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ABSTRACT 
• 

TO determine the do'tect1).bility 'of thermal radiation 

from the surface of a ncutr'on star, the surface tempera-

ture as a function of .time is needed. To find "this, the sur"-

face temperature as a function of- core temperature is found} 
, .... 

this ratio qepending on temperat~re, stellar mass, and rnagnc-

tic field strength. The energy loss rates from photon ernlS-

sian and neutrino emission are calculated, along wi th the 

'specific heat. of the star; the latter, two quanti ties .depen-

ding on the core temperdture. The s~rface temperature ~s 

a function of time is then calculated for various combina-

tYons of the variable .pdrameters: stellar .mass·, cqu·.J.tion of 
, . 

state, 'magnetic field, superf!uidity, .and pion cutot( dcnsie)'. 

Flnally, a calculatlon of lhe det.ectability (disto.1nce V~ . ..J.qe) 

of d. typical neutron star is made, using the estim.1ted cap.J.-, 
bilit~es/of the X-ray telescupe on the Ein~tein observator,'. 
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ClIAP'rER I 

INTRODUCTION 

The exper~mental evidence for neutron stars has 

gr.own enormously starting with the d·iscovery of pulsars in 

• 
1967, Over one hundred and fifty pulsars have been found, 

and they are almost certainly rotating, rnag:1etized' neutron 

, 

stars (for a review see Manchester and Taylor 1977). Also, • 

X-ray bursters and compact sources in X-ray emitting binaries 

h.J.ve been identified as neutron stLlrs·. (see :or example Joss 

'lnd Rapp.lport 1976), 

'I'D learn more about neutron st,lrs I it would be use-

[ul Lo observe direct surf.1cc radiation from them. 'Phis h.J.s 

yet to be .:lchievcu. From theoretic.)l consider.1tions, and from 

the spectra of X-ray bursters (van Par3dijs J978, 1979), neu-

tron sturs ar-C founa -tu have r..1dii ,,10 /'i.n1 for the lumino-
c 

to compdre to th.J.t of 3. :ULlin seguence star . 
• 

Sneh a lu.qh sllrface tl!lUperaturc implies .J. 'spectrum strong 
• 

in soft --XLraysj therefore sue]1 radiation {s looked for with 

X-rlly detectors. These detectors must be ta~en above the Earth's 

;}tmosphcre since it is opaque to X-r~ys. The recent l.J.unchings 
f 

Df the High Energy AstronDnlY Laboratory (HE.'IO) s.ltellites arc 

-responsible for much of the currcht interest in neutron star 

cooling _ 

1 
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Neutron stars are believed to be fo'rmed in s.uper

novas, with very high initial tempe'ratures (0- io ll 
K). As 

they have no internal energy sources; neutron stars will 

cool off monotonically with. time until they are no longer de-

tectable. Ths aim af the present work is to determine the-

t~rnperature of a neutron star 'as a fun~tion of age j this is 

useful since the ages of certain pulsars and supernova rem
( . 

nants are known. The cooling rate is affected by certain 

paramete,rs (mass, magnetic field), an'd is' sensitive to some 

uncertain properties of high density matter (equation of 

state, superfluidity parameters, possible pion condensate) 
, 

therefore obs(,.':rvations of ~urf4cc temperature and aye should 

reveal information- about the star in quC'.stion and of high 

density m<ltter in general. .--

Such c.J.lculiltions of cooling rates have been llone 

ptieviously (see for eXillTIplc, Tsurut.:t and Cameron 1966; Tsurul.::t 

1::174, 1978; Haxwell 1979), ho .... 'ever, thl' present work attempts 

a more det.::tiled and exact c.::tlcu1ation. In this work the 15cst 

available opacities, COllductivitics, specific h~uts, and 

neutrino emissivitlcs arc made use of. The effects of varia-

tion in 'tl'fe high-density equation of state and vuriation in • 

muss are explored. Gefleral rela"tivisti,c effects arc includcci; 

they Clre of order unity in many cases. The equation of state 

in the outer layers is aC,curCltcly treated (fo!:" non-mLlgnctic 

stars) . Also, realistlc super [1uidi ty estimates arc used as 

• 
I 
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opposed to the extremes used by other authors. 

The g~neral ,assumptions made in solving the problem 

should be noted here: (i) the star is taken ~o be spheri-

cally symmetric (rotation is neglected; it introduces a· 

small asymmetry); (ii) the structur~ of the star is unchan-

ging in time; (iii) there are no energy sources (the star 

merely loses stored heat); and (iv) for stars with magnetic 

fields, the obviously unrealistic use of sp,herical symmetry 
. 

is meant to simulate an 'average' effect, and sa should be 

looked upo~ more as ~ qualitative culculation. 

, 

. / 
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CHA]? TER, II 

EQUATIONS OF STELLAR STRUCTURE' 

" 

The general relativistic differential equations of 

stellar structure for a spherically symmetric star are 

(Thorne 196 7) : 

a) Hass equation. 

elm 
dr 

. Here m(r) is the mass interior to radius r. 

b) Tolman-Oppenh"imer-Volkoff equation of 

hydrostatic equilibrium 

dP 
dr 

, 3 2 
~ -G(p+Pjc-) (m+4nr Pjc ) 

2 2 
r (1-2Gmjrc ) 

(2.1) 

(2.2) ', __ --' 

.p is the pressure and pc
2 

is the total mass-energy density, 

including int"rnal energy. 

c) Source equation for the gravitational , 
potential <;>. 

;' 

(2.3) 

• 
4 
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d) Equations of energy generation at constant 

composition (no net nuclear reactions) 

(l-2Gm/rc2)l/2 
ds 

T dt (2.4) 

5 

ds , t f ch f . 1 d Here dt ~s the ra e 0 ange 0 entropy per part~·c e, an 

n is the number density of particles. Equation (2.4) states 

that tbe contribution to the energy flux from a spherical 

shell of radius r is determined by the rate of change of 

the heat content of the shell. , 
The luminosity L(r)' is that measured locally by an 

observer at rest with respect to the star. The luminosity 

is 'given by 

L (r) L (r) + L (r) 
y \! 

( 2 • 5 ) 

where Ly and Lv are the photon and neutrino luminosities, 

respectivel~ 

The s~~ond equation of energy generation is 

(2.6) 

where qv is the neutrino emissivity per particle.. The neu

trinos are produced by a variety of mechanisms and, by vir-

. . 

tue of their long mean free paths, escape directly from their 

point of production. 

i 
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e) Equation of energy ttansport.' l l 
-3KpL e<P 

3 2 y 2 1/2 (no 
16aT 4nr (1-2Gm/rc) .r 

convecti~.7) 
, ) 

or 
"J 

dT 
err 

\ 
= ( con,(ecUon) 

The lesser in magnitude of the two temperature gra-

dients is used. (However, none of the neutron stars exa-

mined in this work have convective layers.! 

The opacity K (in cm2_g- l ) in eqn. (2.7) is given by 

1 
K 

1 
K 

R 
+ 1 

K 
C 

( 2 . 9 ) 

woe"" " '" ~. u".U~ o,.,u".~'" ", 'O"'O~ 
tive opacity, which is inversely rela a the thermal 

conductivity. 

At high densities K '« K I the 
c R 

this decreases rapidly with increasin 

K I and c 

Thus the 

temperature gradient (2.7) becomes ne ligible at densities 

10 ~.1.m-3 much above 10 ~_"'. • This allows a natural division of 

the star into two regions: an 'isothermal t core and an 

outer envelope. By 'isothermal' one m~ans that there is 

no thermal energy flux. As a consequence of the gravitational 

" 'redshift this implies that Te~ = constant. It should be 

noted that the outer envelope contains a negligible frac-

, 
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tion of the star's mass and heat. 

