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ABSTRACT 

The available E atomic and ·EN scattering data bre· 
. . 

fitted consistently'within a finite range potential model. 

The most recent analysis of EN scattering data pro­

duced two possible sets of complex scattering lengths con-

. '" sistent with the observed cross-sections. These data, to-

gethe,r with the measured energy level shifts and widths in 

E atoms, are analyzed to determine if the combined data 

are consisten~ and also to extract, effective E-N potentials. 

The calculations are. performed by assuming Yukawa­

shaped complex potentials for each E-N spin, isospin chan-

nel. These potentials are then folded into the nuclear den­

sity distribution to produce the E-nucl~us effective pptential 

and the SChrodinger equation solved for the level widths and 

shifts. The potential depths and ra e are treated as para-

meters which are varied to mini the total X2 of the fit 

to the scattering lengths and a data. The possibilities 

of a~tra~tive or repulsive potentials are examined for those 

L N channels which produce positive scattering lengths . 
• 

Although the results of this analysis indicate that , 

the atomic data can be fitted consistently with the scattering 

data, there is no conclusive distinction between the two sets 

of scattering lengths in this respect. 
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It is concluded however that the existence of a 

-
1:-n b~u~d s~atlil is unlike.l,y and that the 1:- n spin triplet 

potential at .least must De repulsive. 
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• CHAPTER l 

INTRODUCTION 

• . 
The aim of this work initially was to deter;nU:ne 'the' 

general nature of the EN potentials and~ specifically, to 

~ determ.ineif a l:-n"or' .r.-nn hound state is likely. ·As will 

be seen, the available r.N experime,l1tal data required this 

aim to be modified somewhat. 

"rhe motivation for the study was the fact that tc? date, 

of the qaryons, only the proton and neutron are known to form 

a stable bound state. The [ hyperon is not,stable in in-
, 

teracting with, a proton and the system decays via the strong 

interaction 'to a A· and neutron, but the I:-n ~yst~m has no cor-
, ' 

res~onding d~cay channe1 cpnsistenl with charge and energy con-
, , 

servation. It is IJOssible therefore th~t- [-n or [-nn could 
, I' I , 

th7y have never been ob-. form a bound state, altho'llgh to date 

tierved. 

The information available on' the I:N i.nteractions is very 

scarce, due mainly to the short J: lifetime, and un!;'il 1978 the 

• only information came from i:'p'scattering experim!"nts. 

Thoo data from these experimel1"ts pC,ovided many interes-, . 
tiny but somet1mes ambi 'luous lndications of lhe I:N potentials. 

() ) 
Alexander et al have made the most recent correlatoion of J:N 

scatter 1n'l parameters. Most notable of their' resul ts is the 

1 
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prediction,of a positive ,scattering length'in E-n 3S1 :Jtate 

which could, resul t f~om a strongly attractive potential wi th 

a bound state. 

In ad'di tion, ; in fI,p scat'tering,. a cusp in the cross-

section below the E, threshold has 

as a virtual, l:N bound .statf! (26') • 

been interpreted by some 
. 

II1C\eed, in first appro'xima-

tion, a EN bound state is to be expec'ted. SU(3) with no sym-' 

metry breaking predicts the EN in:teraction to ~e iden tical 

withl the NN interaction, which is ·known· to be str'ongly attrac-
, . 

tive. It might be· expected then that, the larg6r I: mass would 

lead to a bound state, even though in oth~r respects the scat-

tering.data· refute this idea, 

If' the positive I: n scattering lengths of Alexander 

are the result of a strong, attractive potentia~, the res~l-

ting binding energy of the systel1i would be of the order of 75 

Mev. This is hu'le relative to the de.uteroh and, although'lthis 

docs not mean it is impossible, the magnitUde of SlI(3) symmetry 

breakin'l required to produc.e this bindi'n'J makes the suggestion 

highly improbable. 

'rhe alternative is that ehe positive scattering len'lth 

arises [rom a repUlsive potential. Again. this suggestion is 

unusual and not generally expected from the strong interaction. 

However, the OilEr model, predicts that in the long-range tail 

of the potential at least the [-n 35 potential should be re­
I 

J 
pulsive. 

• 
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Furthermore, the.total scattering'cross-section(3,22,23,26) 

.... falls below even the singlet unitary limit, whi'ch indicates a 

weak triplet interaction. 

The proposal is that a E-n or E-nn bound state exists is 
, 

not new and has already been investigated to some extent (for 

example ref. 29).' At that time the analyses were based on inac-

cura·te scattering data and even the sign of the scattering lengths 

(30) ~ 
was not w~ll known . The conclusion of those works was tnat 

the L n int~ion was too weak to support a bound state even 

in the proposed three-body E-nn system. 

The difficulty in performing an analysis based solely 

on scattering data is that a knowledge of the scattering lengths 

alone does not permit a unique determination of both the depth 

and range of a two parameter potential form.' Even the recent 

data of Alexander do not determine the effective ranges 'of the 
, 

interactions, and in fact produce two 'distinct sets of scattering 

lengths consistent with the measured cross-sections. 

However, Batty et al (1) in 1978 produced E exotic 

a toms f rom stopping K beams. From the strong interac.tion be-

tween the L and nucleus, the energy of the E atomic orbital 

is shifted relative to the pure electromagnetic energy. The 

energy width of the level is also increased as a result of E p 

decay. The magnitude of this complex energy shift is rela·ted 

to the EN potentials. 
, 

For the first time then, two independent sets of data 
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ar.e now available ,related to the LN interactions'" <X;t, Js pos.,. ," 

,sil;lle, by requiring consistency, to analyze the EN scat\~r,fng' '\ 
, '- ',- , '-';... 

, . 
and L atomic data sl.multaneously and to fix-both eI! potenti'al .', 

, 
. depth and range to the LN interactions, Consequently the 

-', . , 

p"i.lrpose of this work now becomes twofold: Not only 'is, an ·a.t-, . 

tempt made to extract effective LN two-body p~~m a 

correlation of the data but also to determine if th~:L atomic . " . 

data are sensitive to the scattering parameters and can 'dis-

• 
,tinguish between the two scattering length sets of Ar~i.:ander. 

The basic requirement in realizing this program'is 

the construction of effective EN potential forms. In th'is 

work it is assumed that the potentials are Yukawa-shaped, 

with the strengths complex for E-p interactions and 'real for 

E- n. The complex E- p depth is introduced to account im~lici tly 

for the open decay channel in ,this system. Atomic level" shifts 

are sensitive, in first approximation, only to the volume 

integral of the two-body potential and not to the shape tl4 ) 

In view of this, the Yukawa-shape is chosen to produce the 

known asympt'otic form of the aBE potential tail. A more real is-

tic shape should include a rep~lsive core; but any refinements 

of the potential necessarily introduce more parameters and with 

'the present quality and quantity of EN data, this would be 

unwarranted. 

The available EN scattering data are reviewed in Chap-

ter 2, beginning with the coupled, two-channel formalism of 

, . 
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the E-p scattering process. Decoupling of the An channel 

results in an effective non-local, complex potential in the 

E-p ch,annel. Discuss'ion of the non-loca'~, complex potential 

covers absorption in" the E- p system as well as 

mations involved in replacing it with a ~cal' 
" $ 

tial. 

. , 
bhe approxl.-

complex poten-

The differential cross7"sectioris. for the E-p interac-

tions are also produced showing the relationship between the 

measured cross~sections and corresponding scattering lengths. 

The effects of the Coulomb scattering amplitude on the cross~ 

section are included. Although the cross-sections are not 

explicitly used in this work, 'the E-n scattering lengths, are 
. + 

deduced from the E p data, and it is therefore (necessary to 

+ realize the approximations involved in deriving the E p 

scattering lengths when the Coulomb interaction is present. 

The deriving of an expression for ~he E--nucleus 

effective potential in E atoms is de~lt with in Chapter 3, 

commencing with a qualitative survey of hadronic atom proper-, 
ties in general. Attention is drawn to the theoretical 

approach that has been most commonly'used to date and to its 

shortcomings. A model for the E-nucleus potential based on 

folding the EN potentials into the nuclear density is derived. 

It is shown that,with certain restrictive app~oximations, the 

folding model reduces to the common, first-order optical model. 

Lastly, a prescription is developed for properly weighting the 

, . . 
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diffe~ent spi~; isospin EN potentials in the folding model. 

Numerical details -,are offered in Chapter 4. A simul­

taneous fitting procedure is performed to each set of EN scat­

tering lengths with the E atom'complex energy shift data. The 
. " ' 

EN potential strength and range parameters a~e treated as 

variables and· the total i of the fits to ,all the data' is mini-. 

mized. For those states with positive scattering lengths both 

strongly attractive and repulsive potential possibilities 

are considered; In' this way six minima are found in the x2 

curve. Four of these solution sets are discarded for predic­

ting unphysical binding energies in EN sy~ms. The remaining 

two sets of optimized potentials are used to determine the 

ground state energies of various proposed E hypernuclei. 

In conclusion, the results and predictions of the EN 

potentials are summarized and compared with the expected pro-

perties from experiment and theory.' 
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2.1: INTRODUCTION 

CHAPTER 2 

EN SCATTERING 

A great deal of interest has been shown in the EN 

,scattering process as a means of discovering possible EN 

bound states. 

A E-n or E+p bound sta~ has never been found al­

though in SU(3) with no symmetry breaKing the singlet 
• 

E-n(E+p) interact~on is identical to ehe NN interaction. The 

pp and nn potentials are known to be strongly attractive which 

suggests that the larger E mass might be able to produce a 

bound state(26). In addition, ithas been proposed that the 
'-

resonance in the Ap scattering cross-section at rougply 4 

1 Mev below the E threshold corresponds to a virtual EN I = 
2 

However, a recent study of the EN scattering para­

meters by Alexander (3), and also 'the resul ts of the present 

work, indicate that the existence of a E n or E+p bound state 

" is unlikely. 

The existing data on EN scattering are very scarce. 

This is due, in part, to the short E lifetime (~ lO~l9 sees.) 

and to the fact that the production of E is a secondary 

reaction from stopping K- beams so that the number of E events 

7 
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observt!d is low (typically, 

K7" stoppe~ (22 i) .. 

" 

'" 

, . 

103 E 

~ 

':" 
'8 

" 
• 

sc;at.t.ering 'events per 107 

The E scattering to d~te has 'bee~ performed in hydro-

gen bubble chambers ,with the resu:j.t;.:t~at,o'hly E-proton events 
\. . 

have been measured. The corresponding, ,momentum range of the 

E .is roughly 100 ~ PE' ~ 180 Mev/e. The lower limit is imposed 

experimentally by the length of the E tracks and the upper li-, , 

mit is d
' .. the pro uct~on,rnornentum of the E in the reaction 

K 
( 

+ p + r±' + rr+ (22). The E islnot stable in the presence 

strangeness-conserving ,reac~\on: / of 
1..-
i 
I 

protons and decays' by the 

I> 

+ p + i\ + n • (2.1.1) 

The l'eN> wayefunction can be expanded in isospin components 

as: 

Jl: N> - IILILININ 
3 3 > , 

L <1-1 1 INIIIN_l>IIIN_l> (2.1.2) = 
I 2 3 3 3 /~ 

I 

with the weighting given by Clebsch-Gordan coefficiepts. For 

L p I~ = ; and the IL-p> wave function becomes: 

- /2 1 1 '.IT 3 1 I L p> = -/;. 1- - -> + ( .; 1- - -> 
322 322' 

(2.1.3) 

which explains the presence of the I 1 
= 2 i\ decay channel in 

L-P scattering. - +, 3 The L nIL p) system however is a pure I = 
2 

state and can only scatter elastically. 

