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The available I~ atomic and -IN scattering data are-
fitted consistently ‘within a finite range potential model. }
The most recent analysis of IN scattering data pro-
duced two poséible setas of complex scattering lengéha co%-
sistent with the observed cross-hectﬁons. Thésé data, to-
gether with the measured'energy level shiftas and widtﬁﬁ in .
L étoms, are analyzedhzs determine if the combined data'
are consistent and also to extract-effective I"N potentials.
The caiculations are performed by assuming Yukawa-
shapéd complex potentialé for each I N spin, isospin éhgn—
nel. These potentials are then folded into the nuclear den-
sity distribution to produce the I nucleus effective pptential
and the Schrodinger equation solved for the level widths an

shifts. The potential depths and range are treated as para-

meters which are varied to minim the total x2 of the fit

to the scattering lengths and a ic data. The possibilities

of attractive or repulsivé potentials.are examined for'those

LN channels.which proauce positive scatkering lengths.
Although the results of this:analysis indicate that

the atomic daéa can be fitted consistently with the scattering

data, there is no conclusive distinction between the two sets

of scattering lengths in this respect.
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It is conpcluded however that the existence of a

I n bound state is unlikely and that the L~ n spin triplet

potential at leaat muat be repulaive
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CHAPTER }

INTRODUCTION .

. - - -
. .

The aim of this work initially was to‘dete;ﬁine'the-

genérai nature of the IN potentials and, specifically, to.

détermineaif a ¥ nor I nn bound state is likely. -As will

1

be seen, the available IN experimeptal data required this

aim to be modified somewhat.
: . - Fl

Tha motivation for the study was the fact that to date,
ﬁof the haryons, only Ehe protdn and neutron are known to form
a stab}e bound state. &he y; hyperon is not.stable in in-
teracting wighfa proton and the sygtem decaya via the strong

interaction 'to a A-and neutron, but the % n system has no cor-
. !

rusﬁonding decay channel cpnsistent with charge and energy con-

servation. It is possible therefore that'x_n'gr ann cpuld
-form a pound 5tatu; althouéh £o datc’th?y‘ﬁavé'never been ob-
served., : . . - /
The infbrmation ava%lable on:&he IN interactions is very
i

scarce, due mainly to the short litqtime, and unqil'l97ﬁ the

. , :
only information came from &I p'scattering experiments.

The data from these experimernrts pﬁovidéd many interes-
. ‘ N

ting but sometimes ambiguous indications of Ehc IN potentials.
(3)

Alexander et al have made the most recent correlation of IN

scattering parameters. Most notable of their results is the

. -



prediction of a positive scattering length'in £ n 3S gtate

1
-_which could-reault‘f;om a strongly attractive potential with

e !

a bound state. ' . ' et ‘
In addition,:iﬁ Ap scatieting,na cusp in the cross- .
section below the I threshold has been interpreted by some

(26)

as a virtual IN bound state . Indeed, in_fifst.apprdxima-

tion, a IN bound state is to be expected. SU(3) with no sym-~

metfy breaking prcdic%s the EN inieractidn to he identical
. withfthe NN interaction, which is known: to be stf&ngly attrac-—
tiv;. It‘might be. expected then that,fhé‘largér ). mass wéuld
leéd to a bound séatc, even though in other respects the scqp-
tering-data refute this idea. ‘ ,

| If the positive ) n scatterinq lengths of Aléxander
are the result of a strong, attractive potential, the resul-
ting binding energy of the system would be éf the arder of 75
Mev. This is huge relative to the deuteroh and, althoughethis
does not mean it is impossible, the magnitude of SU{3) symmetry
breaking required to produce this‘binding makeg the suggestion
highly improbable.

The alternative is that the positive scattering length
arises f{rom s_repulsive potential.  Again, this suggestion is
unﬁsual and not generally ecxpected from the strong interaction.
lowever, the OBEP model predicts that in the long-range tail
of the potential at least the & n 3S1 potential should be re-

g
pulsive.
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Furthermore, the total scattering cross-seétion(3’22f23'26)

_falls below even the singlet Unitary limit, which indicates a
‘wéak triplet“interﬁctionz' - .
The proéosal is tﬁat aln br I nn bound state exists is
~not new and has already been inveséigated to some extent (for
exanle ref. 29).° At that time thé analyses were based on-inaé-
cufate scatte?ing data and even the sign of the scattering'lenéths

(30)

was not well known The conclusion of those works was that

the L n intéé;giioh was too weak to support a bound state even

in the proposed three-body I nn sysfem. .

‘ The diffiéulty in performing an analysis based solely-

on scatt;ring data is that a knowledge of the scattering lengths ,
alone does not permit a unique determination of both the depth
and range of a tyo parameter potential forms Even the recent
data of Alexander do not determine the effective ranges of the
interactions: and in fact produce two ‘distinct sets of scattering
lengths consistent with the measured cro§s~sections.

(l)'in 1978 producea L™ exotic

However, Batty ét al
atoms from stopping K beams. From the strong intera?;ion be-
tween the ! and nucleus, the energy of the L atomictorbital
is shifted relative to the pure electromagnetic energy. The
energy width of the level is also increased as a result of I p
decay. The magnitude of this complex energy.shift is relafed
to the IN potentials.

? For the first time then, two independent sets of data
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" are now avallable related to the ZN 1nteract10ns;¢\It 1s‘pos—:
-8ible, by requiring con51stenCy, to analyze the EN scattetiﬂg \
and I atomic data 51multaneously and to fixeboth axpotentlal\ N
:depth and range-to the ZN interactions. Consequently the \\T R
purpose of thls work now becomes twofold: Not only 15 an at-
tempt made to extract effective EN two—body P ”:' £r m a
correlation of the data but also to determine if.tﬁgié atomic
data are sensitive to the scattering pérameters and can ‘'dis-
tinguish between the two scattering length sets of Aié%ander.

| The basic requirement in realizing this progrém ‘is —
the construction of effective IN potential forms. In thls
work it is assumed that the potentials are Yukawa—shapeﬁ,
with the strengths complex for I p interactions and real for
I n. The complex I p depth is introduced to account implicitly
for the open decay channel in-this system. Atomic level shifts

-

are sensitive, in first approximation, only to the volume
' £14)

A

integral of the two-body potentidl and not to the shape
In view of this, the Yukawa-shape is chosen to produce the

#nown asympﬁbtic form of the OBE potential tail. A more realis-
tic shape should include a repulsive core; but any refinements
of the potential necessarily introduce ﬁore parameters and’with
‘the present quality and quantity of IN data, this would be
unwarranted.

The available IN scattering data are reviewed in Chap-

ter 2, beginning with the coupled, two-channel formalism of
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the I p scattering process. Decoupling of the An chanﬁel
resuits‘in an effective non-local; complex pdtential in the
I p channel. Diséussion of the non-local, complex poténfial
covers absorption in“thé I p system as well as the appfoxi-
mations involved in repla%ing it with a local, compléx poﬁen—
tial. | _ ‘. . !
The differential cross-sections for the I p interac- w5
tions are also produced showing the relationship between the
measured cross-sections and corresponding scattering lengths.
The effect§ of the Coulomb scattering amplitude on.the cross-.
section are included. Although fhe cross-sections are not
explicitly used in this work, the I n scattering lengths, are
deduced from-the Z+p data, and it is therefore necessary to
realize the approximations involved in deriving the £+p
scattering lengths wﬁen the Coulomb interaction is present.
The deriving of an exﬁression for the I -nucleus
effective potential in I atoms is dedlt with in Chapter 3,
commencing with a quglitative survey of hadronic atom proper-
ties in general. Attention is drawn to the theoretical
approach that hgs been most commonly used to date and to its
shortcomings. A model fbr the IZ-nucleus potential based on
folding the IN potentials into the nuclear density is derived.
It is shown that,with certain restrictive approximations, the
folding model reducés to the common, first-order optical model.

Lastly, a prescription is developed for properly weighting the



different séip; isospin IN potentials in the folding mbdel.

Numerical details-are offered in Chapter 4. A simul-
taneous fitting procedﬁre is performed to each set of IN scat-
terlng lengths with the I atom complex energy sh%ft data The
ZN potential strength and range parameters azge treated as
variables and the total x of the flts to all the data' is mini-.
mized. For those states with‘poéitive scattering lengths both
strbngly attractive and repulsive potential possibilities
are considered. 1In this way six minima are found in the x2
curve. Four of these solution éets are discarded for predic-
ting unphysical binding energies in IN sysffems. The remaining
two sets of optimized potentials are used to determine the
-ground state energies of various prbposed I hypernuclei.

In conclusioﬁ, the results and‘predictions of the EIN

potentials are summarized and compared with the expected pro-

perties from experiment and theory. (\

3

-



- CHAPTER 2

IN SCATTERING

2.1: INTRODUCTION . ,

A great deal of interést has been'sﬁown in the IN
.scattering process as a @eans of discovering‘possible IN
bound states,

A £'n or £¥p bound state has never been found al-
though‘én SU(3) with no symmetry breaking the singlet.

L n(zp) interaction is identical to the NN interaction. The
pp and nn potentials are known to be strongly attractive which
suggests that the larger I mass mi&ht be able to produce a
bound state(zs). In addition, ithashgeen proposed that the

resonance in the Ap scattering cross-section at roughly 4

Mev below the & threshold corresponds to a virtual IN I =
(23,26)

o~

bound state
However, a recent study of the LN scattering para-

(3)

meters by Alexander , and also ‘the results of the present

work, indicate that the existence of a £ n or £+p bound state

is unlikely. g |
The existing data on IN scattering are very scarce.

This is due, in part, to the short I lifetime (v 10-,-19 secs.)

and to the fact that the production of I is a secondary

reaction from stopping K beams so that the number of I events
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_K° stopped

/ .
/ of protons and decays by the strangeness-conserving reacti?n:
A <L

» ~

observed is low (typically, - 1C~3 L s-c.at‘te_'ring'events ‘per 10

-

7

' The I scattérihg to date has been performed in hydro-

>

gen bubble chambers-with‘thé resultfphat,ﬁnly E—@roton events

. B }. .
have been measured. The corresponding momentum range of the

I is rougﬁly 100 < Py < 180 Mev/c. The lower limit is ihposed

' experimentally by the length of the I tracks and the upper li-

mit is the production-momentqﬁ of the I in the reaction

- 4 s -
K +p~+ZI + n+ (22): The T iS(nOt stab;e in the presence

£ o

I"+p-+A+n. (2.1.1)

£
The |I N> wayefunction can be expanded in isospin components
as:

£ L. NN
| 1 I,

11

L7 N>

1 N __N N
L <l-1 3 13|II3 1>l113-1> (2.1.2)

I T

!‘ -
with the weighting given by Clebsch-Gordan coefficients. For

£ p Ig = % and the |I p> wavefunction becomes:

e = /2L /L3t (2.1.3)

3 '2 2 3

which explains the presence of the I = % A decay channel in

- . - + . .
I p scattering. The I n{(l p) system however 1s a pure I =

|

state and can only scatter elastically.