The rate of loss of internal energy ~s found by 

integratin~ _eqns. (2.4) and (2.6) through the isothermal 

core: 
R 

240 '\ I e 
L(Re)e e~_ 

• • 
r~O 

240 ~,JRe L (R ) e e 
\J e 

2 
41Tr dr 

(2.10) 

f2.11) 

Here ~e ~ <jo(Rc) is the gravitational potential at 

the core-envelope boundary, r ~ Rc' The entropy derivative 

in eqn. (2.10) may be written in terms of the specific heat: 

ds ds dT dT 
T dt ~ T dT dt ~ Cv dt 

Define a new temperature parameter T' = Te~~ Then 

dT' 
dt 

~ e¢ dT 
dt 

~ 
+ 'L de 

dt 

(2.13) 

• 

~ince the structure of the star does not change with time. 

As already seen, T' is independent of radius at all 

dT' . 
times (in the core). It follows that dt ~s also indepen-

dent of radius. Therefore eqns. (2.10) and (2.11) may be 

1 rewritten as: 

) 
, 
\ 

\ 
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and 

2~ 
L (R ) e c 

c 

R 

~ I
C 2 , dT' 41Tr dr 

DCV dt -(-1-_~2~G2mV-=r~c~2~;'1/~2 

r~O 

dT' jc nC dV ~ - dt v p 

r~O 

r~O 

where dVp is the differential for the proper volume. 

8 

(2.14) 

(2.15) 

Our goal is to determine the surface temperature of 

a neutron star as a function of time. Rewriting eqn. (2.14) 

gives the following equation for the rate of change of the , 
core temperature: 

dT' 
- -- = 

~ 

dt 

J 
nC dV 

v p 

2¢ 2¢ 
L\}(R)e c+L (R)e c 

c y c 

J nC dV 
v p 

(2.16 ) 

Each of the three terms on the right side of eqn. 

(2.16) must be evaluated as a function of T'. The specific 

heat and neutrino luminosity depend simply on the density, 

temperature and gravitational potential; and the relevant 

terms are evaluated in chapters four and five. The photon 
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luminosity depends on the effective surface temperature T • 
s 

. Thus. to solve for the cooling curve. the relation-

ship between the core and surface temperatures must be 

established. We turn' to the determination of this rela-

tionship in the next chapter. 

\ 

• 
" 
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, CHAPTER II I 

THE CORE-SURFACE TE~!PERATURE RATIO 

TO solve for the" cooling curve, the surface tempera-

ture must be found as a function of core temperature. This 

is accomplished by integr~ting the temperature gradient (2.7) 

throughout the outer envelope. However, as eqn. (2.7) is 

coupled to the other equations of st~llar structure (2.1)-

(2.6), the whole set should be solved simultaneously. .This 

can be much sirn~lified by using certain approximations valid 

in the "outer envelope. 

IlLl Equations for the Outer Envelope 

a) ~lass and Pressure 

The outer envelope contains a negligible ~raction 

(about 10- 6 ) of the star's mass. Therefore mer) " M, the 

total mass of the s·tar. 

The pressure at a given point is just the weight per 

unit area of the matter abpve. Therefore, with nm being 

the mass of the outer envelope, 

since lim < < Hand 

we can set 

2 
4nr P 

2 
c 

= 

GH 
--2 < 1. 
rc 

GM!\m '\ 
2 <. -< t" 

rc 

Thus, in eqns. 

10 

(3 . l) 

(2.2) and (2.3), 
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m + (3.2) 

b) Gravitational potential 

Outside a spherically symmetric star the potential 

is given ~xteri~r Schwarzschild solution 

~ 2 1/2 
e = (1-2GM/rc ) (3.3) 

This is valid throughout the outer envelope to the extent 

that mer) 0 M. 

c) Luminosity 

It follows from egns. (2.4) and (2.6) that in the 

absence of 100/'1 energy sources then Le 2¢ -and L"e 2
¢ are 

independent of radius. Together with egn. (2.5) this 

implies tha t 

L e2~ = constant-, 
'i 

( 3 • 4 ) 

valid as there are negligible energy sources in the outer 

envelope. At the surface, the photon luminosity defines 

an effective blackbody temperature Ts: 

Thus, for the photon luminosity in egn. (2.16) we have 

(3. 6) 
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d) Temperature Gradient 

take the pre~ as the inde-I t is simples.t to 

pendent variable. 

dT 4 
4T3 dT dr 

dp 
~ 

dr dp 

3KR2T4c~ 4T4 s + ( 3 . 7) = 2 p 
4GH(1 + ·2) pc +p 

pc 

as follows from eqns. (2.2), (2.7) Clnd (3.3). The second 

term on the right h~nd side is a relativistic effect ~ri-

sing from the gravitation.:!.l potential .. 

Equation (3.7) is to be intcgrClted from the photo

sphere (defined belol;) inwClrd to a density of 2'10 10 g_cm
3 

~ 

above which the st<lr is isothermal (Te 4J ""',constant). The 

SUl-race temperature T is taken to be oJ. free parameter. '1'0 
s 

do the integr'ation two functions arc needed: p (P,T) and 

K (p,T). These functions are discussed in the remainder of 

the ch.:lpter. 
e..

Ta check the assumptions that the mass und thickness 

of the outer envelope are small, equations (2.1) und (2.2; 

are integrated as well. 

The integrations are done num~lly using the Runge
( 

Kutt::l rnethod~ which is accurate to fourth order in the step 

size. The step size is chosen so that neither the pressure 

nor the temperature change by more than ten per-cent per 

, 
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step. 

The boundary condition on the pressure at the sur-

face (photosphere) is given by (Thorne 1967) 

2GM 

where KR is the -radiative opacity. This corresponds to an 

optical depth of 2/3. 

1I1.2 Equation of State 

a) Composition 

It ~s commonly supposed that the matter in a neutron 

star will be in the most energetically favourable state, as 

a resul t of the tremendous thermonuc lear .J.cti vi ty accompany ing 

7 -3 
the formation of the star. At densities below 10 g-clll 

h bl . 56 1 . . 1 t e most sta estate 1.5 Fe nue 81. ll1 an e ectron sea. 

At higher densities, more neutron-rich nuclei are favoured 

because of the large Fermi energy of the electrons. The. re-

sults of Baym, Pethick and Sutherland (1971) for the compo-

sition in the outer envelope arc generally accepted and are 

used here. 

'1\0.'0 points should be noted here. If the star aceretes 

mat ter I there may form a blanket of hydrogen or heli urn at 

the surface, as is suggested in the case of X-ray bursters . • 
Secondly, the surface layers of a neutron star may be sig-

nificantly affected by a strong magnetic field (Ruderman, 
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1971, 1974), such as are found in pulsars. These possi

bilities are not considered further at the present. 

The composition 'enters the equation of state in two 
. " 

w~ys: in the number of nucleons per free electron, ~e; and 

in the mas:,-of t~~ons, ffii (in proton masses). 

The number 0'1free electrons per nucleon is 

\...!... = Z f 
." ~e A 

-
( 3 . 9 ) 

where f is the fractional ionization. The following appro-
" . 

ximation is used for f (eGS units) 

f=maxlO.303 log (0.2p),O.92G log (1.357'10-18T4 p-0.313)J 

(3.10) 

o ~ f ~ 1. This expression lS adequate 56 for Fe. 

bl Contributions to the Pressure 

The pressure in the outer envelope comes· from three 
\ 

sources: the electrons, the ions, and the radiation. IThese 

terms can be ","'ri tten as 

(3.11) 

The pressure and temperature are known, and the den-

sity must be solved for. As the electron pressure p. is 
e 

density dependent, the density must be solved for iterativc-

ly. 
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The .i'on pressure is much less th~n thl?- electron 

pressure (ex~ept under conditions where f is very small) ~ 

If a reasonable estimate of the density is used to evaluate 

the i9n pressure, the electron pressure may be solved for 

from eqn. (3.11) with small error. This value for the 

·electron pressure will yield a density that can be put 

back into eqn. (3.11) to checK for self-consistenty. 

c) The Density as .:l Function of Electron Pressure 

The following definitions are useful. 

