									•	•		•				
DATA OR INSTRUCTION	ЗЕАФ	Daag	3EC\$	D329	3e A6	D329	3E23	DJAA	3E46	Darg	3E 48	Darg	3£ ¢3	. D329	3658	D329.	3528	D32A	. 634448	× .				•
ADDRESS	1000	\$9\$9	ф.9¢В	\$ 94D	ф 9ФЕ	4 9 11	5 9 13	\$415 ·	\$17	419	\$91B	\$910	\$ 91F	\$921	\$923	\$925	4927	4929	\$92B					•

· 79

COMMENT	take sample in reprint Der				and the standard and the	and the second s	Notaric the register pair H 8 L	10 119117 One but ; tour times.			· Examine contents of HBL and DRE			•	out the vocal of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Jump to Loop3			jump to routine INTERT	When intervinte Arrive Bin Ar-	CONVERSION (5 COMVICTE AID
MNEMONIC	LHLD \$52\$	Mov. D, M	H XNT	MOV E.M	XCHG	A'BHL	ARHI	in a d	- ARHE	XCHC		H XUT	241D 4524	J'A VOM	φφ	MOV A, E	Our A-	LXT H AADA			Edoor duir	•		JMP INTRPT		
- LABEL	DIVIDEIS :										·													RST &SS :-		
DATA OR INSTRUCTION	2A\$52\$	ŚĢ		SE	山	0	10	. 01	0	Eb	23	50 0 CC	67 677	7A	D3¢¢	78.	D3¢1	21 4424	34	C364 \$8				104100		
ADDRESS	\$92E	\$931-	\$ 9'32	\$233	4934	\$935	Q 936	\$937	-4938	9339	\$93A.	0		354 735	0 4 3F	0 941	\$942 ·	\$444	74947	\$448 ·			2000			

· 80

いちち、このとろろろういろいろします

ì

いいいい

•	•			
ADDRESS	DATA OR INSTRUCTION	LABÊL	MNEMONIC	COMMENT
4 94E	284324	TATRT:	241D 4324	check for first sample in the cycle.
¢ ً¢ \$1	74	۶.	MOV AL	If it is, then store in locations
4 952	FE 70	- · ·	H &£ TdJ	20B+ to 20BG for voltage
a 954	C26149		JNZ GO	
¢,95.7	218424		LXI H, B4-24	~
\$45A	CD 7749		CALL DATAIN	call data storage routine DATAIN
4950	2.A. 43.24		4260 (1H1	
\$\$\$6\$	74		MON AL	
4961	PE72	G0:	HZE TOD	if it is first current sample, store
\$ 463	CZSC49	•	JUZ GOI	in locations 2086/2087.
· \$966	21 B6 24	-	LXI H, B624	
\$969	CD 77 49		CALL DATAIN	
\$96C	2Å ¢32¢	५०। :	4284 J747	
\$96F	CD 77 \$9		CALL DATAJN	Call data storage routine DATAZN.
\$972.	-\$k-	•	H XNT	
\$973	224324		5HLD \$32\$	
¢976,	c9		RET	Redurn to main Program.
			-	
/.			•	
4474	DB22	DATAIN :-	TN 22	Take in Data from Post 22.
4979	2F		CMA	Complement the data
\$97A	57 77		Mic V M, A	store in megury to carion.
\$9.7B	23	ξ.	H XNI	
997C	DB 21		IT NH	take in data from port 21
•	•			

· 81

COMMENT	complement the data	Store in memory lo carion	return to main program.				Take the impedance value.	Store in memory location.			store next to values.					an an an an an an an an an ann an ann an a	return to the main program.						
MNEMONIC	C MA	Mov M.A	RET			244 · 0-147	40 ZX	MOV M,A	8224'H IX1	Mov A,M	срі фен	JZ ENDM	DCR M	LHLD GA28	H XNT	3HLD 44-28	RET	· ·	(-				A CARACTER STRATEGY AND A CARACTER
LABEL ·		•		•		TEST;		•			•	-		3			ENDM :	۲ ۲					
DATA OR INSTRUCTION	· . 25 · .	たた	c9	•	-	2A 4428	DB \$9	チチ	21 02 28	7E	FEAP	CA 2724	3 <i>5</i>	· 2A \$\$28.	23	229028	<i>c</i> 9	•	•			-	
ADDRESS	947E	\$97F	¢180	•	х 22 ⁴ х	2010	2413	2015	フロ ゆて .	2419	- 2 & I À	24.16	2015	• 2 4 2 4	2423	2424	24 27						•

. 82

¥

.