(22)). ’ ’ ] o

.



£”p TWO-CHANNEL EFFECTIVE POTENTIAL

)

»
N

L1

It is clear from the d}scussion in the last section
'that the-ifp_systeﬁ caneither scatter'e}asticglly to the
I'p final state or decayfthrough.the strong iﬁteraétion to a
An state\\\:ﬁgfoPer description of the scattering process
must account for this two-channel nature. ‘

- The expansion of the ﬁsual éne—channei-scattering
theory to descrise the two-channel problem is straiéhtforward
with the important result that the wavefunction has two com-
ponents and the potential becéﬁes a 2x2 matrix. The off-

diagonal potential elements couple the wavefunction components

through the two radial Schrodinger equations:

"
B 2y Ve + Vpp¥y *+ Vpa¥y = Epdyp o (2.2.1)
_ A2 v o+ v ‘+ V.oy = E,U (2.2.2)
P AL¥r anva AYA -

The energy E, appearing in the An equation (2.2.2) is related
to the energy of the I p system by the mass difference of the

L” and A; that is:

EA = EZ - AMXA . (2.2.3)

These coupled equation§\can be solved numerically provided the
~
four potential elements aye known.



10

v

Formally, the two-channel equations can be decoupled

by inverting the An equation. For the An channel:

X 1 ) _ ]
Yin = " Var oI \“zp' (2.2.4)
' (- - — *+ V,, -E, - ieg) |
2MAn dr2 AA A

Substituting this expression.into (2.2.1) produces the I p

. channel equation:

2 .
a“y 2M - .
I Ip 1 2
- (Vo -V, - vy, =k, (2.2.5)
or .
dzw 2M
T Lp ‘ 2
-~ = sV LtWe o= - KOEL (2.2.6)
2 2 Tty
dr X EFF 'L X
The important features of the effective I p potential Vepp 1S

that it is non-local and complex. The -ie tefm has been intro-

duced in the denominator to ensure that the open An channel

-

contains only outgoing waves.

b :
The potential V may be expanded in the spectral

EFF
representation as'2°!: ' '
N T e (BN sy, (B
Verr = Vrz "5 Vi Ty _ Ve T | 9BV EE-ic YiA
n ~-E )
) AM
(2.2.7)

where the discrete summation corresponds to possible bound
states in the An system. Assuming that no such states exist,

VEFP can be written explicitly in terms of its real and imaginary
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components as(zl):

v vl e, <y, |V - ' .
o EA'YATTYA AL . .
=Vyp =P | ¥ —F , dE' - iw|dE'S (E AM)VZA|wA><¢ArV

.

AL,

AM (2.2.8)

where P denotes the Cauchy principal value. The imaginary part .
» . . -

of the potential is then: = -~ e

Im(V,_ ) = =w-V_ |y ><p, |V ' E = AM ,
EFF ZATTA ATCAL ‘ N (2.2.9)
= 0 * ’ -BE < AM .
" Since the nume*ator of the real part of VEFF is positive

definite, the imaginary component is negative definite as re-

guired for absorption. Physically the complex term comes from

the process in which the !” and p leave the enttrance channel

wz because of the coupling potential VAE and are emitFed in the

exit channel WA‘ '
To see how the complex potential accounts for absorp-

tion in ! p scattering, it can be shown from the Schrodinger

equation that the divergence of the flux for a complex poten-

tial is:

Im(V)D(I_.‘_) ' (2.2.10)

Xiro

Pritnw) =

with p(%j the probability density. It has been shown that
the imaginary component of VEFF is negative whicg\\according

to (2.2.10), accounts for a loss of particles from the system.
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* .Further, -the' time ‘development of the L p wavefunction’

' -

is: | . v
. . .
py(£) = e 1EE/ C(2.2.11)
Fof a complex potential the energy of the system EE is neces-
sarily also complex. With the definition Ep = ER + il'/2, the
time development of the wévefunctiqn becomes :
~E_t/h
-Tt
bplt) =e R TTEM (2.2.12)

™

which is a damped function correspgnding to a decrease in the

number of I as & function of time.
In solving theﬂfpp radial equation (2.2.6) it has

. v *
been shdwn possible to replace V with a phase-equivalent .

EFF
local potential which correctly reproduces the two-channel scat-

(24)

terind lengths . However, the expression for the potential

is a complicated function of the matrix elements VYY and both

" ‘ . » . .
wavefunctjion components. Without a firm theoretical basis for

determining the VY though, there does not appear to be any

Y
clear advantage to this procedure. As a first approximation,

the usual approach {(and the one used in this work) is to ignore
the non-local and energy-dependent behaviour of VEFF and approxi-

mate VEFF with a complex, local potential. In this way the

two-channel nature qf the problem is implicitly introduced
through the complex potential depth.
The theory of scattering for a local, complex poten-

tial is essentially the same as for real potentials with the
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impoftant éxcéption-that-the phasé shifts and séatﬁeriné

lengths become complex corresponding to a decrease in ampli-

tude of the wavefunction(zs). ) : ’
N 7

2.3: I N SCATTERING CROSS-SECTION

The spatial distribution of reaction.products from
a sgattering process.is dependent on the nature of the inte-
raction betweern the projectile and target. At low incident
.energies the most that can be learned about the potential
though, is fhe corresponding scattering lengthé of phase shifts.

In deriving expressions for the ! p cfoss—sections as
functions of the scattering lengths it will be assumed at
first that the Coulomb ;nteraction can be neglected. This is
én important co;{ection, particularly for small scattering

angles, and will be included later, but it is not necessary

. for outlining the approach. The notation used follows close-

ly that of references 3 and 23. It is also assumed that the
1nteraction occurs only in S-state and that the singlet and
triplet interactions can be treated scparatelvy.

The cross section for a transition from an initial state

|Y p> te a final state |[f> is related to the transition ma-

2
trix by{hj):

477 (2J+1)
k(28 +17 (25 +1)

o (2T pet) LerplTlE~1? L (2.3.1)

with k the centre of mass momentum and J the total angular

n
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momentum of the I p. Sy 'and s, are the spins of L and p
respectively. &
From the two-channel nature of this problem, the T

"matrix has four components; T.. = <Lp|T|Lp>, T

Py = 62p|T|An>,

LA
et. cetera. .

[N

For the elastic scattering of LI p + L p the transi-
-~ .
tion ampiitudes can be expressed as functions of the com-

plex scattering lengths at low energy by:

. . A .
SEp|T|ip = =g (2.3.2)

with A I a+ib, the comblex scattering length. In the X_p

n

interaction § of the transitiqQns occur in the 1 = % state
. 3 . . N \ } '
and % in the I = 5 state. Using this fact, straighttforward

algebra gives the ¥ p elastic cross-section as:

- - I
g (X p+tp) =% L (23+1) ((a 3 ae2ay cak3Ra g b ) T4
(2.3.3)

8] al Bl 8]
+(Ele}.'2‘3kﬂJ_]/jaJ]_/'_}) )/’(1”(‘-3]3/‘))(l+k~(a;l.'2+b:1"j_))) P

~ [

where AJI = aj; + ibJI is the complex scattering length 1n the
J,T spin, isospin channel. Use has also been made of the fact
that b.3/» - 0 since there can be no inelastic scatterinag in

the ! n interaction.
For the ineclastic ¥ p » An channel a simple expression

like (2.3.2) does not exist and more care must he exercised
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in defining the T matrix. It can be.shown from a K-matrix
) (23)

analysis of the scattering lengths that the transition

amplitude for the inelastic process can be expressed as:

1 <Lp|K|An>

<Ep[TIAn> = yoh TS AnTK[Ans (2.3.4)

~where A in this case is the I = % scattering length aJ1/2+ibj1/2
for the decay channel. Rewriting A in terms of the K matrix,

Gell et al also show that:

'<ﬁpL§|An>

A-<Ip|K|ip>
"|1-i<An{K][An> 1-1<An[K[An )
{2.3.5)
= kal/’z ’

where the last step follows from the relation of the K matrix

to the scattering lengths.

The cross-section for the inelastic L p reaction is

then:
'\n l le/E to.
o(tpean) = =5 v (20+1) 5 5 (2.3.6)
Ik J=0 l+k (aEl/2+le/2) .

The above expressions (2.3.3) and (2.3.6) were evaluated ne-
glecting the Coulomb interaction between the !  and p. Since
the Coulomb potential goes to zero only as quickly as % it is
to be expected that its presence will have a significant effect

on the scattering cross-sections. The procedure for handling
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the Coulomb potential when other forces are present is to

sblit the Hamiltonian into a Coulomb and a nuclear part. Thé

T matrix may then be expressed .as a sum of a pure Coulomb

T matrix and a T-like matrix of the nuclear interaction.' The ~

expression for this latter T though does not contain the
usual plane-wave state, but rather the Coulomb wavefunction.
If the nuclear potential is spherically symmetric,
the amplitude can be expanded in partial waves:
NC ’ v oM

. N
ATk, k) = 4moY oY) (k)at(k)YT(k') . (2.3.7)

- -

L
The pure Coulomb amplitude 1is well known (sece, for example

ref. 26) and is:

&

' X 21 kb)) insi V2 .
AC(H) exp(( %,kl)ﬁnbln 4,/ 2) ’ (2.3.8)

s 2k "Bsin“a/l

With B the Bohr radius of the particles, k the centro-of-mass
momentum and U the scattering angle.

The cross-section will now contain an interference term

¢

NC . .
_between A ¢ and AC upon sguaring their sum. Since the phase

of A© depends strongly on the charges of the particles, so
does the interference term.
. . . NC
Of greatest conseguence in the calculation of A 1s
that the usual free wavefunctions become Coulomb wavefunctions.

