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ABSTRACT

This thesis is primarily an investigation of those properties of closed-
shell molecules which result from interaction with an external magnetic field.
Throughout, emphasis is placed on the observable, magnetically induced current
density distributions. The insistence that measurable magnetic response
properties such as the NMR shielding tensors and diamagnetic susceptibility
tensors be interproted, physically, in terms of the corresponding induced
current distributions has led to new, and more accurate, methods of predicting
these prcperties. These methods are described in Chapter 1. The fundamental
features of the induced vector current fields are investigated in Chapter 2
through a formal topological analysis of a divergencelesrs three-dimensiocnal
vector field with magnetic symmetxry together with actual analyses of several
induced molecular current distributions. In chapter 3 the experimentally
measurable molecular magnetic susceptibility and nuclear magnetic shielding
tensors are analyzed in terms of the corresponding tensors for atoms in
molecules to address the physical basis for the empirical models which have
been developed to explain experimental results. An atomic magnetic response
tensor is entiirely determined by the charge and induced current density
distributions within Ehe atom and on its surface. The physical significance
of the atoms of theory is reiterated through the agreement of the theoretical
group magnetic susceptibilities in the hydrocarbons with the empirically
defined group increments of Pascal. In chapter 4, advances in methods of

calculating properties of atoms in molecules are described.
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INTRODUCTION

In this work the fundamental phenomena associated with the interaction ot
closed-shell molecules with external magnetic fields ave investigated, namely,
diamagnetism, nuclear magnetic resonance and electronic current induction.
Throughout, emphasis is placed on the observable, magnetically induced current
density distributions as a means for both understanding and predicting magnetic
phenomena. The reguirement that measurable magnetic response properties such as
the NMR shielding tensors and diamagnetic susceptibility tensors be interpreted,
physically, in terms of the corresponding induced current distributions has led to
new, and more accurate, methods of predicting these properties. In chapter 1,
these methods are described, and they are perhaps the most important result of
this work, for without accurate observation and prediction there can be no
understanding. The new methods employ multiple or continuous gauge
transformations in order to calculate the induced currents and the molecular
properties they determine from conventional coupled-perturbed Hartree-Fock
wavefunctions. They are expected to be relatively simple to genheralize beyond
Hartree-Fock.

The fundamental features of magnetically induced vector current [ields are
investigated in Chapter 2 through a formal topological analysis of a
divergenceless three-dimensional vector field with magnetic symmetry, together
with analyses of several induced molecular current distributions made available by
the methods.described in Chapter 1. The results of chapter 2 demonstrate that,
unlike free atoms, an induced current distributioﬁ in a molecule is a fully three-
dimensional vector field whose associated trajectories can exhibit four basic flow

patterns, all of which are commonly observed. The topologicel analysis has also



brought to the fore the vorticity of the induced current, its curl vector field,
which exhibits a shell structure in striking analogy with a property of the
electron density distribution, and which may lead to better understanding and
prediction of the induced current flow in terms of other molecular properties.

In chapter 3 molecular magnetic susceptibility and nuclear magnetic shielding
tensors are analyzed in terms of the corresponding tensors of atoms in melecules
in order to address the physical basis for the empirical models which have been
developed to explain experimental observations. An atomic magnetic response
tensor is entirely determined by the charge and induced current density
distributions within the atom and on its surface. The physical significance of
the atoms of theory in interpreting and predicting magnetic phencomena is
explicitly demonstrated through the agreement of the theoretical isotropic group
magnetic susceptibilities in the normal hydrocarbons with the uniquely defined,
empirical group increments of Pascal. The induced current distributions in an
atom, and hence its magnetic properties, are shown to be transferable between
molecules in a manner paralleling the transferability of the electron density
distribution. With the exception of those for protons, nuclear magnetic shielding
tensors are confirmed to be essentially atomic properties. Much of the original
work presented in this work either implicitly or explicitly employs the theory of
atoms in molecules, a theory which is generally well known in the chemical
community and is well documented in the literature. However, for those readers
not familiar with the theory of atoms in molecules, those aspects of it which are
particularly relevant to the work presented here are summarized in Chapter ¢,
which describes computaticnal improvements that have been made in applying the

theory, as well as in the Appendix.



1. CALCULATION OF MAGNETIC RESPONSE PROPERTIES

1-1 Introduction

1-2 The CPHF Induced Current Density

1-3 Gauge Transformations

1-4 Relation of Induced Current Density to Other Magnatic Response Proparties
1-5 Multiple Gauge Transformations - The IGAIM Method

1-6 Continuous Gauge Transformations - The CGT Methods

1-7 Previous Mathods

1-8 Comments

1-9 Referaences

1-1 Introduction

In this first chapter, new approaches to solving the long-standing *gauge
problem" in ab-initiec magnetic response calculations are presented. In
particular, straightforward and relatively accurate methods for calculating
the magnetically induced first-order current density distributions in
molecules as well as the observable properties determined by these
distributions are described. The methods employ gauge transformations in real
space in order to calculate the magnetic properties from conventional coupled-
perturbed Hartree Fock (CPHF)1 wavefunctions. The methods are judged to be
superior teo conventional methods based on the relatively good agreement of the
calculated magnetic susceptibility and nuclear magnetic shielding tensors with
corresponding experimental results as well as the relatively high degree of

satisfaction of the continuity equation for the current density distribution.



The first method, IGAIM (Individual Gauges for Atoms In Molecules),:
takes advantage of the theory of atoms in mcwlec:ules3 by calculating the
current density distribution throughout the space of the molecule - an atom at
4 time. In the IGAIM method, conventional CPHF calculations for the three
components of the angular momentum and linear momentum perturbations are first
performed, and then the induced current distributions within each atom of the
molecule are calculated by performing a gauge transformation which shifts the
amige origin of the magnetic vector potential to the atom's nucleus, in
aralogy with the simple free atom calculatien. The molecular magnetic
response Lensors are calculated from the atomic current distributicns as a sum
of atomic contributions.

The other methocls‘I are extensions of the IGAIM method to the limit of a
continuous, real space gauge transformation. In these methods a gauge
transformation function is chosen as a continuous parametric function of real
space, one which guarantees the symmetry properties of the current
distribution and effectively employs a different gauge origin for each point
in real space in order to calculate the current distributions and the
dependent magnetic response tensors. The continuous gauge transformation
methods, like IGAIM, use conventional CPHF first-order wavefunctions, but
unlike IGAIM they are easily implemented into existing conventional CPEF
programs, such as CADPAC.5 In addition to their relatively good accuracy in
predicting molecular magnetic properties, the continuous gauge transformation
methods possess an important advantage over the IGAIM method and any other
methods whicﬁ are commonly used in that they not only allow for the more

efficient calculation of the molecular properties, but they also make readily



possible the relatively accurate determination, display and analysis of the
full three-dimensional molecular induced current distributions. Thereby,
these methods enable one to study the topology of the J‘”(r) distribution”

- N . . B
and its relation teo other molecular magn tic properties.

1-2 The CPHF Induced Current Density

Invoking the non-relativistic and Born-Oppenheimer approximatisns. the
first-order electronic current density induced in a closed-shell molecule with
n electrons by a static and uniform perturbing magnetic field B is expressed
in terms of the ground state wavefunction ww) and its corresponding first-

. 1,9
order correction Y'l) as

S -(en/m)IdT'{ WO Byt gt Pyt } - (/me)atr) ot (1)

where p(m(r) is the unperturbed electron density, p is the linear momentum

operator, A(r) is a vector potential (assumed first-order in B} describing B

through Maxwell's equation, V*B = 0 -> B=VUxA(r), and the integration is over

the spihs of all n electrons and the spatial coordinates of (n - 1) electrons.

Within the CPHF framework' the zero-order function w‘u) is a Slater

determinant of n/2 deoubly occupied molecular orbitals ¢:O) while the function
(1)

wlll is a Slater determinant composed of the first-order corrections, ¢, '+ to

these orbitals. From egn. (1), the CPHF first-order induced current density

is given by’

n/2

I r) = -(2e/m) z{qb{""ﬁoﬁ{“ s ¢{“'§¢{°’ } - (&¥/me)amp'® ix)

i=1



1; )
=3 J {2)
1 H

}

f .
where ,p(J (r) is now the ground state Hartree-Fock electron density. The part

of 3'"(r) in eqn. (2} depending on both ¢;0) and ¢';” is normally called the

: . . 1 . . o
*paramagnetic" contribution, J( )(r), while the part which depends on p( ){r)
9]

is called the *diamagnetic® contribution J;“(r).

Using the formalism first described by Lipscomk et al,’ the ¢£1) can be
determined as an expansion in the basis of unperturbed Hartree-Fock wvirtual

molecular orbitals qSlgO’. as in egns. (3)

{1 _ {1} 10y
i L o9 (3)

p=n/2+1
{1

o1 are the solutions te the set of coupled

where the expansion coefficients C

equations, the first-order CPHF equations, given in eqns. (4)

N

P L) B 1 | 10y 11741 200)
.ep €, )Cpl + <¢p 1H I::.i > +
n2
N . 1
[ [ [(qllpj)-(Jllpq)]C;j) =0 (4)

j=1 g=n/2s1

S L)

The operator H in these equations is the imaginary first-order correction

to the one-electron part H of the Fock operator F due to the B perturbation

{0}

while the quantities ep (o)

and Ei are the orbital energies of the pr'h virtual
molecular orbital and ith cccupied molecular orbital, respectively. The
quantities ({(qgilpj) and (jilpg) in ean. (4) represent, in the conventiocnal

notation, two electron integrals over the corresponding molecular orbitals.

The first-order CPHF ecquations given in egns. (4) follow from the

requirement that the canon.ical Hartree-Fock equations, F¢1=ei¢1 (i=1,...,n/2},



be satisfied to first-order in the B perturbation, as iu egqns. (5)

TS Tl
plOglH | pd)

1 IS
X ()+e()\tl

{0) (0}
= &
i i ¢'1 i ¢i

¢ {5
while maintaining the orthonormality of the n/2 occupied orbitals through

second-order.

When the wvector potential is chosen as A{r={l/2)Bxxr to describe the

magnetic field then

' - (e/2mc)B rxp = (e/2mc)B L (6)

N

where L is the angular momentum operator with respect teo the arbitrary origin

of x.

1-3 Gauge Transformations

As is well known, the vector potential A{r) is not unique. The addition
of the gradient of any scalar function £{r} to Alx), a gauge transformation,
leaves the physical field B unchanged, since VxVf(r)=0. Since observable
magnetic response properties such as the induced current density are
determined by interactions with B, they should be invariant to any gauge

transformation of A(x).

The exact CPHF first-order current density is invariant to gauge
transformations of 1&(::'),9 the simplest example of which is a shift in the
origin T, of the electronic position vector r by an amount @ such that r =
- d. For such a gauge transformation f£(xr) = -(1/2)({Bxd}-r. The origin r“

will hereafter be called the gauge origin. It is immediately evident from

eqn. (6) that such a gauge transformation changes Hu) into

’ A

" {1)

(1) + SH = H

H - l_I(l)

1) (e/2me)Beaxp (7)



and the first-order corrections to the orbitals into

¢«n' = gl 4 Sel = gl Z sc!tigtor (8)
i i i i pl "p

p=n/2+1

(1)

with the changes in the first-order coefficients Scpi being determined by the

set of coupled equations given in egns. (9),

P

{1)

(e“”-c‘"')acm + <@tO ) SH T 1l0)s o
P i pl P i
n/2
I I taiten-Gipaisc = o )
J=1 aq=n/2+1

F
These equations follow from substituting the expressions for the ¢i“ and the

n'

~
transformed perturbation i inte egns. (4) and the fact that the set of

¢1“ satisfy egns. (4) for g'tt
Because the shift in gauge origin by d is the same for every orbital, the
staticnary first-order CPHF wavefunction for any gauge origin and any

perturbing field B can be obtained by first solving a set of six CPHF

~

equations: three for the components of the angular momentum operator L using

any single gauge origin, egns. (4), to obtain the set of ¢i1): ¢i”hx. ¢:1}by
(1hLg

~
i ; and three for the components of the linear momentum operator p:

and ¢

¢i”p"_. ¢:Upy and qbi”p‘"- resulting from any shift in origin, egqns. (7}.

The change in the CPHF first-order wavefunction resulting from a gauge

transformation of A(r) clearly changes the paramagnetic part of J(“(r), egn.

{2), but in the exact CPHF case the diamagnetic texrm, J‘;”(r), changes in the

(1)

opposite manner leaving the total J ' (x} \.u'xcha.m;;ed.9 In approximate CPHF

calculations - for example, an expansion of the molecular orbitals in a finite



set of basis functions - the current density is not, in general, invariant to
gauge traunsformations of A(r).g This, the effects of such transformations on
J(“(r) are of practical interest and their analysis may lead to an
improvement in the calculation of this property and the dependent molecular
properties.

Frem the equations given above, the general expression for the CPHF
J(“(r) obtained for any shift d(r) in gauge origin from the arbitrary one
used to calculate the set of ¢{1“‘.\: is given in egqn. (10} for a magnetic field

applied along the x-axis. O©Of course, a similar expression obtains for any

magnetic field direction.

n/2

g x = (2e/m) E (Be/2mc){¢i°"3¢§“"x » ¢{1“‘-='3¢§°’

i=1

- (01 *3ailip (1ip, " 5a(0)

A (x) (@7 'pe;*'Pz + ¢ 7Pz po 7]
(0)754{1)p {11p, B (0) }

+dz(r) [¢1 qui v 4+ ¢1 Y IM#'1 1

- (e*/2me)Bx(r-d(x)1p'% (x) (10)
It is to be noted that the shift in gauge origin 4 has now been made an
explicit parametric function of r, d(r). By choosing a particular function
d{r), hereafter termed a gauge transformation function, one necessarily
subjects each of the first-order orbitals ¢;1) and the corresponding CPHF
current density Ju)(r) to the consequences of a gauge transformation, egns.

(9) and (10)}. It should be clear that one cannot perform a similar gauge

transformation of A(r) to obtain a statiopary first-order CPHF wavefunction



with a different gauge origin for each molecular orbital. In order to obtain
a stationary CPHF wavefunction with a different gauge origin for each orbital,
it is necessary to solve the CPHF equations, eqns. (4), using a separate é(”,
eqn. (6), for each orbital in order to ensure self-consistency. This
corresponds to assigning multiple origins in the orbital Hilbert space, as is
done in the IGLO method (using neon-canonical CPHF with localized orbitals),10
and is to be sharply contrasted with the use of a change of gauge origin in
real space, the space in which B is defined, which corresponds to a gauge
transformation. In the limit of the exact CPHF solutions - for example, the
use of a complete basis set expansion of the molecular orbitals - a gauge
transformation corresponds to subjecting both the Hamiltonian and state

. . . 9
function to a unitary transformation.

1-4 Relation of Induced Current Density to Other Magnatic Responae Properti;a
As emphasized by Jameson and Buckingham,11 the induced current density

distribution J(”(r) is related to the measurable magnetic susceptibility

tensor ¥ and nuclear magnetic shielding tensor cr'N {for a nucleus with magnetic

dipole moment uN) according to egns. {1l1) and (12}, respectively1

Bey = (1/2¢) |ar(exa't () (11)

p”-aN-B = (-1/c)pN'IarN{rNxJ‘“(r)/r:} (12)

where the origin of r in egn. {11) is arbitrary in the exact CPHF case or when

demanded by symmetry - since then the integrated current is identically zero -

10



and the origin of r, in egn. (12) is the nucleus N.

Egns. (11} and {12) show that in an approximate CPHF calculation, the
accuracies of Y and t'.r'N are determined by the accuracy with which Jt”irﬁ is
calculated. Egn. {(10) determines the J(“(r) distribution, and ultimately Y
and GN, for any gauge transformation function d(r). The essential gquestion
then arises, "What funcgion d(r) gives the most accurate Jl“tr) distribution,

N . . . R .
and hence Y and ¢ tensors, for a given level of approximation - finite basis

set, for example - within the CPHF approximation?®

1-5 Multiple Gauge Transformations - The IGAIM Mathod

In the IGAIM method2 x and oN are calculated by expressing eqns. {1l1l) and
(12) in terms of a summation over contributions Efrom each atom 2 in a
molecule3 using the nucleus as gauge origin to calculate J(”(r} throughout
the basin of the corresponding atom. The nucleus is the “natural gauge
origin® for a free atom because then w(“ is identically zeroc and thus J‘”tr)

: ; . , Y
is determined entirely by the ground state electron density p‘)(rl. Thus,

, . 1
IGAIM uses multiple gauge transformations to calculate the J"(r)

distributicon, X and GN, with d(r) being set equal to R the position vector

Q'
of nucleus @, for all r in a given atomic basin.

A description of the IGAIM method together with calculated results for
the isotropically averaged suceptibility x and carbon NMR shielding ¢ has
been published.2 In that publication, comparisons of the IGAIM results are
made with corresponding conventional CPHF single gauge origin results and

experimental results for a fairly large number of molecules. In all cases,

the IGAIM method was shown to yield significantly more accurate results than

11



the conventional CPHF approach. A copy of the IGAIM publicationz appears as
Appendix 1-A of this chapter.

While the IGAIM method yields relatively accurate molecular magnetic
properties, there are difficulties associated with it: 1) numerical
integration is required to calculate the separate atomic contributions and
thus the method is computationally intensive; 2} the current density is
relatively poorly described near the boundaries of the atom, resulting in a

. . . 1
discontinuous display of J()

{r) and making a study of its topology difficult;
and 3} the symmetry properties of the induced current distribution are not

guaranteed.

1-6 Continuous Gauge Transformations - The CGT Methods

It is possible that the use of a continucus function for d(r), as opposed
to the discontinucus one used in IGAIM, could preserve or improve upon the
accuracy of the calculated molecular properties, in addition to simplifying
their calculation by allowing for the use of easily evaluated expressions.
The use of a continuous gauge transformation function d(r) would yield a
continous and potentially more accurate description of the molecular current
density distribution, particularly in the vicinities of the interatomic
surfaces.

An important physical constraint on the function d{r)}, one not met by
that used in the IGAIM method, is that it should guarantee the symmetry
properties of the molecular current distribution - that is, d(r) should be
both continuous and transform as the totally symmetric irredugible

representation of the molecular point group. Of course, the current density

12



vector field itself does not belong to the totally symmetric irreducible

representation but it should be clear from egn. (10) that d{r) must. The
\

symmetry properties of the J(L(r) field are discussed in chapter 2.

An obvious choice for the function d(r) would be the one which causes the

1 . -
transverse part - the ccmponents of J()(r) perpendicular to B - of the exact

J(l)

. (r) to wvanish, since in approximate CPHF calculations it is the

paramagnetic term which is the least accurztely determined and only the
transverse component of the current determines the diagonal components of the
magnetic response tensors x and oﬁ. Unfortunately, in order to determine A(r)
in this case, it is necessary to know the exact J;”(r) and therefore this
approach is of no direct use. Choosing the function 4(r) so as to make the
transverse part of the approximate J;(r} vanish is possible in principle, but
is computationally very difficult.

Alternatively, setting d(r) = r causes both the exact and approximate
J;”(r) te wvanish everywhere, eqn. (10), while clearly guaranteeing the
symmetry properties of the current distribution. With moderately sized basis
sets this method, termed CGTR (Continuous Gauge Transformation - r}, yields
magnetic susceptibilities which are generally in good agreement with
experiment, whereas the corresponding CPHF results using a single *optimum*
gauge - origin are, as is well known, significantly in error, especially for
larger molecules. Table 1-1 lists calculated results for i, the isotropically
averaged magnetic susceptibility, obtained wusing two basis sets, 6-
311++G(2d,2p)12 for all molecules, and a large wuncontracted set of
(1258p4d/854p)13 for the smaller molecules. Corresponding results are also

listed for the IGAIM method as well as experiment in Table 1-1. The magnetic
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susceptibilities calculated using the smaller of the two basis sets with the
CGTR method are consistently slightly lower than those calculated using IGAIM.
This difference becomes much smaller for the larger basis set, being within
the experimental uncertainty in x, and both methods converge to a common
value., The conventional CPHF results are, of course, much improved using the
larger basis set, but are, in some cases, still significantly in error.

In general, the IGAIM results calculated using the smaller basis set are
closer to the convergent value of i than the corresponding CGTR results and
thus IGAIM is judged to be more accurate than CGTR in calculating magnetic
susceptibilities with basis sets roughly of the 6-311++G(2d,2p) size and
smaller. .

The basis for the advantage of both the IGAIM method and the CGTR method
over the conventional CPHF method in calculations of ¥ can be seen from the
results given in Table 1-2, which 1lists the separate paramagnetic and
diamagnetic contributions to the perpendicular component of the magnetic
suscpetibility tensor, ;\1_L for the CO2 molecule. The axial component, x", can
easily be calculated “exactly*® for any given basis set because the
paramagnetic contribution vanishes identically for any axial gauge origin.
Thus, all methods use the same value for x". Use of a single oxygen nucleus
as gauge origin in a conventional CPHF calculation yields vwvery large
paramagnetic and diamagnetic contributions to xl, contributions which fail teo
cancel properly and the result is a gross overestimation of i. Use of the
carbon nucleus, the centre of electronic charge, as the single gauge origin
dramatically reduces both contributions to xl and the calculated result for i

is much closer te the experimental value but is still significantly in error.
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Use o©f the IGAIM method results in the near vanishing of the paramagnetic
contribution to X, and the result for ¥ is in agreement with the experimental
value within the experimental error. Finally, with the CGTR method the
diamagnetic contribution to X, is identically zero and X, is thus equal to the
paramagnetic contribution. The CGTR result for y is also in agreement with
the experimental result within experimental error.

The results in Tables 1-1 and 1-2 are understandable by first recognizing
that the error in X, for any gauge is due primarily to the paramagnetic
contributicn, which depends on the first-order wavefunction(s), and by
assuming that the error in the calculated paramagnetic contribution, for a
given basis set, is proportional to its magnitude. Thus, both the IGAIM
method and the CGTR method yield more accurate results than the methods using
any single gauge origin because the calculated magnitudes of X (paral, and
therefore the errors in xl(para), are much smaller. Since the magnitude of
xl(para) is smaller for IGAIM than for CGTR, the results for ;;: using the small
basis set are closer to the convergent result using IGAIM.

& stringent requirement on Jm(r) is that it be everywhere
d:‘.\:rex:gs_»r;ce.'J.e.?.s,9 egqn. (13)
v-am =0 (13)

which is simply the continuity equation for the electronic current in a

stationary state. This equation can be inferred from the relationship between

the second-order magnetic field perturbed energy E‘.m and Jmtrl given in
eqn. (14)

(2) {1 (h

E = -(1/4c)B-Jdr{rxJ {ry) = -(1/2c)I de{Al{z)-J "y} {14)
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a relationship which will be derived in chapter 3. The energy E('% like

J(”tr), is an observable quantity (it is proportional to ) and thus should

also be independent of gauge transformations of Al(r). Thus, for the general
’
gauge transformation A{r) -»> A{r) = A(r) + VE(T),
L)
g - g% 20 = Idr{Vf(r) -3y = -_[ arte(r V-3t ) = 0 (15)

an equation which follows in part from the vanishing of J(“(r) at infinity.

Since the function f(r) is entirely arbitrary, the only way that egn. (15} can
be true is if egn. (13) is true. Egn. (13) in turn requires that the integral

of J(”(r) over all space must vanish, as given in eqn. (16)
Jéra(”(r) =0 (16)

and the current is seen to be conserved for the total system, egn. (1l6), as a
consequence of being conserved locally, eqn. (13).

The divergenceless condition given in egn. (13) is satisfied relatively
well by both IGAIM and CGTR. For a moderately sized basis set or larger, such

as the 6-311++G(2d,2p) set, values of V-a(”

(r) at critical points in the
J(”(r) field which are not zero by symmetry are generally at least two orders
of magnitude lower using IGAIM or CGTR than they are using the single origin
method and are small enough to unambiguously study the topology of the induced
current density6 and its relation to X and ON.7'B

Forcing Ja(x} to be zero for all r in the CGTR method demands that ab(x)
alone must approach the requirement of zero divergence, rather than attempting
to achieve this result through the cancellation of two very large terms, as is

(1)

the case with the conventicnal CPHF method. The integrated values of I (r}
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typically vyields wvalues of 10_3 au or less for nonsymmetric molecules
containing first-row atom indicating good numerical satisfaction of the
integral condition given in egn. (15) for both the IGAIM and CGTR methods,
whereas the corresponding results for the conventional CPHF method is usually
at least two orders of magnitude larger. A fairly simple but difficult case
is presented by OCS for a magnetic field applied perpendicular to the
internuclear axis, but even here the IGAIM and CGTR methods with the medium
basis set yield integrated currents per unit field of 0.011 and ¢.019 au
respectively for the component of J(“trw perpendicular to both B and the
internuclear axis (the other integrated components are zero by symmetry
alone), while the use of a single gauge origin on carbon yields a large value
of 4.24 au.

It is found that the CGTR method fails to yield satisfactory values for
the magnetic shielding -'.r'N (with the exception of protons} unless prohibitively
large basis sets are employed in the calculations. This is a result of the
very large magnitude of J(“(r) in the immediate wvicinity of a nucleus with
core electrons and the llr; dependence of the shielding property density,”
egn. (12). As a first step towards overcoming this difficulty, the empirical
expression given in egn. (17) for the gauge transformation function d(r) is

proposed

Y

dir) = r - E(r-ag)exp[-an(r—nn) {17)

Q

where the sum is over all nuclei in the molecule. This function effectively
shifts the gauge origin from the point r towards the nearest nucleus, the

magnitude of the shift decreasing with the distance of the point r from the
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nucleus. Clearly, the parameter a must be assigned equivalent values for

symmetrically equivalent nuclei to guarantee the symmetry properties of the

current distribution. In this work a single wvalue of 2 for an was used for
all nuclei. The reasons for choosing this functional form for d(r} are as
follows: 1) the success of the IGAIM method in shielding calculations

relative to the conventional method demonstrates that in the region of a given
nucleus the current density is best described with the gauge origin at the
nucleus. 2} At a given point in a non-nuclear region of a molecule, the
current density is relatively accurately described with the gauge origin near
the point, as demonstrated by the success of the CGTR results for ;_t, a
property which is insensitive to the current in the nuclear regions of the
molecule. 3) Because of its simple form, the molecular values of X and o
are readily calculated from egns. (10} through (12), just as they are with the
CGTR method.

Use of the gauge transformation function given in egn (17), a method
termed CGTRD (Continucus Gauge Transformation - x Damping), yields good
results for ¢ while leaving essentially unchanged the i results of the CGTR
method, Table 1-1. This is demonstrated clearly in Table 1-3 where calculated
as well as experimental isotropic carbon shielding results for a broad range
of molecules are shown. In all cases the CGTRD method yields much more
accurate results than the conventional single-origin method. Unlike the
magnetic susceptibility, the carbon shielding calculated using the CGTRD
method with the smaller basis set is closer to the convergent result than the
IGAIM method and thus the CGTRD method is judged to be more accurate for

carbon shielding than IGAIM when using basis sets roughly of the size 6-
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311++G (24, 2p) . The CGTRD method, like IGAIM (and the CGTR method), also
yields good results for proton shielding using moderate sized basis zets. The
value of 24.0 ppm given in Table 1-3 for the isotropic proten shielding in
benzene compared to the experimental {gas-phase) wvalue of 23.7 ppm and the
conventional CPHF value of 16.% ppm, being a case in point. Lazzeretti et
al20 report a value of 22.7 ppm using a single origin at the charge centroid
and an extremely large basis consisting of 474 primitives contracted to 396
basis functions.

Using the CGT methods cne can obtain relatively accurate displays of the

gu11 o't

(r) distribution using moderately sized basis sets, even for large
molecules, as illustrated in Fig. 1-1 for the benzene molecule. Shown in Fig.
1-l1a is a display of the current distribution induced in the plane of the
nuclei by a field applied parallel toc the principal symmetry axis, a display
determined using the CGTRD method with the small basis sel:.vJ It is judged to
be accurate based on the good satisfaction of the continuity equation, eqn.
(13), and the good agreement of the corresponding calculated values i and o
with experiment. The display in Fig. 1-la is to be contrasted with that shown
in Fig. 1-1b which is determined with a single gauge origin at the charge
centroid using the same basis set. The map in Fig. 1-1b correctly predicts
the paramagnetic current flow in the ring interior and the diamagnetic flow
encompassing the entire molecule, both regions of flow being centred about the
symmetry axis through the gauge origin. However, the remaining regions of
current flow are qualitatively as well as quantitatively inaccurate, as alseo

reflected in the results for ¥, o  and & in Tables 1-1 and 1-3. In.

particular, the current in Fig. 1-1b exhibits three-dimensiocnal sources and
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sinks in the vicinities of each carbon nucleus and thus seriously violates the
requirement of zero divergence of the J(“fr) field, egn. (13). The current
distribution calculated using the IGAIM method is illustrated in Fig. l-lc.
It is essentially indistinguishable from that shown in Fig. 1-la in the region
of the carbon nucleus which serves as the gauge origin, but shows deviations
near the interatomic surfaces of the corresponding atom with neighbouring
carbon atoms. In particular the C-C "honded*, elosed current leops in Fig. 1-
la have lost their symmetry with respect to the interatomic surfaces in Fig.
l-1c and now appear as spirals centered off the oh symmetry plane. As will be
shown in chapter 2, a critical point of the current distribution which serves
as origin or terminus for spiralling trajectories is only possible for a
critical point which does not lie on a symmetry plane parallel to the B field.

Thus, the CGTRD method preserves the advantages of the IGAIM method in
the region of a nucleus, and extend the same quality in the calculated current
distribution to all regions of space. Fig. 1l-lc¢ also demonstrates the serious
decline in the quality of the molecular current distribution which occcurs if
one choctes a gauge which does not guarantee the symmetry properties of the
distribution, as in Fig. 1-la and Fig. 1-1b. It should be recalled that this
failure is not reflected in the molecular properties determined using the
IGAIM method because the properties are calculated an atom at a time.

(1)

The analysis of the J'"' (r) distributions made possible through the use

of the CGT methods is presented in chapter 2.

1-7 Previocus Methods

There have, of course, been many other ab-initio methods proposed to
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overcoeme the “"gauge-problem®™ in magnetic response calculations since Lipscomb
et al picneering applications of conventional CPHF in 1963.1 Ot these, only
two appear to be consistently used. The first was proposed (for CPHF) by
Ditchfield21 and is called the GIAQ (Gauge Invariant Atomic Orbitals)
method.22 The GIAQ method takes advantage of the fact that each unperturbed,
and hence perturbed, molecular orbital is usually approximated as a linear
combination of nuclear centered basis functions. In the GIAC method each
basis function is modified by a phase factor (exp[-ieBxRQ‘r/h2c}) prior to the
CPHF calculation so that the total molecular magnetic properties are invariant
to the choice of the common gauge origin. For a given bhasis set, the GIAO
method yields results in much better agreement with experiment than the
conventional CPHF methed, at least for shielding calculations. Due to the
added complexity of the basis functions, however, the solution of the CPHF
egquations using the GIAO0 method is considerably more duifficult than the
conventional method, particularly with respect to the evaluation of the two-
electron integrals.21 Until the recent computational developments by Pulay et
al,19 these difficulties severely limited the applicability of the GIAO
method. Even with these new developments, however, the computational
difficulty associated with the GIAO method is still significant and has
prevented its extension to calculations of the computationally more demanding
magnetic susceptibility tensor.

The second commonly used method was proposed by Kutzelnigg et al and is
called the IGLO (Individual Gauges for Localized Orbitals) method.m In the

IGLO method, the molecular orbitals are localized prior to the CPHF and each

is assigned a separate gauge origin, usually at the charge centroid of the
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orbital. The first-order corrections to the localized orbitals are then
determined from the corresponding non-canonical CPHF equations. Because non-
canonical CPHF is used and because of the use of multiple origins in the
orbital space, the solution of the CPHF equations in the IGLO method is, like
GIAO, significantly more difficult than the conventional CPHF method and
requires, for practical purposes, that certain terms be neglected or
approximated.lU The IGLO method has been widely applied to calculations of
nuclear magnetic shielding as well as magnetic susceptibility tensors.10

The computational advantage of the CGT methods over the GIAO and IGLO
methods is clear, for the CGT methods are essentially no more difficult to
apply than the conventional CPHF method itself and yet yield results for X and
c:r'N comparable to either GIAQ or IGLO, as the results in Tables 1-1, 1-3 and 1-
4 show. In Tables 1-1 and 1-3 results for i and EF from IGLO and GIAQ (for
shielding} calculations are given, when available in the literature, Ffor
comparison with the IGAIM, CPHF and experimental results. Unfortunately,
direct comparison of the methods is not entirely justified in most cases due
to the use of different basis sets and/or geometries. In particular, all of
the IGLO results and some of the GIADO results were calculated using
experimentally determined geometries while the IGAIM and CGT results were all
calculated using the theoretically optimized geometries. The geometry is
particularly important for shielding and it is generally held that the
experimental geometry yields more accurate results, all other things being

10,17,18
equal.

In Table 1-4 shielding anisotropies calculated using the CGTRD
method, the GIAO method and the IGLC method are compared for several

molecules.
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The ceonclusion to be drawn from the comparison of results for the GIAQ,
IGLO and CGTRD methods in Tables 1-1, 1-3 and 1-4 is that the three methods
generally give comparable, and gquite accurate, results considering the
approximations assumed in the calculations. There 1is c¢learly inadequate
information available, at this peoint, to determine which method is the "best*
from the standpoint of accuracy.

In the opinion of the author, however, the continuous gauge
transformation methods are certainly preferable for computational reasons. 1In
the IGLO and GIAQ methods the solution of the CPHF equations is complicated
relative to conventional CPHF due, effectively, to the introduction of
multiple origins in the orbital Hilbert space. In the continuous gauge
transformation methods, the gauge transformations are performed after the
conventional CPHF calculations have been carried out and thus the only
additional "complication® relative to the conventional method of calculating x
and GN lies in the evaluation of the corresponding one-electron integrals from
egqns. (10)-(12). This additional effort is negligible, however, and the
continuous gauge transformation methods are practically as straightforward as
the conventional method. In additidn. the continous gauge transformation
methods enable one to study the induced molecular current distributions in an
unambiguous and straighforward manner,6 as will be denonstrated in chapter 2.
To the author's knowledge, no detailed analyses of the IGLO or GIAO calculated

current distributions have been done.