~ ('( :::; - KT 

kT 
~~::: ~ 

m C 
e 

~ ~ chemical potential 

m = electrOJl ffidS5 • 

" 

(3.12) 

(3.13) 

J\5 .9hO\",n in Appendix A, the electron pressure may be \o,'rit-

ten as 

-
G(c',il) ~ r 

0 

'n 
(2m kT)"1 -G (", Il) 

e 

x 3n (1 + ! 3/2 
2 ox) dx 

1 + e 
a+x 

and the density may be written as 

(3.14) 

(3.15) 

(3.16) 



) , 

• 
with 

H(o.,1l1 
= r 
° 

., 

,,1/2 (1+6)(1 (1 + ~,UXI 1/2dx 

1 
a+x + e 

1 

15 

(3.171 

Equation (3.141 must be solved for D.. This could be 

done by evaluating the integral (3.15) numerically at an 

array of' points in the (a,B) plane and interpolating. How-

ever, to achieve the desired accuracy this would require a 

prohibitively lar.ge number of lntcgrals. 

The problem iss impli fied by dividing -the (0.- G 1 pLme 

into four. regions. In three of these regions G(a,G) and 

H (ll./~~) can be expanded in series, eliminating the need to ao 
the integrals. 

The four regions are: 

il Non-degenerate region (c' " 01 

The boundary is taken to be G(c>,SI '0.024+0.07 6, (or 

(x..: -8). G(l't,:~) 
. -0. 

can be expanded in .:l power series In e 

3 1/2 x 
x e K.,(xl 

c 

(3.181 

Here x ~ j/S and K
2

(X) is a modified Bessel [unction. Sol-

. for e-o. vlng 

2 
G (a,S) 

2C; (31 
+ 1-,,---

5 (' 1 
c l " 

(3.191 
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H(u,p) can also be expa~ded in a power series. The result 

is 

H(a,il) (3.20) 

which is evaluated using eqn. (3.19). 

ii) Strongly degenerate region (a " 0) 

The boundary is taken to be G("",) , 80+550 p, (or 

a ::- 4). The integrals G(a,G) .J.nd H(cl.,p) can be expanded using 

Sommerfeld's lemma (see for eX.J.mple,Chandrasekhar 1939). Af-
• 

ter son>:> lengthy algebra one finds: 

G(lt,3) 
., 1/2 l'~ 1/2 

(x-+x) I +Jen(x ' +(1+,,) , ) + 

1/2 
(2x-l) ("+31 ) ) (3.21) 

3/2 
x 

x 

\l + 
(2x+l) 

2 x 
(3.22) 

The right hand side of eqn. (3.21) is a monotonic 

function of x at fixed S, so the equlltion can be solved for 

x by using a ,simple root finding procedure. H(a,B) can then 
, 

be evaluated. \''-.. 
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iii) Intermediate degeneracy,. small 6 region (6 < 0.01) 

Expanding egns. (3.15) and (3.17) in powers of a one 

gets: 

G(a,S) r x 3/ 2dx 
+ 3S r x 5 / 2dx + 36

2 r x7/2dX 
(3.23 ) = T 16 + ..• 

l+e a+x l+e"+x l+e cx +x 

0 0 0 

r 1/2 
+~ r x 3/ 2dx 76.2 r S/2d H(o.,S) = 

x dx + x x + _ •. ,<3.24) 
1 et+x 4 ,,+x 32 1 a+x' +e l+e +e 

0 0 0 

The above integrals are evaluated numerica~ly for 

8 " 0. < 4, in steps of " = 0.2. Egn. (3.23) is solved for 

ll. using .J. quadt-atic interpolation from the nearest three points. 

Then the integrals in eqn. (3.24) are similarly eval)atcd by 

l.nterpolation. 
( 

iv) Intermediate degeneracy region, B :> 0.01 

The integrals for G(o.,S) and H(Cl,S) are evaluated nu-
. . 

merically at an array of'oints in the (a-(3) plane. A two-

dimensional interpolation .is used to find u , and then H[a,B) 

may also -be evaluated by interpolation. 
.. / 

This method is straightforward, but is cumbersQrne 

because of the large number of integrals to evaluate. To· 
, 

achieve the desired accuracy within the re~trictt:: region 

-8 < a 

usee. 

s. C 

< 4, S > 0.1, a total of three thousan~ integr~ s 

This prevents the method from being used~ for all 
I 

! 

\ 
-' 

are 

and 
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Once H(ex,S) i) evaluated, the dl!nsity resulting from' 

eqn. (3.16) may be tested for self-consistency. If the two 

sides of eqn. 

is repeated.' 

density. 

-II.3 Opaci ty 

(3.11) differ by more than 0.01% ~e process 

This method converges quickly to the correct 
~ 

There are three possible means of energy transport in 

a star: radi~tive, conductive, and convective. Neutron 

st~rs are found not to have convective regions. condUC~ 

by electrons is the most important method of energy trans- ) 

fort, except in the non-degenerate outermost layer, where / 

radiative transport dominates. 

Opaci ty i~ a measure of t resistance I to energr trans-

port. An opacity to thermal conduction ('c) _ and an opacity 

to radiation (~R)' may be defined. The total opacity is then 

given by 

1 1 + 1 
(3.25) K (KR 

which is dominated by the smaller of "R and KC. 

4 -3 
For densities less thap 10 g-cm both 'R and KC 

have been provided for pure 56Fe by the Los Alamos library 

(Huebner et al. 1977). At higher densities the results of 

Flowers and Itoh (1976) have been used. Some extrapolation 

and interpolation has had to be done to qbtain the necessary 
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values. The effects of a magnetic field on the opacity are 

discussed at the end of this chapter. ~ 

Radiative Opacity 

Tables of the radiative opacity K in -density 
-~ / 

region were kindly provided by the lamos group. A~hi9h 

temperatures these tables had .to be extrapolated to higHer 

densities where the conductive opacity becomes dominant (see 

Figure 3.1). Although this extrapolation becomes .suspect for 

T » l08K, this is unimportant fo 

outer layers at these temperatures 

two reasons ( 

the neutrino 

Firstly, for 

emission 

from the core completely controls~~~~~ling rate. Second-

ly, the star will remain this hot only for th~first year or 

so after its formation. 

Conductive Opacity 

The conductive opa~ity KC is related to the thermal 

conductivity A by 
c 

(3.26) 

Flowers and Itoh (1976) present tabulated calculations { .-
of the thermal conductivity in the region p > 10 4 g_cm- 3 

T > 106K• Their calculations include contributions from 

electron-electron scattering, electron-phonon and electron-

impurity scattering (below the lattice melting temperature), 

and electron-ion scattering (above the lattice melting tem-
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perature). c40 make use of their results one must specify 

a lattice m~ting temperature, which (following them), we 

take to b given by 

T 
m 

• 

(3.27) 

where Z,A are the charge and mass numbers for the lattice 

ions. One ~ust also specify a parameter for the charge 

fluctuations due to impurities x. < (lIZ) 2>, 
. l 

with x. 
l 

fractional concentr·a,lti~n of impurities. A value 

being tJ:!e 

of 'i"i < (liz) 2> 

J ' 
= 1 has been used throughout. The electron-electron scat-

tering term does not appear ¥n previous calculations of 

the thermal conductivity (eg. Hubbard and Lampe, 1969), but 

its significance is diminished since the radiative opacity 

dominates when the electron-electron scat,tering is largest. 

The Los Alamos group have also provided conductive 

opacities at low densities. Although these never dominate 

the radiative opaoity they are useful in helping to extra-

polate the Flowers and Itoh resul~s, especially at low tem-

peratures. 

