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ABSTRACT

This thesis reports my research work in the area of trellis coded continuous phase
frequency shift keying ((‘;PFSK). Previous approaches {1, 2, 3, 4, 5] applied binary
convolutional codes to CPFSK to achieve power and bandwidth efficiency. However,
the work in [6] and part of this thesis show that no single approach among previous
approaches can be outperformed by the others if only binary convolutional codes are
considered. .

A new coding scheme based on convolutional codes on the ring of integers modulo-
P is shown to be a natural way to apply trellis coding to CPFSK [7]. Recent work
has decomposed CPFSK into two parts; a linear encoder with memory, called the
continuous phase encoder (CPE), and a memoryless modulator (MM), where the
CPE often has a code structure defined over the ring of integers modulo-P. The
combination of a modulo-P convolutional channel encoder (CE) and the CPE, is a
linear modulo-P encoder. Design examples are given for rate 1/2 coded quaternary
CPFSK with modulation indices 1/2 and 1/4, and rate-2/3 coded octal CPFSK
with modulation index 1/8. Combinations are optimized in the normalized minimum
Euclidean distance sense for a given total number of states in the overall maximum
likelihood sequence estimation (MLSE) receiver. Numerical results show that this
new coding scheme consistently achieves better performance than previous schemes
[1,234,5.

'An upper bound on the bit error probability (BER) for ring convolutionally en-
coded CPFSK is derived. The bound shows that feedback-free CPFSK usually has
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a smaller error coefficient than CPFSK. The minimum Euclidean distance is a good
parameter for estimating performance, and the ring convolutionally encoded CPFSK

has a good BER for both moderate and practical signal to noise ratio.
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Chapter 1

Introduction: Thesis Overview

The topic of this thesis isto study convolutional coding techniques applied to contin-
uous phase frequency shift keying (CPFSK). The noise environment is additive white
Gaussian noise (AWGN) and the receiver performs maximum likelihood sequence es-
timation (MLSE). To optimize the combination of coding and modulation, the best
codes are chosen to achieve the largest Euclidean distance between the different code

designs while holding the decoding complexity constant.

1.1 Trellis Coded Modulation for Digital Com-
munications Systems

Due to the requirement of of reliable data communications while maintaining a large
number of users in a finite transmission, modern coding and digital modulation tech-
niques are necessary. A model of a digital-radio communication system is shown in
Figure 1.1. The goal is to achieve power and bandwidth efficient transmission of data.
In Figure 1.1, the source is assumed to be digital and memoryless. Some traditional

definitions for coding and modulation are as follows: (8]

o Encoding: The introduction of redundant symbols to correct errors.
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Figure 1.1: Digital radio communications system.

e Modulation: The conversion of symbols to a carrier waveform, usually a sinu-

soidal function of time.
e Demodulation: The conversion of the carrier waveform back into symbols.

e Decoding: The use of redundant symbols to correct data errors.

The encoder may use block codes, such as Reed-Solomon codes, or trellis codes,
such as binary convolutional codes. For block codes, each transmitted codeword de-
pends only on the current input information data. For trellis codes, however, the
transmitted codeword not only depends or the current input information data but
also on previous input data. The block encoder can be implemented with combina-
torial logic, and the trellis encoder can be implemented with sequential logic. The
modulator can be memoryless, such as phase shift keying (PSK), quadrature ampli-
tude modulation (QAM), and &nplitude shift keying (ASK), or with memory, such
continuous phase modulation (CPM), tamed-FM (TFM}), and partial response'modu-
lation. In memoryless modulations, the transmitted signals in any modulation interval
are a function only of the present input. In modulators with memory, the transmitted
signals in any modulation interval are a function of both-the present and some of the

past inputs. The statistics of the waveform can be stationary or nonstationary. This
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thesis only considers the stationary additive white Gaussian noise (AWGN) channel.

In early coded d*gital communications systems, the encoding and modulation were
designed independently. This approach has two drawbacks [9]. First, for the same
source rate and modulation scheme, block or convolutional coding will widen the
bandwidth of the signal compared to the uncoded system. Second, coding will de-
crease the transmitted energy per channel symbol, so more channel symbols will be in
error compared to uncoded transmission. These observations seem rather discourag-
ing. Because of these two drawbacks, decreased bandwidth efficiency and an increased
number of errors in the received sequence are to be expected.

This problem remained at an impasse, until Massey, in a now well-known seminal
paper [10], formally suggested the notion of improving the system performance by
looking at the modulation and coding as a combined entity. This concept of seeing
coding and modulation as one entity was later implemented by Ungerboeck’s break-
through papers [11] for PSK, QAM and ASK (using memoryless modulators). The
concept is now called trellis coded modulation (TCM). Using the TCM approach
with memoryless modulasions, such as M-ary phase shift keying (MPSK) or quadra-
ture amplitude modulation (QAM), significant coding gain can be achieved without
bandwidth expansion.

The basic idea of TCM is to cascade a trellis encoder (using a convolutional
code) with digital modulation using redundant signal sets. An approach, called set
partitioning, is used to assign s;igna.ls to each branch of the trellis. This coding
approach can obtain up to 4 dB of gain with simple coding scheme and to 6 dB of
gain with high complexity in the receiver’s maximum likelihood sequence estimation
(the Viterbi algorithm). An excellent tutorial treatment for TCM for memoryless
modulations can be found in the encyclopedic paper [12] and text [13]. TCM has also
been applied to fading dispersive channels [14], partial response channels [15], and
other practical channels [13]. TCM was originally believed to be a nonlinear form

of modulation. However, it has been recently found that some TCM schemes are



linear. In fact, some TCM signal space codes are linear codes over a ring or group

[16. L7. 18]. New coding schemes and results using this new concepts are expected.

1.2 Trellis Coded Modulation for Continuous Phase
Modulation

Continuous phase modulation (CPM) is a real constant envelope modulation. PSK,
however, is not a constant envelope modulation since the transmitted signal is ban-
dlimited by a bandpass filter so as to reduce the out-of-band spectral sidelobes and
prevent interference with adjacent channels. This effect is highly undesirable when
the signal undergoes nonlinear amplification, as in satellite repeaters [9]. CPM has
advantages when nonlinear amplifiers are applied, as quoted from [19}: “Saturating
amplifiers for constant envelope signals are 2 dB to 3 dB more efficient than purely
linear amplifiers, and this 2 dB to 3 dB must be counted as a gain for constant-
envelope schemes relative to variable-envelope schemes.” Moreover, CPM can also, in
principle, perform near channel capacity.in an AWGN channel for a given bandwidth
and energy constraint [19].

When more energy and bandwidth efficiency are needed for CPM, trellis-encoding
techniques can be applied. There are two effective ways which are to employ trellis
encoding with CPM. One, is to cyclically vary the modulation index A of the modu-
lator, giving multi-h phase codes [20] (this includes its relative, see (19]). The other
cascades external convolutional codes to single-h CPM [1]. However, relatively simple
two-h schemes have inferior energy/bandwidth performance compared to comparable
convolutional-code/CPM combinations. Summaries of trellis encoding for CPM can
be found in [8, 19, 21]. _

CPM can be divided into two major subsets: full response CPM (continuous
phase frequency shift keying), and partial response CPM [22, 23]. In this thesis, we
will consider cascading convolutional codes with CPFSK. CPFSK is very useful for
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digital mobile-radio transmission systems because of its constant-envelope and small
RF bandwidth requiremelnt. Combining coding with CPFSK to achieve coding gain
is, therefore, of practical interest.

For a trellis-encoded memoryless modulator, the complexity of the receiver de-
pends only on the complexity of the convolutional encoder. However, for encoding
a modulator with memory, the overall complexity of the receiver is due to the com-
bination of the memory of the convolutional encoder and the memory of the CPM
modulation. The traditional approach [1, 2, 24, 8] finds the best combination of cod-
ing and modulation without considering the interaction between the external encoder
and the memory of CPM, which may change the complexity of the receiver. Thus, the
codes found by the conventional approach may not be optimal for a fixed complexity
receiver. However, the work of Massey [25] suggested that continuous phase modula-
tion (CPM) be decomposed into two parts: one an encoder with memory, the other a
memoryless modulator. A general decomposition model of M-level CPM, comprised
of a continuous phase encoder (CPE) and a memoryless modulator (MM), has since
been derived by Rimoldi [26, 4, 27] (a similar model for MSK has been derived in [28]).
He showed that the CPE is a linear (modulo some integer P) time invariant encoder
and the MM is a time invariant device. It is then of interest to optimally combine
an external channel encoder with the CPE. All approaches (3, 4, 5, 29], namely the
matched encoding approach, the decomposition approach, and the double trellis en-
coding approach, employ this concept to find the optimal combination of coding and
modulation. New codes have been found using these concepts which have slightly
better coding gains compared to the traditional approaches.

In previous work [1, 3, 4, 30, 5], as shown in Fig. 1.2, a binary convolutional
channel encoder (CE), G, is connected to the M-ary CPFSK via a birary to M-level
mapper, Q. Alternatively, to avoid the mapper @, and to combine the binary CE
with the CPE in a natural [26, 4] way, a scrambler T' was cascaded with the CPFSK
model to allow a binary feedback-free CPE.



...... AWGN
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Figure 1.2: Binary convolutional encoded CPFSK system (the dotted box can be
omitted for the decomposition approach).

However, it appears [6] that these coded systems produce different performance
for feedback-free and feedback CPFSK. In fact, it appears that no single approach
to encoding CPFSK will consistently obtain the best performance if only binary
convolutional codes are employed. Based on the code structure of CPFSK, this thesis
suggests a new convolutional encoded CPFSK system [31]. It shows that a ring
convolutional encoder [16], called a modulo-P encoder [32], is a more naiural way to
combine the CE/CPE pair than a binary convolutional encoder {7], and that the
resulting coded modulation consistently obtains better performance than in previous
approaches.

An upper bound for the bit error rate of the ring encoded CPFSK system is
derived. It is shown that the bit error probability of ring encoded CPFSK system
performs well for both practical and moderate signal to noise ratios. Coding gain
obtained by ring encoded CPFSK system is very close to the coding gain predicted
by the practical channel ‘capacity [10], Ro. For example, it is predicted by Rp [27}
that rate-1/2 coded quaternary CPFSK with k = 1/4 has approximately 7 dB gain
over MSK, and we have achieved 6 dB for the complexity of 256 states.

In the CPM literature, this work is the first one that employs non-field convolu-
tional codes to CPM. The coding gain is high, for example, rate-1/2 modulo-4 coded
quaternary h = 1/4 CPFSK has coding gain over minimum shift keying (MSK) from
2 dB to 6 dB, for the number of states of 4 states to 256 states in the MLSE re-

ceiver. This is very effective compared to all the previous work. Previous work has
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only minor coding gain for relatively simple complexity in the receiver (0.3 dB for
the complexity of 4 states [4]). Recently, people have found that using the concepts
of ring convolutional codes or group convolutional codes, it is possible to generate
new codes for TCM [17, 33, 18]. This work is the first one that applies ring encoders
to digital modulations and obtains significantly improvement over the traditional ap-
proach. Therefore, it is very interesting to construct new coding scheme to other

digital modulations.

1.8 Thesis Overview

In chapter 2, we describe the decomposition model of CPFSK and a useful subset
of CPFSK which has modulation index & = K/P and P*¥ modulation levels, where
kas is an integer. The resulting CPE is seen to be a linear convolutional encoder over
the ring of integers modulo-P [26, 4]. A precoded feedback-free form of CPFSK [31],
defined over the same code structure as the CPE, will be introduced to simplify the
code search process. We will also modify the incremental squared Euclidean distance
(ISED) formula 4] for computing the normalized squared Euclidean distance between
codewords of the overall encoder (the combination of the CE/CPE pairs.)

In chapter 3, binary convolutional encoded CPFSK systems are compared. In
addition to our previous work [6], we compare another approach, called double trellis
encoded CPM [5], to the other’s previous work. The conclusion is that no single
approach in previous work (including the double trellis encoded approach) can be
outperformed by the others if only binary convolutional encoders are considered.

In chapter 4, we will define the ring convolutional coded CPFSK system. Here,
we consider an external convolutional encoder G defined over the ring of integers
modulo-P. Similar encoders have been applied to M-ary PSK (32, 16, 34, 35]. It has
been proved that a systematic ring convolutional encoder is minimal and always non-

catastrophic [36, 33, 37]. Therefore, we will assume the encoder is systematic. It will
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be shown that the combination of the CE/CPE pair is an overall ring convolutional
encoder. Because the channel encoder uses the same code structure as the CPE, a
mapper is then not necessary. That is, we can input the coded information sequence
directly into the CPE. It is not necessary to use a precoder to produce a feedback-free
CPE. However, a feedback-free form of CPFSK can simplify the code search process.

The structure of the overall encoder is then studied. Two approaches, one directly
deciding the number of states of the overall encoder [3, 29] and a second indirectly
finding the transfer function of the overall encoder {4], are considered. Design results
for several modulation indices are given and compared to [6], along with another
recent approach [5] for a..ﬁxed complexity MLSE receiver. It is concluded that this
new coded CPFSK system consistently achieves performance gains at least as large
as described in previous work, and with better coding gains being obtained in many
cases.

In chapter 5, the average transfer function technique (38, 39, 40, 41, 14, 42] is
applied to ring convolutional coded CPFSK. An upper bound on the BER is derived
and applied to different forms of coded or uncoded CPFSK. Numerical resﬁlts show
that the feedback-free forms of CPFSK have a better BER than CPFSK and the
normalized minimum Euclidean distance is a good parameter to estimate the per-
formance of ring convolutional encoded CPFSK. For some examples, the Euclidean
distance alone gives a pessimistic performance prediction (this also happens in binary
convolutional encoded systems [43]). It is also important to note that the ring con-
volutional encoded CPFSK has significant coding gain for both practical and small
signal to noise ratios.

Chapter 6 gives out conclusions and discusses possible future work. Appendix A
gives a brief derivation of the equivalent CPE with expanded code rate. Appendix B
contains a short introduction to convolutional codes. This will give basic definitions

and background for the readers.



Chapter 2

Continuous Phase Modulation
(CPM) and Continuous Phase
Frequency Shift Keying (CPFSK)

2.1 Introduction

In the follow;lng we recall the basic features of continuous phase modulated signals.
Continuous phase modulation is the only real constant envelope digital modulation
[19]. Other digital modulations, for example QPSK, still have envelope variation. In 2
radio channel with a nonl?nea.r transmitter power amplifier, constant envelope signals
are a virtual necessity; the alternatives are expensive compensation for nonlinearity
and more DC power to support a less efficient linear amplifier. Continuous phase
frequency shift keying is an important subset of CPM. This subset of signals has a
narrow bandwidth occupancy and relativel}'r simple complexity, and is therefore very
practical for digital-radio transmissions. :

Early work in developing CPFSK can be found in [44, 45, 46, 20], whei'g the work
of [44] is called FFSK or MSK and the works of Anderson and Taylor |20}, Miyakawa,
Harashima and Tanaka [46] are called multi-h modulation. This line of work was
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continued and summarized by Aulin, Rydbeck and Sundberg in [22, 23]. Recently,
combined convolutional coding with CPM became a necessity for bandwidth and
power efficient transmission systems. Many works have been studied (1, 2, 8] and the
coding gain for relatively simple complexity convolutional coded CPFSK is better
than relatively simple multi-k modulation. It is predicted in a review article (19} that
new convolutional coding combined with CPM is promised. From the suggestions of
Massey’s paper in [25], it would be desirable to decompose a CPM into a encoder
combined with a memoryless modulator (this will be shown in the sequel). This model
was then found by Rimoldi [26]. This model is important for combining coding
with CPFSK because then the external encoder and the inner phase encoder can
be optimized as a single entity. This chapter will introduce both the traditional
and decomposed model. The decomposed model will be applied to the design of
convolutional coded CPFSK systems.

In section 2.2, traditional descriptions of CPM are given. We will concentrateon a
subclass of CPM, known as CPFSK. With the traditional description, CPFSK has a
trellis structure where the trellis transition patterns are different for adjacent channel
symbol intervals. Also, this trellis structure is not minimal, i.e, it can be represented
as a trellis with fewer states.

In section 2.3, a decomposition approach to CPFSK is described, as in (3, 26, 5],
which can be seen as a realization of the idea in [25].

In section 2.4, equivalent forms of the decomposed CPFSK model are described.
We are interested in a useful subset of CPFSK which has a modulation index h = K /P
with P*» modulation levels, kas an integer.

In section 2.5, the Euclidean distance properties of encoded CPFSK signals are
discussed. A modified formula to calculate the Euclidean distance, which depends
only on the input of the memoryless modulators, is derived. |

Section 2.6 then gives some discussion on the preceding.
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2.2 Traditional CPM Model and Its Subclass CPFSK

The CPM transmitted signal is a sequence of bandpass waveforms of the form

[E
s(t,a) = “T’ cos(2r fot + ¢(t, @), t 2 0 (2.1)

where E, being the energy transmitted per symbol time, Tj.

The name CPM comes from the information-carrying phase ¢(Z, @) being 2 contin-
uous function of time. This phase function is a function of the information sequence &
= (ao, a1, . - - , U, . - .), Where we assume a; to take values in the set {1, £3,..., M-
1} if M is an even integer {22, and in the set {0,+2,%4,...,M —1}if M is an odd
integer [47]. The information-carrying phase has the following general expression:

#(t, @) = 2rh ./o tzn:a;g(r—iT,)d'r
=0

= 2rh i o f(t—-iTy), nT,<t<(n+1)T, (2.2)

i=0
where the definition f(t) = [5 g(r)dr has been introduced.
The function g(t) is called the baseband frequency pulse. In general, we have

g(t)=0, fort<0 and t> LT,; ' (2.3)

where L is the correlation length of the pulse. Moreover, it satisfies the normalizing

convention:
. peo LT, 1
jo g(t)dt = jn gltydt = 3. (2.4)
With this choice, the accumulated phase values due to completed g(t) pulses are
always multiples of k7. From (2.3) and (2.4), we have

f¢) =1, t2 L1, (2.5)

The three parameters in (2.2) which can be varied to control the properties of a
specific CPM signaling scheme are:



e the variable &, which is called the modulation indez:
¢ the number of possible values of ¢;, defined to be M:

e the shape and duration of the baseband frequency pulse g(t), or equivalently of
f(@).
It is noted that the information carried by one input symbol can be stretched over
more than one symbol interval in the phase trajectory. As a consequence, successive
phase changes are correlated. These modulation schemes are also named correlative
phase modulations for this reason.

