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ST

This study introduces a new model for the planar maximal covering location
problem (PMCLP) under different block norms. The problem involves locating p
facilities anywhere on the plane in order to cover the maximum number of n given
demand points. The generalization we introduce is that distance measures assigned to
facilities are block norms of different types and different proximity measures.

This problem is handled in three phases. First, a simple model based on the
geometrical properties of the block norms' unit ball contours is formulated as a mixed
integer program (MIP). The MIP formulation is more general than previous PMCLP's
and can handle facilities with different coverage measures under block norm distance and
different setup cost, and capacity.

Second, an exact solution approach is presented based on:

1- An exact algorithm that is capabie of handling a single facility efficiently.
2- An algorithm for an equivalent graph problem — the maximum clique problem
(MCP).
Finally, the PMCLP under different block norms is formulated as an equivalent
graph problem. This graph problem is then modeled as an unconstrained binary guadratic

problem (UQP) and solved by a genetic algorithm.

¥i
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Computational examples are provided for the MIP, the exact algorithm, and the genetic

algorithm approaches.

il
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1.1 round

t role in the

Decisions made on the location of facilities play an impo
economical and social development of society. Political, economical and social factors
often influence location decisions. These influencing factors should be abstracted into
mathematical models by location theory practitioners. Multiobjective mathematical
models that integrate these factors along with other aspects of the firm activities (such as
transportation, production, finance etc.) are frequently used. Location theory practitioners
should be provided with good mathematical formulations which accurately represent real-
life situations and all decision-influencing factors, as well as appropriate solution
techniques for mathematically formulated problems (Owen and Daskin (1998)). These
mathematical models with the help of computer visual systems play an integral part of

decision support systems (DSS) for decision makers (i.e. politician, public servant).

Some location models are general in that they provide a basic conceptual structure

one can build on. These framework models, such as the p-center, the p-median, and the
uncapacitated facility location problem, have been extensively studied, and the theoretical

and computational aspects are well known to experts in the field. Other location models

are tailored to specific applications, or to a specific setting (for example, a bank account
1
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problem, Comuejols et al. 1977), and they are usually a variation of the framework
models.

Location models can be classified, according to their spatial setfing, into discrete
models, network models, and continuous location models. In discrete location models, the
locations of new facilities are restricted to a set of points or to the nodes of a given

network structure. Hence, in discrete location models, optimal sites for new facilities are

ited to a set of given predetermined candidate sites. Discrete location models require
information of the actual traveling distances between points and, thus, need large data
storage. The availability of transportation network data and the advent of modern
computers make discrete location models attainable for many real-life problems. Some of

the most common models are the p-median (Lorena and Senne 2003), p-center

(Hochbaum and Pathria 1997), quadratic assignment (Burkard 1984), set covering
(Aickelin 2002), and hub-location models (Campbell 1994).

Location models that can site facilities anywhere on the plane, or on the network,
are known as continucus location models.

Other classifications of location models can be categorized under these two spatial
settings, the discrete and the continuous location models.

Some examples of these classifications are:

1) Location models under uncertainty (such as stochastic location models,

Louveaus and Peters 1992).

2) Evolving demand over time (such as multi-period location, Wesolowsky and

Truscott 1975).
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3) Classification based on ﬁbjemive function such as (i) minimize total traveling

cost (minisum, Chiu 1987), (i) n ximum traveling dis

{minimax, Michilot and Plastria 2002).
4) Classification based on facility type (uncapacitated facility, Gao et al. 1994
versus capacitated facility location, Lorena and Senne 2003).

In all location models, researchers pursue common basic objectives. One location

problem objective could be to locate the factory in a manner that min

transportation costs to demand points and satisfies their demand (mini
Alternatively, the objective might be to find the location of an emergency facility that
minimizes the maximum traveling time to a set of customers (minimax), or to site a radio
transmitter that covers the maximum number of users (maximum coverage).

Whether the model objective is to increase financial profit (such as the case in
private sector), or increase some measure of satisfaction — such as service level, or shorter
service time (such as pizza delivery or emergency medical service) — some performance
measure based on distance is used. In fact, the concept of distance is the major
commonality in most location models, and extensive studies have been done on that
topic. Section 1.2 discusses different distance measures, paying special aitention to
distance measures from the family of block norms in Section 1.3.

One type of location model which has many applications in public and private
sectors is the covering location model. Covering problems can be divided, according to
the proportion of population covered, into full covering and maximal covering location

problems (MCLP). Both problems — the full covering and the maximal covering — have
3
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been modeled as discrete and continuous location problems; these have been studied
under the rectilinear and Euclidean distance measures.

In full covering models, the model objective is to locate a single facility or

multiple facilities that can cover all demand points while, in maximal covering models,
facilities are located with the objective to maximize the total demand covered within 2
specified service standard (time or distance). In both models, the measure of covering
(satisfaction) is based on a proximity measure that varies from one covering model to
another. This covering measure is usually taken as distance traveled, or time to fravel,
from demand points to the facility. Therefore, in the full covering and the maximal
covering models, a demand point is said to be covered (satisfied) if it is within a certain
distance, or traveling time, from the facility. In both models ~ the full covering and the
MCLP - demand could be stochastic or deterministic, and could be represented either as
points in space or on a network (discrete), or as an area demand (continuous). In addition,
varying positive weights can be associated with demand points. In the case of demand
points of equal weights the MCLP is also known as the partial covering location problem.

For a review of some location problems, one can refer to papers by Brandeau and

Chiu (1589) and Beaumont (1981). More detailed information on the subject is found in

books by Drezner and Hamacher (2002); Love, Morris and Wesolowsky (1988); and

Francis, McGinnis and White (1992), as well as in the book on discrete location models

edited by Mirchandani and Francis (1990).

This work deals with deterministic covering problems where demand points are

represented as points in space and facilities can be sited anywhere on the plane. This
4
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covering model, known as planar maximal covering location problem (PMCLP), can be
classified under continuous location models. This thesis deals with the PMCLP, where
facilities can have different covering measures under different block norms.

Section 1.4 deals with two location problems related to the work in this thesis: the

rectilinear minimax location problem and the rectilinear planar maximal covering
problem. Section 1.5 studies computational issues in covering models. Finally, Section

1.6 describes the related literature and delineates the scope and outline of this thesis.

1.2  Distance Measures in Location Theory

Location problems deal with distance between two points in space in two different
forms. In the first form, the actual traveling distance is given as input data, while in the
second, the distance is calculated from coordinates of the two points. The two different
distance forms are used in the discrete location models and in the continuous location
models, respectively.

This thesis is dedicated to continuous location models; henceforth, our discussion
will be limited to location models where a facility can be located anywhere on the
plane, B*.

Continuous location models are known as site generation models because they
allow facility siting anywhere on the plane. Some of the most common continuous
location models are the well-known Fermat-Weber problem, uncapacitated facility

location, and warechouse location allocation models. In the Fen

nat-Weber problem
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izing the sum

model, for example, an optimal site for the new facility is found by minir

of distance functions between the given data (demand) points and the new facility site.

Euclidean distance and rectilinear distance — also known as rectangular or

nce measures used in continuous

1 distance — are the most common dis

location models. The Euclidean distance between two points is the length of the
Euclidean path — that is, the straight line — joining the two points. Thus, the Euclidean

distance is the shortest distance between any two points. Examples of location models

where Euclidean distance is an accurate representation of distance are some cases of radio
transmitter coverage, emergency helicopter systems, and the cases where the traveling
path between facilities is an actual Euclidean path.

On the other hand, the rectilinear distance between two points is the length of a
traveling path parallel to either the X or Y axes. Therefore, the traveling directions are
perpendicular to each other, and, hence, we have the name city grid, or Manhattan
distance. The rectilinear distance measure is often an accurate representation of the

traveling distance along city-street grids. Exceptions include cases of one-way-street grids

or natural barriers to travel. Rectilinear distances can also be applied in location models
that deal with factories and warehouses where travel is along aisles.
In reality, the traveling distance between two facilities rarely follows the

Euclidean or rectilinear distance measure exactly; instead, in most cases, Euclidean and

rectilinear distance measures approximate actual fraveled distance. This has led to other

distance measures, mainly the family of /) norms. The /, norm is a more general distance
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measure, covering the Euclidean (/,) and the rectilinear (/) norms for p values of two

and one, respectively.

For any three points p', ¢', and %' in R*, we define a distance (metric) as a function
that satisfies the following basic properties (Ward and Wendell (1985) among others):
d(p',g") =0 (Nonnegativity)
d(p',q)=0< p'=q' (Identity)
d(p,h')<d (p',q')+d (q',h")(Triangle inequality)
d(p',9")=d (¢',p')(Symmetry)

For any two points 4, and a,, with coordinates (a,,,4,,) and (a,,,a,,), the /,

norm is given as

Jo

lp(alaaz)::“alx—a2xlp+|a1y—a2y'p] 9 lspsw

Thus, the Euclidean and the rectilinear distances can be given as

Lia,a)= ‘\/(alx ”ab:)z +(a2y '_azy)z and [ (a,a,)= Bau _azx!+laly "azyﬂ , Tespectively.

Sy ”azyi} )

When p -» +w, we get the Tchebycheff norm asi, (g,,a,) = max {g@h -,
For better distance estimation, the value of p in the / norm can be tailored to a

specific region by empirical studies, Brimberg et al. (1996). Unfortunately, the gained

accuracy from empirical p value, in the /, norm, is local to the region under study,

motivating research into various approximations for distance measures. One area of
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distance approximations that has been considered is the weighted distance measure, such

as the weighted /, norm and the weighted mixed norm. Extensive references for weighted

distance measures can be found in Brimberg (1989) and Uster (1999).

Some other distance measures have been proposed, such as the block morm

distance measure (Ward and Wendell (1980), Hamacher and Klamroth (2000)), and

spherical distance for aircraft refueling (Yamani 1990). The distance measures of

relevance to our research are from the family of block norms. These distance measures

are described in the next section.

1.3 Block Norms

Distance functions can be classified according to their unit ball contours into
block norms and round norms. The family of distance functions with contours made up
from flat segments forming polytopes in N-dimensional (a polyhedral in R*) is called
block (or polyhedral) norms. The round norms are those norms with no flat spot on their

unit ball contours. The /, norm is a round norm for 1< p <. The Euclidean distance

unit ball in R’ is a circle of radius 1, as shown in Figure 1.1.
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Figure 1.1: Euclidean distance contour, radius = 1.
The unit ball contours of the rectilinear (/, ) distance is a diamond shape, a square
tilted by 45 degrees, with corner points at (1, 0), (-1, 0), (0, 1), and (0, -1). The
Tchebycheff (/) unit ball contours is a square with corners at (1, 1), (-1, 1), (1, -1), and

(-1, -1), as shown in Figure 1.2.

&

y
0, 1) \ (1, 1)
/ \ . )
\ 4, 0) X

Tchebycheff Contour

Rectilinear Contour

Figure 1.2: Unit balls for rectilinear and Tchebycheff norms in the plane.

9
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Ward and Wendell (1980) introduced a block norm, called the one-infinity norm ,

as a linear combination of rectilinear and Tchebycheff norms. Let 4, and A, be positive
numbers, not both zero; then, the one-infinity norm is defined as ] = A, +\f§i€;gfm.

igure 1.3 shows the unit ball of the one-infinity norm defined by Ward and Wendell.

ity norm can be interpreted as the weighted sum of the shortest rectilinear

The one-

and diagonal distances — that is, the distance either along or parallel to the one-infini
unit ball contour diagonals. The ratio % represents the proportion of the trip traveled
along the rectilinear distance to the proportion traveled along the diagonal roads (the

block norms diagonals). For (4,,4,) values of (1,0) and(0, 71._5), the one-infinity norm

changes to the rectilinear norm and Tchebycheff norm, respectively.

Ward and Wendell (1985) extended this idea to the family of block norms, which

are polygonal in shape, and called them additive or mixed norms. As in the one-infinity

norm, the directions of travel in an additive norm are those directions that are parallel to

its unit ball contours diagonals.

In this thesis, we refer to block norms with r diagonals and » allowed directions of -
travel as block norms of degree r (» degree). Therefore, we refer to the rectilinear and
Tchebycheff norms as block norms of degree two (or a block norm of second degree), and

the one-infinity norm as a block norm of degree four {or a block norm of fourth degree).

Hence, the unit ball of a block norm with » = 3 is hexagonal in shape.
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-4
Slope = iz
S )

Y-axis

e

i 24
e HETE)

Y

K-axis

Figure 1.3: Unit ball (contour) of a one-infinity norm in R*.

Ward and Wendell (1980, 1985) shows that the one-infinity norm is comparable

with the weighted /, norm as a distance predictor to geographical data. In addition to that

one-infinity norm allows for linear formulation of the Fermat-Weber problem and to
Rawls problem. Other block norm properties have been reported by Thisse, Ward and
Wendell (1984). One of the main results of Thisse, Ward and Wendell (1984) is that
block norms can represent a round norm as accurately as desired by a higher degree block

norm, that is as 7 —» o the block norm becomes a round norm.

1.4 Continuous Covering Location Probl

From 2 location theory perspective, a demand point is said to be covered (serviced

or satisfied) if it lies within ce or travel time from the covering, or serving,
facility. There are two types of continuous covering location problems: the full covering

problem and the partial-covering problem. In full covering problems, all demand points

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



HD Thesis — Hassan Y ounies McMaster- Management Science/Systems

must be covered by a single facility or multiple facilities. An example of full covering is

the diamond shape covering problem, which is equivalent to the unweighted rectilinear

nax location problem.

x problems, facility location is optir

distance from the facility to demand points, a problem well studied under the Euclidean

and rectilinear distance measures. The single facility minimax problem under the
Euclidean distance measure is equivalent to the so-called circle covering problem. The
location of the smallest diamond shape covering all demand points becomes the solution
to the single facility minimax problem under the rectilinear distance measure. The
minimax problem under the rectilinear distance measure will be discussed briefly in
Section 1.4.1.

In practice, however, it is either impossible or uneconomical to cover, or serve, all
demand points by a fixed number of facilities. The maximal covering location problem
(MCLP) is the problem of locating a single facility or multiple facilities that cover the
maximum weight of demand points. When the weights associated with demand points are
eqgual, one has the simple partial covering problem.

As in other location problems, the maximal covering location problem can be

formulated as a discrete or a continuous location problem. Most of the work done on
MCLP csn be categorized into discrete and network location models. Covering on

networks can also be divided into continuous coverage — where the potential facility can

be located on nodes or arcs — and discrete coverage, where the locations of the potential

12
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facilities are limited to network nodes. Qur discussion will be limited to the work done on

maximal covering location problems (PMCLP).

PMCLP problems have been categorized, according to the distance measure used,

into the Euclidean planar maximal covering problem (EPMCLP) and the rectilinear

planar maximal covering problem (RPMCLP). This thesis is concerned with planar
maximal covering problems with facilities under different block norms. In Section 1.4.2,

we will discuss the PMCLP, focusing mainly on the RPMCLP.

imax Problem

In this section, we consider the single facility rectilinear distance minimax
problem. This problem is equivalent to a full covering problem where all demand points
must be covered. The single facility rectilinear minimax problem is therefore equivalent
to covering all demand points by the smallest single diamond shape — the unit ball of the

rectilinear distance function. The mathematical formulation for the minimax problem and

the geometrical approach to solve the minimax problem will be shown in this section.
The minimax problem can be stated as follows:

Problem statement: Consider » demand points g, =(g,,qa,,)in R, i=l,..n,we

must find a new facility location (x, y), that will minimize the maximum traveling
distance (time) from the new facility fo any demand point.