, 

. 
/ 

... 
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2.2: E P TWO-CHANNEL EFFECTIVE POTENTIAL 

It ,is clear from the discussion in the last section 
• 

that the E-psystem can either scatter e~astically 'to the 
. , 

[-p final state or decay through, the strong interaction to a 

An state \ A proper, description of the scattering process 

must acco~r th~s two-channel nature. 

The expansion of the ~sual one-channel'$cattering 
. , 

theory to describe the two-channel problem is straightforward 

with the important result that the wavefunction has two com-

ponents and the potential becomes a 2x2 matrix. The off-

diagonal potential elements couple the wavefunction components 

through the two radial Schrodinger equations: 

~2 ~J /I + VE[~I[ VEA 4'A E[4'[ + = , 
2H[p [ 

(2.2.1) 

-K2 
4''' + ,v A[4'[ VAAIjJA EA4'A -

2~IAn 
+ = . 

A 
(2.2.2) 

The e~ergy EA appearing in the An equation (2.2.2) is related 

, to the energy of the [-p system by the mass difference of the 

L and A; that is: 

(2.2.3) 

These coupled equation~Gan be solved numerically provided the 
.... 

four potential e'lerrents are known. 

" 

, 
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Formally, the two-channel equations can be decoupled 

by inverting the'An equation. For the An channel: 

1 (2.2.4) 

substituting this expression,into (2.2.1) produces the E p 

,channel equation: 

(2.2.5) 

or 

(2.2.6) 

The important features of the effective E-p potential VEFF is 

that it is non-local and complex. The ·-ic tetm has been intro-

duced in the denominator to ensure that the open /\n channel 

contains only outgoing waves. 

The potential VEFF 

representation as (25) : 

\ 
may be expanded in the spectral 

II/J~n) ><~,~n) I 
VEFF = Vn - L Vu. (n) V[~ 

n E-E -f II/J/\ (E') ><~'~ (E') I 
E' -E-ic V~A 

( 2 . 2. 7) 

where the discrete summation corresponds to possible bound 

states in the ~n system. Assuming that no such states exist, 

V
EFF 

can be written explicitly in terms of its real and imaginary 

\ 
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(21) 
components as: 

. . 
11 

. , r 
liM 

V 1: II 11/111 > <1/1 II IVAI: 

£' - E dE' - i ~ J dE '6, (E' -liM) V 1:11'11/1 II> <1/1 1I1"v~ 1:. 

(2.2.8) . 

where P denotes the Cauchy principal value. The imaginary part , 

of the potential is then: 

Im(vEFF ) = -n.v1:1111/I1I~<1jIlllvlI1: 

= 0 

E = liM 
(2.2.9) 

E < liM 

Since the numelator of the real part of VEFF is positive 

definite, the imaginary component is negative definite as re-

quired for absorption. Physically the complex term comes from 

the process in which the Land p leave the ent~ance channel 

1/1[ because of the coupling potential VIIL and are emitted in tbe 

exit channel 1jIA' 

To see how the complex potential accounts for absorp-

tion in L p scattering, it can be shown from the Schrodinger 

equation that the divergence of the flux for a complex poten-

tial is: 

2 
If Im(V)p(r) (2.2.10) 

with p(r) the probability density. It has been shown that 

the imaginary component of VEFF is negative WhiC~ according 

to (2.2.10), accounts for a loss of particles from the system. 

o 

... -, 
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.. ,Further •. the' time -developmen t of the E- p' wave function . 
, ' 

" 

, -iBt/ti 
1jJ~(t) '" e 

, 
(2.2.11) 

For a compl:ex potential the energy of the system El: is neces-
• 

satily also complex. With th~ definition E~ '= ER + H/2, the 

time development of the wavefuncti~n becomes: 

1jJ~ (t) (2.2.12) 

which is a damped function correspqnding to a decrease in the 

number of ~ as a functiOn of time. 

In' sol ving the'~l:- p radial equa tion (2.2.6) it has 
, 

been shdwn possible to replace V
EFF 

with a phase~equivalent 

local potential ~hich correctly reproduces the two-channel scat-

, .. (24) 
ter1n~ lengths . However, the expression for the potential 

is a complicated function of the matrix elements Vyy and both 

, .. 
wavefunctJ,on components. Without a firm theoretical basis for 

determining the Vy'f though, there does not' appear to be any 

c lear advantage to this procedu re. As a firs t approxi,ma t ion. 

the usual approach (and ,the one used in this work) is to ignore 

the non-local and energy-dependent behaviour of V
EFF 

and approxi­

mate V
EFF 

with a complex, local potential. In this way the 

two-channel nature ~ the problem is implicitly introduced 

through the complex potential depth. 

The theory of scattering for a local, complex poten-

tial is essentially the same as for real potentials with the 

.' 
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important exception that the phase shifts and scattering 

lengths become complex corresponding 

tude of the wavefunction(25). 

to a decrease in ampl!-

• 
1 

2.3: ~ N SCATTERING CROSS-SECTION 
• 
The spatial distribution of reaction, products from 

a scattering process is dependent on the nature of the inte-

raction between the projectile and target. At low incident 

,energies the most that can be learned about the potential 

though, is the corresponding scattering lengths or phase shifts. 

In deriving expressions for the ~-p cross-sections as 

functions of the scattering lengths it will be assumed at 

first that the Coulomb interaction can be neglected. This is 

an important correction, particularly for small scattering .. 
angles, and will be included later, but ,it is not necessary 

for outlining the approach. The notation used follows close-

ly that of references 3 and 23. It is also assumed that the 

lnteraction occurs only in S-state and that the singlet and 

triplet interactions can be treated separatel~·. 

The cross section for a transltlon from an initial state 

I ~:- p' to a final state If' lS related to the transition ma-

o b (2 J) tr 1 x y : 

(2.3.1) 
k (2S,.+1) (2~ +1) 

.. p 

with k the centre of mass momentum and J the total angular 
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For the elastic scattering of E p • E P the transi-
" 

tion ~litudes can be expressed as functions of the com-

plex scattering lengths at lQ\~ energy by: 

A 

l-ikA ' 

with A ~ a+ib, the complex scattering length. I n the :: p 

interaction 
3 

of the transitiQns occur in the 1 := 2" 
1 

st~t(' 

and 1 in the I 
3 

state. 
2 

llsing this .fact, straightforward 

algebra gives the ~:-p elastic cross-section as: 

( 2 . J . J) 

where AJI = 3 J1 + ibJI is the complex scattering lenqth 111 the 

J,I spin, isospin channel. Use has also been mad~ of the fact 

that bJ3/~ ~ 0 since there can be no inelastic scattering 111 

the ~-n interaction. 

For the inelastic • p ;\n channel a simple expression 

like (2.3.2) does not exist and more care must be exercised 



in defining the T matrix. 

analysis of the scattering 
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) 

It can be shown fro. a K-matrix 
. (23) . 

lengths that the transition 

amplitude for the inelastic process can be expressed as: 

<Lp iTifln> = 
1 

(2.3.4) l-ikA 

. where A in this case is the I = ; scattering length aJl/2+ibJ1/2 

for the decay channel. Rewriting A in terms of the K matrix, 

Gell et al also show that: 

= kb 1 " J 1-

(2;3.5) 

where the last step follows from the relation of the K matrix 

to the scattering lengths. 

The cross-section for the inelastic [ p reaction is 

then: 

1 
~n ,. (2J+l) 
3k J=O 

b 1 " J / ... 
(2.3.6) 

The abo"e ex-pressions (2.3.3) and (2.3.6) were evaluated ne-

glecting the Coulomb interaction between the ~ and p. Since 

the Coulomb potential goes to zero only as quiCkly as ~ it is 
r 

to be ex-pected that its presence "'ill have a significant effect 

on the scatterlng cross-sections. The procedure for handling 
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the Coulomb'potential when other forces are present is to 

spli t the Hdmil tonian intc;> a Coulomb and a nuclear pa·rt. The 

T matrix may then be expressed ,as a sum of a pure Coulomb 

T matrix and a T-like matrix of the nuclear interaction.' The 

expression for this latter T though does not contain the 

usual plane-wave state, but rather the Coulomb wavefunction. 

I f the nuclear poten tial is spherically synunetr ic, 

the amplitude can be expanded in partial waves: 

. . 
= 4n ~: <' (k)a c (k)Y~(I~') t 

(2.3.7) 

The pure Coulomb amplitude is well known (sec, for example 

ref. 26) and is: 

exp:( (2i.'kB) cnsin t1/2) 
'I , (2,3,8) 

• 2k-I3sin- 11 /2 

With B the Bohr radius of the particles, k the ceI1trc-of-mass 

trOll"-'ntum "nd II the scattel'ing anqle. 

The cross-section ~ill now COIltain an interference term 

NC C .between A and A upon squar1nq their sum. Since the phase 

C ,,,-'-, of ,\ depends stronqly on the charqes of the particles, so 

does ~hc interference term. 

Of greatest consequence NC 
in the calculation of A 1S 

that the usual free waVe functions become CoulOmb wa\·efunct1ons. 

The implication of this 15 that the add1tional phase shift 

introduced in the wavefunct1an by the nuclear interaction 1n 
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• 
, . 

the presence of a 'Coulomb potential is no1; the same·as the 
. 

effect of thE: nuclear interaction alone. The result is that 

there_is no long~r a_simple relationship between A~C and 

the nuclear scattering lengths. 

Only within certain approximations of the ~oulomb 

wavefunct .. ions dependent on the range of the nucleus interac-

• 

. h 1 . d NC b 1 d h 1 . t~on'c,n t e amp ~tu ~ A e re ate to t e nuc ear scatter~ng 

length~ Including the Coulomb' amplitude within·the differen-

tial cross-section and evaluating the nuclear amplitude with , 
..-

, respect to approximate Coulomb waves, Alexander et al arrive 

h f 11 . . f h - '. (3) at teo oW.J.ng express~ons or teL p cross-sectJ.ons : 

with 

and 

= ; (2J.+1) I exp ((2~(kB) ~nsin 0(2 + 

J:O 4 2k-BSin 20 (2 

(2J+ 1) 
Co (1-i~t'J3(2) 

o 
J 

2n 
kB (1 - exp(-

-1 
2" ) ) 
kB 

2((n(2kR)+Re'(i/kB)+2Y) 

kBC 2 
o 

2 

2 

(2_3.9) 

(2.3.10) 
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SCA~ERING RESULTS 

The expeFimental scattering situation has changed 

drastically ,in the last few years as more data are 'collected 

and the 

changed by cent. 

,the EN sys'tem have 

. large eJ..tent;. this 

is because b (22,23,26) 1 t d h' t t wor"s ' neg ec ,t e l.mpor an 

contr' ution to the cross-section. 

----~~'e data have presented ing features 

and 'raised many. questions. 
+ 

The total elastic E-p cross-secti s are shown in 

~igure 2.1 with the solid line represent ng tHe spin singlet 

unitary limit. 

cr[mb] -------------

,00 

JOO 

~OO 

100 100 
l----=__________ 

1,0 150 160 170 18 120 1JO 1,0 150 160 170 180 
p[+ ~loV/c: p[- [~'Iol/ cl 
+ 

FIG. 2.1 ELASTIC [-p CROSS SECTIONS (REF, 26 AND 
REFERENCES THEREIN) , 
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The total cross-sections are lower than the singlet unitary 

limit, which has bee~ taken as an indication that the triplet 
3 . 

interaction must be very weak and a bound state in the ' Sl 

interaction therefore unlikely. 