We are interested in a subclass of CPM called continuous phase frequency shift

keying (CPFSK). It is defined as CPM with the following characteristics:

L =1

o(t) = 2;, for 0<t< T, (2.6)

Let us rewrite (2.2) for CPFSK

#(t,a) = 2rh ia,-f(t —1T,),
i=0
n-1

= 2rh Y i f(t —iT,) + 2rhan f(t — nT,),
i=0

nel

= =wh 2 a; + 2rhay f(t — nTy),
i=0
= ¢n + 2thay, f(t — nT,),
for nT, <t < (n+1)T%, (2.7)

where the term @, is a constant phase within the present symbol interval, and is given
by |

n~-1

&n = [Th D o] modulo 2. (2.8)
i=0

The @5, is called the phase state at time nT. A restricted number of such‘ phase states
can be achieved only for rational values of the 1ncdulation index k. Let us define

h=K/P (2.9)
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with K and P being relatively prime integers. Recalling {2.8), and the set of values

assumed by i, we have the following two cases:

1. The integer K is even. The possible distinct (mod 27) values for the phase state

$, are
K _ 2K (P-1)K
0, 21!'5?, 211’-2?, ves 2#—2-})—, (2.10)
and the total number of phase states is equal to P.
2. The integer K is odd. Now the phase states are
K _ 2K (2P -1)K
0, 2#5—15,2« 5P’ 21r——--2P——, (2.11)

and the total number of phase states is 2P.

Example 2.1: Assume binary (M = 2) CPFSK with h = 1/2 (P = 2) CPFSK. This
modulator is also called minimum shift keying (MSK) or fast frequency-shift keying
(FFSK) [44]. The phase states according to the above definition are:

T 3
{0, 7 Ty "'2—} (2.12)
Recalling equation (2.7), the phase state at time nT,, @, can transfer to a phase

state at time (n + 1)T, @n41, With the phase increment
2rhay, f(t - n1y), nT, <t < (n+1)T, (2.13)

Therefore, there are M possible phase state transitions for each phase state. We
can use a trellis diagram to describe the transition structure. The total number of
different transitions are 2PM. Figure 2.1 shows the trellis structure for MSK. In this
diagram, each state is labeled with its phase state and each branch between shows
the input data o, which produces the transition. The dotted lines represent the input
symbol -1, and the solid lines represent the input symbol 1. The Sy, 53, 53,54 ave the
phase states 0,7/2, 7, and 37/2 respectively.
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Figure 2.1: Conventional MSK trellis diagram

i
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Figure 2.2: Phase tree for binary CPFSK

Another approach describing the phase transition structure is called the phase
tree, which represents the phase variation with time. Refer to equation (2.7) which
describes the real phase ¢(t, &). For binary CPFSK, the phase tree is shown in Figure
2.2, We use pi to represeﬁt x. If the input is -1, the tree goes downward; if the input

is 1 the tree goes upward.

2.3 Decomposition Model of CPFSK

It is known that the conventional implementation of CPFSK is not minimal, i.e., the
trellis representation for CPFSK can be reduced [26, 3]. Our goal is to introduce the
~ concept that CPFSK can be decomposed as a time-invariant linear encoder combined
with a memoryless modulator. :

Let us consider the MSK trellis first. MSK has M = 2 modulation levels and
modulation index = 1/2. The phase tree for MSK is shown in Figure 2.3. Since
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v

Figure 2.3: MSK phase tree.

phase differences that are an integer muitiple of 27 are physically indistinguishable,

the phase tree can be represented as a simple trellis structure, as shown in Figure 2.4,

This trellis is obtained by taking the real phase ¢(t) in (2.2) modulo-2m, , i.e.,

e

$(t) = Rax[6(t)] (2.14)
where R[] denotes the “modulo z operator,” defined by
R:y]=y~ L%J z. (2.15)

The operator |-] represents the largest integer not exceeding the enclosed number.
As described in (2.11), the ¢(f) at t = nT, has four possibilities: {0, /2,m,—7/2}.

However, if we rewrite the MSK signal in the following form:

s(t,a) = ‘/i—f;zcos(%rﬁt + 0(t, a)), (2.16) ) |
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Figure 2.4: MSK physical trellis diagram.
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where the asymmetrical carrier frequency is defined as
fimfom o (217
1= Je 4Tsy b

and is equivalent to measuring the phase relative to the lowest phase trajectory in

Figure 2.3 (the lower boldface line). This new phase, (1, a), called the tilted phase,
is defined by

t
8(t, ) = ¢(t, a) + ,:rT (2.18)
In a similar way to (2.14), we can define the tilted physical phase, g,
-9- = R21r[9] (2'19)

The new phase tree and physical phase are depicted in Figure 2.5 and Figure 2.6
respectively. It is very interesting that this physical phase tree is a time-invariant
trellis. This time-invariant form of MSK trellis was introduced in [48, 28]. It has only
two tilted phases. In (3] it is shown that this time-invariant trellis can be implemented
by a rate-1/2 convolutional encoder cascaded with a memoryless modulator.

Massey suggested that any CPM can be considered as a encoder cascaded with a
memoryless modulator [25], as shown in Figure 2.7. The input information symbols
are M-ary positive integers just like a traditional channel encoder cascaded with a
memoryless modulator. An implementation of this idea was discovered by Rimoldi
[26]. It is proved [26] that CPM, in general, can be decomposed as a linear encoder
(modulo some integer P), called continuous phase encoder (CPE), cascaded with a
memoryless modulator (MM). We will follow {26, 13] to give a simplified derivation
for the decomposed model of CPFSK.

In order to represent ‘CPFSK as 2 time-invariant trellis, the CPFSK signal can

be generated by relating the phase to a asymmetrical carrier, f1, which is defined as

(26, 3, 3]

fi=fom (M- 1)21,_,,_, (2.20)
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Figure 2.7: Massey’s suggestion for a decomposition model of CPM.

to produce a time invariant trellis. The CPFSK signal can then be written as

s(t, a) =

;3’ cos(2w fit + &(t, a) + vh(M — 1)t/T,), t > 0. (2.21)

In order to employ positive integers to represent the data sequence, a, we can define
a modified data sequence U = (Up, U, ...), where

o+ (M—1)

'—‘7_- (2-22)

-

Ui =

By writing (2.2) in terms of f; and U, the CPFSK signal can be represented as

st U) = 1 222

where 8(t, U) is called the tilted phase. Let ¢t = 7+ nT,, 0 < 7 < T,. We then obtain

(t,U)), t > 90, (2.23)

0(t + nT,,U) = 2rh E U; + dwhU, f(r + nT,) + W(T), (2.24)
i=0
where
W(r)= —xh(M — 1)7/T, + 2xh(M — 1) f(7). (2.25)

The physical tilted phase is, for 0 < 7 < T,
n-1
O(r + nT,, U) = Ry [2xhRp[D>_ Uil + 4xhU f(T) + W(T)],  (2.26)
i=0

where we let ¢ = 7 + nT,. In the above equation we have used the fact that
Rox[27hz] = Rg,,[21thp[z]], when A = K/P. Note that all time-dependent terms on
the right side of (2.26) depend only on the tra.nslated time variable 7 = ¢t — nT,. For
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any symbol interval, the trellis transition is a function of the vector X, = [U,, Vi,

where the time-independent, data-dependent term,
Vo= RP{E Ui, (2.27)
has only P possible values. Also, all P va.lu::: are possible when n satisfies
. aM-1)3>P-1, (2.28)

since this ensures that the sum of n M-ary digits can reach the largest required value
P-1.

We have thus shown that the physical tilted-phase, 8(r + nT,U), for CPFSK
always has a time-invariant trellis. To complete the decomposition of a CPFSK
modulator into a CPE and MM, we need only to determine the MM input and to
find the recursion by which the CPE can update this MM input.

2.3.1 The Memoryless Modulator

For convenience, we write 8(r, Xn) instead of §(7 + nT, U), and s(r,Xn) instead of
s(r + nTy, U). The CPFSK signal is now denoted

2E,
T,

For realization purposes, the above equation is decomposed into in-phase and quadra-

s(r,Xn) =

cos[2r fi(T + nTy) + 8(7, Xz)], 0<t<T. (2.29)

ture components. We then obtain the set of equations that describe the operation of

'the memoryless modulator in a symbol interval,

(rXa) = I(1,Xa)  V2- cos2rfi(r + nTy)] + Q(, Xs) - V2 - sin[2x fi( + nT3)]
= I(1,Xa) &1+ Q(r, X) - 8 (2.30)

where

%) = | Ercos(llr %)
E

Q(r, Xn) = ‘/-i,i sin(0(r, X»))s {2.31)
Figure 2.8 shows the memoryless modulator in block diagram form.
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2.3.2 The Continuous Phase Encoder

The purpose of the CPE is to update the memoryless modulator input, X,, to produce
the next input, X,4,. Making use of equation (2.27), and the fact that Ra[y +y:] =
R:[R;[yi] + y2], we have

X 1a+l = Un+1
Xonsr = Rp[D_ U]
=0

n-1

= Rp[)_ Ui+ Ui
i=0

n-1

= RP[RP[Z Uil + Uy)
= RelVu+ Ul (232)
A realization of the CPE'is shown in Figure 2.9, where the sum is taken modulo-P.
A similar realization of the CPE can be found in {49].
We have shown that the transmitted signal (2.23) can be generated from a system
composed of a CPE and an MM, as in Fig. 2.10 [26], where X1n = Un, X2 = Va
and the shift register is represented as a delay cell, D. V, = Rp[¥ 7 Ui is the state
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Figure 2.10: Decomposed CPFSK model.

of the encoder. The number of possible states at time nT, is P, and the number of
possible signals in the MM is M P. _

In [4], it is pointed out that many of the coded M-ary CPM systems with » = K /P
and M = P*M for some integer ky, have maximum Fuclidean distance. If U, is

represented in radix- P form, i.e.
kM . +
Uy = UIPFM=Y L U2PRs~2 oo Uk = Y U PR, (2.33)
=l
then the résulting CPE has a well-defined structure, as shown in Fig. 2.11 [26]. Be-

cause of the modulo-P operation (see equation (2.27)), the state variable, V,, is
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Figure 2.11: Pk¥_ary CPFSK with modulation index & = K/P.

represented by a single P-ary digit with the value
n=1
Va = Rp(Y_ U] (2.34)
i=0
It is noted that this form of CPE is a rate kas/kar +1 systematic convolutional encoder
over the ring of integers modulo-P. It belongs to a new class of linear encoders recently
developed by Massey and Mittelholzer {16] for phase modulation. We will discuss ring

encoders in Chapter 4. The code generating matrix for the CPE can be denoted as
C(D), where

------

coy=|" = . (2.35)
0..1 0 0

00 0 1 {2

1-D .
The relation between the outputs of the CPE and the inputs to the MM is given by

1T . kML :
Xip = 3 XiPti= N yipu-i=y,
j=1 j=1

X2,ﬂ = Vn : . (2.36)
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Figure 2.12: A scrambler for the CPE

2.4 Feedback-Free Decomposition Model of CPFSK

In the last section, it is shown that the CPE is a systematic encoder with feedback.
Two different scramblers will be introduced to remove the feedback from the CPE.
The reason for introducing a feedback-free model of CPFSK is because it is more
convenient to cascade it with an external channel encoder compared to using the
original model [3, 4]. Moreover, it has been found that the bit error probability of
feedback free MSK is better than MSK [26]. This interesting fact will be shown in
examples in Chapter 5.

A. Scrambler defined over the same code structure as the CPE.

In [26, 4], a precoder or scrambler is suggested to remove feedback in the CPE.
Here we also define a precoder which has the same code structure (modulo-P) as
the CPE. The reason for using such a precoder will become obvious after we specify
our new convolutional coded CPFSK system in the following chapters. Consider a

ks % kas precoder, as shown in Fig. 2.12, and defined by

| PR 0
0 1-D

T(D) = (2.37)
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Figure 2.13: Feedback-free CPE.

Ik, -1 is an (kpr — 1) x (kas — 1) identity matrix. This is cascaded with the cncoder

Liy,-1 0 0
C(D) = [ ka1 . ] (2.38)
0 1 35
to produce an overall feedback-free and non-systematic encoder
C'(D) = T(D)C(D), (2.39)

as shown in Fig. 2.13.
B. Precoder defined over different code structure as the CPE

In [4], another feedback-free form of CPE has been suggested if the CPFSK sat-

isfies the following condition:

‘ M is an integer multiple of P. (2.40)

A scrambler, given in Figare 2.14, where
Un = Ru[U; — RelUs.1]] (241)

can be employed to remove the feedback of the CPE. Such a device is called a scram-
bler because it maps the list of all input sequences into a scrambled list of the same se-

quence [50]. Substituting U, into (2.36), we obtain the feedback free form of CPFSK,
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Figure 2.15: Feedback-free form of CPFSK using Kimoldi’s scrambler.

where

Xun =U.= Rm{U; - Rp[U_,]]
Xan =Vu= RplUi_] (2.42)

The feedback free encoder is shown in Figure 2.15.

If M is'a power of 2, i.e. M = 2*¥ and P = 9%u, then the input data is Us =

ku [Jeigkm—i_ [J* is the encoded data sequence. The encoder can be represented

as a binary encoder, shown in Figure 2.16. It is noted that the overall encoder is
not a linear binary convolutional encoder (except for MSK). For example, for M = 4
CPFSK with A = 1/2, the encoder is given as in Figure 2.17. L'he encoder is nonlinear

(in binary sense) since it contains a modulo-4 operator.
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Figure 2.17: The feedback-free CPE for k = 1/2 quaternary CPFSK (the scrambler

is nonlinear in binary sense.)
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2.5 Euclidean Distance Properties of CPFSK Sig-
nals

In an AWGN environment, it is well known that the normalized minimum squared

Euclidean distance (NMSED),
&L thm'n
min 2Eb 1

is a good figure of merit for the probability of error, P., of the coded or uncoded

(2.43)

system [8, 1], i.e.
d?'nin'E
P~ Qe (244)
0
provided Ey/Np is not too small. @[] is the error function and Np is the single-sided
power spectrum density of AWGN. In (2.43),

DX, = 6’23' D¥}U,U) (2.45)

is the minimum SED between any two different signal sequences generated by the
coded system. E, = E,/R is the transmitted energy per bit and R (bits/symbol) is
the information rate of the coded or uncoded CPFSK system.

From [20, 51], it has been shown that the squared Euclidean distance (SED)

between two CPFSK coded or uncoded symbol sequences is defined as
D} U, U") = / ¥ [s(t,0) = s(t, U2, (2.46)

where s(t, U) and s(t, U") are the signals produced by two different data sequences
U and U'. Replacing s(t,U) and s(t, U') with equation (2.23), and assuming these
two symbol sequences start from the same state at ¢ = 0 and merge to this state af

t = NT,, the above equation can be rewritten as

I
- f_‘: #(t,U)dt + j_ : (¢, U')dt

-2 L w s(t,U) - s(t, U)dt

D*(U,U")
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= E(N+1)-2- f = s(t, U)- s(t, U')dt

2E, 00 '
IE" . cos(2x fit + 8(t, U)) cos(2x f1t + (¢, U ))dt

= 2E(N+1)—2-

= 2E,(N+1)-2- _-;3;_ : f * cos(dn fot + (2, U) + 8(t, U"))dt
E

-2 2. / : cos(8(t, U) — 6(t, U")dt (2.47)

Assuming f; 3> 1/T,, the above equation reduces to

D*(U,U") = 2E,(N+1)—

211?‘, j_oo cos(8(t, U) — 6(¢, U"))dt

- SeEfl- % _:“’T' cos(6(t, U) — 8¢, U"))d1]
i=0 s Jily
=" i D?(Uv U')v (2‘48)
1=0
where )
DHU,U) = 2B1 - j;'“m cos(B(t, U) — O(t, UY)dt].  (2.49)

To further simplify the equation, we first note that the argument of the cosine function

can be denoted for CPFSK for the ¢ = n interval as

6(t,U) — 8(¢,U") = 2zh §(U; —U;) + dwh(U, - U;)‘ ;,_;'T (2.50)
where nT, <t < (n + 1)T,. Let
en=Un—U,, 0<n<N. (2.51)
Solving equation (2.49), we have
DU, U") = { . N R (2.52)
2E,[1 - cos(2wh T4 €)), € =10

D? is called the incremental squared Euclidean distance (ISED) [4, 51]. For any real
number £, and k = K/ P, sin(2wh€) = sin(2rhRp[¢]) and cos(2rhE) = cos(2zrh Rp[£])..
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Because V, = Rp[377} U], the above equation can also be written in terms of V,

and U, as
sin 2xA(Un+Va=Us ~ V.. )—sin 2rh(Va—V;1) :
pAu,u)={ 2B ot b Un#0 o
" 2E,[1 — cos 2xh(Vy — V)], U,=U.

or in terms of X = [Xyn, X2.] as

" ain 20A( X, +X2,0= X3 = Xg o )}=0i0 20h(X2,n=X; ) '
.D:(x-: xt) = 2E‘[1 - 2*h;x1.u:x;.n) : ], Xl'" -}é Xl,n.
2E,[1 - cos 21h( X3 — Xz )}; Xin=X1n
(2.54)

Equation (2.54) specifies the relation between the output of the modulo-P CPE and
the squared Euclidean distance of the outputs of the MM. When the cascaded CE
and CPE are to be considered as one entity, we can find the transfer function of the

overall encoder and then use this modified ISED formula to compute the SED.



