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ABSTRACT

¥

Vepy little research has been done on the nonlinear
resbonse of asymmetric structures although real buildings may
undergo plastic deformations in response to strong ground
excitation. Also,git is a common design philosophy to permit
inelastic behaviour since lowér design forces may be‘used.

In this analysis, the nonlinear response of a torsion-
ally coupled singlé—story model consisting of a rigid diaghram
resting on three equally\Spaced frames 1s investigated. The
main coricern herein is the peak ductility demand especially k
at edges N * ' /

e !

A limited parametric study 1is undertaken to identify
.trends in peak ductility demand. The effects of torsional S
coupling in nonlinear systems are’elso investigated. Real
earthquake;records as well~as an idealized sinusoidaluexcitation
are used’as”éround motion., Two types of loadndeformation
‘relation are used (1) the simple bilinear type which can q

adequately simuiate the dynamic response of steel structural /

elements, (11) the Clough'; degradling stiffness model to simJ

ulate the hysteretic behaviour of reinforced concrete structural'

1

elements.. A comparison between both types is made to*asse%s;
!
the significance of the type of load—deformation relation.//
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L ‘CHAPTER I

: =
v >~ INTRODUCTION
- . oLl General

In asymmetric bulldings in which centers of mass and

stiffness do not coincide, lateral and torsional motions are
coupled even in response to pure lateral excitation.
- Numerous gtudies have been conducted to investigate
)//dge 1inear.elastic response of asymmetric systems. For this
“; type oT behavior, thé nature of the problem has become well
understood and the controlling parameters and their effects
are clearly.defihed. . ) @}

, - However, there is a strong need to investigate the
honlinear respofse of asymmetric buildihgs since real build-
. ) ings undergo E;ﬁt,yielding defoffifbions in response to strong

. .jL%roupd excitations.“ Also, i1t is a common design philosophy
lrto permit inelastic behavior even in case of moderate excit-
. : atiops, becausE\égﬁer design forces' may be used, Hence, an
! ’ analysis which inclﬁaes plastic dqformations is required.
This is particularly necessary because ﬁEe results and the
'Enformation available ooncerning the elastic response can
not be extrapolateé}to the nonlinear case,

- .

In this thesis, theé nonlinear response of partially
- ) Fad
: asymmetric single-story structures with bilinear resisting
elements is,investigated in response to real earthquakes as

9 ) well as idealized sinusoidal excitation., The main concern



2
herein is the effect of different parameters.on the peak )
ductility demand . .
In addition to the simple load-deformation relations <//

(i,e,, elasto-plastic and bilinear; which can adequately sim-
ulate the dynamic résponse of structural s Eel elements, more
complicated load~deformétion relations haye-beln developed in
order to describe the‘properties-of strucburalvréinforced
concrete elements. In order to assess the significance of
the load—ﬁgformation reiation type, a comparison of théa
responsé/of systems with Eoph types is'very useful; such com-
parison is undgrtaken 1ga§g§s thesis.

Torsional ormatlons arise also 1n the symmetric
syst?ms that include ksome "imperfect" resisting'elements
{(strength imperfectipn\ in which the onset of yigldipg pro-
duces so@e eccentrictty. This special problem is investigated
herein on static basis with particula} attention to the

resulfing 1oss'of strength capacity of such systems.

-

1.2 Review of Previous Research
~' Whilehlinear asymmetric structural systems have been
investigafqd in numérous stgdiesﬁ very little research has
been done on the nonlinear response of such systems.
. The majoriéy(of the.gtudies_reported in-the literature
have adopfed an idealized Siﬁgle~stbry building as the mechan-
ica} model while a YeryAlimited numberlhave 1nvestigateq the

o

multistory building case.

1Y
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1, 2 1 Single~Story Medels

R, Tanabashi (l 2) analysed the response of a model
that consists of a rigid diaphragm resting on four corner
columns having different stiffnssses to introduce one way
eccentricity. The model was subjected to an idealized ground
motion consisting of eithef one or three cycle versed-sine
ground pulses, /

‘ He concluded that the effect of the repetitive action
of thls idealized ground motion on the maximum displacement
may be of little significance. The author also concluded
that a'rough estimation of the maximum distortions can be
made by an approximate process for which the dynamice charac-
teristics of both the ground motion and the structure are
secessary.

In systems with eccentricity along one axis only it
1s usually assumed that the horizontal displacement componentw
along that axis will not develop. However,'the author sbowed
on static and dynamic basis that the same component may ex-
perience unstable vibrations if the torsional deformations
reach a lgrge ecritical value defined as a function of the
elastic stiffness and the location of resisting elements as
well as the characteristics of the nonlinear restoring force,
For the hardening type of resisting elements, such unstable
phenomena was not observed.

Actually, the above analysis which is based completely
on idealized ground motion will not be directly iislicable to



<

the case of selsmic exciltatlon since the problem is strongly
dependent on the type of ggfund motlon.

Kan and bhbpra (3) modelled torsilonally coupled sys-
tems with several resisting elements, columns and walls, as
an idealized single-~story model with equivalent properties
and equivalent single yield surface. The responses of such a
model to a selected earthquake ground nfbtion ére presented“
for a wide range of the ba;ic structural parameters,

They showed that the inelastic response is éffected
by torsional coupling to a lesser degree than the elastic
response. They also brovided procedures for estimating, ap-
\proximately, maximum responses of elastic ana inelastic sys-~
tems from the corresponding response spectra,

Irvine and Kountouris (4) adopted a model in which
only two identical frames having bilinear restoring force
characteristics support a fig;d‘diaphragm. ‘Tﬁe required ecc-~
entricity is achileved by shifting centre of maés‘rather than
centre of stiffness, A comprehensive parameter study using
real and artificial earthquakes was undertaken in an attempt
to 1dentify trends }n the peak ductility demand (P.D.p);

The authors claimed that eccentricity does not appear
to be a particularly significant parameter. Actually, further
research ;s needed to,yalidate such a statement. It was also
stated that under %ertgiﬁwggnditions‘of‘the frequency content

\

of the applied ground motion, the frame farther from centre

H

of mass undergoes most severe deformations.

-2
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The'mode; used in the above analysis is a statically

determinate system and consequenély/doés not represent a wi@e

range of real buildings_whicﬁ are s%atically indeterminate.
In analyses (3,4), no genefal consistent trends in

P.D.D, were identified, Hence, further research 1s needed

to emphasize the effects of controlling parameters on the

response.

.

1.2.2 Multistory Models

A very limited number of studies investigated the f
nonlinear response of asymmetric multiséory\buildings. In |
refefence (9), four actual asymmetric buildiﬁgs were modelled
with finité elements and subjJected to the N-S component of
the El—Céntro,eartqﬁake. The main concern was the increases
in shear force ang drift caused by torsional effects iq build-

1

ings especially in the exﬁerior f}ames.
This analysis *tan be considered as a step in estab-
lishing a .practical method of calculation which considers

torsional effects.



s R SLT'S QIRREN

1,3 Obieetives and -Scope

9

The objective of this analysis is to investigate the
effects of different parameters on the peak ductility demands
of asymmetrid structures: A single-story model which consists
of a rigid diaphragm supported on three parallel frames, the
lowest number which yields a statically indeterminate system, '
having resistance in their planes only is adopted.

Real earthquakes as well as idealized sinuscidal
"motion: are used as ground excitation. As far as the load-
deformation relation is concerned( two different types are
used: first, the simple bilinear kelation is assigned for each
frame which can adequately simulate the response of structural
steel elements, Second, the CIngh's degrading stiffness
model (17) is used to simulate the behavior of reinforced
concrete structural elements to assess the sigmificance of = -
type of load~deformation.relation,

Chapter II .is devoted to-the investigation of a
special problem of‘the nonlinear torsional deformations arising
,,Yin the symmetric systems due to "imperfect" elements (strength
imperfection) in which the odnset of yielding produces some
eccentricity. :A single—story model'having continuous distrib-
ution of elasto~plastic resisting elements islsubjected to a
- quasi-static load in order to study‘the effects‘of 1mperfection
parameters in reducing the strength capacity of tH% system.

Chapter III 1s dévoted taq the,stndy of asymmetric

-

systems with bilinear restoring forcevcnaracteristics.
- - =L

. . . ,
. . o
R . ‘s . . e
: . %
. .
.



In order to idenéify the controlling parameters of the model,
the equations of motion of the discreté model are éast ina
normalized form and then a limited parametric ;tudy is under-
taken to 1nvestiéate’trends in the peakwaSéfility démaﬂd .
Realistic and representative values are given €b the different
parameters'and the results are presented so as to compare the
torsiénal coupling effects of nonlinear and linear systems.

TQe adequacy Sf code brovisions (16) is also asseséed
in thils chapter by comparing real and predicted responses.

Clqugh's degrading stiffness model is.used in Chapter
IV to simulate the dymamic response of reinforced concrete
structural elements. The results are presented in the form
of the ratio of the~£Lak ductility demands for the bilinear
and Clough's degrading stiffness cases in equivalent situa-
tions. ‘

, Chapter V presents some general conclusions based on

the énalysis presented in the previous chapters. It is ex~
pected that these conclusions together with the analysis will

provide some insight so as to the effects of different para-

meters on peak ductility deﬁand . It is also expected thét

. these conclusions will act as a guideline for designers.

Somé recommendations for'further research are also included.

Tk vt e
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CHAPTER II
EFFECT OF "IMPERFECTION"

ON STRENGTH CAPACITY

2.1 Introduction

Torsional deformations are generally caused by the
asymmetry of the bullding. It has been shown that there are

some other causes of torsional deformations even in symmetrlcal

systems.. These include’ the rotational component of ground

" .motion about vertical axis, the closeness of natural rotatiohal

and translaéiohal frequenciesﬁof linear elastic symmetrical -
buildings (11),qand the nonlinear coupling between rotational
and translational motions due to the nonlinear foree—
deformation characteristics(7,8).

Another source of torsional deformations that ¢an be
classified under %he nonlinear torsional effects, 1s the case
of initially symmetric.syséems which include some "imperfect"
resisting elements (strength imperfection). When these imper—
fect elements vyield, some eccentricity is introduced and

torsional deformations are generated. = -~ 1 |

In this chapter, the effect of includine such iﬁperfect

‘,’:«’ )
elements is investigated with particular attention to the

strength capacity of structures. For this purpose, an ideal-
5 :
ized single-story.model with continuous distribution of . ot

resisting elements is adopfed The model is subjected to a

lquasi~static horizontal load in one- direction only.

&

™

. s ~

e et e

e et
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Impeffectioh parameters are identified and their effects are

‘studied. ’

Certain difficulties arise if such a model;is}to be

adopted for the dynamic analys;s; these difficulties are also

discussed.

2.2 Formulation of the Model’

The model is chosen as an idealized single-story
building with a rigid deck resting on resisting elements
uniformly distributed along the x~axls as shown in Figure
2.1.a. It is assumed that:

1. These elements have stiffness only in the direction of the
applied 1oaq (Y-axls), and have na out-of-plane rigidity.

2. The elements are'massless and axially inextensible.

3. Under the action of the quasi-static load, each unit length
of ﬁhe distributed eiements exhibits‘glasto—perfectly
plastie type of behaviour with elastié stiffness k as
shown in Figure 2.1.b.

