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Abstract

Successful project selection and management requires optimal supervision of
corporate resources within specifications for time, cost, and performance. We developed
a model and algorithm to support decisions on these three dimensions for project
managers. It combines the advantages of the Program Evaluation and Review Technique
(PERT) and the Critical Path Method (CPM). Our methodology leads to more accurate
results than PERT/CPM, which typically results in optimistic planning due to less than
actual completion time estimates that do not consider the possibility of more than one
longest (critical) path. We also estimate performance measured by the Internal Rate of
Return (IRR) of the project and the tradeoffs between time/cost and performance. We
allow decision makers to calculate the probability that each activity will be critical, an
indication of their relative importance for managerial purposes, in polynomial time.
Furthermore, our methodology provides the means to obtain the optimal time/cost
schedule of expected completion times as well as the variability in these time, cost, and
performance estimates. We can apply our equations to rank the desirability of projects in
a proposed portfolio, thus aiding in the portfolio selection process. A stochastic extension
to the Analytic Hierarchy Process (AHP) is also used in conjunction with our

methodology to demonstrate the application of uncertainty calculations in managerial

group choice situations.
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Notation

N

tij

-3

SR

T
t

fi(ax, bi,ou, Bi)

Ai

A
m

g

Adjacency matrix of a probabilistic network composed of nodes N
={1,2, ..., n} and activities A = {1, 2,...,m}.

Random duration of activity k in arc (i,j) where activity k belongs
to path p (kep) described by the beta distributed density function
f;i(t) with minimum, mean, and maximum parameters ajj, i, and
byj; correspondingly, range parameters [aj;,by;] and shape parameters
(0 Bi)-

Random completion time at start node i with unknown probability
density function fi(T).

Random completion time at sink node j with unknown probability
density function f(T).

Set of predecessor nodes directly connecting to node j.

Completion time of activity k in arc (i,j) if activity k is 100%
critical.

Completion time.

Duration time.

Beta distributed duration time of activity k with range parameters
[ak.bk] and shape parameters (ou,B)-

Mean completion time at node i.

Mean completion time at node j.

Minimum number of activities of a network of n nodes and m
activities.

Maximum number of activities of a network of n nodes and m
activities.

Maximum number of paths of a network of n nodes and m
activities.

Density coefficient of an AOA network with n nodes and m
activities.

Total number of pathsp=1,2, ..., w.

Minimum completion time at node i.

Minimum completion time at node j.

Minimum duration time of arc (i,j).

Maximum completion time at node i.

Maximum completion time at node j.

Maximum duration time of arc (i,)).

First shape parameter of the beta distributed duration time of
activity k.

Second shape parameter of the beta distributed duration time of
activity k.

Mean completion time at node j.



Oj
|Znil
|z
Zhi

Variance of the completion time at node j.

Normalized criticality index of activity (h,i).

Normalized criticality index of activity (i,}).

Criticality index of activity (h,i).

Criticality index of activity (i,j).

Criticality index at node i.

Criticality index of the arc (i,n)

Run length.

Error margin of the output variable.

All-delayed direct cost of activity k in arc (i,j) of the maximum
activity duration time (minimum cost).

All-crashed direct cost of activity k in arc (i,j) of the minimum
activity duration time (maximum cost).

Direct cost of activity k in arc (i.j).

All-delayed (minimum) direct cost of the project.

All-crashed (maximum) direct cost of the project.

Total direct cost of the project.

Project indirect cost.

Minimum overhead (indirect) cost.

Increment (slope) of the overhead (indirect) cost as a function of
time.

Total cost.

Total cost of the minimum completion time.

Total cost of the maximum completion time.

Maximum total cost.

Minimum total cost.

Minimum cumulative direct cost occurring at maximum
completion time (B;).

Maximum cumulative direct cost occurring at minimum
completion time (4;).

Minimum cumulative direct cost of activity k in arc (1,j).

Maximum cumulative direct cost of activity k in arc (i,).
Cumulative direct cost at node j.

Cumulative indirect cost at node j.

Cumulative total cost at node j.

Minimum completion time of activity k in arc (1,)).

Maximum completion time of activity k in arc (i,j).

Expected (average) completion time of activity k in arc (i,j).
Expected (average) completion time of node i.

Expected (average) duration time of activity k in arc (i,j).

Slack of activity k in arc (i,j).

Percentage of slack by which activity k in arc (i,j) has been
delayed.

Total cost assigned to node 1.

Net Present Value of the project.

Project planning horizon.
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Q=IRR

E

NFV

S
x=[X1,...,Xs}

q=[q1,-.-q]
t=[t1,. . .,ts]

c=[c1,-..,Cs)
r=[r1,. . .,I'S]

Aq=[Aqy,..., Aqs]
At=[Aty,..., Ats]
Ac=[Aty,..., At]
Ar=[Ary,... Arg]

X*=[xr*,..Xs*}

AAA

AVVy

Project’s rate of return, equal to the Internal Rate of Return.
Income per time unit expected after project completion.

Net Future Value of the project.

Portfolio size.

Column vector indicating whether or not project k is included in
the portfolio.

Column vector indicating the performance of project K.

Column vector indicating the completion time of project k.

Column vector indicating the total cost of project k.

Column vector indicating the risk of project k.

Column vector indicating absolute variability of the performance
of project k.

Column vector indicating absolute variability of the completion
time of project k.

Column vector indicating absolute variability of the total cost of
project k.

Column vector indicating absolute variability of the risk of project
k.

Column vector indicating the optimal solution.

Set of mandatory projects.

Set of projects preceding project j.

Set of projects mutually exclusive with respect to project j.
Relative importance of time compared to cost and performance.
Relative importance of cost compared to time and performance.
Relative importance of performance compared to time and cost.
Total budget.

Risk preference of the group of decision makers.

Uncertainty to average ratio of project k.

Average risk of the portfolio.

Average time of the portfolio.

Classification index of project k.

Performance ratio for project k.

Time ratio for project k.

Cost ratio for project k.

Number of decision-makers.

Number of criteria defined.

Relative importance of criterion i.

Judgment matrix.

Uncertainties associated to the judgment matrix.

Relationship (in relative importance) between criterion i and
criterion j.

Uncertainty of the relationship between criterion i and criterion j.
Solution eigenvector.

Unnormalized eigenvector of weights.

Uncertainty of the unnormalized eigenvector of weights.
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Parameter arbitrarily small for comparison purposes.
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Chapter 1. Introduction

Project management is a managerial approach that integrates complex efforts by
restructuring management and adopting special methods such as PERT/CPM, tradeoff analysis,
and risk management in order to obtain better control and use of existing resources. Project
management fosters cross-functional communication among operational islands across

management and function gaps within the organization [63].

Driven to compete in global markets, organizations face considerable pressure to
introduce new products with shorter life cycles satisfying minimum quality requirements at
competitive prices. Business functions are merged in order to reduce the time it takes from
concept to market. Management methodologies such as concurrent engineering, total quality
management, and just in time manufacturing, among others, have been applied in order to cope
with a fast paced, highly competitive, and dynamic global marketplace. In this context,
comprehensive planning is a must. Successful project selection and management requires best
practice, particularly in the case of knowledge and technology-based organizations in which

successful R&D is a key ingredient [66].

According to Meredith and Mantel [58], the phases required for developing new products
or updating existing ones are conceptual (preliminary design), definition (including detailed
design), production (including prototype manufacturing), operations, and divestment. The
traditional management approach to product development is sequential, with periodic revisions
and iterations between phases. The concurrent engineering approach is to merge these phases in
an on-going project evaluation and analysis process. Concurrent engineering [7][22][43][64][82]

reduces time to market by squeezing the product development life cycle, carrying some of the



product development phases and their tasks in parallel. A project consisting of the combination
of two or more mutually inclusive tasks with pre-specified precedence relationships can in fact

be considered a single project.

But what is a project? A project is an organized set of activities of finite duration to be
accomplished, having a given purpose or goal (well-defined set of desired end results), with
some unique elements and stakeholders (client, parent organization, project team, and the
public). 4 project is a combination of interrelated activities that must be executed in a pre-

specified sequence in order to complete an entire task [58).

Successful project management is the supervision of company resources, which involves
project completion within the allocated time period, within the budgeted cost and at the proper
specification level, resulting in positive benefits such as customer satisfaction among others.
Time (indicated as a given schedule), cost (constrained by the budget), and performance
(described as quality requirements for given specifications) are the three main project

management dimensions [58].

Time, outlined as milestones or deadlines in a schedule, and cost, profiled by money
allocations in a budget, are variables that should be minimized. Specifications are qualitative or
quantitative descriptions of the deliverables as portrayed in the Statement of Work (SOW). The
SOW is a list of the tasks or deliverables of the project organized as a hierarchy, where the key

tasks are subdivided into a series of activities. The SOW allows decision makers to identify

activity precedence.

These specifications can be of two types: a) specifications to be met, and b) specifications
to be exceeded. Quality is a measure of conformance to specifications. For the first type of

specification, quality is a function of specification variance: more (less) quality implies a lower

-



(higher) variation from the specification given. For the second type of specification, quality is a
function of the specification itself: more (less) quality implies exceeding (lagging) the
specification given. Projects usually have two or more specifications to measure performance.
Such specifications are project-specific. We consider the Net Present Value (NPV) and the

Internal Rate of Return (IRR) to be our measures of performance.

A

Performance
Performance Risk Required performance
N
Cost Risk
Target
d Cost
— >
Budget limit
Time Risk
Due date
Time
(Schedule)

Figure 1. Time-Cost-Performance Tradeoff.

Adapted from Meredith and Mantel [58].

Time (schedule), cost (budget), and performance (quality or technical specifications) are

the three project management (PM) prime objectives or targets (see Figure 1). Although the



relationships among these dimensions vary from project to project, from time to time, and even
within projects, it is possible to portray such dependencies as trade-offs. Klein [48] considers the
uncertainties associated with each of these dimensions and portrays them as risk trade-offs.
Figure 1 portrays the probabilistic nature of the project management dimensions by drawing a
probability density function associated to each dimension. The due date is the time at which the
project should be completed. The probability of not completing the project on schedule is the
time risk. Also, the budget indicates the maximum cost allowed. The probability of having a cost
greater or equal than the budget constitutes the cost risk. Performance is different. Assuming the
performance measurement is a type of specification to be exceeded, performance risk is the

probability of having a performance less than the performance requirement.

A great deal of good project management involves good project risk management. Project
risk management can be defined as the implications of the existence of significant uncertainty
about the level of project achievement [16]. Tight time, cost or performance targets increase
time, cost or performance risks. A risk situation is often regarded as the existence of potentially
very high and unacceptable costs or threats due to events assumed to be more or less likely to
happen. This negative approach to risk leads to the idea that risk management essentially deals
with removing or reducing the possibility of under-achievement. Risk analysis is not a 'throwing
a dice' situation, but rather an area of study in which a pro-active, creative, and intelligent prior-

planning approach is used, as opposed to entrenching in a defensive position [1][24][57][74][86].

Within this context, it is important to distinguish between risk and uncertainty. Risk is the
likelihood or probability of failure, whereas uncertainty is the variability of the relevant
outcomes for a given risk or eventuality. Brealey and Myers [11] define risk as to say that more

things might happen (at present) than will happen (in the future). Uncertainty, on the other hand,



is the degree in which an identified threat or risk (at present time after prior assessment) will
(presumably, based on experience, historical data or assumptions) vary. Uncertainty is an
identified (and quantified) risk. Still, the degree at which such identified risk will vary is
unknown. Uncertainty thus constitutes the 'known' unknowns because although a specific risk
has been identified, its actual impact is still unknown. Non-identified risks are ‘unknown'
unknowns because generally speaking a risk is non-quantified uncertainty about something not
yet considered to be possible as a future outcome. We will assume throughout that risk
identification has been successfully and thoroughly carried out and will focus on the risk due to
the uncertainty for the most relevant variables previously identified by decision-makers. Risk
sources are any factors that can affect the project's dimensions. Setting a tight time target such as
an optimistic project deadline increases the project's time risk. Likewise, an unreasonably small
budget increases cost risk and setting a minimum Net Present Value (NPV) increases
performance risk. On the other hand, allowing slack times, contingency budget allocations or

lowered NPV decreases time, cost, or performance risk, respectively [21][33][52][81].

The purpose of this thesis is to demonstrate some new methodologies for time, cost and
performance tradeoffs in project management. Chapter two discusses the scheduling problem
assuming unlimited resources, in order to obtain a probabilistic estimate of project completion
for the time dimension. It considers the implications of project complexity in order to assess the
practical usefulness of a model, based on beta distributed duration times, when applied to large
projects. Chapter three explores the tradeoff between time and cost and proposes a model for
optimal scheduling. By combining the findings presented in chapters two and three, decision
makers are able to calculate the expected completion time at a given cost for a given

performance, in other words, solve individual projects for the three project management



dimensions. The next step is to solve for a set of projects (a project portfolio), which is called the
portfolio selection problem. Chapter four proposes a model for portfolio selection that assists
managers to priority order projects, using time and cost results calculated from individual
projects and specifically considering risk tradeoffs. Chapter five discusses a modification of the
Analytic Hierarchy Process (AHP), which is required to merge time-risk, cost-risk, and
performance-risk for applications in portfolio selection. Finally, chapter six draws conclusions

and proposes lines of further research.



Chapter 2. Project Completion Time

2.1 Introduction

One of the most important theoretical problems in project management is to obtain the
distribution of the total project completion time in project networks [68]. The main approaches
used are the Program Evaluation and Review Technique (PERT) and the Critical Path Method
(CPM), both coincidentally developed in the same year (1959). PERT assumes three point
estimates for probabilistic activity duration times in order to approximate project completion and
the relative probability at each milestone, using the normal distribution [34]. CPM focuses on the
criticality of each activity and the time-cost tradeoff in deterministic activity networks [78]. For
practical and managerial purposes, what matters is the criticality of each activity within a PERT
network, which can be assessed using a sound approach to calculate the completion time [90].
Critical activities are activities that, if delayed, would delay the entire project. A sequence of
critical activities throughout the network is called a critical path. The critical path is the longest
path in the network and it is possible to have more than one critical path at once. But unlike
CPM, in stochastic activity networks the duration time of individual activities varies, so activities
are critical for some combinations of duration times but may not be critical for other
combinations. Therefore, activities have a given probability of being critical (i.e., being part of
the longest path). We define for each activity the probability that the activity will be on the
critical path as its criticality. The focus of this chapter is to describe an analytical method for

calculating the theoretical distribution of the project completion time as well as the criticality of

each activity.



Malcolm ef al. [55] rely on the central limit theorem to postulate that the completion time
can be portrayed using a normal distribution as a function of the cumulative mean and variance
of all the activities within the longest path. Unfortunately, this results in unreliable (typically less
than actual) completion times [26]. Martin [56] calculates the completion time by approximating
task duration density functions using polynomials. Although accurate, Martin's method requires
considerable calculation and is not easily suitable for software implementation. Kleindorfer [49]
and Devroye [23] among others obtain lower bounds to the expected duration of the total project,
based on node criticality, whereas Dodin and Elmaghraby [25] approximate such criticality
indices. The latter is not entirely correct from a theoretical point of view, but the advantage of
bounding the mean completion time from below is that closed form solutions can be obtained.
Also, Dodin [27] tries to determine the k most critical paths as opposed to calculating completion
times for each path. Monte Carlo simulation [83][85] is valid from a theoretical point of view,
but it requires considerable calculation, which makes it impractical in the case of large networks.

Keefer and Verdini [47] find a better way to estimate PERT activity time parameters [32][37].

We will show that the PERT assumption of a normally distributed project completion
time typically leads project managers into optimistic planning, based on less than actual project
completion estimates, due to a failure to consider the absolute bounds to project completion
[28][38][54][73]. These bounds arise from the fact that the actual project completion time is the
maximum sum of the duration of each and every path, which in turn is the result of adding the
actual duration of its activities. It is common practice in PERT to estimate activity durations by
using beta distributions [34]. Project completion cannot be an unbounded random variable
because the sum of bounded (beta distributed) activity duration times yields bounded path (and

project) completion times. The normal distribution cannot give upper and lower bounds on



project completion times. PERT uses the same completion time algorithm as CPM, but applied to

the mean. The problem is that this algorithm yields inaccurate results.

Also, the PERT textbook formula to calculate expected (mean) activity duration times,
which are assumed to follow beta density functions, considers three parameters (minimum, most
likely, and maximum), when in fact the beta distribution has four parameters: two range
parameters and two shape parameters [54]. It turns out that the PERT formula used to calculate
the mean as a function of the minimum (a), most likely (mode or m), and maximum (b) activity
duration time estimates, (a+4m+b)/6, ignores how the biases to the right or left (related to the

variance) affect the shape of the beta distribution.

2.2 PERT/CPM Networks

Network models can be used to schedule complex projects that consist of many activities.
CPM can be used when the duration of each activity is known with certainty, to determine the
duration of the entire project. It can also be used to determine how long activities in the project
can be delayed without delaying the entire project. CPM was developed in the 1950s by
researchers at du Pont and Sperry Rand [58]. If the duration of the activities is not known with
certainty, PERT can be used to estimate the probability of the project being completed at any
given deadline. PERT was developed in the late 1950s by consultants working on the

development of the Polaris missile [15][31][62][88].