APPENDIX F

This program in basic is used to simulate the filter equation on

graphic terminal 2647A

10. DIM X(50), SV(50,2), SI(50,2), Y(50), AI(50), AV(50), Z(50)20. PLOTR LOCATE (100,180,50,100) SCALE (1,50,0,16) FXD (2,2) LGRID (2,2,0,0,2,2) LET K = (3.14592/18)LET SV(1,1) = 0LET SI(1,1) = 0LET SV(1,2) = 0LET SI(1,2) = 0FOR J = 2 to 17 STEP 1 X(J) = 10244* SIN((J-1)*K)+102*SIN((J-1)*K*3)Y(J) = 1024 * SIN((J-1)*K)/10SV(J,1) = SV((J-1),1)*.92388+SV((J-1),2)*.38268+X(J)SV(J,2) = -SV((J-1),1)*.38268+SV((J-1),2)*.92388AV(J) = SV(J,1) 2 + SV(J,2) 2AV(J) = SQR(AV(J))SI(J,1) = SI((J-1),1)*.92388+SI((J-1),2)*.38268+Y(J)SI(J,2) = -SI((J-1),1)*.38268+SI((J-1),2)*.92388AI(J) = SI(J,1) 2+SI(J,2) 2AI(J) = SQR(AI(J))Z(J) = AV(J)/AI(J)PLOT(J,Z(J))PRINT J,AV(J),AZ(J),Z(J)NEXT J FOR J=18 to 33 STEP 1 X(J) = 1024*SIN((J-1)*K)+102*SIN((J-1)*K*3)Y(J) = 1024*SIN((J-1)*K)/10 $SV(J,1) = SV((J-1),1)*.92388+SV((J-1),2)*.38268+X(J)-X(J-16)^{-1}$ SV(J,2) = -SV((J-1),1)*.38268+SV((J-1),2)*.92388SJ(J,1) = SI((J-1),1)*.92388+SI((J-1),2)*.38268+Y(J)-Y(J-16)SJ(J,2) = -SI((J-1),1)*.38268+SI((J-1),2)*.92388AV(J) = SV(J,1) 2+SV(J,2) 2AI(J) = SI(J,1) 2 + SI(J,2) 2 $SV(J) \approx SQR(AV(J))$ AI(J) = SQR(AI(J))Z(J) = AV(J)/AI(J)PLOT(J,Z(J))PRINT J,AV(J),AI(J),Z(J)NEXT J FOR J=34 to 50 STEP 1

 $\begin{array}{l} X(J) = 870.4*SIN((J-1)*K)+87.04*SIN((J-1)*K*3) \\ Y(J) = 870.4*SIN((J-1)*K) \\ SV(J,1) = SV((J-1),1)*.92388+SV((J-1),2)*.382688+X(J)-X(J-16) \\ SV(J,2) = -SV((J-1),1)*.382688+SV((J-1,2)*.92388 \\ SI(J,1) = SI((J-1),1)*.92388+SI((J-1),2)*.382688+Y(J)-Y(J-16) \\ SI(J,2) = -SI((J-1),1)*.382688+SI((J-1),2)*.92388 \\ AV(J) = SV(J,1) 2+SV(J,2) 2 \\ AI(J) = SI(J,1) 2+SI(J,1) 2 \\ AV(J) = SQR(AV(J)) \\ AI(J) = SQR(AV(J)) \\ AI(J) = SQR(AI(J)) \\ Z(J) = AV(J)/AI(J) \\ PLOT (J,Z(J)) \\ PRINT J,AV(J),AZ(J),Z(J) \\ NEXT J \\ \end{array}$

END

APPENDIX G

FAULT SIMULATION

(All impedances are resistive)

Let Z_{i} be the source impedance

 Z_{L} be the line impedance and

 $\rm Z_{LO}$ be the load impedance and

 \boldsymbol{V}_{S} be the source voltage

when switch is open

$$V = \frac{1040.48}{10.2} = 1024 \text{ volts}$$
$$I = \frac{1024}{10} = 102.4 \text{ Amp.}$$

When load is short circuited by closing switch ${\rm S}_1^{},$

$$V = \frac{1040.48}{1.2} = 870.4$$
 volts and $I = \frac{870.4}{1.2} = 870.4$ Amps.

Thus the voltage is reduced by a factor of 1.17 and the current is increased by a factor of 8.5.

Ś

APPENDIX H

ERROR ANALYSIS

Let E be a quantization error of a sample coefficient or truncation error in each multiplication.