The continuous distriﬁution of the reéisting elemgnts
allows tracing of yleld propagation more'efficiently thaﬁ
di;crete modelling. Thése elements can also be considered to

Simulate an afray of closely spaced columns.

b AT
Rt

2.2.1 TImperfection

aImpérfgétion'is‘introduceq into the model by allowing

some of the elements of width ratio e, (with respect to the

"totgl‘width.of ﬁhe“diaphragm) ﬁo’have a reduced strengtﬁ level

1 4
-~

Y R : -

P o G v 4 A m
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BFy {B<1) whgfe Fy is the strength level of perfect elements

as showhzi? Figure 2.1.b, The elements with reduced strength

devel are réferred to as the "&yperfeéi" elements. The

quantities e, and B are referred to as the imperfection para-
meters. The higher the value of e,, the more ilmperfection is
introduced and the opposite 1is true for 8.

Parameter B can be used in two ways. First, if g is
< :

given a value less than unity, the imperfection 1s not felt

gy the system until ratio of applied load to the yield strength
F\d

of the system P reaches a similar value after which eccent-

- ricity is produced and torsional deformations are generated,

Second, if B=0, edeentricity is introduced fmmediately and the
system undergoes torsional deformations{%;én at the very eéfly
sfages of loading. In thils case the amount of eccentricity
can be controlled by the va;ue of €43 higher values mean

larger eccentricities.

2.2,2 Eduilibrium Equations

The equilibrium equations depend strongly on loading
stages. ‘Accordingly, three possible cases should be dist-
inguished during the loading process.

ir P’is the totgl hofizontal load applied along the
f—axis through centre of mass (C.M.) at any stage of loading,

and Py 1s the total strength capacity of systems with e,=0,

then the normalized load is defined as:

P = P/Py o 2.
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1. P<§ ,
As shown -in Figure 2.,2.a, the system is totally symm-

etric and fesponds only in translation, hence, the direct

equilibrium of the applied load and the resisting forces

governs the response., Equating tﬁese forces yields

a

P = I kU(x) dx - 1 . . ‘2.2
-a

in which_
k = elastic stiffness per unit length of the resist-

ing elements
U(x)= displacement at an§£§§Q&$ion X measdred from
the Y-axis. |
This displacement can be related to the degrees of freedom at

C.M. as follows -
CU(x)= Y.+ xo ) , . 2.3

in which Y-and ¢ are, respectively, the lateral displacement
and rotation at C.M. Sub&tituting Equation 2.3 into Equation
2.2, recognizing that for & symmetric system, 0=0, and integ-

rating yields

? 1

= 2akyY ' ' o - 2.4

°

3

It 1s very useful to have the equilibrium equations
normalized, i. e. put into a nondimensional form; the yield

displacement U and the total xield force P are used as

normalization factors for deformations and forces respectively

[

e g o gt

e PA
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The nd%malized»degrees of freedom at C.M. can be defined as:

7 = Y/U,
| v 2.5
) =fe§x/Uy
Dividing Equation 2.4 by P, (2aF,) yields
F =2 \ _— 2.6

When P becomes greater or équal to 8, the imperfect
elemegts yield and show zero stiffness. Hence, some eccen-
tricity is produced and the rigid déck also begins to rotate
under the applied load. Two cases may arise erending on the

extent of yielding.

2. P>p & g<Ug i%

4
¢ = Ug /Uy

=
u

normalized displacement of point C at the end of

the imperfect elements as shown in Figure 2.2.b.
Undér these conditions, none of the perfect elemeﬁts

has +yielded yet and there are two governing equations:

l)' rForces =0 :

P=F; + Frg ' o 2.7.a

a-2acy

“KU(x) dx + BF, dx 2.7.b

~-2aegq

) Sty )}

. 2
Sﬁbstituting Equation 2.3 into Equation 2.7.b and integrating
yields -~ ’

P = 2dk (1-eo) Y + 2a° k (ei-eo) ® + 2aFyBeo  2.7.c



PP
e —— B i

Dividing the above equation by'Py yields

- 2 '
P = (1l-ey) 2 + (eo—eoj\@ + Be,

2) <tMoments about C.M. =0
a .
J Fx dx =0 ,- .
-a ~ P
a-2ag, . Q“‘ a
k(Y+x0)x dx + J BFyx dx =0
* ~a a—-2aeo

and similarly,’

2(egmeo) I + 273 (1-3eq+6es-lel) & + 28(eq-es) =0

P>g & U.>1

2.
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2.8

Some of the perfect elements start to yield under these

conditions and if yielding stops propagating at section D at

a distance 2ae from edge A as shown in Figure 2.2.c the
equations of

,el i e written as follows
,//;/:,FI + Frp'+ Frop

which yilelds

a-2asc

a-2ag, a
. k(Y+xe6) dx + J F, dx + f BFy, dx = P
-a a-2asg a-2ae, ~
E 2.10
and
. zMoments =0
which yields *
a-2ae . a-2aggq a
k(Y+x§7§/a;T;ﬁf\7M‘ F ox dx + J BF x dx =
-a oL a-2at v a T

St la tL
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Equations 2.10 and 2,11 can be cast in the following normal-

ized form

(1~e) 2 + (ez—s) ¢ + (e—ao+850) = P 2.12

2(92—5) Z + 2/3 (l~3€+6sz—Ue3) ¢ + 2(e—ez+a§—so) +

28(z4-c5) =0 2.13

Since in this case yielding extends some distance 2ae into the
set of perfect elements, Equations 2,12 and 2.13 contain %hree
unknowné Z,%» and . An additional equa?ion need be obtained
for a solution to be possible,. ;t is necessary t£o impose the
condition that the displacement Ub at that interface (see
Pigure 2.2.c) be equal to Uy.. When this condition is sub-
stituted into Equation 2.3 with subsequent normglization, the

following. éxpression is obtained
e = 1-(1-2)/% N - 2.14

2.3 Soluftion of the Equilibrium Equations

In the case of Equétions'Z.S and 2.9, values of the
two unknowns Z and ¢ can be determined by solving these two
equations simﬁlthneously.

However, in the case of Equations 2.12 and 2.13, the
solution is sdéjected to ﬁhe céndition expressed in Equation
?.lh. §ubstitu£ing Eqﬁation 2.14 into Equations 2.12 and 2.13
yields two nonlinear equations'in.only two unknowns 7 and ¢.

) This set of~simultaneoﬁs nonlinear equations is solved using

Newton's iterative method. Contributions from any iteration :

N

C e e o hy e e —— N =
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i+l can be‘evaluated using the following iteration algorithm

!

i+l] =, z 1" i

87, ) F (Z,,¢,) Fg(Z ,¢ )}~1 [F(Z_,%.)
¢ 1 pl X by
2.15

in which
i and.i+1 = number of two succesive i1lterations,
F(Z;,¢;) and G(Zi,%¢;) = the two nonlinear expressions
evaluated at the end of iteration 1, and
F,(Z;,8;) and G,(Z;,%;) or Fg(Zi,2;) and Gg(Z;,2;) =
the first partial derivatives of the nonlinear

expressions with respect to Z and ¢ respectively.

-

can be expressed as follows

The updated values Zi+1 and ¢i+1

Zipq = 2y F %54

p) 2.16
i+l

)

The iteration process 1s stopped when contributions 6Z and

§% become smaller than a specified tolerance (107%). -

e e T el
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2.4 Results and Discussilon

The results are presented in the form of the variat&on
in 2 and ¢ values with increasing the applied load. The
relations are shown for different values of ¢, and g in Figures
2.3 gnd 2.4, In the P-Z plots, the dotted curve represents
the case of no imperfection (e,=0) which exhibits the elasto-
plastié behaviour. However, with increasing values of €¢ the
curves start deviatfng from the-idealized elasto~-plastic
relation as soon as P becomes higher than the particular value
of 8. |

After ylelding of all the elements, it is obvious that
tﬁere is a reduction in the strength capacity of the structures
containing the imperfect elements as indicated by the strengfh

values shown in Figures 2.3 and 2.4 when the P~Z curves become

very flat (P

reduced)' This reduction increases with increasing

the imperfection (lower values of B ér higher values of g,),
Comparihg Figures 2.3 and 2.4, the rgductipn of strength
capacity for the case of 8=0.8 is not significant (9% for
€,=0.25). However, for smaller values of.6(0.6), the effecﬁ‘
of increasing.eo_is pronéunced and éhe reduction 1s(1arger

than the previous case (19% for eo=0.25).

~

In order to summarize the results of this stuay, the

relationship between P and g is shown for different

reduced
values of e, in Figure 2.5. The relationship is almost linear

for different values of €. and these

o reduced~B curves can be

approximated successfully by straight lines, Values of

~

e
;
S

S o o - 0
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Figure 2.3

Variation of % and ¢ with Increasing the

.Load for. Systems with 8=0.8
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Figure 2.4

Variation of Z and ¢ with incfeasing the

Load for Systems with 8=0. 6
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“F}educed that correspond to 8=0 are of special intergst since
this case Teprésents initially asymmetric structures with
certain nominal ec¢centricity. In the model used herein, €o

is a measure of that eccentricity.

2.5 Difficulties of Adopting the Continuous Model in

Dynamic Analysis

Under the action of reversible loading, the state of

resigting elements (stiffness and force) is determined to

<

conform with the current state of deformation according to

any prescribed load—deformatign relationship. Displacement,
velocity anduééfce quantities are required for that purpose, -
Upon determining the displacemeht parameters at C.M. (Y,o)
from the solution of. the differéntiai equations of motion, the
displacement and the velocity at anyipoint at distance x can

be found as follows 0.

[0}

U(x)
0(x)

Y + x0

Y + x6

]

i

in which d8ts represent differentiation with respect to time.
Blit, insofar as forces are concerned, there is no such
a continuous function that gives the re§isting force at any

locatlon but rather this qdantity can oniy‘béﬂaetermined at - -

diseréte locations. Hence, discretizatlon of the model is -

impdéing itself due to the nature of the problem.

B
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%.6 Conclus;ons

The inveétigation reported in this chapter leads to

the following conclusions

l.

r 2.

3.

Inéluding imperfection in the structure leads to torsional
deformations when the-applied load reaches a certain value
that depends on the magnitude of imperfection, and also

leads to a reduction in the strength capacity that can be

gttained.

For large values of B, the reductiofi in strength capacity
can be neglected. o

The relation between the reduced strength capacity

Predﬂced and B is partially linear for all values of ¢

—

o’

The amount of reduction in strength capacity can be
estimated by the use of Figure 2.5, Values that correspond

to 8=0 aré of speciél 1h£erést since this case represents

initially asymmetric structures. .

