._a W.}f g ?f 25 Wd:“fwi : 'v".‘_~::-;_ v .-W"'"‘;'. :_h o o

4

DIGITAL PROCESSING OF

NON-STATIONARY SIGNALS

by

JESSE FRANCISCO HUNG, B.Eng.

A Thesis
Submitted to the School of Graduate Studies
in qutial Fulfilment of the Requirements
| for the Degree

'Master of Engineering

McMaster University

June 1981

\



DIGITAL PROCESS II\%G OF
\

NON-STATIONARY SIGNALS



MASTER OF ENGINEEkING (1981) McMASTER UNIVERSITY ©

.

(Electrical ‘& Computer Engineering) Hamilton, Ontario.:
3 ’ \——
TITLE : Digital Processing.of Non-Stationary Signals

AUTHOR : Jesse Francisco Hung, B.Eng. (McMaster University)

-

SUPERVISOR : Dr. S. K. Sarna +

NUMBER OF PAGES : x, 122

-
VT

ii



/
ABSTRACT

Various tests had been conducted in order to examine
the stationarity and the normality characteristics of electrical
rcontrol signals of the digestive tract. They were done because
tée conventiona% frequency analysis, whiéh is used gxtensively
for thé investigation of Biologicél signals, usually assumes the
signal to be stationary and normally distributed. The validity
of this assumption should then bé examined before any Ffurther
aﬂalysis is applied. The tests are condpcfed by proposinqla null
hypothesis that the signél undex invgstigatioﬁ is sfationary
_and norﬁally distributed. It was found that'the bercentaée of
rejection of the hypothesis increases towards the colonic end
of the tract. ﬂ

Sig&e conventional power épeétral énalysié_does not
proyide any\phase information on .Qp—stationa;y signal, the
bispeétral aﬁalysis, which is the fourier transform of the third
moment;rwas gsea in order to examine many of the still-unknown
characteriséics of the éastrointegtinal sigﬁal. The anélysis '
mainly searches for any phase-locking between frequency components
and hence identifies the geﬁeratq;s of the‘siénal. Two sepera£e
analyses had been done : one was for.a sipgle‘channel and the
other wés for a-gguble channel of signals. Itlwaérfound ébat the

4

same group of gene}htors_for the electrical signals on the upper



L}

paft'of'the txact'ié presen£ most of the time. But short~li;edi
and locaily baseé oscillatoFs dominate the functions in tﬁe‘
colon. From the cross-bispectral analysis, it was found that
the generators in the stomach and the duodenum usually exert
dri¢ing force to the distal site but bidirectionally in the
jgjunum. In the colon,\Bgly independent frequency gomponents
were. found to be phaséh—locked oggasionally.

In conclusion, the analyses carried out in this

r

.study provide some alternate means to investigate many of the

"still largely unknown signals.
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CHAPTER 1

INTRODUCTION

Biomedical signals, such as EEG, gastroduodenal

and colonic electrical activities are regarded as the
r”

stpchastic phenomena of biological systems. In practice,
gtatisticgl parameters like histogram,~autocorrélation
function, power spectrum and coherence function are
calculated for various purposes. But these are done
hsnally under the coqdition of weak stationarity of the
;ignél, that is, the mean value, the standard deviation
and the autocorrelation function have to be independent
of time tran?lation.iHowever impulse response and evoked
potential of bioﬁedical data are generally not regarded as
stationary time series. Therefore other analysis is required.
So far only a few studies ﬁave been done in analyzing non-
stationary signals. For instance, Priestley and Rao {19} and
Priestley and‘Tong {20} have used the evolutionary spectra,’
thét is, épecf}al functions which are time dependent, to
deséribe‘the local énergy distribution of a non~§tationary
series. Kawabafa {14} has also done a similar study. He

. "
calculated. the instantaneous power spéctra of certain

.
i
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transition processes in the EEG and described them on the
time-frequency plane. Pinson and Childers {17} utilized the
frequency-wave number spectral analysis to investigate the
high-resolution vector velocity so that the direction and
speed of propagating wavefront of the EEG can be described.
Additionally Praetarius, Bodenstein and Creutzfeldt {18} and
Bodenstein and Praetarius {3} have used the linear prediction
filtering method to divide the time series into segments
ané extract the transients from Ehe data. If two channels
of signal are investigated, and the transients are detected
simultaneously on both channels by the method, one can

say- that the‘sharp wave detected in channel 1 is real by
comparing it with its clearly discernible counterp%rts
in channel 2. All the papers mentioned above suggesﬁ, in
one way cor another, some methods to examine the characteristics
of a non-statfiionary signal. But the results obtained from
these methods ‘only guide one to scan some of the charac-
teristics %gb that many of the features of a non-stationary
signal are, still left unknown. Hence it is difficult to
draw a meaningful conclusion from this limited information.
' In this project additional attempts will be
made in order to e%t{act some more information which is
lost during ﬁhe ordihary power spectral ,anatysis. They are
actually based on the papers’{6}, {7} and {11} by Dumermuth,
Gasser, Huber and Kleiner. As already men;ionéd above, only

v

partial characteristic, of a non-stationary signal can be



obtained by the conventional spectrallanalysis. By definition,
the power spectrum suppresses all the phase information
hidden in a signal. Although it may suggest phase information
by showing peaks at harmonically related frequencieé,
information about interrelationships between frequency
bands outside the peak frequencies of the spectrum will

be lost. Hence a method called the bispectral analysis is
employed here to extract this particular information and
provide a more in-depth observation of thg signal being
analyzgd. A,brspectrum allows oné to analyze in deta{}
abouf the third central moment, which is the mean c¢ube

and an order higher than that of a conventional power
spectrum, of a random signal. It is essentially influenced
by the phase-locking characteristic between different
frequency components. This’method will be utilized in this
project to analyze signals recorded from the various parts
of the digestive system. Not just the interrelations
between different frequency components of a single channel
of signal will be examined, bu%@that of two channels

of signal is also calculated in order to make attempts in
analysing relationships betwegn tﬁe two signals. Before
these procedures are carried out, tests will be conduct;d
first of all about the stationarity behaviour of the signal

being used. This is done in .the next chapter.



CHAPTER 2

STATIONARITY AND NORMALITY TESTS

2.1 INTRODUCTION

Statistical propexrties of stochastic processes,
such as biomedical data, are often examined for various
purposes. Howeﬁer most of.the statistical analyses processed
iﬁ the time and frequency domains are based on the asshmption
that the time series is weakly stationarvy and normally
distributed. For instance, regression analysis or mqlti-
variate analysis of biomedidal data is mostly based on
the theory of normal aistributions,Theréfére normality
is needed'before the multivariate method is employed to
analyze the data. Furthermore, data is often collected
under circumstances which do not permit an assumption of
_stationarity ba§ed upon simple physical éonsiderations.
Hence, as the basis of the statistical analysis of the data,
it is necessary to know whether it satisfies the conditions
of weak stationarity and normality.

The statistics of a time series are mostly obtained

by the observeq datﬁ of random fﬁnctions. A random function



is usually specified when all its probability distribution
_functions are given.'Hence it is said to be stationary
if the probabilit& distribution functions are ,independent
of time. But the probability distribution functions are
quite difficult to measure. It will be sufficient to say
that the time series is weakly stationary if’the first
two moments of the probability distribution are independent
of time.

In most cases, the stationarity of the data must be
evaluated by studies of available sample time records.
This evaluation might range from a visual inspection of
the time record to detailed statistical tests of certain
appropriate data parameters. It can be assumed that .any
nén—stationarity of interest will be revealed by time
trends in the mean square value of the data.'This is
Because the mean square value Yz will usually reveal a
time varying autocorrelation by the relation R(0) = Wz.
The procedures involved in investigating a single record
X(t) for its statioﬁarity will be as. follows {1} :
(1) . inide the sample series intQ\N equal intervals;
(2) célculate a mean square value for each interval

~

and align these values in sequence as follows

22 52 32 =2
X0 X5, X3, -en 0 Xy
(3) test the sequence of mean square values for the

presence of underlying trends.

<



Step (3) in the above procedure éan be accomplished
in many ways. For example, one can use the Kolmogorov-
Smirnov's statistic D2 to eXamine the staﬁionarity if the
sampling distribution is known. But it requires a 'detailed know-
ledge of the frequency composition of the data. Such knowledge ;s
generally not availablé at the time when 6ne wants to know -
whether or not the data is stationary. Hence a non-parametric
:approach will be more appropriate in this case because
it does not require a knowledge of the sampling distributions
of data parameters. One such non-paraﬁetric test which is
applicable to this proplem is the run test. It is employed
in this project to test the stationarity characteristic .

of a sample time serieés and will be explained in detail

later in this chapter. o
In many cases, researchers often assume that a

time series is the realization of a gaussian, normal random

'process. A random process is said to be normal if any .

set of data points, {X(t) | a set of t} is jointay normally

distributed. Hence, for a norﬁal random process, at least

" the marginal distribution of the data val#es, or'the

histogram, must be normal. In this projeq&, the norma}ity

Qf X(t) will be tested by the Chi-Square;Goodness—Of—Fit

method which measures the deviation of t#e {X(t)} distribution

from the normal distribution. The gener%l procedure involves

the use of a statistic with an apptoximate Chi-Square



distribution as a measure of the. discrepancv between an
observed pigbabili£y density function and the theoretical
density funcZion with normal distribution. Upon studying
the sampling distribution of this statistic, a hypbthesis
of equivalence is then examined in ofder to test the degree
of deviation.

In addition ﬁo the Chi-Square Goodnesi—Of—Fit test,
the skewness and kurtosis‘of X({t) are also calculated by
utilizing the third and fourth moments. Statistics gf~and
g, are calculated from the Fisher's k statistics. They
measure whether the distribution is.symmetric and how much
the symmetric distribution deviates from the normal obne.
This Fisher's normality test is used as an enhancement of
the Chi-Square Goodness-Of-Fit test employed here first.

All these stationarity and normality tests will
be implemented on ihe NOVA 830 minicomputer. Data files
are created beforehand by sampling the electrical signal
" from various parts of the digestive system. The stationarity
and normality of the data will be tested by thé appropriate
programs and the result will be outputted on the line-
printer. Before going into the details of the theory and
algorithms for the tests mentioned above, two statistical
termé, the confidence interval and the null hypothesis

test, should be explained here because they will be used

as the criteria to distinguish between stationary or non-
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stationary (as well as normally or not normally distributed5

time series.

2.2 STATISTICAL TERMS .

2.2.1 CONFIDENCE INTERVAL

In practice, the estimation of parameters of
random variables by the use of sample values always produces
some sort of uncertainties. Different values of estimated
parameters will arise with different samples and no indicagion
is provided as to how closelfy a sample value estimates
the parame{er. Hence it would be more meaningful if one
estimates the parameters of the random variables, with a
known degree of uncertéinty, by calculating an interval
instead of a single point value. For instance, let' X be
the sample mean of N independent observations of a random
vériable X and is being used as an estimate of the true
mean W of the random variable. It is usually more desirable
to estimate u_ by an interval X t D so that there are some
uncertainties that the mean My will fall within that

interval. Consider the equation

prob { Z,_ 5 < <' z }



(i—ux) VN
It states that if different values of ——— are
' X

computed from different samples being collected, one would

expect that about 1 - a of calculated values will fall

within the indicated interval. Usually the value of a

is small, say 0.05. Hence with a small degree of uncertainty,
(X=u 7N
0

X
to fall within the interval and it is called the confidence

one can expect to find the computed value of >

interval.

2.2.2 HYPOTHESIS TESTS

Let 8 , calculated from a sample of N independent
observations of a random variable X, be an estimator of
the parameter ¢. It is also hypothesized that ¢ is equal
to a particular value, say @o. Since different samples will
give different values of $, one would like to know how
much difference between 9. and ®O should occur before the
hypothe Es d = Qo becomes invalid; Consider the probabiljty
of any noted difference between & and ¢O. If the probability
of a particular difference is small and it actually -
occurs, then it would be considered significant and the
hypothe51s should be rejected. On the other hand if the
probablllty is not small, the hypothesis ¢ = = ¢, would be
accepted. The procedure mentioned above is a brief outline
of the hypothesiSutes£.

