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ABSTRACT .. 

The objective of satellite orbit determination is t~. find 
\ , . 

accurat~ values of a ~t of orbital elements which describes 

the orbit of the satellite, using observations of -the 
-

satellite. The extended Kalman filter has been widely used 

for the estimation of the orbital states. The purpose of 

this work is to find an alternati.ve approach .that would 

reduce the amount of on-line computation required. A 

nonlinear observer is proposed for this application. Its 

stability problem is ~tudied thr-ough the second method of 

Liapunov. The performance of the "nonlinear obs·erver is then 

evaluated with simulated orbits. AI tho ug h man:( secondary 

effects on the dynamics of the satellite have been omitted, 

the simulation is indicative of results that can be obtained 

in real situations. 
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CHAPTER ONE 

INTRODUCTION 

The controi a'ction required to maintain a man-made 

satellite in a desired orbit is based on' the estimation of 

the orbital states from ground-based measurements. The 

extended Kalman filter is widely used for orbital trajectory 

determination and prediction [1]-[7]., However, the dynamic 

model of a satellite is complicated as well as nonlinear. 

The use of the extended Kalman filter requires re

linearization at 'each step hl the calculation of the gain 

~iX. The amount of computation needed warr,nts a 

powerful computing machine. ~ 

The purpose of this work is to'study the feasibility 

of using a Luenberger observer for the estimation of the 

. .-rbital states as an alternative approach. Since the 

desi~d orbit is known beforehand, it is possible to 

pre-determine a set of observer gain matrices off-line. 

Depending upon the current states or position of the .... 
satellite, an appropriate observer gain matrix is retrieved 

from memory for the estimation of the next prbital states. 

Thus the amount of on-line computation would be very much 

reduced. 

The basic principle of the Luenberger observer for 

1 
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linear systems is· discussed in Chapter Two. '\ An algorithm 

. '" for the calculation of the observer gain matrix is 

presented. -
Cl)apter Three discusses the extension of observer 

theory to nonlinear systems. The objective i.sto find th'" 

conditions under which the states of the nonlinear observer 

approach asymptotically-to those of the nonlinear system. 

O 
Cha~ter Four· is concerned with· t~ mathematics used 

in orbi t d~termination and prediction. The unified sta te 

t model developed by S. Altman and the· measurement m()del , 
associated with it are presented. Re f er en.ce ·coo rd ina te 

frames, ~easurement of time and an Earth model are 

described. 

Simulation results for the problem of sateflite orbit 

determination and prediction using nonlinear ob~erV~r are 

discussed in Chapter Five. 

Chapter Six conclud-es the results of this work and 

suggestions for future research work are also made. 
/' 
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CHAPTER TWO 

OBSERVER FOR LINEAR SYSTEMS. 

2.1 Introduction 
" 

Muc~ control engineering ,is concerned with the choice 

of a feedback control law to achieve· desired obj ectives, 

such as, optimization with respect. to some perf9~mance 

indices, minimization of the ·eff.a::t of noise, reduction of 

the sensitivity of the system to plant parameter var~ations, .-...-
or achieving arbi trary· dynamics of the system. Many feed-

. . 
back control designs require the knowledge of the states of 

the controlled plant. But the . states are not always 

available for measurement. One approach is to generate a 

suitable approximation to the ,state vector which is then 

substit.ut~d into the feedback control law. The' observer 

proposed t>y D.G. Luenberger in 1964 [8] is one of the 

schemes that give an estimate of the state vector based upon 

the measurements of the system inputs and outputs. 

2.2 Luenberoer Observer for Linear Systems 

Consider a linear nth-order system 

. 
x (t) = Ax (t) + 3 u ( t) 

Y ( t) = Cx ( t) . 

3 

(2.1a) 

(2.1b) 
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W~') is 'h' s:a,e vee'o, of dimension n. u(" is 'he 

cont~ol 'input vector of dimension m, and yet) is the output 

vector of dimension 'p. 'Denote the estimat~ of x(t) by x(t) 

and construct a model of the original system 

itt) = Ax(t) + Suet) -(2.2) 

If the initial state~' x(O), is known, this model would 

provide an exact estimate of the state vector x(t} for all 

t. But in general, this information is not available. 

Luenberger proposed an o~seryer with dynamics given by 

x(t} = Ax(t} + Suet) + G[Cx(t} - yet} 1 (2. 3) 

where G is the observer gain matrix. The state estimate 

error vector 

~ 

x(t} = x(t} - x(t} 

satisfies the differential equation 

! 
x ( t) = (A + GC) x ( t) 

The solution of this differential equation is 

x(t}=x(O} (A + GC) t 
e 

(2.4 ) 

(2. 5) 

(2.6 ) 

I~ the'observer gain matrix G'is chosen in such a way that 

'all the eigenvalues of (A + Ge) have negative real parts, 

the state estimate error vector will decay- to zero 

eventually no matter how large the initlal' estimate error 

I. 

-' 
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may be. The structure of an observer is illustrated in 

Figure 2.1. 

2.3 Design of Luenberger Obse~ver Gain 

Corresponding to the real matrices A and C of a 

linear system, t'he set of eigenvalues of the matrix, (A + 

"Gel, can be made to correspond to the set of eigenvalues of 

any real matrix of the same "order by suitable choice of the 

gain matrix G if and only if (C, Al is completeLy observable 

[ 9 1 • Although the existence of the gain matrix is 

< • 

• 

guaranteed if the system is completely 

calculation of the appropriate gain matrix to 
, 

eigenvalue placement can be a difficult chore. 

observable, 

achieve given ( 

One approach 

is to transform the system into the observable canonical 

form befo're proceeding further for the calculation of gain 
\ -

matr ix. 

Consider a completely observable system 

. 
x(t) = Ax(t) + Bu(t) 

yet) = Cx(t) 

(2.7a) 

(2.7b) 

It can be transformed into the observ4ble canonical form by 

a similarity transformation with the new state vector x(t) 

given by 

and 
x(t) = Qx(t} 

A = QAQ-l 

(2.8) 

(2.9a) 
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B '" OB (2.9b) 

;0 = CO- l (2.9c) '-

.. In particula~ices A and e have the following " 
'-structures 

All 1'.12 Alp 

A2l. 1'.22 A2p 
A = (2.10) 

\,1 1'..,2 A.,p 

·.:i tZl 

A .. II .. N a{ij) T (2.11) = - e 
~J ~J n. n i ~ 

and 

f 
nl 
n l 

0 0 
{ 

0 
n2 

0 fn 
2 

C = (2.12) 

u u 

where II .. is tne Kronecker delta, N ~s a nilpotent matrix 
~J n. 

