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ABSTRACT
’n\,' \ <
In order to 'improve the performance of differgntial encoding
systems, the encoding and decoding models have to change according

to, the speech waveform. The speech signal can be treated as quasi-

. stationary processes, which over a short period of time can be model-

led by a certain set of parameters. Adaptive alg&rithms should be.

viewed as means of adjusting the system parameters.

.

In this thesis, a'2.048 sec. long sentence has been studied

by the Box-Jenkins time series procedure to determine the order of

S

the linear prediction po@el and to investigate the néed for adding
moQing-average terms. The algorithm suggested by Box—Jenkins for
éarameter estimation has been employed to update the parameters
of?thg predictor of- a prediction error coder each specific period
of time.

" Since it is difficult tO'imblément this algorithm on-line
an alternative scheme.has been studied. It is based on using the
Box~Jenkins procedure to determine a suitable ARMArmédel‘an& ﬁﬂéﬁ A
updating the parameters:of this model using a good on-line.esfimation

algorithim. The applicability of the recursive least-squares and the

stochastic approximation algorithms has been investigéted. Stochastic

. approximation appears more promising as it takes less time for comput-

¥

ation‘yith an acceptable performance.
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~As a result of this stydy, the aégition of moving averagé °
terms to tHe'préﬁicporfs model are shown t;;be necessary. But when
. Bofoenkins} algorithm was tested with-an ARMA model with adaptive and
fixed initial para&eters; it did Aot outpe;fbrm the pure autoregressive
model qSed with the same algoriﬁhm.
The application of the three adaptive algorithm$, the Box-

. Jenkins' approach, the recursive .least-squares and the sgochastic A
é;proximation, has.bggn studied for the ﬁEC configuration and the
ﬁerformance of - the -predictor was evaluated in each case. The results
of this study.indicate’that.combinihg s;ochastic approximation with the
time sqrié§, and including an adaptive quéntizé;'is applicable to
differential encoder COnfiguragions, mainly the'DPCM; with slight modi-

ficiations, and would yield better signal-to-noise ratio.
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CHAPTER 1
INTRODUCTION

One way to improve the performance of differential encoding

systems would be to change the encoding and decoding models éﬁcording

x

‘to the speech waveform. The’ speech signal can be treated as quasi-

stationary processes, which over a short period of time can be mggelled

*

by a certain set of parameters. The time frame in which one corisiders

the process stationary is in the order of several tens of msec., Adaptive
algorithms should be viewed as means of adjusting the system parameters.
The model of the predictor used to be chosen as pure autoregressive and

the order was determined using the final prediction 5ff52 criterion [1]

.

with the, best model order selected from all possible orders from 1 to
10 [2]. '

In this thesis, a 2.048 sec long sentence has been studied by
the Box-Jenkins [3] procedure to.determine the order of the linear pre-

diction model and investigate the need to add moving average tesms. .The

"glgorithm suggested by Box-Jenkins Tn.éstimating the conditional likelihood

'
>

value of the parameters has been employed to update the parameters of the

-

predictor of a prediction error coder each specific period of time. It
- : . /
is difﬁicult to implement this algorithm on-line because it requires a

relatively long ti¥me computation. ~

An alterndtive scheme, suitable for on-line use, has been‘studied

1



in this thesis. It is based on using the Box~-Jenkins procedure to
determine a suitable ARMA model from the first group of samples and
then updating the parameters of this model using § good on-line esti-
mation algorithm. The applicability of the recursive least squares
algorithm [4-6] and the stochastic approximation algorithm [[7-12] has
been investigated. Stochastic approximation appears more g%omising as

{
it takes less time for computation with an acceptable performance.

The arrangement of the thesils is as follows:

In Chapter 2, the three methpds mentioned im the above paragraph
are introduced in their generalities.” ‘

The choice of a suitable time-series modellfpr the speech

A
sentence, "speed and efficiency were stressed", has bden develoﬁga in
Chapter j. First, the sentgﬂce has been divided into sections of similar
characteristics. Four sections were picked randomly and the time series
models were obtaimed separately. An overall model has been chosen for
the whole sentence, A comparisbn has been made between the use of a pure
autoregressive model-and a mixed autoregressive moving average model in
adaptive prediction. Since the process is stationary over limited periods
of time, the length of the optimal adaptation period has also been inves-
tigated in case of fixed and variable initial parameter valués.

In Chapter 4, two on-line algorithms, the recursive least squares
and the stochastic approximation are used as adaptive. algorithms for the
same data. A method-is proposed to combine the accuracy in order deter-

)]

mination of the Box-Jenkins approach and its fast convergence to the true

parameters with the #mall computation time of the stochastic approximation

-

£

%



and its simplicity. The first method is used to estimate the first
set of parameters and ‘the second algorithm tracks and updates the
model. The results of simulation are given for ARMA (7, 2) in compar-
ison with the performance of AR (6).

Finally, the conclusions of this work and suggestions for
future work are given in Chapter 5.

Figures representing the data are shown in Appendix A with
a description of the experimental set-up which was done in the McMaster
University's Communications Laboratory [2]. The conditions of con-

vergence of the stochastic approximation algorithm are described in

Appendix B.



CHAPTER 2

IDENTIFICATION TECHNIQUES

2.1 Introduction

The problem of system modelling and idéntification has been of
Fe,
great importance in the engineering field because of the large number

of applications. It has been also used in physical sciences, social
sciences, bioengineering and econometrics.
Ty
Two types of modelling problems exist. In the first type, we

have both-the input and output sequences, i.e. we have the causes and

the effects. In the second type, the causes are unknown or known but

7.
l‘:

unmeasurable and the available knowledge consists of the output sequence,
The first type of problem is often called system identificatidn, while the
second is known as the prgblem of stochastic modelling. The two problems
are related closely. )

Identification algo;ithms can be divided‘into two main categories;

namely, f-line algorithms and on-line algorithms. An identification

method“is/said to be "off-line" when it requires a large amount of data
ored. The entire data is used for estimating the parameters of
the/model and obtaining the best fit according to a certain criterion.
G¢nerally, "offgline" methods give highly accurate estimates but are
omputationally c;stly. |

An "on-line" algorithm has to satisfy the following criteria:
‘ 4



i) It must not require the application of a special input to the
process. '

ii) It does not require the storage of all the dgta.

iii) It uses a recursive‘algorithm for adjusting tﬁe est;mates)of
the pa eters after each sampling instant.

iv) The amount|of computation required for each iteratiorn ®an be

. )
carried out within ome sampling interval.

N
The'probfﬁm\QPder study is a stochastic modelling problem.
The speech sentence has been identified by the time series method [3]

which is an off-line method. Two other on-line identification tech-

fiiques were used to track the parameters of the model.

-

In this chapter, a review is presented in detail of the three
algorithms experimented on the speech sentence and the featureg\‘f

each method are clearly dlscussed -

2.2 Box and Jenkins Time-Series Approach

. Although this approach is well known to control theorists,
for the sake of being self-contained, and to provide adequate back-
ground, we shall first review and define some of the terms used in

time series.

2.2.1 . Términology ‘ ’

Time Series
Any sequence of points taken with respect to time is called

a time 8eries (e.g. sales, temperature measurements, etc. ..,.).

LY



Stochastic Process

A process is said to be stochastic when it evolves in time

according to probabilistic laws, with a certain probability density

function p (yt) for the random variable Ve at a given time t.
N \

S~

Stationary Stochastic Process

If the distribution properties of a stochastic process are not
affected by the time,thi; process is called stationmary. The stationarity
assumption implies that the probability distribition p(yt) is the same
for all time t. A statiomary proces%,has a constant mean and a cdnstant

variance.