Let the probability density function of the



estimator be p(3). Then the mean value of p(3) would be éo

if it is hypothesized that ¢ = ¢ . The probability that $

would fall‘below the level ¢l-a/2 is
g
o) ‘( ¢l—a' ~ A
prob { ¢ < ¢l—a/2 } = ~£ p(d)dd = o / 2 (2.2)
The probability that & would fall above the level ¢a/2 is
prob { ¢ > ¢a/2 } = ¢f p(d)de = a / 2 (2.3)
a/2

This is illustrated in Fig.2.l. So the probability that the
estimator falls outside the indicated confidence interval
is a. If o was small and the'combuted value of ¢ from a
collected sample fell‘outside the interval between l-a/2
a/2, it would be reasonable to question the origin;z
hypothesis of ¢ = ¢o since it is unlikely to have such a
value of § if the hypothesis was true. So the hypothesis
should be rejected in this case. However if the calculated
value of é did fall within the.interval, the original
hypothesis would then be true and should be accepted. In
the subsequent tests for.stationarity and normality, either
"a one-sided or a two-sided null hyvothesis would be used

as a criterion to differentiate whether the series under
test is random gaussian or not. More details about the
hypothesis will be described in the stationarity and

normality tests



D(@)

Region of
rejectimn

Area = o/2

/

Region of
Acceptance

Region of
rejection

Q ¢l—a/2

Fig. 2.1 Acceptance and rejection regions for hypothesis tests. {1}
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2.3 THE RUN TEST - A STATIONARITY TEST

A weakly stationary time series has the property
that the first two orders of statistics such as the mean,
variance and the autocorrelation are independent of time.
Hence any display of trends in the data will violate the

.
character of stationarity. The RUN test employed in this
thesis is designed to detect the existence of any trend
in the data. '

Consider a sequence of N independent observations
of a random variable X and divide it into L = 2M segments.
Assume that any non-stationarity of interest will be
revealed by time trends in the mean square value of the data.
The stationarity through the autocorrelations will not be
considered here because if the variance of the time series
is time invariant, it is very unlikely that the auto-
covariance is time-dependent. Therefore, for simplicity,
only the mean square value is examined. Now consider a sequence
of L mean square’ values (S(i),i=1,2,...,L) calculated from
each segment. Assign cach element in the sequence into one of
the two catagories by using the median T of the mean
square value sequence as the differentiating criterion.

If s(i) > T, a '+' is assigned to it and a '-' is assigned
if S(i) < T. Then a sequence of +'s and ~-'s is created as

follows



s R -

-
-

A run in a sequence of symbols is then defined as a group
of consecutive symbols or signs of one kindﬁpreceded and
followed by symbols of another kind or by no symbols at(
all. In the sequence of +'s and ~'s showp above, there

are 5 runs of + as well as 5 runs of —..The numbe; of runs
which occurs in the sequence gives an indiéﬁtion as to
whether the original time series has any trend or not. It
is based on the fact that an unusuallyflarge or small
number of total runs would suggest a l;ck of random%ess.
For instance, let the median be used as the differentiating
criterion, the numfer of runs for + be-ra and the number
of runs for -'be . If an upward trend is present in the
mean squére value sequence, the -'s will tend to come at
the beginning and the +'s at the end of the sequence which

’,

results in a small number of total runs r = r, + r - Another-

example is that if certain kinds of dependence are causing

values in tﬁe sequence bouncing systematically back and

forth from one side of the median to the other, an unusually

large number of runs will result. !
Consider the case mentié;ed above where there’

s a sequenée of L = 2M elements of mean square values and

the median~T is used as the differentia;ing criterian. Let

the numb)r of runs for the .+,be\ra and the - be Ty with

r=r, + - Under the hypothesis of randomness there are

(2M) ! ways to arrange the sequence of M +'s and M ~'s with

7
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each arrangement being distinct and equally likely. Hence

the probability of a given configuration is equal to the

ratio of the number of arrangements having that configuration

to the total number of arrangements ( 2M Since theré

v u
are equal number of +'s and -'s, only three cases have to

be considered, i.e., 1) r = r

a= T, *t 12 r =r +1and

b

In case 1), there are r, distinct groups of +'s
so that the -'s can be inserted into r - 1 slots. Since
there are M +'s.altogether, the number of ways that M ~'s

can be put in M - 1 slots of +'s and form ra -1 groups is
M=-"1

( r -1 ) . Furthermore there are‘i'b groups of -'s, the
a

-'s can also be ,arranged in (( M - % ) ways. As a result,

. _ M- 1 M~1

if ra = rb + 1, there are ( r - 1 ) ( rb -1 ) ways to

accomplish the arrangement. For case 2), one can just simpl

interchange x_ with r, and the result will stay the same as

-

that for case 1). Lo
For case 3), the number of ways is again
( rM - i ) ( rM _ i~). But there are two possible arrangements:
a b

one is when the sequence starts with a + and ends with

a - and the second one is the vice versa case of the first.
M

a b
Now if r = r, + rb = 2k + 1, two cases have.

Hence the total arrangements for case 3) is 2('r

to be considered, that is 1) and 2) mentioned above. ‘The

A ’

probability for the total number of runs' is thén‘

14

Yy

M A

1
1

).



15

200 21Ty /() ie = 2
¢
_ M- 1 M-~ 1 M- 1 M- 1
¢ T G I N2 G R B TSP VO

s Now let it be hypothesized that there is no trend
by assuming that the sequence of L mean square values are
independent sample values of the same random variable. The
hypothesis can then be tested at any significant level o

by comparing the total runs to the interval r.,< r < r

2 1’
If the sequence is notxstationary, r, the total number of
runs, would be either too small or too large and r will
lie outside the interval indicated above. So one can

conclude whether the series is stationary or not by finding

the values of'rl and r, from equation (KVS) below

r, .
I p(x) =ao /2
r=2

(2.5)
2M o
r p(xr) =a /2
r=r

The test is implemented on the NOVA computer

under the program named 'RUNTST'. Heré the record length

- of the signal and the number of_seétions 'NSEG' to be divided

Pt ) -
& .
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from the whole record are set by the user at the beginning
of the procedure. The computer will examine the stationarity
of each section and find out héw stationary the whole

record is by calculating the percentage of rejection of

thé stationary hypothesis. Each section will be.divided into
30 segments (that is, L = 2M = 30). The run pattérn and the
number of runs r (or 'NRUN' in the algorithm) will then be
searched. If r, < r < r

1 27

. If r lies outside the interval between r

the section is stationary.
1 and Y it is non-
stationary. After all the sections have been énalyzed,

the percentage of rejection is calculated and outputted.

The detailed algorithm is illustrated in Fig.2.2.

Fig.2.3 shows a typical colonic signal recorded
from a dog. The pictorial illustration explains how the
record is divided into NSEG sections and L (=30) segments.
Pig.2.4 presents the output from the analysis of the colonic
signal shown in Fig.2.3. From the large value of the
percentage of rejection one can conciude that the signal
under investigation is by no means statiénary and hence
some informations(will be lost if conventional power
spectral analysis is used to examine the signal. Before the
bispectral andlysis is used later in this project, each
signal will be investigated by 'RUNTST' and the result

will be presented in the appropriate location of this

thesis.



Fig.

sTAgT

sections and other necessary parameters.

Set the record length, the number of

)

Calculate p(r) from eq. 2.4 with

r=2,3,...,30 and ry, r, from eq. 2.5.

2

Get the current section from the data
file and divide it into 30 segnents.

.2

Find the mean square

value of each segment.,

!

oy
Find the run pattern and

the number of runs NRUN.

g

Al

The flow diagram of the RUN test.
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r.<NRUN<r NO

1 2

Stationary

Nonstationary

pt——

- Output the result.

All section done

Calculate the percentage
of rejection and output.

STOP

Fig. 2.2 (continued)
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2.4 CHI-SQUARE GOODNESS-OF-FIT EETHOD FOR THE
TESTING OF NORMALITY

The normality of a set of data points X(t) can
be tested by using the chi-square goodness-of-fit test
which measures any discrepancy between the distribution
of X(t) and the normal distribution. The general proceaure
involves the use of a statistic with an approximate
chi-square distribution as a measure of the difference
between the sample and the normal density function. Then a
hypothesis of equivalence can be tested by studying the
sampling distribution of this statistic.

Suppose there are N sample data points to be
analyzed. Let tﬁe points be grouped among k class intervals
such that the number of expected points (or frequencies)
in each interval will be the same. Note the class width
for each interval will be different in this case. The
probability for a particular point to fall in any one of
-the intervals is then 1l/k = 1 - a. For instance, for
interval #1, o = 1 - 1/k. For interval #2, a = 1 - 2(1/k)
etc.. The appropriate interval limits for the normal
distribution hyéothesis are established by finding the
required value of z for each interval limit from the table
of 'area under standardized normal density fupctioh', say
Table A2 of { 1}. These standardized interval limits are

then transformed into boundary values in terms of the
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observed sample. This is done by the equation

Y =2z 8+ X (2.6)
a .

where X is the mean and S is the standard deviation of

the sample. Now we can count the number of points that fall
within each interval. Let Fi be the'obsgrved frequency

of interval i. The frequency of each class interval is

also selected to be identical and equal to N/k. The value
Z(Fi - N/k) will measure the discrepancy between the observed
sample and the normal'density function. Let the sample
statistics B to be established by summing the squares of

the differehces in each interval as'follows(:

2
( Fi - N/k )

wn
i
(LI e -y

(2.7)

i=1 ( N/k )

-

Let it be hypothesized that the sample is normally distributed.
Any deviation from the hypothesized normal density function
will "cause B to increase. Hence a one-sided test is used

and the region of acceptance is

B < Xn:a (2.8)

where Xi~a is the percentage point of the cghi-square
distribution and can be found from tables like Table A3

of { 1}. Here o is the level of significance for the
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hypothesis and N is the degree of freedom. N will depend

on the number of different independent linear restrictions
imposed on the observed sample. In this case the. first -’
restriction is that the frequency of the last class interval
is determined once the frequencies of the first k - 1 classes
are known. Furthermore, two parameters, the mean and the
variance, must be calculated from the sample in order to

fit the normal density function because they are not known
from the expected theoretical funcﬁion. Thus the degree of
freedom n for the test is k - 3. One additional note that

has to be mentioned here is that the optimal number of

classes k can be computed as follows {25}

k = 4 ( )l/5 (2.9)

For example, if N = 150 and a = 0.05, z, can be found to
be 1.645 from Table A2 of { 1}. So from (2,9), k = 27 and
the degree of freedom n = k - 3 = 24. From table A3 of

2
Xn:a = x§4:0.95= 36.42. One can then use equations (2.7)

4

and (2.8) to test whether the hypothesis is true or not.
The algorithm of this test implemented in the
cémputer is shown in Fiqg..2.5. As mentioned before, when
-
eéiablishing the interval limits, values of z, have to be
foupd from the a / z, table, say Table A2 of { 1}. Due

to the limited amount of memory space available, only a

)



START

!

Set the record length, the number of

sections and other necessary parameters.

G)

—r

Fetch data from data file.
A

Calculate the mean and
the standard deviation of

the current section.

Set interval limits by
table look up and eq. 2.6,

Find the frequency of each
interval and calculate
the value of B of eq. 2.7.

Fig. 2.5 The flow diagram of the chi-square
goodness—-of-fit normality test.
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portion of the table is entered into the computer and the
number-of sample points N is restricted to &ither 60 or 150.
This 1s because for each class interval, a distinct value

of a (=1-1i(1/k) and k is calculated from (2.9)) is found and
hence, k different values of z, have to be entered for each
value of N. This tést is a rather simple test and the
algorithm in Fig. 2.5 is self explanatory. Fig. 2.6
illustrates a sample output of the test after the signal
shown in Fig. 2.3 is processéd. From there we can see that

the signal under study is not normally distributed.

2.5 FISHER'S NORMALITY -TEST

The normality test by using the Fisher's k statistics
is an enhancement of the chi-square goodness-~of-fit test
just mentioned on section 2.4. Two parameters 9, and 9,
are introduced from the k statistics. 97 is the coefficient
of skewness which measures whether the sample distribution
is symmetric about e mean or not. A positive 9, indicates

that the Iow-valued numbers of the observed sample are close

to the mean, and the high-valued numbers extend far above
the mean. On the other hand, a negative ql will have an
opposite effect. However if the sample is normally distributed,
9, is also normally distributed with zero mean and variance

6N (N-1)

var(ql) = (2.10)
(N=2) (N+1) (N+3)
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where N is the number of samg&e points analyzed.

