DEMODULATION| DECODING OF A DC FREE
CONSTRUCTION OF THE GOSSET LATTICE

NORMAN PIERRE SECORD, M. Eng

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Department of Electrical and Computer Engineering
McMaster Univerity
November 1989

DEMODULATION|DECODING OF A DC FREE
CONSTRUCTION OF THE GOSSET LATTICE

DOCTOR OF PHILOSOPHY (1989) McMASTER UNIVERSITY
(Electrical and Computer Engineering) Hamilton, Ontario

TITLE: Demodulation/Decoding of a DC Free Construction
of the Gosset Lattice

AUTHOR: Norman Pierre Secord, B. Eng. (Elect. Eng) McMaster
University

M. Eng. (Elect. Eng) McMaster
University

SUPERVISORS: Professors R. de Buda, D.P. Taylor,
C.R. Carter, P. Yip and K.M. Wong

ABSTRACT

Over the past decade, lattices have been increasingly recognized as an
important source of codes for the Gaussian channel. The 8-dimensional Gosset
lattice has figured prominently in these new developments because it offers an
asymptotic coding gain of 3 dB over conventional pulse amplitude modulation and
can be soft decision demodulated/decoded with a reasonable amount of speed. In
the present work, we revive a little used definition of the Gosset lattice and show
that codes derived from this construction exhibit a null at dc in their baseband
spectrum. Such codes are useful as line codes for baseband signalling on channels
that do not support a dc spectral component or for bandpass transmission where
spectral shaping is required to combat intersymbol interference.

Previous applications of lattice codes have been aimed primarily at voiceband
data communications. This thesis was motivated by the need to develop a decoder
that would make applications in the multi-megabit range of data transmission
possible. To achieve this goal, a two-stage approach to demodulation was
developed. The first stage makes a fast estimate of the transmitted vector and has
the ability to declare an erasure when it knows its estimate is unreliable, This
initial erasure declaring stage controls the throughput of the demodulator. Because
it is far simpler than a maximum likelihood demodulator, greater speed is achieved.
The second stage is provided to correct the occasional occurrence of an erasure and
maintain the error performance of the lattice. To complete the decoder structure,
we outline a method of lexicographic ordering the signal set that leads to a compact
set of decoder look-up tables used to obtain a binary message sequence from each
demodulated vector. Finally, we evaluate the effects of quantization on the
probabilities of erasure and error and give results from a Monte—Carlo simulation

undertaken to verify the demodulators performance.

iii

ACKNOWLEDGEMENTS

Dr. Rudi de Buda had been my supervisor and mentor for over four years
when he passed away in September of 1988. Despite being very ill for over a year,
Rudi’s enthusiasm and support of this work never seemed to wane. When I learned
that Rudi had been reading and correcting some of my thesis material up until the
day before he died, it struck me all the more how dedicated he was to seeing this
work completed. I have missed Rudi a great deal and will always be grateful to
have had the opportunity to know him and work with him.

I would like to thank my thesis committee, Drs. Taylor, Carter, Yip and
Wong, for quickly taking charge of the supervision of my thesis work after Rudi’s
death. I am especially indebted to Des Taylor for taking the extra time to read the
drafts of this thesis and provide the type of objective criticism that I needed to
make this a more complete piece of work. Des has been a continual source of
support and advice throughout my graduate career, and I am very grateful for the
enthusiasm he has shown towards my work. I wouid also thank Dr. Max Wong for
ensuring that I had adequate financial support until I finished my thesis.

I would like to thank all my colleagues at the Communications Research Lab
for their friendship and for making the lab an interesting place to work. I would
like to thank Greg Pottie in particular for taking the time to critique my papers and
for the lively discussions of shared research interests.

Finally, to my brother Patrick, my sister Michelle and especially to my
parents Lise and Lloyd, I owe you the world of thanks for always being there to
back me in whatever I do. Your support and love has made life all the more

enjoyable to live.

List of Figures
List of Tables

CHAPTER 1
1.1

1.2
1.3

l.a
1.5

CHAPTER 2

2.1

2.2
2.3

CHAPTER 8
3.1

3.2

3.3

TABLE OF CONTENTS

INTRODUCTION

Lattices And Their Importance In
Communication Theory

A History Of The Decoding Problem
For Lattice Codes

The Intersymbol Interference Problem
And Partial Response Signaling

Additional Sources Of Reference
QOutline Of The Thesis

THE GOSSET LATTICE A83 AND ITS SPECTRUM

The A83 Construction

Derivation Of The Baseband Power Spectrum

Comparison With The Spectra Of
Other Gosset Lattice Codes

A TWO-STAGE APPROACH TO DEMODULATION
The Lg Configuration And Its Demodulation

The First Stage In The Demodulation
Of The Gosset Lattice A83

The Probability Of Occurence Of An Erasure

Page
vii

ix

14

17
18

20

20

22
27

35
35

41

45

34

3.5
3.6

CHAPTER {
4.1
4.2

4.3

44

CHAPTER 5
5.1

5.2
5.3

CHAPTER 6
6.1
6.2

REFERENCES

APPENDIX A

APPENDIX B

Erasure Correction With A Maximum
Likelihood Algorithm

Enumerating The Predominant Erasure Events

A Near Maximum Likelihood Correction Algorithm
A LEXICOGRAPHIC ORDERING

OF THE SIGNAL SET

Determining The Index Of A Vector
In A Lexicographic Ordering

Implementing The Lexicographic Ordering
Through Look-up Tables

Adaptation Of The Tables For
The Gosset Lattice A83
The Memory Required For The Decoder
Tables Of A 16 Bit/Vector Code
QUANTIZATION EFFECTS AND
SIMULATION RESULTS

The Effects Of Quantization On The Probabilties
Of Erasure And Error

Time Trial
Outline Of The Simulation

CONCLUSIONS
Summary And Comments

Suggestions For Further Work

LINEAR TRANSFORMATIONS LINKING
GOSSET LATTICE CONSTRUCTIONS

50

53

58

65

66

69

7

74

7
78

87
92

102
102
105

107
112

REDUCTION OF THE CODE SPECTRUM EQUATION 117

USING CHEBYSHEV POLYNOMIALS

vi

Figure

1.1

1.2
1.3

2.1

2.2

2.3
3.1

3.2
3.3

3.4

3.5

3.6

3.7

LIST OF FIGURES
Title

Portions of (a) the integer lattice 1!2, and
(b) the hexagonaly lattice A,

Block diagram of basic encoder for a coset code

Spectrum of a 1 — D partial response filter

Spectrum of an A83 Gosset lattice code

Baseband signal spectra of equivalent Eg and A83
versions of a Gosset lattice code

A comparison of spectral occupancy at bandpass

A quantization function fz) which for any real
z provides the nearest integer multiple of 3

Quantization functions fz), fz-1)+1 and fz+1)-1

Discriminator functions o and bi

) A quantized form of the discriminator function
a; assuming 13 modulation levels and 6 bits of

uantization
% A quantized form of the discriminator function

a; assuming 13 modulation levels and 8 bits of

quantization

Block diagram of the proposed two-stage
demodulator

Probability of an erasure P erag VErSUS the

probability of error P e(A83) for a 219 vector
code and the probability of error for 16-QAM
Probability of error performance of the two-stage

demodulator employing a correction algorithm based
on the Conway-Sloane algorithm for 5 VETSUS

maximum likelihood performance and the probability
of an erasure.

vii

11
15

26

31

32
36

37
39

40

41

42

49

54

3.8

3.9

4.1

5.1

5.2

5.3

5.4

5.5

5.6
5.7

5.8

a) The shaded area indicates the region of space
where a received vector r is closer to two
incorrect points % and v of L9 than to the desired

point z in Ass
b) The shaded area to the right of the hyperplane
at the equidistant point 9 can be used to bound

the region of space where r is closer to both g
and v than to z

Flow chart for an algorithm which gelectively
corrects erasures according to the component
sums of the closest and next closest points in
Lg, u and v respectively,

Plot of the error performance of the two-stage
demodulator, employin[g the selective erasure
correction algorithm of Figure 3.9, versus the
probability of error for maximum likelihood
demodulation and the probability of erasure

Block diagram of the decoder look-up tables
for one coset

A 64 level quantization function g(r) for a
code whose components take on integer values
between -6 and +5

Discrete form of the discriminator function e

obtained by applying the quantization function
of Figure 5.1

One cycle of the discriminator function LY
quantized using an 8 bit A/D

The probabilities of erasure and error for an
unquantized system and for 6 bits of quantization

The probabilities of erasure and error for an
unquantized system and for 8 bits of quantization

Flow chart for the Monte-Carlo simulation

Plot of the simulation results versus theoretical
calculations for 6 bits of quantization

Plot of the simulation results versus theoretical
calculations for 8 bits of quantization

viii

57

57

59

64

70

79

80

80

85

86

93
100

101

Table
1.1

3.1

3.2

3.3

3.4

3.5

3.6

4.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

LIST OF TABLES
Title

A list of important lattices and their
symbolic notation

Summary of decoding/demodulation algorithms
for the Gosset lattice

Vectors of the first 4 shells of Lg

Probability of crossing a decision boundary
between z € A83 and u =z + we Ly for
various choices of w.

Pairs of Lg vectors and the distanct to their
equidistant point 4 with the origin 0

Erasure events not corrected along paths (d)
through (i)

Number of steps along each path in the correction
algorithm of Figure 3.9

Memory requirements of the decoder look-up tables
for one coset of the lattice code

Probability P(z) that a component of a code
vector will take on the value z

The mean square distortion due to 6 and 8 bits
quantization evaluated at various signal-to—
noise ratios

Results of time trials conducted to determine the
execution time along each path

Simulation results using 6 bits of quantization
in the demodulator

Simulation results using 8 bits of quantization
in the demodulator

Experimental probabilities of erasure and error
for 6 bits of quantization

Experimental probabilities of erasure and error
for 8 bits of quantization
ix

44

46

55

57

61

61

76

82

84

90

97

97

98

98

CHAPTER 1
INTRODUCTION

1.1 Lattices And Their Imporiance In Communications Theory

Of the resources provided to the communications engineer, power and
bandwidth are the most valuable. On band-limited channels, which in general
encompass terrestrial communications such as the telephone system, the large
number of users simultaneously requesting a portion of the frequency spectrum
dictates that tight restrictions be place on the range of frequencies, or bandwidth,
allotted to each wuser. Power is always readily available in terresirial
communications. However, methods of reducing the amount of power consumed,
thereby reducing transmission costs, are continually being researched.

In communication via satellite, on the other hand, both power and bandwidth
are in limited availability. Power is supplied to the electronics of the transmission
system by large solar panels, with battery backup when the satellite is eclipsed by
the earth. Hence power consumption greatly affects the weight of the satellite, and
the weight directly controls the cost and lifetime of the space craft. Simce the cost
of putting a satellite into o:bit is very high, one also wants to make very efficient
use of bandwidth to accomodate as many users as possible. Obviously, to get the
greatest return from one’s investment in a satellite, it is crucial that the
transmission system use the available power and bandwidth as efficiently as is
possible.

The set of channel signals used to transmit the information from a given

source, usually considered to be a binary source, through the channel to its

1

destination are generally referred to as the modulation. When choosing a
modulation for a particular transmission system, the designer attempts to find a set
of signals that are robust, in the sense that they can be reproduced with a high
degree of fidelity at the receiver, while making the most efficient use of power and
bandwidth. While this may seem like a simple objective to fulﬁll, experience has
shown that the complexity of the transmission system needed to maintain a given
level of fidelity increases dramatically as one attempts to decrease either the power
or the bandwidth, or both.

The problem considered in this thesis can be briefly summarized as the
development of a high speed decoder structure to implement a new form of efficient
modulation for communication over the band-limited channel. For many years the
predominant form of digital transmission used on band-limited channels has been
pulse amplitude modulation or PAM. To overcome the limitations placed on the
signaling rate by a restriction in available bandwidth, a pulse amplitude modulation
system maps binary information into a set of multi-level pulses or channel symbols.
Every T seconds, called the symbol interval or symbol duralion, a pulse is
transmitted through the channel. The reciprocal of the symbol duration, 1/7, is
referred to as the symbol rate or signaling rate and is quoted in symbols per second.
When the pulses are modulated onto a carrier for bandpass transmission, the
signaling rate represents the minimum bandwidth required by the system; for
baseband transmission, where no carrier is used, the minimum bandwidth required is
half the signaling rate. If k bits are mapped into each symbol then the bit rate or
data rate is kf T bits per second.

While increasing the number of modulation levels (i.e., the symbol alphabet) in
a pulse amplitude modulation system allows us to increase the data rate without

increasing the bandwidth, a rather large increase in power is required to maintain

the same level of performance. In the late 1960’s and early 1970s, researchers began
to look for new forms of multi-level modulation which could provide the higher data
rates desired without sacrificing power or performance. Shannon’s work [51] on the
capacity of a channel had shown that the power required by a pulse amplitude
modulation system was 9 decibels (dB) greater (roughly 8 times larger) than that
required by the optimum transmission system for a band-limited channel. It was
obvious that there must exist better modulation schemes which could make up at
least some of the 9 dB difference. The question was what form would they take.

At about the same time, mathematicians were making use of error correcting
codes in constructing dense lattice packings of spheres [40],(41],(42]. It had been
clear since the late 1950’5 [52] that the problem of finding the optimum code for the
band-limited channel was closely related to the sphere packing problem in
mathematics.! Since lattices are easy to construct and provide the densest known
sphere packings in a given number of dimensions, it would seem inevitable that
communications theorists would look to this branch of mathematics for solutions to
some of their problems. Although the early use of lattices in communications has
been attributed to Lang [18],[27], the first known publication proposing the use of
lattices as codes for the band-limited Gaussian channel was that of Blake [3] in

1971.

Stated rather simply, an n-dimensional lattice A is an infinite, regular array of

! The mathematical problem is to determine the best arrangement of n-dimensional
spheres of equal size so that the largest possible number fill a given volume of
n—space. The communications problem is to find, for a given power constraint, the
arrangement of M signal points in n-space that minimizes the probability of an
incorrect detection when the signals are perturbed by additive white Gaussian noise.
The relationship between the two problems becomes clear if one associates the M
signal points with the centres of the M equal sized spheres. A constraint in power
translates to having a fixed volume in which to pack the spheres, while
minimization of the probability of error relates to attempting to use as large a

sphere as possible so that there is the greatest possible distance between their
centres.

4

points in real Euclidean m-space R™, where m » n. The vectors z which make up
the lattice A can be generated through the linear combination of a set of n basis
vectors e, &,..., &, with the integer coefficients 8y Goyeres Gy ie.,
z = a6 +ayey+ ..+ a.e, -

If the dimension m of the basis vectors equals the dimension n of the lattice, the
basis vectors are said to span the space; otherwise A is said to be an n—dimensional
lattice embedded in a space of m dimensions. All lattices have the property that the
vector sum of any two points is another point in the lattice A. Also, the null or zero
vector 0 is a vector in all lattices and for every vector z¢ A, its additive inverse —z
is in A. These last properties endow a lattice with its regularity and make it an
additive group.

It is instructive at this point to diverge from our narrative and give some of
the common terminology associated with lattices. This terminology can be found in
any of a number of sources, see for example [17],[27],[56].

The kissing number of a lattice is the number of nearest neighbours to any
point in the lattice. This is a term commonly used in sphere packing: if we were to
arrange a number of equal sized balls around a central ball, the kissing’ number
would be the number of balls which just touch or kiss the central ball. When the
centres of the balls are the points of a lattice, the sphere packing is of course
referred to as a lattice sphere packing.

A key parameter used to measure the performance of a code is its minimum
squared distance dm%n which for lattices is the squared distance from any point to
its nearest neighbours. This minimum squared distance may alternatively be
defined as the squared magnitude of the vectors closest to the origin (usually
referred to as the vectors of minimal norm or simply the minimal vectors) since

these are the vectors which connect any point to all its nearest neighbours. It

follows that the kissing number and the number of minimal vectors are one and the
same.

The Dirichlet region D, (z) of a point z in the lattice A (also called the
fundamental region or Voronoi cell) consists of all points in Euclidean n-space R®
that are closer to z than to any other point in the lattice and a portion of the
boundary between z and its nearest neighbours. The Dirichlet region represents a
fundamental building block which allows us to tile all of n—-space with a set of equal
non-ovetlapping cells whose centres are the points of the lattice. Thus lattices are
associated geometrically with honeycombs or regular tesselations of n-space [21],[27].
Examples of simple lattices are the integer lattice 12 and the hexagonal lattice A2
shown in Figures 1.1a and b, respectively. If we divide the space around each point
evenly, ti.en we see that the Dirichlet region associated with the integer lattice 12 s
a square and for A2 it is a hexagon. In Table 1.1, we have listed a number of
lattices that are frequently encountered in discussions of lattices and lattice codes.
Although the symbolic notation is becoming more commonly used to refer to each of
these lattices, they are still known by the name of their discoverer. The dimension

of the lattice is in each case given by the subscript of the symbol.

(e) (%)

Figure 1.1: Portions of (a) the integer lattice 112, and

(b) the hexagonal lattice A,

Common Name Symbol

Schlafli D4
Gosset E‘8
Barnes-Wall A16
Leech A2 4
Barnes-Wall A32

Table 1.1: A list of important lattice and their symbolic notation

On the side of the algebraic properties of a lattice, we may define a sublattice
A’ as any subset of the points of A that is itself a lattice. The sublattice induces a
natural pertitioning of the lattice into constituent parts. That is to say, the lattice
A may be considered the union of a sublattice A’ with a finite number of translates
A‘+eof the sublattice A’ called cosets. Such a partition is denoted symbolically as
A/A’ and the number of cosets in the partition, |A/A’|, including the sublattice
which may be considered the zero coset A’+0, is called the indez of A* in A.

Returning to the communications problem, a lattice code may be defined as
Some finite set of vectors from a lattice for which algorithms have been developed to
encode (map information from the source to a lattice vector) and decode (identify
the transmitted vector and reproduce the original source information). In essence, a
lattice code is a form of pulse amplitude modulation in which the components of the
lattice vectors specify the amplitudes of the pulses. When the process of estimating
the transmitted vector involves nothing more than a simple quantization, as is the
case with standard PAM, the decoder is said to be a hard decision decoder. When
an estimate of the transmitted vector is obtained at the receiver by finding the code
vector that is closest to the received vector in terms of squared Euclidean distance,

the decoder is said to be a mazimum likelihood decoder or soft decision decoder.

The significance of lattice codes as a form of modulation became apparent in
1875, when R. de Buda [6] used a theorem from the geometry of numbers to prove
that the error performance of codes derived from lattices could, for high
signal-to-noise ratios, approach Shannon’s upper bound [52] on the error
performance of the optimal code for the additive white Gaussian noise channel.
Unfortunately, de Buda’s bound fell significantly short of Shannon's bound at low
signal-to—noise ratios. Further refinements were made by Kassem in 1981 {37] who,
with de Buda [8], developed bounds for different classes of lattice codes. More
recently, de Buda [7] has shown that there must exist lattice codes whose upper
error bound is only a factor of four larger than Shannon’s bound for the optimal

code.

1.2 A History Of The Decoding Problem For Lattice Codes

Although de Buda’s result [6] was a very significant discovery, applications of
lattice codes were slow in following and did not begin to appear in print until the
early 1980'. This is in part due to the fact that encoding and decoding a l»ttice
code is not trivial. At the receiver, not only must an estimate of the original
transmitted vector be obtained but once the vector has been identified the encoding
process must be reversed to obtain a message sequence. These can be very time
consuming tasks to perform and devising the fastest, most effective approach to
decoding a lattice code is something of a black art. Fortunately, advances in the
technology of very large scale integrated (VLSI) circuits and in microprocessor
technology have made the use of lattices in data transmission systems not only
feasible but a reality.

It has become popular within the literature to refer to the identification of the

closest point on the infinite lattice to an arbitrary point of n—space as decoding. We

8

refer to such a process here as demodulation and reserve the use of decoding to
indicate the two step process of finding the nearest code vector to the received
vector, and identifying the message sequence associated with the code vector. It
could be argued that, since there is a one—to—one mapping between any code vector
and its message sequence, decoding is complete once the code vector has been
identified. However, this is not valid when considering the speed of decoding
because it does not take into account that obtaining a message sequence from a code
vector requires a finite number of operations. For this reason, demodulation will be
used to refer to finding the closest point either on the infinite lattice or within a
finite code to an arbitrary point r ¢ R™ of n-space.

The first complete encoding and decoding algorithms for a lattice code were
given by P. de Buda in 1981 [4]. He chose a set of 214 vectors of equal energy from
the fourth energy shell of the 8-dimensional Gosset lattice Eg. With 14 bits of
information mapped into 8 real components or alternatively 4 complex components,
the lattice code had an efficiency of 1.75 bits per real symbol or 3.5 bits per complex
symbol, halfway between the efficiency of an 8—phase modulation (8-PSK) system
(3 bits per complex symbol) and a 16-point quadrature amplitude modulation
(16-QAM) constellation (4 bits per complex symbol). For a probability of symbol
error of 10_5, the bit energy to noise spectral density ratio, Eb/NO’ required by the
lattice code was 2 dB less than that required by the 16-QAM system, showing that
there were indeed instrumentable lattice codes that could provide a gain over
conventional forms of modulation.