7
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CHAPTER III
PEAK DUCTILITY DEMAND OF SYSTEMS

. WITH BILINEAR RESTORING FORCE

3.1 Introduction

Based on the discussion in Section 2.5 the discrete
model is cgosen for the'determination of the nonlinear response
of asymmetric structures. The main concern is the peak
ductility demand and the effects of torsional coupling in non-
lineér systems. The resisting elements are chosen to have
bilinear restoring force characteristics which realistically
simulatgfthe load-deformation p;operties of étructural steel

v, .

elements. - -

The equatiéns 6f motion afe cast in normalized form
and then a limited parametric study is performed to investigate
trends in thg peak‘ductility gemand using a wide range of
values of parameters to represent a variety of acgual building
characteristics. Two real eafthquake records are used as
input motion in addition to sinusoidal excitatlon which is
used to studydsysteﬁ response characteristics.

A comparison is made between the real response and code

provisions (16) in bredicting maximum plastic deformations

using linear responsé. The -adequacy of these provisions 1is

, )

- In order to study and investigate the nonlinear

assessed based on this comparison.

N . 173
3.2 Mathematical Modelling

24 -
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response of torsionally coupled structures, a single-~story
building consisting of a rigid deck supported on massless
axlally inextensible resisting elements is considered in this
analysis. The model is shown 1n Figure 3.1.

‘$ In the elastic analysis of torsionally coupled multi-
stonyubuildings, the analysis is simplified due to the concept
of the assocfated single-story systems which reoresent the
coupling action in addition to the response of the torsionally
uncoupled multistory building (12). Such simplification is
not valid‘in the nonlinear response of torsionally coupled
systems. However, with crpde aoproximationexzhe single—stor;
model stdli cen give the multieﬁory syétemrgross response
approximafely i1f the response of the latter systen consists
primarily of the fundamental mode.

. The single-story model is also used'since a nonlinear
model should,  be kept simple if it is intended to perform a
parametric study to reduce computation time and costs.‘

y The number of the lateral load resistin% ¢lements 1s
chosen to be three, i.e. the minimun requirement for a
staticélly indeterminate system (one degree of indeterminancy).
This feature makes$ the model more realistic and representative
of\real structures than the statically determinate one. All
wails are- equally spaced and the distribution of stiffness is
chosen to 1ntroduce the required eccentrieity in the x—direction

while ground motion is applied only in theg Y- direction.

lUpon 1oading, the model responds as a two degrees of

<,
-
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%,

freedom system, translation along the Y~axis and rotation

about the Z-axis (positive directions are shown in Figure 3.1)*

/4

3.2.1 Assumpticns

l'

The resisting elements are aésumed to be massless and
axially inextensible elements, i.e. the axial deformations
are assumed to ée Zero,

The resisting elements have stiffrness only in oﬁe directlion
(along the Y-axis), this simplifies the yielg criterion
since otherwise lnelastic stfength interaction diégrams
should be used.

The torsional stiffness of the individual resisting
elements are not included because they are negligible.

The deck is assumed to be rigid so that all> . points on
the deck experience the same amount of rotation irrespective
of 'location.

Damping is assumed to be of viscous type and damping h
coeffiéients aré r;lated to éhe elastic uncoupled system.
The noglinéar,behaviour is no% modelled at the material

or the sectional levels but'rather at the level of a‘
complete subassemblage since it is ‘'of main cohcérn to

gain insight ooncefning the general trends of the response

of nonlinear systems. In this analysis, nonlinearity is

modelled in terms of the ioad—defqrmation relation of

" each individual resisting element.’

Lo ' -
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2.2 Egquations of Motion
Cénsidering the equilibrium of the set of forces acﬁing
the system shown in Figure 3.2 yields
tForces =0
M+ IFL(U;,U5) + e(1,1) ¥ =p (t) 3.1
1
EMomepts about é.M. =0
6 + 1P (UL,UL) x;+ ¢(2,2) & =0 3.2
i .
which
M = mass of the rigid deck.
\3%5 polar moment of inertia of the deck about a verti-
‘ cal axis passing through C.M. = Mrz
r = radius of gyration about a verticai axis passing
through C.M, ' g
Y and ¢ = translational and rotational degrees of
freedom, résbectivgly, at C.M..
f,é,Y'and 8 = first and second time derivatives, res-
‘pectiVely, of Y and o,
Ui’éi = displacement and velocity of element i.
~ Ei(Ui,ﬁiS = resisting force in element 1.

¢(1,1) and ¢(2,2) = elements of damping matrix.
p(t)

-

applied force at time t.
= -Mil,(t) in the case of earthquake excitation.

in which iiz(t) -is the ground acceleration at time t.

I R

ot e
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At this stage it is useful to put the equatf%ns of
motion into a normalized form by defining the following non-

dimensional variables

[\
i

Y/Uy

3.3

i}

¢ = 0 (D/2)/Uy
in which
y= yield displacement of the elements, and

U
D = length of plan side parallel to the x-axis.

-

Dividing Equations 3.1 and 3.2 by MUy and MUyD respectively,
substituting the nondimensional variables:Z and ¢, and

rearranging ylilelds

1,7 +31,¢d,1) 5, LF,(U,,U;)= plt) 3.4
w w M i
Q [o} y
( 2. - .
2, | ] (252 ot ZF ((U,U) K=o 3.5
“o D
in which

w, = uncoupled undamped‘translational;fzeqdency

= v Kq /M
k, f,elastic translational stiffness of the system.
Fy = Fi/Fy .
Fy = yield strength,of_the-systemu
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Before proceeding with further development of the

equations of motion the following stiffness quantities are

defined
k;, = tangent stiffness of element i determined at each
time step aq;afding to the prescribed load-
deformation relationship.
K, = total translational stiffness of system at time t.
S =Lk
Kgp = ;otal rotational stiffness relative to C.M., in
which the suffix D is to indicate that distances
xi,are’normalized with respec¢t to D.
=5k, (x./D)2
PR SR
Kop = Kgp /%,
. =

v = Ky /K

]
The nondimensional forces can be expressed in terms

of the instantaneous vailues of stiffness and‘displaceménts

‘

as follows

IF, = 1 tk, U, = 1 zk_ (Y¥+x,0)
i1 Foili F il 1
Substituting Fy‘= K, Uy into the above expression yields
iFi =K, Z + ge ) S 3.6

in which & is the nondimensional eccentricity and-equals e/D.
Similarly, ?Fi;; can be expréssed in terms éf‘phe normalized
1 .

degrees of fréedom as follows .
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S - LT o4 oF ' .
EFiXi e Z 2KOD o 3.7

Substituting Equations 3.6 and 3.7 into Equations 3.4 and 3.5

and casting the equations in a matrix form yields

1 o Y[z ( c(1,12 0 7
1 Q| W
-2 2 + —3 . +
o | 0 2[5J ¢ we 0 2 c(2,2) s

D Mp2
4 2e Y[ 7 Mu
v - =g 3.8
- Fy 5
e 2Kgy, ¢ 0

3.2.2.1 Damping- .

Since the mechanism and source of damping are not
clearly known, the damping matrix should be simple and easy
Qo‘use because complexity is not justifiaﬁle.

Accordingly, damping forces are assumed to be pro-
portional to relative velocities and damping qoefficients are
related fo the elastic unqpupled system. Hence, ddmping
matrix is diagonal with only two diagonai elements c¢(1l,1) and
¢(2,2) which can be expressed in terms of g, percentage of

¢ritical damping for mode n, as follows

C(l’{l}9= 2Mw L. .

o 3.9
c(2,2) = 2Jwnylg

Assuming that the coefficients are constant in the different

modes, Equation 3.9 can be rewritten as follows

3
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¢(1,1) = 2Mu,t : 2

c(2,2) = 2Ju,g

Small values should be assigned to the percentage of
. critical damping in hysteretic systems since a considerable
amount of energy is dissipated in hysteretic loops. In this
study ¢ is taken as 2% of critical damping.
Substituting Equations 3.10 into Equation 3.8, the

damping matrix can be written as follows

( 2r 0 .
fc]=1 ) i 3.11
wol O 4(r)* ¢
B)
The above damping matrix changes in the process of the
parametric study upon changing the initial elastic stiffness

but it remains constant throughout the time history of loading.

3.2.2.2 Forcing Function

The R.H.S. of Equation 3.8 canbe rewritten as

—Mug(t‘)/Fy = (~Mup,. /Fy) ug(t)
= o' T : . 12
‘a' ug(t). . . 3 )
in which
u_ = peak ground acceleration.
max :

Hg(t)= normalized accelerogram with a peak value of

unity.

T

PR
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The peak ground.accelerétion is scaled up or down to give

the specified values of spectral acceleration as will be ex-

plained in the section dealing with variation of the parameters.
. ’

Introducing the foregoing into Eduation 3.8 yields
the following

(1 0 z 2C 0 f Z
lz L 4 1 +
wO ( 2 u)0 ']2 1 .
L0 2(r) 3 0 4(;, z -
() 2
( K, 28 H 7 ) ~a! fié(t)
" y = . 3.13

3.2.3 - Controlling Parameters

The normalized eqdétions of motion reveal the most
important governing parameters, namely:
1. The hominal eccentricity between .centers of mass and

stiffness (e).

2. The translational frequency'(wo). é
3. The rotational translational frquency ratio.
4, The peak ground excitation.

Theré are some other factors that affect the nonlinear

+ response of torsionally‘coupledﬂsystems such as the number

and location of‘the resisting elements, and the time.varying :
chéracteristics‘of grdund motion, - Such factors have not been %

investigated in this study.
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3.2.3.1 Variation and Selscted Values of the Parameters

N

1) Eccentricity :

The diffepent required values of eccentricity areu
introduced by varying the distribution of the stiffness of
elements, l1.e. the locatigh of centre of stiffness is changed
while the location of C.M. remains unchanged.

Four different values of eccentricity ratio are used

and these are 0.0,0.05,0.15 and 0.25. The first value implies

" no torsional coupling and furnishes a basis for evaluating

the effects of torsional coupling. The other values represent

small, medium and large eccentricities respectively. .,

2) Translational period (T= 2w/uw,)

The selected values of the uncoublgd translational
period are 0.5,1.0 and 2.0 éeconds which cover a wide range.
of building periods. The variation of the'ﬁranslational

period is achieved by changing\bhe stiffness rather than

- changing the mass.

When the stiffness is changed, either the strength
level or the yield displacement must also change . It will
be shown later that both choices are equivalent- when introduced

into the equations of motion.

3) .Frequeﬁqy Ratio: -

If the radius of gyratibﬁ r gbout C.M. 1s used as a

" normalization factor, the following -quantities.are defined
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d
K =3k, (x./r)°
or 1 i i 3.14
wo, = /Kgn/M
and
Qr = frequency ratio
.= ‘*’@p/‘”o 3~15
@, can be expressed in tefms of the normalized stiffness
. 3
gquantities as follows
- (K. /R )% -
8 = (KGD /Kv) D 3.16
r
For rectangularly shaped masses the ratio r can be expressed
: D
as a function of aspect ratio as follows
2 2
r|” = (aspect ratio) ™+ 1 3.17
D 12

In order to vary Q,, there are two possible choilces

1) Keep K@D unchanged by keeping the spacing between the

1

frames constant and change the value of D by changing )
‘ . . r
o the aspect ratio using Equation 3.17.