The implication of this 1s that the additional phase shift

introduced in the wavefunctian by the nuclear interaction in
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the presence of a Coulomb potential is not the same as the *
effect of the nucleér inﬁeraption alone. The result is that

there is no longer a simple relationship between ANC ana )

v

the nuclear scatte?ing lengths.

Only within certain approximations of the Coulomb

Y

wavefunctions dependent on the range of the nucleus interac-

~

. . N ' .
tlon'can the amplitude A c be related to the nuclear scattering

lengthggJ Including the Coulomb amplitude within the differen-

tial cross-section and evaluating the nuclear amplitude with
1

- respect to approximate Coulomb waves, Alexander et al arrive

at the following expressions for the f p cross-secfions(B):
. .
do (1ot 1 (2J+1) exg}(~§/k8)§nsln 8/2 ,
qn - PT- P " 3lo 3 2k“Bsin“0/2
- 2 (2.3.9)
]
N . CO(AJ3/2+2AJ1/2—3ikuAJl/2AJ3/2)
. DJ
2
' 1 C.{l-ikA }
do .- 1 . 0 J3/2
— (I p*An) = = L (2J+1) = b.1/2 . (2.3.10)
ds. -k =g DJ J
with

‘ )
.. w21 e _ y -
Dy = 3%iK (A1 ,p%2,3/2) = KCo(1=10) (1A 3 /9+2A 1 /2) #3KA L1 f0R 13/2) o

1

_2m _ _ 2% -
'CO = %8B (1 exp ( kB)}

and

2{in(2kR)+Re¥Y (1/kB) +2ZY)
}(BC_2
0




,and the acceéted scatterin

Coulomb contri

SCA?TERING RESULTS

changed by as much a

is because earli

works

00 per cent.
(22,23, 26)

18

¥

The exper1menta1 scattering SLtuatlon has changed

drastlcally .in the last few years as more data are -collected

or the IN system have

To

ution to the cross-section.

"large extent this

neglect{d the important

€ data have presented some interesting features

and ‘raised many questions.

+
The total elastic I p cross-secti

s are shown in

fTigqure 2.1 with the solid line representfng thHe spin singlet

unitary limit.
a[mb]

500

400

Kl

200

100

Gfmi;7
I p—1I7p
1 \'
- L300 { —
- ‘ T n
- = | 200 | R L P
Y : ) |
|- I — Fo—E— ;
0 150 160 170 13\[3\ 120 130 M0 150 160 170 180
Pp « DMev/c] Py [iev/c]
FIG. 2.1 ELASTIC I p CROSS SECTIONS (REF. 26 AND

REFERENCES THEREIN).
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The total cross;sections are lower than the singiet unitary
limit, whiéh has beeh fakeﬁ as an indication thai the tfiplet
interaction must be very weak andka bound state in the Bsi
interaction therefore unlikely.
. The elastic I p differential cross-section o (8) is

shown in figure 2.2. The apparent systematic rise in o (6)

for small angles can be attributed to constructive Coulomb in-

terference

(3) 12‘!& ] v T T T T T R
: ‘ Ip—Ip

-
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ccse
FIG. 22 X_p ELASTIC DIFFERENTIAL CROSS-SECTION.
DATA POINTS ARE FROM ALEXANDER (3). .
SOLID LINE IS o(6) PREDICTED FRCM THE
RESULTS OF THE PRESENT WORK (CHAPT. 4).

The total inelastjic I p cross-section is showh in figure
2.3 and it is found to correspond well with the singlet unitary

limit, again indicating a small amplitude in the 381 state.
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The most recent data on Eip scattering have been collected by
Alexander et al(3). They éonstructed scattering lengths in
the complex plane for each spin,isospin channel which Qould
reproduce the observed total cross-sections. By treating the
components of the complex scattering lengths as parameters
they fitted the data and found two sets o; scattering lengths
consistent with the cross-sections. Be éﬁée of the large
errors inmkhe crpss-section data they coyld not distinguish
between these sets, but neither set supported the suggestion
of an i = % virtual IN bound state.

The results of the present work also point to the

same conclusion. In this work the £ n scattering lengths are

. . ) + .
presumed identical to the I p extracted nuclear scattering
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lengthsw.based on the assumptions of charge-and isospin in-
variance of the interactions. |

' One of the purposes of the present work is to corre-.
late Alexander's scattering lengths with I atom dafa in an
attempt to distingﬁish between the two sets hé.obtaihed.

Contrary to the resulﬁs of a previous analysis(l), it

is found that the atomic data are consistent with the scat-

tering lengths but, because of the large experimental errors,

the atomic data do not distinguish between the two sets.



CHAPTER 3

'L ATOMS

3.1: INTRODUCTION AND PHENOMENOLOGICAL SURVEY OF HADRONIC
ATOMS '

*

Hadfonic atoms are those in which an electron has
been replaced by a strongly-interacting particle (K—,w_,ﬁ,ﬂ-).
Creating hadronic atoms is exﬁerimentally relative-
ly simple althoggh the high energies involved restrict their
formation to only a few laboratories in the world.

Kaons are produced primarily by the reactions:

p+n + K +K +p+n
- . ' {3.1.1)
ptp + K +K +ptp
/

The primary target for the reactions (3.1.1) is normally a//

heavy metal. The K produced travel to a secondary targef

where they are slowed and eventually captureé,iﬁto atomic

. s B
orbitals. /
/

The picture is not as simple for’! atoms. L hy- —~
/

perons are created from the nuclear apsorption of K mesons

/
through the reactions: /

. K +n+ L +71

_ N (3.1.2)

K +p =+ L +7
—

22
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Because the I  are produced in secondary reactions, the re-
sulting I~ atom x-ray spectra are very low intensity and
nécessarily buried in the prédominant K  atomic spectra.

Neglecting the strong interaction, the mean radius

of the hadron's atomic orbital about a point nucleus is:

29 2

where a, i's the Bohr radius ='ﬁ2/ezmH, m is the'reduced mass
of the hadron-nucleus system, and n,% are the orbital quantum
numbers. In a first approximation then, the I orbital rg-
dius is reduced by a factor of nearly 2400 relative to the
coiresponding electron orbital with the resul't that even in
high n states the £ is closer to the nucleus than the ground
state electrons. Electronic screening of the nucleus by the
electrons therefore has a negligible effect‘and the hadron-
nucleus system can be accurately treated as a true two-body
interaction.

In addition to the electromagnetic interaction the
orbiting hadron is affected by the strong force. This nuclear
force manifests itself predominantly in two ways. The energy
of the orbital is shifted relative to the pure electronic
energy of the orbital by an amount €, and secondly, the ab-
sorptive nature of the strong interaction causes a broadening
of the natural Lorentzian linewidth by an amount T.

Initial capture of the hadron by the atom occurs

primarily by Auger emission of an electron leaving the resul-
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tant hadronic-atom in a state of high excitation and angular

L]

momentum. The hadron de-excites by x-ray transitions until a
level is reached where there is éh;appreciable overlap of the
hadron wavefunction with the nucleus, and at this poinﬁ it is
absorbed. ‘

In the x~ray transitidh between the levels (n+l,2+1)
+ (n,%), the width T of the upper level is typically of the
order of 1 ev. which is comparable to the electronic width.
Absorption and x-ray transition processes therefore compete
and the branching ratios of the two processes can be measured.
Since the strong interaction is short-ranged, £ for the up-
per level is essentially zero. The width of the lower level

h
is larger than the upper by a factor of 10°-103

due to the
greater nuclear overlap. The shift € is the same order of
magnitude as the lower level width I'. Measurement of the
x-ray energy of the transition then provides a direct measure-
ment of €, The strong absorptive interaction sets a lower
limit on the angular momentum state in which the hadron can
exist. For small galues of r, the Coulomb wavefunctions are
proportional to %T which indicates that states of high
angular momentum have a smaller overlap with the nuclear volume
than those of low n and (.

In hadronic atoms therefore the transitions of interest
are those between the 'circular' orbits, that is, those for which
£ =n-1. For circular orbits the probability of finding the ha-
dron between r and r+dr from the nuclear centre is approxi-

mately(s):



o~
. : 22+3 28+2 =2Zr/a.n
2 * 1 22 r 0
roey (.r)w(r)dr v PN (nao) —=5— © dr. (3.1.4)

The overlap of the hadron wavefunction with tﬁe absorptive

part of the hadron-nucleus potential gives an estimate of the
region in which absorpticon occurs. For high & states this is
peaked in the area of the nuclear surface as shown in figure 3.1

below.

0.3%
.32 |
G.20
Qe
0.20

, G018

. 1 -~ .
Jal [ T 1.0 iad Yal LYY Fad Nl Tal 10

JIGTaACL R M

FIG. 3.1 ABSORPTION OF I FROM {n, %} STATES IN 325. CURVES
ARE CALCULATED USING RESULTS OF THIS WORK, CHAPTER 4.
ALL CURVES NORMALIZED TO UNIT AREA.

It has been stressed(6'7'9)

that this feature makes hadron
absorption a potentially powerful tool for studying the nuclear
surface, and in particular for testing the proposal of a neu-
tron-rich surface through a comparison of absorption rates in
isotopes. Although some attempts have been made along these
lines(s), the data are not yet exact enough to give conclusive
results.

Apart from this, hadronic atoms are capable of provi-

ding information about the hadrons themselves. Precise measure-



ments of the traﬁsition energies givé data 6n some particle
properties ﬁot accurately known from other sources. Most
notable of these are the particle mass and magnetic moment.

The Coulomb energy of a particle interacting with a
point-charge nucleus is directly proportional to the reduced
mass of the system. The high n tranéitions chosen for mass
determination are dominated almost exclusively by this ener-
gy. The accuracy of determining the mass is then the same as
the accuracy of measuring the x—réy transition energy.

In fact, the K mass determined in this way is more
accurate than by any other method(lO). The same cannot be said

for the I because of the low intensity of x-ray data.

The interest in I atoms arose as a means of deter-

rmining the I magnetic moment(s). The fine-structure split-
ting between the j = L + % and ¢ - % states 1in this case 1is:
1 2 a2 n
- = — + n hd _— ———————
AE 2(1 g)myC (n) e (3.1.9%)
where g 1s the anomalous part of the magnetic¢ moment u=eh(l+g)/2m_.c.

Measurement of this splitting is particularly difficult for v
atoms. The I x-ray lines are present only in K spectra
whose intensities are an order of magnitude or more larger

(see figure 3.2).
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FIG. 3.2 I AND K X-RAY SPECTRA. FROM REF. (5).