9y oﬁ the other hand, is the coefficient of
kurtosis. It measures the peakedness of a distribution and
shows how much the symmetric distribution (if any) may
deviate from the normal distribution. A positive 9, indicates
the peak is sharp and the tails are thick, that is, the
shape‘is more prénounced.~Nevertheless, the region between

the peak and the tails becomes lower than that in the normal

distribution. On the other hand, a negative valued 9,

means the peak 1is thicker, the tails are thinner and the

o

region between them is thicker. If the sample is normallv
distributed, 7, is also normally distributed with zero mean

and variance : )

4

-

/ 24N (N-1) 2 .
var(g,} = (2.11)
(N-3) (N-2) (N+3) (N+5) '

As a summary, 9, and 9, measure the degree of deviation of

the sample distribution from the normal one. As a matter

4

of fact, the Fisher's normality test can be used alone
as a normality test of any time series.

Now we can show the calculations of gl‘and g, and

demonstrate the hypothesis test involved. 9, and g, are

computed from the Fisher's k statistics as follows

; 9 = ky / ( kyrk, ) ' (2.12)
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_ 2

9, =k, / ( k5 ) | (2.13)
&
where T

1
k., = m
2 (N-1) 2
N
k. = m (2.14)
3 (N-1) (N-2) 3
N . 3N-1)
k4 = {¢(N+l)m4 - }
(N-1) (N-2) (N-3) N

and mo= I( x(i) - X )Y, - v =2,3,4 (2.15)

i

On a level of significance a; the sample distribution is

said to be normal if the following conditions are satisfied

O
Zgl = | 9, |/ vvar(g;) < 24/2 (2.16)
‘zgz = | gz,l / Vvar(gz) < 2y (2.17)
{‘where 2z and z are .the normalized statistics and 2
gl . 92 (1/2

is” the standardized variable ofvthe normal distribution at
the a/2 level. 2,2 can be found from thg tablgnof 'area
é%;under standardized normal density function',e.g. Table A2
Cof {11,
The algorithm fSr the Fishe;'s normality test is

shown in Fig; 2.7. Here sections of data are analyzed
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START

Set the record length, the number of

sections and other necessary parameters.

le Table look up for

/2"

the Vaiue of Za

1

Calculate var(gl) and var(qz)
from eq. 2.10 and 2.11.

Update the section number .and
fetch the data from data file.

/
g
Calculate m, m3,
& m, of eq. 2.15.

4

Calculate k2, k3 and k4 (eq. 2.14) ( )
and hence g, & 9, from eq. 2.12 & 2.13.

[

Fig. 2.7 Flow diagram of the Fisher's normality test.
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Find the normalized statistics
and Zg from eq. 2.16 & 2.17.

91 2

. Normally
distributed

" Not normally

distributed

All section done

Calculate the percentage

of rejection and output.

STOP

Fig. 2.7 (continued)
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continuously as indicated in Fig. 2.3. The procedure is

rather straight forward and the algorithm is self explanatory.
Fig. 2.8 sliows a sample output of the test when the signal

of Fig. 2.3 is studied. The percentage of rejection here
coincides with the result obtained from the chi-square

goodness-of-fit test.
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CHAPTER 3

THE BISPECTRAL ANALYSIS

3.1 INTRODUCTION

Conventional power spectrum of a stationary
gaussian stochastic process displays the energy distribution
of the process in the frequency domain. It essentially
contains all the statistical information about the process
under investigation. Since the process is gaussian and
stationary, different frequency components in the spectrum
are expeéted to be mutually uncorrelated, that is, they do
not affect each other in the generating process. Heénce the
spectrum itself is merely a linear superposition of these
frequency components. On the gther hand, when harmonically
related peaks exist in the spectrum, wave components that
are not sine-shaped may be present. This means that some
components in the Fourier series of the signal are somehow
phase related to each other and they sum up to giVe the
non-sinusoidal components. Let the Fourier transform of

a random process x(t) be

X(£) = A(f)exp{iF(£))} : (3.1)

34
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where A(f) is a positive even function for the amplitude
and F(f) is an odd function”which represents the phase. If
’séme terms in the Fourier series are related to each other
as mentioned above, the correspondigg terms in the function
F(f) will then be phase-locked to éach other in some degree.
Furthermore, even if the frequency components are not
integer multiples of each other, they could be phase-locked
and this information will not be revealed by the power
spectral analysis. Hence a quantitative measurement of this
kind of phase-locking characteristics:may be of interest.
By definition, the power spectrum of a random

process x(t) is

-

l *
P(f) = — { X(£)X (£) }
T
1 2
= — { A(f)" } ‘ (3.2)
T -

where X(f) is defined by equation (3.1). It is obvious that
the powér spectrum only shows the amplitude distribution

of the process and no phase information of any kind can

be observed. One may argue that the phase relations can

be obtained if the péaks are presented at harmonically
related frequencies. But are these frequency components
really true harmonics of each other? Additionélly, existence

of any phase-locking characteristics between frequency

bands outside the peak frequencies of the spectrum cannot

+
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be observed from the spectrum. In some cases, observed data
may be generated by some non-linear mechanisms. Again the -
conventional power spectrum do not suggest any information
on this aspect. All these problems thus suggest that higher
order theory should be employed in order to gain some
insights on the observed data if it does not satisfy the
definition of gaussianity and stationa;ity.

The third and fourth moments are very common in
s;atistics. They measure the skewness and the kurtosis,
respectively) of the sample distribution (see details on
these moments in section 2.5). But they are only estimates
of the deviation of the observed sample from a gaussian~
distribution and reveal nothing aboué the non-linear
interaction between different frequency components. Hence
a more differentiated means, called the bispectral analysis,
is employed in this study. A bispectrum is the Fourier
transform, or the frequency decomposition, of the thir@
order moment function of a stochastic process. Since thef
third moment is influenced either by the non—stationa;;t;
of the signal or the interrelations between frequencyf
componént54 the bispectrum dées provide a means to explore
the phase relations and the degree of pgase—locking among
components in different fiéquency bands, It no£ only

identifies the harmonically or sub-harmonically related

frequency components, it also detects the coupling between
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two or more generators of the signal. In summarizing all
these,\EEe bispectral analygis investigates the phase-
locking character and gives some new insights into the non-
linear aspects of the generating process of the signal.

We will first discuss the theory and the derivation of the
bispectrum. Then the estimation, that is, the method,
procedures and the algorithm, of the bispectrum and the
bicoherence (which is just the normalized bispectrum) will
be presented. Finally in this chapter the algorithm will

be tested by 'artificial data.

3.2 THEORY AND DERIVATION OF THE BISPECTRUM

In this p;gject the theory of the bispectrum
will be derived théguqh the analogous expression of the
conventional spectral density function. One can refer to
{4} if the formal derivation is of interest. In this
reference a generalﬂk—order polyspectrum is introduced
but the theory behiﬁd‘this is guite involved. Hence the
detailed formal procedure in derxiving the bispectral
expression is omittedAherg. By definition, an ordinary
power spectrum g}striumtes the energy (or the mean square
§2) of a time series x(t) in the frequency domain. It is
usually obtained by the Fourier transform of the first
order autocovariance E{x(t)x{(t+7)} of x(t) or more

efficiently, the product of two Fourier components of x(t)

with the frequencies of the components addihg to Zero. By
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contrast, the bispectrum is a decomposition of the mean

cube §3 of x(t) into its frequency counterpart. It can be
calculated from the two dimensional Fourier transform of

the second order autocovariance B{x(t)x(t+rl)x(t+12)}

{which is a function of two delays) of the time'series x(t).
Analogous to the case of power spectrum, the bispectrum

can alsorbé obtained from the product of three Fourier
components of x(t) with the resultant frequency sum equal

to zero. But usually the relations between different time
series are. of interest in time series analysis as well, e.g.,
through the cross-spectrum and the coherend® function, there
is no reason %o confine the bispectral expression into a
single time series. Let xi(t), xz(t) and x3(t? be three
independent realizations of a random variable X for the

time being. The bispectrum can then be defined as the Fourier
transform of the second order cross-covariance function

E{xl(t)xz(t+r )x3(t+12)}. Note the order of arrangement of

1

Xy X, and X3 in the expected value expression is completely
general and irrevelent. More details about this point will
be discussed later in the cross—ﬁispectrum section.

Consider the estimate of the cross-covariance

E{xl(t+rl)x2(t+rz)x3(t+r3)} of x x. and x., be

1772 3

R123(?1’12’T3')
N~max(rl,r2,r3)

= 1/N z x, (t+1, ) x_ (t+t,) x, (t+T,) (3.3)
t=1-min(t,,7,,7,) 1 1772 2773 3
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where T = 0, %1, *2, ; *m
T, = 0, *1, +2, ... , tm
Ty = 0
The estimate is centered at Ty T 0 since the product moment
does not change with time. With Ty < 0,
R123(TyrTprT3) = Ryp3(1y.7)) (3.4).

Taking the 2-dimensional Fourier transform of equation (3.3),

we obtain the expression for.the bispectrum as

B123(wl,w2)‘
5 m m
= 1/(2m) z E exp{—j(rlml+T2w2)}R123(Tl,12)
T,== T,=-M
1 2
(3.5)
If we seperate the double summation and let
G (w,y:Ty)
123 271
AN m .
= 1/(2mw) E exp(—jrzwz)R123(rl,T2) (3.6)
T,=-m
2
then
B1a3lwgruy)
m
= 1/(2m) z eXp(-Jlel)G123(w2;Tl) (3.7)
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On the other hand, the bispectrum can also be
obtained froﬁ the smoothed product of three Fourier components
with the sum of the frequencies equal to zero as mentioned

before. Let X(w) be the Fourier transform of the time series

x(t) . The bispectrum is then

8123(w1,w2.w3) K
P
= 1/pP jil le(ml)xzj(wz)xaj(w3) (3.8)
wit§ wy +w, *w, =0

In this expression, the bispectrum is obtained

by averaging P sections of the signal. With wy = - wy *+ wz).

equation (3.8} becomes

8123((&)11&)2)

*

= 1/P le(wl)ij(wz)X3j(ml+w2) (3.9)

[ B aclse}

j=1
where the * is designated as the conjugate of a complex
number. If xl(t)' xz(t) and x3(t) are all stationary
gaussian processes, any moment higher than the second order
will be zero and as a result, the bispectrum vanishes
theoretically. However, since the output of a Fourier

transform is in a complex numbered form, the bispectral

expression in equation (3.9) will also yield a complex value.-
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Sometimes the complex numbers may cancel each other during
the addition operation, especially when the amplitudes

are symmetrically distributed. A zero value of the mean

cube does not necessarily imply that the bispectrum vanishes.
Hence, a normalized bispectrum, or the bicoherence, may

be more desirable. The bicoherence is defined as

4+

Cio3(@yiwy)

2
2
P |Blz3(wl,w2)|
= {
P P p
2 2 o2
X, (wy) ] X, (wsy) | L%, (wy+w,) |
j=1 11 jop 22 jep 312

(3.10)

Notice that the expression for C123(w1,w2) has the following

relation

' »
7

Xl(wl) Xz(wz) X3(wl+w2)
X . . (3.11)
le(wl)l 1x2(w2)| |X3(wl+w2)[
If X(w) = |X(Q)|exp{j(w+¢)}, A
C123(ml.w2)(x exp{j(¢1+¢2‘¢3)} (3.12)‘

Through equation (3.12) the\gicoherence investigates the
|

phase-relationship of the frequency triple Wy, W, and wl+w2.
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Usually the bicoherence is represented by a contour map

with the abscissa being the axis for w., and the ordinate

2
as the axis for w,. The value proportional to exp j(¢l+¢2—¢3)

1

is then plotted on the map. For a random process the phase
value of each individual frequency gomponent ghould.be
independent of each other. Hence go peak in the contour map
should appear. On the other hand, for a non-stationary
process, sometimes it is possible for a peak to appear
at a point (wl,wz) when a particular section of signal is
being analyzed. But this may not be true for some.other
sections. So the smoothing (or averaging) procedure should
be included in the computational process in order to,find
out the phase-locked components in the signal.