In 1982, Conway and Sloane [14] gave, for a number of different lattices,
algorithms to detect the closest point on the infinite lattice to an arbitrary point in

n-space. The following year, the same pair of authors presented a technique [15] for

finding the indez or message associated with a vector in a lattice code using the dual

basis of the lattice. By combining this method of indexing the code vectors with the
appropriate demodulation algorithm in [14], one could then construct a complete
decoding structure. Also in 1983, ESE Ltd. [23] submitted a proposal to Study
Group XVII of the CCITT for the use of the Gosset lattice in new 2400, 4800 and
9600 bit/s modem standards for the switched telephone network. The ESE proposal
recommended the use of Conway and Sloane’s Ey demodulation algorithm [14] to
detect the closest code point to the received signal.

Further applications of lattices and lattice codes appeared in the September
1984 issue of the IEEE Journal of Selected Areas in Communication. In this special
issue on bandwidth efficient coding and modulation, Gersho and Lawrence [32]
outlined encoding and decoding algorithms for lattice codes in four and eight
dimensions. These algorithms were similar to the earlier work of P. de Buda [4] in
that both viewed the code as an ensemble of permutation modulations (a code
generated through all permutations and sign changes made to the components of a
single prototype vector [53]). Gersho and Lawrence, however, chose a series of
vectors lying in successive shells of the lattice to arrive at a code with an average
energy constraint, in contrast to the equal energy code of P. de Buda. The four and
eight dimensional lattice codes of Gersho and Lawrence both had efficiencies of 4
bits per complex symbol and they reported [32,p. 687] improvements in the
signal-to-noise ratio, over 16-QAM, of 1.2 dB and 2.4 dB, respectively, for the
same level of error performance.

In the same special issue, Forney et al [30] introduced a technique for
representing lattices by a type of graph known as a trellis. This representation was
highly influenced by the trellis coded modulations of Ungerboeck [58]. Ungerboeck
had developed a rule for mapping the outputs of a binary convolutional encoder onto

one and two dimensional signal constellations that he referred to as mapping by set

10

partitioning. Several authors [22],(30] were quick to recognize that if you replaced
the convolutional code with a binary block code, you could construct a lattice. The
set partitioning that Ungerboeck was referring to, when considered in the context of
lattices, is the natural partitioning of a lattice into cosets. Although the work of
Forney et al. [30] hinted at much deeper relationship between lattice and trellis
codes, they were still considered quite separate modulation schemes for several more
years. The lines between these two schemes became permanently blurred with
Calderbank and Sloane’s [11] introduction of trellis codes based on lattice partitions.
The concepts of Calderbank and Sloane have been further refined by Forney [27],{28]
who has attempted to put lattice and trellis codes into a common framework. The
current thinking on trellis and lattice codes is that they fall under the general
heading of coset codes. In a coset code, the signal constellation is viewed as some
finite set of points from an n~dimensional lattice (or a translate of the lattice) that
can be partitioned into cosets with an equal number of points in each coset. To
encode, k bits from a bit block are sent into a rate k/k+r binary encoder (block or
convolutional) and the outputs of the encoder select a coset in the lattice partition
A/A‘. The remaining b-k bits select a particular point within the coset through
some mapping process and this point is then the signal to be transmitted through
the channel. This simple process is illustrated by the block diagram given in Figure
1.2 [27]. This structure can be seen to be very simple and to cover a large class of
codes. Further generalizations to the coset code structure have been proposed
recently by Calderbank {9] and by Pottie and Taylor [47]. These multilevel codes
are designed to allow several levels of binary coding that may include the use of
block and convolutional codes at different levels within the partition structure. As
well, the partitions need not be lattice partitions making it possible to define, under

a single structure, the combination of coding with many varied forms of modulation.

11

binary k+r | A/X coset

k bits ~——»

encoder blis* selector
ne of 2k
osets of A
signal one of 2b+r
b—k bits —» point |———m=
selector points In A

Figure 1.2: Block diagram of basic encoder for a coset code

Prior to the papers of Calderbank and Sloane [11] and Forney [27],[28), there
were two other works on lattices and lattice codes in 1986. In [16], Conway and
Sloane provided another set of demodulation algorithms for lattices, this time
turning to the constructions of lattices involving error correcting codes. In this
paper, they gave the first detection scheme for the very important 24-dimensional
Leech lattice A,,. Several months later, Secord and R. de Buda [47] outlined
encoding and decoding algorithms for a ol4 vector equal energy code taken from the
fourth shell of the Gosset lattice. The construction used by Secord and R. de Buda
was different from that used by P. de Buda [4] resulting in a quite different set of
code vectors and consequently different encoding and decoding algorithms. With a
simple change in the coordinate system, Secord and R. de Buda were able to develop
a much faster decoding strategy, one that was in fact fast enough to provide a data
rate of 28 kilobits/s on a simple microprocessor although a voiceband channel could
not supply information at this rate. They were also able to show that an 8 bit
microprocessor was sufficient to achieve the theoretical error performance of the
code and achieve 2.4 dB of gain over 16 QAM at an error rate of 1070,

All the applications discussed within this section have been, either directly or

12

indirectly, aimed at the kilobit range of data rates associated with voiceband data
modems. To date there has been no real attempt made to utilize lattice codes in
multi-megabit data transmission systems such as those found on the digital
microwave radio channel. The reason why pulse amplitude modulation has survived
as the modulation format on these channels is quite simple. Pulse amplitude
modulation requires a simple hard decision during each symbol interval to identify
the transmitted pulse. When the symbol interval is only a few tens of nanoseconds
long, as in the case of a microwave radio channel, there is very little time to perform
more than a few operations, even with the best of todays available digital
technology. Many of the soft decision demodulation and decoding strategies
proposed for lattice codes require into the tens and hundreds of operations per
symbol interval. While certain strategies may be developed to perform a number of
these operations in parallel, in general this will still not be sufficient to make the
application of lattice codes feasible at such data rates.

The motivation for this thesis was thus to find a way of reducing the number
of operations per symbol interval without sacrificing the gain provided by the lattice
code. In other words, we wanted to find a way of marrying the speed of a hard
decision decoder to the improved error performance provided by a soft decision
decoded lattice code. The particular lattice chosen was the Gosset lattice ES' As
this narrative has indicated, the Gosset lattice has figured prominently in most of
the applications of lattice codes [4],[23],(32),[49]. This is primarily due to the fact
that it provides a modest 3 dB of asymptotic coding gain over conventional pulse
amplitude modulation and has a block length which is manageable for
demodulation/decoding purposes.

The approach taken in the research leading up to this thesis was to first

develop a demodulation strategy for finding the closest point on the infinite lattice

13

and to make this demodulator as fast as possible. As with all such demodulation
algorithms [14),[16),[28], it can be used to demodulate a finite code provided the
code is chosen in such a way that the underlying structure of the lattice is preserved
over some finite region of space. In other words, the code must consist of all lattice
points that lie within some bounded region of n-space. In general, the bounding
region is chosen so that the signal constellation is as symmetric about the region's
centroid (usually the origin) as is possible.

To complete the decoder, not only was a method of choosing a signal
constellation needed but also a fast technique for mapping information to and from
each code vector. In the present case, it was the design of the mapping algorithm
which more or less dictated the shape of the signal constellation. A procedure was
developed to generate a set of decoder look-up tables that required a signal
constellation which was hypercubic in nature. The decoder look-up tables then
made it possible to find the message sequence associated with any vector through a
sequence of look-ups and adds. The technique is sufficiently general in its
description that codes of many different sizes can be generated using the same
algorithm. By combining these decoder look-up tables with the detection scheme
outlined in Chapter 3, a complete decoder can be obtained.

It is felt that the decoder structure discussed in this thesis has sufficient speed
and simplicity that it could be utilized in a digital microwave radio system. This
cannot, however, be stated with absolute certainty since this is only a theoretical
study of the decoder’s development and error performance. The actual system

implementation is in fact beyond the scope of the present work and is left for future

development.

14

1.8 The Intersymbol Interference Problem And Partial-Response Signaling

Whenever the frequency content of a signal is restricted, either through the
use of filtering so that it might fit into a band-limited channel or by the channel
itself band-limiting the signal, we encounter a p;:oblem known as intersymbol
interference. Intersymbol interference arises in a pulse amplitude modulation
gystem when the effects of one pulse have not died out before the next pulse is
transmitted [34]. The signal which the receiver sees is the sum or superposition of
the individually transmitted pulses, thus if the effects of transmitting one pulse have
not fallen to vero before the next pulse is transmitted, (i.e., the pulse has a non—zero
response outside its symbol interval), it will influence or interfere with the reception
of the next pulse. If we consider that not just one but many symbol intervals may
be required for the amplitude response of a pulse to decay to zero, the effects of
many previously transmitted pulses may be felt in the reception of a particular
symbol. This interference can become extremely severe and substantially degrade
the performance of the receiver, which must still contend with channel noise as well.

To combat intersymbol interference, what is often done is to introduce some
form of correlation between symbols, (in other words a controlled intersymbol
interference), with the intention that since it is known it can be removed. This
correlation is a form of memory that is added to the pulse amplitude signal and as
such signaling schemes containing 2 known intersymbol interference can be classed
as linear modulations with memory but are most often referred to as correlative
coding schemes or partial response signaling schemes [36],{39).

There \are several methods of introducing a controlled intersymbol inte_ference
into a pulse amplitude modulation signal. One such method is to take the symbol
sequence z; that specifies the amplitudes of the pulses in each symbol interval

kT < t < (k+1)T and form a new sequence Y; by subtracting the previous symbol

15

21 from the current symbol z, i.e.
Yp = T Tpy -

Such a sequence ¥y, can be obtained by passing z through what is knownasal-D
partial response filler, where D is the delay operator. The delay element D is what
introduces memory into the sequence ¥ - This induced memory of one symbol
interval creates periodic nulls in the frequency spectrum of the 1-D partial
response filtered sequence Y} 38 is shown in Figure 1.3, Before the sequence Yy is
transmitted, it is sent through a pulse shaping or zonal filter to limit the frequency
content of the transmitted signal to a finite range of values. The pulse shaping filter
response that would yield the minimum bandwidth signal is the rectangular or

“brick wall" response shown as a dashed line in Figure 1.3.

— —— A —

amplitude

l
l
l
I
|
l
l
l
I/

|
-1/T -1/2T 0 1

\._......_............._.._._._.._—-—-—

frequency

Figure 1.3: Spectrum of a 1 — D partial response filter

16

Another currently popular method of inducing a dc null in the baseband
response involves the use of runving digital sum feedback [10). The running digital
sum is simply the accumuiated sum of the amplitudes of all transmitted symbols
from start up to the present time interval. In designing a code for use with running
digital sum feedback, for every vector zincluded in the code, its negative —z is also
included. When it comes time to transmit a given code vector, the encoder chooses
either z or —z whichever will reduce the running digital sum towards zero. The new
running digital sum is then computed and fed back for use with the next
transmitted vector. This feedback essentially bounds the running digital sum and
pushes its expected value towards zero. If the expected value of the running digital
sum is zero for all time then it can be shown that the sequence of transmitted code
vectors has a null at dc in its baseband spectrum.

We mention 1 — D partial response filtering and running digital sum feedback
to provide background for some of the discussion to follow in Chapter 2. This thesis
is not primarily concerned with the intersymbol interference problem or partial
response signaling. Rather, it is an interesting consequence of the choice of lattice
construction that the codes discussed in this. thesis have a null in their baseband
spectrum and therefore fit into the 1 —~ D partial response channel. This lattice and
other constructions of its type are an interesting phenomenon in lattice theory since
neither 1 —~ D partial response filtering nor running digital sum feedback is needed to
produce this spectral null, it is an inherent property. Prior to the present work,
such a property had never been identified in any lattice construction. Calderbank,
Lee and Mazo [10] have constructed trellis codes with speciral nulls using the
running digital sum method and this technique has been extended by Forney and
Calderbank [29] to cover the general class of coset codes. These coset codes with

spectral nulls form the main basis of comparison with the lattice codes discussed in

17

the next chapter.

1.4 Additional Sources of Reference

In this chapter, we have attempted to give a brief background to both the
history and the terminology of the problem to be considered in this thesis. For the
interested reader, there are a number of excellent tutorial and introductory papers
to the subjects of sphere packings, lattices and partial response signaling. Sloane's
article in Scientific American [53] provides a very readable introduction to the
sphere packing problem and the uses of sphere packings in communications. A
mathematicians perspective on the development of error correcting codes and their
use in comstructing sphere packings can be found in the monograph of Thompson
[57]. Some of the anecdotes recounted there make for very amusing reading and
point to the fact that mathematics and engineering are not always the exact sciences
we perceive them to be.

The two recent papers of Forney {27],[28] provide an excellent introduction to
the subject of lattices and their application in coding and modulation. Although
written with the engineer in mind, some background in binary coding and the
algebra of groups, however brief, would considerably aid one’s understanding and
comprehension of the material presented, (reading the first three chapters of {43]
would be sufficient). For the more mathematically inclined, the book of Conway
and Sloane [17] is a definitive catalogue of all the major developments in sphere
packings and lattice theory over the past 25 years. In particular, the book contains
just about everything one would ever want to know about the Leech lattice.

In the area of partial response signaling and the intersymbol interference
problem, the tutorial papers of Kabal and Pasupathy [36], and Kobayashi [39] are

considered essential reading. The more recent paper of Forney and Calderbank [29]

18

gives 3 much updated view of coding for the partial response channel and looks into
the tradeoffs between power and the width of the spectral null at dc.

1.5 Outline of the Thesis

In Chapter 2, we begin by defining the particular construction of the Gosset
lattice to be used throughout this thesis. This is followed with a derivation of the
baseband spectrum of codes taken from this particular lattice construction. These
codes are shown to have a spectral null at dc and a comparison is made with other
codes having a similar property.

Chapter 3 is devoted to the two-stage demodulation structure proposed for
this construction of the Gosset lattice. This demodulator makes use of erasures to
reduce the complexity of demodulation to just over two operations per component
while maintaining the error performance at a level that very quickly approaches
maximum likelihood performance at error rates below 1078,

Chapter 4 outlines a method of ordering and indexing the vectors of a code
that is referred to as a lezicographic ordering. This technique allows us to generate
a set of very compact look-up tables that can be used to find the index of a code
vector very quickly. When these look-up tables are combined with the
demodulation algorithm discussed in Chapter 3, a complete decoder structure can be
obtained.

Chapter 5 provides Monte—Carlo simulation results which essentially
demonstrate that the theoretical error performance predicted in Chapter 3 can be
reproduced through computer simulation. The simulations were written with the
assumption that finite quantization was applied to the received signal before it
entered the decoder. As such, the first section of the chapter is devoted to

determining the effects of quantization on system performance through a derivation

19

of the mean square distortion due to quantization. Results were obtained for both 6
and 8 bits of quantization. It has been shown that 8 bits of quantization are
sufficient, for the particular code used, to guarantee the type of soft decision
performance predicted.

Finally in Chapter 6, conclusions and suggestions for further research are

given.

CHAPTER 2
THE GOSSET LATTICE A83 AND ITS SPECTRUM

21 The Ag® Construction

There are a number of ways to comstruct the Gosset lattice, (see [5] for five
different definitions), which apart from the choice of coordinates, and possibly a
scale factor, are equivalent. By equivalent it is meant that the kissing number of
nearest neighbours, the average energy, the minimum distance and the shape of the
Dirichlet region are the same for all constructions of the Gosset lattice. Thus,
although the method of assigning coordinates will differ for each construction, the
underlying structure of the lattice remains the same. In mathematical terms, it is
said that the lattice is fnvariant to any rotation of the coordinate axes.

In the context of coding and modulation, the invariance of the lattice implies
that there is no advantage in terms of error performance in choosing one
construction of the Gosset lattice over another. That is to say, the results of
maximum likelihood decoding of two codes of equal size taken from the same region
in IRS, but from different constructions, must also be invariant. However, the
difference in the coordinate systems between constructions necessarily implies that
the algorithms for encoding and decoding will differ. The use of one construction of
the Gosset lattice over another thus becomes strictly a design choice. The
predominant criterion affecting this choice has been the simplicity of decoding.
With the present work, the spectral characteristics of the code may also be
considered a criterion. To this end. we introduce the following construction of the

Gosset lattice due to Coxeter [18],[19],[20].

20

21

Definition: The Gosset lattice in k% is the lattice whose vertices, in an orthonormal
coordinate system in Rg, are the set of vectors whose 9 integer components
i) are all congruent? modulo 3 to each other, and

ii) have a sum of zero.

Although the Gosset lattice is most commonly given the symbolic notation Eg
or Ag,? Coxeter [19] denoted this construction of the Gosset lattice as A83 because i
defines the lattice as the union of a sublattice 3A8 with two of its cosets,

A = 345 v 345+ (2315) 34g - (-23,15), (2.1)
where A8 is the lattice of all 9-tuples of integers z ¢ 19 with a zero component sum
[13] and (-—23,16) is a shorthand notation for the vector (-2,-2,-2,1,1,1,1,1,1).
Relating equation (2.1) to the above definition, it can be seen that the sublattice
3Ag consists of all vectors whose 9 components are mutually congruent to 0 modulo
3, (or more simply, 9 integer multiples of 3). The cosets 3A8 + (-23,16) and
34g - (—23,16) account for the vectors whose components are mutually congruent,
modulo 3, to +1 and -1 respectively. Of course, all the vectors also satisfy the zero
sum condition of part (ii) of the definition.

The vectors of minimum length within a lattice are the vectors which join any
point to its nearest neighbours. In the Gosset lattice there are 240 such minimal
vectors. For the A83 construction, they comsist of the 72 vectors obtained by
permuting the components of the vector (3,-3,0,0,0,0,0,0,0) and the 168 vectors

obtained through all permutations of the components of (-2,-2,-2,1,1,1,1,1,1) and

? An inte%er zis said to be congruent modulo 3 to the integer 7 (7=0,1,0r 1), if
and only if z - jis a multiple of 3. Symbolically, this is denoted z = jmod 3.

3 In Appendix A, a set of linear transformations are given which link the three
Gosset lattice constructions Eg, As, and A83.

22

its negative (2,2,2,-1,-1,-1,-1,-1,-1). These minimal vectors all have a squared
magnitude or energy of 18, which is also the minimum squared distance between any
two ponts in this construction of the lattice.

The most intriguing feature of this construction of the Gosset lattice is the
zero component sum of part (ii) of the definition. It is this restriction which reduces
the configuration from 9 dimensions to 8 by forcing all the lattice vectors to lie
within an 8-dimensional hyperplane in 9-space. As will be seen in later chapters,
this zero sum restriction can be exploited in the designing of a demodulator and in
the designing of a series of decoder look-up tables used to obtain the bit-sequence
associated with a code vector. At present, the frequency spectrum of codes derivéd
from this A83 construction of the Gosset lattice will be investigated to determine
how the zero sum restriction afiects the spectrum. It has been shown [46] that any
sequence whose running digital sum is uniformly bounded over all time has a null in
its baseband spectrum at zero frequency or dc. If the components of any A83 vector
are interpreted as a sequence of real samples of a baseband signal, then the running
digital sum of this sequence must go to zero with the transmission of the ninth
Component of the vector. Consequently, a code derived from this A83 construction
has a null at dc in its baseband spectrum. In the following section, this result will

be derived mathematically.