1-8 Comments

This work has laid the foundation for an entirely new approach tb_
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calculating magnetic response properties of molecules. The approach was
motivated by and takes direct advantage of the underlying physics of molecular
interaction with a magnetic field, by calculating the molecular properties in
terms of the induced current density distributions. Future work should
clearly focus on optimizing the gauge transformation function d(x), which has
not yet been investigated in detail. The “gauge problem® is, of course, not
unique to calculating magnetic properties of molecules. It is ubiquitous in
physics. Thus, one should nrot be dismayed by the use of the gauge
transformation function, but rather exploit it.

Ideally, one would want to discover that gange transformation function
which results in the vanishing of the exact paramagnetic transverse current so
that the principal elements of the molecular magnetic response tensors could
be determined entirely by the ground state charge distribution. Clearly such
a function exists for every molecule, but the important question is: is it a
"universal* function?

Because the continuous gauge transformation methods employ conventional
CPHF wavefunctions, it is expected that the incorporation of the many factors
commonly neglected in magnetic response calculations will be relatively
straight forward. Such factors include electron correlation, solvent effects

and molecular vibration.
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Figure 1-1

a) A display of the magnetically induced current density distribution in
the nuclear plane of the benzene molecule for a field applied ocut of the plane
and parallel to the principal symmetry axis. The map was calculated using the
CGTRD method with the small basis set.lz The positions of the nuclei are
indicated by crosses and the intersections of the interatomic surfaces with
the plane are also shown. The directions of current flow are indicated within
the atomic basins of a single C-H group. There is paramagnetic
{counterclockwise) current flow in the ring interior and in the vicinity of
each carbon nucleus, on its ring side.

b) A similar display o¢f the current density distribution, but calculated
using a single gauge origin at the centre of symmetry. Three dimensiecnal
sources and sinks are denoted by dots in one of the carbon basins.

¢) A similar display of the current density distribution, but calculated
with a single gauge origin at the position of a carbon nucleus. The well

behaved current trajectories are in the basin of the gauge origin,
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Table 1-1°

Isotropic Magnetic Susceptibilities ¥ Calculated Using CPHF With a Single
Gauge Origin (CONV), Multiple Gauge Origins (IGAIM), Continuous Gauge
Transformations (CGT). Comparisons with experimental and IGLO results. Units

are cgs-ppm.

Molecule®  X(CONV)®  R(IGAIM) X(CGTR)® %(CGTRD)® 3 (EXPT)' x(16LO)""
N2 [ ~-14.2 -12.5 -12.1 -12.1 -12.6(q) NA
N L -12.8 -12.7 -12.8 -12.8 -12.6(qg)

HCN S -20.7(¢)  -16.7 -16.2 -16.2 -16.8(g) NA
HCN L -17.3(¢c)  -16.9 -16.9 -16.9 -16.8(g)

co, s -31.7 -21.8 -21.0 -21.0 -21.0(g) NA
co, L ~25.0 -22.1 -21.9 -21.9 -21.0(g)

CH, S -19.3 -18.2 -17.1 ~17.2 (-18.7, -17.4(g)] -19.0"
CH, L -18.9 -18.7 -18.7 -18.7 -18.7(g)

CH, S ~24.9 -22.2 -21.7 -21.7 -21(g) NA
C,H, L -23.1 -22.7 -22.7 -22.7 -21(g)

CH, S -24.3 -20.7 -20.1 -20.1 [-19.7, -18.8(g)] -22.6"
CH, L -21.5 -21.0 -20.9 -20.9 [-19.7, -18.8(g)]

cH, S -33.1 -28.5 -27.2 -27.2 [-27.4, -26.8(g)] -30.0
CH L -29.9 ~25.0 -28.7 -28.7 [-27.4, -26.8(g)]

CH, S -48.2 -41.5 -40.8 -40.8 [-39.9, -39.2(g)] -43.5"
CH, S -51.2 -40.0 -39.1 -39.2 [-40.5, -38.6(g)] -41.8%
cH S -74.9 -62.2 -50.7 -50.9 -50(g) -56.2"
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CH,S  -109.7 -63.6 -61.0 -61.2 -63.1(g) -67.8"
Butadiene 8§ -58.1 -35.4 -33.1 -33.2 -32.1(qg} NA
Propene §  -43.7(C2) -32.0 -30.3 -30.4 -31.5(g) NA
CH S -87.7 -59.7 -57.5 -57.6 -54.8(g) -68.0"
cs, M -127.7 -46.7 -43.3 -44.3 -47.81(g) -48.49
CS0 M -80.5(C) -36.4 -34.1 -34.6 -32.4(g) -37.2°
CHF S -24.1(F)  -18.8 -15.9 -15.9 -18(g) -19.49
CHF L -19.5(F)  -18.9 ~18.7 -18.8 -18¢(q)

CF, M -46.0 -33.0 -27.2 -27.2 -36 t S(g) -34.6°
CH,CN -38.5(C1)  -28.7 -26.7 -26.7 -27.6 (1) -29.9Y
CHNH, §  -32.1(C)  -25.2 -23.6 -23.6 -27.0 (1) NA
CH,OH § -27.7(0)  -21.8 -19.7 ~19.7 -21.9 (g) -22.6"
Allene S  -38.9 -28.5 -26.3 -26.3 =25 (g) -31.9"
Oxirane § -42.3(0)  -31.6 -30.1 -30.1 -30.7 (g) NA
c-CH, S -40.3(C3) -28.0 ~26.6 -26.6 -29 (g) NA
HCOOH 8§ -32.1(c)  -21.3 -18.5 -18.5 -19.9 (1) NA
Isobut §  -71.3(C2) -53.2 -51.8 -51.8 -51.7 (g) -56.0"
Neopent S  -90.5 -65.8 -63.9 ~63.9 -63.1 (g} -70.0"
CHCHOH § -47.0(C1) -34.4 -32.3 -32.3 -33.7 (1) NA

2 All CPHF calculations for the CONV, IGAIM, CGTR and CGTRD methods were

performed at the corresponding theoretical equilibrium molecular geometry.

b

o
S, M and L dencte small,l“ medium and large13 basis set results,

respectively. The medium basis set is a partial decontraction of the small
set, ie, 6-11111++G(2d,2p).

Single gauge origin is at charge centroid unless otherwise indicated by
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centre given in brackets,

The gauge transformation function for the CGTR method is d(r) = r.
® The gauge transformation function for the CGTRD metheod is in eqn. {17},

The references for the experimental values can be found in References 2, 10,
14 and 15.

9 IGLO Basis III. {lls7p2d/6s2p} -> [7s6p2d/4s2p]. For First Row Atoms.

Experimental Geometry. Reference 10.

n IGLO Basis II. (9s5pld/Sslp) -» [5sdpld/dslp]. For First Row Atcnms.

Experimental Geometry. Reference 10.
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Table 1-2"
Paramagnetic and Diamagnetic Contributions to Magnetic Susceptibility of CO,
calculated Using CPHF with a Single Gauge Origin (CONV), IGAIM and CGTR.

Units are cgs-ppm.

Method{Origin) xl(para) xl(dia) xl(total) x" x
CONV (0} +183.8 -238.2 -54.5 ~26.0 -45.0
CONV(C) +83.4 -117.9 -34.5 -26.0 -31.7
IGAIM +0.6 -20.3 -19.7 -26.0 ~21.8
CGTR -18.5 0.0 -18.5 ~-26.0 -21.0
Expt. -21.0°

3 All CPHF calculations performed with the 6-311++G(2d,2p)12 basis set at the
corresponding theoretical equilibrium geometry.

b Reference 14.
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Table 1-3%
Isotropic Carbon Nuclear Magnetic Shieldings ¢ Calculated Using CPHF With a
Single Gauge Origin (CONV), IGAIM and Continuous Gauge Transformation (CGTRD).

Comparisons with experiment, IGLO and GIAO. Units are ppm.

Molecule® &< (coNV})© o(1eamM) o°(CcGTRD) & (EXPT)' & (IGLO) & (GIAO)

co, s 78.9 57.9 59.6 58.8(q) 50.7°  82.77
co, L 62.2 57.3 59.2 58.8(g)

CH, S 198.5 197.4 196.2 155.1(g) 193.8° 196.4"
CH, L 196.0 195.5 195.3 195.1(g)

HCN S 89.5(C) 79.9 80.3 82.1(g) 72.1%  81.6"
HCN L 80.4(C) 78.8 78.8 82.1(g)

C,H, S 124.2 119.3 118.7 117.3 (g} 116.1° 119.9°
CH, L 120.4 118.1 118.1 117.3(g)

CH, S 70.8 66.4 65.0 64.5(g) 58.3° 67.9°
c,H, L 64.1 63.4 63.1 64.5(g)

cH S 189.8 186.3 185.2 180.9(g) 180.9° 186.2°
CH L 184.4 183.4 183.2 180.91(g)

CH, S 205.1 200.2 199.3 185.0(q)  200.0" 197.1"
cH _CLS 182.3 178.7 177.4 170.8(g) 174.5° 178.6"
cH_C2 8 188.2 177.3 176.1 169.1(g) 173.2% 177.5°
cH,,C1 S 181.7 179.9 178.8 173.5(g} 176.2" 179.7"
cH .C2S  180.8 169.5 168.4 160.0{g) 168.10 170.1"
CH,ClLS  181.0 180.8 178.9 173.2(g)  173.5' NA
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cH,C28
CH _C3 S
5 12
CH
6 6

CﬁHﬁ(proton)
Butadiene_C1
Butadiene_C2
Propene_Cl S
Propene_C2 S
Propene_C3 8
CSO M

CH}F s

CHBF L

CF4 M
Neopent_Cl S
Neaopent_C2 S
Isobut_Cl S
Isobut_C2 S
CH3OH s
CH}CHzoﬂ_Cl s
CH}CH20H_CZ s
CHBCN_CI s
CH3CN_C2 s
Allene_Cl S

Allene_C2 S

HCOCH S

181.3
177.9
71.9
S 16.9
s 75.8
S 64.8
79.3(C2)
64.7(C2)
178.5(C2)
§9.1(C)
140.0(C)
129.8(C)
98.1(C}
172.2(C2)
189.5(C2}
176.4(C2)
187.8(C2)
155.8(C)
NA
NA
86.8{(Cl)
205.0(C2)
122.0
-22.4

50.2(C)

172.3

162.8

61.5

24.1

73.8

5L.6

76.1

52.9

176.0

20.7

130.2

126.2

82.8

166.4

169.3

172.2

171.5

148.0

141.0

178.0

72.5

194.7

119.5

-34.8

32.2

169.6

159.3

60.2

24.0

73.5

50.2

74.8

51.6

174.9

21.2

128.7

126.0

81.9

165.4

168.1

170.4

170.3

146.7

139.8

176.9

71.86

193.8

118.3

-36.9

31.3

33

162.5(qg)
150.4 (g}
57.9(g)
23.7(q)
75.3(g)
54.7(g)
71.9(g)
52.6(g)
168.9{g)
30.0(g)
116.8{g}
116.8(g)
64.5{q)
155.4(qg)
158.2(g}
162.4(g)
161.61(g)
137.0(g)
127.6(g)
168.5(g)
73.8(9)
187.7(g}
115.4 (g)
-29.2(g)

23.7(g)

165.9°
156.6"

60.4"

24.0°
NA
NA
NA

NA

NA

e

10.0

122.1°

76.5

159.6"
167.7°
172.8¢
169.9°

144.6°

NA

NA

64.4

189.1°
118.4°

-36.1"

NA

NA
NA
57.7
24.2
Na,
NA
NA
NA
Na
NA

126.2"

NA

NA

NA

NA

NA

149.3°

NA

NA
75.1

194.5°

118.3°

-31.8°

38.0°



Oxirane S NA 161.1 160.0 152(1) 154,17 156.4

CH_NH, S 173.9(C) 167.0 165.7 158.3(q)  162.2" 166.8"
c-CH _Cl S NA 79.2 78.0 84(1) 72,90 731"
c-CH,_C3 S NA 197.0 195.7 195(1) 189.1" 194.0"

% All CPHF calculations for the CONV, IGAIM and CGTRD methods were performed

at the corresponding theoretical equilibrium mclecular geometyry.

b 2 . 13 .
S, M and L denote small,l medium and large basis set results,

respectively. The medium basis set is a partial decontraction of the small
set, ie., 6-11111++G(24d,2p).

Single gauge origin is at charge centroid unless otherwise indicated by
centre given in brackets. In some cases, values for the gauge origin at the

"
shielded carbon can be found in Appendix 1-A.7

d The references for the experimental values can be found in references 2, 10,
16 and 17.

IGLO Basis III. (l1s7p2d/6s2p) -> [7s6p2d/4s2pl. For First Row Atoms.
Experimental Geometry. Reference 10.

IGLO Basis II. (9s5pld/S5slp) -> [5sdpld/4slp). For First Row Atoms.
Experimental Gecmetry. Reference 10.

9 g-311G** basis12 at the corresponding theoretical equilibrium geometry.
Reference 18.

6-311+G(2d,2p)12 basis at the experimental geometry. Reference 19.
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Table 1-4"
Shielding Anisotropies for First Row Nuclei Calculated Using the CGTRD, IGLO

and GIAO methods.

Mol, AO‘(CGTRD)]) AO‘(EXPT)C AG‘(IGLO)d Ao (GIAOQ)
CH,F_C 90 90 (g) 92 91°
CH F_F -81 -90(g) -66 -67°
CH._C 195 181(s) NA 195°
c.H _H -5.0 -3.9(s) NA -5.4°
CH._C 56 48 * 3(s) 57 56°
CH _C3 108 94 NA 108°
oxirane_C 50 37 48 45°
¢, _C 173 153(s) 180 169°
CH,CN_C1 309 311 * 30(s) NA 330"
CH_CN_C2 15 5+ 10(s) NA 14"
Allene_cCl 98 95(s) NA 99°
Allene_C2 80 58(s) NA 79¢

* The shielding anisotropy is defined as: Ac = 01{-u12)[aa°+¢33] where

o > ¢ > o .
u az 33

L .
' The CGTRD results were obtained with the 6-311++G(2d,2p) basis set12 at the

corresponding theoretical equilibrium geometry.

[&
References 18 and 19.

d
Reterence 10. IGLO basis III: (l1sTp2d/6s2p) -> [Ts6p2d/4s2p].
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Experimental geometry.

=]

References 19, 6-311+G(2d,2p) basis setl: at the experimental geometry.

. 1. . .
Reference 18. 6-311G** basis set at the corresponding theoretical
equilibrium geometry.
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Appendix 1-A

A copy of the IGAIM publication. Reference 2.
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A new method (IGAIM - individual gauges for atoms in molecules) is presented for relntively accurate ab initio calculations
of molecular magnetic response properties. The current density induced within an atom in a molecule by an external magnetic
field is well described by the coupled, perturbed Hartree-Fock method when the gavge origin of the vector potential is placed at
its nucleus, the natural origin for the free atom, even though it may be poorly described in the rest of the molecule. Since the
molecular magnetic susceptibility and nuclear magnetic shiclding tensors can be expressed in terms of the induced curment density
as a sum of separately determined atomic contributions, these properties are, in general, accurately predicted even with basis seis

that are insufficient for conventional CPHF.

1. Introduction

The standard approach to calculating molecular
responses to external magnetic fields is the coupled
perturbed Hartree-Fock (CPHF) method [1]. It is
well established that conventional CPHF calcula-
tions are, in general, successful in accurately pre-
dicting magnetic susceptibility and nuclear magnetic
shielding tensors of closed-shell molecules if large
basis sets are used {1,2]. The size of the basis sets
required are much larger than those necessary for
correspondingly accurate predictions of ground state
one-¢lectron molecular properties, however, and this
limits meaningful application of conventional CPHF
to small molecules. The use of basis sets of insuffi-
cient size also yields values for magnetic response
properties that are dependent upon the gauge origin
of the vector potential used to describe the uniform
magnetic field.

There is a long history of proposals, as recently re-
viewed by Kutzelnigg et al. [3], to reduce the basis
set error associated with CPHF, all of which attempt
10 emulate an important property of a closed-shell
atom. The nucleus of a 'S atom, its centre of elec-

Correspondence to: T.A. Keith, Department of Chemistry,
McMaster University, Hamilton, Ontario, Canada L85 4M1,

tronic charge, acts as a natural gauge origin in that
the resulting expressions for the magnetic properties
are totally determined by the unperturbed wave-
function. This paper demonstrates that the nucleus
also serves as a “natural” gauge origin for an atom
in a molecule [4] in that the contributions to its
magnetic properties from the perturbed wavefunc-
tions are significantly reduced. Relatively accurate
molecular properties are then obtained as a sum of
separately determined atomic contributions.

2. Theory

The response of a closed-shell molecule to an ex-
ternal, uniform magnetic field B is the appearance of
an electrontic current density f{r) which yields a
magnetic dipole moment proportional to the exter-
nal field, as measured through a magnetic suscepti-
bility tensor x. The induced current density distri-
bution also describes an inhomogenous magnetic
field within the molecule which partially shiclds each
nucleus N from the external field to determine a set
nuclear magnetic shielding tensors ¢V, Both ¢ and
% are second-order properties calculable from the in-
duced first-order current density j* (r), which is con-
veniently expressed in terms of the ground state

0009-2614/92/5 05.00 @ 1992 Elsevier Science Publishers B.V. All rights reserved, 1
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wavefunction ¢° and its imaginary first-order cor-
rection ¢ as a sum of a paramagnetic term j} (r),
that depends on both ¢° and ', and a diamagnetic
term j4 (r), that denends only on the ground state
charge density p°(r).

PRI (1)
it =2 [ ac (og-yovy), @
jalr)=—(e*/mc)Ap°(r). (3)

In these equations, A={BX (r—rg) is the vector po-
tential, with arbitrary gauge origin ro, which de-
scribes the uniform magnetic field B and jdt’ im-
plies a summation over all spin variables and an
integration over the spatial coordinates of all n elec-
trons but one. Since j(r) and all magnetic response
properties derived from it are observable quantities
it is necessary that j*(r) be independent of the ar-
bitrary gauge origin, a condition which is met when
w' is exactlly determined by its expansion in the
complete set of eigenfunctions of the unperturbed
Hamiltonian [5). Both f}(r) and ji(r) are sepa-
rately gauge dependent but their sum j'(r) is gauge
invariant. The gauge dependence of f1(r) is explicit
through the presence of A while the gauge depen-
dence of §}(r) is implicit in y'.

Epstein [6] has shown that gauge invariance is ob-
tained in approximate methods when certain sta-
tionarity conditions on the expectation value of the
Hamiltonian are satisfied. Within the coupled, per-
turbed Hartree-Fock (CPHF) method, as com-
monly employed in the calculation of second-order
properties, these conditions are met if a complete ba-
sis is used in the expansion of the niolecular orbitals.
Since this is not a practical possibility, one always
finds a gauge origin dependence in the calculated
values of ' (r), o and x using the CPHF method. In
the case of a closed-shell atom, ji(r) vanishes
throughout the atom when the gauge origin is taken
at the nucleus, the natural pauge origin, for then y!
is everywhere identically zero. In a molecule no sin-
gle gauge origin will make j}(r) vanish over all space,
However, it is possible to choose a gauge origin which
significantly reduces the magnitude of j1(r) over a
particular region of space. When p°(r) is accurately
determined, the error in j*(r) comes from j}(r) 2nd

2
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this error is reduced by reducing the magnitude of
FHG)

In a conventional CPHF calculation placing the
gauge origin at the molecular centre of electronic
charge usually yields the most accurate results for the
magnetic. susceptibility tensor x, while placing the
gauge origin at noclets N yields relatively accurate
results for the nuclear magnetic shielding tensor ¢
[2,7]. Even with an optimum choice of gauge origin,
however, a conventional CPHF calculation is lim-
ited to relatively small systems because of the size of
the basis set that must be employed to obtain useful
results, For this reason, several variations of the con-
ventional CPHF method have been developed to
further reduce the magnitude of the terms arising
from j,(r). An improvement in accuracy over con-
ventional CPHF is realized in the GIAO method [8]
{gauge independent atomic orbitals), which assigns
an individual nuclear-centered gauge origin to each
atomic-like basis function used in the expansion of
the molecular orbitals. Since each basis function has
its own phase within a given molecular orbital, how-
ever, this method complicates the evaluation of the
electron-electron interaction integrals and results in
a significant increase in the required computation
time, In the IGLO method [3,9] (individual gauges
for localized orbitals} the canonical molecular or-
bitals are transformed into a localized set and an in-
dividual gauge origin is placed at the negative charge
centroid of each orbital. A closely related method is
LORG [10], which also used localized orbitals, each
with a local gauge. These methods also introduce new
coupling terms not present in the conventional
CPHF. In the IGLO method, unlike the GIAQ
method, these are either easily calculated or are small
enough 1o be treated in an approximate manner.
From an operational point of view the IGLO method
has been demonsirated to be the most practical for
the calculation of magnetic response properties [3].
Three methods have recently appeared for obtaining
near or exact gauge invariance [i1~13], one of which
uses correlated wavefunctions [12].

2.1, The IGAIM method

In the approach developed here the natural origin
exhibited by a closed-shell atom is used to advantage
in the calculation of molecular current density dis-
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tributions, by extending its use 10 an atom in a mol-
ecule [4]). In order to calculate j'(r) accurately
throughout a molecule it is sufficient to determine
7' (r) accurately over each spatially defined atom in
the molecule using its nucleus as origin in a set of
scparate conventional CPHF calculations. This ap-
proach (IGAIM - individual gauges for atoms in
molecules) amounts to constructing the induced
current density distribution of a molecule from its
constituent atoms. The IGAIM method differs from
GIAQ, IGLO and other methods which employ mul-
tiple gauge origins, in that the gauge origins are de-
termined by properties of the charge density in real
space rather than by the behavior exhibited by the
basis functions in the Hilbent space of the molecular
wavefunction.

The principal topological property of an atomic or
molecular charge distribution is that the charge den-
sity p(r) exhibits a local maximum at the position of
each nucleus. The nuclei are, as a consequence, the
attractors in the gradient vector field of the charge
density. Using this property, one obtains a disjoint
partitioning of the real space of a molecule into
atomnic basins, each basin being the region of space
traversed by all the trajeciories of Vp(r) that ter-
minate at a given nucleus, fig. 1. This definition of
an atom {4] builds on and preserves the homeo-
morphism exhibited by the gradient vector fields of
a bound and a free atom, thereby maximizing the
similarity in the properties of their charge distribu-
tions. It is a property of an atomic basin that it is
bounded by a surface S(r}, of zero flux in the gra-
dient vector field of p(r) as given as follows:

Vo(r)-n{r)=0 VreS(r}. (4)

Eaq. (4) is the defining equation for a subsystem Q,
whose expectation values are defined by quantum
mechanics [4] and whose properties are additive,
i.e., the molecular expectation value of a property M
is given by the sum of its atomic contributions M(£).
It has been demonstrated that these characteristics
of an atom in a molecule are retained in the presence
of an externally applied electromagnetic field [14)
and in particular, as discussed below, field-induced
properties such as the polarizability and magnetic
susceptibility are expressible as a sum of atomic con-
tributions. Unlike the application of an external
electric field which causes first-order changes in the
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Fig. 1. A planar display of the trajeciories of the gradient vector
field of the clectronic charge density for carbon dioxide, The re.
gion of R traversed by the set of trajectories which 1erminate at
a given nucleus is the associated atomic basin, Neighbouring bas-
ins are separated one from another by the trajectorics which ter-

minate at the bond critical point, denoted by a dot, and define

the imteratomic surface, a two-dimensional manifold embedded
inR%

charge density and results in a shift in the intera-
tomic surfaces [ 15), the first-order correction to p(r)
vanishes for an applied magnetic ficld, as in this case
w! is purcly imaginary. Thus for magnetic ficld
strengths of practica! value, the calculated charge
density exhibits n¢ discernible change even in terms
of the positions and propenties of its critical points
and the associated interatomic surfaces.

Figs. 2a-2d demonstrate the basis of the IGAIM
method. In fig. 2a the induced current density dis-
tribution for the carbon dioxide molecule is shown
in a plane of the nuclei for a uniform magnetic field
applied perpendicular to this plane. This distribu-
tion is calculated from a CPHF first-order wave-
function determined with the gauge origin at the car-
bon nucleus, the centre of electronic charge, using a
large uncontracted Gaussian basis set, [13s8p3d].
This basis set and choice of origin yields values for
the mean magnetic susceptibility x, and the mecan
carbon nuclear magnetic resonance shielding value
o€, in good agreement with experiment, table 1. The
first-order correction to the wavefunction w' van-

3
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Fig. 2, Current density distributions for carbon dioxide induced by a field applicd perpendicutar to the indicated plane overlaid with the
intersections of the interatomic surfaces. (a, b) Calculated using the large basis set with origins at the C and left hand O nuclei respes-
tively; (c, d) calculated using the small basis set for corresponding origins. In systems with significant charge transfer most current loops
are enlirely closed within each atomic basin, Thus in CO, the fotal current density is partitioned into regions where it is primarily
dismagnetic, clockwise loops in the O basins, or paramagnetic, counter-clockwise Ioops in the C basin. The induced magnetic ficld at the
C nucleus by the curzent distribution within its basin reinforces the applied field and contributes to a relative downfield shift of the €

NMR signal.

Table 1
Mean magnetic susceptibility x and carbon NMR shielding o<
for €O, calculated using conventional CPHF and IGAIM with

large and small basis sets. Units are cgs-ppm for ¥ and ppm for
ac

Method [basis),u. X ac
CPHF [1338p5d )¢ -23.2 62.2"
CPHF [1318p5d)o =243 62.2
CPHF [514p2d])c =316 789%
CPHF [ 5sdp2d]o -45.0 789
1GAIM [3s4p2d) =218 519
1GAIM [1358p5d) =221 571
experiment =21.0% 58.8%

*} The shielding is gauge invariant in this case since the carbon
nucleus lies at a center of inversion.
®} Ref. (16]. * Ref. [17].

ishes for a field applied parallel to the molecular axis
and thus only the perpendicular components to the
magnetic properties depend upon ji(r). The local
vanishing of the divergence of j*(r), as required for
the satisfaction of the equation of continuity, re-
quires that the current ioops be closed. The current

4

density distribution of fig. 2a meets this criterion
throughout the molecule and in this sense, is well be-
haved. Also shown in table 1 are the  and ¢© values
obtained when the gauge origin is placed at an ox-
ygen nucleus, using the same large basis set, The re-
sulting current distribution is shown in fig. 2b. The
distribution over the basin of the gauge origin is sim-
ilar to that shown in fig. 2a. The results for y differ
by 5% from those obtained with the carbon nucleus
as gauge origin and this gauge origin dependence,
while relatively small, is reflected in a corresponding
deterioration in the description of the current den-
sity over the basins of the other oxygen and carbon
atoms, fig. 2b.

Fig. 2¢ shows the current density distribution de-
termined with the gauge origin at the carbon nucleus
using a relatively small standard Gaussian basis set
(12s6p2d), contracted to [5sd4p2d], the 6-
311+ +G(2d, 2p) basis*. Note that the current
density distribution over the basin of the carbon atom

" 6-311 G: ref. [18]; + +, diffuse functions: ref. [19]; 2d2p,
polarization functions: ref, {20].
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in this figure is similar to that in fig. 2a obtained us-
ing the ldrger basis set with the same gauge origin,
while the distributions over the oxygen atoms are
quite different and clearly ill-behaved, as current
loops within their basins fail to close. Fig. 2d shows
the current density distribution obtained using the
same small basis set with gauge origin at one of the
oxygen nuclei. The current distribution within the
basin of the gauge origin is well behaved and again
similar to the corresponding oxygen distribution
shown in fig. 2a or 2b obtained using the larger basis
set. The distributions over the basins of the other two
atoms however, are not well behaved and differ rad-
ically from those shown in fig. 2a. Unsurprisingly,
the corresponding conventional CPHF values of x
and o€ are in serious error for either gauge origin,
table 1, This is evident not only in terms of the poor
agreement with experiment, but also from the ex-
treme gauge dependence in the values of the calcu-
lated .

Table 1 also lists the value of ¥ and o obtained by
summing the atomic contributions (in a manner de-
scribed below) determined using both the large and
small basis sets. The results reflect what the maps
have illustrated, that the current density, and hence
the properties it determines, are best described an
atom at a time, with the nucleus as gauge origin. In
fact a small basis set is able to reproduce the results
obtained using a much larger set, when the proper-
ties are determined in this manner.

2.2, Atomic contributions to magnetic properties

The molecular magnetic susceptibility tensor com-
ponent ., and the set of nuclear magnetic shielding
tensor components oy, are related to the first-order
current density induced by a magnetic field in the #
direction, }(r), as follows, where r is the real space
position vector relative to an arbitrary origin (not
necessarily the gauge origin), ry is the real space po-
sition vector relative 1o nucleus N and the integra-
tions are over all of real space,

Yoo= 55 | 14N la= [ drgagtn), ()
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1 .
aha=— Py _[ dry [re XJ5(r) rila

= {arotin. (6)

The property densities x,4(r) and 6¥5(r) defined in
this manner {21] may be used to define atomic con-
tributions [4,14] x.a(£2) and 55,(£2), such that their
sum equals the molecular values xqq and 055, Thus
al4(82), the contribution of atom £2 to the af com-
ponent of the shielding tensor of nucleus N, is de-
fined by the integration of ojs(r) over the basin of
atom £2,

oy Q)= ‘[ drw U X4 /ria

= jdra.’:,(r) . (7)
2

Using this expression the shiclding tensor of any par-
ticular nucleus N in a molecule can be understood in
terms of separate contributions from each atom in a
molecule,

The magnetic susceptibility density xap(r) given
in eq. ($) is origin dependent. The atomic contri-
bution z,s(R) should however, be origin indepen-
dent if it is to reflect the characteristics of the atom
and thus be compared among different molecules,
i.e. it should be defined only in terms of propertics
of the atom. This may be accomplished while pre-
serving the additivity of the atomic contributions,
and the resulting expression for x,,(£2) is as follows,
its detailed derivation being given elsewhere,

Xos ()= ﬁ[i[ dr [raXi}) o

+3 ((Rcm*-'Rn) x !ﬁ-Jh(r) fa)u]

=i () +25(Q) . . (8)

This expression is obtained through the substitu-
tion r=rg+ R, where the origin for rg is the nucleus
of 2 whose position vector is Rg. The first term,
xi2L(£2), represents the & component of the induced
“internal” magnetic moment of atom £ per unit

5
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magnetic field applied in the # direction, The second
term involves the summation over each of the m
groups connected to atom £ through a bond critical
point of the charge density with position vector
R.,,, and lying in the atomic surface of atom 2. In
this term the /' surface integral is the average po-
sition-weighted flux of /3(r) through the interatomic
surface between 2 and group i, The x5:(2) term
shows how the current flow between atom £2 and the
remainder of the molecule contributes to the mag-
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netic susceptibility tensor and provides a basis for
the ring-current model.

The atomic contributions x,s(£2) and o5,(2) are
both determined entirely by the induced current
density distribution f 3(r) of the atom. Since this dis-
tribution is accurately determined by the IGAIM
method, 50 100 are x,,(R2) and g¥4(£2) and the cor-
responding molecular properties obtained by their
summation.

Table 2
Calculated and experimental values of mean magnetic susceptibility x. Units are cgs-ppm

Molecule 2 (IGAIM) X (exp.) X (CPHF) %
H, -39 =39(g) ™ —4.0{coec)
LiH -7.6 ~1.6(g) ® -B8.5(Li)
CH, -18,2 =18.7(g) ¥, —17.4(g) ¢ =19.3(coec)
NH, -16.9 -16(g) @ =17.4(N)
H,O -139 -13.1¢g) ® -13.9(0)
HF -10.5 ~10.3(g) ¢ ~10.4(F)
HCN -171.3 —16.8(g) ¢ =20.7(C)
N; ~12.5 =12.6{(g) ¢ —14.2(coec)
co =123 -12.7(g) @ —14.4(coec)
COy -21.8 -21.0(g) © -=31.7(coec)
CS, -46,7 =47.8(1) ¢ —153.9(coec)
CsS0 -36.6 ~324(g) ~96.6(C)
F =126 ~9.7(g) # —21.0(coec)
H,CO -8.4 ~6.9(g) ¥ -13.0(0)
CiH; -22.2 =21(g) © ~24,9(coec)
C,H, -20,7 —19.7(g) ¥, —18.8(g) ¢ =-24.3(coee)
C,H, -28.5 —27.4(g) %, =26.8(g) ¥ —33.1{coec)
oCyH, =276 —29(g) ¢ —40.3(C3)
allenc =28.5 =25(g) ¥ - 38.9(coec)
oCyH, -41.5 -39.9¢g) 9, -39.2(g)} ¢! —48.2(coec)
propene =320 =3L5(p) @ —-43,7(C2)
CyH, -40,0 ~40.5(g} 9, =38.6(g) ¢ —51.2(coec)
butadiene -354 =321(g) " —58.1 (coec)
CiHp -52,2 - 50.0(g)} ¢ - T74.9(coec)
CiHyy -63.6 —-63.1(3)® - 109.7(couc)
CH, -59.7 -54.8(g) ¢ —87.7(coec)
CH,NH: ~253 =27.0({1} ™ =32.1(C)
CH,O0H . - . 220 -21.9(g) ¥ =27.7(0)
CH,F - -1838 —18(g}*® -24.1(F)
CH,F, -22.3 =24,0(g) ~37.9(C)
CHF, =278 =304 —-49.2(C)
CF, -33.1 =365 ~359.0(coec)
CH,CN -30.2 =27.6(1) —38.5(C1)
CHO -32.2 =30.7{g) ¥ -42.3(0}
CH,CH,0H -34.2 =3(ne -47.0(C1}
HCOOH ~213 =199¢(1) ¥ -32.1{C)

¥ The gauge origin is denoted in parentheses; (coec) centre of electronic charge.