The elastic E-p differential cross-section 0(8) is 

shown in figure 2.2. The apparent systematic rise in 0(8) 

for small angles can be attributed to constructive coulomb in-

terference(3) . 
, 

rp-t'p 

, .y 
1l 

10 

• 
ic~. 

(mb) 
c -~ 

. 
c 

, 

, , ., ,I .l .1 .4 ., 

cess 

FIG. 22 L P ELASTIC DIFFERENTIAL CROSS-SECTION. 
DATA POINTS ARE FROM ALEXANDER (3). 
SOLID LINE IS 0 (8) PREDICTED FROM THE' 
RESULTS OF THE PRESENT WORK (CHAPT. ~) . 

• 
The total inelastjc L p cross-section is showh in figure 

~ 
2.3 and it is found to correspond well with the singlet unitary 

limit, again indicating a small amplitude in the 3S1 state. 
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FIG. 2.3 rNELASTIC E P CROSS-SECTION 
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+ 
The most recent'data on E-p scattering have been collected by 

Alexander et al(3). They constructed scattering lengths in 

the complex plane for each spin,isospin channel which would 

reproduce the observed total cross-sections. By treating the 

components of the complex scattering lengths as parameters 

they fitted the data and found two sets o~ scattering lengths 

consistent with the cross-section,s. BeJa~~e of the large 

errors in~he crpss-section data they C~ld not distinguish 

between these sets, but neither set supported the suggestion 

of an I = ; virtual EN bound state. 

The results of the present work also point to the 

same conclusion. In this work the r-n scattering lengths are 

presumed identical to the r+p extracted nuclear scattering 
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lengths', based on the assumptions of charge .and isospin in­

variance of the interactions. 

One of the purposes of the present work is to corre­

late Alexander's scattering lengths with L atom data in an 

attempt to distinguish between the two sets he obtained. 

contrary to the results of a previous analysts (1) , it 

is found that the atomic data are consistent with the scat-

tering lengths but, because of the large experimental errors, 

the atomic data do not distinguish between th~ two sets. 

• 

• 



CHAPTER 3 

1: ATmlS 

3.1: INTRODUCTION AND PHENOMENOLOGICAL SURVEY OF HADRONIC 
ATOMS 

Hadronic atoms are those in which an electron has 

been replaced by a strongly-interacting particle (K- ,rr-,p,1: ). 

Creating hadronic atoms is experimentally relative-

ly simple although the high energies involved restrict their 

formation to only a fe\~ laboratories in the world. 

Kaons are produced primarily by the reactions: 

- + 
p+n + K +K +p+n 

- + p+p + K +K +p+p 
(3.1.1) ~ 

I 

The primary target for the reactions 

heavy- metal. The K produced travel 

where they are slowed and eventually 

orbitals. 

(3.1.1) is normally a/ 

to a secondary targ~ 
,.,..-------' 

captured anto atomic 
/' 

/ 
/ 

/ 
The picture is not as simple for'L atoms. L hy­

I 
perons are created from the nuclear ap'sorption of K mesons 

through the reactions: 

- - 0 
K +n" [ +11 

22 

-

/ 
t (3.1.2) 

<, 
\ 
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Because the E- are produced in secondary reactions, the re­

sulting E-atom x-ray spectra are very low intensity and 

necessarily buried in the predominant K~ atomic spectra. 

Neglecting the strong interaction, the mean radius 

of the hadron's atomic orbital about a point nucleus is: 

<r> = (3.1.3,> 

2 2 
where a

O 
is the Bohr radius = i'i /e "H' "H is the reduced mass 

of the hadron-nucleus system, and n,£ are the orbital quantum 

numbers. In a first approximation then, the E orbital r,­

dius is reduced·by a factor of nearly 2400 relative to the 

• corresponding electron orbital with the result that even in 

high n states the E is closer to the nucleus than the ground 

state electrons. Electronic screening of the nucleus by the 

electrons' therefore has a negligible effect and the hadron-

nucleus system can be accurately treated as a true two-body 

interaction. 

~n addition to the electromagnetic interaction the 

orbiting hadron is affected by the strong force. This nuclear 

force manifests itself predominantly in two ways. The ,energy 

of the orbital is shifted relative to the pure electronic 

energy of the orbital by' an amount €, and secondly, the ab-

sorptive nature of the strong interaction causes a broadening 

of the natural Lorentzian linewidth by an amount r. 

Initial capture of the hadron by the atom occurs 

primarily by Auger emission of an electron leaving the resul-
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tant hadronic'atom in a state of high excitation and angular 
.' 

momentum. The hadron de-excites bX x-ray transitions until a 

level is reach'ed where there is ail' appreciable overlap of the 

hadron wavefunction with the nucleus, and at this point it is 

absorbed. 

Xn the x-ray transition between the levels (n+l,£+l) 

+ (n,£), the width r of the upper level is typically of the 

order of lev. which is comparable to the electronic width. 

A~sorption and x-ray transition processes therefore compete 

and the branching ratios of the two processes can be measured. 

Since the strong interaction is short-ranged, E for the up-

per level is essentially zero. The width of the lower level 

is larger than the upper by a factor of 10 2_10 3 due to the 

greater nuclear overlap. The shift E is the same order of 

magnitude as the lower level width r. Measurement of the 

x-ray energy of the transition then provides a direct measure-

ment of E. The strong absorptive interaction sets a lower 

limit on the angular, momentum state in which the hadron can 

exist. For small values of r, 
£ 

the Coulomb wavefunctions are 

, 1 r proport10na to-­
n 

which indicates that states of high 

angular momentum have a smaller overlap with the nuclear volume 

than those of low nand t. 

In hadronic atoms therefore the transitions of interest 

are those between the 'circular' orbits, tha t is, those for whicl:l 

£ ~ n-l. For circular orbits the probability of finding the ha-

dron between rand r+dr from the nuclear centre is approxi­

mately(S) : 



.' 

/' 

2 * - . 1 
r ·w (r) W (r) dr '" ""("'"2~i.+'"'1"')71 

2Z 2H3 
(ria) 

o , 

2H2 
r 

2n 

25 

(3.1.4) 

The overlap of the hadron wave function with the absorptive. 

part of the hadron-nucleus potential gives an estimate of the 

re~ion in which absorption occurs. For high i. states this. is 
. 

peaked in the area of the nuclear surface as shown in figure 3.1 

below. 
C.lf 

O.U 

0.:1 

c.: I 
a.la 

c .11 

C .1: 

~ .~. 

a.J I 

-: .':J 
J • .: 

FIG. 3.1 ABSORPTION OF L FROM (n,£) STATES IN 32S. CURVES 
ARE CALCULATED USING RESULTS OF THIS WORK, CHAPTER 4. 
ALL CURVES NORMALIZED TO UNIT AREA. 

It has been stressed(6,7,9) that this feature makes hadron 

absorption a potentially powerful tool for studying the nuclear 

surface, and in particular for testing the proposal of a neu-

tron-rich surface through a comparison of absorption rates in 

isotopes. Although some attempts have been made along these 

lines(SI, the data are not yet exact enough to give conclusive 

results. 

Apart ,from this, hadronic atoms are capable of provi­

ding information about the hadrons themselves. Precise measure-
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ments of the transition energies gi~e data on some particle 

properties not accurately known from other sources. Most 

notable of these are the particle mass and magnetic moment. 

The Coulomb energy of a particle interacting with a 

point-charge nucleus is directly proportional to the reduced 

mass of the system. The high n transitions chosen for mass 

determination are dominated almost exclusively by this ener­

gy. The accuracy of determining the mass is then the same as 

the accuracy of measuring the x-ray transition energy. 

In fact, the K mass determined in this way is more 

accurate than by any other method (10) . The same cannot be said 

for the E because of the low intensity of x-ray data. 

The interest in E atoms arose as a means of deter­

mining the E magnetic rroment (5). The fine-structure sp1it-

1 1 ting between the j = ~ + '2 and ~ - '2 states in this case is: 

4 
1 2 liZ -2(1+g)m,.c .(-) 

~ n 
n 

(3.1.5) 
~ ((+1) 

where g is the anomalous part of the magnetic moment p=eh (l+g) /201,.<0. 

Measurement of this splitting is particularly difficult for ,. 

atoms. The l: x-ray lines are present only in K spectra 

whose intensities are an order of magnitude or more larger 

(see figure 3.2). 
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FIG. 3.2 [ AND K X-RAY SPECTRA. 
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FROM REF. (5). 

The ,. magnetic moment determined by this method gives only 

crude ~greement with the predictions of the qu~rk n~del ~nd 

SU(3) (11). 

The discrep~ncies ~re considered ~n indic~tion of 

the l~ck of ~ firm theoretic~l b~sis describing the ~tomic 

c~pture ~nd c~sc~dc of the ~~drons, 

, , 

Extr~ction of the fine structure splitting is strongly 

depend~nt on the results of c~scade c~lcul~tions, These cal-

culations h~ve been performed by assuming an initi~l popula-

tion distribution with variable parameters and treating the 

cascade process semi-classically as a continuous energy loss. 

Th is dubious procedure has 'proouced only rough agreemen t. wi th 

experimental K- x-ray intensities (13) , 

In addition to this area of uncertainty the multi-

channel nature of the hadron-N interactions has caused diffi-

cui ties in constructing a theoretically sound hadron-nucleus 
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potential. ' The simplest phenomenological model assumes that 

,the hadron-nucleus potential follows the same shape as the 

nuclear density with a complex depth adjusted to produce the 

observed complex energy level shift. Al thouqh this procedure 

, 1" , h ' (1,7,16) gJ.ves qua l.tatJ.ve agreement Wl.t experl.ment there is 

no strong justification for the assumed shape, 

The main task in the study of hadronic ato'ms is then 

coristructinq a reliable hadron-nucleus potential, 

This problem is addressed in the followinq two sec-

tions where a general ~ nucleus (01...1i1\1..1 m':H..iL"'l is dC\'c!opcd 

and compared with morc conmlon phcnolllt!noloqic.:ll pL1tcntials. 

J, 2 : " -NUCLEUS FOLDING NODEL Pl1TENTI,\L 

1'he n'l)st commonly used h.3.dron-nuclcus L~ttt.."\ctl\·C ~'otL'n-

tial is the optical model in \,'ili.:h the potentl.1l depth 10' 

linearly related to the haJrOtl-N scatterinq lCI1Qth a. In tillS 

model the ~ N inter.J.ct ton is ..lssumcd point-like ... 1nd qt\'cl1 by 

a potential of the form: 

\ 3 , 2 , 1 ) 

where r-l~N .15 the reduced mass and a is the .:l\.'cLJ.ge, free ~ 

scattering length (nuclear physics convention), In the coherent 

nucleus approximation the = -nucleus potential is obtained by 

~ averaging over the ground state nuclear wavefunctlon: 



<0 I v. 10> , J. 