~ 

of index n. 
~ 

as shown below: 

a a a a 0 

1 0 0 0 0 

0 1 0 0 0 
N n. = (2.13 ) 

~ 

0 u a 0 a 
0 0 0 1 0 
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en. is the nith unit vector of dimension ni and 
1. 

8 

(2.14) 

and 
n· 

f 1. is the nith unit row vector of dimension ni and n i 

For example, 

a 

1 

a 
All = 

a 

and 
o 

a 

a 

a 

a 

1 

a 

o 

a 

a 

p • 
t n. = n 

.' 1 l l= 

a 

o· 

a 
.. 
1 

o· 

a 

a 

-a
1 

(11) 

-a2(1l) 

-a
3 

(11) 

-a (11) 
n l 

(2.15) 

(2.16) 

(2.17) 

Note that the eigenvalues of a block diagonal matrix 

are the eigenvalues of the blocks on the main diagonal. 

Now, suppose a set of eigenvalues has been chosen for the 

observer, we may form a block diagonal matrix 0 which has 
~ 

main diagonal blocks with the s~e size and structure as the 

corresponding blocks on the main diagonal of the A matrix. 

• 

, 
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, ) 
0

11 
0 ... 0 

0 0 22 0 
0 - (2.18) 

~ 

0 ,0 0 pp 

where 

0 0 -dO 

1 0 -d l 

0, . , = 0 
11 

1 -d 2 (2.19) 

a a -dn .- l 
1 

Note that the characteristic equation of the block D .. is 
11. 

4 

n, n.-l 
"""s 1. d 1. s" + t\. -1 s (2.20) 

1. 

Therefore, the matrix D can be formed easily once the 

eigenvalues have b~n chosen and the char,acteristic equation 

for each block has been obtained, 

The observer gain matr ix G for the 

md' 
system in the 

observable canonical form can be calculated by 

solving the matrix equation 

A + GC = D (2.21) 

Then ,the observer gain matrix for the original system can be 

otained'by the transformation 

(2.22) 



.. 

Since the eigenvalues of a matrix are invariant under 

• similarity transformation. the eigenvalues of (A + Ge) are 

the same as those of the matrix D. 

o = a(A + Ge) Q-l (2.23) 

In principle. the choice of the observer eigenvalues 

is completely arbitra;y. The eigenvalues can be ~oved 

. 
towards minus infinity. thus. yielding extremely :::apid 

convergence. However. to do so would require very large 

gains. Since the output y (t) will inevit.ablY-· contain olt 

least a small amount of measurement noise. this will t.end to 

be magnified if the observer is too fast.. ';:;0 in practice, 

the eigenvalues. gf the obse-.ver are sel~cted to be som~what 

more negative than those of the system to be Observed so 

that· c'onvergence of the estimated states to the states of 

the system is faster than other system effects. 

J 
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CHAPTER THREE 

OBSERVER FOR NONLINEAR SYSTEMS 

3.1 Introduction 

Since the-first publication of Luenberger observer 

theory which concentrated on purely deterministic. 

continuous-time. linear. and time-invariant systems. it has 

been ext~nded to include time-varying systems. discrete 

systems and stochastic systems [12]-[14]. For nonlitwoer 

systems. some studies have also been reported [15]-[17]. 

However. these studies invariably involve re-linearization 

of the nonlinear 'system function at each step to calculate a 

new observer gain matrix. In this chapter. attempts are 

made to find the conditions under which the states of a 

nonl inear observer can be made to approach those of the 

nonlinear sistem without re-linearization at every step. 

In the case of linear systems, the question of 

convergence of the state estimate error can be studied by 

examining the eigenvalues of the observer. But the concept 

of eigenvalues is meaningless in the case of nonlinear 

systems. Henc.e, the ,second method of Liapunov will be used 

to study the stabi li ty problem of nonlinear observer s [18]-

[21]. r 
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3.2· Stabili ty of Nonlinear Svstems 

3.2.1 Definitions of Stability 

Consider a nonlinear syStem 

. 
x (t) = f (x,t) (3.1 ) 

The following stability definitions are based on the nature 

of the system time response that results from initial 

conditions in a par:ticular region of the state space. Let 

S(a) be ~n open spherical region of radius a > 0 around the 

origin, that is, S(a) consists of all the points x such that 

(3. 2) 

where Ilxll is the Euclidean :1orm of x given by 

II xl ( 3. 3) 

Definition 1 (stability in the sense of Liapunov) 

~ 
I 

The origin of the state space of eqn. (3.1) is said 

to be stable in the sense of Liapunov if correspondi:1g to 

each S(R), there is an S(r) such that solution of eq:1. (3.1) 

starting in S(r) does not leave S(R) as t approaches 

infinity. 

Definition 2 (Asymptotic Stability) 

If the origin of the state space of eqn. (3-.1) is 

stable i:1 the sense of Liapunov, and if, in addition, every 
, 

sol ution of eqn. (3.1) starting in S(r) not only st~ys , . 

wi thin S (R) but approaches the or ig in as t • m, then the 
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system is said to be asymptotically stable. 

Definition 3 (Ins~abili~y) 

The origin of the state space of eqn. (3.1) is said 

to be unstable if for some positive number R and' any r, no 

:natter how small, there is always a point 

a trajectory of the solution starting at 

·-s (R) • 

in S(r) such that 

this~int leaves 

According to Definition 1, an oscillator is stable in 

the sense of Liapunov if the ampiitude of the' oscillation 

remains fixed with time. We shall not refer to systems that 

are stable in ,the' sense of Liapunov as being stable. Rather 

we shall use the word stable to refer to systems which are 

asymptotically stable. 

Note that the region S(R) is a function of S(r). But 

the relationship of the size of S(R) with respect to S(r) is 

:;.ot known. Definition 2 says nothing about the extent of 

the region of allowable initial conditions. other than to 

specify a rather vague region S(r). For a nonlinear system, 

this region may be very' smalL The second method of 

Liapunov may be used to determine the stability of a system 

as well as to give an approximate estimate of the size of 

the stability region. 
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3.2.2 The Second Method of LiaEunoV-

A.M. Liapunov presented two methods for the study of 

the stability of ~ystems of ordinary differential equations 

given by 
( . ' 

x = f(x) (3.4) 

The first, in ' rect, method requires a knowledge of the 

solution the ntial equation. ,The second, or 

knowledge of the solution and 

« 
0 

\ 

provides 0 ly stability in~~~at~ , 
'. \ ~ 

asically, ,the seco~thod i \ a generalization of'" 

--

t ergy concept. A system ~s knowito be stable if its 

total energy is continuously decreasi1g • Wi th this as the 

starting point, Liapunov formed at generalized energy 
) 

function, known as Liapunov function: Any positive definite 

scalar function Vex) with continuous first partial 

der ivatives is a possibI"e Liapunov funct:j.on. 