¥ Ref. {24), © Ref. [16]. ' Ref. [25).
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3. Results

All CPHF calculations were done using CADPAC
[22] modified to produce a set of first-order wave-
functions in a format suitable for calculation of the
atomic contributions using PROAIM [23]. One set
of first-order wavefunctions was obtained for each
symmetrically unique atom in a molecule by solving
the CPHF equations with the gauge-origin placed at
the nucleus of the atom. The computation time re-
quired to solve the set of CPHF equations for a sin-
gle gauge origin, using CADPAC, is about 10% of the
total time required to perform the unperturbed SCF
calculation and transform the two-electron integrals
from the AO basis of the MO basis. All of the mol-
ecules presented here were geometry optirnized at the
same basis set used from the CPHF calculations.

Calculated and experimental mean magnetic sus-
ceptibilities ¥ are given in table 2 for molecules of
varying size and magnetic response behavior. The
calculated values are obtained using the 6-
311+ +g(2d, 2p) basis set [18-20] by the IGAIM
method and by the conventional CPHF method with
the indicated gauge origins. In general, the IGAIM
results are in excellent agreement with experiment
even with this relatively small basis set, while the
conventional CPHF results ate significantly in error.
The basis set was chosen because it is known to yield
relatively accurate ground state charge distributions.
Based upon a comparison of result;s for methane,
ethane and propane [3], the iIGAIM resulis are com-
parable to or slightly better than those obtained us-
ing the IGLO method which uses a basis of
(I1s7p2d) contracted to {7s6p2d].

Shown in table 3 are the IGAIM calculated ab-
solute mean chemical shielding values for the carbon
nuclei ¢ in a set of compounds for which corre-
sponding experimental gas phase values have re-
cently been obtained at low pressure [17,26]. Also
shown are the conventional CPHF values, obtained
with the carbon nucleus as gauge origin. In all cases
the values calculated using the IGAIM method are
in better agreement with experiment than those of
the conventional CPHF method, Absolute agree-
ment with experimental values is not to be expected
since the experimental values were obtained at 300
K and include the effects of rotation and vibration,
among other effects which the CPHF method ne-
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Table 3
Calculated and experimental mean carban shielding o€ in ppm

Molecule o< (IGAIM) o© (CPHF) o€ {exp.}
CH, 197.4 198.5 195,14
HCN 799 89.5 B2
C;H, ~ 1193 127.0 172
CH, 66.4 714 64.5
CiH, 186.3 192.3 1809w
CH(C) 119.5 130.2 11529
C,H,(C2) -34.8 -224 -293%
CiH, 200.2 2111 185.0™
CH,(C)) 178.7 170.8 %
CyH, (C3) 177.3 169.1 %
CHo(C) 179.9 1735
CH\o(C3) 169.5 160,0%
CiH, 61,5 82.1 51.9%
CO -T.4 =119 1.0%
o, 57.9 789 5844
CS§, —-41.1 51.9 -8.0%
CsoO 21,9 78.2 Jo.o*
CHyNH, i67.0 173.9 1583
CH,0H 148.0 155.8 136.6%
CH,F 130.2 140.0 1168
CF, 86.0 122.3 64,5
CH,CN(C1) 712.5 86.8 FER AL
CH,CN({C2) 194.7 205.0 187.1%
E\OH(C1) 141.0 1276 %
EtOH{C2) 178.0 168.5%
HCOOH 32.2 50,2 FXWAL

 Ref, [17].  Ref. [26].

glects. While the basis set is adequate for suscepti-
bility calculations, it does not provide an accurate
enough description of the unperturbed wavefunction
in the region of the carbon nuclei where the shielding
density is largest. The IGAIM results are again com-
parable to those obtained by the IGLO metkod [3].

4. Conclusion

The use of the natural gauge origin for cach atom
in a molecule yields relatively accurate estimates of
molecular magnetic response properties, as corre-
sponding sums of separately determined atomic con-
tributions. This practical application of the theory of
atoms in molecules enables one to treat larger mol-
ecules than would otherwise be possible using con-
ventional CPHF and a basis set of given size. The
atomic contributions themselves are subject to phys-
ical interpretation and provide-a deeper understand-
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ing of the response of a molecule to a magnetic field.
This is to be demonstrated in a separate paper along
with the ability of atoms in molecules to recover
Pascal's transferable group contributions [24] to the
magnetic susceptibility for the methyl and methyl-
ene groups in normal hydrocarbons.
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2. ANALYSIS OF THE MAGNETIC PIELD INDUCED CURRENT DENSITY DISTRIBUTIION

2-1 Introduction

2-2 The First-Order Magnotically Induced Current Density J(”(r)
2-3 Topological Analysis of J(“(r)

2-4 The Vorticity of J(”(r)

2-5 Group Thecoretical Classification of J‘“(r)

2-6 Symmetry Constraints on the Topology of J(“(r)

2-7 Results

2-8 Comments

2-9 Referenceas

2-1 Intrecduction

Schrédinger introduced the electronic charge and current densities and
the quantum equation of continuity relating them
{(dpixy/dt) = =V-Jim {1)
in his fourth paper1 on "wave mechanics*. 1In this paper he expressed the hope
that the definitions and statements it contained would prove useful in the
elucidation of the magnetic properties of atoms and molecules, and in
explaining the flow of electricity in solid bodies. The electronic charge
density p(r} is the measureable expectation value ¢! a quantum observable, the
charge density operator p(r)°
pix) = -eL &(F, - T (2)
while the operator for the electronic current density, in analogy with the

classical result, is expressible as the product of 5(:} and the observable for
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the electronic velocity, fiim/m.

ey = (—e/2m)):l{r'i:z:116(§l -1 + 3, - Ttz ) (3

The velocity operator for the iLh electron in the presence of a magnetic field B is
given by

fiep/m = {p, + (e/c)Atxp}/m (4)

where ﬁi = -ihV, is the corresponding linear momentum operator and A(xr;} is a vector
potential related to B by, B = V,xA(ry). For uniform B, the vector potential A(r“
can be expressed most simply as (1/2)er1' where the (common) origin of the r, is
arbitrary. Making use of ean. (4), the single-particle current density J(r}

describing the flow of N electrons in a magnetic field is given by

]

Jir) = <¢-|3|w> - (eN/2m) |dT’ (@ 7Y + () "P)

-(eN/Zm)Idt'{w*ﬁw + (ﬁw)'w} + {e/mc)pix)Alm (5)

where Jdt’ implies a summation over all electronic spin coordinates and an
integration over the spatial coordinates of all electrons but one.

The topology of p{xr) is made quantitative through the flow of the trajectories
of its associated gradient vector field Vp(rl.3 This field, in addition to defining
an atom § in a molecule through the requirement of zero flux of the Vp(r field
through the atomic surface S(Q),3 eqgn. (6)

Vpir)'nix)y = 0 Vreso (6)

defines a system’s atomic connectivity to yield a description of its structure and
structural stability.3 The basic aspects of the theory of atoms in molecules
relevant to this work are summarized in Chapter 4 and in the Appendix. In addition,
the topology of the divergence of the Vp field, the laplacian of the charge density,

recovers the basic tenets of
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electrenic structure models and enables one to predict reactive sites in a
molecule, The essential features of the topology of pir: in the COY molecule
are shown in Fig. 2-1.

The topology of the vector current field Jir) defined in eqn. (5} should
also be of interest since this field determines the magnetic properties of a
closed-shell electronic system in a magnetic field.4 Fig. 2-1 depicts some
basic features of the J(r) field for the CO molecule.
2-32 The First Order Magnetically Induced Current Density J(”(r)

In a perturbation expansion of the magnetic field induced current J(r
with respect to the field strength B the first-order term in the expansion is

{see chapters 1 and 3)

J(“(r) = —(en/m)Jﬁt'{ w(m‘ﬁw(” ' w‘”'ﬁw“” } - (eE/mc)hlr)p“”(r)

= J(“{r) + J‘“(r) {7}
p d

where wtl) is the first-order correction to the unperturbed molecular
wavefunction due to presence of the magnetic field and the separate terms

(1) (1)

Jp {ry and Jd (r) are called the ‘“paramagnetic" and ‘*diamagnetic®

contributions to J(“(rj respectively. Unlike the total current J(”(r),

these terms are not unique but depend on the arbitrarily chosen gauge of the
vector potential A(r) (see chapter 1). The zeroth and second-order terms in
the expansion of J(r) wvanish identically and the higher-order terms are
negligible relative to J(“tr) unless the field strength is very large. The
first-order current density given in ecqn. (7) determines the commonly measured

second-order molecular magnetic reponse properties, namely the magnetic
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susceptibility and nuclear magnetic shielding tensors,‘: as will be shown in
chapter 3.

This chapter delineates and classifies the possible flows of the first-
order vector current field J(”(r) in terms of the critical peoints of the
field as well its symmetry properties. The topological analysis is based in
part on the general scheme given by Reyn5 for the classification of the
critical points exhibited by a system of three linear differential equations.
Gomes‘ pioneering analysis of the current density I:opology6 was limited by
having to rely on the incomplete information contained in relatively
inaccurate planar displays of Jt”(r) which were present in the literature.
The availability of relatively accurate current distributions for polyatomic
molecules made possible by the IGAIMT and continuous gauge transformationB
methods described in chapter 1 enables one to unambiguously locate and analyze

(1)

the critical points for the full three-dimensional J ~'(r} field.

2-3 Topological Analyais of J(”(r)

The current density distribution J(”(r) is a continuous vector field

whose direction of flow is conveniently represented in terms of its
trajectories, curves in real space which are parallel to J(”(r) at each point
r. Since the J(U(r) field is continuous, each point r at which J(”(r) does
not vanish lies on a single trajectory. As an example, a representative set
of trajectories of the J(”(r) field are shown in Fig. 2-2 for a plane
containing the nuclei in the CO2 molecule, where the applied magnetic field is
perpendicular to the plane. while the diamagnetic and paramagnetic

contributions to J(”(r), defined in eqn. {7}, are gauge dependent and have no
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separate physical significance, the trajectories of the total current can
exhibit diamagnetic or paramagnetic behaviour in terms of the direction, with
respect to the applied field, of the magnetic field generated by the induced

current in the region encompassed by the trajectories. In Fig. 2-2

. the

direction of flow for the outer set of current trajectories contained within
the basin of the carbon atom is counter clockwise and the field induced at the
carbon nucleus by this current acts in concert with the applied field B, which
is directed out of the plane of the paper. This current is paramagnetic. A
smaller set of paramagnetic trajectories is found in this plane within each
oxygen basin, on the bonded side of the nucleus. The primary current flow in
the oxygen kasins is however, diamagnetic, the current flowing in a clockwise
direction inducing a field in the region enclosed by the current which is
directed inte the plane of the paper. The remainder of this chapter is
concerned with the problem of analyzing such molecular current distributions

in more detail.

The first-order induced current density is linearly proportional to the
field strength B, so the trajectories of J(“(r) and their display, as in Fig.
2-2, are independent of B. For very large field strengths, when higher-order
terms in the expansion of J{r) with respect to B become significant, the
trajectories of J(xr) will depend on B and the structure they determine will
exhibit changes at certain *catastrophic* field strengths. Although this work
considers only the first-order term J(n(r), it clearly provides a foundation
for studies including higher order terms of Jir), studies in which the field
strength will be an important parameter. The flow of the trajectories of

J(“(r} depend on the orientation of the molecule with respect to the applied

42



field. in this work, the study of the dependence of J[.)(r) on melecalar
orientation is restricted to the unigue directions defined by the principal
axes of the corresponding molecular magnetic susceptibility tensor. In
addition to the orientation dependence, J(l)(r) depends, of course, on the
geometry of the melecule. In particular, the symmetry of the molecular
geometry is most important in determining the structure of cthe J(“(r) field.
In this work, all molecules are considered at their theoretically determined
equilibrium molecular geometries.

The vector field J“)(r) is everywhere divergenceless because of the
equation of continuity, eqn. (1), for staticnary states. This equation was
also inferred in chapter 1 and is stated explicitly again here because of its
importance
veathis = 0 (8)

Applying Gauss'’ theorem to an integral of eqn. (8) over an infinitesimal

volume &V,

Id:v-a"’(r) = J.dS‘J(”(r) =0 {9)
v 8s

one sees that the continuity condition for the current requires that there be
no three-dimensional sources or sinks for the trajectories of the Ju)(r)
field, points at which neighboring trajectories either all originate or all
terminate, respectively. 'The divergenceless condition does not preclude the
existence of one- or two-dimensional sources and sinks for the trajectories,
however. This fact, which is tyrue for any divergenceless field, has only
recently become appreciated in physicslo and is of importance in understanding

the topoleogy of a’(“(r). as will soon become clear.
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Maps of magnetically induced first-order current density distributions in
molecules were first illustrated in the pioneering computational studies of
Lipscomb and co-—workers.11 The topolegical study of both the total current
J(”(r) and its orbital contributions, was initiated in important papers by
Gomes.s Orbital current densities are not divergenceless and, as a
consequence, their topologies are considerably more complex than the topology
exhibited by the total current considered here; Lazzeretti et al have
displayed and discussed the magnetically induced current densities in
benzene12 and the cyclopropenyl cation13 CEH: to examine the physical basis of
the ring-current model, as well as in ethene.ld acetylene15 and
cyclopropane.16 Their analyses were based on relatively inaccurate Jl”(r)
distributions which were calculated using the cenventional single gauge origin
CPHF method (see chapter 1l). Thus, several false conclusions were drawn in
their studies, conclusions which will be corrected in this work.

as is true of any vector field, the topolegy, or structure, of the
J(“(r) field, hereafter labeled Ji{r) to simplify the presentation, is
reflected by the flow of its trajectories in the neighborhood of ’ts critical
peints, points where J(r) vanishes. For example, critical points in the
current distribution of CO2 are labeled in Fig, 2-2. Critical points are also
occasionally referred to as fixed, stagnation, singular, equilibrium or null
points. The J(r) field in the neighbourhood of a critical point at r. can be
described by a truncated Taylor series expansion about r. as
Jir}y = (r-rc)'(VJ)rzrc + (1/2)(r-rc)(r-rc):(VVJ)rzrc + v (10)
In the linear approximation only the first term in the expansion is considered

and the description of the flow of J(r) about a critical point reduces to the
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solution of a system of three coupled, linear differential equations whose
corresponding 3x3 real coefficient matrix is given by the elements of
(V) oy -

For a system of three linear differential eguations, Reyns has given an
excellent pictorial description of all possible types of flow of the solution
trajectories about a critical point in terms of the eigenvalues of the
coefficient matrix. Since the VJ tensor is, in general, asymmetric its
eigenvectors are dependent upon the coordinate system in which VJ is defined,
though its eigenvalues are invariant to this choice. To unambiguously
characterize V3, it is usefully expressed as a sum of two irreducible tensors,

Vr, and VJ_,, where the elements of these tensors are

(V7] = (1/2)(83 /8x - 8JF /3x ) (11)
a m n n m
and
(Vo1 = (1/2){837 /8x + 83 /ax ) (12)
8 mn m n n m
The tensor VJ, is antisymmetric and transforms upon rotation of the
coordinate system as a vector. The three independent elements of VJa are

proporticnal to the components of the curl of Jir), VxJ(r). It will be shown
later that the flow of the vector field VxJ(r), defining the *vorticity" of
the current density, is of importance in relating the f£low of the J(r) field
to a property of the electronic charge density. The tensor VJ; is a
traceless, rank-two symmetric tensor with five independent elements. Since
VJ, is real and symmetric, it can always be diagonalized to vield a set of
eigenvectors which are independent of the coordinate system in which VJ is
initially defined. The VJ, eigenvectors provide a unigue coordinate system

for the expression of the full asymmetric tensor VJ. In this coordinate
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system the VJ tensor will be labeled v’ and appears as
o cl c

W o=z - « c (13)

where the vector ¢ is UxJ(r)/2, whose components cl, c, ancl ¢, are the upper
triangular elements of VJ;. The diagonal elements of VJ are the eigenvalues
of VJ .

L]

The eligenvectors u; and eigenvalues A; of v’ at a critical point,
together with VxJ(r), describe the flow of the trajectories of J(x) in the
neighborhood of the point in the linear approximation.

It is known that if the corresponding 3x3 coefficient matrix obtained by
linearization of a three-dimensional vector field has three non-zero
eigenvalues, then the linear approximation is sufficient to describe the flow
of the field trajectories in the neighborhood of the eritical point.“J
However, this is no longer necessarily true when one or more of the

eigenvalues is zero if the vector field is devoid of any local physical

. 10
contraints.

The constraint on the J(r) field that it be everywhere divergenceless,
eqn. (8), leads to the important result that the linear approximation is
sufficient to describe the local flow in the case of cne zero eigenvalue for
the V3’ tensor. To the author's knowledge, this general result for a
divergenceless field has not been shown in the literature and so a proof is
given here.

Let the two nonzero eigenvalues of VI be Au and AV, with eigenvectors u

and v respectively. The eigenvector with zero eigenvalue will be labeled w.
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Because T(r) is divergenceless the two nonzerc eigenvalues must be egual and
opposite and, as will be shown below, are either both pure real or both pure
imaginary, A = J\u = -?lu. Translating the critical point r_to the origin for
convenience, r = 0, the components of the current J(r at any point
r(xu,xv,xw) in the neighborhood of the critical point are Ju(r) = ?\xu and

Jv(rl = -?lxv for the nonzero roots. The neighbourhood is taken to be
sufficiently small so that the the highexr-order terms of Ju(r) and JV(:) are
negligible. The third component, J A%, is predicted to be zero in the linear
approximation and the objective is to determine if there are nonlinear
contributions to JH(r) in the considered neighbourhood of z - Since the
divergence of Ji(r) vanishes everywhere, aJw(:l/wa must be zero at r just as
it is at x_ independent of the linear approximation, because aJu(rl/Bxu =
-6Jv(r) /axu. Since r is an arbitrary point within the neighbourhood of r the
only way this can be true is if J,ir} is constant in the neighbcurhood. Since
the neighborhood contains z where Jw(rc) = 0, then the constant must be zero
and thus Jw(r) = 0 everywhere in this neighbourhood, as predicted by the
linear approximation,

Thus, the linear approximation is sufficient to predict the flow of Jim
about ¢ critical point with one zero eigenvalue for the Vo' tensor. In such a
case, the flow of Jir} in the neighborhoed of :c will be clearly be planar
with the total current J(r) being =zero along the axis of the eigenvector w
with zero eigenvalue since along this axis X = x = 0, and thus Ju(r) = J ()
= J;lr} = 0. A critical point of the Jir) field whose V3’ tensor has one zero

eigenvalue is thus non-isolated,

- ’ (] L]
The case of two 2ero eigenvalues for VJ is not possible for a
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divergenceless field, while for three =zero eigenvalues, the linear
approximation is, in general, insufficient to describe the local flow in the
absence of particular symmetry constraints.

The eigenvalues A of v are the roots of the secular equation

-2

- {c2 + @ o + @ o, + azaa}h + [cia3 + czaz + ciu1 + ala?aa] = 0 (14)
where the expression in square brackets is the determinant of va'. Since Jt(r}
is divergenceless, eqn. (8), the three eigenvalues of 93" must sum to zero.
Thus, the possible types of critical points of VJ', expressed as {r,s} in
terms of rank r, the number of nonzerc eigeanvalues and signature s, the
aglgebraic sum of their signs, are (3,+1), (3,-1), (2,0) and (0,0}. It is
possible for two of the eigenvalues to be complex and in such a case the
signature refers to the real parts of these eigenvalues.

The absence of (3,+3) or (3,-3) critical points in the J{xr) field,
critical points at which all trajectories in the neighbourhood of the point
originate or terminate, respectively, is another way of stating what has
already veen inferred from eqn. (9), that the J(r) field can possess no three-
dimeansional sources or sinks.

When the terms in square brackets in eqn. (14) do not sum to zero, the
V3’ tensor is nonsingular. In this case all of the eigenvalues of Vs’ are
nonzero and the critical point is of type (3,+1) or (3,-1). In this situation
Jir) is nonvanishing in all directions removed from the critical point and the
point is thus isolated from other critical points.

If the three eigenvalues of 7’ at a (3,+1l) or (3,-1) critical point are
all real then the critical point lies in a surface of trajectories which

either all originate or all terminate respectively, at the point, a surface
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which is locally tangent to the plane defined by the two eigenvectors having
eigenvalues of the same sign. Such (3,%1) critical points will be referred to
as surface peints. The eigenvector associated with the eigenvalue having the
unique sign defines a pair of anti-parallel trajectories which are
perpendicular to the surface at the critical peoint and originate there if it
is (3,-1) and terminate there if it is (3,+1). The phase portraits, Fig. 2-
2a, for such (3,:1) and (3,-1) ¢ritical points can ke linked together, surface
trajectories originating at {(3,+1) points and terminating at (3,-1) points,
with the unique trajectories at each point exhibiting the opposite behavior.
The other possible type of flow about (3,%1) critical points of the J(x)
field occurs when one eigenvalue of V3 is real while the other two are
complex conjugates of one another. The eigenvector with real eigenvalue
defines a pair of trajectories perpendicular to the complex eigenplane at r,.,
the trajectories origirating at this point if the real part of the complex
eigenvalues is positive and terminating there if it is negative. A set of
trajectories spiralling about the critical point lies (locally) in the complex
eigenplane, originating there if it is (3,+1) and terminating there if it is
{3,-1). The phase portraits of such critical points, Fig. 2-3b, can again be
linked to one another, spiral trajectories originating at a (3,+1}) and
terminating at a (3,-1) with the unique trajectories again exhibiting the
opposite behaviour. The unique pair of trajectories for such (3,*1) critical
peints serve as axes of revolution for trajectories which spiral away from the
complex eigenplane of a {3,+1) point and toward the plane of a (3,-1). These
trajectories are closed, although not in simple loops, and do not originate or

terminate at critical points. {3,*1) critical points with a pair of complex
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eigenvalues will be referred to as spiral peoints.

When the terms in square brackets in eqn. (14) sum to zero and the va'
tensor is singular, at least one of the eigenvalues of A equals cero, the
other two At being of equal magnitude and of opposite sign and given by
Ai = -(c2 + “1“2 tao o+ a2a3) {15)
The Az eigenvalues are thus either both real, both imaginary or both zero.

If the At are nonzero then the critical point is of type (2,0} and,
according to the argument presented above, must be non-isolated. It lies on a
continuous path of (2,0} critical points, which has been referred to by Gomes
as a stagnation path.6 Its direction at a given point along the path is
defined by the eigenvector of v’ with zero eigenvalue.

If the At are imaginary then the (2,0) critical point lies at the center
of a set of closed current loops whose direction of flow about the point,
clockwise or counterclockwise, is determined by VxJ(r) at the critical poiit.
The phase portrait for such a critical point is shown in Fig. 2-3c. Of
course, VxJ(r) determines the direction of flow about a spiral point as well.
A critical point with a phase portrait such as is shown in Fig. 2-2c is called
a center point and it lies on a centre stagnation path. This is the pattern
of flow lines found for a closed-shell atem, with the nucleus lying on the
center stagnation path. The center critical point is ubiquitous in the core
current distributions induced ih atoms and molecules, and elsewhere in
melecules with the appropriate symmetry and orientation.

If the At defined by eqn. (15) are real then the local flow of Jir)
appears as in the phase portrait shown in Fig. 2-3d, a phase portrait which is

identical to that generated by the trajectories of the gradient of a scalar
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field in the neighbourhood of a saddle point. The same name is applied to
this type of (2,0) critical point in a non-gradient vector field such as Jiz .,
A saddle point of J(r) is nonisclated and it lies on a saddle stagnation path.
Two unigue pairs of Jir} trajectories are generated by the eigenvectors of v
agsociated with the non-zerc eigenvalues, the pair associated with the
positive eigenvalue originating at the critical point, the other pair
terminating there. These unique trajectories serve to separate four (possibly
connected) regions of current flow. The Jir} trajectories from these regions
can appreoach, but must ultimately avoid, the saddle critical point.

Neither a center nor a saddle stagnation path can originate or terminate
at a point which is not a critical point, since it is composed of (2,0)
critical points, which are necessarily non-isolated. It must either be a
closed path of (2,0) points or originate and terminate at infinity or at a
{0,0) critical point. A {0,0) critical point, one with three zero eigenvalues
for VJ', thus usually, but not necessarily, lies at the origin or terminus of
two or more stagnation paths.

This completes the description of the possible critical peoints of the
Jixr) field. Their phase portraits, as shown in Fig, 2-3, in conjuction with a
display of the stagnation paths traced out by the non-isolated critical
points, summarize the three-~dimensional flow of current in a molecule. The
set of isolated critical points and stagnation paths have been referred to by
Gomes as a stagnation graph.6
2-4 The Vorticity of J‘“(r)

The properties of the vector field defined by the antisymmetric component
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V3, of VJir) provide an understanding of the direction of the current flow
about a center stagnation path or a spiral point. Its elements, as given in
eqn. {11}, define the curl of J(r), whose lines of flow are termed the
vorticity lines.” Since the divergence of a curl is everywhere zero the
topology of the IxJi(r) field is similar, in terms of the possible types of
critical points, to that of the J(r) field itself. From egqn. (7}, the general

expression for the curl is

Vth”(r) = (Zienh/m)Jét'unnxV¢(”

0 0
(e2/me) (3p' " m + (172) 890V 1z -2 - 29! % (z)-m)) (16)
Only the terms involving p‘m(r) and Vp‘m(r) are different from zero for a
closed-shell atom when the nucleus is chosen as gauge origin. The term

(0}

Vp' ' (xr)-B vanishes for the symmetry plane perpendicular to B in this case

and, since Vp(m(r) and r are antiparallel vectors, one cbtains

W) = (e2/me) (19 M 11z} - ;1B (17)
Thus, the direction of flow of the vorticity lines is perpendicular to the
symmetry plane, being parallel to B for large r and antiparallel to B in the
immediate region of the nucleus. Since most VxJir} trajectroies curl back on
themselves to form closed loops, the resulting pattern of the direction of
flow lines through the symmetry plane is one of alternating shells, within
which the lines of flow are alternately antiparallel to and parallel to the
applied field B. 1In three dimensions, adjacent shells are separated from one
another and enclosed within separatrix surfaces defined by trajectories which

originate and terminate at a closed saddle stagnation path of the VxJ(r) field

lying at the boundary between the two shells in the symmetry plane. A closed
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center stagnation path of the VxJ(r) field lies in the symmetyy plane within
each shell.

These properties of VxJ(r) in a symmetry plane are illustrated in Fig. 2-
4 and Fig. 2-~5. What is interesting is that there is a pair of subshells with
opposing flow lines for each quantum shell of an atom. These atomic patterns
are homeomorphic with the corresponding pattern of alternating negative
{charge concentration) and positive (charge depletion) regions generated by
Vnp, the Laplacian of the electron density. They also exhibit the same
periodicity in their radii, contracting across a period and the outer shell
expanding down a family. The shell structure exhibited by VxJ(r) for the free
atom, like the shell structure of the atomic Laplacian, persists in the
molecule and herein lies its importance. If molecule formation results in the
creation of a centre or spiral point within an atomic basin, then the
associated local trajectories of current will be diamagnetic or paramagnetic
depending upon whether the critical point is formed in an outwardly or
inwardly directed (relative to B) region of flow of the VxJir) field, as can

be seen by consideration of Stoke’s theorem.17
§Hs-VxJ‘“(r) = Idn-J(”(rJ (18}

For example, a centre point created within the second of the inner-most
pair of shells will be encircled by a set of paramagnetic ocurrent loops
because VxJir) is parallel to B within this shell. In the general case when
no symmetry plane is present, the relevant quantity which exhibits the shell

.
structure analagous to Vp is B-VxJ(r).
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2-5 Group Theoretical Classification of J( (r

A method is given here for the classification of the induced curvent
distribution in an isolated molecule using molecular point groups. This
information complements its topological classification. The group theoretical
classification of a J( )(r} field involves constructing the appropriate so-

. 18

called magnetic group.

1
For a closed-shell system a gt

{r) field exhibits the same symmeiry
properties as does B*L, the compeonent of the angular momentum vector in the
magnetic field directien. Thus, the current distribution generated by a
magnetic field applied parallel to the z axis, the principal symmetry axis,
transforms as [,, where I, is the one-dimensional irreducible representation
in the group § for a rotation R, of the molecule about z. Just as the
electron density p(r) is invariant to all of the symmetry operations of the
molecular point group %, the induced vector current J“)(r) for an isclated
molecule transforms as the totally symmetric representation of the related
magnetic group 5°.

The magnetic group §' is always isomorphic with % or a subgroup of g.
For the groups &,, 86, and ¥, groups which do not possess a secondary
symmetry axis perpendicular to z nor a symmetry plane containing z, g is
identical to %. This follows since a rotation of the molecule about 2z
transforms as A, A’ or Ay in these groups, as does the current density.

For the remaining point groups §’ is isomorphic with § for a field
applied along the principal symmetry axis. To obtain &’ in these cases, ohe

{1}

. . . 1% . .
introduces an antiunitary operator R which reverses the sign of J (r) at

each point in space, but does not act on the space coordinates. Its
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. . . 1a
properties are described by Hamermssh.

To obtain the magnetic group §' isomorphic to ¥ for a field applied along
the principal symmetry axis 2 one first recognizes that the current
distribution transforms as [,, the irreducikle representation for the rotation
of the molecule about the z axis. The kernel subgroup of TI'; in !‘1’,18 denoted
by K(¥%.,T,), is obtained by taking all of the symmetry operations of ¥ with
character +1 in [,. The current distribuktion induced by the application of a
magnetic field along the 2z axis is thus invariant to the operations of the
kernel subgroup K, in this case a subgroup whose index in € is always equal to
2.13 The magnetic group is then obtained by adding to the unitary set of
operations in X, an equal number of antiunitary operations. These latter
elements are obtained by first generating the coset AXK whexe A is any one of
the remaining symmetry operations in ¥ with character -1 in [,, followed by
their multiplication by the time-reversal operator R, the elements in R(E -
X). The elements in X and RAK yield a set of operations comprising the
magnetic group ¥’, under which the current transforms as the totally symmetic
irreducible representation A, with I, of ¥ becoming [, of §'. The group g’
obtained in this manner is labelled §(K).

As examples from this and the following chapter, consider first ethene of
D,, symmetry where the three rotations transform as By, By and By, all of
which are associated with a &;, kernel subgroup. These three representations
appear as the totally symmetric representation in a magnetic group Doy (65) ©
Consider next a field applied along the three-fold axis in ethane, where g =

D;q.. The molecular rotation about this axis and the associated induced

current transform as Ap,. The kernel subgroup is ¥; and the current
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distribution transforms as A; of the D4 (¥) magnetic group.

The magnetic group appropriate for a field applied perpendicular to u
three-fold or higher symmetry axis is neot derived from the melecular point
group § €or which the corresponding rotations transform as « degenerate
irreducible representation Ty, but from one of lower symmetry %, in which the
degeneracy is broken. The appropriate group ¥* for the construction of the
magnetic group §' (K) in such a case is then the largest subgroup of ¥ in which
the corresponding molecular rotation belongs to a one-dimensional ivreducible
representation. In ethane for example, molecular rotations about the x and y
axes transform together as E; in D, For a magnetic field applied
perpendicular to both the C3 axis and a C:: axis the pertinent subgroup &' and
its associated kernel are €5, and €, respectively, and the maghetic group is
€,,(6;). The current induced by a such a field transforms as does the A,
irreducible representation of this magnetic group, as illustrated in the
following chapter. For a field applied along a C, axis in ethane one has the
case referxred to above where §' = § = Gy,

2-6 Symmetry Constraints on the Topeology of Jm(r)

The presence of certain symmetry elements in a magnetic group dictates
the presence and/or possible types of critical points which can be present in
the J(r} field - with respect to the symmetry elements. In this section
several general cases are considered. Specific examples are given in section
2-7 when actual molecular current distributions are analyzed.

First, consider a unitary center of inversion. Since the inveraion

operation reverses the direction of the current vector, there must always

exist a critical point of the J(r) field at a unitary center of inversion.
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llext, consider the symmetry axis of a unitary proper rotation which is
parallel to the applied field. Clearly, at any point along the axis the
current must either be parallel to it or vanish. Let the symmetry axis be the
z-axis. Then, the VJ tensor appears as

83,/8x a8J./38y 0
vy = a1,/9x% 83,/8y 0 (20)

0 0 8J./8z
with eigenvalues given by the egquation
-3’ -A[(83,/8%)(83,/8y) + (83,/8x)(83,/3z) + (33,/82)(83./82)]
-(8J3,/92) [(83,/8y) (83,/8x) - (8J,/8x)(83,/8y)] = 0 {21}
Thus, a critical point 1lying on a unitary symmetry axis parallel to the
magnetic field can be of any type - in the absence of other relevant symmetry
elements. If the critical peint is of type (2,0}, then the stagnation path it
lies on must be confined to the symmetry axis. ‘This will occur if (anfaz}
equals zero or the terms in brackets multiplying (an/az) in egn. (21) is zero
along the length of the stagnation path. Unless demanded by greater symmetry,
such as an antiunitary symmetry plane containing the symmetry axis, such a
stagnation path would be unstable to any perturbation (symmetric or not) and
is unlikely to occur.

Next, consider an antiunitary symmetry plane which is parallel to the
applied magnetic field. The operation for an antiunitary symmetry plane is
reflection followed by reversal of the current direction. Clearly, at any
point on such a plane the current density must either be perpendicular to it
or vanish. Let the symmetry plane be the xz plane with the field along the x-

axis. Then the x and z components of J(r) must be zero everywhere in the
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plane and the VJ tensor takes the following form

0 83./8y 0
9T = BJyfax 0 aJylaz (22}
0  83./8y 0

with eigenvalues A given by the equation

X AA[(3,/82) (83,/8y) +(83,/8y) (33,/8)]) = O (23)
Thus, a critical point lying in an antiunitary symmetry plane parallel to the
applied magnetic field must be of type (2,0), ie. a saddle or center, or of
type {(0,0). If the critical point is of type (2,0) then the eigenvector

(x,y¥,2) with zeroc eigenvalue is defined by the equations

(87,/8y)y = (8J./8y)y = 0 {24a)
(83,/8x)x + (83,/8z)z = 0 {24b)
and is thus directed in the xz symmetry plane. Since a (2,0) critical is

necesfarily non-isolated, the considered point lies on a stagration path, and
the stagnation path is confined to the symmetry plane. Similarly, it follows
that a stagnation path cannot cross such a plane, though it may originate or
terminate at a (0,0} point in the plane.