The ¥ magnetic moment determined by this method gives only
crude agreement with the predictions of the quark model and

e “*\\
SU(B)(ll).

\

A}
b

The discrepancies are considered an indication of
the lack of a firm theoretical basis describing the atomic
capture and cascade of the hadrons.

Extraction of the tine structure splitting is strongly
dependent on the results of cascade calculations. These cal-
culations have been performed by assumingan initial popula-
tion distribution with variable parameters and treating the
cascade process semi-classically as a continucus energy loss.
This dubicus procedure has producéd only’rough agreement with
experimental K x-ray intensities(l3).

In addition to this area of uncertainty the multi-

channel nature of the hadron-N interactions has caused diffi-

culties in constructing a theoretically sound hadron-nucleus



28

potential. * The simplest phenomenological model assumes that

the hadron-nucleus potential follows the same shape as the

!

nuclear density with a compléi depth adjusted to produce the
observed complex energy level shift. Although this procedure
gives qualitative agreement with cxperiment(l'7'16) there is
no strong justification for the assumed shaée.

The main task in the study of hadronic atoms is then
constructing a reliable hadron-nucleus potential.

This problem is addressed in the following two sec-
tions where a general Y7 nucleus folding model is developed

and compared with more common phenomenological potentials.

3.2: LT -NUCLEUS FOLDING MODEL POTENTIAL

The most comménly used hadron-nucleus cetftective poten-
tial is the optical model in which the potential depth is
linearly related to the hadron-N scattering lenath a.  In this

model the U N interaction is assumed point-like and given by

a potential of the form;

2

- Pl = 3
vl = 4n - A - ST {r,,-r. , (3.2,
(L N) M. (5N EL) (3 1)
N :
where M =~ 1s the reduced mass and a is the average, free U XN

N

scattering length {(nuclear physics convention). 1In the coherent
nucleus approximation the I -nucleus potential is obtained by

averaging over the ground state nuclear wavefunction:
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A. ' ,
Vp = L <o.|vilo> . : (3.2.2)
i=]1
The optical potential then takes the form:
2mvy . M. _ _
_;2_ ~ odn{l + E;)(Zaxp-pp(r)+Naxn'pn(r)) . {(3.2.3)

where pp{r) and pn(r) are the proton and neutron densities
respectively, normalized to unity. A has been assumed large
so that M/M. X 1 + Mc/M, with M, My, My and M, the I~ nu-
cleus reduced mass, IN reduced mass, I mass and nucleon mass,
respectively.

The potential is also applied in the form(l’7):

Me
Ve v dn(l + —)Aap(r) , (3.2.4)

n- - My

whoere it has been assumed that the nucleon densities are the

same and a = (ZEVP + Navn]/A. In this model the complex scat-
tering length a simulates the absorptive nature of the L

nucleus interaction.

Although the potential form (3.2.4) produces qualita-
que agreement with experimentally measured complex energy
shifts, it is found that the complex depth a which best fits
the shifts bears little resemblance to free scattering length

(18) (

value of a. Koch , and Batty b applied such potential

forms to K and I atoms respectively. Their best fitting

T A e

values of the parameters a had approximately the same imaginary



part as the free value but grosély different real components.
In both cases the authors attribute the discrepancy to the .
exiéteﬁce of resonances in the interaction. In fact the need
to invoke resonances is superficial and will be seeﬁ to vanish
when the unjustified linéar relationship between V. and a is
‘removed. This regquires a more careful averaging of the many-
body wavefunction(lq).

Of fundamental importance in this procedure is the
coherent nucleus approximation. That is, it is assumed that
there is no transfer of kinetic energy from the hadron to
the nucleus, or egquivalently, tﬁgt the nucleus remain in the
ground state at all times during the interaction. The justi-
fication for this approach is that the interaction occurs at

'low energies, Felative to the low-lying nuclear level spacing.
With the coherent nucleus approximation it is possible to ave-
rage over the nuclear degrees of freedom and thereby reduce
and A+l body equation to an effective two body problem,

In averaging the many-body egquation the nuclear ground
state wavefunction is first expanded in terms of a complete
set of nuclear eigenstates:

(x Tera ) e

VD) Epe e tpi D) =8 9 (T u Ty, oLy

A ST : i(g,{s) . (3.2.%)

-

where the r, are nucleon co-ordinates and r. the co-ordinate

.

of the I . This expression is inserted into the Schrddinger



il

equation. Premultiplying by ¢Nj and using the orthonormality
of the states ‘¢ leads to:

ﬂ2(":' 2 ’ _
“am UoryRerg) * I <ogglvitrpmry) feyggog ey

e 2

= om k -¢zj(5,f ) . (3.2.6)

where vi(r -ri) is the two body interaction between the I~

.th :
and 1 nucleon.

-

Equation (3.2.6) represents an infinité number of
coupled equations. In the coherent nucleus approximation
the_potential vy cannot couple the nuclear states ¢i and ¢j
for i#j so that the system reduces to a two-body equation

with an effective I -nucleus potential given by:

It

VE(r) = <0|

. vi(EE—ri)|0>. (3.2.7)

1 ~

and |0> denotes the nuclear ground state. This expansion
cannot be simplified further without adopting a.model for the
potential shape. For simplicity only a central potential

will be considered. In addition, for illustrative purposes

it will be assumed that the ! -nucleon interaction is equal

in each spin state and for both types of nuclecons. In the

next section the effective potential will be extended to include

the physical situation in which the I N interactions are unegual.



The .two-body potential is considered to be of the form:

vir) = voof(r) . ] (3.28)

ere f(r) is a smooth function of r and vy is the complex
volume integral. The value of‘v0 is such that f(r) is

normalized to unit volume:
j drf(r) = 1 . ' (3.2.9)

The effective potential (3.2.7). then becomes:

A . A
V. = <0| £ vi{re-xr,)|0> = <0 J dr § $§(r-r.)v(ry-r)io>,
- ] -~ kY - . ~ =1 —~
i=1 ~ i=1 ~
[ A
= dr vi{r.-r) <0| £ $&{(r-r.)|0> , (3.2.10)
- ~L = . ~ -1
i=1
r .
= A dr v(r.-r)p(r) , {3.2.10)
where p(r) is the nucleon density normalized to one. As a

first approximation then the I nucleus effective potential is
just the two-body interaction folded into the nuclear density.
The folding model expression may be related to the optical
model by the following observations.

(17)

It has been shown that for simple-shaped poten-

tials the depth can be approximately related to the S-state

scattering length by:
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2 3
o v AT o 3 , (3.2.11)
IN 1 + ap/Q | a

v

where u is the inverse range of the potential and Q is a
constant\dependent on the shape, but rouéhly u/Q } 1.
" The -effective potential (3.2.10) us%gg this approxima-
tion becomes:
2m a

M .
= Vz(rz)'b4n-A(l + —E)(——————) J qE f(E —Efp(f) « (3.2.12)

o 1+ap/Q ,

Further, if the range of the potential is small in comparison
with the nuclear dimensions, the integral can be written ap-

prox%pately as:

£f(r —r)p(r)dg‘% p(rz) J flrg-r)dr = plry) , (3.2.13)

-

and therefore;

. M — .
2m - "> a :
=y sV {r.) v ATA(l + ZF) (———) sp(r) . (3.2.14)
H LI 1+au/Q :

In a first approximation the potential VE is a non-linear func-
tion of the scattering length 5, and linear with the nuclear
density. Only if the scattering leﬁgth is small compared to
the range u—l does this expression reduce to the.Optical model.
The discrepancies in scattering length are attributable
to making this assumption. Using an effective potential linear

L
in the scattering length, Batty et al(l) determined the best
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fitting depth parameter a for I atoms to be:

Vd

a = -0.35£0.04 - i0.19£0.03 fm. ™
The zerp-range approximation with arn values from Alexander
et a1®®) (set (B)) predicts:
a =2(a +3_.) = -0.05-10.49 fm
2'%p “In : . g

whereas the non-linear relaEionship with p/Q = 1 gives:

a a
( Ip o In

a = - 0.y = -0.28-i.0.15 fm,
l+a“:p l+aEn .

|

in good agreement with the phenomenological value.

The non-linear relationship for Vz(r) is still only
approximate and so it is worthwhile to return to the more
general folding model (3.2.10) to describe the interaction.

This expression has been used by Deloff and Lawcg)

and found,
as expected, to give good agreement with experiment.

The disadvantage of this approach is that the descrip-
tion of the potential v appearing in the folding integral
requires a knowledge of at least the depth and range. These
parameters cannot both be determined unambiguously from the
aggﬁié level shift data alone, nor can the range be inferred
directly from scattering length data. Howéver, in this work

both will be determined by regquiring consistency of the

atomic and scattering length data.
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*

3.3: SPIN-DEPENDENT I N. POTENTIALS IN THE FOLDING MODEL

In the previous section the I =-nucleus potential was
dévelopéd assuming the ﬁwo-body interactions to be identical
in all £ N channels. This restriction will now be removed
and the weighting of spin-dependent potentials in the © -

nucleus effective potential will be considered.

th

For the i~ nucleon in the nucleus, the I N potential

may be written as:

3+gz-gi l-o.*0

R R S LN SR
Ven, = T Vg P ) Y (3.3.1)

~

s - . s .
where VEN and VVN are the L N spin triplet and singlet poten-
tials respectively. N is the kind of nucleon, either n or p.
Oy and g, are the Pauli spin matrices of the ! and N with the

properties o 0, = -3 for a singlet interaction and +1 for

triplet interaction.

If the total nuclear angular momentum is J, then the
expectation value of the I -nucleus potential is:

t s s t
N.Z 3VENi+VENi Vzni‘VzN.
Ve = <J| ( 3 -
* i

It~

. 1 l)gz-gi)l.'h., (3.3.2)

where the summation is over all the nucleons. Evaluation of

the above expression is dependent on the coupling scheme ima-
gined for the nucleons. If it is supposed that each nucleon

is in a state of definite totalléngular momentum ji' then

(20)

from the Wigner-Eckart theorem , the expectation value of
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the ith nucleon spin may be written in terms of thelangUlar

. momentum ji as:

—

'

j 10> = <4, |3 .9 i (5.4 '
<dyloglig> = <9;l3500m 3013273, G4+ - 3323
°i
Since ji = li + - where Ri is the orbital angular momentum,

this expression can immediately be put in a more tractable
form by:

LY
.