Figure (3.1) summarizes the above points, and also 

illustrates the temperature-density profiles of a typical 

neutron star at three characteri"stic surface temperatures. It 

can be seen that the tabulated opacities fairly well cover 

the re"gions of interes t. 

\ 
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Figure 3-1 

Envelope profiles in the temperature-density plane for a 

1.25 M neutron star, stiff equation of state (PPS) , and 
~ . 

zero magnetic field. The solid curves are for surface tem-

peratures of 105 . 5 , 106 . 0 , and 106 . 5 K. The plane is divided 

into several regions: in the upper left (stippled) region 

the radiative and conductive opacities from Los Alamos 

~ . . 
(Huebner et al. 1977) are used, and ~n ~e upper r~ght re-

gion the conductivity calculations of Flowers and Itoh (1976) 

are used; elsewhere interpolation and extrapolation are 

used. The dashed lines roughly divide the plane according 

to degeneracy (non-degenerate above) and according to mode 

of energy transport (conductive below). 
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III.4 ~!agnetic Fields 

Some neutron stars may have very strong magnetic 

fields (e.g. B 0 10
12 

G for a pulsar). A magnetic field 

of this size does not appreciably alter the structure of 

the star, except in the outermost layers where the pressure 

is small. It has been suggested (Ruderman 1971,1974) that 

the surface layer of a magnetized star may be a highly ani-

sotropic 'magnetic metal' ~ terminating abruptly at a den-

. 4 -3 
sity near 10 g-cm ; however the properties of such 

exotic matter have not been reliably calculated to date. 

Therefore in the present work we take no account of any 

magnetic modifications to the low density equation of state. 

We do consider the modification of the radiative and 

conductive opacities by the field: these will change 

(reduce) the core-surface temperature ratio. 

r 
Radiative Opacity 

It has een shown (Lodenquai et al. 1974) that the 

radiative opac"ity in a strong magnetic field is approximately 

related to the zero-field opacity by 

where oj 
c 

eB 
m c 

e 
tion frequency. 

w « Wc (3.28) 

is the cyclotron frequency and w is the radia-

For temperatures much greater than 107K the typical 
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photon f kT . requency w ~ ~ 15 comparable to the cyclotron frc-

quency 

lowing 

for magnetic fields ~ 

expression (derived in 

2 
w 

2 2 
w +w 

C 

1012 G. Therefore, the fol-

Appendix B) is used instead .. 

(3.29) 

This has the correct limits for both large and small mag-

netic fields. 

TO obtain a frequency independent opacity the Rosse-

land mean is used 

1 r 1 
dB d If dB d (3.30) = 

KR (w) dT W dT W . KR 

0 0 

Here B (w) is the planck blackbody distribution. 

To evaluate the Rosseland mean the frequency depen-

dence of K(w,B=O) is needed. For the opacity due to free-

free transitions K
ff 

~ W 
-7/2 

However, at low densities and 

at high temperatures (the regions where electron conduction 

is least effective) the radiative opacity is dominated by 

Thompson scattering, which is frequency independent. 

The result in this case is then 

(3.31) 
1 + 
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where B12 and TS are the magnetic field in units of 10
12 

G 

and the temperature in 10 8 K, respectively. 

as 

Conductive Opacity 

The conductive opacity in a magnetic field is expressed 

" (B) = a, (B=O) c c c a ...; 1 . 
c -

(3.32) 

The factor a is a function of the density, temperature, c 

and magnetic field intensi1=:Y' Graphs of a (p) for various 
.c 

magnetic fields are given by Tsuruta (1974) based on earlier 

c.J.lculations by Canuta and Chiu (1969), and are used here. 

The temperature dependence drops out if the electrons are 

degenerate, as they are when conduction dominates the energy 

transport. 

'l'he total opacity is given by the standard r-elation 

-1 -1 -1 
" (B) = 'H (B) + 'c (B), identical in form to the case 

\.,;ith zero magnetic field. 

Apart from the only approximate expressions used here 

for the opacity, in a magnetic field, there are several other 

important effects which are being ne~lected. The additional 

anisotropy (polarization dependence in the case of radiation) 

of energy transport due to the i'ield is being crudely averaged 

over. In reality the thermal radiation fran the star will 

not be spherically symmetric and, if the neutron star should 

also rotate, this could c;ppear as a "pulsation" a Further-
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more, the strength of the magnetic field will vary over 

the surface o~~ star 

dipole case) _ ~s the 

(by a factor 'of two in the simplest 

single magnetic field parameter used 

in the opacity is somewhat ill-defined and is intended to 

represent an average effect. 

, 
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Figure 3-2 

Rclutionship between temperature at the core/envelope 

boundary and temperature at the surface, for neutron 

stars of 1.25 M • with the soft BPS EOS 
GJ 

13 = 0; 

B = 10
12 

G) and with the stiff PPS EOS (----- V = 0; 

12 
-.-.-~ B = 10 G). 
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CHAPTER IV 

SPECIFIC HEAT 

TO solve equation (2.16) for the cooling rate it is 

necessary to know C I the specific heat per particle, 
v 

throughout the star. Contributions to the specific heat 

come from the neutrons'l .protons, electrons, crus·tal.ions, 

muons and hyperons. The hyperons are present only at the 

highest densities, and are omitted hereafter since the para-

meters <lre not w1211 knmoJn. Apilrt from the ions I the par-

ticles are all degencr~te Fermi gases. 

To determine the heat content of the core, the 

Fermi momenLl and energies .J.re needed. 

Fermi Homenta 

For spin 
1 
2" fermions the Fe nni momentum is l.-elated 

to the number density of particles of type Ii) by 

~ n Ii) 14.1) 

14 • 2 ) 

For t~e neut~ons, n(N) = I and therefore for P
N 

~ P 

336.5 

28 

MeV 
c 

14.3) 
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, 14·3 
where Po ; 2.8'10 g-cm Inuclear matter density) , 

'-', 
For the free protons, electrons and muons, by charge neu-

trali ty lin the absence of ions) 

nip) ; nle) + nl~) 

P~(p) ; p~(e) + P~I~) 

14 • 4 ) 

14.5) 

'Fermi Energies ~ 

'l'he electrons are extremely relativistic ~ve 
Fermi energy 'F Ie) ; cPFle) In beta equilibrium the elec-

trons and mUons must have equal energies 

2 4 
ePFle) ; 1m c • II 

+ 2 2 ( » 1/2 
C PI' II 

? 

for CPFle) > mllc- (4.6) 

(The thermal energies of the particles are negligible since 

k T ..; 1 'leV' . ) ~. "t:F" 

F01- the protons and ne'utrons it is useful to intro-

* * duce the e':fective masses mp and ~, defined in the non-

relativistic limit by 

( 4 , 7) 

• If rn. is independent of t.he FerT:1i momentum (or density) . , 
then e'1n. ( 4 • 7) integrates to give 

P;li) 

o • 
_ffi. , 

14. 8) 

The non-relativistic limit is valid for the protons. The 

neutrons become relativistic at the very highest densities 

\ 
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IS -3 
(p > 3xlO g-cm), but the non-relativistic limit is 

used for simplicity. • m 
Par the protons, ~ is taken to be one. at all den-

s i ties, so eqn. (4.8) hol~s. Par the neu trans, the ~ffecti ve 

mass of Takatsuka (1972) is used. This is approximated by 

. -0.032 
= min(1,0.88S(~) 

Po 

/ 
p -0.135 

0.81S(p) ) 
o 

(4.9) 

which has a weak density dependence. Integrating eqn. (4.7) 

'vi th this effective mass yields 

where 
I 

f 0 1.14 
0.4 

+ 0.04 (f-) 
o 

~ 

(4.10 ) 

(4.11) 

* (There is considerable uncertainty about the values of m 
p 

* • 
and "'No Takatsuka's value for is used since his supcr-

• fluidity parameters (dependent on "'N) are later used.) 