For 12 bit A/D converter, $\varepsilon =+2^{-12}$

Let E_n be the error in real part P_n or P_{n-1} and

$$E'_n$$
 be the error in imaginary part Q_n or Q_{n-1}

then we get, from Eq. 2.32

$$(P_{n-E_n}) = (a+\varepsilon)(P_{n-1}+E_n) + \varepsilon + (b+\varepsilon)(Q_{n-1}+E_n) + \varepsilon + (x(n) + \varepsilon - x(n-N) + \varepsilon$$
(1)

and
$$(Q_{n+E_{n}}) = (a+\varepsilon)(Q_{n-1+E_{n}}) - (b+\varepsilon)(P_{n-1+E_{n}}) + 2\varepsilon$$
 (2)

Simplifying equations 1 and 2 and neglecting terms such as $\pm E_n$, $\pm E_n'$, we obtain errors,

$$\frac{\pm E_n}{2} = \frac{\pm e_{n-1}}{2} \pm \frac{\pm a_n}{2} \pm \frac{\pm b_n}{2} \pm \frac{\pm e_{n-1}}{2} \pm 4e$$
(3)

$$\pm E_n' = \pm e_{n-1} \pm a_n \pm b_n \pm b_{n-1} \pm 2e \qquad (4)$$

2

Solving equations 3 and 4 for E'_n we get $\pm \varepsilon[(1+a)\pm b][Q_{n-1}\pm P_{n-1}] \pm 4\varepsilon b \pm 2\varepsilon a$

$$E_{n}^{\prime} = \frac{\frac{1}{12} \left[(1+a) \pm 0 \right] \left[0_{n-1} \pm P_{n-1} \right] \pm 4e0 \pm 2ea \pm 2e}{\left[b^{2} \pm (1+a)^{2} \right]}$$

Taking maximum values of P_{n-1} and Q_{n-1} and taking coefficients a and b as unity for simplicity, we get

$$\pm E_n' = \pm 2.8 \times 2^{-12}$$

Substituting this value of $E_n^{'}$ in eq. 3 we get,

$$\frac{\pm E_{n} \pm e_{n-1} \pm aE_{n} \pm b(\pm 2.8x2^{-12}) \pm e_{n-1} \pm 4e}{\pm (1+a)E_{n} = \pm e_{n-1} \pm b(\pm 2.8x2^{-12}) + e_{n-1} \pm 4e}$$

$$E_n = \pm 4.4 \times 2^{-12}$$

To obtain the square of the amplitude S_n^2 ,

 $s_n^2 = P_n^2 + Q_n^2$

Let $E_n^{"}$ be the error in square amplitude we get,

$$S_n^2 + E_n'' = (P_n + E_n)^2 + (Q_n + E_n')^2 + 2\varepsilon$$

= $\pm 16.4 \times 2^{-12}$

Total error introduced in obtaining filtered output V^2 and I^2 is +2x16.4x2⁻¹² which is +32.8x2⁻¹².

Error`introduced in division and square rooting is only truncation error in multiplication, as one input to multiplier ' I^2 ' is fixed and no error is introduced in the successive approximation register. ... Total error for division is 14 ϵ since 14 multiplications are required. ... error in division = $\pm 14x2^{-12}$ and error in square root = $\pm 14x2^{-12}$.

... Total error introduced in impedance calculation is

$$\pm 32.8 \times 2^{-12} \pm 14 \times 2^{-12} \pm 14 \times 2^{-12} = \pm 60.8 \times 2^{-12} = \pm .0152$$

Taken as a percentage of maximum possible impedance value the accuracy can be represented as +1.52%.

BIBLIOGRAPHY

- G. D. Rockefeller, "Fault Detection With a Digital Computer", IEEE Transactions on Power Apparatus and Systems, Vol. PAS 88, No. 4, April, 1969.
- W. Breingan, M. Chen, and T. Gallen, "The Laboratory Investigation of a Digital System for the Protection of Transmission Lines", Ibid, Vol. PAS 98, No. 2, March/April, 1979.
- [3] B. J. Mann and J. F. Morrison, "Digital Calculation of Impedance for Transmission Line Protection", Ibid, Vol. PAS 90, No. 1, Jan./Feb. 1971.
- [4] M. Ramamoorty, G. R. Slemon and S. D. T. Robertson, "High Speed Protection of Power Systems Based on Improved Power System Model", International Conference on Large High Tens on Electric Systems, 1968.
- [5] J. W. Horton, "Walsh Functions for Digital Impedance Relaying of Power-Lines", IBM Journal of Research and Development. Nov. 1976.
- [6] W. J. Smolinski, "An Algorithm for Digital Impedance Calculations Using a Single PJ Section Transmission Line Models", IEEE Transaction on Power Apparatus and Systems, Vol. PAS 98, No. 5, Sept./Oct. 1979.
- [7] L. R. Rabiner and G. Gold, "Theory and Application, of Digital Signal Processing", Prentice-Hall 1975.
- [8] J. A. Howard, S. K. Mitra and B. Mahbod, "A Novel Single-Multiplier Implementation of IIR and FJR Digital Filters Using Tri-State Logic",

IEEE Transactions on Instrumentation and Measurement, Vol. IM-28, No. 3, Sept. 1979.

89

[9] Intel MCS-85 User's Manual.

[10] SDK-85 Manual.

à

[11] HP 2647 A User's Manual.