Consider next a unitary symmetry plane which is perpendicular to the
applied magnetic field. 'Then, at any peoint in th» symmetry plane the current
density vector is perpendicular to the applied field. Let the field again be
along the x-axis so the symmetry plane is the yz plane. The VJ tensor at any

critical point in the symmetry plane takes the form

83,/8x 0 0
VT = 0 83,/8y  83,/8z (25)
0 - a3/8y 83,/8z
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with £igenvalues A given by the equation

SA" = AL(83,/8%) (83,/8y) +(83,/3x) (81,/82)+(8J,/8y) (8],/8z)-(83,/0z) (8J./0y) ]
«(81,/8x) ((83,/8y) (83,/8z) - (83,/82)(83./8y)] = 0 (26)
Thus, any type of critical point is possible, in principle, in such a plane.
If the final term is zero then the point will be of type (2,0), which will
necessarily occur if the point also coincides with an antiunitary symmetry
plane parallel to the field but is unlikely to occur otherwise. In any case,
the stagnation path of a (2,0) critical peoint in a unitary symmetry plane
perpendicular to the magnetic field must be locally perpendicular teo the
plane. If the critical peoint is a spiral point (two of the eigenvalues A are
complex) then the symmetry plane must coincide with the complex eigenplane
while if the critical poiat is a surface point then the surface must be
locally perpendicular to the symmetry plane. Since the current is confined to
the plane and all critical points in the plane are isclated (on the plane},
one can employ the Poincare~Hopf index theorem to the set of critical points,
using the Euler characteristic of +1 for open planar surfaces.20 The relevant
critical points of a plana: vector field have the following indices:20 center
+1, saddle -1, spiral +1, suxface -1.

The sum of the indices of the critical points in a unitary symmetry plane
perpendicular to the applied magnetic field must equal one. The Poincare-Hopf
index theorem provides a useful check of a critical point analysis of the J(x)
field in this case.

Clearly, all points on the axis defined by the intersection of two
mutually orthogonal antiunitary symmetry planes parallel to the applied fieid

must be critical points. Let the magnetic field be along the x-axis. Then
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the VJ tensor has the following simple form

0 0 0
VI = 0 0 a3,./8z (27
0 aJ./8y 0

with eigenvalues given by the egquation

-2+ AL(89,/82) (83,/8y) ] (28)
and thus the point must be of type (2,0) or (0,0). <Consider first a point of
type {2,0). Clearly, the stagnation path it lies on is parallel to the x-
axis. Now consider a (0,0) »oint on the axis. First of all, since the x-axis
is composed entirely of critical points, the (0,0) point must lie between two
stagnation paths along the x-axis, one above it and the other below it. Since
all of the eigenvalues of VJ are zero at such a peint, this means that one or
both of the partial derivatives (8J,/8z) and {83./8y) is zevo, from eqn. (28).
If {8J3,/8y) is zero then there must also exist a pair of stagnation paths
meeting at the (0,0) point in the plus and minus y directions since in the xy
antiunitary symmetry plane the current density can have only a z component and
since the xz plane is also an antiunitary symmetry plane. Similarly, if
(6Jylaz) is zero then there must exist a pair of stagnation paths meeting at
the (0,0) point which are locally directed in the plus and minus z-directions.
If both (8J3,/8y) and (aJylaz) are zero then the (0,0) point serves as the
meeting point for six stagnation paths, two along each axis, which is the
result predicted by the linear approximation. The essential point is that a
{0,0) point lying on the intersection of two antiunitary symmetry planes
parallel to the magentic field serves as the meeting peint for at least four

stagnation paths. If the (0,0) point lies at the meeting peoint of six
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stagnation paths, then one can contruct a "topeological sphere* about the (0,0)
point, a sphere whose surface is everywhere tangent to the current density and
on which the critical points are isolated (on the sphere). ©One may then apply
the Poincare-Hopf index theorem to the sphere using the Euler characteristic
of +2. The only critical points which exist on the sphere are saddles and
centers, with indices -1 and +1, respectively. The sum of the indices of the
six critical points must eqgual +2 and since each critical point lies on a
stagnation path originating or terminating at the (0,0) point, it follows that
there must be four center stagnation paths and two saddle stagnation paths
meeting at such a (0,0} peint.

The notion of the "topological sphere* with regard to the behavior of
stagnation paths meeting at a (0,0) critical point was initiated by Gome:s.6
He has stated, without proof, a "branching theorem" for any (0,0) critical
point of the Ji(r) field which appears {since no proof was given) to be based
on the assumption that a topological sphere of the type mentioned above can
always be contructed about a (0,0) peint. The assumption is invalid except in
the very special case mentioned above.

Finally, it is important to emphasize that the existence of a {(2,0)
critical point and its associated stagnation path of (2,0) points is
1ml:i.kt=.-1y21 unless demanded by the symmetry of the total system or by very high
local symmetry, such as occurs in the core regions of atoms. The existence of
a non-symmetry determined stagnation path, and hence a (2,0) critical point,
would be unstable to any small perturbation of the vector current field.21 as
brought about through a change in geometry, for example. Similarly, a

symmetry determined stagnation path and its associated (2,0) points is
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expected te be unstable with respect to symmetry breaking perturbations,

2-7 Results
Free Atoms

The simplest of induced current distributions is exhibited by the ftree
closed-shell atom, the current density being given by the simple expression
gt = - (ezlmc)erp(O’(r) = J;“(r) (29)
where the {(gauge)} origin of r is the nucleus of the atom or any other point
along the field axis passing through the nucleus. This expression feollows
from the fact that the paramagnetic part of the current JL”(r). eqn. (7},
vanishes identically for a free atom when such a gauge origin is chosen
because w(l) is then identically zero. This can be seen from eqn. (19) by
recognizing that the free atom energy eigenstates |n> are eigenstates of B'B
when the origin of £ lies on the B axis. From eqn. {29) one sees that the
free atom induced current is everywhere perpendicular to B with the
trajectories flowing in circular diamagaetic paths according to the term Bxr.
As an example, the vector current induced in the nuclear plane of the neon
atom is shown in figurg 2-6a while a three dimensional view of the current is
shown in Fig. 2-6b. The same picture applies to any free closed-shell atom.
The field axis is coincident with a center stagnation path, a path along which
the curl of J is antiparallel to the field, as shown in Fig 2-4 for the
nuclear plane.

From eqn. (29), the induced current density magnitude ]3] in a free atom
is given by egn. (30) for a field applied along the x-axis

|T] = (ezlmc)p(o)(r) (yz+22)“2 (30)
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and |J| is thus proporticnal to the ground state electron density p(m(r) and
the distance from the field axis. Fig. 2-7 shows a profile of the induced
current magnitude in the Neon atom along an axis lying in the plane shown in
Fig. 2-6a and passing through the nucleus. The relatively large magnitude of
Jir) in the nuclear region (even though it wvanishes right at the position of
the nucleus) is a reflection of the fact that the electron density exhibits a
maximum at the nucleus. This basic feature of the current density magnitude
persists for atoms in molecules, even for protons, and is part of the reason
why the nuclear magnetic shielding resulting from an induced molecular current
distribution is essentially an atomic property, as will be seen in chapter 3.
H,

Not surprisingly, the simplest of molecular induced current distributions
is exhibited by the H2 molecule. The current flow in H2 is homeomorphic with
that exhibited by a free atom for the principal orientations of the molecule
with respect to the magnetic field. When the maghetic field is parallel to
the internuclear axis, the current is everywhere perpendicular to the applied
field and flows in closed circular loops about a center stagnation path which
is coincident with the internuclear axis, the expression for J being given by
eqn. (29) when the gauge origin is taken aleng the field axis. for a field
applied along the internuclear axis of any molecule of Dmh symmetry, or for
any direction in a free atom, the induced current transforms as does the Eg
irreducible representation of Dy, as can be seen from Figs. 2-6a and 2-6b.

For a field applied perpendicular to the internuclear axis in H  the
current trajectories in the plane of the nuclei are ellipsoidal, as shown in

Fig. 2-8a, and all flow about a single center critical point which lies at the
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centex of the molecule. This critical point lies on a center stagnation path
parallel to the magnetic field. The magnetic group for the current field
induced by a perpendicular magnetic field in H:, or any other molecule of Dy,
symmetry is D.; (6,,) and the field transforms according to the irreducible
representation Byy of the D,, point group. The antiunitary elements of the
group are the two symmetry planes parallel to the field and the twe C: axes
perpendicular to the field. Above and below the unitary symmetry plane (the
plane shown in Fig. 2-8a}), the current flow is similar teo that in Fig. 2-8a,
but, with the exception of the antiunitary symmetry planes, is no longer
censtrained to be perpendicular to the applied field. However, in this
relatively simple case the current is nearly planar everywhere. The current
density magnitude in H2 for a perpendicular field is shown in the unitary
symmetry plane in Fig. 8-b.
LiH

As a consequence of the extensive transfer of charge from Li to H, the
charge distribution of the LiH molecule closely appoximates two localized
pairs of electrons,3 one pair in each of the atomic basins, and new
topological features are observed for the current induced by a field
perpendicular teo the internuclear axis, Fig. 2-9. The induced current
distribution in LiH or any other molecule of Cy, symmetry for a perpendicular
applied field belongs to the sz(CS) magnetic group and transforms as does the
Bl irreducible representation of the me point group. The nuclear plane
perpendicular to the applied field is again unitary while the other symmetry
plane is antiunitary. The C2 axis, which coincides with the internuclear

axis, is anitunitary. The current density exhibits five critical points in
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the unitary symmetry plane: three along the internuclear axis which are
center points and a linked pair of off-axis (3,%*1)} surface critical points.
The sum of the indices of these critical points equals one, as required by the
Poincare-Hopf Index theorem.20 In Fig. 2-10 a three-dimensional display of
the current trajectories associated with the pair of surface points is shown.
The off-axis critical points in LiH have been mistakenly identified by Gomes6
as saddle points based on the use of a previously published, inaccurate and
incomplete display of the current density.ll

The middle center point shown in Fig. 2-9 lies within the second of the

) within the Li basin, and its

inner-most pair of shells of the curl of J
associated current loops are paramagnetic, Each of the remaining center
points in Fig. 2-9 is slighcly displaced from either the proton or the Li
nucleus, lying within the inner-most shell of vorticity lines, and the
associated current loops are therefore diamagnetic. The curl map for LiH in
the nuclear plane is displayed in Fig. 2-1la to illustrate how the atomic
shell structure of this field persists in a molecule. The Laplacian of the
charge density in the same plane is shown in Fig. 2-]11b to show that the
possibility of the paramagnetic current flow could also have been predicted
from the similar shell structure exhibited by the Vzp field.

The unique pair of trajectories associated with the pair of surface
critical points in LiH, Fig. 2-10, flow in the symmetry plane containing the
nuclei and separate the three regions of flow about their respective center
points, as well as the region of diamagnetic current which flows about the

entire molecule and extends outward to infinity, Fig. 2-9. The closed surface

of trajectories associated with this pair of critical points encompasses a
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region which lies almost entirely within the Li basin. In the internuclear
region, this surface is almost coincident with the interatomic surface defined
by the trajectories of the Vp(x) field which terminate at the bond eritical
point, Fig. 2-9. The two center points within the Li basin lie on a closed
center stagnation path, and what appears in the plane shown in Fig. 2-9 to be
two separate flows is in fact a cross-section of a single *doughnut-1like*
(torus) region of current flow with the center stagnation path as its axis,
Fig. 2-12. The center point in the proximity of the preton in Fig. 2-9 lies
on an open center stagnation path which extends above and below the plane to
infinity and serves as the axis for the diamagnetic flow which encompasses the
entire molecule. The stagnation graph for LiH in the perpendicular
orientation is shown in Fig. 2-13.

BeH,

The current distribution induced in the BeH, molecule for a perpendicular
applied field differs from that in LiH because of the presence of off-axis
saddle points in place of the surface pair in the unitary symmetry plane, Fig.
2-14. The current distribution of BeH belongs to the same magnetic group as
that for the H2 molecule, DRJCZh). There are five critical points on the
internuclear axis, all of which are center points. The directions of flow
about each of these centers is consistent with their positions relative to the
shell structure exhibited by the curl of J and Vzp. Figs. 2-15a and 2-15h,
respectively. The presence of center points in the outer core region of Be
along the internuclear axis and their associated paramagnetic current flow

appears to be characteristic of systems with extensive interatomic charge

transfer for magnetic fields applied perpendicular to the direction of charge
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transfer. This effect has already been illustrated for LiH, Fig. 2-9, and for
the polar system C0,, Fig. 2-2. In each case the paramagentic flow is
localized within the basin of the electropesitive atom.

The regions of flow associated with the three center points in the Be
basin shown in Fig. 2-14 are separated from one another and from the outer
paramagnetic flow which encompassess all three regions, by the linked pairs of
trajectories which originate and terminate at the two innermost saddle points
along the C? axis perpendicular to the internuclear axis. The pairxs of
trajectories associated with the two outer saddle critical peoints along this
this axis are linked so as to form boundaries separating the paramagnetic flow
in Be from the diamagnetic flows in each hydrogen basin and each of these from
the diamagnetic flow encompassing the entire molecule. Each of the saddle
points shown in Fig. 2-14 lies on a saddle stagnation path extending above and
below the unitary symmetry plane. The saddle points along these paths are
linked by unique trajectories just as are those in Fig. 2-14. The union of
the saddle trajectories associated with each pair of saddle stagnation paths
form closed surfaces separating the different regions of current flow in the
molecule.

The stagnation graph shown iu Fig. 2-16 for the BeH2 molecule summarizes
the three-dimensional behavicur of the induced current £low. The center
stagnation path passing through the beryllium nucleus is parallel to the
applied field. The innermost saddle paths approach this center path and merge
with it %t a distance of 0.548 au on either side of the unitary symmetry plane
creating. (0,0) critical points, and saddle stagnation paths beyond these

points. The new saddle stagnation paths, one above and one below the unitary
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symmetry plane, define the trajectories which separate tﬁe now smaller inner-
shell paramagnetic regions from the encompassing paramagnetic region, At
0.012 au beyond the first (0,0) points, the inner-shell paramagnetic
stagnation paths coalesce with the new saddle stagnation paths forming another
pair of (0,0} critical points. Beyond these points there is a single pair of
paramagnetic center paths in the Be atom lying parallel to the field, one
above the unitary plane the other below it. Although not shewn in Fig. 2-16,
moving further away from the Be nucleus along the field axis, the two
outermost saddle stagnation paths coalesce with the remaining paramagnetic
centre paths at another pair of (0,0) points to yield a pair of saddle paths
whose trajectories separate the remaining vegions of diamagnetic flow. At an
even greater distance above and below the unitary plane, the hydrogen center
paths merge with pair of saddle paths to form a pair of diamagnetic centre
paths extending to plus and minus infinity.

The critical points in the plane shown in Fig. 2-2 for the coq molecule
and lying within the basin of the carbon atom form a set similar to those in
the basin of the beryllium atom, Fig. 2-14, and the stagnation graph they
generate is homeomorphic with that shown in Fig. 2-16. Fig. 2-17 shows the
stagnation graph generated by the current flow within the basin of an oxygen
atom of CO2 for a perpendicular field. As seen in Fig. 2-2, along the
internuclear axis in the oxygen basin there are twe diamagnetic and one
intervening paramagnetic center points. The associated reqgions of current
flow about these points are separated by the pairs of trajectories originating
and terminating at the pair of saddle points which lie on the nonbonded side

of the oxygen nucleus. The stagnation paths associated with the saddle point
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and center point which lie nearest to the oxygen nucleus merge at (0,0)
critical points on either side of the unitary symmetry plane to form a closed
loop of critical points. The same behavior occurs for the stagnation path of
the other saddle point and the middle center point at a greater height above
the unitary plane, leaving a single center stagnation path for the remaining
diamagnetic current flow in each oxygen basin. The behavior of the stagnation
graph for CO,  above the second set of (0,0) points in the oxygen basins of CO2
is then similar to that in BeHZ.
H,0

The remaining types of critical points possible for a J{r) field, the
{3,'l) spiral points, are illustrated in the current flow of the water
molecule in the plane of the nuclei when the applied magnetic field is
perpendicular to the plane, Fig. 2-18. Diamagnetic spiral trajectories
originating at the (3,+1) critical peint along one 0-H bond are contiguous
with those which terminate at the (3,-1) critical point along the second 0-H
bond. The unique trajectories linking the spiral critical points are shown in
Fig. 2-19. Figure 2-20 illustrates the behavior of a pair of closed current
trajectories which spiral around the unique trajectories but don’t cross the
complex eigenplane of the spiral points. There are éwo cente; points and a
saddle point on the ¢, axis. The center point which nearly coincident with
the oxygen nucleus is diamagnetic while other, whose region of flow is wvery
small in the plane, is paramagnetic. The stagnation paths that the three
(2,0} c¢ritical peints shown in Fig. 2-18 lie on are necessarily confined to

the antiunitary symmetry plane and are shown in Fig. 2-21 together with

projections of the isolated critical points onto the plane. In addition to
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the pair of spiral critical points, there is a pair of surface critical points
in the plane of the nuclei whose unique pair of trajectories originate at the
{3,-1) on the LHS of Fig. 2-18 and terminate at the (3,+1l) on the RHS. Theso
trajectories bound the spiral region. A linked pair of surface trajectories
generated by this pair of critical points also lie in this plane and bound the
core diamagnetic region of the oxygen atom on the nonbonded side. There are
two other surface trajectories in this plane, one of which flows into one ot
the spiral points, the other flowing out of the second spiral point. The
magnetic point group for this induced current distribution of H:0 is G, (6,
and the field transforms as does the B, irreducible representation of the c:V
peint group.

C'H‘1

Like Hzo, the current distribution in the methane molecule exhibits all
possible types of critical points for a field applied perpendicular to a plane
containing two protons and the carbon nucleus, Fig. 2-22. There are two sets
of spiral pairs in this plane, one pair again associated with the banded
protens, the second lying closer to the carbon nucleus. There are also two
sets of surface points. Fig. 2-23 shows the unique trajectories associated
with the two pairs of spiral critical points.

c,H,

Figure 2-24 illustrates the current induced by a field perpendicular to
the plane of the nuclei in the ethene molecule. There are three center
critical points on the C-C axis, two slightly displiced from the C nuclei
towards tﬁe molecular center, the other at the center of inversion, and all

three serving as centers for diamagnetic current flows. There are two sets of
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spiral ecritiecal points shown in Fig. 2-2d. Spiral trajectories oriaginating in
one C-H bonded region are contigucus with those which terminate at  the
critical peint ir the corresponding region of tha second proton bonded to the
same carben. The unique pair of trajectories associated with the single veal
eigenvalue originate at one critical peoint and terminate at another, with one
trajectory on each side of the symmetry plane. What is interesting is that
these out-of-plane trajectories link pairs of spiral critical points
associated with different carbon atoms, Fig. 2-25. In Fig. 2-26 the out-of-
plane behavior of the closed current trajectories which spiral about the
unique trajectories of the spiral points is shown. As stated in section 2-5%,
this current distribution in ethene belongs to the D:n(c:n) magnetic group.
Lazzeretti et a.l.l'1 from a study of a similar current map of ethene

calculated using the conventional CPHF method, and thus of lower cquality,
dismissed the spiral flows in ethene as a *basis set error*, concluding, for
no apparent reason, that they should be center points. The critical points
along the C-H bonds do not lie on a symmetry plane parallel to the field and
thus are not constrained to be (2,0) points. As shown in section 2-6, (2,0)
critical points are unstable with respect to changes in any parameter,
particularly a geometric parameter, and their existence is extremely unlikely
except when dictated by the appropriate molecular symmetry and orientation, or
by very high local symmetry, as in a core region.
Czﬁz, CzﬂF, and Cze

The final examples of induced current distributions to be considered in
this chapter are those exhibited by acetylene and its fluoro derivatives for

fields applied perpendicular to the internuclear axes. Figure 2-27 shows the
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induced current in C H  in the plane of the nuclei. The internuclear axis,
which lies on a synmetry plane parallel to the applied field, posseses nine
{2,0) critical points. There is a (2,0) center point along each C-H bond
which coincides almost exactly with the corresponding bond critical point in
the Vp field, an interesting result since the positions of the critical points
are not symmetry determined. These two critical points serve as centers for
diamagnetic current flow. In each carbon basin there are two more center
critical points, each ot which lies relatively close to the carbon nucleus,
one on either side. The one on the bonded hydrogen side lies at the center of
a very small region of diamagnetic loops while the center point lying on the
carbon side is further from the nucleus and serves as the center for a much
larger region of paramagnetic loops which are localized within the carbon
basin. The twe regions of flow about the center points within the carbon
basi; are separated by trajectories originating and terminating at a saddle
point which lies along the C-H bond very near the diamagnetic center point.
There are six off-axis critical points in the plane shown in Fig. 2-24. The
two lying along the C2 axis, which lies in a symmetry plane parallel to the
applied field, are center points for diamagnetic current flow. The two
corresponding regions are separated from one another by trajectories
originating and terminating at the saddle critical point which lies at the
centre of symmetry in the molecule. The remaining four off-axis critical
peints are two linked pairs of surface critical points, one pair for each CH
group.

The surface points in C,,l-l2 have been mistakenly identified as saddle points

: 1 . .
by Lazzeretti et al.5 The surface each pair defines encompasses the C-
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H bonded current flow as well as the flow about the two center points within
the corresponding carbon basin. The surface separates these regions from the
diamagnetic flow about the entire molecule as well as the diamagnetic flows
centered on the C: axis. The behavior of the current flow contained in the CH
agroup surface is slightly different from the flow within the surface found in
the LiH molecule, Figs. 2-9 through 2-13. This can be clearly seen from the
stagnation graph for C H shown in Fig. 2-28. The stagnation paths of the
center and saddle points on the hydrogen bonded side of the carbon nucleus
witnin the carben basin form a small closed loop of critical points,
coalescing above and below the internuclear axis at (0,0) points. As in LiH,
the apparently separate paramagnetic and bonded diamagnetic regions of current
current flow in the CH group actually flow about a single closed center
stagnation path, as in Fig. 2-12 for the LiH molecule., The stagnation paths
associated with the two center points lying on the C  axis perpendicular to
the internuclear axis in Fig. Z-27 are not shown in Fig. 2-28, but they merge,
above and below the unitary symmetry plane, with the saddle stagnation path
passing through the center of symmetry to form diamagneticlcanter staghation
paths extending to plus and minus infinity at a distance of 0.64 au. above and
below the center of symmetry.

Figure 2-29 shows the induced current distribution in the C2HF molecule
in the nuclear plane while the stagnation graph for this molecule is shown in
Fig. 2-30. As in C2H2, there are nine (2,0) critical points along the
internuclear axis. They occur in the same order as those in C2H2 though their
positions relative to the nuclei are significantly different. The current

flow within the fluorine atom is highly localized and entirely diamagnetic,
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resembling that of a free atom. Instead of the bonded center critical point
that the hydrogen exhibits, the fluorine possesses a single center critical
point which is nearly coincident with its nucleus. Each of the two carbon
atoms possesses two center points and a saddle peint near the nucleus, just as
they de in CEHE, but in CEHF the current flow about these points is
significantly different for the two atoms. In particular, and somewhat
surprisingly, the current flow in the carbon bonded to fluorine is similar to
that in C2H2. but the flow in the other carbon is significantly different
from that in C?Hn in that the diamagnetic flow about the center peoint on the
bonded hydrogen side encompasses a much larger region. This observation is
consistent with the larger nuclear magnetic shielding of this carbon than the
other carbon in CQHF or than the carbons of C2H2.

The C-H bonded center critical point in C2HF is not coincident with the
interatomic surface as it is in C2H2' This is mostly because the C-H
interatomic surface is shifted slightly towards the proton due to the
perturbation by the fluorine substitution. The most obvious difference
between the current flows in C HF and Csz is the "conversion® of the center
peints lying on the C2 axis perpendicular to the internuclear axis in C2H2
into spiral points in C2HF. This is a result of the breaking of the symmetry
plane perpendicular to the internuclear axis. The flow about these points is
still diamagnetic, however. The saddle point lying along the internuclear
axis between the the two spiral flows, Fig. 2-29, lies on a saddle stagnation
path parallel to the applied field, which is converted into a pair of
diamagnetic center paths at a height of 0.58 au above and below the unitary

symmetry plane.

74



n C"F: the symmetry plane perpendicular to the internuclear axis is
restored and the corresponding critical points are center peintz, as in CH.
The current induced in the unitary symmetry plane oi C~F1 is shown in Fig. 2-
31 while the stagnation graph is shown in Fig. 2-32. As with the fluorine in
C:HF, each of the fluorines in C F possesses a single center critical point
nearly cecincident with its nucleus and the current flow in the fluorines is
again highly localized and entirely diamagnetic. The set of critical noints
within the carbon basins are somewhat different than in the carbons of either
CEH: or CEHF. There are three center points lying on the internuclear axis
near the carbon nucleus, two paramagnetic points lying on either side of the
nucleus and a diamagnetic center point nearly coincident with the nucleus.
The diamagnetic center point and the paramagentic center point on the carbon
bonded side lie on a closed center stagnation path and the doughnut like
current distribution flowing about this path is confined within a surface
generated by an extra pair of surface critical peints within the carbon basin
lying relatively near its nucleus. The outer pair of surface critical points
in each of the carbon basins exist as they did in the C2H2 and CQHF and they
define a surface which encompasses the localized flucrine cur cent ana‘the
relatively large region of paramagnetic current flow in the carb:n basii... The
center points for these two regions of flow lie on a closed center stagnation
path, Fig. 2-32. BAs in Fig. 2-28 for the 02H2 molecule, Fig. 2-32 for the
stagnation graph of the C2F2 molecule does not show the diamagnetic center
stagnation paths lying in the symmetry plane perpendicular to the internuclear
axis. Just as in C2H2, however, these paths coalesce with the saddle path

passing through the center of symmetry at a height of 0.64 au above and below
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this point, beyond which exists pair of diamagn2tic center paths extending to plus

and winus infinity.

2-8 Comments

This study has brought into focus the principal properties of the vector
current distributions induced in molecules by an applied magnetic field. This has
been achieved through a theoretical, topological analysis of 2 three-dimensional,
divergenceless vector field with magnetic symmetry, together with analyses of
several actual induced current distributions made available by the methods
introduced in chapter 1. Magnetically induced current distributions in molecules
are fully three-dimensicnal vecto - fields, unlike in a free closed-shell atom, and
can exhibit four basic flow patterns about the critical points of the distribution,
all o¢of which are commonly observed. The wvorticity of a magnetic current
distribution has been found to exhibit an atomic-like shell structure analagous to
the laplacian of the electron density distribution. It is hoped that this work will
inspire further investigations, particularly with regard to correlating the observed

(L

topological properties of the J  (r distributions with other molecular properties.
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Figure 2-1

a} A contour map of the electren density p in COT in a plane containing
the nuclei. The nuclei are labeled with crosses. The value of p for the
outer contour is 0.001 au. while the wvalues for the remaining contours
increase inwards in steps of 2x10, 4x10", 8x10 ", with n increasing in
steps of unity from -3. Overlaid upon the contour map is the intersection of
each C-0 interatomic surface with the plane.

b) A relief map of the electron density p in Coj in a plane containing
the nuclei. The electron density exhibits local maxima only at the nuclei,
This results in a partitioning of the gradient vector field Vp into three non-
overlapping atomic domains, as shown in ¢.

c) The gradient vector field of the electron density p in a plane
containing the nuclei. Each atom is defined as the region of space traversed
by the Vp trajectories which terminate at its nucleus, or equivalently, as the
region of space bounded by the surface of Vp trajectories generated by the
corresponding bond critical point(s), labeled by a dot, linking the atom to
the rest of the melecule, a surface of zero-flux in the Vp field, eqn. (6)

d) A contour map of the laplacian of the electron density Vzp in a plane
containing the nuclei. Solid contours denote neéative values for Vzp, where
the electron charge is lccally concentrated. Dashed contours denote positive
values of Vzp, where the electronic charge is locally depleted. Each atonm
possesses an inner shell .i charge concentration and an inner shell of charge
depletion, which together correspond to the quantum K shell of.plectronic
structure theory. Due to the extensive electron transfer from q.to 0, the

carbon posseses only a second (valence) shell of charge depletion while the
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oxygen atoms possess both a second shell of charge concentration and one of
charge depletion. The large "hole* in the wvalence shell of charge charge
concentration in the carbon atom i1s consiztent with its high susceptibility to
nucleophilic attack. Each oxygen atom possessess a local maximum of charge
concentration in the valence shell on its non-bonded side, a critical point of
the Vap field which corresponds to the oxygen ione pairs of the Lewis model.
e) Trajectories of the electronic current density induced in CO2 by an
externally applied magnetic field, one whose direction is perpendicular to the
plane shown and coming out of the page. The interatomic surfaces in this
plane are also shown to demonstrate the essentially atemic nature of the
induced current distributien in this highly polar system. Trajectories
flowing counterclockwise are paramagnetic and dominate the flow in the carbon
atom. This current is responsible for the extremely large downfield shift of
the perpendicular component of the carbon nuclear magnetic shielding tensor.
£} Contour map of the flux, through the plane shown, of the curl of the
electronic current density shown if e. Solid contours denote antiparallel
flux relative B while dashed contours denote parallel fiux. The curl of the
indueced current exhibits a shell structure similar to the laplacian of the
charge density shown in d. Using this similarity, together with Stokes’
theorem, the possible regions of paramagnetic current flow in CO2 can be

predicted from Vzp.
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Figure 2-2
Cisplay of the first-order induced current density in a plane containing
the internuclear axis of the carbon dioxide molecule for a magnetic field

directed perpendicular te and coming out of the page. Clockwise directed flow

{1

is diamagnetic. Critical points in this and the following displays of § ' (r)
are denoted as follows: (2,0) center point by a filled circle ; {2,0) saddle
point by a cress (X}; (3,%*1) surface points by filled squares; and (3, %1)

spirals by open squares., Nuclei are denoted by plus signs (+). The direction
of current flow is not shown about the three center points in the carben basin
(though they can be inferred from the remaining directions of flow). The flow
about the center point coincident with the carbon nucleus is diamagnetic

{clockwise) while the flow about the other two center points is paramagnetic.
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Figure 2-3

Displays of the trajecstories of Jll)(r) in the neighbourhood of a
critical peint.

a) A (3,+1) surface critical peint. Trajectories originating at the
critical point lie in a surface. A unique pair of trajectories, lecally
perpendicular to the surface, terminates at the point. The phase portrait of
a (3,-1) surface critical point is obtained by reversing the directions of all
trajectories.

b) A (3,+1) spiral critical point. An infinite number of spiral
trajectories (only one is shown) originate at the critical point while a
unique pair of trajectories, locally perpendicular to the spiral plane,
terminates there. The phase portrait of a (3,-1) spiral critical point is
obtained by reversing the directions of all trajectories.

c) A (2,0) centre point which serves as the locus for a set of closed,
locally planar, current loops.

d) A (2,0) saddle point at which one pair of trajectories originates and
another pair terminates. All other trajectories avoid the critical point.

In ¢ and d the critical point is non-isclated and lies on a stagnation
path which is locally perpendicular to the two-dimensional manifeld of
trajectories shown in the diagram. The phase portraits for the other critical

peints on these paths are identical to these shown in ¢ and d.
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Firure 2-4

Contour maps illustrating the flux of the curl of J“? through a plane
containing the nucleus of an atom and perpendicular to the applied field,
which is directed out of the plane. Each quantum shell of an atem has
associated with it a pair of shells with lines of flow parallel to {dashed
lines) and antiparallel to (solid lines) the applied field. There is one such
pair of shells in He, two in Ne, Li and N, and three in Ar. The shells within
atoms of a given periocd contract with increasing atomic number whereas they

expand within atoms of a given family with increasing atomic number.
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Figure 2-5
A profile of the curl of J“) along a radial axis perpendicular to the
applied field for the argon atom. There are three maxima and three minima as

required for three quantum shells. The extrema for the inner shells are not

shown. The saddle and center critical points of the Vth“(r) field along

this axis are labeled by an S and €, respectively. Each of the saddle points

lies on a closed saddle stagnation path which generates a surface of VxJ(”(r)

trajectories separating adjacent quantum shells. Each of the center critcal
points lies on a closed center stagnation path about which flows a torus of

(1)

UxJ' ' {r) trajectories contained within the ccrresponding quantum shell.
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Figure 2-46
1 . X
a) A display of the trajectories of Jt)(r) induced in a nuclear plane
of the MNeon atom with the applied field coming out of the plane. The

trajectories are circular and diamagnetic,

b} A three dimensional display of the current induced in a free atom.
The current is everywhere circuiar, perpendicular to the applied field and
diamagnetic. The line perpendicular to the current flow is the center

stagnation path.
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Figqure 2-7
A profile of the current density magnitude aleong an axis passing through
the nucleus in the Neon atom. The applied field is perpendicular to the axis.

The current is zero at the nucleus but is very large elsewhere in the core

region.
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Figure 2-8

a} Induced current density in H2 in a nuclear plane perpendicular to the
applied field, which is directed out of the page. The intersection of the
interatomic surface with the plane is also shown. There is a single critical
point, a center, lying at the bond midpoint. The flow is diamagnetic.

b) Magnitude of the current density in H2 along the internuclear axis

for a perpendicular applied field.
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Figure 2-9

Induced current density in a nuclear plane of the LiH molecule with the
applied field coming out of the plane. The intersection of the interatomic
surface with the plane is also shown. There are four critical points in the
lithium atom: two center points along the internuclear axis; and two surface
points off the internuclear axis on either side. The upper surface point is
{3,+1) while the lower is (3,-1). The flow about the center point on the
bonded side of the lithium nucleus is paramagnetic while the flow about the
center point nearly coinident with the lithum nucleus is diamagnetic. There

is a single critical point in the hydrogen atom, a diamagnetic center.
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Figure 2-10

The trajectories originating and terminating at the pair of surface
critical points in LiH for a field applied perpendicular to the internuclear
axis. A unique pair of trajectories originates at the closest critical point,
a {(3,-1) and terminates at the other critical point, a (3,+1). The rest of
the trajectories define a closed surface originating at the far critical

point, the (3,+1}, and terminating at the {3,-1). The dot is the proton.
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Figure 2-11

a) Contour map of the curl of the current density, the wvorticity, induced
in the nuclear plane of LiH with the applied field coming out of the plane.
Solid contours denote antiparallel wvorticity while dashed contours denote
parallel worticity. The intersection of the interatomic surface with the
plane is shown.

b) Contour map of the laplacian of the electron density, Vzp, in a
nuclear plane of LiH. Solid contours denote negative wvalues, charge
concentration, while dashed contours denote positive values, charge depletion.