Usually after the smoothing procedure, a peak
@ill show up at a particular point when ¢1 + ¢2 - ¢3 is
constant for all the sections of the signal being partitioned
during the procedure. However for a non-stationary signal
(the kind that is of interest in this project), the probability
that ¢l + ¢2— ¢3‘being constant everywhere should be very .
small. The only péésible case for an occurance .of a peak’
would be when ¢l = ¢2 = ¢3, i.e., they are all phase-lécked.
Hence the main purpose of @he bispectral analysis is to
investigate the degree of phase-locking between individual .
frequency components. Many applicdtions can be obtained g
through the bispectral analysis. For‘example,'it can

-

easily identify the harmonics of a fundamental in a time
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series since all the harmonics are supposed to be phase- |

locked. However, if an independent time series is composed

of some frequency components which happen to be the

hagmonics of another time series and if the two series

are placed side by side in order to form a sinéle series,

the result will produce a power spectrum which may be

misleading. It will show a fundamental and sever%l of its
harmonics and one may think that they sum up to form a
particular non—sinuéoidal wave component in the signal. But since

the two original series are independeht of each other, their

phase values will exhibit no relations whatsoever and hence the
integer multiple reiated components will not add up together.
Therefore the bispectral analysis can easily identify the two

1

independent oscillators which toqethef geﬁeraté the signal. More
details about this example will be presented‘latet in the chapter.
At this point ﬁerhaps it is worthwhile t6 present
another)example which will prove the validity of the equation
(3.12) . Let x(t) be a periodic signal composed of the

fundamental Wy and its two harmonics 2m0 and 3w0, i.e.

x(t) = cos(wyt+o )} + cos(2wy+e,) + cos(3w0+¢3) (3.13)

fhg Fourier transform of x(t) will then be

X(w) = 1/21 _exp(j¢1(a(m—¢0) + S(wtng)))
+ exp(j¢2(6(m—2wo)’+ § (w+2uy))) v

+ exp (Tephtdlw=3ug) + (wt3wy))) } (3\14)
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@©

With f 8- 1) 4t

-

It

1, t =1
(3.15)
=0, t £
the bicoherence of x(t) at (w,2m0,3w0)\\\
cx(wO’sz)

) *
% l/k { X(wO)X(ZwO)X (Bwo) 1

1/k { 1/2 exp (3 (o +¢5=93)) }

1111

equation (3.12) o

So if x(t) is a random process, a éeak will only appear

in the bicoherence.map when ¢l = ¢2 = ¢3, i.e., X(wo)f

X(ZmO) and X(Bmo) are phase-locked. N
Let AO be the highest frequency value present in

all of the three time series xl(t), %, (t) and x3(t) of a

2
multivariate process. The bispectral and the bicoherence

functions of these series will be defined on a square two-

dimensional area }\‘the frequency plane centered on

Wy T Wy T Wy Q

two or all of the three series are identical, the symmetric

= 0 with sides equal to ),. However if any
propexty will be effected énd the amount of computations

of tﬁe estimates can be reduced. If any two of the series
are identical, one needs only to calculate the bispectral
values on a 90° trianguiar Area on the frequency plane wi£h
s%des equal to AO. In the case that all tpe three series are

the same, the bispectrum needs only be computed for the

~

-
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2 wl + w, < AO.

Another interesting parameter worth discussing

the octant Q < wy 2w
briefly here is as follows. Since the bispectrum is a
complex value, it can be expressed by its modulus and its
phase angle. The modulus can be expressed by the bicoherence
function just mentioned. The phase value, named biphase,
is defined as .

-1 1mg{B(wl,m2)}

¢(wl,m2) = tan (3..16)
real{B(wI,wz)}

It is a measure of the mutual phase-shift between different
ffequency components. If the harmonically related frequency
components are under consideration, the»biphase will eﬁhibit
the mutual time shifting relations between the fundamental
and the higher harmonics. But in this project the biphase
values of any time series will not be cqmputed due to the
lack of practical usefulness at the present state of
the research.-Bﬁt this could be a good topic for further
exploration of any largely unknown non-stationary éignal.
Now let us consider the case where two Of the
" three series mentioned above are identical. From equation

(3.5), the cross-bispectrum of xl(t) and xz(t)’will be

!

Blz(wl,wz)

- 2 . m. g m ‘ '
= 1/(27) z pX exp{-j(t,w,*+1,0,)} R, ,(1,,T,)"
- Tfﬁ‘ 1917 U 3 Ry (10T,

(3.17)
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with Rlz(fl,rz) = E{x) (£)x, (t+1,) %5 (£+1,) ) (3.18)

On the other hand, if the triple product method of
different frequency componénps of the two channels of signals
i; used, a similar form of expression as that of equation
(3.9) will be obéained. For the moment, perhéps it is better
to omit the averaging part of the equation. Since there is

no restriction in the arrangement of the terms, the following

cohbinations will be valid

i %
Blz(wl,wz) = Xl(wl)Xl(wz)Xz(wl+w2) (3.19)
*
Blz(wl,wz) = ngwl)xz(mz)xl(wl+w2) (3.20)
. ) 4
Blz(wl,wz) = Xl(wl)xz(wz)x (wl+m2) - (3.21)
N b3 )
Blz(wl"”z) = Xz(“’l)xl(“’z)xl(“’1+‘*’2) (3.22)
|
X
i Blz(wl,wz) = XlSwl)X2(w2)X2(91+w2) (3.23)
B
‘ * .
. Bl2(wl'm2) = Xz(wl)xl(wz)xz(wl+w2) (3.24),

f , ) Due to the symmetry condition, equations (3.21)
and (3.22) are equivalent and so is the case for equation;
(3.23) and (2.24). Thus four distinct combinations are
involved, i.e. equations (3.19), (3.20), (3.21) -and (3.23).
So far no one has done any interpretatidn on the cross- .

bispectrum or used it in any application. After some
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considerations, the author has arrived at the following
meanings about the cross-bispectral value in equations
(3.19), (3.20), (3.21) and (3.23) : in eacﬁ'equation a
peak in the cross-bicoherence contour map indicates that
}the three frequency‘components are phase-locked to each
other. If it happens that w

and wl¥w are integer multiple

2 2
1r one would suspect that these components may be

of w
generated by the same source and it influences the behaviour

of the 2 signals under investigation. It does not matter

which channel an. individual frequency component in the

expression belongs to. For instance, consider equation (3.21).

; and w, with w, ‘ ‘ (

being an integer multiple of Wy s the frequency components

If a high bicoherence is observed at o

at wl: wl+w2 in channel 1 as well as at w2 in channel 2

will come from the same generator. Hence the dross—bf?pectral,/////’

values will give one a more in-depth underéﬁanding about
the relationship between 2 different channels of signal.
It can also be treated as an enhanceﬁent of the conventional
cross-spectral analysis. Further interpretation about the
cross—-bispectrum will be presented when practical signal
is tested. \

There is one final remark before we move on to

v

the ngxt section. A high’bicbherence usually indicates the
existence of a non-linear or non-stationary effect.

Theoretically the bicoherence can have an infinite value

(as opposed to the conventional coherence function) if
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complete phase-locking occurs. The value will usually depend
on the sample size and several other computational details.
But this shoﬁld not be a problem if many estimates, computed
by the same method, are to be compared simultanedusly. In
this project, the bicoherence and the cross—ﬁicoherence
methods will be used to examine the gastrointestinal signal
which fails the stationarity criteria. In the next section

the method, procedures and algorithms about the computation

of the required parameters will be discussed in more detail.

3.3 METHODS AND PROCEDURES OF THE ESTIMATION

\

> WO sep rate §rograms have to be established in
this project for the bispectral analysis. The first is
designed for the procéssing'of a single channel of sianal
or time series. The second is for two iLdependent series Sso
that the cross-bispectxrum can be found. However, due to the
similarity between the natures of the two programs, the
method and procedures describea below will be based on the
processing Pf a single time .series. Additional requiremenﬁs
for the computation of the cross-bispectrum will then be |
described later.

Three methods have been suggested so far {11} in

calculating the bispectrum of a time series : (1) complex

~demodulation, that is, narrow bandpass filtering the output

' components of the Fast Fourier Transform of the time series,

transform them back to the time domain and do the averaging
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there {7,11}; (2) averaging in the frequency domain, that is,
averaging the neighbouring components of the FFT output;

and (3) averaging over successive records., One of these
methods has to be cgrried out during the smoothing procedure
of the computation. One would choose method (1) if the complex
demodulates have to be computed anyway. Method (2) will be
quite handy if only some subsets of the entire frequency

range are of interest, e.g. on the diagonal where Wy = Wy

But for a laboratory computer with a limited amount of

memory, say the NOVA 830 where this project was carried out,
method (3), sectioning the records and averaging over the
individuai biperiodogram, becomes the obvious choice. This
smoothing method will be used in all the programs involved

in this project (including those that calculate ‘the power
spectrum) . -
Due to the finite duration of the\record, leakage
will be found through the spreading of the main'lobe and ,

the addition of an infinite number of smaller side lobes of
of the power spectral density function (for.detailed
explanation, see { 1}p.315-317). Hence at the Seﬁinning the
record is tapered by a fgii cosine bell in order to minimize
the leakage. However this tapering §ilI increase the
variance, so the 50% overlapped sectioniﬁg technique is used
in order to coﬁpensate.this resulting deficiﬁ. The following
paragraphs wiil show the computing proceduﬁéyin greaéer-

detail.
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First of all the record x(t) will be divided into
P 50% overlapped sections with m discrete points in each

section, that is,

xj(t+m/2) = x,, ,(t), t=1,2,...,m/2 (3.25)

For each section the mean is subtracted from each data
point. Then the whole section will be tapered by a full

cosine bell Y

TP(i) = 0.5 * {1 - cos(2w(i-1)/m} (3.26)

Zeros will then be added to the end of the section in order
to make a total of NF data points which are convenient for
a Fast Fourier Transform. (NF is to be sﬁecified by the
user, e.g. 1024). Performing the FFT on the tapered d#ta

-

yields

| e

xj(t)exp{—jzn(qt/NF)},
0 < g < NF/2 (3.27)

Here q is related to the actual frequency value w of any

.particular component by

w = q(AO/NF), . Ab = sampling frequency (3.28)

After the FFT components are obtained, the raw estimate of

-

the power spectrum as well as the bispectrum are computed
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for that section through

N 2
f.lw) = |Y. , 0 < < A 3.29
J( ) | Jq| <o <Ay ( )
a B, ) =Y. Y. ¥ /
an 37917927 T T3ay 9a, 9a,
where ql=wl(NF/R0), q2=w2(NF/AO), q3=(wl+w2)(NF/X0)
0 < wl < W, r wl + w, < XN (3.30)

Here AN is a frequency value which is. big enough to reveal
the information on the interested frequency range but
iko/z,the sampling frequency.'Finally after all the sections
have been processed through the above procedures, the

individual periodogram and biperiodogram will be averaged by

[ e Ml

" f(w) = 1/P £ (w) (3.31)
j=1 J

B(ml,wz).= 1/p Bj(ml,wz) (3.32)

([ I ae Rse]

3=1

where the bicoherence can then be found -

C(wl,wz)

A 2
lB(“’l'wz)I 1/2 ' o
= { -} , (3.33)
f(wl) f(wz) ?(Ql+w2)




52

All these procedures can be summarized by the flow charts

shown in Fig. 3.1. Special attention has to be paid to

the part where the bispectral components of each section

are calculated. Because of the special symmetric characteristic,

the bispectrum is only to be calculated on the trianqular
plane with the base length ay = (AN*NF)/XO (from equation

(3.30)) and the height of qN/Z. Fig. 3.2 shows the flow chart
of the section where the biperiodogram will be calculated. .
Note that a total of (qN*qN/Z)/2 bispectral elements are
calculated héfe. Hence a étorage array of that size is needed.
After the procedures in com?uting the bispectrum
of a single series have been describeé, we should take a
scan at the additional requirements for the calculation
of %pe cross—-bispectrum of two independent time series.
The program used is based on the four differently combined
equations (3.19), (3.20), (3.21) and (3.23). It has
eséentially the same procedures as described before except
that the program here has to handle the two series
simultaneocusly. It will divide both series into the required
number of sections, subtract the means on both series,
tapering, finding the power .spectral and bispectral
components on both of them etc.. Additionally the processor
wiil loop four times in order to calculate for and“output

the results of the differently combined eqdations. Here the

symmetric charactéristics about the range of the cross-
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START

Get the number of data points N, the
nunber of 50% overlapped sections P
and the number of FfT points NF.