Chapter 3

Binary Convolutional Coded

CPFSK Systems

3.1 Introduction

This chapter studies previous binary convolutional coding techniques applied to con-
tinuous phase frequency shift keying (CPFSK). Previous work in treilis encoding of
CPFSK includes the traditional approach {1, 2, 24], the matched encoding approach
(3], the decomposition approach [4] and the double trellis encoding approach [5].

CPFSK is a modulation with memory. To cascade the external channel encoder
with CPFSK we must consider the combination of the memory of the external channel
encoder (CE) with the memory of the internal continuous phase encoder (CPE).
It is important to note that the complexity of the receiver should depend on the
combination of these two encoders and not depend on the complexity of the channel
encoder alone. With this concept in mind, we will give comparisons between the codes
found in [1, 2, 24}, which are the traditional approach, and the other three approaches,
which studied the interaction of the memory of the external channel encoder and the
inner continuous phase encoder.

Since the decomposition modelr of CPFSK was found, new approaches have been
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studied for the interaction between the code structure of the external channel encoders
and the inner continuous phase encoder. One of these approaches is called the matched
encoding approach [3] and the other is called the decomposition approach [4]. Coding
gains with these new approaches are no more than 0.6 dB better than the traditional
approach with the same complexity in the MLSE receiver. A difterent approach,
called double-trellis coded CPM [5, 30], applies the multiple trellis coding technique
[14] to CPFSK, and has improvement over some of the other approaches for certain
cases. Either the traditional approach or the above approaches consider only a binary
convolutional encoder cascaded with M-ary CPFSK. In previous work [6], it is found
that there is no single approach which can be outperformed by the others for all
cases. Although the double trellis encoding approach can achieve better coding gain
in some examples of CPESK [30], however, whether it can outperform in all caces is
not known and will be discussed in this chapter.

In section 3.2, a survey of previous work in trellis encoded CPFSK is presented.
The major concepts and systems models of these approaches are described and their
performances are compared for the achievable maximum normalized squared Eu-
clidean distance for the same complexity in the MLSE receiver.

In section 3.3, the double trellis encoding approach is studied. We use this ap-
proach to design trellis codes for quaternary CPFSK with modulation index 1/2. The
codes so obtained are worse than those found in the traditional approach.

~ In the 3.4, comparisons between the best codes found for the different approaches
are given. It is concluded that no single previous approach achieves consistently good

codes if only binary convolutional codes are considered.

3.2 = Previous Binary Coding Techniques

In previous work (1, 3, 4], a binary convolutional channel encoder (CE), G, is con-

nected to the M-ary CPFSK with a binary to M-level mapper, Q, as shown in Figure



RE!

...... AWG N

> G = @ | T [fcprsk MLSE [~>

Figure 3.1: System model for binary convolutional encoded CPFSK.

3.1. Alternatively, to avoid the mapper Q and to combine the binary CE and the
CPE in a natural way [4, 27], a scrambler T' was cascaded with the CPFSK model to
allow a binary feedback-free CPE. Three approaches are introduced, namely the tra-
ditional approach and the matched encoding approach, which have a mapper between
the channel encoder and the CPE, and the decomposition approach, which employs

a scrambler to produce a'binary equivalent CPE.

3.2.1 Binary Convolutional Coded CPFSK System Model
with Signal Mapper

Figure 3.1 shows a convolutional encoder cascaded with M-level CPFSK (M is a
power of two). In Figure 3.1, G is the generator matrix of a rate k/! binary convo-
lutional encoder. G has entries G;;(D) (1 = 1,2,...,k;7 = 1,2,...,!), the generator
polynomials of the code. At time ¢, the input vector a is a k-tuple represented by
(a(2), a*(t),...,ak(t)) , whick produces a coded I-tuple, b = (b*(t),..., b'(t)), where
b = aG. The constraint length (it is defined in [50] or can be found in Appendix B)
of this encoder is defined as » = ¥; max;{deg{G:;(D)}). The number of states in the
channel encoder, Sg, is defined as |

S =2 (3.1)

In order to cascade a rate-k/l binary convolutional encoder with M-ary CPFSK,
a mapper Q is introduced between the encoder and the modulat.or. Here, we denote

the input symbols of CPFSK as positive integers. Even though in [22] the input
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Table 3.1: An example of a quaternary mapper

MSB | LSB | Output
b b* U
0 0 0
0 1 1
1 0 2
1 1 3

symbols of CPFSK are not represented as positive integers, these two representations
of CPFSK are equivalent (see Chapter 2). In order to simplify the description, we
use only positive input symbols. For binary CPFSK, Q is a mapper which transforms
the I-tuple b sequentially into a binary sequence U = {Uq, Uy,...,U;,. ..}, where U;
€ {0,1}. For M-level CPFSK, Q is a mapper which transforms b into an M-level
pulse-amplitude modulated signal U, where M = 2! and U; € {0,1,2,...,M —1}. A
block of coded symbols of length [ enters the mapper, which outputs M-ary symbols
to CPFSK. One channel symbol is then transmitted. The mapping rule we use here
is the so called natural mapping rule , i.e.
Ui(t) = ib‘(t)z‘-‘. (3.2)
i=
Table 3.1 shows the mapping between input binary data and output M-ary symbol,
where we assume { =2 and M = 4.

The modulator uses M-ary CPFSK with 2 = K/P, which can be considered as a
CPE and a MM. The number of states, Sar, in the time-invariant trellis of CPFSK is
the contents of the CPE, i.e.,

Sy=P (3.3)

~ For example: when h = 1/4 and M = 4, the state, o, of the CPE has four pos-
sibilities, i.e. oar € {0,1,2,3}. For every M-ary symbol entering the modulator, a
CPFSK signal is transmitted, The channel environment, n(t), is AWGN, and the
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decoder, V, is an MLSE .receiver using the Viterbi algorithm (refer to Appendix B).
The complexity of the receiver is Sy.

Since both the channel encoder and the CPE of CPFSK are finite-state machines,
the combined state oy = [0g,0M]| , oG and o are the states in the CE and the CPE
respectively, should have a complexity, Sv, equal to or less than the multiplication of
Se and Sy [3, 52], i.e.,

Sv £ 5¢-Sm (3.4)

Two examples of rate-1/2 convolutional encoders combined with MSK (A =
1/2,M = 2) are given to show that changes in the structure of the channel encoder
will affect the complexity in the receiver.
Example 2.1: Consider the encoder G(D) = [1,1 + D] connected with MSK. The
CE and CPE are shown in Figure 3.2 (a). Each encoder contains only one delay cell,
i.e., S¢ = 2 and Sy = 2. The combined trellis is shown in Figure 3.2(b). A combined
state is denoted by a 2-tuple vector, [og, op]. Each branch of the combined trellis
is labeled with the input data. There are four states in the combined trellis, i.e.,
Sv =S¢+ Sm-
Example 2.2: Let us consider another encoder, G = {1, D], connected with MSK.
This encoder also has Sg = 2 and Sy = 2, but the combined trellis is only Sy =
2. The system model and combined trellis diagram are shown in Figure 3.3, i.e.,
Sy = 1/25¢5um.

Now we are ready to describe the difference between the traditional approach and

the matched encoding approach.

Traditional Approach -

This approach obtains codes with maximum d2,;, by fixing the CPFSK meodulation,
and then searching the convolutional encoders with the same constraint length for the
same code rate. That is, this approach searches codes with 2-encoder with Sg = X

states a.nd amodulator with Sy = Y states, and assumes the codes so obtained are the
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Figure 3.2: G(D) = [1,1 + D] cascaded with MSK.
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Figure 3.3: G(D) = [1, D] cascaded with MSK.
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best codes for Sy = XY. Since the complexity of the MLSE receiver is determined by
the complexity of the overall encoder and not by the complexity of the convolutional
encoders alone, there may exist convolutional codes with higher Sc=2.Z2 > X,
when combined with the same CPFSK, Sy = Y, to produce a receiver complexity
Sy = XY. If this encoder has a larger &2;,, then we will not find this code since
the traditional approach does not consider the state reduction characteristics of the
CE/CPE pairs. Hence, the codes so obtained with the traditional approach may not

achieve the best d2,;, for a given number of states in the receiver.

The Matched Encoding Approach

It is found that when combining the CE with the CPE (3], some states in the CE
may be coincident with memory in the CPE. The total number of states in the overall
encoder can be reduced compared to the traditional approach (as shown in example
2.2).

For the same number of states in the MLSE, the matched encoding approach
suggests that the best codes can be found by only searching the encoders that are
matched. Here, matched encoders are the subset of available encoders which have a
highest Sg for a given Sy in the MLSE receiver. In other words, if there are two
subsets of encoders which, when connected with a modulator, produce the same fixed
Sy in the receiver, then we need only to search the subset of encoders with a higher
Sg.

In [6], we showed that this approach is at least as good as the traditional approach.
However, the codes obtained are not optimal for equivalent forms of CPFSK (6]

- 3.2.2 Binary Convolutional Encoded CPFSK Model Em-
ploying Decomposed CPFSK

_This model is suggested by Rimoldi [26, 27, 4], where a CPM system is divided into

two parts : a subsystem with memory and a component without. The subsystem with
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Figure 3.4: Binary encoded decomposed CPFSK system.

memory is a linear encoder and the memoryless component is a signal mapper. Figure
3.4 illustrates the convolutional encoded M-ary CPFSK model employed in Rimoldi’s
papers [4, 27]. It is shown that if the modulation index satisfies b = J/M, where
= 1 or 2. and the code rate equals k/!, where | = log: M, then we can combine
the convolutional encoder with the modulator without a mapper and all notation is
represented in binary (this subset of CPFSK has a better cutoff rate [4]).

In contrast to the matched encoding approach, the decomposition approach com-
bines CE with the binary feedback free model of CPE in a natural way, i.e. both
the CE and the CPE are binary encoders (see the dotted box in Figure 3.4). It is
found that one of the delay cells can be removed if we use the set partitioning concept
[11] for the feedback-free model. This approach is actually similar to the matched
encoding approach in the sense of reducing the same number of states compared to
the traditional approach. However, in our previous work [6], we showed that this
approach does not always achieve the best performance for all examples.

Even though the dotted box in Figure 3.4 is a binary lmea.r encoder, the overa]l
encoder includes 2 modulo-M operator that will produce an overall encoder which

is a nonlinear binary encoder. Actually, the code structure of the CPE is often a
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Figure 3.5: System model of double trellis encoded CPM.

ring convolutional encoder. Using an external encoder with the same code structure
as the inner continuous phase encoder is called natural in {26]. Rimoldi derived
this decomposition model but employed a non-natural combination of coding and

modulation in [4].

3.3 Double Trellis Encoding Approach for CPFSK

This approach applies the multiple trellis coding technigue [14] to CPFSK. The mul-
tiple trellis coding technique expands code rate from k/! to xk/(xl), where « is an
integer. In {5, 30], a rate-2/4 convolutional encoder (& equals 2) connects with 4-ary
CPFSK. The system model is shown in Figure 3.5.

The channel encoder G is a rate-2/3 binary convolutional encoder with input
sequence a(D) and output sequence b(D). The convolutional encoder is followed by
a rate-3/4 linear block encoder T with output ¢(D). The combination of G and T is
a rate-2/4 binary convolutional encoder. Again, Q is a natural mapper which maps
the binary sequence into 4-ary symbols. The modulator M is CPFSK. The receiver
is a MLSE receiver and the channe} environment is AWGN.

The rate-3/4 block encoder T has an input/output relation as shown in Table



Table 3.2: R.ate 3/4 mapper for Double Trellis Coded CPFSK

b G €a) Uane Uangn
(lsbl,msbl) (lsb msb))
000 00 00 00
001 00 01 02
010 01 00 20
011 01 01 22
100 10 10 11
101 10 11 13
110 11 10 31
111 11 11 33

3.2. Two binary information symbols produce three binary encoded symbols from
the rate-2/3 convolutional encoder, and these three encoded binary symbols are sent
to the rate-3/4 block em;oder T to produce four binary symbols. The four binary
encoded symbols are then mapped to two quaternary symbols, Uan and Usnyy, with
the mapper Q. Each combined trellis interval, n, consists of two channel symbols
generated by Uz, and Uznja.

Table 3.2 lists all possible binary inputs to T and the related autput quaternary
symbols, U, and Upyy. .It is noted that the addition of U, and 7U2n+1 is always
an even number weight. Therefore, all coded sequences U = (Up, Ut,...,Un,...)
generated by G are an even number in weight. From {6, 53|, it has been shown that
when a rate-k/l channel encoder, which has an all-even-weight codewords property,
is cascaded with an M-ary CPFSK, where M is a power of two and A = K/P, Pis
even, M > 4, then the number of states in the combined trellis will reduce to one half
of the traditional combined trellis, i.e. Sy = (1/2)SzSpy. Hence, this approach has
a state reduction characteristic. This is again similar to the decomposition approach
and the matched encoding approach.

The double trellis encoding approach can be compared to rate-1/2 binary con-

volutional encoded CPFSK systems, as explained in (3, 30]. The criterion used to
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Table 3.3: Normalized minimum squared Euclidean distanc: for rate-1/2 binary con-
volutional encoded A = 1/4 quaternary CPFSK

ST@ [ ® O] @
30] | {6 | [4] | [1]
1 273 | 242 | 2.15 | 2.00
8 | 4.00 | 3.00 | 3.57 | 3.00
16 | 4.88 | 4.42 | 4.51 | 4.30
32 i545" | 5.24 | 5.82 | 5.24
64 | N.A. | 6.15 | 6.18 | 6.15
128 | N.A. | N.A. | 7.09 | N.A.
256 | N.A. | N.A. | 7.24 | N.A.

x: search not complete, N.A.: not available, (a)double trellis encoding (b)The
matched encoding approach, (c)The decomposition approach, (d)The traditional ap-
proach

compare the double trellis encoding approach with the other three approaches is the

maximum @2, which can be achieved among the different approaches, for the same

number of states in the receiver [5]. In [30}, double trellis encoding approach provides
better coding gain than rate-1/2 binary convolutional encoded, 2 = 1/4, quaternary
CPFSK, for relatively simple complexity in the receiver, i.e. for Sy from 4 to 16. For
higher complexity in the receiver, it becomes very hard to find the best codes with
this approach, namely SVI > 32. The best codes found in {49] for Sy = 64 are worse
compared to using the decomposition approach. A comparison of all the rate-1/2
birary convolutional encoded & = 1/4 quaternary CPFSK systems found to date is
shown in Table 3.3. '

However, in Table 3.4 we show the simulation results for a double trellis encoded
' _quaternary CPFSK with modulation index A = 1/2. The convolutional encoder
QT"we considered is a rate-2/3 systematic convolutional encoder. Definitions for the
canonical form of the rate-2/3 encoder can be found in the Appendix B. The rational
function of the systematic encoder is represented in binéry form, i.e. H(D)=1+D+

D? is represented as 111. We compare this approach with the traditional approach.
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Table 3.4: Normalized minimum squared Euclidean distance for rate-1/2 binary con-
volutional encoded quaternary CPFSK with A = 1/2 (double trellis encoding)

HO(D) d?m'n
Sv | HYD) |di|in[l]
H*(D)
11
2 10 2 2
00
111
4 101 4 3
100
1001
8 1100 4 5
1000
10011
16| 01010 5 6
10000
101011
321011010 6 7
100000

It is very interesting to note that it is no longer superior to the traditional approach
when the number of combined states is greater than 4. It should be mentioned that
in order to reduce the code searching complexity, this approach actually considers a
subset of rate-2/4 binary convolutional encoders, i.e., it is actually a rate-2/3 binary

convolutional encoder combined with a rate-3/4 block encoder.

3.4 Conclusions

3.4.1 A Comparison of Previous Binary Encoding CPFSK
Results

In Table 3.3 and Table 3.5, we summarize all previous work for rate-1/2 convolu-

tional encoded quaternary CPFSK with modulation indices » = 1/4 and & = 1/2.



Table 3.5: Normalized minimum squared Euclidean distance for rate-1/2 binary con-
volutional encoded k = 1/2 quaternary CPFSK (previous work)

Sv | (a) {(b)] (c) | (d)
(0] | (61 { (4 | [4
T | 2 | 2] 2 | 2
8| 4 [ ¢ 3 [ 3
6| 4 |5 4| 3
2|1 5 | 6| 5 |6
64| 6 [ 7] 6 | 7
128 | N.A. | 8 | N.A.| N.A

x: search not complete; N.A.: not available, (a)double trellis encoding (b)The
matched encoding approach, (¢)The decomposition approach, (d)The traditional ap-
proach

From these two tables, we see that no previous binary encoding structure consistently
outperforms the others. This extends our previous results in [6]. The next chapter
gives a solution to this problem where we obtain consistently good results compared

to previous coding schemes.

3.4.2 Discussion

We have studied previous work on binary convolutional encoding CPFSK. The char-
acteristics of each approach that produce improvement over the traditional approach

can now be summarized as follows:

¢ The matched encoding approach suggests that better coding gains are possible
if we use the encoder to produce a combined trellis that has less states than the
traditional approach. The greater the number of states that can be reduced by
the channel encoder, the greater the coding gain that is possible.

e The decomposition approach gives a natural combination of the CE and the

CPE in the binary sense. It seems that we can use a coding scheme that is
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more naturel than using binary convolutional encoders, as suggested by the
structure of the CPE.

e The double trellis encoding approach suggests that a quaternary encoder may
be helpful. That is because considering a rate-2/4 binary encoder results in

better coding gains for some cases.