The neutrons, protons and electrons are in S-equili-

briurn 

2 + m c 
p • 2m 

p 

(4.12) 

2 2 
Since"'Nc - mpc 0 1 ~eV « other terms, and in the absence 

of muons pp(p) = pp(e), we have 

P~ (e) 
cPF (e) + • 

2m 
p 

(4.13) 



• 

which is a quadratic with solution 

• 2 
= ,"»C [(1 + 

2 1/2 
PF (N) 

•• 2) 
mp~fc 

which is evaluated usingeqn. (4.3). 
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- 1] (4.14 ) 

Now PF(~) 

frOl,l eqns. (4.4) 

is evaluated. using eqn. (4.6) and n(p) found 

and (4.5). Since the density appearing in 

" 
should really be ~' a first-order correctioA is 

made by using n(p) and 

eqn. (4.3) 

() . 1/3 
p-n p m MeV ( P,-

p c 
(4.15) 

o 

in eqn. (4.14), and repeating the calculation. 

IV.1 Specific Heat of Fermions 

The specific heat per particle of a degenerate 

(k'l' « £F) Fermi gas is (Ziman 1960) 

c 
v 

(4.16 ) 

dn 
= is the density of states at the Fermi surface. 

d£F 
ate two cases; 

i) Non-relativistic particles (neutrons and protons) 

Equations (4.7) and (4.2) yield 

= 
• 3nrn 

-2-

PF 

and thus the specific heat per unit volume is 

(4.17) 
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* * 2 3m . 
k T -,._.=1_ 

P;ti) 
11 m. p. 1/3 

1. 63xlO (.2:.) (2.) T 
mi Po 

-3 -1 erg-em -K (4.18) 

ii) Relativistic particles (electrons and muons) 

'f' 

N (E ) 
P 

2 4 2 2 1/2 
Ep = ·(m c + c pp) 

. 2 
- me 

(m2c 4 + 2'2 -1/2 2 
c pp) c Pp 

2 4 2 2 1/2 
= 3n (m c +c pp) 

2 2 
c Pp 

[ 2 4+ 2 .2 ( . ) ]1/2 
2 2 mic C PF ~ 

n(i)Cv(i) = n(i)n k T ~~~-~---
<=2=2 (.) c Pp 1 

, 2 4 2 2 
Por electrons mec «c PF(e) 

n(e)C (e) = 
v 

n(~)C (~) v 

= 

= 

o 

2 
k T. 

cpp (e) 

2 2 
c pp(~) 

2 2 2 4 1/2 
cpp(e) (c PF-m~c) , 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

cpp(e) <m c 2 
- ~ 

(4.24) 



, 

, 

\ 

, 

33 

At densities below 2xl0 14 g_cm3 there are no free 

protons, but instead there are crustal ions. The nwnber 

densities of ions, neutrons and electrons a,re calculated 

from the results of Negele and Vautherin (1973). The fol-

lowing parametrizations are made: 

n 
e 

?" 36 1.04 
= max [5xl0 (..£..) , 

Po 

n, 
~on 

34 0.61 
= max[4xlO (..£..) . Po 

36 0.48 
1.29xIO (~) ] 

Po 
. 0.33 

1.3BxI034(~) ] 
Po 

(4.25) 

(4.26 ) 

= min[O.B16 logp+2.414,0.15 logp+l.05S,0.OS 10gp+0.947] 

(4.27) 

with the condition PN ~ 0. 

In the crust (p < 2XI014 g_cm- 3), the neutron .and 

on specific heats are given by eqns. (4.18) and (4.23), 

densities (4.27) and (4.25), respectively. 

According to Flowers and Itoh (1976) the ions form a 

ttice 1<ith a melting temperature T »109
K (except 

m 

envelope). Therefore, the ions are taken to be 

a solid 1<ith Debye spe<;,ific heat • 

n(ions)C (ions)=3k n(ions).D(eD/T) (4.28) 
. v ., , ? 

~ 10 0.38 9 
eD is the Debye temperature" min[1.5 x IO (/-) ,5 x lO]. 

° V(x~is the Debye function, which has limits 

Vex) x large 3 
(T law) • 
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IV.2 Superfluid Specific Heat 

At certain densities and temperatures the protons and 

neutrons may be in superfluid states. If so, then the spe-

cific heat is modified from the previous result (4.18) by 

a factor Y
s

. Maxwell (1979) gives a graph of Y ve-rsus TIT, 
s c 

where T c is the superfluid transition temperature. This 

graph J.s fitted by 

~ 

(-2:.. 
1.6 

T Y = 3.47 - o .2) 0.2 < T < 1 s T -c c 

= 0 T < 0.2 T 
c 

= 1 T > Tc . (4.29) , 

The transition temperature Tc is a function of the 

Fermi energy. The results of Taka~uka (1972) are used for 
\ 

For nucleon Fermi energies between 1 MeV and 40 MeV 

the possibility of s-wave superfluidity exists, and for 

Fermi energies from 50 MeV to 120 Mer the possibility of 

p-wave superfluidity exists. 

The protons are all in the s-wave region (E ~ 1~40 
F 

MeV). The neutrons will form two bands of superfluid re-

gions (s-wave and p-wave), with the remaining neutrons in 

the normal state. 

If the neutrons are in the normal state, they contri-

bute most of the specific heat of the star. If the neutrons 

• 
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" 
are superfiuid, the protqns should be as well, and the elec-

tron may become the major source of specific heat. The 

crustal ions may be important under certain conditions. 

IV.3 Zoning and Equation of State 

To evaluate the temperature derivative (2.16) the 

specific heat (and neutrino luminosity) must be integrated 

throughout the star. Since. the integrands have complicated 

density dependencies, it is expedient to divide the star 

into concentric shells of constant density, temperature, and 

gravitational potential; and to replace the integrals with 

s umrnations . 

r=O 

r=O 

nq e2~{r)dV 
v p 

29. 
+EVp(j)e J(nq), 

j J 

nC dV ~-> E {nC ).v (j) 
v p j v J p 

(4.30) 

(4.31) 

To find the proper volume, average density and gravi-

tational potential of each zone, the equations of stellar 

structure (2.1), (2.2) and (2.3) are integrated along '''ith a 

zero temperature equation of state. 

There is some doubt as to what equation of state is 

valid at neutron star densities. To test the sensitivity 

of the results to the equation of state, two (possibly extreme) 

equations of state are used. These are: (A) the equation of 
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I • 

state of Baym, Pethick and Sutherland (1971). hereafter 

referred to as BPS; and (B) the TI equation of state of 

Pandharipande, Pines and Smith (1976), hereafter referred 

to as PPS. The BPS equation of state is much softer than 

that of PPS, allowing higher central densities and smaller 

radii. For the same mass, a star with the stiffer PPS equa-

tion of state has a larger radius and lower central density, 

thus a larger crust and larger superfluid regions than the 

corresponding BPS model. 

The stars are divided into forty zones, chosen so 

that fifteen zones have densities between p = 5xl0 9 and 

5 10-13 -3 . h f h f' . t . p = x g-cm, Wlt a urt er t\.,enty- lve zones ~n erlor 

to these. The density ratios between successive zones is con-

stant in each of the b.;o regions. 

The expression for the neutrino emissivity is deter-

mined in the next section. 

, 
" 



Figure 4-1 

Specific heat contributions for.neutron star matter at 

14 3 
density p ~ 10 g-cm: normal neutrons (-----), super-

fluid neutrons Takatsuka (1972, -.-.-.), electrons ( ), 

and ion lattice ( .••.• ). At this density there are no 

free protons. The soft and stiff EOS' s are identical at· 

14 -3 densities below that of nuclear matter (2.8'10 g-crn ) . 