White Noise “

It is a sequence of independent, identically distributed, zero
mean random variables.

Yule [13] showed that a time series in which successive values
are highly correlated can be generated by passing white noise through

a linear filter. This can be written as,

1-658-0858%

-5 rnd
1 2 . GqB

a_’ (2.1)

Yt = t

2
1-¢.B- -¢ BP
¢1 ¢2B vee ¢pB
f
«
where Ve 1s the deviation of the signal from the mean and B is the

backward shift operator.



The transfer function form in equation (2.1) can be represented

" in a difference equation form,

- = a - §.a - 6.2 ...—H a 2.2
oY= ~q (2.2)

Ve ~ ¢1yt—l - ¢2y5-2 e p t 17t-1 2 t-2 qt

b

This represents a mixed autoregressive moving average process ARMA (p, Q@)

of autoregressive order p and moving average order q.

The special cases of ARMA (p, q) are,

¥

y_ = a (2.3)

/ e

* e a ;ﬁ\ (2.4)

q T .

£
Equation (2.4) represents a pure moving average m?del of order q, MA(q).
A

When the stochastic process is non-stationary, (i.e. having no

[

fixed mean), it may be assumed that some suitable difference of the

series is stationary. The resulting model is called an autoregressive

-,

integrated moving average model ARIMA (p, d, q), where d is the number

K

of differencing.

2.2.2 Properties of Different Modéis

2.2.2.1 Autoregressive Process Properties

1 Pk
y, = %5 a, = L i a (2.5)
£ 0B 'l TGP

L



For the process to be stationary IGil has to be less than one,

i.e. the roots of ¢b(B) = 0 must lie outside the unit circle.
™~

Ve = ¥y T OVt F ¢pyt_p + a, (2.6)

I's

i

Multiplying both sides by ek and taking the expectations, 7 »

' = = aut 2.

E;(yt-kyt) Ty autocovariénce at lag k ' (2.7)
4 = .. .

Yie ¢1Yk—1 + ¢2¥k_2 + ...+ ¢ka—p for k > 0 | (2.8)
Dividing equatidn (2.8) by the variance Yge

Tk

— = 0, = autocorreldtion at lag k (2.9)

Yo k

= ¢lpk—1 + ¢:29k-2 + ... + ¢ppk—p k>0 (2.10)
i.e. ¢p(B) pk = 0 . | (?.ll)

The solution to this equation is either a decreasing exponential or a
damped sine wave. équation (2.10) is known_aé the Yule-Walker equation.
The partial autocorrelation function is a device that exploits
tﬁe fact that whereas an AR(p) process has an infinite autocorrelation -
fuﬁction, it can be described in terms of p non~-zero functions of the
autocorrelations.
8

The partial autocorrelation function satisfies the Yule-Walker

equation (2.10),

o
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pj = ¢kl pj_l + ¢k203_2 +..'+¢kkpj"l€ j>1 (2.12)

~

,

¢kk is zero beyond lag p (the true order off the autoregressive process).

~ The autocorrelations considered previously are the theoretical
values which are not available in practice. We have generally a finite
time series from which we can only obtain thé estimates (résa of the_auto—
correlations. Assuming that-“the theoretical autocorrelations are zero

beyond some’lag\bxthe variance'can be calculated by,
3 . L
var (rk) == {1+2 ¢ o,
v=L

$
and the 957 probability bands about the zero will be given by # 2¢var(rk),

2} k> L (2.13)

Replacing the true autocorrelation values by their estimates in the
Yule-Walker equation, we can compute recursively the estimates of the
partial autocorrelations for n observationms.

.

2.2.2.2 Moving Average Process Properties

. . s
As shown in equation (2.4), the moving average process is always

stationary, $ (B) is unity and the polynomial function converges.

q .
8(B) = 1 (1 - H,BY) (2.14)
j=1 ) : |

where Hj-l are the roots of 6(B) = 0. For the process to be invertible,

these roots must lie outside the unit circle,

)

qat-q . (2.15)

yt = Lt - elat-l T ees T e

{
!
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\
Calculating the covariance and the autocorrelations at lag k
as in equations (2.8) and (2.9), we find that they cuf off after lag

’q while the partial autocorrelations are infinite in extent.

2.2.2.3 Autoregressive Moving Average Process ‘

In order to realize the stationarity and invertibility con-
ditions of the ARMA (p, q) model, the:roots of the autoregressive and

the moving average polynomials have to lie outside the unit circle.

<
|

The autocorrelations of a mixed process are infinite and consist

of damped exponentials and/or damped sine waves after the first q-p lags.

The partial autocorrelations are also infinite with damped exvonentials

and/or damped sine waves but after the first p-q lags.

2.2.3 Identification Procedure

The Box and Jenkins model building can be described by the

iteration shown in Figure (2.1).

3 y ' '

X

v
| Identification of model structure

K}

Estimation of parameters

Y
Diagnostic Checks

Not adequate ‘Adequate

Figure 2.1 Stages in the Iterative Approach to Médel Building )



The identification of the model structure is characterized
by the inspection of, the ampuﬂt of differencing of the series and by
identifying an ARMA model for the resultiﬂg stationary pro¢ess. A

differencing of the series is expected when the autocorrelations of

the process fail to die out in a reasonable number of lags:

By studying the estimated autocorrelations aed partial auto-
correlations of a series, a model ARMA (p, q) can be identified as
diseussed in the previous section. The next step is the choice of
initial parameters. If the process is pure autoregressive, the problem
is simplified. The initial estimates of the parameters are calculated
according to the Yule-Walker equations (2. 10) But in the case of
moving average processes, the equations to be solved in order to get

the estimates (2.16) are nonlinear and the results obtained are poor.

et O g b 00
P = 7) 3
1+60°+... ¢80
1 q

for k = 1, .., q (2.16)

The conditional likelihood estimates of the model parameters are

obtained by minimizing the sum of squares of the residuals. This is
done b§ successive linearization using the Marquardt's compromise rou;ine
[14].
Suppose we have n original observations forming‘a time series
Wis Woy ees W generated by an ARMA (p,'q) model, which may be written

as:



Pasd

d_w - e.. = ¢

B Twe T NV T NV

prt-p © 1%t-1 7 Y2%-
Equation (2.17) can be rewritten as,

a, = a (w, B)

* where

o=
]
=

1o
-

+ 6.a + 9,a 2 +...+4+90

12

a
q t-q
(2.17)

(2.18)

Expanding a, in Taylor Series about Eo (initial estimates of the para-

meters),
k=p+q
a, =a. B, w+ I (?——a—t) (B, -B. ) + high order terms (2.19)
i=1 9B.”B - ‘17 %0 g .
1 O \
aat .
Let x| - aBi) B (2.20)
k
a, =aB,w =~ L X5 ¢ (B, ~B,) (2.21)
i=1
In matrix form,
a = a -X(B~-B) $(2.22)
a = X(B-B)+a ~%i.23)

The adjustments (B - §o) which minimize the sum of squares

S(B) =

SLQ,_Q) = g?g may be obtained by linear least-squareé. A singlg

adjustment will not immediately produce least-squares values, instead

the adjusted values are substituted as new guesses and the process

repeated until convergence occurs. Convergence is faster if reasonably
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‘good estimates are used initially. One way to find these Parameters

is through a'graphical study of the sum of squares function. But
this requires too much calculation, especially with a lar%e number of
parameters.