2.2 Derivation of the Baseband Power Spectrum

As was stated in the introduction, a lattice code can be viewed as a decodable
modulation in which sequences of independent data are mapped into a finite subset
of the vectors of a lattice. Let {z,, =< m <o} denote the sequence of
transmitted code vectors. During the time interval mT, ¢ t<(m+1)T,, the

components of the code vector z, = (zm,l’ Typ g+ m,n) are transmitted at T

23

second intervals, where T is the symbo! duration, Tn = nT is the block duration or
period required to transmit one vector and n is the block length. The baseband
signal (¢} associated with such a transmission is expressed as [10],[12]

() = B % 2 ; At mT, - (-1)T), 2.2)

m=—a =1

where g(?) is the pulse shape used in transmission. To determine the power spectral
density of the signal s(t), it is easiest to first find the autocorrelation function
R (1) = E{s(t) s(t+7)} of the signal and then obtain the spectral density S(f) by
taking the Fourier transform of the autocorrelation function. Finding the
autocorrelation function is not exactly straightforward, however, because the signal
is not stationary but only periodically stationary (or cyclostationary).4 Bennett (60]
derived an expression for the autocorrelation function of a cyclostationary process,
and subsequently its power spectral density, by assuming that the codeword
sequence {zm} is wide-sense stationary and by introducing a random "phase" into
the shaping pulse g(t) that is uniformly distributed over the block duration T,. The
signal s(f) then appears wide-sense stationary since the observer of s(t) knows only
that the codewords are emitted at equal time intervals T, but is completely
ignorant of the time instant at which they are emitted. The autocorrelation

function R () of the signal s(¢) can then be shown [12],[60] to equal

1 +m n))
R(r) = 2 ¥ R(i) R (r-kT ~{I~i 2.3
=g T3 R R (2.3

4 A random process is said to be strictly stationary if its statistical properties are
invariant to a shift of the time origin. If the random process has a constant mean,
its autocorrelation function has a finite value at 2 lag 7 of zero and the
autocorrelation function is invariant to a shift of the time origin, then the process is
said to be wide~sense stationary. In the present case, although the statistics of the
signal s(f) vary from symbol to symbol, they are invariant to shifts of the time
origin that are integral multiples of the block duration Tn‘ The signal is thus

classified as periodically stationary or cyclostationary. For further details on the
properties and classification of such processes see [45, pp. 219-231].

where Ry(1,]) is the (i,)) entry in the n » n codeword correlation matrix

R, = Ez,'z), (24)
and R g(7) is the autocorrelation function of the shaping pulse,
+o
Ryr) = [A At+1)ar. (2.5)
-m

If G(f) denotes the Fourier transform of the shaping pulse g(f), then the Fourier
transform of its autocorrelation function R g(r) is

FRfn)} = |6(I*. (26)
By taking the Fourier transform of equation (2.3), and substituting equation (2.6),
the power spectral density S(/) of the signal s(¢) is given by [12]

= 1o '8 I B emlionf 47,4071
- lao® b ent-intr,) oA, (27
where V() is the n-dimensional row vector,
VD = lem(ionfT fm)empliniT /o), .. eon(ioniT), (28)

¢ denotes transpose and £ denotes hermitian or complex conjugate transpose. Of
more interest to the present discussion is the code spectrum C{f) which may be

obtained through dividing 5(f) by the spectral density of the shaping pulse, i.e.,

S te g
AN = 13thn = B b enl-presr) vORVAD . @9)
k=—w “n
Since data is mapped into each vector independently, the transmission of any
vector z. is completely independent of (or uncorrelated with) all other
transmissions. As a consequence, the only correlation matrix which is non—zero is
R, and equation (2.9) reduces to

ap = ,},n VINR,V (S . (2.10)

If a lattice code is loosely defined to be the set of all vectors lying on the

25

surface of or in the interior of some hypersphere,5 then it can be quite easily shown

that the 9 » 9 correlation matrix Ro of the A83 construction of this code is

'1—1--1—1-1--1—1—1-1
§ 58 8 8 8 8 8
~1 1—1 -] -1 =1 -1 -1 -1
51 5 5588 8 8§
-1 -1 1—1 -1 =] -1 -1 ~]
585! 5535 8 8 8
-] -1 -1 1—1 -1 -1 -1 1
5§ 8 8 ssssf
1 -} =1 <1 -1 -1 -1 -1 =
By= 358, |55 8381l &58 83§ (2.11)
-1 -1 -1 -1 -1 1—1 -] -1
5§ 8353538 85 8
=1 -1 -1 -1 -1 -1 1—1 ~1
5883585831133
-1 -1 -1-1-1 -1 1 -1
5§ 5358583813
-1 -1 -1 -1 -1 -1 -1 -1 1
EEEEEEEE

where E is the average energy of the code vectors. Substituting the correlation

matrix (2.11) into equation (2.10), the power spectrum of the code, (), can be

expressed as
_F 1 8 94
an = 'T;[l - g‘él 5 {eap(RknfT,[9) + ezp(-Rkn(T, (9)}]
E 8
= 11,3[1 -1 I;Jli"i'-‘cos(zkarﬁn/g)] (2.12)

where T, = 9T is the block duration for the A83 code. The summation of cosine
terms on the right of equation (2.12) can be reduced using Chebyshev polynomials
of the first and second kind [1]. Complete details of this reduction are left to
Appendix B and only the result is stated here: The power spectrum of an A 3 code

8
with correlation matrix (2.11) is given by

5 Note that for the A83 code, this defines some code on or interior to an

8—dimensional hypersphere that lies within a hyperplane in 9-space. The analogous
situation in 3-space would be to define a lattice whose points all lie in some planar

cross—section of 3-space. The lattice code would then be all points on or interior to
some circle in the plane.

et) i

Belo 1
A = 71| & - 72 |swrTrT0)
n sin(xJT,

The baseband spectrum of equation (2.13) is shown in Figure 2.1, normalized

in amplitude with respect to the average power E al T, of one block and in time with

respect to twice the block duration Tn‘ If the spectrum shown in Figure 2.1 is

compared with that of Figure 1.3, we see that the codes derived from the ‘483

construction of the Gosset lattice exhibit similar periodic nulls to those observed in

a 1 - D partial response filtered sequence. Codes derived from ‘483 can thus be said

to fit into the 1 — D partial response channel or, equivalently, to belong to the class
of dc free codes [39).

o TP

0.8 1

0.6 4

C(f) T./E.

0.4+

0.2 4

0-0 l||lllll]’lllllilt]llilllll"lll{lllllllltlilllllililill

~18 -9 0 g 18
21T,

Figure 2.1: Spectrum of an A83 Gosset lattice code.

27

A simple code for which the validity of equations (2.11) and (2.13) is easily
checked is the code made up of the 240 minimal vectors defined in the previous
section. Such a selection of points is symmetrically distributed throughout the
space and consequently results in a symmetric correlation matrix. In general, a
particular configuration of M points, selected to encode loggM bits per vector, will
not be as symmetric as choosing all vectors on the surface of or interior to some
hypersphere. Consequently, the off-diagonal and diagonal elements of the
correlation matrix R, will not all be identical as they are in (2.11). The correlation
matrix will still be symmetric about its main diagonal since for any i #
i=12,...,9

Ry(il) = Hlzg;zp) = Hzpyzy] = R(hi).
Because the correlation matrix is symmetric, the code spectrum equation will reduce
to a summation of cosines as in equation (2.12), but with a much different set of
scalar coefficients than the values of 951‘ seen in (2.12). The difference that one will
see in the spectrum as a result of a change in the coefficients of the cosines will be a
slightly greater overshoot and more pronounced ripples across the frequency band.
The width of the spectral null will, however, remain the same because it is inversely
proportional to the length of time required for the running digital sum to go to zero
[10],(29]. Since the lattice construction forces the running digital sum to zero with
the transmission of the ninth component of any vector, the width of the spectral

null will remain fixed despite variations in the code.

2.8 Comparison with the Spectra of Other Gosset Lattice Codes
The periodic nulls observed in the code spectrum of this A83 construction of a
Gosset lattice is a property not observed in codes derived from other constructions

of the lattice, which have flat spectra [10]. A worthwhile exercise would thus be to

28

compare the signal spectrum of an As3 Gosset lattice code with that of an E8
construction of the same code to determine their individual bandwidth
requirements. As discussed in section 2.1, the invariance of the lattice to a rotation
of the coordinate axes emsures that the results of maximum likelihood decoding
these two codes will be identical. Thus for the comparisor to be fair, the mean
energy £ and the block duration T, of the two codes must be the same. Satisfying
the former condition is simply a matter of appropriate scaling. Satisfying the latter
condition does however pose a bit of a problem in that the two codes have unequal
block lengths; the A83 code vectors consist of 8 independent samples plus a further
dependent sample, while the Es code vectors consist of only 8 independent samples.
If the block durations Tn are to be equal, the 9 samples of the 483 code vector must
be transmitted within the same amount of time alotted to transmit the 8 samples of
the Eg construction of the code. This necessitates that the sample spacings for the
A83 code vectors be smaller than those for the E8 code. If T'is the symbol duration
for the ‘483 code, and T is the symbol duration for the ES code, then for equal
block durations Ty T=T/[9and TV = T,/8. If a sinc pulse of unit energy is to
" be used as the shaping pulse g(¢) then, because of the difference in symbol durations,
|GUI? = T'= T/9 for the Ag® code (/] < 9/2T) and |G (|2 = T = T, /8 for
the Eg code ({/] ¢ 8/2Tn)'

An E8 construction of the Gosset lattice that has been used in several

applications [14},[23],[32],[49] is the following.

Definition: The Gosset lattice in R® is the set of all vectors of 8 integers with an

even sum or 8 halves of odd integers with an even sum.

The lattice of all n—tuples of integers with an even sum is known as the

29

checkerboard lattice D, {17, p.117). In this construction therefore, the Gosset

lattice E's is the union of D8 with one of its cosets,

111111111
Ey = Dy U Dg + (3353053553) - (2.14)

The 240 minimal vectors of this Eg construction consist of the 112 vectors obtained
through sign changes and permutations made to components of the vector
(1,1,0,0,0,0,0,0) and the 128 vectors obtained through an even number of sign
changes made to the vector (%,%,%—,%,%,%,%,% . These 240 minimal vectors have a
squared magnitude of 2, which is also the minimum squared distance between any
two points in this construction of the lattice. If a code is again loosely defined to
consist of all vectors on the surface of or interior to some hypersphere, the 8 x 8
correlation matrix Rj of the Eg version of this code will be

Ry = B I, (2.15)
where I is an 8 x 8 identity matrix and £ o 18 the mean energy of the code. The

spectrum of the E8 code is then

c(f) = %, (2.16)
which is flat over the entire spectrum as we expected. After pulse shaping, the
signal spectrum is given by,

E

$() = ’Iﬁ T =1, ¥i Sg%;. (2.17)
For the A83 construction as defined in section 2.1, the 240 minimal vectors
have a squared madnitude of 18, which is a factor of 9 larger than the equivalent set
of ES vectors defined above. Consequently, if the two constructions are to be fairly
compared, the A83 vectors must be scaled by 31; so that two equivalent codes will
have the same average energy E ¢ Returning to equation (2.13), by factoring g— out
of the hrackets and multiplying by | G(j‘)|2 = T'=T_[9, the signal spectrum S(})

for the A83 code is arrived at,

30

: 2

V=1] | Mk ew

The baseband spectra S(f) and $’(f) are shown in Figure 2.2, again
normalizing in time with respect to twice the block duration T,, and in amplitude
with respect to one—eighth the average energy £, This comparison is not
exceptionally revealing. Although the A83 signal spectrum covers a wider range of
frequencies, the two spectra have the same area due to the null at zero frequency in
S(f). Unfortunately, this fact does not come across very well in Figure 2.2. A
better comparison of the speciral occupancy is obtained by manipulating the A83
baseband spectrum to produce a bandpass spectrum with nulls at the band edges. If
we refer to Figure 2.1, this would mean taking the portion of the code spectrum
from 0 to 18 in normalized frequency and placing it symmetrically about some
centre frequency f p There are a numbers of ways of accomplishing this feat. One
approach is to take the baseband signal in Figure 2.2 and single sideband modulate

[34] it twice; the first single sideband modulator uses a carrier frequency of f p —2%-
n

and keeps the upper sideband, while the second single sideband modulator uses a

carrier frequency of fc + Q-gf— and keeps the lower sideband. This has the effect of
n

reversing the positive and negative frequency portions of the baseband spectrum of
Figure 2.2 and translating the result by fc hertz. A second approach is to use a
shaping pulse whose magnitude response G(Ji| 2 is still rectangular but covers the
range of normalized frequencies from —18 to +18. The resultant baseband signal

could then be single sideband modulated with a carrier of frequency f o 231 hertz
n

and the upper sideband kept. These two approaches will yield the equivaleni result.
Figure 2.3 compares this bandpass spectrum with the spectrum of the ES code

that is obtained by product modulating the baseband signal with a sinusoidal carrier

31

of frequency fc. Because of the smaller symbol duration of the A33 code, the
spacing between the nulls in the A83 spectrum is necessarily 12.6% larger than the
minimum spectral occupancy of the ES construction of the code. However, the two
spectra have roughly the same 3 dB bandwidth. One might expect such a result
since the spectral occupancy is governed by the number of independent samples in
each block, which in both cases is 8. In other words, while the signaling rate has
been increased to accomodate the 9 samples of each A83 vector, the effective
signaling rate has not changed because only 8 of these 9 samples are independent.
With the invariance of the lattice ensuring identical error performance for equal
average energy £ A and block duration T, the extra dependent sample associated

with each A83 vector simply provides the shaping that yields a more realizable

spectrum than the "brick wall" spectrum of the equivalent Eg code.

1.0 S mm— s g e mm = m e o S
0.8

0.6 4

8s(f)/E,

0.4 S

0.2 ~

0.0

I 17 T T 1T T « o TrTTTT T
A 6.5 %5 1A 0N 1% bS5 6 A

B e

\
P A e _e . ———

AY
o

21T,

Figure 2.2: Baseband signal spectra of equivalent EB and

A83 versions of a Gosset lattice code.

32

1.0 —

0.8
8s(f)/E,
0.6 —

014 =

0-2 =

|

]
ol | {
f.-g/Tl f.-B/T- f. f.+8/T. f.+9/T.

0.0

Figure 2.3: A comparison of spectral occupancy at bandpass.

Thus far, the comparisons that have been made against the ‘483 spectrum
have been on the basis of equal code size and block duration. If the criteria is
changed slightly and a restriction placed on the signaling rate, then a whole
different set of comparisons arise. When the A83 code is constrained to have the
same signaling rate (or symbol duration) as an Eg code, the number of bits encoded
per A83 vector must be increased by a factor of % over an E8 code to compensate for
the longer block length. An alternative statement is that if we wish to signal at a
rate of & bits per transmitted sample, then a signal constellation of 29); A83 vectors
is required to maintain the data rate achieved by a o8k vector ES code. Obviously,
there is a power penalty to be paid for this increase in the size of the signal
constellation. Using equations 49 and 50 of {11] for the average power in a lattice

k

code, the 2™ expansion factor translates to an increase in average power of

33

1010510[3-2"/4] % 0.75k~0.5 dB, (2.19)

8 3

where the factor 5 takes into account that the power in an A8 code is spread over
9 samples instead of 8. It is obvious that one begins to lose a large amount of power
as the number of bits per sample increases. However, if one considers that thereis a
3 dB loss in signal-to-noise ratio associated with 1 — D partial response filtering of
pulse amplitude signals, and that the asymptotic coding gain of Gosset lattice codes
is 3 dB over pulse amplitude modulation, there are still obvious advantages to using
A83 lattice codes for low numbers of bits per sample. Most of the 3 dB in
signal-to—noise ratio lost through 1 — D partial response filtering can be regained if
maximum likelihood sequence estimation [26] is employed. We would, however,
contend that maximum likelihood sequence estimation is on the same order of
complexity as soft decision decoding of an A83 code and certainly much slower than
the demodulation scheme to be discussed in the next chapter.

In Chapter 1, we mentioned that Calderbank, Lee and Mazo [10] have used
running digital sum feedback to induce a dc null in the baseband spectrum of
n—dimensional trellis codes. This method does not require the signaling rate to be
increased, only a doubling of the signal constellation so that for every vector zin the
code, ~zis also in the code. For this doubling of the signal constellation, they pay a
power penalty of 6/n dB, whick for EB Gosset lattice codes translates to a constant
power penalty of 0.75 dB. Obviously a comparison, based on equal signaling rate, of
our A83 lattice codes with these trellis codes favours the latter since Calderbank,
Lee and Mazo pay a fixed penalty in power, whereas equation (2.19) indicates that
our power penalty increases with the size of the signal set. However, if we return Lo
our original argument of constraining the block durations to be equal, there is a

fixed expansion of the bandwidth by a factor of % for 1183 codes but no penalty in

power, regardless of the code size. Thus the better tradeoff for A83 lattice codes is

34

to allow for the bandwidth expansion and suffer no penalty in error performance.
Clearly, one has to be careful in comparing the trellis codes of [10] with our ‘483
lattice codes since, as the saying goes, it is a little like comparing apples with
oranges. They are otherwise comparable from the point of view of spectral shape.
The spectrum of the Eg trellis code in Figure 10 of [10] exhibits a slightly larger
overshoot and a sharper rise from its null at dc than is seen in the ‘483 baseband

spectrum of Figure 2.2,

CHAPTER 8
A TWO-STAGE APPROACH TO DEMODULATION

8.1 The L9 Configuration and Its Demodulation

In the previous chapter, the A83 construction of the Gosset lattice was defined
as the set of all vectors whose 9 components are mutually congruent modulo 3 and
have 2 sum of zero. Consider for a moment the first part of this definition. It is
possible to construct a 9—dimensional lattice of vectors whose 9 components are
mutually congruent modulo 3 by forming the union of a scaled copy of the integer

lattice 1° (namely 3119) with two of its cosets. Let L, denote this lattice

9
configuration, defined by
Ly, = 31° v 31° + (1% v 3% - (19) (3.1)
where (19) =(1,1,1,1,1,1,1,1,1). The sublattice ar? of L, contains all those vectors

9
whose components are congruent to 0 (mod 3). The cosets 31° + (19) and

an® - (19) then contain the vectors whose components are congruent to +1 (mod 3)
and -1 (mod 3) respectively.

It is quite easy to see that the Gosset lattice A83 consists of all vectors in Lg
whose components sum to zero. In other words, ‘483 is a sublattice of Lg. Because

of the simplicity of the Lg configuration, demodulating Lgy provides a good starting

point in the demodulation of A83.
To demodulate the received signal vector re R to the closest point in Ly, we
must determine the closest point in each of the sublattice 31° and the two cosets

31’19+(19), 31!9-(19). This can be easily accomplished throught the use of

35

36

quantization functions or look-up tables. Consider the quantization function A2),
shown in Figure 3.1, which for any real z gives the closest multiple of 3. If this
quantization function is applied to each component r; of the received vector r then
the resultant set of outputs j(r’.), t=1,..,9, will be the components of the closest
vector in ‘the sublattice 327. The closest point in the coset 31° + (19) can be
obtained by using the quantization function f{z) to find the nearest multiple of 3 to
;—1 and then adding one to this result. Similarly, the closest poin_t in the coset
3119-(19) is specified by the 9 quantities Kr;+1)-1. The three quantization
functions, fz), fz-1) + 1, fz+ 1) - 1, are shown together in Figure 3.2. Should
the received components r; have been quantized before reaching this stage, the

quantization functions shown in Figure 3.2 would be implemented as look—up tables.

— f(x)

| | B R
s 2 9,0

i IR |
409 /6/1 /6/5/5' - 1

IRENEEEERR
ANOANLY &S 6
X

Figure 3.1: A quantization function f(z) which for any real z
provides the nearest integer multiple of 3.

-

37

104 —— f(x) .-
8- ——- f(x—1)+1
6 --- f(x+1)—1

4— [-f T

2 I O

—_—]

|
N
]
| .
L1
T

Figure 3.2: Quantization functions fz), fz-1)+1 and fz+1)-1.

Given the candidate vectors from the sublattice 31° and the cosets 37° + (19),
3r° - (19), the closest point in Lg is determined by that vector of the three which is
closest to the received vector rin the sense of minimum squared Euclidean distance.
This involves the computation of three metrics, (the squared magnitude of the
difference vectors between the received vector and each of the candidate vectors),
followed by a three way comparison to determine the smallest of these values. The
number of metrics can be reduced fiom three to two through the following

observations.

Let 3z, denote the i"h component of the candidate point in the sublattice 3119;

38

in other words, 3z, = J(r'-). When 32; is the closest multiple of 3 to T the #b
component of the candidate point in .3119 + (19) must be either 3z;+1 or 3z,~ 2,
whichever is closer to Ty The contribution to the squared distance made by this
component is then the lesser of [r;- 3z, - 1|2 and |r; -3z + 2|2. Subtract this
contribution from the corresponding contribution in 3119, namely |ri—3zi|2, and
call the difference a; The quantity a.is then the larger of

2 2_ 4. R
=371 - -3z, — 1% = 41 (2r,-62,—1) (32)

%= 2 2
where |2r‘.—62i| <3 If a; is plotted as a function of 7;— 32, the discriminator
function of Figure 3.3a is obtained. Note that this discriminator function has zero
crossings at 0.5 and —-1. These are the points at which the received component r, is
equidistant from the sublattice component 3z:- and the coset components 3zi + 1 and
3zi — 2 respectively.

By summing the contributions e, it is possible to determine whether the

received vector ris closer to the point of the sublattice 31° or the candidate point in

9
the coset 37° + (19). Let ¢ denote the sum of the contributions ¢, 6= % a,.
. i=1
Then if @ < 0, the received vector ris closer to the point in the sublattice 31’ than

to the point of the coset ar® + (19); for ¢ > 0, the converse is true.