>

n=n+1

For section n, subtract the

mean from each data voint.

Taver with the full cosine
bell and add zeros to the
end of the section up till NF.

~

FFT

Fig. 3.1 Flow diagram for * See (12} for the
calculating a bispectrum. FFT algorithm.



Find fn(w) & Bn(wl,wz) of eq. 3.29.

NO
B n=>pP

YES

Find f(w) (eq. 3.31)
and B(wl,wz) (eq. 3.32)

Find the bicoherence
through ea. 3.28.

Output

Fig. 3.1 (continued)
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oy

M=M+1

!

Update the storage position
from last loo® PK=(M-1)*(qN—M)

/

J=J+1 and fiqh the current

storage pos%tion MN=JK+J.

T/ T

|
T

A . Y *
B.(w, ,w,)=Y.* Y. Y,
jLTT20 Tiqy )9, jlaptay)

\

Add the result to location
MN of the storade array.

NO -
LL*’ J=IK

YES
NO YES

~,€ig. 3.2

ﬁ\\\gijﬁii’//’

Flow diagram for calculating
the biperiodogram of a section
of data. -

STOP
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bispectrum are different. For equations (3.19) and.(3.20),
where the cross-bispectrum is calculated according to
XleX2 and X2X2X1 respectively, the range will be the same
as that of the bispectrum of a single series, i.e. a
triangle with a base length of Ay and a height of qN/2.
However, for equations (3.21) and (3.23), where the cross-

bispectrum is calculated according to X and X,X,.X

1%2%1 1%2%2
respectively, the cross-bispectral plane will be a right—;
éngled triangle with both the base length and the height
equal to dy- Hence the calculations and the outputs will be
carried out accqgrding to these criteria. Fig. 3.3 shows the
particular characteristics of this vrogram.

There is one final note on the procedures. The
output presented here are actually plots of contour maps
of the magnitude of bicoherence and cross-bicoherence
values. The magnitudes' are divided into ten levels with the
top level equai to the maximum bicoherence value in this’
part{cular map. Only the upper five levels (presented by
symbols '#', '4', '3', '2' and ‘I' with '#' being the highest
contour etc.) are shown for the sake of clarity. Before any
real experimental data is tested by these programs,

artificial data are used to test the validity of these

algorithms and this is being described in the next section.
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Subtracting means, tapering, FFT,

finding power spectral components

of the 2 series simultaneously.

3

1" Eq.3.20 Eq.3.19 . . Eq.3.23 Eq.3.21

Fig. 3.3 Fiow diagram for'calcﬁlating the cross-
‘ biperiodogram.
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3.4 BISPECTRUM OF ARTIFICIAL DATA

The generation process of the artificial data
presented below is taken from reference {11}. The author
feels that there is no need to use another kind of data
because the one presented in {11} is very general and it is
an excellent proéess to test the special characteristic
of a bispectrum.

Here twoAstoéhastic processes/are generated. They
‘will have the'same power spectrum but entirely different
bispectral outputs as will be shown iater. This analysis
will show that sometimes peoplé may make wrong interpretations
by éxamining the power spectrum, which suppresses the phase
infqrmation,.alone. On the other hand, the biépectrum serves
as an enhancement for the interpretation of the results
.aﬁd provides more information that a researcher may need.

The first process x(t) is xgken from a periodic
function f1 which is composed of six harmonic components -

the fundamental and its five subsequent harmonics. For each

. : . . .
harmonic, say j, a time series is being generated by the

. >
following equation :
: N 20 o )
£,. = T b a.cos{jw(t-T )} < © (3.34)
A3 1 k=1 I kR

where aj is the Fourier coefficient of /Icos(w)] at 5.4Hz.
1Y

Hence w = 2,1r(5.4)/fs with fs being an. arbitrary sampling

LI
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frequency and is taken to be. 75 Hz here . éurthermore Tk
is an independent random time value and 20 of them are
being used. So, for each harmonic, the ;ime seriés is
produced by the summation of twenty distinct serégs with
different time delay values. Aftér all the six series for
the six harmonics have been genérated, the correspohding
component of each series is added together. Additionally,
a cosine bell is introduced to every 200 points of the final
series for the tapering purpose. The overall procedure in
' generating the sgoéhastic process with six harmonics is
‘showﬂ in Fig. 3.4.

) The second process y(t) can be decowposed into
two parts. ?he first par£ f2 is e#actly the same as thgt of
x(t) in the first process just mentioned, except that here

4th

only the fundgmental,'2nd, and Sth harmonics are

included. The 20 time delay values are also the same. But

d and the 6th harmonics

for the’' second part f3, only the 3T
of the fundamental of x(t) are included. Additionally, the
20 random time delays are different from those in the first

part. Hence y(t) can be formulated as

N " 20
y(t) = b T I a.cos{jw(t-T )}
t=1 4=1,2,4,5. k=1 2 ko
N 40
+ 3z JIf L a.cos{ju(t-T, )} (3.35)
= i i k

1 j=3\6 k=21
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16 ‘
Generate aj=F{jZl/]cos(J§2w5.4)/f5|}

where F denotes the Fourier Transform

j=j+1, k=0

k=k+1, 1i=0

4/fs)

NO

NO

NO

. Sl

o

Fig. 3.4 Flow diagram
for the deneration ‘

of the artificial data.
‘ K

Here j is the
harmonic number, "

T, is the random

delay number and i

is the time unit.
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Notice that equation (3.35) represents a series of 2N
elements, N for the first part and anotherrN for. the second
part of the equation, i.e: Fhe two parts are placed side by
side £o each other in order to form a single series. The
value of each element is computed by the second and the
third summations of each part of the equation. Hence in each
part, the first sigma merely représents a time’ series and
the next two sigmas represent the summation operafion.

Fig. 3.5 shows the linearly combined time series .x(t) and
v(t). .

Theoretiqally, x(t) and y(t) will have the same
power spectrum and this is proved'by Fig. 3.6. On thg other
hand the bicoherences‘of x(t) and y(t) are completely
different as shown in Fig. 3.7 ahd 3.8. In Fig. 3.7, which
shows the bicoheregce of x(t), peaks are observed at (w;w),
(0,20), (0,30), (0,40), (0,50), (20,20), (20,30), (20,40)
and (3w,3w) whére‘m = 5.4 Hz. They are practically céuseé
by the phase relationghips between the co?responding
frequency'components.in fi. However, in Fig. 3.8, which sho&s
the bicoheience of y(t), peaks can onlyibe seen at.(m,w),
(w;4m),’(2w,2w), which are caused by the'intef—reiatiénships
‘in £

2t and at (3w,3w) , caused by the inter-relationships

in f3g No peaks are observed at (w,2w) , (w,3@) etc. because
the frequency cbmponents in f2 and f3 are independent to

each other and ‘there are no phase relationships existed.

AN
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peaks

T ‘ icial series x(t). Here
locations.

Power spectrum.of the artif
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es y(t). Here peaks can

i

icia

3.6b Power spectrum of the artif

Ay

also be seen at all the six harmonits locatlions as

Fig.3.6a.
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Fig. 3.7 The bispectrum of the artificial series x(t)-.

Here components are phase-~locked at (w,w,2w),

e (w,2w,3w), (w,3w,4w), (w,4w,5w), (w,5w,6w),
(2w,ZQ;4w), (2w,3w,5w), (2w,4w,6w) and (3w,3w,6w)

with w=5.4Hz.
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Fig. 3.8 The bispectrum of the artificial series &(t).

Here components are phasg-locked at (w,w,2w),

(0,4w,5w) , (2w,2w,4w) caused by f

2 and also at

(3w, 3w,6w) caused by f3.
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Hence one can use the bicoherence to identify distinct
independent generators of the signal which may not be

revealed by observing the power spectrum alone.



CHAPTER 4

THE ANALYSIS OF THE ELECTRICAL SIGNALS
FROM THE DIGESTIVE TRACT

4.1 INTRODUCTION

-

In“tﬁis project, electrical signals from various
parts of the digestive tract were examined by the methods
being proposed. Eight chénnels of signals with channel 1
being the activity taken from the stomach, qhanﬁels 2 and
3 from the duodenum, channels 4, 5, and 6 from the distal
* small intestine and channels 7 and 8 from the colon were
used for the analysis. Fig.‘4.l shows a typical portion of
the 8 channels of signals under investiqétion. The
stationarity and the normality characteristics of the signal
were first investigated in order to examine the nature of
the electrical control activity in various parts of the
digestive tract. The results also give an idea of what
~would be'expected when the data is aﬁalyzeéABy éﬁéﬂgisnectral
method later. Here the method Being used to carry out the
analysis,-the outcome and the discussion of the results
are presented step by step in the subsequent sections of

the chapter.
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4,2 " METHODS o o ,

. At the beginning the éiénalg were reéo;ded‘by a
FM tape recorder which was played back later to feed the
signals into the NOVA ninicomputer fhrough an 8-channel /
analog-to-digital converter. Then they were stored in‘sev7éal
data files'on a disk. These data files were opened by //
a specifically designed program so that a desired amount
of data could be retrieved from the data files. In th;é
projecé,,five minutes of signals werg taken for the aAalysis
so that the variation of the signals with time could be
observed.

First of all, the stationarity characteristic
of each channel of signal was examinéd by using the RUN
test method described in Section 2.3. The algorithm reéided
~in the program file is named '"RUNTST'. It starts off
with a series of questions so that some flexibilities

can be provided to the user. The guestions are as follows :

" Enter the number of data points pér section :
Enter the number of sections to pé analyzed:
Enter the channel number '

. Enter the initial data value

e

Enter the sampling frequency‘:

o

Enter the significant level value :
Here the program finds the stationarity of the siénal section
by section (non-overlapped) and at the end of the analysis,

the percentage of the amount of non-stationary sections is J

-



calculated. éincé each section was divided into 30 segments
as mentloned 1n Sectlon 2.3,. the value entered for the |
number of data p01nts per sectlon must be an 1nteger
' multlple of 30, e. g 150. If the sampling frequency is lOHz,.
the number of data points per sectlon is 120 and 25 sectlons
are anaLyzed, a total of S m1nutes/95-51gnals are.lnvestlgated.
rThe channel number in the questionnaire is the channel '
number’ of the data flleopenedﬂme lnltlal data value is the

startlng point’ where the user wants to obtaln the data

from the- flle.

i ..

In this progect, “the
of data points per section was different from channel to
- channe;; This is becduse the RUN test is designed for the

examination of the stationaritv of Waveforms’With,

-

1rregular pattern But if the 51gnal has a reqular waveform,
e g.- a. square wave or gastric electrical control act1v1tles,<

a visual lnspectlon ¢an evaluate the statlonarxty However,

:lf one 1ns;stst0ruse the RUN test to examlne those 51qnals,
L a sectlon w1th a long enough duratlon has to be taken, Lo
otherwise 1t w11l result in an.lnsufflclent number of runs

and the algorlthm W1ll conclude the section to be non-
haa.~ ]

’ stat;onary.‘uere a section of 30 seconds was taken for

.

channel X (signal from the stomach), a sectlon of 15 seconds

,for channels 2 to 6 ﬁiizyale from the duodenum and the small

-
1ntest1ne) and a section of 12 seconds for éhannels 7 and

8 (s;gnal from the colon) as the basxc unit. ance the
o . G e '
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sanpling frequency for all the channels was set at 10 Hz,
the values for the number of data points per section were

as follows : . ' : ,

-

channel 1 : 300
channel 2 to 6 : 150
channel 7 and 8 : 120

-~ - .
After all the questions have been answered, the processing
unit of the computer enters into a number of loops where

in each loop, the stationarity of a ‘section of signal 1is

examined by the RUN test as described in Section 2.3.