Theorem 1 (Local Asymptotic Stabi,li ty) 

If there exists a real scalar function V (x) , 

continuous with continuous first partial derivatives, such 

that, / .. "---(1) V (0) = 0 

(2 ) Vex) > 0 for x 'I 0 
.... . 

(3 ) V (x) < 0 for x 'I 0 , 
then, eqn. (3.4) is stable in the neighbourhood of ,the 

• ( 
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origin. 

Theorem 2 (Global Asymptotic Stability) 

If there exists a real scalar function V(x), 

continuous with continuous first partial derivatives, such 

that, 

(1 ) V(O) = 0 

(2 ) Vex) > 0 for x ;i 0 

(3 ) V (x) . - as Ilx II • -
• 

(4 ) Vex) '< 0 
. 

(5) V (x) not identically zero along any trajectory 

of the solution of the system other than the 

origin 

then eqn. (3.4) ~s globally asymptotically stable. 

The most power.ful feature of the second method of 

Li apunov is the fact that the Liapunov function V (x) is not 

unique. As long as one Liapunov function for a system can 

be shown to exist, the system is at least asymptotically 

stable ~n the neighbourhood of the origin, or equilibrium 

point, of the system. No longer has one to search for a 

single unique solution to the 'differential equation x = 

f(x), but one out of many possible Liapunov functions. The 

search for such a function is the main difficulty with this 

approach. 
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3.2.3 Liapunov Function 

In order to show that . a system is asymptotically 

stable, it is suf~ici~nt to show that at least one Liapunov 

function exists •. However, it must be noted that failure to 

find one does not necessarily imply that the system .is ...... .. ,,:. 
·unstable. The process of finding one possible Liapunov 

functi~;, a system is presented below. 
/ l 

) 

(a) Linear SYstems 

Consider a linear system 

x = Ax 

and a general quadratic function 
--. . 

T V(x) = x Rx 

Differentiate V(x) with respect to time, 

Let 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

If an arbitrary positive definite matrix is selected for the 

matrix Q and then solve eqn. (3.8) for R, the positive 

definiteness of R is both necessary and sufficient for 

asymptotic stability of the linear system. 

To determine the positive definiteness of the matrix 

R, we may apply Sylv~ster's Theorem ~hich states that: 

) 



--0---------, 

-In ord~r that a matrix R I?e positive definite, 

it is necessary and sufficient that each of 

the following 
-. 

be ~sitive. 

(b) Nonlinear Systems 

Consider a nonlinear system 

x = f (x) 

r
12

], ••• , deteR) 

r 22 

Expand f(x) in a Taylor series about xo. 

18 

(3.9) 

f ( x) (x - x O) + higher order terms 

x=x 
/",0 (3.10) 

For simplicity. let xo = Obe the origin and equilibrium 

point of the system. This is always possible by a simple 

linear transformation of coordinates. 

/f(XO)=O\. 

since Xo is the equilibrium point of the system. 

(3.10) becomes 

x = Fx + g (x) 

(3.11) 

Eqn. 

(3.12) 

where F is the Jacobian matrix and g(x) consists of the 

second and higher order terms. Consider a general quadratic 

function 
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(3.13) 

Differentiate Vex) with respect to time 

(3.14 ) 

where 

p.15) 

If an arbitrary positive definite matrix is selected for Q 

and solve eqn.(3.15) for oR, the positive definiteness of R 

is both necessary and sufficient for asymtotic stability of 

the linear portion of the nonlinear system. 0 If the linear 

portion is asymptotically stable, a finite region of 

stability for the nonlinear system is assured since the last 

term in eqn. (3.14) can only contain term~f third order or 

higher. By making x sufficiently sm~l' the first term 

which contains oonly 0 second-order te~ predominates in the 

neighbourhood of the origin. 

3.3 Nonlinear Observer 

The objective of this section is to find the 

condi tions under which the states of a nonlinear observer 

will approach those Qf the nonlinear system. 

nth-order nonlinear system 

x = f(x) 

y = h (x) 

Consider an 

r3.16a) 

(3.16b) 

Let Xo be a nominal operating point and expand' f(x) and hex) 
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about Xo in Taylor series. 

• x - f (x) = f(xO) + F [x - x01 + fl (x - xO) (3.17) 

y = b(x) = b(xO) + H[x - x01 + hI (x - xO) (3.18) 

where F and H are the Jacobian matrices consisting of first" 

partial derivative of f(x) and h(x) evaluated at x = Xo and 

fl(x - xO) and hl(x - xO) consist of second and higher order 

terms. 

Construct a nonlinear" observer 

i = fIx) + G[h(x) - y] (3.19) 

where G is the observer gain matrix such that all the 

eigenvalues of (F + GH) have negati~e real parts. The state 

estimate error vector 

x = i-x (3.20) 

is governed by the differential equation 

.: 

(3.21)---

,Assume f 1 (x - xO) satisfies a Lipschitz condition for 
-

all x - Xo in a certain region SIal containing the o~igin x 

= 0 

(3. 22) 
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where ~ is a positiv~ constant. Assume also that Ghl(x-xO) 
• 

satisfies a Lipschitz condition for' all x - Xo in a certain 
-

region S(b) containing the origin x = 0 

IIGhl(x - Xo + x) - Ghl(x - xo)11 < B Ilxll (3.23) 

. where B is a positive constant • 

. Consider a quadratic function 

. -T -
Vex) = x Rx (3.24) 

-
Evaluate the derivative of Vex) along the trajectory of eqn. 

(3.21). 

Let 

Then 

Vex) = ;T[R(F + GH) + (F + GH)TR]; 

-T 
+ 2x R[fl(x - Xo + x) - fl(x - xol] 

-Q = R(F + GH) + (F + GH)TR (3.26) 

Vi;) < -II;TQ;II + 211;TRII (all;lI) + 211;TRII (611;11) 

(3.27) 
-

where Ilx II, IIQII, IIRII are the Euclidean norms given by 

- n 
;~)1/2 Ilx II = ( r 

i=l 1. 
(3.28) 

n n 
Q~.) 1/2 IIQII = ( r r 

i=l j=I 1.) 
(3.29) 



\. , 
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n n 
IIRII=(l: l: 

i=l j=l 
R~.)1/2 
l.) 

By Schwarz's inequality 

IIQII = q 

II RII = r . 
where q and r are positive numbers, then 

-rhus, if 

q - 2r(~ + B) ~ 0 

23 

(3.30) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

then VeX) < 0, and eqn. (3.21) is locally asymptotically 

stable. 