The same strategy can be applied to coset 3z° - (19). When 32::- is the it
component of the closest point in the sublattice 3119, the ith component of the
candidate point in 31° - (19) must be either 3z;~1or 3z, + 2. By subtracting the
contribution {0 the squared distance made by this component from the contribution
|7;- 3z 2, a distance quantity b; can be obtained as the larger of

9 2
. Iri—-3zi| = |r; =3z, + 1] ——1-(2ri—6zi+1)

i (3.3)

2 2)
[r;—32," - Ir;—3z,—2|" = +2:(2r; - 62, —2)

39

This discriminator function b, is shown in Figure 3.3b. Let b denote the sum of the

9

contributions b‘-, b= D b’.. Then if b < 0, the point of the sublattice 319 is closer
i=1

to the received vector r than is the point in the coset 3% ~ (19), and vice versa for
b>o0.

2.0 4

2.0

1.8 —l\ 0.3 I -
r 1
-1.0

-2.0 4

(b)

Figure 3.3: Discriminator functions a;and bi

40

The final decision as to which candidate vector is closest to the received
vector r, and thus the closest point in LQ, reduces to determining the largest among
0, 2 and b. Being single valued functions of r; alone, the discriminator functions a;
and bi can be easily implemented in their analog form, Figure 3.3, or for digital
input, as look-up tables. Figure 3.4 shows quantized forms of the discriminator
function e for 6 and 8 bits of quantization and assuming that components of the
vectors take on values between ~6 and +5, (i.e. 13 amplitude levels).6 Since the
quantization functions of Figure 3.2 and the discriminator functions of Figure 3.3
are all functions of the real received components r; alone, they can be implemented
in parallel. In other words, it is possible to simultaneously look-up the components
of the three candidate vectors and the distance contributions ¢, and b, making for a

very fast pipelined architecture.

=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
n—3z

Figure 3.4a: A quantized form of the discriminator function a ;
assuming 13 modulation levels and 6 bits of quantization

¢ This range of levels is sufficient for a 916 vector code as will be outlined in
Chapter 4. The quantized discriminator functions also appear again in Chapter 5
where the effects of quantization on system performance are discussed.

41

~-1.9 =1.0 -0.5 0.0 0.5 1.0 1.5
l"|-32|

Figure 3.4b: A quantized form of the discriminator function e
assuming 13 modulation levels and 8 bits of quantization

3.2 The First Stage in the Demodulation of the Gosset Laltice A83

At the outset of this chapter, the Ly configuration was defined and it was
stated that the Gosset lattice A83 is the sublattice of all Ly vectors whose
components sum to zero. It follows that if the components of the vector chosen by
the above demodulation algorithm for Lg sum to zero, this must also be the closest
point in the Gosset lattice A83. If another point in the Gosset lattice were closer to
7, this would be a closer point in Lg than that provided by the maximum likelihood
solution, an impossiblity. Consequently, if an additional step is added to the above
algorithm to check the component sum of the demodulated L9 vector, this algorithm
could be used as a stand alone initjal stage in the demodulation of A83. Should the
components of the demodulated vector not sum to zero, the option is available to

declare an erasure and allow a Separate erasure correction circuit to find the closest

point in the Gosset lattice. This two-stage 2pproach to demodulation is illustrated

by the block diagram of Figure 3.5.

42

Erasure
Correction
I Circultry I
Received L Demodulated
Samples IDamodqutor MUX * Veclors
_-L- Buffer

Figure 3.5: Block diagram of the proposed two-stage demodulator.

The zero component sum of the A83 lattice vectors has in this instance been
used as a form of parity check. By demodulating over the simplified Ly
configuration, we are estimating what the transmitted A83 vector was but avoiding
the time consuming task of forcing each candidate vector to satisfy the zero sum
condition. If the demodulated .E.9 vector satisfies the parity or zero sum condition,
then we know that this is the best estimate of the transmitted vector. If the parity
condition is not satisfied, then the best estimate of the transmitted vector is still
unknown. The declaration of an erasure indicates that the estimate of the
transmitted vector provided by the Lg demodulator is unreliable and that additional
demodulation steps are required.

By declaring an erasure, the circuit performing the L, algorithm is freed to
demodulate the next received vector. This makes it possible to operate the L9
demodulator and the erasure correction circuit simultaneously, provided the outputs
of the Lg circuit are buffered. The buffer allows the correction algorithm to operate
"off-line" to find the closest point in the Gosset lattice A83, thus eliminating the
need t{o halt the Lg algorithm when an erasure occurs. The erased vector can then

be replaced as it leaves the buffer.

43

The advantage to this two—stage approach to demodulation is that itg speed is
determined by the L, demodulator. Extensive use of parallelism within the L,
algorithm makes it possible to limit the number of operations to 19 per demodulated
vector: 9 table look-ups to find e, bi and the components of the 3 candidate
vectors; 8 additions to sum, in parallel, the e, the b‘- and the components of the 3
candidate vectors; 1 greatest of 3 operation to find the largest of 0, a and &, and 1
verification that the components of the demodulated vector sum to zero. With just
over 2 steps per component, the speed of the Lg demodulator approaches that of a
hard decision demodulator.

Given that it is the Lg algorithm which determines the overall speed into and
out of the demodulator depicted in Figure 3.5, the 19 steps required by this
algorithm is the number to use when comparing other approaches to demodulation
with that presented here. Table 3.1 lists all the presently known
decoding/demodulation algorithms for the Gosset lattice, These algorithms, with
the exception of the present one, are based upon two well known constructions of

the Gosset lattice. The algorithms of [14], (32] and [49) use the E; construction,

]
11111111
By = Dy U Dg + (335mm550) » (3.5)

previously defined in Chapter 2. The algorithms of [4], [15] and [28], on the other
hand, use the construction of the Gosset lattice as a member of the Barnes-Wall
series [17, pp. 139,234]

Ag = ¢+ 2z (3.6)
where ¢ is one of the 16 codewords of the (8,4) first order Reed-Muller code and
ze I, The number of steps to demodulate/decode are the figures published by the
authors, except for [4] and [32] where none were available, The number of decoding
operations quoted for the present work includes the 13 steps needed to find the

index of a vector using the decoder tables described in Chapter 4.

‘A31oua [enbo jo s10109a 20my [I® JjO 128 oE.o_ SIJAI [IOUS Vb

oq o1 paudisse are sdn-Yoo[3[qEl Gp ey Sawnsse vaoqe usAld amdy oyl

wpuodfe oy ySnonp yied 1s38uo[oyl ur suononusur sumydew 7OCo Jo 1wqunu oy sy paronb sdais jo Jaquinu vyy g

‘[8] 107 1B

ueq Jo1eald 3q 1snw [z¢] Joy sdais Surpossp Jo raquunu M ‘p Auo sureluod [§] Jo apod a3y opym ‘sapod dnoid 0z

JO sIsisu0d [zg] jo 2pod syl soulg 'sapod dnoid jo oquiasus ue se 9p0od o Fuimata Aq 9podap [zg] pue [p] ylog e

‘unpuose syl ur uonerado pnyl

'sdals Burposop jo 1aquinu 9y S1BtLNSD

01 uaA1d st suonesado Surpossp ap Jo [Elap RIINS “1aadmoy ‘parels Apdidxa tou st sdais Jo raquinu gy [p] up
'SIION

, 1=

qno—6 B Jo Jondur ayl yim (= ‘x T auejdredAy oy jo uomossmur -~ ()

6
(+) S z€ 61 [05] 6861 ‘epng 9p "y-prooag
LY 8y . Ly (87)[L) 8861 Aowog
oYSs 3 ¢ T8 — [6v] 9861 ‘epng op ~y-prooag
oiugut 8y — L [91] 9861 ‘aurojg—Arauo)
9 0} T s[roys 33 - SYE — [2€] ¥861 ‘oousime1-oys1on
aiuguy 3 - #01 [¥1] z861 ‘aueorg—Kemuo)
meus | 8y | SvE —- [v) 1861 ‘=png 2p °d

2omIE] 135500 2pod2ap ae[npowap
poD a1 jo uoiday Yl JO UOISISp 01 sda1g jo 1oquuny sunuod|y

45

Some caution should be taken in interpreting the relative speeds of the various
algorithms based on the number of steps to decode or demodulate. No two authors
seem to use the same definition for what constitutes a decoding operation or step.
For example, a step in the algorithms of Conway and Sloane [14},(16] can be either
an addition, a comparison or a multiplication. Forrey [27],(28], on the other hand,
quotes only the binary operations (addition or comparison of two numbers) needed
to accumulate a series of metrics and choose the closest vector to the received
signal. In doing 8o, he assumes that the components and their metrics are already
available and no additional steps are required to obtain these values. For the
demodulation algorithm discussed in this section, a step is a table look—up, add or

compare. Despite these discrepancies, it was felt that some form of comparison was

better than none at all.

3.3 The Probability of Occurence of an Erasure

The effectiveness of the two—stage demodulator depicted in Figure 3.5 depends
on the infrequent occurence of erasures, which in turn makes their correction
feasible. To determine the probability of an erasure, there are several types of
observable error events which must be distinguished. We may say that a
demodulation error will occur when some ze A83 is transmitted and the L9
demodulator chooses some u# z as the closest point to the received vector . To
describe the various types of error events, it is convenient to express u as the vector
sum % = z + w of the desired vector z and some point win Ly. If w also happens to
be a point in the Gosset lattice Asa, then it follows that u= z 4 wis in A83 and
the error is undetectable. If wis not in A83, the error is delectable and will be
declared as an erasure by the Ly demodulator. Table 3.2 lists the vectors in the
3

first 4 shells of Lg, which include the 240 minimal vectors of the Gosset lattice AB

46

This list gives the most probable choices of the vector w for both detectable and

undetectable errors.

Shell m Vector Type # of vectors dm2
1 111111111 2 9
3 00 0 00 O0CO0 O 18 9
2 2-1-1-1-1-1-1-1-1 18 12
3 2 2-1-1-1-1+-1- -1 72 id
4 2 2 2-1+-1-1-]~1-=1 168 (* 18
3-3 00 0 0 0 0 0 72 (* 18
3 300 00000 72 18

(*) wvectors in the first shell of ‘483

Table 3.2: Vectors of the first 4 shells of Lg

The probability that the Lg demodulator makes an error, whether it be
detectable or undetectable, can be upper bounded by the probability of crossing a
decision hyperplane half way between z¢ A83 and % = z+ w, where wis any one of

the vectors listed in Table 3.2,

4
Plg) ¢ B N.-Qd,/20) (37

h

where Nm is the number of vectors in the m‘® shell of Lg, dm is the length of any

vector in shell m, o is the noise variance in each dimension and Q(-) is the

Gaussian Q-function [59)

Aa) = Vé;f ezp(-)2/2) d) . (3.8)
Q

Given that the average energy or squared magnitude of the transmitted signal

47

vectors is Ea and that each of the 9 components is corrupted by additive white
Gaussian noise of variance 02, the signal-to-noise ratio p at the input to the L9
demodulator is p = E,/90%. Substituting o = VE_]% in (3.7), the probability of an

error for L9 demodulation of an A83 code can be rewritten as

4
Pe(Lg) < mE.I Nm-Q(1.5 dep7E'a). (3.9)
If that portion of Pe(Lg) agsociated with crossing a decision hyperplane to a vector

of A83 is removed, what remains is an upper bound on the probability of an erasure

PGTGS’

Peras < mél Nm-Q(1.5 dm\/ﬂED - 240-Q(6.364JﬂF9 . (3.10)
When considering the probability of error for maximem likelihood
demodulation of an A83 code, it must be remembered that all the code vectors lie in
an 8—dimensional subspace within [Rg. Consequently, the component of noise in the
direction perpendicular to the plane containing the code vectors does not contribute
to the error performance, and the signal~to-noise ratio is p = £ a/802. The upper
bound on the probability of error for an A83 Gosset lattice code is then
P (4% < 2u0- QAVPIE) . (3.11)
Note that the probability of error P e(A83) is greater than the probability of the Lg
demodulator making an undetectable error, 240-0(6.364,/;75‘;). This should be
expected since there will exist erasure events which lead to an uncorrectable error.
The probability of erasure Peras is plotted in Figure 3.6 against the probability of
error for maximum likelihood demodulation, Pe(Aas), of a 216 vector lattice code
obtained using the lexicographic ordering discussed in Chapier 4. The average
energy of this code is approximately Ea = 93.7. The probability of error for
16QAM is also included in Figure 3.6 for comparison.

If no erasure correction were provided in the second stage of this two-stage

48

demodulator, the probability of erasure Peras would set the limit on performance.
On the other hand, the upper limit set by maximum likelihood performance can be
achieved only if the second stage corrects all erasures. Given sufficient buffer space
and extensive erasure correction circuitry perfect maximum likelihood performance
could be achieved with the two-stage demodulator of Figure 3.5. There are,
however, practical limits to the maximum demodulation delay if the system is to be
viable. In the following sections, it will be shown that it is possible to approach
maximum likelihood performance asymptotically with a relatively small erasure

correction effort.

1
- Pemu
107"+ ---- P, Lattice code
----- P, 16—QAM
10724
1073 4
1074 4
1075 4
1078 4
1077 -
10_8 Il]'[‘]ll[lll]l‘r‘lll]llllll]lll
16 17 18 19 20 21 27
SNR (dB)

Figure 3.6: Probability of an erasure P oras VOISUS the

probability of error P e(ABS) for a 210 vector
code and the probability of error for 16-QAM

49

50

3.4 Erasure Correction with a Mazimum Likelihood Algorithm

One approach to the demodulation of the 483 construction of the Gosset
lattice is to use the Conway—Sloane algorithm for demodulating the lattice A, [14]
to find the closest point in each coset of A83 and then choose the closest of the three
candidates to the received vector . The algorithm demodulates An by finding the
closest point in 2"*! and then adding or subtracting 1 from the components most
likely to be in error unmtil a vector with zero component sum is found. The Lg
demodulation algorithm of section 3.1 performs the first of these two steps for each
coset of A83. It follows, therefore, that with some modifications, the Conway-
Sloane algorithm could be adapted to correct erasures. The L9 algorithm besides
providing the closest points in 3119, ar? + (19) and 31° - (19) also has knowledge of
the component sums of these three points. If these component sums are divided by
3, we have what Conway and Sloane refer to as the "deficiency" [14], or number of
components in error in the initial estimates. To correct for this deficiency, we must
add or subtract 3 from the deficient number of components in each coset vector
until finally the components sum to zero. This may be done as follows:
1) determine the distance vectors from r to the coset candidates in ar®,

31° + (1%) and 32° - (1), |
2) if the components of a coset vector already sum to zero, no correction is

needed,

if the components of a coset vector have a sum s < 0, find the [s/3| largest

components of the distance vector and add 3 to the corresponding coset vector

components,

if the components of a coset vector have a sum s > 0, find the | /3] smallest

components of the distance vector and subtract 3 from the corresponding coset

vector components.

51

Once these corrections have been made, we must determine which of the three
resultant points in Ass is closest to the received vector . This can be done by
updating the metrics 0, a and b of the Lg algorithm for each correction made to a
coset vector. Let z, denote the b component of one of the three Lg vectors being
corrected and let dk =T~ denote the distance from the received component %
to this component. When a correction is made, say for example by adding 3 to T
the squared distance between the received vector r and the corrected point
increases, (over that between rand the uncorrected point), by

6 = rn=(g+ 3% - |r-z)?

= 1d,-31% - 4.2

= —6d.+9. (3.12)
It should be remembered that dk is in the range -1.5 < dk< 1.5, so that § > 0.
When the correction invqlv&s a subtraction of 3 from Ty the increase in the squared
distance is given by

= 6d.+9. (3.13)

If the increase 6 in the squared distance resulting from each correction is subtracted
from the appropriate distance metric 0, a or b of the L9 algorithm, then the largest
of the adjusted metrics will determine which point is closest to the received vector r.
The subtraction of 4 follows from the fact that to reduce the number of metrics used
in the Ly algorithm, the squared distance from the received vector r to cach of the
three candidate points was subtracted from the squared distance to the candidate
point in the sublattice 3119, (see equations 3.2 and 3.3).

The most time consuming operation in the correcting of erasures is the finding
of the | s/3] smallest or largest components of each distance vector. As indicated by
the vectors in Table 3.2, the number of components which have to be corrected will

very rarely exceed 3. According to Knuth {38, p. 212], the number of comparisons

52

needed to select the ¢ largest or smallest of n items is at most

n
n-t+ I [log, (3.14)
F=n—t
where [z] indicates the greatest integer less than or equal to z. For n=9 and

t= 3, the maximum number of comparisons needed is 13. Each correction consists
of 3 steps: 1 addition or subtraction of 3, 1 look-up to find & and 1 subtraction of §
from the appropriate L9 metric. Therefore, including the 9 subtractions needed to
obtain the distance vector and 1 comparison to determine the sign of the component
sum, the correction of an L9 lattice vector to obtain a vector in the same coset in
A83 should require at most 9+1+13+3x3 = 32 operations. When only one or two
components of a coset candidate need to be corrected the number of operations is of
course less: 21 operations for one correction, 27 operations for two corrections. The
complete erasure correction algorithm thus requires between 4 and 5 times as many
operations as the Lg demodulation algorithm. This implies that the buffer at the
output of the Ly demodulator, as shown in Figure 3.5, must be capable of holding 5
demodulated vectors to allow the erasure correction circuit to complete its work.

. While an erasure correction time of 5 demodulation intervals does not create
an excessive delay, it is sufficient for there to be a finite probability of additional
erasures occuring during this period. These additional erasures must be considered
overflow errors unless additional erasure correction circuits are provided in parallel.
Given that the erasure correction algorithm will be unavailable for § demodulation
intervals, the probability of 1, 2, 3 or 4 additional erasures occuring within this

period is

or as)‘H (3.15)

& i

The dominant term in the above summation is that associated with the occurence of

a second erasure, namely 4Pe3 Consequently, the probability of error for the

as

53

two-stage demodulator of Figure 3.5, employing the erasure correction algorithm
described above, is

P; = P(ay+4p2 (3.16)
which, as shown in Figure 3.7, asymptotically approaches the probability of error for
maximum likelihood demodulation. If the additional circuitry is provided for a
second erasure correction algorithm, in parallel with the first, all occurences of two
erasures within 5 demodulation intervals can be corrected. Since the probability of
three or more erasures occuring within 5 demodulation intervals is several orders of
magnitude less than the probability of error for maximum likelihood demodulation,
maximum likelihood performance can essentially be achieved with such a
configuration. There is, however, the cost of the additional circuitry to be paid.
Such additional costs and complexity would make the proposed scheme
uneconomical. Consequently, it is best to look elsewhere for solutions to the

overflow error problem.

3.5 Enumerating the Predominant Erasure Events

If the individual contributions to the probability of an erasure are listed, as in
Table 3.3 for Peras = 10—2, 1073 and 10—4, it can be seen that the dominant term is
that associated with erasure events of the form u= z+ (3,0,0,0,0,0,0,0,0). In other
words, the majority of erasure events will have been caused by the Lg demodulator
choosing the wrong point in the same cosel as our desired point of A83 and for which
¢ single correction is required. There are of course numerous other types of crasure
events, however, if it is possible to recognize the most predominant of these cvents,
a scheme may be devised to correct them as quickly as possible, therchy reducing

the overall erasure correction delay. For example, erasures in which the closest

point in Lg has a component sum of +9 can almost certainly be attributed to the Lg

107

1072~

1073

107*

107° -

1077 -

107°

54

P
~--- P, ML demod.
---- P, 2—stage demod.

16

LY
lllllllllllllllllilillllllll

17 18 19 20 21 22
SNR (dB)

Figure 3.7: Probability of error performance of the two—stage

demodulator employing a correction algorithm based
on the Conway-Sloane algorithm for An Versus maximum

likelihood performance and the probability of an erasure.

55

algorithm choosing a vector oi the form u=ét(1,l,1,1,l,l,l,l,l), since the

probability of crossing 3 decision boundaries to obtain a vector of the form

u=z+(3,3,3,0,0,0,0,0,0) is extremely small in comparison. The Ly demodulator

has in this instance chosen a point in the wrong coset and correcting three

components of this vector to reduce its component sum to zero would not under any

circumstances yield the correct point in Ass. It therefore seems logical to ignore

this vector and look to the next closest point in Lg for a possible solution to our

demodulation problem. In this way, the 32 operations needed to correct a vector of

component sum +9 are avoided.

. . ~ -2 _3 4
Possible choices of w Peras = 10 10 10

when & = z + w P(Ag%) = 10x107 2.3x107°
4.4x2077
300000000 74.9x10°% 83.8<107° 87.0x1070
111111111 83x107¢ 93x10° 9.710°°
2 1 =1 =1 =1 =1 =1 ~1 -1 10310 58a0° 29«08

-4 5 -6

2 21 -1 =11 1 -1 -1 5.7x10 1.6x10 0.4x10
33000000 0 081070 0.1x10° 0.01x10°°

Table 3.3: Probability of crossing a decision bound3ry

between z ¢ A83 and v = 2 4 we Lg for
various choices of w.