Chapter 4

Trellis Coded CPFSK with Ring

Convolutional Codes

4.1 Introduction

Several trellis coding techniques have been applied to phase modulation [11]. Most of
the channel encoders for trellis encoding are binary convolutional codes on the Galois
field GF(2). However, the work of [32, 34, 36, 33, 35] suggests that using convolutional
codes over the ring of integers modulo-P has advantages compared to the binary-
field case. This is because the combination of ring encoders and phase modulation
generates an overall linear system. The extension of this work has been generalized
by Forney [17). Surprisingly, many famous TCM schemes are actually linear codes
defined over groups or rings. However, in the CPM literature, the cascading of a ring
encoder with CPM has not been examined. We are motivated to investigate this by
the fact that the code structure of CPM is a ring convolutional encoder and to employ
a modulo-P ring encoder to perform trellis encoding of the CPFSK. It is natural to
consider a modulo-P encoder because it results in an encoder in the same regime as
the CPE. We find that this encoding scheme has many characteristics that cannot
be achieved by traditiQnal binary convolutional encoded schemes. Numerical results

47
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show that this approach leads to large coding gains. One example where we compare
this approach with MSK, shows that we can achieve coding gains of 2 to 6 dB with
Sy = 4 to Sy = 256 for the same bit rate per bandwidth (bit/sec/Hz).

4.2 Ring Convolutional Codes

Let B = Zp denote a commutative ring [16, 36, 54] where Zp represents the ring of
integers modulo-P. R(D) is the ring of rational functions over R, whose numerators
are polynomials with coefficients in Zp, as are the denominators with the restriction
that their trailing coefficient is 1. A rate k/! convolutional code C over R is a free
rank-k submodule of the free module R(D)!. Every rate k/! convolutional code over R
can be generated by some encoding matrix G(D)=g;(D),1<i<kandl <j </
gi;(D) € R(D) with kernel, Ker(G(D)) = 0. Every realizable generator matrix (i.e.,
a generator matrix all of whose components are causal) can be realized with a finite
number of memory cells capable of storing ring elements and a finite number of scalars
and adders that allow multiplication by constants and additions, respectively, within
the ring R. A k-symbol in.put sequence, a'( D), produces an [-symbol output sequence,
b (D), where each is a sequence of integers modulo-P. The input/output relations
are ¥(D) = T¥, a*(D)gi;(D). Asin the field case, a systematic ring convolutional

encoder is always minimal and noncatastrophic {54, 33].

Example 4.1: A rate-1/2 ring convolutional encoder with transfer functiou G(D) =

[1 +3D,1 + D] over Z4 can use the obvious realization in Fig. 4.1(a).

The symbols @ and © represent modulo-4 addition and multiplication respectively.

It has a four-state trellis, shown in Fig. 4.1(b). Each branch is labeled with a*(b'5%),

where a is the input symbol and b is an output symbol. Ea.ch node is labeled with the

content of the delay cell. It can been seen from the figure that the branches denoted-
by the two bold parallel lines have ;he same outputs for distinct inputs. Hence, thisis

a catastrophic encoder. However, this code can also be implemented as in Fig. 4.2(a)
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Figure 4.1: (a) G(D) = [I'+3D, 1+ D] (b) Four-state trellis generated by [1+3D, 1+ D]
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(The transfer function is [1, (1 + D)/(1 + 3D))).
It is a systematic encoder with feedback and the resulting trellis has only two states,
i.e. 0 and 2. These two states are obtained by enumerating the different contents in
the delay cell, starting from the zero state and for different inputs. Fig. 4.2(b) shows
the trellis diagram. We note that in this case each trellis branch actually consists of
two parallel branches and the minimum distance of the code will be determined by
the distance between parallel branches.

References [37, 35] consider a feedback realization of a ring convolutional encoder.
This chapter will apply the feedback realization of a rate-({ — 1)/{ systematic convo-
lutional encoder, as shown in Fig. 4.3.

The transfer function for this encoder is in general
| 1 0 3
GD)y=|: . :

(4.1)

H-YD
0 ... 1 & D.l

where H'(D) = ki + hiD + .- + ki D" and v is the number of delay cells in the en-
coder. In general, permutations between the redundancy carrying output line and the
information-carrying output lines are necessary [27]. A permutation between a redun-
dancy carrying output line and an information-carrying line corresponds to a permu-
tation of the last column of G(D) and the column related to the information output
line. For example, consider a rate-1/2 modulo-4 encoder G(D) = [1, (1+D)/(1+3D)).
Permuting the information symbol output line with the redundancy-carrying output
line will produce another-encoder with transfer function (1 + D)/(1 + 3D),1]. This
corresponds to a permutation of the columns of [1,(1 + D)/(1 + 3D)]. Cascading
these two encoders with CPFSK may produce codes with different minimum squared
Euclidean distances. Permutation of information lines is not necessary in the present

case because we have assumed that the input data are random.
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Figure 4.2: (a) G(D) = [1,(1 + D)/(1 + 3D)] (b) Two-state trellis generated by
[1,(1+D)/(1+3D)]
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Figure 4.3: Rate-(I —1)/! systematic ring convolutional encoder

4.3 System Model of Ring Convolutional Coded
CPFSK

The system model of a ring-convolutional-encoded CPFSK system is shown in Fig. 4.4,
where G is a rate-k/! ring convolutional encoder over Zp. The vectors of polyno-
mials a = (a'(D),..., a(D),...,a(D)) and b = (b*(D),...,¥(D),...,b'(D)) are
input/output of G. Each a’(D) or ¥{ D) is a sequence of integers modulo-P. A scram-
bler T, as in Fig. 4.5, is connected to the feedback P*¥-ary CPFSK with h = K/P
to produce a feedback-free CPE (the reason to conmsider this class of CPFSK can
be found in Chapter 2). The output data sequences b are partitioned into blocks
of length kp¢ modulo-P symbol sequences, U*. Each block of modulo-P symbols
produces a CPFSK channel symbol. The reason for using the feedback-free CPE
is because catastrophic convolutional codes may combine with the feedback CPE to
produce, overall, noncatastrophic codes [3]. To find the best codes for CPFSK, then,
we should also consider catastrophic encoders. The conditions for catastrophic ,gqigl:es

to produce noncatastrophic overall encoders must be found before code searching can

take place. Also, with feedback-free CPE, noncatastrophic CE’s always generate non-
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Figure 4.5: ky X kpg scrambler T( D).

catastrophic overall encoders, while catastrophic CE’s always generate catastrophic
overall encoders. Hence, code searching is simplified by considering the feedback free
model [29]. The overall complexity of the MLSE receiver depends on the number of
states in the combined trellis of the CE and CPE. A state of the combined trellis can
be represented as oy = [0, On], where ¢ and ou are the states in the CE and CPE
respectively. |

From knowledge of the equivalence between the feedback-free CPE and the original
CPE, the corresponding best codes G* for the feedback CPE model can be found by
scrambling the codewords.of the best codes G for the feedback-free CPE (c.f. Fig. 4.4).
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Because T is a scrambler over the ring of integers modulo P, G* is also a modulo-P

convolutional encoder. One advantage of using modulo- P encoders is that there is no

performance difference between the feedback and feedback-free CPFSK models.
The information rate (bits/symbol} of the overall encoded system is given by

klogo P kalog, P .(kA,+1)log2P_£'k loz. P
Tog, P (kat + 1) log, P 1 =7 Mk
(4.2)

where Rcg is the code rate of the CE, Rgpg is the code rate of the CPE and Rprpy

R = RegRepeRum =

(bits/symbol) is the information rate of the MM. For example: for a rate-1/2 modulo-
4 convolutional coded CPFSK with A = 1/4, Rcg = 1/2, Repe = 1/2 and Rym =
2log, 4 (bits/symbol). So the total coded information rate R =1 (bit/symbol).

4.4 Cascade of Modulo-P Encoder with Feedback-
Free CPFSK

Previously (3, 26, 4], two equivalent approaches have been used to find the complexity
of encoded CPFSK; one, called the match encoding approach, indirectly [3] finds the
combined trellis of the channel encoder and CPFSK [3, 29); the second, called the
decomposition approach 4], directly spéciﬁes the overall encoder of the CE/CPE
pairs. We will apply both to find the complexity of modulo- P encoded CPFSK.

4.4.1 Combination of Ring Convolutional Encoder with Feedback-

Free CPFSK

It is clear that changes in the structure of the channel encoder can change the number
of states in the overall encoder. The complexity in the MLSE receiver depends on
the number of states in the overall encoder. We will give a criterion: to decide the

overall number of states when modulo- P encoders are connected with the feedback-
free CPFSK model.



First, two definitions from ring theory are given [55]:

Definition: If a subset S of a ring R is itself a ring under the addition and multipli-

cation in R, then we say that S is a subring of R.

Definition: A subring [ of a ring R is an ideal provided: Whenevera€ Randb € I,
then abe J and ba € I. . )

From the above two definitions, an interesting cha.racferistic of ring convolutional
codes is obtained : the set I, formed by all the last modulo-P symbols of any code-
words before merging to the zero state (include the zero symbol) is an ideal in the
ring Zp. This can be seen from the fact that ring convolutional codes are linear, i.e.
the addition of any two cedewords and the multiplication of any codewords with any
elementsin the ring must be a codeword. Therefore, the set I, satisfies the definition

of an ideal

Lemma 1: Consider arate k/! modulo- P convolutional encoder connected to feedback-
free P*M.ary CPFSK having modulation index h = K/P with [ a multiple of k.
The total number of states, Sy, in the combined trellis of CE and CPFSK is then

Sy =8¢ n, (4.3)

In (4.3), Sg is the number of states in G (the channel encoder). Let & be the last
modulo- P symbol of any codeword before it merges to the zero state, then n, is the
number of elements in the ideal, I, formed by all b;'s.

Proof: Consider the feedback-free CPE of Fig. 4.6.

Let Cg be the set of codewords generated by a modulo-P convolutional encoder.
A state in the CE/CPE trellis can occur if and only if there exist two codewords
of Cg that produce a state merge in the CE and the CPE simultaneously. First,
we consider the possible ‘sta.tes of the combined trellis generated by all the nonzero
‘codewords that merge to the zero encoder state. These states of the combined treilis
are oy = [0, om] = [0, o], where the CE state, o, is zero and the CPE state, oy,

is chosen from one of the P possible CPE states. Depending on the structure of the
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Figure 4.6: Feedback free continuous phase encoder.

encoders, the combined trellis states, with zero encoder state, will have no more than
P possibilities. Due to tl-le linearity of the convolutional codes, the total number of
combined trellis states is the product of the number of encoder states and the number
of possible combined trellis states with encoder state equa! to.zero.

Let by and b, be any two codewords generated by G tha: diverge at some time

m and merge at time n — 1 (n > m + 1) in zero state og = 0], where

by = (rrsbiact, bies, binez, biaet, 0,0...
1 ( Lneds Din-3, O1n—2, b1 n—1 ) (4.4)
b; = (...,b20-4, b2n-3, b2,n-2, b2,n-1,0,0...).

In (4.4), byn-1 = ban—1 = b;. From the fact that the content of the CPE is only a
delay of b, it will merge in a CPE state oar = b; at time n. Therefore it produces a
combined trellis state [0, ;] in the overall treilis. Let n, be the number of clementsin
the ideal formed by the last modulo-P symbols of all the codewords before merging
to the zero state. Hence, the states in CPE have n, possibilities to combine with the
zero state in the CE. Therefore, Sy = Sg - n,. This ends the proof.

Example 4.2: Consider a rate-1/2 systematic encoder G(D) = 1, ;755] over Zy
connected to quaf.erna.ry CPFSK with modulation index h = 1 /4, as in Fig. 4.7(a).
The encoder state trellis diagram is in Fig. 4.7(b). From the trellis diagfé.tn, it can be
seen that every codeword has the last modulo-P symbol equal to zero or two before

it merges to the zero state. The number of different elements in the ideal formed
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by the last modulo- P symbols is only two (i.e. 0 and 2). The combined trellis has,
therefore, only four states as shown in Fig. 4.7(c).

Example 4.3: Cousider a rate-1/2 systematic encoder G(D) = [2 + D, 1] over Z,
connected with quaternary CPFSK with modulation index k = 1/4, as in Fig. 4.8(2).
The encoder state trellis diagram is in Fig. 4.8(b). From the trellis diagram, it can
be seen that every codeword has the last modulo-P symbol equal to zero before it
merges to the zero state. The number of elements in the ideal of the last modulo-P
symbols is only one (i.e. 0). The combined trellis has, therefore, only four states as
shown in Fig. 4.8(c).

Example 4.3 says that we can reduce the number of combination states to one-
fourth of Sg times P (the number of states of modulator). Previous approaches
(3, 4, 30, 5] can only reduce the number of states to one-half of Sg times P compared
to the traditional approach. This is an important feature of modulo-P systems. If
every codeword has its last modulo-P symbol equal to zero before it merges to the
zero state, Lemma 1 tells us that we can reduce the number of states to 1/P of Sg
times P for a modulo-P system compared to the traditional approach. This does not

happen in binary convolutional coded systems.

4.4.2 Transfer Function of the Overall Encoder

The channel encoders we consider are systernatic encoders and have the advantages
of being both minimal and noncatastrophic [54]. From [37, 35), the number of states
of a systematic encoder can be found by enumerating the possible reachable states,
starting with the zero state, for every possible input. We will follow this approach to
count the minimum number of states in the CE and the number of states in the overall
encoder can be found by enumerating all the possible combinations of CE/CPE pairs.

The procedure to find the transfer function of the overall encoder will be developed

for different examples. It is obvious that this procedure can be applied to other code
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Figure 4.7: (a) G(D) = [1,1/(1 + 2D)] connects with A = 1/4 quaternary CPFSK
(b) Trellis diagram for G(D) (c) The combined trellis of the CE/CPE pairs.
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Figure 4.8: (a) G(D) = [1,1/(1 + 2D)] connects with & =1/ quaternary CPFSK (b)
Trellis diagram for G(.D) (c¢) The combined trellis of the CE/CPE pairs.
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Figure 4.9: Rate-1/2 modulo-2 coded k = 1/2 quaternary CPFSK.

rates and different modulation indices.

(a) Rate-1/2 modulo-2 CE connected with h = 1/2 quaternary CPFSK

For A = 1/2 and M = Pk =4 CPFSK, P is 2 and ky = 2. The resulting
transmitted information rate B = (1/2) -2-1 =1 (bit/symbol) (see equation (4.2)).
Referrin;: to Fig. 4.6, the CPE of this modulator is a rate-2/3 encoder with transfer
function C'(D). The encoded system is shown in Fig. 4.9.

The CE is binary (P = 2) with rate-1/2 and transfer function G(D) = [1,9(D)],
¢(D) € R(D). The columns of G(D) can be permuted, i.e. G(D) can also be
[9(D),1). The overall encoder is a rate-1/3 (1/2- 2/3) binary convolutional encoder.

The overall transfer function is

' 1 0 0
G(p)-c(o)—G(D)o[o ) D] (4.5)

(b) Rate-1/2 modulo-4 CE connected with k=1 /4 quaternary CPFSK

For h = 1/4 quaternary CPFSK, P is 4 and ky = 1. The resulting transmitted
information rate R = (1/2) - 1-log,4 = 1 (bit/symbol) (see equation (4.2)).
In Fig. 4.10, both the CE and CPE are rate-1/2 modulo-4 encoders. One modulo-

4 information symbol to the CE produces two encoded modulo-4 symbols, and each
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Figure 4.10: Rate-1/2 modulo-4 coded h = 1/4 quaternary CPFSK.

encoded modulo-4 symbol to the CPE produces two modulo- P symbols. Two modulo-
P symbols from the CPE input to the MM generate a channel symbol (see equation
(1), (2.8) and (2.36)). To merge the CPE to the rate-1/2 CE, the CPE can be
transformed to a equiva.le_nt rate-2/4 encoder, G'(D), (the derivation is in Appendix

A). The overall encoder is a rate-1/4 (1/2 - 2/4) encoder with transfer function
1 0 31
3D D10

where G(D) = [1,g(D))] or {¢(D), 1], g(D) € R(D). The inputs of the overall encoder
are a*(D) and the outputs are represented as ¢ = [¢}(D), (D), &(D), ¢*(D)]. This

is consistent with the original model. One information symbol will generate four en-

G(D)-G'(D) = G(D)- , (4.6)

coded modulo- P data, and every two encoded modulo-P symbols to the MM produce
a channel symbol. The information rate R = 1/2 (modulo-4 symbol/channel symbol)
= 1 (bit/channel symbol).

Example 4.4: Consider a rate-1/2 modulo-4 encoder G{D) = [1, :755] combined
with A = 1/4 quaternary CPFSK. In example 2 the same encoder is cascaded with

the modulator and the complexity of the combination is obtained by using Lemma 1.

Fig. 4.11 shows the overall encoder obtained from the transfer function (4.6). It is a

rate-1/4 modulo-4 encoder. Every branch is labeled with the input/output relation,
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Figure 4.11: (a) G(D) = (1, ;755] merges with the CPE (b) Trellis diagram for the
overall encoder, G(D) - G'(D) ' £ |
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Figure 4.12: Rate-2/3 modulo-8 coded & = 1/8 octal CPFSK.

al(c'2ct), where a is the input modulo- P symbol and ¢'s are the encoded modulo-
4 symbols. The number.of states is obtained by enumerating the reachable states
[35, 37], starting from the all zero state and different inputs. It is the same as the
four-state trellis in Fig. 4.7(c) (in Fig. 4.7(c) only input symbol is labeled on each
branch.) The NMSED can be computed by using the Viterbi algorithm and the
incremental squared Euclidean distance equation (2.54). The minimum distance d%;,
equals 3.15 (1.97 dB gain. over MSK).