' All the 8 channels of signals are.tested by the same

~ procedure and the result is tabulated in the next section

when the outcome is being presented

After the statlonarlty of the 51gna1 has been

1Y

investigated, the normality characteristic becomes the next

~step of the analysis. The two algorithmsfutilized for the normality

test are : (l)_ngIPIT' - the chi-square goodness-of-fit test .

and (2) 'NORTST' - the Fisher's normality test. For these

* two tests.the same set of questions as that of‘the'RUN test

is asked. However, becausé of the different natures.of the

normality tests, it is not necessary to assign a different
¢
value to each channel for the ‘number of data p01nts per

section. Hence a section w1th the same duration (15 seconds)
was set for all the channels. After the test, the result

Y

is again tabulated in the same manner as that of the RUN

 test and it is presented in the next seétion.

at



Then the data was passed over to tﬁe biépectral
method for a fuf;her ;ﬁvestigation of the behayiour of the
elec£rical signals from the Qigestive tract. Two sébarate
analyses were performed here : (1) the bispectral analyéis
for.a single channel of signal and (2) the cross-bispectral
analysis for two independent channels of signais. This was
done because some of the objectives of this project_&ere
to £ind out the i&ter—r@lationships between frequency
components, the behaviour of the possible generators of
the signals and the interaction beﬁwéen“two ihdepeﬁdent
channels of signals. Here the brogram named 'BIS1l' computés
the bicoherence (the normalized bispectrum) of a single
channel of signal. Similar to the case of the stétionérity

v . :
apda%ormality tests, it‘staxts of f with a series of guestions

as follows :

" Enter the sampling .frequency : 4
Enter the channellnumber :
Enter the initial data point
énter the number of data points
.Enter the number of 50.percent overlapped sections :
Enﬁe: the number of FFT‘éoinfs'(max.1024) : "
' ' , — e
There are a few points that are worth mentioning
_here céncerning the above §uéétioné. The channel.numbef‘asked

is'the channel number in the data file 'MDAT, not thése~

that have been used before. 'MDAT' is created by a program

-

talled 'MCS'. It rearranges the original data file and puts

&
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fhe data into ‘a separate data file, i.e. '"MDAT'. Then the
algorithm 'BIS1' opens the file and retrieves the required
data there. The number of data points is the length of the
signal that the user wants to analyze at one time. It

was set to be 600 here (which is equivalenb to a one minute
period for a 10 Hz sampling frequency) . Since a smoothing
and averaging procedure has to be done during the computation
of a bispectrum,'a further piece of informatlon is needed.

50 percent oberlapped sections of signal are being taken

one at a time and the resultant bi- perlodogram is averaged.

‘But there is not any deflnlte value for the number of 50 %

overlapped 'sections whlch are to be divided among the 600
data p01nts. It has to be an odd integer number with a

minimum value of 3. From the experience of trial and error,

.either 7 or 9 50% overlapped sections being divided produces

a éood output. It:was set to be 9 in this project. This
number may not be good for some other kinds of signals.
Hence a user should try a few analyses with dlfferent
numbers of 50% overlapped sectlons before a definite value
is assigned. Finally the number of FFT points depend on the

resolution of the output diagram as well as the frequenc&

v

renge that is of interest. The‘resolution can be calculated

from the-following equation :

"\ . : - sampling freqqency X
., Resolution(cpm) = * 60 (4.1)
# of FFT points

L

{r
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The number of points was taken to be i024 here and hence
the fesolution is (10/1024)*60 = 0.586 cpm. - .

For the'cross—bispectral analysis, exactly the
same set of guestions was asked at the, beginning with one
exception : now 2 channel numbers have to be inputted since
this algqrithm is designed to analyze 2 independent channels
of signals. In this proﬂect, cross-bispectra~Weie éomputed
between alternate channels only. Additionally;'a consecutive
5 minutes of signals were‘analyzed for each channel so. |
,that we_can examine how the behaviour of the signal dhanges
with time. The results are tabulated and discussed in the
next two sections. Besidee the table of results, a set

of typical outputs (contours diagrams) are shown as well

in the  next section for each channel of signal.

4.3 RESULTS
4.3.1 STATIONARITY AND NORMALITY TESTS

Five minutes of signals from each channel have

been analyzed in this project. The percentage of rejection
on the null hypothe51s, wh1ch proposes the signal under
.investigation to be stationary or normally distributed,
 has been calcuiated and Jlisted in Table 4.1. ’
For the statlonarlty test, the whole section of

signal from the stomach is stationary. This agrees with

the visual inspection of the signal. For. the signal taken

\ ) - 2



' Stationarity’ Normality
CHANNEL #| (% of non- (% of not normally distributed
stationary sections)
sections)
RUN test " CHIFIT FISHER
1 0.0 72.0 48.0
2 5.0 16.0 18.0
3 10.0 20.0 '28.0
4 15.0 46.0 46.0
5 15.0 48.0 ‘ 50.0
6. .40.0 " 86.0 82.0
7 . 90.0_ 80.0 98.0
8 | - s80.0 " 92.0 100.0

. Table 4.1 .Résults from the stationarity and normality
" tests for five minutes of signals from each
channel. - '

"

9
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from the duodenum, that is, channels 2 and 3, 5.0 and 10.0 %, .
respectively, éf rejection were produced. For 'the analysis
taken from the small intestine .(channels 4 and 5), 15%'of
rejection was recorded for both cases. All of these resuit;
show that the electrical signa}s from the aqodénum and the
upber part of the small intestine display a regﬁlar

paftern of oscillations. However when it comes to the lower
éért of the small intestine, i.e. channel 6, 40 % of the-
signal was classified as'non-stationary and irred&iar
patterns starte€d to appear. Finally, for the signal from
the colonic part of‘the‘tract, i.e. channels 7 and 8,

90 and 80 %, respectively, of rejectioﬁs were ﬁrodqced.
Hence the electrical signals recorded fromvthé‘colon are

mostly non-stationary.

N

For the normality test, similar ;esults were
obtained from both‘the chi—sqﬁafe qoodness~6f—fit £es¢ and
the ‘Fisher's normality tést. So the result described below
applies to the outcome of both the!ﬁésté (with the figures
in§iae brackets being thelresulﬁ fré@ the Fisher's normality
test) . For the‘signal taken from the.stoma?h,lige. channel l,.
a 72 % (48 3) of rejection was produced. This large value
is probébly due to the nature of the signal, i.e: a sharp
'splke after a relatlvely long and quiet perlod Although.
the spikes appear periodlcally, the overall s;gnal cannot be

4

cla551f1ed as normally or randomly distributed. For‘the

! 4
| i
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signal from the duodenum, i.e. channels 2 and 3, 16 % (18%)
and:20% (28%) , respectively, of the signal are not”normally'
distributed. For the upper part of .the small intestine,
i.e. chanpelé 4 and 5, the percentages of rejection of the
null hypothesié are 46% (46%) and 48% (50%), respectively.
Finally, for the signal from the lower part of the small
intestine (chgpnel 6) and that of the colon (channels 7
and 8), 86% (82%), 80% (98%) and 92% (100%), respectively,
of the siénal have been reﬁected from the hypothesis. So | -
£heyido not satisfy the condition fér a Gaﬁssian random
time series.

Both the stationarity ang the normality tests for
" the signals.display a g}milar trenéifrom one channel to

R e
the next. Starting from the stomach, the signal displays

a reguiar patEern. The signals taken from the duodenum .
as well as those from the upper, part of the small‘integtine algo
display tﬁe stationary and norma}ly d;étributed behaviour
(with a slight increase in the percentage of ;ejection

of the nuil.Qypothesis). But when it goes further down the
the}diggstive.t;act,'highly irregular paEEerné étart to
apéear. The signéls taken from the}e‘are classifiég as non-
stationary and not norﬁally distributgd. This signifies _
that highly irregqular oscillations occur in’ this area. More

will be discussed about the interpretation of these results

in the next section of the chapter.

[
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4.3.2 BISPECTRAL ANALYSIS

o

i

Again, 5 minutes of signals f;om each chennel
were taken for the bispectral.and cross—bispectral analysis.
For the bispectral anaiysis, each minute of signal produces
a distinct set of 8 contour map outputs for all the channels.
As a result, a total of 40 distinct maps will'comprise the
the output for the enalysis of 5 minute data from 8
channels. Here only the first minute set of output is
presented and shown in Fig. 4.2. In each map the point
with the maximum height has beentchgsen as a standard. The
upper half of that height is then divided inuo'five equal
parts and plotted. The stbol "#! is'designated'as the top

contour, then followed by '4', '3', '2' and,'l’ respectively.
\ : . .

<

\\ ?he symbol '.l represents the lower half of the conﬁour
\\map. The frequency triéle value that produces.a peak can
\ﬁnly be chosen by approximatien sinee the top, contour
usually,occupies an area lerger than a finitelsingle point.
‘Hence' the mld-p01nt of that area is approx1mated and the _

freqqency trlple of that point is assumed to be phase -locked.
. . The peaks of all the 40 maps have‘been 1nspected
and the frequency triples that produce them are,listediih

Table 4.2. In this table, eéch«triple is‘entered:in the

form of (f £2, fl+f2) Each of tﬂese sets of velues .

1; f2 and fl+f2 are

phase locked in the partlcular minute that is under .

51gn1f1eg_that the frequency trlple f

- . ' ' ' ‘ . . R
o \ ) . )
L L ’ i
Lo
. v . .
.
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Fig. 4.2a A sample bispectrum of one minute of signal from

.

. channel 1. Here components are phase-locked at
(15.8,15.8,31.6), (5.0,5.0,10.0) and (22.0,22.0,44.0).

ke s
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"Fig. 4.2b A sample bispectrum of one minute of siénai from
channel 2. Here components are phase-locked at

‘ " (20.0,20.0,40.0),, (20:0,40.0,60.0), ,~
(20.0,60.0,80.0) and (40.0,40.0,80.0). a
N , R
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Fig. 4.2c A sample bispeétrum of one minute of signal from

’ , .channel 3. Here components are phase~locked at
o (19.0,19.0,38.0), (19.0,.38.0,57.0),
©*  7.(19.0,57.0,76.0) and (38.0,38.0,76.0).
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channel 5. Here components are phase-locked at
(4.5,4.5,9.0), (13.48,13.48,26.96),
(27.13,18.2,45.33) and (22.5,11.5,34.0). '
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examination. For channel 1, the phase—locked‘triples are
almost the same throﬁghout the 5 minute period of analysis.
This is not‘unusual because the signai from the stomach

is 100% 'stationary. Here two oscillators are working

together to produce the signal. The first one has a
fundamental frequency of 5.0 cpm and a second harmonic with a
frequency of 10.0'cpm. In fact the fundamental

frequency is‘the frequency of the regular~spikés in the
signal. The second oscjillator is habing a fundamental at

15.8 cpm and iés second harmonic at 31.6 cpm. The osc;llators
are identified here because only the frequency triple _ “
(which are multiple integers to each other) from the same
génerator are phase-locked. For channels 2 and 3, the

outcome is exactly the same. The possible reason for this

is the electrédes that are used to pick up the electrical
signals have been placed close together and also tbe
duodenufn in the digest%ve tract produces'a constant and
regular waveform throughout. All the harmonics of the
fundamentai of 19.0 cpm are dffecteé here because the
frequency componént at.l9 cpm and all the others that are

at the integer multiplesof l9¥0 cpm, are phase-locked. This
signifies that the electrical signal recorded from the
duodenum is composed of a single non-sinusoidal wave component

with a fundamental frequency of 19.0 cpm and all its

harmonics. New when' it comes to the distal part of the small
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intestine, multiple sets of oscillators which shift -their

frequency once in a while become evident. For channel 4

v

during minute #1, only a fundamental at 15.8 cpm and its
second harmonic ata3l.6 cpm are present. During minute #2,

another oscillator starts to function. However it does not

#

have all its harmonics available. Only the fundamental at

4.4 cpm, the an harmonic at 8.8 cpm, the 4th harmonic at

17.6 cpm, the 8%, 9™ 4na 10°® harmonics at 35.2, 39.6

"and 44.0 cpm respectively, are detected. The rest of the

harmonics, i.e. the 3rd, Sth, Gth, 7th etc.~are not presént

because no phase-locking is found between the fugdamental,

the 2nd harmonic ete¢., witﬁ them. Besides this new oscillator,
the one that was functioning during the last minute (with

a fundamental at 15.8 cpm) is still ¥orkinq. During the

rd

3 minute, the fundamental frequency of the new oscillator that

was present during minute #2 shifts slightly to 4.8 cpm.

Now only its 279 (9.6 cpm), 3% (14.6 cpm), 5T (24.6 cpm)

and Bph (39.2 cpm) harmonics are present. Besides these,-

the fundaméntal component is also‘phase—locked with others

at 31.0 and 35.8 cpm respectively. When it comes to minute #4,
the oscillator shifts its fundaﬁental back to 4.5 cpm and

its 2" (9.0 cpm); 4 (18.0 cpm), 67(27.0 cpm) ana 10tP

(45.0 cpm) harmonics are present. During this minute, a

new generator comes into action with a fundamental ‘frequency

of 12.4 cpm and its an harmonic at 24.8 cpm. For the final
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minute of analysis, the" oscillator with the’fundamehtai at
12.4 cpﬁ_is still functioﬁing. Additionally, énéther new
generator with components at 8.0 and 16.0 cpm joins this |
oscillaiion. No£ice'that during this 5 minute perioé no
oscillator cén persist throughout. Thev just keep on coming
and goiny and irregular pattefns start to appear.