• 
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CHAPTER V 

NEUTRINO EHISSIVITY 

Various nuclear reactions can occur that produce 

neutrinos (and antineutrinos) without altering the compo-

sition of the star. This is the case when a reaction is 

in equilibrium \oJith its inverse reaction (e~g. S-deca.y and 

inverse p-dec.3..Y). BremsstLAahlung processes that directly 

convert thermal energy i·nto neutrino-antineutrino pairs 

also do not alter the composition. Once produced, the 

neutrinos \\'ill escape the sta~- without further interaction 

(Bahcall and "'olf 19G5). (."-n exception occurs during the 

firs t £e\.; hours of a neutron 5 tar I 5 life, when the neu tr ina 

mean free path may be less than the stellar radius, but 

this is of no consequence later on.) 

FollO\\I"ing Tsuruta (1978), there are six processes 

considered here as significant neutrino sources. 

i) Beta processes involving pions 

1T + n + n + \l + v 
\l 

1T + n + n + e + v 
e 

and their inverse processes 

38 

These are: 

(s.la) 

(s.lb) 



n + U 

n + e 

..... n + '1T + V 
U 

.... n + 11" + V 
e 

39 

(5.1e) 

(5.1d) 

If pion condensat~s exist in the star, the above 

processes will dominate the neutrino emissivity and cool 

the star very rapidly. This was first pointed out by Baheall 

and Wolf (1965). 

ii) Nodified lJRC>, processes 

-n + n ~ n + p + U + v 
U 

n + n ~ n + p + e + v 
e 

and their inverse processes 

n + p + U 

n + p + c 

+ n + n + v 
U 

.... n+n+\J 
e 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

Only particles near their Fermi surfaces can partake in these 

reactions, so an extra spectator particle (neutron) appears 

on each side of the reaction to allow conservation of momentum 

and energy. 

iii) nn-pair Bremsstrahlung 

n + n ~ n + n + v +, v (5.3) 

iv) np-pair Br:emsstrahlung 

, n + p ~ n + p + v + v ( 5 • 4 ) 

v) Electron-ion Bremsstrahlung 

(Z. A) + e ~ (Z. A) + e + v + v (5.5) 
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vi) The plasma process 

.... " + v ( 5 • 6 ) 

\.,rhere 'I ~s a plasma e.xcitat.ian (plasmon). {This process is 
? 

not consider-ed by Tsurutu (19~8) 

For the pion proces3es (5.1 a-d) Ma,,-we11 et al. 

(1977) ha"e calculated a 1u,"ic.osity 

'7 7 -
" 1'10- :.- b - -. '- ,T9 

-3 -1 ergs em 5 

o ' 

(5.7) 

lIe::e Tg is the tempe::ature ':'n units of lO~K and ll- is a pion 

c.ensi t\' £ actor. (1977) suggest uSlng 0 :::: .1 as 

a typic..11 \'alue. Also used is a cutoff 'intensity I::' below \ .... hich 
TI 

there is no ?io~ cOIldellsat~; ~ is treated as a free para-

meter, althousb it is expec-:.e':: ":.0 fall' in the range (2-20)'~lO' 

The er.ussivities rest.::"ting from processes (ii) to (v) 

URC-~=1 6.11 21 (1 F' nq _ L _+, 
l' 

T
8 - 3 -1 
9 ergs em 5 (5.8) 

D ('c) 

Here F = • F I and is incluc2d to account -for reactions (5.2a) 
0 ..... i e} , r 

and (S.2e). 

nn 
~q\., 

. 
* ' \I 

1 a '"", 
~ 4 4'10 -. (--'=-' . " . . ~ . . , 

-'-', -3 -1 ergs em s (5. 9) 
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8 -3 -1 T ergs ern s 
9 

(5.10) 

n ions 
qv 1,6 ergs 

9 
-3 -1 em 5 (5.11) 

i 

The emissivity from the sixth process ~s given by 

Haxwel1 and Soyeur (1979) 

P C 14 
~ 8.3'10 nq\l 

9 -3 -1 T ergs ern 5 
9 

(5.12) 

where the plasma frequency W 1 is related to the chemical 
pt 

potential ~e by 

Jiw 
p( 

, 1/2 
~ ( :'.". ) 

3" 
\l 

e 
(5.13) 

The last boiO processes take pl.J.c8 in the crust (belo\v 

14 -3 
~) = ~>-lO g-cm ) t whereas the np-process takes place above 

2'10 14 g-crn- J
, where there ~re free protons. 

-" For evaluating the 
• u, 
ractor ~ In eqn. (5.11) the re-

sults of t\egele and Vautherin (1973) are parametri':.ed as: 

~2 -0.61 
u = maxlO.2(~) 
A "0 

'. -0.37 
0.62(-"--) J 

Po 
..:: 10 . (5.14) 

It is clear from a comparison af the above emissi,\ri-

ties that the term nq~ will strongly do:ninate if a pion conden

sate is present. 
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V.l Superfluidity Effects 

The temperature dependent energy gar.for nucleon 

species (iJ is approximately 

"'. (T) 
1 

= to. (T=O) [l-T/T (i)) 1/2 
1 C 

= 0 

. , T < T 
c 

T > T 
c 

(5.15) 

T (i) and l.(T=O) arc given by Takatsuka (1972). 
c 1 

The . ... UReA d np h d d emlSS1vltles ng an nq are eac re uce 
\' \) 

by a factor exp![-lN(T)-a (T) )/T), and nqnn is reduced by a 
p ~ 

factor exp[-2"N(T.)!T), from the non-superfluid values (~la",,,,ell 

1979). 

;r 
It is not kno\,'n ho\,.: the pion process rate nq is 'af

\) 

fected by nucleon superfluidity. The effects of such uncer-

tainties may be accounted for by varying the pion cutoff 

densi ty p_. 
" 

1\11 the above six emissivities are retained since super-

fluidity may suppress the seemingly dominant ones (such as the 

URCA process). 



CHAPTER VI 

RESULTS AND CONCLUSIONS 

, 
From the res ul ts of the preceeding three chapters, 

the right hand side of eqn. (2.16) may be evaluated in 

terms of the 'core temperature' T'. A first order differen-

tial equation is thus obtained: 

dt =f(T') 
dT' (6.1) 

This may be solved using a simplified Runge-Kutta method: 

LIT' 
t(T'+t>T') ~ tIT') +6 (f(T')+4f(T'+t>T'/2)+f(T'+uT')} ( 6 • 2) 

with initial conditions t = 0 at T' ~ T~. For TO > 5x l0 9K 
, 

the choice of starting temperature TO' has no effect on the 

cooling curves, due to the strong temperature dependence of 
~~ 

the neutrino luminosity. 

The general shape of the cooling curve for a neutron 

star has been known for some time (Tsuruta 1974, Tsuruta and 

Cameron 1966) and is clear in Figures (6-1) and (6-2). In 

the early phase (t < 10
4 

- 10 5 years) the cooling is domina-

ted by neutrino emission from the interior, and the slope of 

the cooling curve in a log T vs log t.plot is approximately 

1 
6 (this follol<s from the heat content of degenerate fermions 

"'" ~ T2 while the neutrino emissivity ~ T8 ). This is followed 

43 
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by a phase of ste~per slope in which the cboling is domi

nated by photon emission' from the surface. The change in 

slope reflects the fact that the photon emission is propor-

tional to the fourth power of the surface temperature, and 

because, as the star cools, the contrast between the surface 

and care temperatures is reduced (see Figure 3-2). At tem-

Peratures much below 5X l0
4 

K the star will be isothermal out • 
to the surface, and one expects the cooling curve to have a 

1 
slope of - 2 

tent and the 

(reflecting the T2 dependence of the heat con
• 4 • 

T dependence of the radiation loss). 