<Gl35ey 0ty + 0,00, /20[3,>/3; (3;+1)

(3.3.4)
. 3
Ji(Ji+l)hli(£i+ll+1)

= FEEPERY)

I3l He

In the summation of (3.3.2) this term gives zero contribution
for nucle?gg\of a closed shell or ground-state even-even
nuclei since the total angular momentum J is zero.

In the coherent nucleus approximation all protons or
neutrons outside a closed shell have the same j and ¢ values

——r

SO that'the summation (3.3.2) becomes:

& 3v§n+v§n Vg +V7
VE = N<J|(—~—1r——q|J> + Z<J]b—éﬂ%——Eq|J>

=1 t

VZn_vEn YEEZE_E )
‘“n'<J|(_‘_E‘__)9£'§n|J>'°p'<J|( 4 )92'§p|J> ’

It

where
. 3
(Jt) =Ry (R +1) + T
Iy (GytD)

In

a,. = |

N y o, . (3.3.6)
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where Jn'Jé denote the total angular momentum of the neutrons
and protons respectively. Again, assuming that the I~ is in

a state of definite angular momentum:

vE vS _yt
<J|(EN_)U N b R e JCAER I ek M
Jv : ~uo
| V?N—VEN | |
= <J|(—-—4———-—)|J'>-5JJ,-BE-<J'Igz-gN[b, (3.3.7)
s t
vy
_ Vin YIN
= <J|(———————)|J Byt «

where in the second line the coherent nucleus approximation
has been used to decide that the states |J> and |J'™ cannot be
coupled by the potential for J#J'.

The constants BZ and Ypy 2r€ defined as:

Ty (Tp+1) =0 (Lp+1) +%
I T(J 1) Yo (3.3.8)

Yoy & Oy Tpytl) =T (It =35 (Jp+1)) , (3.3.9)

where J., J . are the £, and total |J +JN| angular momenta

respectively. The effective potential VZ can now be written

as
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: v En 3V +V
Vo = NI | (—=—=1) | 3> + Z<J|(———ET— )| 3> i
'(3.3.10)
s ,t ‘ S t '
vE -v : Yo V3 -V
- . In In —— . Ip, Zp 'Ip
a8y T | (== [9-a -8, R (—R=R) [>.

]

This expression foi the welghting of the I N spin-dependent
potentials in the z_—nuéleus potential will now be coﬁbined
.with the folding model of the last se;tion.

For generality at this point, the neutron and protoh
density distributions will be kept separate and the ranges
o§ the £ n and Z_p potentials will be allowed to be different.

The tﬁb-body interaction is considered to be of the

form:
N 'fEN(r) ' {(3.3.11)

t

where VEN is the complex depth parameter and f_. (r) is the

LN
smooth functional form of the interaction.
Combining (3.3.10) with (3.2.10} of the last section

gives the general I -nucleus potential in the form:

vt +ve | W Vs
Vg = Nt (A £ (Fpmm)o (1) (B dr £y (rpmn) e ()
S t r
Yp, V3 -
i} In, . In 'In _
GnBE 5 { 3 )}df on({s E)pn(g) . (3.3.12)
s t

vy -V

Y
- _Lp - .
afy 2 (““ET‘EQ)[ dr £y (rgmrie, (x)
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e

In a first approximation the nucleon densities -are considered
to be the same, and the functional forms fzn and fzp'are the »

3
same.

Fﬁrther, iﬁ most cases of interest the 'correction'
terms in afy give zero éontributiog.because the nuclei in—
Gplved are even-even(lfg). In the event of an odd number of
nucleons these corrections are found to affect the calculated
complex shifts by less than 5%.

Making these approximations gives a simple expression

for the I -nucleus potential as:

3v§n+v§n vt +v3
Vy = (N (——F—) * z-(__uEE__E)). df sz(fg-r)D(E) '
J -
(3.3.13)
z VO . dr £ (r.-Yp(r)
= VEn | 9 fpytiptiieir

This last, simplest form for the potenfial is used throughout
this work and is found adequate to predict the atomic complex

level shifts.

3.4: COMPLEX LEVEL SHIFTS DETERMINED FROM THE SCHRODINGER
EQUATION

With the development in the previous sections of an
expression for the £ -nucleus strong interaction it is now

possible to determine the complex shifts predicted by the

Schrodinger equation.
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The complex energy shift 6E is defined as the dif-

ference:-

E-E_ = - (e+il'/2) , (3.4.1)

SE 0

where E and E0 are the energy eigenvalues of the level (n,t)

with and without the strong interaction. Because §E is de-
fined as the difference between two binding energies, all

electromagnetic corrections such as finite-size effects and
-vacuum polarization cancel and need not be included in the

{(9)

Schrodinger equation .

v

The radial equation for the I -nucleus system then

becomes:

n 2 2me 0 L{L+]) 2m Do _ :
¢E(k:r) + (ko + T T T F Vx(r))qg(k,r) =0, (3.4.2
where 2 is the nuclear charge, o the fine-structure constant,
k the complex wavenumber of the gquasi-bound state, and Qv(r)
the I -nucleus strong interaction.
The method given here for calculating ¢ and ' from

(14,15) and based

(3.4.2) is adapted from Deloff's procedure
on a Newton-Raphson iterative scheme for §E. Details of the
derivation of the complex shift equation are given in Appendix

B. Deloff shows though, that for the circular orbits, the

shift 8E is approximately given by:
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: ]
2 2ik,R TR (kO,R)

. 0, (_9; MR A s 2
SE = - T € ( ZlkoR) (R 3 (kg ) 2(R+1} 1k0R)/R F(22+3).

. (3.4.3)
In derifing this expression, it is assumed that for some large'
distance R the strong interaction is essentialiy zero. The
¢(k0,r) is the regular hadron wavefunction evaluated from the
radial equation (3.4.2) but with the approximation that the
true binding energy is repla ced by the unperturbed Couiomb
enerqy ko.

The above expression (3.4.3) is only an approxiﬁate_
solwion for SE, as it represents only the first iteration of
the Newton-Raphson algorithm. Nonetheless, the equation has

been tested extensively by Deloff(ls)

and found to give results
accurate within 4% of the true shift determined from a full
solution of the complex, bound-state problem.

This formula together with the previous results derived
in this chapter provide a firm basis for determining the I-
atom complex shifts. Specification of the IN two-body poten-
tials allows calculation of the I-nucleus interaction via the
foldidg model with the potential spin-dependence accounted for
by the weighting prescription.

Rapid numerical determination of the complex shift
is possiblé by a single iteration of the radial Schrodinger
egquation for the perturbed I wavefunctions.

In this work, the two-body potentials which enter the

folding model are those which are consistent with the IN
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scattering lengths. It is therefore possible to correlate
the scattering and atomic data and extract optimum IN ef-

fective potentials. :

a
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CHAPTER 4

IN POTENTIAL OPTIMIZATION

4.1: SCATTERING LENGTH CALCULATIONS

The scattering lengths of Alexander et al(3) were

derived from I° proton scattering. These results can be rela-

ted to the I n potentials by noting that the £+p and I n sSys-

tems are both pure I = % states.

Consequently, the I N and
+ . ;
L p strong interactions, and therefore scattering lengths,

are identical, assuming the force to be charge invariant.

There are several reasons why this symmetry is not expected

R
to be exact. The ¥~ mass difference of 8 Mev will affect

the magnitude of the strong interaction, and in additicn,

. . . -+ . oL
there are uncertainties in the I p scattering lengths arising

from the approximations used in introducing the Coulomb ef-

fect to the cross-sections.

Nonetheless, the errors in the data of Alexander

(Table 4.1) are large enough to make the symmetry an adequate

approximation for the purposes of this work.

An additional approximation of the I p scattering

lengths is used in this study. The scattering lengths as

listed by Alexander consider the I p interactions in each se-

parate I,J channel which is not a convenient form for the

43
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present énalysis. To arrive at I p potentials which are
compatible with the spin-weighting prescription (3.1.13), a

metheod for averaéing the I =

N

' % channels in the I p in-

A -

teractions is required.

The |E—p> wavefunction was expanded in isospin states
in section 2.1 with the result:

1T = /1

1 2 1.1
L 1oy /r; 1-1, (4.1.1)

tof L2

which indicates, from the squares of the Clebsch-Gordan coef-

ficients, that the I p interaction occurs % of the time in

iy |
channel and % in the I = =. This information can

be applied to the measured scattering lengths. If the T p

—

the I =

[T o]

is in a definite spin-state of total angular momentum J, then
the corresponding scattering length can be written as:

24Ty 01T L - 1. 1
~ ~P
+ . .1.2
3 )an/z ( 3 )aJlfz [} (4 l )

here the coefficients for the a are isospln projection opera-

JI
tors. For the E-p system, rv-rp = +1 and -2 for 1 = % and %
respecticely. Equivalently, (4.1.2) can be re-arranged into
the form:
a_ = l(23 + a )+ i(a , - a A Ten T (4.1.3)
J 3 33/2 Ji/2 3775372 Jl/u <L Ip

At low energies (long wavelength} the I~ interacts with more

than one proton scattering centre concurrently. Ultimately,
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in the k+0 limit; the term TE-TP can be replaced by an avefage

value. Recalling the probability of interaction in a given iso-

spin state, and the corresponding value of TE'TP, this avérage

is:

-

<tpet > = 2(-2) 4 T =1 (4.1.4)

-4

Substituting this result into (4.1.3) gives the isospin-

averaged scattering length in the spin state J as:

+ (4.1.5)

Wik

_ 1
.:1—-3-::13

J 5372 a3/2

J

This last expression is only strictly valid in the zero-energy
limit. In consequence, the two-body potential which reproduces

the average a_, becomes only approximately correct in describing

J
the I p interaction when used in the I-nucleus potential fol-
ding model.

Since the ! -nucleus interaction occurs at low ener-
gies though, the discrepancy is expected to be small.