2) Keep D constant by fixing the value of the aspect ratio,

r . . !
and the required variation is achieved by varying KeD

?Q

by changihg the spacing between the frames. J(

The second scheéme is adopted since it just affects @ while
the filrst scheme involves the'variation of the aspect ratio

which has its own effect on response (13).
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‘ The frequency ratio range considered here 0.8,1.0 and
1.4 reflects the characteristics of a wide variety of typical
buildings. QP=O.8 represents the case of systems in which
the major res}stance to lateral loads 1is provided by a central
core and Qr=l.u represents the case in which resisting elements
are arranged along the periphery. It 1is always éf interest
to investigate the case when the domlnant translational and
rotational fréquencies are equal.

The relative values of element stiffness to give the
required eccentricities and frequency ratios are listed in

Table 3.1.

4) Ground Motion

A )

" In this analysis, spectral acceleration S5 1s used as
the earthquake intensity paraﬁeter ;nstead of peak acceleration
in specifyiﬁg the excitation level relative to the strength
of thé systém. Peak acceleratigﬁvis an inadequate measure of
the severity of an earthquake because the durgtion of this peak
plays an 1mpgytant role 'in affécting‘the response while

spectral acceleration does not suffer from such inadequacy

since it portrays the response itself.

The linear response spectrum has been used instead of

Y

tﬁe nonlinear spectrum since the latter considers ductility
13 * . i

as a requirement that should be known in advance while in
thislinvesﬁigation it is a requnse'quantity. On this basiiéjjg'

an excitation level parameter, ¢. is defined d4s follows’

-

o
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o = MSy/Fy 3.18

~

.
oy

in which S, 1s specified at the uncoupled tnanslationaleeriod

for the particular structure being studied. i

’

In this study values of o range from 1 to 10 inzwhich"“

a value of 1 represents excitation which will only cause elastic

response. Values of « larger than 6 are not practically
feasible because of the very large ductility requirements
associlated with them; however, they are included in this study
in order to provide a more complete investigation of the res-
ponse charecteristics.

Ir Sa1 is the spectral acceleration for the particular
structure having period Ty, and for a specific value o4 which

is given by
ag = MS,4/Fy, -+ 3.19

the parameter ai used in the equations of motion is given by

S T T - 3:20
For suo;e;;e;E\caseg\and in order to retain the same values

of a, spectral'accelerations need to be modified and the peak
acceleration in Equation 3.20 is modified accordingly. |

The two possible alternatives that might arise because
of changing the frequency of. the structure are either to

change the yield level or the yield displacement as shown in

‘Figure 3.3. It is shown below that both concepts are identical

in terms of the parameter o which is used in the equations

4 A
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of motion.
Case (1): Yield displacement remains constant
For Tl’ Sa_-l; a1' = Msa_‘l./Fy
. ForQTz, Syot Fy2 = Ag Fyi 3.21
Sa9 = Ag Sal : | 3.22

in which A and X are ratios of subéequent values of yield
£ s '
strength and spectral acceleration, respectively, to their

reference values.

ap does not equal a4 for neither iy nor X; equals

IS

unitq;//ln’b}dér to retain the same values of q fii—équivalent

cases, it is necessary to modify §_, such that -

oy = M (55)n0aisiea’Fy2
= awi N . . ) | R
in which .
(SaQ)modifie&i;\(Af/As) Sa2 . 3-?3

and the peak acceleration 1s scaled aocor&ingly

(umax)médified,= (Af/ks) Ynax ’ " 3.24

T ) . . °
FiﬁaLlyA\E;-is determined using the modified peak acceleration

——

as-follows

S C :
, =M (u K ‘
¢ ( max)modified(_y2 : G.

3.25

Substituting.Equations 3.21 and 3.24_1hto Equation 3.25, and. ~

v ! e

b . . -
et . B o ., N 4
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rearranging yields

JF ) /A 3.26

t T mae
42 T (Mumax yi’ 4% s

Case (2): Strength level remains cons-ant, i.e. lf=l and

F = F

y2 y1

hence,

(Sa2>modifiéd = SaQ/As . X 3.27

- -

apd similarly, the mod;fied peak acceleration is given by

-

(Upax)podified = Ypay

Substituting Equation 3.28 into Equation 3.25;,and‘conéidering

Af=l,xield§

a; B (Mamax/Fyl) /.As' li{ 3.29

‘Since both expressions 3.26 and 3.29 are identical
- N /‘, N
it is concluded that both concepts are equivalent- when introd-
uced into the equations of motion, The different values of

a' which correspond to the specific values of a.are listeu ..

.Table.3.2. THese values are given -for both ground motions

corisldered in this stﬁdy which are: ) _ .
- Téé"N-S component of the EIL CENTRO earthquake of
May 18, 1940, <
'_ P $he. SSQE'éomponentﬁbf the TAFT earthquake of

July 21, 1952, - S I

(13 M . ‘__/
u /AS 3728

P

— e By
b



EL CENTRO TAFT
> 0.5, 1.0f 2,0f 0.5/ 1.0/ 2.0
1.0 |0.324}0.510|1.500} 0.482|0.8481,688
2. ‘o}gsy‘i.béo 3.000§0.96411.696(3.375
4,0 {1.334]2.040|6.000§1.928{3.392 6.75§
6.0 |2.001[3.060]9.000 .892 5.8%8 10.13
8.0 {2,668|4.080[12.00(3.856{6,784{13.50
10.0Q .3.335 5.100{15.00] 4.820] 8. 480 16.88
Tablg 3.2 yValues of Para.me.te'r. o'

a
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3.2.4 Hysteresis Loops

It is assumed that ever& individual resisting element
exhibits a bilinear hysteretlic behaviour undér the action of
reversal loading as shown in Figure 3.4, with the slope of the
yielding branch of the primary curve K, being 3% of the initial
elastic slope Kqy. This type oI benaviour has been shown 5o oe

adequate in simulating the hysteretic behaviour of structural

steel elements.

3.2.5 Numerical Integration

The equations of motion can be solved numerically
assuming the properties of the structure does not change during
a short time interval At. The equations of motion can be

written in an incremental form as follows
[MJ{AR} + [CI{aR} + [KJ{AR} = (aP(t)} 3.30

in which

[M] and [C] = mass and daﬁping matfices.

[X] Q,instantaneous stiffness matrix. -

{AR}, {Aé} and {aR} = incfemental nondimensional dis-

placémen@s,,velocities and accelerations respectively.

These equations of motion are solved numerically using
step-byfstep\integrat;on éssuming linear variat1on of
acceleratlion over a short time interval At. In order to satis-
fy the stability condition of the numerical method At is’

chosen as 0.02 seconds.

[ RSO
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The incremental displacements {AR(t)} can be determined

solving the following équation
[K*(£)1{aR(t)} = {aAPT(£)} | 3.31

in which
K (t)]

effective dynamic stiffness matrix.
= [K(t)] + (6/ at®)[MI + (3/ at)[C] 3.32

{aP*(t)}

effective 1pad increment.

~

= {AP(t)} W [MI{(6/ at){R(t)} + 3{R(t)}} +

[CI3{R(E)} + (at/2){R(t)}} 3.33
Incremental velocities can be found using recurrence formulas

based on the assumption of linear variation of acceleration

' 3.34
the total displacements and velocities at time t+At are
computed using the following relationships .

{R(t+at)} = {R(£)} + {AR(%)}
‘ 3.35

(R(t+At)} = {R(t)} + {aR(t)}

The acceleration vector can then be determined from the cond-
ition of dynamic equilibrium at time t+At to avoid the accum-

ulation of error arising in the incremental equilibrium

relationship as follows

R S
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AR(t+at)} = [M]7F {{R(t+At)} - (£ (t+at)} 2 {fs(t+At)}}
| 3.36
in which {fp(t+4At)} and {f (t+At)} are the damping and the
résforing force vectors repectively.

In time- increments in which stiffness of any individual
frame changes due to ylelding or unloading from the yielding
branch, there will be an overshooting of response away from the
prescribed load—deformation felation as illustréfed in ngure
3.5. The resulting unbalanced forces are treated using the

ﬁmodified Newton-~-Raphson iteration method in which the iteration
algorithm can be written as

[K*(£)JLAR,(£) 35,4 = (8Fy);

3.37

{R(t+at) 3, (R(t+at)}; + {AR_(t)}

it1 T i+l

in which
-1 and i+l = number of two successive iterations.
{AF,}; = vector of unbalanced forces at iteration 1.
{ARu(t)}i=:the change of displacement vector due to
’applying the gnbalanced force vector.
[K*(t)} = tﬁe effective stiffness matrix comﬁuted

~according to the state of deformation at time t and

+ kept constant throughout the iteration process-,
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and the second one, which i1s bounded b

b7

3.3 Parametric Studies

In this sectlon results of the parametric étudies are
presented with particular attention to the direct effects of
the different parameters on values of peak ductility demand
(P.D.D.). The relation between .parameter a and P.D:D. (raticz3
of the maximum displacement at the furthest edge to centre of

stiffness and the yield displacement) is" investigated.

This type of plot 1s presented in Figures 3.6-3.23 for different

" combinations of all considered parameters under the action of

both ground motions,

3.3.1 Discussion of Results

a) Eccentricilty

In Figuyes 3.6, 3.7, 3.13, and 3.20-3.23, the effect

. that increasing eccentfﬁcity does increase P.D.D. 1is clear

ané consistent for different ‘values of o, However, in Figures
3.8, 3.10, 3.12, 3.14 and 3.15-3.19, there is overlap between
zero and smali eccentricity curves at different wvalues ,of a.
Also, the ovérlap is observed in the case of medium and }arge
eccentricity cu?ves. ‘

Accordingly, two regions can be defined:"tﬁ% first
region, which is bounded by zZero and small eccentriﬁity curves
?/medium'and large ‘
ecceﬁtricity curves. ‘It is possible to dist;néhish between
the‘ébove two régions on the basis that P.D.D.'s 1n.the
second region ére'higher than those in thg firsé region.

dnly in Figures 3.9 and 3.i1 is there some o?erlap between ‘

~
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the two reglons but 1t takes place at a very high excitation

level (a=10), which i1s higher than those of practical interest.

b) Frequency Ratio

For small values of Q4 (0.8), the P.D.D. curves for
different eccentricities diverge and as 2, increases, these
curves tend to converge. As a typical example, in Figure 3.15
(2,=0.8) the curves are widely spaced while in Figure 3.17

(Qr=i.4) the divergence is reduced noticeably (also notice

the difference between Figures-3.6&3.7 3.8%3.10 and 3.11&3.13).