The events of most interest for a selective erasure correction scheme are those

in which the received vector is closer to two incorrect points in Lg than to a point in

the Gosset lattice Asa. This situation is illustrated in Figure 3.8¢. ‘The point zis

the closest point in 1183

to the received vector r, while u and v are two points in

56

different cosets of Lg, but not in A83. In this scenario, the I.9 demodulator picks u
as the closest point in .’.9 and vis the next closest point; both are, however, closer to
rthan is z The assumption is made that z will eventually be arrived at by making
corrections to either wor v. If one or more corrections are made to t, v becomes the
closest point to . It must then be decided whether to make corrections to v also or
to accept the corrected vector u’.

A decision hyperplane H1 perpendicularly bisects the vector Joining z and u
delimiting the region of space where r is closer to u than to z ard vice versa.
Similarly, H2 represents a decision hyperplane for distinguishing whether ris closer
to vor to z The probability that ris closer to both and v than to z is then the
probability that r lies in the region of intersection enclosed by these two
hyperplanes, the shaded area in Figure 3.8a. There exists a point 7 that is
equidistant from all three vectors z, v and v. If a byperplane is drawn at this
equidistant point 7, perpendicular to the vector Joining z to 9, the probability that
lies beyond this hyperplane forms an upper bound on the probability that ris closer
to both uand vthan to z In pictorial form, this is the probability that rlies in the
shaded region in Figure 3.85.

The most probable sets of points u and v are those obtained as the vector sum
of the desired point z with one of the pairs of vectors listed in Table 3.4, taken in
either order. The distance d y is the distance from z to the equidistant point 7, and
N y is the number of permutations of the two vectors having an equidistant point 4
at distance 4 oy OF equivalently, the number of permutations of 7. There is an equal
number of points for the negative of each pair. The probability that the received
vector r is closer to two incorrect points in Lg having an equidistant point 7 with

the point z ¢ A83 is then upper bounded by

Py$ N Qdfo) = N -QBd JiTE) . (3.17)

Hz

%,

N\
N
N
HT|
|
(a) (b)
Figure 3.8: a) The shaded arca indicates the region of space where a received

vector ris closer to two incorrect points u and v of Lg than to the

desired point zin A83.

b) The shaded area to the rigbht of the hyperplane at the
equidistant point - can be used to bound the region of space where
ris closer to both uwand vthanto z

Pairs of L9 vectors d y N7

300 0 000 0 0 11 1 1 11 11 1.837 9
J O0OO0OO0COOTU OO ' T1 1 111 1-=2 2.023 72
300 00 0O0O0QG O 111 1 11 1229 2.196 252
J OO 0O 0 O0O0UO0CO 2-1-1-1-1-1 -1 -1 - 1.837 9
3 00 0 0 0 0 00O 2 2-1-~1-1-1-~1 -1 — 2.023 72
3300 00000 111 1 1 1 1 1 2.196 36
3 300 00 O0TUO0CTO0Q 1 11 1 1 1 1 1-=9 2.324 252
3 3000 00UG0OQ I 111 1 1 t-229 2.461 756
3 300 0 00 0 0 2 2-1-1-1 - -}

-1 -1 2.196 30

TEEITC T TLaTLRm ey o — ST TTIT A e e Py P —m —n

Table 3.4: Pairs of LQ vectors and the distance to their
cquidistant point g with the origin 0.

58

The values of d,7 and N,r given in Table 3.4 make it possible to predict both
how often certain erasure events are likely to occur and how often errors will be
made by correcting only certain erasure patterns. For example, if « has a
component sum of -3 and v has a component sum of +6 and the choice is made to
correct one component of v and ignore v, then when ¥ = z 4 (2,2,-1,~1,-1,-1,-1,-1,
-1) and v=z + (3,3,0,0,0,0,0, 0,0) an error will be made. If the shaded region in
Figure 3.85 can be split in half to indicate that in one half ris closest to u and in the

other half r is closest to v, then such error events will occur with roughly a

probability of P ”

3.6 A Near Mazimum Likelihood Correction Algorithm

With the ability to predict the influence on error performance of selectively
correcting erasure events according to the sum of the components of the two closest
points in Ly, v and v, a selective correction algorithm can now be given. A flow
chart for this algorithm is given in Figure 3.9. In this flow chart, s(u) and s(v) have

been used to denote the sums of the components of u and v, respectively, i.e.

-~ 9 9
()= T v, and s{v)= T v; . The various paths through the algorithm are
i=1 =1

labeled (a) through (3).

Given that the dominant erasure event is one in which the demodulated vector
is of the form u=z=+ (3,0,0,0,0,0,0,0,0), the first step in correcting erasures is
obviously to determine if the components of the demodulated vector sum to £3. If
they do, a correction is instantly made to one component of u to reduce its
component sum to zero. If w, the corrected version of w, is still the closest point in
L9 to the received vector, we have our desired point in A83 and are finished. This is

path g of the algorithm. If vis now closer to r than the corrected vector u’, then we

59

correc! 1

componant]
of u
output
(e)
no
correct 1
cornfoﬂmt
-] v
o
output n oulput
v v
1
(v) yos AN yos (D
sz (u)=+6
no no
correct 1 corracl 2
comrononi :omrnnuui:
of v of wu
choose output outpul 1
closest of !
u ond v u u
(<) {d) (9}
correct 2
componenty
i ol v
possible
corract R et
remalning I
candldate S PR
olherwise
outpul output
nyll
vaclor v

R —

(n)

Figure 3.9: Flow chart for an algorithm which selectively
corrects erasures according to the component
sums of the closest and next closest points in
Ly, uand vrespectively.

60

must decide whether to: i) accept v if its components sum to zero (path), or ii)
correct one component of v and choose the closest of «’ and v’ to r (path ¢), or iii)
if the components of vsum to 6 or more, to ignore vand accept u’ (path d).

When the components of the demodulated vector do not sum to +3, then it is
most likely to have a component sum of 6 or +9 and be of the form u = z+ (-2,1,1,
1,1,1,1,1,1) or u=z+(1,1,1,1,1,1,1,1,1), respectively. The next course of action is
then to determine if v, the second closest point in Lg, has a component sum of zero
or #3. Ifit has a component sum of zero, it is immediately accepted; if it has a
component sum of +3, one component is corrected and the result accepted. These
are paths e and £ respectively, in the flow chart of Figure 3.9. Beyond this, it is a
matter of determining whether to correct two components of along path g, or two
comporents of valong path h. The final resort is path { where if both u and v have
components sums of +9 or greater, we look to the third candidate point in L9 and if
it has a component sum of 0, #3 or %6, correct the appropriate number of
components and output the result. If this third candidate vector in Lg also has a
component sum of £9 or greater, it is unlikely that the erasure can be corrected
successfully so we simply output the null vector 0and quit.

If the algorithm terminates in one of the first three paths g, b or ¢, then this is
the maximum likelihood solution for the demodulation of A83. On the remaining
paths, d through i, assumptions are made about u and v based on their component
sums which means that certain erasure events will not be corrected properly. These
errors are listed in Table 3.5 for paths (d) through (i). Although this list is
incomplete, it covers the most probable events and will allow us to predict the error
performance of the algorithm.

The process of making a correction is the same as that outlined in section 3.4,

except that the number of components corrected is limited to one or two. As stated

61

occurence
36- Q(6.588/5]E,)

Probability of

on indicated path

Erasure events not corrected
z+(2
z+ (3

Path

~1,-1,~1,-1,1,~1,~1
loioioloioiolo

2
3

756+ Q(7.383/p] E7)

504- (6.972/p] E)

|

,0,0,0,0, 0,0
=1,-1,-1,~1,-1,-1

0
2

3,3
2, 2

%U=2%
vt =2z

2520+ Q(7.794/5]E,)

36+ Q(6.588/p] E,)

756+ Q(7.383yp]E)

I
o o
=) 1_... o ...z_...
nw.._.... oy
0..1_... oo
0..1_.... oo
=) 1_n S -
Tl ed e
oFod ot
HAH O HH
HH H®WH
[T i
S &2
tey

252- Q(6.972/p] E)

504- QX(7.937p]E)

84- Q(7.974/p]E)

84- Q(7.974//E)

Erasure events not corrected along paths (d) through (9).

Table 3.5:

Path

2,26,32

31 32

24

25

46

24

23

Number of Steps

cach path in the correction

o
[ar)
o
[
=
B0
e
Bl
MHVO
= E
=
=
'S
R
vy b
-
=]
[=)
Q
el
E
=
z
(5]
o
L
)
&

there, the number of operations required for one correction is 21, and for two
corrections it is 27. These figures were used to arrive at the number of operations
along each path summarized in Table 3.6. The longest path through the algorithm
is path ¢ which requires 46 operations to correct one component in each of u and v,
slightly greater than twice the length of the LQ demodulation algorithm. Although
this path is followed less than 0.5% of the time, it is the path which dictates that
the buffer at the output of the LQ algorithm be of length 3. For path {, three values
have been given for the number of steps. These indicate the number of steps if 0, 1
or 2 corrections are made to the third candidate point in Lg, respectively.

The paths which cover the bulk of erasure events, paths g, b, d and f require
between 23 and 25 operations. With erasure events being corrected just slightly
slower than the L9 algorithm demodulates, the problem of erasures overflowing the
correction circuit is essentially limited to the occurrence of back—to-back erasures,
which occur with probability P eg 23 If in the case of back—to-back erasures, the
information released by the Lg demodulator is stored for a short period of time
rather than simply rejecting it, the problem of overflow errors is eliminated. This
involves placing a single element queue in front of the correction circuit which either
sends information straight in if the circuit is free or holds the information until the
last few steps of the correction algorithm are performed and the circuit becomes
available,

With the problem of overflow errors eliminated, it is only the selective erasure
coverage which prevents this two-stage demodulator from achieving maximum
likelihood performance. By accumulating the probabilities listed in Table 3.5 and
adding these values to the probability of error Pe(A83), the estimate of error
performance shown in Figure 3.10 is obtained. Comparing Figure 3.7 and 3.10, the

error performance of the above erasure correction algorithm can be seen to approach

63

the performance of maximum likelihood demodulation much sooner than the
correction algorithm of section 3.4. Another important difference is that the buffer
length has been reduced from. 5 to 3 with the present selective erasure correction
scheme, thereby reducing the overall delay.

The selective erasure correction algorithm given in Figure 3.9 will be the
algorithm employed with the L9 demodulator in a simulation study of the
performance of the two-stage demodulator. Details of the structure of this

simulation, and of course the results, will be discussed in Chapter 5.

1
- Peroa
107" --- P, ML demod.
---- P, 2—stage demod.
10724
107° -
107*
107°
107° -
1077 -
‘IO_B Illllllllll]lllllllll‘llilllll
16 17 18 19 20 21
SNR (dB)
Figure 3.10: Plot of the error performance of the two-stage

demodulator, employing the selective erasure
correction algorithm of Figure 3.9, versus the
probability of error for maximum likelihood

demodulation and the probability of erasure.

22

CHAPTER 4
A LEXICOGRAPHIC ORDERING OF THE SIGNAL SET

For a lattice code, encoding is defined as the process of assigning one of M
possible messages m = 0, 1,....M=1 to a vector of the code. In the receiver, the
inverse function is performed by mapping each demodulated vector z to a message
m. This has also been referred to as finding the index m of z within the code (15].

A number of methods have been proposed for performing this mapping in the
encoder and decoder. In [15), Conway and Sloane gave a simple algorithm to find
the index of a vector using the dual basis of the lattice. The decoders of P. de Buda
(4], Gersho and Lawrence [22], and Secord and R. de Buda [49] all used a variant of
permutation modulation [53] to map information into the sign changes and
permutations that generate all the vectors within a shell from a set of prototype
vectors. Adoul et al. [2] generated codebooks for vector quantizers by using an
equivalence relation to lexicographically order the vectors of successive shells of the
Gosset lattice. While each of these methods has its merits, they either cannot be
easily adapted to the present scheme or are too slow to be of use.

The simplest and fastest solution to the mapping problem would be to employ
a look—up table which when presented with a demodulated vector would output its
index within the code. Such look—up tables, if not properly designed, can consume
large amounts of memory. To reduce the memory consumption without drastically
affecting speed, a variant on lexicographic orderings is proposed. The ordering is
described in terms of the lattice A8 consisting of all 9-tuples of integers with a sum

of zero. The extension to the Gosset lattice A83 is straightforward since it is the

65

66

union of three scaled copies of Ag (see equation 2.1). This implies that the
procedure outlined below can be used to develop decoder look-up tables for each
coset of the lattice code. Since an integral part of the demodulation process is the
identification of the coset from which the demodulated vector came, it is a simple
matter to determine which set of decoder tables is to be used. More will be said on

these issues later in the chapter.

4.1 Determining the Indez of a Vector in a Lezicographic Ordering
In a lexicographic ordering, a vector y is said to be lezicographically smaller
than a vector zif the leftmost non—zero component of the difference vector z— y is
positive [35, p.193]. The index m of the vector zis then equal to the order of$) or
size of the set S = {y} of all code vectors y lexicographically smaller than z The set
S can be subdivided into a series of smaller sets S), consisting of all vectors y
lexicographically smaller than z at a depth h. That is to say, S), contains all vectors
y in which the first non—zero component of the difference vector z— y is the hth
component,
¥; =3 i=12,.,h1
Yp < T - (4.1)
Note that in a finite code, e»ch component z, will only be able to take on a finite
number of values. Consequently, Sh will be the null or empty set ¢ when zp is at
the minimum of its range. Also, for zy¢ As, if z and y have the same first 8
components, they must also have the same ninth component to satisfy the zero sum
restriction of the lattice, thus & < 8.
By breaking up the set S into a series of smaller sets Sh’ the index ;n of the
vector z can be expressed as the sum of the indices my = o(Sh),

m=m +my+ ..+ mg. (4.2)

67

In this way, rather than use one large look~up table to store the index r;z associated
with each code vector 2, a succession of much smaller tables can be used to store the
indices m, which will greatly reduce the required memory. (The savings will
become apparent later when the memory requirements of the tables are computed.)
Equation (4.2) indicates that the cost paid for reducing the amount of memory
needed is that now 8 table look-ups and 7 additions are required to find the index m
instead of a single table look—up. However, this is still a viable approach to finding
the index of the demodulated vector since it requires fewer operations than the L9
algorithm,

To determine the indices m, it is not necessary to know the first k-1
components of z as (4.1) would imply. Rather, the zero sum condition of the lattice
AB makes it possible to determine m; using only the sum of the first h-1
componénts of the vector zand the hth component zp - Let s denote the sum of the
first { components of z and let $9._; denote the sum of the remaining 9~i :omponents;

=tttz (4.30)

%98 = Tyt It ot oy (4.35)

Since by definition S;it+ 39 ;=0, 5= ~35_; for i=1,2,..,8. Using this fact, the

number of vectors yin the set Sh may be found by letting Yy, range over all possible

values less than z, and determining the number of possible combinations of the

remainiug 9-k components that sum to =81~ Yy, - 1f the components of each vector

are equally likely to take on one of L integer values in the range —a ¢ z; < +),

L=a+4 b+ 1, then it can be shown (44, pp. 69-70] that the number of possible
combinations of 9~ integers having a sum of s, ~(9-h)a < s < +(9-h)b, is equal to

q - ~hYa—
Mo-hs) = B (1) 5] Lt Rekiohisl (4.4)

where ¢is the greatest integer less than or equal to [s+(9-h)a}/L. By setting k=0,

68

this formula can be used to enumerate the number of vectors in an As signal set,

which for the component limits of —a < z; ¢ +bis

Mog) = £ ()t (§] fRekiisly (45)

where ¢ is the greatest integer less than or equal to 9o/ L.

There are some restrictions on the use of equation (4.4) in calculating m,
which must be explained. Given 81 = 2y +.t) and 2, > —a, we would like
to use N{9-4,s) to calculate the number of combinations of 9-h components having a
sum of s = =517V for each value of Yy in the range —a ¢ Yy < 2. This would

lead to an expression for my, of the form

However, if we are not careful the sum =81~ Yy can exceed the limits of
—(9-h)a < s < +(9-h)b for which N{(9~h,s) is defined. For example, we may want to
find the number of vectors y lexicographically smaller than z at a depth 5 when the
first 4 components of z are all equal to the lower limit —a and the fifth component ze
is some value greater than —a. For this case, the first term in the summation of
equation (4.6) would be N(4,~5a) which indicates the number of vectors y with their
first 5 components equal to ~a. The remaining four components in each vector v
must have a positive sum of 5a to satisfy the zero sum restriction of the lattice.
However, no such vectors will exist if the maximum sum possible for the remaining
four components, namely 45, is less than 5a. In such instances, attempting to use

M9-h,s) would lead to erroneous results. To overcome this difficulty, define

N’(Q-h,—sh_l—yh) according to

N(9-h,~s p17Yp) —{9-h)ag -85 1=V, ¢ +(9-h)b

(4.7)
0 otherwise

N’ (g—h,‘_sh_l-yh) = {

69

When z, > ~a, the index ™, can uow be expressed as the summation

my, = E N'(Q—h,—ah_l-yh) (4.8)
Yp=-0
and for T, = -6, my = 0.
When each component z; is permitted to take on any integer value in the

range —a £ z; < +b with equal probability, the resultant signal set is the intersection

9
of the interior of a 9—cube with the 8—dimensional hyperplane z z;=0. While

=1
such a choice of signals is less efficient, in terms of average energy £ 2 than choosing

a signal set enclosed by a hypersphere, the indices my could not be easily computed
with the latter choice of signal set. A signal set enclosed within a hypersphere could
not use equations (4.4), (4.7) and (4.8), but would in fact require an extremely
laborous computer search first to enumerate the vectors in the signal set and then to
arrange them in lexicographic oilur. Thus while the lexicographically ordered
signal set is less efficient in terms of its average energy, it has definite practical

advantages due to the ease with which it can be implemented and used.

4.2 Implementing the Lezicographic Ordering Through Look-up Tables

Using equation {4.8), it is possible to generate the indices m, and store them
in look—up tables K b for each component. Note that to find m, we require both the
component z, and the sum of the first ~-1 components 81 Rather than compute
the sums Sp=5p 1173, with each new component Zp, it will require little extra
memory to store s, 50 that it can be passed forward for use with the next table.
Thus the tables K , receive the pair (sh_l,zh) as inputs and output the pair (mh,sh);
that is, Kh(sh_l,zh) = (mh,sh). Then for h+1, all we require is Zhel since sy is

precomputed and available.

70

For h =1, the sum sent into table Kl is 3o which is of course zero, and Kl
outputs for the sum §) the component z, that was sent in. Since table K, has really
only one input and one output, it is best to combine this table with K, to produce a
table Ky’ that receives the input pair (zl,zz) and has as outputs the index
My’ = m, + my and the sum 39 = Z) + z,. Not only does this save memory but it
also reduces the number of table look-ups and additions each by one. The tables
Ky, K3""’K8 are thus organized as in Figure 4.1. An extra adder is shown to sum
39 and Zy simply to verify that the sum of the components is in fact zero. This
extra sum could be used as a way of detecting violations in the table, however, if the

tables are properly designed it is not needed.

Xy—™

Ka|Ma2
2
S
L]
Xz—™
K
Xy—™
z
S:L -L
Xg—
2
-

Xz

[72]
ui_J § Y
3
™
'____I

T
3
'_l

m‘——
Kg—> -~
7 1 E_."m
7

S -
Kg[Ms
Xe"“"‘_j
Ss
20
Xq—™

Figure 4.1: Block diagram of the decoder look-up tables
for one coset

71

4.3 Adaptation Of The Tables For The Gosset Lattice Ag>
As wasg stated at the outset, the decoder look-up tables generated using
equation (4.8) and the structure depicted in Figure 4.1 are for the lattice ‘48 . The

extension of this method to the generation of decoder look-up tables for the Gosset

. 3
lattice AS

is fairly easily explained. For convenience, we repeat the defining
equation of A83 found in Chapter 2, namely
A = 34 U 34+ (-2%1%) v 34+ (2515, (4.9)

It is easy to see that the generation of a set of decoder look—up tables for the
sublattice 3A8 is simply a matter of scaling. The scaling can either be applied to
the decoder look—up tables so that Kz' ,K3,...,K8 accept integer multiples of three as
inputs or we can scale down the outputs of the Lq algorithm to produce a vector of
A8 for the sublattice instead of a vector of 3A8. The latter is perhaps more
preferable since not only will it lead to a savings in memory for the decoder look—up
tables but may, depending on the number of modulation levels, also mean a savings
of one bit per component in the width of the buffer required at the output of the L9
algorithm.