The intersection of the interatomic surface with the plane is shown.
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Figure 2-12
Current flow about the closed center stagnation path in LiH. The flow
about the stagnation path is entirely contained within the surface defined by

the surface critical points (see Fig. 2-10).
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Figure 2-13

Stagnation graph for LiH for a perpendicular field. The view is along an
axis perpendicular to the applied field and the internuclear axis. There are
two stagnation paths, one in each atom and both centers. The closed center
stagnation path (see Fig. 2-12) lies in the lithium atom while the open
diamagnetic center stagnation path lies in the hydrogen atom, nearly
intersecting the proton. The two spheres on the RHS are the out-of-plane
surface critical points, the larger of the two lying in the foreground and

representing the (3,-1). The other dots are the nuclei.
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Figure 2-14

Current density induced in the nuclear plane of the BeH, molecule for an
applied magnetic field coming out of the page. Clockwise flow is diamagnetic.
X symbols denote saddle points, dots dencte center points and plus signs (+)

denote the nuclei, The interatomic surfaces are not shown.
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Figure 2-15

a) Contour map of the curl of the current density, the vorticity, induced
in the nuclear plane of BeH2 with the applied field coming ocut of the plane.
Solid contours denote antiparallel vorticity while dashed contours dencte
parallel vorticity. The intersection of the interatomic surfaces with the
plane is shown.

b) Contour map of the laplacian of the electron density, Vzp. in a
nuclear plane of BeH_ . Solid contours denote negative values, charge
concentration, while dashed contours denote positive values, charge depletion.

The intersection of the interatomic surfaces with the plane is shown.
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Figure 2-16

Stagnation graph of BeH:E for a perpendicular field. The arrow 1is the
internuclear axis. The two outer paths which intersect the internuclear axis
are the hydregen diamagnetic center paths while the two outer paths in the:
upper LHS and lower RHS of the figure are saddle paths. The stagnation path
intersecting the Be nucleus at the center of symmetry is a diamagnetic center
path while the two adjacent paths on either side of the Be nucleus and
intersecting the internuclear axis are paramagnetic center paths. The other
two adjezcent paths are saddles which merge with the Be diamagnetic center path
above and below the internuclear axis to form (0,0) critical points and then
new saddle paths. Not distinguishable from the first mergings in this figure,
the two paramaghetic center paths then merge with the newly formed saddle
paths above and below the internuclear axis to form two more (0,0) critical
points and then a pair of paramagentic center paths. Not shown in this
figure, all remaining paths eventually merge along the symmetry axis parallel
to the field resulting in two diamagnetic center paths, one extending to plus

infinity the other to minus infinity.
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Figure 2-17
Stagnation graph of an oxygen atom of CO_ for a perpendicular field (see
Fig. 2-2). The labels C, S and X dencte center stagnation paths, saddle

stagnation paths and (0,0) critical points, respectively. The oxygen nucleus

is the black plus sign (+).
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Fiqgure 2-13

Current density induced in the nuclear plane of the H O molecule with the
applied field coming out of the page. There are two center points and a
saddle point on the C2 axis, The flow al.out the center point which is nearly
coincident with the oxygen nucleus is diamagnetic. The other center point is
not distinguishable in this figure, butr the small region of flow about it is
paramagnetic. There is a (3,-1) diamagnetic spiral point along the 0-H bond
~v the LHS and a corresponding (3,+1) spiral point along the other O-H bond.
There is (3,-1) surface point adjacent to the (3,+1) spirel point and a {(3,+1)
surface point adjacent to the (3,-1) spiral point. The intersection of the

interatomic surfaces with the plane is shown.
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Figure 2-19

current density induced in the rnuclear plane of H20 with the applied
field perpendicular to the plane. This figure is a blow-up of Fig. 2-18

viewed from slightly above the C, axis. The protons lie in the foreground.

Also shown is the unique pair of current trajectories linking the spiral

points.
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Figure 2-20

View along the C2 axis of the unique pair of current trajectories linking
the spiral points in H O, see Fig. 2-19. Also shown are a pair of closed
trajectories flowing above and below the nuclear plane and wrapping around the

unique trajectories.
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Figure 2-21

Stagnation graph for HZO viewed perpendicular to the antiunitary symmetry
plane for a field applied perpendicular to the nuclear plane. The labels C, S
and X denote center stagnation paths, saddle stagnation paths and (0,0)
critical points, respectively. The dots apparently lying within the closed
center stagnation path are projections of the spiral and surface critical

points onto the plane. The protons are on the left, out of the plane shown.
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Figure 2-22

Induced current distribution in CH4 in a plane containing the carbon
rucleus and two protons with the applied field coming out of the page. As
with the corresponding orientation of H20 {see Figs. 2-18 and 2-19) there is a
diamagnetic spiral critical point aleng each hydrogen bend, but in CHa they
lie much c¢loser to the bond midpoint. There are four spiral points, four
surface points {filled squares), three center points (dots) and two saddle
points (X} in this unitary symmetry plane. The sum of the indices of the
critical points equals +1, as required by the Poincare-Hopf index theorem.

The intersection of the interatomic surfaces with the plane is shown.
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Figure 2-23
Blow up of Fig. 2-22 and viewed slightly above the antiunitary C_ axis.
Unique trajectories linking the two pairs of spiral points are shown on one

side of the plane.
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Figure 2-24

Induced current distribution in ethene in the nuclear plane with the
magnetic field coming out of the page. The intersection of the interatomic
surfaces with the plane is shown. Center critical points are denoted by a dot
while saddle critical points are denoted by an X. Surface critical points are

denoted by a filled square, while the spiral critical points whose associated

trajectories are not shown are denoted by an open square.

103






Figure 2-25
Phase portrait of the four C-H bond diamagnetic spiral critical points in

ethene for the orientation shown in Fig. 2-24.
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Figure 2-26

The unique trajectories associated with the C-H bond spiral points in
ethene together with a single pair of ocut-of-plane closed trajectories which
spiral about the unique trajectcories and traverse the entire meolecule, one

above the the nuclear plane, the other below it.
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Figure 2-27

Induced current density in Csz in a plane containing the nuclei with the
applied field coming out of the page. The intersection of the interatomic
surfaces with the plane is shown. Center critical peoints are dencted by a dot
while saddle critical points are denoted by an X. Each carbon possesses a

pair of surface critical points, denoted by a filled square.
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Figure 2-28

Stagnation graph for CzH’ in the symmetry plane parallel to the applied
field and containing the internuclear axis. The labels C, $ and X correspond
to center stagnation paths, saddle stagnation paths and {0,0) critical points

respectively. The two out-of-plane center stagnation paths are not shown.
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Figure 2-29

Induced current density in CzHF in a plane containing the nuclei with the
applied field coming out of the page. The intersection of the interatomic
surfaces with the plane are also shown. Center critical points are dencoted by
a dot. There are three saddle critical points in this plane, each denoted by
an X. Each carbon possesses a pair of surface critical peints, denoted by a

filled square.
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Figure 2-30

Stagnation graph for C2HF in the symmetry plane parallel to the applied
field and containing the internuclear axis. The labels C, S and X correspond
to center stagnation paths, saddle stagnation paths and {0,0) critical points

respectively.
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Figure 2-21

Induced current density in CQF2 in a plane containing the nuclei with the
applied field coming out ©f the page. The intersection of the interatomic
surfaces with the plane are also shown. Center critical points are denoted by
a dot. There is a single saddle point in this plane at the center of
symmetry, denoted by an X. There are four surface critical points in each

carbon, each denoted by a filled square.
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Figure 2-32

Stagnation graph for Cze in the symmetry plane parallel to the applied
field and containing the internuclear axis. The labels C, S and X correspond
to center stagnation paths, saddle stagnation paths and (0,0} critical points,

respectively. The two out of plane center stagnation paths are not shown.
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3-1 Introduction

In this chapter magnetic susceptibility and nuclear magnetic shielding
tensors of diamagnetic molecules are investigated. Following a basic review
of the classical understanding of magnetic susceptibilities, the guantum
mechanical perturbation theory approach to defining this property for closed-
shell molecules is described. Expleoiting the relationship betweeﬁ the
magnetic field induced current density distribution and the corresponding
magnetic moment, it is shown that the magnetic susceptibility tensor of a
molecular system can be expressed as a sum of atomic contributions. An atomic
contribution is totally determined by two fundamental properties of the atom:
the electronic charge and current density distributions within its basin and

on its surface. The computed, isotropically averaged atomic and group
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magnetic susceptibilites are shown to be transferable between molecules in a
manner which is consistent with the empirical atomic and group increment
schemes of Pascal. The transferability is a result of the corresponding
transferability of the charge and current density distributions of the atows.
In the case of the normal alkanes, a homologous series in which the methylene
group increment can be defined without an arbitrary reference, the theoretical
group value is shown to be in excellent agreement with the experimentally
derived increment. The elements of an atomic magnetic susceptibility tensor
each consist of two distinect contributions: a basin contribution, which
measures the magnetic moment of the induced current density distribution
within the basin of the atom relative to its nucleus; and a surface
contribution, which measures the magnetic moment produced by the net position-
weighted flux of the induced current density through each of the interatomic
surfaces bounding the atom. The partitioning of the atomic contributions in
this way provides a means for further understanding magnetic susceptibility
tensors. For erample, the unusually large anisotropy of the magnetic
susceptibility tensor of benzene is found to be almost entirely a result of
the corresponding anisotropy of the surface contributions of the carbon atoms,
a result which is consistent with the *"ring-current®" models that have heen
developed to explain the anisotropy.

Nuclear magnetic shielding tensors are also determined by the first-order
magnetically induced current distributions and, as a result, can also be
eypressed in terms of atomic contributions. Like an atomic magnhetic
susceptibility tensor, an atomic NMR shielding tensor is determined entirely

by the electronic charge and current density distributions of the atom. With
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the exception of protons, the shielding tensor for a particular nucleus is
always dominated by the atom containing the nucleus. The contributions from
the other atoms in the molecule are relatively small and the total exterior
contribution to the shielding of a particular type of non-proton nucleus is
nearly constant in different molecules. Thus, the observed substituent
effects in carbon NMR spectroscopy are indirect effects arising from the
perturbaticon of the atom containing the shielded nucleus. Since the hydrogen
atom does not possess core electrons, the range of proton shielding is much
smaller than that for other nuclei and the exterior contributions to the
proton shielding tensor are more significant. For example, the observed 2 ppm
downfield shift of the proton resonance in benzene relatiwve to ethene and the
large 5 ppm anisotropy of the proton shielding in benzene arises almost
entirely from the contribution of the benzene rxing to the proton shielding
tensor rather than from the hydrogen atom containing the proton.
3-2 Background of the Magnetic s:.mc:ox:oi:il:d.lit:yl.'S

Experimentally, it is observed that most substances, if placed in a non-
uniform magnetic field, will move from their initial position. If the field
posesses a gradient only along the x-axis, for example, then such substances
will translate alcong the x-axis, some moving in the direction of the field
gradient, toward higher field strength, others in the opposite direction.

This observed behavior is explained classically by defining a magnetic
dipole moment m for a given substance and expressing the energy of interaction
E(B) between the substance and the magnetic field B field as in egn. (1)

E(B) = -m*B ‘ {1)
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It follows from this relationship that the classical force acting on the
substance is expressed as in eqn. (2), for a field directed along the x-axis
F = -VE(B) = m*VB = J:.m(aBlax) (2)

This force explains the motion of the substance when the B field is not
uniform, and it can often be quantitatively measured. If the field strength B
is increased and the field gradient is kept constant, it is observed that the
force is linearly proportional to the field strength, at least up to moderate
field strengths. This observation implies that the magnetic dipole moment of
substances in a magnetic field is properticnal to the field strength, as
expressed in egn. (3)

m = ¥B (3}

The proportionality c¢onstant ¥ between m and B in eqn. (3}, which is
found to be a characteristic of the substance, is called the magnetic
susceptibility. It is possible to measure the forse in eqn. {2) for different
orientations of the substance with respect to B. If the arrangement of the
melecules in the substance is ordered, such as in a crystal, then it is
generally clhserved that both the magnitude and direction of the force, and
hence m, are dependent on this orientation. These cobservations, together with
an initial torgue (m x B) on such a substance (assumed spherically shaped for
simplicity) which rotates it to a specific orientation with respect to B,
indicate that the magnetic susceptibility is actually a symmetric second-rank
tensor ¥. Thus, the magnetic dipole moment of the substance is expressed :sore

generally as in eqn. (4)

m= B {4)
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The relationship in egn. (4} states that the magnetic dipole moment of
the substance in the presence of the field B is linearly proportional to the
field strength B but is not necessarily directed along the same axis as the B
field. The elements of the tensor X are not unique but depend on the chosen
coordinate system. However, since ¥ is real and symmetric, there exists a
unique coordinate system in which it is diagonal. When the magnetic field is
applied along one of the axes of this coordinate system, the magnetic dipole
moment direction for the substance is coincident with the field direction.
These unique axes are called the principal magnetic axes of the substance and
the corresponding components of ¥ are called the principal magnetic
susceptibilities. If the substance is a molecular crystal, the principal
magnetic axes of the crystal do not necessarily coincide with the principal
magnetic axes of the molecules in the crystal. However, if the orientation of
the molecules in the crystal is known, then the molecular principal
susceptibilities can be determined from the crystal’s principal
susceptibilities if the interactions between molecules is negligible. From a
macroscopically disordered solid or a liquid or gas the individual components
of the susceptibility tensors of the constituent molecules cannot be
determined using this appreoach, in general, but only the average, i, of the
diagonal components of ¥ can be determined. This is because the molecules are
randomly oriented in the bulk substance. Since i is proportional to the trace
of x, it is an invariant quantity egual to the average of the principal
susceptibilities.

The "force" method is by no means the only technique for gathering

information about the x tensor, though it is perhaps conceptually the
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simplest. There now exist a wvariety of experimental techniquesf"j primarily
spectroscopic, for measuring differences in the principal susceptibilities,
ie. the anisotropies of the principal x tensor. These anisotropies, together
with i, often allow the determination of the principal components of .

From egns. {l) and (4}, the relationship between Y and the interaction
energy E{(B) is expressed as in egn. (5)
E(B) = -B*X'B (5)
This classical formula, relating the magnetic susceptibility tensor to the
interaction energy, is the key to defining and calculating x within the
framework of gquantum mechanics, as will be shown in the following section.

Generally, molecular substances can be divided intoc two classes

(ferromagnetic and related materials are excluded from this entire discussion}
according to the sign and magnitude of their average susceptibility x as well
as the variation of this gquantity with respect to temperature. Paramagnetic
substances are those with relatively large positive susceptibilities which, in
general, vary linearly with the field strength and inversely with temperature.
They are now known to be composed of molecules with permanent magnetic moments
which, in the absence of the field, are randomly oriented giving the bulk
substance, even if crystalline, a magnetic dipole moment of zero. In the
presence of the field the individual moment: of the molecules become partially
aligned with the field giving the bulk substance a nonzerc magnetic moment,
the alignment increasing with decreasing temperature and increasing field
strength. The magnetic moment of a paramagnetic substance approaches a
finite maximum value at low temperature and/or high £field strength,

corresponding to perfect alignment of the molecular moments with the field.
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Since the magnetic moment of a paramagnetic substance is always at least
partially aligned with the field, the interaction energy is always negative
{(stabilizing), egn. (5), and a paramagnetic substance translates in the
direction of a field gradient, eqn. (2).

Diamagnetic substances are composed of molecules without permanent
magnetic moments. Instead, the applied magnetic field induces a magnetic
dipole moment in each of the molecules making up the substance, and thus in
the bulk substance as a whole. Diamagnetic substances, wusually, but not
necessarily, possess negative susceptibilities, ie. the induced moment is at
least partially anti-parallel to the B field, with the interaction energy
being positive (destabilizing), egn. (5). Such diamagnetic substances
translate in opposition to the direction of a field gradient, eqgn. (4), ie.
they are repelled from high field regions. Unlike bulk paramagnetic
susceptibilities, bulk diamagnetic susceptibilities are essentially
temperature independent.

The mechanism responsible for diamagnetism (and paramagnetism) is
entirely quantum mechanical in origin5 and, as will be shown below, is
actually present in all substances. In paramagnetic substances the
diamagnetism is not directly measurable because the magnitude of the
paramagnetism is usually much larger. Nonetheless, diamagnetism is a
universal property of matter, and it is thus the physics of diamagnetism that
is addressed in this work.

From a chemist's viewpoint, perhaps the most well known results

1-4,8-9

associated with diamagnetism are those initiated by Pascal et al, who

devised simple but powerful schemes for predicting the diamagnetic
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susceptibilities of complex compounds based on a set of transferable atomic
and group contributions defined from the measured susceptibilities of
relatively simple compounds. Prior to the development of NMR (primarily)
measured diamagnetic susceptibilities together with the empirical increment
schemes were significant tools in determining meolecular structure as well as
chemical composition.

Another well known result associated with diamagnetism is the very large
magnetic susceptibility anisotropy that certain cyclic, aromatic compounds
such as benzene exhibit.l-v The principal susceptibility of benzene
corresponding to a field applied perpendicular to the plane of the ring is
nearly three times as large in magnitude as the principal susceptibilities
corresponding to fields applied parallel to the plane of the ring. This
cbservation prompted the proposition of wvarious “ring-current' modelsbv in
order to explain it, whereby the enhanced magnetic moment resulting from a
field applied perpendicular to the conjugated ring is attributed to an
enhanced, delocalized electronic current flowing about the ring, as opposed
to the localized, “atomic-like" currents which were inferred £from the
successful atomic increment schemes.

This work is an attempt to understand the physical basis of the
observations mentioned above as well as other aspects of molecular
diamagnetism.

3-3 Quantum Theory of the Diamagnetic Susceptibility Tensor xloqﬁ
A quantum theory of the diamagnetic susceptibility tensor most eagily

begins with ean. (5), which relates X} to an energy, a well-defined property in
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quantum mechanics. Following this approach, in order to define y for a
guantum molecular system one needs to define the energy of the molecule in the
presence of a magnetic field, E(B). In accordance with the experimental
conditions under which » is usually measured, the theoretical magnetic field
is static (time-independent), and uniform throughout the molecule (field
gradients present in the experiment refer to macroscopic dimensions). The
electronic Schrodinger equation in this case is given in eqn. (6) for an N-
electron molecule with no net electron spin (S=0), where the Born-Oppenheimer

approximation is assumed and all non-coulombic internal interactions are

neglected.
N N
A a5 ~ A 2.2 9
Y = (1/2m) ) (1Y« W = (1/2m) (p;+(e/c)A Y + VY
i=1 i=1
N
=v%% . [ {(E/mc)x ‘; + (92/2mc2)£?}¢
(i i
i=1
N
= 8% + T (le2me)p-L, + (2/8nc’)Be(Tr - xx 1-B)Y
i i 11
i=1
= 8% + 8y o+ 8% = mm)y e

~N

In this equation, ni is the canonical momentum operator for the ith electron
which is defined, according tc Hamilton's principle, from the Lagrangian
equation of motion for the electron in the presence of B. The operator Li is

~ )
the angular momentum operator for the ir'h electron, equal to (ri X pi), while

I is the unit tensor.
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The quantity Ai in egn. (6) 1s a vector potential for the ith electron
which is defined to yield the magnetic field B through Maxwell's equation,
given in eqns. (7)

vV-B 0

B = Vaxa
i i
v =

Vix if(ri) 0
~ B =V x[A+V fir

i [ Yy {r)] (n
but it is not unique because the addition of the gradient of any scalar
function f(rl) to Ai leaves B, and therefore properties determined through
interactions invelving B, unchanged. For a uniform magnetic field the
potential Ai can be expressed as

N

A = (L/2) (B x (rl-ro) (8)
which is the form used in eqn. (6). Choosing this form for Al is simply based
on convenience: because Ai in egn. (8) 1is divergenceless (Vl'hlz 0),
Schrodinger's equation, eqn. (6), is simplified. Nonetheless, even this form
of the vector potential is arbitrary with respect to an origin x, for the
electronic position vectors r. A shift in the origin of Ai by an amount 4
corresponds to f(rﬂ = (1/2)(Bxd)'r1 in egn. (7} and does not affect the
simplifying relation Vi'Ai= 0 or the energy E(B) calculated from eqn.(6).

In exact treatments of egn. (6) the arbitrariness of Ai is unimportant,
but in approximate methods it becomes very important. This is the *gauge
problem".13 commenly encountered in calculating magnetic properties of

s . 7,
electronic systems. Chapter 1 describes the methods1 18

used in this work to
overcome the gauge problem, so it will not ke considered further here.

To obtain a diamagnetic susceptibility tensor from the energy E(B), one
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can expand E(B} in a Taylor series about B=0, as in egn. (9)

g = 7 w2t v 2m .

= 'y (VE(B)) *B + (1/2)B-UV(E(B))__ ‘B + ... (9)

and identify the Hessian of E(B) evaluated at =zeroc field strength,
VV(E(B)“k”, with -2 in accordance with classical expression for E(B) given
in eqgn. (5). With this jdentification, to calculate y completely for a

"
molecule it is necessary to determine the energy E(B) to second-order E(B)(J

in a general uniform magnetic field B(BK.By,B~). Standard perturbation theory

can be used to obtain E(B)m) from egn. (6) if the unperturbed molecular

problem has been solved.
Following the perturbative approach, the first-order correction to the
energy, E(B)(l,, of the molecule perturbed from the ground state wéo’ is given

as in egn. (10)

n

oy * {0}

0y 201, (0
o ILiIlIt0 > {10)

o IH twn > = {(e/2mc)B" E <yl

i=1

T L

(o)

Defining the field-free orbital magnetic moment operator m as in egn. (11)

N N
n'% = -(e/2mc) [rlxsl = -(e/2mc) [Ei (11)
i=1 i=1
the first-order energy can be written in analogy with the classical expression
of eqn. (1) as
(0}, ~(0)

e = -l im |w;°’>-a (12)

0y "to 0 . . .
where <w;)lm()lwé)> is the orbital magnetic moment of the unperturbed

molecule, ie. the permanent orbital magnetic moment. For closed-shell
molecules, the only molecules of concern in this work, w;O, can always be

chosen real. Since E({B), and therefore E(B)(lt must be real, and since
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E(B)m is an expectation wvalue of the imaginary operator m E(B)“‘ must
be zero in these molecules, ie. closed-shell molecules possess NO permanent
orbital magnetic dipole moment. In open-shell molecules <;>m) can be non-
zero and, in addition to this orbital magnetic moment, a molecule can possess
a permanent magnetic moment arising from the net spin of the electrons if the
molecule is in a non-singlet state. Since open-shell molecules have permunent
magnetic moments, they are paramagnetic.

It is important to recall at this point that the classical linear
relationship between magnetic moment and £field strength refers to bulk
substances whereas eqn. (12) refers to a single molecule whose magnetic moment
is independent of field strength. A statistical mechanical treatment' ' of an
ensemble of such molecules shows that the moment of the bulk substance, which
is the sum of the molecular moments, is linear .n the field strength and
inversely proportional to the temperature of the substance as long as the
ratio B/T is not too small.

Since open-shell molecules also have non-vanishing second-order energies,
they, like the closed-shell molecules of interest here, also possess a
diamagnetic contribution to the total susceptibility, as will become clear
below.

Ti.e second-nrder correction to the energy of the molecule in the B field,
E(B)‘zl, is given in eqn. (13)

5@ ? = 172) (<l Y 1 @rseap™ @) 187 190> ey 10> ()
where Y ({B) ) is the first-order correction to the wavefunction due to the

magnetic field perturbation, as given in egn. (14)
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In this equation, ¥ nd E represent the nth eigenstate and eigenvalue,
n n
respectively of the unperturbed electronic Hamiltonian H(O).
Explicitcly, E(B)“” is expressed as in eqn. (15}
(0)__(0) =1 {0} (1) o 10) . (0) () {0y 2(2), ,10)
E(B) Z[(E ) e i e et “‘bo >} + <) 18! ">
(-] N N
(0)_ptodhy ~1g, (0 o {0) (o) > o,
=(e’/am'cy ¥ (e B ey Y 19 > 1 Ytz ) 1 >0 B)
n=1 i=1 i=1
2 2 {0} 2 (0)
+ {e"/8mc )B'<lpD I[Ir1 - T, ]Iw *B (15)
Using egns. (5) and (9), the & component of the diamagnetic
suuceptibility tensor, x“B, can be obtained from E(B) as in egn. (16)
2 2 {2)
qu = {-1/2)(d E(B)/aBaaBB)a=o = (-1/2) (8"E{(B) /aBaaBB) {16)
Using egn. (15}, xﬂﬁ is expressed explicitly as in egn. (17)
N N
PR 2 2 (0)__ {0) -1 (0) (0) (0) (0)
Xog= (e /an'e’) ): (g, -£!") R AN 1} = ""1’{3 ¥,
i=1 i=1
+ :-32/4mc2)<qb | (8 - ]w;“” (17)
aB 1 ot

Egn. {17} is the Rayleigh-Schrodinger perturbation theory expression for
the diamagnetic susceptibility tensor Y of any molecule.10

Alternatively, one can obtain the same expression for x from eqn. (4) and
the Hellmann-Feynman12 theorem by defining the magnetic dipole moment operator
;(B) in the presence of the B field, in analogy with the field-free case, as
in egqn. (18)
;1 = [;1 + (e/c)hll
n ;(B) = -(e/2mc)rix;t1 (18)
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Expanding the expectation value of this operater «m(B)> in terms of B, as in

eqgqn. {19)
<am(B)> = <m(B)>"' + <am(B)> +
~(0)
= «<m "> 4+ X*B + ... {19)

leads to the following expression for Y

xaB = (=5‘~=m(E!):-m/EJBB)B=o (20)

Noting, from the Hellmann-Feynman theorem, that

(8E(B)/3B) = <(aﬁ/aau)> = -<m(B)>, (21)
it follows from egns. {(20) and (21} that the expression for xGB given in eqn.
(16) is again obtained. It is repeated here as egn. (22)

= —(1/2) (aza(n)/asaas (22)

xch B)B:O
Because of the indistinguishability of electrons, the explicit
expression for xaB given in egn. (17) can be usefully written in terms of the

~
operators r and p for a single electron, as in eqn. (23)

L ]
_ 2,, 22 (0} __(0), -1 (0} » {0 {0) ~ oy
Xeg = (Ne'/dme) Yo B e T e 19 g T (e glY,
n=1
+ (e27amc?y [ar'p' % ()18 o - x,] (23)

aff o« f

where p(m{r) is the ground-state electron density and the integration in the
second term is over all electronic spin coordinates and the spatial

coordinates of all electrons but one.

1
3-4 Relationship of y to the Magmetically Induced Current Density J()(r)
It is possible and useful to express X in terms of a more fundamental,

and independently observable quantity, the electronic current density J(r)
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induced by B, which is given in general form in eqn. (24}
H
) *A s *
J(r) = (-e/2m) zIdr W' w Y v (g Y] (24)
Ci=1
where dt’ again refers to the integration over the coordinates of all N

electrons but one. Using Rayleigh-Schrodinger perturbation theory, the

induced current density to first-order in B, gt (r), is as follows

3]

(0)** 1w, (0}

3 ()= (-e/2m) Zjdr R TR A X AN TS R TS
i=1
{0}, (0)
- (e /me) E J-d"cl.b l,b Al
i=1
N
c (-e/m) X ,[dt [wm)p n.b“' wmp w(m _ (e /me) ): J‘d llfm (01
i=1
= {-Ne/m) J.d't In,b(mpl,bm - w‘l,;w;m] - (ezlmc)pm(r)n
[ 4} .
= (-te/m) ¥ (8} - B gl 1z x 0219l Idt "' - 9Oyl
n=1
2 {0)
- (e /me)p  (r)A) (25)

The topeclegy and other properties of the J (r) vector field are analyzed in

detail in Chapter 2.

(”(r) in eqn. (25) and the expression for ¥

(1}

From the expression for J

given in egn. (20), the following relationship between X and J  '(r) is

obtained19

= -(1/2Bc) |drir x J“)(r)]u (26)

*og 8

1 . . . :
where J' ,(r) is the first-order wvector.  current density induced by the B

B
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component of the magnetic field, and the origin of r is arbitrary since the
total induced current of the molecule is zero. From the relationship between
X and the first-order magnetic dipole moment m(B)m given in eqn. (19), the
well known classical relationship between a current density distribution and a

. . . 19
magnetic dipole moment is seen to hold for guantum molecular systems.

n@ 'Y = -Bexy = (1/20) [dz(z x Jé“ ()] (27)

3-5 Atomic Contributions to Magnetic Susceptibility Tensors

Egn. (26) is the starting point for defining a diamagnetic susceptibility
tensor xaﬁ(n) for an atom f1 in a molecule.20 The aspects of the theory of
atoms in molecules relevant to this work are summarized in the Appendix. The
most obvious definition for xaB(Q) would simply be to restrict the integration
in equation (26) to the basin of the atom, a definition which will be labeled

f

xaB(Q) and is given in eqgn. (28)

!

(1)
*ag

y = —(1/23c)Iﬁr[r x Jh (:)]a L A28)
Q

Since the partitioning of molecules into atoms is disjoint and complete, such
a definition satisfies the physical requirement that the atomic contributions

xaB(Q) sum to the molecular value xaﬁ' as in eqn. (29)

g = L, %@ | (29
Q

However, x;B(Q), as defined in egn. (28), is origin dependent, and
therefore of little use, since the total induced current within an atom is not

necessarily zero as it is in the molecule as a whole. A useful definition of
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xaB(Q) must be origin ‘ndependent and be determined only by other properties

of the atom so that it can be compared among different environments. Such a
definition is possible by first expressing the electronic position vector r as
in egn. (30)

r=r._. + R (30)

where RQ is the position vector of the nucleus of atom § relative to an

arbitrary origin and r_ is the electronic position vector relative to the

Q

nucleus. With this substitution x;B(Q) becomes

‘o = '(I’ZBC’[I‘:"Q[’Q x a”’(:n)]a + Ry x Idra‘”(r)}

o 8 g
Q Q
- -(I/ZBC){Jdr [z, x 3 (e )1+ rox 3@ (31)
- Q- Q B 2o Q B )
Q
where Jé“(ﬂ) is the average vector current induced in atom { by a magnetic

field applied in the B direction. In egqn. (31) the origin dependence of

’ {Q} is contained in the second term only, through the nuclear position

*ap

R..
vector Q

Since the average induced current of the molecule is zero, Jél)(ﬂ) can be
replaced by the minus the average induced current of the remainder of the

iy,

molecule Q', J, (), resulting in eqn. (32)

B

‘ - (1 _ (1 o
xaB(m = -{1/2Bc) (-[d::-n[:l.-n x J’B (:'.".2)]0z RQ X JB (Q)} (32)
Q

The regicn Q' of the remainder of the molecule is naturally partitioned
into atoms or groups of atoms n“. each of which is separated from atom 2 by

an interatomic surface S(Q,Q”), a portion of the total surface S(Q) of atem R

which is defined by a critical point in the charge density distribution
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embedded within S{fl) (see Appendix). In the ethanol molecule for example, the
methylol carbon is linked to the four groups: Hl, Hb, CH3 and OH separately
through the four (3,-1) bond critical points in its surface. with this

partitioning of Q' the expression for x;B(Q) becomes

‘ _ (n _ g !
xaB(QJ = (1/28c){Jer[rQ X JB (zdl, * [}’RQ x B (Q, ) )11 {33)

Q

The origin dependence of this expression is completely removed by the

substitution
- -— GP F -
RQ > (RQ Q RQ) (34)

for each term in the summation over Q", where Rapgaf is the position vector
of the critical point linking group Q"' to atom Q. with this substitution,
one obtains the following origin independent expression for the diamagnetic
susceptibility tensor of atom R

) =
xaB( )

_ {1) <P ,, _ (1)
(1/28e) (|dzrglzg = Jg (:Q)]a+z LRy g R) x J

' Q B {2 )1} (33)
Q Q

With a similar expression for each atom in the molecule, the physical
requirement that the atomic contributions xastn) sum to the molecular value

xaB is preserved, as shown in eqn. (36)

):xasm) = (~1/2Bc) [ {Id‘n[’ x Jél) (7)1, +[ LR g = Ry x {‘3“(99 )1}
Q 0 Q'

= z x;ﬁ Q) + z R:P é“ {MOL)
Q

i=1
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= ) 2,50 = (36)

In the second line of this equation, each term in the summation over the
eritical points i vanishes due to the conservation of current in the molecule,
(11
J ({MOL} = 0.
B
The expression for xaB(Q) in equation {36) c¢an be recast in a more

physically revealing form with the use of the following identity,

{1} (n (1) {1}

J r) = V(J rir) - TV-J r) = V(T r)r 37
g ( { 8 (z)x) B {r) { 8 (r)x) (37)
which is valid for the stationary states considered here since V-Jél)(r) = 0,

. . . : . . . : 12
ie. the first-order current density satisfies the continuity equation, as

was shown in chapter 1. Substituting eqn. (37) into egn. (35) one obtains

[
Xeg(® = -(1/2Bc) [Jdrnlrn x 3!z, +
Q
z [(nspnu - Ro) x IdrV-(Jé“(r)r)]] (38)
nfl’ r’

which, upon application of Gauss’ theorem, becomes

1y =
xaB( )
_ (1) ep - ryLql2)

(I/ZBC){Ier[rn x Jg1 (xgh1, + {“““n,n” Ry X IdS(Q,Q )35t (m)x])
Q Q

= 20 () + 20 () (39)

«f af

Thus, the atomic magnetic susceptibility tensor, xaB(Q)' consists of two

distinct contributions: a basin contribution xZB(Q) which measures the

magnetic moment, per unit applied field, of the induced current density
distribution within the basin of atom 2 relative to its nucleus; and a

surface contribution sz(Q) which measures the magnetic moment per unit
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applied field arising from the position-weighted inward flux of current
Jé”(r) through each of the interatomic surfaces S(Q,Q") bounding atom Q.