A project is a combination of interrelated tasks or activities that must be executed in
some pre-specified sequence. Projects are described using probabilistic or deterministic activity
networks, which are directed acyclic graphs. Let X denote the adjacency matrix of a probabilistic

PERT/CPM network composed of nodes (vertices) N = {1,2,...,n} and directed arcs A = {(i,)) |

9.



i=1,....n-1, j=2,...,n} where n is the total number of nodes. Let m be the total number of
activities so that the set of directed arcs, A, can also be denoted as A = {k | k=1,...,m}. The
duration of arc (i,j) is a random variable t; with known probability density function fj(t) over the
closed interval [a;;,b;;] where pjj denotes the mean (expected) duration of activity k in arc (i,j) and
Gijz its variance. (Activity on Arc notation or AOA is implicit, where 1 indicates the node of
origin and j the node of destination.) The completion time at sink node j, Tj, is the time at which
all activities coming into j have been completed. The completion time at source node i, Tj, is the
earliest time at which any activity k in arc (i,j) located between nodes i and j is allowed to start.
(Notice that T;=T; when i and j refer to the same node; i.e., i=j.) Ti (or Tj) is a random variable
with unknown probability density function fi(T) (or £j(T)). The purpose of our discussion is to

describe how to accurately calculate the relevant probability density functions.

The adjacency matrix contains all precedence relationships. Figure 2a illustrates the
adjacency matrix of a fully connected activity network. Row i indicates the node of origin while
column j is the destination node for activity k at coordinates (i), explicitly specifying the
position within the network for each activity. The nodes in directed acyclic networks are
numbered in such way that an arc always leads from a smaller numbered node to a larger one.
Let R;, j=2,...,n, denote the set of predecessor nodes connecting to node j. Let i be one such node
(ieR;). Figure 2b illustrates the notation. The completion time at node i is given by the random
variable T;, where T is one random occurrence of T;. If i is the only node in R; (i.e., [Rj|=1), then
T is given by the sum Ti'+t;', where t;' is one random occurrence of t;. In general, when the
number of arcs coming into node j is more than one (i.e., [Rjj>1), the resulting completion time at

j is the maximum completion time of all incoming arcs as indicated in equation (1). (Notice that
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T is used to indicate completion time, whereas t indicates duration time; T includes the duration

time of all preceding activities.)
Tj'z I\‘.Q[gix{’ri'—*—tij'},j=2,_”’n (1)

It is sometimes useful to denote activities using a single number k because it facilitates
notation involving sets in which activity k is said to belong to path p for all p=1,...,w, where w is
the total number of paths. (A path is a specific sequence of activities beginning at node 1 and
ending at node n.) Conversely, denoting activities using their nodes of origin and destination

facilitates writing equations for forward pass computations such as equation (1).

a. Adjacency Matrix
1 2 3 n

b. Activity on Arc Notation 2 1

Figure 2. PERT/CPM Network.

Equation (1) is a stochastic sum across the network. The plus sign is used to denote the
addition of the occurrence of two stochastic variables. T;=Titt; indicates the completion time

that would occur at node j if activity (i,j) happens to be critical across the network (longest
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duration time in a particular combination of random duration times), whereas t; is the duration
time of activity k in arc (i,j). The completion time at node j is by definition the set of all

maximum duration time combinations of the set R; of all nodes i preceding node j.

Random duration times are described using probability density functions. In particular,
PERT assumes that each activity duration time is given by a beta density function [58]. Range
and shape parameters are required to specify beta density functions. The range parameters are a
and b (minimum and maximum), and the shape parameters are o and B. Let f(x) be a beta density
function as defined in equation (2). We chose a beta density function because it is commonly

used in project management models to denote activity duration times [58].

o-1 -1
£(x) == ! (- (';) gt’;j‘) ,a<x<b )
fea-tfae -8

0

The standardized beta density function varies between 0 and 1 (range parameters given)
so that only the shape parameters are required. Range parameters are intuitively easy to
understand and it is reasonable to expect decision-makers to use them and to provide their
estimates. But shape parameters are difficult to grasp. So instead of specifying the shape
parameters, decision-makers are asked to give the range and the most likely duration time
(mode). From these the mean and variance are usually approximated in practice by (at4m+b)/6
and ((b-a)/6)%, respectively. The problem is how to add the random variables of beta density

functions across the activity network accurately in order to obtain a probability density function

describing project completion time.
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2.3 Stochastic Sum

Let the set p denote a path consisting of a sequence of n, activities and let activity k be
one of the activities in path p (kep). Also, let fi(ak,bx,0u,Pi) or simply fi(t) be a beta density
function with range parameters ax and by (ax<t<by) and shape parameters o and Py describing the
duration of activity k, where Fi(t) is the corresponding cumulative distribution. By definition
(Hastings et al., [41]), the mean of the beta distributed duration time for activity k is given

according to equation (3).

_agBg +D+bi(og +1)
ok +PBk +2

(3)
The beta density function can be simplified to the standard beta distribution by assuming
that the range parameters are 0 and 1. Let t' = (t-ax)/(bx-ax) be the standardized duration time
(0<t'<1), where a'=0 and b'=1 denote the range parameters of the standard beta density
function. Let ' be the mean of the standardized beta distribution. Clearly, py' is the relative
distance between the original mean and the range parameters as indicated in equation (4).

v Pk a8k

Rk = b —a

Q)

If we assume that the relationship between the shape parameters of the beta density
function (cy and By) and the shape parameters of the standardized beta density function (o' and

By') is given by equations (5) and (6), we can obtain the mean of the standardized beta density

function by substituting into equation (3) as indicated in equation (7).

o' = oy + 1 (5)

B’ =P+ 1 (6)
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a,' "+b. ‘o, o'
“’k': kﬁk k k k (7)

o, By’ o, B,

Rearranging the terms of equation (7) yields equation (8).

GRSy

Figure 3 shows all three types of standard beta distributions for different combinations of

shape parameters. U-shaped beta distributions occur when the sum of the shape parameters is
less than 2. J-shaped beta distributions occur when the sum of the shape parameters is greater
than or equal to 2 and less or equal than 3. Bell-shaped beta distributions occur when the sum of

the shape parameters is greater than 3.

— a. U-Shaped — | [~ b. J-Shaped
O<oa'+f <2 2<a'+p'<3
Left Symmetrical Right Let Symmetrical Right Left Symmetrical Right
Bias Bias Bias Bias Bias Bias
a'<p’ a'=p' a>p' a>1 a>1 a>1 o=t a<t PT B<1 a'= 2

o1 1 Bl B2 =

~ c. Bell-Shaped — | oa<p a=p a>p
i+ > 3 \ /

Left Symmetrical Right 1<E<2 1<?£<2
o'>1 a'=p a'>2
p>2 p>1

Figure 3. Shapes of the Beta Distribution.

It is common practice to portray activity duration times using bell-shaped beta

distributions [55]. Only one interpretation of equation (8) provides the simplest system of two

equations portraying o' and ' as a function of p' that guarantees a bell-shaped beta density
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function (as opposed to U-shaped or J-shaped) for any given value of u'. The four alternative

systems of equations (cases) for p' and 1/a' consistent with equation (8) are:

X y—X

0 B'= (1."'“ )y and L (};'H_) Y so that x/y+(y-x)/y=1.
1) o
1

' H
1

1
ii. p=l-pand —=
o

— 1_ ' .
i, p=1 and —=1Z" if 1505 (right bias) or a'=1 and B'= B if
al H' u
1'<0.5 (left bias).
iv. B‘=-1—and—1—=1———“—.
u' o' 1

There are an infinite number of combinations of x and y for the first case, leading to a
system of equations for o' and ' consistent with equation (8). According to the scientific precept
known as Ockham's razor, attributed to the English philosopher William of Ockham [60], all
things being equal, the simplest explanation tends to be the truth. Clearly, a case in which there
are infinite possibilities is not the simplest case, so alternative i) should be discarded. The second
alternative is also discarded. It leads to U-shaped beta distributions because 0<u'<1 so that a'= p'
and B'=1-p' must be between 0 and 1 as well (see Figure 3a). The third alternative is also rejected
because it corresponds to J-shaped beta distributions since in that case, either o' or f' equals 1
(see Figure 3b). The last alternative is the only one that ensures a bell-shaped beta distribution in
which the sum of o' and ' is greater than 3 (see Figure 3¢). The minimum value for a'+p' occurs
when p'=0.5 so that a'=p'=1/0.5=2 and o'+p'=4. All other values for p' lead to values of o'+f'
greater than 4. Consequently, the shape parameters of the standardized beta density function
describing the standardized duration time of activity k are a function of the standardized mean as

indicated in iv). Equations (9) and (10) portray the results from case iv).
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Otk = ; (9)
1-py
By'= _1_ (10)
B

Substituting i’ from equation (4) into equations (9) and (10) yields equations (11) and

(12).
o, = b —a (11)
b, — 1,
B, = xTq (12)
Hy —ay
The standardized variance is by definition (Hastings et al., [41]) given according to
equation (13).
o = o Bk (13)

(o +Bi ) (o +Bc +1)

Also, the variance is (b-a)2 times the standardized variance as indicated in equation (14).

oi® = (b -ax ) ok (14)

It is known that the mean and variance of a random variable that is the result of adding a
sequence of independent random variables is the sum of the mean and variances of each random
variable added. Therefore, assuming independence among activity duration times, the mean and

variance of the duration time of path p is given by the sum of the mean and variance of its

activities as indicated in equations (15) and (16).

Mp= D Mk (15)

kep
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cpz = chz (16)

kep
Also, the minimum and maximum path duration times are given by the sum of the
minimum and maximum of the activities in the path according to equations (17) and (18).

ap = Zak (17)

kep

bp = Y by (18)

kep
The shape parameters of the path can be obtained by applying equations (11) and (12) if
the duration time of the path is approximated by a beta density function with parameters a,, by,

op, and PBp.

The stochastic sum can be used to add node completion times and activity duration times.
Let f;(t) be a beta density function with range parameters a;j and b;; and shape parameters o; and
Bi;, describing the duration of activity (i,j) and Fy(t) be the respective cumulative distribution for
activity (i,j). Also, let £i(T) be assumed to be the beta density function describing the completion

time of node i, where Fi(T) is its cumulative distribution. Let the function f;(T) denote the

stochastic sum between node i and activity (i,j) as indicated in equation (19).
f;(D = (M  £5;(V) (19)
The parameters of the function fj(T) are obtained from the parameters of the functions
fi(T) and fij(t) according to equations (9) to (18). Fj(T) is the cumulative distribution of the

stochastic sum between node i and activity (i,j), calculated by integrating fi;(T), as shown in

equation (20).
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T
Fy(T) = [£,(T)dT (20)

2.4 PERT Completion Time

The coefficients of the function f;;(T) are essentially obtained by adding mean duration
times and minimum and maximum times of the preceding activities and adjusting for the
variance. PERT involves the addition of mean duration times. But activity networks are a
combination of entangled paths and not a single path. The concept of stochastic sum applies only
to specific paths. The problem is how to calculate the completion time at nodes with several
incoming activities. It is tempting to extend equation (1) and apply it to mean completion times.
In fact, that is exactly what PERT is all about. PERT assumes the mean completion time at node
j is the maximum of the mean completion times of all the arcs preceding node j [28]. Let ;
denote the mean completion time at node j for all j=1,...,n, where A;=0. Then, the mean

completion time at node j in PERT is given according to equation (21).

Ay =Max{), +p;} Vj=2,....0 21

ieR;

As er have seen in the previous section, adding the mean completion time of each node 1
and the corresponding activity in arc (i,j) is statistically acceptable because both means are in
sequence and the result would be the mean of activity (i,j) if the activity is critical. But assuming
that the mean at node j is the maximum of these is not accurate. This is because we do not know
a priori which activity is critical. It may very well be that several activities are critical in different
degrees (with different probabilities) for different duration time combinations. Besides, equation
(1) applies to random variables and not just to expected values. To illustrate, consider two

activities discretely distributed but arranged in parallel. Assume that the first activity can have a
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duration time of 5 or 8 with equal probability (t;={5,8}), whereas the duration time of the second
activity can be 6 or 7 with equal probability (,={6,7}). PERT would calculate the mean duration
time of the first activity, (5+8)/2=6.5, and the mean duration time of the second activity,
(6+7)/2=6.5, and assume the mean completion time of both activities to be
ppERT=Max(u1,u2)=Max(6.5,6.5)=6.5. But in fact, duration times are random variables, which
means that there are four possible combinations for Max(t,t2) indicating project completion:
Max(5,6)=6, Max(5,7)=7, Max(8,6)=8, and Max(8,7)=8. The mean completion time is in fact the
average of these: uTHEOREnCAL=(6+7+8+8)/4=7.25. In this case PERT underestimates the
completion time because it does not consider the probability distributions, which describe the

random behavior of activity duration times.

So how can we accurately estimate expected project completion? One way is to consider
all path combinations, calculate the duration time of each path by adding the duration time of its
activities, and then obtain the joint probability density function of these and calculate its mean.
Unfortunately, the number of paths grows exponentially as the number of nodes increases. In

other words, the computational effort increases as the complexity of the network increases.

2.5 Project Complexity

The minimum number of activities, m, for a serial network of n nodes is n-1. The

maximum number of activities, m, for a fully connected network of n nodes is n(n-1)/2 [51].
Clearly, the minimum number of paths for an all-serial network, w, is one. What is the
maximum number of paths? The maximum number of paths occurs in fully connected networks

of n nodes and n(n-1)/2 activities. All paths must include the first and last nodes. The total
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number of combinations (subsets) of all intermediate nodes gives the total number of paths in

fully connected networks. In a fully connected network of n nodes, there are n-2 intermediate

nodes (n nodes minus the first and last nodes), so that the maximum number of paths, w, is the

total number of subsets of a set of size n-2. According to the binomial theorem [61], this is given

- n—"2 n—2 n—2 _ n-2
w—1+( ) )4»( 5 )+...+(n_2)—2 (22)

Let 1 be defined as the density coefficient for an AOA network with n nodes and m

by equation (22).

activities, indicating how nearly all-serial or all-parallel (fully connected) the network is, as

shown in equation (23). The density coefficient is the proportional distance between the actual

and the minimum compared to the maximum number of activities. (Notice, for m=m, n=0, and

for m=m, n=1.)

_m-m _ 2(m—-n+1)
" —rr—l—m_(n—l)(n——2)’n23 @3)

The total number of paths, w, is then defined as a function of both n and n according to

equation (24), where | x] is the floor function (truncation of the fractional component) of x.

w|2ne-2) | %)
When n=0 for minimally connected (all-serial) networks, w=w=2"=1 and when n=1 for

fully connected (all-parallel) networks, w=w =2"2. Equation (24) portrays exponential growth
mediated by m. The network density coefficient from equation (23) measures network

complexity and equation (24) provides the number of paths for a given combination of activities

and nodes.
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Figure 4a plots network density (v on the vertical axis) as a function of the number of
activities (m on the horizontal axis) and network size (n as different lines in the graph) according
to equation (23). The relationship between the number of activities (m) and network density (n)
is linear. It is clear from Figure 4a and equation (23) that the rate (given by the slope), at which

network density (1) grows, decreases as network size (n) increases.

a. Network Density versus Activities b. Paths versus Activities
n 1 11n=3 n=4 n=5 n=6 n=7 n=8
i
s |
0.7 ‘
0.5 A
0.4 -
0.3 -
0.2 -
0.1 -
ol s ez
2 4 6 810121416182022242628 M 2 4 6 810121416182022242628M

Figure 4. Network Density () and Complexity (w).

Figure 4b plots the number of network paths (w on the vertical axis) as a function of the
number of activities and network density (m which determines n along the horizontal axis) for
different network sizes according to equation (24). Although the number of paths (w) increases
exponentially as network size (n) and network density (n) increase, the rate at which such

exponential growth occurs (1) decreases as network size (n) increases.

The total number of paths is important because more paths increase the computational

effort required to estimate the expected project completion time and approximate the probability
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distribution of the network completion time. Figure 4 shows that although the computational

effort tends to increase exponentially as network size increases (exponential time problem), the

range for the number of activities (5-@ ) increases for larger networks. Consequently, the
probability of having complex networks and significant exponential growth in the number of
paths decreases as the number of nodes increases. The total number of paths is further
constrained by the variability within the network of activity duration times and the resulting
range and variability in pathway duration times (absolute bounds to completion time). We shall
demonstrate that when all duration times are assumed to follow a beta distribution, it is possible

to calculate completion time in a polynomial number of steps (polynomial time).

2.6 Absolute Bounds

PERT assumes a beta density function based on three-point estimates to portray activity
duration times. We also assume beta distributed activity duration times, but unlike PERT, we do
not assume project completion time to be normally distributed. Using a normal distribution
implicitly considers project completion to be unbounded. We assume a beta distribution of
completion time at all the intermediate and final nodes. But the beta distribution has a minimum
and a maximum, and since the completion time at each node j is the stochastic sum of beta
distributions with minimum and maximum values, there must be a minimum and a maximum at

each node j for all j=2,...,n.

Consider a set of paths arranged in parallel with beta distributed duration times, each with
a different minimum and maximum. Equation (1) indicates that the resulting completion time is
the maximum of all these randomly distributed path duration times. What is the minimum

completion time possible? The minimum completion time must be the maximum of the
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minimum completion time of each and every path. The same reasoning applies to the analysis of
maximum path duration times: the maximum completion time must be the maximum of the
maximum completion time of each and every path. Therefore, although equation (1) cannot be
applied to include the mean and the variance of path duration times, it can be applied to the range
(minimum and maximum) in which the randomly distributed completion time is allowed to vary.
Let A; and B;j be the minimum and maximum completion time at node j for all j=2,...,n where
A,=0 and B;=0 (by definition, the first node does not indicate completion time). Then, the

minimum and maximum completion times at each node j are given according to equations (25)

and (26).
A= MgX(Ai +ay),J=2,....0 (25)
Bj =2 g.X(Bi +bij)’j=29'“>n (26)

i
These are absolute bounds to the completion time at node j because no Tj can be less than

A, nor greater than B; at node j, as shown in equation (27).