This problem has applications in both the private sector and the public sector. In
the public sector, the new facility could be an ambulance, a fire station or a public school;

where the objective is to locate a facility within an acceptable traveling time from demand

13
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points. In the private sector, the location model could be to, for example, locate a

convenience siore, or a restaurant, in such a way that the total population living within

in distance (or traveling time) is maximized.

The unweighted single facility minimax location problem for the rectilinear distance

measure can be formulated as follows:

(F1)

(1.1)

Subject to
lx-a,|+|y-a,ll<z i=l,..,n (1.2)

Problem PI can be solved by expanding inequality (1.2) into the following equivalent

inequalities.
z2[(x~a,)+(y~-a,)l
z2[x~a,)~(y-a,)]
i (1.3)
zz[~(x-a,)+(y—ay)]
22[(x-a,)~(-a)]  i=l..n
By rearranging inequalities {1.3) as described in Love et al., (1988, Chapter 6),

closed form solution can be found. The geometrical solution approach for diamond shape

covering starts with constructing the smallest rectangle that covers all peints, with

rectangle sides making an angle of +45 degrees with an axis. The rectangle sides that are
farthest apart are then extended in length to obtain a square. The geometrical approach for

the diamond-covering problem is shown in Figure 1.4,
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{CLP)

1.4.2 Problem {1

In this section, we discuss the situation when new facilities are unable to cover all

ints on the

demand points. This situation occurs when there are fime and distance constr

int on the munber of the new factlities 1o be

coverage measure and a budget co

located. It can also occur when there are capacity constraints on the demand that can be

served by each facility. A demand point is said to be covered if it can be served within a
given distance or time limit. In the private sector, a facility with a coverage constraint
could be a restaurant with a time limit on delivery. In the public sector, locating an

emergency medical service station (EMS) or a fire station that covers most of the

population is an example of an MCLP.

Figure 1.4: Full covering by diamond shape.
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The MCLP can be stated as follows:
Problem statement: Consider n demand points ¢ =(a,,q,)in R® with
associated weights w,,i=1..,»n; find the location of p facilities that will cover the

maximum demand weight.

Church (1984) introduced the planar maximal covering model (PMCLP). His

method is mainly an extension of the original work on the MCLP by Church and ReVelle

(1974). The MCLP, defined by Church and ReVelle, is structured to minimize the

number of demand points left uncovered. The mathematical notation and formulation of
MCLP are as follows:

Inputs:

DP = the set of demand points,

PS = the set of potential facility sites,

CM, = coverage measure (distance or time) beyond which a demand point 7 is considered
uncovered,

sd, = shortest distance from point i to site /, i =1,...,m; j € PS

w, = weight associated with demand point i,i=1,...,5;

p = the number of facilities to be located

FS, ={je PS|sd, SCM,}, the set of facility sites eligible to provide coverage to point i,

Decision variabies:

- jz if a facility is allocated to site j,

710 otherwise

16
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i

1 if demand point 7 is not covered,
. 0 if demand point i is covered

Subject to B
Y b +u 21 Vie DP (1.5)
> h=p (1.6)
jePs
u,h,=(0,1) Vie DP,VjePS (.n

The objective function of problem P2 is to minimize the uncovered weight. If a point is
covered, then the binary variable u, is assigned a value of zero. Constraint (1.5) ensures
that at least one facility is located in the set of facility sites eligible to provide coverage
for a demarid point i, FS,. The number of facilities to be sited is limited to p by constraint
(1.6).

Given n demand points, let CM, be a rectilinear covering measure for point i

where i is one of n demand points. Draw a diamond shape centered at point ; with a

rectilinear distance CM, to its boundaries. The diamond shapes intersect set (DIPS) is

defined as the set consisting of all demand points in addition o all points where some
pair of diamond shapes intersects. The Church (1984) solution approach for the

rectilinear maximal covering location problem (R

MCLP) is based on the fact that the
optimal solution for the RPMCLP always belongs to set of intersection points of diamond

nd points (the DIPS).

shapes around den
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Consider any pair of intersecting diamond shapes; they either intersect at two

ure 1.5. In the case of two

points or share a line segiment on one of their boundari

diamond shapes sharing a line segment, while any point on the line segment could be
used, the two endpoints of the line segment are taken in the DIPS, Figure 1.5.b. Thus for

n demand points, the DIPS will be finite set with at most »° members (demand points

plus diamond shapes intercepts). The size of the DIPS can be further reduced by using the

domi

ance rule where a facility site FS, is said to dominate facility site FS, if it covers

the same demand as FS, plus possibly more. Formulation P2 and linear prograr

then applied to find the optimal facilities location.

Figure 1.5.a: An example of diamond intersection points.
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Line

Demand
point \ _ intersection
demand point

O = point of intercept

Figure 1.5.b: An example of DIPS points when two
diamond shapes intersection is a line segment.

Figure 1.5: A possible intercept result of two diamond shapes.

1.8 Computational Aspects in Covering Problems

Location practitioners should provide, if possible, an optimal solution to location
problems within a reasonable computational effort. In certain settings, some location

models tend to be easy to solve; for example, covering location models on tree networks

arive and Hakimi (1979)). In other settin

have polynomial time solutions (

location models can not be optimized in a reasonable amount of time.

The rectilinear maximal covering location problem (RPMCLP) is closely related
to the k-center problem, an NP-Hard problem (Minieka 1970). On another setting,
Megiddo and Supowit (1984) found that the geometrical covering by squares and
rectangles is NP-Hard. This conclusion was derived from the 3-SAT problem (Gary and

Johnson 1979). A similar approach was also used by Fowler et al. (1981).
19
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On the other hand, in the Church covering model, the set of intersection points of

diamond shapes was used as the set of possible optimal locations. This fact changed the
search from locating the facility anywhere on the plane to a finite (and large) number of

PMCLP is #°.

possible locations. The maximum size of DIPS in the Church method for |

Church (1984) reported that a linear relaxation for formulation P2 provides an optimal

solution most of the time. However, in few cases, a branch and bound algorithm was

needed. Thisse et al. (1984) provided the number of such block norms unit ball intersect

set as (n+n(n-0)(r({r-1)/2)), where » is the number of demand points and 7 is the

number of allowed directions of travels (that is, the number of the block norm diagonals).

1.6 Scope and Outline of the Thesis

Covering problems have been studied from different perspectives for different

applications in different areas of science. For example, Barequet et al. (1995) studied

convex polygon containment. The objective was to contain the maximum number of
points, with possible applications in material cutting and line detection. Later, this
problem was extended by Dickerson and Scharstein (1998) to the optimal placement of a

single convex polygon (allowing both rotation and translation) to cover the maximum |

number of points. The algorithm complexity of Dickerson and Scharstein (1998) was a
function of the number of points contained, the number of points on the plane, the
polygon width and length, and the number of vertices of the polygon. Ventura and Dung

{1993) studied parts inspection with rectan

igular and square shapes, using a Euclidean

20
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ine the optimal parameters of the sides of squares and

least squares method to deter

rectangles.

Other applications that borrow from covering models have been reported in

literature such as the apparel trim placement problem. Grinde and Daniels (1999) applied

covering models from location theory to the apparel trim placement problem. The goal of

this problem is to place the most trim pieces in the available container space. Grinde and

P formulation based on the maximum

Daniels used a Lagrangian heuristic to solve the M
covering location problem. Further, Brotcorne et al. (2002) proposed a heuristic for large-
scale covering-location problems for cytological screening tests.

On the other hand, other researchers have studied the minimal covering problem

for material salvage applications. For example, Drezner and Wesolowsky (1994)
introduced mixed integer formulation to find the location of the minimum weight
containment rectangle with sides parallel to the axes.

In addition to Church's (1984) PMCLP formulation, Mehrez et al. (1983-1985)
studied PMCLP, developing in Mehrez et al (1985) a procedure for locating a facility that

is "somewhat desirable”. This problem known as "maximin-minimax" facility location is

applicable in public service centers where the facility services are desirable and should be
placed close to the residential area, but not too close in order to prevent noise and other

disturbances (some examples are shopping malls and schools). The procedure of Mehrez

et al (1985) finds the set of intersection points of any two lines forming the equi-

rectilinear distances from the demand points. Other researchers used heuristic technigues

and MCLP formulation for locating ambulances (Diaz and Rodri
21
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In the review of covering problems by Schilling et al. (1993), the MCLP has been
studied only under rectilinear, Euclidean, and spherical distance measures. No attempts

were made 10 use other distance measures in the PMCLP. Block norms as a distance

4 J.

measure have been applied in Fermat-Weber and Minimax location problems (War
and Wendell R. (1980, 1985)). On the other hand, the mixed norms location problem
concerns the location problem where facilities may have different coverage measure
under different norms. Durier R., Michelot (1985) investigated the Fermat-Weber
problem under mixed norms; Plastria (1992) investigated the Fermat-Weber problem
with mixed skewed norms; Nickel (1998) studied the center problem under different
polyhedral gauges (a gauge is a convex function that allows for asymmetric distance)
where the set of demand points is allowed to have its own polyhedral norm.

According to Avella et al. (1998), the location problem where demand points have

different distance functions has not been studied thoroughly so far, so this issue is

considered one of the niches of future research. The author’s review of the literature

indicates that the multiple facility planar maximal covering problems under different
block norms has not been studied in the literature. Introducing block norms to the

PMCLP would fill a gap in our knowledge of location theory.

Since the block norms' unit ball shapes are polygons with opposite sides parallel,
we will tackle the problem of the PMCLP under block norms as covering by polygonal

shapes. Chapter Two starts by introducing a mixed integer program formulation (i

block norms with two allowed directions of travel; these norms have been called block

ity, in this thesis we refer to second degree

norms with » = 2. Without loss of general
22
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P of

block norms as block norms of degree two, or as parallelogram norms. The B
Chapter Two is more general than the Church MCLP formulation in that it allows
facilities with different norms and coverage measure. The findings of Sections 2.2-2.4
and Section 3.2 have been accepted for publication in the Ewropean Jouwrnal of

Operational Research (Younies and Wesolowsky 2004.a).

In Section 2.5, we extend the MIP formulation from the PMCLP for paralielogram
shapes (block norms of degree two) to block norms with four allowed directions of travel
(block norms of degree four). The block norm with four allowed directions of travel is the
one-infinity norm which is octagonal in shape.

Unfortunately, while the MIP formulation is versatile and can be adapted to many
cases, it cannot handle large-size problems efficiently. Therefore, one should seek an
alternative solution method, such as problem specific algorithms or heuristic techniques.

Chapter Three introduces two exact solution methods that can handle one shape or
a few shapes efficiently. The first algorithm, from Younies and Wesolowsky (2004.a),
can handle only block norms with two directions of travel. The second algorithm, based
on graph theory, can handle higher degree block norms. The algorithm of Section 3.4 is
not limited to covering problems; this has been submitted for publication by Younies
(2004).

When the number of demand points and the number of facilities considered

increases, the ' approach and the exact algorithm approach will not be sufficient. In

Chapter Four, we use a heuristic approach based on genetic algorithms (GA) and the

ideas set forth in Section 3.3. First, we present in Section 4.2 a brief review of the basic
23
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elements of GA, and then, in Section 4.3, we convert PMCLP under different block

norms into an unconstrained binary quadratic problem (UQP). This new representation as

a UQP is a more appropriate format for the GA algorithm. Section 4.4 explains the

ferent block norms

different issues related to applying GA to solve the PMCLP under dif
and its UQP equivalent. The material of Section 3.3 and Chapter Four will be submitted
for publication by Younies and Wesolowsky (2004.b).

Finally, the work performed in this thesis is aimed at introducing block norms to
PMCLP, introducing an alternative perspective, methodology, and solution technique for

the PMCLP. In Chapter Five, we provide a summary of this work and its contributions

and some recommendations for further future research.

24
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NORMS

UNDER BLOCK

2.1 Introduction

In this chapter, we introduce a zero-one mixed integer formulation (MIP) for a
maximal covering problem, where demand points are discrete and a facility can be sited
anywhere on the plane. The MIP formulation utilizes some of the geometrical properties
of block norms contours, mainly the fact that the block norms considered are those with
a polygonal like contour shape, where opposite sides are parallel. The formulation
strategy is based on the difference between Y-intercepts of parallel straight lines.
Therefore, to simplify references, we will refer to such even-sided polygons that have
opposite sides perallel, as parallel-sided polygons (PSPs). In addition, we will use the
terms "shape”, "block norm contour” and "parallel-sided polygon” (or simply "polygon")

interchangeably.

25
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In Section 1.4.1, we will discuss the rectilinear single facility minimax problem
and its relationship with the diamond shape full covering problem. To emphasize this
relationship between the unweighted rectilinear distance minimax problem and the
covering problem, we will show in Section 2.2 how some slight modifications will
transform formulation P/ of Section 1.4.1 into the single facility rectilinear maximal
covering location problem (RPMCLP).

In rectilinear distance, the directions of travel are those parallel to the X- axis and
the Y-axis. Nevertheless, the distance traveled parallel to the X-axis, or Y-axis, is
Euclidean. This idea — the additive norm of Euclidean distance in two directions — can be
generalized to block norms with unit balls in the shape of a parallelogram. The mixed
integer program (MIP) formulation that handles both the rectilinear and the parallelogram
covering problems is discussed in Section 2.3. The MIP formulation proposed in Section

2.3 can only be used with inclined parallelograms — although, of course, it can also be

used for parallelograms with inclinations close to % . The special case of covering

rectangles or squares with sides parallel to the axis is treated with a separate formulation
in Section 2.4.

In Section 2.5, we extend the ideas of the MIP formulation of Section 2.3 10
handle one-infinity norms. The formulation of Section 2.5 can handle facilities with block
norms of the same degree and different coverage measures. Finally, the formulations
proposed in this chapter can easily be adapted for other location and material cutting

applications.

26
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22 Fro al Covering

In Chapter One, the unweighted minimax problem under the rectilinear norm
distance measure was shown to be equivalent to a full covering problem with diamond
shapes. The diamond's size can be found with the help of the geomeirical solution
approach and the demand points’ coordinates. Therefore, the maximum traveling distance
in minimax problems is governed by the demand points' coordinates. This assumes that
demand points are seeking the facility's service, regardless of the traveling distance. In

the following, we show a variation of the diamond shape covering problem where

D The facility cannot provide (quality) service beyond a certain distance

(examples: emergency medical services (EMS) or pizza delivery)

2) The facility's service is not pursued by customers beyond that distance

(example: a grocery store).