The above result implies that the state estimate 

error, x, will eventually approac~ zero if 

(1) (F, H) is a completely observabl~ pair, 

(2) the nonl inear terms in the system to be observed-

satisfy a Lipschitz condition in the region 

min[S(a),S(b)] containing the origin x = 0, 

(3) the initial state estimate error, x (0), is 

sufficientlY small that it is within the stability 

region, and 

(4) (3.35) is satisfied. 
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/ 
3.4 Example 

Consider a second-order nonlinear system 

(3.36a) 

and 

(3.36b) 

where u is the input and y is the output of the system. The 

Jacobian matrices, F and H, are given by 

[-:"1 -3] 
F = 

-1 
x=x

O 

(3. 37 ) 

and 

H = (2x
l ' 1.) I 

x=x a 
(3.38) 

If the initial state esitmate is xl (0) = a and X
2

(0) = a 

F = [0 , -3] (3.39) 
1 -1 

and 

H = (0 1) (3.40) 

The eigenvalues of F are at s = -0.5 ;: j (/11/2). Note that 

(F, H) is already in observable canonical form. If the 

eigenvalues of the linearized portion of the observer are 

chosen to be at s = -2, then 



• 
where 

, 

• 

The nonlinear 

~ 
xl 

-x2 

G = [~~ l 
observer 

-2 
= -xl -

= xl -

is given 

3x2 

x
2 + 

- x 
2 

- Y 

u -

25 

. . 

(3.41 ) 

by 

(3.42) 

3y 

(3.43) 

If the control input u = -2, the steady state 

• solution of the system is 

= 1.372 

x 2 (ss) = -0.628 

Figures 3.3(a) and 3.3(b) indicate the time responses of the 

system and the observer for initial states, xl (0) = 0.5 and 

x 2 (0) = 0.5. The states 0 f the. observer approach those 0 f 

the system in spite of the initial estimate errors. 

However, if the process to be observed starts at the 

initial states, xl (0) = -0.55 and x 2 (0) = 1, the nonlinear 

observer fails to give close estimates of·the states. because 

the initial estimate error vector is so large that it falls 

outside the stability region of the nonlinear observer. 

Figures 3.4(a) and 3.4(b) show the trajectories of the 

• system and the observer. 

As is evident from eqn. (3.23), the size of the 



l 
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stabi~ity region is affected by the choice of observer gain 

matrix G. If the eigenvalues of the linear portion of the 

observer are chosen to be at s = -3 instead of -2, the new 

observer gain matrix becomes 

G = [~:] (3.44) 

and the nonlinear observer is given by 

(3.45) 

x2 + u - 5y· 

The change of the observer gain matrix alters the stability 

reg ion of the observer. With the initial states of the 

system, xl (0) = -0.55 and x
2

(0) = 1, the nonlinear observer 

given by eqn. (3.45) is able to give a correct estimate of 

the states of the system. The motions of the system (3.26) 

and the nonlinear observer (3.45) are shown in Figures 

3 .. 5 ( a) and 3. 5 (b) . 

j 

• 
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CHAPTER 4 

ORBITAL DYNAMICS 

4.1 Introduction 

The orbit of a satellite is defined by a set of 

orbital elements at a specified time. The objective of orbit 

determination is to produce an accurate set of orbital 

elements and use them to predict the satellite position and 

velocity at any desired time. 

Many sets of dynamical variables are available for 

selection as orbital elements and use in aerospace system 

and traj ectory formulation for design and operational 

computation. Although no one set can be universally most 

efficient for all mission requirements, significant 

differences exist ip their utility as the result of diverse 

functional forms of the consequent constraint e<::.!uations. 

The dynamic model of a satellite used in this work .is the 

unified state model developed by s. Altman [27], as further 

modified by P. Choda~ [28]. 

In this chapter, the mathematics )sed in 

orbit determination are described. T~ inclUde 

satellite 

the state 

model of a satellite, the co-ordinate sets, and the 

~~2S~r~T.~~~ ~ocel which ~elates the observation measurements 

to the orbital elements of the state model. 

33 
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4.2 Reference Frames 

- The motion and the position of a satellite are best 

described in a coordinate frame that is-fixed both in space 
• 

and in time. For this purpose, we choose an inertial frame 

and fix it at a certain epoc~. However, the measurements of 

the posi tion of a satellite from an obser-vation si te on the 

surface of Earth are made in a different coordinate frame, 

known as-the observation frame. The dynamic model of the 

satellite uses yet another set of coordinate frames so that 

it is ina simple ang compact form. Sever al 0 the r 

coordinate frames which serve as links will be described 

below along with these thr_ee coordinate frames. 

4.2.1 Inertial Reference Frame 

Origin 

x 
y 

Z 

at Earth center of gravity and coordinate 
axes 

direction of the vernal equinox at epoch 

direction forms right-handed system with X 
and Z axes 

directed North and normal to equator 

4.2.2 Earth Fixed Cartesian 

Or i"gin 

x 

y 

at Earth center of -gravity and coordinate 
axes 

direction of prime meridian intersection 
with equator 

on equator forming right-handed system 
wi th X and Z axes 

( 
l 
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z dire~ted North and,normal to the equator 

4.2.3 Earth Fixed Spherical 

Origin 

r 

La 

Lo 

at Earth center of gravity and coordinate 

r~dial distance to the point being 
measured 

latitude, positiv.e. north of equator 

longitude, east. of prime meridian 

4.2.4 Tooocentric Local Tangent 

Origin at observation site and coordinate axes 

E projection of the East direction in the 
" local hor1zon plane 

N projection of the North direction in the 
local horizon plane 

u local vertical 

4.2.5 Observation Frame 

Origin 

::1 

Az 

p 

at observation site and coordinates 

elevation. angula~ ~easurement from the 
horizon to the range vector 

azimuth. an angle measured in the plane of 
the local horizon. It is measured from 
the projection of the North direction 
eastward to the projection of the range 
vector ' 

radial distance to the point being 
measured ... 

4.2.6 Orbit Frame 

Origin at Earth center of gravity and axes 

in the 
between 

,. 
orbi t plane such that the 
fl and the ascending node is 

angle 
equal 

" 
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Origin 
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to the longitude of the ascending node in 
inertial coordinates 

in the orbit plane and normal to fl such 

that the satellite moves from fl to. f2 

f~rms a right-handed coordinate syste£ 
w1th fl and f2 and is in the direction of 

the orbit angular momentum 

at Earth center of gravity and axes 

directed towards .the satellite 

e 2 in the orbit plane and normal to e l such 

that the satellite moves from el to e 2 

normal to the orbit plane and forms right
handed coordinute system with el and e 2 

4.3 Transformation between Coordinate Frames 

4.3.1 Transformution from Orbit Frame fl f2 f3 to Orbit 

Frame el e 2 73 

This is simply a rotation by an angle A about the f3 

axis to bring the fl axis in line with the direction of the 

sutellite. 