A, <T,<B, 27)

2.7 Joint Integration

Equations (25) and (26) provide the range parameters of the project completion time (a
and b) when j=n (a=A,, and b=B,). The shape parameters can be obtained as a function of the
minimum, maximum and mean according to equations (11) and (12). But calculating the mean
(and by extension the variance) requires knowing the probability density function of the
completion time at each node. Denote the probability density function of the completion time at

node j by fi(T), where Fj(T) is the corresponding cumulative distribution. Assuming that all the
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stochastic completion times between each node i and each activity (i,j) given by the stochastic
sum fi(T)=fi(T)®f;(t) as indicated in equation (17) for all nodes i preceding node j (ieR;) are
independently distributed, the joint cumulative distribution at node j, Fi(T), is given by the
product of all F;(T) as shown in equation (28). (Notice that Fy(T) is the cumulative distribution

of £(T).)

F(T) = [TE(D (28)

ieR;
Then, the probability density function of the completion time at node j, fi(T), is given by

the derivative of the cumulative distribution at node j as indicated in equation (29).

oF; (T
fy(T) = —é(?z (29)

The mean and the variance of the completion time at each node j, p; and cjz, are given

according to equations (30) and (31) for all j=2,...,n.

T ijj (T)dT (30)

]

fr-p, s, 6D

B
2 p—
o =

A

Assuming that f; is a beta distribution, equations (11) and (12) are then used to calculate

the shape parameters of the beta distributed completion time at node j, o; and B;. The probability

density function of the project completion time is a beta distribution with range parameters a=Ag

and b=B, and shape parameters a=c, and B=B,. In practice, the actual integration is done

numerically.
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By regarding activity networks as a combination of all-serial and all-parallel sub-
networks, the maximum number of paths that need to be considered in order to obtain the beta
density function describing project completion time is exactly the same as the number of
activities in the network. This is because only arcs (activities) require computational effort in
order to incorporate such duration time into the node’s completion time. Solving for m from

equation (23) yields equation (32).

w=m=(““1)(”(;’2)+2)=“r2’2+n(1—37“)+n—1 (32)

Equation (32) is a quadratic polynomial in n. Hence, calculating probabilistic project
completion is a problem with polynomial complexity (requiring a polynomial number of steps as
a function of problem size to solve the problem), not exponential complexity (requiring an

exponential number of steps as a function of problem size to solve the problem).

2.8 Criticality Index

Criticality is the probability for any given activity to be in the longest (critical) path; in
other words, it is the percentage of times in which the activity was in the longest path for all the
random occurrences of duration times. Criticality is important because delays in critical activities
are very likely to delay the entire project. Therefore, criticality is used for managerial purposes to

keep under control the duration of all the critical activities.

Let h=i denote two nodes preceding node j, so that arcs (h.j) and (i,j) denote two parallel
activities coming into node j. The completion time of activities (h,)) and (i,j) is given by the
probability density functions fi(T) = fn(T) © fr(t) and £(T) = £i(T) ® f(t); Fiy(T) and F;(T)

denote the respective cumulative distributions. At any given completion time T, the probability
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of activity (i,j) to have a completion time between T and T+dT is Fy(T+dT)-F(T), which equals
£;(T)dT for infinitesimally small dT. Also, the probability of activity (h,j) to have a completion
time less than T is Fy(T), and the probability of all activities (h,j) where h#i to have a completion
time less than T is given by the product Tln,iFp(T). Let |z;j| denote the normalized criticality
index of activity (i,j), which is the probability (normalized) of activity (i,j) to be the longest at

node j. Then, |z is given according to equation (33).

B, B,
\Zij! = Ifij (T)H F,(TMT = Igij (T)dT,
A; hei A;

(33)
where g;(T)= %F@ =1 (T)H E,;(T) and Fi(T)= HFij (M)

i hai i<j

The cumulative distribution of the completion time at node j, Fy(T), is calculated in
equation (28) as the product of the cumulative distribution of the completion time of each and
every activity coming into node j, Fy(T), where Fjj(T) is the cumulative distribution of the
probability density function obtained by adding the completion time at node i, and the duration
time of activity (ij): fi(T) = fi(T) & f(). Ty is a random variable described by the beta
distributed probability density function denoted as fi(T) indicating the completion time of

activity (i,j), so that the function g(T) is the partial derivative of the cumulative distribution of

the completion time at node j with respect to Tj;.

Although the function |z;| indicates the probability of activity (i,j) to be longer than all
other activities (h,j) for h#i, that is not the criticality index of activity (1)), because the criticality
index is the probability of being in the longest path, which includes all activities and not just the

activities immediately preceding node j. Since |zl is calculated by integrating the partial
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derivative of Fj(T) with respect to T, the sum of all |z;{ for i<j equals one because that would in

fact include the integral of all partial derivatives, as shown in equation (34a).

Z{zij{ =1 (34a)

i<j

Substituting h for i and i for j from equation (34a) yields equation (34b).

Z‘zhil =1 (34b)

h<i
The function |z;| can be used in combination with the properties of the criticality index of
activities and nodes in stochastic networks to calculate the criticality index of each activity using
backward pass calculations. Backward pass calculations are node and arc computations in which
the higher numbered nodes are computed first and computations proceed from the last to the first
node. Let zy; and z; be the criticality indices of activities (h,i) and (i,j). Also, let z; and z; denote

the criticality indices of nodes i and j, respectively. Figure 5 illustrates the notation.

. . i o .‘ .
h<i b RS

Figure 5. Criticality across Activity Networks.
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First, the criticality index of the first and last node equals one, because these nodes are
always in the longest path. Hence, z1=1 and z,=1. Second, for any node i, the sum of the
criticality indices of the activities coming into node i equals the sum of the criticality indices of
the activities coming out of node i as shown in equation (35), because in all cases in which node i
is critical, there must be one activity (h,i) for h<i critical and one activity (i,j) for i<j critical
corresponding to the critical sub-path h—i—j, such that h<i<j.

>z, =27 (35)
h<i i<j

Such a sum corresponds to the criticality index of node 1 (0<z;<1), as shown in equation

(36).

2,=Yz, (36)

h<i

Dividing equation (36) by z; yields equation (37).

z. sz

Siohd oy 37)
Z, Z,

1 1

Equating equations (34b) and (37) yields equation (38).

el = e

h<i i
It follows that the normalized criticality index of activity (h,i) equals the criticality index

of activity (h,i) divided by the criticality index of node i as shown in equation (39).

2] = 2 (39)
VA

i
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Since the criticality index of the last node equals one, z;=1, from equation (39) we have
that the criticality index of all the activities (i,n) for i<n coming into the last node (n) equals their

respective normalized criticality index as shown in equation (40).

7. =

in

z (40)

in

Also, from equations (35) and (36), we have that z; can be calculated as the sum of all the

activities (i,j) for i<j coming out of node i as portrayed by equation (41).

z, =Zzij,i=n—2,...,1,j=n-1,...,2 (41)

i<j
Finally, solving for zp from equation (39) yields equation (42). Equation (42) can be
applied recursively from the last node to the first node in order to calculate the criticality index

of each activity in the network through numerical integration.

Zy =|zwlz =|2u|D, 25 » =02, 1, j=0-1,...2 (42)

i<j

2.9 Simulation

Simulation is the process of representing reality (by copying or imitating its behavior) as
close as practically possible. Simulation usually involves a mathematical-logical model
developed using the computer for experimentation and testing [29]. Simulation is important in

the present work because it is used to test the accuracy of our calculation procedure.

Monte Carlo simulation is one of the most popular forms of computer-based simulation.

Halton [39] defines the Monte Carlo method as “representing the solution of a problem as a
parameter of an hypothetical population, and using a random sequence of numbers to construct a

sample of the population, from which statistical estimates of the parameter can be obtained”.
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In Monte Carlo simulation, a set of variables (some or all of them random) is used as
input. A mathematical relationship (expressed in a set of equations) links the input variable(s).
By successively generating random variables according to the random behavior they follow,

alternative values for the output variable(s) are obtained [40][50][76][92].

When the system is numerically modeled using Monte Carlo simulation, RL alternative
results (outputs) are obtained. (RL stands for Run Length). Nevertheless, only one result
(estimate) is required. Such result is always an approximation to the theoretical value (n). Figure
6 shows the apparent random behavior around the theoretical value when each output is plotted
against the iteration in which it was generated. The output (all RL observations) can be analyzed
using a histogram to find the best fit for the data from available probability density functions
(pdf’s), as long as the system is in a steady-state process. Statistical measures such as mean and
standard deviation are usually obtained instead of the histogram when the estimate and its

closeness to the theoretical value are more important than the nature of the distribution itself.
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1
135

Succesive
iterations

Tt

Tt
9 11131517 1921232527 29 31 333537 39
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Figure 6. Fluctuation Around the Theoretical Value of the Simulation Process.

Figure 7 shows the behavior of the output variable when the cumulative average (the
average of all available observations) is obtained for each estimate. As more observations
become available (larger RL), the random noise due to the uncertainty of the output variable is
reduced and the average tends to get closer and closer to the theoretical value. For the purposes
of our discussion, all input variables are always properly modeled (activities are assumed to

follow a beta density function and random numbers following such distribution are generated for

each iteration). Since the system is stable from the start, no warm-up period is required.
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Figure 7. Trend Towards the Theoretical Value when the Cumulative Average (Mean) is
Calculated, as More Observations (Iterations) are Available.

The larger the value of RL the smaller the random noise inherent to the simulation
process is. Nevertheless, a larger run length requires more time consuming computations. The
trick is to find a value for RL large enough to estimate the output variable within a reasonable
error margin (g). In practice, this is done by successive analysis of the standard deviations
obtained when new iterations are included [59]. Exponential smoothing can be used to determine
the stopping point. The details are beyond the scope of our work and are not included as part of
the discussion. Finally, it is important to mention that there are software packages such as

@Riskl by Palisade Software Corporation that implement simulation estimates for project

networks.

1

http://www.palisade.com/
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2.10 Example

Consider the example shown in Figure 8. Nodes are numbered (in italics) from 1 to 7 and
activities are numbered (in bold) from 1 to 9. Each activity has a minimum, average or mean, and
maximum duration time. In PERT (Figure 8a), mean duration times are recursively added. The
mean duration time at node 1 is A;=0, at node 2 is the mean at node 1 plus the mean between
nodes 1 and 2 corresponding to activity (i,j)=(1,2) or k=1, which is A=0+11=11. A similar
reasoning applies to node 3. For node 4, the mean duration time is assumed to be the maximum
of the mean at node 2 plus the mean of the activity between node 2 and node 4 (A2+p24) and the
mean at node 3 plus the mean of the activity between nodes 3 and 4 (A3tp34). The PERT estimate

for the average project completion time at node 7 is 61, with a variance of 6.30. These results are

plotted as a normal density function in Figure 9.

Figure 8b shows how to solve the problem according to equations (11) and (12) and
equations (25) to (31) by brute force (6 steps in this particular case) by considering all possible
paths. There are 6 alternative paths. The beta distribution describing the duration time of each of
these paths is obtained by stochastic sum according to equations (11) and (12) and (25) to (31).
Finally, the beta distribution describing project completion at node 7 is calculated by joint
numerical integration according to equations (25) to (31). The mean and variance of the project

completion time obtained in this way are 62.94 and 2.65, respectively.
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a. PERT Solution

r=0

Az=h+11=11

A=A+14=14

As=Max(Az+13,13+11)=Max(24 25)=25
As=M+17=42

Ae=h4+20=45

A7=Max(As+19,\4+7 Ae+15)=Max(61,32,60)=61
Critical path: 254558
p=14+11+17+19=61

o? =0.74+221+1.45+1.89 =6.30

c. Solving in Polynomial Time

f12-4(T)

fd>5->7(T)
(4)9598
f4->7(T)

103799

(40709

f4(T) Sub-paths to Node 4:
2040508 f15254(10,30,6.92,297)
£1.,34(8,28,13.84,244)
Node 4:
£4(10,30,22.16,5.80)
BADTD Sub-paths from Node 4 to Node 7:
o e R s
£1(36,70,14.61,6.09) £(36,70,56.15,14.72) f"*’( e 10 )73)
f2(154110.12,6.33) n=62.94 ,ﬁ?s; (Propet):
f3(16,68,28.23,5.91) o? =265 tn ff 367 0#49 56,13.66)
£4(34,68,23.03,5.97) R 70,49.66,13.
5(13,39,21.34,7.86) K =62.67
fo(14.66,38.18,4.98) o =3.04

Figure 8. 7-Nodes/9-Activities Example.

The same system of equations can be applied to solve the problem in a polynomial
maximum number of steps (5 in total for this example) by considering all nodes that have more
than one incoming arc. Node 4 is the first such node. There are two paths before node 4. The first
path follows nodes /, 2, and 4 corresponding to activities 1 and 3. The beta distribution
describing the duration of path /—2—4 (also path 1—-3) is £1-5254(T) with parameters 10, 30,
6.92, and 2.97, given by the stochastic sum of activities 1®3 according to equations (25) to (31).
The same applies to path /—>3—4. The completion time at node 4, obtained by the joint
integration of paths /—2—4 and /—>3—4 according to equations (25) to (31) is f4(T). There are

3 alternative paths between nodes 4 and 7. The first path is 4>5—7 with a duration time given
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by the completion time at node 4 plus the duration of activities 5 and 8, denoted as (4)®5®8.
The second and third paths are 4—7 and 4—6—7. The joint numerical integration of these three
paths yields the parameters for the beta distribution describing the completion time of the
project, which has mean and variance of 62.67 and 3.04, respectively. These differ slightly from
the brute force results due to rounding error. The range parameters and the shape parameters of
the corresponding beta distribution are a=36, b=70, 0=49.66, and p=13.66. The total number of

sub-paths in this case of polynomial complexity is 2+3=35.

Frequency

0.25
'——— Simulation
e PERT

0.20 . —f(T)

0.15 |

0.10 .

0.05 |

0.00

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Time

Figure 9. PERT versus Stochastic Sum/Integration.

The latter is the theoretical mean and variance of the project completion time, assuming
independent beta distributions for activity duration times. The corresponding probability density
function, assuming a beta distribution, is shown in Figure 9 as f(T). To test the accuracy of these
results through simulation, a total of 25,000 activity duration times were generated at random,

yielding an average of 62.42 and a variance of 4.22. Compare the PERT estimate (61) versus the
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average project completion times obtained by stochastic sum/joint integration (62.94 for the
exponential complexity problem and 62.67 for the polynomial complexity problem). Clearly, the
latter are closer to the theoretical approximation obtained by extensive Monte Carlo simulation
(62.42). Figure 9 compares the results from the three approaches: a histogram of the results
obtained from the simulation, the probability density functions describing project completion

times obtained according to PERT, as well as the results obtained according to our methodology.

2.11 Discussion

The simulation results plotted in the histogram of Figure 9 constitute a statistical sample
of the theoretical distribution describing the project completion time. Unfortunately, even
extensive simulation yields only approximate results. In each run, a set of activity duration times
following beta density functions is generated at random. The project completion time for that run
is calculated according to the PERT/CPM forward pass calculation portrayed in equation (19) by
assuming such duration times are deterministic, so that the actual duration time as opposed to the
mean is used. But in fact, activity duration times are randomly distributed variables described by
a continuous beta density function. Consequently, only the histogram of a simulation with an
infinite number of runs would yield the theoretical distribution describing the project completion
time. Nevertheless, a simulation with 25,000 sets of activity duration times generated at random
can be considered close enough to the theoretical distribution. As we can see in Figure 9, the
normal distribution obtained according to PERT is a poor approximation to the simulation

results. But the beta density function obtained according to our procedure is a much better match.

In this particular example, path duration times are in fact independent if we integrate the

completion time at node 7 by considering a start time at node 4 of zero and then adding the result
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obtained at node 7 to the result obtained at node 4. The mean completion time obtained in that
case is also 62.67 with a variance of 3.11, slightly larger than the variance of 3.04 shown at the
bottom of Figure 8c. The shape parameters also change slightly, from 49.66 to 48.51 for a and
from 13.66 to 13.34 for B. The probability density function of the latter looks almost exactly the
same as the one shown as f(T) in Figure 9. Undoubtedly, the distribution of the population need
not follow a beta density function, but if that is assumed to be the case, f(T) in fact fits well the
project completion time. For practical purposes, f(T) can be considered a good approximation to
the distribution of the theoretical project completion time when sub-paths do not share one or

more activities.