The change in coverage from covering all demand points in minimax problem
into covering the maximum number of demand points within certain distance (in maximal
covering), alters the problem from one of finding the parameters of the smallest diamond
shape that covers all points to one of finding the location of a fixed size diamond shape
that covers the maximum number of points. To illustrate, we will show how the minimax

model described in Section 1.4.1 can be slightly modified to handle a single facility

CLP. In addition to notation used in Section 1.4.1 we will define the following

notation:

27
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Inmputs
M = a large number

7 = Coverage distance measure beyond which a point is said to be uncovered.
Decision Variables

_ {1 if demand point is covered
“ 10 otherwise

The single facility RPMCLP will be

(P3) Maximize i u, 2.1)
p
Subject to
[[x-ma,|+[y-ug,||sZ+A-u)M i=L..n 2.2)
u, €{0,1} (2.3)
x20,y20 2.4)

The objective in problem P3 is to maximize the number of points enclosed by a diamond

shape. Coverage of demand point 7 is achieved when u, =1 in (2.2). Therefore, the large

number, M, will ensure that constraint (2.2} is redundant for the cases when a point is not
covered. The weighted version of problem P3 can be easily achieved by introducing

different weights for different points.

28
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gree Block Norms

In this section we start by introducing the idea of inclined parallelogram norms in
Section 2.3.1. We infroduce 2 mixed integer formulation (MIP) capable of choosing
among many rectilinear and parallelogram shaped norms with different inclination,

covering distance (size of the shape) and different placement costs in Section 2.3.2. Our

formulation for the PMCLP with inclined parallelograms makes use of a straight

line equation and its Y-intercept. A detailed derivation of the approach and a zero-one
mixed integer formulation will be shown in Section 2.3.2.

Finally, a computational example for covering 50 demand points in R’ is
presented in Section 2.3.3.
2.3.1 Parallelogram Norms

Consider any two points in B>, g, and a, with coordinates (a,.q,) and

(a,,-a,,). The rectilinear (/) norm can be written as li(a!,az}=[a1x _@2x!+Ea1y —azyg],

Note =./(a, —a, ) which is the FEuclidean distance between the X-

aix - aZ

X

coordinates of points ¢, and ¢, . That is

= \f(aﬁy “azy}z .

Hence, we can rewrite the rectilinear distance between 4, and a, as

Ez(azxsazx} = éa!x _'a2x'§ = %j(a}z “"azx}z &.ﬂd gz{agyw%y) = !aiy ”ﬁzy

Ia,a)=1{a,.a,)+](a,.a,), where [,{(a_,a, ) is the distance traveled paralle] to

the X-axis and /,(a,,—a,,) is the distance traveled parallel to the Y-axis. Therefore, the

29
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rectilinear distance norm can be considered as an additive norm of two axis-parallel
Fuclidean distances, Figure 2.1. Ward and Wendell (1985) realized that the rectilinear
and Tchebycheff norms are block norms with 7 = 2.

Consider a road network that is dense in two non-orthogonal directions, and
entailing unequal traveling speed in the two directions. Following the same analogy as in
the one-infinity and rectilinear norms, the block norm shape will be a parallelogram with
the parallelogram diagonals as the allowed traveling directions. This generalizes the idea
of an additive norm of Euclidean distance in two directions into block norms with unit
balls in the shape of a parallelogram. The rectilinear and Tchebycheff block norms can be
considered as special cases of the parallelogram norm. Figure 2.2 shows a parallelogram

norm and the possible directions of travel.

30
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Figure 2.1: Equi-distance contour for rectilinear norm and traveling directions.

L norm and traveling direction.

Figure 2.2: Equi-distance contour of parallelog
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2.3.2 A Mixed Integer Program Formulation

This section considers maximal facility covering problems under second degree
block norms. The common second degree block norms are the rectilinear and
Tchebycheff norms, which have contours in a shape of parallelograms with 45 degrees
inclination and sides parallel to the axis, respectively. Therefore, the general PMCLP
with a second degree block norm is similar to covering by inclined parallelograms. We
start this section by stating the problem; then we discuss the formulation. Computational
results for this formulation are shown in Section 2.3.3.
Problem statement

Given n demand points (a,.q,) in R’ with weights w, i=L..,n and g

facilities with coverage measure under block norms of second degree, and a setup cost for

each facility C,, k=1,...,g, we must then find the locations of p facilities that will

cover the maximum weight of points. Any given point is assigned to one facility only.
Amnazlysis

Second degree block norm contours are parallelograms in shape, and, hence, the
problem is similar to that of the covering problem by inclined parallelograms. Therefore,
we would tackle the problem as if it were a maximal covering problem by parallelogram
shapes. The inclined parallelogram maximal covering formulation assumes that none of
the parallelogram sides are strictly parallel to the Y-axis. The case of square or
rectangular shapes with sides parallel 1o the axes is discussed in Section 2.4.

Two straight lines parallel to each other can be defined with two straight-line

equations that differ only in their Y-intercepts. In 2 parallelogram, two non-parallel sides
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with larger Y-intercepts than the sides parallel to them can be selected. Therefore, 2
parallelogram can be defined by straight-line equations of these intersecting sides and the
differences in Y-intercepts for parallel sides. The following property will relate the
difference in Y-intercepts of these parallel lines, the inclination angle of the lines, and the

perpendicular distance between them.

Property 2.1: Consider a pair of parallel straighi-lines L and L with Y-intercepts b and b,
respectively. The distance between the respective Y-intercepts b and b can be given by

d
cosé

I=[p-b]=

for 007,60 %, where d is the perpendicular distance between

the two lines and 8 is the counterclockwise inclination angle of the lines from the X-axis.

Proof: Easily derived from Figure 2.3 and Figure 2.4.

The case of % <@ < 7 is similar and is shown in Figure 2.4.

Figure 2.3: Hlustration of Property 2.1 for <8 <§
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Y4

Figure 2.4: lllustration of Property 2.1 for % <f<n

Figure 2.5 illustrates a parallelogram with sides L; and L,, with Y-intercepts b;
and by, and the lines parallel to them L and L, with Y-intercepts b, and b,
respectively. In addition, the distances between the Y-intercepts of the parallel sides are

denoted as / ; and 7 .

Let L; and L; be two intersecting sides of a parallclogram such that the Y-
intercepts of each are larger than that of its corresponding parallel side. The formulation
to be shown will find the Y-intercepts of intersecting parallelogram sides with larger

intercepts and, by property 2.1, the Y-intercepts for the other parallel sides can be found

34
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.
=

K-axis

Figure 2.5: An inclined parallelogram with the Y-intercepts of its sides.
It can be shown from the straight line equation that the bounds on the maximum
and minimum possible values of the Y-intercepts of lines through the points

(ﬂix,aiy ), i=1,...,n, can be given by

min{a, —ma, } <b<max{a, —~ma,}, where m = tan@ is the slope of the line.

This relation will be useful in the following formulation.

Using property 2.1 and the bounds on the Y-intercept, we develop an MIP

18 — each with

formulation for locating p parallelograms selected from g parallelogran

known inclination angle, side lengths, and the angle between those sides. If the intercepts
of the sides are given, the parallelogram's four comners can be found as the point of

intersection of the intersecting sides and, hence, the parallelogram location can be found.

The following notation will be used:

Lo
(¥
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Inputs

intersecting sides with larger Y-intercepts, j=1,2;k=1,..., g

ij ?3-
Lﬂ parallelogram intersecting sides with smaller Y-intercepts, j=1,2;k=1,..., 2
8, counterclockwise inclination angle of line Ly in paralielogram £ from the X-axis,

j=1,2k=1,...,g;

mj %

= tanéj.k , slope of line ijin parallelogram £, j=1,2;k=1,...,g;
a;k = the perpendicular distance between the parallel sides ij and L;,k in parallelogram
k, j=1,2;k=1,....2;

ljk = distance separating the Y-intercepts of sides ij and L;.k in parallelogram £,

- J=L2Zk=1,.,g;
]k Cosﬂjk b 5 2 2eeey %
C, =cost of choosing parallelogram &k, k= 1,..., g;

w, = weight associated with point i, i=1,...,n.
Decision variables

1 if demand point i is covered by paralielogram %,
3., =
# 10 otherwise

I'e
H

_|1if parallelogram % is chosen
£ iﬁ otherwise

by = the Y-intercept of line ij in parallelogram

kwith the Y-axis, j=1,2; k=1,..., 2.
Following the above notation, we will denote the sides of parailelogram % with

slopem,, as L, , L,, , and the intersecting sides with slope m, as Lyand L, .
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In the following formulation, a large number M is used as a multiplier. The
minimum possible value of the multiplier can be determined from the bounds on the Y-

intercepts and the distance separating the Y-intercepts of the given parallelograms. As
explained below, it can be shown that M 2 Zmaxéim(% -~ m,a, }%s max{a,, -mka&}é is

k=t,...2 i=1,...m

adequately large.

mal covering formulation is as follows:

The inclined parallelogram maxi

g & g
(P4) Maximize Y > wu, - Cih, 2.5)
k=1 j=1 k=1
Subject to
a,-mua, ~b,+1,2M(u, -1) J=LZi=L. . mk=1.,g (2.6)
ajy—mjkaix—bjk <M(l-u,) J=L2i=1.. . mk=1..,2 (2.7
g
Zuik <1 i=L.,m (2.8)
&=1
h —-u, 20 i=L..,mk=1..,g; (2.9}
Sho=p (2.10)
uph {01} fori=L..mk=1..g. 2.1
b,20,j=12k=1..,g. (2.12)

In the above formulation, constraints (2.6) and (2.7) refer to each of the

parallelogram's parallel sides. Constraint (2.6) represents the side with lower Y-intercept,

37
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and constraint (2.7) represents the side with larger Y-intercept. If a parallelogram is
chosen and z point is assigned to a parallelogram, the right hand side (RHS) in constraints
(2.6) and (2.7) will equal zero, indicating that the point is on or between the

parallelogram parallel sides. If a parallelo is not chosen or a point is not assigned o

it, then constraints (2.6) and (2.7) will be satisfied because of the multiplier M.
Constraints (2.8) ensure that if a point is assigned, it will be assigned to one

parallelogram only, while constraint (2.9) ensures that no point is assigned if a

parallelogram is not chosen. Finally, the number of parallelogram
constraint (2.10).

Instead of using an arbitrarily large number, it can be easily shown that M in (2.6)

can be replaced by Zmax{ min (g, ——mjka,.x)} and that A in (2.7) can be replaced by

&=tz i=h,...,

I

Once the intercepts of a parallelogram are found by the program, the

max(a, —m,a, )}
i=l,.,®

2max{

~ parallelogram location can be found. To find the comers of the parallelogram, one can
solve for the coordinates from the straight-line equations of two intersecting sides. In the
following, we will illustrate how to find the corner location for an inclined parallelogram
from the Y-intercepts.

Figure 2.6 shows an inclined parallelogram, £, and the notation for the sides. The

corner location (x,,y,) can be found from the intersection of straight line equations of

lines L, and L ,, in Figure 2.6:

38
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R
UL W

» Reference X-axis

(xc > ck)

Figure 2.6: Solving for inclined parallelogram corner (x , ¥ ).

Vo =myX, +b, -1, , (2.13)

Vo =My X, +by, — 1, . (2.14)

By solving the above two equations, the corner location is

x zblk_bZk—glﬁ+z2k and yk=mur(
ok o i
My, = My

bﬁk ’5% "'fm ‘Hyzs j+bi ~7
F R T
My — Moy, ’

Note that one can modify the previous formulation fo solve directly for one of the
paralielogram corners. In a modified formulation that finds the comer between the
parallelogram sides with lower Y-intercepts, constraints (2.6) and (2.7) in (P4) will be
changed as follows: |

a,~my{(a, %)~ ya 2 M@, -1 F=12%i=1..,mk=1

28 9 15)
39
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a, ~my(a, ~x )-yu -1, SM(-u,) j=L2%i=L..mk=1..g(2.16)
For problems with g parallelograms and » demand points, the formulation takes

g(n+1) binary decision variables and 2g continuous variables for the Y-intercepts.

2.3.3 Computational Example

While the proposed formulations can handle weighted points, points with equal
weights are easier to present in a graph. Figure 2.7 shows the case of finding the location
of two shapes. The first shape is an inclined parallelogram with side lengths of 2.5 and 3,
and counterclockwise inclination angles of 30 and 150 degrees, respectively. The second
shape is an inclined square with 2.5 side length and a 45 degrees inclination angle. The
MIP solver used was XPRESS-MP software on an Ultra-4 SPARC Sun station. The time
for the best solution was 59 seconds, and the total time for the program to complete its
search was 333 seconds.

The inclined parallelogram formulation was tested for inclination angles close to
n/2. We tested for inclination angles of 90.01 degrees and 89.99 degrees — with
satisfactory results. It should be mentioned that, to avoid numerical errors, the multiplier

value should not be taken arbitrarily large.

40
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Figure 2.7: Maximum covering location for one inclined parallelogram and one inclined

square.

2.4 Covering by

In Section 2.3 we introduced an MIP formulation for inclined parallelograms,
based on the slope of parallelogram sides. If the shape were rectangular with sides
parallel to the axes, the previous formulation would fail for a rectangle with a side exactly
parallel to the Y-axis. In this section, an MIP formulation for this special case is
introduced. The formulation for rectangles with sides parallel to the axes will be based on
finding the lower left corner coordinates of the rectangles that cover the maximum

weight. The Drezner and Wesolowsky formulation (1994) solves for the same rectangle
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corner point. Their formulation requires 5# binary variables and two continuous variables

1o find the minin

um number of points covered by one rectangular shape.

The formulation introduced in this section requires only {n—H} binary variables
and two continuous variables for each rectangular shape. The following notation will be
used for the case of rectangles with sides parallel to the axes.

Inputs

{

', = side length parallel to the X-axis for rectangle k, k =1,..., g

Zyk = side length parallel to the Y-axis for rectangle k, £ = 1,..., g;

C

. =cost of choosing rectangle £, k= 1,.... g;

w, = weight associated with point 7, i =1,...,7.

Decision variables

1  if demand point i is covered by rectangle £,
Y, =
* 10 otherwise

=

_ |} ifrectangle £ is chosen,
0 otherwise.

X, = X-coordinate of lower left corner of rectangle b, k=1....,¢g;
¥, = Y-coordinate of lower left corner of rectangle k, k= 1,..., g.
As in the formulation for inclined parallelograms in Section 2.3, a large number

multiplier, M, is used. It can be shown that M to be sufficient large if M 2 max % a,., a,.y} .
LTI T

The formulation for maximum covering by rectangles with sides parallel to the

axes is

42
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g G,
(PS) Maximize ) 3 > 2.17
k=1 = k=t
Subject to
I, —a, +x, 2M(@u, -1 i=L...mk=1..8; (2.18)
Ly—a, +¥, 2M@u, -1 i=L..mk=1.., g (2.19)
a,~x,2M(u, 1) i=l..,mk=1,.,2; 2.20)
G, ~ YV 2Mu, -1 i=L..,mk=1.,g; 22h
o~u, 20 i=L..mk=L...,g; (2.22)
g
Yh=p (2.23)
k=1
4
>u, <1 i=1,..,m (2.24)
k=t
b, €{0,1} fori=1L...m k=1,..g; (2.25)
X.5, 20 k=1,...,g. (2.26)

A brief explanation of the above formulation follows. If a rectangle is chosen and
a point is assigned fo it, then constraints (2.20) and (2.21) will ensure that the point lies to

the right and above the lower left corner. Similarly, constraints (2.18) and (2.19) will

ensure that the point lies to the left and below the top right corner. While constraint (2.23)
sets the number of rectangles used, constraints (2.22) ensure that no points are assigned if

a rectangle is not chosen. If a rectangle is not chosen, or if a point is not inside the

rectangle, then the RHS of constraints (2.18) to constraints (2.21) will be negative, while
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the mininram value for the LHS of the constraints will not exceed M. Finally, constraint
(2.24) will ensure any point assigned is assigned to one rectangle only.
Since the objective in Sections 2.3 and 2.4 formulations is to find the maximum

1S or rectangles, the formulation will allow

weight enclosed by one or more parallelogran
the shapes to overlap. However, any point wiil be assigned once only.