(c) Rate-2/3 modulo-8 CE connected with & = 1/8 octal

For h = 1/8 and P* = 8§ CPFSK, P = 8 and ka = 1. The resulting transmitted
information rate R = (2/3) - 1 - log, 8 = 2 (bits/symbol) (see equation (4.2)).
In Fig. 4.12, the CE is a rate-2/3 modulo-8 encoder and the CPE is a rate-1/2 modulo-
8 encoder. In order to m.erge the CPE to the CE, an equivalent rate 3/6 modulo-8
CPE, G'(D), is found (see Appendix A). The overall encoder is a rate-2/6 (2/3-3/6)

modulo-8 encoder with transfer function

10 “91(D)

0 01071 (47)
0 1 go(D)

] 1 07100
™D D0O01O

G(D)-G'(D) = [

g1(D), g:{ D) € R(D). The last colume of G(D) can be permuted with the first two



64

Table 4.1: Normalized minimum squared Euclidean distance for rate-1/2 module-2

encoded h = 1/2 quaternary CPFSK

Sv | ENCODER | d%;, | d%,;, of the best
G solution in [6]

) D] | 2.00 2.00

4 £-1) | 4.00 4.00

8 | [BaEs1] | 5.00 5.00

16 | [Z32%5,1] | 6.00 6.00

columns. The inputs of the overall encoder are a = [a}( D), a®(D)] and the outputs

are represented as ¢ = [c'(D), &*(D),...,c3(D)].

4.5 Numerical Results

In this section, code search results are presented for rate-1/2 binary encoded qua-

ternary CPFSK with A = 1/2, rate-1/2 modulo-4 encoded quaternary CPFSK with
h = 1/4 and rate-2/3 modulo-8 encoded octal CPFSK with & = 1/8. These cases
are of interest in coded CPFSK systems [4]. The searching procedure is based on

the Viterbi algorithm to find the d2,;, [8]. The best codes are found by searching the

channel encoders achieving the best minimum normalized squared Euclidean distance

for a fixed complexity, Sv, in the overall MLSE receiver.

(a) rate-1/2 binary encoded h = 1/2 quaternary feedback-free CPFSK (R = 1 bit/symbol)

Table 4.1 provides codes for h = 1/2 quaternary feedback-free CPFSK up to Sy
= 16 states. The resulting codes have minimum distance equal to the best previously

published results [6]. The best codes G* for CPFSK can be obtained by scrambling



Table 4.2: Normalized minimum squared Euclidean distance for rate-1/2 modulo-4
encoded h = 1/4 quaternary CPFSK

v|Sv G dain | (&) | (B) | (c) | (d) | Gain(db)
6} | 4] | {30) | [1] | over MSK
i 4 1 i7zp] 315 [242215] 273 [ 200 | 1.97
1| 8 [1,113%,-] 4.09 | 3.00 | 3.57 | 4.00 | 3.00 | 3.1
2| 16 | [222£2D%4] | 515 | 4.42 | 4.51 | 4.88 [ 430 | 411
3;32 [1—,%;8 Jd] | 6.00 1524 1582|545 | 524 |  4.68
3| 64 [{,3—;;5—2’5%23‘ 6.42 | 6.15 | 6.18 [ N.A. | 6.15 | 4.9¢
4| 128 | [1, 3200542001 | 7,60 | N.A. | 7.09 | N.AL | NLAL | 5.80
4 | 256 | (22222207 1] | 7.90° | N.A. | 7.24 | N.A. | NLAL | 5.97

x: search not complete, N.A.: not available,(a)The matched encoding approach,
(b)The decomposition approach, (c)Double trellis encoding approach, (d)The tra-
ditional approach

. Table 4.3: Normalized minimum squared Euclidean distance for rate-2/3 moduio-8

encoded & ='1/8 octal CPFSK.

=)

v ]Sy ENCODER | d2,, | do;, of the best | Gain{dB) over = 1/4
G solution in [8} quaternary CPFSK
1 0 6+4D
1 01 9 2.18 1.45 177
1 0 S14l
1|16 142D 2.38 1.47 2.13
- 01 i
A+l
2| 32 (1, (1’ DD | | 2,03 2.55 3.05
i
2| 64 (1] ‘1’ 14007 | | 343 | 3.28 3.74
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the best codes G for feedback-free CPFSK with the scrambler

o 5o]
T(D) = . (4.3)
0 1-D

(b) rate-1/2 modulo-4 encoded A = 1/4 quaternary feedback-free CPFSK (R = 1 bit/symbol)

In Table 4.2, the best rate-1/2 modulo-4 codes for h = 1/4 quaternary CPFSK are
given. The comparison assumes the convolutional encoders are of the same rate, mea-
sured in bits of information per modulation symbol as in previous work (6, 4, 30]. The
vartable » is the number of delay cells in the modulo- P encoder and Sy is the number
of states in the overall encoder. Since rate-1/2 coded h = 1/4 quaternary CPFSK
has approximately the same spectral efficiency as MSK, performance is compared to
MSK. Coding gain is defined as

(oding gain = 10 - log,, ﬁ‘— (4.9)

. MSK
where d%;sr = 2 is the normalized minimum squared Euclidean distance of MSK.
It can be seen that the new coding scheme yields superior d%;, to all previous re-
search results. The increase in coding gain for Sy equal to four is almost 2 dB, so
Rimoldi’s model becomes more useful than it appears in [4], where no more than 0.3

dB improvement was found. The best codes G* are obtained by scrambling G with

[ 1 3}. w10
?D 1

This is derived from the fact that the codewords of G are scrambled serially by 1— D,
and 1 - D =1 + 3D modulo 4 {the procedure is similar to Appendix A).

(c) rate-2/3 modulo-8 encoded k = 1/8 octal CPFSK (R = 2 bits/symbol)

In Table 4.3, the best rate-2/3 modulo-8 codes for A = 1/8, octal CPFSK are given.
Since rate-2/3 coded k = 1/8 octal CPFSK has approximately the same spectral
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efficiency as h = 1/4 quaternary CPFSK (d%;, = 1.45) [8, 4], coding gain is compared
to that modulator (replace d3,s; = 2 with d%;, = 1.45 for A = 1/4 quaternary
CPFSK in (4.9)). It can be seen that the new coding scheme yields performance
superior to the results in [8]. The best codes G are obtained by scrambling G with

1 70
0 1 71- (4.11)
7D 0 1

This is derived from the fact that the codewords of G are scrambled serially by 1— D,
and 1 — D =1+ 7D modulo 8. The reported code searches are not complete in this

table because of the long search times involved.

4.6 Discussion

The ring encoded CPFSK system has the following characteristics that have combined
the ideas of previous binary convoluiionally coded CPFSK.

o The combined states of the overall encoder can be reduced to (1/Sx) - SvSu,
where Sy = P, as predicted by Lemma 1. This cannot be achieved by any

previous coding schemes.

o The combination of the CE/CPE pairs is natural in the sense of using the same
code structure as the CPE. The overall encoder is a linear ring convolutional

encoder. There is no performance difference between encoded CPFSK and
encoded feedback-free CPFSK.

e This coding scheme considered can use both binary and quaternary encoding,

depending on the code structure of CPE.

These desirable characteristics have been previously suggested for achieving coding
gain (see the discussion in the Chapter 3), and the coding scheme presented here has
encompassed these ideas for coded CPFSK.



Chapter 5

Performance Analysis of Ring
Convolutional Coded CPFSK
System

This chapter studies the bit error probability (BER) of modulo-P encoded CPFSK
systems. In general, the BER of digital communications systems can be determined
by the normalized minimum squared Euclidean distance among all the possible trans-
mitted channel symbols, provided the signal to noise ratio is large enough (56, 39].
However, the number of pairs of channel symbol sequences separated by the normal-
ized minimum squared Euclidean distance, called the error coefficient, may increase
the BER significantly if it is a large number. It is therefore an important consid-
eration when studying the upper bound on the BER for ring convolutional encoded
CPFSK. An upper bound on the bit error probability, based on the averaged transfer
function techniques (42, 57], is derived for modulo-P encoded systems. Numerical
results are given and show that the Euclidean distance is a good parameter to predict
the performance of ring excoded CPFSK. Ring encoded CPFSK does not have a large

error coefficient, and it performs well for practical and moderate signal to noise ratios.

68
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5.1 Introduction

Previous chapters have introduced a new encoding scheme for CPFSK based on con-
volutional codes over the ring of integers modulo-P. Modulo-P encoded CPFSK
systems consistently obtain good coding gain compared to previous work. However,
the comparisons are based on the assumption that the signal to noise ratio is suffi-
ciently large. This chapter studies the BER bound for these systems and investigates
the system performance for different signal to noise ratios.

For maximurn likelihood decoding of convolutional codes, the Viterbi algorithm is
a well known and effective approach. The performance bound on the error probability
for systems using the Viterbi algorithm was introduced in [38]. The approach used to
derive the performance bound is called the transfer function approach. In addition to
decoding convolutional codes that have linear trellis structures, the Viterbi algorithm
can also be applied to maximum likelihood demodulation of nonlinear trellis codes.
A generalized bounding technique to find the performance bound for nonlinear trellis
has been derived in [42, 57]. This bounding technique is called the average transfer
function approach.

Most useful digital modulations for bandlimited channel are nonlinear trellis codes,
for example, trellis coded modulation (TCM) and continuous phase modulation (CPM)
are all nonlinear trellis codes and have applied the Viterbi algorithm for their max-
imum likelihood democulation. Average transfer function bounds for trellis coded
modulation can be found in {13}, and for traditional binary coded or uncoded CPM
in [43)].

From previous chapters, it is known that the CPM modulator can be seen as 2
linear ring convolutional encoder cascaded with a memoryless modulator. Therefore,
it is no surprise that the average transfer function approach, applied to a channel
encogéf connected with memoryless modulator [13, 58, 14], can also be applied to
uncoded CPM. Moreover, the combination of a ring channel encoder with CPE is

also a modulo-P linear encoder, so it is very convenient to view coded CPM in the
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same way as trellis encoded memoryless modulation.

Based on the average transfer function technique developed in [42. 57. 43. 40]. an
upper bound on the BER is derived for the decomposition model of CPFSK (with or
without the modulo- P channel encoder). Th. derivation {ollows the steps in [43] and
[13] by viewing the encoded system as a linear ring encoder, with the CE combined
with the CPE, connected to a memeoryless modulator. The bound obtained is similar
to the bound for combining a channel encoder with a memoryless modulator {13}.

Numerical results are given in figures (5.16)-(5.26) for several exarmples of coded
and uncoded CPFSK systems discussed in the last chapter. The conclusions are that
ring convolutional encoded CPFSK has a small error coefficient, feedback-free CPFSK
has a better BER than CPFSK and ring convolutional encoded CPFSK is robust for

high and moderate signal to noise ratios.

5.1.1 System Model

The system model is shown in Fig. 4.4. The CE is a rate-k/! modulo- P encoder and
the CPE is a rate-kps/kp + 1 systematic modulo-P encoder. A scrambler, T, can be
connected to the CPE to produce a feedback-free form of CPFSK.

A state in the combined trellis of the CE/CPE is characterized by ov = [0g, om],
where og is the state in.the CE and oy is the state in the CPE. The number of
states in the combined trellis is Sy. The state of the combined trellis is labeled as s,
where s € {1,2,...,Sv}. An interval of the combined trellis consists of k modulo-P
information symbols and iV output channel symbols. The variables k and N have the

relation

A=ky-N (5.1)

& =

The input information polynomial vector a is a modulo-P symbol sequence. We can

separate the input polynomial vector a into blocks of modulo-P symbols

[(80, 81y -+, 85_1)s (B} Blpys v s 0)] = [ag, @gy:.., a;, o) (5.2)
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Figure 5.1: A transmitted path in the overall trellis

The variable a;- represents a block of transmitted data at level j. Each block a}
consists of £ modulo-P symbols, equivalent to k' binary data, where

k'=k-log, P. (5.3)

The decoded modulo-P sequence is represented as 4. The transmitted polynomial
state transition vector, s, is defined as the sequence of transition state numbers corre-
sponding to each block of.data. a}, i.e., s = (So,51,...,84...) and 55 € {1,2,...,5v}.
For time level j, the state number is s; and the block of source symbols is a;. Fig-
ure 5.1 represent one possible transmitted path in the combined trellis. The receiver

performs maximum likelihood demodulation in an AWGN channel.

5.1.2 Normalized Squared Euclidean Distance

It is well known that the error probability of digital transmission systems can be
estimated by normalized squared Euclidean distance between transmitted signals {39,
56). This estimation is good for systems in an AWGN environment and with practical
signal to noise ratios. From {20, 51}, it has been shown that the s‘;‘lua.red Eucl%‘c.:iean
distance (SED) between two CPFSK symbol sequences can be writfen as

DU, U = [ :[s(t,U)-s(t, U, (5.4)
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where s(¢, U) and s(t, U’) are the signals produced by two different encoded or un-
coded data sequences, U and U'. At t = NT;, this is readily simplified [20] as
N ]
2 Di(U,U), (5.5)
i=0
where, in terms of X = [Xj5, X2,), (this has been shown in Chapter 2 and [31]) can

be written

sin 2xA(X 1,0 +X2,n =X =X o )=8in 27h( X3 n =X, ) ,
D? (X, x:) - 2Es[1 - 2,‘_&2&:.“:&;‘“) 2 _], Xl,n # ‘Yl.n
2E,[1 — cos 2rh(Xon — X‘l‘,rs)]! Xin = X]'..n
(5.6)

Equation (5.6) specifies the relation between the codewords of the modulo-P CPE
and the squared Euclidean distance of the outputs of the MM. When the cascading of
the CE and CPE is to be-considered as one entity, we can compute the SED between
codewords with this modified incremental SED formula to compute the SED.

In an AWGN environment, the normalized squared Euclidean distance (NSED),

is defined as
P
=35 (5.7)

The transmitted energy pér bit is £, = E,/ R and R, in bits/symbol, is the information
rate of the coded system. The minimum SED, D2, , between any two different signal
sequences generated by the coded system is defined as D2, = miny.y D*(U,U").
The corresponding normalized SED, d?,;,,, is called the minimum normalized squared
Euclidean distance (NMSED).

5.2 An Upper Bound on the Bit Error Probabil-
ity of Ring Convolutional Coded CPFSK

To evaluate the performance of linear convolutional codes, an approach called the
transfer function bound was first introduced by Viterbi in [39]. This approach has
been generalized to nonlinear trellises [42, 57, 13], such as trellis coded PSK or QAM
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and ISI channels. It has also been used to find the symbol error rate for traditional
CPM and the bit error rate for binary convoiutional encoded CPM systems [57, 41,
43, 40]. The decomposition model of CPM [26] decomposes the portion of CPM with
memory into a continuous phase encoder {CPE) and a memoryless modulator (MM).
In fact, when considering modulo-P encoded CPFSK, the whole of the CE/CPE
combination is a ring convolutional encoder. The modulo-P system is 2 time invariant
linea.r channel encoder combined with a memoryless modulator. Therefore, it is more
likely that we can obtain an upper bound which is similar to the system consisting
of a channel encoder corinected with a memoryless modulator (see {14, 58]). The
following derivations are based on this decomposed model to derive an upper bound
on the bit error probability for ring convolutional encoded CPFSK systems.

Assume Lp modulo-P information symbols in a = (aq,81,...,85 @54y,-..) aT€
transmitted and the receiver decodes a corresponding sequence &. Let my(a) and
my{4) be the equivalent binary sequences with respect to the modulo-P sequences a
and & respectively. Here, we use a natural mapping rule, i.e., if P is a power of two,
then a modulo-P symbol a; and its binary equivalent symbols u = (uy, ug, ..., u),
| = log, P, have the relation

s=l

a; = 2 U 2'_5. (5.8)

i=1

For example, if P is four, then 0 can be represented as (0,0), 1 as (0,1), 2 as (1,0),
and 3 as (1,1), respectively. The bit error probability, F;, is defined as the expected

number of information bit errors per decoded information bit,

_ E[wy(my(a), my(3))]
== g, P (59)

where E[-] denotes the expected value and wy denotes the Hamnming weight between
my(a) and my(&). Hamming weight is defined as the number of different bits between
two binary data sequences. The expectation is over sequence pairs (my(a), my(a)).
The sequence a can be represented in terms of a block of modulo-P symbol sequence,

a = [aza;,...,a;,...}, where each block, a}, consists of k modulo-P symbols, i.e., k’
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binary digits. The total number of transmitted blocks is Lg. In the derivation of the
upper bound on F,, it is assumed that the information symbolsa;, i =0, 1,..., Lp—1,
are independent and identically distributed. The upper bound on P, is then obtained
by letting Lg (or Lp) become very large (Lg — o). Strictly speaking, unless the
transmission is assumed to start at time —oco and end at time oo, this probability
is a function of the discrete time 7 at which the error event starts. We assume that
the transmission is long enough that we may disregard this diffculty [13].

The transmitted path through the trellis (the correct path) is described by the
pairs (a;-, s;),7=0,1,2,..., Lg — 1, where a; and s; are the information symbol and
state number at level j respectively. Similarly, the decoders path through the trellis
is deseribed by the pairs (&}, §;).

Definition 5.1 An error event that starts at level j and ends at level | with length
L is defined as

1. a;- # a;- and §_,' = 8;.
2.8, #8 forj<izl,
3. s; = 8;. The number of intervals between level j and [ are L.

Whenever a decoding errc;r occurs, an error event must be in progress or starting. An
example where one error event occurs is given in Figure 5.2. Assume the sequences a
and & generate a sequence of error events. This is shown in Figure 5.3. The random
variables W;, j = 0,1,..., Lg—1, are defined in the following way. If a and & are such
that an error event starts in level j, then let W; denote the number of information
bit errors given by this error event. If a and £ are such that an error event does not
start in level j, then let W; = 0.
The total number of information bit errors, V., given by a and &, is

Lg~1

N.= Y W; (5.10)
j=0



Figure 5.2: An example of error events

Figure 5.3: A sequence of error events



Figure 5.4: A specific error event starts at state s

and the bit error probability can be written as

_ EN] _EN)_ 1 Jfer . 1 L |
A= P~ ¥y LA X Mil=pg X AWl (G

To find E[W}], let us study the set of all error events starting in level j for which
W; > 0. Take an arbitrary state, s, s € {1,2,3,...,5v}. All error events which
start from this state are numbered Fj;, F,z2, Fy3,... A specific error event, Fyp, is
completely described by its start state s and by the pair of sequences (a,m,a,m)
which generate F, . The set of all error events starting in level j is then obtained by
constructing Sy — 1 additional such lists, one list for each state. Furthermore, define
is,m 2s the number of information bit errors associated with Fy . Define, also, . as
the length (in intervals) of F, . This specific error event is visualized in Figure 5.4.
The normalized squared Euclidean distance associated with the spéciﬁc error event
Fym is d2,,. So far, we have studied the set of all error events sta.'rting in level j for
which W; > 0. Each specific member in this set, say Fom, (s = 1,2,...,8vim =
1,2,...,(mis finite)) is (partially) characterized by the three parameters i,m, {s,m and
d , respectively.