The method used here to calculate the conditional likelihood
estimates is the '"Marquardt algorithm'\ which is é modification of the

Newton-Raphson method explained in [15].

2.2.4 Diagnostic Checking

-

After the parameters have been identified, some tests must be
performed on the autocorrelations of the residuals té check the ade-
quacy of the model.

The autocorrelation test is based on the principle that the

residuals form a zero-mean whjte noise sequence. Therefore, their
X 9
estimated autocorrelations should have magnitude less than % 2Vvar(rk)
2

or i¢§ for n observations in case of 957 probability band about the

> \

Zero [l@].o‘ SZR-. f

PR N '
€ ¢ .
» The Portmanteau:iack of fit test takes into consideration the

first K autocorrelations and calculates the following parameter,
, . %
X 2
Q = n I r ;;(k) ‘ (2.24)
k=1
) .
If the fitted model is adequate, Q should be approximately

~-

I 2 : .
distributed as X (K - p - q). If the model is inadequate, the avé?age
values of Q will be inflated. a : fr\N‘_>'
- ' 'ﬁ
If the model fails to pass the diagnostie'gﬁéckings, then it

o

3
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has to be modified. The modification is carried out, by examining

}}\\ the autocorrelations and partial autocorrelations of the residuals
N

N\ -
¥ and a new ARMA (p',q') model is identified, @nd utilized to adjust the
' 4

Y

\current model and the whole procedure is.repeated.

The Box and Jenkins procedure is simple for modelling
stochastic processes with .the minimum number of pa;ameters to beN
estimated. The one~step ahead forecast value of the signal can Qe
easily calculated from the difference equation. Another- advantage
of this pro;edure is that it also handles periodic and non~statiomary
processes by differencing the series. The Box and Jenkins procedure

requires a large computational time and cannot be used on-line.

2.3 On-Line Identification Techniques

A

As indicated in the introduction, two on-line identification
algorithms have been used‘to track the parameters of the model after

the speech sentence has been identified by the Box-Jenkins approach.

2.3.1 'The Stochastic Approximation Algorithm ] i
| Stochastic approximation methods have been very popular for
system identifiéation because of their simplicity in implementation
|
and the smal%;pémputation time they requiref They also can be applied

to any problem which can be formulated as some form of regression in

which repeated observations are made. No previous knowledge of the
. »

-

noise statistics is required. ,

Several algorithms have beeh” proposed by Sinha and Griscik [7],.
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Panuska [8], Kwatny [9] and many other authors. A comparison between
six stdchistic approximation algorithms [10] showed that Kwatny's
algorithm gave good estimates for high noise-to-signal ratio. This'

algorithm may be described by;

- () ——5 (v, - ¥ B ) (2.25)

where for an ARMA (p, q) model represented by the difference equation;

=0 (0) vyt 7 ¢p(t) Yeep 3¢~ ei(t) gy —eq(t) 24 (2.26)

yt
T ' ‘
b o= Lyc-—l Vg2t Ye—p T at—l""'at~q]
X g : (2.27)
~ T -~ )
B0 o= Dog(®) oo (0) 0y() .oup (6)]

The conditions of convergence of the stochastic approximation algorithm are
described in Appendix B. The éonvergencé‘of the algorithm was proven

by Dvoretzky [17] in theﬁniva;iable case and by El-éherief and Sinha

for linear multivariable systems [18].

The choice ¢of the gain sequence is critical and affecté the

results if it is not properly selected such that it adapts with the

o,

nature of the process.l For the speech sentence under study three gain

sequences were tried and are discussed in detail in Chapter 4.
s > . ' .
Many authors have used the'stocbastic approximation algorithms,
' . B . b hd
in real-time identification. Stankovic-[11] used two interconnected

)

dynamic stothastic approximation,aLgoéftﬁms derived from mean-square

‘ . ;
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equation error criteria in an attempt to synthesize an adaptive real~
time identification procedure for memoryless and dynamic discrete~time
systems linear in stochastically time-varying parameters. The first
algorithm provides parametler estimates and the second realizes the
function of adaptation. N. K. Sinha and A. Tom [12] developed an
adaptive combined algorithm using Kalman filter and a stochastic

approximation algorithm.

2.3.2 The Least-Squares Method

2,3.2.1 Ordinary Least-Squares

If we recall from sectiom 2.2.1 the difference equation represent-

ing an ARMA (p, q) model, we have,

Ve 0y Yy YO Vg T T v ot A m 0y 3 7 e e A (2.28)

-

Equation (2.28) may be rewritten as

T
yt = "QC E-}-at:
where
v sy -y ey -a ~a_ ] (2.29)
—t t-1 “t-2 °°° Jr-p t-1 °°° t-q :
B=1[¢, ... 6. ...0 ]T (2.30)
- "1 p 1 3 q ‘ ’

Concatenation of n sets of measurements [19] indicated by equation (2.28)

gives, '
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I, SV BtA o (2.31)

where

>
[}
r
<
t
<
cr
+
=
@
T
+
(=}
1
ot
| W— )
=]

<
L[}

n [it yt-+l T E% +n —iJ

[a, a

T
én t “t+1 °°° at-+n-l]

To obtain the optimal estimate of the parameter vector B we minimize

the norm-squared of A ‘
24

J®) = AT A (2.32)
-z -vB (y - B
R AR A T
T T T T T T
R - AR AR L RN
By differentiating J with respect to B , we get,
3J T T g '
——— S + 2 =
8 2zn wn B Wn Wn 0 (2.33)
- T -1 T .
B 7 Oy vy | (2.34)

A

Assuming that wnTwn is’non~s;ngplar, equation (2.34) is valid and is

called the least-squares estimate.
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2.3.2.2 Weighted Least-Squares

The performance measure equation (2.32) is essentially based
on the view that all the errors are equally important. This is not
necessarily so. In most of the cases, all the data taken in exXperiments
do not necessarily have the same amount of error, and it would appear
reasonable to weight the error according to the available information.

Such a scheme is referred to as weighted least-squares and is bé§ed on

—
the performance criterion, ‘

J(@B) = énT WA ‘ (2.35)

where W is a positive definite $ymmetri¢ matrix, and in the simplest case

-

it is a diagonal matrix

W = diag (wl, w ce W) (2.36)

2> 7 n

Minimizing equation (2.35) leads us to equation (2.37), provided that

the coefficient matrix iIs non-singular.
g = (W "W )Ty Wy | (2.37)

We note that equation (2.37) reduces to ordinary least+squares when
W = I, the identity, matrix. Another common choice for w(i) is

i T
. This choice yeights the recent observations

w(1) = (1 - A) A"7
more than the past ones. As A approaches one, the filter memory
becomes long and noise effects are reduced, while for smaller X the

memory is short and the estimate can track the changes which may

occur im B.



19

2.3.2.3 The Recursive Least-Squares *

The calculation for -EWLS is referred to as a "batch" calcul- '
ation. If the data are acquired sequentially rather than in a group,
equation (2.37) can be put into a better form for sequential proces-

sing. Let us consider the addition of one more set of data with

the assumption that w = b AT i. To calculate B , the values of
-n+1
T -1 T
d
(wn_,:l Wopq Vo4 20 (Lpn+l W .1 Y, 4 Should be computed. We
have,
wn+l=[p-t R PN | -‘uit+n:|
T _ T T
11)I'l."}‘l wn+l l\Dn'l'l N Awn wn ll)n +-l£)-t+n‘,5yb£ (2.38)

t+n

] T
The inverse of wn+

\

W is o ined usi ri i
1 n+1 ¢n+l s obtained using the matrix inversion

lemma.
a+8cp)t = atoatectspatpylpatl (2.39)
For convenience a matrix P is defined \
T -1
L [wn+l Yo+l I"n+1J
-1 T -1
B D\P n +-dit+n b—‘£t+n] (2.40)

.