2.4.1 Computational Example

In this section, we illustrate the problem of choosing p shapes out of a given g
shapes. A special example — with 20 equally weighted demand points — is shown in
Figure 2.8. Three rectangular shapes, with sides parallel to the axis, were considered:
rectangle A with side lengths of 2 and 1; square B with side length of 2; and rectangle C
with side lengths of 4 and 2 — where all sides are parallel to the X and Y-axis,
respectively. To exemplify the cost of choosing any of these shapes, consider the case
where one wants to cut the maximum weight set of points from a given piece of material.
If the time taken to cut a rectangular piece is in direct proportion to the total distance
taken to cut the rectangular shape, then it will be reasonable to take the cost of choosing a
rectangle as proportional to its perimeter. The optimal solution shown in Figure 2.8
shows that rectangles A and B have been chosen. The figure shows what might be the
extra points if rectangle C were chosen. For the case of Figure 2.8, with 63 binary
variables and 6 continuous variables, the time taken was 13 seconds to find the optimal

solution, and 26 seconds for the solver to complete the search process.
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mgesuqenas

Figure 2.8: Result for choosing the minimal cost maximal cover.

2.5 Covering under the One-Infinity Nor

In Sections 2.3 and 2.4 we introduced g formulation that can handle the PMCLP

for facilities with the rectilinear, parallelogram, or Tchebycheff coverage measure

(second degree block norms). In this section, we extend the analysis to location of

facilities with coverage measure under the one-infinity norm (a block norm of degree

four). The formulation to be shown is limited to distances under the one-infinity norm (a

norm with fowr directions of travel;, » = 4). However, the formulation can be easily

changed to handle coverage under block norms with another degres. In Figure 2.9, we
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review the one-infinity block norm contours diagram previously given in Section 1.3. The

one-infinity block norm is a linear combination of rectilinear and Tchebycheff norms. Let

4, and A, be nonnegative numbers not both of which are zero, the one-infinity norm is

defined asi = A, -%wfi;giw, where A represent the proportion of trip made via

o2
rectilinear distance and 1, represent the proportion of trip made via diagonal road. The

formulation is based on the difference between the Y-intercepts of the parallel sides of

the one-infinity norm. The one-infinity norm sides' inclinations can be determined by A,

and ﬂ., , the degree of travel along the rectilinear and diagonal roads, respectively. First,

we state the problem of planar maximal covering under one infinity block norm, and
follow this with a discussion.

Problem statement:

Given n points (a,,a,) in R’ and weights w,i=1,..,n, g facilities with a
coverage measure under the one-infinity block norm, and a facility setup cost
C,.k=1..g, we must find the locations of p facilities that will cover the maximum

weight of points. Any point covered is to be assigned to one facility only.
To facilitate the presentation of our formulation, our discussion will focus on Figure 2.10
instead of Figure 2.9. Figure 2.10 shows a one-infinity unit ball, with an octagonal shape.

The octagonal shape's upper sides are indexed counterclockwise as 7,,7,,7, and 7,, and
vertices denoted as I',,I,,I,,I", and [';. The block norm umit ball contour center is

denoted as (x,,y,) . and the unit contour radius lengthas p,,i=1..,5,k=L... g
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Slope = M—:ﬁ-l——-

(A++2%)

- Sope o JATYA)

Figure 2.9: Contour of one infinity block norm

(xcﬁyc)

Figure 2.10: The one-infinity block norm unit bail.

For the PMCLP under the one-infinity norm (octagonal shapes), the following notation

will be used:
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Inputs

m,, = slope of side 7, in facility £ one-infinity unit norm contour, £=1,..,g;j=1,....4

I, = the distance between the Y-intercepts of side ¢, and the side parallel to itin

facility % one-infinity unit norm contour, k=1L....g;/=L...,4;
D, = radius length in the one infinity block norm of facility £, i=1...,4, k=1,.... g.
b = angle inscribed between radius Py and radius P2 in facility &k one-infinity unit
norm contour, ¥ =L,...,g;

6, = angle inscribed between radius P4 and radius Ps¢ in facility k one-infinity unit

norm contour, k=1..g
w, = weight associated with point i, i=1,...,n

Decision variables

b, = the Y-intercept of sidez, in the one infinity block norm of facility £,

k = L""ag;j = 39""94;

(1 if point{ is assigned for facility kb =1,...,g;i=1,..n
U, =
* 10 Otherwise;

1 if facility £ is chosen,
“7 10 Otherwise;

x, =the X -coordinate of facility &, k=1,..., g;

v, =the Y -coordinate of facility k, k=1,...,g.
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The I, values for each one-infinity block norm can be determined from the
orthogonal distance between parallel sides. In the following formulation, a large number
multiplier, & , is used in a manner similar to that in the inclined parallelograms
formulation of Section 2.3. Points I', and I', in Figure 2.10 are used in the formulation

to determine the facility location (the center of octagonal shape). The detailed MIP

formulation for the PMCLP under the one-infinity norm is as follows:

(P6) Maximize iiw,u,k ——iCkhk (2.27)

k=1 =1 £=1

Subject to
a,-mua, -b, <M({l-u,) i=L...mj=1L..,4k=1..g; (2.28)
a,-mya, -b, +I1, >M(u, -1) i=Lo,mj=1.,4k=1..,2,(229)
Y+ P SING, =, (x, + p,, 088, ) +5, k=1...,2j=12 (2.30)
Vo + Puy SNGy =m (%, - P, 0056, ) 4B, k=1,..,82,7=34; (2.3
gwm <1 i=1..m (2.32)
h~u, 20 i=L..mk=1..,g; (2.33)
ghﬁ =p (2.34)
Uy €{0,1} fori=1L...m k=L...g (2.35
BsXs Yy 20 (2.36)
49
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In the above formulation, constraints (2.28), (2.29), and {2.32)-(2.36) are similar
to those in Section 2.3. The facilities locations are determined by constraints (2.30) and
(2.31). In constraints (2.30) the facilities location is determined from XY-coordinates of

point T",, while constraints (2.31) determines the facilities location from the XY-
coordinates of point I',. There are g(n+1) binary variables for g facilities, and 6g

continuous variables. The formulation illustrated for the one infinity block norm can be
adapted to other block norms of degree greater than 2 or to other polygonal shapes with
sides parallel to each other. Figure 2.11 shows ‘Ehé case for maximal covering by a single
octagonal shape for 50 points of equal weights. The run time was 9 seconds on Ultra-4

SPARC Sun station.
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Figure 2.11: Output of covering by one-infinity block norm (octagonal shape).
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3.1 Introduction

In Chapter Two we iﬁtroduced a MIP formulation for the rectilinear planar
maximum covering problem (RPMCLP), parallelogram PMCLP, and a one-infinity norm
PMCLP. In this chapter we introduce alternative exact algorithms for a single facility
planar maximum covering problem (PMCLP) under different block norms. First, in
Section 3.2, we introduce an exact algorithm that can handle covering by a single inclined
parallelogram or a rectangular shape with sides parallel to the axis. For other block
norms, such as the one-infinity norm, an alternative approach based on the maximum
clique problem (MCP) is also shown. In Section 3.3 we discuss the equivalence of
maximum covering by a block norm and the maximum cligue problem. In Section 3.4,
we illustrate an implicit enumeration algorithm for the maximum cligue problem. The
material in this chapter, especially that in Section 3.3, acts as an introduction to Chapter

Four.
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1al Covering by a Parallelogra

3.2 ternative Algori

In Chapter Two, it has been shown that the PMCLP for facilities under second
degree block norms is a special case of covering by parallelogram shapes. The following
algorithm solves for the optimal location of a single parallelogram of known side lengths,
inclination angle from the X-axis, and inscribed angles between parallelogram sides. The
algorithm uses the idea that the equations of the parallelogram's parallel sides differ only
in their Y-intercepts. In a given parallelogram, there are two differences between Y-
intercepts — one for each pair of parallel sides. The difference between the Y-intercepts of
the parallelogram parallel sides can be found as shown in Property 2.1. Thus, the Y-
intercepts of lines parallel to the parallelogram sides and passing through points inside
the parallelogram, would be bounded by the Y-intercepts of those respective
parallelogram parallel sides. Therefore, the maximum weight set of points that can be
covered by the parallelogram will be the point set, with Y-intercepts of lines through
them and parallel to the parallelogram sides — within the parallelogram Y-intercepts.

The algorithm consists of two parts. The first part creates two sorted Y-intercept
lists for lines paraliel to the parallelogram’s parallel sides through points

a,=(a,,4a,),i=1,...,n. Then, sorted solution sets from each sorted Y-intercepts list are

found. The second part of the algorithm finds, from the intersection of the solution sets,
the point set of maximum total weight. The algorithm can be used for parallelograms of
any inclination and for points with any weight. The algorithm can also be used for

rectangles with sides parallel to the axes by replacing the two sorted Y-intercepts list of
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the lines passing through the demand points with the sorted XY- coordinates of the

demand points.

Part A: Create the lists

1.

43

Using Property 2.1, find the Y-intercept differences between the paralielogram’s
parallel sides, thatis 7, and 7,.

Find the Y-intercepts of lines parallel to the parallelogram’s sides, with side slopes
m, and m, through the points g,,7 =1,...,n Save the points’ index, its corresponding
Y-intercept, and points’ weights, in two three-column lists, B, and B,. That is,

B (i,1)=i, B,(i,2)=a,-ma

B (63)=w,i=L.,mj=12
Sort the B, and B, lists in descending order according to the Y- intercepts values,
and name these new lists Bs, and Bs, , respectively.

Find the points that are /, or less from each other in the Y-intercepts column in Bs,,

compute their total weight, and save an indexed solution in a solution list, SZ, . Figure
3.1 sketches, in MATLAB, the procedure to find this solution list.

Repeat step 4 for the Bs, list and intercept separation /,, and save the indexed
solution in a second solution list, SL,.
Sort the solution lists, SL, and SZ,, in descending order according to the total weight

column. Save the sorted lists in SZ and SZ,, respectively.

Sorting in steps 3 and 6 is performed four times with complexity of O(nimg w} . Step

2 is done twice for each parallel-sides slope, ‘Wﬁh n computations each. The number of
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computations of steps 4 and 5 depends on the points distributions, and on the value of the

Y-intercepts difference. It will take {g}{ n+ i}) computations in the worst case for steps 4
\

and 5. This worst case occurs when all the points lie within the parallelogram’s paraliel
sides. However, it must be noted that, for such a case, the search process in the second

part of the algorithm would be trivial.

points =0

i=1

j=i

weights =0
Whilei<n

While abs(Bs, (i,2)- Bs, (/,2)) <1,
points = points +1
weights = weights + Bs,(j,3)
j=j+1

ifj>n

break

else

end

end

SL (i,1)=i
&8L,(i,2) = points
SL, (i,3) = weights
i=i+1

=i

weighis =0

points = §

end

Figure 3.1: Computation of the solution list SZ, .
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1. Set the final solution to an initial value, and denote this value as FV . Also, seta

counter to zero, and indexes A, and A, to 1, and create empty final-answer lists
Bipiner and Bognar.

2. Prune any elements in SZ and SL, that have a total weight less than FV .

3. Set j=SL (A1) and j,, =j+SL(A,,2). Similarly, set k= SL, (A,.1) and

K g =K +SL, (A4,2). (Recall from Part A, that SL and SL, are three-column lists)

4. Compare Bs,(j,1) with Bs,(k,1)
a) If Bs, ( j,l) = Bs,(k,1), that is, if the points indices are equal, add point weight to
counter; save the respective Y-intercepts values, that is, Bs, { 7 2) and Bs,(k,2)
in temporary-answer lists, and go to (b). Otherwise, go to (c).
b) Set j=j+1;if j<j..set k=SL,(A,.1) and k,,, =k+SL,(A,,2),and go to
(a). Otherwise, go to step 5.
c) Set k=k+1;if k<k,,, goto(a). Otherwise, go to (d).
d) Set j=j+1;if j<jg...set k=8L,(A,,1) and k,,, =k+SL,(A,,2), and go to
(a). Otherwise, go to step 5.
5. Ifthe counter is greater than FV |, save counter in FV . Place the Y-intercepts values
from the temporary answer lists in B4, and B4, , and re-initialize counter and
temporary answer lists. Otherwise, if FV is greater than counter, then set counter to

zero and re-initialize the temporary answer-list elements.
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6. Set A, =A,+1;if SL{A,,3)<FVand A, < sSi,ig , 0 to step 6. Otherwise, go to step

7.

t

7. Set A, =A,+1;if SL,(A,,3)<FV and A, <iSZQ , g0 to step 7. Otherwise, go to

step 8.
8. Repeat steps 3to 7 until A, = !SLE; and A, = ;Sﬁzg ,,

The results in Bjpny and Bygy are the Y-intercepts of lines passing through maximum
weight points in a parallelogram. Without loss of generality, since the points with
extreme Y-intercepts (the covered points with the smallest or largest Y-intercepts) can be
located on the parallelogram sides, the parallelogram can be translated in X and Y
directions to have at least one point on each side of two intersecting sides. To find the
location of the parallelogram, one can use the parallelogram’s given information and the
location of one of its comners. As an example of finding the corner between the
parallelogram’s sides with larger Y-intercepts, take the maximum of By and Bgua and,
using the straight line equations as described in Section 2.3.2, solve for the comer
coordinates.

The algorithm starts with the element of maximum weight in the solution lists,
and, to avoid total enumeration, FV is used as a lower bound and is updated in the
search procedure. The computational complexity of part B of the algorithm will depend

on the solution lists found in steps 4 and 5 in part A of the algorithm. The worst case

occurs when the optimal solution is at the end of the solution lists SZ and SL,.
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For the case of rectangular shapes with sides parallel to the axes B, and B,, lists

will be replaced by the points’ Y-coordinates for B, and X-coordinates for B, .

3.2.1 Computational Results

Figure 3.2 shows the results, for one parallelogram shape, of both an MIP
formulation from Chapter Two and the algorithm from Section 3.2. In both cases, the
same points have been covered by the parallelogram. Without loss of generality, the
parallelograms in Figure 3.2 can be translated in both X-axis and Y-axis directions to
have an exact overlap. The running time for the algorithm was 2 seconds and the running
time for the MIP was 5 seconds.