For channel 5, a similar situatiéd is found.
During the first minute, an oscillator with a fgndamental
a£ 4.5 cpm, its 2nd harmonic at 9.0 cpm, 3rd harmonic at
13.48 cpm, 4th harmonic at 18.2 cpm, 6th harmonic at 27.0 cpm
and 10th harmonic at 45-33 cpm are present. Besides this,
the frequency triple }22.5, 11.5, 34.0) are also phase-locked.
This signifies that another oscillator with a.fundamental
at 11.5 cpm, the Zna and 3rd harmonics at 22.5 and 34.0 cpm
respectively, is functioning. During minute #2, the former
oscilkator,shifts its fundamental from 4.5 cpm to 18.75 cpm
(its 4th harmon}c). A couple of other new generators also

!

join the work force. The first one is at 23.4 and 46,.8 cpm.
4

The secgnd one is at 7.6 and 15.5 cpm. The fundamental of
this later oscillator also phaseilocks with the frequency
components at 29.0 and §6.6 cpm. During the thira minute, .
this new oscillator with the fundaménpal at 7.6 cpm persists.

d

*x-
Along with the fundamental component, its 2" (15.2 cpm),

3rd (22.3 cpm) and 4th (29.9 cpm) harmonics are also found.
During minute #4; the former oscillator (at 7.6 cpm)

disappears and one of the oscillators (at 11.7 cpm} from
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minute #1 functions again. Only its second harmonic at —

' . C . ' ‘
23.4 cpm is accompanying it. During-the fifth minute, the
oscillator shifts its fundamental to a frequeﬁcy near

its second harmonic at 22.0 cpm. Its second harmonic is

N

also shifted to 44.0 cpm.

For channel 6, during minute #1, a éingle

,oscillator with a fundamental at 5.9 cpm is present. Its

nd h

2 (at 11.8 cpm) and 4t (at 23.2 Enm) harmonics are also

available. Duriné)the second minute, another independent

oscillator is bresent. It has a fundamental at 15.8 cpm, the

2nd harmonic at 31.6-cpm and the 3rd harmonic at 46.85 cpm.

14

"In fact, this is the same oscillator that was functioning
in channel 1 (throughout) as well as in channel 4 durin§
minutes #1 and #2. During the third minute, both the

oscillators from the first two minutes are working together.

-

Their frequency sets are (5.9, 11.8, 18.16 and 24.06 cpm)

and (15.8, 31.6 and 46.9 cpm) respectively. During minutes

#4 and #5, only the second oscillator, i:e. the one with a
,fundamentdl at.15.8 cpm, pérsists. All the results obtained
from channels 4, 5 and 6 have a common phenomenon
osc;llators only work for a short period of time and they
sometimes even shift their fundamental frequencies.
For channels 7 and 8, oscillators appear even more
irregularly. Most of them do ' not have harmonics after the

5

second} e.g., for channel 7 : during minute #1 -(18, 18, 36),

-~
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minute #3 -(17, 17, 34), minute #4 - (8.2, 8.2, 16.4),
(20, 20, 40), minute 45 - (8, 8, 16) and for channel 8 :
during minute #1 - (21.6, 21.6, 43.2), minute #2 - (21.6,
21.6, 43.2), (12.8, 12.8, 25.6), minute #4 -.(20.7, 20.7,
41.4) and minute #5 - (10.0, 10., 20.0). Some of the
oscillators even interact and phase-lock with other frequency
components that are not harmonically related to their
fundamentals, e.g. in channel 7, during minute #1 (30, 18,
48), minute #2 (17, 9.5, 26.4), (31.05, 9.6, 40.65) and in
channel 8 during minute #1 (21.6, 9.5, 31.1), minute #3
(17.0, 10.5, 27.5), (29.9, 17.0, 46.9), and at minute #5
(17.0, 26.3, 43.3). Of course there are also frequency
triples phase-locked together but are not either harmonically
related or belong to any strong oscillator. These frequency
components are just acting on their own but having the same
phase ah&le, e.g. for channel 8 during minute #4 (34.6,
12.3, 46.9) and (3%h3, 1.76, 38.06)3 From these results,
one can see that the colonic part of the digestive tract

has a very irreqular electrical activity pattern and most

oscillators are working on a local basis for a short time.

4.3.3 CROSS-BISPECTRAL ANALYSIS

For the cross-bispectral analysis, each of the
two-successive channels are analyzed at one time. This

method gives one a further insight about the relationshinp
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between signals recorded from two independent sites. It
providés aclue to whether an oscillator on one site has
anything to do with tke $scil}ator on the other site by
having one or more of its harmonics present there. The
result has to be interpreted by‘makinq reference to the
result of the bispectral analysis of a single channel.
because it identifies the sources of that particular signal.
However, if any of the elements on the frequency trinle,
which are phase-locked together, is not from the generators

\
A '
of the gignal itself, its presence could signifyan

independent coupling between it and the components on the
other signal or the triple are just having the same phase
angle. To identify the exact cause of the phase-locking
phenomgnon, some other forms of analyses have to be done.
Anyway, the cross-bispectrum does identify the phase-
locking triple and sometimes the coupling between two or
three oscillators in two independent channels of signals.
As mentioned in Chapter 3, four different combinations
of cross-bispectrum can be computed. If the frequency triple
are of the form {Xl(fl)xz(fz)XB(fl+f2)}’ the combinations

are

1) Xl(fl)xz(fz)x (£,+£,)

ii) Xl(fl)Xl(f

171

)Xy (£ +£5)

2 2
1ii) Xl(fl)Xz(fz)Xz(flffz)

iv) Xy (E]) X, (£))X (£ +£))
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where Xl is a frequency component from the first signal and

X2 is another component from the second signal. In fact

the first.two combinations, i.e. X1X2Xl and XleX2 can

be analyzed together begause they give the same kind of

of information : the phase-locking (or sometimes coupling)

between two components from the first signal and another

component from the second. The same thing can also be done
1%2%2 2%y

a coupling between one component from the first channel and

to the other two combinations, i.e. X.X,X, and X2X

two others from the second. In this project all the four
combinations have been computed~and the output of the

first minute of analysis is shown in Fig. 4.3. The complete
result is presented on Table 4.3 by ligfing the peaks of all

the maps. Here combinations XlX2Xl and xlxlx2 are grouped

together and the other two combinations are put into another

group. The first group, headed by X can be interpreted

1%1%27
as whetﬁer there is any generator in the first channel
driving a frequency component in the second channel and the
second group, headed by X1X2X2, is just the vice versa

case of the first. Three distinct possibilities arise from
these results : 1), the generator of the signal itself

may drive a component on the other channel; 2), an
independent generator (not that for the siqnal)/may drive

a component on the other channel and 3), the frequency
trlple\ﬂay just‘have the same phase angle by chance. In

- = . .
Table 4.3, all the frequency triples are marked with

PR g
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MINUTE #

COMBINATION

X, X, X

17272

103

(5.9,31.7,25.8),
(14.8,14.8,29.6) }

(6.2,24.4,30.6;?\‘

(19.6,14,.8,4.8) 3

(7.03,7.03,14.06),

(6.2,24.8,31.0) 3
(25.6,12.8,12.8),

e (39.3,26.5,12.8) ,
- /—N

(14.8,14.8,29.6) , (15.2,7.6,7.6),
(14.8,29.6,14.8) (29.6,14.8,14.8) ,
(7.6,7.6,15.2)
(11.1,11.1,22.2),
(18.75,42.75,24.0) , (5.0,24.0,29.09 5
(5.0,29.0,24.0), (25.2,20.5,4.7)
(4.1,4.1,8.2),

5 (4.5,24.5,20.0) , (12.3,21.1,33.4),

(14.0,14.0,28.0), (10.5,15.2,25.7) ,

(20.0,10.0,10.0) ,

]

Fig.vZTEa The results of the cross-bispectrum between channels
1l and 2 for a period of five minutes. Entries are
the frequency triplg?'(in cpm) whiczmproduce peaﬁs
(i.e. phase-locked) on the cross-bicoherence
contour maps. Here the subscripts assign each

triple to one of the three possible groups
described on page 95. i

&4
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o
COMBINATION
MIN}JTE # Xlex2 ¢ X1X2X2
1 (19.0,19.0,38.0), (19.0,19.0,38.0) ,
(13.8,13.8,27.6), (15.8,10,7,26.5)
2 .~ (7.03,7.03,14.06) , (19.0,19.0,38,0) ..
(19.0,19.0,38.0),
-y

3 (19.0,19.0,38.0),
(10.0,10.0,20.0),

(1970,19.0,38.0)
(15.8,26.4,42.2) ,

4 (19.0,19.0,38.0),
(5.86,5.%@,11.72)2
(11.1,11.1,22.2),

»

(19.0,19.0,38.0) ,
(15.2,26.5,41.7) ,

5 (19.0,19.0,38.0) ¢
(8.2,8.2,16.4),
(15.2,15.2,30.4),

(19.0,19.0,38.0),

Table 4.3b The results of the cross-bispectrum between

channels 2 and 3.

_[\
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channels 3 and 4.

4
COMBINATION
MINUTE # X1X1 X, X1¥,X,
\

1 (16.4,25.1,8.7)3 -(15.0,15.0,30.0),
(17.5,5.9,23.4)3 (25.8,12‘.9,12.9)1
(27.0,11.7,38.7) , 435.2,17.6,17.6) ,

4[ -

2 (27.2,11.9,39.1) , | (6.8,25.0,31.8) ,

>
(6.5,18.8,12.3) | : (10.54,5.27,5.27)2
(6.0,3?.5,30.5)3 (35.74,29.3,6.44)3
(l3.l,l3.l;26.2)2

3 (13.2,13.2,26.4)2 (3.5,30.5,36.0) ,

(29.3,3.8,33.1) , (23.4,11.7,11.7)2

- *(30.0,27.0,3.0) ,

(42.0,39.0,3.0) ,

4 (13.0,13.0,26.0), (13.0,13.0,26.0),
(24.5,5.9,30.4) ,

© (42.2,26.4,15.8) ,

5 (28.1,3.8,31.9), (24.6,2.93,27.53)",

(14.6,4.0,18.6) | (30.04,27.5,2.64) ,
& (29.2,14.6,14.6) ,
\ ’
Table 4.3c The results of the cross-bispectrum between

“
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-~ -
{ .
, COMBINATION
MINUTE # XleX2 XlXZX2
1 4k5-5,15.5,31.0), "(17.0,15.8,32.8),
T° (25.8,15.5,41.3) (26.5,15.8,42.3) ,
(20.5,43.0412.5) , (24.6,12.3,12.3),
(36.32,18.16,18.16) ,
(10.54,5.27,5.27) ,
2 _ (14.06,28.12,14.06), (20.5,17.6,38.1) ,
( 5.2,10.4) , (20.5,4.1,24.6) 5
(10.5,10.5,21.0), (10.0,7.0,17.0) 4
(30.0,7.6,37.6) 3 (34.6,7.6,42.2) 4
(20.0,10.0,10.0),
3 (26.4,30.5,4.1) 5 (19.3,15.8,35.1) 4
(30.511.7,42.2),
4 (14.0,14.0,28.0) , (4.2,25.2,29.4) ,
, (19.0,19,0,38.0), (24.0,10.0,34.0) ,
(27.27,22.0,5.27) 4
(32.97,27.7,5.27) 3
5 (12.0,32.0,20.0) 3 (21.0,10.5,10.5),