The recommendation to the practitioner is to avoid calculating the mean and the variance
according to the PERT textbook formula [89], p=(a+4m+b)/6 where m is the mode and o”=((b-
a)/6)*, and then simply calculating the maximum mean and variance at each node. In fact, the
textbook formula assumes a fixed value for the sum of the shape parameters (a+f3=4) to calculate
the mean, and it calculates the variance as an approximation to that assumption. Furthermore,
PERT does not consider the variance when determining which path is the longest, since the
variance of the project completion time is assumed to be the same as the variance of the path
with the longest sum of mean duration times. All these assumptions typically lead to optimistic
planning due to less than actual project completion times. Instead, the practitioner could use the
beta density function for the completion time of the sub-path with the maximum mean at each
node and simply apply equations (25), (26), (11), and (12) to directly obtain the range and shape
parameters. This avoids calculating the theoretical mean and variance at each node by integrating

as indicated in equations (30) and (31), while at the same time providing much better results for
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considering the shape and variance of each activity, and the shape and variance as a function of

the absolute bounds for each node.
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Chapter 3. Project Tradeoffs

3.1 Introduction

Although the relationships between project management dimensions vary from time to
time and from project to project, a systemic approach can be used to elucidate the nature of the

underlying tradeoffs [44][45][79].

a. Time-Cost Tradeoff b. Time/Cost-Performance Tradeoff
+ —
Delaying m
Time Cost Time/Cost Performance
- +
Crashing Quality

Figure 10. Time, Cost, and Performance Tradeoffs.

Figure 10a pictures the systemic relationship between time and cost using influence
diagrams. If the project is delayed it costs more so that there is a positive correlation between
time and cost. But in order to deliver on time, additional resources can be directed to critical
activities while keeping resources to a minimum for non-critical activities. The latter, called
crashing, constitutes a negative correlation between cost and time [89]. The existence of both a
positive and a negative correlation between time and cost imply the existence of an equilibrium
in which an optimal project completion time is achieved at a minimum cost. Figure 10b pictures
how the time/cost tradeoff is further influenced by performance. Improving the quality of the

product requires investing more resources, which increases cost and will increase time if such
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resources are limited. But if more resources are invested and it takes longer to complete the
project or it costs more, the Internal Rate of Return (IRR) of the project measuring its
profitability is reduced. Consequently, there must be an optimal time/cost tradeoff that yields

optimal project performance as measured by its IRR.

3.2 Time-Cost Tradeoff with Unlimited Resources

Costs are a function of both project completion time and criticality. For budgeting
purposes, there are two types of costs: direct costs for each activity and indirect costs for the
overall project. Direct costs include the cost of the material, equipment, and direct labor required
to perform an activity. When the activity is subcontracted, the direct cost is equal to the price of
the subcontract. Indirect costs include in addition to supervision and other overhead costs, the

interest charges on the cumulative project investment and overdue penalty costs

[51[17](581[67][80].

Let vy (or v) denote the all-crashed direct cost of activity k in arc (i,j), which occurs
when the activity duration time is minimum (t=ax or equivalently, ty=a;) and uy (or u;) be the
all-delayed direct cost for the maximum duration time (t=by or equivalently, t;=bj)). All-crashed
is the minimum activity duration time achieved by crashing all the way the duration of the
activity at the highest total cost. All-delayed is the maximum activity duration time when
resources are used at a minimum pace, which results in the lowest total cost. Also, let dx (or dy)
be the direct cost of activity k in arc (i,j). For simplicity, crashing, as pictured in Figure 10a, can
be assumed to be an inversely proportional relationship between time and cost [6][35], as

portrayed by equation (43).
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dy o« (43)
tk

Reducing duration requires increasing the direct cost of the activity. The proportionality

in equation (43) can be transformed into equality by adding a proportionality factor and a
constant. Let yx and ¢x be such constants as shown in equation (44).

dy = —’t%“ +9y (44)

Since the direct cost should equal v when t=ak and it should equal ux when t=by,

equation (42) is transformed into the system of equations (44a) and (44b).

v, =2 p g, (44a)
Ay

u =21y, (44b)
bk

Solving yields yx=axbi(vi-ux)/(bk-ax) and dr=(byux-axvi)/(bi-ax). Substituting xx and ¢k

into equation (44) yields equation (45).

d, = a, b, (Vk — Uy )_’_(bkuk —akvk) (45)
t, \ b, —a, b, —a,

Let V and U denote the maximum and minimum direct costs of the project defined as the

sum of the maximum and minimum direct costs of each and every activity in the network

according to equations (46) and (47).

Ui (46)

c
Il
1M
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V=) v (47)

NgE

k=1
Also, let T, be the project's completion time obtained according to equation (1) and let a,
i, and b denote the minimum, average, and maximum project completion times, respectively.
Just as in equation (45), the total direct cost of the project, D, is inversely proportional to the

project completion time, T, as shown in equation (48).

o= 25 () w

The project indirect cost, I, is directly proportional to the project completion time, as

indicated by equation (49).

TocT (49)

The proportionality in equation (49) can be transformed into equality by adding
proportionality constants. Let O denote the minimum overhead (indirect) cost at time T=0, and
AO denote the increment (slope) of the total indirect cost as a function of time. Then, equation
(50) indicates the directly correlated relationship between time and cost as pictured in the

influence diagram of Figure 10a.

I=0+A0T (50)
Figure 11a plots direct and indirect project costs. The total cost, C, equals the sum of both

direct and indirect costs as shown in equation (51).

C=I+D:O+AOT+EE(V_U + bU-av (51)
T b-a b—-a

Let C, and Cy, denote the costs corresponding to the minimum and maximum project

completion times (T=a and T=b), respectively. Then, from equation (51) we have that C, and Cy
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are given according to equations (51a) and (51b), which is exactly what we expect given that V
and U are the all-crashed (for T=a) and all-delayed (for T=b) project direct costs, respectively.
C,=0+A0a+V (51a)

C, =0+AOb+U (51b)

The maximum cost, Cumax, 1S either C, or Cy since these correspond to the extreme values

of Figure 11b, as shown in equation (51c).

Cmax =Max{C,,Cy} (51c)
a. Direct and Indirect Project Costs b. Optimal Project Cost

Cost Cost

(C)f (C)?

C=1+D
O+AO(b)+U—
O+AO(a)+V—
C*_
> 1 —>
a b Time a T*=p* b Time
(M (M

Figure 11. Time-Cost Tradeoffs.

Clearly, the minimum cost (Cmin=C*) occurs when the slope (derivative of the cost with

respect to time) of the total cost curve is zero as shown in equation (52).

§=A0—ﬂ(V_U)=O (52)
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But since completion time is a random variable with known probability density function,
cost must also be a random variable with a probability density function described as a function of
time, where C,<C<Cp. This means that the optimal time-cost tradeoff obtained when equation
(52) equals zero is in fact the optimal of the average (expected) project completion time. Let T*
denote such optimal project completion time and Cmin=C* the corresponding optimal (and
minimum) project cost. Then, T* is given according to equation (53) and Cmin=C* is given by

equation (51), calculated by replacing T for T*.

— \/ab(_v_—v_) 53)
AO(b—a)

Although equation (53) applies to the overall project, it can be used to compute the

optimal time-cost tradeoff of each activity by calculating the minimum and maximum
completion time as well as the minimum and maximum direct and overhead costs of each

activity.

3.3 Calculating the Optimal Schedule

Cost is additive, so that direct costs can be summed throughout the activity network. Let
V; and Uj denote the maximum and minimum cumulative direct costs of node j occurring at
minimum and maximum completion times A; and B;, respectively. Also, let Vj and Uj; be the
maximum and minimum cumulative direct costs of activity k in arc (i,j). By definition, the

maximum and minimum cumulative direct cost of the first (starting) node are zero as shown in

equations (54) and (55).

Up =0 (54)

Vi =0 (55)



The minimum and maximum cumulative direct costs are given as the sum of the costs of

minimum and maximum costs of all preceding activities as shown in equations (56) and (57).
U;=uy, +.o.+ Uy, 72,00 (56)

V=V +ot vy, 152,00 (57)

Also, the minimum and maximum cumulative costs of node j are given according to

equations (58) and (59).

U, =U, + Y uy,i=1,..,0-1,j=2,....n (58)

i<j

V=V, + > vy, i=l,...,0-1,j=2,...n (59)

i<j
The minimum and maximum completion times, A; and B;, are given according to
equations (25) and (26). Also, let Dj and T; denote the cumulative direct cost and completion
time at node j, respectively, so that Di=V; when Tj=A; and Dj=U; when T;=B;. If Ij denotes the
indirect cost assigned to node j and C; denotes the total cost of node j, then equation (51) can be
rewritten as equation (60) to portray the total cumulative cost at node j.

AB (V,-U,) (BU,~-AV,
C. =1, +D, =0+A0(T; )+ —2| 1 |+ (60)
e T B, - A, B, - A,

1

Taking the derivative of C; from equation (60) with respect to T; and equating to zero
yields the optimal average completion time of node j, Tj*, as shown in equation (61). (By

definition, the optimal average completion time of the starting node is zero, T1*=0.)

. V.-U, ) .
T, = |AB| ————|,j=2.....n (61)
PV a0(B, - A )
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Let A;; and By be the minimum and maximum completion times of activity k in arc (1))
given according to equations (62) and (63), where a;; and bj; are the corresponding minimum and
maximum duration times. Notice that A;; = Aj+ajj, Bjj = Bj > Bi+by;, because although activity (1,])
cannot start before T;, it need not start at time Ti and may be delayed. Nevertheless, the
maximum delay allowed cannot exceed the maximum completion time at node j. Consequently,
the minimum completion time of the activity is the minimum completion time of node i plus the

minimum duration time of activity (i,j) as shown in equation (62).

Aij = Ai +aij (62)
However, its maximum completion time may be greater than the maximum completion
time of node i plus the maximum duration time of activity (i,j) but cannot be greater than the
maximum completion time of node j, so that the maximum completion time of activity (i,j) is in

fact defined as the maximum completion time of node j as shown in equation (63).
Bjj = B; (63)
Also, let A; be the expected (average) completion time of activity k in arc (i,j), given

according to equation (64), where y; is the expected (average) completion time at node i.

Aij = Hi +Hjj (64)
Then, the optimal expected completion time of activity (1,j), Aij*, is given according to

equation (65).

T =2 = |A.B Vi ~ Uy i=1 1,i=2 65
o = B.|—2—Y% | i=1,...,n-1,j=2,...,n
§ = i 75 AO(B, - A,) ' ! (63)

If activity (i,j) is not one hundred percent critical, there is a slack (time interval) between

its completion time (\;;) and the completion time of node j (). Let S;j denote such slack. Clearly,
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the slack is the difference between the completion time at node j and the completion time of

activity (i,j) as shown in equation (66).

Sij = Hj—Ajj . (66)

But activity (i,j) may be delayed if it is not on the critical path, that is, it needs not be
scheduled immediately after the average completion time at node 1, which indicates the average
completion time of all preceding activities. The maximum average delay is given by the activity's
slack, so that the actual average delay must be a percentage of that. Let 0<y;<1 denote the
percentage of the slack by which activity (i,j) has been delayed, so that the average time at which

activity (i,j) starts is y;S; time units after the completion of node i.

Solving for p; from equation (66) and substituting A; from equation (64) yields equation

(67).
Hj = Hi +Hjj +Sj; (67)

Also, since v;; is a fraction of Sjj, we have that S;; can be divided in two parts, yiiSi and (1-

¥i))Sij, as shown in equation (68).

Sij =138 + 1 =7§j)S; (68)
Substituting Sy from equation (68) into equation (67) yields equation (69).
By = pi +ySi + Ry A= vi)Sy (69)
Figure 12a illustrates equation (67) along the horizontal time coordinate (T). In Figure
12a, activity (i,j) is scheduled as soon as possible so that its expected completion time (A;;) equals

the expected completion time of node i (n;) plus the activity's expected duration (), so that p;; is

the distance between A;; and ;. Since the expected completion time of the activity cannot be
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greater than the expected completion time of node j, the activity's slack is given by the distance

between p; and A

a. Early Scheduling and Slack

< Hij < Si >
| : : —
Hi A M T
b. Delayed Scheduling
@ : : O
TiSi—% Hi (1-Yi)Sij >
t i i 7 i >
Hi  HitY§Si A Hj T

Figure 12. Completion Time Slack and Delay.

Figure 12b illustrates equation (69). In Figure 12b the expected completion times of
nodes i and j and the expected duration time of activity (i,j) are the same, but the expected time
at which the activity starts is not the completion time of node i but the latter plus the activity's
delay given by a fraction of its slack, v Thus, the expected start time of activity (i,j) is the
expected completion time of node i (p;) plus the activity's delay (y;Si). Also, the expected
completion fime of the activity (A;) is given by its expected start time (ityiSi) plus its expected
duration time (y;;). Since the distance between the completion times of nodes i and j (pj-pi) is the
same as in Figure 12a, the distance between A;; and p; must be (1-y)Sy so that the total slack
does not change (y;;Si+(1-y;j)S;=Sj;) as shown in equation (68). The system of equations (70) and

(71) portrays Figure 12b.
Aij = B + S + M (70)

Aij =nj — A -7vy)S; (71
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The optimal of the expected completion time of node j (and i) is calculated according to
equation (61), whereas the optimal of the expected completion time of activity (i,j) is given by
equation (65). Thus the system of equations (70) and (71) can be expressed in terms of these
optimal solutions by substituting A for Ay*, pi for p;*, and py for p;*, where pii* and y;* are

unknowns to be found as shown in equations (72) and (73).
* * *
ﬂj = Wi + Y5555 + Hij (72)
* * *
Ajj = nj — (=vi)Sij (73)
Solving for y;* from equation (73) yields equation (74).

P«; - )":j
T S-S 74
. (74)

y

15 =1-
Then, substituting y;* from equation (74) into equation (72) yields equation (75).

M:j = H; “M: _Sij (75)
With this optimal expected duration time of each activity, a new project completion time
can be obtained according to the system of equations discussed in chapter 2, and a budget for the

overall project calculated according to equations (46) to (53).

3.4 Performance Tradeoffs

Although costs are additive (i.e., the total cost is the sum of the cost of each activity),
they do not occur at the same time. Depending on the accounting method used, costs could be
allocated at the beginning (First-In, First-Out or FIFO), at the end (Last-In, First-Out or LIFO),

or even at the middle point between the beginning and the end of the activity to which such costs
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are assigned. For convenience, let us assume the costs are allocated as soon as the activity starts
(FIFO). In FIFO, indirect costs are allocated at the beginning of the project. The project starts at
time T,=0, so that the project's indirect cost (I) given according to equation (50) occurs at time
T,=0. Let d;j=dx be the direct cost given according to equation (76), obtained by substituting k for
ij from equation (45), where vi=vy is the all-crashed direct cost, uj=uy is the all-delayed direct
cost, and p;;* is the optimal value of the expected duration time of activity k in arc (i,j) calculated

according to equation (75) with a minimum and a maximum duration time of a;; and bj;.

a.b. [v.—u. b.u.—a.v.
dij _5 _ ij ij ij + ijij ij u} (76)
Ky bij —a; bij —ay

Also, let C; be the direct cost allocated to node i occurring on average at time Ti=p;* for

all i=1,...,n-1. Then, C; is the sum of the direct costs of all the activities coming out of node i as
indicated in equation (77).

I+>d;, i=1

C = i<j
DNy, i=2,.,n-1 77
i<j
Assuming the planning horizon for the project is given by H and that Q denotes the
project's fractional Internal Rate of Return (IRR), the project's Net Present Value (NPV) is given

according to equation (78), where E is the income per time unit expected after the completion

time [14].

SR E 1-1/(1+Q)"™
N =—
R o ((1 Q)" J( Q ) o

Figure 13 illustrates the arrangement of negative cash flows (costs, between T=T;=0 and

T=T,) and positive cash flows (income, between T=T, and T=H) through time. Figure 13a shows
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the activity network corresponding to the cash flows diagram of Figure 13b. Notice that each
cost C; occurring at time T; indicates the completion of node i and the beginning of each and

every activity coming out of node i.

a. Activity Network

© ° b. Cash Flows
B Diagram
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Figure 13. Cost and Income through Time.

The first term in equation (78) is the sum of each cost C; occurring at time T; discounted
at the Internal Rate of Return (IRR) of the project, whereas the second term is the formula for an

annuity of H-T,, periods occurring at time T, also brought to the present.

Figure 13 implicitly assumes that time is expressed in non-negative integer units such as
days so that annuity inflow occurs at subsequent time periods (T, Tas1, ..., H-1, H). Equation

(79) expresses the annuities as a sequence of H-T, cash inflows and is equivalent to equation

(78).

-51-



n-1
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The Net Future Value (NFV) is the projection of the project’s value into the future, that

(79)

is, into the time at which the last cash flow occurs (T=H), as shown in equation (80).

NFV = —E C.(+QF " +EQ+Q)" ™ +E(+Q)" " +..+ E(1+Q)+E (80)

i=l

The relationship between NPV and NFV is given according to equations (81a) and (81b).

NPV =

81
1+Q)H @12

NFV = NPV(1+ Q) (81b)
By definition [14], the Internal Rate of Return (IRR) of the project is the discount rate Q
at which the NPV is zero, and since from equation (81b) NFV is (1+Q)H times NPV, NFV is also

zero when NPV equals zero. Therefore, the IRR is the value Q for which equation (80) equals

zero as shown in equation (82).

n-l

=3¢ 0+Q) " +E(Q+ Q) ™ +E(L+ Q)T +..+E(1+Q)+E=0 (82)

i=1
Equation (82) is a polynomial in (1+Q) of degree H. Substituting (1+Q) for X from

equation (82) yields equation (83).

—C, X" - —C XM BXE 4 EXP 4+ EX+E=0 (83)

Applying the Newton-Raphson numerical method [12] yields the root (value of X=1+Q)

for which equation (82) equals zero, so that the project's IRR is given according to equation (84).
Although multiple roots are in principle possible, equation (83) would not lead to multiple roots

because there is only one change in sign of the series of cash flows [13].
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IRR=Q=X-1 (84)

3.5 Example

Consider the example from chapter 2. The overhead cost is $2,500 and the overhead cost
per time unit is $100 per week. Table 1 contains all additional data. The last column of Table 1
indicates the optimal time-cost tradeoff point according to equation (53). Notice that in some
cases, the optimal tradeoff point is outside the boundaries (a and b). When that happens (see

activities 3, 5, 8, and 9), the boundary is used as the mean duration time.