Table 3.1 shows the running time for diamond shapes of different sizes for both

the MIP and the algorithm of Section 3.2. Note that the MIP software running time did
not exceed the § seconds running time for one shape. In fact, our experiments show that

iing time for the MIP decreases as the size of the diamond shape increases. For
the algorithm, the running time will initially increase with the shape size; however, it will
eventually start to decrease when the shape size increases enough to cover more than haif
of the points. Table 3.1 also shows that computational time was much less than one

second in the last three cases. Finally, while the runni

)g time for the algorithm is
somewhat greater than that for the MIP for diamond shape cases, it was less for

parallelogram shape. In fact, for shapes of different sizes and equal inclination angles (as
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in Table 3.1}, the Y-intercept lists need fo be created only once. In addition the algorithm

t which was not possible in the case of the MIP.
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Table 3.1: Computational comparisons for maximal covering by a diamond shape.

Running Time (sec) Objective Value
Side Length

MIP  Algorithm MIP Algorithm
3.5 5 3 6 6
4.5 5 4 8 8
5.5 5 5 10 10
6.5 4 5 13 13
7.5 5 6 14 14
8.5 3 6 16 16
9.5 4 6 19 19
10.5 1 6 22 22
12.5 I 4 28 28
14.5 0.6 3 32 32
16.5 0.4 0.5 41 41
18.5 0.4 0.28 46 46
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3.3 Transfor

1 Covering by PSP's to a
on a Graph

Let the undirected, unweighted arbitrary graph G with a set of vertices V and an
edge set £ be denoted asG =(V,E). A subgraph G =(V ,E )ofagraph G=(V,E) is a
graph having all of its vertices and edges in G, thatis, ¥ <V and E < E. A complete
subgraph, also known as a clique, is a graph that has every pair of its vertices adjacent to
each other, that is,V(u,v)eV (u,v)e E. The maximum clique (MC) is a complete

subgraph G =(V,E),V cV,E c E, and !V} is at least as large as the vertex set of any

other complete subgraph in G. The complementary graph G= (V,f yof a graph
G =(V,E)is a graph with the same set of vertices, but two vertices are adjacent in G if
and only if they are not adjacent in G. A subset of vertices V' cV is said to be an
independent set if no two wvertices in the subset are adjacent, that
is,V(u,v)eV (u,v)e E. An independent set is maximal if any vertex not in the set is
adjacent to at least one vertex in the independent set. The maximum independent set on 2
graph G= (V,E) is equal to the maximum clique on agraph G = (V, E}.

The transformation of the maximum covering by block norms problems or,
alternatively, the maximum covering by parallel-sided polygon (MCPSP) to a graph

problem is based on the idea of an interval graph. There are many different ways to

define an interval graph. The definition in Diestel (1997) is the best one to illustrate our

pUrpose.
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Definition 3.1 (Diestel page 120): "A graph G =(V,E) is called an interval graph if
there exists a set {#(v)|v eV }of real intervals such that for any two vertices, (#,v) ¥,
Huymi(v)y= & ifand only if (u,v)e E".
For an extensive discussion of interval graphs, the reader may also refer to Fishburn
(1985).

Figure 3.3 shows an example of an interval graph. Figure 3.3.a shows a graph
where vertices are connected if assigned labeled intervals, shown in Figure 3.3.b, overlap.
Note that the size of intervals is not necessarily unigue in Figure 3.3.b and is given for

illustration purposes only.

Hv,)

1(v,)

©

1(v)

Figure 3.3.a Figure 3.3.b

Figure 3.3: Intervals and the corresponding interval Graph.

Consider n poinis in R*; a,=(q

ix?

%} i=1...n and straight lines with

inclination angle # from the X-axis, passing through each point. Let the sorted VY-

intercepts of the linesbe &, i=1,...,n.
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Construct a set of real intervals #(a,)=[b,b+8}],i=1,..,n; where 5 >0. Define an
interval graph G=(V,E),where [/|=n, from the intervals #(a) i=1...n. The

following proposition is self-evident.

Propesition 3.1: If every demand point g, =(g,,4,), i=1..,7 in R’is represented by a
vertex v,e€V, then for any two demand poinis g,.a, there are equivalent vertices
v,,v, suchthat (v,v )eE ifand only if (v)Ni(v) =D .

The proposition is illustrated in Figures 3.4.2 and 3.4.b. Figure 3.4.a shows an
example of five points in space, their Y-intercepts, and the intervals assigned for each
point. As evident from the figure, some points may have the same Y-intercept values, and
the same real interval assigned to them. Figure 3.4.b represents the equivalent interval
graph. From proposition 3.1, assigning an interval § to the Y-intercepts of each point

would generate the interval graph G =(V,E), where #(yv,)N(v,) = if the distance

between the points' Y-intercepts is less than & .
If the distance between the points' Y-intercepis is greater than &, then they will

not be connected in G.
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Hag )
ia,)
H(a,) and H(a,) an interval of length & = "
. start
#(a,) [ o
- X

Figure 3.4.a: Points in R? and the corresponding intervals assigned to their Y-

intercepts.

Vs

Figure 3.4.b: The equivalent interval graph of Figure 3.4.a.

In definition 3.1 we obtained the interval graph by assigning a real interval, on the
real line, for each vertex of the interval graph. Trotter and Hararv (1979) extended
definition 3.1 to double and multiple interval graphs. The multi-interval graph is that
graph which represents the case where more than one set of real intervals, on more than

one real line, are assigned for each vertex. For the case when one has p intervals assigned
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to every veriex, on p-real lines, the graph is called an p-interval graph. In the next
definition we give 2 formal definition for the multi-interval graph.

Definition 3.2: Multi-Interval Graph. A graph G =(V,E) is called a p-interval graph if
one can assign to each veV a set of real intervals 7,(v),j=1...,p; p22 such that
A7 ij(vj)nsj(vk) % ik=1,.,m ifandonly if (v,,v,)e E.

In other words, given p interval graphs on the same vertex set and possibly
different edge sets G, =(V,E,), j =1,..., p; the p-interval graph G =(V,E) is a graph on
the same vertex set V' with an edge set defined as E = ﬁ E 9.

, =t
When |£,(v,) [=l2,(v) forj =1,..., p; i,k =1,...,m; the graph is known as a unit- p-interval
graph. Without loss of generality, we will call this graph a simple p-interval graph.

In this thesis we deal only with simple multi-interval graphs; that is, points will
have equal length intervals assigned to them on the same real line. Figure 3.5 shows two
2-interval graphs. In Figure 3.5.a, the intervals' sizes on the real lines (1) are not equal,
nor are the intervals’ sizes on the real line (2) equal. Figure 3.5.b shows a simple 2-
interval graph where the intervals assigned for vertices on real line (1) are equal, and

where the intervals assigned for vertices on real line (2) are equal.
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L) £,()

ACT I SORRSEIN
1)
()
£(v,) €
Intervals on real Intervals on real
line 1 line 2

Figure 3.5.a: Two sets of real intervals of different length and their equivalent
2-interval graph.

L)

5, (v,)

Real line 1 Real line 2

Figure 3.5.b: Two sets of real intervals with the same interval length on each real

line and the equivalent simple 2-interval graph.
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As shown in Figures 3.5.a and 3.5.b, the intervals on both real lines must overlap
in order for an edge on the graph 1o exist.

Since every vertex represents one point inR’, a maximum clique on the graph
will represent the maximum number of points in R* with Y-intercepts within a distance
8 from each other. Consider n points in R?, a pair of parallel straight lines L and L with
inclination angle @, and a perpendicular distance between the two lines 4. Consider also
the translation of the two lines in R to enclose the maximum number of points. Let
&8 =1 in proposition 3.1; then, for a pair of parallel straight lines we get the following
corollary:

Corollary 3.1: For » points in R, finding the maximum number of points enclosed by a

pair of parallel straight lines, L and L, with distance 7 between the Y-intercepts of the

two lines, is equivalent to finding the maximum cligue on an equivalent interval graph.

Proof: Recall that every vertex in the equivalent interval graph G represents one point in
R?; that is, |V |=n. Suppose that the maximum number of points enclosed by the
parallel straight lines is €. Then by proposition 3.1, assigning an interval § =7 tothe Y-
intercepts of lines passing through every point in R® would generate an equivalent
interval graph. This implies that there is a set of points, S, where |S)=Q, and
H};%X(bﬁ - zgsn{ b,) < I. Since all points in § are within a distance of 7 from each other, this
graph will be a complete graph of size Q; that is, it forms a cligue of size Q. Let

G =(V,E)represent the interval graph for the » points in R®. Suppose that the

maximum clique size is not equal to {3 ; however, this would assume that there is another
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set of points S of larger cardinality lying within the straight lines — which is a

contradiction. Thus, the set of points, S, forms a maximum clique of size ).

Consider a 2y parallel-sided polygon, 722, with given side lengths and inclination
angles from the X-axis. Using definition 3.2, one can transform the covering by polygon
10 a maximum clique problem in a simple p-interval graph. Note that for a parallelogram,
shape 7 equals two; for a hexagon, y equals three.

Lemma 3.1: Consider a polygonal shape of K parallel sides, where X is an even number.

Let the graphs G, =(V,E)), j= L""% be the equivalent interval graph for every two

K2

polygon parallel sides. Construct a graph G=(V,E) such that £ = ﬂ E, . The maximum
j=1

covering by a parallel-sided polygonal shape is equivalent to a maximum clique problem
on the equivalent multi-interval graph, G=(V,E).

Proof: For every two parallel sides, construct an equivalent interval graph. One will get

if— graphs with the same vertex set and different edge setsG, =(V,E,), j = E,..oé—. The

vertices in G that are adjacent to each other are those with an edge on all % interval

graphs. This implies that these points are within all polygon sides. Therefore, the
maximum number of points covered by the parallel-sides polygon are the points that are

pairwise adjacent in a graph G; that is they are the points corresponding to the maximum

cligue (MC)on graph G=(,E).
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The adjacency mawix A=[e,]is a |[V|x[V|matrix in which e, =1if
(¥,,v,) € Eand 0 otherwise. For the purpose of our problem, the diagonal elements of the
adjacency matrix will be ones; that is, o, =1. The complementary graph G=(V, E) of
graph G =(V_.E)is a graph with the same set of vertices; but two vertices are adjacent in
G if and only if they are not adjacent in G. We denote the complementary adjacency
matrix by Es{&;], in which ?&5;:@ iff o,=1in4d

Figure 3.6.a shows a rectangular shape and two interval sets on the Y- and X-

axes. The difference between the intercepts of the rectangle's parallel sides on the Y-axis

and X-axis are given as I, and I,, respectively. Therefore, the size of intervals assigned
for each point on the Y-axis equals /,, while the size of those assigned for each point on
the X-axis equals J,. Each point is assigned two intervals, one for the X-axis and another
for the Y-axis. Let b, be the X-intercept of the line parallel to the Y-axis, passing through
point i, and let b, be the Y-intercept of the line parallel to the X-axis, passing through
point i. The intervals' start and end points on the X-axis and V-axis can be given as
Ha,)=1b,,b, +1,] and #(a,)=1b,.b, + 1] for i=1,..,n, respectively.

The points are shown as dots, while their intervals are shown with diamond-

shaped endpoints. The interval start is the points projection on the X and Y axis, while

the endpoints of the intervals are shown as #(a,), and #(q,), i=1,...,4, forthe X and Y

axis, respectively. Figure 3.6.b shows the equivalent graph from the intervals on Y-axis,

while Figure 3.6.c shows the equivalent graph from the intervals on X-axis. The two-
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interval graph and the adjacency matrix, 4n., for the rectangular shapes are shown in

Figure 3.6.d.
Y-axis
&
I(QS ¥y )e
I
£ (a4 ¥ )e !
i‘(azy )e ‘..............,.,...........,..............W 3 ;ﬂ #
i2
@4
.. ....................‘...................m
t (al ¥ ) e 9 2
1
X-axis
t(a2x )e l(a4y )e
a‘nd ¢ (an )e

I(alx ) e

Figure 3.6.a: A rectangle with the axis-intercepts of its sides and points intervals.

Figure3.6.b: The equivalent graph for intervals on Y-axis.
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Figure3.6.c: The equivalent graph for intervals on X-axis.

Figure3.6.d: The equivalent two-interval graph.

The adjacency matrix associated with Figure 3.6.dis 4, =

0 e OO

[ S S e T v
e T T =1

0

i o

A simple algorithm can generate the adjacency matrix for the equivalent 2-

interval graph. A MATLARB pro

that finds the adjacency matrix from the XY-

intercepts, b, and b, , respectively is shown in Figure 3.7.
In the following procedure, the number of computations to find the adjacency

matrix is »°. The program in Figure 3.7 can be easily modified to handle parallel-sided

polygonal shapes with any number of sides.
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i=l

whilei<n
Jorj=i:m
if abs(b,—b,)<1,
if abs(b,~b,)<1,

a, =1
&, = I
else
a,=0;
a,=0;
end
end
end
i=i+l;
end

Figure 3.7: A MATLAB program to find the adjacency matrix for a rectangular shape.

3.4 A Guided Search Algorithm for the Maximum Clique Problem

3.4.1 Intreduction

In previous section, we concluded that finding the maximum covering by PSP is
equivalent to solving the maximum cligue problem on its eguivalent graph. The
maximum cligue problem (MCP) is 2 known NP-hard problem, with a wide range of
applications in a variety of fields (Pardalos and Xue (1994)). It has been also used in
facility location by Aneja et al. (1988) to solve the m-center problem as covering nodes

by the minimum number of cliques. However, the work of Aneja et al. was limited to
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rectilinear distance measurement, and for facilities with the same covering measure -
diamond shapes of equal size.
Many researchers introduced efficient exact algorithms with a modest time

requirement for the MCP (Carraghan and Pardalos (1990}, Pardalos and Rodgers (1992),

)

for the MCP (Soriano and Gendreau (1996), Battiti and Protasi (2001), Friden et al.

Babel (1994)). Others used heuristic techniques to find a good solution (close to optima

(1990), Jagota (1995), Jagota and Sanchis (2001) and Balas and Niehaus (1998)). Soriano
and Gendreau (1996) used a Tabu search method (TS) for MCP. They showed that TS for
the MCP could compete with other solution techniques. Friden et al. (1990) proposed an

exhaustive search algorithm, using some tabu search protocols, for the maximum

independent set problem. Since the maximum independent set on a graph G is equal to
the maximum clique on graph G , then the Friden et al. (1990) method can be used for the
MCP as well. A complete survey of the maximum clique problem can be found in
Pardalos and Xue (1994).

The natural question that arises in any "TS based heuristic" or exact algorithm for the
MCP concerns the choice of the initial solution set, or the choice of the node (vertex) at
which any enumerative method should start. To answer this question, we propose, in this
section, a guided search algorithm for the maximum clique problem - or, briefly, the
GSAMCP. We propose selection criteria by which a vertex v € V' is chosen as a candidate
for any search technique. Therefore, the GSAMCP can be used in conjunction with other
heuristic search techniques bike TS, or implicit enumeration algorithms like branch and

bound. In addition, it guides the search by an effective bounding technique, accelerating
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the overall search process. Tabu search heuristic and branch and bound algorithms are
described in previously mentioned references. We explain the basic features of the
GSAMCP in Section 3.4.2; then, in Section 3.4.3, we introduce the GSAMCP algorithm

and discuss the main issues in the GSAMCP. A small example and computational

experience with randomly generaied graphs will be shown in Section 3.4.4.