e l cos A sin A 0 fl 

e 2 = -sin A cos A U " (4.1) '2 

e 3 U U 1 f3 
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• ,4.3.2 Transformation from Orbit Frame el~2~3 to Intertial 

Frame 

The rotation matrix from e-frame to inertial frame is 

the inverse of the E-matrix defined in~ction 4.5. Because 

the' E-matrix is a unitary matrix, the rotation matrix is 

simply its transpose. 

x e l 

Y = ET e 2 (4.2) 

z e 3 

4.3.3 Transformation ~om Inertial Frame to Topocentric 

Local Tangent 

The origin of the inertial frame is translated to the 

observation site from the Earth's center of gravity. Rotate 

about the new Z axis by inertial longitude 9. 

where Lo 

9 = Lo + a g 

is longitude of observation site 

(4.3) 

and a ./ g 
is 

Greenwich Sidereal Time. Then rotate about the new y-axis 

by the negative of latitude of observation site. 

where 

E 

N = ETOPO 

U 

x 
y 

Z satellite 

x 

y 

Z site ' 

(4.4) 

I" 



4.3.4 

sin a cos a 0 
", 

ETOPO = -sin La cos a -sin La sin a cos La 

cos La cos a cos La sin a sin La 

Transformation from Tooocentric Local Tansent 

Observation Frame 

U -1 
El = sin 

(E 2 + N2 + U2)1/2 

= tan -1 (EiN) Ax 

p 
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(4 ~ 5) 

to 

(4.6a) 

(4. 6b) 

(4.6c) 

4.4 The Measurement of Time 
-, 

The intent of this section is to relate the necessary 

definitions and equations for the determination of time_ 

4.4.1 Universal Time-

Astronomical observations are customarily reported in 

Universal Time, given in units of mean solar days, hQurs, 

minutes, and seconds. The mean solar time at the Greenwich 

Observatory is called Universal Time (U.T.), or Greenwich 

Mean Time (G. M. T.). One mean solar day's the elapsed time 

between successive passages of the meridian of the observer 

past the mean Sun. The mean Sun is a fictitious Sun that 

moves along the celetial equator at the average speed with 

which the true Sun apparently moves along the ecliptic 

throughout the year. 
, 

For the sake of' convenience, the Earth is divided 
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into twenty-four time zones • The GreenwiCh meridian. is . -.J '-.../ 
. ~ . . 

-exactly in 'the middle of time zone number- O. ·If -an observer 

is z time zones west of the Gre'enwich meri·dian and the local 

mean time is x hours, then the· Universal Time can be 

obtained by 

·U.T. = x + z 

4.4.2 The Julian Date 
" 

(4.7) 

. 
The Julian Date, denoted, by J.D., is an arbitrary 

benchmark which is a continuous count of each day elapsed 

since a partic!llar epoch. That epoch was selected to be 

January 1, 4713 B.C. Each Julian Date is measured from noon 

to noon, and hence, is an exact integer twelve hours after 

midnight. 
., -~ . . . 

The Inert~al Frame ~n th~s work is fixed at the 

mean equator and equinox of 1950.0. The Jul ian Date for 

this epoch is 2433282.5 • 

4.4.3 Sidereal Time 

If the Earth' s axis of rotation coincides wi th the 

Z-axis of the inertial refere:1ce frame, there is a unique 

angle between the G~eenwich prime meridian and the inertial 

X-axis. The angle is denoted by ag and is defined as the 

sidereal time of the Greenwich prime meridian. The 

Greenwich sidereal time can be calculated by means of the 

following formula [29): 

,'- .--

.( 
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~g .- lo.o..0755~2 + 360.985647346 (t - 2433282.5) 

+"0.:29 x 10.-12 (t - 2433282.5'1 2 . 
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(4.8) 

where t is time measured in Julian date. The fnstantaneous 

'. longitude of an observation site which is on east longitude 

Lo is g'iven by 

e (t) = ~ ~t) + Lo (4.9) 

This equation provides the basic link between the rotating 

reference· frames and the inertial reference frame. 

4.4.4 Ephemeris Time 

Bo th mean solar time and sidereal time are based on 
. 

the rotation of the Earth about its axis. It has been found 

that the Earth suffers from periodic and secular variations 

in its rotational rate. In order to have a more uniform 

time, Ephemeris Time was developed. Emphemeris Time, 

denoted by E.T. is defined as 

E.T. = U.T. + ~T (4.10) 

where ~T is an annual increment tabulated in the ."unerican 

Ephemeris and Nautical Almanac. It must be noted that <IT 

cannot be calculated in advance and is always an estimated 

quantity. Ephemeris Time must be used if the time period 

under consideration is long and high accuracy is required. 
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" 4.5 The Onified State Model 

A unified state model has been developed by S.P. 

Altman to define the trajectory and attitude dynamics of an 

orbital spacecraft. Only the portion concerning orbit 

dynamics will be described in this section. ,In the unified 
, 

sta~e, model, the state' variables are momenta and the 

coordinate variables are the Euler parameters [27]. 

An unperturbed orbital traj ectory, occuring in the 

pre~ence of the simple spherical harmonic function of 

gravity field due to one c'elestial body, is represented ey 

cyclic figures lying in an orbital plane in position, 

veloci ty, and acceleration vector spaces as shown in Fig. 

4.5. The orbital figure is a conic in position space, a 

circle in velocity space, and' a limacon-like figure in 

acceleration space. As the orbital en,ergy level changes I 

only the velocity map remains invariant in geometric figure. 

As a result, a differential formulation of the orbital 

trajectory dynamics will be free from s'ingularities .in the 

state v.ar iables. Since the velocity space map coiresponds 

to the position space map point by point, the position state 

can be obtained directly from the velocity state by means of 

algebraic transform equations. 

The velocity space parameters, C and R, are functions 

of radial momentum (Pr = invel ) and angular momentum (p~ = 

mve2) as defined by 

, 
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FIGURE 11,5 STATE f1AP OF liN ORBIT 

.' 



.. "f-"" ... ~t 

r = POSITION VECTOR ~ 

V = VELOC I TY VECTOR Y. /",PERtGEE 

~ = TRUE ANOMALY 

. e = FLIGHT PATH ANGL'E 

Y • 
~/'. ~ 

V ___ ~-t"· ..... r ~ r ...... I : \,1 
1 

C/ R / . 

PERIGEE 

'''' 

~ 

FIGURE 4,6 VELOCITY MAPPING OF fiN ORBIT 

~ '\ 



-. 

: 

r 48 

(4.11) 

(4.12) 

or 

(4.13) 

where m is the mass,of the spacecraft and E is the orbital 

,.energy pe.r uni t mass. The state parameters, C and R, are 

therefore implicit 'forms of orbital momenta. 

The orbita'l state variables of the unified state 

model are the three parameters, C, Rfl , and Rf2 , the 

velocity state variable R being defined in two components. 