However, this does not mean that increasing Q will necessarily

result in reducing P. D D. at a particular eccentricity for all

values of a, As observed from the cases studied, increasing

2, may reduce P.D.D. for some values of o and increase them

for some other values of a.

s

The effect . of increasing Q, in reducing values of

;P.D.D. is not pfonounced ihsofar as the small and medlum

eceentricities.are concerned, but iﬁ:the case of large ecc-
entricity, increasing @, does reduce P.D.D. especially at

hig@ values of a. In general, increasing Q, (largest value
of Qp herein is 1.4) results in reducing the effects of var-

o Y

iation of eccentricity, particularly at ;ow values of a.

e) Traﬁsiatidnal Period : L A

The only apparent effect of the translational period
.is through the spectral quantities associated ‘with that par—

ticular perigd which censequently affect P.D.D.

A e e it
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The effects of the coupled frequencles and the elong-
atlion of period due to the reduced post-yield stiffness alter
the response of the short-period structures to a greater ex-
tent than the long-period structuees.

d) a ;
In all the cases studied iﬁ this analysis, it is clear
that P.D.D. increases with the increase of a. The large-eccen-
tricity structures may respond under the ;etion of severe
ground motions with undesirably‘large deformations eseecially
for small values of Qp .

. Therefore, a designer should know that by allowing
more and/mpre nenlinearity in a torsionally coupled system
larger .and larger Vvalues of P.D.D.‘afe to be expected.
The question of whether this increase is ~greater or smaller’

than that obtained if the system 1is kept elastic under

equivalent excitation levels will be investigated later.

e) Type of Ground Motion :

-

It is very clear from reviewing the P D.D.~a plots of
the two different earthquakes that the re&ponse is strongly
dependent on ground motion, Not only the peak values but
also the time varying characterifjlcs have great effect on
the response. The effect of" this faetor is not investigated

quantitaﬁiyely in fhis study.

rvem e v ot 2
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3.3.2 Code Provisions

The NBC 77 (16) proposes that if a structure is
designed to undergo plastic deformations, the elastlc response

spectrum can be modified as follows

H

[}

RSa ' ' 3.38
in which

S = elastiobspectral acceleration.

Sg = elasto-plastic spectral acceleration.

R = reduction factor .
= 1/u : for systems with T»0.5seconds.
= 1/ /2u-1 for systems with T<0.5seconds.

p = fhe estimated ductility capécity of the structure.

Multiplying Equation 3.38 by M and defining MS, == *he
elastic earthquake forces and nsp»aé the maximum inelastic
forces which can be considered as the strength capaciﬁx:g

t
the structure, yields the following ‘

Coe

MSa/MSE = 1/R . " 3.39

[}

In equation 3.39, the‘LvH;S. is similar to the parameter «
studied in this analysis and equals the inverse of the reduction.
facéor R proposed by(the code Using the above relation the.

adequacy of code provisions can be stessed by comparing (1n 5

the PfD.D.~a plots) the actual reésponse and the‘code criteria‘

représented—by~%§e~two curves labelled By /ﬁ;:"‘ . . e

“ . . -
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Beforg proceeding with the comparison, it should be

.emphasized that parameter a« can be consldered as a design

‘parémeter chosen by the designer.  The choice is based on how

much stfength will be provided compared with tﬁe elastic
earthquake forces.

In Figure 3.15, and for a particular value of a=6,
ductility pqpyision as predicﬁed by the code u(code) is §
(for R=l/u),'.The real response is higher for ﬁhe different
eecenér;cities; u(e=0)=8 and n(sz.25)=2u. ' The above cqﬁpari-‘>

son is an example that the code criterion.querestimates tﬁe

‘response in some cases. On the other hand, in some other

cases the code criterion gives good or consérﬁative‘estimates;
In Figure 3.9 aﬂd fér‘a=u, p(code)=l4, u(e=0)=2.3 and u(e=0.25)=
b, J _

Even though the>values of the other eriterion ()?HZT)
aré exceeded in some cases,‘yét these.values can serve as an:
approximate upper bound of respbnses.. j '

~ Since these criteria adopted by the code are based

on just one earthquake, EL CENTRO 1940 (21), large -discrepancy
between the gode prov}sipns.and real response 1s observed 1in

the case of the other earthuake.. The complexity and the wide

'rgnge scatter of the plastic response requires a more éopﬁisf

P
F
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3.3.3 Asymmetry Effects

Another poilnt of Interest for the designer is the
effect of plastic behaviour on asymmetry effects.” In this
section, it is investigated whether permitting inelastic
deformations in asymmetric structures would increasgﬂthe
torsional deformations or not compared to the élastic response.

In order to-investigate this problgm, the results‘are
presented in the form of the relation befween A, and a as
shown in Figures 3.24~3.29.in which

A, = ratio of displacement ‘of the (+ve) edge (seé

Figure 3,1) in an asymmetric structureé to that of a. .

symmetric structure when both are subjected to the’ |

same excitation.

Variation_of 4,, values from the élasxic values with

increasing "o becomes more pronounced as eccentricity, is in-

-greased. Considering only values of «<6, it is found that in

. “the case of large eccentricity, values of A, in the plastiec

* range may go as high as three times the elastic value and as

low as 0.38 times the elastic value as shown in Figure 3.30.
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3.4 Sinusoildal Excitation

In the analysis of response of torsionally coupled

- systems to seismic excltation, there are two main sources of

complexity of the problem ;

1- The system itself in its simplest form is a two

degree of freedom system.

2- Irregularity of ground\motion.
Effects of these factors are mixed together in the response.
In.an attempt to simplify ‘the problem, a simplified input
motion is used. Even though the results obtained in this case
do not represent the response to real selsmic motions, the

[

results reveal the characteristics of the system itself

4

Sinusoidal excitation is used 1n this study with a

‘frequehcy equal to the linear resonant frequency of the systemc

3.4.1 Study Cases
Two cases are considered in this section :
Case 1- the"input frequency is taken as the. linear
resonant frequency of the model,
Case 2- it is taken as the lowest coupled frequency of |
the model.
The reason forlincluding the second case is .to try to excite ;
one mode more‘thaﬁ the other, i.e. try to make the model
behave as a single dégree of freedom system. | Results of both
cases are presented in the fonm of the relation between P. D D.

and a‘ as shown:uLFigures 3. 31 3 33 for case 1 and Figures

.. 3 343, 36 for case 2. The results are sggwn iny for systems

with T=1.0 second. - j :y;

i~ . mel o Mwaras oo o
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'3.4.2 Analysis of Results

Response of different systems to the sinusoldal excitation
empﬁasizes the same effect of increasiné a on P.D.D. values
that is-observed in the case of selsmic excitation. How-
eVer; P.D.D.~a curves do not cross. over as observed when
using real earthquakes. This implies that the irregularity
in respoose is a characteristic of the particular earth-
dueke_and not of the model itself.

Comparing P.D.D. in cases 1 and é, it is observed that
P.D.D. values in case 2 are less thao those in caee,l for
small values of o and higher for large values of q.' The
above observation holds for both symmetric and qsymmetrio
systems ,QHenee, it could be inferred that asymmetric. sys-
tems also exhibit the "soft type" response, i.,e. the

-

resonance peak moves to a lower frequency value as the

/ amplitude of the driving force is increased. This type’

for single degree of freedom systems (22) - .

‘The effects of different parameters on P. D D. are clear

and consistent while they are masked in the case of seis— :
mic exeltation due to the irregularity and randomness of .

ground motions.

e e
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CHAPTER IV - .
P.D.D: IN STRUCTURES WITH
DEGRADING STIFFNESS NG

S

It is well recognizLd now that the response analy#ls

.1 Inroduction

of reinforced concrete strudtures subjected to strong earth-
quake motions requires a reallistic model which recognizes
the deterioration in stiffness and the variation of energy

absorbtion ; . s

)

-

' Based on early tests performed by the Portland-Cement

Association, Clough and,Johnston in 1966 devziized a degrading

stiffness hysteretic model (17) with an elas lastic. spine
curve as shown in Figure’h.l. Later tests at thé University

of Illinois by Takeda in‘l970 (19).1ed to the formulation of -
a seven—condition hysteretic model wlth a trilinear spine
curve as shown in Figure -4, 2 : In Takeda s model, the unloading

stiffness iS'reduced by an exponential Sfunction of the previous

© maximum deﬁormation.

These two hysteretic models do not present strength
deterioration, i‘e the loops reach tne spine curve and would
follow it if the deformation increased.

Takayangi and Schnobrich in 1977 (23) incorporated

he effects of axlal force variation, pinching and strength

'decay into Takeda s model as shown in Figure 4, 3

¥

“In a1l the. previous studies on«the/eﬁfeéts of adopting

'sgen degrading stifgness models, onlyhthe response of a series
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of single degree of freedom (s.d.o.f.) systems has been
studied. The available results for these s.d.o.f. systems
ggn not be extrapolated to the torsionally coupled case due '
/to the nonlinearity involved and to the wide scattér of res-
ponse even for the s.,d.o.f. system. Hence, it 1s still
necessary to investigate the response of torsionally coupled
systems having similar hysteretic behaviour.

In this- chapterx‘ghe peak ductility demands of systems

having degrading stiffness hysteretic characteristics are

<@

investigated‘for the same range of controlling parameters and .

*

for the same ground motions used in the previoﬁs chapter,
A comparison between the values of P.D.D, of both bilinear

and degrading stiffness models 1is also made.

4.2_ Nenlinear Model

"Invthis'analysis, Clough's degrading stiffness model,

is used to simulate the hysteretic behaviour ‘of reinforced

-

conerete structural elements. The yleld regime has a non-zero

slope. The reasons for choosing Clough'model here are:

a. Its adequacy to simulate té;»real hysteresis loops is
' checked and shown to be adequate (20). )

b. sIt is relatively simple and it has been used extensively

C. The extra features included in Takayangl's model are not

required in-this case, '
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4,2,1 Description of the Model

-

The following definitions and notations are used to

simplify the description of t§\\h§§teresis rules shown in

Figure 4.4,

Loading

Unloading =

Load reversal

UY FY

(UMAXP ,FMAXP)

(UMAXN , FMAXN)

If yieIﬁing has .hot yet oceurred on one side; then the yield

point {UY FY@ will serve to define such point on that side.

U0 =

" or negative unlpading terminates.

= increasing the absoiute ;alue of the
restoring force. |

oecreasiné the absolute  value of the \{'
restoring force.

= when tne positive or negatiie unioading
tterminétes, i.e. when the force changes

its sign with respect to the force at

»the previous time statiOn:

= yield displacement and stre; gth res-

pectively

= current yield point the ‘last largest

excursion yield point on the primary , ;
curve on the positive side.

= current yieid point on the negative

side.

the previous displacement axis. inter- . !
»cept It is détined as. the foree~dis—’
'placement condition at which positive

Y
>
e, g T s v o e e
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@

initial elastic slope.
K2 = slope of the yleld branch on the primary
curve (taken to be equal to 3% of the

elastic slope). '

ke f
K3 reduced slopé of the positive or
negative 1oading regimes and 1s defined
by two points: (1) the current inter-

-cept of deformapion axls U0 and (2) the

) current positive or negative yield point.