Using the matrix inversion lemma and substituting the expression for

it-*—n = En and yt+n = yn for notational convenience it is easily

—

seen that, -
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T
1 b(Pn£n> (Pnl{n)
Pn+l = 3 Pn- T (2.41)
+
X b ‘qin Pn‘uin P
T | ’
In the solution Y n+1 wn-bl Y4 s also needed which can be
written as,
T _ T T
ll)n+lwrwl-l*y—n+l - wnwnl‘n-ihinbyn (2.42)

If equations (2.41) and (2.42) are substituted into equation (2.37),
we get,

-y T B
B = B + b Pn—wn (yn "Uin 13-n) (2.43)
—n-+1 ~n

T
)‘+b-‘£n Pn-qin

L]
The recursive algorithm can be resumed in the following steps:

1. Select b and X (b = A = 1 is ordinary least-squares, b = 1 - A,
0 << X < 1 is exponentially weighted least-squares).
2. Select initial values for Pn and —ﬁ—n
T
3. Form ¢~ .
4. Calculate _I:E_n

and Pn according to equations (2.41) and (2.43).

+1 +1

5. Setn-<«n+1.

6. Go to step 3.



CHAPTER 3

-

ADAPTIVE PREDICTION OF SPEECH

USING BOX-JENKINS APPROACH

3.1 Introduction

Differential encoding structures employing adaptive quantiz-
ation and adaptive prediction constitute a very promising approach in
designing highly intelligible speech coders at 6 to 16 kb/s. Gibson
[20] has presented an excellent review of the work done on adaptive
prediction in speech differentiél encoding systems. While it seems
that the speech model is not yet found, the linear prediction model
has proven extremely useful. An all-pole model is widely used due
to the argument stating that any zero which lies within the unit
circle can be modelled by additional poles. But the inclusion of
zeros [21, 22] proved that the audible distgrtion due to inadequate
treatment of zeros rin the all-pole case disappears with pole-zero
representation. In this work, a study is made on real data using
both models. “

Differential encoding systems have several configuratiops
symmarized in [20]. The configuration used in this work is called
the prediction error coder (PEC) or D*PCM [23]. Noill [23] has shown
_that DPCM (differential pulse code modulation) and D*PCM when optim-

ized are less sensitive to channel errors than PCM (pulse code mod-
21
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ulation). He proved also that the performance of DPCM and D*PCM
are almost identicgl in the case of high-bit error rates when
taking into account the effect of channel transmission errors on
the overall perfgrmances of these schemes. The results in [23] are
based upon the following assumptions:

1. A mean-squared error performance is used,

2. The quantizer is modelled as an additive white noise source.

The prediction error coder (PEC) transmitter is shown in
Figure 3.1 and the receiver in Figure 3.2. The two predictions are
not similar because of their different inputs. This is one of the
drawbacks of the differential encoder but it has the advantage of
being easy to analyse mathematically. It is to be noted that the
algorithms discussed in this thesis are applicable to any differ-
ential encoder configuration.

With the aid of two channels, the quantized error and the
parameters of the model are transmitted to the recekyer where the
signal is reconstructed. Evidently, the success of the scheme
depends upon the accuracy of the model used for the adaptive pre-
diction. In this work, the main concern is to obtain a suitable, .
model to represent the speech and to investigate its performance imn
the transmitter. The speech sample was divided into sgctions of
similar characteristics. Four sections have been picked randomly

and identified separately using the Box-Jenkins procedure. An over-

‘all ARIMA (7, 0, 2) has been chosen to represent the whole sentence.

The use of the ARIMA model is compared with the use of a pure auto-
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eq(k)
' y (k) — ) Quantizer >—
\» > Predictor y (k/k-1)
4
77 . Figure 3.1 PEC Transmitter
e (k) k
q . y (k)
+
. Predictor
¥, (k/k-1)

Figure 3.2 PEC Receiver
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regressive model AR(6) 1dentified in previous work done on the same
sentence using the maximum entropy method [2]. The MEM is practically
well suited for estimation of AR process parameterg. Van Den Bos [24]
first noted that the concept of this method is equivalent to fitting
an all-pole model of finite order to a given-data sequence. Hence, it
is not suitabla to use the MEM in our case where we are examining the
effect of adding moving average terms to the model of the predictor.
Readers who are interested in the MEM may consult the following refer-
ences on the subject [24 - 26].

The comparison between the pure autoregressive and the mixed
autoregressive moving average models includes a study on the use of
adaptive and constant initial parameters and how it affects the average
signal to prediction error ratio. The speech is considered to be a quasi-
stationary prbce;s so we define an adaptation period after which the pre-
dictor's parameters have to be updated and sent to the predictor of the

receiver. The length of the adaptation period is also discussed.

3.2 Identification of Speech and Choice of the Model Order

The experimental<‘speech sentence has been divided into several
sections with different lengths. Four of these sections have been
ihentified with the Box-Jenkins procedure to choose a model for the
overall sentence. One of the foug sections will be discussed in detail

to show the application of the procedure. The other-sections will be

reported briefly to avoid repetition.
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3.2.1 Modelling of Sectijon I

This section as shown in'Figure (3.3) is 84 msec long con-
taining 672 samples. The first step is to examine the estimated
autocorrelations and partial autocorrelations, Figure (3.4 a,b,c,d)
of the original and differenced series. The autocorrelations of the
series are decaying sinusoidally indicating the stationarity of the

series and the lack of need to difference it.

T T T T T T

-

4 o

0 \Avn\}/\U.v[\v/\V/‘\V/\v{\v/\\}/\\]/\VAU AVAVAVAUAUA / \/AWA\//\WAVAVA [

1 1 [} 1 1

0 10 20 30 40 50 60

No. of samples X 10

Figure 3.3 .Plot of Sampled Speech Representing Section I

An ARTMA (6, 0, Q) has been chosen,

6
= +
Y Loy Yeg T3 (3.1).
i=1 ‘
The initial estimates of the parémeters can be calculated according to

the Yule-Walker equations (g.lO). The pure autoregressive model has

also the property of being insensitive to the initial conditionms.
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The initial conditions chosen are as follows,

¢, = 0.6 ¢2 =-0.3 ¢,=0.5 ¢ =01 ¢ _=-0.5 ¢ =0.4

1 3

»

The estimation of the final parameters was done as described in Chapter

2 and was found to be,

¢ "= 0.1883 ¢, = 0.4134 b 0.7275

1 2 3

i

¢, = 0.08487 ¢_ = -0.454 $ -0.3626

4 5 6

u

Applying the diagnostic tests to the residuals of the model,

they indicated the need for a modification.

Test #1:
Eleven out of thirty autocorrelations have éxceeded the 95%

confidence limit.

Tegt #2:
30 2 '
"Q=n I T (k) = 157.66
k=1

§

. While the chi-square with 24 degrees of freedom at 0.05

level of significance is distributed as,

2
xo.os (24) = 36.4

The model failed to pass the diagnostic tests. By examining the

autocorrelations and partial autocorrelations of the residuals, a

2

modification of MA(2) has been estimated. -
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This model, failed to pass the tests, although there was a

notable improvemént in the value of Q which has decreased to 101.83.