Egn. (392) is the final expression for the contribution of atom f to the

molecular magnetic susceptibility tensor .

3-6 Computational Methods and Units

The results reported in this work were obtained using coupled-perturbed
Hartree-Fock theory (more precisely SCF perturbation theory)ls together with
the IGAIM17 and continuous gauge transformation methods18 described in chapter
1. None of the relationships between observable properties or definitions of
atomic gquantities given in the previous section are changed by using the
perturbed SCF approximation, though the results for the individual properties
certainly can be. The perturbed SCF first-order wavefunctions were obtained
using a locally modified wversion of CADPAC.2l All of the magnetie
susceptibility results are reported in cgs units multiplied by 10“. ie. cgs-

ppm. Negative values are diamagnetic while positive values are paramagnetic.

3-7 Results for Magnetic Susceptibility Tensors
3-7-1 Pirst-Row Hydrides

Shown in Table 3-1 are the calculated principal components, xl and x“. of
the magnetic susceptibility tensors for a set of closed-shell Efirst-row
hydrides AHn, where A is either H or one of the atoms of the first peried, Li
-»> F. The parallel component x" refers to a field applied parallel to the
principal rotation axis of the molecule while the perpendicular component xl

actually refers to the average of the susceptibilities for two mutually
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orthogonal fields applied perpendicular to the principal axis. Table 3-1 alsc
shows the average of the principal components, i = {1/3) [2xl + x"], as well as
the corresponding experimental gas phase values, when available. Finally, the
total basin xb and surface xs contributions to xl, X, and ¥ are shown in Table
3-1. The calculated values for i are in good agreement with experiment in
those cases where comparison ir possible.

Table 3-2 shows the ceontributions of the hydregen atoms to the guantities
given in Table 3-1, along with their net charges g(f). The corresponding
results for the A atoms can be obtained by difference from these two tables.
In Figs. 3-1 through 3-8 maps of the non-trivial current density distributions
induced in this series of molecules are shown for at least one of the
principal orientations while in Fig. 3-9 the sizes and shapes of the atoms, as
determined by the charge density distribution, are shown.

The trends in the atomic contributions to ¥ are as anticipated on the
basis of the variations in the charge and current distributions. The
magnitude of the basin contribution to ¥{H) decreases through the series from
its maximum wvalue found in LiH, paralleling the decreases in its electron
population and atomic veolume. The value of i(H) for H2 falls between CHQ and
NHJ, as does its net charge. The basin contributions to x(A) are positive for
Be and B, their values being dominated by the paramagnetic currents induced in
these atoms by the L1 fields. The increasing extent of the paramagnetic
current centered within the basin of the A atom, and its associated positive
contribution to xl, accounts for the decrease in the magnitude of i in the
ionic systems LiH, BeH,. and BH, despite a steady increase in the magnitude of

the diamagnetic x“. These paramagentic currents for a perpendicular field are
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so large in BI-I3 that the molecular wvalue x¢ is actually slightly pesitive due
to a near cancellation of the much reduced diamagnetic basin contributions
with the paramagnetic surface contributions. The molecules BeH_ and BH ave

therefore predicted to possess large negative anisotropies, X, "X, equal to

L
-7.35 and -17.55, respectively. The anisotropies of the basin contributions
to E(A) and in i itself become increasingly smaller for M, O and F reflecting
the increasing dominance of the central nucleus in determining the form of the
charge and current distributions. The contributions from the current fluxes
through the interatomic surfaces are smallest for the ionic systems and for
the most polar molecule, HF. They are largest for methane where the valence
. charge distribution is nearly equally shared between the C and H atoms. While
the basin contribution to ¥ in methane is somewhat less in magnitude than the
maximum value for ib attained in ammonia, the significantly larger surface
contributions in the non-polar CH4 give this hydride the largest magnetic

susceptibility.

3-7-2 Firat-Row Methane Derivatives

Consideration of the magnetic susceptibilities of the compeounds obtained
by replacing one H in AH, by a methyl group enables one to determine the
extent of transferability of the contribution of the AH, , group between the
twe sets of compeoun-ls and determine as well the variation in the values of
i(CH3). Shown in Tables 3-3 and 3-4 for the first-row methane derivatives are
the quantities analagous to those listed in Tables 3-1 and 3-2 for the hydride
series. The experimental gas phase values for ¥ are listed in Table 3-3 when

available and are again in good agreement with the calculated results.
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The net charge on the methyl group in CI-I:"JM-IH.1 is almost the same as the
charge on H in HAH,; and thus the charge on the AH, ;, group Iis
correspondingly similar for the two sets of compounds. Paralleling the net
charges, the wvalues of the basin and surface flux ceontributions to i(Aan)
exhibit nearly identical variations throughout both series of molecules, as
does, therefore, ;_z(AHn_l) itself. They are remarkably similar for the ionic
members in the two series, A = Li to B. This result is consistent with the
localized nature of the electronic charge and current distributions with
respect to the H|AH,, and CH,[AH,_, interactions for these ionic systems, as
reflected in their small surface flux contributions, iﬁ(AHn_ﬂ. The largest
changes in i(AHWJJ, = 9%, are found for the methyl and amino derivatives,
those systems with a shared interaction across the interatomic surface with
the A atom and for which the surface f£lux contributions are maximal. While
the changes to the surface flux contributions themselves are relatively small,
their large magnitude indicates a strong interaction between the tweo groups
sharing the surface, and the basin contributions reflect the change in the
interacting partner. The c¢hanges in i(AHn_l) and its basin and surface
contributions are somewhat less for the most polar compounds, those containing
O and F, but the charge and current distributions are not localized within the
individual atomic basins here as they are for the ionic systems. The
magnitude of E(CH3) and its basin and surface contributions all decrease
substantially through the series, paralleling the flow of electronic charge
from methyl to its bonded partner, as is also observed for the H atom. The

spread in the value of q(CH;) is indicative of the substantial changes that
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ceoccur within this group as its bonded neighbour changes from Li to F.

It is possible to observe an almost constant transferable contribution to
i even from a very electronegative group such as |OH or |F if the group is
buffered by one or mere methylene groups. This is illustrated by the data in
Table 3-5 which lists a number of properties of the OH and F groups in H|OH
and H|F along with the values of p and Vzp at the bend critical peoint which
generates the surface bounding the group. Succeeding entries in Table 3-5
give the changes in the values of the properties, relative to the values for
the preceding compound, upon the addition of a CH, group. The values of all
properties change considerably when a methylene group is interspaced between H
and the electronegative group X to transform HX into the methyl derivative.
The addition of a second methylene group causes only small changes, changes
which become smaller still for the addition of the third methylene group te
give the propyl derivative. Even with three methylene groups interspaced
between the original point of substitution, however, there are small but
significant perturbations transmitted to the surface and basin of the X group,
perturbations which are responsible for the NMR chemical shifts.
Experimentally, the X group would appear to contribute a fixed amount to the
magnetic susceptibility of the normal alechols following ethanol, with even
the field-free total energy of the group changing by only 2 kcal/mol.
Contributions from a given group to a molecular system's properties can assume

constant values when the group is sufficiently isolated from the point of

substitution.

3-7-3 Hydrocarbons
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The first set of ceompounds for which measurements indicated an
incremental behavior of the diamagnetic susceptibility were the normal
hydrc:car}:x:ms.1 Initially I-{enrichson,':'T and later Pascnlﬁ'q ansd othors,'w
observed that the isotropically averaged diamagnetic susceptibilities x of the
normal hydrocarbon series obeyed the following additivity relationship te
within experimental accuracy,

X[CH_(CH,) CH ] = 2X(CH.} + nX(CH,) n=l, ... (40)
a relationship which implies constant methyl and methylene group diamagnetic
susceptibility contributions within a given molecule as wall as  their
transferability between different molecules. While the many workers who have
investigated the normal hydrocarbons disagree {primarily based on the
experimental data) somewhat on the best values for i(CH]) and i(CHJ),
virtually all agree that the *“best* wvalue for i(CHJ) is about -14.2 * 0.3
while that for i(CHﬁ) is -11.5 * 0.3 In particular, Pascal’'s values are
i(CHB) = -14.3 and i(CHz) = -11.3.1'3 The normal hydrocarbons are unique in
that they are probably as close as one can come to experimentally determining
an atomic or group property within a molecule, without the use of symmetry.
These molecules are therefore useful for theoretically investigating the
additivity and transferability of atomic and group contributions to the
diamagnetic susceptibility.

Table 3-6 shows the calculated principal values of the X tensor for the
molecules methane through pentane. The lonéitudinal componeant Xy refers to a
field applied along the carbon chain while the components xli and xlq refer to
fields applied perpendicular to the carbon chain. The field for xll is

parallel to the plane defined by the carbon nuclei, while the field for X, is
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averanges x are also given in Table 3-6 to indicate the accuracy of the results
and the reliability of the interpretation given below.

Nont of the molecules in the series shows a large anisotropy in the
magnetic susceptibility tensor but the longitudinal susceptibility X, is
slightly larger than the perpendicular susceptibilities xll and xlo for all of
the molecules {except methane). Unlike the electric polarizabilities25 where
the anisotropy a" - al increases nearly five-fold Erom ethane to pentane due
to a field-induced transfer of charge a.ross the length of the carbon chain,
the anisotropy of the ¥ tensor remains roughly constant through the series.
Each entry in the column labeled 83y in Table 3-6 is the difference between the
isotropic susceptibility of the corresponding molecule in the table and that
of the previous member of the series, ie. the change in E upon the addition of
a CH2 group to the previous member of the series. Based upon experimental
results for the higher members of the series, the increment is expected to
level off near the value in pentane.

Table 3-7 lists the contributions from the methyl and methylene groups to
i, together with the separate basin and surface contributions, ib and is. The
group contributions to i exhibit the same pattern of transferability as do the
corresponding group contributions to the volume, energy, E£irst moments and

. tq s 20,25
mean polarizability.

Reference 25 provides a full discussion of this
point. Briefly, a methyl group in molecules following ethane in the series is
bonded to a methylene group from which it withdraws a small fixed amcunt of
charge, -0.0l18e¢, an amount independent of chain length. The decrease in

energy of the methyl group resﬁlting from this charge transfer is equal to the

increase in energy of the methylene group and consequently, energy as well as
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increase in energy of the methylene group and consequently, energy as well a:s
charge is conserved. The value of X(CH;) in ethane is theretfore somewhat less
thapn its value for the methyl groups in the remaining molecules, for which it
remains essentially constant. The value of i(CHJ) for the methylene group in
propane, since it contributes charge and energy to twe methyl groups, is
slightly less than the wvalue of i(CH:) for the other molecules wherein two
methylene groups are each bonded to but a single methyl and the middle
methylene is pentane is bonded only to other methylena2s,

The transfer of charge and energy from CH., to CH; is damped by a single
intervening CI-[2 group and thus the central methylene group in pentane should
exhibit a zero net charge and possess the energy of the repeating transferable
methylene group, labelled CH?. The difference in i(CH:) for this methylene
group and those bonded to a single methyl is so small for the magnetic
susceptibility, that the value i(CH?) for the central group in pentane falls
within the average value of those obtained for the methylene groups bonded to
a single methyl.

The value of i(CHa) for the transferable methyl group is -14.50 with a
mean deviation of * 0.02. The same degree of transferability is found for the
methylene groups, with i(CHQ) equal to =-11.54. The wvalue assigned to the
central methylene group in pentane is equal to the incremental difference in
the wvalues of i for the butane and pentane molecules, to within 2%. Thus,
theory defines the transferable methyl and methylene groups in this series of
molecules.

The underlying basis for the transferable nature of the susceptibilities

for these groups is illustrated by the displays of the magnitude and the curl
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of & for the butane and pentane molecules shown in Fig. 3-10.

The central transferable methylene group c<an be represented symbolically
by ICHZI, with the vertical bars denoting the two interatomic surfaces linking
the group to the remainder of the molecule, and graphically through a display
of the two interatomic surfaces and their intersection with the 0,001 au
isosurface of the electronic charge density, Fig. 3-11. This envelope
deteyrmines the van der Waals shape of the group and replaces those portions of
the atomic surfaces which occur infinitely far from the nuclei.20 This
distribution of charge in real space, up tc and including the interatomic
surfaces, is transferable without detectable change from pentane on, in the
succeeding members of the homologous series. Thus, as demanded by the atomic
force theorem,20 the transferable group contributes a constant amount to the
average value of each property in every molecule in which it occurs. As shown
above, these properties include those induced by externally applied magnetic
fields, and it is therefore an observation that if the charge density
distribution of an atom is transferable between systems, then so is the field
induced current density distribution and its dependent properties.

The theoretical CH2 and CH3 group values are close to the corresponding

contributions quoted by Pascal and ‘E’E.!.»::::u.xlt:,3'9'23

equal to -14.3 for methyl
and -11.3 for methylene, values obtained by fitting experimental values of i
for a wide range of homologous series. Taking into account the spread
displayed by the experimentally determined group values which can be as large
as 1, it is clear that the methyl and methylene groups of theory explain the

experimentally observed additivity of the magnetic susceptibility for the

normal Lydrocarbon molecules.

139



The same pattern of transferability is exiiibited by the sepavate basin
and surface flux contributions to the group values. The surface flux
contributions to i are comparable to those from the atomic basing, a
reflection of the shared nature of the valence electron density and current in
these molecules, as illustrated by the map of the current density shown for
ethane in Fig. 3-12., There are internal flux contributiens from each of the
C-H surfaces of the group as well as a contribution from the external C-C
surface which is -1.27 for a transferable methyl group. A methylene group has
twe external ¢IC interatomic surfaces, Fig. 3-11. The corresponding
contribution to EF(Cﬂz) for the flux through each C|C surface is -1.31, close
to the corresponding wvalue for the methyl group. The individual atomic
contrilutions to the group values exhibit the same degree of constancy as
found for the complete group, the value of ib(H) for one of the two equivalent
hydrogens of methyl, for example, exhibiting a variation of #0.01 about a mean
value of -1.47. Because of the constancy in the charge distributions of the
methyl and methylene groups in this series, all properties are similarly
transferable.

The group susceptibilities in isobutane and neopentane have also been
calculated at the same level. These results, together with both the
calculated and experimental values for ¥ are summarized in Table 3-8. The
value for i(CHB) in both of these molecules differs by less than 0.2 from the
transferable value defined by the normal hydrocarbons. In isobutane the
surface contribution to the methine group susceptibility X{CH) is slightly
larger than the basin contribution while in neopentane the surface

contribution to the quaternary carbon susceptibility i(C) is twice as large as
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the basin contrilution due to the four C-C interatomic surfaces bounding the
group, each of which contributes -1.42 to the total value of is(C). The
closeness bhetween the i(CH3) values in neopentane and iscbutane with that of
the transferable value defined by the normal hydrocarbons suggests that a
simple theoretical group increment scheme bas<d on the values of i(CH3) and
i(CHE) obtained from the hydrocarbons together with the i{CH) and i(C) values
obtained from isobutane and neopentane should predict reasonable values of ¥
for any saturated hydrocarbon, branched or unbranched. This is indeed the
case as the data in Table 3-9 shows. The slight but consistent overestimates
of the predicted susceptibility magnitudes are consistent with the slight
overestimates calculated for the molecules from which the group values were
derived.

It is not the purpose of Table 3-9 to suggest that a group incremen.
scheme for hydrocarbons based on theoretical group susceptibilities could
supplant the powerful empirical schemes, at least not yet. The purpose of
Table 3-9 is to demonstrate that the empirical additivity relationships have a
basis in physical theory. The theoretical group susceptibilities are defined
and calculated, without adjustment, entirely in terms of quantum mechanical
observables, the charge density and current density distributions, together

with the guantum mechanical definition of a subsystem.20

3-7-4 Benzane
Benzene exhibits an wunusual and historically significant magnetic
susceptibility tensor in that it possesses an unusually large anisotropy for

an organic meolecule with a full valence she11.1-4 The experimentally measured
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susceptibilityg': for a field applied perpendicular to the plane of the ring,
-94.5, is nearly three times that for a field applied in the plane of the
ring, -34.5. This observation has prompted the development of various "ring-
current® models to explain it,' " models which are still being used tov
various purposes today. The physical basis for the ring current models has
been addressed by many researchers, = but, in the opinion of the author, ne
satisfactory analysis of the situation vyet exists. To investigate the
physical basis for the ring-current model, or more importantly the observed
anisotropy, one must first and foremost study the current distribution
responsible for the magnetic susceptibility. Assuming a means for determining
this distribution reasonably accurately is .au.v'.ail.a.ble,”'“l one then requires a
definition of an atom in a moleculé.20 for the ring-current models (as applied
to benzene) are explicitly based on the interatomic flow of electronic current
in the molecule. Finally, one needs a measure of the contribution of this
interatomic current flow to the total magnetic susceptibility.

In Table 3-10 the calculated values of the principal magnetic
susceptibilities of benzene are shown together with their atomic
contributions. Both the parallel X and perpendicular xl components of x are
calculated to be about 10% larger than the experimentally measu;ed components.
The calculated anisotropy, 4y = -67.7, is also about 10% larger than the

. . 26,27
experimental value. Lazzeretti et al

]

and Augspurger and Dykstra2 have

recently reported calculations of the magnetic properties of benzene using a
. s s . . 27 .

single gauge origin at the charge centreid. Lazzeretti et al use basis sets

of increasing size, up to a very large one consisting of 474 primitives,

contracted to 396 basis functions, the latter yielding wvalues for x and its
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anisotropy of -62.7 and -68.2, respectively. Augspurger and Dykstra use a
basis set comparable to the one employed here and obtain values for ¥ and Ay
of -89.62 and -48.59, respectively. Both sets of results are in poorer
agreement with the experimental \.ralue-sﬁ'7 of -54.8 for i and -59.7 for Ax than
are the results given in Table 3-10, which were caleculated using the IGAIM
method.lv In any case, the molecular values reported in Table 3-10 are
certainly sufficiently close to experiment to allow a more detailed analysis,
one whose results will be at least gualitatively accurate.

Showr in Fig. 3-13a is the current induced in the nuclear plane of the
benzene molecule for a field applied parallel to the principal axis. A set of
diamagnetic current loops is found in each of the C-C and C-H bonded regions,
with the center points for the former lying in the C-C interatomic surface.
Bonded sets of current loops are characteristic of a shared atomic
interaction, one for which the Laplacian of electron density, Vzp, exhibits a
corresponding shared charge concentration in the bonded regicm.20 A map of
the laplacian of the charge density is shown in Fig. 3-13d to illustrate this
point. Shown in Fig. 3-13c is the VxJ map in the same plane. This map mimics
not only the shell structure of Vzp, but also its bonded features, the flux
antiparallel to B in the valence shell of vx3'!? for a carbon atom forming
three shared regions with its bonded neighbours. There are two more center
points in the basin of each carbon atom, Fig. 3-13a. One is slightly
displaced off the nucleus toward the ring side and serves as a centre for a
diamagnetic flow. The other is found in the core shell where the flux in the
curl of J is parallel to B and thus serves as the center for a paramagnetic

flow. Both regions are relatively small and contribute little to the magnetic
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susceptibility.

The outermost valence shell in the VxJ field for the carbon atoms overlap
one another in the ring’'s interier, Fig. 3-13¢. Since the tlux in this shell
is parallel to B, the (2,0) center point at the ring center and its associatead
stagnation path serve as the axis for a set of paramagnetic current loops.
Thus the shell structure of the curl of J provides a simple explnantion of
the origin of the central paramagentic current in benzene. This behaviour is
also to be predicted on the basis of the analogous shell structure exhibited
by Vzp, which is positive in the ring interior, as a result of the overlap of
the ccrresponding valence shells of charge depletion of the atoms forming the
ring.

Outer diamagnetic current loops encompass the entire molecule in the
plane of the nuclei. For planes sufficiently displaced from the symmetry
plane along the parallel field axis only the central stagnation line remains
for a diamagnetic current flow encompassing the entire molecule. For a plane
displaced by 0.8 au, Fig. 3-13b, the current map exhibits an outer diamagnetic
flow bounding an inner paramagnetic flow. The diamagnetic current flow about
the ring contributes substantially to the position weighted £lux of J(”
through the interatomic surfaces of the atoms forming the ring.

The carbon basin contributions to x exhibit a relatively small anisotrapy
but the surface terms are three times the magnitude of the basin term for a
parallel field. The largest of the surface terms arise from the £lux in the
current induced by a parallel field through the interatomic surfaces
separating the atomic basins in the ring of bonded carbon atoms. These clec

surface terms exhibit a large anisotropy, equal to -8.7 for a single cearbon
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atom. This is the origin of the large anisotropy in x observed for benzene
and it is a direct result of the delocalized nature of the current induced by
a parallel field shown in Fig. 3-13a,b. The contributions to ¥ from current
fluxes through the C-H interatomic surface are relatively small for both € and
H and the basin contributions to Xx(H) exhibit no anisotropy. Ninety-six
percent of the value of Ax comes from the carbon atom contributions, 77%
having its origin in a current flowing from the basin of one carbkon atom into
that of its neighbour. The current plot in Fig. 3-13a,b and the relative
values of the basin to surface contributions to x (C) confirm the existence of
a significant diamagnetic current encompassing the ring of the benzene

molecule,

3-8 Nuclear Magnetic Shielding
The first-order induced current density distributions J‘l)(r) in a
molecule also determine the nuclear magnetic shielding tensors GN. Using an

approach similar to that for the magnetic susceptibility tensor, it can be

shown that the shielding tensor of a nucleus N with a magnetic dipole moment

uN is expressed in terms of J(“(r) according to the following expressionls'l9
ot B = -0 Jdr(l/r;)[rN x 3o (41)

where r, is the real space position vector relative to the nucleus N. A
similar expression applies to all nuclei in a molecule with the result that in
order to calculate a complete nuclear magnetic shielding tensor for any
nucleué'in a given molecule, it is sufficient to know the first-order current

density distributions induced by an external magnetic field B for three
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perpendicular field directiens. Eqn. (41} is essentially a statement of the
classical Biot-Savart law for current distributions in terms of a current
distribution for a quantum system.

Eqn. (41) cen be used te advantage in understanding shielding tensors in
terms of local or regional contributions in a molecule. One can unambigucusly
define a shielding tensor density cy(r) in real space ¢s the integrand of eqn.
(a1 "

Woedr B = (e (e x 3 o) (42)

where the «,f8 component of aﬂ(r) is
&

oB
{1}

with JB (r} again being the first-order current density induced by an

. 3 (o )
(r) = ( 1/BcrN)[rN x JB (r)]a {43)

external magnetic field irn the £ direction and where &« refers to the

. M
(r) one can interpret o

of

corresponding component of pﬂ. Using the density o

of

. . . X . 1
in terms of contributions from each point in the real space of the molecule.

Similarly, the average contribution to ¢:B from an atom & in a molecule vz (9]

B

. . . . 7.2
can be determined by integrating wZB(r) over the basin of the at:om1 20

N _ e 3 (1
UaB(Q) = { 1/cB)I drN(ler)[rN x JB =1, (14)
Q

Since atoms in molecules are non-overlapping and exhaust all of molecular

space,20 the contributions ¢:B(n) sum to yield the total shielding 026
N N

T = [+ Q (45)
op z aB( )

Q

Given the form of the shielding density (wN

af

dominant contribution to the shielding tensor of a particular nucleus will

~ réj) one expects that the
come from the atom containing the nucleus. With the exception of protons this
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molecule shows. All three principal compenents of the carbon shielding tensor
in ethylene are quite different, withh the largest anisotropy (Gix - o}
aqualling 253.1 ppm. The corresponding anisotropy of the exterior
contribution to ¢ {the contribution from all atoms except the carbon
containing the shielded nucleus) is only 3.9 ppm, however. For the proton
shielding tensor the largest anisotropy is czz - o}y = 6.4 ppm with the
corresponding anisotropy of the exterior contribution equal to 5.9 ppm. These
are typical results. For atoms with core electrons the shielding tensor of
the atom’s nucleus is determined almost entirely by the current distributions
within the atom, with the relative contibution of the other atoms decreasing
with increasing atomic number of the shielded nucleus. For protons, wiich
possess no core electrons, the shielding range is very small and thus the
exterior contributions are more significant. )

The shielding tensor is thus largely an atomic property for nuclei other
than protons, reflecting the current distributions within the atem containing
the shielded nucleus. This is illustrated in Fig. 2-2 for the carbon dioxide
molecule where the current induced in a plane containing the internuclear axis
by a perpendicular field is shown. The current in the carbon basin is mostly
paramagnetic while that in the oxygen basine is mostly diamagnetic. The
corresponding carbon shielding component ai is -55.6 with the contributicn
from the carben atom being -50.8 ppm. Since the carbon nucleus is
significantly off-center with respect to the diamagnetic current in the oxygen
atoms, the oxygen atoms further deshield the carbon nucleus slightly.

The isotropic carbon shieldings EC in the normal hydrocarbons are shown

in Table 3-11 for the molecules methane through pentane. Alsoc shown in each
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in Table 3~11 for the molecules methane through pentane. Also shown in cach
case is the contribution to ¢ from the carbon atom centaining the shielded

nucleus, U:nL’ the contribution from each of the hydrogen «toms diractly
bonded to the shielded carbon atom, EF(HQJ, as well as the contributiona from
the other groups, EC(G), in the molecule. The relative shieldings ate in good
agreement with e.\r.pex:iment:."3 The essential feature of these results is that
the total exterior contributiocon E{KL to the isotropic carbon shielding is
essentially constant at about 17.5 ppm with the relative shifts in o baing
determined entirely by the interior ceontributions Eiw' The results in Table
3-11 alsc show that the individual, exterior atomic and group contributions
are essentially constant. Thus, in the molecules ethane through pentane, the
bonded hydrogens contribute an almost constant amount of 4.1 ¥ 0.1 ppm, while
the bonded methyl groups contribute the constant amount of 4.9 Y 0.0 ppm and
the bonded methylenes an amount 3.7 * 0.1 ppm, ete. Substitution of a methyl
group for a proton in ethane to yield propane, for example, results in a
deshielding of the methyl carbons and this deshielding is entirely a result of
the perturbation of the induced current distributions within the methyl carbon
atom rather than the altered current distributions of its environment. This
basic result is certainly not restricted to hydrocarbons, as the isotropic
carbon shielding data in Table 3-12 for the normal alcchols makes clear.

The differing proton shielding in the series of molecules C?Hz, CZHN

6,7,13
vl In Tables 3-

CZHG and benzene has been the subject of much discussion.
13, 3-14 and 3-15 the atomic contributions to the proton shielding tensors in
this series of molecules are given for the orientations defined by the

corresponding principal magnetic susceptibility tensors. The calculated,
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exzperimental gas phase results. From Table 3-13 one sees that the interior
—-ii . . 2 2 —H . :
contribution ai. to the total isotropic proton shielding ¢ exhibits a much

smaller variation tnan does the exterior contribution s - Thus, the isotropic
shielding of the acetylene proton is 4 ppm larger than the ethylene proton due
primarily to the differing shielding contributions from the atoms in the two
molecules other the hydrogen atom containing the shielded proton. Similarly, the
2 ppm downfield shift of the benzene proton resonance relative to the ethylene
proton is due entirely to the differing exterior contributions. From Tables 3-14

. l
and 3-15 one sees that the largest anxsotropy,lcrH - lo”

. is exhibited by the
acetylene proton, equal to 16.5 ppm. This large anisotropy is primarily due to
the large diamagnetic shielding from the current induced within the bonded carbon
atom for a parallel field., The benzene proton exhibits an appreciable negative
aniscotropy, equal to about -5 ppm. The negative anisotropy arises primarily from
the deshielding of the proton by the ipso carbon of the benzene ring for a
parallel field, with the the interior contribution to ot being nearly isotropic.

The deshielding of the benzene proton by the ipso carbon for a parallel field is

also the basis for the 2 ppm downfield iscotropic shift relative to ethylene.

3-9 Comments

This work has demonstrated that the understanding of the observed magnetic
properties of molecules is to be found in the magnetically induced molecular
current density distributions together with atoms in molecules whose surfaces are
defined by the molecular electron density distribution. Every atom in a molecule
makes an additive contribution to the magnetic properties of the molecule of which
it is a part. Like atomic contributions to other properties, the extent to which

the atomic magnetization is transferable from one molecule to another parallels
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the corresponding transferability of the atom’s electron density distribution.
Examples have been given of group mean magnetic susceptibilities that are
predicted te be transferable without change within experimental error. The
physical significance of the atoms of theory is reiterated through the recovery of
Pascal’s group mean magnetic Susceptibility increments for the normal
hydrocarbons. The importance of the magnetization within an atomic basin relative
to the fluxes of induced current through the interatomic surfaces parallels the
extent to which the electron density is localized within the individual atomic
basins. In the case of benzene, the large position-weighted flux of induced
current through the carbon-carbon interatomic surfaces for a magnetic field
perpendicular to the ring is found to be responsible for the large anisotropy of
the magnetic susceptibility, a result which is consistent with the ring-current
model. Future work should focus on more detailed correlations of the atomic
magnetic susceptibility and nuclear magnetic shielding tensors with other atomic
properties, as well as the topological properties of the induced current

distributions described in Chapter 2.
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Figures 3-1 thrcugh 3-8

Trajectories of the first-order current density induced in the fivst row

hydrides.

Clockwise flow is diamagnetic. Intersections »f the intervatomic

surfaces with the plane are shown when present. The applied tield is directed

out of the plane of the paper.

3-6a)

3-7a)

3-7b)

The H, molecule in a plane containing the nuclei.

The LiH molecule in

a plane containing the nuclei.

The BeH molecule in a plane containing the nuclei.

The BH3 molecule in
The BH3 molecule in
The CH4 melecule in
protons.

and b) A comparison
delocalized flow in
The H O molecule in

The H O molecule in

the plane containing all four nuclei.
a 0v symmetry plane.

a plane containing the carbon nucleus and two

of the localized current flow in LiH with the
CHd in an alternating plane of symmetry.
a plane containing all three nuclei.

the c} symmetry plane.

The HF molecule in a plane containing the two nuclei.
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Figure 2-§

Representations of the atoms in the first row hydrides AH,. In the
hydridic members, LiH, BeH, and BH;, the A atom consists primarily of a core
of decreasing radius, dressed with some residual valence density. The form
and properties of the atoms undergo a marked change at methane, a nonpolar
molecule. No core is visible on the C atom and the H atoms, considerably
reduced in size and population, now possess the convex side of the interatomic
surface. The increasing polarity of the remaining members is reflected in the
decreasing size of the H atom and the increasing convexity of its interatomic

surface.
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Figure 3-10
Contour maps of the magnitude (a and b) and curl (¢ and d} of the current
density for butane (a and c) and pentane (b and d) in a plane containing the

carbon nuclei. The intersections of the interatomic surfaces with the plane

are also shown.
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Figure 3-11

View of the transferable methylene group of the normal hydrocarbons with
the van der Waals surface of two hydrogen atoms in the foreground in a and
with the twe C|C interatomic surfaces in the foreground in b. The bond
critical point is denoted by a dot in one such surface. c¢) is the smet of bond
paths of the methylene group together with the associated (3,-1) bond critical
points {(black dots). d) is an interatomic surface separating the
transferable methylene group from a neighboring methylene group. Also shown

is the pair of bond paths originating at the associated bond critical point.
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Figure 3-12

The current density in the ethane molecule in a plane perpendicular to a
o4 symmetry plane which is parallel to the applied field is shown in a}. This
is not a symmetry plane and the current density is non-planar. The critical
point at the centre lies in the 0d symmetry plane and it is a (2,0} centre
point. Each carbon basin contains two centre points and two saddle points on
the C-C axis. There are also surface points and spirals associated with the
protens. Their out-of-plane behaviour is made evident in b) which shows the
same induced current viewed along the C-C axis. This current distribution in
ethane is similar to that induced in the ethene molecule by a field applied
perpendicular to the Gﬁ plane {(compare Fig. 2-24 of chapter 2) and this
accounts for the nearly identical values for the corresponding components of

the carbon shielding tensor.
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Figure 3-13

Displays of the current density, its curl and the Laplacian of p for the
benzene molecule. The maps for J(U and its curl are for a field directed out
of and perpendicular to the ring plane. In a) the current density is shown in
the ring plane. b) is a projection of onto a plane 0.8 au above the symmetry
plane, of current trajectories which intersect it. In addition to the outer
diamagnetic and inner paramagnetic flows, there is a vestige of each bonded
set of diamagnetic current flows present. The shell structure and regions of

A
charge concentration/depletion defined by ¥V'p in &) are similar to the shell

structure and regions of outwardly/inwardly directed £lux in the 7't field

in ¢).

157



= 7

G

=

——
A

R %%W%/// .

PN
\\x X
r.ﬂ Z ‘ twﬂwzﬁ

Y
J

=/ @ =z /




Figure 3-14
The atomic contributions to the principal components of the carbon

shielding tensor in ethene. The star denotes the shielded nucleus. Units arve

pPhm.

158



€= 179.1
Bl

o

S.0

2.

B

g <= 85.6

N

0.8
>

4.7

3
/

3.0



Figure 3-15
The atomic contributions te the proton shielding temsor tor the =ame

field directions as in Fig. 3-14. The star denotes the shielded nucleus,

Units are ppm.
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Table 3-1°

Total Contributions to Magnetic Susceptibility Tensor X in First Row Hydrides.

Units are <gs-ppm.

Mol b b =b < = oy - -*
xl X X X, X pd xl X P4 X“m‘
H -3.01 -3.67 -3.23 -0.93 0.060 -0.62 -3.%4 -3.67 -3.85 -3.9

LiH -6.77 -9.32 -7.62 0.04 0.00 0.03 -6.72 -9.32 -7.59% -7.6
BeH -6.01 -11.61 -7.88 1.75 0.00 1.17 -4.26 -11.81 -6.71
BH3 -3.23 -8.2% -4.92 3.40 -9.09 -0.76 0.17 -17.38 -5.68
CH4 -11.34 -6.87 -18.20 -18.7
NH3 -13.93 -11.51 -13.12 -3.43 -4.48 -3.78 -17.35 -15.99 -16.90 -16
HZO -12.17 -12.27 -12.21 -1.67 -1.58 -1.64 -13.84 -13.86 -13.8% -13.1

HF -9.84 -10.02 -9.90 -0.92 0.00 -0.61 -10.76 -10.02 -10.51 -10.3

*The symbol L refers to axes perpendicular to the principal rotation axis.
The symbol Il refers to the principal rotation axis.