A complete yield deformation cycle can be represented
by the six regimes I - VI shown in Figure 4.5 in which numerals
1,2 and 3 represent cyele numbers. The initial behaviour
through the firs% three fegimes are ,identical with tﬁe bilinear
systeml . After yielding has occurred, the negative lodding
regime IV follows a reduced stiffness path which is defined
b&'%he two current poinﬁe of interception with the deformation
axils and negative yieldiﬁg. ' And then, bhe negative ylelding

and unloading regimes V and VI are similar to the bilinear

system.\\The succeeding positive loading I2 has a reduced

-,stiffness>defined by the two current points of interception

with the deformation ‘axis and posittve yvield.

~ A subroutine ( DEGRAD" ) is developed to trace ‘the

_above described hysteresis loops, it$ listing is given in

: Appendix 1. ' . ‘ ‘ S



&

X

.
Lo

O

&

PEDEDE
[-.4
1
a
[an]
\

10.6

© 5.0k

ELCENTRI

T=0.50-0=0.80

93 -

ECC.=0.40
Eiila =0 4,03

ECCu=0415

ARl

~

T =M 38@75%

‘-Figaréﬁu}G Relation between P.D.D.- and E

:\JT“O 5 and ﬂ,~o 8

P

e

w

s e e b

. R R g R e A At e
.



O ECC.=0.0 - /

.0 %'%pnxg‘qu “ - /

& E(::}:n =019 ] ‘ /

ro
2]
o4
<
I

o  ECC.=0c25 - /.

ELCENTRO : /

. T=0450-0=1.00 e

160

5a0

d.ok 1 I T BT
o &sMESA/FY |
Figure 4.7 Relation between P.D.D. and a,
R AR L A

»o
>

P T et . -

baor
\

N N . . ,
‘ * - ERY . N N . ) .
i “ - v Fe . ., . .
PN C LT . TR
i v N . . . , —<



: . Y » 3 3
< N . » - . . L . . -
~ S .
, \ .
P~
4 vt » - .
' ’ T ’ ’ ’ k 95
N - - - . . - o -
" . . 5 R ‘ v, v, " .
B v - R %
* . . 7 ‘ . L N
» o PR
et . . R ’ ' . N .
“ ; -, Rl - N - "
L] > v

; . » , " . ¢ '“
. ’ N e s v\ o . - Do
T o C . QO ECCu-U a0 ' N ' : . e
- . - : N 3 A
- , S ECCu-UuU5 CT v Ies tJ .

’ ' « [ A‘ 'L.,ECan(]n:l.s P , | / | . , i i '
| L6 ECC.=0.25 o R ..

R . ‘;‘_,'/ . ELCENTRQ . | / \ . . _ | .‘.

. . . ‘\"
' P

- . T=0.50-0= Lebd. o . i
—_— . - 4 . ,/ N ‘\ S U o ' [

N
.
|
.
.
A
’

!

e

~~
oy
v

VS et

/]
" SRR ke et A, Doy T lop oo e

° . v N -
¥
- e . . ‘{’. ‘
" . . . EY . M Lo
R N . . . - M ." - . a "',\ . ; - ’e i c -
e sl Figure l; 8 Relation bebween P. D D« andva, SN O]
. . « e e s . N .
i ST e , . T-0 SIand fzz.=1 1& S S
™ 7 + . Tt ‘\’ s N [ ‘\v ",' ‘. h - . N . . . N . :.,‘ "
L PSR R , ' e e e s
-y PRI o . ~ ; cr ! Caen T < ' ' P ' e
'}\ Y “; i s .o . . . - - e . s T 4 s . e -,
el ) . B Yo N o . -
- L M v, H . RN * ‘ Co !
R . v, ‘< <o~ - o N . . X A‘ N . 1 ~
, o . v \; . B . & -,
* - N A LT , CON .
o v ._\ st N ., ot . P oo R !




2 M - \v
. . . fr : .

' coe - . , 96 .

30:9 T - T ] A 1

- A - '- . ; — . “ ) . l/ N K )
\ . . S Q - :.CC;:—U«:D . o /
N . : . ' . 7
- .- g ' ZCCa=0.06 - A / - .
25.0 i * ) g [ ..{ .
: &  ECCo=0015 -/
‘ ‘. - . P "

Lt ' v .4 ) "’.' | Loy ECCa:-'&'nas * . /

- - geenre
. 20401 .- ' g .

’ TeLe00-Q=0.50° [ .
! ¢
; .
! o
1 - < »Dn :1.5..0“ ~]
% = {-
. o
|
‘% %0'0"‘ ~
./i L S
i
i - .
%A : o 5’10" —
‘;" * 7. V
*) : 0-0 ~ =
= i . \ n ~‘ e 'I - .‘ -
Y I ‘ ° ST 'c=;~1+$n/m' "“‘\
R A F:!.gure l& 9 BEla'r,ion betweeg»P .D. D. and @,
; P i ‘P»-rl'o andn-0 A . :
: S S e TN
i K ) “-, K :\ : L :A - ;__Ki.,. N N -
2 SR Tl . .
14 \ M . _ .

%A

3

4
A 8 A 3 e B 1



N
.
. r"-~/ ~

S
N s

Po

A

25 .0 _ ,

97.

3éu0 : .] - ]‘ ¢é" 1 i

ECCs=0,D ’ » / -
g ECCo=0,05
"4 ECCo=0415 ) -/

o Ecqa:o;-as/ )

ELCENTRO . A, ~ [/

: 20:0"" ‘ !
) T=lnt’0‘_‘0=lu00 /'

>
0“0. - I - i ) i - | : i
"0 R T g - 10
-~ ) » . .
. | G—.)r Sa/FY - Y
' Fig li 10 Relation b.e'l:‘tén P.D.D. and" a5
ST : * T-—L/}ﬂﬁ np"l 0 . y

,1 . ¥

- N
s .
I
*.
*
s T -
-
3
b
.
-
v
‘
>
4
H
‘
s
L4
'
‘4
i
H
i
’

e



~

. *
-

e

L naan N o kot B S Eateh
2

20.0F ,
b T=1.00-Q=1a40

-
H f -
» 4 98
3040 7 e ] 7 —
N N /
O ECCa=0.0, ./ .
T ECC.=0.05 /' o,
25401 o ¥ -
' A ECCa=0.l5 /
P l
6  ECCe=0:25 /
- !
ELCENTRO /
- 1 —

5

T"l 0

! e=M$SA/FY

and ax=1. y

Figure 4, 11 Relation between P.D.D. and a,

P



99

3040 - a/' T T : 7 T |
lECC 0.0 '/ -
| /
ECC.=0.05 / (//~
\& 25 .0 / —
¢ ECCa=0.15 ./
/
ECCa=0.25 /
} 1
. ELCENTRO ./
2040 ; .
: “T=2.,00-01=0480 /
. . 7
G
o 1540 .
.D M -
?
\0.
/o
1040 a
I_ 5(!0— -~ ’
/
—&s :
] :
. ;
0.0 u [ L ! 1 :
2 4 6 g 10 r

«=M+SA/FY

Figure 4.12 Relation between-P.D.D. and a,
. T=2.0 and 2,=0,8 '

- . » ~.
N ~

P - Mo~

L



100

300 ] I ; i
o ECCL=0.0 / |
O ECC.=0.05 / T
2500"’ - ) pust.
A ECCa=0.15 ./
e ,
o - ECCa=0:25 - /
ELCENTRO /
2040 : : ' -
' T=2n00-—0=la00 /
O 1540 -
Q
2
-10‘0_. 7
5 40} N
’
0.0
o
a=M+SA/FY
‘ Figure 4,13 Relation between P.D.D. and «a,

T=2.0 and 9,=1.0

N

s
s e g Fm



PnDan

™ Bt et S ST e B ot St e >
<
.
» . N

101

3040

25 nO"

20 uO'_‘

1540

10.0

540

O  ECC.=0.0
8 ECCa=0.05
A ECCa=0415
o . ECCa=025

ELCENTRO

T=2 o00-0=1:40

a=M+SA/FY

Figure 4,14 Relation between 15.15,1,3., and a,
T T=2.0 and Q,=1.4

10

f <
«N L.



e T M T e = v

- o trn? o s

PeDaDa

5040

40 .0

. 102
| a I T [
1 A
QO . ECCc=0c0 /
. ‘ . o
B ECC:=0:05
A ECC::=00.15 -

‘6 ECCe=0.25
TAFT

T=0¢50-0=0480

Figure f,15 Relation between P, D D. and o
T—OSandQ =0.8

30<0~ -
20 o0 -
1000"’ -t
0.0 L I ] | ]
0 2 4 6 8 10
c-'\HSﬂ/FY

puEa—— L



e Ko R N s e s B e An w3

PoDeDa

‘103

5040

4040

3040

20.0

10.0

I T

O ECCn;OuU

g ECCc=0405

B,

ECCo=04l5
< Ed@u’:Ouas
TRET

T=0.50-0=1.00

' Figure 4,16 Relation, between P.D.D. and a,
. T=0.5 and ¢,=1.0 S

a=M+SA/FY



-

E S

Ry

- g

s g ety o Wt B

PoDoDa

50,0

‘1000“

‘4000F

3040~

00

nJ

200

b

" TRFT

T=0550-0=1040
?

ECCGFQuU
ECCc=0:05
ECC:=0.15

ECCo=0.25

~
Py
-

Figure H 17 Relation between P.D.D. and «,

1

c—MvSQ/FY ‘

T—D 5 and =1, 4

B

\

I
P
o



o TBe et empems mee n a

o e e F

PeDaDe

105

‘\“.
., e
5040 T I ] I A
'
© ECCn-’U'uO /I/
@ -ECCe=0:05 . // ‘
40,0 A ECCo=0.15 V . /’ -
6~ _ECC=0425 /'
: TAFT o \ /
=1400-00=0.80 ~
3040 ' T
2040} J
100~ -
A N
0.0 1 ! 1. | !
0. [ 4 6 8 10
\ | w=MeSO/FY
. 4 ®
. Figure 4,18 Relation between P.D.D. and a,

‘T=1.0 and Qr=0‘8 :

\ *

.‘,

- R -



e et A e T

PeDsDa

106

Figure 4.19 Relation between P.D.D. and «,

a=M+SA/FY

T=1.0 and 2,21.0

¥

5040 — ,, ;
. /
O  ECCce=0.0 /,
O  ECCc=0.05 /;' '
© 4040 A ECCe=0415 // .
©  ECCa=0.25 /
Tertr ) ’/
,/
T=1,00-0=1.00 /
3040 ' T -
80 na“'
lU nd"‘
00 r ' ' '
0 4 6 8 10

. -
P i



I
Rl N e o n o

I bt
Lo L ottt - in W g T
.