<

Also, eight autocorrelations instead of eleven, exceeded the confidence

%limit proving the usefulness of a moviﬁg average addition. ThL'pTO-Y
& : :
cedure has been repeated and the model is changed to ARMA (7, 2). This

model also has préﬁen to be inadequate, although better than ARMA (6, 2)

and increasing the order of the model has been tried with models '

~

ARMA™ (7, 3)71ARMA (8, 1) with no success. ‘ . @
Knowing that the speech is a quasi-stationary process, a period

of 84 msec would be a long period for.the model to be constant over.

v
.

The data has been further divided into groups of 256 samples (or 32 -

msec) and the procedure haé%ﬁeen repeated for the first group of
samples. The autocorrelations of the ﬁewtseries have the.same proper-
ties of the original seriés.} Hence, an ARIMA.(6,0,0) has been first

identified having the form of dquation (3.1). "The'autocorrelations of

the residuals,’Figure (3:52, of this preliminary model show the need

for a modification tB,ARmA (7, 2), i.e., ' i . .
(1l 6.B - ... “tpBE “ (1 - 0.8 - 8.82) a%
(1 ¢lB P T {73 l_yt , ﬁ(l QIB §,87) ar 4 (313)'

The conditional likelih&gdtpafgmepérs‘obtained are;,- Lo
- S ¢l f‘Q‘2;35 fz f -0.2281. . 05 = 0.932§ ,

» '.\o o= .i -.. ) WM ‘:
A 0.3523 Qs 0,1043 Y6 ‘0.2508 ‘ ’

) = x 0. R PR, ” s
R ?7 0.5537 8, = 0.03365 8, 0.3974 .

.
* .
- —
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Figure 3.5 Autocorrelations of the Residuals of AR(6)
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Diagnostic Checking

Check #1:
The autocorrelations of the residuals are shown in Figure
(3.6). All values of correlations lie within the 95% confidence limits.

This inqicates the adequacy of the model.

Check #2:
30 5
Q=n I r ia (k) = 29.82
k=1

where L9 (k) 1s the estimated autocorrelation at lag k and n is the

-

number of observations, from the tables of chi-square distribution

with 21 degrees of freedom and 0.05 level of significance.

2

XO.OS (21) = 32.7 -

This proves that the model is perfectly adequate.

3.2.2 Modelling of Sections II, III and IV

The three other sections (Figure 3.7 a,b,c) have been treated
in the same manmer.

The autocorrelations of section II indicated that this series
is periodic and a period of 28 has been detected. A differencing oper-

ator, has been used,

V28"
Ty, = -3y y =y g (3.4)
28 't | S t t -28 *

Several models were tried but all failed to pass the diagnostic

tests, It seemed that the differencing did not help in Building an
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adequate model. The second alternative in order to fit the periodic
data is to use a pure autoregressive model of large order. An AR(7)
has been selected but it has an inflated Q and many autocorrelations
of the residuals are greater than the confidence limit. Due to the
reason explained in section 3.2.1 for section I, a smaller number of
samples (256) has been considered.
The same procedure of identification has been repeated and

showed that both AR(8) and ARMA(7, 2) are adequate models. For the

model ARMA(7, 2) the initial conditions chosen are,

¢, = =0.207 9, 0.103 93 1.058

¢, = 0.603 ¢

-0.222 ¢, = -0,561

4 5 6
. ¢7 = =0.397 31 = -0.270 62 = -0.616
and the final estimates are,
?l = -0.353 ¢2 = 0.269 ¢3 = 1.255
b, = 0.622 b = -0.262 4, = =0.718
¢7 = -0.317 91 = -0.486 92= -0.398

Check #1: Only one correlation of the residuals exceeded the confidence

limit.
00,
Chegk #2: Q=n kil . (k) = 27.85
x2 1) = 32.7
0.05 '
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So, the model ARMA(7, 2) Zan also be applied to this section
of data successfully.

For section III, 352 samples, an AR(6) model has been first
chosen to fit the data. When it was proven to be inadequate, other
autoregressive models have been tried with noAsuccesé. It is clear
that the data need the addition of moving average terms. The best
model found was ARMA(7, 2), although it did not pass the twg diagnostic

tests.

Check #1: a
By examining the autocorrelations of the residuals, four have

exceeded the confidence limit.

Check #2:
Q = 46.47
From the tables of chi-square distribution with 21 degrees of
freedom and at 0.05 level of significance,

~

2

XO.OS (21) = 32.7

Another check [27] has been applied, as follows,
For large number of lags K(K > 3) if the sequence of residuals

{a(.)} is white, then,

K
T 2 1.65 /2K +
Wt m < 65 nK K

0.127 < 0.1215
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Other models of higher order have been tried in order to improve the
fitting but the ARMA(7, 2) remained the best of all.

The last section used in identifying a model for the whole data
is a mixture of silence and speech. The silence part is nearly white
noise and hence impossible to model. A satisfactory model could not
be found for section IV when all the data (1024 samples) héve been used.
When dividing the section into 256 sample groups, the white noise group
did not give good results. But the other three groups could be modelled
and the best model found was ARMA(7, 2). The diagnostic teiij for ome

of the groups are given below.
A\

Test #1:

One autocorrelation exceeded the confidence limit.

Test #2:
9 -

Q=129.28 < X5 .

(21) = 32.7

We can say that these sections which were picked Fandomly
represent the speech sentence. They qggtain different levels of signalw
according to the pronunciation of the speaker and one of the sections
is representing a mixture of sileﬁce and speech. Part of the data needed
a pure autoregressive model as remarked for section II but for most of ic,
the addition of a moving average term is necessary. It is felt that an
ARIMA(7, O, 2) model can be used for the entire sentence.

Another important point is that the process is quasi-stationary
and has time-varying parameters which need updating each period of'time.

leading to an adaptive predictor [28]. The length of the adaptation
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period is inspected in section 3.3.

3.3 The Optimal Adaptation Period

Because of the nature of the process, the length of the adaptation
period - the period after which the parameters have to be updated - has
a great effect on the performance of the predictor. This performance

is judged according to the signal to prediction error level defined by,

N
I y2(K)

SPER(db) = 10 1og105—;£——-— (3.5)

£ e?(K)

K=1

where N is the number of samples in each adaptation period, equation (3.5)
may also be called sectional signal to prediction error ratio. The aver-
age of all sectional SPER is of great importance in comparing different
adaptation periods. As noted earlier, the initial parameters in the
Box-Jenkins approach are calculated so that the algorithm does not take

a long t;;;\gg\?onverge to the conditional likelihood estimates of the
parameters. In Ehis experiment, two cases were studied regarding the

initial estimates of the parameters.

3.3.1 Adaptive Initial Parameters

The first group of samples in the sentence'represenfing the
first period of adaptation (8; 16, 32 or 64 msec) was given suitable
initial perameters. The conditional likelihood parameters calculated

by the Marquardt's compromise were.then fed to the second group of samples
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as initial parameters and so on. Table 3.1 shows the various adap-
tation periods with adaptive initial parameters for the model ARMA
(7, 2) and for the AR(6). The best average SPERwas 8.86 db for

an 8 msec adaptation period obtained by the pure autoregressive model.