Results for the cooling of neutron stars with no 

magnetic field, but with superfluidity effects accounted for, 

are presented in Table 6-1 for both equations of state and 

four stellar masses, at ages appropriate for comparison with 

young supernova remnants a • The variation with mass is not 

very severe: less than a factor of two for the stiff EOS (PPS) , 

and only 30% for t:he soft EOS (BPS). For the stiff .EOS the 

most massive stars are the hottest because the specific heat 

has a stronger density dependence than does the neutrino 

emissivity, resulting in slower cooling for higher density 

(more massive) stars. The same is true for the soft EOS rno-
• 

dels as well, but it is offset in the two most massive cases 

by the enhancement. of neutrino emission by the large central 

redshift factors (which raise T = T'e-~). For stars of 

the same mass, with no pion condensate, the soft EOS model 

, 
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is the hotter because ,of the thinner (less insulating) outer 

layeJ:s '(see Figure 3~2). 
, 

If a pion condensate is present then these models are 

about a factor of seven cooler, which renders them virtually 

undetectable as soft x-ray' sources. The stiff EOS models 

have such low central densities that it is unlikely that 

pion condensates could exist. Whether or not the soft EOS 

models should have pion condensates is uncertain, as it de

pends on some poorly known parameters of high density mat.ter,. 

At present, the observed upper limits on the temperatures of 

putative neutron stars in young supernova remnants are in 

the range 1-3xl0 6K (Helfand, Chanin and Novick 1979). As 

seen i.n Table 6-1 this is also the expected range of tem-

perature for young neutron stars in the absence 9f pion con

densates~ The lack of evidence so far for thermal radiation 

from neutron stars is suggestive of (but does not demand) the 

existence of pion condensates in these stars. It would re-

quire a lowering of the observed temperature limits by a fac-

tor of two to resolve the question satisfactorily. 

For ~easons discussed in Section III.4, calculations 

that attempt to incorporate magnetic fields at present have • 

only a quaiitative value. The effect of a strong magnetic 

field is to reduce the opacity and hence the core-surface 

tempe~ature contrast. In the neutrino-dominated cooling phase 

this increases the observed (surface) temperature, because 
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it is the core temperature that controls the cooling rate. 

However, when the cooling becomes photon-dominated, the lower 

opacity results in faster heat loss and "hence a shorter life-

time. Since the radiation from a cooling magnetized neutron 

star is expected to be anisotropic (and therefore modulated 
.." 

by stellar 'rotation) , polarization dependent, and deviating 

~n frequency-dependence from black-body radiation , its detec

tion may be less straightforward than in the case of an un-

magnetized star. 

The effects of nucleonsuperfluidity are twofold: 

the specific heat' and the neutrino emissivity are both sharp-

ly reduced at temperatures below the transition temperature. 

The result is that the inclusion or exclusion of nucleon 

superfluidity makes only minor differenc~ in the neutrino

dominated~phase. However, in the photon-dominated phase the 

absent heat content of the super£luid results in a shorter 

lifetime (see Figures 6-1 and 6-2). This is most pronounced 

in the low mass, stiff EOS mOdels, for which a substantial 

ma~s fraction becomes superfluid. The soft EOS models have 

only small 9uperfluid regions and 'so the effects of super-

fluidity are less noticeable (see Figure 6-1). It is found 

that the cooling curves are sensitive to the 5uperfluid energy 

2 
gaps only for ages ~ 10 years, as after that all models are 

"ell belO\" plausible 
,r--

transitio~temperatures. , 

• 
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Lastly, it remains ~o relate the cooling curves to 

the possibility of detecting cooling neutron stars. In Figur~ 

6-3 detectability curves (distance vs age) are' given for a 

1..25 M", neutron star, stiff EOS, with superfluidity.inclu

ded but no magneti,c field. The maximum detectable distance 

at a given age is defined by requiring that the count rate 

in a 100 cm2 soft X-ray detector (0.1-4.5 keV) exceed 2.5xlO- 3 

counts/sec (modelled on the IPC counter on the Einstein 

Observatory, see Giacconi et al. 1979). The spectrum is 

assumed to be blackbody and the three curves are for inter

-3 
stellar densities of 0.3, 1.0 and 3.0 em the absorption 

coefficients being those of Brown and Gould (1970). If mea-

surernents of this sensitivity were made (us should be possible 

with the HEAO-II satellite), since Figure 6-3 indicates that 

the cooling of a number of neutron stars (e.g. the Crab 

pulsar) should be. detectable, then one may be able to select 

between the various cooling curves and thus learn more about 

the stars in question . 

.. 
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Table 6-1. Neutron Star Models for cooling Calculations 

M/M R(km) \PC ,14 
- Z Z T6 (1~80 y) p,/PO 

EOS P14 Gl s c (300 y) 
, I 

BPS 0.4 10.0 I 6.7 1. 90 
1 

0.065 0.15 2.45 2.05 -
I 0.30 0 .. 27 2 

PPS 0.4 17.5 1.7 0. 354
1 

0.036 0.088 1. 32 ! 1. 07 -I 
BPS 0.7 9.30 13 .0 4.13 , 

0.135 0.31 2.72 I 2.38 -I 0.30 , 0.27 2 
PPS 0.7 16.57, 2.5 0.729 ! 0.070 0.155 1. 73 1. 47 -

; , 
BPS 1. 25 8.13 27. 11.0 I 0.35 0.96 I 2.42 2.13 -, 

, 
, 0.36 , 0.31 2 

PPS 1.25 16.0 3.8 1.45 
, 

0.14 0.31 ! 2.10 1. 81 I 
, -

, 

I 
. , 

, 

! , 
, 

BPS 1.41 7.00 55. 19.5 0.58 2.36 
I 

2.14 , 1.89 -, 

! 0.36 0.33 2 
PPS 1. 41 15.75 5.0 1.71 0.167 0.38 I 2.26 1. 94 -

0;36 , 0.32 1.5 

I I I 
The equation of state (EOS) is either soft (BPS) or stiff (PPS). 
The central density, Pc' and the mean density, p, are given in 
units of 10 14 g_cm- 3 . Also listed are the surface and central 
redshifts. The temperature, in units of 10 6 K, is given for each 
neutron stpr at ages of 300 y and 1000 y; neutron superfluidity 
effects are included but magnetic effects are not. The threshold 
density for the' onset of pion condensation is given in units of 
nuclear matter density, Po = 2.8xI0 14 g-cm3 . 
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Figure 6-1 

Cooling curves for a 1.25 M neutron star with the soft " . 
EOS '(central density 15 -3 = 2.7xlO g-cm ). The observed 

temperature is the gravitationally redshifted surface tem-

perature. There are two sets of four curves each: for the 

upper set, cooling by a pion condensate is ignored where-

as in the lower set this effect is included, Each set 

divides into two pairs: the pair for which the cooling 
, 

is ultimately more rapid has a surface magnetic field of 

10
12 

Gj the other pair corresponds to zero magnetic field. 