With the acceptance of the last two assumptions con-
cerning I n and I p scattering lengths, a method is required
for calculating the scattering lengths as a function of the
potential strength. Two distinct methods are used in this
work with the first, and most obvious, being numerical solution
of the Schrodinger equation at zero energy. Coulomb interac-

tion is neglected in this calculation since the extracted

scattering lengths are supposed to arise only from the strong



 interaction. For some large separation R, such that the poten-

%

tial is zero esgentially for r > R, the logarithmic derivative

of the wavefunction evaluated at zero energy, is simply re~

lated to the scattering length by: ~
¢ (0,R) '
= R - =——1——o 4.1.6
a $7 (0,8 (4.1.6)

The potential dependence of the scattering length enters through
the value of the wavefunction. Conversely, if the scattering
length is known, as 1s the case here, a method is needed for
determining the correct potential. A Newton-Raphson iterative:
procedure isxdeveloped in Appendix A for determining the poten-
tial strength assuming the range is fixed. It is shown that

the first order correction AV to the initial guess of the

strength VI is:

2
AV:(a_R.{.M)é_

' 2 2.
o (0,R)) 2m ‘¢ {0RD) /1 eS(0,ryE(rdr,  (4.1.7)

with f£(r) the shape of the potential. By setting the depth

vV = VI + AV, and repeating the iteration, the depth converges
guadratically to the root VO. This procedure can be as accurate
as desired but its one drawback is that it reguires solving

the radial equation numerically from r = 0 - R. This can in-
volve evaluation of the wavefunction at hundreds of steps.

An alternative method is one developed by Deloff(l7).

In his work the scattering length is related to «the potential



e b P = - - T

dgpth.ang4zéﬁ§€’;;f;;hinfinite product representation:
a'= 4c'm E(5/20)

o 1-(s/8n) ' (4.1.8)

where S is a constant involving the potential depth and range;
é, Sn,.and Zn are constants dependent on the potential shape.
The values of these for the Yukawa potential are. given in the
computer program of Appendix C. Other simple pbtential forms
are in the original work. Eguation (4.1.8) converges rapig-
ly and the-first three or four terms of the expénsion are suf-
ficient to achieve four figure accuracy. |

The numerical advantages of such an expression are
clear. Solving the complete Schrodingef equation, and the cal-
culation of four algebraic terps result in equivalent accuracy
of the scattering length.

For the case of a known scattering length and unknown
potential strength it is straightforward to invert equation

(4.1.8) to solve for the depth V Inversion of the two lea-

0"
ding terms has been found to be accurate within a-ﬂmvpercent.
It may be clear from the infinite product representa-
tion thaﬁ'it is not necessarily true that there is a unique
potential depth for each scatféring length. Depending on whether
the scattering length is real or complex, and whether Re(a) is

greater or less than zero, the number of potential depths and

characteristics can be classified as follows:
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' Real a . Complex'a
Re (a) Potentials Re (v) Potentials Re (v)
<0 1 ~--weak attractiodn 2 - weak attraction
™ - strong attraction
>0 2 - strong attraction 4 - Qeak attraction

. " with bound state

- repulsion

This table can now be compared with Alexander's

| isospin averaging procedure and the
I p interactions, his two possible s

shown in Table 4.1.

strong attraction
weak repulsion

strong repulsiocn

data. Using the

equivalence of the I n and:

cattering length sets are

) Set (1) Set (2)

Re (a) Im(a) Re (a) Im(a)
I'n (S=0) | -1.40£1.30 0. 0.80%2.00 0.
I n (S=1) 0.70+0.40 0. 0.80+0.70 0.
£ p (S=0) | 0.40#0.90 -0.53:0.60 | -0.60%1.68 -1.00:1.83
I p (8=1) | -0.50%£0.47 ~-1.1320.53 | -0.60:0.57 -1.00:0.93
TABLE 4.1. IN SCATTERING LENGTHS (FM) ADAPTED FROM ALEXANDER

ET.AL. (3).

From the above discussion of potential depths it is evident

there is a great deal of ambiquity connected with the poten-

tials producing these scattering lengths. In fact there are

N
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16 possible combinations of potentials for each scattering
length set.

Not all 32 combinations are used in the present work.

The main criteria in discarding possible sets is the re-

quirement that all potential strengths within a combination
be roughly the same magnitude. This is not unreasonable in
consideration of the NN interaétibns where the potentials
are approXimately the same in all states. However, in those
states with positive scattering lengths, both strongly attrac-
tive and repuisive potential possibilities are used. 1In this
way, eventually three different combinations for each scat-

tering length set are fitted to the I atom data.

4.2: L ATOM COMPLEX SHIFT CALCULATIONS

In calculating the L atom complex energy shifts, se-
veral simplifying appfoximations are made. It is assumed that
the Schrodinger, rather than Dirac, equation is adequate for
describing the I atom system. The error introduced in the
shifts by not treating the probiem relaﬁivistically is esti-
mated to be of the order of 2+3 %, which is small in compari-
son with the large experimental uncertainties. Secondly,
the neutron and proton density distributions are considered
to be identical and described by the Woods~ Saxon form. Fur-
ther, to minimize the number of parameters, the ranges of the

two-body potentials are kept the same for all IN states. In
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this way the folding model reduces to one shape for all in-

teraftion channels.
For the Yukawa potential and spherically symmetric
density, the I -nucleus folding model becomes:

_“|£ _El —ulrx-r| ~p(r_+r)

[ dr p(r) & g" ] drrzo(r)(e -e z y .

“IEE_EI ! ry
0

(4.2.1)

The complete I-nucleus potential for a Woods-Saxon density is

then:
o ~u|remr|  -ulrptr)
Volry) = vo 2T 5 larc?(€ = ) (4.2.2)
L'"L LN uir 0 l+exp((r-c)/a) !
. , L
0
with
0 3v§ +vs vt +V3
Vyy © N(—=D_ =0y 4 g (2B _ =By (4.2.3)
N ] 4
and
2 -1
-3 Ta
Pg = ——y (1 + () ) ) {4.2.4)
dnc

This is the final expression for the I-nucleus effective poten-

tial. The integral is non-analytic and must be evaluated nu-

merically for each value of r The constants ¢ and a ap-

T

pearing in the density expression are the nuclear half-density

radius and skin thickness respectively (see refs. 27 and 28).

Specification of the IN potential depths and range com-

pletely determines the I-nucleus interaction. This expression

for Vs is then inserted in the radial equation (3.4.2). Numeri-

cally solving the eguation for the wavefunction and its deriva-
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tive determines the complex shift (equations (3.4.3) and (B.1l2)

to be:
2 2ik_R .¢‘(k R) : :
-_ h% o} . 22+3 o'} o 21 (2043) .
§ E= m e { ZlkoR) (R $TEET§T— g(L+1) lkoR)/R { )

(4.2.5)

The I atom data available are very scarce and the only com-
élete meaéurements of the complex energy shifts are those of

Batty et al(l). Their results are shown below in Table 4.2.

Element fTransition’ £ S T T
n+l-+n n n n+l
{eV)
. +1.68
0 4+3 320+230 98700
+0.10
Mg 5+4 25:40 <70 a1tdeed
. R +0.06
Al 54 68+28 43+75 2570 08
Si 54 159+36 217£110 417011
-0.09
s 5+ 4 360220 870700  1.4771-91
-0.56
TABLE 4.2 £ ATOM COMPLEX ENERGY SHIFTS (1).
Some slightly older data are available from H. Koch(z) who

measured the upper level widths in four atoms. His results are

listed below in Table 4.3.
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Element Transition T
n+l
n+1+n (eV)
C 4-+3 L.031+.012
Ca 6-+5 LA40 2,22
Ti 6+5 . .66 .43
Ba B+7 1.68 £3.60

TABLE 4.3 I ATOM UPPER LEVEL WIDTHS
(2)

3

The widths alone are not enough to determine unambiguously
a complex potential depth, as .the effects of the real and
imaginary components are coupled. Nonetheless, these data
can be included with the more complete results of Batty.
Although these widths are not used in the xz mini-
mization procedufe of the next section, the predicted shifts
of the optimized IN potentials are compared with Koch's values.
The complex atomic energy shifts are connected with
the scattering lengths through the two-body potentials en-
tering equation (4.2.2) for the I-nucleus effective interac-
tion. Since both a and SE depend on the IN potential depths
and range, the potential parameters can be determined by

optimizing the fit to all the scattering and atomic data.
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It is clear from the discussions of the last two

sections that the problem of extracting consistent IN po-

tentials is not straightforward. Difficulties arise from

the large number of potential sets possible, and the few pieces

of data available for the fitting procedure.

As mentioned earlier, eventually all but six poten-

tial combinations were eliminated.

the remaining potentials are summarized below.

The distinct natures of

Set (1) Potentials
Re (a) Im(a) A B c
L n(s5=0) -1.40 0.
L n(S=0) 0.70 0. strong repulsion repulsion
: attraction
LI p(5=0) 0.40 -0.53 strong strong repulsion
attraction attraction
£ p(S=1) -0.50 -1.13
Set (2) Potentials
Re{a) Im(a) A B C
I n(S=0) 0.80 0. strong strong repulsion
attraction attraction
I n(sS=1) 0.80 0. strong repulsion repulsion
attraction
L' p(s=0) -0.60 =-1.00
I p(sS=1) <0.60 =-1.00
L
TABLE 4.4 POTENTIAL COMBINATIONS FOR SCATTERING LENGTHS
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Complex?Yukawa—shaped potentials were assumed to describe,the'

IN interactions:

e M
JI ur

.VEN(r) =V . (4.3.1)

The complex depths were fixed to fit the central values of
the scattering lengths in sets (1) and. (2) of Table 4.1 using
the iterative approach of Appendix A. By varying p over a
wide range, and repeating the above procedure, the depths were
determined as a function of the inverse range u.

Folding the resulting two-body potentials into the
nuclear distributions of the I atoms (Table 4.2) produced the
L~-nucleus potentials (4.2.2}. Solving the radial equation:
with these potentials predicted the atomic complex shifts,
using equation (4.2.5}) for SE.

This calculation was repeated for each value of
the inverse range 'y and corresponding depths to determine the
min{mum x2 of the fit to the atomic data as a function of u.

Because of the large errors in the scattering data
it is not reasonable to limit the potential strengths to
values which exactly reproduce the scattering lengths. It
was decided then to treat all six depth parameters and range
as variables.

Using the minimum in the curve of x2 as a function

of p as a starting point, the total xz to all the atomic and
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Scattering data was then minimized by varying all seven po-
tential parameters. This i§ a long process since the real
and imagihary‘component; of the potential are coupled in théif
effects, with the result that the xz can not be minimized with
respect to each parameter independently and therefore an
iterative solution is required. To decrease computing time,
the scattering lengths were calculated in this, optimization
program using the infinite proddét represenﬁation (4.1.8).
The coﬁputer program used to perform this minimization is
listed and commented in Appendix C.