The optical poten,tinl then takes the form: 
\ 

'" 4n(l + 
HE _ _ 
;:-\ ) (Za,. 'p (r)+Na,. 'p (r» 
"N "p P "n n 
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(3.2.2) 

(3.2.3) 

where p (r) and p (r) are the proton and neutron densities 
p n 

respectively. normali::ed to unity. A has been assumed large 

so tha t ~I/H~N :~ 1 + H~/~\.. with ~\. ~\~N' ~\~ and ~\. the 1: nu­

cleus reduced mass, ~:N t;cduced mass, ~ tn.:lSS and nucleon mass, 

respectively. 

The potential is also applied in the form(1.7) 

2m \' 
~. \" , 4" (1 + (3.2.4) 
11 ~ -

,;heLe it has been assumed that the nucleon densities are the 

In this model the complex scat-

tering length ; simulates the absorptive natuLe of the r 

nucleus interaction. 

Although the potential form (3.2.4) produces qual ita-

tj"e agreement "'ith expeLimentally measured complex energy 

shifts, it is found that the complex depth a which best fits 

the shifts bears little resemblance to free scattering length 

value of a. 
. (18) (1) 

Koch ,and Batty applied such potential 

forms to K and r atoms respectively. Their best fitting 

values of the parameters a had approximately the same imaginary 
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part as the free valu.e but grossly different real components. 

In both cases the authors attribute the discrepancy to the • 

existence of resonances in the interaction. In fact the need 

to invoke resonances is superficial and will be seen to vanish 

when the unjustified linear relationship between V
E 

and a is 

removed. This requires a more careful averaging of the many­

body wavefunction(l4). 

Of f'undamen tal importance in this procedure is the 

coherent nucleus approximation. That is, it is assumed that 

there is no transfer of kinetic energy from the hadron to 
/ 

the nucleus, or equivalently, t-llla t the nucleus remain in the 

ground state at all times during the interaction. The justi-

fication for this approach is that the interaction occurs at 

low energies, relative to the lOW-lying nuclear level spacing. 

With the coherent nucleus approximation it is possible to ave-

rage over the nuclear degrees of freedom and thereby reduce 

and A+l body equation to an effective two body problem. 

In averaging the many-body equation the nuclear ground 

state wavefunction is first expanded in terms of a complete 

set of nuclear eigenstates: 

• QN' (r
l
,r 2 , "'rAI .~. (k,r.1 

i 1 - - - _1 - --
( J . 2 • 5 I 

where the r, are nucleon co-ordinates and r. the co-ordinate 
-1 

of the ~ . This expression is inserted into the Schrodinger 
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equation. P~emultiplying by ~Nj and using the orthonormality 

of the states '~N,leads to: 

+ 1: <~ NJ' I v . (r .. - r . ) I~N' > • ~ ... (k, r .. ) 
i J. ~'" ~J. J. "J. ~ ~" 

(3.2.6) 

where v. (r .. -r.) is the two body interaction between the 1: 
J. ~" ~J. 

and i th nucleon. 

Equation (3.2.6) represents an infinite number of 

coupled equations. In the coherent nucleus approximation 

the potential v. cannot couple the nuclear states ~. and ~. 
J. J. J 

for i~j so that the system reduces to a two-body equa~ion 

with an effective L -nucleus potential given by: 

A 
= <0 I ~ 

i=l 
(3.2.7) 

and 10> denotes the nuclear ground state. This expansion 

cannot be simplified further without adopting a.model for the 

potential shape. For simplicity only a central potential 

will be considered. In addition, for illustrative purposes 

it will be assumed that the ~--nucleon interaction is equal 

in each spin state and for both types of nucleons. In the 

next section the effective potential will be extended to include 

the physical situation in which the [-N interactions are unequal. 
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P?tential is considered'to be of the form: 

(3.28) 

.' 
ere fIr) is 'a smooth function of r and va is the complex 

volume integral. The value of ' va is such that fIr) is 

normalized to unit volume: 

J drf(r) = 1 . (3.,2.9) 

The effective 'potential (3.2.7), then becomes: 

A 
V'f'. = <01 l: v(r~-r·)IO> 

- i=l -'- ~ 
= <0 I f 

A 
dr l: 

i=l 
.s (r- r. ) v (r ,. - r) I a > , - -~ -~ 

= 
A 

<0 I [ 
i=l 

.s(r-r,)lo> , __ 1 (3.2.10) 

(3.2.10) 

where p(r) is the nucleon density normalized to one. As a 

first approximation then the [-nucleus effective potential is 

just the two-body interaction folded into the nuclear density. 

The folding model expression may be related to the optical 

model by the following observations. 

It has been shown(17) that for simple-shaped poten-

tials the depth can be approximately related to the S-state 

scattering length by: 



, ' 

-n:2 

2MW ,1 

-a 

+ all/O 
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, (3.2.11) 

where II is the inverse range of the potential arid 0 is a 

constant dependent on the shape, but roughly 11/0 ~ 1. 
. I, 

The effective potential (3'.2.10) uS~g this approxim~-

tion becomes: 

2m 

011
2 (3.2.12) 

Further, if tbe range of the potential is small in comparison 

with the nuclear dimensions,. the integral can be written ap-

proxi;nately as: 

J f(~E-r)p(~)d~,~ p(rE) J f(~E-~)d~,- P(~E) , (3,2.13) 

and therefore; 

'" 41TA (l (3.2.14) 

In a first ,approximation the potential V
E 

is a non-linear func­

tion of the scattering length a, and linear with the nuclear 

nensity. Only if the scattering length is small compared to 

-1 . 
the range II does this expression reduce to the optical model. 

The discrepancies in scattering length are attributable 

to making this assumption. Using an,effective potential linear , 
in the scattering length, Batty et al(l) determined the best 
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fitting depth paramet~r a for E atoms to be: 

/ 

a = -0.3S±0.04 - iO.19±0.03 fm. 

The zerp-range approximation with a EN values from Alexander 

et al(3) (Set (B» predicts: 

-0.OS-iO.49 fm. 

-
whereas the non-linear relationship with ~/Q = 1 gives: 

1 a E a = -( p + 
2 -l+aEp 

a En _ ) = -0.28-i.0.1S fm, 
l+aEn 

in good agreement with the phenomenologicpl value. 

• 

The non-linear relationship for VEer) is still only 

approximate and so it is worthwhile to return to the more 

" 

general folding model (3.2.10) to describe the interaction, 

This expression has been used by Deloff and Law(9) and found, 

as expected, to give good agreement I.ith experiment. 

The disadvantage of this approach is that the descrip-

tion of the potential v appearing in the folding integral 

requires a knowledge of at least the depth and range, These 

parameters cannot both be determined unambiguously from the 
~ 

a~m1c level shift data alone, nor can the range be inferred 

directly from scattering length data. However, in this work 

both will be determined by requiring consistency of the 

atomic and scattering length data. 
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3.3: SPIN-DEPENDENT l:-N POTENTIALS IN THE FOLDING MODEL 

In the previous section the l:-~nucleus potential was 

developed assuming the two-body interactions to be identical 

in all l:-N channels. This restriction will now' be removed 

and the weighting of spin-dependent potentials in the l:--

nucleus effective potential will be considered. 

For the ith nucleon in the nucleus, the E-N potential 

may be written as: 

1-0 '0. 
-E -~ 

( 4 ) (3.3.1) 

t s - . 
where VEN and VEN are the E N spin triple~ and singlet poten-

tials respectively. N is the kind of nucleon, either n or p. 

o~ and o. are the Pauli spin matrices of the E and N with the 
-~ -~ 

properties o~·o. = -3 for a singlet interaction and +1 for 
-~ -~ 

triplet interaction. 

If the total nuclear angular momentum is J, then the 

expectation value of the E -nucleus potential is: 

N,Z 
= <J I E 

i=l 
(3.3.2) 

where the summation is over all the nucleons. Evaluation of 

the above expression is dependent on the coupling scheme ima-

gined for the nucleons. If it is supposed that each nucleon 

is in a state of definite total angular 

(20) 
from the Wigner-Eckart theorem , the 

momentum j., then 
~ 

expectation value of 
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'. 
the ith nucleon spin may be written in terms of the angular 

momentum j. as: 
1. 

.~ 
\ 

<j·la.lj.> = <'j·lj. (cr.' j.) Ij.>/j. (j.+1) 
1. _1. 1. 1. _1. _1. _1. 1. 1. 1. 

( 3 •. 3 • 3) 

a
i

' 
Since j. = ~. + --2' where ~. is the orbital angular momentum, 

_1. _1. _1. 

this expression can immediately be put in a more tractable 

form by: 

<j.lj. (a . • ~. + cr. ·a./2) Ij.>/j. (j.+l) 
1. _1. _1. _1. _1. _1. 1. 1. 1. 

(3.3.4) 

j . (j . + 1) - ~. (£. + 1) +-4
3 

1. 1. 1. 1. . 
=( j.(j.+l) ) 

1. 1. 
<j . I j . I j . > • 

1. _1. 1. 

In the su(ation of (3.3.2) this term gives zero contribution 

for nucleo~of a closed shell or ground-st~te even-even 

nuclei since the total angular momentum J is zero. 

In the coherent nucleus approximation all protons or 

neutrons outside a closed shell have the same j and £ values 

so that'the summation (3.3.2) becomes: 

where 

(3.3.6) 

-' 
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where In,Jp denote the total angular momentum of the neutrons 

and protons respectively. Again, assuming that the E- is in , 

a state of definite angular momentum: 

VS _v t 

= <JI ( l:N4 l:N) IJ'>,oJJ"13l:'<J'I~l:'~NIJ>, (3.3.7) 

vS ' _v t Y 
= <J I ( l:N 4 l:N) I J> 13 l:'-¥ 

where in the second line the coherent nucleus approximation 

has been used to decide that the states IJ> and IJ'> cannot be 

coupled by the potential for J~J'. 

The constants 6l: and Yl:N are defined as: 

(3.3.8) 

(3.3.9) 

respecti ve ly. The effective potential vl: can now be written 

as 
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'(3.3.10) 

This expression for the we ghting of the E-N spin-dependent 

potentials in the E- -nucleus potential will nO\~ be combined 

with the folding model of the last section. 

For generality at this point, -the neutron and proton 

density distributions will be kept separate and the ranges 

of the E-n and E-p potentials will be allowed to be different . .... 
The two-body interaction is considered to be of the 

form: 

(3.3.11) 

h Vs ,t. h 1 d h d f () . th were EN ~s t e comp ex ept parameter an EN r ~s e 

smooth functional form of the interaction. 

Combining (3.3.10) with (3.2.10) of the last section 

gives the general [--nucleus potential in the form: 

fr (r -r)p (r) 
~n _s _ n_ 

dr fr (r -r) p (r) 
~p _s _ p_ 

(3.3.12) 
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In a first appr,oximation the nucleon densities 'are considered 

to be the same( and the fu~ctional forms fEn and fEp'are the, 

same. 

Further, in most cases of interest the 'correction' 

terms in aay give zero contribution because the nuclei in-
I (1 9) 
vplved are even-even ~ • In the event of an odd number of 

nucleons these corrections are found to affect the calculated 

complex shifts by less than 5%. 

Making these approximations gives a simple expression 

for the E -nucleus potential as: 

(3.3.13) 

This last, simplest form for the potential is used throughout 

this work and is found adequate to predict the atomic complex 

level shifts. 