In each pair, the more rapidly cooling curve corresponds 

to the ~nclusion of nucleon superfluidity whereas the other 

member corresponds to its exe lu~ion. 'I'he reason for the 

relatively r.linor effect of superfluidi ty 15 that for this 

mass and this EOS, the central density is so high that 

the mass fraction capable of superfluidity is very small . 
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Figure 6-2 

Cooling curves for a 1:25 M 
G 

neutron star with 

the stiff EOS (central density = 3.8xl014 -3 g-cm ). The 

central density is below that at which it is believed 

likely for pion condensation to develop, so there are no 

curves which include the enhanced neutrino cooling effect 

of a condensate. The two pairs correspond to zero mag

netic field (longer lifetime) and a surface field of 1012 G 

(shorter lifetime). At early stages, when neutrino cooling 

dominates, the effect of a field is to raise the observed 

surface temperature; at later stages I \\Then photon cooling 

dominates, the presence of a field then naturally means 

more rapid ~ooling. For each pair, one curve has nucleon 
( 

superfluidity included (and this reduces the lifetirnb) 

whereas the other does not. The effect of superfluidity is 

more pronounced for stars with the stiff EOS (especially 
, , 

those of even lower mass) because a substant.lal mass fraction 

is capable of superfluidity. 
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FigUre 6-3 

Detectability distance for" 1.25 H neutron star (stiff 
10> 

EOS, B = 0, neutron superfluidity included) "s a function 

of its age, for a nominal soft X-ray detector of area 

100 cm
2

, sensitive to X-raYB of energy 0.1-4.5 keV. The 

-3 detectability threshold is taken to be 2.5xlO counts-

-1 
s This nominal detector approximately mimics the IPC 

on HEAO-2. The three curves are for interstellar hydro

-3 gen densities of n
H 

= 0.3, 1.0, and 3.0 cm ; the X-ray 

absorption coefficients of Brown and Gould (1970) have 

been used . 

• 
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APPENDIX A 

Pressure and Density of a Fermi Gas 

The total number of particles is found by integra-

ting over phase space: 

(A. 1) 

Here f(p,x) is the distribution function and 9 = 2s+1 is 

a spin multiplicity factor. 1 For non-interacting spin - par-
2 

ticles, 9 = 2 and f(p,x) is ~iven by the Fermi distribution 

f(p,x) = f(p) = 
1 

(A. 2) 
l+exp [(C ~) /kTJ . 

Here E(p) is the kinetic energy and ~ is the chemical poten-

tial. This distribution applies to an electron gas if corre-

lations due to coulonili interactions are negligible. 

Integrating O\Ter x and ~over angles in momentum space: 

N an n;;:: = 
V h3 l+exp [(£-)1) /kTJ 

(A. 3) 

o 

This can be written as a dimensionless energy integral by 

using 

cp (A. 4) 

(.'<.5) 
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and using the definitions 

~ 

" ~ - kT • (A.6) 

S 
kT 

~ """'"""2 (A. 7) 
me 

x = (; 
KT (A. 8) 

Eqn. (A.3) then becomes 

n ~ 4p 

h1 
(2mkT) 3/2 

J

w 1/2 1 1/" x. (1+8x) (1 + "2 Bx) -dx 

a+x 
1 + c 

(A. 9) 

o 

The matter density is related to the number density of 

electrons by 

where 11 
e 

the mass 

is~er 

of a nucleon. 

r = ~e In n 
p 

of nucleons pet" electron I and m 
p 

For fermions I the thermodynarn..j..c paten tial n :;;; -PV 

is (see for example Landau and Lifshitz 1958) 

~ -kT 

= -kT 

[ 

states 

l I'd 3x r d 3p tn(l + e(~-E)/kT) 
h 3 - J ,-

is 

= 
2kT 
-3-'V 
h J

oo 2 '-cJ /kT 
411 P i:n(l + e Jdp . (A.ll) 

o 

Integrating by parts one obtains 

, 
Q = -PV 1 JOO 

3' (A.12) 

o 
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Using the definitions (A. 6) , (A. 7) and (A. 8) , and using 

equation (A. 4) , the pressure may be expressed as 

r x 3/ 2 (1 1 ) 3/2dx 
8rrkT (2mkT) 3/2 

+ - ax 
p 2 . (A.l3) = 

3h,,3 . 1 + e"+x 
. 

0 

" 

, 
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APPENDIX B 

RADIATIVE OPACITY IN A MAGNETIC FIELD 

Consider waves in an electronic plasma in the 

prese~ce of ~n external magnetic field~o. Neglecting the 

pressure gradient term, the equation of motion is given 

by . 

dv dV 
dt = at + (v·v)v = - e 1 

(E + yXB) - yv 
m c 

(B .1) 

where y is the collision frequency. For waves propagating 

in the z-direction, one expects departures from equilibrium 

to be of the form exp(ikz-iwt). Therefore: 

B = ~o + ~1 e 
ikz-iwt 

+ n
l 

ikz-iwt 
n = nO e 

(B .2) 

V = '::1 
eikz-iwt 

E = ~1 
-ikz-iwt e . 

The quantities B
l

, n l , v l and El are taken to be first order 

small in comparison to BO and nO· 

Putting eqns. (B. 2) into eqn. (B.l) and keeping 

terms only up to first order small, one obtains 

y = -ie E -m(w+iy) 
ie 

mCJ.w+i y) 
vxB . 
- -0 

(B. 3) 
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Also, from Maxwel~S equations and the current density 

0~~o-}; 
J =:= -env t 

one obtains. using'""qns. (B.2): 

Solving the above two 

-ie 
v = 2 

mwwp 

41Te 2 

where w2 
= 

nO 
is 

p m 

w 
= c ~l 

411eno -w E + . --:-..::. v 
C _ ~ c 

equations for v yields 

2 
lc (k ·E)k + (w 

2 
_c2k 2 )E}. - - -

:;'-

the plasma frequency. 

Thus.equation (B.3) becomes: 

(w + i y) {e
2 (~.~) ~ + (w

2 _,,2k 2) E} 

2 2 A 222 A 

= wWp:- iwc{c (~.:)~XBO + (.w -,e k )~XBO}, 

where w = 
c 

eB 
me 

is the cyclotron frequency. 

(B.4). 

(B.5) 

(B. 6) 

(B. 7) 

(B. 8) 

we now look for normal moqes of eqn. (B.8) in the 

two fundamental cases of waves propagating parallel and,per

pendicular to the magnetic field. 

• 

• 
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Case (i) ~ IIBO • 

The normal modes are circularly polarized states 

with E = ,E(~ ± iY). For these modes equation (B.8) re-

duces to 

- 2 2 '2 2 
(w+iy+wc ) (w -c k ) = wWp 

2 
Take w real, k, complex, and introduce n 

2 n = 1 

For n ~ 1 and y « w 

",2 p 
w(w+w +iy) 

c 

, 

(B. 9) 

(B.ll) 

,The imaginary part of k results in a damping term 

of e-1m(k)Z. This can be related to the opacity K as f01-

lows: 

Im(k) = (mean free path)-l = Kp . (B.12) 

Since n = ck/w, the opacities with and without an external 

magnetic field are related by: 

K (B) 
K (B-O) 

1m n (w ) 
c -=--,---'=-,;, = 

1m n (w -0) c - 2 (w+w ) 
C 

(B.13 ) 

NOw, since 
• 2 
w 

2 2 I we take as an approximation 
W +wc+2wwc 

KCB) 

K (B=O) 
(B .14) 

I 
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valid for both modes in both limits W » we and W « wc' 

~ ~ 

Case (ii) ~ 1 ~o 
The two normal modes in this case are known as the 

ordinary and the extraordinary modes. 

a) Ordinary mode (~II ~D) 

The ordinary mode is independent of the cyclotron 

frequency we' so 

magnetic field. 

the .• acity is unaltered by an external 

b) Extraordinary mode (~l ~o) 

The dispersion relation for the extraordinary mode 

becomes 

2 ww 
P 

2 
OJ 

2 2) 
W +w 

c 

(B .15) 

As in case (i) above, the opacity is found from Im(k). In 

this case one obtains: 

K(B) 
K (B-O) 

= 
2 

W 

2 2' w +w 
c 

(B.l6) 

which is identical to eqn. (B.l4j for the longitudinal modes. 

) The above expressi'on (B.l6), although not valid for 

the ojdinary mode, is taken as a direction independent opa

Ci~;;-:implicity. Some error.is introduced by this, but 
. - ,r· l 

in any case the simple ass~tion of a uniform strength mag-

• 

] 
i , 
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5~ 

netic field throughout the star is unrealistic and precludes 

a better quantitative analysis of stars with magnetic fields. 

1 
J 

f , 
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