Activity a b U A4 p*

1 5 13 $250 $700 6.05

2 5 15 $200 $750 6.42

3 5 17 $200 $500 4.6+=5
4 3 13 $350 $800 4.19

5 13 19 $1,000 | $2,500 24.85=19
6 5 11 $300 $900 7.42

7 21 $400 $600 1.45

8 13 21 $150 $450 1012=13
9 5 17 $650 $850 3.76=5

Table 1. Time-Cost Tradeoff Example.

The expected weekly income is $3,000 after the project is complete, and the planning
horizon is 60 weeks. Costs occur at each node. The list of cash flows due to costs or income is
given in Table 2. The Internal Rate of Return (our measure of performance) that corresponds to
the latter is 3.61% and the Net Present Value (NPV) for a Minimum Attractive Rate of Return

(MARR) of 3% is $2,223.37.
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Time Cash Flow Time Cash Flow Time Cash Flow
0 $-2,500 45 $3,000 53 $3,000
6.05 $-1,178.09 46 $3,000 54 $3,000
6.42 $-1,209.52 47 $3,000 55 $3,000
11.04 $-2,052.85 48 $3,000 56 $3,000
30.05 $-2,900 49 $3,000 57 $3,000
12.50 $-679.83 50 $3,000 58 $3,000
43.05 $-4,383.24 51 $3,000 59 $3,000
44 $3,000 52 $3,000 60 $3,000

Now consider a larger software development project example® consisting of 15 activities.
The overhead cost is $10,000 and the overhead cost per day is $100. The planning horizon is 80
days and the income per day after project completion is $5,000. Note that the costs assumed for
this example are our estimates. Table 3 summarizes all the data. The sequence of node

completion times and costs is given in Table 4. The project’s IRR is 3.63% and the project’s

Table 2. Cash Flow Calculations for Example 1.

NPV for a MARR of 3% is $6,055.16.

In practice, it is unlikely that either project 1 or 2 would be undertaken due to their low
internal rates of return. Another factor that enters into choosing a project is its risk. This is

discussed in the next chapter, in conjunction with rate of return and project classifications such

as mandatory or mutually exclusive.

2 http://www.thebusinessmac.com/features/projmgmt5.shtml
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Activity Predecessors a b U \4 p*
1 Needs Analysis 9 12 100 250 738=9
o) Specifications 1 5 8 300 750 775
3 Select Server 2 4 13 125 275 294 =4
4 Select Software 2 7 16 50 400 660=7
5 Select Cables 3 3 7 30 90 =3
6 Purchasing 4.5 2 6 75 225 2.12
7 Manuals 4,5 6 " 155 235 325=6
8 Wire Offices 6 7 15 100 350 573=7
9 Set Up Server 6 4 6 95 175 3140=4
10 Develop Training 7 12 18 25 165 10 =12
11 install Software 9 3 7 45 200 285=3
12 Connect Network 8,11 2 9 35 165 176=2
13 Train Users 10,12 7 12 185 550 7.83
14 | Test/Debug 12 11 18 355 700 9.88 = 11
15 Acceptance 13,14 2 8 245 445 2.31

Table 3. Example 2 Data.
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Time Cash Flow Time Cash Flow Time Cash Flow
0.00 -10,000 53.00 5,000 67.00 5,000
9.00 -1,119.69 54.00 5,000 68.00 5,000
16.75 -1,099.19 55.00 5,000 69.00 5,000
20.75 -647.117 56.00 5,000 70.00 5,000
23.75 -1,437.68 57.00 5,000 71.00 5,000
25.87 -424.264 58.00 5,000 72.00 5,000
29.87 -554 677 59.00 5,000 73.00 5,000
32.87 -1,5626.17 60.00 5,000 74.00 5,000
29.75 -708.923 61.00 5,000 75.00 5,000
34.87 -352.038 62.00 5,000 76.00 5,000
41.75 -1,164.86 63.00 5,000 77.00 5,000
49.58 -3,028.71 64.00 5,000 78.00 5,000
51.89 -640.214 65.00 5,000 79.00 5,000
52.00 5,000 66.00 5,000 80.00 5,000

Table 4. Cash Flow Calculations for Example 2.

3.6 Discussion

It is important to notice that the optimal time-cost tradeoff could have been calculated
using cumulative costs as opposed to the cost of each activity. In such a case, care should be

taken to avoid the addition of the same cost several times.

As we have seen in the previous examples, the completion time at each node has a direct
impact on performance since that indicates the time at which the cost allocated to any given node

occurs. Table 2 summarizes the project. But there are many different cash flow tables that can be
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created for our example. We could generate the cash flows for all minimum completion times, or
the table for all maximum completion times. The existence of this variability is due to the
uncertain nature of our time estimates. Notice that there were more cases of optimal completion
times (u*) outside bounds in the second example than in the first example. This is due to tighter

bounds in example 2.

The minimum and maximum project performance is measured by the project's minimum
and maximum IRR (Qumin and Qmax). The minimum IRR is the rate of return obtained by solving
equation (84) for the maximum completion time and maximum cost at each node. The maximum
IRR typically is the one corresponding to the optimal completion time and cost at each node.
Nevertheless, that need not necessarily be the case because the minimum (all-crashed)
completion time may provide a higher rate of return despite the higher cost, by allowing the
positive cash flows to occur sooner. Therefore, it is important to evaluate both possibilities in

order to obtain the range in which the IRR is expected to vary.

Having minimum and maximum estimates for costs and IRR allow us to estimate cost
and IRR as an expected value (average of the maximum and minimum estimates) with the

corresponding standard deviation if we assume cost and IRR to follow a beta distribution.

The next step after being able to find the time, cost, and performance estimates of
individual projects is to use these results in considering groups of projects, also called portfolios,

and how to decide which projects to include into the portfolio.
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Chapter 4. Portfolio Selection

4.1 Introduction

Project selection is one of the first and most critical activities in project management.
Deciding from a pool of available and competing projects which ones should be undertaken (thus
assigning limited resources to them) and which ones should not be undertaken or terminated is a
complex decision. Overall value maximization, balance among dimensions, and business
strategy should be considered. The very essence of portfolio management portrayed by Cooper et
al. [20] as a “dynamic decision process... constantly up-dated and revised... [where] new
projects are evaluated, selected and prioritized; existing projects may be accelerated, killed or de-
prioritized; and resources are allocated or re-allocated to the active projects” increases the
difficulty. Furthermore, portfolio selection is a process characterized by uncertainty and
changing information: new opportunities arise, multiple goals as well as strategic considerations
are required, interdependence among projects (either when competing for scarce resources or
when synergies are achieved) exist, not to mention multiple decision-makers and locations.
Consequently, a mathematical model built into a flexible Group Decision Support System
(GDSS) developed within an optimally designed Web-based User Interface (WUI) to foster
interaction between decision-makers seems to be the best long term approach to tackle such a

complex decision making process. Appendix C discusses the design of the interface for the

portfolio selection problem.

According to Meredith and Mantel [58] project selection methods can be classified as

nonnumeric (qualitative) or numeric (quantitative). The sacred cow, operating necessity,
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competitive necessity, product line extension, and the comparative benefit model are among the
qualitative methods. Profitability models (payback period, average rate of return, NPV, IRR,
profitability index, as well as others that subdivide the elements of the cash flow, include terms
of risk or uncertainty or consider the effect on other projects or the organization) and scoring
models (weighted and non-weighted zero-one factor models with or without constraints usually
solved using integer programming as well as goal programming when multiple objectives are

given) are among the quantitative methods.

A decision support system for project portfolio selection is presented by Archer and
Ghasenzadeh [3]. Our portfolio selection model is a maximization zero-one integer programming
scoring model that is more extensive because it explicitly considers risk. For an alternative zero-

one integer programming model, refer to work by Ghasemzadeh, Archer and Iyogun [36].

4.2 Zero-one Integer Programming Model for Portfolio Selection

There is no such thing as the optimal portfolio when we consider the tradeoffs among
time, cost, and performance (not to mention risk preferences). Decision-makers have to weigh
multiple project dimensions and intuitively decide how adding or removing a specific project
would have an impact on the portfolio. In other words, they face intuitive decisions on marginal
contribution (gain or loss). Our conjecture is that the best decision is achieved when overall cost
and time are minimized while maximizing performance for a given risk profile. The question is
how to translate this qualitative statement into a quantitative model that can be optimized. It is
important to realize that the solution given by the model depends on the accuracy of the time,
cost and performance estimates for individual projects that are provided by decision-makers, as

well as the consensus reached about the acceptable risk level. The model does not incorporate
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technological, competitive, or administrative considerations at the strategic level and so its
results should be regarded as merely a guide for decision making and not a definite solution. The
best portfolio is obtained when both quantitative and qualitative factors are taken into account.
To begin working towards this goal, we develop a zero-one integer programming model as
follows. Notice that the optimal solution obtained from this model is only the starting point for

the group of decision makers.

Let the column vector x = [Xi,...,Xs] be a set of zero-one integer variables indicating
whether or not project k is included into the portfolio, where s indicates portfolio size (total
number of projects available): xi=1 indicates project k is selected and x,=0 indicates project k is
not selected. Let the row vector q = [qy,...,qs] be the performance estimates of the project
portfolio as indicated by their Internal Rate of Return (IRR). Note that IRR as a performance
measure is only suitable if the projects involve roughly similar investments. If the investment

amounts differ significantly, a better performance measure might be NPV.

Denote the time and cost dimensions of the projects using the row vectors t = [t,...,t]
and ¢ = [cy,...,cs], where t and c, are the completion time and total cost of project k. Also, letr
= [r1,...,Is] be the risk vector, where 0<re<1 is the risk of project k given as a fraction. Denote the
absolute variability associated with the time, cost, and performance dimensions using vectors At
= [Aty,..., Ats], Ae = [Acy,..., Acg], and Aq = [Aqy,..., Ags], where Aty, Acy, and Aqy are the
absolute deviation of the time, cost, and performance estimates of project k so that tx-
Aty <t < te+Ati, Cr-ACk < Ck < ckTAck, and gk-Aqk < gk <qk+Aqx. These are assumed to be
symmetrical about their mean values. Let B and H be the portfolio's budget and planning
horizon, and R be the decision-makers' risk preference. Risk preference is the risk level (in

percentage points between 0 and 100%) at which decision makers are comfortable. The set Sy
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indicates all mandatory projects. The set P;j indicates all the projects i preceding project j. The set
M; indicates all the projects i that are mutually exclusive with respect to project j. The solution
vector is denoted as the column vector x* = [x;*,...,xs*] where xi* is the optimal solution for
project k indicating whether or not such project should be included in the portfolio. The relative
importance of time, cost, and performance are indicated using weight factors denoted as wi, We,

and wg, respectively, where wetwetwg=1.

MAXIMIZE
qx (85)
SUBJECT TO:
a) cost constraint: cx<B (86)
b) time constraint: (t-H)x<0 87N
¢) risk constraint: (r-R)x<0 (88)
d) mandatory: x;=1VieSny (89)
e) mutually inclusive: Xi2X; VieP; (90)
f) mutually exclusive: Xitx<1VieM; (91)
x=0,1 (92)

Equation (85) is the objective function, equations (86) to (91) constitute the constraints
and equation (92) is the technical constraint of the zero-one integer programming formulation for
our project selection model. Note that additional constraint equations could be added depending
on the situation (e.g., allowing projects to start at different times). The objective function given
in equation (85) makes intuitive sense, since it simply states that the total IRR of projects
selected should be maximized. Also, the so-called technical constraint in equation (92) simply

indicates that the decision variables in the decision vector x are binary (zero-one) variables.
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However, understanding the constraints given in equations (86) to (91) and the relationship
between the objective function and some of these constraints is not as straightforward. To

illustrate, we discuss, step by step, a small example.

4.21 Marginal Cost

Consider a portfolio of three projects (s=3). The costs are c+Ac = $ {2000, 1500, 2500} +
{500, 1000, 500}. The total budget is B = $4,500. Performance as measured by the project's IRR
is the only variable that can be part of the objective function. IRR figures are denoted in the

performance vectors q+Aq. For this example, q+Aq = {8, 7, 5} + {2, 3, 4} %.

What are all the possible solutions? There are 8 combinations for the solution vector x.
Selecting no projects or only one project is not wise, because not all the money would be
allocated. Selecting all projects, although desirable, is not possible ($2000+1500+2500 = $6000
is greater than $4500). So it seems two projects should be selected, but which two? All two-
project combinations are feasible. For x = [1,1,0], $2,000+$1,500=$3,500 < $4,500; for x =
[1,0,1], $2,000+$2,500=$4,500 < $4,500; and for x = [0,1,1], $1,500+$2,500=$4,000 < $4,500.
To decide, we need to rely upon the concept of marginal contribution. Marginal cost is a measure
of how much each percentage point in the project's IRR costs. For project 1, the expected IRR is
8%. Achieving such rate costs $2000, so each percentage point costs $2000/8 = $250. The
marginal costs for projects 2 and 3 are $1500/7 = $214.29 and $2500/5 = $500. Projects 1 and 2
should be included for having the lowest costs for each percentage point. In this case, the optimal

solution is x* = [1,1,0], assuming equations (85) and (86) are the only ones in the model.

Notice that the uncertainty associated to cost is not included in equation (86). This is

because cost uncertainty means that the cost for project | can be as low as ¢-Aci and as high as
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cr+Ac), but on average, the cost should be around ¢;. As explained before, uncertainty is related to

risk, and will be discussed later on.

4.2.2 Planning Horizon

Including time in the portfolio calculations is not as straightforward. Although time is not
an additive variable, it can be included in the model if we consider that the average completion
time of the selected projects should be less than or equal to a given target. This time target is the
planning horizon (H). It is assumed that: a) projects start at time zero, and b) if there are
predecessors of any project, all projects with precedence relationships would be considered a
single project including all predecessors in it. The average completion time of the projects
selected (t) can be calculated dividing the sum of all expected completion times (Zxktx) by the
total number of projects selected (Zxx). Equation (87a) portrays such time constraint. After some
algebraic manipulation, equation (87a) is transformed into equation (87b), which is expressed in

vector notation in equation (87).

Kisl——s H (87a)
DX
k=1
S
Zxk(tk ~H)<0 (87b)
k=1

For our example, t = {744, 343, 10+4}. The portfolio's planning horizon is H=14. The
objective function remains the same: to maximize the portfolio's IRR as indicated in equation

(85). Also, the cost constraint in equation (86) does not change. But the time constraint should be
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satisfied as well. The same analysis applied to cost can be used here for average time. If all
projects are selected, t = (7+3+10)/3 = 20/3 = 6.67, which is less than 14. Therefore, the time
constraint in equation (87) is not binding and so no further analysis is required. If that was not
the case, a combination of both marginal cost and marginal time ought to be considered,

choosing the combination that satisfies both constraints while providing the maximum IRR.

4.2.3 Risk Profile

Calculating the portfolio's risk profile is particularly cumbersome. In any case, how can
we measure risk? Although risk and uncertainty are not the same, uncertainty can be used as a
measure of risk. (We assume risk to be the ‘known’ unknowns as discussed in the introduction.)
Consider our example and the uncertainties for time, cost, and quality. The performance for
project 1 can be as high as 8+2=10% or as low as 8-2=6%. The cost can be as high as
$2000-+500=$2500 if particularly unfavorable events arise or as low as $2000-500=$1500 in a
favorable situation. If project 1 ends up being as costly as possible ($2500) while achieving its
lowest performance (6%), would it be selected as part of the optimal portfolio? Even if project 1
costs $2500 as opposed to $2000, the budget limit should not be exceeded ($2500+$1500=$4000
< $4500). So again, it is a question of marginal cost. Each performance point now would cost
$2500/6 = $416.67, which is still less than the marginal cost for project 3 ($500). But if project 3
performs particularly well (5+4=9%) while at the same time being particularly cost effective

($2500-500=$2000), then its marginal cost would be $2000/9 = $222.22. The latter would

change the optimal solution, from x* = [1,1,0] to x* =[0,1,1].

How likely is the above to happen? In other words, how risky is project 1? It seems that

the risk of project 1 depends on how much uncertainty for time, cost, and performance exists for
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project 1 as well as the combined uncertainty of projects 2 and 3. This requires some form of
weighting among dimensions. For example, how much more important is time when compared
to cost or specifications? The Analytic Hierarchy Process (AHP), developed by Saaty [70] can be
used to assign relative weights based on a series of pairwise comparisons. (AHP is discussed in
chapter 5.) Continuing our example, assume that this weighting has been determined to be w; =
0.35, w, = 0.40, and wq = 0.25. These weights are calculated according to the Delta Analytic
Hierarchy Process (AAHP), which is explained in the next chapter. A measure of relative
uncertainty is the uncertainty to average ratio (gk, k=1,...,5). Each project has three such ratios
for time, cost, and performance. The uncertainty to average ratio for time is the uncertainty
associated with time divided by the time estimate itself At/t. The same applies to cost and
performance: Aci/cy and Aqw/qk. The overall uncertainty to average ratio for project k is the
weighted average, gx = Wi(Ati/ty) + we(Aci/cw) + wp(Aqi/qi) ¥ k = 1,...,s. In our example, g =
0.3625, g, = 0.7238, and g3 = 0.4200. But as we have seen in the previous paragraph, the risk for
project 1 is not only a function of the uncertainty associated with project 1, but a function of the
overall uncertainty associated with all the projects. In short, the risk for project k, rx =
(g/(Zg;))x100%, j=1,...,s, and 0<r<1. Thus, r; = gi/(g1+gtes) = 24.07%, 12 = g)/(g1tgatgs) =

48.05%, and r3 = g3/(g1+g2+g3) = 27.88%.