Length of Adaptation No. of Samples Average SPERin db Average SPERin db

Period per Period ARMA(7, 2) AR(6)
64 msec 512 8.6899 8.187
32 msec 256 8.2091 8.0402
16 msec 128 7.5904 8.1792
8 msec 64 - 8.8618

Table 3.1. Average SPER of AR(6) and ARMA(7, 2) for Different Adaptation
Periods )

Although the ARMA(7, 2) was proven to be adequate from
the diagnostic tests, it did not give better results than the auto-
regressive model. One of the reasons is that the principle of adaptive
initial conditions resulted in supplying each section of data with
estimates far from the final conditional likelihood’estimates, and
the algorithm does not converge due to the limited number of iteratioms.
On the other hand, the autoregressive model is not sensitive to Initial
conditions. Because it is a linear problem, the parameters are obtained
within a few iterations and closer to the true values than in the ARMA

case. Another remarkable but more or less expected result is that the

larger the adaptation period for the ARMA mozéé_ghe better the average

L T VR -
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signél to prediction error ratio. It is well known that a large number of

samples lead to an adequate model and reduce the degree of sensitivity

to the initial estimates of the parameters as seen in Figure (3.8).

- 3.3.2 Fixed Initial Parameters

In this case, the conditional likelihood parameters of all the
sections contained in the sentence are examined separately for each
adaptation period and a set of suitable values are chosen as fixed
initial parameters. The values and the average signal to prediction error

ratio for two adaptation periods (8 and 16 msec) are given in Table 3.2.

ki

Length of No.of Average|

Adaptation ¢ b, ¢ é, . ¢ ) 8, 8., Samples No.of SPER
Period 1 2 ‘3 475 76 71 2 per Sections (db)
Section i

i

ARMA(7, 2) 0.6 ~0.2 0.9 -0.2 0.2 0.1 -0.1 0.7 -0.4 128 128 8.2401
16 msec

AR(6) 0.6 0.1 0.6 -0.2 0.2-0.4 ~- - - 128 128 8.179
16 msec

ARMA(7, 2) 1.0 -0.6 0.6 -0.2 0.2 -0.2-0.1 0.8 -0.4 64 256 6.9807
8 msec *

AR’6) 1.0 -0.6 0.6 -0.2 0.2-0.2 -~ -~ - 64 256 8.8618

TABLE 3.2: 8 and 16 msec Periods of Adaptation with Constant I.C.

It is clearly seen that a great improvement has occurred in
the average SPER of the ARMA model compared with Table 3.1. Figure (3.9)

illustrates the difference between the use of fixed and adaptive initial

)
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cnnditions for the model ARMA(7, “2). The averageSPﬁRfor'the adapt~

ation periods 8 and 16 msec in the case of a pure autoregressive
o 3,
model did not dhange. This proves the insensibivity of the auto-

I3

regressive model to the initial parameters. A comparison between

- sectional SPERof ARMA(7, 2) and AR(6) for the two adaptation periods

»

8 and 16 msec is shown in Figure (3.10 and 3 11). ¢

KN

o
/ﬁ

3.4 Concluding Remark&' , //

It has been ghown in identifyimg a model for a speech sentence

using the Box-Jenkins procedure, that the moving-average terms were
necessary. But wherd the algorithm was tested with adaptive or fixed

*

initial conditions, it did not outperferm the pure autoregressive model.

.. « L -

The latter does not require a non-linear estimation of the parameters

.
\\_— . .

and converges faster to.the maximum likelihood parameters

The optimal adaptation period.has been studied for both adaptire

N v
models and was found to be 8 msec for AR(6). The optimal period for

. recursive identification algorithms may be more fruitful.

ARMA(7, 2) depended on the initial estimated parameters and was found

13

to be 64 msec and 16 msec for: adaptive and fixed initial parameters,

respectively. Whén applying fixed initial parameters to .an adaptati&n

2

period of 64 msec, the performance is degraded.becaus& of the quasi-
stationarity .0f speéch. ‘

In actual practice, the ideptification must be carried out in

a very shgrt time . Bence, it would be much better to uge a pnrely

. autoregressive model, vhich requires less computation. Even this may

nat be satisfactory in most practical applications, and the use of



— ARMA (7,2) avg. SPER = 8.240 db
vee e s oo AR(6) Avg. SPER = 8.179 db
(128 samples per section)
_5 ) - 1 1 L 1 1

0 2 4 6 8 10 12
‘ Nx10

Figure 3.10 Sectional SPER vs. No. of Sections of AR and ARMA
Adaptive Models for an Adaptation Period of 16 msec
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—_— ARMA(7,2)  Avg.SPER = 6.981 db
¢+ vee-  AR(6) Avg.SPER = 8.862 db :
20+ (64 samples per section} .. ' ' 4

_5 Ia 1 1 L i
0 5 10 15 20 25
Nx10

Figure 3,11 Sectional SPERvs. No. of Sections of AR and ARMA
Adaptive Models for an Adaptation Period of 8 msec
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CHAPTER 4

APPLICATION OF ON-LINE IDENTIFICATION TECHNIQUES

4.1 Introduction

Although the time-series method is a powerful algorithm, it has
the disadvantage of large computational time. An algorithm combining
the time-series method to estimate tﬁe model order and the first set
of parameters with an on-line algorithm to track them would be efficient
computationally and may also give acceptafle signal to prediction error ratio.
The on-line algorithm to be used in the tracking has to be simple and fast.
Two on-line methods were tested with the speech sentence, the
stochastic approximation and the recursive least-squares (éhe ordinary
and the exponentia;ly weighted), For the stochastic approximation algor-
ithm, the gain sequence must be carefully chosen’ such that it suits
the nature of the data, On the other hand, the least-squares algorithm
is more powerful but requires more computation time.
In the following sections, the use of these-two algorithms for

on-line tracking the parameters of the model will be studied.

4,2 Performance of the Stochastic Approximation Algorithm

4.2.1 Choice of the Gain Sequence

The change in the gain sequence v(t) affects greatly the average

signal to prediction error ratio. After estimating the conditional likeli-
' 46
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hoad parameters of the first 100 samples, the algorithm (equation 4.1)

is performed recursively.

v .

B = B -vw(t) —— (y, -3y
| wll £t

—t+1 t Be) (4'12

t

1) The gain sequence v(t) has been chosen as follows,

v
t+1

v(t) =

where v is a positive constant ,

t is the time correspondidg to the sample

This sequence satisfies the convergence conditions indicated
in Appendix B, v has been varied from 1 to 100 and the best result
has been obtained for v = 40 and 100 (Tabl; 4.1) which is considered
as poor results for both ARMA(7, 2) and AR(6). Note that the number
v 18 constant while t is increasing. The sentence under test is

composed of 16384 samples, at the end of the sentence,

100

3
v(t) = J¢o00

6.25 x 10~

N
(i.e. the parameters do not change any more), and even before that,

1)

it does not track the parameters because of its small value.

ii) Another sequence has been used, as follows,

v
t+1

v{t) =

L3




Model

Gain Average
Sequence SPER
(db)
. 1 100 ‘
i ARMA v(t) = Tl 4.821? |
f(7,2)
40
. ARMA \ v(t) = ) 4,2439
(7,2)
_ 40
| AR(6) v(t) = T 1 3.6719
TABLE 4.1: Average SPER for AR(6) and ARMA(7, 2) with the Gain

v
Sequence v(t) T+ » V = constant

48
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where vlJE t = 100, 1000
v = ' V2 > Vl
vz/E t = 1001, 16384
lim v _ v
t > o t+1 t
™y
%
! t = 100, 1000
t
v(t) =
v, t = 1001, 16384
Yt g

3

Several values of v; and v, have been %tried arbitrary as listed in

Table 4.2. The best results have been obtained with vy = 1land v, =10

for ARMA(7, 2).

iii) The gain sequence in (ii) is found to face the same problem as
in (1) when t becomes large and the change in the parameters is small.