3.4: COMPLEX LEVEL SHIFTS DETERNINED FROM THE SCHRODINGER 
EQUATION 

with the development in the previous sections of an 

expression for the L -nucleus strong interaction it is now 

possible to determine the complex shifts predicted by the 

Schrodinger equation. 
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The complex energy shift oE is defined as the dif-

ference: . • 

oE :: E-E
O 

= - (e:+H/2) , (3.4.1) 

where E and EO are the energy eigenvalues of the level (n,·O 

with and without the strong interaction. BecauseoE is de-

fined as the difference between two binding energies, all 

electromagnetic corrections such as finite-size effects and 

vacuum polarization cancel and. need not be included in the 

Schrodinger equation (9) . 

The radial equation for the E -nucleus system then 

becomes: 

" + (k2 + 2mc ~L(k,r) ~ 
az 
r 

~(~+l) 2m 
-'--'.--=-c...)~ - if V L (r) ) ~'L (k , r) = 0 , ( 3 • 4 . 2 

r-

where Z is the nuclear charge, a the fine-structure constant, 

k the complex wavenumber of the quasi-bound state, and v
2
:(r) 

the L -nucleus strong interaction. 

The rrethod 

(3.4.2) is adapted 

given here for calculating £ and r from 

(14 15) 
from Deloff's procedure ' and based 

on a Newton-Raphson iterative scheme for oE. Details of the 

derivation of the complex shift equation are given in Appendix 

B. Deloff shows though, that for the circular orbits, the 

shift oE is approximately given by: 

l 



. -H2 
oE = - 2m 

2ik R 
eO. (-2ik R) 2R.+3 (R o 
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In deriving this expression, it is assumed that ~or some large 

distanceR the strong interaction is essentially zero. The 

~(kO,r) is the regular hadron wavefunction evaluated from the 

radial equation (3.4.2) but with the approximation that the 

true binding energy is repla ced by the unperturbed Coulomb 

energy k O' 

The above expression (3.4.3) is only an approximate 

sol~ion for oE, as it represents only the first iteration of 

the Newton-Raphson algorithm. Nonetheless, the equation has 

been tested extensively by Deloff(l5) and found to give results 

accurate within 4% of the true shift determined from a full 

solution of the complex. bound-state problem. 

This formula together with the previous results derived 

in this chapter provide a firm basis for determining the ~-

atom complex shifts. SpeCification of the [N two-body poten-

tials allows calculation of the [-nucleus interaction via the 

fOldin" model with the potential spin-dependence accounted for 

by the weighting prescription. 

Rapid numerical determination of the complex shift 

is possible by a single iteration of the radial Schrodinger 

equation for the perturbed ~ wavefunctions. 

In this work, the tWO-body potentials which enter the 

folding model are those which are consistent with the [N 
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scattering lengths. It is therefore possible to correlate 

the scattering and atomic data and extract optimum EN ef­

fective potentials. 

, 



'---­
CHAPTER 4 

EN POTENTIAL OPTHIIZATION 

4.1: SCATTERING LENGTH CALCULATIONS 

The scattering lengths of Alexander et al(3) were 

+ 

, 

derived from E- proton scattering. These results can be rela-

ted to the E-n potentials by noting that the E+ p and l:-n sys­

tems are both pure I = 1 states. Consequently, the E-N and 

+ 
E P strong. interactions, and therefore scattering lengths, 

are identical, assuming the force to be charge invariant. 

There are several reasons why this symmetry is not expected 
+ 

to be exact. The C mass difference of 8 Hev will affect 

the magnitude of the strong interaction, and in addition, 

there are uncertainties in the ~+p scattering lengths arising 

from the approximations used in introducing the Coulomb ef-

fect to the cross-sections. 

Nonetheless, the errors 1n the data of Alexander 

(Table 4.1) are large enough to make the symmetry an adequate 

approximation for the purposes of this work. 

An additional approximation of the l:-p scattering 

lengths 1S used in this study. The scattering lengths as 

listed by Alexander consider the l:-p interactions in each se-

parate I,J channel which is not a convenient form for the 

43 
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present analysis. To arrive at E-p potentials \~hich are 

compatible with the spin-weighting prescription (3.1.13), a 

method for averaging the I = ~, t channels in the E- J:..in­

teractions is required. 

The IE-P> wavefunction was expanded in isospin states 

in section 2.1 with the result: 

(4.1.1) 

which indicates, from the squares of the Clebsch-Gordan coef­

ficients, that the L p interaction occurs ~ of the time in 

the I = ~ channel and j in the I = i. This information can 

be applied to the measured scattering lengths. If the ~ p 

is in a definite spin-state of total angular momentum J, then 

the corresponding scattering length can be written as: 

• t 
-p 

----~3~-----)a 3 'J + 
J 1-

1 - t . 1 -c -p 
------~3~---)a 1'2 ' 

J ' 
(4.1.2) 

here the coefficients for the u
JI 

are isospin projection opera­

tors. For the L p system, t.·t = +1 and -2 for I = l2 and l2 
-- -p 

respecticely. Equivalently, (4.1.2) can be re-arranged into 

the form: 

(4.1.3) 

At low energies (long wavelength) the L interacts with more 

than one proton scattering centre concurrently. Ultimately, 
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in the 

value. 

k+O limit; the term ,~.! 
-~ -p 

Recalling the probability 

can be replaced by ~n average 

of interaction in a given iso-

spin state, and the corresponding value of , ., , this average 
-1: -p 

is: 

q, .. , > = ~(-2) + !.(l) = -1 . 
-~ -p 3 3 

(4.1.4) 

Substituting this result into (4.1.3) gives the isospin-

averaged scattering length in the spin state J as: 

2 
3 aJl/2 

(4.1.5) 

This last expression is only strictly valid in the zero-energy 

1 imi t. In consequence, the two-body poten'tial which reproduces 

the average a
J 

becomes only approximately correct in describing 

the ~- p interaction when used in the ):-nucleus potential fol-

ding model. 

Since the [-nucleus interaction occurs at low ener-

gies though, the discrepancy is expected to be small. 

lVi th the acceptance' of the last two assumptions con­

cerning [-n and [ p scattering lengths, a method is required 

for calculating the scatterin.g lengths as a function of the 

potential strength. Two distinct methods are used in this 

work with the first, and mo?t obvious, beang numerical solution ,. 
of the Schrodinger equation at zero energy. Coulomb interac-

tion is neglected in this calculation since the extracted 

scattering lengths are supposed to arise only from the strong 
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interaction. Fo~ some large separation R, such that the poten­

tial is zero es~entially for r > R, the logarithmic derivative 

of the wavefunction evaluated at zero energy, is simply re-

lated to the scattering length by: ~ 

= R _ oj> (0, R) 
a oj> , (0, R) 

• 
(4.1.6) 

The potential dependence of the scattering length enters through 

the value of the wavefunction. Conversely, if the scattering 

length is known, as is the case here, a method is needed for 

determining the correct potential. A Newton-Raphson iterative" 

, procedure is developed in Appendix A for determining the poten-

tial strength assuming the range is fixed. It is shown that 

the first order correction ~V to the initial guess of the 

strength VI is: 

~V = (a - R + 
q,(O,R) .J'i2 
q, , (0, R)) 2m 2 / J 2. (q,'(O,R)) q, (O,r)f(r)dr, 

with f(r) the shape of the potential. By setting the depth 

(4.1.7) 

V = VI + ~V, and repeating the iteration, the depth converges 

quadratically to the root VO. This procedure can be as accurate 

as desired but its one drawback is that it requires solving 

the radial equation numerically from r = 0 ~ R. This can in-

volve evaluation of the wavefunction at hundreds of steps. 

An alternative method is one developed by Deloff(l7). 

In his work the scattering length is related to the potential 
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depth an~ infinite product representation': 

a = 
) 

IT 1'L '(s/zn) 
c n 1- (S/Sn) 

(4.1.8) 

where S is a constant in olving th7 potential depth and range; 

C, Sn"and Zn are constants dependent on the potential shape. 

The values of these for the Yukawa potential are· given in ·the 

computer program of Appendix C. Other simple potential forms 

are in the original work. Equa'tion (4.1.8) converg,esrapiq-

ly .and the first three or four terms of the expansion are suf-

ficient to achieve four figl!-re accuracy. 

The numerical advantages of such an expression 'are 

.j 

clear. Solving the complete Schrodinger equation, and the cal-

culation of four algebraic terms result in equivalent accuracy 

of the scattering length. 

For the case of a known scattering length and unknown 

potential strength it is straightforward to invert equation 

(4.1.8) to solve for the depth VO' Inversion of the two lea­

ding terms has been found to be accurate within a few per cent. 

It may be clear from the infinite product representa-

tion that"it is not necessarily true that there is a unique 

potential depth for each scatt~ring length. Depending on whether 

the scattering length is real or complex, and whether Re(a) is 

greater or less than zero, the number of potential depths and 

characteristics can be classified as follows: 
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Real a 
Re(a) Potentials Re (v) 

<0 1 --weak ~ttraction 

-........ , 
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Comp~ex a 
Potentials Re(v) 

2 weak attraction 

- strong attraction 

>0 2 - strong attraction 
, ' with bound state 

4 - weak attraction 

- strong attraction 
- repulsion 

weak repulsion 

- strong repulsion 

This table can now be compared w~th Alexander's data. Using the 

isospin' averaging procedure and the equivalence of the ~-nand.' 

~-p interactions, his two possible scattering length sets ar~ 

shown 'in Table 4.1 . 

Set (1) Set (2 ) 
Re (a) Im(a) Re (a) Im(a) 

-l: n (5=0) -1. 40±1.'30 O. 0.80±2.00 O. 

-
~ n (S=1) 0.70±0.40 O. 0.80±0.70 O. 

-
~ p (S=O) 0.40±0.90 -0.53±0.60 -0.60±1.68 -1.00±1.83 

-
~ p (5=1) -0.50±0.47 -1.13±0.53 -0.60±0.57 -1.00±0.93 

TABLE 4.1. ~N SCATTERING LENGTHS (FM) ADAPTED FROM ALEXANDER 
ET.AL. (3). 

From the above discussion of potential depths it is evident 

there is a great deal of ambiguity connected with the poten-

tials producing these scattering lengths. In fact there are 

'. 
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16 possible combinations of potentials for each scattering 

length set. 

Not all 32 combinations are used in the present work. 

The ~ain criteria in discarding possible sets is the re­

quirement that all potential strengths within a combination 
"-

be roughly the same magnitude. This is not unreasonable in 

consideration of the NN interactions where the potentials 

are approximately the same in all states. However, in those 

states with positive scattering lengths, both strongly attrac-

~ive and repulsive potential possibilities are used. In this 

way, eventually three different combinations for each scat-

tering length set are fitted to the L atom data. 

4.2: L ATON CO~!PLEX SHIFT CALCULATIONS 

1 ."" . In calcu at~ng the L atom complex energy sh~fts, se-

~eral simplifying approximations are made. It is assumed that 

the Schrodinger, rather than Dirac, equation is adequate for 

describing the L atom system. The error introduced in the 

shifts by not treating the problem relativistically is esti-

mated to be of the order of 2+3 %, which is small in compari­

son with the large experimental uncertainties. Secondly, 

the neutron and proton density distributions are considered 

to be identical and described by the Woods- Saxon form. Fur-

ther, to minimize the number of parameters, the ranges of the 

tWO-body potentials are kept the same for all EN states. In 
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this way the folding model reduces to one shape for all in-

teraction channels. 
1 

For the Yukawa potential and spherically symmetric 

density, the ~--nucleus folding model becomes: 

J dr per) J
w 2 -~Ir~-rl -~(r~+r) 

dr r p (r) (e - e ) (4.2.1) 

o 

The complete ~-nucleus potential for a Woods-Saxon density is 

then: 

with 

and 

dr r2 (e -e ) 

J

'" -lJ I r ~-r I -lJ (r ~+r) 

Po l+exp ( (r-c) fa) 

p = o 

o 

2 -1 
~ (1 + (lTa) ) 
4lTC c 

(4.2.2) 

(4.2.3) 

(4.2.4) 

This is the final expression for the [-nucleus effective poten-

tial. The integral is non-analytic and must be evaluated nu-

merically for each value of rEo The constants c and a ap­

pearing in the density expression are the nuclear half-density 

radius and skin thickness respectively (see refs. 27 and 28). 