To generate the decoder look-up tables for the cosets 3A8+(—23,16) and
3A8+(23 ,—16) is slightly more compiicated since they require both a linear shift and
a scaling in the range of component values. The components of a vector z in the
coset 3A8+(-23,16) are all congruent modulo 3 to +1. According then to the
definition of a congruence, (z,-1)/3 must be an integer. The set of shifted and
scaled components z.’ = (z.-1)/3 can be used to generate decoder tables for coset
3A8+(—23,16) if an adjustment is made in the component sum restriction. With the
augmented components z;”, We are now looking for 9-tuples of integers that sum to

-3 rather than to zero. This means that in equation (4.8) we would use

N'(9-h,-s;_;-y,-3) to calculate the indices m,, for the decoder tables of the coset

72

3A8+(—23,16). The number of vectors in the coset for the range of augmented

components ~a £ z/ < +b can be computed using equation (4.4) as

_J . k[9] [9a~kL+5)!
Mo3) = £ (0 (3] pikrr (410)

where again L=+ b+ 1 and ¢ is the greatest integer less than or equal to
(9a-3)/L. Once the indices m, have been computed, the inverse transformation can
be applied to the augmented components z,/ to obtain a proper range of values
-Sa+1 ¢z, ¢ 36+1 for the components z; of a coset vector z ¢ 3A3+(-23,16). This
will also require the recomputing of the sums 8y stored in the tables. Alternatively,
we may choose to use the augmented components z; within the demodulator and
the decoder tables to save memory and narrow the width of the buffer used at the
output of the L9 algorithm.

In a similar manner, a set of decoder tables for the coset 3A8+(23,—16) can be
generated using the normalization z;* = (z;+1)/3 and by searching for the number
of 9—tuples of integers with a sum of +3. The number of vectors in this coset, when
its normalized components z3’ take on integer values in the range —a < z;° < +b,is

given by

Mo = B (1 [{] ekl (411
where gis the greatest integer less that or equal to (9a+3)/L.

The final point to be discussed concerns the integration of these three sets of
decoder tabies into one complete set for an A83 Gosset lattice code. It must first be
decided how many vectors are to be taken from each coset of the lattice. Once this
is decided, one coset is designated as covering the range of indices r;z from zero to its
maximum, say M., less one. For the next coset, the number Ml of vectors in the

first coset is added as a bias term into the first decoder table Kz' so that the

decoder tables for the second coset covers the range of indices from M, to say

73

M1 + M2 ~ 1, where M, is the number of vectors in the second coset. For the final
coset, the total number of vectors in the first two cosets, M1 + M, is added as a
bias into its first table Kz' 80 that the range of indices covered by these tables is
from M1 + M, to say M + M2 + M, -1, where My is the number of vectors in the
third coset. The total number of vectors in the signal set is of course
M=M1+M2+M3.

Generally, the selection of a particular range of modulation levels for each
componcat of a code vector will result in a much larger set of vectors than we
require. The number of entries in the decoder look—up tables must then be trimmed
to arrive 2t the desired range of indices. This can be accomplished through again
using 2 bias term.

When trimming the number of vectors in a coset, we will in general want to
choose those vectors in the middle of the lexicographic ordering and eliminate the
vectors at the extremes of the range since this will lead to a lower average energy for
tae signal set. Choosing the vectors in the middle of the lexicographic ordering is
done by using as a bias half the difference between the desired number of vectors
and the total number of vectors generated by a particular range of component
values. This number indicates how far into the lexdcographic ordering our desired
ordering is to begin. The bias term can either be worked into the tables or it can be
subtracted at the end when all the m,, values have been accumulated.

There is some danger in this trimming of the cosets in that the demodulator
may choose a vectdr which the Jecoder tables were originally designed to
accommodate but ©hav now falls outside the set of vectors we wish to use as a code.
Protection against sech an event may be achieved by placing flag values into the
tables for the indices m, that have been eliminated through trimraing. These flag

values would then cause one or more adders in Figure 4.1 to either underflow or

74

overflow depending on whether the vector was below or above the desired range in
the ordering. The underflow or overflow then signals that either the minimum or
maximum index of the coset should be output when the violation occurs. There are
various methods of detecting violations in the tables; this is but one simple
technique.

Problems such as the one just described are a feature common to decoding
strategies in which an algorithm designed to demodulate on the infinite lattice is
used to demodulate a finite code. The question always arises as to what should be
done when the demodulator picks a vector which lies just beyond the boundaries of
the code, or how to prevent it from doing so. There exists no fast or simple solution
to this edge effect problem, only adhoc ones such as that given above. The only real
way of forcing the demodulator to pick a vector within the boundaries of the code is
to more closely integrate the detection scheme and the mapping process, essentially
developing a code specific decoding algorithm like those of [4), [32]) and [49]. The
obvious disadvantage to this is that the portability of the scheme is lost and much
more development is now needed in adapting the decoder structure to fit a variety

of codes.

4.4 The Memory Required for the Decoder Tables of a 16 Bit Per Vector Code

A sufficient number of modulation levels for a 216

vector code is to allow the
ccnponents of the ‘483 lattice vectors to take on integer values in the range -6 to
+5. The components of a vector of the sublattice 3A8 will thus be in the set
{-6,-3,0,43}, while the components of the vectors in cosets 3A8+(—23,16) and
3A8+(23,—16) are in the sets {-5,-2,+1,+4} and {-4,-1,+2,+5} respectively. With

four levels for the component values in each coset, we can use a set of normalized

components as discussed in the previous section that require only 2 bits to represent

7

a component. Note that we also require an additional 2 bits to identify the coset
from which the demodulated vector came so that we can choose the correct set of
decoder tables to use. The buffer at the output of the Lg demodulator in Figure 3.5
must then be 20 bits wide. The number of vectors in the sublattice 348, coset

3A8+(—23,16) and coset 3A8+(23,—16) for the above choice of levels are,

respectively,
4
k(9] [26~4K]!
90) = £ (-1)]l’lé:fﬂ""ﬁ' = 13051,
N o T Lk + 8
3

Nos) = B (-1)k [2] l—r% = 27876,

3
k(9] [204K]
NO43) = £ (-1) [k] rr&sz]'rj‘m ~ 27876,
ho * .

for a total of 68803 vectors in the entire A83 signal set. To obtain the 65536 vectors
needed for the code, we can take 12430 vectors from the sublattice and 26553
vectors from each of the two cosets. The average energy of this set of vectors, using
the original set of modulation levels from -6 to +5, is E =937

Table 4.1 lists the memory requirements for decoder look-up tables of one
coset. Since the number of modulation levels used by the vectors in a coset is the
same for all three cosets, the memory requirements are also the same. The
maximum number of bits of input to any table is 6, however, the smallest
denomination of erasable programmable read-only memory (EPROM) available is
1Kx8 which accepts 10 bits of input and provides 8 bits of output. The memory
used by the tables is thus quoted in terms of the number of 1Kx8 EPROM’s
required and then the total is expressed in kilobytes. As the bottom line indicates,
each coset requires 12 kilobytes of memory for its tables, giving a grand total of 36
kilobytes of memory for the entire code.

If we had chosen to generate a single look—up table ‘hai accupiod ihe nine

76

components of a demodulated vector as input and produced 16 bits of output, the

memory required would be 928

bytes (27 bits of input, 3 bits/component, and 2
bytes of output) or 256 megabytes. The lexicographic ordering described in this
chapter thus reduces our memory consumption by a factor of over 7000, quite a
dramatic decrease. Of course, this does not come without some price. The
lexicographic ordering requires 7 table look~ups and 6 additions to find the index of
a vector, an additional 13 operations which must be counted when determining the

decoders overall speed. This is, however, a small price to pay for the savings in

memory.

Table Input Bits Output Bits No. of 1Kx8 Total

K, %1 I my S EPROMS Memory
2 2 2 16 3 3 JK
3 3 2 12 4 2 2 K
4 4 2 10 4 2 2 K
5 4 2 8 4 2 2 K
6 4 2 5 3 1 1K
7 3 2 4 2 1 1K
8 2 2 2 2 1 1 K
Total 12 K

Table 4.1: Memory requirements of the decoder look-up
tables for one coset of the lattice code

CHAPTER 5
QUANTIZATION EFFECTS AND SIMULATION RESULTS

In Chapter 3, the probabilities of erasure and error were estimated using a
union bound approach. In the present chapter, we will outline a simulation study
that was undertaken to back up those theoretical calculations and present results
from that simulation. The assumptions made in the theoretical calculations, (that
the channel noise was additive white Gaussian noise and that perfect
synchronization was attained), will be carried over to the simulation. Also, since
our primary concerns are to verify the probabilities of erasure and error for the
demodulator, the decoder look-up tables discussed in Chapter 4 will not be
implemented. The underlying structure of these tables will, however, be followed
when the mapping process is inverted to obtain an encoding procedure.

One assumption that was not made in calculating the probabilities of erasure
and error is that finite quantization would be employed in the demodulator. In any
practical implementation, the received signal will be quantized to a finite number of
levels to allow for the use of digital circuitry in performing the demodulation.
Therefore, to make the simulation realistic, we followed suit and performed two sets
of tests; one under the assumption that 6 bits of quantization were used and the
other assuming 8 bits of quantization. It is instructive at this point to predict what
effect quantization will have on the erasure and error performance of the

demodulator before moving on to describe the simulation.

77

78

5.1 The Effects of Quantization on the Probabilities of Erasure and Error

In the description of the L9 algorithm, it was stated that look-up tables could
be used to determine the coset vector components ind the values o and bz’ of the
discriminator functions, which implies the use of quantized received data.
Quantization introduces distortion by limiting the received data to a predetermined
set of levels. This distortion can, however, be made negligibly small by employing
an analog-to- digital (A/D) converter with a sufficiently large number of levels. If
the number of quantization levels is large and the input samples to the A/D
converter are only "moderately correlated", then the noise due to quantization has a
flat spectrum and can be treated as an additive noise that is uncorrelated with the
input samples [13]. To obtain an estimate of the effect of quantization on the
erasure and error probabilities, we will adopt this argument and determine the mean
square distortion due to quantization. This mean square distortion will then be
added to the variance of the Gaussian noise component to determine a
signal-to—noise ratio for the case of additive channel and quantization noises.

At the end of Chapter 4, we gave the requirements for a 916 vector code that
will be used in the simulation. The components of the code vectors take on integer
values in the range —6 to +5. When designing a quantization function for the
demodulator, the quantization levels should be uniformly distributed over the range
of possibie signal levels so that there is an equal number of quantization levels
between modulation levels. As well, each modulation level should be at the centre
of a specific quantization level, and not the edge, to ensure that the quantization
will not introduce distortion when no noise is present in the received signal. The
quantization function that fits this description for the application of 6 bits of
juantization is shown Figure 5.1. The 64 levels of the quantization function ¢{r) are

on uniform centres from —6.8 to +5.8 with a step size of A = 0.2. By applying this

79

quantization function to the analog discriminator function g, we obtain its discrete
form shown in Figure 5.2. The quantized form of b'. follows a similar pattern to that
of a. It is these quantized discriminator functions which will be implemented in
look-up tables for the simulation. For 8 bits of quantization, the set of 256 levels
are uniformly spaced from —6.9 to +5.85 at equal intervals of A = 0.05. With the 8
bit quantizer having four quantization levels for every one of the 6 bit A/D, it is
easily seen through the one cycle of ¢; shown in Figure 5.3 that the 8 bit A/D will

much more closely approximate the original analog discriminator function.

N WD

o—

q(r)

| !
—

|
o G oL N

o
lIlll||IIIll]ll!llllllllllllllll!l Jllllllllllll]ll!llllllllllll

lllr‘lil]]‘llIIIII[II]TI'II!I[IIIl lllllIll‘lll(lllllllil"llll]

Figure 5.1: A 64 level quantization function g{r)
for a code whose components take on
integer values between —6 and +5

80

q(a)

Figure 5.2: Discrete form of the discriminator function a; obtained
by applying the quantization function of Figure 5.1

f

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
r|_321

Figure 5.3: One cycle of the discriminator function
e, quantized using an 8 bit A/D.

81

The mean square distortion D introduced by quantizing any real r € R with an

Nlevel quantizer ¢(r) is given by [13]
+o
D= [tan - o i (5.1)

where p(r) is the probability density function of the random variable r. If the real
line is broken up into a set of N intervals Ik such that when re I b the output of the

quantizer is the ih level o(r) = Yjo then the mean square distortion D can be
evaluated as [13]

2 [-2 pt) 4
D = -
1), TR
k
y +g Nt v+ g
- f v~ P or) dr + % f ly,~ 12 p(r) dr
o k=2 J A
Ve — 7w
“+m
" f [y -2 5() dr (5.2)
A
Y'w— 7o

Equation (5.2) can be evaluated numerically to determine the mean square
distortion D, but first we must define the probability density function o(r) of a
received component r. Each received component r= z + w will consist of a signal
component z, which can be any integer between -6 and +5, and an additive white
Gaussian noise component w of zero mean and variance g2. The probability density

function of the received component ris then a sum of Gaussian density functions of

. 2
mean z and variance ¢°,

+5 1 2, 2
p(r) = z_i (V27a) " - ezp({r-2)“/207)- P(z) (5.3)

where P(z) is the probability that the signal component takes on the integer value z.

Table 5.1 lists the probabilities P(z) for each component value in the range

o ———

—82

P(z)

0.020755
0.077438
0.117611
0.035929
0.097786
0.112321
0.055564
0.112321
0.097786
0.077438
0.117611
0.077436

nawnwmrobbdlhd| g

Table 5.1: Probability P(z) that a component of a code
vector will take on the value z.

Using these probabilities and substituting equation (5.3) into (5.2), we can
evaluate the mean square distortion D for various values of the signal-to-noise
ratio. Table 5.2 lists the mean square distortions of the 6 and 8 bit quantizers for
the range of signal-to—noise ratios from 16 dB to 21 dB. Gersho {13] has stated that
for the case of uniform quantization, the mean square distortion can be closely
approximated by

D= —?—; (5.4)
Although this is a fairly poor approximation at low signal-to—noise ratios, the mean
square distortion does approach the values of 3.33 x 1075 (A =0.2) and 2.08 x 107
(A = 0.05) predicted by equation 5.4 as the signal-to—noise ralio improves.

The final step in determining the effects of quantization on the probabilities of
erasure and error is to adjust the signal-to-noise ratio to indicate the degradation

due to quantization. In equation (3.10), a signal-to-noise ratio of g = Ea/902 was

83

used to evaluate the probability of erasure, while in equation (3.11), the probability
of errer for maximum likelihood demodulation was evaluated using p = Ealsaz. To
the denominator of both these signal-to-noise ratios we must add a value of 9D
indicating the accumulated mean square distortion due to the quantizing of the
received vector. Using the adjusted value of p = E_/(90°+9) in equation (3.10),
the probability of erasure was calculated for both 6 and 8 bits of quantization and
plotted against the original signal-to-noise ratio p. Since the simulation to follow
uses the selective erasure correction algorithm of section 3.6, the efiects of
quantization on the error performance of this scheme was calculated, (again for 6
and 8 bits of quantization), using the adjusted signal-to-noise ratio
p' = Ea/(802+9D). These results are shown in Figure 5.4 for 6 bits of quantization
and Figure 5.5 for 8 bits of quantization. Figure 5.4 indicates that a small amount
of distortion, on the order of 0.1 dB, is to be expected with 6 bits of quantization,
while almost no loss in performance is seen in Figure 5.5. One can then come to the
conclusion that 8bits of quantization should be sufficient for a digital
implementation of the demodulator to obtain the performance predicted by theory.
For those cases where the conversion speed of the A/D converter sets the limit on
system speed, and a sufficiently fast 8 bit A/D cannot be found, 6 bits of

quantization still provides acceptable error performance.

Mean Square Distortion D

SNR (dB) 6 bits 8 bits
16.0 4.037 x 1073 7.406 x 10~
-3 -4
17.0 3.687 x 10 4.594 x 10
18.0 3.502 x 1075 3.165 x 10~
19.0 3.412 x 1079 2.503 x 1074
20.0 3.374 x 1075 9.231 = 10~%
21.0 3133 x 1075 2.133 x 1074

Table 5.2: The mean square distortion due to 6 and 8 bits
of quantization evaluated at various signal-to—
noise ratios

— Pens Theoretical

101 -5 —~- P, Theoretical

- ---- Pew 6 bit quant.
10“2_5\ —-— P. 6 bit quant.
1073
107~
107° 4
107~
1077 -
10-8 ||‘||llllllllI’llllll\l\llll]ll

16 17 18 19 20 21 2

SNR (dB)

Figure 5.4: The probabilities of erasure and error for an
unquantized system and for 6 bits of quantization

107" -

10725

1073

10™*

107° 4

107% 4

1077 S

107°

]

—— Pens Theoretical
~ -~ P, Theoretical
---- Peas 8 bit quant.
—-— P, 8 bit quant.

16

llllllllllllllllillllllIII[II

17 18 19 20 21
SNR (dB)

Figure 5.5: The probabilities of erasure and error for an
unquantized system and for 8 bits of quantization

22

86

87

5.2 Time Trials

The basic principle behind the design of the two—stage demodulator outlined
in Chapter 3 was that greater speed could be obtained by dividing the demodulation
algorithm into two discrete processes which could be run independently and
simultaneously. In a real implementation, a separate processor or hard-wired
circuit would be assigned to each stage and the circuitry developed to allow the L,
algorithm to feed information to the erasure correction circuitry when necessary.
However, the simulation study that was undertaken to verify the error performance
of the demodulator was conducted on a personal computer with a single
microprocessor. With only one processor, which did not support multi-tasking, it
was obviously physically impossible to simultaneously run the two stages of the
demodulator. |

Despite this fact, a realistic simulation of the demodulator’s performance
could still be developed by assigning a timer or clock to each of the two stages.
These clocks could be used to record the execution time as each process performs its
designated task, and then compared to determine the operating conditions of each
étage. Specifically, when an erasure occurs, the clock associated with the Lg
algorithm indicates the time at which the erasure occured. By passing this time to
the erasure correction algorithm, and adding to it the time needed to correct the
erasure, we obtain the time at which the erasure correction algorithm will next be
free. We can then give the appearance of the two stages working simultaneously by
comparing the time at which the erasure occured to the time when the correction
algorithm is to be available and thereby determine whether the second stage is
ready to correct another erasure or is still busy correcting the first erasure.

There are, however, certain practical problems that must be contended with in

implementing this timing procedure. The largest problem faced is that the system

88

clock of the microprocessor, (the sole source of timing information), does not have
sufficient accuracy to measure each execution of the Ly algorithm or the erasure
correction algorithm. Also, there is a periodic interupt that is executed to update
the system clock. If this interupt were to occur while either algorithm was working,
it would lengthen the algorithm’s execution time, leading to erromeous results.
Consequently, timing information had to be obtained through a series of t{ime trials
and the results of these trials could then be used to assign fixed times to each stage.
The time trials consisted of isolating that portion of the demodulation process
whose time we wished to measure and then that set of operations was repeated over
and over again within a loop. By measuring the total execution time of the loop, an
average run time for the process could be computed. The first set of time trials
conducted was to determine the length of the Ly algorithm. Before they could
begin, it was of course necessary to perform the initial steps of encoding a vector,
generating a noise vector and adding it to the encoded vector, and then quantizing
the resultant received vector. Once this was done, a timer was started, the loop was
entered and the L9 algorithm repeatedly demodulated the received vector for 50000
1oop iterations. When the loop terminated, the difference between the start and
finish times was used to compute an average exectution time for the Lg algorithm.
The time trials for the erasure correction algorithm were only slightly
different. Table 3.6 gives a different number of operations for each path of the
selective erasure correction algorithm. Consequently, it was necessary to go through
the processes of encoding, noise generation, Lg demodulation and erasure correction
until it was found that the erasure correction algorithm terminated along a
pre—designated path. Once such an event was found, the particular received vector
which created the event was repeatedly demodulated by the Lg algorithm and the

erasure correction scheme in a loop of 50000 iterations. Since the execution time for

89

the L, algorithm was already known, its value could be subtracted out and an
average time computed for correcting an erasure along the designated path.

The results of the time trials are summarised in Table 5.3. The first column
of numbers is the accumulated time of 20 trials of 50000 loop iterations each. For
each path of the erasure correction algorithm the 1874.07 seconds associated with
the 20 trals of the Lg algorithm has already been subtracted out to arrive at an
average path time. By dividing the times in the first column by 1000000, we arrive
at an average time per iteration. For path {, there are three times that had to be
recorded. The first is for making no corrections; either the third candidate vector in
L9 has a zero component sum or its component sum is greater than 6 and the null
vector is output. The second time is for making one correction to the third
candidate vector in Lg and the third time is for making two corrections to this
vector. Unfortunately, we were not able to obtain any timing information for the
third case. After 48 hours of continuous running, the time trial program had not
been able to find one single incidence of the erasure correction algorithm correcting
two components of the third candidate vector. Since it seemed doubtful that the
time trials could be completed in any reasonable amount of time, (i.e., anything
under a month), we decided not to pursue this case any further. We would expect
the results of the time trials to have been very similar to that of path 4 since in both
cases two components are corrected. It therefore would seem 3 ieasonable
compromise to use the information from path & for this third case in path i.