3.4.2- Guided Search Algorithm for the Maximum Cligue Problem:

The Basics

Given an arbitrary graph G=(V,E) with a se;[ of vertices ¥, |V|=n. A vertex v, is
said to be in the neighborhood of vertex v, if the vertex v, is adjacent to it; that is,
v, belongs to the neighborhood of v, if and only if (v,,v,)e E. Let N(v,) <V be the set
of neighboring vertices to vertex v, € V', and let the degree of a vertexv,, A(v,), be the
number of vertices in the neighborhood of vertex v,; then clearly, A(v,)=|N(v)|.
Further, let the vertex index be assigned according to the vertex degree, in ascending
order; that is, A(v,} 2 A(vj} fori>ji=2,.,nj=4L..,n-1.

In addition, let @(k) be the number of vertices of degree k, and @ (=k) be the
number of vertices of degree greater than, or equal to, £. Denote the size of the maximal
clique that includes veriex v, as | MC(v,)!, and the size of the maximum cligue of the
graph G as | MC" |.

To explain the GSAMCP, first we state the following self-evident facts, without a

proof:
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Fact 12 Inany graph G =(V,E), | MC" |[< 0 (ZMC" |).

Fact 2: Given an undirected, un-weighted arbitrary graph G = (V, £}, a non-zero positive
integer £, and a set of vertices?”:{i/“c Vi z‘%ﬂ(v,.)ﬁé’ é , then nov, € V" belongs o

any clique of size greater than ¢ .

Fact 2 is similar to rules 4 and 5 in Pardalos and Rodgers (1992). Fact 1 provides an
easy way to find, and update, an upper bound on the graph's maximum clique. This is

stated in the next lemma.
Lemma 1: An upper bound on the size of the graph's maximum cligue,| MC" |, can be
found according to the following simple rule: UB =max {i|w(21) 2 i} where i is a non-

negative integer greater than zero.

Proof: Evident from Facts 1-2.

The GSAMCP algorithm initially chooses a vertex v, where A(v,)=UB. An
exhaustive search, using any well known method, is then performed inN(v,),
returning MC(v,)). If | MC(v,}|=UB, then an optimal solution is found, and the search

process stops. However, when the maximal cligue found is smaller than UB, the
GSAMCP algorithm updates UB and selects another vertex with degree as large as UB
according to a given set of rules.

In general, all previous TS algorithms for the MCP deal mainly with the neighborhood
search of a selected vertex. Vertices were selected according to their degree — a well

known greedy rule. The motivation behind the greedy selection rule is the preassumed
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increased probability of having the graph maximum clique in the neighborhood of the

largest degree vertices. On the other hand, Pardalos’ and Rodgers® (1992} branching rule

("Rule 6") was to select the vertex of smallest degree — which activates certain bounding
rules and vields an overall trec reduction. Both arguments (greedy selection versus the
Pardalos and Rodgers selection rule) have some merit to them. We realize, however, that

in applying an exhaustive local search — or any other enumerative algorithm — it is faster

to find MC(v,) in a smaller neighborhood than in a larger one. It is also more probable,

however, that the graph maximum clique, MC™, will lie in the neighborhood of larger
degree vertices. Therefore, we devise the GSAMCP as a compromise between these two
selection criteria (greedy selection and Pardalos and Rodgers rules), guiding the search to
where it is more probable to have MC™, while keeping the exhaustive search burden

reasonable.

3.4.3 Guided search algorithm for the maximum cligue problem “GSAM

The major features of the GSAMCP can be summarized as follows:

1- The GSAMCP algorithm starts by finding an upper bound for MC’, which is

updated during the search process.

2- The GSAMCP algorithm guides the search to vertices with degree equal to, or

stightly larger than, the maximum clique upper bound.

First, we state the GSAMCP algorithm and follow with an explanation. We finish this
section with a small example that illustrates and clarifies the main steps in the GSAMCP

algorithm. For the GSAMCP algorithm the following indicators will be used
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N g = Number of vertices with degree greater than upper bound
Ne = Number of vertices with degree equal to the upper bound
NUB= Ne+ Ng

A'(v)) = an indicator of vertices degree i=1,....7

1~ Initialize Lower bound (LB) and Upper Bound (UB),
LB 0 UB«2A(w)« AW)i=L..,msol=D

2- While stopping criteria not met.

3- If vertices are not sorted, then sort vertices according to their degree (in ascending
order). Let v,,i=1,...,n be the sorted vertices such that A(v ) 2 A(v,) i=1,...n—1.

4- Using Lemma 1, find the upper bound, UB, and the number of vertices with degree
greater than UB (Ng) and the number of vertices with degree equal to UB (Ne).

a. UB=max{i|o(=i)2i}

b Ng=w0(>UB),Ne=ao(=UB),NUB=Ng+ Ne.

5- If Nex0, k< max{j|A(v)=UB)}, otherwise k «-min{j| A (v,)>UB)}

6- Apply a neighborhood search (procedure NS), or any local search or enumerative

algorithm, in the neighborhood of v,, retwnIMC{vk )!, the maximum cligue in the

neighbor of v, .
7- If [MC(v)|=UB, sol = MC(v,)= MC" Stop
else

a if }M’C {v, }g 2 LB then LB «- §M€{vk }EE&{%} =LE, sol =MC,
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else

A(v)y=LB
8- Use Fact 2, Wv,, if A(v,)<LB,j=1,.,k then
(@) A()=LB
() aq,=0i=L..n
9- choose next vertex to search and update upper bound
a NUB=NUB-1
b. If NUB>UB,k=k-1, goto 6 ;else
c. If NUB=UB,then k=min{j|A'(v,)2UB)}, goio 6; else
d If NUB<UB, then UB=UB-1;if UB< LB, stop, else

Sort, then go to step 4
Fact3: Instep 4, Ng <UB.
Stopping criteria
i- LB2UB
2- Maximum clique found (step 6)

warized as follows:

Procedure NS, mentioned in step 6, can be sumn
Procedure NS (Neighborhood Search)
Input: LB, &

If IN(v,)|> LB

Perform exact local search in N(v, )}
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Return: MC(v,),| MC(v,}!

Otherwise, go to step 8 in GSAMCP

Steps 1, 3 and 6 in the GSAMCP algorithm are straightforward. In step 4.2, Lemmal

is used to find an upper bound (UB) on the maximum clique size. The indicators
Ng, N e, of vertices with degree greater than upper bound and of vertices with degree

equal to upper bound, respectively, are used to find the number of vertices greater and
equal to the upper bound (NUB). These three indicators divide the vertices into three sets:
the set of vertices with degree greater than upper bound, the set of vertices with degree
less than upper bound, and the set of vertices with degree equal to upper bound. The
search will always occur in the set of vertices of degree equal to UB, or degree just larger
than UB.

In step 5, the vertex at which one performs a neighborhood search is chosen according
to the following rules:

1- If there are no vertices of degree equal to UB, the search starts at the veriex of

degree just greater than UB.

2- If there is one or more vertices of degree equal to UB, the search starts at the

vertex of the largest index in the sorted list.

If an optimal solution is not found in step 7, the lower bound (LB) is updated and the
degree of the visited vertex is forced to change according to step 7.a. Changing the vertex
degree, along with the other vertex degree changes at step 8, has the following benefits:

1- It will guarantee that a visited vertex will not be searched again.

2- Tt will reduce the computational time for reordering vertices, (step 9.4).
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Using Fact 2, the visited vertex, as well as all vertices of degree lower than the lower
bound, are pruned from search space in step 8.

Step 9.b indicates that there are vertices of degree equal to UB, hence the index % is
reduced by just one, and the search starts at the next vertex of degree equal to the upper
bound. However, if NUB =UB as in step 9.c, the index k& is updated according to a
different rule. The search index k will go 1o the vertex with degree equal to UB, if any
exists, or to vertex of degree just greater than upper bound.

Finally, when NUB <UB, this situation indicates that the current upper bound is not
tight enough, and it is updated in step 9.d. The algorithm stops if stopping criteria are
met, (step 9.d); otherwise, a new upper bound indicator is found. Since the vertices
degrees have been updated in steps 7.a and 8, the new upper bound will guide the search
to new vertices. Care must be taken to track the changes in the original vertex indexing.
The computational cost of reordering vertices according to their new degree can be
justified by the following arguments:

1- Updating vertex degrees, afier pruning vertices with degree equal to LB, would guide
the GSAMCP into a new search space.

2- An updated, most probably smalier, UB may be found, which, when compared with
LB, may stop further search.

3- It will reduce the adjacency mairix size, thus reducing the memory requirements.
In fact, we can perform UB updates more often than proposed in the GSAMCP

algorithm. To avoid adding a lot of computational cost by performing UB updates, we

may limit UB updates to
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1- Every ||V ]/¥ |or | Ne/'¥ | steps, where ||V |/¥] or | Ne/'W| is the largest
integer less than or equal to |V |/Wor Ne/W, respectively, and ¥ is a positive

integer number that can be determined experimentally.
2- Every & upper bound changes, where § is a positive integer number.

3.4.4 Example and Computational Results

The next two exampies show the mechanism of choosing the candidate vertex
for the NS procedure. For simplicity, we will not perform a sorting in the first
example. In addition, to perform enough steps, we will assume that stopping criteria
are not met in the first example. In the second example the adjacency matrix will be
given.

Example 1:

Consider a graph with the vertex degrees and indices as shown in Table 3.2. In
step 1, we show all the GSAMCP parameters. Only those parameters of interest will
be shown in further steps.

Table 3.2: Vertices indices and degrees for the GSAMCP example.

Vertex Index Vertex Degree
1 1
2 4
3 4
4 4
5 4
6 5
7 5
8 6
9 6

10 8
81
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1- Find the parameters ( N5 = (< UB)), or simply Ns = n - NUB

UB Ng Ne Ns NUB Index

5 3 2 5 5 7

Perform a full search in N(v,), and return| MC(v,)|.

2- Assume optimal solution not found — and no vertex degree update — except for

visited vertex. We get NUB <UB ; hence, step 9.d is activated.

UB Ng Ne Ns NUB Index

3- Since NUB >UB, we reduce Index by one (Index = 4). New NUB =17.

B

4- Same as (4) above, new NUB = 6, Index = 3.

5- NUB=35,Index=12 .
6- NUB =4, Index = 6 (step 9.¢)

7

NUB =3, UB updated, cause of step 9.d.
Example 2:
Given the adjacency matrix for a graph G,, =(V,E)as 4,,, the graph vertices

degree is also given in as shown below:
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']

1 000 00000101 v,
0 1000060000611 v,
0 01 16060600©0CO0C11 Vv
0 ¢1 1900600110090 v,
0 0001 1011061040 Vs
0 00011100101

= ,vertex indices and degrees %
0 00001 1T 1TO0C1 19 v,
0 0600106111011 Vg
0 60110011101 Vo
i1 00101101100 Vio
61101 01106¢06160 Vi

11100101100 1 Vi

1- Find the parameters ( Ns = @(< UB)), or simply Ns =n - NUB
UB Ng Ne Ns NUB Index
5 5 3 4 8 7

Perform a full search in N(v,), and return| MC(v.,)|.
We can easily find that MC(v,) = {v,,v;,,,}, and [MC(v,)]=3.
Update LB, and set a, = 0,i=1..,12; j=12,7; and set A’(vk) =fB k=127
2- NUB=NUB-1, NUB > UB ; hence, step 9.b is activated and £ = &-1
(NUB=T7,k=6)
Perform a full search in N(v,), and return|{ MC(v,}|.

We can easily find that |[MC(v,)|=2 < LB.
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Set @, =0,i=1,..,12; j =6, and set A (vy) = LB.
2- NUB = NUB~1, NUB > UB ; hence, step 9.b is activated and k = &-1
(NUB=6,k=5).
Perform a full search in N(v,) , and return| MC(v}|.
We can easily find that MC(v;) = {v;,;, v}, and [MC(v,)|=3.
Set @, =0,i=1,..,12; /=5, and set A'(v,)=LB.

3- NUB=NUB-1,NUB =UB  hence step 9.c is activated, £ =8

Perform a full search in N(v,) , and return| MC(v,)|.

We can easily find that MC(v,) = {v;, s, v, }, and |MC(v)] = 3.

Set a, =0,i=1,..,12; j =8, and set A'(v;)=LB.

4- NUB=NUB~-1,NUB <UB,then UB=UB-1=4> LB, then update
A)i=1,.,12.

The new updated degrees can be given as follows
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1
5
]
]

v, 3 v, 2
v, 3 v, 3
v, 4 v, 3
v, 4 v 3
v, 3 v, 3
3 v, 3
Vs and after sorting |
v, 3 v, 3
v, 3 vy 3
v, 4 Vi 3
Vo 3 Vg 3
vy 2 v, 4
(v, 3] v, 4]

4- Find anew UB (step 4.a)
UB =3= LB, Stop search optimal solution found and MC(v,)= MC

A comparison between GSAMCP algorithm and the enumerative search based on the
greedy selection rule (GS) is shown in this example. We considered randomly generated

graphs (from uniform distribution) with different sizes and densities. All programmin

and computations were done using MATLAB, on the same computer platform and under
the same conditions. The neighborhood search procedure (VS) used follows the Friden et

al. (1990) and Gendreau et al. {1993) approaches (utilizing Tabu Search). In GSAMCP,

we forced UB to be updated every §J Vi/20 J steps — on top of the normal GSAMCP

algorithm update. Searched vertex pruning was done in GS as well.

The computational results are shown in Table 3.3, The first two columns show the

number of vertices and edges in the graph. Column 3 indicates the number of times the
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/B has been forced to be updated. This will also indicate, indirectly, the number of
vertices visited before optimal solution, MC 2 is found. The initial values of Ng, Ne, and
/B values are in the fourth, fifth, and sixth columns respectively.

Table 3.3 shows that in all cases the search performed following the GSAMCP
selection rules is computationally more efficient than the search done by following the
GS rules. Except in a few cases, the UB-forced update was not activated more than twice,
reflecting the efficiency of GSAMCP in restricting the search to where it does matter.

ing time was influenced by both the size of the

Furthermore, we noticed that the runn
graph maximum clique and the size of the graph.

We used the same NS procedure to perform the neighborhood search in both
GSAMCP and in the GS selection rules, and the only difference was where to perform
the search (vertex selection). Therefore, using another neighborhood search procedure or

ing time of

improving the current on (NS procedure) would be reflected in the rum

GSAMCP algorithm and GS selection rule.
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Table 3.3: Computational results of comparison between the GSAMCP algorithm

and GS.