Together with the Euler parameters as coordinate variables, 

the elements of the unified state model parameter set are 

(4.14) 

The Euler parameters are defined in Appendix A. 

The orbital dynamic equations for the unified state 

model are 

. 
C 0 

= cos). 

\ 
\ 

~ 

sin ). 

) 

/ 

-p 0 a e1 

- (1 +p) sin ). -"rRf~ e2 ae2 

(l+p) cos ). YRfl/Ve2 ae3 
(4.15) 

• 

, 
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• 0 013 0 OIl eOl e 01 
• 
e0 2 -3 0 OIl 0 e 02 

= 1/2 • 
e03 0 -OIl 0 '" 3, e03 

e 04 -"'I 0 -'" 3 0 e 04 

where 

p = C 
J Ve2 

~ 
(4.16) 

eOle 03- e02e 04 
T = '2 2 

e 03 + e 04 

(4.17) 

= 
a e3 

"'1 Ve2 
(4.18) 

CV2 
e2 

"'3 = 
)1 

(4.19) 

sin ). 
2e03 e 04 

= 
2 2 e 03 + e 04 

(4.20) 

2 2 
e 04 - e 03 

cos ). = 2 2 
e 03 + e 04 

(4.21) 

and )1 is the planetary gravitational 

value 1).3986 x 106 km
3
/sec

2
. 

constant with numerical 

a e3 denote the 

e-frame components of the total perturbing accelerations. 

The components of velocity in e-frame are 

(4.22) 

(4.23) 
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The perturbating accelerations ,due to the zon'al harmonics 

(J?, J 3 , J 4 ) and the tesseral harmonic (n: = 2, m = 2) are 

defined 'for the state model in Appendix B. 

Note that the unified state model parameter set 

contains one more element than the minimum of six required 

to des'cribe an orbit because it uses four Euler parameters 

while the description of a rotation requires only three 

independent parameters. So the Euler parameters must 

satisfy a contraint equation 

(4.24) 

The rotation matrix from inertial frame to e-frame, 

denoted by E, is given in terms of the Euler paramet'ers by 

"11 "12 "13 ~. 
E = "21 "22 ".23 (4.25) 

"31 "32 "33 
0 

where 

1 2 2 2 
"11 = - (e ll2 + e ll3 ) 

"12 = 2 (e iJ 1 e 02 + e 03 e U 4) 

"13 = 2 (e ll1 e U3 - e 02 e ll4 ) 

" 21 = 2-(e Ol e 02 - e 03 e ll4 ) 

1 2 2 2 
"22 = - (e Ul + e 03 ) 

"23 = 2 (e 02 e U3 + e Ul e 04 ) 
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~, 

£31 = 2 (eOl' e 03 + e 02 e 04 ) 
~ 

£32'= 2 (e02 e 03 - e Ol e 04 ) 

= 1 - 2 2 2 
£ 33 {eOl + e 02 ) 

4.6 The Measurement Model 

The observables of a satellite are elevation, azimuth 

and range. The measurement model maps 'estimated orbital 

s ta tes into pred ict'ed observables. 
" 

y = h (x) (4.26) 

where 

and 
T Y = (E l, Az, p) (4.27) 

The first step in calculating the observables is to 

find the inertial position of the observation site. The 

Earth's shape will be taken to be an ellipsoid of 

revolution. The. coordinates of a si te 

respect to this reference ellipsoid. La is the geodetic 

lattitude. Lo is the geographic longitude of the site. Ht 

is the height of the site above the reference e.llipsoid, 

measured along the normal of the ellipsoid. Figure 4.7, 

taken as a cross-section of the Earth in the plane of the 

meridian of the. site, depicts the definition of La and !ft. 

The cross-section of the reference ellipsoid is an ellipse 
< 

having semi-major axis Re and eccentricity ee. 

u 



--------. 

S2 , 

do 

'FIG~E 4.7 CROSS-SECTION OF EARTH nODEL 
" 
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Re = 6378.166 km 

l/f = 298.3 

where f is the flattening of the ellipse. 

The rectangular coordinates of the site in the cross

section plane are given"by [29]: 

(4.28) 

z 

where is the eccentricity of Earth. " The inertial 

longitude of the site has been defined by eqn. (4.9). So 

the inertial frame components of the observation are 

x 
y = (4.29) 

Z SITE Z 

Having calculated the instantaneous inertial ~osition 

of the site, the procedure in transforming the orbital 

states to observables is described as follows. 

The co-ordinates of the satellite in orbit frame (el' 

e 2 , '=3) are first calculated from the orbital elements. 

r = rel = lJ./ (CVe2 ) (4.30) 

• 
co-ordinate~ They are then transformed into in inertial 

c-
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frame by 

(4.31) 

:rhe position is then expressed in terms of'" the ENU-frame 

components 

[:J- [:]'.'."i'. - [:]'i" 
J 

ETOPO 
(4.32) 

$ 

and finally the observab1es are obtained by 

E1 = 
. -1 U (4.33) Sln 

(E 2 .;. N2 + U2 )1/2 

Az tan 
-1 

(E/N) (4.34) = 

. 
(E 2 N2 + U2 )1/2 (4.35) p = + 

~, 

• 
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CHAPTER FIVE 

SATELLITE ORBIT DETE~~INATION AND PREDICTION 

5.1 Introduction 

It has been shown in Chapter Three that a nonlinear 

observer is at least locally asymptotically stable if the 

nonlinear system to be observed satisfies certain 

conditions. In this chapter, attempts are made to evaluate 

the feasibility of applying the nonlinear observer to the 

probl,m of earth satellit~ orbit determination and 

prediction. 

The seven-parameter set unified state model described 

in the las is used as the dynamic model of a 

Fi:rst, be shown that this nonlinear 

system tis~ies the conditions listed at the end of Chapter 

Three for local asymptotic stability. Then the 

p,erformance of nonlinear observer in the applica:tion of 

satelli te, orbi t determination and prediction is evaluated 

with simulated noise-free observations, i.e., a true orbit 

is assumed and observations are computed. 

5.2 Aoolicabilitv of the Nonlinear Observer 

Let the nonlinear dynamic model of the sateilite 

given by eqn. (4.15) be repre~ented by 

, . 



, 
----

.. ' 

.' x = f (xl 

where = (C, 

measurement model be represented by 

y = hex) 

where yT =' (Et, Az, Pl. 

Expanding f (x) and hex) in 

initial state estimate, x , we have o 

\0 
Taylor series 

56 

(5.1 l 

and the 

(5.2) 

about the. 

(5.3) 

(5.4) 

where F and ·s· are the Jacob~trices consisting of first 

partial derivatives of f(x) and hex) with respect to x and 
u ' 

evaluated <!t x = xo ' and fl (x-xo ) and hI (x-xo ) consist of 

second and higher order terms. 