"The gain sequence has been modified to avoid this dréwbgck. Instead

of limiting the change in the sequence on two phases only, let us

change the gain every period of time or each precised number of
samplesT” The gain sequence will change in such a way that the con-
vergence conditions will be satisfied.

v(t) = —=

e

) \\\yz - )
]

vV =V 4+ ¢
n [o} .



-

Average SPER
vl v2 g
0.5 5 6.3774 db
0.5 20 6.5856 db
1 5 6.3936 db
l
; 1 10 6.732 db
!
1 20 6.5994 db
1 30 6.1907 db
' 2 20 6.6002 db
!
4 40 5.7046 db

TABLE 4.2: Average SPER for ARMA(7, 2) with the Gain Sequence

v(t) =

1
t

v

<.

QIS

t = 100, 1000

t = 1001, 16384

50
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The positive constant v will be increased by a second constant
C each specific number of samples. In Table (4.3), many periods have
been studied.

Three alternatives have nearly the same SPER for the model

ARMA(7, 2):
1. vV increases by one each 1000 samples
Y
2. V increases by three each 2000 samples '

3. V increases by four each 3000 samples

So we can conclude that this gain sequence is the best.

4.2.2 Performance of the AR(6)

As seen in Table (4.4), an autéregressive six with v increasing
by a positive constant each 2000 samples gives less average SPER com-
pared with the mixed autoregressive moving average (7, 2). Other dis-

& , +
advantages associated with the use of pure AR models are,

1. The speech data due to the A/D converter contains three sequences
of zeros, each of 6 numbers or more. This happens even more
often in a practical on-line data. Betause of these sequences,

T .
$e = [yt—l Y2 yt-():l

= [0 o o .. o]
the denominator of equatibn (4.1) will be equal to zero and the
algorithd will stop. So we havg_to check every point of data and sub-

stitute a small number for each zero which,of course,adds to the comput=~



C Average SPER

1 6.7533 db

2 6.7341 db

4 6.3343 db

5 . 6.0533 db

10 4.1167 db |

TABLE 4.3(a) Average SPER for ARMA(7, 2) with the Gain Sequence

t = —— =
v(t) = v v, + C each 1000 samples

c Average SPER
1 6.4573 db

2 ‘ 6.7352 db

3 - 6.7834 db

4 | 6.751 db

5 6.6828 db
10 6.1594 db

TABLE 4.3(b) Avérage SPER for ARMA(7, 2) with the Gain Sequence
' Increasing Each 2000 Samples



C Average SPER
2 6.5379 db
s
4 6.7065 db
! 5 6.700 db 5
|
6 ' 6.6761 db . |

TABLE 4.3(c) Average SPER for ARMA(7, 2) with the Gain Sequence
Increasing each 3000 Samples

B PN, - 8 e M et o™ e

b e A M
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a
ational time.

2. The parameters of the autoregressive model reach high values as
t increases. Therefore, the poles of the filter may lie inside

the unit circle.

A comparison between the AR(6) and ARMA(7, 2)(is presented
in Figures 4.1 and 4.2.

It may be difficult in practice to transmit nine parameters
‘each iteration in order to update the predictor of the .receiver. In-
stead, we can perform the algorithm on ten samples gnd then send the
new set of parameters to the receiver.

This modification has been tried and the average SPER for
ARMAK7¢ 2) is 6.7117 db. This represents a slight degradation when
compared with the performance of the predictor in the previous section.

The choice of taking ten samples at a time is arbitrary and
the tracking ig still considered on-line, if taking more samples than

ten, the performance will start to deteriorate.

4.3 Performance oﬁ_the RLS

The recursive least-squares is a powerful algorithm. According
to [5, 6], it is the most efficient approach for parameter estimation
for low noise levels. The estimates converge to t%eir correct values
very fast, and the amount of computation is/gmaller than that fequired
in other algorithms with the exception of Qtochastic'approximation.

The algorithm is not sensitive to the initial value of the gain matrix



=10

—-15

—-20

4

}

‘.

ARMA (7,2)-
AR (6)

Average SPER = 4.244 db-{ -

Average SPER="3.672 db

0 5

Adaptive Models for a Gain Seqdence'v(t) = =20

10 15 20 25 130 N

Figure 4.1 Sectional SPER vs. No. of Séctions of AR and ARMA .

t + 1
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20 — e

db

15

'
.
.
5 - : '
<o—

Average SPER=6.783 db
Average SPER=6,296 db

| ! |

0 5 10 15

20 25 30N

Figure 4,2 SectionalSPERvs No. of Sections of AR and ARMA -
. Adaptive Models with v increasing by 3

Each 2000 Samples
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I C Average SPER
A B ! ";

‘E .

} 2 6.2559 db

|
© | 3 6.2964 db

J

TABLE 4.4 AggrageSPERfor AR(6) with the Gain Sequence Increasing
A Each 2000 Samples

-

\
\

i
Methg% Average SPER A ‘
. (db) :
Ordinary RLS 4.,1369 1 ‘
> Exp, w. RLS 3.2447 0.95

TABLE 4.5: Performance of the Ordinary and Exponentially Weighted RLS

5 -



* when the matrix elements are large, also the gain matrix updates itself
with the aid of a correction term.

b(P_yp ) (P yp )T
P - %‘._(Pn _ n-!gn’f_n n ) (4.2)
A+by Py

bP_ Y
~ - n-—n T 5
= B + - B 4.3
B B NP (v, -¥,B) (4.3)
n n+tn

Equations (4.2) and (4.3) represent the recursive algorithm. When
b aﬁd A are selected equal to unity, we have ordinary least squaies.
If b=1-Xand 0 << XA < 1 then it is the case of exponentially weighted

least squares as mentiomed in Cﬁapter 2.

4.3.1 Ordinary Recursive Laast Squares

Setting b =)= 1, let us test the ordinary least squares on
the speech sentence. The matrix P is symmetric and is initially chosen
to be diagonal with the diagonal elements equals 1000. Although khe
recursive least squares is highly recommended in many on-line applic-
ations, it did not give good average signal to prediction errorzragio
when gppligd to the speech (See Table 4.5).

Thé correctionl£erm of the gain matrix fluctuates severely
because of the large value of the residuals and the fast variation

of the data, As indicated in [6] the algorithm is efficient at low

noise level which is not the cage in the silent parts of the speech.



59

4.3.2 Exponentially Weighted Least Squares

Choosing b = 1 - X, and A varying from zero to one, a special
weight is put on the new observations, more than the past ones. Several
values of X have been tried starting from 0.95, to 0.5. It has been
noticed that decreasing the value of X gives poor results. The best aver-
age signal é; prediction er;or ratio has been obtained for A =0.95 and of
course it will be better each time A approaches one (i.e. the ordinary
least~squares case). The exponentially yeighted recursive least-squares
does not suit the speech data. Thé assumption upon which the principle

stands - the new observations are more in error than the past ones =~ is

not true in this case.

4.4 Computation Time of the Three Applied Algorithms

The computation time of the three methods is presented in Table
4.6. The recursive least squares has higher computation time than the
.stochastic approximation because it requires matrix and vector multi-
pliéation each iteration.