This approach was used for all six potential combi-
nations which produced six minima in the xz hypersurface.
The resulting best-fitting potentials all produce a total xz
on the order of 10 for sixteen degrees of freedom. On this
basis then the x2 alone can not distinguish between the six
potential sets.

Nonetheless, four of these solutions will be seen
to be unacceptable, so they will be discussed first. The
optimized potentials A and B for sets (1) and (2) of Table
4.4 are reproduced in Table 4.5. These are the four sets for
which a positive scattering length has been interpreted.as a

bound state.



56

Potentjial Depths (Mev)

Set (1) Set :
A B A B
Re(v) Im(v) Re (v) Im(v) Re(v) Im(v) Re(v) - Im{v)
I n(s=0) -179.3 0. - 88.9 0. -747.2 0.  -207.3 0.
I n(s=1) -544.4 0. 150.8 0. =-612.6 0. 90.4 0.
L p(S=0) -751.3 -744.9 -320.6 - 4.8 -180.8 -211.0. - 36.3 - 7.7

L p(s=1) -180.9 -103.5 -77.1 =-39.9 -188.0 -105.0 0 - 33.9 -11.6

LiEm Yy = 2.04 1.52

ra

.13 1.

o
s

TABLE 4.5 BEST-FITTING POTENTIALS A,B OF SETS (1) AND (2}.
In all four of the above sets, at least one of the states pre-
dicts an unrealistically large binding energy. The A solutions
of sets (1) and (2) give U n binding in the neighbourhood of
110 Mev. B of set (2) predicts a I n bound state at 50 Mev
and even the real part of the Y p lSO potential éf B, set (1)
would bind the L p with 82 Mev, or more instructively, this
1s about 4 Mev larger than the I mass difference. This im-
plies that the Ip+in decay would be energetically unfavourable.
As discussed earlier in this work, these huge binding energies
are not impossible but they are highly improbable. For this
reasch the four solutions are all discarded.

Results of the optimization procedure for the remaining
two solutions are shown in Tables 4.6 and 4.7 where their pre-

dictions are compared with the experimental findings of Alexan-

der, Batty and Koch.
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" SCATTERING EXPERINENTAL . CALCULATED POTENTIAL DEFTH

LENGTH SET (1) SET () SET L1} SET (2} SET 1L ST ()
L Re{a} tmila) Rala) Inia) Relal Imia) TMeial Imlal  RetV) tmiv) Re(v) lqiyl_
I°n (se0}  =1.421.) 0, v.9:2.0 0. <L.70 0. -0.07 0. -31.24 0. = 3,33 o,
™n teel) 0.1:0.4 0. 0.0840.7 0. 0.32 0. 0.31 0. .82 0. ALY 0.

Tp {w=0) 0,410,y =0.%:0.6 =~0.8:l.7 -1.011.3 0.1% ~0.11 =-1.00 -0.42 .01 - E,33-50.11 -tLl.1e

t7p ta=l) -0.3:0.% =1,120.% -0.6t0.6 =1.0+0.9 ap, TN 040 0,81 =0.66 =3%.30 ~11.04-4E.11 =19.41

:
SCATTERING ¢° 3.8 D.86

TABLE 4.6 SCATTERING LENGTHS AND POTENTIAL DEPTHS (Mev)
FOR BEST FIT TO DATA WITH p 1.20 and 1.30 fm-1l.
FOR SET (1) AND {2) RESPECTIVELY.

FLOMTNT  TRANSITLION CAFERIMERTAL CALCULATED
; ST 11 SCT 3}
nel+n [% v T 3 T T v
n n nel ‘n :n nel ‘n n nel
fen
[ 43 - - (AR BRI D B RE 17.e UM vl 8.9 .ol8
o - uee - ot nire atie o my oz st e
. )
M Ry N R T S I Y1 1%L LeBP 1%.8 e 083
- - ‘ﬂ-lie
Al Ll +B+18 [RERS ] LR LEPL LI 18} CPER 1l.1 17
R DAY

) '
E3Y EAR ) 18946 1710 d.ll:;'éi 141 % laos . -T2 148.u 1le.2 TR
r LR - - - 19,03 Jon.e l.0e) e T 2187 1.ale
5 L Tedr e BT0Tog 1.17:E'fi 4B2.8  3RS.1 0 2.29% t9l.% 4la.e Il
Cca €-1 - - a.40ve.22 1Ty le.1 181 1. PRI ley
Ty 6e% - - J.enn. 4] 8.9 te.2 .ela s 7 IR LY
Ba L - - 1,683 &0 .4 0.9 930 1.1 8.1 L)
arcMic o0 .71 b.9%
ToTAL 2 la.07 1.10

TABLE 4.7 BEST FITS TO THE LEVEL WIDTHS AND SHIFTS CONSISTENT
WITH THE SCATTERING DATA.
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The total x2 of the fits are 10.1 and 8.1 for scattering length
. sets (1) and (2) respectively. Set (2) seems to be favoured,
and comparison of the results indicates that thg difference is
due mainly to the contribution from the scattering lenéths,
whereas the I atomic x2 are almost insensitive to the differen-
ces between the sets.

The resultant fits to Batty's data are shown in figure
4.1 for the 5+4 transition atoms. In addition, the I p scat-
tering differential cross-sections predicted by the sets are
shown in figure 4.2 again indicating that set (2) is the better
fit.

The important point is that both sets favour a weak
repglsive I n 381 interaction rather than strong attraction,
and the overall indication is that the IN potentials are weak

relative to the NN interactions.

4.4 L HYPERNUCLEI

L hypernuclei could be produced through the strange-

ness-exchange reaction K +N~I +7, in exposing a nuclear target
to low momentum K beams. It is not generally expected though
that the I hypernucleus would exist long enough to identify
because of the strong E_p decay. However, if the width [ of
the I energy level was small, there would be some hope of de-

tecting them.

The two acceptable potential sets of the last section
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are used here to predict the complex, ground state binding.

energy in a féw,proposed‘hypernuclei. The nuclei have been

chosen so as to scan the periodic table.

The method of solution is straightforward and com-

| pletely analogous to the procedure used for the T atoms. IN-

strong and Coulomb potentials are folded into the nuclear den-
sity distribution to prbduce the effective E-nucleus poten£ial;
With this potential the Schrodinger eéuation is soived nu-
meriéally to detérmine the T coﬁplex ground state energy.

Results for this procedure for four nuclei are shown in

I

Table 4.8.
Nucleus L Binding Energy

Set (1) (Mev) Set (2) _ .

Re (E) Im(E) Re(E) . Im{E)

12, 1.85 1.52 2.19 2.12
16, " 3.49 2.58 4.25 3.42
40., 10.48 4.33 11.65 5.30
208y, 27.24 5.32 25.74 6.16

TABLE 4.8 PRED;CTED I HYPERNUCLEI BAINDING ENERGIES.

It is clear from the table that I hypernuclei are not likely to
be seen, as expected.' The lifetime of the bound I in 166 for
example is predicted to be T =‘h/F'b10—22 secs. This is a fac-
tor of 103 shorter than in the L atoms, which makes the I

hypernucleus .existence improbable.



i - e P

CHAPTER 5

CONCLUSIONS

It has been shown that the optimum IN parameters
N
consistent with both the atomic and scattering data indicate

there is a repulsive interaction in the I n 331 state. This

unusual result deserves further consideration. In the

one-boson exchange model the IN potential is:

9y 9y —ur
V(OBE) = —oib .3 (Tpr1) (o ) &

(5.1)
lZMzMN ~N ur

wherelthe tensor component has been neglected since it gives zero

aﬁerageﬂcontributiop in S state. The values of the coupling

constants are not important for this discussion, except for

the fact that they are both positive. Whether the potential is

~attractive Qr repulsive is then compiztely determined by the

spin and isospin‘terms. -
‘ For the pure I = 3

2
the spin term o ‘g, = -3 and +1 for the singlet and triple

~

I n 1nteract10n Tz Ty = +1, and
states respectively. - Therefore it is predicted by the OﬁE
model that, in the long-range tail of the potential at least,
the I n interaction should be répulsive in the spin—triéiet
states, in agreement with the results of this work.

Further, both sets of potentials predict weakly attrac-

tive I n singlet potentials. These interactions are too weak

-~

6l
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 to support a L' n bound state and, since the triplet pdténtial

is repulsive, it follows that the I nn system is also'unpouﬁd.

To summarize the findings of this study then; it .is
found that the scattering and atomic data can be fitted in a
consistent manner but because of the large experimental un-
certainties, it is not yet possible to conclusively-distinguish
between the two sets of scattering lengths. However, both .
sets of extracted potentials predict that neither the L n, nor
£ nn bound states exists. ‘

The overall ihdicaﬁions are thét the IN interactions
are weak relative to NN interactions, ahd.mdre importantlﬁ§33

the I n triplet potential is almost certainly repulsive.
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APPENDIX A

ITERATIVE SOLUTION TO POTENTIAL FOR KNOWN
) SCATTERING LENGTH

The iterative procedure developed here is a Newton-

Raphscn algorithm for detefmining\fhe potential depth V0
corresponding to a known scattering length qk_/;},is assumed

that the potential can be written in the form:

vi{r) = Vof(r) . (A.1)

where V0 is the potential strength and f(r) is a smooth func-
tion of r. The potential is also considered to be short-
ranged so that for some value R the potential is essentially

zero for r.» R.

The radial Schrodinger equation in this case is:

2

" (k,x) + (k% - ZJ v E(retn = o . (A.2)
H .

It can be shown that in the asymptot;p region r > R, the
logarithmic derivative of the wavefunction L(k,r) is related

to the attering length a at zero energy by:

1
2= R IE,m (A-3)

r

The depth V0 which correctly produces the scattering length

is the root of the eguation:

:. - _1—_=
G(Vo) z= a R + L{0,R) o . (A.4)
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G(VO) can now be expanded in a Tayldr series about some ini-

tial value of the strength VI' such that Vo = VI + AV, with

the result: ‘ ’ ‘ .
aG(VI).

v v
I

AV = - G(VI)/ (A..S)

The partiai derivative of G can be expressed as a function of

 the wavefunction logarithmic derivative using (A.4). That is:

36(Vvy) 1 aL(o,R)
3VI LZ(O’R) BVI
- R )
=-—l~—2——[ (¢ (0, R) 3—%‘}!—9—- 4" (0,1) ?’-%;-‘,9'—”-)&. A.
(¢' (0, R} o I I
0

The integrand is determined directly from the radial equation

(A.2) with k = 0.