Our goal is to upper bound E[W;] in (5.11). To be able to do this we define the
events f;sm and f;','m,j =0,1,...,L5—-1,s=12,...,Sv,m=1,2,..., (m finite),
by

¢ f;sm = theevent that ais such that s equals state number s, and (a}, a_,',-H, a;-,,,,_‘m_l)



= a’.m .

]

o f;4m = theevent that 4’ is such that § equals state number s, and (&;

N
aJ+1’ s m—

= 84m-
Since the information bits are assumed to be independent and equally likely, we have

Pr{f;sm} = Pr{s; = s} ( )’c la,m (5.12)

The joint event (f;sm, f}._,.m) exactly describes the situation when the specific error

events F,, actually occurs, starting at level j. We can apply the union bound to find
E[W;] (39}, giving

EW;] = 3 iPr{W; =1}
S Z Z i-‘-mPr{f}--’-m$ f;.s.m}
= YN isnPr{fiom} - Prifieml fiam}: | (5.13)

Using the fact that [56, 39]

P‘l"{f 3m|f.‘M-M} Q( ): (5.14)

we substitute (5.14) into (5.13), and have

EW;] < ZPT{S: = s} Zzs.m " frm . Q( ""' ) (5.15)
Q(z), called error function, is defined by
Qe) = —ﬁ- T e iy, (5.16)

We can rewrite (5.15) in terms of the variables i,{,d as

BV < S Pris; = o} R X Talsnihd)-i- () Q

where a(s, ¢,/,d) is the number of error events starting from state s, assuming the

Ty, (s

trellis is infinite, having ¢ information bit errors, length k'l information bits and

normalized squared Euclidean distance d2.

1)
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Assume the input symbols are independent and identically distributed. Then the

probability for each state is 1/Sy and we can rewrite E[W] as

1 . S N d*E
EWS = L XS Talsihd) i F Q5D (619
Sv S TTT 2 N
Since we have assumed the sequence is sufficient long (Lg — o0), we can let ‘see [38])
E[W;] = E[W], Vj. (5.19)
Therefore, _
Py = %E[VV,] (5.20)
and substituting E[W;] into (5.20),
1 . N d*E
Pbs—,—22220(8,1,1,({)‘2‘("‘)‘“‘Q( b): (5'21)

we can rewrite the above equation as

P <> Ca Q %) (5.22)
d 0
where i
1 ) R
Cd= mz’:zi:zl:a(s,l,l,d)ﬂ' (i)k l. (5.23)

From the above equation, it can be seen that, for large SNR, the upper bound on the

bit error probability is dominated by the first term in the sum and

d’Eb

B< Y CaQf ) Cipnin @ "““Eb)+othér terms, (5.24)

d>dmin
where the summation is over all Euclidean distances in the set of all error events.
2, is the smallest of these distances and is referred to as the normalized minimum
squared Euclidean distance. Cg,,, is called the error coefficient. When Ey/Np is

large, the other terms are negligible and we can approximate B, as

R ClapinQ( "‘“‘ ) (5.25)



If Cq4,, is not too large, then

E
Pb o Q( mm b

We use (5.26) in Chapter 4 to compare coded CPFSK results.

“min "8y (5.26)

By using the inequality [39]

QWTF 1) < Q(Vz)-e¥? 220y 20, (5.27)

we can rewrite (5.21) by letting = = d%;, Ey/No and y = (d&* — d%;,) Es/No. This
yields

£ E
Pb_.ks. Q( ’“"‘E") TR 2222 si,d)-i (5 ) e, (5.28)
We define

(D, L= 333 als,i,1,d)I'L' DF, (5.29)
s 3 | d

where we use the dummy, variables I = 1, L = (1/2)"' and D = e~Ee/Mo_ B, can now

be upper bounded by

= o—Esl2No
Py < Pu= QU B By No)eeunBit TS | o (50
=1

where the T(D, L, I), called average transfer function, is
T(D, L, I) --3-21‘(1) L1)= ZZEZG(S”H dDFL'F.  (5.31)
=1 Vi i

T,(D, L, I) represents the error events starting from any of the states s,s € 1,2,...,Sv.
To find Ty( D, L, I}, we use a method that generates the parameters dl', and i for all
error events starting from a given state. The method we use is a so-called super siate
description [13, 42, 43, 59]. Thus, the BER for coded CPFSK systems with Viterbi de-
tection can be upper-bounded by using the trellis description for the combined coding
and r-odulation scheme. The resulting bound is obtained from an averaged transfer
function. Convolutional codes yield a linear system and no averaging is required for

the conventional BER upper bounds.



5.3 Average Transfer Function Techniques

To find T(D, L, I) in order to generate the parameters d?,! and i for all error events,
given a specific start state, we use a2 method called the super-state trellis description.
A specific pair of sequences, (a,a), is then represented as a specific path in the
super-state trellis. Furthermore, each transition in the pair-state trellis carries the
information DA LI4%, where Ad? and Ai are the contribution to d? and i respectively,
given by that specific transition.

The pair-state at level j, 2;, is defined by
Q; = (s;,§;). (5.32)
Let Nq denote the number of pair-states. Then
Nq = S§%. (5.33)

The input at level j for the pair state §2; is ( a}, é;-). Therefore, the number of transi-

!
tions leaving Q; equals 2%,

Definition 5.2 Start states: An error event can start from the pair-state Qp if and
only if Qo has the structure

Q0 = (S0, %0) (5.34)

There are, therefore, Ng = Sy such states. These Ng pair-states are referred to as

start states and denoled by oz, i =1,2,...,Ns.

Definition 5.3 'Merge states: An error event can end in the pair-state Q; (7 2 1)

if and only if ; has the structure
Q; = (sjys5) (5.35)

There are, therefore, Nyps = Sy such states. These Ny pair-stales are referred to as

merge states and denoted.by v;, t = 1,2,..., Nyg.
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Definition 5.4 Intermediate states: Those states ; (j > 1) which are neither

start states nor merge states are referred to as intermediate states and denoted by J;.

i= 1,2,...,N{; IV1= NQ—N}.f.

An error event of length [ intervals is equivalent to a path in the pair-state trellis

with the following properties:

1. The path starts from a start state in level 0.
2. ay # 4.

3. The path is in a merge state for the first time in level . We say that the path

ends in level I.

The state sequence for an error event (£, {, . .., ), consequently, has the prop-
erties that Qp € {4}, Q; € {B;} Vj satisfying 0 < j < !, and & € {7:}. Below we
will study the set of all such paths. Let B,’;,", denote the generating function for all

paths starting in start state a., and are in the intermediate state 8, in level j. Thus
Bi.= 23 fules i, DO LT, (5.36)
d i

where fn(a:,1,7,d) = the number of paths, starting in start state o, and which are
in the intermediate state 8, in level 7, having (1) the normalized squared Euclidean
distance d?, and (2) ¢ information bit errors.

Now assume that it is possible to go from the intermediate state J; to the inter-
mediate state f. in one step, as in Figure 5.5, where we use beta to represent 4 in
the trellis of the overall encoder. In general, there may be more than one transition ;
from B to Bm in the single step. Each such transition, with corresponding Ad? and
Ai, contributes DA% LI*¢ . Bi-} to the transfer function. The total contribution to
Bi 2 from the intermediate state B, can therefore be written as Am,i - B;": 7!, where
the ﬁm.g is the sum of all the terms DA LI one term for each transition from §; .

to B, in single step. Summing over all intermediate states, for j > 2, yields

. Ny ,
Bi,=Y AnBi;. , (5.37)
=1 -



betall)=(L) betaim)={i"]) ¢
L o @
1 ® [
} ® ®
® e | ®

Figure 5.5: Error event in one step
By using matrix notation, (5.37) becomes
Bi=A-Bi'';j>2 (5.38)

where B-;' is a column vector with Ny elements. and A is an ¥y x Np matrix with
elements An.;. Tt is seen that row number m of A represents all transitions to S,
from the intermediate state in a single step. Furthermore, column number [ of A
represents all transitions from B that goes to intermediate states in a single step. It
is also seen that the matrix A does not depend on the start state .

From (5.38), it follows that
Bi = Ai1.B,;j>1, (5.39)

where the column vector B, represents all transitions from start state o. to the
intermediate states in one step. That is, Bp,; is the sum of all terms DA LI& one
term for each transition from start state a; to the intermediate state Gn in a single
step. _

Denote the transfer function for all error events starting in start state a, and
which ends in merge state 4m in level j by X;;,_ (m=1,2,..., Ny). In analogy with

equation (5.38) we have

) Ny ]
Xi.=Y CuyBizhi22, (5.40)

{=1
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where C; equals the sum of all terms DA LT3 one term for each transition from
the intermediate state §; to the merge state v, in a single step. Using matrix notation,
(5.40) becomes

Xi=C-Bi';j22, (5.41)

where X! is a column vector with Njs elements. The matrix C is an Nar X Ny matrix
with the elements C, ;. It is seen that row number m in C represents all transitions
to merge state v, from the intermediate states in a single step. Furthermore, column
number ! in C represents all transitions from the intermediate state §; that goes to
merge states in a single step. It is also seen that the matrix C does not depend on

the start state a.. Substituting (5.39) in equation (5.41) yields

Il%

. C-Bif'=C-AM2.B; ; j2>2

= ) (5.42)
D, s 1=1

The column vector D, represents all error events of length 1 interval, starting from

start state ;. Element number m in D, is Dpn ., and it equals the sum of all terms

DA€ L[8i one term for each transition from start state o, to merge state v, in a

single step. As we know, X represents all error events of length j intervals, starting

from start state a,. Since we are interested in all error events, starting from start

state a;, we define the column vector

i
> i
X: = :ll.rgo ng X

= D,+CB;+CAB,+CA’B,+CA®B, +...
= D,4+CI+A+A%Z+ A%+, )B,
D, + C(I- A)'B,, (5.43)

it

where I is the identity matrix. The average generating function, T'(D, L, I), is then
given by adding together terms from z =1 to z = Sv,

1 o1 o
T(D,L,I)=§;.);x.=§;-2x, (5.44)

z=1
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Representing this in matrix form

1

T(D, LI = —S—-l-(C(I—A)‘1B+D) (5.43)
v
where
1=11,1,...,1}, (5.46)
B= ZB,, (5.47)
and
D= ED:. (5.48)

5.4 Two Examples: Binary and Quaternary CPFSK
with h = 1/2

5.4.1 MSK (minimum shift keying) and DMSK (differential
minimum shift keying)

Binary CPFSK with modulation index A = 1/2 s called minimum shift keying (MSK)
[8]. MSK has a simple transmitter structure and can be decoded with MLSE in two
decoding intervals. It has a narrow bandwidth requirement and is constant envelope.
These properties make it a very useful modulation scheme.

Minimum shift keying can be decomposed into a rate-1/2 systematic convolutional
encoder and a memoryless mapper, shown in Figure 5.6. The MM consists of four
different channel symbols. DMSK is the feedback-free form of MSK, i.e., a precoded
MSK (see Chapter 2). In [26], it is shown that the bit error probability of MSK is
twice that of DMSK if it employes the MLSE receiver. To apply the BER upper
bound in evaluating the error coefficients of MSK and DMSK, we will see that the
Ci..n for MSK is two and for DMSK it is only one. This is consistent with the

previous work of [26)].



85

.......................................................
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.........................................................

CPE MM

Figure 5.6: Minimum Shift Keying

0(00)

0(01)
Figure 5.7: MSK trellis diagram
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Figure 5.8: MSK super-trellis state digram

Now we will derive P, for MSK. To draw the super state diagram for MSK, we
first study the trellis diagéam for MSK, shown in Figure 5.7. It has two states, namely
0 and 1, Sy = 2. From the definitions in the last section, there are two start states
(Ns =2),

a = [0,0]

oy = [1, 1]., (5.49)
two intermediate states (Ny = 2)

fo = [0,1]

:61 = [1$ 0]: (5.50)
and two merge states (Ny = 2)

Yo = [0} 0]

n o= L1 (5.51)

The super-state trellis diagram is shown in Figure 5.8. To give an example of labeling

the super branch, we study the branch from & to Bo, i.e. the element Cyp,, so we
j



s
-]

(L 0) LID

/o

1(11)\

1 0(01)
1 - 1

" Figure 5.9: An example of super-trellis branch

have the transition from super-state [1, 1} to super-state [0, 1]. The transition related
to the MSK trellis is shown in Figure 5.9. There is one bit error, I', in one symbol
interval, L!, and a2, = 1, D'. Therefore, we label this branch as LID, where the
notation (01) denotes the input symbols for the super-trellis.

Following the same step, we can find the matrix A, B and C respectively. We have

LI°D* LI°D?
= , (5.52)
LI°D* LI°D?
2LID
. , (5.53)
2LID
and
LID LID
C= . (5.54)
LID LID
There is no pair of error events with only one interval, i.e D = 0. Using (5.45), we
have - .
T(D,I,I) = —-1.C(I-A)"'B)
Sv

- % .1.C(I—- A)™'B) (5.55)
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" Figure 5.10; Differential MSK
By matrix multiplication,
AIPIRD® . paia .
T(D,L,I)= T3LIDf = 4L*T*D? + other terms with d2;, > 2 (5.56)

This result is the same as the one derived in another paper [41], which describes
CPFSK in a traditional way. To find the upper bound on the bit error rate one can
take the partial derivative of T'(D, L, I'} with respect to J (k' =1 and d2;, = 2),

D — e-EbI2N0
1 YR aT(D,L,I) -
Pb < Pu = .I . Q( 2E5/N0 . e!Eal?No . _(_aI__.. L = (1/2)1 (5.5,)
) I =1
We have,
B < 8- L -2%) + other terms
0
= 2:Q( gﬂ) + other terms, (5.58)
. No
where L = (1/2), and we have obtained Cy,,,,
Cipmin = 2 for MSK ' -~ (5.59)

We now study the super-state trellis for DMSK. The DMESX and its trellis diagram are
shown in Figure 5.10 and. Figure 5.11 respectively. In a similar way to the derivation

for MSK, we obtain the matrices

(5.60)

LD LI'\D*
rp? Lpp? |’



0(0O0)

0 0
1(10)
0(11)

1 1(01) 1

Figure 5.11: Trellis diagram for differential MSK

2LID
B= (5.61)
2LID
and
LD LD
5.62)
LD LD
We obtain T'(D, L, I) as
4L21D?
oL = 3mpe
= 4L?ID? 4 other terms with &%, > 2 (5.63)

It should be noted that, when d2;, = 2, the exponent of I is only one. The upper
bound P, can be obtained the same way as for MSK.

P < 4.1%. Q(1/2EB)+other terms

= 1. Q(‘f )+other terms (5.64)

where L = (1/2), and we have obtained C’d,,.,-n as
Cimin =1 for DMSK (5.65)

Therefore, the bit error probability of MSK is two times larger than that of DMSK
for practical SNR. . | -
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Figure 5.12: Decomposition model of quaternary CPFSK with A = 1/2.

5.4.2 Quaternary CPFSK and Feedback-Free CPFSK with
h=1/2

Quaternary CPFSK with modulation index equal to 1/2 has a normalized squared
distance equal to 2 and transmits two bits per symbol interval. Quaternary CPFSK
has the largest normalized squared distance [8]. It can be viewed as a rate-2/3 sys-
tematic convolutional encoder connected to a memoryless mapper. The MM consists
of eight different channel symbols (as shown in Figure 5.12). The feedback-free form
of CPFSK is a precoder connected with CPFSK (refer to Chapter 2). From [26] and
the last paragraph, it is shown that the bit error probability of DMSK is better than
that of MSK. We may ask whether this also happens between feedback-free CPFSK
and CPFSK. In [27] and i49], it is argued that it may be like the differential encoded
PSK and PSK. In this subsection, we apply the BER upper bound to find the error
coefficient of quaternary CPFSK and feedback-free CPFSK with modulation index
1/2. We derive for this case that Cy,,, for CPFSK and feedback-free CPFSK have
the same error coefficient. In the next section we apply simulation techniques to other
examples and will see that, for the case considered in this thesis, the Cy,,;, for CPFSK
is always greater than, but i in some cases may equal, feedback-free CPFSK.

We are now ready to denve B, for quaternary CPFSK with A = 1/2. We can ) draw
the super state diagram for this modulator from the trellis diagram of quaternary
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00 (00)

10 (20)
0 0
1 00 00 1

10 (21)

Figure 5.13: Trellis diagram of quaternary CPFSK with h = 1/2 trellis diagram

CPFSK with h = 1/2, shown in Figure 5.13. It has two states, namely 0 and 1
(Sv = 2). Four branches are emitted for each state. We label each branch with its
input bits and output symbois (one quaternary and the other is binary). From the

definitions of the previous sections, it can be seen that there are two start states
(Ns=2),

. G = (0,0]

a = (1,1 (5.66)
two intermediate states (Ny = 2),

Bo = [0,]]

A= 1,0} - (s67)
and two merge states (Ny = 2),

Yo = [010] _

1 = [1,1]. (5.68)

The super-state trellis diagram is shown in Figure 5.14. As an example for labeling the



dd

da— aa
(00— — (o) ————(®0
l/ + oc 1
start aa aa erge
bb o /
1/ \/ o b |
bb ) cc -
dad aa
/

dd
Figure 5.14: Super-trellis state diagram

00 (00)
10 (20)

ol (10)
11 (30)

1
Figure 5.15: Super branch calculation
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super branch, we study the branch from aq to Jy, i.e. the element Co,1. and we have
the transition from super-state [0, 0] to [1,0]. The transition is shown in Figure 5.15.
Four transitions can occur in this branch. That is, Boy = LID+LI*D+ LI*D+LID.
In Figure 5.14, aa is 2LID? + 2L D% bb is 2LID* + 2LI*D?, ccis LID® 4 LI*D?,
and dd is LID?.