This result is also intuitively sound. Project 1 has the lowest risk, which is consistent with
the fact that for project 1 to be unselected and project 3 to be selected, the maximum uncertainty
for the extreme cases is required, which is unlikely to happen in reality. Therefore, project 1 is a
low risk project. More or less the same is true for project 3. On the other hand, project 2 is highly
volatile in its time and cost estimates. Actually, it has the same uncertainty than the combined

uncertainty of projects 1 and 3, making project 2 a risky venture. Denote T as the average risk of
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all selected projects. Then, the average risk of the portfolio, T =Exyr1/Zxy, should be less than or

equal to the maximum risk allowed, R. Equation (88a) depicts such risk constraint.

S

PR

k=l <R (88a)

S
2

k=1

Equation (88a) can be transformed into equation (88b) by algebraic manipulation.

n

in(ri ~R)<0 (88b)

i=l
Equation (88b), which is our risk constraint, is expressed using vector notation in
equation (88). What does equation (88b) have to do with risk profile? Risk is a variable between
0 and 1. Chapman and Ward [16] use a risk grid to classify a project as low-risk, medium-risk or
high-risk. Since 0<r<1 and given the fact that the squares in the grid are of equal length, a low
risk project is a project such that 0<r<'/5, a medium risk project is a project for which Vi<t <,
whereas a high risk project has 2/,<r<1. A low-risk, medium-risk, or high-risk portfolio would
have values for R of /3 = 33!/3% (low-risk profile), 21, = 66*3% (medium-risk profile), and 3y =

100% (high-risk profile), respectively.

4.2.4 Mandatory, Mutually Inclusive and Mutually Exclusive Projects

So far we have not taken into account the relationships among projects and their
constraints (mandatory, mutually inclusive, and mutually exclusive projects). Mutually inclusive
projects are projects with precedence relationships and can in fact be considered a single project.

Projects can be mutually exclusive (either one or the other is selected, but not both) in case of
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competing technologies or strategic alternatives. Mandatory projects are projects that must be
selected in order to satisfy given technological, corporate, or industry requirements. Equation
(89) forces mandatory projects to be selected because if project i is a mandatory project (i.e.
project i is in set S), the equation x;=1 forces X; to be one. The mutually inclusive constraint is
equation (90). If project i precedes project j, then Xi 2 X;, SO that project i must be selected if
project j is selected, and project j cannot be selected if project i is not selected. The mutually
exclusive constraint is given by equation (91) because at most only one of the variables is

allowed to equal one.

Following our example let projects 1 (Alpha) and 3 (Gamma) be mutually exclusive: they
cannot be selected at the same time. This means that the solution x = [1,0,1] is not feasible. (In
any case, such solution would also break the time constraint.) The other two feasible solutions
that would make better sense are x = [1,1,0] and x = [0,1,1]. But project 2 (Beta) requires project
3 (Gamma) as a predecessor. (Gamma precedes Beta.) In both feasible solutions, Beta is
included, but only for x = [0,1,1] is Gamma also selected. Although selecting Beta and Gamma
as opposed to selecting Alpha and Beta would not yield the highest performance (7+5=12 <
8+7=15), such choice would be the only one satisfying the constraint for mutually exclusive
projects. In our example, when project relationships are considered, the priority/risk tradeoff is
not binding. Only one optimal solution exists: to select project 2 (Beta) and project 3 (Gamma),
because although project 1 (Alpha) would be the preferred choice for low-risk investors, the only
feasible way to include Alpha is by excluding Gamma, which automatically implies that Beta
cannot be included due to the Gamma—>Beta (or 3—2) precedence relationship. Therefore, the

optimal (and feasible) portfolio is the high-risk portfolio: to select Beta and Gamma. Therefore,
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when these dependency constraints are considered, the optimal solution changes from x* =

[1,1,0] to x* = [0,1,1].

Figure 14 shows the integer linear programming formulation for the example discussed
so far assuming that the decision-makers’ risk profile is medium (R < 66%3% ~ 67%). Since

(32+92+39)/3 = 54 < 67%, risk is not a binding constraint, so the optimal solution does not

change.

Maximize 8x1+7x2+5%;3

Subject to

a) cost constraint: 2000 x; + 1500 x5 + 2500 x5 < 4500
b) time constraint: TxX1-11%-4%x3<50

¢) risk constraint: -35x%,+25%,-28x%3<0

d) mutually inclusive: x;+x3<1

e) mutually exclusive: X-%x3<0

X1, X2, X3 = 0,1

Figure 14. Integer Linear Programming Model.

4.3 Ranking Projects to Assist Managers in Prioritizing Projects

As we can see, the 0-1 integer programming model maximizes performance while
keeping cost, time, and risk in check. Generally speaking, we can say that good projects
consistently have relatively high performance and relatively low time and cost figures. Consider
our example. The best (lowest) time is for project 2, followed by project 1 and finally by project

3. The best (lowest) cost is for project 2, followed by project 1 and finally by project 3. The best
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performance (highest figure) is for project 1, closely followed by project 2 and with project 3
last. It seems the best project to select is project 2 (2 out of 3 best figures), followed by project 1
(1 out of 3). Project 3 is certainly not a wise choice. However, from the zero-one integer
programming model we have that project 1 should be left out of the solution, so that project 3 is
in second place after project 2. What have we just done? We have selected a set of projects for
portfolio. Among these selected projects we can now formalize a priority index and use it to
generate a list sorted by rank in order to classify projects as high priority, medium priority, and
low priority. This will help decision makers to make further allocations among projects in the

portfolio.

The priority index summarizes all the estimates and their relative priority when compared
with the portfolio (set of available projects). Let Zx be the classification index for project k,
where 0<Z,<1 V k=1,...,s. A project is considered to be low priority if 0<Z\<'/5, medium priority
if 1/3<Z,<*/5, and high priority if 2/3<7,<1. This scheme implicitly assumes that the higher the
index, the better the project. The classification index must include the three project management
dimensions. The weights for time, cost, and performance (wt, Wc, and wg) can be used to embody
the three dimensions into one single number. But the units for time, cost and performance are not
equivalent (we have time units such as years, money units such as thousands of dollars, and
performance units in percentage). So first, we have to transform these figures into ratios. Let tmin
and tua be the minimum and maximum time estimates (twmin = Min{t}and tyax = Max{tx}V
k=1,...,8), cMmin and cmax be the minimum and maximum cost estimates (cmin = Min{ck} and cmax
= Max{cy}, k=1,...,5), and quax be the maximum performance estimate (qmax = Max{qx}V

k=1,...,s). Consider performance first. The performance ratio (rqx) for project k is qk/qMax-
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Let rtx and rcg be the time and cost ratios for project k, k = 1,...,s. Can we follow the
same reasoning for time and cost? The answer is no, because the best projects have the lowest
time and cost estimates. But the classification index sorts projects from the highest to the lowest
ratio. So we need to invert the time and cost figures, assigning the lowest figure to the highest
estimate and viceversa. In order to do that, we have to subtract from the maximum value of all
the estimates the given estimate for each project (tmax-ti and cmax-Ci)- The best estimate is always
going to be tmax-tmin. Thus, 1ty = (tMax-ti)/(tmax-tvin)- A similar reasoning can be applied to cost:
rek = (CMax-Ck)/(CMax-CMmin)- The overall index is the weighted average of these ratios, Zx =
wirtHWerctwarqy, k=1,...,s as indicated in equation (93).

Max{t;} - t, Max{c }—c, dy

Z, =W, - +w, - +w,
Max{t;} — Min{t;} Max{c,} - Min{c;} Max{q;}

Ji=1,..8 (93)

In our example, Z; = 0.6, Z, = 0.96875, and Z; = 0.15625. This means that project 2 has
higher priority than project 1, which in turn has a higher priority than project 3. In short,
x;>x;>X3. Actually, project 2 is a high priority project (*/3<0.97<1), project 1 is a medium
priority project (1/3<O.6OS2/3), and project 3 is a low priority project (OSO.l6£l/3). For decision-
makers this means that in principle they should select project 2 first, then select (if possible)
project 1 (which according to the results from the zero-one integer programming model should
not be selected) and finally select project 3 if all constraints are satisfied. But this is not
necessarily the best decision, because equation (93) does not consider the risk profile. For
example, project 2 scores the highest, but at the same time is the riskiest. Although project 1
scores not as high, its risk is the lowest of all. Our attempt is to help decision-makers to quickly

realize which projects should be left out for sure by interacting with data and choices through a
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GDSS. This priority index could be a useful adjunct to the ILP model developed in the previous

section.

4.4 Discussion

Ultimately, the portfolio is a tradeoff decision between priority and individual risk
preferences. In our example, project 2 would be the preferred choice for high-risk investors while
project 1 would be the best choice for low-risk investors. Given the fact that decisions are going
to be taken by a group of people, there is no such thing as an optimal solution, and some form of

consensus or at least compromise will be required.

To apply the mathematical model for portfolio selection from among a realistically large
set of projects discussed in this chapter requires more than the system of equations proposed and
the simple priority index calculations; a Group Decision Support System (GDSS) is required. In
a GDSS, the mathematical model is one of the components; another important component is the
interface between the end user and the computer. Such’ interface should allow users to consider
the solution obtained from the mathematical model and make any changes desired based on
empirical evidence, experience, intuition, or strategic considerations. Consider, for example, the

integrated framework for project portfolio selection discussed by Archer and Ghasemzadeh [2].

Although the model finds the optimal portfolio, sometimes the optimal is not the best
option given managerial considerations. Therefore, it is important to portray the three project
management dimensions plus risk in such way that makes intuitive sense to the user. This would
in turn allow users to make changes to the optimal solution proposed in light of strategic or

technological considerations beyond the scope of our mathematical model, which requires
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considering the interface used to portray portfolio data. Taking into account the preferences of

decision makers that are difficult to quantify is the topic of discussion in the next chapter.
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Chapter 5. The Delta Analytic Hierarchy Process
(AAHP)

5.1 Introduction

The Analytical Hierarchy Process (AHP), developed by Saaty [70] is a multicriteria
decision-making theory for modeling unstructured problems in economic, social and
management sciences, based on the fundamental process underlying perception: decomposition
and synthesis [42][71]. AHP allows a single or a group of decision-maker(s) to quantitatively
analyze a qualitative problem. It has been embedded in an interactive commercial software
package called Expert Choice®. Furthermore, it provides a systematic framework for the entire
decision process, and to validate the consistency of the arguments. The two main advantages of
AHP are the accountability for such inconsistencies and the verbalization of the pairwise
comparisons. (Pairwise comparisons in AHP are comparisons of each criterion against each other
criterion, assigning a number as a judgment of the degree in which the first criterion is more
important than the second criterion.) The main disadvantage is the amount of time required to
break down the problem, deciding upon which criteria to quantify against the overall objective,
and verbalizing the inherent judgments of the decision-makers (compromising when necessary).
If the group concludes that a low consistency ratio reflects a poor problem breakdown process,

they ought to reconsider the situation [4] [8]1[30][46][75].

3 http://www.expertchoice.com/
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But judgments are not deterministic figures. If the attribute assigned to each criterion is
intangible or if enough data are available to compute statistical errors (each decision-maker
assigns a different attribute due to individual judgment differences but nonetheless a final
judgment is reached), the uncertainty associated with the judgment matrix should be considered.
(The judgment matrix is the matrix in which all the pairwise comparisons are entered.) The
Stochastic Analytic Hierarchy Process (AAHP) is a stochastic methodology because it portrays
the judgments as probabilistic figures (each pairwise comparison in the judgment matrix has an
associated variation in the error matrix). In this chapter, we describe the development of a

prototype system that implements AHP using estimated uncertainties in the data.

5.2 Delta AHP

Rosenbloom [69] recommends portraying the pairwise comparisons as random variables,
varying from 1/9 to 9, and calculating probabilistic weights using simulation. Zahir [91] explores
the situation in which the fuzziness of each judgment is portrayed as a percentage above and/or
below the final judgment reached. Such uncertainty may be derived from the error of data
measurements and/or the confidence of intangible criteria. This discussion focuses on the
algorithm developed by Zahir. This was used to model, build and test a prototype software
system named Delta AHP (AAHP). The development efforts were based on the synthesis or
black-box problem [87], in which little is known about the nature of the system. Nevertheless,
the excitation (input) and the response (output) are known from data available in the examples
used in Zahir’s paper. The AAHP methodology is illustrated in Figure 15, which is based on the

decision-support model of Simon [77].
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Figure 15. The AAHP Development Process.
Adapted from Turban and Aronson [84].

The intelligence, design, and choice phases illustrate how to apply AAHP to the real-life
problem (qualitative in nature) faced by a single or a group of £ decision-maker(s). AAHP uses a
problem breakdown process to analyze the situation. First (intelligence phase), decision-makers
state the goal (most relevant aspect of the problem under study that calls for analysis) and a set of
n criteria with contribution/impact to/over the stated goal are defined. For each combination of

two of these criteria, a quantitative pairwise comparison is made by each decision-maker. Second
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(design phase), & judgment matrices are obtained from the { questionnaires filled out by
decision-makers. The average and the standard deviation are calculated and the judgment and
error matrices are obtained. Third (choice phase), the data are entered into Delta AHP and the
results are obtained and discussed. A consistency ratio greater than 10% indicates contradictions
in the arguments. In that case, decision-makers should consider the problem again from a
different point of view, trying to reach or modify the criteria and/or the quantitative judgments
assigned. On the other hand, if the consistency ratio is close enough to 10% and the arguments
are sound, no modification is required [69][70][75][91]. The last phase (implementation) deals

with the detailed instrumentation of AAHP.

5.3 Methodology

Priority in AAHP and in any other circumstance measures the relative intensity of what is
important to people (decision-makers). The Stochastic Analytic Hierarchy Process (AAHP) is an
extension of Saaty’s Analytic Hierarchy Process (AHP). The underlying ratio scale and the
semantic scale used are the same in both cases. Implicit (as to the relative part) is the idea of
comparisons among elements. AAHP is based on matrix theory and ratios. A ratio (or
percentage) is a number between 0 and 1 used to portray relative importance (weight). The
problem breakdown process allows decision-makers to define a set of criteria that have a
contribution/impact to/over the stated goal. The problem is how to calculate such ratios (one for
each criterion). Let v be the number of criteria defined, and o; be the relative weight of each
criterion, where %; ©; = 1, V i =1,...,v. If e;; describes the relationship between criterion i and j,
then e;=wi/®j. The ©’s are unknown. Nonetheless, it is possible to ask decision-makers to

verbalize a series of pairwise comparisons and then to assign an attribute to each relevant
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judgment. Based on empirical evidence, Saaty recommended the use of a 1 to 9 semantic scale
for such purpose [70]. Odd numbers are reference points. Even numbers are used for
compromising when reaching a final judgment is difficult. Of all the possible v? pairwise
comparisons, there are v pointless comparisons (when i=j the criterion is compared against itself;
therefore ej=e;=1). The remaining v? — v = v(v-1) comparisons have to be made once only,
because if criterion i is e; times more important than criterion j, then criterion j is 1/e;; = ej; times
more important than criterion i, which means that only half of these v(v-1) judgments are

required.

5.3.1 Consistency

By consistency we mean here not merely the traditional requirement of the transitivity of
preferences (if apples are preferred to oranges and oranges are preferred to bananas, then apples
are preferred to bananas), but the actual intensity with which the preference is expressed transits
through the sequence of objects in the comparison. For example, if apples are twice as preferable
as oranges and oranges are three times as preferable as bananas, then apples must be six times as
preferable as bananas. This is what we call cardinal consistency in the strength of preference.
Inconsistency is a violation of proportionality, which may or may not entail violation of
transitivity. What matters is not whether we are consistent on particular comparisons, but how

strongly consistency is violated in the numerical sense for the overall problem under study. [72]

Figure 16 shows the computations of the eigenvector (w) for a perfectly consistent
judgment matrix (AA) using Saaty’s successive squaring algorithm (AAz,[AA2]2=AA4,[AA4]2=

AA®, and so on). Since AA is perfectly consistent, only one iteration (AA?) is required. The
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example is particularly relevant because it allows us to further explore and grasp the concept of

consistency.
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Figure 16. Deterministic AHP by successive squaring.