#Y¥ CPU time (sec)

Vi LE] Ng Ne UB  MC*

activated GS GSAMCP
50 162 2 6 8 6 5 0.16 0.05
50 550 2 12 1 13 9 2.65 0.17
50 964 2 17 5 22 i5 16.58 0.44
50 1598 3 28 4 31 24 102 2.58
50 1890 4 31 4 35 27 207 5.11
100 446 2 6 7 6 0.44 0.16
100 1380 2 17 18 11 7.8 0.44
100 3328 6 36 4 36 19 217 8.45
100 5898 3 53 4 56 35 1065.3 55.24
150 6796 5 50 2 51 24 887.7 35.21
150 10566 5 70 6 72 39 3623 83.43
200 10682 2 60 3 60 31 2272 43.17
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4.1 Introduction

In Chapter Two we introduced a new MIP formulation for the planar maximum
covering location problem (PMCLP) under parallelogram norms and the one-infinity
norm. The MIP formulation, however, is limited to facilities of the same degree block
norm — that is, biock norms of r=2 in the case of rectilincar, Tchebycheff, or
parallelogram norms, and block norm of r=4 in the case of the one-infinity norm.
Handling facilities of different distance type coverage by MIP is not possible without an
added computational cost. In addition, our experimentations shows that MIP is efficient
only for small problems ( fifty demand points and two shape), and an alternative method
is needed to handle larger problems. The exact algorithms of Chapter Three can handle

one shape at a time and, for locating g facilities, the algorithm may be used with other

heuristic techniques such as TABU search method.
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In this chapter, we attempt to overcome the formulation and exact solution
restrictions delineated in Chapters Two and Three. We propose to accomplish that using a
meta-heuristic technique, mainly the genetic algorithm approach (GA), a meta-heuristic
technique widely used to overcome computationally difficult problems.

The genetic algorithm (GA) approach, introduced by Holland in 1975, mimics the
natural evolution of species. Since then, it has been applied in many areas such as
location problems by Jaramillo et al. (2002), for capacitated location allocation models,
as well as for uncapacitated models (Salhi and Gamal 2003) and covering models (Aytug
and Saydam 2002). In addition, GA has been applied in set covering by Solar et al.
(2002), Aickelin (2002), set partitioning (Chu and Beasley, 1998), node partitioning
problems (Chandrasekharam et al., 1993), unconstrained binary quadratic problems
{Katayama et al., 2000), and maximum clique problem (Balas and Niehaus, 1998).

We start this chapter by reviewing in Section 4.2 the basic elements and
techniques of GA. The GA approach we discuss makes use of the idea of transforming
covering by parallel-side polygons problem into maximum clique problems, introduced
in Chapter Three. This transformation is necessary in order to allow handling of the many
facilities with different block norms. Section 4.3 shows the extension of the ideas
presented in Section 3.3, formulating our problem in a format suitable for GA. In Section
4.4, we introduce our approach in applying GA to PMCLP under different block norms.

We provide computational examples also in Section 4.4.1.
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4.2 ound and Principles

-enetic Algorithms:

A GA is a random search heuristic that mimics the natural evolution of species. It
emanated from the behavior of genes in the adaptive process of nature and the mechanics
of natural selection in nature. A GA starts with an initial population of strings, also
known as individuals or chromosomes, that is considered a potential solution. The strings
can be represented as a set of binary numbers or as strings with real valued numbers. A
string’s individual fitness is measured as either the individual objective value or its
violation of constraints — which can also be represented as a penalty function value — or
both. The fittest strings have a better chance of being chosen as parents for the production
of offspring: They have a greater chance to survive and, consequently, transfer their
characteristics to their offspring. Offspring can be mutated with a certain probability, and
offspring fitness is evaluated. The offspring are then inserted in the population, replacing
parents or individuals with lower fitness, and a new generation is produced. This process
continues for a certain number of time or cycles, or until convergence is reached.

In general, a GA would have the mechanism to perform the following steps:

1- Generate initial population { as strings).

2~ Evaluate individual string fitness.

3- Establish a basis for deciding which parents to mate and, thus, generate

offspring.
4- Establish a framework for deciding which offspring and parents should
constitute the next generation.

5- Develop a method to imitate natural evolution.
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We will row discuss the main steps in 2 GA. The steps are named population

eration and represemtation, selection, crossover, and mutation.

4.2.1 Population Generation

This step s usually known as initialization or seeding. In initialization, we want to

determine the initial population (Generation [0]) before starting the GA. A population

re, and is

generated from a uniform distribution is frequently used in the literat
equivalent 1o sampling randomly from the space of possible solutions.

er alternative is to start with a possibly good solution obtained from a problem

characteristic or from another heuristic technique. However, this approach may bias the
random nature of GA and cause a premature convergence.

4.2.1.1 Representation

Representation refers to the form used to represent individuals and possible
solutions in the GA. Different representations would affect the population encoding. The
most popular way to encode a population is binary representation, in which each
individual in the population is represented as a string of zeros and ones. The choice of
different representations affects the performance and the techniques used in other GA
operations. In general, we should use a representation that is easy to handle in subsequent
GA operations. In this thesis we use binary strings in our GA implementation and, hence,

we will l[imit our discussion to binary strings.

4.2.2 on

Once an initial generation has been initiated, the question is which part of this

population has the characteristics deemed good enough to transfer to future generations.
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racteristics are favored and bad characteristics are penalized. This

itd answer the following questions:

oe which characteristics are favored? .

ch parent string, as well as how many parents, is selected from the given
piigtion?
3- What factors determine which strings mate with each other?
This process of selecting parents to generate offspring has been done in many different
ways. We will briefly discuss a few of them.

4,22.1 Fitness Evaluation

Also known as the evaluation function, this provides a way to judge the quality of
individuals in the given population. While individual fitness is important, it should be
viewed as a part of total population fitness, allowing the random selection process as

liscussed in Section 4.2.2.2.

String evaluation can be performed from the optimization problem objective

function, while mainiaining problem constraints satisfied. In cases where constraints are

d, different measures can be taken:
1- Rejecting infeasible strings.

2- Repairing infeasible strings.

nalizing infeasibie strings.

In a GA, evaluation of strings is considered the greatest computational burden;

string representation usually plays a role on the data structure used and the speed of
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ts Selection

§2.2.2

The selection of strings as parents for offspring is a fitness-based operation.

erent selection strategies have been proposed by different researchers; some of the

most common selection strategies are listed below:

1- Roulette selection
This technique takes its name from the analogy of the rouletie gambling game. The

'3 %

1als in the population are mapped to segments of a line, where each individual

nent is equal in size to its fiiness. A random number, from a uniform distribution, is

generated. The individual whose segment spans this random number is then selected as a
parent for mating.
2- Rank-based selection
In this method, the population is sorted according to their objective values. The
frtness assigned to each individual depends only on its position in the overall rank.

Position fitness can be found according to a linear or a non-linear function — linear or

on-linear ranking, respectively — of position and number of individuals in the
population. Individuals are then selected randomly according to their normalized
fitness (individual fitness normalized by the total fitness of the population).

3- Trancation selection

In this method, a threshold is set, and individuals with fitness value below this

shold are ignored. Individuals to be parents of oifspring are chosen at random from

individuals with fitness value greater than this threshold.
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I addition to selection, a strategy should be developed upon which offspring will

replace some or all of the old population (reinsertion). Some of these strategies are

I- Offspring replace parents (offspring produced are as many as parents).

ffspring randomly replace some parents (offspring produced are fewer than parents).
sring replace the worst parents (offspring produced are fewer than parents).
4- Reinsert only the best offspring (offspring produced are more than needed-i.e original

population).

4.2.3 Crossever

For binary valued strings, the recombination step, where reproduction takes place,
is known as crossover. Parents' genes are randomly exchanged to create offspring. This
exchange can happen in different ways; one of the oldest and most commonly used is the
one peint crossover, also called as a simple crossover. Let the siring length be st/ , and

select an integer k such that 1<k <s#/ 1. Offspring are then generated by swapping all

genes between positions £ +1 and s/, Figure 4.1. Note that % can be selected randomly

or can be set for a certain value during all the generations.

Other types of crossover can be used, such as the multi-point crossover and

shuffle crossover. In multi-point crossover a number of crossover positions are generated

lomiy between 1 and the sil-1. The offspring are generated by sxchanging genes

wveen the first crossover position and the second one, then be

and so on. The 3-point crossover operation is shown in Figure 4.2.
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Parent! |1 10 o (o 1 1 J1 Jir o Jo 11 11
Parent2 |1 |1 1 J6 o0 1 J1 Jo jJo T1 1t i1
Crossover position 2 @

Offspring? [1 [0 [1 Jo Jo T1 J1 Jo Jo [t J1 11
Offspring2 [T [1 Jo To 1 1 Jt 1 Jo Jo [1 [1
Figure 4.1: Single point crossover.

Parentl [1 |0 0 (0 1 1 1 J1 Jo Jo 1 1
Parent2 [1 |1 1 Jo |0 1 1 Jo Jo 1 1 0

Crossover Positions 2 5 11

(3 positions)
Offspring! |1 |0 (1 10 10 {1 |1 1 jJo Jo |1 Jo
Offspring2 {1 |1 10 o |t 1 |1 o o 1 11 1J1

Figure 4.2: Multi-point crossover.
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4.2.4

Mutation

Mutation is the changing of the value or position of one or more numbers in the
string. For a binary format, string mutation can be as simple as flipping the gene from 0
to 1, Figure 4.3. Mutation plays a role in insuring that the GA does not converge

prematurely to a2 local optimum,; it usually occurs randomly, with a small probability.

Figure 4.3;: Mutation for binary string.

Figure 4.4 shows the flow chart for a typical GA. For a detailed discussion on GA
and its main components, refer to the classical book by Goldberg (1989) and the book

edited by Reeves (1995), among many others.
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Generate initial
population

|

Evaluate
individual fitness

Select parents for
mating

Generate the next generations:
1- Crossover
2- Mutations
3- Evaluste offspring fitness
4- Replace parents

No

Yes

Figure 4.4: Flow diagram of GA.
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h Formulation

4.3 ny Shapes as a Gra

ximal Covering by

In Chapter Three, Section 3.3, we developed the equivalence between the
maximum covering by a single shape, the facility, and the maximum clique problem. In
this section, we develop covering by different shapes as a graph equivalent problem. We
extend the classical zero-one maximum clique formulation to handle this case, then we
transform it to an equivalent unconstrained quadratic binary problem (UQP). This
transformation plays an important role in the GA implementation.

In the case where the given g polygonal shapes are identical, each shape will

generate a graph such that £, = E, Vk, j=1,...,g, and the problem of maximal covering

by polygonal shapes will be equivalent to partitioning the vertex set V in graph

G = (V, E) into nonempty disjoint complete subgraphs with vertex sets V,V,,...,V, ; such
g

that D |V, |<] V| is maximized.
k=1

However, in the case of non-identical g polygonal shapes, each shape will

generate a graph on the same vertex set and different edge setsG ,(V,£,), j=1,....g. The

problem of maximal covering by polygonal shapes will be equivalent to partitioning the

vertex set V into nonempty disjoint complete subgraphs with vertex sets ¥,,V,,...,V,, such
that Zg V, <]V | is maximized, and for vV, €V, (v,v ) ek i j=L.,nk=1..,z2
k=1

Observation 1: Upper limit on the maximum number of points covered by g polygonal
shapes.
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Consider g different polygonal shapes and their corresponding g graphs
G,(V.E)), j=1,...g. Let MC; be the maximum clique on graph %, and | MC; |be the
size of such a cligue. Denote the maximum number of points covered by the g parallel
sided polygonal (PSP's) shapes as maximum covering by parallel sided polygons

(MCPSP). Since each shape can cover at most MC, point, it is evident that the optimal

%

solution of MCPSP (OPT_MCPSP) follows that OPT _MCPSP < S| MC, |.

=t

4.3.1 Formulating the Ma
Problem (UQP)

um Cligue as an Unconstrained Quadratic Binary

In this section, we first show a zero-one formulation for finding the maximum
covering by g PSP (MCPSP). We start by showing the zero-one formulation for the
maximum clique problem (MCP) on a graph, then we extend the formulation to the
MCPSP problem.

The following notation is used for zero-one formulation for the MCP:
Inputs

G=(V,E) is a graph with vertex set ¥ and edge set E.

G =(V,E) is the complement of graph G.

Decision variables

X =

H

{(E if vertex 7 ischosen; i=1,...,7%
{0 otherwise
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(P7) Maximize ) x, (4.1)
ja=l
Subject to:
x+x,<1 VG, /) ek, (4.2)
x,€{01} i=L...n 4.3)

In the above zero-one formulation, the objective function (4.1) is to maximize the
number of vertices chosen. Constraints (4.2) ensure that only adjacent points are chosen.

Constraint (4.3) is the usual zero-one condition.

The following notation will be used for the zero-one formulation for partitioning

vertex set V into nonempty disjoint complete subgraphs with vertex sets V,V,,....V,, such

g
that )|V, ||V | is maximized, and forv,,v, €V, (v,,v))€ E, ;i,j=L...nk=1,..,g.
k=l

For the zero-one formulation of the MCPSP the following notation will be used.

G, =(V,E,) is an multi-interval graph, k =1,..., g,

G: =(V, E;} is the complement of graph G, k=1....g,

X,

]

_ |1 if point (vertex) { is assigned to graph k; i=L..mk=1...g.
* 10 otherwise

A, =adjacency matrix forgraph k, k=1,...,g

@, = row i and column j element in the adjacency matrix of graph £,

i=L.,mji=L.mk=1..,g.

The zero-one formulation will be:
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(P8) Maximize (4.4
Subject to:
X, +X {4.5)
(4.6)
x, €401} i=1,.. 4.7)

Constraints (4.6) ensure that a point is assigned to one shape only. Constraints

(4.5) ensure only adjacent points can be chosen for any shape. This means that
X, +x, <1 it @, =0,i=L...,m j=1..,mk=1,..,g. The objective function (4.4)
maximizes the sum of points assigned to different graphs. Constraint (4.7) is the usual
zero-one assignment. Constraints (4.5) and (4.6) can be transformed to a penalty function
in the unconstrained UQP.

The general UQP can be written as f(x) = x’ Ox , where x is a binary vector and
Q is an # by 7 matrix. Since { is an identity matrix and all x's are binary, the equivalent

UQP problem can be written as follows:

Z XXy V(i) e E: is a penalty function representing constraints (4.5).

=i+l

x,%, is a penalty function representing constraints (4.6).
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In the UQP formulation above, the objective function is to maximize the total number of
points assigned to shapes. However, the penalty function P’ will increase if two non-
adjacent points are chosen, forcing only adjacent points to be set to 1. Similarly, the
penalty function P~ will increase if a point is assigned to more than one graph. Note that
the / index starts from k+1 in the penalty function P'. This will avoid penalizing a point
in the same graph, while penalizing the point if it is assigned to more than one graph.

In Section 4.4 we propose a GA to solve this problem — a GA that would maintain P’ as
zero. This would maintain feasibility with respect to P, easing the solution process. In
order to improve the GA results, a local search based on a Tabu search heuristic is

performed. We also discuss again the penalty function issue.

4.3.1.1 A Small Example

The following illustrates, by means of a small hypothetical example, the penalty
function idea discussed so far. The same example will also be used to illustrate the
genetic algorithms of the next section.

Consider five points in R and two parallel-sided polygonal shapes (PSP's), poly/
and poly2. Assume that the adjacency matrices for the graphs generated from polygons
polyi and poly2 be A and 4, respectively. The adjacency matrices and the equivalent

graphs are shown in Figure 4.5,
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1 0 0 0 17 1 0 1 0 0
6 1100 ¢ 1100
A={0 1 1 1 1 4=i1 1 1 ¢ 1
0 01 10 00010
1 0 1 0 1 0 0 1 0 1

Figure 4.5: Adjacency matrices and equivalent graphs to illustrate the penalty function
idea.