Follov. ing the same steps as derivations for MSK, we can generate the matrix A, B

and C respectively. We obtain

9LID? +2LD* 2LID*+42LD* (5.69)
9LID*+2LD% 2LID*+2LD* | '
4LID* + 4LI*D?
B= , (5.70)
4LID* +4LI*D?
or[D*+7L1*D? 2LID® +2LI*D?
= , (5.71)
9LID?* +2LI*D* 2LID*+42LI*D?
and
aLID?
D= : (5.72)
2LID?
Using (5.45), we have
T(D,L,1) = Si 1-(C(I— A)'B+Dj
v
= £.1.(C{I-A)'B+D) (5.73)
By matrix multiplication, we have
T(D, L,I) = 2LID* + Al . As- (4LID? +4LI* DY) (5.74)
1
where
Ay =1—2LID% +2LD* — 4L*I D (5.75)
and

Aq=2LID — 2LI2D* — 4L21*D* + 4L*I*D* — 4 L*1D° + 4L*1D° (5.76)



01 (01)
11 (21)

Figure 5.16: Trellis diagram for feedback-free quaternary CPFSK with 2 =1/2

The second part of (5.74) has d;, > 2. Hence, to find the upper bound on the bit
error rate, one can take the partial derivative of T(D, L, I) with respect to I (k'=2
and &2, = 2), giving

= B/
A < A= S/ meemne . TEODA 1y (517
I =1
We can have
P, < k' -2 LQ( 2E") + other terms
= 2E") + other terms, (5.78)
where L = (1/2)?, and we obtain Ci,;,,
Cup = % for b= 1/2 quaternary CPFSK (5.79)

Now we study the super-state trellis for feedback-free CPFSK. The feedback-free
CPFSK has a trellis diagram as shown in Figure 5.16. In a similar way, we obtain

oLID?
| or1p? (580)

the matrix
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For computing Cy_,,, we only need to know D. This is because. in this exampie, the
distance properties of feedback-free CPFSK and CPFSK are the same, except for the
coefficient L7 in each term. From the derivation of the last paragraph, we know that

the d?

Z .. originates from the error events of D. We obtain T'(D, L. ) as.
T(D, L, I) = 2LID? + other terms with d2,;, > 2. (5.81)

It can be noted that, for d%;, = 2, the exponent of I is only one. The upper bound
P, can be obtained analogously as for CPFSK.

1 25,
< 2.92.L.- et 4
P, < 5 L-Q( N, ) + other terms
1 2F,
= -. i 2
I Q( N } + other terms, (5.82)
where L = (1/2)?, and we have Cg_,, as,
Clin = i- for quaternary feedback-free. CPFSK with k= 1/2 (5.83)

From the above calculations ,i.e., MSK vs. DMSK, feedback vs. feedback-iree
quaternary CPFSK with & = 1/2, we can see that the bit error probability of feedback-
free CPFSK is better than or equals CPFSK for practical SNRs. For quaternary
CPFSK with A = 1/2, the error coefficient is smaller than one, i.e., the bit error
probability of the actual system is better than predicted by the normalized squared

Euclidean distance. These are very interesting properties of CPM systems,

5.5 Numerical Computation of the Transfer Func-
tion

To compute the transfer function (5.45) is not an easy task. This is because to find
the inverse of (I — A), in general, cannot calculated analytically. To calculate the

transfer function numerically we can apply the following steps

T(D,L,I) = 1-[C-(I-A)" B+D]



1-D+1.C-(I-A)'-B

i

= D,+C,-(I+A+A*+A%+)-B
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(5.84)

In (5.84) D, =1-D and C, = 1-C. We can use a finite number of A" to calculate an

approximation for T(D, L, I). However, to directly compute this summation and then

take the partial derivative with respect to [, would be prohibitively costly in memory

and CPU time. Instead, we use an efficient computational approach described in [13].

By noting that the above equation can be rewritten as
o
T(D,L,I) = DP+ZCP'A“'B
n=0
=2
= D,+>».Z2,-B
n=0

where we have let

Zn - Cp M Aﬂ,
the vector Z, can be found recursively from
zn+1 = Zn <A,

Taking the derivative of (5.85) with respect to I yields

o oD, 0%, B
—aTT(D,L,I) = 37 +Z I B+ZZ 37
_ BD,, = B
= oY B""Zz“ e
where
0Z,
Yn——a—I-.

The vector Y, can be found recursively by,

azﬂ+1

Yon = 57

(5.85)

(5.86)
(5.87)

(5.88)

(5.89)

(5.90)
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d
= -a'—Ia(Zn‘A) a
= (Er-zn)-A+z;-57A
= Yo -A+Zn 5A (5.91)
with
Y, —iC 5.92
0= 81 ? ( . -')

Replacing I =1 and L = (1/2)"' we can find T(D, L, I) in terms of D. After the
expansion of T(D, L, I), we can substitute D to find the P,. The author has used
both the expansion of (I— A)~! and the approach presented in this section, and the

later one is much more efficient in terms of CPU time and the memory requirements.

5.6 Numerical Results

References [26, 5] show that the bit error rate of MSK is twice that of DMSK. Here, we
extend this concept withour upper bound to several feedback-free CPFSK systems.
The bound is then applied to ring convolutional encoded CPFSK. Some examples are
compared to the BER simulations of the systems and it shows that the bound is very
tight at practical signal to noise ratios. It is concluded that the upper bound is tight
at practical SNRs, and the normalized minimum Euclidean distance is an appropriate
single parameter to compare the systems. For some cases, d?,;, is pessimistic in its
prediction of the performance of ring convolutionally encoded CPFSK.

In the last section, we apply the upper bound to two modulators and their
feedback-free forms. The modulators have simple trellis structures and can be an-
alyzed with simple matrix multiplication. However, for other modulators or coded
schemc¢s, computer simulation is necessary. In this section we apply numerical tech-
niques for some interesting examples. This results are obtained by using the expansion
of (I— A)~! = I+ A+ A%+.... We choose the order of the expansion to be the

point where the BER curve has sufficiently converged. Due to computer memory
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restrictions, we have also. restricted the number of different d%,, and the coefficient
LI. This will affect the BER at low signal to noise ratios. In this thesis, we keep
the number of different d2,;, and LI sufficiently large enough to give good results for
moderate and practical signal to noise ratios.

Numerical results are given in figures. Each figure gives 10log;o( F.) as a function
of signal to noise ratio in dB. Each figure also plots 101ogo(@{y/dhin Es/No)), since

in Chapter 4 we use this as our performance criteria. This can be seen in (5.26).
From [43], we can find the approximate point where the minimum Euclidean distance
events dominate the upper bound [43]. Also, we use the MSK, which has d7,;, = 2,
as a reference in some figures, so the function IOIOgID(Q(\/‘EEb/J—Vo ) is also plotted.

We use the following plotting conventions.
¢ curves marked with "—«—+—-—- " represent the function 101og,o(Q(y/2E5/No))-

e curves marked with solid line represents the upper bound.

e curves marked with ”- - - - represents the function 10log0(@(v/d%in Eb/ No))

e curves marked with "x” represents the simulated bit error probability.

Usually, the simulated bit error probability will fall between the upper bound and
curve lOIogm(Q(\/m)) when the SNR is moderate and small, as has been
found in [43]. The numerical results show that the feedback-free CPFSK generally
has an error coefficient equal to or smaller than that of CPFSK.

5.6.1 ,Feedback-]i‘ree CPFSK vs. CPFSK

(a) Quaternary CPFSK with h=1/4

 In Figure 5.17 we show the upper bound and the line for @ \/m , where
. d%;, is the normalized squared Euclidean distance for the modulator under con31d-
eration. In this case 2, = 1.45 for quaternary CPFSK with A = 1/4. A similar
curve can be found in [43]. We also plot Q(\/EM) (2 is the d?,;, for MSK) as a
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Figure 5.17: Quaternary CPFSK with & = 1/4. The solid line is the upper bound.

The “— — —" line is the function Q((d3,Es/No)'/?). The “— . —-— " line is the
function Q((2Es/No)'/?).

comparison. Using the simulation technique, we found Cy,,, for this modulator to
be 1.5. In Figure 5.18 we show the upper bound for the feedback-free form of this
modulator and the line for Q(‘/m , where 1.45 is the normalized squared
Euclidean distance for quaternary CPFSK with A = 1/4. Again, Q(\/é-Eb/_No) (2is
the d2,, is given for MSK) is plotted as a comparison. The error coefficient Cap,,
 for this modulator is 0.844. Therefore, the Cj,,,, for CPFSK is larger than that of
feedback-free CPFSK.
(b) Octal CPFSK with h=1/8

Figure 5.19 shows the upper bound and the line for Q(\/‘OTE)%_E__;,/M. , where 0.598
is the normalized squared Euclidean distance for octal CPFSK with & = 1/8. The
error coefficient, Cy,,;,, for this modulator is 1.604. In Figure 5.20 we show the upper
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Figure 5.18: Feedback-free quaternary CPFSK with h = 1/4. The solid line is the

upper bound. The - - -" line is the function Q{(d%,Es/No)'/?). The “~-—-—"line
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Figure 5.19: Octal CPFSK with A = 1/8. The solid line is the upper bound. The -
- " line is the function Q((d?;, Es/No)'/?).

bound for feedback-free form of this modulator and the line for Q(y/0.598Ey/No),

where 0.598 is the normalized squared Euclidean distance for the feedback-free form
of octal CPFSK with A = 1/8. The error coefficient, Ca,,, for this modulator is
0.893. The Cg,,,. for CPFSK is larger than that of feedback-free CPFSK.

5.6.2 Rate-1/2 Encoded Quaternary CPFSK

(a) Rate 1/2 modulo-4 encoded quaternary CPFSK with k= 1/2

Figure 5.21 shows the BER curve for rate-1/2 modulo-4 encoded h = 1/2 quater-
nary CPFSK with Sy = 2. Since d%;n = 2 and Cy,,, =1 for this case, the lines for
Q(\/m) and MSK are the same. The upper bound is very close to the dotted

line for high signal to noise ratios.
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Figure 5.21: Rate-1/2 binary encoded quaternary CPFSK with A = 1/2, Sy = 2.
The solid line is the upper bound. The ™- - -" line is the function Q((d?;, Es/Na)*/?).
The "~ —-— * line is the function Q((2Es/Np)'/?).
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Figure 5.22: Rate-1/2 binary encoded quaternary CPFSK with h = 1/2, Sy = 4.
The solid line is the upper bound. The ™ - -” line is the function Q((d?, Es/No)*/?).
The "—-—-— " line is the function Q((2Es/No)*/?).

Figure 5.22 shows the BER curve for Sy = 4. The solid line is the upper bound
and the line with "- - -” is the line predicted by using the d2;, = 4. Also, we plot
the line for d2;, = 2 (the.upper dotted line). The upper bound is tight and the error
coefficient equals 4. It performs close to the coding gain predicted using d7,;, = 4 for
practical signal to noise ratios, i.e, 2 3 dB gain over MSK for a BER equal to 1073,
and about 1 dB gain at a BER equal to 1073,

Figure 5.23 shows the BER curve for Sy = 8. The upper bound is shown as the
solid line. It is tight for high signal f.o noise ratios. The error coefficient equals to 5.
It performs as predicted for practical signal to noise ratio, i.e, close to 3.98 dB gain
over MSK for a BER equal to 10~°, and about 2 dB for a BER equal to 1073,

Figure 5.24 shows the BER curve for Sy = 16. The upper bound is tight for high
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Figure 5.23: Rate-1/2 binary encoded quaternary CPFSK with & = 1/2, Sy = 8.
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Figure 5.24: Rate-1/2 binary encoded quaternary CPFSK with & =1 /2, Sv = 16.
The solid line is the upper bound. The ™- - -” line is the function Q((d?;, Es/No)*/?).
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SNR. The error coefficient equals to 7. It has about 4.77 dB gain over MSK for a
BER equals to 10-'°. However, since the error coefficient is 7, the coding gain over
MSK are about 3.6 dB a at BER equal to 10~° and only 2 dB for a BER'equa.l to
1072
(b) Rate-1/2 modulo-4 encoded quaternary CPFSK with k =1/4
In this subsection, we show not only the upper bound, but also the simulation
results of the systems with Sy = 4 and Sy = 8. In Figure 5.25 shows the BER
curve for rate-1/2 modulo-4 encoded k = 1/4 quaternary CPFSK with Sy = 4. The
upper dotted line is the curve for Q(M}, where we obtain our coding gains by
comparing this with the corresponding curve in the last section. The solid line is the

upper bound. The lower dotted line is the curve i)redicted by the Euclidean distance,
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Figure 5.25: Rate-1/2 modulo-4 encoded quaternary CPFSK with & = 1/4, Sy = 4.
The line marked with “x” is the simulated BER. The solid line is the upper bound.

The *- - -” line is the function Q{(d?;, Es/No)'/?). The "—-—-— " line is the function
Q((2Es/No)*?).

ie. Q(\/?m). In this case, the Euclidean distance alone is pessimistic, because
the error coefficient is smaller than 1, i.e. Cy,,,, = 0.468. Theoretically, d2;, predicts
a 3.15 dB gain over MSK. The system is still very good at a BER equal to 10, and
it has about a 2 dB.ga.in over MSK at a BER equal to 10~3, This is still very good.

Figure 5.26 shows the BER curve for Sy = 8. The upper bound is tight and the
error coefficient equals 1.25. It performs very well for both practical and small SNRs.
This figure shows that the upper bound is reasonably tight. |

Figure 5.27 shows the BER curve for Sy = 16. The upper bound is tight and
the error coefficient equals 0.375. It performs very well foi practical and small SNRs.
The gain predicted by the normalized squared Euclidean distance is reasbnably good:
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Figure 5.27: Rate-1/2 modulo-4 encoded quaternary CPFSK with & = 1/4, Sy = 16.
The solid line is the upper bound. The "- - -” line is the function Q((d%;, Es/No)'/?).
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for moderate and practical signal to noise ratios.

To simulate the BER of the systems, we have used a random number generator
in [60]. The generator generates binary input sequence and every two bina.fy input
are mapped into a quaternary number. We have employed the MLSE receiver given
in [8, 43], which can be simulated using in-phase and quadrature phase components.
The AWGN can be generated by a subroutine in [60]. About the digital simulation
techniques, execellent references can be found in [61, 8, 62]. In order to measure an |
average probability of bit errors as low as 107%, for example, the number of input bit
sequences will have to be at least as large as 10°+2; that is, liOO times the reciprocal of
the error rate. This results in a standard deviation or root mean-square measurement

error of no more than 10 percent [61].
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5.7 Discussion and Conclusions

In this chapter, we investigate the bit error probability performance of ring convolu-
tional encoded CPFSK. We view the CPFSK in a decomposed manner, i.e. a ring
convolutional encoder combined with a memoryless modulator. Therefore, it is not
surprising that we obtained the same bound as that of the well-known trellis coded
modulation for 2 memoryless modulator {13]. New numerical results for ring encoded
and uncoded CPFSK and feedback-free CPFSK are presented. The BER bound shows
that ring convolutional encoded CPFSK has a low error coefficient and achieves good
coding gains for moderate and practical SNRs. The feedback-free CPFSK usually
has a smaller error coefficient than that of CPFSK.



Chapter 6

Conclusions, Discussion and

Future Work

In this thesis a new coding scheme based upon convolutional codes on the ring of in-
tegers modulo- P has been applied to obtain trellis-encoded CPFSK. Three important
characteristics of modulo-P encoded CPFSK are found:

1. The modulo-P convolutional encoder is a natural coding scheme for CPFSK in

the sense of using a similar code structure to that of the CPE.

2. The modulo-P encoding approach has a larger state reduction property than
that of other approaches.

3. The modulo-P encoding approach generates the same signal space codes for
both the feedback-free and feedback forms of CPFSK. '

These three characteristics are not found in previous work [1, 52, 5, 4, 6].

6.1 Conclusions

Our previous work [6] showed that no single approach to encoding CPFSK will consis-

tently obtain the best performance if only binary.convolutional codes are employed.

111
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Based on the code structure of CPFSK, this thesis suggests a new convolutional en-
coded CPFSK system [31]. It shows that a ring convolutional encoder [16], called a
modulo-P encoder [32), is a more natural way to combine the CE/CPE pair than a bi-
nary convolutional encoder (7], and that the resulting coded modulation consistently
obtains better performance than in previous approaches.

This thesis also derives the upper bound for the bit error rate of the ring encoded
CPFSK systems. It is shown that the bit error probability performs well for both
practical and moderate signal to noise ratios. This is very useful for CPFSK to be
applied to other channels, namely fading dispersive channels. Also, the coding gain
using ring encoded CPFSK is very close to the coding gain predicted by the practical
channel capacity [10], Ro. For example, it is predicted by Ro [27] that rate-1/2 coded
quaternary CPFSK with A = 1/4 has approximately 7 dB gain over MSK, and we
have achieved 6 dB for the complexit; of 256 states.

This thesis is the first work in the CPM literature that employs non-field convolu-
tional codes to CPM. The coding gain is high, for example, rate-1/2 modulo-4 coded
quaternary h = 1/4 CPFSK has coding gain over minimum shift keying (MSK) from
2 dB to 6 dB, for the complexity of 4 states to 256 states in the receiver. This is very
effective compared to all the previous work. Previous work has only minor coding
gain for relatively simple complexity in the receiver (0.3 dB for the complexity of 4
states [4]). Also. to the author’s knowledge, people have recently found that using
the concepts of ring convolutional codes or group convolutional codes to TCM, new
encoding structures for TCM are possible [17, 33]. However, there has been no evi-
dence that better coding scheme can be found with this new point of view for TCM
yet. This work is the first one that applies ring encoders to digital modulations that
obtains significant improvement over the traditional approaches. Therefore, it seems -
very encouraging that these new classes:of convolutional codes may become useful for -
other digital mt-:odula.tions in the future. |

Three conclusions are summarized:
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1. A new coding scheme has been found, which can obtain consistently good codes

compared to previous work. Numerical results confirm the superiority of this

approach.