To compare the results of the time trials with what was predicted in theory
through counting demodulation steps, the second column gives a ratio of average
path time to average Lg demodulation time and the third column is a ratio of the
number of steps along the particular path of the correction algorithm to the 19 steps

of the Lg demodulation algorithm. A comparison of the two columns seems to

90

indicate that the theoretical count of the number of steps overbounds what is
experienced in practice. The count of the number of steps is a fairly accurate
representation of what will take place in a hardware implementation since the
individual elements of the circuit can be synchronized so that each operation
requires a fixed amount of time. In a software implementation, however, one has to
be a little more careful in counting steps since different operations within the

microprocessor’s instruction set require different numbers of machine cycles.

Path Accumulated Time Path Time Path Steps

Of 20 Trials L9 Time Lg Steps
Ly Algorithm 1874.07 s. —_— —
Path a 1881.77 s. 1.004 1.211
Path b 1884.20 s. 1.005 1.263
Path ¢ 3606.57 s. 1.924 2.421
Path d 1933.48 s. 1.032 1.316
Path e 219.83 s. 0.117 0.105
Path f 1871.51 s. 0.999 1.263
Path ¢ 2066.61 s 1.103 1.632
Path A 2092.74 s. 1.117 1.684
336.36 s. 0.179 0.263
Path § 1991.86 s. 1.063 1.368
not available 1.684

Table 5.3: Results of time trials conducted to determine
the execution time along each path.

Part of the discrepancy between the observed ratio of path time to L9
algorithm time and that predicted by theory can also be attributed to the fact that
in implementing the Lg algorithm in software, the look-ups and adds were
performed sequentially and not in parallel as discussed in Chapter 3. A parallel
implementation could have been developed by carefully concatenating the three

components and their associated e and bi values into a single 32 bit word. For the

91

particular code implemented, the number of bits per component is small enough
that the parallel additions outlined in the algorithm could have been performed in
32 bit arithmetic without having the carry bits from each addition run into one
another. However, the microprocessor used is a 16 bit microprocessor with an 8 bit
data bus. Although it is possible to define each operation as a long word or long
integer operation, the number of cycles needed to perform 32 bit arithmetic takes
away from any gains made in going to a parallel implementation. Another
alternative approach would have been to determine the average time per look—up
and per addition and then compute a relative time for what a parallel
implementation should require, but this would not have been a fair representation of
what was taking place within the simulation. Since our primary concern was a
simple demonstration of the demodulator’s error performance and not necessarily
raw speed, the decision was made to use the sequential implementation of the Lg
algorithm and to abide by the outcome of the time trials seen in Table 5.3.

Within the simulation, the timing of the two stages can be done on a relative
basis using the ratios of the average correction time to the Ly demodulator time
found in the second columa of Table 5.3. By using a normalized timing, the count
of the number of tests performed can serve as the clock for the L9 demodulator.
When an erasure occurs, the test count indicates the point at which the erasure
occured and if the erasure correction algorithm is available to correct the erasure,
adding the test count to the appropriate ratio from Table 5.3 gives a relative
measure of when the erasure correction algorithm will next be able to correct an
erasure. At the occurrence of the next erasure, the clock of the erasure correction

algorithm is checked to determine if the algorithm is busy or idle.

5.2 Oulline Of The Simulation

Figure 5.6 shows a flow chart of the simulation. The simulation software
implementing this flow chart was written in the C programming language. The
advantage to using a structured language such as Cis that a separate self-contained
function can be written to implement each major block such as encoding, noise
generation, Lg demodulation and erasure correction. The main body of the program
then consists of a sequence of calls to the individual functions. By a judicious choice
of function names, it becomes quite simple to read the program liéting and relate it
to what is seen in the flow chart.

Before the actual Fimulation runs can begin, the look—up tables for the
encoder and the Lg demodulator must be generated as the first two blocks of the
flow chart indicate. The tables for the Lg algorithm are set up to accept either 6
bits or 8 bits of input, whichever is specified at the start of the simulation. There
are 5 separate look—up tables used in the Lg demodulation algorithm, one to
look—up the component values of the candidate vector in each of the three cosets
and one for each of the discriminator functions a;and b i

The tables for the encoder are the complementary tables to the decoder
look-up tables discussed in Chapter 4. To be compatible with the decoder tables,
each coset has its own set of look-up tables, each covering a specified range of
message values. The first step in encoding is thus to find the range of values into
which the 16 bit, randomly generated, message m falls and thereby decide to which
coset the encoded vector should belong. Following this, the first look-up table is
scanned to find the greatest value of My’ less than or equal to the message value m.
The first two components, z and Zos of the encoded vector z are then the
components associated with this value of m,’. We then compute the difference

between the data value m and M, so that it can be passed to the next table along

generate tables
for encoder

y

enerate tables
or demodulator]

x

sncode

'

generate a
nolse vector

'

add nolse to
encoded vector

y

quantize the
recelved vactor

¥

demoduiats

copy data fo
file and quit

Ine. count of Inc. count of correct
unde!. arrors ovarflow errors erasure
= x fo error?

0%

Ine. count of
UNCOIT. errors

|

Figure 5.6: Flow chart for the Monte—Carlo simulation

93

94

with the sum 8,=2 +5 of the first two components. The sum 3, and the
difference value m — m,* are then used in the next table to find the greatest integer
My less than or equal to m — My’ and the component Z associated with this value
of M. Again the sum 33 = 3y + Zq and the difference m — m,* - m, are computed
and sent to the next table to find the fourth component zy- The same procedure is
repeated in the subsequent encoder look—up tables until all the components of the
encoded vector are obtained. Clearly, this is the reverse of the procedure used in
the decoder look—up tables where the components of the demodulated vector were
sent into a succession of tables to find the m,; values whose sum is the desired
estimate m of the message sequence.

Following the encoding of a message sequence, a noise vector must be
generated and added to the encoded vector to obtain the received signal vector. The
noise generation algorithm encorporates the functions "gasdey()" and "ran®()" of
[48,Ch.7] to generate a 9—dimensional vector of Gaussian deviates. The random
number generator rand() supplied with this and most other systems uses an
m-sequence approximation to the uniform distribution that is generally of poor
quality because of short term sample to sample correlations [48, p.206]. The
function rend() serves as a "scrambler", removing any correlation between samples
of the system deviate generator by shuffling them around, thereby providing a
better approximation to the uniform distribution on the interval [0,1). To generate
a vector of Gaussian deviates of a given variance, the function gasdey() [48,p.217]
uses the the so—called "Box~Muller transformation”. The advantage to using this
transformation is that it removes the need for the sine and cosine function calls used
in the more common transformation [1]

2, = V=2 In u; cos(27u,) (5.5¢)
Ty = =2 In 1 sin(27u,) {5.50)

95

to generate zero mean, unit variance Gaussian deviates Z,, % from a pair of uniform
deviates u,,u, € [0,1). With the Box-Muller transformation, we search for a pair of
uniform deviates v, €[-1,1) that lie within the unit dirde (i.e.

R= 012 + v22 < 1), then the desired Gaussian deviates are given by
5 =0 E[E, (5.62)
,=vy2ZWR]E . (5.6b)

The ratio of the area of a unit circle to a square of side two is 0.785. Thus only
78.5% of all pairs ("1'”2) will lie within the unit circle, however, this will still prove
to be faster than evaluating the sine and cosine functions.

After the noise vector has been added to the encoded vector, the received
vector is quantized to either 6 or 8 bits and the resultant quantized received vector
is demodulated by the L, algorithm. Once the closest point in L9 has been decided,
the component sum is checked to determine if an erasure has occured. If no erasure
has occured but there is an error in the demodulated vector, an undetectable error is
counted.

In section 3.6 it was stated that a single element queue would be placed at the
front of the erasure correction algorithm to allow for the correcting of back-to-back
erasures. Since the average length of the erasure correction algorithm is just slightly
greater than that of the Ly demodulator, as Table 5.3 shows, the single element
queue simply provides the little extra time needed to correct the first erasure.
There is a remote possibility that a third erasure event might occur before the
second is corrected, and here there may be a problem with overflow errors. It may
happen that either of the first two erasures, or both, is corrected along path ¢. If so,
the erasure correction algorithm will not be available to correct the third erasure
until between one and two demodulation intervals after its occurrence. In other

words, the third erasure will stay in the queue longer than it should and there will

96

not be sufficient time to perform the corrections before the vector is scheduled to
leave the buffer. It will therefore have to be counted as an overflow error. The
probability that such an event should occur is extremely small, but nevertheless it
must be taken into account in the simulation. This is why the decision block
appears in the flow chart of Figure 5.6 asking if the erasure correction circuit is free.
The erasure correction circuit is defined as being available if its clock value is less
than the number of test plus one. Since the number of test serves as the clock for
the Lg algorithm, this says that the erasure correction circuit will become available
sometime between the occurrence 'ol' the present erasure and the finish of the next
demodulation interval, if is it not already available.

When an erasure has been corrected and the resultant vector does not agree
with the encoded vector, an uncorrectable error is scored. During the simulation,
the three types of error events, (undetectable, uncorrectable and overflow), are
accumulated to obtain a total error count. The simulation will countinue to loop
around and perform tests until the total error count reaches 100. The accumulation
of 100 errors is sufficient to give a one standard deviation confidence interval of
+10% of the experimental probability of error.

(There is a certain amount of inaccuracy in all simulations in which a finite
number of trials of an experiment are performed. A confidence interval simply
provides an interval about an experimental data point where one expects, with a
certain level of confidence, that the true value should lie. For a Gaussian density
function, the area within one standard deviation of the mean is roughly 67% of the
total area. Thus in the present simulation where the noise is Gaussian distributed,
a one standard deviation confidence interval says that we are 67% sure that the
actual probability of error lies within the error bars. The confidence interval is

measured by taking the square root of the number of errors and dividing it by the

97
number of tests.)

The simulation was run at signal-to-noise ratios ranging from 16 dB to 18.5
dB in 0.5 dB increments and the results of these runs are presented in Tables 5.4
and 5.5. Table 5.4 shows results for which the components of the received vector
were quantized to 6 bits, while Table 5.5 is the results of the simulation in which 8
bits of quantization were-used. In both sets of results, no overflow errors have been
recorded. As was stated earlier, the chances of an overflow error occuring are 50

small that we did not expect to record such an event.
The experimental probabilities of erasure and error, and their confidence
'intervals, are listed in Tables 5.6 ard 5.7 and then plotted in Figure 5.7 and 5.8
respectively. In both figures, the confidence intervals have been omitted because

they were not large enough to be clearly seen and would only have confused matters.

SNR (dB)

Events 16.0 16.5 17.0 17.5 18.0 18.5
tests 18800 40578 108653 362874 1270937 5402898
erasures 1223 1651 2869 5430 10625 23704
 undetectable 26 26 22 27 41 33
uncorrectable 74 74 78 73 59 67
overilow 0 0 0 0 0 0
Table 5.4: Simulation results using 6 bits of
quantization in the demodulator.
SNR (dB)
Events 16.0 16.5 17.0 17.5 18.0 18.5
tests 20679 52660 127017 446559 1904440 7143853
erasures 1010 1526 2175 3844 8077 13848
undetectable 34 31 31 a9 a7 45
uncorrectable 66 69 69 61 63 55
overflow 0 0 0 0 0 _ 0

Table 5.5: Simulation results using 8 bits of
quantization in the demodulator.

98

SNR (dB) P,.. P,
16.0 (6.51 + 0.19) » 1072 (5.32 + 0.53) x 1072
16.5 (4.07 + 0.10) » 1072 (2.46 + 0.25) « 1075
17.0 (2.64 + 0.05) x 1072 (920 + 0.92) » 1074
17.5 (150 + 0.02) » 1072 (2.76 + 0.28) « 1074
18.0 (8.36 + 0.08) x 1073 (7.87 + 0.79) x 1070
18.5 (4.39 + 0.03) » 107 (1.85 + 0.19) x 107
Table 5.6: Experimental probabilities of erasure and
error for 6 bits of quantization.
SNR (dB) P, P,
16.0 (4.88 & 0.15) x 1072 (4.84 + 0.48) x 1072
16.5 (2.90 + 0.07) 1072 (1.90 + 0.19) = 1072
17.0 (L71 + 0.04) x 1072 (7.87 + 0.79) x 1074
17.5 (8.61 + 0.14) x 107 (2.24 + 0.22) « 1072
18.0 (4.24 + 0.05) x 1070 (5.25 + 0.53) x 107>
18.5 (194 + 0.02) x 1073 (140 + 0.14) x 107
Table 5.7: Experimental probabilities of erasure and

error for 8 bits of quantization.

Both Figures 5.7 and 5.8 indicate that for low signal-to—noise ratios, the union
bound on the probability of error significantly overbounds the experimental error
rate but the bound does perform well for high signal to noise ratios. This is a
common observation whenever a union bound is used to approximate the probability
of error. In a union bound, one draws a hyperplane between any point and its
nearest neighbours and integrate the noise density function, centred about the
transmitted signal point, in the region of space belonging to the neighbour. By

accumulating or forming the union of all such integrals, one arrives at an

99

approximation to the probability of error. There is a certain amount of overlap in
the regions of space bounded by these hyperplanes and thus a certain portion of
space will be covered by a number of integrations leading to an overbounding of the
probability of error. When the noise variance is large, as it is for low
signal-to-noise ratios, a significant portion of the noise density function will lie in
these regions of overlap. Thus the accumulated effect is an over exaggerated
estimate of the probability of error. On the hand, when the noise variance is small,
very little of the noise density function lies in the overlapped region and thus we
obtain an estimate that is much closer to the true probability of error.

The two sets of simulation results for the probability of erasure exhibit the
opposite trend to that observed for the probability of error, starting out by following
the theoretical curve for the probability of erasure and then deviating more and
more as the signal~to-noise ratio increases. This deviation can most likely be traced
to the effects of quantization. As the variance of the Gaussian noise component
decreases, one expects the quantization noise to account for 2 larger percentage of
_the total noise and as such have a much more prominent impact on the systems
berformance. If this is the case with the results that we see in Figures 5.7 and 5.8,
then quantization has 2 much greater effect on the probability of erasure than we
had previously predicted. In particular, there is a rather dramatic increase in the
probability of erasure when 6 bits of quantization are employed. Nevertheless, the
results are encouraging in that the probability of an erasure P ergs SHll runs at
something less than the square root of the probability of error P e for both 6 and 8
bits of quantiztion. Thus at a reasonable error rate such as 10_6, fewer than one in
every thousand received vectors will create an erasure. With erasure occurring this
infrequently, the two—stage demodulator should have no problems making the

necessary corrections and maintaining error performance.

100

1 ——— Peoe Theoretical
-~ — - P, Theoretical
=1 ---- Pew 6 bit quant.
10
| N —-— P, & bit quant.
x®. . .
— P Simulation
o N « R X Forca
107%- N ~ --&- P, Simulation
I W §\\ «® .
1072 4
107* -
107°
107+
1077 -
10—8 |||IillllIlllT‘TllIII—llllll_I‘
16 17 18 19 20 21 22

SNR (dB)

Figure 5.7: Plot of the simulation results versus
theoretically calculations for
6 bits of quantizations

1 —— P« Theoretical
- == P, Theoretical
107" 4 ---- Peu 8 bit quant.
—-— P, 8 bit quant.
2 N AN —#— P, Simulation
107+ N Ny \x\ --a- P, Simulation
SN -
A
1072 4
107+
107° -
1076 -
10774
10—8 llll}llllllrlllllllllllIlllll

16

17 18 19 20 21 22
SNR (dB)

Figure 5.8: Plot of the simulation results versus
theoretically calculations for
8 bits of quantizations

101

CHAPTER 6
CONCLUSIONS

6.1 Summary end Comments

The three main topics of discussion within this thesis have been (i) the A83
Gosset lattice construction and its spectrum, (i) the design of a fast two-stage
demodulator for this construction of the Gosset lattice, and (iii) the designing of a
set of decoder look—up tables to obtain a binary sequence from each demodulated
vector. The present work is the first to point out that there exist lattice
constructions with spectral shaping properties. Although we have focused on the
Gosset lattice construction A83, it is but one lattice in the series of lattices Anr {19]
constructed through the union of r cosets of the lattice An‘ where n+1/r is an
integer. This series of lattices includes 4, (r=1), An* (r=n+1), A72 = E;, and
A74 = E.‘,*. The lattices A " all have similar spectral characteristics, differing
mainly in the width of the spectral null at dc which is inversely proportional to the
dimension 7 of the lattice. The beauty of these lattice constructions is that the
spectral null comes as a natural consequence of the choice of the coordinate system
and does not require any additional effort, through either partial response filtering
or running digital sum feedback, to induce a null in the spectrum. As with other
such codes, however, there are small tradeoffs to be made. For the n—dimensional
trellis codes with spectral nulls of Calderbank, Lee and Mazo [10}, the tradeoff
comes in the form of a power penalty of 6/n dB whereas for the codes derived from

the lattices Anr, the bandwidth is a factor of n+1/n larger than the minimum

102

103
bandwidth required by a comparable n-dimensional lattice code without a spectral
null.

In Chapter 3, we outlined a two-stage approach to demodulating the Gosset
lattice A83. The motivation for the design of this demodulator was to find a way of
approaching the speed of a hard decision demodulator without giving up the
improved error performance afforded by soft decision techniques. The solution was
to break up the demodulation process into two separate parts that could be run
simultaneously. The initial stage uses the simpler Lg lattice configuration to make
a fast estimate of the closest vector in ‘483‘ If the components of the closest point
in Ly sum to zero, then this is also the closest poiat in A83 and nothing further is
required. If the L, demodulator does not find the closest point in 483’ it declares
an erasure and passes what information it has to a second stage which corrects the
erasure. By connecting the two stages through a buffer, each stage is able to
perform its designated task without slowing down the other. The speed or
throughput of the demodulator is set by the speed of the initial stage, which is far
less complex compared to 2 maximum likelihood demodulator.

‘ The idea of using erasures to bridge the gap between hard and soft decision
demodulation is not new, it was introduced in the mid—60’s [24],[25] to improve the
performance of decoding binary block codes, but this is the first instance in which
erasures have been used in demodulating a lattice code. When the design of the
two-stage demodulator was being formulated, it was thought that the erasure
correction effort would be on the order of 10 to 20 times that required by the initial
stage and that two erasure correction circuits would be required to keep the erasures
from overflowing the buffer. We were therefore pleasantly surprised when it was
discovered that we could approach maximum likelihood performance so very closely

with such a simple erasure correction algorithm as that described in section 3.6.

104

To obtain a binary message sequence from each demodulated vector, we
outlined in Chapter 4 a method of ordering and numbering the vectors of an A83
lattice code. Although somewhat difficult and mathematically tedious to describe,
this lexicographic ordering allows us to make efficient use of memory in the
resultant look—up tables. The net result ié that for a 216 vector code, 36 kilobytes
of memory are required for our complete set of decoder look—up tables compared to
256 megabytes of memory if a single look-up table had been used. We do, of course,
have to take into consideration that 7 table look-ups and 6 additions must now be
performed to find the binary sequence associated with any demodulated code vector.
Also, the signal constellation is hypercubic in nature, making it less efficient in its
use of power than a signal set enclosed within a hypersphere. However, our aim was
to find a solution to the mapping problem that could be used in conjunction with
the two-stage demodulator of Chapter 3. Since the 13 operations required by these
decoder look—up tables is fewer than the number of operations in the I.g algorithm,
the lexicographic ordering provides a useful solution to the mapping problem where
qther approaches would not. We would therefore contend that the combination of
épeed and efficient use of memory compensates for the slight loss in power efficiency
due to the shape of the constellation.

The simulation results that were presented in Chapter 5 indicate that 8 bits of
quantization is sufficient to obtain the error performance predicted for the lattice
code. Although a 6 bit quantizer suffers only a minimal amount of degradation in
error performance over an 8 bit quantizer, there is substantially more degradation in
the probability of an erasure. It is thus recommended that a minimum of an 8 bits
A/D be used if at all possible.

As a final note, it should be stated that at the time ihis thesis was

undertaken, there did not exist a decoder that had sufficient speed for a lattice code

105
to be used in a multi-megabit data transmission system. Our initial goal was to
develop a decoder that could provide these high data rates, with an eye towards an
eventual application in the digital microwave radio channel. We chose, however,
not to develop a single fixed decoder but rather to develop the demodulator and the
decoder look-up tables as separate, independent enmtities. The development was
kept as general as possibie to accomodate a large variety of codes when these
individual parts were later integrated into a complete decoder structure. By taking
this approach, we are not limited to a specific set of applications, anr is there
anything to prevent one from using our demodulator design with a different decoder
mapping process or our decoder lock—up tables with a different demodiilator. The
approach that we have tried to maintain is that, since this is a theoretical study,
there should be enough flexibilty for future applications of our results to be easily

tailored to suit a wide range of individual needs.