As can be seen from the graphs in Figure 4.5, the maximum clique in each graph

is 2 and in the best solution, each shape will cover a maximum of two poinis

((v,,v,) for polyl and (v;,v,) for poly2). For illustrative purposes, suppose that we
initially choose vertices {2,3,4,5} for shape poly/ and vertices {1,2,3} for shape polyZ.
Since (v,,v,)€ E and (v,,v;) € ;E;m polyl, this will add a penalty,P of 2; also,
(v.v,)) € TEZ in poly2, so an additional penalty of 1 will be added to P'. Similarly, one can
find P’ to be equal to 2 — simply because v,,v, are chosen in both graphs. Finally, note

that in the optimal solution, both penalty functions P'and P should be equal to zero.
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4.4 Genetic Algoritl Covering by Polygonal Shapes

In Section 4.2 we introduced the basics of GA. This section illustrates the
adaptation of GA to solve the UQP formulation for the MCPSP on graphs having the
same vertex set and different edge sets.

The genetic operations, initial population, selection, crossover, and mutation are as
follows.

1- Initial population: This can be divided into two parts, population presentation and
population assignment.

1.a Population representation: In a UQP, the choice of strings in a binary format
would be a natural choice. Each string takes # bits, each bit representing one point. The
bit is assigned a value of 1 or zero according to whether it is assigned to a shape or not.
Therefore, a matrix of size gn represents g shapes with strings of size n for each shape.
This matrix of ;ize g represents one parent in the initial total population. An example of

one parent in the initial population, as a matrix of size g#, is shown in Figure 4.6.
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Shape 1 |1 0
Shape2 {0 | 0 0 i
Shape g o1 T 0 [}

Figure 4.6: Initial population representation.

1.b: Population assignment: For every point there will be two choices: either to assign
the point to one shape or to keep it unassigned. If the point is assigned to a shape, then
the remaining bits in the column representing that point are set to zero. This will ensure
that for any point assigned it will be assigned only for one shape, and will avoid the
calculation of the penalty function P". This population assignment will also ensure P’
will always be zero after crossover operations.

Figure 4.7 shows the initial population generation procedure. A brief explanation follows.
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1- Generate a population of zero matrices of size gn,
and call this STR,, j=1,...end _of _ population .

2- For j=l,..,end _of _population

3- For i=l:n

4- Generate g random numbers (ra, k=1..,2)

5- Ifmax (ra, ) 2 cut value

Set STR (index _of _max(ra,),i)=1

end
end

end

Figure 4.7: Procedure initial population.

In step 1 of the procedure a population of parents (matrices of size gn) are
generated. Each parent represents g graphs, where each row in the parent matrix
represents one graph (equivalent to one parallel-sided polygon (PSP)), while each column
in the parent (mafrix) represents one vertex (point). Therefore, given » points and g
shapes, we say that a point, #,is assigned to shape &k in parent j if STR (k,i)=1.
Selections of graph and points status, assigned or unassigned, are done in steps 4 and S.

In step 4, a list of g-indexed uniform random numbers, [0, 1], are generated.
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In step 3, if the value of the largest random number in rg, is greater than a certain

value, which we called "cut value”, then the point is assigned to that shape, otherwise it
will remain unassigned in that matrix. Since it is expected that, in general, a larger
number of shapes will cover a larger area and more points, then the cut value should be
inversely proportional to the number of shapes. Therefore, we set the cut value as l/cg,
where ¢ 21 is a constant, and g is the number of shapes. For a small number of shapes,
we choose a large cut point, that is, ¢ ~1; this will avoid our choosing too many points
for a small number of shapes. It will also reduce the correction procedure performed for
strings, as explained later. Experimentation with the cut point may be necessary.

The procedure continues to the next point until all points are accounted for.
Finally, if a shape has no points assigned to it — that is, if all the elements in the row are
equal to zeros — then we assign to it a point from any remaining unassigned points.

1- Fitness function

Each shape will have a number of points assigned to it as 1's in the matrix row.
The shape fitness is the maximum number of points assigned that forms a complete
graph. For any shape, which is represented by one row in the parent matrix, the shape
fitness can be found as the difference between the total number of points assigned to
that shape and the penalty function P'. If the penalty value is zero, then the shape
fitness is the total number of 1's in the shape string (row). In this work, a correction
procedure on each string was performed, setting points that lower the fitness value
and increase penalty P to zero. After this corrective procedure, the penalty P

becomes equal to zero and the fitness function for any string is the sum of the
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remaining 1's in that string. As an example, consider the adjacency matrix 4, from

Section 4.2, and let the string for polygon polyl be as follows:

String for polygon polyl before correction

The correction procedure will check the string bits that maximize the value of P'.

From Figure 4.5, one can see that vertices v,,v, are not adjacent to each other, that is,

(v,v,) e E; also (v,v,) € E, (vz,vs)eE-, Therefore, the first and second bits will
contribute a penalty value of 2, while the fifth bit will have a penalty value of 1.
Consequently, one of the bits with a higher penalty is changed from 1 to 0 (flipped), say
the second bit, keeping bits 1, 3 and 5 as 1's. This procedure is repeated with a penalty of
1 for the first and third bits and a penalty of 0 for the fifth bit. Hence, the first bit is

flipped from 1 to 0, leaving the third and fifth bits with penalty P as zero.

String for polygon polyl after correction

The string's fitness value after this correction procedure is the sum of 1’s in that

string, which equals 2 in the above example. Since the penalty function P’ is set to zero
then the parent fitness value will be the sum of shapes’ fitness values, that is the sum of

i's in the matrix.
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2- Selection of parents for next offspring:

A truncation selection was used in this stage, where a certain percentage of the

population is taken for the crossover stage. Parents are chosen from the fittest 50% of the
population. Roulette-wheel selection was used for mating parents. The parents and the
new offspring replaced the strings of lowest fitness.

6- Crossover:

In the crossover stage, genes from different parents are exchanged to create offspring
with characteristics from both parents. From the different crossover schemes available in
the literature, the simple one-point crossover was used. In a simple crossover, a random
number is generated for each mating parent to find the crossover point. Our choice of
initial population would maintain the feasibility with respect to the penalty function P’.
A feasibility correction procedure was again performed for the offspring to maintain
penalty function P as zero. Figure 4.8 shows how P* would always be maintained as
ZEerYo.

7- Mutation:

We choose randomly a number of parents and a number of strings to be mutated. If a
string is a candidate for mutation, one or more points in that string are randomly chosen.
If the chosen point is 1, then it is flipped to 0. However, in order to maintain P as zero,
if the point value is zero then it is flipped to 1 and all other bits in the matrix column are

set to Zero.
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Offspring after crossover

Figure 4.8: Crossover operation maintains P~ as zero.

8- Local search:

At the end of a certain number of cycles, the GA result for all shapes in the fittest
parent is maintained in a tabu list. A search is then performed in the neighborhood of the
points assigned to each shape. If the neighborhood of the shape string is not empty, and is

not in the tabu list, a tabu search is performed and the points in the neighborhood

adjacent to all points in the siring are added.
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4.4.1 Computational Experiment
In this section we present the results of experiments used to examine the GA
algorithm. Computational tests for the GA and TS algorithms developed by the author

were performed using Matlab and run on an IBM PC with an Intel Pentium III 600 MHz

processor and 64MB of memory. Six different shapes were taken, as presented in Figure
4.9. The shapes are as follows:

1- A parallelogram as shown in Figure 4.9.1.

2- A diamond shape as shown in Figure 4.9.2.

3- A rectangle of sides length 3 and 2.5 as shown in Figure 4.9.3.

4- A hexagonal shape (a block norm of third degree) with a 2.5 units distance between
its center and corners as shown in Figure 4.9.4.

5- A diamond shape of side length 4 as shown in Figure 4.9.5.
6- A square of side length 4 as shown in Figure 4.9.6.
Computational experiments were performed for different sets of points in

different areas. Table 4.1 shows the number of points and the area size.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PHD Thesis — Hassan Younies McMaster- Management Science/Systems

2.
N\
150
\
3\ Y
\\ I T
G
~ 30
Figure 49.1
3
w
~
Figure 4.9.3 Figure 4.9.4
4 4
Figure 4.9.5 Figure 4.9.6

Figure 4.9: The different shapes under study.
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Table 4.1. Number of points and area.

Shape Number Number of points Area

=y
1 50 (20,20)
2 50 (20,20)
3 50 (20,20}
4 50 (20,20)
5 50 (20,20
6 50 (20,20)
1 100 (30,30)
2 100 (30,30)
3 100 (30,30)
4 100 (30,30)
5 100 (30,30)
6 100 (30,30)
1 150 (40,40)
2 150 (40,40)
3 150 (40,40)
4 150 (40,40)
5 150 (40,40)
6 150 (40,40)
1 200 (40,40)
2 200 (40,40)
3 200 (40,40)
4 200 (40,40)
5 200 (40,40)
6 200 (40,40)

In order to evaluate our GA and TS resulis, we first compared case of two shapes

and 50 points with the MIP result from Younies and Wesolowsky (2004.a}. Both GA and

TS gave results the same as that of MIP, for 50 points and two shapes.
The exact algorithm, based on the ideas of Friden et al. (1990) and Gendreau et
al. (1993), was used thereafter for comparisons. For four graphs, we examined by solving

a twenty-four different permutation ordering by the exact search algorithm. However, an
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exact search was also performed independently for each shape, and an upper bound for
each shape was found.

In Table 4.2 we show the computational results for both the GA and the exact
search algorithms. For six shapes, we performed exact search for an arbitrary one
possible ordering for comparison reasons only. The ordering {1, 2, 3, 4, 5, 6} was
performed by exact search.

Table 4.2. Computational results for up to six shapes.

Shapes taken #of Upper GA Result Exact Algorithm

1 23 4 5 ¢ Poins Bound Best Avg. Time Value Time
50 9 9 8 2 9 1
50 21 21 19 11.5 21 52
100 25 20 19 67.73 21 165.71
150 19 17 15 286.5 19 393.7
200 23 8 17 7515 21 843.54
50 36 28 26  18.72 30 2.53/run

100 40 33 28 128.4 31 10.98/run
150 29 27 26 499 28 26.69/run
200 36 33 30 1492 32 59.7/run

From Table 4.2 we notice the upper bound (solving each shape separately) is

greater than the best solution for four shapes and 100 and 200 points. For four shapes, the

GA results were lower than best result by the exact algorithm in three cases. This

permutation ordering results were better than the GA result in two cases, and close to

upper bound for the case of 150 points. The exact algorithm run time for six shapes is the
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run time per one permutation ordering. Our experiments with both the mutation rate and
the cut value discussed in previous section did not show a significant improvement.
Therefore, the GA parameters were fixed in all computations to forty generations, a
uniform crossover, and a muiation rate of 0.1,

Finally, while the exact algorithm (taking one or all possibie permutations) gave
good results in Table 4.2, the exact algorithm results may be affected by many factors
such as: 1) the shapes size and inclinations, 2) the ordering of the solution and 3) by the
spatial distribution and number of demand points taken. On the other hand the GA
approach will take simultaneously all shapes into account and will give a good solution
regardless of the demand points number, distribution or the shapes parameters (size,

inclination).
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LUSI

In this chapter we summarize the work described in this thesis and propose

avenues for future related research.

5.1 Conclusions

The research described in this thesis is aimed at introducing block norms to the
planar maximal covering location problem (PMCLP). It offers an alternative perspective
and methodology, as well as new solution techniques.

First, we introduced an alternative mixed integer formulation (MIP) based on the
block norms geometrical properties presented in Chapter Two. Our MIP formulation is
more general than any previously published formulations for the rectilinear planar
maximal covering location problem (RPMCLP) in that it can handle facilities with block
norms of different size (coverage measure), setup cost, and capacity. The formulation can
be used for cases of siting facilities with coverage measure under block norms of the
same degree. The main advantage of our MIP formulation is its adaptability to many

problem variations. From the authors' experience, the MIP formulation would solve for
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one shape and fifty demand points in 4-5 seconds on an Ultra-4 SPARC Sun station. The
MIP formulation can be easily implemented in many standard commercial packages.

In Section 3.2 we provided an exact solution approach for sitiing a single facility
with coverage measure under 2 block norm of order 2. The algorithm presented is also
capable of handling points with negative weights, which was not possible in the MIP
formulation. For facilities with coverage under block norms of higher degree, the
maximum clique approach will be more appropriate than the exact algorithm of Section
3.2. The computational cost of solving for the maximum clique depends on the number of
demand points, number of vertices in the graph, and the graph density (number of edges).
However, the maximum clique is an extensively studied problem: programs and
algorithms and different solution techniques have been developed, and published in the
literature. In Chapter Three, Section 3.4, we contributed to this vast body of literature by
introducing the guided search algorithm for maximum clique problems (GSAMCP). It is
more expensive to perform an enumerative search in a large neighborhood than in a small
one; however, we are more likely to find larger cliques in the neighborhood of larger
degree vertices. In GSAMCP, we addressed this fact and the problem of selecting a
starting vertex where an enumerative local search can be emploved. GSAMCP is &
promising idea, offering plenty of opportunities for future improvements.

In Chapter Three we showed that a single facility PMCLP under different block
norms can be solved as a maximum cligue problem. Chapter Four extended this idea for
the multifacility PMCLP under different block norms of any degree. In order to achieve

that goal, we first formulated the problem as an unconstrained binary quadratic problem
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(UQP). The UQP formulation allowed us to make use of genetic algorithms as our
workhorse solution technique. The transformation procedure to a graph theory problem
introduces a new perspective to this set of problems. Performances of the GA algorithm

and complete enumeration are reported.

5.2 Suggested Future Research

The block norms as a distance measure have been applied for a few problems in
location theory, namely, the minimax and the Fermat-Weber problem. The work
described in this thesis is the first attempt to formulate the MCLP with block norms. The
thesis introduces a new model, a new guided search algorithm for the maximum clique
problem, and applies genetic algorithms to facility location problems in a new way. Many
avenues for future research are possible.

In Chapter Two, it was shown that the PMCLP with block norms of the same
order can be formulated as an MIP using the geometrical properties of these block norms
contours. In addition to this application, one can investigate the problem of optimal
placement of parallel-sided polygons, allowing both rotation and translation of these
polygons.

Also, the idea of the difference in Y-intercepts can be used for other polygonal
shapes. In fact, in the course of this research, the author formulated maximum covering
by a single non-convex shape using the geomeirical properties of that shape. Additional
research could be conducted on the MIP formulation and different solution

methodologies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PHD Thesis —~ Hassan Younies McMaster- Management Science/Systems

The main area for further research arising from Chapter Three is the multilevel guided
search algorithm for maximum cligue problem (GSAMCP), where search in the
neighborhood of selected vertex can alsc be guided.

Chapter Four dealt with the GA method, which, in turn, presents many steps that
can be further investigated, such as selection of the initial population according to the
facility coverage measure (reflected in the unit contour size). The PMCLP under different
block norms has been modeled as an unconstrained guadratic problem (UQP). Therefore,
by developing an efficient general solution technique for the UQP, one can apply it to the
PMCLP under different block norms. Several alternative heuristic techniques for UQP
have been described in the literature, such as the one-pass heuristic technique and the
TABU search technique. These techniques, applied to UQP, can also be utilized for the

PMCLP under different block norms.
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