Specification of the EN potential depths and range com-

pletely determines the E-nucleus interaction. This expression 

for v~ is then inserted in the radial equation (3.4.2). Numeri­

cally solving the equation for the wave function and its deriva-
• 

, 1 
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tive determines the comple~ shift (equations (3.4.3) and (B.12) 

to be: 

The l: 

" plete 

Batty 

<j>' (kO,R) 

<j> (kO,R) 

. 2 
-2(2+1)-ik R)/R r(21+3). o 

(4.2.S) 

atom data available are very scarce and the only com-

measurements of the complex energy shifts are those of . 

et al(l). Their results are shown below in Table 4.2. 

Element Transition E: rn r 
n+l+n n n+l 

(eV) 

0 4+3 320±230 98+1.68 
· -0.44 

Mg 5+4 25t:4O <70 11 +0.10 
· -0.07 

Al 5+4 68±28 43±75 25+ 0 . 06 
· -0.05 

Si 5+4 159±36 217±110 41+ 0 . 11 
· -0.09 

S 5+4 360±220 870±700 1 47+1.01 
· -0.56 

TABLE 4.2 l: ATOM COMPLEX ENERGY SHIFTS (1). 

Some slightly older data are available from H. Koch(2) who 

measured the upper level widths in four atoms. His results are 

listed below in Table 4.3. 



Element Transition rn + l n+l+n (eV) 

C 4+3 .031±.012 

Ca 6+5 .40 ±.22 

Ti 6+5 .66 ±.43 

Ba 8+7 1.68 ±3.60 

TABLE 4.3 E ATOM UPPER LEVEL WIDTHS 
(2) 
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The widths alone are not enough to determine unambiguously 

a complex potential depth, as ,the effects of the real and 

imaginary components are coupled. Nonetheless, these data 

can be included with the more complete results of Batty. 

Although these widths are not used in the X
2 

mini-

mization procedure of the next sect'ion, the predicted shifts 

of the optimized LN potentials are compared with Koch's values. 

The complex atomic energy shifts are connected with 

the scattering lengths through the two-body potentials en-

tering equation (4.2.2) for the E-nucleus effective interac-

tion. Since both a and oE depend on the EN potential depths 

and range, the potential parameters' can be determined by 

optimizing the fit to all the scattering and atomic data. 



, 53 

4.3 POTENTIAL OPTIMIZATION CALCULATIONS 

It is clear from the discussions of the last two 

sections that the problem of extracting consiste~t EN po­

tentials is not straightforward. Difficulties arise from 

the large number of potential sets possible, and the few pieces 

of data available for the fitting procedure. 

As mentioned earlier, eventually all but six poten-

tial combinations were eliminated. The distinct natures of 

the remaining potentials are summarized below. 

Set (l) Potentials 

Re (a) Im(a) A B C 

-E n(S=O) -1..40 O. 

-
1: n(S=O) 0.70 O. strong repulsion repulsion 

attraction 

-1: p(S=O) 0.40 -0.53 strong strong repulsion 
attraction attraction 

-
1: p(S=l) -0.50 -1.13 

Set ( 2) Potentials 
Re (a) Im(a) A B C 

-1: n (S=O) 0.80 O. strong strong repulsion 
attraction attraction 

-1: n(S=l) 0.80 o. strong 
attraction 

repulsion repulsion 

-1: P (S=O) -0.60 -1. 00 

-l: p(S=l) -;0.60 -1. 00 

TABLE 4.4 POTENTIAL COMBINATIONS FOR SCATTERING LENGTHS 



/ 

54 

Complex-Yukawa-shaped potentials were assumed to describe the 

EN in tera"ctions : 

(4.3.1) 

The complex depths were fixed to fit the central values of 

the scattering lengths in sets (1) and, (2) of Table 4.1 using 

the iterative approach of Appendix A. By varying ~ over a 

wide range, and repeating the above procedure, the depths were 

determined as a function of the inverse range ~. 

Folding the resulting two-body potentials into the 

nuclear distributions of the E atoms (Table 4.2) produced the 

E-nucleus potentials (4.2.2). Solving the radial equation· 

with these potentials predicted the atomic complex shifts, 

using equation (4.2.5) for oE. 

This calculation was repeated for each value of 

the inverse range"~ and corresponding depths to determine the 

"minimum X 2 of the fit to the atomic da ta as a function of IJ. 

Because of the large errors in the scattering data 

it is not reasonable to limit the potential strengths to 

values which exactly reproduce the scattering lengths. It 

was decided then to treat all six depth parameters and range 

as variables. 

Using the minimum in the curve of X2 as a function 

of ~ as a starting point, the total X2 to all the atomic and 
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scattering data was then minimized by' varying all seven po-

tential parameters. This is a long process since the real 

and imaginary components of the potential are coupled in their 

effects, witn. the result that the x2, can not be minimized with 

respect to each parameter independently and therefore an 

iterative solution is required. To decrease computing time, 

the scattering lengths were calculated in this, optimization 

• program using the infinite product representation (4.1.8). 

The computer program used to perform this minimization is 

listed and commented in Appendix c. 

This approach was used for all six potential combi­

nations which produced six minima in the x2 
hypersurface. 

" The resulting best-fitting potentials all produce a total \~ 

on the order of 10 for sixteen degrees of freedom. On this 

basis then the x2 alone can not distinguish bet\veen the six 

potential sets. 

Nonetheless, four of these solutions will be seen 

to be unacceptable. so they will be discussed first. The 

optimized potentials A and B for sets (1) and (2) of Table 

4.4 are reproduced in Table 4.5. These are the four sets for 

which a positive scattering length has been interpreted,as a 

bound state. 
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Set (1) Set . 
potent~~l Depths (Mevl t; 

A B A 
Re (v)· Im(v) Re (v) Im(v) Re (v) Im(v) Re (v) 

B 
Im(v) 

-l: n(S=O) -179.3 O. - BB.9 O. -747.2 O. -207.3 O. 

-l: n (S=l) - 54 4.4 O. 150. B O. -612·.6 O. 90.4 O. 

-l: p (S=O) -751.3 -744.9 -320.6 4.B -lBO.B -211.0· 36.3 - 7.7 

-l: p(S=l) -lBO.9 -103.5 -77.1 -39.9 -lBB.O -105.0 0 - 33.9 -11. 6 

-1 
)J(fm ) = 2.04 1. 52 2.13 1 .) .... ._J 

TABLE 4.5 BEST-FITTING POTENTIALS A,B OF SETS (1) AND (2). 

In all four of the above sets, at least one of the states pre-

dicts an unrealistically large binding energy. The A solutions 

of sets (1) and (2) give ~-n binding in the neighbourhood of 

110 Mev. B of set (2) predicts a ~-n bound state at 50 Mev 

and even the real part of the ~ p Iso potential of B, set (1) 

would bind the r-p with 82 Mev, or more instructively, this 

is about 4 Mev larger than the !,\ mass difference. This im-

plies that the !p·~n decay would be energetically unfavourable. 

As discussed earlier in this work, these huge binding energies 

are not impossible but they are highly improbable. For this 

reason the four solutions are all discarded. 

Results of the optimization procedure for the remaining 

two solutions are shown in Tables 4.6 and 4.7 where their pre-

dictions are compared with the experimental findings of Alexan-

der, Batty and Koch. 
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• 

58 

The total X
2 

of the fits are 10.1 and 8.1 for scattering length 

sets (1) and (2) respectively. Set (2) seems to be favoured, 

and comparison of the results indicates that the difference is 
I 

due mainly to the contribution from the scattering lengths, 

whereas the L atomic X2 are almost insensitive to the differen-

ces between the sets. 

The resultant fits to Batty's data are shown in figure 

4.1 for the 5+4 transition atoms. In addition, the L-P scat-

tering differential cross-sections predicted by the sets are 

shown in figure 4.2 again indicating that set (2) is the better 

fit. 

The important point is that both sets favour a I"eak 

... - 3 
repulsive L n Sl interaction rather than strong attraction, 

and the overall indication is that the LN potentials are weak 

relative to the NN interactions. 

4.4 L HYPERNUCLEI 

l: hypernuclei could be produced through the strange-

ness-exchange reaction K-+N~l: +n, in eh~osing a nuclear target 

to low momentum K beams. It is not generally expected though 

that the L hypernucleus would exist long enough to identify 

because of the strong l: p decay. However, if the width r of 

the L energy level was small, there would be some hope of de-

tecting them. 

The two acceptable potential sets of the last section 
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'are used here to predict the complex, ground state binding. 

energy in a few. proposed ·hypernuc1ei. The nuclei have been 

chosen so as to scan the periodic table. 

The method of solution is straightforward and com-

p1ete1y analogous to the procedure used for the E atoms. EN 

strong and Coulomb potentials are folded into the nuclear den­

sity distribution to produce the e~fective E-nuc1eus potentia1~ , 
, 

With this potential the Schrodinger equation is solved nu-

merically to det~rmine the E complex ground state energy. 

Results for this procedure for four nuclei are shown in 

Table 4.8. " 

Nucleus 
E Binding Energy 

Set (1) (Mev) Set (2) _ 
Re(E) Im(E) Re(E) 

~ 
Im(E) 

12c 1. 85 1.52 2.19 2.12 

16
0 3.49 2.58 4.25 3.42 

40Ca 10.48 4.33 11. 65 5.30 

208 pb 27.24 5.32 25.14 6.16 

TABLE 4.8 PREDICTED E HYPERNUCLEI BtNDING ENERGIES. 
I 

It is clear from the table that E hypernuclei are not likely to 

be seen, as expected. The lifetime of the bound L in 160 for 

example is 

3 tor of 10 

-22 
predicted to be 1: = ~/r '" 10 secs. This is a fac-

shorter than in the L atoms, which makes the L 

hypernucleus.existence improbable. 

" 
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CHAPTER. 5 

CONCLUSIONS 

It h,as been shown that the optimum EN parameters 
, . \ 

consistent w~th both the atomic and scattering data indicate 

- 3 there is a repulsive interaction in the E n Sl state. This 

unusual result deserves further consideration. In the 

one-boson exchange model the EN potential is: 

V(OBE) = 
-Ilr e (5.1 ) 

--------~ 

where the tensor component has been neglected since it gives zero 

average· contribution in S state. The values of the coupling 

constants are not important for this discussion, except for 

the fact that they are both positive. Whether the potential is 

'-
.a~tractive Qr repulsive is then completely determined by the 

spin and isospin terms. 

3 
For the-pure I = 2 I n interaction ~I·~n = +1, and 

the spin 'term a~·a = -3 and +1 for the singlet and tri~e _" _n 

states respectively. Therefore it is predicted by the aBE 

model that, in the long-range tail of the potential at least, 

the E-n interaction should be repulsive in the spin-triplet 

" states, in agreement with the results of this work. 