107,

- /
O = ECCe=0.0 ,/
(] ECCB=0&05 /
40 .0 A ECCn=0pl5
¢’  ECCe=0:25
TRFT
T=1e00~-C1=1:40
3040 .
O:
g
o.
200 _
.].090"" b
0.0
0 2 . 4 2 10

Figure 4 20 Relahien between P.D.D. and %,

T<1.0 and @y=1. y

P

ey o 0L



e

P

B e A

108

5040

4040

300

PeDaDs

2040

100

2

I
O ECCQ-":O o0
EC.Cu=0 a05
ECCc=0,15
< ECC5=0 029
TAFT
T=2.00-00=0.80
>

Figure 4 21 Relation between P.D.D. and &,
SRR T20andsz~08 ]

«=M+SR/FY




e et i ¢
PP

v
R s

& s -
. P N

L

" . - o o ‘ 1103
500 . 7 g L 7 C
P o) .ECCO=ODU l ' ' - I/‘
=,/
. N
0  ECCe=0.05 - R J
O , /
40,0~ B ECCe=0c16 - | /‘ 7
6  ECCe=0:25 : _ /
TAFT | o N
[
l/ -
T=2.200-0=1a00 . /
30 .01 ' ' Bl (
Q
Q
qa.
aOnO"‘ N
vy ;
100 T
.
o ‘ i‘:”
0 o 0t— * — : ' “
Y, : . S\ ~ s “~ T ' v," BRI :
e T e c:-!««»SQ/F‘(

Figure u 22 Relation between P.D. D. and a,
T—2 0 and @, =1, 0

- e




. B
[T

ah ey £ S M XA i e e ngns

PaDoDo

2040

. "‘0 oc,

5000 l=J g

110

400

3090"“

10.0

0] _Ecéq=ouo T /
@  ECCe=0.0% A o /
'y ECCa=0 415 S
6 ECCac0e25 - '

TAFT | '

T=2.00~-0=1.40 - | /A

c <=MISR/FY:

Figure b, 23 “Relation between P.D.D. ‘and o s

T—ZOandn—lll

. ey

| e et T S



e s e e -

B

I e e S e

~
-~

111

s
v &

4.3 Discussion of Results and Comparison with the Bilinear

4

( Reviewing Figures 4.6-4.23, it can be s=en that all
the effects of different parametefs‘on'é.D.D.»mentioned in the
bilinear model are applicable gf well‘t?‘the case of Clough's
degrading stiffness model system. However, 'the distinction
that is possible in the case of.the bilinear modei between
the two regions defined in section 3.3.1 is not applicable in
this case. There afe a number of cases in whiéh the two

regions overlap as Shown in Figures 4.9 and 4.11-4.,14,

3

~

Insofar’as the effects of asymmetry are concerned, it
can be seen fr Figure U4.24 that the effect of noniinearity
on increasing the asymmetry effects is less in this case than

&
in the bilinear mo@el..

—
-

In order to make a bompahison between P.D.D. values
in both cases, the resuité\are presented in the form of a very
. A .

informative ratio r;, which éan be defined as the ratio of

D
the maXimum ductility factors generated in the degr;ding
Stiffness,model system to that in thé‘biliﬁegr ﬁoqel system
in equivalent cases. The P.D.D/ is considered at the furthest
edge to the centre of'sﬁiffnegs_in both cases. For each

eccentricity, values of rpg are obtained in systems with

~ -different values of the controlling parameters when subjected

-

to the two earthquéke gfound.motions Qesﬁribed previously. -

‘These values are plotted in Figure 4.25 for va;ués of a= 2,1

.
13

and 6. ‘ e ' L .
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There afe two*importadt factors affecting the response
of the degréding stiffness model system which cause phese
irregular variations of L values:

1. The reduced stiffness K3 willk%ead to the elongation of
period of the system, hence, different spectral values
are in effect (depending upon the shape and irregularities
;f the specific response spectrum). Also, the original
1océtion pf the uacoupled period and the two coupled
periods (which age‘recognized by the real system) play -
an important role in affecting the response.

2. With the adoption of this model, less energy is absorbed;
a feature which may result in larger displacements.

pp are extracted and

listed in Table 471._ It is clear that the increase of r

The upper and 1ow¢r bounds of r

DB

" is more pronounced in the case of T=0.5 seconds than in the

other two cases for which values of Tpp generally fluctuate

\véry close to'unity. A similar trend was shown and presented

for the case of s.d.o.f. system by Clough and Johnston (17).

Since there is no apparent correlation between B

I

and the excitation level, the results of different values of

o are averaged and given in Table 4,2, Eccent?icity has no

’

effect on values of r__ in th@,céée of T=0.5 seconds and has -

2

‘a 1little effect on increasing rﬁB‘valués for T=1 second.

Insofar as the fower bounds are concerned, r may reach-a

DB
value of O 9 for T=0.5 seconds and 0 75 for T=1 and 2 seconds.

Tables 4.1 and U:2 help in Eiving an estinate of h%

»
g 5

JUT.
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LO

Up

LO

Up

Up

10.05

0.15

0.5

0.25

0.60

0.80

1.27
1,39
(/

1.30

1.05

1.30

1.35

1.20

0.78

1.h44

1031

1.60

0.05

1.0

0.25

0.88
0.73

0.82

1.03

1.28

1.00

0.92

1.04

0.50%1.07

0.60

1.26

0.64

1.14

1.07

1.30

0.05

2.0

0.15

0.25

0.88

0.77

0.74

1.08
1.08

1.07

0.91
0.60

0.58

1.44

1.04

0.98

1,18

0.98

1.03

‘UP=_ Upper, LO= Léwer

A
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Table 4,1 Upper and Lower Bounds of the Ratio Tpp
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0.05] 0.9 | 1.34
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o 0.15 § 0.93 l“35
0.25 0.87] 1.36
0.05 0.811 1.07
o
= 0.15 0,65 1,14
0.25 | 0.77] 1.19
0.05 0.86( 1,20
o 69| 1.0
‘™ 0.15 Q. 9 .03
0.25 0,69 1.03
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much Vvariation, above and below, 1s expected in case of pre-

dicting P.D.D. of a degrading stiffness system using an

equlvalent bilinear system. ?
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CHAPTER V
CONCLUSIONS

\

5.1 General

The following concluslons and recommendations for
furtherrgeseafch are based~pn the analysis of a single~story
model with‘thrce equally spaced frames of diffeéerent stiffnegs

to produce the required eccentricity. The model is subjectedﬂ

.to two real earthquake ground motions in addition to an ideal-

.ized sinusoidal excitation. | -

The seismic response of the asymmetric model is quite

irregular and it shows different variations wilth the increase

A}

~of the excitation level parameter a in equivalenf,cases.

This pharacteristic makes it in general difficult and in some

cases impossible to detect consistent trends in P.D.D.

. 5.2 Bilinear Mcdel

1. There is no clear distinction between the response of
Zero and‘sméll eccentricity s&stems and also between
medium and large eccentricity systems. However, P.D.D.'s
in the ‘second case are higher than those in the first case.

2. Introqucing large éccentricity in ‘asymmetric structures
méy result in undesirably lérge'values of P.D.D: part-
icularly in the casé:of large cﬁcitation levels.

3. Increasing the value of the rotational translational fre-

A quency ratio 9 (maximum value in this study is 1.14)

results 1n reducing the . effects‘of varying the eccentricity

- - - - ~.‘.-.'

o L - 1118
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especial%y for small values of a (typlcal values are 2 -\
and 4),

., The case in which rotational and translational frequencies
are close is not critical as 1t 1s 1n linear elastic
structures. This observation indicates that inelasﬁic
behaviour weakens the torsional coupling.

The translational period affects the response in terms of
-the spectral quantities associaéed with that particular
period. :

Due to the irregularity of resp;:;l and the sé;Bhg depend-
aﬁce on ground motion, it is difficult to séq up specifice
rules for relating nonlinear and linear responses of the
asymmetric model. ‘However, upper and‘lower bounds of the
ratiO'Ar (which gcts as a”ﬁeasure of Qhe‘agymmetry effects)
are presented. It is found that the variation of Ay
values from'fhe'elastic values with iﬁcreésing o becomes
more pronounced as eccentricity is incfeased.

Upoa using the sinusoidal excitation, the overlap between
P.D.D.-é Curves for different eccentricities 1s eliminated.
The effects of different parameters on P.D.D. are clear
and cofisistent Whilg they are masked in case of seismic

) gxcitatién by the/i?ﬁegularity and;randomness of . ground
motion. A | '

The code pfovisions for modifying Qhe elastic respoﬁée
spgctrum’td obtain ﬁhéfplastic reséonsé~éréAéééesééd} ‘}//'
It is found that ¥he¢criteriod.ReljJ§;:T can serve'és;f' N

t

co ' N ' : \
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an approximate upper bound of responses. These criteria
are good for some earthquakes and not for others since

they are based on a limited number of ground motions.

Degrading Stiffness Model

There 1s no apparent correlation between eccentricity and
P.D.D. However, the effects of other parameters are
similar to the case of the bilinear model system.

More scattef'of P.D.D. values 1s observed in this case

as 1lndicated by values of the ratio rﬁB.‘¢This is expected
due to the‘compiexity of the load-deformation relation.
The increase of rpp 1s more pronouﬁced in the case of ’
short-period Structdfes than in the case of medium- and
long—period stuctures for whicg values of PDB generally
fluctuate very close to unity

Insofar as the asymmetry effects are concerned, it is
shown that the effect of nonlinearity on increasing these

-

effects 1s less in this oase than in the bilinear model.

Recommendations and Research Needs

It appears from this rather preliminary study that a

‘designer can not incorporate inelastic asymmes}ic effects

,easily. Either a very conservative desigh should be made

v

or a more rigorous analysis would be necessary.
In the begihning of this analysis it was felt that the

response spectral acceleration might be more accurate

‘andiexpressive than the'peak acceleration; yet the results

\
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« ‘ . !
. : |
are quite scattered. This scatter precludes) providing
1}

specific guidelines for design purposes.

Thé gcCurac& éndnthe approximation involved 1n ﬁ;ing a
single~story model as representative of asymmetric multi-
story buildings need to be Ilnvestigated thoroughly in

the case of nonlinear response,

The effects of the time varying characteristics of grounﬁ

moﬁions deserve to be elarified since it is obvious that

response is strongly dependant on ground motion charac-

‘teristics. !

3

Y e acaliaual

&



Tanabashi, R., "Nonlinear Transient Vibrations of

Structures", The.Second World Conference on Earthquake
‘ Engineering, Proceedings Vol. II, Japan 1960, pp. 1223~
1238,

Tanabashi, R., Kobori, T., and Kaneta, K., "Nonlinear
Torsional Vibration of Structures due to aﬁ Earthquake',
International Symposium Nonlinear Vibrations, Kiev
1961, pp. 459-485. ‘

Kan, L.C., and Chopra, A&K., "Linear and Nonlinear Earth-
quake Responses of Simple Torsionally Coupled Systems'",
Report No. EERC 79-03, Earthquake Engineering Research g
Centre, Ugiversity of California, Berke%ey, California,

'February,i979. :

Irvine, H.M., and Kountouris, "Inelastie Seismic -Response
of a'Torsionally Unbalanced Single-Story Building
Model"™, M.I.T. Department of Civil Engineering, o
Research Report R79-31, July 1979.