2all calculations were done using the IGAIM method with the 6-311++G(2d, 2p)
basis set at the corresponding theoretical equilibrium geometries.

*
References 6 and 7.
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Table 3-2"
Hydrogen Atom (H) Contributions to Magnetic Susceptibility Tensor x in First

Row Hydrides. Units are cgs-ppm.

b b =b s s -5 . *
Mol ZL(H) x“(H) x (H) XL(H) Z"(H) X {H) xl(H) X"(H) x (H; q(H)

H. -1.51 -1.83 -1.82 -0.47 0.00 =-0.31 -1.97 -1.83 ~-1.93 0.00
LiH -6.49 -8.40 -7.13 0.04 0.00 0.03 -6.45 -8,40 -7.10 -0.92
BeH? -3.57 -5.42 -4.1% 0.50 0.00 0.33 -3.07 -5.42 -3.85 -0.86
BH3 -1.92 -2.56 -2.14 0.65 -1.74 =-0.15 -1.27 -4.30 -2.28 -0.70
CH -1.53 -0.65% -2.18 -0.04
NH3 -0.88 -0.90 -0.89 -0.31 -0.40 -0.34 -1.20 -1,30 -1.23 0.35
H?O -0.48 -0.48 -0.48 -0.21 -0.15 =-0.19 ~-0.6% -0.63 -0.67 0.63

HF -0.34 -0.13 -0.27 -0.32 0.00 -0.21 -0.65 -0.13 -0.48 0.78

“The symbol L refers to axes perpendicular to the principal rotation axis.
The symbol [l refers to the principal rotation axis.
All calculations were done using the IGAIM method with the 6-311++G(2d, 2p)
basis set at the corresponding theoretical equilibrium geometries.

. .
q(H} is the net charge of the hydrogen atom.
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Table 3-3°
Total Contributions to Magnetic Susceptibility Tensor (x) 1in First Row Mono-

substituted Methane Molecules. Units are cgs-ppm.

o

b s a
Mol X, X“ x X x“ X X )

NP

CH4 -11.34 -6.87 -18.20 -18
CHBLi -16.74 -15.64 -16.37 -5.86 -7.60 -6.44 -22.80 -23.24 -22.81
CHBBeH -16.90 -19.29 -17.70 -4.29 -7.35 =-5.31 -21.19 -26.64 -23.01
CH3BH2 -13.,01 -13.97 -13.65 -1.43 -8.57 -13.65 ~-14.44 -22.54 -19.84
CHBCH3 -16.09 -18.51 -10.85 -13,12 -13.12 -11.61 -26.94 -31.63 -28.50 -27
CHBNH2 ~16.44 -17.84 -17.37 -6.39 -8.69 -7.93 -22.83 -26.53 -25.30
CH30H -14,25 -17.31 -16.29 -5.,50 -5.83 -5.72 -19.75 -23.14 -22.01 -22

CHEF -12.76 -17.36 =-14.25 -3.49 -6.54 -4.51 ~-16.1% -23.90 -18.76 -18

*The symbol 1 refers to axes perpendicular to the principal rotation axis in
the molecules with at least Cav symmetry: CHBLi. CHBBeH, CH}CH1 and CH]F and

and the axis perpendicular to the reflecticn plane in the molecules
with Cs symmetry: CHaBHz' CHaNH2 and CH30H. The symbol |l refers to the

principal rotation axis in CH3Li, CH}BeH, CH3CH3' CH}F and axes in the
reflection plane for CH3BH2, CH3NH2 and CH}OH.

all calculations were done using the IGAIM method with the 6-311++G(2d,2p)
basis set at the corresponding theoretical equilibrium geometries.

»*
References 6 and 7.
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TABLE 3-4"

Methyl Group (M} Contributions to Magnetic Susceptibility Tensor in First Row
Mono-substituted Methane Molecules. Units are cgs-ppm.

b b -b s s =5 = *
Mol XL(M) X"(M) X (M} XL(M) x"(M) x (M) ZL(M) x"(M) x (M) qi(M)
CHd -9.81 ~-6.22 -16.03 0.04

CH}Li -16.60 -14.76 -15.99 -5.86 ~-7.60 -65.44 -22.48 -22.37 -22.43 -0.92
CHJBeH -14.51 -13.13 -14.05 -4.73 -7.35 -5.60 -19.24 -20.48 -19.6% -0.87

CHJBHO ~11.53 -10.49 -10.85 -2.90 -&6.88 -5.58 -14.55 -17.37 -16.43 -0.72

CHJCH3 -8.04 -9.25 -8.45 -5.42 -6.56 -5.80 -13.47 -15.82 -14.25 0.00
CHJNHz -5.92 -7.56 -7.01 -3.47 -5.16 -4.60 -9.39 -12.72 -11.61 0.38
CH}OH -5.39 -6.68 -6.25 -2.91 -4.57 -4.02 -8.30 -11.25 -10.27 0.64
CH F -4.58 -8.18 -5.78 -2.51 -6.54 -3.85 ~-7.09 -14.73 -9.63 0.74

3

“Phe symbol L refers to axes perpendicular to the principal rotation axis in
the molecules with at least Cav symmetry: CHBLi, CH3BeH, CH3CH3 and CH}F and

and the axis perpendicular to the reflection plane in the molecules
with Cs symmetry: CH}BHq, CHJNH2 and CHSOH. The symbol ll refers to the

principal rotation axis in CH3Li, CHBBeH, CH3CH3' CH3F and axes in the
reflection plane for CHJBHq, CHBNH2 and CH30H.

All calculations were done using the IGAIM method with the 6-311++G(2d, 2p}
basis set at the corresponding theoretical equilibrium geometries.

*
(M) is the net charge of the methyl group.
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Table 3-5"

*

Incremental Changes in Properties for Group X={0H or F)

Property H[X HCH:IX Hcazcuzlx HCH:CH:CH:IX
X = OH

X -13.11 +1.63 -0.10 +0.04
> -11.73 +1.69 +0.12 +0.02
X -1.39 -0.06 -0.22 +0.03

q -0.627 -0.016 -0.007 -0.004
E -75.7147 -0.0888 -0.004 +0.003
v 168.80 -13.69 -0.69 +0.65
P, 0.3964 -0.1309 -0.0031 +0.0001
Vzpb -3.1057 +2.7639 +0.0116 +0.0074
X=PF

X -10.03 +0.92 +0.02 +0.02
X -9.63 +1.16 +0.16 +0.02
X -0.40 -0.24 -0.14 0.00

q -0.779 0.044 -0.006 -0.001
E -99.8149 -0.0220 +0.0082 +0.0061
v 130.44 -22.84 -2.91 +3.26
P, 0.4042 -0.1632 -0.0051 +0.0002
Vzpb -4.0047 +4.3951 -0.0150 +0.0102

2A11 calculations were done with SCF 6-311++G(2d,2p)} wavefunctions obtained at
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the corresponding theoretical equilibrium geometries. Magnetic
susceptibilities were calculated using IGAIM with the same basis set.

All quantities in atomic units except for i, which is in cgs-ppm.

total mean magnetic susceptibility

LN
1]

= basin contribution to total mean magnetic susceptibility

= surface contribution to total mean magnetic susceptibility
net charge

= ehergy
= volume of the group enclosed by the 0.001 au isosurface.

= electron density at bond critical point linking the group to the

< ma N1 NI
i

2
1

remainder of the molecule.

L)

<
D

= Laplacian of electron density at bond critical point linking the

group to the remainder of the molecule,
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Table 3-6"

Calculated Magnetic Susceptibility Tensors Y of Normal Hydrocarbons.

Units are cgs-ppm.

Melecule X, X0 xu X Sy x"xp
CH4 -18.20 -18.20 -18.20 -18.20 (-18.7,-17.4)
Csz -26.94 -26.94 -31.63 -28.50 -10.30 {-27.4,-26.8)
c3HB -40.08 -38.79 -42.35 -40.41 ~11.91 (-40.5,-38.6)
C4H1o -51.00 -50.41 -55.19 -52.20 -11.79 (-50.0})
C5H12 -62.593 -61.75 -65.95 -63.54 -11.34 (-63.1)

3211 calculations were done using the IGAIM method with the 6-311++G(2d,2p)
basis set at the corresponding theoretical equilibrium geometries.

*
Experimental values are from reference 24.
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Table 3-7"

Group Contributions to Magnetic Susceptibility Tensor in Normal Hydrocarbons.

Units are cgs-ppm.

Molecule Methyl group Methylene group
xh(ﬂ) x{(n) x(R) xb(Q) xf(ﬂ) 2(8)

CH4 -9.81 ~-6.22 -16.03

CqH( -8.45 -5.80 -14.25

C3HB -8.37 -6.11 -14.48 -6.06 -5.3% -11.45
C}H10 -8.38 -6.15 -14.53 -5.96 -5.61 -11.57
C5H1° -8,37 -6.12 -14.49%9 -5.96 -5.55 -11.51
CH {unigue methylene) -5.83 -5.71 -11.54

A1l calculations were done using the IGAIM method with the 6-311++G(2d,2p)
basis set at the corresponding theoretical equilibrium geometries.

167



Table 3-8"

Mean Magnetic Suceptibilities in Isobutane and Neopentane. Units are cygs-ppm.

Iscbutane

Neopentane
ib(ca3) = -8.23 ib(cu}) = -8.04
is(cn3) = -6.29 i“(ca‘) = -6.33
i(CHB) = -14.52 i(cuj) = -14.37
F(cH) = -4.16 Fiey = -2.61
-5 -5
X (CH} = =5.45 X (cy = -5.67
xicH) = -9.61 X (C) = -8.28
2 = -53.17 X = -65.78

- * - *
xlexpt) = -51.7 xY{expt) = -63.1

2211 calculations were done using the IGAIM method with the 6-311++G(2d,2p)
basis set at the corresponding theoretical equilibrium geometries.

k
Reference 24.



Table 3-9"

Predicted and Experimental Mean Magnetic Susceptibilities for Branched

Hydrocarbons.

Molecule i(pred) i(expt)*
2-methyl pentane -76.1 -75.3
3-methyl pentane -76.1 ~75.5
2-methyl hexane -87.6 -86.2
2,2-dimethyl butane -77.8 -76.2
2,3-dimethyl butane -77.2 -76.2
2,3-dimethyl pentane -88.7 -87.5
2,4-dimethyl pentane -88.7 -87.5
2,2,3-trimethyl butane ~-90.4 -88.4
2,2,4-trimethyl pentane -101.9 -99.1

“%(CH) = -14.5; Z(CH,) = -11.5; R(CH) = -9.6; %(C) = -8.3

"
Reference 24.

189



Table 3-10"

Atomic Contributions to Magnetic Susceptibility Tensor

Units are cgs-ppm.

of Bencene.

Atom @ (@) x@ @ 2@ @ @ x, X, X
c -2.23 -3.56 -2.67 -0.56" -1.35 -0.82" -4.57 -15.39 ~-8.18
-1.79% -10.48" -4.68"
-2.35" -11.83" -5.517
H -1.29 -1.29 -1.29 -0.33 -0.79 -0.48 -1.62 -2.08 -1.77
CH, -21.10 -29.11 -23.77 -16.08 -75.72 -35.96 -37.18 -104.83 -59.73
by = -67.65 6Ax(C) = ~-64.92 6AX(H) = -2.76
Ay = -59.64 6ax°(C) = -56.88 6ax°(H) = -2.76
A = -8.01 68x°(C) = ~-7.98 602 (H) = 0.00

%The calculations were done using the IGAIM method with the 6-311++G(2d,2p)

basis set at the corresponding theoretical equilibrium geometry.

The symbol 1 refers to axes perpendicular to the principal rotation axis and
corresponding atomic values are averaged over both 1 field directions. The

symbol |l
through the C|H surface.

refers to the principal rotation axis. "Refers to current flux
RRefers to current flux through C|C surfaces in

ring. TRefers to total current flux contribution.
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Table 3-11"

Atomic and Group Contributions to Isotropic Carbon Shielding in Normal

Hydrocarbons. Units are ppm.

Mol/Atom &ﬁnt &C(Ha) &C(Ga) EF(GB) &C(GA) EF(GS) Eixt o

CH,_C 179.4 4.5 18.0 197.4
cH _c 168.9 4.2 4.8 17.4  186.3
cH _cl 161.2 4.2 3.8 1.1 17.5  178.8
C,H,_C2 159.6 4.0 4.9 17.7  177.3
c,H, 1 162.4 4.2 3.7 0.7 0.5 17.5  179.9
cH €2 151.8 4.0 4.9,3.8 1.1 17.7  169.5
¢ _Cl 163.4 4.2 3.7 0.6 0.3 0.2 17.6 180.8
CH ,C2 154.5 4.0 4.9,3.7 0.7 0.5 17.8  172.3
cH €3 145.1 4.0 3.7 0.9 17.7 162.8

?All calculations were done using the IGAIM method with the 6-311++G(24,2p)

basis set at the corresponding theoretical equilibrium geometries.



Table 3-12"

Atomic and Group Contributions to Isotropic Carbon Shielding ¢ in Normal

Alcohols. Units are ppm.

Mol/Atom Efnt o (H ) 576, EF(GB) Gy & d

CH_OH 133.1 3.4 4.6 14.9  148.0
CH, CH, OH 125.3 3.2 4.7(OH),4.6(CH) 15.7  141.0
CH,CH_OH 160.9 4.2 3.7 0.8 17.0  177.9
CHCHCHOR 119.4 3.2 4.6(0H),3.4(CH) 1.1 15.5  134.9
CH(CHCHOH 153.1 3.9  3.6(CH).4.9(CH) 0.8 17.2 170.3
CH,CH,CHOH 166.9 4.3 3.9 0.8 0.3 17.8 184.6

3211 calculations were done using the IGAIM method with the 6-311++G(2d,2p}

basis set at the corresponding theoretical equilibrium geometries.
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Table 3-13

Isotropic Proton 3hielding ¢ Ethane, Ethene,

Acetylene and Benzene.

Units

are ppmn.
=H = =H =H =H =i -H
Mol onnt o (Ca) a (CB) [ (Hu) o (Hﬁ) oext
C»H; 21.6 4.9 0.5 1.4 0.5(1) 9.4 31.0
0.4(0}
Cqu 20.2 2.8 1.5 1.1 0.3{cis) 6.1 26.3
0.4(tr}
CH, 19.0 3.0 2.9 0.4 11.3 30.3
CH. 20.1 0.0(C ) 4.1 24.2
ho6 ips
0"i(cortho) 0'3(Hortho)
0.6(C } 0.2(H )
meta meta
0.5(C ) 0.2(H )
para para

a1l caleulations were done using the IGAIM method with the 6-311++G{24d,2p)

basis set at the corresponding theoretical equilibrium geometries.
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Table 3-14"

Proton Shielding in Ethane, Ethene, Acetylyvene and Benztene - Il Field. Units
are ppnm.
Il u | | | g Il u hn N u
Mol Gint o (Ca) o (CB) a (Hm) o (HB) ¢“xt o
CH4 21.4 5.6 1.5 10.1 1.4
COH6 21.2 4.3 1.0 1.8 0.6(1) 10.5 31.7
0.41{0)
C_JH4 19.9 2.6 0.7 1.6 0.3{cis) 5.8 25.7
0.6(tr)
C H7 21.% 16.8 2.5 0.1 19.4 41.3
C H 19.9 -4.,2{C ) 0.6 20.5
6 6 ipso
o'otcortho) 0'4(Hortho)
1.1(c ) 0.3(H )
meLa et a
1.1{(c ) 0.3(H }
para para

%A1l calculations were done using the IGAIM method with the 6-311++G(2d,2p)

basis set at the corresponding theoretical equilibrium geometries.
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Table 3-15"

Proton Shielding in Ethane, Ethene, Acetylyene and Benzene - 1 Field. Units

are ppm.
1l H 1l H L H L H L H 1 H 1l H
Mol alnt (g (Ca) [ (CB) o (Ha) a (HB) o;xt o
CH‘1 21.4 5.6 1.5 10.1 31.4
Cqu 21.8 5.1 0.2 1.2 0.4(1) 4.2 30.6
0.3(o)
Cqu 20.4 2.8 2.0 0.8 0.3(cis} 6.2 26.8
0.3(tx)
CH, 17.5 3.7 3.0 0.5 7.2 24.8
CH. 20.2 2.1(¢C } 5.9 26.1
6 6 lpso
1'0(Cortho) O‘B(Hortho)
0.3(cC ) 0.1(H )
meta meta
0.1{cC ) 0.1({H )
para para

%A1l calculations were done using the IGAIM method with the 6-311++G(2d,2p)

basis set at the corresponding theoretical eguilibrium geometries.
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4, COMPUTATIONAL IMPROVEMENTS FOR THE THEORY OF ATOMS IN MOLECULES

4-1 Introduction
4-2 PROAIMV
4-3 PROMEGA

4-4 References

4-1 Introduction

The calculation of properties of atoms in moleculesl from ab-initio
molecular wavefunctions is currently realized with PROAIM (PROperties of Atoms
in Molecules),2 a program written by F.W. Biegler-Konig which is becoming widely
used in the scientific community. With the increasing use of PROAIM two
practical problems have become apparent: a) it is a slow program; and b) the
accurate determination of properties of atoms in molecules with complicated
charge density topologies is often not possible. The first problem (a) arises
primarily for the following three reasons: i) PROAIM uses relatively high-order
{ie., many points), three-dimensional, Gaussian quadrature numerical integration
throughout the atom in order to obtain accurate results; ii) PROAIM was written
for low memory, Scalar processing computers; and iii) PROAIM retains much
unnecessary molecular information from the wavefunction in order to calculate
atomic properties, and thus performs much unnecessary computation. The second
problem (b) arises from the non-local method used .to approximate the often
complex surfaces bounding atoms in molecules, surfaces which must be determined
accurately prior to the numerical integration in order to obtain accurate atomic

properties. Both of PRCAIM's difficulties have been
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separately addressed and the methods to overcome them will be described in
this chapter. Section 4-2 describes PROAIMV, a much more efficient version of
PROAIM. &S ztion 4-3 describes PROMEGA, a program which employs a new, local
method of approximating atomic surfaces, one which allows accurate calculation

of atomic properties in any system, however complex.

4-2 PROAIMV
4-3-1 Introduction to PROAIMV

It is the purpose of this section to describe a new program, PROAIMV
{PROperties of Atoms In Molecules - Vectorized), which eliminates the problem
of CPU time associated with PROAIM. The success of PROAIMV is achieved,
without loss o©of the accuracy of PROAIM, by employing the feollowing three
strategies: i} significantly reducing the number of numerical integration
points necessary to achieve a given level of accuracy; ii) vectorizing the
numerical integration over large batches of integration points; and 1iii)
employing an efficient, pre-integration cutoff algorithm to determine those
primitive basis functions appearing in the expansion of the molecular
wavefunction which can be neglected during the numerical integration. As an
example of the efficiency and accuracy of the new program, CPU times and
integration results obtained on an IBM RS6000 model 350 are given for the
symmetrically unique atoms of 18,6 crown ether in its D3d conformation, with
and without the primitive cutoff algorithm. These CPU times are compared with
those of the original PROAIM program, obtained on the same machine. Without
the primitive cutoff algorithm, PROAIMV is between ten and twenty-five times

faster than the original PROAIM. With the primitive cutcff algorithm, PROAIMV
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is between twenty and fifty times faster.

With the primitive cutoff algorithm, CPU times using PROAIMV will rarely
exceed one hour on any modern workstation, even for the largest molecular
wavefunctions likely to be used in thecretical studies. This leads to the
important result that the calculatioen of the properties of the atoms in a
molecule is now competitive with the determination of the molecular

wavefunction itself and the direct calculation of molecular properties.

4-2-2 Background

An atom § in a molecule is, by definition,l a region of real molecular
space R3 with a surface S{r,Q) defined by the guantum boundary condition
Up(r)'m(r) = 0, Vr e S(r,Q) (L
where Vp(r) is the gradient of the electron density p(r) at a point r on the
surface and ;(r) is the unit vector normal te the surface at r. A pictorial
example is given in Fig. 4-1, where the atomic surface of the carbon atom in
methane is shown. Since this molecule is isolated the carbon atomic surface
extends to infinity, but in Fig. 4-1 the surface is only shown out to its
intersection with the 10'5 au. iso-surface of p(r), beyond which the electreon
density is neglibly small. As can be clearly seen in Fig. 4-1, the carben
atomic surface in methane is itself composed of four interatomic surfaces, one
for each C-H bond, each of which is defined by the set of Vp(r) trajectories
which terminate at the corresponding (3,-1) "bond® critical point in the Vp(r)
field. 1In fact, the atomic surface shown in Fig. 4-1 was calculated in just
this manner - by traversing a subset of the Vp(r) trajectories backward from

the four (3,-1) critical peints. Since an atomic surface is always defined by
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interatomic surfaces of Vp(r) trajectories, eqn. (1) is identically satisfied.
An equivalent definition of an atom is a molecule is given as that region
of molecular space traversed by the complete set of trajectories of Vp(r)
which terminate at the nucleus of the atom, the trajectories being paths of
steepest ascent in p(r), a function which possesses local maxima at the
nuclei.' This is seen in Fig. 4-2 for the same methane carbon atom, where a
subset of the Vp(r) trajectories terminating at the carbon nucleus are shown
out to their intersection with the same 10'5 au. iso-surface in p(r). The
important peoint to be noted is that the region traversed by the trajectories
in Fig. 4-2, the carbon atomic basin, is equivalent to the region enclosed by
the interatomic surfaces in Fig. 4-1.
The calculation of any property F of an atom  in a molecule from a
molecular wavefunction proceeds by defining a corresponding property density
F(r) in real space whose integration over the whole molecule MOL yields the

2
s

molecular property P(MOL).I' The integration of F({r) over the basin of an

atom in a molecule then yields the atomic value for that property, F(fl).

F{Q) = I drF(x) {2)
Q

The simplest example of a property density is the electron density p{r), whose

integration over {1 yields the atomic electron population N(Qj.

NQ) = Idrp(r) (3)
Q

Two particularly important property densities are the kinetic energy
densities G{r) and K(r), defined as follows in terms of the first-order

density matrix F”)(r,r').
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{1

G(r) = (1/2)[V-9'D

(r,r ”r:r' {4}

K(r) = (-1/2) (9T z, "))

4
r=r ¢

Either of these two densities, when integrated over an atom in a molecule,

vields the same value for the atomic kinetic energy, T({).

T(Q) = G(Q) = J-er(I') = K(Q) = IdrK(r) (6)
Q Q

This equivalence is unigue to an atom in a moleculel because the
difference between G(r}) and K(r) is proportional to the laplacian of the
charge density Vzp(r). whose integral over an atom in a molecule vanishes
identically according to Gauss' theorem and the definition of an atomie

surface, egn. (1)

L() = Ier(r) = (—1/4)Jérvzp(r) = (—1/4)JHS(Q}Vp(r)-; = 0 {7)
Q Q Q

The value of L(Q) provides a measure of the accuracy of an approximate
calculation of atomic properties.
Since molecules are disjointly and completely partitioned into atoms1 the

sum of all atomic values F{Ql}) of any given property F equals the molecular

value F(MOL).

F(MOL) = JldrF(r) = z J' arF(z) = Z F(R) (8)
MOL QQ Q

The extent to which this additivity relationship is obeyed for a set of
approximate atomic integrations provides another measure of the accuracy of
the results.
4-2~3 Proaim

In a spherical polar coordinate system centered on the nucleus of atom {,
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the integral expression for an atomic property can be usefully written as in

‘)

eqn. (9)°

T n
F(Ql} = Id¢ IstinB x
0 4]

besta R1(¢h.0) RI(¢, 8)
{ JdrrgF(r.qb,B) + I arrF(r,$,0) + J' drr Flr.¢.6) } (6-9)
0 bvta R2(¢,0)

where beta is the radius of a sphere centered on the nucleus and contained
within the atom and R1{(¢,0) is the length from the nucleus to the first
intersection with the atomic surface 8(r,Q) of a ray whose orientation is
defined by the angles ¢ and 0. Similarly, R2(¢,8) and R3{¢,08) are the
distances from the nucleus to the second and third intersectiens, if they
exist, of the same ray with the atomic surface. A ray with more than three
intersections has not been observed and such rays will not be considered here.

In general, atoms in melecules do not have simple shapes and the property
densities F{r,¢,08) do not have simple functional forms so the integration of
the property densities cannot be done (fully) analytically as in the molecular
case, but must be done {at least partially) numerically. The program PROAIM
employs three dimensional gaussian gquadrature integration3 to approximate the

triple integral in eqn. (9)2

it 18 21 BETA
FIQ) = [wtm ):wte)sine ( EW(r)rzF(r,cp,B) +
8:0 $=0 r=0
R, 8) R3{$, 0)
): W(r)r Fir, ¢.08) + }: W(r)r°F(r,¢,8) ) (10)
t=BETA r=R2(¢, &)

where W(¢), W(8) and W(r) are gaussian quadrature weights for the particular

values of ¢, 8 and r, respectively.
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In practice, the property densities F(r,¢.,8) are calculated trom the
natural orbitals of the molecular single-particle density matrix tor any one-

electron property with the corresponding operator F as follows

NMO

F(r.$,0) = } AW (r,6,0)F (r,,6) (11)
i=1

where wi(r,¢.9) is the ith natural orbital evaluated at the point » = (r,¢,8},

hi is the corresponding occupation number and NMO is the total number of
natural orbitals.
The determination of F{Q) by PROAIM thus involves the following steps:

i) Specify the number of ¢ and 6 values to be used in the numerical
integration and load the corresponding weighting coefficients W(¢) and W(6).
64 ¢ values and 64 B values uniformly distributed between 0 and 2m and 0 and
W, respectively, are usually more than adequate. In principle, the more ¢ and
@ values used, the greater the accuracy, but in Eact, at this order of
{angular) numerical integration the accuracy of the results is often
determined by how closely the interatomic surface S{r,Q) can be approximated
using the method outlined in step ii), assuming a sufficiently high order of
radial integration.

ii) Specify beta as the distance from the nucleus to the nearest critical
point in the Vp field which lies in the atomic surface and determine all of
the distances R1l{¢,08), R2(¢,0) and R3(¢,60}. The latter are determined in
PROAIM by first approximating the atomic surface S(r,Q} by a relatively large
set of trajectories of Vp(r) which terminate at each of the (3,-1) critical
points of the Vp field ﬁhich lie in the atomic surface, as in Fig. 4-1 for the

methane carbon atom. A (3,-1) critical peint in Up(r) is a point between two
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bonded nuclei where Vp(r) vanishes, p{(r) is a minimum along the corresponding
bond and a local maximum in all perpendicular directions. The area between
adjacent VUp(r) trajectories in the surface is completely partitioned into
triangles and each integration ray is checked to determine which, if any, of
the surface triangles it intersects and at what distance(s) R{¢,8). For
moderate to large sytems this step is usually, but not always, negligible in
time relative to the integration in PROAIM. However, as stated above, this
step can limit the accuracy of the results if the charge distribution defining
the surface is topologically complex.

111} For a particular pair of ¢ and 6 values determine the number and
position of integration points to be used in the radial integration(s)
according to the values of beta, R1(¢,8), R2{¢,0) and R3(¢,8) and lecad the
corresponding radial integration weights W(r). In PROAIM, the numerical
integration is done one integration ray at a time, each in two or three parts.
The first part involves the integration from the nucleus of the atom to the
surface of a sphere contained in the atom, the beta sphere. This part of the
radial integration requires many integration points, typically 96, as the
property densities are largest and least smooth, radially, in the neighborhocod
of the nucleus. The second part involves the integration from the surface of
the beta sphere to the first intersectien R1{¢,6), which is sometimes
infinity, of the given ray with the atomic surface. The number of integration
points in this part of the integration depends, of course, on the distance
integrated, but can be small velative to the beta sphere integration because
the property densities are smoother, radially, in the non-nuclear regions of

an atom. Occasionally, integration rays intersect the atomic surface more
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than once. In this case, a third radial integration along the ray from the
second intersection R2(¢,08) te the third is performed. If the first or third
intersection occurs at infinity, then the radial integration is carried out te
a distance where the property densities are negligibly swmall, usually a
distance of 8-10 au.

iiia) For each ¢, 8 and r(¢,8) the values of wi, Vwi and Vzwi are required to
determine the set of property densities F(r,¢,08) calculated in PROAIM. The
evaluation of wi' Vwi and Vzwl is accomplished by first determining the
corresponding values of the primitive functions ¢j, Y.’q&_j and V2¢j used in the
expansion of the natural orbkbitals. The primitives are then summed inte the
natural orbitals and their derivatives weighted by the corresponding expansion
coefficients Clj. The loop structure used by PROAIM to evaluate the w!, le
and Vzwi at a given point ¢, ® and x(¢$,8) is shown in Fig. 4-3. Naturally,
the evaluation of the ¢j and the wi is done in cartesian cocrdinates.

Once the values of the natural orbitals and their derivatives are
calculated at the given point = (= r,¢,8), the property dcnsities F(r) are
formed according to eqn. (ll} and summed into the atomic value F(fl} according
to egn. {10). Step iiia) is then repeated for all ¢, O used in the numerical
integration.

For wavefunctions with many natural orbitals and primitives the CPU time
required to calculate atomic properties with PROAIM becomes prohibitive on any
computer, given the structure of the program and the large number of
integration points used to obtain accurate results. The most time-consuming
part of the integration is, of course, in step iiia), the calculation of the

primitives and their derivatives and their contraction into the natural
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orbitals. In PROAIM this step is carried out many of thousands of times in

any given atomic calculation, one integration point at a time.

4-2-4 Recent Advances

Two proposals have recently appeared in the literature to decrease the
CPU time required by PROAIM. The first of these4 reduces the number of
primitives NPRIMS to be calculated and contracted into the natural orbitals by
neglecting, throughout the whole numerical integration, those which are
centered on a nucleus sufficiently far removed from the nucleus of the
integrated atom, taking into account the exponent and type of each primitive
function. In order tc be completely general and accurate, however, this
method must necessarily be overly cautious in its cutoff criterion. Another
approach is that given by Cioslowski,5 in which the order of operations in the
calculation and contraction of the primitives is rearranged to allow a
"vectorization" of the primitives calculation at each integration point and a
"dynamic* (pointwise) determination of which primitives can be neglected in
the contraction into the natural orbitals. For very large systems with many
natural orbitals, many long contraction loops are avoided and a significant
savings in time results. Both of these methods are somewhat successful in

significantly reducing atomic integration times for large systems.

4-2-5 Description of PROAIMV
In the approach developed here, several unigue steps are taken to
dramatically increase ths efficiency of PROAIM. The first involves the

vectorization of the whole numerical integration process, whereby the property
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densities are calculated at many integration points at once, In this
vectorized integration, the time-consuming part of step iiia) appears as in
Fig. 4-4.

In the approach depicted in Fig. 4-4, the values of the primitives and
their derivatives are first evaluated at many (NPTS) integration points and
stored in core memory. The primitives are then contracted into the natural
orbitals at the NPTS points with the long NPTS loop being the inner one.
Aside from the explicit vectorization over the large number of integration
points, this arrangement allows a significant decrease in the number  of
floating point operations and CPU time for either of two reasons. First, for
a given number of primitives NPRIMS many of the primitive contributions to the
natural orbitals are effectively zero throughout the atom so the long inner
loop over the NPTS points can be skipped if this information is predetermined

and encoded within the ceoefficients Ci Of course, if the contribution of a

5
given primitive to all of the natural orbitals is effectively zero within che
atom, then the primitive can be removed entirely from the calculation, thus
saving even more time. Second, the contraction of the primitives into the
natural orbitals at many points is a matrix-matrix multiplication process and
is ideally suited for the machine optimized matrix multiplication routines
which exist on most computers today.

It is important to emphasize that in the method employed by PROAIMV the
vectorized loops are over the integration points, which are always large in
number, and thus PROAIMV yields significantly faster results than PROAIM for

any sized system, even without the primitive cutoff algorithm.

A problem is to efficiently pre-determine which primitives cannot be
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neglected entirely in the numerical integration and, of these, which expansion

coefficients € can be safely set to zero.
L

The primitive cutoff algorithm employed in PROAIMV proceeds in two
stages, in parallel with the numerical integration itself. The first stage
determines which of the primitives (and their derivatives) make negligible
contributions to all of the natural orbitals’ property densities within the
beta sphere and may thus be neglected throughout the beta sphere part of the
integration. Of the primitives which are not neglected entirely within the
beta sphere, the first stage also determines those which make negligible
contributions to a given natural orbital and the corresponding expansion
coefficients Cij are then set to zerec so that the inner points loop is skipped
ii. the contraction step for the corresponding primitives and natural orbitals.
The primitive cutoff determination for the beta sphere is done simply by an
explicit, but sparse, sampling of the beta sphere for each of the primitives.

The second stage of the primitive cutoff algorithm determines which
primitive contributions are negligibly small within the atom but outside of
the beta sphere. This is achieved in an atom-specific manner by taking
advantage of the definition of an atom in a molecule as that region of
molecular space traversed by Vp trajectories which terminate at the nucleus of
the atom (see Fig. 4-2). By sampling the basin of the atom outside of the
beta sphere along a set of such Vp trajectories, those primitives which may be
neglected throughout the integration, entirely or within a given natural
orbital, can be quickly and easily accomplished. In effect, by employing this
primitive cutoff approach, one is eliminating all of the unnecessary

information in the molecular wavefunction and creating a "wavefunction® for an
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atom in a molecule in order to determine the atomic preperties.

The final step taken in PROAIMV to reduce ateomic integration times i=s
simply to reduce the number of numerical integration points necessary to
obtain results equivalent to those of PROAIM. This is achieved by a complete
separation of the beta sphere integration from the integration ocutside of the
beta sphere. Within the beta sphere of an atom, the property densities vary
rapidly radially but are smooth with respect to variation of the angles ¢ and
©. Just the opposite is true in the region of the atom which lies outside of
the beta sphere. In PROAIMV only a fraction of the integration rays used
outside of the beta sphere are actually used within the beta sphere. In other
words, the spherical polar numerical integration in PROAIMV is conpletely

separated into twe parts as follows,
el 14 b4 BETA
-
Fi@) = ) wig™) ) w(e")sine® ¥ Wir)rF(r,¢",0")

b =0
¢ =20 eb:l) r
S | 114 R1(¢, )

N [wm) Z W()sine { ) W{r)r'F{x, ¢, 0}

¢=0 =0 r=BETA
R3¢, B)

+ z W(r)r'F(r,$,8) } (12)
r=R2{¢, &)

The number of angles ¢b and Bb used within the beta sphere is, of course,
dependent on the radius of the sphere but is always much less than the number
needed outside of the beta sphere. Thus, in PROAIMV far fewer integration

points are used to achieve the same level of accuracy as PROAIM.