Further, both sets of potentials predict weakly attrac­

tive I-n singlet potentials. These interactions are too weak 
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to support a E-n bound state and, since the triplet potential 

is repulsive., it follows that the E-nn° system is also unbound. 
° 0 

To summarize the findings of this study then; it is 

found that the scattering and atomic data can be fitted in a 

consistent manner but because of the large experimental un-

certainties, it is not yet possible to conclusively distinguish 

between the two sets of scattering lengths. However, both 

sets of· extracted potentials predict that neither the E-n, nor 

E-nn bound states exists. 

The overall ihdications are that the EN interactions 

are weak relative to NN interactions, and, mo're importantl~' 

the E-n triplet potential' is almost certainly repulsive. 
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The iterative procedure developed here is a Newton-
, 

Raphson algorithm for determining the potential depth Vo 

corresponding to a 

that the potential 

known scattering length a~ I~S assumed 

can be written in the for~ 

(A.l ) 

where Vo is the potential strength and f(r) is a smooth func­

tion of r. The potential is also considered to be short-

ranged so that for some value R the potential is essentially 

zero for r" > R. 

The radial Schrodinger equation in this case is: 

<j>" (k,r) + (k2 _ o . (A. 2) 

4t can be shown that in the asymptotip region r > R, the 

logarithmic derivative of the wavefunction L(k,r) is related 

~a"ering leng'h a a' "e:o energy by, 

a = R - L (0, R) (A. 3) 

!' 

The depth Vo which correctly produces the scattering length 

is the root of the equation: 

a - R + L (0, R) 
1 = 0 (A. 4) 
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be expanded in a Taylor series about some ini-

tial value of the strength VI' such that Vo = VI + ~V, with 

the result: 

aG(V
I

) , 
~V = - G(VI )/ av '. 

I 

(A.5) 

The partial derivative of G can be expressed as a function of 

the wavefunction logarithmic derivative using (A.4). That is: 

° 
The integrand is determined directly from the radial equation 

(A.2) with k = 0. 

a"''' (O,r) <p(O,r) ~ = <p(O,r) 
aV

I 

2~ f (r) (<P (O,r) + VI a<p (o,r» 
~ aVI 

(A.7) 

and 

<P(O,r) 2m f(r)V ap(O,r) 
h 2 I aVI 

(A.8) 

Subtracting (A.8) from (A.7) and substituting the result 

into (A.G) gives: 

2m 
- .j'(2 

1 

<P'(O,r)2 J

R 2 
<p (O,r)f(r)dr (A. 9) 

° 
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, 
Using (A.4) and (A. 9-) , the final expression for the correc-

tion to the potential depth 6V becomes: 

/ 
6V = (a -

2 
R + 4!(O,R) l~ 

- <1>' (0 ,R) 2m 

R' 

(<1>' (O,Rn 2/J <l>2(O,r)f(r)dr 

o 

(A.10) 

This final expression establishes the iterative scheme. For 

an initial guess of the strength VI the radial equation is 

solved at zero energy for the wavefunction to the truncation 

point R. The correction to the strength 6V is determined from 

(A.10). This gives the new value of the depth V = VI + 6V. 

This process can be repeated to any accuracy in the depth Vo 
and since this is a Newton-Raphson method quadratic convergence 

to the root Vo is assured. 

\ L 

\ 

• 

• 
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APPENDIX B 

E ATOM COMPLEX ENERGY SHIFTS 

The expression for the complex shifts (3.4.3) is 

derived from the radial Schrodinger equation describing the 

E-nucleus system. 

n + (k2 + 2mc aZ 
ljIE (k,r) h r: - .9,(.9,+1) 

2 
r 

The regular and irregular solutions of (B.l) are denoted as 

(B.l) 

$(k,r) and f(k,r) respectively, with $c(k,r) and fc(k,r) the 

corresponding solutions for the pure Coulomb case (V
E 

= 0). 

It is assumed that the strong interaction VE is short­

ranged so that for some R, VEer > R) = O. The Jost function 

is defined as the Wronskian 

• 
L(k) - W[f(k,r),$(k,r») 

(B. 2) 

= W[fc(k,r) ,$(k,r») r > R , 

since fc(k,r) for r ~ Rand V
E 

= O. 

The binding energy of the E corresponds to a zero 

of the Jost function(2l). From the definition of the Jost 

function, an equivalent condition is 

G(k) -
$' (k,R) 
$(k,R) 

, 
fc(k,R) 

f (k, R) 
c 

= 0 . (B. 3) 
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Applying the" Newton-Raphson method to (B.3), G(k) can be 

expanded in a Taylor series about some initial value of k 

such thatk = k + 6k. That is: 

(B. 4) 

The partial derivative of G can be determined directly from 

the definition (B.3) as: 

. ' 
,If aG (k) 

ak 
= W[p(k,R),~(k,R)l 

$2 (k,R) 

W[f (k,R),f (k,R) 1 c c 

f
2

(k,R) 
c 

.. (B. 5) 

where the dot denotes differentiation with respect to k. The 

differentiated functions in (B.5) can be eliminated by retur-

ning to the radial equation (B.l). Differentiating the equa-

tion for <p(k,r) with respect to k gives: 

..-.-~--.. -,,- .. 

= - 2k<P (k, r) . 

(B. 6) 

Multiplying (B.l) and (B.6) by a<p(k,r)/ak and <p(k,r) respec-
." 

tively, and subtracting, gives: 

d • 2 
dr W[<P (k,r),$ (k,r) 1 =-2k$ (k,r) . 

Similarly for the irregular solution f (k,r): 
c 

(B. 7) 
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Integrating (B.7) and (B.8) from O+R and R+m respectively, 

and inserting into (B.5) gives aG(k)/ak as: 

aG(k) 
ak 

= -2kII
R

, (~(k,r»2dr 
" ~(k,R) 

o 

(B. 9) 

Since R is assumed to be small, the second integral is large 

compared with the first, so to a good approximation R can be 

replaced by 0 in ,the integrals. The expression (B. 4) for ilk 

then becomes: 
• 

f (k, R) r f~(k,'r)dr) ilk c (B.IO) = ~(k,R) W[fc(k,r) ,~(k,R) 1/(~2k 

thale 

0 

It is known complex shifts are small compared with 

the unperturbed Coulumb energies. If the initial value of k 

used corresponds to the unperturbed value kO it has been shown 

that only one iteration is required to achieve an accuracy of 

4% or better(15). 

For k = k
O

' the function fc(kO,r) is proportional to 

the regular solution ~c(kO,r) (21) and the expression for the 

energy shift oE is then: 

OE = 
~2 
2m 

, 
~ (kO,R) 

[~ (kO,R) 
(B.ll) 

In the E atoms the orbits of interest are the circular orbits. 

The analytic expression for these wavefunctions is well-known 
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(see for example, ref. B) so substituting f~r <Pc(kO,r) and 
, -

<pc(kO,r) in (B.II) produces a convenient form for the complex 
.' 

shift: 
, 

<P (ko,R 

• <P (kO' R) 

This final expression is suited to n~merical WO~k 

strong interaction dependence enters only through 

mic derivative of the perturbed E wavefunction. 

(B.12) 

in that the 

the logarith-
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~0=ll./IFCU~PI·ca··JII/I!. •• I~.·~rANI1.~·AO/COI··2J 
I=PMIHILJ 
ATM4SS=~NUCL~(LI·q31.~~1 
ol~EAN=ArNASS·5In~AN/IAr~ASS+SIGNAhl 
ALPHAs2.·l~E'N/lll~A~·C·!.J7.al61 
~~0~=Z.·A~£AN/I'~~AR·CI··2) 
A"p:ANGt<ILI 
',",P=l 
WN = A T Nil,.., L 1 -PNIJtd.t.1 
Va=~N·VaN'~p·VCP 

~g =:~. ~a~~A~.« 111137 .:'1f:1" Z IIII A~+1.I" 21 
~I{O=A"E."NIIH!"lJ.oi·-= 1'« ll.J7.;! 30 1/1-''''1.1 
S~QKO=k~O"Z • .. ,. 
Z·1111::lt •• O.1 
l~H21=1:' •••• 1 
~~U~~:~t:j'·1 
NN:lNIKI 
OJ 5 :=:..~.N 
CALL GILStPIJJ.HI~I.rlE.l~I.7NPhIH.OE'"'IVNI 
CALL G~INT(C •• lb.,RtC~NV.~NRI 
VNUC~ I: V". vrl"-1 CJkr It;ui;. 

_ .. _-------
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g~t'f~~~XPI-Z"~~0'A(~II·112.·~~O'Af411··(2.·AM.!.II' 
A '- (.1I"I·ltlIZl/lNI!.J-lol""l.I'A( .. I·"KOI·:..l~hll~f.OI'1·IAI"'I·'':.1' 
e FAcroJ;!fZ,'''',''·Z.11 

IFf IrICi~l.~f1.!II.ll . 
q IoQ 1 r£« h, 1'3IZ.4 M.oO:r.':'L (-i]~.:.L UtI,:' IfI'IAG f-O£:l r Atl 

11 C':iHIFr 1"11 = ... £.0.1. 1-:':t.LlAEI 
CSll IF T (11'11 =_ I..,A,; l-tJt:l.·r.).Ef 
M=/'I.l 
A~=:':·Hl. 

13 C,)NT If<lJ~ 
1'3.1 CJ ... r IPiUt. 
H F".]PM.1i(l'l:C."Z" :.ux ... L"·.1'l ... ~PSlI.!l"' ... !.D ... ··G:.h..,,l .. , 
1'1 ~·O",.Arl/l.)I.zF"d.".Z.F.:.5dl ~ 

F-;: t-I,IO.:-4 
E.~C 
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~U"RQUfIHi GILsrp(X.H.N.Y.l,O(~IVt 
••••••••••••• ~ •••••••••••• % ••••••• 

PUQPOSEt 
GILSTP SOLV~S Nt COUPLED, F'U~Sr-OQO~M OIFF'E~Etlrt:'L 
Eau~TIa~jS LlY rH~ GILL l'I'Ja[FlfO "'JNG\:'-KtJH~ "ETHOO. 

O!::SCIUFTICII CF' ClAIUftEH:;l:51 
X .. I!IITIJ,L VALUE CF tNDEPENO!NT pA$i.AI'fETER. 
H .. SH,o·SUS: FOR INC"!~!NT Pili X. . 
N .. ~lJ:-t~E.~ uF CQUClL!;;O ~IJU.HIO"S ,r-tAI[,"IH1 CC 1~" 
Y .. J,~~AY OF ItltTILL VALUiS OF FIJNCTICNS. 
1 • ~RRAY OF FUNCTION OERI~4rIVES CALCUL~TiO SY a£~IV 

FUNcrICNS AND SUBROUTINES ~EqUI~EOI 

DE~~~~~u~l~~Z}o CALCULATE FUMertON O!tUV.:.rtVE,5. 

COhPtE) YC!Zt,lllZI,OllZ1 

CALL CE~IV(~.N.Y.ZI 
00 l 1=1," 
y([,sYIII.H·ZlII/Z. 