2. The BER of ring convolutional encoded CPFSK is evaluated. It shows that
this new coding scheme performs well at both practical and moderate signal to

noise ratios.

3. This new coding scheme combines the idea of using a ring encoder, the idea of

using a scrambler to remove the feedback of CPFSK, and the idea of matched

codes.

6.2 Discussion

Since the decomposition model of CPFSK is equivalent to traditional CPFSK, it is
not necessary to implement a new CPFSK that physically consists of 2a CPE and a
MM. Instead, we can connect a ring encoder with a traditional CPFSK. To implement
the ring encoded CPFSK system, we can use a natural mapper to map the binary
information sequences into ring symbol sequences. The quaternary symbol sequences
are then connected to a ring convolutional encoder. The encoded symbol sequences
are directly connected to traditional CPFSK (CPFSK with all positive symbols input)
without using a mapper. The receiver can be implemented as the traditional MLSE
receiver as shown in [8, 43]. Therefore, we can implement the ring encoded CPFSK

systems without using any new devices except the ring encoder.

6.3 Future Work

Future work will be included:

1. Since the CPE of partial response CPM is also often a ring encoder with more

states, good ring convolutional codes for CPM are promised.
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9. Because we have found that the BER of ring encoded CPFSK has good per-
formance at moderate SNRs, ring encoded CPFSK may have applications in

channels other than AWGN.

3. Ring convolutional codes can be generalized as convolutional codes over groups
[17). When the CPE of CPM is not a ring encoder, it will be interesting to
determine what is the algebraic structure of this CPE. It may be lead to new

code structures to implement with this CPE.



Appendix A

Derivation of The Equivalent CPE

For Different Examples

(a) h = 1/4 quaternary CPFSK: In Fig. A.l, the equivalent rate-2/4 CPE has the

following input/output relations:

. {D) = bY(D)- Db (D)

(D) = D-b¥D)

(D) = —1-b6(D)+b(D)

¢(D) = YD) (A1)

Where —1 = 3 (modulo 4) and the transfer function in (4.6) is obtained.
(b) & = 1/8 octal CPFSK: In Fig. A.2, the equivalent rate-3/6 CPE has the following

input/output relations:

D) = BND)~D-6(D)
D) = D-B(D)

AD) = —1.b4D)+ (D)
&D) = (D)

S(D) = —1-b(D)+ (D)
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Figure A.1: Rate-2/4 modulo-4 equivalent encoder.
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Figure A.2: Rate-3/6 modulo-8 equivalent encoder.

&D) = (D) | (A.2)

Where —1 = 7 (modulo 8) and the transfer function in (4.7) is obtained.



Appendix B

Review of Convolutional Coding

Techniques

In this appendix we give a brief description of convolutional codes. Some important
facts from convolutional codes will be summarized. Excellent references on convolu-

tional codes can be found in [63, 9, 13, 50, 64].

B.1 Convolutional Codes Defined over Galois Field

For simplicity, we first assume that our codes are binary and defined over the field
GF(2). Convolutional codes can be studied from many points of view. We start with
a simple example.

Example 1: Figure B.1 shows a linear sequential circuit. The delay cell, D, is a shift
register, the input symbol at time i is a;, The two D delay cells are actually memory
cells. Previous two input symbols a;-, and g;_, are stored in this two delay cells.
At each time interval, T,, one input symbol will produce two oi.;.,‘_tput symbols. Each
output is a function of the input symbol and previous two input sy\i\nbols. The function
is performed by an modulo-2 adder @. Since modulo-2 addition is a linear operation,

the encoder is a linear feed-forward shift register, called convolutional encoder. To
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b2

)
Mod-2
Figure B.1: An example of convolutional encoder.

L 4

describe a convolutional codes in this way is called the shift register approach. All
convolutional encoders can be implemented using a linear feed-forward shift register

of this type [50]. The output of encoded sequences are represented in a time sequence

b' = (bén b{'a 6;1 . -)1
b= (). (B.1)

All the possible output, b = {bg, by,...,b;,...) with b; = (b}, b}), 0 < i < oo, are
called codewords of that encoder.

Since this sequential circuit is a finite state machine, it can be represented as
a state transition diagram [63], shown in Figure B.2. There are four states in this
diagram and each state is the contents of the two delay cells. Each branch is labeled
with the input/output relations. There are total four states. This is way of description
is called the state diagram approach.

In Figure B.3 shows a trellis diagram which equivalently described the above state
dlagram From this diagram, we see that the set of possible encoded sequences are just
the paths through the trellis. In which we have labeled ther nodes with the encoder
state and the input/output relation are labeled to each branch. This description is
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Figure B.2: State diagram

called the trellis diagram approach.

Another approach of description, called the scalar matriz approach, is now intro-
duced. The information sequence a = (gq,a1,as,...) enters the encoder one bit at
a time. Since the encoder is a linear system, the two encoder output sequences b!
and b? can be obtained as the convolution of the input sequence with the “input
response” of the two subencoder, see Figure B.4.

The impulse response for each subencoder are

g = (910,911, 02) = (101)
g2 = (920,921,92) = (l11) (B.2)

The encoding equation can now be written as
. 2
o= Y aiin;
i=0

-2 ‘
B = ) ai-ig; (B.3)
i=0
i.e,

' b} = aigio D gdi-191 D Gi-2912

o
-3
Il

i uig20 @ vi-1921 D Ui-2922 (B.4)
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Figure B.3: Trellis diagram.
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Figure B.4: Subencoder of the convolutional encoder.
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where a;_; = 0 for all i < j. After encoding, the two output sequences are multiplexed
into a single sequence, called the code word, for transmission over the channel. The

code word is given by

b = (BLB2, b12,.. ) (B.5)

If the generator sequences g, and g, are interlaced and then arranged in the matrix

Gi0920 | J11921 | G12922 | G139

G, = 10920 | F11921 | 912922 | §13G23 , (B. 6)

10920 | J11921 | 12922 | 13g23

where the blank areas are all zeros, the encoding equations can be rewritten in matrix

form as

b=a G, (B.7)

where all operations are .rnodulo-2. G, is called the scalar generator matriz of the
code.

In any linear system, time-domain operations involving convolution can be re-
placed by more convenient transform-domain operations involving polynomial mul-
tiplication. Since a convplutiona.l encoder is a linear system, each sequence in the
encoding equations can be replaced by a corresponding polynomial, and the convolu-
tion operation replaced by polynomial multiplication. In the polynomial representa-
tion of a binary sequence, the sequence itself is represented by the coefficients of the

polynomial. For example, for the above encoder, the encoding equations become
bY(D) = a(D)g(D)

b(D) = a(D)ga(D) (B.8)

where

a(D) =ay+a1D+ (IgVD2 + a3D3 T (B.9)



is the information sequence, and

bY(D) =bt + 61D + b D% + ...

b3(D) = B+ 3D+ 63D + ... ' (B.10)
are the encoded sequences.

gl(D) =gt gnD + 912D2
g2(D) = g20 + gD + 92D’ (B.11)

are the generator polynomial of the code, and all operations are modulo-2. After

multiplexing, the code word becomes
b(D) = b*(D?) + D - b*(D?) (B.12)

The indeterminate D can be interpreted as a delay operator, the power of D denoting
the number of time units a symbol is delayed with respect to the initial symbol in the
sequence. The generator polynomials of an encoder can be determined directly from
its circuit diagram. Since each shift register state represents a one-time-unit delay,
the sequence of connections (a 1 representing a connection and a 0 no connection)
from a shift register to an output is the sequence of coefficients in the corresponding
generator polynomial (i.e., it is the generator sequence). For example, in Figure B.4,
the sequence of connections from the shift register to the first output is g1 = (101),
and the corresponding generator polynomial is g(D) = 1 + D?. Equation (B.8) can
be represented as a 1 x 2 matrix, called polynomial matriz,

G(D) = [g1(D), &(D)] (B.13)
[t

Using the polynomial matrix, the encoding equation for this encoder can be expressed

as
‘b(D) = a(D) - G(D) (B.12)

By elementary operations, the polynomial matrix G(D) can be written as

1+ D+ D?

G'(D) =1, 5] (B13)
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Figure B.5: Feedback realization of convolutional encoder.

To implement this encoder one can use a feedback shift register {65] as shown in Figure
B.5 [50]. Trellis diagram for this encoder is shown in Figure B.6. Form this figure,
we can see that feedback encoder generate the same code word as the one without
feedback (however, the input data are different, but the output are the same.) We say
this two encoder are equivalent since they generate the same code words. This is not
a special example. In fact, every feed-forward polynomial has a equivalent feedback
encoder [50].

B.1.1 Definitions and Propositions of Convolutional Codes

A convolutional code produces ! encoded symbols for each k information symbols,
i.e. R. = k/l,is called a rate-k/! convolutional code. The k x I polynomial function

matrix can be used to generate this code js [64]

[ gu(D) | gu(D) | ... | gu(D) |

gn(D) | gn(D) | ... | g2a(D)

G(D) = (B.16)

| g6i(D) | ge2(D) | ... | Bu(D) |
The above polynomial matrix can be realized with a finite number of memory ceils

capable of storing field elements, a finite number of scalars and adders that perform
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Figure B.6: Trellis diagram of feedback encoder.
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multiplication by constants and additions, respectively, within the field . In [30] this
encoder can be implemented by an obvious realization [50]. One example of obvious
realization is shown in the last section for a rate-1/2 encoder with two delay cells. The
number of delay cells needed to implement the above encoder depends on a coefficient

constraint length, v. 1t is defined as [50]

v=3 u (B.17)

where v; is the constraint length for input ¢, defined as
v = ;Islgxs,[des(sa(D))} (B.18)

Definition B.1 Minimal Encoder: A given realizable generator matriz G(D) is min-
imal, if there ezists o realization of G(D) that uses the least number of encoder states

required to generate the corresponding code [54].

Definition B.2 Catastrophic Encoder: A infinite nonzero input symbols that can

cause only finite nonzero symbols output.

The catastrophic encoder is called catastrophic can be explained as following: if
the input sequence has finite nonzero symbols and produce a finite nonzero symbols
codewords. The encoded sequence is transmitted through the channel and is disturbed
by noise to produce finite number of errors. If it happen that the decoded sequence
correspond to a infinite nonzero input symbols, then compare to the sending finite
nongero inputs symbols, we have made infinite errors at the receiver. That is the
~ reason to call such a encoder catastrophic. In digital communications, we must avoid

the overall systems to be catastrophic.
Proposition B.1 Every polynomial encoder is equivalent to a systematic encoder

Proposition B.2 Every systematic encoder is minimal and noncatastrophic
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Figure B.7: Rate-I/l + 1 systematic feedback encoder define over GF(P).

Because of the above propositions, it is convenient to design codes by using a rate-
1/l +1 canonical systemai'.ic encoders, shown in Figure B.7 to enumerate codes. This
encoder is both minimal and noncatastrophic. All the multiplication and addition in
Figure B.7 are defined on GF(P).

B.1.2 Maximum-Likelihood Decoding for Convolutional Codes:
The Viterbi algorithm

Refer to trellis representation of a rate-1/2 convolutional encoder, see Figure B.3.

We can draw it from level 0 to level n as shown in Figure B.8. The dotted line
represents an input “0”, corresponds to the selection of the upper branch, and the

solid line represents an input “1", corresponds to the selection of the lower branch.

Each possible input sequence corresponds to a particular path through the trellis. For

instance, an input sequencé of (11110000) can be seen to provide an output sequence

of (1110010110110000).

The problem of decoding a cpnvolutional code can be thought of as attempting

to find a path through the trellis diagram by making use of some decoding rule.

An effective approach, which was proposed by Viterbi [66], is now known as the
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Figure B.8: Trellis extends to level 8.

Viterbi algorithm. The Viterbi algorithm is best explained by using the trellis diagram
for the R = 1/2, v = 2 code as a reference. We will now explain how the trellis
diagram can be used to decode a convolutional code. Suppose the encoder defined
in the last section is being used on a binary symmetrical channel (BSC) with raw
bit error probability p < 1/2. The information input is (11110000) and that R =
[11,11,01,11,10,11,00, 00,00,...] is received. A maximum likelihood decoder must
find the path which is closest in Hamming distance to R. Let us draw a new version of
Figure B.8 in which each trellis edge is labeled with the Hamming distance between
the Figure B.8 label and the corresponding two bits of R. For example, let s;; represent
the node with state s; at level 7, then sq3 to s34 edge gets the label dg(00,11) =
The result is the trellis of Figure B.9.

If we think of the e(-ige labels in Figure B.9 as lengths, the total Hamming
distance between R and a given codeword is just the total length of the trellis
path corresponding to the codeword. For example, the Hamming distance between
R and the codeword (00,11,01,00,10,19,11,00,00,...) correspending to the path
810, 911, 522, 933, 924, 948, 936, S07 %08, -+ 18 2+ 0+ 0+ 2+ 0+ 1+ 2 = 7. Thus the
problem of finding the codeword closest to R becomes the problem of ﬁn&ing. thé
shortest path from syo to sjs in the treilis of Figure B.9, and we now focus on this
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Figure B.9: Trellis labeled with Hamming distance corresponding to R.

shortest-path problem.

Suppose the shortest path P from sy to s;s passes through some intermediate
node, labeled z in Figure B.10. Let us denote the segment of P joining sip to 5; as
P, and the segment of P joining s to s1s as P,. If another path joining sy to sz,
say Q, were shorter, the path QP; would be shorter than P = P, P,, contradicting
the minimality of P. This observation is the key to the Viterbi decoding algorithm,
which works by constructing, for each j, a list of the shortest paths from syq to the
vertices at depth j. The (j 4 1)st list is easily constructed from the jth list since if
810 - - - 92jSy(j41) i a shortest path to sy(j;1) then s10... 575 must be a shortest path to
Ssj, and so the shortest depth j + 1 paths can be obtained by extending the shortest
depth j paths by one edge. |

Before we state Viterbi's algorithm, first we need some notation (This algorithm
is from [63]). Denote by S the set of states {si,32,83,84}. Next if 37,3, € S and
there is an edge going from s to s, in the state diagram, we define B(s;,s,) to be
0 or 1 according to whether the transition from s; to s, corresponds to a O or a 1
input. If there is no such edge, B(s:, sy) is not deﬁn.ed (see Figure B.11). Also, for
82,8y € S, we define I;_1 ;(sz, 8y) to be the label on the trellis edge joining sz(;_1) to

8,5 If there is no such edge, we set l;_y,;(sz, 3,) = +00. For example, lp1(s1,82) =1,
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Figure B.10: Two paths lead to the same node.

B(sx,sy) S; S, Sg sS4
sy o 1 - -
Sg| - - 0 1
sal o0 1 - -
Sgl - - 0 1

Figure B.11: B(s.,s,).
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l23(84y83) = 1, l1,2(81, 83) = +00.

We are prepared to state Viterbi’s algorithm. It computes two things, metrics
and survivors. The metric m;(sz), 8z € S, represents the length of the shortest path
from 810 to sz;; the survivor B;(s.) is a binary string of length j which represents a
shortest path from 8y to sz;. Thus By(sz) = 0101 means that the shortest path from

810 10 824 IS 810821842843924. The Viterbi algorithm is given as [63]: 1

1. Initially set mo = 0, and mo(sz) = +oo for all sz # s10. Also, set Bo(s1) = ¢,
and j = 1,

2. For each s, € 8, find a s; € S for which m;_1(sz) +lj—1,5(sz 8y) is a minimum.
The set

m;{sy) = mj-1(8z2) + lj-1,i(52: 8y)»

Bj(s,) equalsto Bj_i(s;) concatenated with B(sz, sy). (B.19)

3. If j = L+ v, output first L bits of B;(s1) and stop; otherwise set j = 7 +1 and
go to step 2.

The m;(s,) computed by Viterbi's algorithm is in fact the length of a shortest path
from sjq to sy; and that Bj;(s,) described such a path.

We can describe the performance of Viterbi's algorithm on the trellis of Figure
B.9 graphically, as in Figure B.12, where the metric m;(s,) appears above the node
s,; and the survivor Bj(s,) is represented by the unique path from sio to sy;. For
example, my(sq) = 2 and By(s4) = 1111. The shortest path from 310 t0 518 is seen to
be $10821942543544 535816917918, The decoder’s output is therefore 11110000, and this
is the maximum likelihoo;:l estimate of the information sequence a = (11110000) that
gave rise to R.

The Viterbi algorithm remains valid for an arbitrary discrete memoryless channels,
except that the edge labels l;., ;(sz,y ) must be redefined.

1We assume the Viterbi algorithm will output the first L bits when the binary string Bj exceed
L + v,v is the constraint length. L is also called truncation length.
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Figure B.12: The Viterbi algorithm applies to decode the R



Appendix C

List of Abbreviations

ASK " Amplitude Shift Keying

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BSC Binary Symmetric Channel

CE Channel Encoder

CPE ‘ Continuous Phase Encoder

CPFSK Continuous Phase Frequency Shift Keying
CPM Continuous Phase Modulation

DMC Discrete Memoryless Channel

DMSK ' Differential Minimum Shift Keying

FFSK Fast Frequency Shift Keying

ISED Incremental Squared Euclidean Distance
MLSE Maximum Likelihood Sequence Estimation
MM Memoryless Modulator

MPSK . M-ary Phase Shift Keying

MSK - Minimum Shift Keying

NMSED | Normalized Minimum Squared Euclidean Distance
NSED Normalized Squa.red' Euclidean Distance
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PSK
SNR
TFM
QAM
SED
TCM
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Phase Shift Keying

Signal to Noise Ratio

Tamed-FM

Quadrature Amplitude Modulation

Squared Euclidean Distance

Trellis Coded Modulation
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