Let the nonlinear observer of the satellite be 

repr~sented by 

x = f(x) + G [hex) - y] (5.5) 

where G. is the" observer gain matrix. The state estimate 

error 

x = x - x (5.6) 

• 
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will decay to. 
. 

zero. eventually if at least .o.ne Liapunov 

functio.n can be sho.wn to. exist. 

If all the, eigenvalues o.f (F+GH) have negative real. 

parts, then 'the existence o.f a positive -definite matrix, R, 

is assured fo.r an arbitrarily cho.sen po.sitive definite 

matrix, Q, such that 

• Q = -[R(F+GH) + (F+GH)T RJ (5.7) 

In o.rder that all the eigenvalues o.f (F+GH)' can be placed 

arbitrarily in the left-half o.f the co.mplex plane, (F,H) 

must be a co.mpletely o.bservable pair. 'So. the first test fo.r o • 

applicability .of no.nlinear observer is to check' the 

observability o.f (F,H). 

There are seven states. in the dynamic model, one mo.re 

than the absolute minimum of six to describe the motion of a 

satellite. The unified state model is not .a minimal 

representation of the system. Th~s, the linearized system 

(F,B) is not necessarily completely observable. To test its 

observability, an observability matrix, v, is formed 

H 

v = H F (5.8) 

If the r ani< of V is seven, (F, H) is completely obser..table. 

But if' the. rank of V is less th,an seven, another model for 

the satellite has to be chosen. 

. 

0, 
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With F and E evaluated at· the initial.state estimate, 

it has been found that the rank of V is seven. Thus (F ,E) 

is compl~tely observable. The eigenvalues of (F+GE) can, 

therefore~ be' placed at any desired locations by' suitable 

choice of the gain matrix G. 

Secondly,. the existence of Liapunov functions depends 
, 

on whethe.r fl (x-xo ) and hl (x-xo ) satisfy the Lipschitz 

condition at least in the neighbourhood of (~o)' It may 

be noted that a continuous function with bounded continuous 
. 

first partial derivatives satisfies the Lipschitz condition. 

f(x) is continuous with bounded and continuous 

partial derivatives except for two classes of orbits. The 

first class of thEl'Se' orbits are the ones for which 

2 2 e OJ + e 04 = 0 
"-

In such case. the angle l. and thus the orbit frame (f l f2 

f3) ~re .not defined. Since the f-frame is required for the 

defini tion 'Of the states 'Rfl and Rf2 , the orbit is not 

representable. This happens when the orbit has an 

inclination .of 1800 The second class of orbits are the . , 
rectilinear orbits. F9r these orbits, the angular momentum 

of the satellite is zero and thus the orb{tal state, C, is 

not defined. 

" For the .measurement model h(·i) , the problem of 

discontinuity occurs when the satellite. is directly above 
. 

the observation site. In this case, the azimuth angle is 

• 

• 

L 

I 
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undefined. 

Finally, the existence of Liapunov ·functions depends 

on whether the' following .condi tion is satisfied 

where 

-q + 2r(a+S) < 0 

q = 11011 

r = IIRII 
-

Ilfl(x-xo+xl - fl(x-xo ) I I < a I Ixl I 
- -

~IGhl(x-xo+xl - Ghl(x-xo ) 1.1 .s. B 1·lxll 

This condition is always satisified by making tt and B 

sufficiently s@all. ~n order to get a feel of the order of 

magnitude of I lxii, an arbitrary positive definite matrix 0 

was chosen and its corresponding matrix R was obtained. It 

was found that 

q/2r • 10-7 

So, 

tt + B < 10-7 

and I I xi I is in the order of 10-1 • However, it mus t be 

noted that this value of Ilx II does not provide any 

information about the largest possible estimate error for 

each individual state. In the simulation, it has been found 

that estimate error of this magnitude is tolerable for the 

states C, Rfl and Rf2 but not for the Euler parameters • 

J 
\ 
.\ 
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5.3 Simulation Results 

The dynamical modelling. problem is an extremely 
. . 

difficult one in earth sateliite orbit determination and 

prediction. .The model dynamics are two-body whereas· the 

real dynamics are not. Earth oblateness causes secular .as 

well as periodic variation in the orbital e~ements. 

Additional innumerable accelerations act on the earth 

satellite. Thes~ include the gravitational acceleratio~s of 

. the sun, moon and planets, solar radiation pressure, and 

drag caused: by the earth's atmosphere. Nev.er theless, th'e 

simulation is indicative of the results that can be obtained 

in real situations. 

5.3.1 Numerical Solution of Ordinarv Differential Eouation 

The predictor-corrector algor i thm was used to solve 

eqn.· (4.15). The predictor step is 

x(U) = x +!... [23 f(x ) - 16 f(x
n

_
l

) + 5 f(x ?) 1 
n+l n 12' n n-- (5.9) 

and the ·corrector step is 

(5.10) 

where T is the step size which was taken as one second in 

this study. 
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5.3.2 Transformation to Observable Canonical Form 

To simplify the calculation of the observer: gain 

matrix G, the linearized system (F,H) is transf9rmed to the 

observable canonical form (F,H). The algorithm used in this 

,study was proposed by Hickin and Sinha [36J and is described 

below. 

To start, the observability matrix is obtained in the 

following way 

v = 

H 

H F 
. . (5.11) 

• 

Beginning with the first row of v, a non-zero pivot is. 
;;-

selected; say vIi' and then proceed as below 

(5.12) 

(5~13) 

i 
_where e is the ith unit row vector of dimension n which is 

7 in this case, vi is the ith column of V and vI is the 

first row of V. 

" The process is repeated for rows 2, 3 etc. to- get 

different row unit vectors in each case, _nd skip a row if 

it is a linear combination of those above it. 5i nce (F, H) 

is observable, the rank of V is seven. So ~ter seven 

s;eps, v(7) will contain seven unit row vectors in addition 

to other rows which are linear combinations of the unit row 

,-
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vectors above them. Permutation of the columns so that the 

unit- row vectors appear in their natural order gives the . . 

Hermite Normal form of the-matrix. The first three rows 

define H and the next seven rows define F. where (F.H) is in 

output identifiable form. 

From F and H. select.three unit row vectors 

i = 1. 2. 3 (5.14) 

--
where n i ·is the largest possible integer for which the 

right-hand side is a unit vector. Defining the transpose of 
i r as the unit col UllIn vector r i' one then generates the 

matrix • 

... -n3 
F r] 3 

Transformation of R into Hermite normal form gives 

Hence, the observable canonica~ form is obtained as 

F = 

and 
• 

H = 

~5.15) 

(5.16) 

(5.17) 

(5.18 ) 
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where ~n consists of the first three rows and seven columns 

of· R. 