Table 4.3d The reésults of the cross-bispectrum between

channels 4 and 5.°¢
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L~

COMBINATION
MINUTE # %1X1X2 X1X2X2
1 (8.2,24.6,16.4) , (13.5,13.5,27.0),
(6.45,6.45,12.9) , (28.0,14.0,14.0),
(17.0,17.0,34.0), (42.0,21.0,21.0),
(27.5,12.3,39.8) , (17.58,8.79,8.79) ,
(29.3,35.2,5.9) ,
.2 (14.0,36.3,22.3) 5 (12.3,17.6,29.9) ,
) (9.0,9.0,18.0), * (14.06,7.03,7.03),
(21.0,21.0,42.0), (34.0,17.0,17.0),
(15.5,24.0,8.5) , (41.5,30.0,11.5) ,
3 (18.8,37.6,18.8) , (26.8,13.4,13.4),
(21.0,21.0,42.0)
4 (18.8,37.6,18.8) . (28.6,14.3,14.3) 2 .
(7.61,7.61,15.2)
5 (9.4,35.8,26.4) 3 (35.8,26.4,9.4) 3

W i i
"ﬁ
Table 4.3e The reBultsiof the cross-bispectrum between

channels 5 and 6.
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COMB INATION
|
MINUTE # XX Xy i X, X%, !
L ;

1 (4.1,15.8,11.7), | (14.65,14.65,29.3), ;
(12.0,24.0,12.0) 4 (21.1,14.65,35.75) ,
(20.0,32.9,12.9), (4.0,12.0,16.0)
(14.65,14.65,29.3), (24.0,12.0,12.05%
(11.1,11.1+22.2), (12.8,6.4,6.4) -
(24.6,14.65,39.25) ,

I

2 (16.4,40.4,24.0) , (13.7,22.3,36.0) ,
(21.0,21.0,42.0), (36.2,18.1,18.1) ,

3 (22.3,37.53,15.23) ,4 (18.2,8.2,26.4),
(15.8,15.8,31.6) , (27.0,15.8,42.8) 4

(29.3,8.8,38.1),

4
(36.3,18.15,18.15) ,
(42.0,21.0,21.0),

4 T (13.5,19.5,6.0) 4 (20.0,13.5,33.5) ,
(18.5,29.5,11.0) , (32.8,9.4,42.2) ,
(29.0,10.5,39.5) , (30.46,15.23,15.23) .
(6.45,6.45,12.9) ,

5 (14.5,14,5,29.0) - (21.6,8.8,30.4),

1 (17.7,10.5,28.2),
Table 4.3f The results of the cross-bispectrum between

channels 6 and 7.
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COMBINATION
3 f
MINUTE # X1X1X2 X1X2X2
1 (24.6,36.9,12.3) , (31.6,10.5,42.1) ,
(1%, 0,1%40,28.0)
(36.2,5.9,42.1) ,
2 (7.03,35.15,28.12) , "(4.0,12.5,16.5) ,
(14.06,33.81,18.75), (16.8,8.4,8.4) , .
3 (6.45,26.95,20.5) 3 (28.0,14.0,14.0) ,
(7.0,33.4,26.4) ,
(6.45,42.75,36.3)
(16.5,23.5,7.0) 5
(19.5,19.5,39.0)
4 (19.3,19.3,38.6) » (22.9,19.3,42.2) ,
(13.5,5.8,19.3) , (14.6,4.69,29.290 ,
(32.8,16.4,16.4) ,
(42.0,21.0,21.0),
5 (14.5,20.8,6.3) (35.0,17.5,17.5)
(12.8,12.8,25.6)

Table 4.3g The results of the cross-bispectrum between

channels 7 and 8.
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subscripts which assign them to one of the three possible
groups mentioned above. *

For the cross-bispectrum between channel 1 and 2,
triples of groups l)and 2) appear quite fréquently for the
Xlxlx2 combination. Frequency components from the sources
of channel 1 (with fundamentals at 5.9 cpm and -15.0 cpm)
keep on drivin§ components on channel 2, e.qg. during minute
#1, the fundamental of the first source (5.9 com) together
with the second harmonic of the second source (31.7 cpm)
are phase-locked with a frequency component (25.8 cpm) from
the second channel. At the same time, the second harmonic
(29.6 cpm) of that second source (14.8 cpm) is also observed
at the second channel. This phenomenon happens throughout
the 5 minute duration. Additionally, some independent
oscillators are coupled with their harmonics on the 2nd
channel, e,g. during minute #2 (7.03, 7.03, 14.06), minute
#3 (7.6, 7.6, 15.2), (11.1, 11.1, 22.2) and (4.1, 4.1, 8.2).
There are also some occurences of frequency triples which
belong to group 3), e.g. d§§%ng minute #4 (18.75, 42.75,

24.,0) and minute #5 (4.5, 24.5, 20.0). They shogld be expected
from this kind of analysis because random components may
appear in a physical environment. For the Kle 2‘combination,
most of the frequency triples are classified to qroup 3).

This signifies that channel 2 do not have any qreat Lnfluence

on channel 1 and no driving force from channel 2 is coupled

v
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with components in the signal of channel 1.
For the analysis between channel 2 and 3, the

-

outcome is’ somewhat as expected because they both have a
a common gznerator (with a fundamental at 19.0 cpm) as
observed from the bispectral analysis of a single channel
of signal. From Table 4.3, only triblesebelonqiﬁq to
groups 1) and 2) are observed fo; the XleX2 combination. For
the X1X2X2 combination, ﬁrigles belonging to group 1) also
appear throughout the entire 5 minute period. Extra triples
of group 2) in the Xlxlxz combination mean that more
influences have been made to channel 3 from channel 2 than
.the vice versa case.

For the cross-bispectrum between channels 3 and
4, results appéar to be much more irregular. M?St Qf the
frequency triples belong to group 3), i.e. components are
phase-locked in a random basis. They might be coupled together
and driving each other. But this only happens in.a very short
timé and on a ;ocg; basis. The same r$sult ié found for the
analysis of the relationship between &hannels 4 and 5, i.e.
many triples belong ' to group 3). But there are a few more
triples classified to either group 1) or 2). This is because
channel 3 is'takgn from the duocdenum while éhannéls 4 and 5
are from the distal small-intestine. This could mean that

the duodenum and the distal small intestine-are working

independently of each other most Gf the time apﬂAno big
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aninfluance is made on each other. Notice that in Table 4. 34,
during minute #1 of the X,X.X, combination and also during,
17172 ’

'

mifdute #2 of the X1X2X2 combination, there are a couple

of frequency triples (marked 3) which demonstrate a slightly

different phenomenon. They are (25.8, 15.5, 41.3) and

(34.6, 7.6, 42.2) respectively. An element in each of the
triples (e.g.‘15.5 or 7.6 cpm) belongs to the fpndamentél of
the genergtor of the signal itself. So these sources may
sometimes interact with independen{ components and exert

a driving force on the other channel.‘When it comes to
channels 5 and 6, one can observe that manv triples belong to

either group 1) or 2). It also happens 'in both the
combinations. This means that oscillators on both sites

are trying to drive the activity at the other site indicated

by the presence of their second harmonics at these sites.

. %

Finally, for the cross—bisped%;;m between“¢ﬁannels

-6 and 7 as well as between 7 and 8, nothiﬁ; really unusual
occurs. Frequency triples belong to all the grouns_l), 2)
and 3) . But the group 3) elements are in a majority situation
They are mixed with some group 1) and 2) elements so that
some oscillatdrs are trying to send their harmonics to the
other site and hence make some influence on the activity
there. But from the fact that there aré a large number

of group 3) elements, the activities on the colonic part of

the digestive tract are usually acting all by themselves on

an independent, local and short duratien basis.

f

1
'

S gam ¢

*

/
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4.4 DISCUSSION

13

Tﬁe purpose of the stat%onarity énd the normality
tests is to find out how’ a signal behaves when time passes
by. Obviously they do not predict the exact character};ﬁic
of the signal under investigation. But they do provide a
clue about how the signal is going to behave. Here, after
the analysis of the signals, it is observed that the
stationarity and normality start deéreasing from the éastric
and the duodenal part down to the colonic part of the
digestive tract. This is because the main function Of the
stomach and the duodenum is to rapidly prOpei the contents
down the tractl Hence a steady and organized electrical
signal has to be present all the time. But when it comes to
the distal small intestine, major mixing activities come
into action. At the same time, food is not going to be
transported so rapidly. A larger percentaqge of rejection of
the null hypothesis thus results. In the colon, mainly
mixing activities and only local movement occurs. This
needs a lot of local indédendent oscillators with different
frequencies. Hence the function of the signal there changes
from time to time and the tests conclude that it is non-
stationary and not normally digtributed. All these reasonings
are also broved by the bispectrai anélysis of both a single

and double channels.

The purpose of bispectral analysis is to identify
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frequency components that are phase¥lo§<:d. The components

may or may not be harmonically related.

i

" a
\.are relatqd/harmonically, for sure they are generated from

owever, if they

’
the same source. Hence the analysis can sometimes find

out the characteristics of the generators of the signal
under examination. From the bispectral analysis of a single
channel of signal ,most of the generators located in various
parts of the digestive tract are identified. In the stomach
and the duodenum, the same sources are present throughout

L

the entire period of investigation, e.g. two generators
?5.0 and 15.0 cpm) in the stomach and a single source

(19.0 cpm + harmonics) in the duoaenum are observed. This
confirms the theory that the main purpose of the stomach and
the duodenum is to rapidlv propnel the contents and hence

a stationary signal has to be present there all the time.
When it comes to the distal small intestine, independent
oscillators at different fréquencies begin to function once
in a while. In the jejunum, some q§3these oscillators still
prevail for a relativelv long period of time and hence
propel the contents with a steady pace. But the oscillators
only function for a very short time when it comes to the
lower part of the small intestine. The presence of these
oscillators érove the result of a non-perfect stationarity

characteristic as proposed from the stationarity test being

done on this part of the tract. Finally, in the colon,
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oscillators exist only for a very short time and on a

local basis. These local oscillators .generate random
conﬁractions in small regions of the wall and mix the contents
without propeliing them.

Finally, from the cross—bispectral‘method, a
further identification of the characteristic of the digestive
tract is obtained. The purpose of the analysis iswto find
out the existence of influences on the function of a local
activity from another site. In the stomach and the duodenum,
many activities are influenced by oscillators from the
proximal site. For example, in the analysis between channels
1 and 2, group 1) and 2)'s frequency triples only appear on
the X1X1X2 combination, but not on the other. However this
phenomenon is changed in the distal small intestine. Here
oscillators‘are trying to exert.driving'forces in both
directiéns. For instance, in the cross-bispectrum between
channels 5 and 6, many oscillators that belong to either
g

leX2 and XlXZXZ

combinations. Food is still moving around but this time

group 1) or 2) appear on both the X

bidirectionally because these driving forces in both
directions introduce contractions that are ;ot in sequence.
Finally, in the colon, most frequency trinles belong to
group 3). Little influence is felt at the Aearby

sites. These unsteady, locally based and short-lived oscillators

prevent ring® of contractions which move the contents in

~a
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one direction or the other. They introduce random contractions
which mix the food without tr&nsporting them. In concluding
all these analyses, thg functions of the digestive tract

are as follows : the gastric and duodenal activities rapidly
propel the food. In the distal small intestine, mixing '
’aétivity starts coming into action. The contents are also
moved bidirectionally as oscillators try to influence both

. the proximal and the distal sites. In the colon, little
movement occurs but there are lots of ﬁixing motions

involved as local, short-lived and weakly coupled oscillators

’\
become the main components there. \
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. CHAPTER 5

. CONCLUSTIONS

In the first part of this project, algorithms
on stationarity and normality tests are designed. They give
one an idea of how the time series under-investigation
jlay behave. But the length of the section of the series
plays an meortant role on the use of)these algorithms.
Hence some experiments before the actual analysis are
always recommended. But these tests are very‘straith
forward and hence they should be used more often as an
initial investigation.

Since the tonventional nower spectral analysis
assume the signal under examination to be stationary,
an alternate method, namely the bispectral analysis, is
proposed for the analysis of signals which do not satisfy
the assumption. It serves as an enhancerent of the traditional
analysis and provides more valuable information on the signal.
It mainly computes the relationship between frequency
components by looking at the phase-lqcking‘information
between them. Sometimes when the components are harmonically
related to each other, the generator of the signal can

easily be identified by the meéthod. Hence the function of the

117
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signal can be studied. But there are some draw backs in

using this analysis. First of all, because of its complicated
theory and little researcg has been done in this area so

far, many of its statistical properties are still not

known, Additionally, it consumes a large amount of
computatioﬁ time. But if the time is not an important

factor and with the advancement of the céaputer technology,
this should be a good method in search faor the

characteristics of both the explored and unexplored signals.
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