In the judgment matrix, criterion E, is 3 times more important than criterion E3, and E» is
2 times more important than E;. If the semantic scale (all the ey’s in the judgment matrix) is as
good a scale as the underlying ratio scale (the ’s obtained as described a few lines above), then
it should conform to the same properties the ratio scale does. In a perfectly consistent matrix,
using e;’s (the semantic scale) or @;’s (underlying ratio scale) is equivalent. Therefore, to say
that E; is 3 .times (e12) more important than E, is equivalent to saying that ®; is 3 (ejp) times
more important than ;. Likewise, @ is €3 times more important than ®s. Since 01+wy+o3; = 1,
the relationship between E; and E; is constrained by this system of 3 equations if perfect
consistency is to be assured. Substituting m,=€x3®3 into m;=e;20>, we obtain the relationship
between E; and E; for perfect consistency as o;=e2(€3®3)=€1303. Thus, e;3=¢€12€23. Also, notice
that v-1=3-1=2 independent pairwise comparisons were entered (ei»=3, and ex3= 2, being

e13=€1263=3x2=6). Generalizing to v criteria, if out of the v(v-1)/2 pairwise comparisons

-78-



required, only v(v-1)/2-(v-1)=(v-1)(v-2)/2 pairwise comparisons that follow the consistency

equation (94) are entered, then the judgment matrix is perfectly consistent.

e, =k (94)
€

When AA is consistent, a set of v interconnected judgments of the form
€ii1,8il,i2:€12,i35- - -»En-1j AN be formed across the rows and columns. Based on this abstract
construct, it is possible to build perfectly consistent matrices. To do so, the relationship ejjejx=¢ik
(the same as saying that element e; equals ei/ejk, where e;; is dependent on the two remaining
elements on the k column and the i or jm rows of the triangular rectangle formed), has to be
kept. We have shown that out of the v(v-1)/2 pairwise comparisons decision-makers have to
decide upon (v comparisons have a value of one since they are self comparisons, and the
remaining v2-v-v(v-1)/2=v(v-1)/2 judgments are the reciprocals of the original w(v-1)/2
subjective appraisals), only v-1 are strictly required if the remaining v(v-1)/2-(v-1)=(v-1)(v-2)/2
judgments are calculated using the consistency relationship ei=eix/ejx described in equation (94)

(see Figure 17).

If more than v-1 judgments are made which do not follow the consistency equation, then
the consistency ratio can be used as a statistical test. A randomly generated matrix is a matrix of
nonsense (random) judgments. As long as AA is 10% or less close to such nonsense matrix, the
decision process followed to arrive to the judgments is considered coherent enough because
these judgments do not result in a totally interdependent measure. To artificially ensure perfect
consistency is not a good idea at all, because an advantage of AHP is precisely the fact that it
provides a measure of consistency. If all the v(v-1)/2 pairwise comparisons are requested from

decision-makers and if the consistency ratio is less than 0.10 but greater than 0.0 (perfect
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consistency), it is reasonable to consider that the judgments and the results obtained from them
are sound [72]. Low inconsistency is necessary but not sufficient for a good decision. It is
possible to be perfectly consistent as we have seen, yet consistently wrong. Nevertheless, perfect
consistency is important in our discussion because of its implications when the stochastic AHP

algorithm is used, as we will see.

110 For the simplest case (v=2), it is clear the equation derived above holds (w1=1
Bl element has to be entered). The ones in the main diagonal can not affect any
other i (i = j). Thus, the remaining v* - v=4 - 2 = 2 numbers have to be entered.
Since half of these are the reciprocal of the remaining half, only 2/2 = 1 judgement

1 is required.
A1 For v = 3, the former situation holds (i.e., the reasoning applicable to the previous
mlel v = 2 submatrix is the same). Nevertheless, f we allow the decision-maker to
enter any judgement for the first row, third column, the number in row 2, column 3
can be cakulated using the other two non-unity elements (e = ex/es, for
to n creeria example). Certainly, the same w ould be true ¥ the judgement in row 2, column 3

would be entered. In that case, the remaining element could be calculated to

= r=—y )
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: a Judgement should be entered by decision-makers

. Judgement aji is the reciprocal of judgement aij

E o Judgement can alw ays be derived based on previous judgements
1 ® Recriprocal of the calculated judgement

HN-
-

Figure 17. Ensuring Perfect Consistency.

5.3.2 Judgment Uncertainty

Let ﬁs now further expand the paradigm by allowing uncertainty in the quantitative
measurements (AHP->AAHP). This uncertainty is visualized as a sort of fuzziness around the
semantic scale: ®; 2 ®; + Ao; and ©; 2 ®; £ Aw;. For simplicity, the uncertainty is assumed to
be symmetric. The uncertainty associated with the judgment matrix AA is entered in the
uncertainty matrix AAA, where AAA = Ae; V i=1,...,n, j=1,...,n. Then, e; 2> e £ Aej 2
(0FA0)/(0EAD) = 0i/oi(1 £ 8;)) = 0i(1 £ &), where §;; = Awi/o; + Awj/o; and Aejj = w;;d;;. The

approximation is suitable if Aw; « w; and Aw; « ;. AAA expresses the confidence level of the
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decision-maker over each judgment. Since having absolute numbers when portraying such

variation is difficult for the human mind (particularly given the structure of the judgment matrix,
i.e., assigning Aej’s to each e, when e;=1/g;;, but Ae;; #1/Ae;ji), a 0% to 100% confidence level is
used instead. Zahir [91] developed an ingenious algorithm (see Figure 18) to calculate the
weights and their uncertainty (VV + 3VV) based on the information provided by decision-
makers (AA £ AAA). VVy and 3VVy are the unnormalized eigenvector and its uncertainty,

respectively.

Step1 k=1, Wiq € (1,..1)7, UUyq = 0, CC = 0, 8VV,q = AA™ AAA WV,
Step 2 Wk =AA Wk.1.
Step 3 SWk = AA 6Wk_1 + AAA UUk.1.
Step4 CCp = VWyg/Wiq; for alli = 1,...,v, where i implies the i element.
Step5 CCo=|ZCCp — vCCyyl/vCCyyy; for alli = 1...v, where i implies the i element.
Step 6 If CCy > ¢ (where ¢ is arbitrarily small), then UUy = VVi + 3VVy;
go to Step 3 (k = k+1, UUk.1 = UUk.z, Wk.1 = Wk.z, 8Wk.1 = 8Wk.2).
Step 7 Normalize VVi > VV and 8VVy = 8VV.
To normalize VVy:
WV = Wi/ZiVVq; for alii = 1...v, where i implies the i element.
To normalize 8VV,:
8V = [(VViq+8VVi)/Zi(VVi+8VVi) — (VWigr-8VVian)/Z(VVigy-8VVi)I/2.
VV is the principal eigenvector and 8VV is the vector containing uncertainties
(VV + 8VV founded in k iterations). The largest eigenvalue is Amax = CCyy;.

Figure 18. Zahir’s Algorithm.

5.4 Delta AHP

Delta AHP was developed using Borland Delphi 5. Delta AHP 1.1 uses a Rich Text File
(* .RTF) editor, which provides compatibility with other packages. Delta AHP files (*.AHP) can
be imported using Microsoft Word and output or input files can be directly copied into Microsoft
Excel (select and copy in Delta AHP and then paste in Excel). A predefined sequence for data

entry is required (see Figure 19). Deterministic (no uncertainty for AA) or probabilistic (both AA
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and AAA) data can be entered. Further releases will include the standard AHP algorithm

(successive matrix squaring) for deterministic problems.

O~ D WN =2

5+n
6+4n
7+n
8+n
9+n

6+2n
7+2n
8+2n
9+2n
10+2n

5+3n

Probabilistic i AA AA
< DeltaAHP FILE>

Probabilistic

v

o

< CRITERA >

Criterion 1

Criterion 2

Criterion 3

Criterion v

< PAIRWISE COMPARISON MATRIX (AA) >
1 € €n .. ©€n

exn 1 en ... En

e ex 1 .. e

€n €z €m .. 1

< UNCERTAINTY MATRIX (A AA)AS A PERCENTAGE OF AA>
0 A€o A€un .. Aen
Aex 0 Aen ... Aex
Aes, Aex 0 .. Aes
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<AHP FILE>
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v

¢

< CRITERIA >
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1 Ciz Cn ... Cn

Cn 1 Ca ... Con

Cu €2 1 ... Cm

C Cm2 Cm ... 1

Note:When a zero is entered in AA, DeltaAHP looks
for the reciprocal (e, = 1/e;), whereas azeroin
AAA tells the program to use the same
confidence level (Ae; =Ae).

Figure 19. Delta AHP Input Format.

Zahir’s seven step algorithm does not depend on the assumption (for analytical purposes)

that second order terms are equal to zero for a good approximation. Nevertheless, the inverse of

the pairwise comparison matrix ought to be obtained. One of the most efficient ways to do so is

by applying the Gauss-Jordan numerical method, which relies on row operations to calculate the

inverse matrix. However, due to the nature of the matrix AA, this method does not work.

Appendix A discusses the problem of the Gauss-Jordan matrix inversion process.

As a result, the inverse of the pairwise comparison matrix (AA™) was calculated using

the definition of inverse. Although the procedure takes more time, most judgment matrices are

relatively small, so speed is not an issue. The inverse matrix AA™ equals the adjoint matrix of

AA (AA,) divided by the determinant of AA as indicated in equation (95).

AA™ = AAL/JAA|
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The adjoint matrix of AA is the transpose of the matrix of cofactors, AA. as shown in

equation (96).

AA, = AA (96)
The n«n matrix of cofactors of AA is the matrix for which each element e; is equal to (-

1)™ times the determinant of the minor of AA in row/column i/j as shown in equation (97).

AAL = (D" [AARi] N
The minor of AA in i,j (AAmij) is the (n-1)x(n-1) matrix formed when row i and column j
are removed from AA. This set of equations requires matrix AA not to be singular (the

determinant of AA, |AA|, has to be different than zero).

The next question to answer is when a judgment matrix is singular. For a 3x3 judgment
matrix, its determinant, |AA|=-ei3+exer2, which has to be different than zero for the inverse to
exist (ejzex3-e13 # 0; ez # enslexs). By generalizing this concept, we obtain the “invertibility”

equation (98).

e, # (98)

After extensive analysis, a simple procedure for building perfectly consistent matrices

was found for experimentation purposes. It is discussed in Appendix B.

Notice that the consistency (94) and the invertibility (98) equations are strictly
contradictory. In other words, the inverse of perfectly consistent matrices does not exist because
the related system of equations is under-determined. Therefore, AAHP requires the judgment

matrix not to be perfectly consistent.
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5.5 System Implementation

Although the inverse of the judgment matrix is not required for standard AHP
computations (successively squaring AA), it is interesting the fact that the impossibility of
calculating the inverse of perfectly consistent matrices has not been analyzed by Saaty. In our
discussion, we highlighted this fact by exploring what consistency means in practice using

relatively small examples.

The seven-step algorithm presented here (see Figure 18) has some modifications and
additions compared to Zahir’s work. (The final weights and their associated uncertainty are
normalized, ¢ is an input parameter, among other adaptations.) The results obtained from Delta
AHP were compared with the output from Zahir’s original paper for validation purposes.
Normalizing the uncertainty vector requires upper and lower bounds for the absolute value of the
eigenvector. The normalized uncertainty above and below each normalized AAHP weight is half

the absolute difference.
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Figure 20. DeltaAHP Questionnaire.
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The best way to apply AAHP within a GDSS environment is by relying on questionnaires
using a graphic representation of Saaty’s semantic scale. To exemplify, consider a group of 8
decision-makers trying to assess the risks facing a software development project. The goal is
then to assess software performance risk by developing a consensus of weights to be assigned to
different factors. Assuming that the v factors (criteria) contributing to software performance risk
were defined as 1) technological newness, 2) application size, 3) expertise, 4) application
complexity, and 5) organizational environment; v(v-1)/2 = 5(5-1)/2 = 5x4/2 = 10 (greater than v-
1=4) pairwise comparisons are required as follows: 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5, and
4-5. Each decision-maker would have to complete a questionnaire similar to the one shown in

Figure 20.

Using these pairwise comparisons, a judgment matrix for each decision-maker can be
obtained. The first pairwise comparison (1-2: technological newness versus application size)
yields 3 (i.e., the first decision-maker believes that technological newness is moderately more
important than application size). Thus, a 3 is entered in row 1, column 2. For the second pairwise
comparison (1-3: technological newness versus expertise), the decision-maker believes that
technological newness is strongly less important than expertise, so the reciprocal of 5 (1/5) is

entered in row 1, column 3.

Notice that some relationships show perfect consistency. For example, consider e4s = 1/4
= eqles; = (1/2)/2 = 1/4 = eq/(1/e1s). If as shown in cell eq1, application complexity (A) is
weakly less important than technological newness (B), while at the same time cell e;s=1/es; tells
us that technological newness (B) is weakly less important than organizational environment (C),
then, by logic, application complexity (A) should be moderately plus less important than

organizational environment (C) if the decision-maker is being “consistent” (i.e., if the
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information portrayed in the judgment matrix has been obtained through consistent reasoning).
Symbolically, if A < B and B < C, then A < C. This questionnaire-matrix format provides the
basis to build an user-friendly GDSS interface. After all judgment matrices (one from each
decision-maker) have been gathered, a final (consensus) judgment matrix and its uncertainty
matrix have to be calculated. Summary statistics can be used for such purpose. The consensus
matrix (AA) is obtained by calculating the average of each pairwise comparison for all decision-
makers. Let ejjx be the pairwise comparison between criterion i and criterion j obtained from
decision-maker k (k=1,...,£). Then e; = Zeyw/C if i#j, 1 otherwise, V i=l,...,v, j=1,...,v,
k=1,...,&. The error matrix (AAA) is calculated dividing the standard deviation of each pairwise
comparison for all decision-makers by the average pairwise comparison. Let Aej; be the error of
the consensus pairwise comparison. As such, Aej; = 1OOX[Z(eij’k-eij)z/C_,]/eij if 1), O otherwise, V
i=1,...,v, j=1,...,v, k=1,....,C. A good statistical measure of how much of an agreement for each
pairwise comparison has been reached by the group of decision-makers is the kurtosis (fourth
moment of any distribution function). Kurtosis is a measure of peakedness. Let k;; be the kurtosis
for the set of £ individual pairwise comparisons between criterion i and j. Then kyj = (Z(ejjx-
eij)4/§)/(2(eij"k-eij)z/g)z if i#j, 0 otherwise, ¥ i=1,...,n, j=1,...,n, k=1,...,C. A mesokurtic curve (k;
= 1) is an intermediate distribution. A platykurtic curve (ki > 1) is a broad or flat distribution. A
leptokurtic curve (kj < 1) is a slender distribution. If consensus has been reached, most
judgments are close and some are even the same (i.e., the frequency or probability discrete
distribution of the sample data is peaked). We consider the result to be a consensus if at least the

data is mesokurtic (k; < 1).
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5.6 Discussion

Delta AHP can be used to calculate the relative weights of time, cost, and performance
for the ILP model from the previous chapter (wi, we, and wg) based on the inputs of decision
makers. Throughout the iterative modeling, validation, verification and implementation process
followed in this chapter, it has been shown that the Gauss-Jordan numerical method cannot be
used to calculate the inverse of the judgment matrix. The meaning of perfect consistency, as well
as the relationship between consistency and invertibility have also been illustrated. The two
reasons why ensuring perfect consistency is not recommended are: 1) the consistency ratio ought
to be used as an indicator of the thoughtfulness of the decision-making process, and 2) the
judgment matrix (AA) is singular if perfect consistency is assured by following the steps shown
in Appendix B. A procedure to calculate the inverse matrix based on the definition of an inverse
was analytically explained and successfully implemented based on the later inference. Finally,
the algorithm used in Delta AHP was proved to lead to the same results as the VAX-BASIC code

developed by Zahir.
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Chapter 6. Conclusions

As we have seen in our models, time, cost, and performance are interrelated. Time and
cost share a tradeoff illustrated by equation (51). There is also a tradeoff between time/cost and
performance illustrated by equations (77) and (78). Making a decision on time such as crashing
critical activities would have an impact on cost and performance. Therefore, decisions should be
considered in light of all three variables and not just one or two. Risk adds another dimension at
the portfolio level and should be considered as well, but the risk profile must be developed

through a consensus of decision makers (see chapter five).

In chapter two we discussed one equation that correlates the mean with the corresponding
shape parameters of beta distributed duration times. Based on that equation we derived two
equations to calculate the shape parameters from the range parameters and the mean of beta
distributed duration times. The equations are valid and can be applied to calculate the
probabilistic completion time of activities in series. It is our recommendation to the practitioner
to avoid using the PERT textbook formula for the mean, because of the underlying simplistic
assumptions. We also recommend to calculate the mean and variance at joint nodes by numerical
integration instead of using the PERT equation (maximum of the expectations) to avoid

optimistic planning.

In chapter three we discussed the time-cost tradeoff and proposed a system of equations
to minimize overall cost by crashing critical activities and delaying non-critical activities.
Performance was included by considering the Net Present Value (NPV) and the Internal Rate of

Return (IRR) of the project to be our measure of performance.
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In chapter four we discussed a portfolio selection model based on zero-one integer linear
programming. In practice, the optimal portfolio is a tradeoff decision between the model and
investor’s risk preferences. The priority index can be used in practice to help decide which

projects to include in the portfolio.

In chapter five we discussed the Delta Analytic Hierarchy Process. We demonstrated that
the Gauss-Jordan numerical method cannot be used to calculate the inverse of the judgment
matrix and that the definition of the inverse has to be used instead. We also provided guidelines
on how to avoid the construction of perfectly consistent matrices. Delta AHP can be used to
determine the relative weight of time, cost, and performance for the risk constraint of the zero-

one ILP model developed in chapter four.

Each chapter in this thesis addresses a particular topic. Combined, all these topics

constitute our methodology. The methodology’s algorithm is as follows:

Step 1. Calculate the expected completion time and its deviation as well as the criticality index
for each activity (chapter 2).

Step 2. Calculate the cost for the expected duration of each activity and for the minimum and
maximum duration times. Then, estimate the deviation as the minimum difference
between the expected cost and the costs for the minimum and maximum duration times.
Use that to calculate the optimal schedule and to assign slacks (chapter 3).