The stochastic approximation algorithm of Kwatny [9] requires
the least amount of computation per iteration and,gi;es good estimates

of the parameters. : /

Exec. Time in sec. for 256 Iterationms
Method - (CDC 6400)
Conditional max. likelihood 7.3
Ordinary RLS 4.925
Exp. Weighted RLS ) = 0.95. . 4.891
Stoch..App. ; 0.244

L

Table 4.6. Comparison of Computation Time of the Three Algorithms
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As predicted, the time series method takes more time in imple-
mentation per iteration than the on-line methods and this time increases

if the choice of initial parameters is not appropriate.

4.5 Concluding Remarks *

On-line identification techniques are fast in updating the
process parameters and give a fresh start every point. They also have
the advantage of small computation time compared with the off-line
identification techniques. The stochastic approximation algorithm
tracks the parameters slowly and smoothly and is suitable for the
speech data with the appropriate gain sequence. It requires smaller comp;t—
ation timeyand provides an acceptable signal to prediction error ratio for
the ARMA(7, 2). Since it is not practical to transmit the parameters
each sampling perioé, the adaptation interval may be increased to ten
samples without degréding the performance of the predictor. The pure
autoregressive model has several difficultijes in handling thé data on-~
line and its average signal to prediction error ra?io is not good due to
the unstability of the parametérs; |

The recursive least-squares algorithm is usu;lly more powerful
than the stochasﬁic approximation. But the SPERobtained using the
algorithm is low. This 1s because some sections of the speech data
contains high noise level,” On the other hand, the stochastic approx-

‘imation algorithm tracks the'parameters slowly and keeps the poles in

the étationary region.



CHAPTER 5
CONCLUS IONS

In this thesis, the time series approach of Box-Jenkins is
used to determine the order of the speech sentence which will serve
as the order of the linear predictor. It has been shown that the

4
moving-average terms are necessary. But when the algorithm was tested
with adaptive or fixed initial éonditions, it did not outperform the
pure autoregressive model. The latter does not require a nonlinear
estimation of the parametets and converges faster to the maximum
likelihood parameters. Since speech is a quasi-stationary process,
an optimal adaptation‘period has been Q:fined and found to be 8 msec
for AR(6) and 16 msec for ARMA(7, 2) with fixed inifial parameters.
"In actual pi%ctice, the identification must be carried out in a very
short time, Hénce, it would be much better to use a purely autoregres-
sive model which requires less.computation. Even this may not be
satisfactory in most practical applicationms, ang the use of recursive
identification algorithms may be more fruitful.

A method has been proposed to combine the time series and the
stochastic approximation algorithms. The first ﬁas bee; used to-
determine a suitable ARMA model and then to estimate the first set

of parameters. The second algorithm tracks the parameters of the

system smoothly. This method, when tested for the ARMA(7, 2) has
. 61 .
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given acceptable signal to prediction error ratio with a small comput-
ation time., The ;ame method used with an AR(6) model resulted in smaller
signai to prediction error ratio. The data had also sequences of zeros
due to the analog to digital converter so every point of data had to be
checked and the zeros replaced by small numbers or the algorithm will
stop and this adds to the computation time. This difficulty is not
present for the ARMA model because of the moving average terms depend-
ing on the residuals which are not zeros. Since it is not practical
to transmit the parameters each sampliné period, the adaptation inter-
val may be increaseé to ten samples without degrading the performance
of the predictor. ‘

The ordinary and exponentially weigh;ed least-squares algorithms
have also beeglused to trﬁék the parameters of the model. Both did not
suit the speech data and resulted in low SPER. ?his can he accorded to
the dependence of the gain matrix on the residuals which are sometimes
large.

The application of these algorithms has been studied for the
PEC configuration and has been concerﬁed witg éhe performance of the
predictor. The proposed method can be used with the inclusion of
adaptive quanéizer to different differential encoder configurationms,

mainly the DPCM, with slight modification. This can be a topic for

further study. . (“)

b



APPENDIX A

THE SPEECH DATA

The experimental set up for the data has been prepared in
McMaster University's Communications labératory. A pre-recorded
tape containing several minutes of male voice speech was played
through a reel-to-reel tape recorder. The analog signal from the
tape recorder is fed to a band pass filter. The band pass filtered
signal is then amplified by a voltage gain amplifier bringing the
\signal level up to approiimately:t4‘v peak;to—peak.')An A/D\converter*
is tben used to sample the speech waveform at a rate of 8 KHz. The
samples are first stored in a buffer in the HP-1000 computer and then
written onto a 9~track Digital Mag-Tape. Further explanation of the
experimental set, up of the data can be found in [i].

A selected passage of the sampled speech has been studied in
this thesis. It is a sentence of dﬁration 2.048 sec shown in Figure

A.l(a, b, c, d). , ‘ . .
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APPENDIX B

STOCHASTIC APPROXIMATION
CONDITIONS OF CONVERGENCE
The most general form of a stochastic approximation algorithm
_ has been treated by Dvoretzky in [17]. He has proven a general theorem
which deals with the convergence properties of a non-linear measurable
transformation T(x(i), vee, X(N)), of a sequence of random measurements

x(1), ..., x(N) to a point vector B. The algorithm is of the following

general form.

mN+1)=Tou,“.,mm)+yN+guu),g.,xm»

In the above, Yy is a random variable and g(.) is a measurable function.
For most practical applicatioms, stochastic approximation search

algorithms, are point estimators of the form,

a(k) = a(k-1).+ [gain], * [error correction] (B.1)

k-1

where the [gain]k = {v,} is a sequence of suitable chosen smoothing

" values and the [error correction] = {F(k-1)} sequence is generated

k-1

" at every time instant k by measuring the deviations from an appropriate
goal. In order for (B.1l) to qualify as a stochastic approximation
algorithm, convergence to the unbaised true parameter o must be estab-

T

lished. A : .68
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~

" Conditions of convergence of the sequence a(k) to a in (B.1)
are stated in Dvoretzky's special theorem. This theorem has been
modified to fit algorithm (B.1l), and is presented in the sequel [29].

In order to formulate the theorem, the relation (B.l) can be

rewritten in the following form in which the gains are presented by

*

v, and the error correction sequence is partitioned into a correction

k

term F(k) and a noise term V(k); .o

a(k) = alk-1) + %k [F(k) + V(k)] ' (B.2)

:
Theorem ([17] simplified):

If the gain sequence {vk} in (B.2) satisfies

© s o] 2
lim Vi T 0, I Vi T T vo<e (B.3)
k=1 k=1

. T
and the error correction sequence Batisfies

B(|| a() + v, [FO + V0T [1?/ a (1))

£ E{|| a(®) + v, FOO| 2 Ja(k)} + "i+1 E() V() || 2 /a(k) };
2. 2 2 -,
EQla@) || "} < = 5 EQVG]|7) < 0% < = . (B.4)

‘Then

P (lim [ja(l) -l =0} =1and in {||Ea(k) .- «||?} = 0
ko k+ '

-



Proof of this theorem can Ee obtained from [17]. The conditions

(B.j) on the gains may be interpreted as follows. The first provides
the smoothiﬁg effect on the random correction term, the second provides
unlimited correction effort, and the third guarantees mutual cancel-
lation of individual errors for a large number of ikerations. The
harmonic sequence {1/k} as well as any sequence of the form {1/Pk + C},
1/2 <.P <1, C >0 satisfies condition (B.3). Conditions (B.4) imply
&hat there is no cross-coupling between F(k) and V(k) and that the
search does mot start with an infinite uncertainty about the parameters.
The parameter o may be a scalér, é vector, or a matrix. This affects

only the bookkeeping of the algorithm,
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