J ruu-rcu 
XaX.H/", ~ 
CALL a~~[YCXIN,Y.ZI 
00 5 l=l,N 
Y(II"'YfII'H·.ZqZ~91Z1'ti! .. (llII-I)III' 

5 O(II'".S!lS7ao .. J1b .. Ittl • 1i.1ZiJliiJIoJSQ • 0(11 
C~l.l. "ER[Vlx,N.'I',ll 
00 1 ['"l.h 
YIIl=Ylllo"·1.7iJ71C67HZ· (l1I,-I)(l1i 

7 aI11~i.~2e_Zl1l~4 • IZtII-11111-1.41~~llS6Z~ • alII 
'(ill .:.HIZ. 
CALL OE~IV(X,~t.,.ZI 
0:) " I=l.N 

9 'I'111='I'111'''''·III11-01111/6. 
R~ TURN 
END 

5:.191(0U TIm.: :lER I'IN ('hN, IN,lDR IME 1 ................................ 
PUJ;POSEI 
O~UVN IS US£,O IN CCtIJC~ICTIQN WITH GILSTP 1.,..0 O,EFWES 
rtt~ FUNCTICtj OEIiIV.UlvE:i AiJ~E4oING IN THt. SCHRODINGEt:; 
EaU~TIO~ FJ~ THE ATCHIC ~RQ)L~M. 

OESC;;:IFTICN 
IN 111 

OF PAQ""Ert:~S. 
- JJAVEF1H1CTt')tj VALU~. 
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Ztll Z I 
I~~I"~lll 
ZPR It'E (,21 

- f"II<ST, OE~ ZVAT I"~ OF WAYEFUPICTIO,... 
-' FI"lST :lE~IVI.TI'/E OF WAVe~ut.CrrC~1 {SAI1E AS Zt~c.;II. 
- SfCOt.Q CE.HVATlVt: OF WAllt:FUhCTlt:N. 

Z 
A" 
REO", 

VNUC," 

AL~H4 
5ClR:I(O 

NuClt:A~ Ct-IAt:tjE. 
- AhGULAR MQ:1£NT1Jf" aU4NTU/'1 NU""'E," l. 
.. TWICE TH, PEOUCEO "~SS OF THE SIG"~-~UClEuS 

SYSTEM OIVla~a a'l' HD4~··~. 
- CQM~LEX SIr.t1~-"-lUCLEUS POTEhTUL AT OISU",CC:: ~ 

FQOM tIUCL.'::':", C::NT~E. 
... FI.'4E STNU·:TURE CONSTANT~ 
- UhPERTURi£D CDULond iN£~G'I' OF ATOhIC OQQIT:L.. 

CON~L£X l~(21.ZPRIMi(2J ( CO"'~L'::X VflUCQ 
COH"CNIClf"~O",ALPHA,I,Sa~<O.A",VNUCR 

ItllRIMEC11:It.(ZI 
IF"I~IS.SI' 
.IPP1M~fZ :f~EDh.VNUCR: .. ALPHA·ZJR.AN.(AH.l.I/IP. •• Z).SClPKOI.ZN(lJ 
IO.EfltPN 
ZP~I~E(21~{O •• a.1 
.l<EfUR:N 
END 

., 

, I 
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55 
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65 

70 
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.. 

SURROuTiriE G'[Nr(.\.R.~.':.SU"1 ............................. 
PURPOSEI 

GAINT P£RFO~"$ GAUSSr~N INTEG~Ar[ON OF A 
CQt,VOt,U r ION-T,(I)£ I~He:GRAL. ~ 
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I' 

THE I"'T!.:GR':'L IS OIV[oEO INTO FOUR IfEGtONSI 
1. A Til ~-I,I.. 
Z. R-... TO R. 
l. R TO "' ..... 

., ... 
'". R." TO :l. 

DE-SCRIPTION OF PAR;AI'IETER$I 
R ... VALUE OF THE INDEPENDENT VARIABLE. . 
A,B LIMITS OF' [UTfGIU,Tl:lN FOR TH€ DEPENDENT V""RIA[lLE. 
SU~ ... INTe.GIUI.l. VALUE REfUtt~EO' TO CALLING pr:;OGRAN. 
C.W GAUS.i' ORDINA l€S AND WEIGHTS. 
NOPS .. HUHSER OF GAUSS POl~TS. 
P,PW ... TRANSFOR"ED GAUSS O~OINArES AND wEIGHTS TO 

rH~ ~!G[ON OF INTEGRATION 'A.BI. 

SURROUfINES o\NO FUNCTIONS REQUIREDt 
FeR, 1=-( 1,1 I 

EXTERNAL FUNCTION OEF'ItIIN(i THE INTECQAND FORM, 
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20 
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20 
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SS 
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C 
C 
C c 
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C 

C 

. , 80 

FUNCTrefrt CDNVCRl.Rf) ........•........... 
PU~PQ$E. 

~Q.N" I$ UitD .tu CDrJUNCTION WITH G"'f1r. 
VAL~~Trs tHE NueL A~ etNSITY-~OT~1N I'L FOLDING 

INTI!Cf\.1,Nil USEa I~ G"'IhT fO~ TNt YUI(.1,,,,4 POTEtorIAl. 

DEsC~tPrICti CF PAOtA"H£RSI 
R1 .. I"oE~ENCEf'H VAIiUALE. . 
'14 .. Ot"C:NOfNT 1I':~[':'llL.E OF' INTEGA,4rtCN. 
AD - NUG~fA~ ~~lN' THIC~NESS. 
Cll NUCLE.l~ HALF-O£NSIrY ~:.C[US! 
RIl - OE'ISIrY NO~/'!''''.IZ~TtON CO~j'iT .. Nr. 

BErA YUI<"'II PUT£Jrcru\. ttl ERSt !;IAN E. 
O<NS waeDs-s.,aN NUCL". DENS~' ~HAPE. 
S~ADE - ,YUICIIiII POTENrlAL SHXPE. A tR ANGULAA INTEGRATION.· 

C~~"ON/C2/AO.CO,~o 
Ca"tIlJN/CJ/8[ TA 
CDh"ON/C~/Ha.A,C,HftARc,StG"A",REOhsN.rwOPI.FQU~PI 

SH APE ."Z ·,IE.w:P I -t3~TA' ~ e S (c.:.->l:Z II -EJrPC·Oi:U·CR:' ."21 ) I 
O~NS~1./1~ •• [XPC'~2-COI/~OII 
cOKv.r~aPI·RO·SHAPE·OfNSf'Rl·COETA··llt 
"£TU~N 
£.NO 

sua~~UTlN£ SCATlCV~~Y.SLI ) ......................... 
PU~POSE. 

scnl CALCULATES TttE SC"rTER NG LEtlGTttS CORHSPONOI~G 
TO Tt4! POH,lrUL v4RIaLES C.Jf'4TAlI'lt.O Ito THE ';;'IeAY IJ:.R'(. 
TH~ "UtiOO IS BASED ON AN ltiF IN[T£ PMOOUCT £XP"NSIiJN 
OF THE SCAT1'€~["G l.€hGTH .. 5 A FUIrrlCTI\lN OF THE. POTtNTUL 
OEPT~ AND ~~~~E. ONLY T~E FI~ST FJU~ TERhS OF THl 
~xPA~SlCN 4~e ~£rAINiO HER~. 
THe CO~STANTS S\l S.lS lOP~A~t"G IN THi EXPANSION A~E 
SPi,CIFICALLY ofFjNEa FO~ Ttti TUICAWA POTEt-.TIAL. OTttf,.q 
POfEM lolL PolQ.AMt: c.,S olr.c: LISTE.O IN THE C"'lGI~.lL PAP!::" BY' 
A. OEL\lFF. tlUCL.~ttY's •• Aa~J,.~2(lq751 • 

DESCRIPTlCN OF PARAMiT(~SI 
5L - '~R~y CJ~T~INrNG THE C~LCULATEO 5C'TTf~IhG 
va - C.JttOL~X a:~olY oF SlGr-A-IrrlUCLc!.\lN POTiNTIAL OEPTHS. 

L~NGTHS ~~TU~tlEO To CH[Sa~. 
so - I=\lT:;:NTUL aC:PTrt USED IN ElCPJ.N'iION. 
5,15 - A~~''( Or CJtlSTAIUS USE.J IN ~'(PANS(ON. 
VA~Y • A~~AY CF POTENTI'L PA~AMETE~5. 
B~TA • INV~RSE POTEhTlIl. ~ANGi. 

COttPLeX SO.A.VCI5CiI.SINT(5'Jt 
O[M£hSliJ~ VA~YC5~I.S~ISJI 

gg~~8~~~~ ~ ~i~~: ~S ~~t ·~C. S ""'AM, REOHSN, r~ap I. FOURPI 
CO~~O~/C11fNSC'rL.~SLI5JI.E~~SL(501 
COI1"ON/~l i.f [rICiST 

VO(!laC~PLXIIJA~Yf11.0.1 
110 I 21 =Cr.Pl.lC I \I~';Y{ 2 I. Q.I 
VO {11 ::C:-oPLlI. f VA .. '" 11. "A.o:Y"lqll 
V1C~I=CM~LlI.llJ~~YI~I.vA~YI611 
l1::TAay,:. .. Y 171 
NP=tlSClrl./2 
I~([~C£ST.(Q.111.J . 

l .. ~H-::'(e, 1J1 
.) 00 1:" .1=:',1.11 

50.-~£CM~N·V~{Jl/a~TA··l 
,0\::1(1 •• 1..1 
110 ; "'::1,14 
~;~Ir~~ :~~·fI.:. .. (SOIlSI ... lIlft1.-ISO/S(LIIII 

5 COt,fI"U! 
5IhrIJI=-~O·5I~TIJI/:1ET~ 
5L c 2'J-LI =;;i!t.L (S: Nr (.1 II 
SLCZ·JI::I.[n",r,liI:.rIJII 
IFII~C!Sf.t'~117.3 

7 WW: Ife: Ib.iS I ;;'£J.L(V~ (JI 1 ,AIf'I~C.C va fJ II .~£AL I SlNTfJII, .. [MAGI .iIrjJ, JII 
9 CONr :hCt:. 

11 CO,,<fUH .. E: 
11 FO~~~T{/llX,-JO-.JSl.-~L."1 
15 r:) ~Mol r 11":: .It.ZF1 :i.a .'J'II:iC!f .. 5 .IU 

RE TOIt". . 
Ella 

"' 
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c 
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c g 
g 
c 
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F'UNCTtCN FACTOR(A' .................. 
- ·-ttuRPO~E. 

FACrQ~ CALCUlATfS A~F~CTQ~IAL ~O~ ~£AL VALUES 
STI~LINGS ~P~AOX!MATION IS USi~ FO; "»11. 

aESCRIFTICN OF PA~AH£TE~SI 
A .. IN~ur: hUsr DE A POHTIV':' loI"OLE NUHBER. 

1'(4-1,19,91 3 
3 1'(4-11.15,5,11 
5 NI.IFIXU"-t 

PRoDer-" 
00 7 J.l.",A· 

1 ~Roocr.PROQCT·(A .. FlOAT(JII 
~~~J~~.p~cocr , 

q [F(A.LT.O.IG~ TO 13 
"CTQAel. 
01£ TU~N 

11 STIRLA-IA •• 5.-"LJGIAI-A •• ild934533Z 
FACTOR·EXp(SrI~LAI 
01£ rU~N 

13 wQITE(6.1.51 
15 FOHH.H(f1..'(,"ERRORI N~GArrYl AR(iU,,£tiT If' FACTOJ;", 

CALL. (XU 
£_0 
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