Shinata, A., Onose, J,, and Shiga, T., "Torsional Response
of Buildinge to Strong Earthquake Motions', Preceedings
ef the Fourtn World Conference on Earthguake Engineer-
ing, Vol. II} Al 1969, pp. 123—138.

Batts, M.E., Berg, G, V,, and Hanson, R.D., "Torsion in
_Buildings Subjected to Earthquakes" University of
Michigan, Civil Engineering Department Research UMEE
78314 November 1978 L S

.122 BV



e A e o

e

PR )

10.

11.

12.

13.

,Iq .

123

Tso, W.K., and Asmis,‘K.G.; "Torsional Vigration of”
Symmetrical Structures”, Proceedings-of the First’
Canadian Conference‘on Earthquaké Engineering, Vancouver,
Canada 1971, pp. 178~186. N

Tso,'w.K., "Indyced Torsionél Oscillations in Symmetrical
Structures", Earthqdége Engineering and Structural
Dynamics, Vol. 3, 1975, pp. 337-346.

Koh, T., Takesa, H., and Tsugawa, T., "Torsional Problemsﬁ
in Seismic Design of High~Rise Bulldings", Proceedi;gs
of the Fourth World Confefeﬁce on Earthquake Engineer-
ing, Vol. II, A-4, 1969, pp. 71-87. ‘ : U

Anagnostopoulos, S.A., Rosset, J.M., and Biggs, J.M.,
"Nonlinear Dynamic Analysis of Buildings with Torsional -
@ffects", Proceedings of the Fifth wOr}d Conference on ,
Earthquake Engineering, Vol. II, 1974, pp. 1822-1825.

Hoerner, J.B., "Modal Coupling and Earthquake Response of
Tall Buildings", EERL 71-07, Célifornia Institute of

N :

Kan, C.L., and Chopra, A.K., "Elastic Earthquake Analysis

Technology, 1971.

‘of Torsionally Coupled Multistory Buildings", Earthquake
(Engineering and Structural Dynamics, Vol. 5, 1977, pp.
395-412, ' | |
Tso, W.K.,‘anq ﬁempsey, K., "Seismic Torsional Provisionso
‘ féf.Dynamié Eccentricity", Earthquake Engineering and ‘

‘Structural Dynamics, Vol. 8,°1980, pp. 275-289.

‘Clough, R.W., énd‘Penzieng}Ju,."Dynam;cé:of Structures®,

. '
¥

\
FARN

' MeGraw Hill, 1975.



SO,

IUPIEPEORLIE Y i SEE N S TN
.

=
’ .
o et
. A
«

-

15,
16,

17.

18.

19,

20.

21,

22,

23

. ' 124

'‘Biggs, J.M., "Structural Dynamics" MéGraw Hill 1964,

Supplement No. 4 to the National Building Code of Canada,
1977 Commentary K, "Dynamic,Analysis for the Seismic
Response of Buildings"

Clough, R.W., and Johnston, S. B., "Effect of Stiffness
Degradation on Earthquake Ductility Requirement",
Proceedings of Japan Earthquake Engineering Symposium,
October 1966 Tokyo, Japan, '

Park, R., and Paulay, T., "Reinforced Concrete Structures",

" Wiley Interscience, Dp. 569.

Takeda, T., Sozen, M.A.; and Nielsen, N.N., "Reinforced

‘Concrete Response to Sim&iated Earthquakes", ASCE,

Structural Division; Vol. 96, No, ST12, December, 1970.
Otani, S., "Nonlinear Dynamic Analysis of Reinforced

Concrete‘Building Structures”, 'Canadian Journal of

Civil Engineering, Vol: 7, 1980, pp. 333- 3y,

Newmark, N. M s and Veletsos, A. S s "Effect of Inelastic

Behaviour-on the Response of Simple Systems to Earth-

quake"Motions", Proceedings of the Second World Con- .
~ ference on Earthquake Engineering, Vol. II, Tokyo,
;7Japan, 1960, pp 895 912 “

V;Caughey, T, K.,,"Sinusoidal Excitation of 2 System with

Bilinear Hysteresis" Journal of Applied Mechanies,
Vol 27, No. u Decembeﬁ 1960, Pp. 6uo~6u3
Takayangi, T., and Schnobrich, W C., “Computed Behaviour

of‘Reinforced Concrete Coupied Shear Ualls" University

~

S of Illinois, Urbana, Structural Researdh Series, No. 43h,

‘ P LT T e - 1 - i . [
- . . , . -, R . . .
At = , B R ‘- S
PRSI L - - -k . - f eooe 7T
P A AR . ; N T- -
. . R ‘. - ~ RN
- - - =
- - . - - N . REN - 3
LI R - -, . .- ~ N .



APPENDIX I

"DEGRAD"

SUBROUTINE

UMAXNUHN,UNAXP,UMP,UO,

-~ M
- O (=T o BN |
NV O
[ZaX- ¢ M INON O )

T =200 - 0 00 =

L0000 OO0
<t P pe b O = =0
o -0 - W O Q0 O
W>WWOOOO OVLOoOVLLO
. OWLWU~A W L o
) S o v v O o o o o O\
el OO = AN AN O AN T
LW =HAH NI e N0 T @
ZU. e s 0 0 sCh e s 00 0 @
H eQCIC OO CQOIOCIY
gt uuwdte swbdduitluiug
DU e e 00 Y 0 00 0 e
O «ONOMCHAOCOCMND
0 2Z 1t b e b e bt e b b e

! DD Nt et o el et et Yt et S e A

Dl AT U L, L
A N b e et b A b
(&)
<
5
- - R

i
o
(=2 ] *
o
Q) .
- [\V]
o [ I
-0 vy
(4 B
o - -
LD o (& ]
w © [
Viemw o i
* - L
A w1 I !
-d oL O &
Ulhled ©O o
D e O~ o
+ oZ 4+
Pt fth >

b~

c W
e~
P Y )
N> o
% uo
Q1 e
.l el
SUuit)Jd
Q0w &
i+ o
D

1000_. .
FY+(DI141.0)%5L2

[ =]
[}
<

bal

1090

‘.:w

125
5

8160 TO 155, -

ﬂ.ﬂu~,r, o. ;, ‘.g.
@ seird i SN
bbb

bZ Auls

[ 1] sl 11 . )

NeLE.C.61G0 TO 164

+DELD¥SL2

WO U QO NO L - NO | QOHQLHOD-D Ty
1L Dt 1 DNt b B 1) b ) Qb v §1 V0T, I -

i

Lakll

cxfer=—tl vt it

Tedse Al seateg

FHLILEICTH OO OO UL U A VIO L 6 UL o T
W O L O U L RO S O ORI T

‘el N

t

B T T s

(=]
. e
-~

G\\
EA

1393

[ T
()

! , .

-

— ~ v it
L) R A e v g g



126

.5

£.C)GO TO 1467

=D N

109¢

——

—~H0O

~dl>

0t

NE &
ax>
> (14
<92 »
MU))
LM O
O~NJD
=oVEZU
(=1 @ L |
- X <IN
(e M=nla]

(==
iy
(=)

-t

WHULH~ONO T a-o O
RNZUVMN=M =D U I N~

O~ I

<

HMM it
LWL OO O D -0
W H IO DN UL YO

(Vo T
[ I - ]
~ ot

o
T1-UMAXP) *SL2

P
9

il L DO D OHMO
LT TR T L) PR ] 6

¥] < O .

o o
— -

-
(=L ]

el -

-4
(@)
Q=
—
o
0w
(L]

-

R o T -4

- X
i
» e X
Cruota
wded

21 elyy

QA
L 2 4]
D

[ o]

o

o

wd et
it

L2

nuN
oK
i<t

=

3 .
+{ITL1-UMAXN) *S

1800

OO T - OO0
(L7100 8 o (TR T [ 4V

i~ |}

zzZ 1

«1

HLL COXS QOO0
L =D DL O WL LD

€O -

L=}
-t
-t

4
-t
-y

FelE.0.0)G0 TO 113

1000

1.LE.0.0) GO TO .112
11%F1

)
F
N

+DELD*SL]

T.G:G

a2 e

- 4
«9
« I, »
-t
1 t
-~ (@] v
(o] -
> et i
[IR o
-~ ™M wo
“x o i~
-t o D e
vIiz. » [T/ A

SEND Ml e O
olbAamit oLl ©
O Xl O ) ©
(et b U 1+N 2 «i
ZFELO HOEw

U HGEOMO L OO W OO
NNZNORD= I {1 1IN L O

O i}

L] NIl =l

HU L OOM OO IHOO LI L OO
L H 01 ) D UVHALL =D L L

N~

[ VRN o] o
L o
Lo B ]




127

JT1=UMN) ®*SL3

N

» v 3 ) ' -
L.
/ . o,
i AV

o [2)
€ vt o o o NN [\Y]
~4d - -l O [T et ol
1 %) - . La )Y -t (73]
] ¥ o -t o .QO *
[ 32 -~ O o ~ O - o ~
[ o - - =0 ©wd [ -~ -
Q < () (o] | o R 74 (e} L O [m] o] >
Qe 5 [« Y] o [ * O O, D [G.X8 <
w = (G . ' wvo - (G nt x
~—~ oo | - LY~ o] (] . ”~ ~NQ. M0 -~ -
Jovx ~t -t . S d D~ oD -l . Xt W -l 82X -t \
vr o<1 = vie @ OO Iz ‘» V) el [ Uie o 7 <1 % vioa -
* 2. G. * O . N ¥ ©E -t * A e 8- N $ e c .
o el ~ o el ly A»MOY O ol v ) elnlal Um0 St —
dur e o O+ O gJuikt o © OXNAD Odids © OO0 Bt © O-NAD ©OJdg e © O+
Liadi © o0 O (Ude s O OILZN1 QUILIL O O Qlldel o Y @10t Ol vl O TOZ
D0 © e O el D O~Xvr OO0 ) @ ©O4 OCieHL D oZIXwdA ONZTL) © oX
2 e riviet HT H FZTUZ e AT AN witdb Z e v Tl HF2RDE A AR TN O 0 o T
et et [T N 0 W 0.22000 4D = [ GETR) IFNAQ [ala b x <
W HHOOTIHL-OW T LU HEAONC NI A~ O HHAUO O L oQ UL IHEHONO T U - O CU VHNO «C U, « Y
HU DT WO 0N HNZVORO=DI N0 Nl VL OO BN e HNZA D =T =D H TN el P Sty
-~y aan iy R N T R R i e e el L L L R el O 1 [ I L c e o N L o I RS LI B} Y ~ B

U WE A Y OO0 LR OO0 e GOl OO QMO WL OO0 QO .- Ol B QO £y 1 7
W R DU WO U DR OHS D AL GU L S GO RS OO D NA R HDW S IS L. =07 1)

o o M~ o o o -t o o N N ) g4 N ©
-t -t v -t «{ b i o [aY] it o o -l ny o, o

-t -l i -t ot i - o« (]

! . . i