6.2 Suggestions For Future Work

There is 2 common adage that for every question one is able to answer, several
new and more involved questions are created. Although we have endeavoured to
present a complete, self-contained piece of work, thete are still a number of open
problems whick could be explored. Perhaps the most interesting theoretical
problem is the extension of our results to higher dimensional lattices that offer
greater amounts of coding gain. Coxeter [19] has pointed out that the series of
lattices Anr becomes less and less dense as the dimension 7 increases above eight
leaving little promise for more significant gains from this direction. However, it
may be possible to find "partial response" forms of other well known lattices such as
the Barnes—Wall lattices A16’ A32 and the Leech lattice A2 4 which offer asymptotic
coding gains of 4.5 dB, 6 dB, and 6 dB, respectively [27). The basic concept behind

106
the laminated lattice constructions of Conway and Sloane [17) is that many dense
lattices can be shown to exist as planar cross sections in a lattice of the next higher
dimension. The lattices An" exhibit a spectral null because they are n—dimensional
lattices embedded in a hyperplane in a space of n+1 dimensions. It would therefore
seem that if one is able to find the appropriate plarar cross section of Alﬁ’ A24 and
A32 in 17, 25 and 33 dimensions, respectively, one could obtain constructions of
these lattices that exhibit a spectral null. How easy it would be to define such
constructions and the complexity of the demodulation problem are not known and
would be worth studying.

At the outset of this thesis, we stated that we were not primarily concerned
with the intersymbol interference problem or partial response signaling. However,
because A83 Gosset lattice codes fit into the 1 - D partial response channel, they
should perform well in an intersymbol interference environment. How well they will
perform relativz to other partial response signaling schemes, and relative to their
own performance on the Gaussian channel, has still to be determined. It is felt that
one should be able to sustain a great deal more closure in the eye pattern, (2 general
measure of performance in ar intersymbol interference environment), for a given
level of error performance but how much more we cannot say. As far as we know,
no such study has been undertaken for the trellis codes with spectral nulls of [10]
either. An interesting research problem would then be to do a comparative study of
the two types of dc free codes in a severe intersymbol interference environment.

Finally, we have stated in several places that this decoder was developed for
application in multi-megabit data transmissions. We feel that it should be possible
to develop 2 hardware implementation of the decoder for use in 2 90 megabit digital
radio but cannot say this with absolute certainty. It is left for future development

to see whether this is indeed feasible.

[1]
[2]

(3]
[4]

[5]

(7]
(8]

(6]

[10]

{11}

[12]

REFERENCES

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,

Dover Publications, 1970.

J.P. Adoul, C. Lambelin and A. Leguyader, Baseband speech coding at
2400 bps wusing spherical vector quantization, IEEE Conf. Rec.
CH1945-5, ICASSP*84, pp. 1.12.1-1.12.4, 1984,

LF. Blake, The Leech lattice as a code for the Gaussian Channel, Infor.
and Control, vol. 19, pp. 66-74, 1971.

P. de Buda, Encoding and decoding algorithms for an optimal
lattice-based code, IEEE Conf. Rec. ICC’81, pp. 65.3.1-65.3.5, Denver,
June 1981.

P. de Buda and R. de Buda, Basis signals for o lattice code,
Communications Research Laboratory, McMaster University, Hamilton,
Ontario, Internal Report No. 131, October 1984.

R. de Buda, The upper error bound of a new near optimal code, IEEE
Trans, Info. Theory, vol. IT-21, pp. 441—445, 1975.

R. de Buda, Some optimal codes have structure, to appear IEEE J. Sel.
Areas Comm., 1989. '

R. de Buda and W. Kassem, About laitices and the random coding
theorem, in Abstracts of Papers, IEEE Inter. Symp. Info. Theory,
February 1981; also available as Internal Report No. 84,
Communications Research Laboratory, McMaster University, Hamilton,
Ontario, December 1980.

A.R. Calderbank, Multilevel codes and multistage decoding, IEEE Trans.
Comm., vol. COM-37, pp. 222-229, March 1989.

A.R. Calderbank. T.A. Lee and J.E. Mazo, Baseband trellis codes with a
spectral null at zero, IEEE Trans. Info. Theory, vol. IT-34, pp. 425-434,
May 1988.

A.R. Calderbank and N.J.A. Sloane, New trellis codes based on lattices
and cosets, IEEE Trans. Info. Theory, vol. IT-33, pp. 177-195, March
1987.

G.L. Cariolaro and G.P. Tronca, Correlation and spectral densily of

multilevelt (M,N) coded digital signals with epplications to pseudoternary
(4,9) codes, Alta Frequenza, vol. 43, pp. 2-15, January 1974.

107

[13]
[14]
[15]
[16]

[17]

[18]

[29]

20]

[21]
(22]
(23]
[24]

(25]

[26]

108

J.H. Conway and N.J.A. Sloane, Voronoi regions of lattices, second
moments of polytopes and quantization, IEEE Trzns. Info. Theory, vol.
IT-28, pp. 211-226, March 1982.

J.H. Conway and N.J.A. Sloane, Fast quantizing and decoding algorithms
Jor lattice quantizers and codes, IEEE Trans. Info. Theory, vol. IT-28,
pp. 227232, March 1982.

J.H. Conway and N.J.A. Sloane, A fast encoding method for lattice codes
and quaniizers, IEEE Trans. Infor. Theory, vol. IT-29, pp. 820-824,
November 1983.

J.H. Conway and N.J.A. Sldaiie, Soft decoding techniques for codes and
lattices, including the Golay code and the Leech lattice, IEEE Trans.
Info. Theory, vol. IT-32, pp. 41-50, January 1986.

J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups,
Springer-Verlag, New York, 1988.

H.S5.M. Coxeter, Integral Cayley Numbers, Duke Math. J., vol. 13, No. 4,

pp. 961-578, 1946; reprinted as Chapter 2, Twelve Geometric_Essays,
Southern Illinois Univezsity Press, 1968.

H.S.M. Coxeter, Exireme forms, Can. J. Math., vol. 3, pp. 391441,
1951.

H.S.M. Coxeter, An upper bound for the number of equal nonoverlapping
spheres that can touch another of the same size, Proc. Symp. Pure
Math., vol. 7, pp. 53-72, 1963; reprinted as Chapter 9, Twelve
Geometric Fssays, Southern Illinois University Press, 1968.

H.5.M. Coxeter, Regular Polytopes, Dover Publications, 3rd ed., New
York, 1973.

E.L. Cusack, Error conirol codes for QAM signalling, Electron. Lett.,
vol. 20, pp. 62-63, January 1984.

ESE Ltd., Block coding for improved modem performance, Contribution
to CCITT Study Group COM-XVII, No. 112, March 1983.

G.D. Forney Jr., Generalized minimum distance decoding, IEEE Trans.
Info. Theory, vol. IT-12, pp. 125-131, April 1966.

G.D. Forney Jr., Ezponential error bounds for erasure, list and decision
feedb;ck schemes, IEEE Trans. Info. Theory, vol. IT-14, pp. 206-220,
March 1968.

G.D. Forney Jr., Mazimum likelihood sequence estimation in the
presence of intersymbol interference, IEEE Trans. Info. Theory, vol.
IT-18, pp. 363-378, May 1972

[27]

[28]

(29]
(30]
[31]
[32]

[33]

[34]
(35]

(36
37
(38

[39]

[40]

[41]

109

G.D. Forney Jr., Coset Codes I Introduction and geometric
classification, IEEE Trans. Info. Theory, vol IT-34, pp. 1123-1151,
September 1988.

G.D. Forney J1., Coset Codes II: Binary lattices and related codes, IEEE
Trans. Info. Theory, vol IT-34, pp. 1152-1187, September 1988.

G.D. Forney Jr. and A.R. Calderbank, Coset codes for partial response
channels; or coset codes with spectral nulls, submitted to IEEE Trans.
Info. Theory.

G.D. Forney Jr., R.G. Gallager, G.R. Lang, F.M. Longstaff and S.U.
Qureshi, Efficient modulation for band-limsted channels, IEEE J. Sel.
Areas Commun., vol. SAC-2, pp. 632-647, Sept. 1984.

A. Gersho, Principles of quantization, IEEE Trans. Circuits and Syst.,
vol. CAS-25, pp. 427-426, 1978; reprinted in Quantization, Peter
Swazek ed., Van Nostrand Reinhold Co., New York, 1985, pp. 7-16.

A. Gersho and V.B. Lawrence, Multidimensional signal constellations Jor
voiceband date transmission, IEEE J. Sel. Areas Commun., vol. SAC-2,
pp. 687-702, Sept. 1984.

T. Gosset, On the regular and semiregular figures in space of n
dimensions, Messenger of Mathematics, vol. 29, pp. 43-48, 1900.

S. Haykin, Communications Systems, 2nd ed., Wiley, New York, 1983.

T.C. Hu, Combinatorial Algorithms, Addison-Wesley, Reading MA,
1982,

P. Kabal and S.Pasupathy, Partial response signaling, IEEE Trans.
Commun., vol. COM-23, pp. 921-934, Sept. 1975.

W. Kassem, Optimal Lattice Codes for the Gaussign Channel, Ph D.
dissertation, McMaster University, Hamilton, Oatario, 1981.

D.E. Knuth, The Art of Computer Programming, Volume $ Sorting and
Searching, Addison-Wesley, Reading MA, 1973.

H. Kobayash®, A survey of coding schemes for transmission or recording
of digital date, IEEE Trans. Commun. Tech., vol. COM-19, pp.
1087-1100, December 1971.

J. Leech, Some sphere packings in higher space, Can. J. Math, vol. 16,
pp. 657-682, 1964.

J. Leech, Notes on sphere packings, Can. J. Math, vol. 19, pp. 251-267,
1967.

[42]
[43]
[44]
(48]
[46]
[47]

[48]
[49]

(50]
[51]
e
(53]

[54]

(55]

[56]

110

J. Leech and N.J.A. Sloane, Sphere packings and error correcting codes,
Can. J. Math., vol. 23, pp. 718-745, 1971.

S. Lin and D.J. Costello Jr., Error Control Coding._Fundamentals and

0
Applications, Prentice—Hall, Englewood Cliffs NJ, 1983.

P.A.P. Moran, An_Introduction to Probability Theory, Oxford
University Press , London, 1968.

A. Papoulis, Probebility, Random Variables and Stochastic Processes,

2nd ed., McGraw-Hill, New York, 1984.

G. Pierobon, Codes for zero spectral density at zero frequency, IEEE
Trans. Infor. Theory, vol. IT-30, pp. 425429, March 1984.

G.J. Pottie and D.P. Taylor, Multilevel codes based on partitioning,
IEEE Traus. Info. Theory, vol. IT-35, pp. 87-98, January 1989.

W.H. Press, B.P Flanmnery, S.A. Teukolsky and W.T. Vetterling,

Numerical Recipes in C, The Art of Scientific Computing, Oxford
University Press, New York, 1988.

N. Secord and R. de Buda, Microprocessor decoding of a lattice code,
Communications Research Lab. McMaster University, Hamilton,
Ontario, Internal Report No. 130, February 1986.

N. Secord and R. de Buda, Demodulation o f @ Gosset lattice code having
a spectral null at de, to appear JEEE Trans. Info. Theory.

C.E. Shannon, A mathematical theory of commaunication, Bell Sys. Tech.
J., vol. 27, pp. 378423 and 623-656, 1948,

C.E. Shannon, Probability of error for optimal codes in a Gaussian
Channel, Bell Sys. Tech. J., vol. 38, pp. 611656, 1959.

D. Slepian, Permutation modulation, Proc. IEEE, vol. 53, pp. 228-236,
March 1965.

N.J.A. Sloane, Binary codes, lattices and sphere packings, in

Combinatorial Surveys, ed. P.J. Cameron, pp. 117-164, Academic Press,
New York, 1977.

N.J.A. Sloare, Tables of sphere packings and spherical codes, IEEE
Trans. Info. Theory, vol. IT-27, pp. 327-338, May 1981.

N.J.A. Sloane, The packing of spheres, Scientific American, pp. 116-125,
January 1984.

[57]

[58]
[59]

[60]

111

T.M. Thompson, From Frror-Correcting Codes Through Sphere
Packings To Si Carus Math. Monograph No. 21, Math.
Assoc. of America, 1983.

G. Unierfboeck, Channel coding with multilevel/ phase signals, IEEE
Trans. Infor. Theory, vol. IT-28, pp. 55-67, January 1982.

J.M. Wozencraft and I.M. Jacobs, Principles of Communication
Engineering, Wiley, New York, 1965.

W.R. Bennett, Statistics of regerative digital transmission, B.S.T.J.,
vol. 37, no. 6, pp. 1501 -1542, Nov. 1958

APPENDIX A

LINEAR TRANSFORMATIONS LINKING
GOSSET LATTICE CONSTRUCTIONS

In this appendix, we redefine the three Gosset lattice constructions ES’ AS
and Asa, and provide transformations that allow one to map the vectors defined
under ome conmsiruction into the vectors of another comstruction. These
transformations make it theoretically possible to encode using one construction and
decode using another, although from a practical point of view this is not a very
efficient method of encoding and decoding. The main interest in such
transformations lies in showing how the three different lattice comstructions are
related.

A construction of the Gosset lattice that appears quite often in the literature
on lattices [42],[55], as well as applications of lattice codes [23],[32],{49] and lattice
quantizers [2],[13],{14], is the following.

Definition I: The Gosset lattice in 8—dimensional Euclidean space &S is the set of
all vectors whose eight components are
i) either all even or all odd integers, and

i) whose sum is a multiple of 4.

This construction of the Gosset lattice is commonly given the symbolic
notation EB and expressed by the formula

Eg = 2Dgu 2D, + (1,1,1,1,1,1,1,1) (A.1)

112

113

where Dy is the lattice of all 8-tuples of integers with an even sum [13]. More
recently, Forney [27] has identified this comstruction of the Gosset lattice as a
decomposable modulo—4 lattice with code formula?

Ey = 41° 4+ 2(8,7) + (8,1) (A.2)
where (8,7) and (8,1) are binary block codes of length 8, the former being a single
parity check code and the latter a repetition code.

The beauty of the Gosset lattice lies in its structure and symmetry. The
vectors of the lattice fall into discrete energy shells® that are multiples of the energy
of the first shell. Within this first energy shell are the 240 minimal vectors that join
any point within the lattice with its 240 nearest neighbours. For the above Eg
construction, these 240 minimal vectors consist of 112 vectors obtained through all
permutations and sign changes made to the vector (2,2,0,0,0,0,0,0) and the 128
vectors obtained through the permutations of an even number of sign changes made
to the vector (1,1,1,1,1,1,1,1). These 240 minimal vectors all have squared
magnitude 8 and this is the minimum squared distance between any two points

within this construction of the Gosset lattice.

It is also possible to construct the Gosset lattice using error correcting codes.

Definition 2 The Gosset lattice in RS is the set of all vectors whose components are
congruent modulo 2 to ome of the sixteen codewords of the (8,4) first order
Reed-Muller code.

This is what Leech and Sloane [42] refer to as the Construction A form of the
Gosset lattice. This construction has the symbolic notation AB and can be

expressed by the formula [16]

’Note that Forney refers to this construction of the lattice as REB'

8An energy shell is the set of all vectors of the same squared magnitude.

114

Ag = c+ 2z (A.3)
where cis a codeword of the (8,4) Reed—Muller code and z€ s, Slightly different
versions of this definition result when one notes that the (8,4) first order
Reed-Muller code is equivalent to the (8,4) extended Hamming code [55) and can
also be identified with the Walsh functions of order 8 [4],[5].

The 240 minimal vectors of this AB construction consist of the 16 vectors
obtained by all permutations and sign changes made to the vector (2,0,0,0,0,0,0,0)
and the 224 vectors obtained by making all possible sign changes to the 14 vectors
whose components form a codeword of Hamming weight 4 in the (8,4) Reed-Muller
code.? These 240 vectors all have a squared magnitude or energy of 4 which is also
the minimum squared distance between any pair of points within this construction
of the Gosset lattice. Note that this is twice the energy of the minimal vectors in
the Eg construction, however for any two sets of vectors taken from the same region
in IRS, the ratio of the average energy of these vectors to the minimum squared
distance of the construction must be the same. This is in fact true for all
constructions of the Gosset lattice and is what ensures that codes of equal size taken
from equivalent regions in &® have equivalent error performance.

Leech [40] has given transformations which allow onc to map the vectors of
the Eg construction into the vectors of the AB construction and vice versa. If
z= (:nl,:r.z,...,zs) is a vector of the Ey construction and y = (yl,y2,...,y8) is a vector

of the Ag construction, then zand yare related by [40],[57,p.78]

_ o
Toi = Yo ~Yop Yoi = ATy —By;)
_ 9
Toicl = Yoip t¥op Y = plTy g + 1) (4.4)

where i =1,2,3,4. The transformation which takes every vector y¢ AB to a vector

¥The Hamming weight of a birary codeword is the number of 1’s within the
codeword.

115

z€ By is referred to alternatively as the norm doubling map [11) or the rotation
operator R [26] because it rotates the lattice by 45 degrees and doubles the norm or
squared magnitude of each vector in the lattice.

A third construction of the Gosset lattice, the one which the work of this
thesis is based upon, has the following definition due to Coxeter [19], (see also

[5],[18],[20], {50])

Definition & The Gosset lattice in g8 is the lattice whose vertices, in an
orthonormal coordinate system in IRg, are the set of vectors whose 9 integer
components

i) are all congruent modulo 3 to each other, and

i) have a sum of zero.

Coxeter [19] refers to this construction of the Gosset lattice as A83 because it
is the union of three scaled copies of the lattice A8, the lattice of all 9-tuples of
integers with a zero sum [13],[551], that is
| Ag® = 345 v 345 + (2518 v 34g + (-2°,19) (A.5)
where (23,—16) is a compact notation for (2,2,2,-1,-1,-1,-1,-1,-1).

The 240 minimal vectors of this A83 construction consist of the 72 vectors
obtained by permuting the comporents of (3,-3,0,0,0,0,0,0,0) and the 168 vectors
obtained through all permutations of the vector (2,2,2,-1,-1,-1,-1,-1,-1) and its
negative (-2,~2,-2,1,1,1,1,1,1). From these vectors it is easily seen that the
minimum squared distance between any pair of points in the A83 construction of the
Gosset lattice is 18.

As with the E‘S and AS constructions, there exists transformations to map

every vector from one of these constructions to a vector of the A83 construction and

116

vice versa. For the EB and 483 constructions, a transformation which maps every
z€ Eg to a vector we 483 is the following [5]

w=3z + 1o -1, i=12,.7
_ 1
ws = —2‘8 - zs
1
Uy = 23 — 738 (4.6)
8
where s is the sum of the components of z, ie, s= T z. The inverse
=1
transformation which takes every we A83 to a vector z€ E.'8 is
1 .
T, = %wi - 7 Yy t=12..7
-2 1
= 3U3U:- (47)

By substituting the equations for the z; of (A.8) into the equations of (A4.4), a

transformation can be found to map every we ‘483 into a vector y € As.

APPENDIX B

REDUCTION OF THE CODE SPECTRUM EQUATION
USING CHEBYSHEV POLYNOMIALS

In Section 2.2, the power spectrum of an ‘483 Gosset lattice code was given as

E 8
1 9-k
ap =it -5 5 O eosoknr fo)), M <g (B
and it was stated that the summation of cosine terms could be reduced using

Chebyshev polynomials of first and second kind. This reduction is done as follows.
Using the Chebyshev polynomial of the first kind {1, p.776),

Ty(cos) = coskd, (B.2)
the summation on the right of (B.1) can be rewritten as
8 8
9-k 9-k
L cos(2kxfT _[9) = T T,(cos B.3
Z B8 costainr, o) Z B rygeon g (B3)
where 0 = 2xfT, /9. Using the identity [1, p.778]
1
Tk(:z:) = E{Uk(z) - Uk_z(z)]) (B4)

| with the change of variable z= cos f, and where Uk(cos 0) is the Chebyshev
polynomial of the second kind [1, p.776),

} 1
Uk(cos 0) = %ﬁg_—)—o, (B.5)

the summation on the right of (B.3) is rewritten as

: N B R Ulz) - & Uy(a) (B.6)
=1 k B8 ZL:I k 8 "8
The summation formulas {1, p.785),
n 1 -7, (z)
£ U, () = nt2 (B.7)
m=0 2(1 - z%)

and

117

118

n—1 z-T, . .(2)
2n+1
E U = , B8
and the identity [1, p.778],
U 4(2) = I__I;EI’TI:(”)‘ Tpy 1(2)] (B.9)
can then be used to obtain
8 14+ z-Ty(z) - T4(2)
9-k 9 9 10 1
= T = - + - U
1,‘=1(‘4‘l K2 8 81 - 2) 5 Us(2)
_ 9 . 1+ 2z 9(:z:) - 10(3:) Tg(z) - Tm(z)
8 8(1 - 2°) 8(1 - z°)
1 - Ty(2)
= -3 + %_.1___9z (B.10)

Finally, using equations (B.2), (B.3) and (B.10), the equation for the power

spectrum of the code reduces to

E g 1 1- cos(21ran)
an = T, |8~ 2T=cos(ZxJT /@I]
Ea. g [sin(rfT,)] (B.11)