Step 3. Calculate the performance (Internal Rate of Return) for the expected, minimum, and
maximum times and costs and estimate the deviation as the minimum difference
between the expected and the minimum and maximum figures (chapter 3).

The algorithm above applies to individual projects. To consider a set of alternative

projects (portfolio) requires applying the following algorithm:

Step 1. Apply the Delta Analytic Hierarchy Process (AAHP) to determine the relative
importance of the time, cost, and performance dimensions (chapter 5).

Step 2. Calculate the priority index for each project to help decision makers interact with the
solution (chapter 4).

Step 3. Apply the methodology to each and every project available and then solve the zero-one
integer linear programming model to obtain the “optimal” portfolio (chapter 4).
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Although our methodology requires more effort than PERT, it provides estimates for not
only time, but also cost and performance (where performance is defined as the projects Internal
Rate of Return). Furthermore, it considers the tradeoff between time and cost and allows for the

possibility of calculating the “optimal” schedule.

To recapitulate, our methodology attempts to quantify the time-cost-performance tradeoff
that exists in all projects. Our mathematical model addresses the project management questions
for it considers risk plus all project management dimensions: time, cost, and performance.
However, it is no substitute for common sense and best practices. The novelty we bring is the
equation to accurately calculate beta distributed duration times from the minimum, mean, and
maximum duration times. We also provide a holistic point of view that considers all project

management dimensions at once: time, cost and performance.

Further research should consider risk in more detail, in particular, the existence of time-
risk, cost-risk, and performance-risk, and their interactions, as well as overall risk. It may be of
interest to consider the display of information and the kinds of charts that can be used to portray
results from the model and to allow decision makers to interact with the solution and change the
result suggested by the model if considered necessary. Integrating the mathematical model
proposed in this thesis with a specific interface design aimed at creating a Group Decision
Support System (GDSS) is still left for further work. Further releases of Delta AHP will include
the standard AHP algorithm of successive squaring as well as the questionnaire-based interface
to speed up information gathering. Also, left for further research is sensitivity analysis using
realistic project data to test the outcomes and use it in practical situations. Finally, it may prove
useful to revise all the concepts in chapters two and three and present a synthesis from the point

of view of capital investment decision analysis.
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Appendix A. Gauss Jordan Inversion Process in AHP

Let A be the judgment matrix and I be the identity matrix. By definition, Al = A. Let G
be the augmented matrix A[L, which is formed by merging the two nxn matrices into a single nx2n
matrix, having g as its constituent elements, V i=1,...,n, j=1,...,2n. Using row operations, it is
usually possible to transform the left part of the augmented matrix G into the identity matrix.
The matrix that remains at the right is A" In linear algebra, this would be equivalent to say that
axl=a, where a is any real number. To transform a into 1 we would have to multiply a by its
reciprocal 1/a (inverse in matrix notation). This modifies our original equation from axl=a into
1x(1/a)=1/a, where 1/a is the “inverse” of a, since axl/a = 1 (in matrix notation, AA! = I). To
apply this concept, we have to modify the left side of G column by column. The first step is to
obtain a 1 in row/column 1/1 by multiplying the entire row by 1/g;;. Then, a sequence of n-1 row
sums is carried out multiplying row 1 by -g;; and then adding row 1 to row i, V i=2,...,n. The
next step is to obtain a 1 in row/column i/j, where i=j. To do so, row i is multiplied by 1/g;. The
same procedure is repeated for all the remaining n-1 left columns of G. If successful (no

divisions by zero), this results in a modified augmented matrix G, which contains the identity

matrix I at the left side and the inverse matrix of A at the right side (I|A™).

The first step (multiplying row 1 by 1/ci1) is not required, since we already have a 1
there. The second step involves adding to row 2 row 1 multiplied by -1/ci2. This guarantees a
zero in row/column 2/1 (which is what we need), but leaves also a zero in row/column 2/2,
because row/column 2/2 equals 1 (which is what it already has), plus row/column 1/2 (ct2)
multiplied by (-1/ci2), which equals to 1-c12/ci2 = 1-1 = 0. Now, it is impossible to obtain a 1 in

row/column 2/2, because doing so would result in a division by zero (see Figure 21).
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Such limitation of the Gauss-Jordan method is relevant for system design purposes. For
example, if the attribute entered in row/column 1/2 is 3, its reciprocal in row column 2/1 would
be approximately equal to 0.33. Nevertheless, it was found that if a number large enough of this
kind of cases occurred, the inverse matrix could still be obtained by the Gauss-Jordan numerical
method when the main diagonal of the left-side augmented matrix results in numbers
approximately equal to zero, but not zero (1/3 = 0.33 is not zero, but 0.0033333333 is almost
zero). This may not guarantee a good approximation to the inverse matrix of A due to mantissa
errors. Further tests were carried out and the input format shown in Figure 19 was modified to
allow users to enter zeroes when the exact reciprocal in row/column i/j ought to be obtained from
row/column j/i (ci=1/c;i). The result was the inability of the system to calculate the inverse
matrix. As a consequence, the entirc AAHP methodology and the underlying math were

reviewed for further considerations in order to decide how to calculate the inverse matrix (refer

back to Figure 15).

1
_1C_ 1 023 LX) 02" 0 1 0 XX} 0

Con Com . LX) 1 0 0 0 cce 1

Figure 21. Inverse of Judgment Matrices with the Gauss-Jordan Numerical Method.
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Appendix B. Ensuring Perfect Consistency

Building perfectly consistent matrices is precisely what decision-makers should avoid.

The purpose of this algorithm is to show what should be avoided. As a rule of thumb it is safe to

proceed when considerably more than n-1 pairwise comparisons have been requested.

)
2)
3)
4)

3)

Request n-1 pairwise comparisons from decision-makers and place them in the judgment
matrix accordingly.

At least two of these pairwise comparisons have to be in the same row or column.

If the i®"j™ pairwise comparison (attribute ajj) is above the main diagonal, a column should
be canceled. If a;; is below the main diagonal, a row is canceled. New pairwise comparisons
cannot be entered in canceled spots.

Reciprocals should be automatically calculated, but no row or column cancellation for the
reciprocal has to be made.

For all the remaining n(n-1) - 2(n-1) = (n-1)(n-2) attributes, it will always be possible to
calculate them by using the perfect consistency equation ¢;j = cik/cjk. For each cj; attribute
calculated in such way, its reciprocal can be automatically calculated as well. The perfect
consistency equation would have to be used (n-1)(n-2)/2 times.
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Appendix C. Visualizing Project Management
Dimensions

Introduction

Visualization includes the study of both image synthesis and image understanding,
spanning many academic disciplines, scientific fields, and multiple domains of inquiry. Lohse et
al. ([53]) argue that the need for classification schemes is based on the fact that classification is
at the heart of every scientific field. Classifications “structure domains of systematic inquiry and
provide concepts for developing theories to identify anomalies and to predict future research
needs”. Graphs and images can be used to visualize classifications and different dimensions.
Graphs and images can be characterized as either functional (focus on the intended use and
purpose of the graphic material) or structural (focus on the form of the image rather than its
content). Graphs encode quantitative information using position and magnitude of geometric
objects. Numerical data in one, two, or three dimensions are plotted on a Cartesian coordinate or
polar coordinate system. Common graph types include scatterplot, categorical, line, stacked bar,
bar, pie, box, fan, response surface, histogram, star, polar coordinate, and Chernoff face graphs.
Preece et. al ([65]) identify seven techniques to represent numeric data: scatterplots, line graphs
or curves, area, band, strata or surface charts, bar graphs, column charts or histograms, pie charts,
simulated meters, and star, circular or pattern charts. In this work, we use a modified version of
scatterplots in a Cartesian coordinate system with position, length and area judgments for

information coding.
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Projects are typically specified using three dimensions: time, cost, and performance. We
add another dimension, risk, to consider the probabilistic nature of the portfolio selection
process. In the following sections, the reasoning process followed and the interface features of
two alternative displays are discussed based on the literature reviewed (theory). The above leads
into the conceptualization of two interfaces to choose from (design). A simple experiment is

devised (testing) to determine which interface performs better in each circumstance (discussion).

Theory

Bertin ([10]) defines understanding as “simplifying, reducing a vast amount of «data» to
the small number of categories of «information» that we are capable of taking into account in
dealing with a given problem”. Preece et al. ([65]) discuss what is known in the Human-
Computer Interaction (HCI) literature as the 7+2 magic number, related to short term memory,
which shows that humans are able to recall between 5 and 9 numbers or figures at the same time.
That is one of the reasons why a good HCI display is critical, since it allows users to consider
several numbers all at once if the display presents information in a meaningful way. Although
this concept regarding understanding seems to be most accurate, the human brain is actually
much more capable than Bertin seems to imply. The mind is able to make abstractions,
synthesize various elements from reality, and put them together using not only short-term, but
also long-term memory. A suitable design is a polysemic graphic system, in which the meaning
of the individual signs follows and is deduced from consideration of the collection of signs. For
our purposes, perception deals with the ability of any given individual (or group of) expert(s) to
find relationships between the images and the real world, in an attempt to reach the best project

portfolio. The information displayed on the screen or printed on a sheet of paper is the result of
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summarizing in a plot, based on mathematical models, the combination of all the available data
from historical records (retrieved from a database) and the input obtained from experts during

each session.

For any given project, we have four dimensions: time, cost, performance, and risk. Let ty,
Ck, Pk, and 1 be the time, cost, performance and risk of project k for all k=1...s, where s is the
total number of projects (portfolio size). Also, let the zero-one decision variable xy indicate
whether or not project k is selected; if x,=0 project k is not selected, if x,=1 project k is selected.
In vector notation, T = {ty, By, ..., ts}, C = {¢1, €2, ..., Cs}, P = {P1, P2, ---» Ps}» R= {11, 12, ..., Is},
and X = {xy, Xa, ..., Xs}. Vectors T, C, P, and R are row vectors, whereas vector X is a column
vector. These estimates are the result of applying mathematical models to the raw (input) data
obtained from historical records and/or decision-makers’ expertise. For the purposes of our
empirical study, these figures are given. The objective is to maximize performance subject to
cost and risk constraints. The cost constraint is not to exceed the budget (B); the risk constraint is
not to exceed, on average, investor’s risk preferences (K). Equations (99) to (101) portray the
simplified zero-one integer programming model used in our study to find the optimal solution

(see Ghasemzadeh, Archer, and Iyogun [36] for a detailed discussion).

Maximize PX 99)
Subject to:

CX<B (100)

(R-K)X<0 (101)

We have to meaningfully portray 4 dimensions of data. In table format we have s rows
and four columns; each row represents a project and each column a project dimension. The

problem we have is what Bertin ([9]) calls the impassable barrier: with up to three columns, a
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data table can be constructed directly as a single image, producing a scatterplot or correlation
diagram, in which the objects are in the third (vertical dimension) typically denoted as the z axis.
But we have four (not three) dimensions to picture. Is there anything we can do to avoid

sacrificing the overall relationships of the entire set?

Considering what can be represented in a flat sheet of paper, a graphic system can include
eight variables besides the two to three axes of the plane or space: a) size, b) value, ¢) texture, d)

color, e) orientation, and f) shape. Cleveland and McGill ([19]) ordered from most to least

accurate the ten elementary perceptual tasks:

1) Position along a common scale.
2) Positions along nonaligned scales.
3) Length, direction, angle.

4) Area.

5) Volume, curvature.

6) Shading or color saturation.

Our main problem is how to portray 4 dimensions. Cleveland ([18]) explores the use of
multiple scatterplots in a multipanel display of 4 rows and 4 columns for hypervariate data. Each
pair of variables is graphed on a scatterplot within each panel; the left column is column one and
the bottom row is row one. The graphs are arranged in a shared-scales matrix: along each row or
column, one variable is plotted against all others, which allows to visually link features of one
scatterplot with another. The data is pictured by relying on position along a common scale: small

circles correlate each pair of variables (see Figure 22).
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Figure 22. Multipanel Scatterplots.

The display in Figure 22 shows too much information at once. Bertin ([9]) illustrates the
use of bubbles to picture position along the row/column common scale in multiple scatterplots.
The diameter (as opposed to the area) of the bubbles pictures another dimension because length
is more accurate than area. The scatterplot shown in Figure 22 can be modified by portraying the
first two dimensions (time and cost) as well as risk along the common scales, depicting
performance as the diameter of each bubble. Intuitively, a good portfolio minimizes time and
cost while maximizing performance for a given risk profile. Risk should not be portrayed as area
because the risk profile is usually expressed as a risk range, and position along a common scale
allows a more accurate perception than length. Since time and cost share the same objective

(minimization), it seems reasonable to use the same elementary perceptual task (position along a
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common scale) in both cases. The remaining variable is performance, which is portrayed using

the diameter of the bubble as shown in Figure 23.
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Figure 23. Multipanel Bubble Scatterplots.

Design

We are trying to measure interface efficiency, where efficiency is defined as the
percentage of correct portfolio selections from the user using a given display such as the one
from Figure 23 when compared to the optimal solution according to the model from equations
(99) to (101). Although Figure 23 meaningfully displays all four dimensions at once, it would be
difficult to make sense of the information for larger portfolios, because the bubbles would

interfere with each other or if the display were scaled down, the resulting bubbles would be too
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small to be clearly visible. Even if each display is clear, excessive information may clutter the
computer display and confuse the user. The solution is to choose which dimension to portray.
But which of the four dimensions should we choose for each axis? Looking back at the decision
support model from equations (99) to (101) we realize that only cost and risk are constraints.
Thus, it makes sense to assign risk and cost to the horizontal and vertical axes, respectively,
leaving performance (the objective function) to be depicted by the diameter of the bubbles,
ignoring time as being irrelevant in this particular case. Users will be advised to choose projects
as close to the horizontal axis (i.e. as low in cost) and as large in diameter as possible while at the

same time keeping the average risk below the maximum allowed.

Another way to improve the display is by substituting framed rectangles for bubbles.
According to Cleveland and McGill ([19]), position along non-aligned scales is more accurate
than length. The height of a rectangle can be used to portray performance instead of the diameter
of circles. To portray information more accurately we frame the rectangle within another
rectangle in such way that a sense of percentage can be obtained by comparing the relative
distances between the inner and the outer rectangle. Let project j be the project of the maximum

performance; then the performance of project i is given as a percentage of that as shown in

Figure 24.

Projecti

Project j

Figure 24. Framed Rectangles.
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Consequently, we have two alternative displays. The first display (see Figure 25) is the
bubble chart display and it portrays performance of each portfolio as the diameter of each
bubble. The second display (see Figure 26) is the frames chart, portraying project performance as
the height of the rectangle, which provides an idea of percentage because the inner rectangle can

always be compared to the outer rectangle.

Our hypothesis is that the second display (frame chart) should portray data better for
representing performance using positions along nonaligned scales (rectangle within rectangle
idea) as opposed to the use of length of the first display (bubble chart). Furthermore, such
interface improvement should translate into a better ability of the user to interact with the display

and to select portfolios closer to the optimal solution.
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Figure 25. Bubble Chart.
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We devised a test to decide which interface display (bubbles chart in Figure 25 versus
The error (E) for a given portfolio is the sum of the squared differences between the
.n}) vectors are binary vectors of size n, where n indicates portfolio size. Sy=1 in the

Testing

frames chart in Figure 26) performs better. Performing better in the context of our discussion

means that, on average, the display leads users to solutions closer to the optimal. Thus, to decide

which display is better, we need to know the error for a given portfolio and the average error for

a given display.

solution vector and the data vector. Solution (S

k=1..



solution vector means that project k is part of the optimal solution; conversely, Sy=0 indicates
that project k should be kept out of the solution vector. Dy=1 means that the user selected project
k as part of the portfolio; D=0 indicates that project k was not included in the portfolio. The
error (E) as shown in equation (102), indicates the total number of misallocations: either the user
selected a project that should have not been selected, or the user forgot to select a project that

had to be selected.

E=Y S, -D,) (102)
k=1

Values for E occur for the data of each and every subject in the experiment. Let m be the
total number of subjects and E, denote the error on experiment x. Then, the mean (average) error
can be calculated as the average of errors as shown in equation (103).

m
2.Ex

E = 2 (103)
m

The average error can be used to compare the two displays because the best display is

expected to have a lower error when compared to the alternative display.

Discussion

A total of 10 subjects participated in the pilot study. The pilot study involved interacting
with both displays (one at a time) and deciding, based on the visual information displayed, which
projects to select. All subjects were advised of the best strategy: go for the projects with the
highest performance first. As it turns out, it is more difficult to identify which projects have the
largest performance using the bubble chart. In fact, 7 out of 10 users said they preferred the

frame chart compared to the bubble chart. On the other hand, the mean error for the bubble chart
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was 1.8 whereas the mean error for the frame chart was 2.1. The latter seems to indicate an
advantage of the bubble chart compared to the frame chart; however, such advantage is not large
enough to discard our hypothesis. The number of users who found the optimal solution is larger
in the case of the frame chart (4 users found the optimal solution using the frame chart, whereas

only 3 users found the optimal solution using the bubble chart).

Only 2 users complained they did not have enough time to complete the experiment. On a
scale from 1 to 7 (where 1 is strongly disagrees and 7 is strongly agrees), the group rated the
bubble chart as 5 and the frames chart as 5.44 in usefulness. In summary, it seems the frame
chart is the favorite despite the fact that it did not perform better than the bubble chart. The small
advantage in the mean error of the bubble chart is not sufficiently large to discard our hypothesis,

but the evidence in favor of the frame chart is not solid enough to declare a winner.
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