90,y BEILEL = 40, 1) ;—‘;‘ £(r) (o0,m) +v 220x)y p g
I

and

o (0,r) 20493 4o, p) W g(ryy LT (p
BVI hz I BVI

Subtracting (A.8) from (A.7) and substituting thé.result

into (A.6) gives:

R
3G (V)
WI— - - 3%" —1 02(0, ) £(r)dr .+ (A.9)
I H $'(0,r}
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. T .
Using (A.4) and (A.9), the final expression for the correc-

tion to the potential depth AV becomes:
g(‘o ) 42 2 R 2, .
= - (R) (1 : ' '
/ Av=(a - R *. 5 (0,8) ' 2m (¢'(0,R)) /[ $7(0,r)f(r)dr . (A.10)
v . .0 ‘ "

This final expression establishes the iterative scheme. For

an initial guess of the stréngth V; the radial equation is
solved at zero energy for the wavefunction to the truncation
point R. The correction to the strength AV is determined from
(A.10). This gives the new value of the depth V =V, + aAv.
This procéSS caﬁ be repeated to. any accuracy in the depth VO

and since this is a Newton-Raphson method quadratic convergence

to the root VO is assured.

&
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APPENDIX B

£ ATOM COMPLEX ENERGY SHIFTS .

The expression for the complex shifts (3.4.3) is
derived froh the radial Schrodinger equation”describing the

I-nucleus system.

" 2 , 2mc aZ _ g(g+l) _ 2m _
bplom) 4 (5 SE SR - S = RV lon) =0 . (B.D)
The regular and irreqular solutions of (B.l) are denoted as
¢(k,r) and f(k,r) respectively, with ¢c(k,r) and fc(k,r) the
corresponding éolutions for the pure Coulombh case (VZ = 0).

It is assumed that the strong.interaction Vzlis short-

ranged so that for some R, Vy(r > R) = 0. The Jost function

is defined as the Wronskian

L{k) = W[lE(k,x),¢o(k,x)] ,
(B.2)
= Wlf_(k,r),9(k,x)] r >R,
since fc(k,r) for r > R and Ve = 0.

The binding energy of the I~ corresponds to a zero
of the Jost function(Zl). From the definition of the Jost
function, an equivalent condition is

, .
' f.(k,R)
g = &R e =0 . (B.3)

¢(k,R) £, (k,R)
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Applying the:r Newton-Raphson method to (B.3), G(k) can be

expanded in a Taylor series about some inhitial value of k

such that k = k + Ak. That is:

r

8k = - G(x) S23EL (B.4)

-

The partial derivative of G can be determined directly from

the definition (B.3) as:

A\

i ¢ (X, R) E2GR) e

. (B.5)

where the dot denotes differentiation with respect to k. The
differentiated functions in (B.5) can be eliminated by retur-

ning to the radial equation (B.l). Differentiating the equa-

tion for ¢(k,r) with respect to k gives:

a¢u§§,r)4_[k2 ; 2mc aZ _ £(&+1) _ 2m v, ()] a@ét,r)zz_ 2k (I, ©) -

4 r 2 2

(B.6)
Multiplying {(B.l) and (B.6) by 3¢(k,r)/dk and ¢{(k,r) respec-

tively, and subtracting, gives:

g% Wio(k,x),é(k,r)] ==2ké° (k,z) . (B.7)

Similarly for the irregular solution fc(k,r):-

d . _ 2
I W[fc(k,r),fc(k,r)]— —2kfc(k,r) . (B.8)
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v

Integrating (B.7) and (B.8) from 0+R and R+~ respectively,

‘and inserting into (B.5) gives 3G(k)/3k as:

3G (k) R e, 2 AT
K = -2k.[ (¢(k,R)) dr + (m) dr] . (B.9)

0 R

Since R is assumed to be small, the second integral is large
compared with the first, so to a good approximation R c¢an be
replaced by 0 in the integrals. The expression (B.4) for Ak

then bgpomes:

£_(k,R)

sk = TR

WIE_(k,x), 0 (k,R)I/(g2k | £2(k,mddr) . (B.10)
0

It is known that the complex shifts are small compared with
the unperturbed Coulumb energies. If the initial value of k

used corresponds to the unperturbéd value ko it has been shown

that only one iteration is required to achieve an accuracy of

4% or better(ls).

For k = k_, the function fc(ko,r) is proportional to

0
. (21)
the regular solution ¢c(k0,r)

and the expression for the
energy shift 8E is then:

2
) dr. (B.11)

o(kgeT)

3. (Ko R)

g o Bl L2 GgrR) 0o (kg R) J ¢

5= - 1/ (
2m ¢(k0,R) ¢ (kgo R
0

In the & atoms the orbits of interest are the circular orbits.

The analytic expression for these wavefunctions is well-known
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(see for exaﬁple. ref. 8) so substituting for ¢c(k0,r) and

¢;(k0,r) in (B.ll) produces a convenient form for the complex

shift:
. '
2 2ik R ¢ {k.,R
=1 0 s 2243 o'~ _ s Vel _
SE,.‘ T e ( ZlkoR) (R » m '3 (R:+l) .lkoR) JRTT(28+3) .

(B.12) -

This final expression is suited to ngmerical‘work in that th
\, K .
strong interaction dependence enters only through the logarith-

mic derivative of the perturbed I wavefunction.
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POTENTIAL OPTIMIZATION PROGRAM

70

PYAPISEY .
PRIIKAN FATSI GPTINLIZES THE SIGMA-NUCLECDN POTENTIAL PARINETERS,
BY mINIMIZING Thi CHI=-SIUARE DEVIATION FROM [HE COMB[INED
ATCMIC R0 SCATTERING LEMLTA QAT4.
THE INITIZL VALUES QF THE POTINTIAL PARAMETEIRS IN THI ARRAY VARY
ARz SENT TO TUE SURRJUTINE RINTUN.  NINFUN U3 THI SU3ROUT INE
CHISSE T CALCULLTE THE CMISIUISL NEVIATIONY FACH THE SXPERLRENTAL
ATCRIC Level SHIFTS ANy TeE SCATTESNINL OATa. RNIKFUN VARIES IHE
POTINT AL PASAPLTESS TC MINIMIZE THE CHMISCUARE, THE 2TOMIC LEvel
SHIFTS ARE CLLCULATED IN SUYGRASLTING ATAN and ThE SCATTERIAG
LENGTS IN SUBAJUTINI SarvL,
CESCRICTICN JF PALIAMETLRSIE
Nasy = AaRAY COQuTEZINING THI POTENTIAL 2344%CTEAS.
VARY (1) = 31GHA=N Sz(0 RELL QOTLHTIAL JIPTM,
' = §IjMa=n S=1 Frdy PITEHTIAL 1:P0TH,
VARY (DD WadT () =~ SIG7a=P S2] Frial AMI IRIGiHANY
AYTENTTIAL STRERGTHS,
WAIF 150 WAV LaL = SIOMA=P Say wisl AMD [hAGINAAY
BOT=NTTAL STREKRGTHS,
Naisvi = INMVzRSE PQIENTIZL =AW,
NGaTa = TCTdw RUPAER OF DATS PEINTS,.
NATAFr = NUMIZR QF aTQMS.
HOZMS = AIRIY OF MALF=CENSITY RADIL OF ATAaFS.
sxIt - AFSAY OF NUCLEER 3504 THICKMISS PARANETERS,
ATRUPF = ARAJIY CONTIINING STCNIC NUM MRS,
ANUCLM = Ar23Y QF HUCLELR MES53IS (MW,
PRUM = A&y OF PESTJN MUIMBZRS.
ANGH = dcad¥ CF ATUMIC CHAITAL ANGULAR MOKCNTUN Ghianfud .
NUMIESS €03 ThE LJmk? CIACULAN J9dI7 CF TH-Z TRAMSIITICNS,, -
SHIFT = 2mmd¥ CF IRRZRIMENTAL cMEAGTY SHIFTS [EV)e THE LlWER,
Tooh USRI LiVoL vALULS ARY NEAL-Ih FCR EACH ATOnN
CoM3cCuTIveELY,
QSHIFT - SXPERImcRTIL WNCISTAINTISZS IN Twe LEVIL SHIFTS,
Gadrna = Ak=AY CF SXPERINENTAL LEVEL AICINS (EV).
CGamma - Z¥PIQImENTAL UNCISTLAINTIES IN THE LeVie WIDTHS,
NECATL = HUmdgew oF FCATTESING LeEMGIHI,
RSL = AFRAY CF JxPIRIMENT2L SCITTURING LEMGIHMI.  THESE
AWE READ IM fHE JSCZ3t SIGMA-N 5:=C,1; SIGmA=-P 3:=4,:,
The QZ4L AND IMAGINARY COMRPINCHNEHNTS AXE RELN
ALTIRAMATILY,  SIGMA=-WeUTRON IMAGINARY CORPOMENTS
oSl 4L 32T SQuil TO 2ERQ.
ERIGL = AARAY QF EXPERIMENTAL ZAwORS IN SCATTEIRING LENGTHS,
3015 = Bemd¥5 CONTAINING CONRTAnTS USED In Trm: SSLCULATION CF
SCATTIRING LENGTHS [N SUIFROQUIIANE SCATL, ThHE YALUES
GIVEN HMIdE aldE £x3LiCITLY FCR U3E WITH YUKAWR POTZNTIALS.
Gy = GAULS wEIGHTS &m0 CauInaTECs,
AND2S = NUMAER OF GAusS FoimsTs.
INCEST = CLUNTER COMIROLL Inbl PWINTING,
IrCczST & 1 CN Tmi FIRST EHNTRY TO CHISAR. THIS Causcs
PRIMIING OF THE CALCULBTED. ATamIC SHIFTS ANS SCATTERING
LEMGTHS RESULTING FAOM IWE INITIAL VALUZS OF [nZ
PARAMLTERS IN WAAY. INCEST IS 3GAIN SET = @ AT THE
END OF THL OPIIRIZATION AMO THT CALCULZTEQ VELUES OF
- T SHIFTS ZND SCATTERING LENGTNS ARE PAINTED ALONG
WITH THE CHI-30UARE AND REDUCED CHI=-SOUSKE,
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