4-2-6 PROAIMV Repults
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Table 4-1 shows a set of CPU times for the calculation of the properties
of the four symmetrically unique atoms of 18,6 crown ether (C1§B406) at its
Dau 6-31g** optimized reometry using PROAIMV. The molecular wavefunction used
is that from a standard Gaussian 90° ScF calculation with the same &-31g**
basis set. This wavefunction contains 672 primitive gaussian functions and 72
canonical orbitals and approaches the size limit of most ab-initic SCF studies
today. Given the enormous amount of CPU time required by the original PROAIM
for large systems such as this one, only one of the crown atoms (hydrogen b},
that expected to require the least amount of CPU time, was actually integrated
with the original PROAIM for compariscn. The integration results obtained
with PROAIMV for this atom, both with and without the cutoff algorithm, are in
agreement with those of the original PROAIM to at least :I.O"5 au. for all of
the properties calculated by PROAIM, which is more than adequate since the
PROAIM results are accurate to 10-4 au. at best. PROAIMV has been tested on
a large number of systems of varying complexity and consistently gives results
in agreement with the original PROAIM program to at least 10_5 atomic units.

The timing results in Table 4-1 need little explanation. Without the
primitive cutoff algorithm, PROAIMV is faster than the original PROAIM by at
least a factor of 10 for all of the crown atoms, and with the cutoff algorithm
by at least a factor of 20.

To demonstrate the accuracy of PROAIMV, the L(R) values, net charges and
energies of the symmetrically unique crown atoms, as determined by PROAIMV,

are shown in Table 4-2.

4-3 PROMEGA
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4-3-1 Introduction to PROMEGA

The second problem with PROAIM is meore serious than the timing problem
addressed in section 4-2 because it involves the accuracy of the calculated
atomic properties. For atoms in molecules bounded by surfaces with many
critical points or "near-critical* points in the Vp field, PROAIM {(as well as
PROAIMV and any other medified versions of PROAIM) sometimes fails to yield
accurate results because of the method used to approximate the surtace which
defines the atomic region of numerical integration. It is the purpose of this
section to describe a new program, PROMEGA, which employs a more general and
accurate method to approximate atomic surfaces, however complex, while
maintaining the efficient numerical integration procedure used in PROAIMV.

With PROMEGA, the properties of an atom ia any system can be determined

accurately.

4-3-2 Background

The first general prcgrawﬁ developed to calculate properties of atoms in
molecules utilized fully the topological definition of an atom in molecule as
the union of a three dimensional attractor of the gradient vector field of the
charge density Vp(r) and its associated basin: i.e., that part of molecular
space containing the nucleus of the atom (attracter) and the region (basin)
traversed by the complete set of Vp(r) trajectories which terminate at the
hucleus (see Fig. 4-2). This original program has since heen slightly
modified and is now called OMEGA.B In principle, by integrating property
densities along the set of Up trajectories which traverse the atomic basin,

from their termination point at the nucleus to their origination points
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(usually infinity) in the atomic surface, one necessarily covers the volume of
the atom, exclusively and completely, and thus obtains the atemic values for
the properties. This is the bkasis for the OMEGA program. While
straight forward in principle, the algorithm of OMEGA is unreliable in practice
because it is necessary, of course, to employ numerical integration with a
finite number of Vp trajectories. Poor sampling of the atomic basins by the
Up trajectories in the bonding regions, regions of nearly constant charge
density, often leads to inaccurate results.

The second general atomic integration program, PROAIM.2 is much more
reliable than OMEGA and it, or more efficient versions of it such as PROAIMV,
is the one currently used by most researchers. As described in section 6-2,
PROAIM avoids the basin sampling problems associated with OMEGA by simply
using gaussian guadrature numerical integration over the basin of the atom in
a spherical polar coordinate system centered on the nucleus. The property
densities are integrated along a set of uniformly distributed rays originating
at the nucleus of the atom, neglecting the segments of the rays which lie
outside of the atomic basin. Unlike OMEGA, PROAIM requires that the complete
atomic surface be approximated prior to the numerical integration so that the
points of intersection of the integration rays with the surface can be
determined.

As mentioned in section 4-2, the method used in PROAIM to approximate an
atomic surface is based on the fact that an atomic surface consists of a set
of interatomic surfaces, each of which is defined by the union of a two-
dimensional attractor of the gradient vector field of the charge density, a

*bond" critical point in the Vp field, and the surface defined by the complete

191



set of Vp trajectories which terminate at this attractor (see Fig. d-1}. 1In
principle, the entire atomic surface can be mapped out with the complete set
of trajectories which define the interatomic surfaces and the intersections of
the integraticn rays found by determining the intersections of the rays with
the set. This 1is, essentially, the basis for the PROAIM progtram. In
practice, for each interatomic surface a finite set of Vp(r) trajectories
which terminate at the corresponding (3,-1) critical peint is calculated and
the areas between adjacent trajectories are completely partitioned into
triangles to yield an approximation to the complete interatomic surface. The
points o©of intersection of each integration ray with the atomic surface are
then determined by calculating which of the surface triangles it intersects
and assigning the centers of the corresponding triangles as the points of
intersection.

While much more reliable than OMEGA, PROAIM is also beset with a few
difficulties. First, in order to proceed a complete knowledge of the critical
points which lie in the atemic surface is required. For complex systems
without symmetry, this can be a nen-trivial task. Second, djuat as OMEGA
suffers from the problem of nonuniform sampling of the atomic basin by the
basin Vp(r) trajectories, a difficulty with PRCAIM is the nonuniform sampling
of the interatomic surfaces by the finite number of Vp(r) trajectories used to
approximate them. This latter problem is part of the more general problem
with PROAIM that the surface determination algorithm is a non-local one: ie.,
how well a particular region of an interatomic surface is approximated depends

on the chosen starting points for the Vp trajectories from the corresponding

{(3,-1) critical points as well as the (sometimes pathological) behavior of the
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Up{r) surface trajectories leading te the given region. In many cases, the
non-local calculation of the interatomic surfaces in PROAIM results in very
large areas between adjacent Vp trajectories and therefore large errors in the
intersection peints of the integration rays with the atomic surface. This is
seen, for example, in Fig. 4-5 where the atomic surface of a boron atom in

-

BGHJ', as approximated using the method of PROAIM, is shown.
4-3-3 Description of PROMEGA

A new method for calculating atomic properties has been developed, one
which incorporates the positive aspects of both OMEGA and PROAIM while
avoiding the negative aspects. Because of this, the program employing this
algorithm is called PROMEGA. As stated above, the main problem with PROAIM is
the method by which the atomic surface is approximated prior to the
determination of the points of intersection of the uniformly distributed
integration rays with the surface and the subsequent numerical integration.
PROMEGA also uses uniformly distributed integration rays, but the method used
te calculate the corresponding intersections is, like OMEGA, based on the
definition of an atom in a molecule as the union of the corresponding nuclear
attractor of the Vp field and its associated basin. PROMEGA does not regquire
an approximation of the complete atomic surface prior to the numerical
integration, or a knowledge of the critical points of the charge density which
lie in the atomic surface.

The finite points of intersection of a given integration ray with the
atomic surface satisfy the local condition that the nuclear attractor of the

Vp(r) trajectories intersecting the ray changes, from .the nucleus of the atom
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to another nucleus or vice versa, as the ray passes through these
intersections. At a point of intersection with the surface, the attractor of
the Vp(r) trajectory is not a nucleus but a "bond" critical point which lies
in the atomic surface. This simple but important peoint is demonstrated in
Fig. 4-6, which shows a set of Vp{xr) trajectories of the symmetry plane of the
CH3Li molecule. The essential feature of Fig. 4-6 is that all of the VYp(r)
trajectories terminate at one of the nuclei, except the pairs which lie in the
interatomic surfaces and terminate at the corresponding (3,-1}) bond critical
points. Alsc shown in Fig. 4-6 are six integration rays for the carbon atom
to illustrate the point that near the finite intersections of a given ray with
the interatomic surface, the attractor of the Vp(r) trajectories which
intersect the ray changes from the carbon nucleus to a bond critical point and
then teo another nucleus, or vice versa. Thus, the intersections eof a given
ray with the interatomic surface can, in principle, be determired Dby
calculating the attractors of the complete set of Vp trajectories which
intersect the ray and assigning the points on the ray whose attractor is a
*bond* critical point as the pointr of intersection. If all peints on the ray
intersect Vp trajectories which terminate at the nucleus of the integrated
atom then the ray only intersects the atomic surface at infinity.

In general, an atomic integration ray may be classified as nLll order
whers n is the number of finite intersections of the ray with the atomic
surface. In the carbon atom of CHJLi, for example, there are three types of
integration rays: 0th order, where the first and only intersection with the
interatomic surface is at infinity so that the attractor along the ray never

changes, all Vp(r) trajectories which intersect the ray terminating at the
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carbon nucleus., The rays labeled 2 and 3 in Fig 4-6 are of this type. In
this case the ray would be integrated from the nucleus to infinity; 1%
order, where the first and only intersection is finite indicating that the
nuclear attractor changes only once along the ray, from the carbon nucleus to
the another nucleus as the ray passes through the point of intersection with
the carbon atomic surface. The rays labeled 1 and S5 in Fig. 4-6 are of this
type. In this case the ray is only integrated from the nucleus to this first
intersection; 2"d order, where the ray intersects the atomic surface three
times, the first and second intersections being finite and the third at
infinity. For a 2nd order integration ray, the attractor changes from the
carbon nucleus to another nucleus as the ray passes through the £first
intersection with the carbon surface, changes back to the carbon nucleus as it
passes through the second intersection and then the remains cutside the carbon
atom all the way to infinity. The rays labeled 4 and 6 in Fig. 4-6 are of
this type. In this case the ray is integrated in two parts, from the nucleus
to the first intersection and from the second intersection to infinity. Third
order integration rays, which are not present in CH3Li. differ from second
order rays only in that the third intersection is finite. Integration rays of
fourth order and higher are rarely observed. Indeed most atoms will possess
only 0th and 1°° order integration rays. The lithium and hydrogen atoms in
CHJLi, for example, are of this type.

In practice, of course, the complete set of trajectories which intersect
an integration ray cannot be determined, in general. Thus, it is not possible

to determine the peoints of intersection of the integration rays with the

atomic surface exactly by searching for those points along the ray whose
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attractor is a bond critical peint. The points of intersection may be
approximated to any level of accuracy, however, by searching for very smwall
segments along the ray in which the attractor changes from the nucleus of the
integrated atom to another nucleus, or vice versa. The acccuracy with which
the true intersection is approximated using this procedure is proporticnal the
length of the segment. This method of approximating the atomic surfaces is
the basis for the PROMEGA program. The success of this approach is seen
explicitly in Fig. 4-7 where the surface of the same boron atom in B“WF' is
again shown (see Fig. 4-5), but now with no large gaps.

Thus, PROMEGA retains PROAIM's advantage of using a uniform distribution
of integration rays, but the determination of the integration boundaries for
these rays is, like OMEGA, based on the fact that each point within an atomic
basin lies on a Vp trajectory which terminates at the nucleus of the atom (see
Fig. 4-2).

The implementation of the algorithm of PROMEGA is straightforward. The
objective is essentially to efficiently determine those segments of the
integration rays which intersect Vp trajectories terminating at the nucleus of
the atom. A Vp{r) trajectory satisfies a differential equation of the form
dr(s)/ds = Vp(r(s))/iVp(r(s))| {13)
where s is the path length along the trajectory from a given starting point.
In PROMEGA, the Vp(r) trajectories are calculated starting from points along
the integration rays to their termination points (the nuclear attractors) by
solving equation (4-13) numerically.

The procedure for calculating the first intersection of a given

integration ray of atom R with its atomic surface is essentially as follows.
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(1) Starting at a user specified distance beta along the ray, calculate the
Up{r} trajectory from the corresponding point to its termination peoint, a
nuclear attractor.
(11} If the nuclear attractor from (i} is that of atom £, step ocutward a user
specified distance FSTP along the ray. If the nuclear attractor from (i) is
that of another atom step backward a distance FSTP along the ray.
(11i) cCalculate the Vp(r) trajectory from the new point along the ray to its
nuclear attractor.
(iv) If the nuclear attractor from (iii) is that of atom @ step forward a
distance FSTP if the nuclear attractor from (i) was alsc that of atom £, but
step forward a distance FSTP/Z2 if the nuclear attractor from {(ii) was that of
another atom. If the nuclear attractor from (iii) is that of another atom
then step back@ard a distance FSTP along the ray if the nuclear attractor from
(i) was also that of another atom, but step backwards a distance FSTP/2 if the
nuclear attractor from (i) was that of atom Q.
{v) Repeat step {(iii) and move forward or backward along the ray according to
the criteria in step (iv) except that once a point is reached at which the
attractor differs from the initial point in (i} then the step size along the
ray from that point and all subsequent peints is half of the previous point.
Step (v} is repeated until the step size along the ray is less than a
user specified value THRESH, signifying the current point is within this
distance along the ray from the true first intersection with surface. If the
distance along the ray reaches a user specified distance TINF without changing
attractors, then the ray intersects the atomic surface at infinity only and

the search is terminated.
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PROMEGA is also structured to search for the less commen second and third
intersections of the integration rays with the atomic surface. The procedure
for searching for these intersections is similar to the search for the first
intersection except that the starting point for the second intersection search
is the first intersection while the starting peoint for the third intersection
search is the second intersection. Only those rays with a finite first
intersection need be searched for second and third intersections. To avoid
stepping over intersections completely when second and third intersections ave
present, it is necessary that the initial step size along the rays be much
smaller than if only first intersections are present. For this reason, the
search for second and third intersections in addition to first intersections
is more time consuming. Fortunately, most atoms will not contain a
significant number of integration rays with second and third intersections and
their search can usually be avoided without sacrificing the accuracy of the
results.

Once all of the integration ray intersections with the atomic surface are
found, the atcmic properties are calculated by numerically integrating the
corresponding property densities along the segments of the rays which lie in
the atomic basin, just as in PROAIMV.

The process of seaching for the integration ray intersections in the
above manner is time consuming because for each sampled point along a given
ray the Vp(r) trajectory which intersects the point must be numerically
calculated to its nuclear attractor. To speed up this process without
affecting the accuracy of the results, PROMEGA employs several strategies.

Firstly, the search for the intersections is "vectorized* in the sense that
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the searching process is carried out for a large number of rays simultaneously
rather than one ray at a time. This approach alleows the simultanecus
evaluation of Vpir) at a large number of points using a procedure similar to
that of the numerical integration in PROAIMV. Secondly, a Vp(r) trajectory
need not be calculated all the way to its nuclear attractor but rather only to
the surface of a sphere centered on the attractor and known to be contained
within the corresponding atom, a sphere which acts to capture the trajectory
for the attractor. Thus, as input, PROMEGA requires a "capture sphere" size
for each of the atoms in the molecule. The size of an atom’s capture sphere
is restricted only in that it be contained within the atom, but the larger the
better. Thirdly, PROMEGA employs an Adams-Bashforth-Moulton predictor
corrector method of order 6 for numerically solving equation (13) for the
Vpir) trajectories. This method allows relatively large step sizes (0.05 au)
to be taken in the accurate solution of egn. (13) in comparisen with a simple
single-step Euler method. Fourthly, the starting point along the rays to
begin the seaxrch is an important consideration. Thus, PROMEGA first
determines the first intersections of a small, uniformly distributed, subset
of integration rays and uses these intersections to provide good starting
points in the search for the remaining integration rays'’ intersections.

Using only the four strategies mentioned above, PROMEGA would still be
too time-consuming for wavefunctions with many natural orbitals and primitives
due to the large number of evaluations of Vp{r) required. To avoid
prohibitive computation times for large wavefunctions, it is necessary to take
advantage of the fact that most of the primitives used in the expansion of a

large wavefunction make negligible contributions to the charge density in any
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given region. PROMEGA thus employs a "dynamic" primitive cutoff algorithm in
calculating the Vpir) trajectories. The approach used is similar to that
described by Cioslowski,5 except that the cutoff criterion for a primitive
must be met for a batch of points being evaluated rather than a single point.
With the implementation of this procedure, the calculation of the Up
trajecteries becomes much more efficient, without loss of accuracy, and the

computation times for large molecular wavefunctions do not become prohibitive.

4-3-4 PROMEGA Rasults

Table 4-3 shows some integration results for the symmetrically unique
atoms of a set of molecules of varying complexity. Results calculated using
both PROMEGA and PROAIM are given in this table, along with the analytically
calculated meolecular values, to demonstrate that the integration results of
PROMEGA are, in nearly all cases, equal to or better than those of PROAIM.
The numerical integration gquadrature used in each case was identical for both
programs so that the results reflect the accuracy with which the surface of
the atomic basin is approximated. For the last four systems, SiFa—bl}l}I
CHd—NO:, K'-18-crown-6 ether and tetra-glycine helix, PROAIM fails to yield
accurate results for at least of one of the corresponding atoms whereas
PROMEGA yields results of quantitative accuracy in all cases. The potassium
crown ether and tetraglycine calculations illustrate that PROMEGA is not
restricted to small systems. In particular, tetraglycine which possesses no
useable symmetry required 27 separate integrations, the individual results for
which are not shown to save space. In this particular molecule PROAIM failed

to yield results of even qualitative accuracy for over half of the atoms. It
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is likely that better accuracy still could be attained with PROMEGA for this
complex system by employing higher-order numerical integration. PROMEGA has
been used for a large number of other molecules as well and almost always
yields results accurate to better than 10'3 atomic units for all calculated
properties, regardless of the topological complexity of the charge density

distribution.
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Figure 4-1

Atomic surface of carbon atom in methane in terms of its four C-H
interatomic surfaces, each of which is defined in terms of the trajectories of
the gradient vector field of the charge density which terminate at the
corresponding (3,-1) bond critical point. View is along a C‘ axis. The

surface is shown out to the intersection with the 10  au isosurface of the

charge density.
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Figure 4-2

Atomic basin of carben atom in methane defined in terms of trajectories
of the gradient vector field of the charge density which terminate at the
carbon nucleus. Trajectories are shown out to their intersection with the

-5 . . . . .
10 au isosurface of the charge density. View is along a C  axis.

203



(s
PR

ate Bl
bk 1.
1 ¥

+
o, Pt ‘e
AT RIS

*

Bt

>, .
i '.*a‘-_‘z_:'

s h;:,; h‘

: B rapag} e tiny NG ; 3 AT o
"’-“.'\!ﬂ*qah.ﬂq.:._,’.:‘*l!af*::i : " Y Bt e . ; '-}:"0!-“;“::%{3
SRR HE R SRR S L e SR e
v R T R - by 4 ] 3% : *y?ﬁ}ss.&;ggf\_smhﬁ

i \gi\_;j,.‘.:sf:;;r&‘
TG, '
o




Figure 4-3
Loop Structure Used in PROAIM for the evaluation of the primitive tunctions

and their contraction into the molecular orbitals.
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CONTINUE

DO 100
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CONTINUE

CONTINUE
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Figure 4-4
Loop structure used in PROAIMV for the evaluation of the primitive functions

and their contraction inot the molecular orbitals.
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DO 100 j=1,NPRIMS
BoO 150 k=1,NPTS
¢hj = expressicn
d¢kj/dx = expression
d¢kj/dy = expression
d¢kj/dz = expression
V2¢kj = expression
150 CONTINUE
100 CONTINUE
DC 200 i=1,NMO
DO 250 j=1,NPRIMS
IF(CU.NE.ZERO) THEN

DO 300 k=1,NPTS

Yoy =¥ * Cij¢j

W, /dx = ay /dx + C,, (48, /ax)

ay,  /dy Ay, /dy + Clj(d¢kj/dy)
d\bklldz = dl,’:ki/dz + Cij{dqﬁkj/dz)
Vo o=V o+ c ¥
ki~ ki i Tk
300 CONTINUE
ENDIF
250 CONTINUE

200 CONTINUE



Figure 4-5

Four B-B interatomic surfaces of a boron atom in B H & as caleulated by
[T}

PROAIM. The large gaps result in inaccurate intersection coordinates for the

Boreon integration rays and peeor integration results for the Boron properties.
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Figure 4-6

Display of the gradient vector field of the charge density in the symmetry

plane of CHjLi. Bond critical peints are labeled by dots. Also shown ave

some integration rays, labeled 1 through 6, feor the carbon atom. The
intersections of the integration rays with the surface are labeled by closed
squares. Rays 2 and 3 intersect the carbon surface only at infinity. Ray 5
intersects the C-Li interatomic surface once while ray 4 intersects the same

surface twice. Ray 1 intersects the C-H interatomic surface once while ray 6

intersects it twice.
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Figure 4-7
Intersections of Boron atom integration rays with the four B-B interatomic

surfaces in a Boron atom of BH ™~ as calculated using PROMEGA.
[ L S

Al
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Tal:le 4-1
CPU Times for Atomic Property Calculations in 18,6 Crown Ether on an IBM

56000 Model 350.

Atom PROAIMV (cutoffs) PROAIMV(no cutoffs) PROAIM(Original)
Carbon 40.7 minutes 88.2 minutes > 1000 minutes
Qxygen 45.7 minutes 93.9 minutes > 1000 minutes
Hydrogen a 17.4 minutes 43.8 minutes > 1000 minutes
Hydrogen b 19.6 minutes 42.1 minutes 1028.8 minutes
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Table 4-2

Some Atomic Properties of 18,6 Crown Ether Calculated

Using PROAIMV.

Atom(Q) L) Net Charge Energy
Cargon 0.001 au 0.806 -37.349 au
Oxygen 0.001 au -1.309 -75.529 au
Hydrogen a 0.0001 au -0.v93 -0.679 au
Hydrogen b 0.0001 au -0.059 -0.667 au
Sum of atomic charges = -0.001

Sum of atomic energies = -917.511 au

Molecular SCF energy = -917.511 au

21¢



Table 4-37

Caleculated Atomic Properties of Some Moliecules using PROMEGA and PROAIM

Mol _Atom(Q}

q{Q) E(Q) L{Q) a{) E(Q)

LiH_Li
LiH_H
LiH
CHI C
CH _H
CH

1
C H _Cl(ring)
LI
C]HG_H(rlng)
C_ H {ring)
16
ClHI_C(cage)
CdHI_H(cage)
CtHl(cage)
Propene_Ha
Propene_HbL
Propene_Hc
Propene_Hd
Propene_He

Propene_Cl

+0.91159 -7.36622 -7.4E-6 +(.51171 -7.36621
-0.91093 -0.61998 1.7E-4 -0.91634 -0.61%82
+0.00066 -7.98620 -0.00463 -7.98603
+0.17480 -37.66023 +1.3E-4 +0.17462 -37.66007
-0.04368 -0.63803 -7.1E-6 -0.04357 -0.63804
-0.00008 -40.21235 -0.00034 -40.21223
0.06145 -37.74559 2.4E-4 0.06156 -37.74552
-0.03087 ~0.64312 -2.4E-5 -0.03064 -0.64317

0.00045 -117.09543 0.00084 -117.09558

-0.07167 -37.82241 8.0E-5 -0.,07199 -37.82246
0.07189 -0.58793 -4.2E-5 0.07151 -0.58798
0.00085 -153.64136 -0.00032 -153.64176
-0.03006 -0.63634 -8.2E-7

~-0.02382 -0.63482 -2.0E-5

-0.03260 -0.64311 -2.0E-05

~-0.04345 -0.64508 7.6E-6

-0.041597 -0.64236 8.2E-6

0.03627 -37.76054 3.5E-4
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L () E{SCF}
+7.3E-5
-3.0E-5
-7.98616
-2.3E-4
+8.4E-5
-40.21232
1.6E-4
7.7E-5
-117.09538
-1.3E-4
4.9E-5
-153.64163



Propene_C2 0.002101 -37.81664 -5.0E-5

Propene_C3 0.17464 -37.6911¢ -4.9E-4

Propene -0.00011 -117.11244 -117.112a2
CHq-NOS_C -0.04724 ~38.12339 5.5E-04

cn“-No;_na 0.31768 -0.46136 8.4E-06

CHd-Nog_Hb 0.29532 -0.47571 -2.1E-05

cud—No;_N 0.49174 -54.23082 4.2E-04

CH,-NO__Oa  -0.35586 -75.14514 -1.3E-06

ca4-No;_ob -0.31331 -75.12458 3.6E-04

cnd-No; 1.00133 -244.49807 -244.49771
SiF,-NH_Si  3.42216 -287.54911 -4.9E-04

SiF,-NH _F,q -0.87774 -99.87040 -1.9E-04

SiF -NH_F_ -0.87084 -99.86245 -1.6E-04

SiF -NH, N  -1.12390 -54.92378 6.9E-04

SiF,-NH _H 0.40170 -0.46579 6.2E-05

SiF,-NH, -0.0U070 -743.34391 -743.34371
Crown-K'_K 0.95896 -599.61913 -2.6E-5

Crown-K'_C 0.76185 -37.36209 4.2E-4

Crown-K'_O0 -1.32470  -75.46623 -1.5E-3

Crown-x*_na -0.04777 -0.66160 1.1F-4

Crown-xf_nb -0.04830 -0.66162 1.1E-4

Crown-K' +1.00012 -1516.64023 -1516.64064
Helix -0.00756 -789.60894 -789.61012
®aAl)  results were calculated from single determinant SCF moleculhar
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wavefunct ions at the corresponding theoretical equilibrium molecular geomatry.

The basis set used for LiH was an uncontracted gaussian basis set consisting

of 11s7p3d for lithium and 9sSp2d for hydrogen. The basis set for CH, CH,
" R}

C1H1. Propene and SiF -NH = was the standard 6-311++g(2d,2p) set as

incorporated into Gaussian 90,” the program with which all of the SCF

calculations were performed. The basis set for the Crown-K' complex was the
standard 6-31G** as incorporated inte Gaussian 90. The basis set for the
helix was 6-311++G** as incorporated into Gaussian 30.

q(Q) is the net charge of atom Q

E{f}) is the total energy of atom Q

L{Q) is -{1/4) times the integral of the laplacian of the charge density over
atom £, a quantity which is equal to zerc for a perfect integration.

E(SCF) is the SCF total energy.



APPENDIX: THE THEORY OF ATOMS IN MOLECULES

Central to much of the original research presented in this thesis is the
theory of atoms in molecules.bg A complete development of this theory is
given in the comprehensive book of reference 1. The theory of atoms in
molecules has also been reviewed a number of times recently. For exanple, in
review articlesp_s, or thesesﬁhg. For the sake of completeness, however,
those aspects of the theory which are directly relevant to the original work
of this thesis are reviewed here.

An atom Q in a molecule is defined to be a region of a melecule in real
space R3 that is completely bounded by a surface S(f},r) which satisfies the
following condition
Vp(r)-;(r) =0 Vr e 5(Q,rx) {H
where p(r} is the electron density at the point r in R’ and where ;(r) is a
unit vector normal to the surface §{({,r) at r. In words, an atom in a
molecule is defined as a region of a molecule that is bounded by a surface
through which the flux of the grac.ent of the electron density Vptry is zero
at every point r on the surface.

The reasons for identifying a region of a molecule which satisfies eqn,
(1) with the atom of empirical chemistry are many in number. First of all,
observations of a large number of experimentally and theoretically determined
electron density distributions show that the ele:stron density almost always
exhibits local maxima only at the nuclear positions in molecules. As a
consequence, the nuclei in molecules are the only three-dimensional attractors

of the trajectories of the Vp(r) field and mnlecules are thus observed to be

214



completely and naturally partitioned by the Vpir) field into mononuclear
regions which satisfy eqn. (1). A Vpir) trajectery is a path of steepest
ascent in  the electron densicy distribution. AS an example, some
representative trajectories of the Up(r) field in the nuclear plane of the
ethene molecule are shown in Figure A-la. In this figure one sees that with
each nucleus is associatud a connected regiun of the ethene molecule that is
traversed by Vptr) trajectories which originate at infinity and terminate at
nuclei, which are topologically equivalent to critical points of the Vpix
field. The nuclei are classified as (3,-3) critical points to indicate that
the Hessian of the electron density at the points, VVp, possesses three
negative eigenvalues, ie. the nuclei are local maxima in the p(x)
distribution. In three dimensions, the region traversed by the complete set
of VUpiry trajectories which terminate at a given nucleus is the basin
associated with the corresponding nuclear attractor.

Not shown in Fig. A-la is the set of unique Vp(r) trajectories in the
plane which do not both originate at infinity and terminate at the nuclei, but
rather either originate or terminate at certain points lying between certain
pairs of nuclei. These unique trajectories are overlaid upon the map of Fig.
A-la and are shown in Fig. A-lb. The points at which these unique
trajectories ofiginate or terminate are also critical points of the Vp(o
field and are labelled by black dots in Fig. A-lb. Unlike the nuclear
critical points, however, the internuclear critical points are not local
maxima of the electron density. Instead, they are surface critical points,
each serving as the terminus for a surface of Vp(r) trajectories which

originate at infinity, with the electron density being a maximum in the
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surface. These surfaces separate the basins of the nuclear attractors and
show explicitly that the boundaries of the basirs satisty egqn. (1)
identically. Each of the internuclear critical points also serves as the
origin for a pair of Vptx) trajectories, each of which terminates at one of
the two nuclei which the critical point lies between, with the electron
density at the internuclear critical point being a minimum along the axis
connecting the two corresponding nuclei. Such critical points are classitied
as {3,-1) to indicate that the Hessian of the electron density at such points
posseses three nonzero eigenvalues, two of which are negative and whose
eigenvectors are locally tangent to the surface of Vpir) trajectories
terminating at the point, and one of which is positive and whose assoclated
eigenvector is locally parallel to the pair of trajectories originating at the
point. It is to be noted that there is an internuclear critical point only
between those nuclei which are considered, chemically, to be bonded to one
another and thus the internuclear critical points are called bond critical
points. In Fig. A-lc the Vp(z) trajectories originating and terminating at
the bond critical points in the nuclear plane of the ethene molecule are shown
overlaid upon a contour map of the electron density, a map which also shows
that the electron density is a local maximum at the nuclear positions. From
this figure one sees that the primary chemical concepts of atoms and bonds are
defined by the gradient vector field of the electron density. An atom in a
molecule is the union of a three-dimensional attractor of the Vpir) field
together with its associated basin and is bounded by interatomic surfaces
which are defined by the trajectories of Vp(r) which terminate at the bond

critical points connecting the atom to its neighbors. The union of the pair
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nf trajectories originating at a given bond critical point defines a bond path
erxplicitly linking the corresponding atoms. The set of all bond paths in a
given molecule defines the molecular graph. Thus, in the ethene molecule, for
example, e¢ach carbon atom possesses three pond critical points and therefore
three interatomic surfaces, one each separating it from the two bonded
hydrogens and one separating it from the other CH? group. The results
observed in ethene are a general property of matter having now been observed
in literally thousands of theoretically and experimentally determined electron
distributions.

Having observed that molecules are naturally partitioned into atomic-like
pieces in terms of an observable property of the molecule, the electron
density distribution, the second reason for identifying these regions with the
chemical atom lies in the generalization of quantum mechanics from a total
molecular system to a subsystem, ie. a generalization which defines subsystem
properties and equations of motion in complete analogy with the total system.
Such a generalization of molecular quantum mechanics is possible only for a
subsystem which satisfies eqn. (1), and thus it is an observation that
molecules {(indeed all forms of electronic matter) are observed to be naturally
partitioned into quantum subsystems.

The most important basis for identifying the topologically observed
quantum subsystems with the atoms of chemistry lies in a consideration of
their properties. It was shown in Chapter 4 how the properties of an atom in
a molecule are calculated. For a single-particle observable ﬂ and a molecule
in the state Y one defines a property density in real space A(r) whose

integral over the 1eal space of the whole molecule yields the expectation
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value of the observable for the molecule. Since quantum subsystoms ave
defined in real space, the expectation value of the observable for an atom Q

in a molecule A{Q) is obtained by the integration of A(r1 over the pasin ot

the atom, as in agn. (2}

ALY = chz)IdzI at’ WrAY + (A ¥ (2)
Q

where N is the number of electrons and dt’ denotes integration over the spin
coordinates of all electrons (the observable is assumed here to be independent
of spin) and the spatial coordinates of all electrons but one. Since
molecules are disjointly and completely partitioned into atoms the important
property that the atomic values be additive to yield the molecular value

A(MOL) is satisfied, as in eqn. (3}

A(MOL) = ): AL (3)
Q

Properties such as the total energy, volume, net charge, dipole polarization
and polarizability have been calculated for atoms and groups of atoms in many
molecules in order to better understand molecular properties. An essential
observation is that all atomic properties are transferable between different
molecular systems in a manner which is consistent with the empirical chemical
atom and this is, ultimately, the basis for their identification with atoms in

molecules.
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Figure a-1

Maps of the gradient vector field of the clect:ron Jdensity in t.hc plane
containing the nuclei in the ethene molecule. Each line s a trajectory of
Vp. In a) only those trajectories which terminate at the puositions of the
nuclei and originate at infinity are shown. Each tvajectory is arbitvarily
terminated at the surface of a small circle about a nucleus. The set ot
trajectories which terminate at a given nucleus define the basin of the
nuclear attractor. b) is the same as a) but also includes those trajectories
whnich originate and terminate at the (3,-1) bond critical points of the
electron distribution. The position of a (3,-1) bond critical point is
denoted by a black dot. The pairs of trajectories which, in this plane,
terminate at the (3,-1) bond critical points mark the intersection of the
interatomic surfaces with the plane shown. The Vp trajectorics which
originate at the (3,-1) critical points and terminate nuclel are denoted by
heavier lines. 1In c) the Vp trajectories associated with the (3,-1) critical
points are superimposed on a contour map of the electrun density in the same
plane as a) and b). These trajectories define the boundaries of the atom and

the molecular graph.
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