In the process of transforming (F,E) to observable 

canonical form, numerical problem was encountered. This·was 

probably due to the fact that the numbers - in F are very 

small while those in E are large. This disparity in 

magnitude introduced significantly large rounding errors. 

In order to improve the numerical results, the time scale 

was changed from second to microsecond, i.e., F was scaled 
. 6 

, up by a factor of 10 • -At the same time, the last row of H, 

ap/ax, was scaled down by a factor of ;10-3 • In addition, 

while redu~ing V to the Hermite normal form, attention must 

,;.. be paid to Eq. (5.131 with regard to the order of arithmetic 

operation being performed. Tremendous improvement in 

results is obtained if division is deferred until the end of 

operation. 

5.3.3 Performance of Nonlinear Observer 

Both the dynamic system of the satellite given by 

eqn. (4.15) and the nonlinear observer given by eqn. (5.5) 

are simulated on a CDC 6400 computer. The initial states of 

the·dynamic system are assumed to be 

C = 3.066694035 km/sec. 

= 1.198952484 x 10-2 km/sec. 
. -4 

= -1.425617897 x 10 km/sec. 
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eOl = -8.431775050 x 10-4 

e02 = -7.622086208 x 10-4 

e03 = -6.616178898 x 10-1 

7.498403003 x 10-1 t 
e 04 = 

This is the orbit of a stationary satellite. The 

time taken for it to complete one revolution is the same as 

that of the Earth rotating about the Z-axis. The satellite 

stays in full view of the observation station all the time. 

In oS¢er to cho~se 'the eigenvalues for the linearized 

portion of the nonlinear observer, it is necessary to know 

the order of magnitude of the eigenvalues of the dynamic 

system. It has been found that the real part of the largest 
.. , 

eigenvalues of the system is in the order of -1 x 10-9 . 

• This indicates that the system has very large tlme constants. 

The effect of any perturbation on the system will take a 

very long time to die out. This presents some difficulties 
" 

in the choice of observer eigenvalues. To choose a set of 
.--

observer eigenvalues such that the state estimate error will 

decay to a significantly low level within a reasonably sho'rt 

period of time would require tremendously' large gains. 

This results in not only that the measurement noise are 

greatly magnified but also that the observer may fall 

outside the stability region. On the other hand, if the 

eigenvalues chosen are too small, it would take ages before 

the estimated states approach fairly close to the actual 
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orbital states. After ·trying with dif~erent values, it has 

been decided that the eigenvalues of the linearized portion 

of the observer should be placed at s = -1 x 10-7 • 

The nonlinear system is relinearized at every sixty 

steps at the latest state esti~te and a new observer gain 

is used. 
o· 

Figure 5.1 is a flow chart of. the simulation program. 

The initial estimated orbital states are 

c 

Rfl 

Rf2 

e Ol 

= 3.066694 km/sec. 

= 2.53382 x 10-2 km/sec. 

= -1. 335137 x 10-1 

= -8.152435 x 10-4 

= -7.937526 x 10-4 

= -6.616458 x 10-1 

= 7.497742 ~ 10-1 

km/sec. 

The simulation covers a period of four hours with step size 

of one second. Figure 5.2 is a plot of Ilxll versus time on 

semilog scale. Figure 5.3 is a plot of the position 

estimation error (?-ri. 

5.4 Discussion 

At the start of this work, it was hoped that the 

Luenberger observer may be used as an alternative approach 

to the extended Kalman fi·lter in the application of 

satellite orbit determination and prediction. It has been 
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INITIAL ESTnlATED 
STATES 

J 
, OBSERVER, GAIN 

• 
, ! 

INITIAL PREDICTED 
MEASUREMENTS 

" " v = hex) 
" ! 

INITIAL STATES 
OF SYSTE·\ 

1 
INITIAL :·lEASURBIE.'iTS 

y = hex) 
I .. 

~IEASURE>lEl'<'" ERROR 

- ,.. 
y = y - y 

! 
NEXT STATE ESTl~:ATE . 

, . " A + G~ . 
X = f(x) 

! 
I OBSERVER GAIN I 

l 
PREDICTED "1E.-\SURE~lE.'lTS 

Y = h (~) 

J 
~E:..l STATE . 

X = frx) 

1 
:-lEX'!' ~IEASURE:-IEN 1 S 
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sbown in this. work that this application is theoretically 

feasible. However, simUlation results indicate that the use 

of Luenberger observer ain this application is n~t 

particularly promising, at le~st with the dYnamic model used 
-

in this work.-

For one thing, the time needed for the. estimate to 

converge ~o the orbital state is too long and -i t is not 

possible to use a larger gain to enable faster convergence. 

But the most serious' problem involves the size of initial 

estimate error. To make a sufficiently close initial state 

estimate is not very likely in some cases. If the initial 

state estimate e'rrors are not small enough, then the 

nonlinear observer may become unstable~ However, once the 

obs~rver has reached the states, it can track thE! states 

fairly accurately with much less computation than is 

necessary wi th other approa~hes. Moreover, it is only 

necessary to relinearize the dynam"ic model after as many as 

60 observations to update the observer parameters. This may 

be contrasted with the extended Kalman filter where 

relinearization of the dynamic model is necessaiy after each 

iteration in order to maintain similar degree of accuracy. 

A listing of the computer simulation program in 

Fortran will be published as an internal report by the Group 

on Simulat~on, Optimization and Control, McMaster University, 

Hamilton, Canada. 
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CHAPTER SIX 

CONeLUSIONS 

. " • 
The feasibil i ty of applying a nonlinear observer in 

the problem of satellite orbit determination and prediction 

has been. studied in this thesis. The proposed algor i thm 

il;lVolves calculating the observer gains off-line and storing 
• 

them in memory. Depending upon the current estimated 

orbital states of the satellite, an appropriate observ"er 

gain matrix is retrieved from memory for the estimation of " . 

the next orbital states. This scheme would save a 

tremendous, ,amount of on-line computation as .would be 
, 

required by other' algorithms, such as the extended Kalman 

filter since it does not require re-liriearization of the 

dynamic model and calculation of the gain matrilt at every 

iteration step. 

Following a brief review of the basic principle of 

the Luenberger observer for linear systems in Chapter Two, 
\ 

the cond i tions for local asymp;(iotic stabil i ty of,.nonlinear 

observers are established in Chapter Three. The ,stability 

problem is studied through the second method of Liapunov. 

It has been' found that nonlinear observers may be used in 

applications where the linearized portion of the system is 

c'ompletely observable and the nonlinear portion satisfies 
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the Lipschi~ condition. Since these' conditionS are not 
'" 

overly'reStr~ctiv~,the nonlinear obs~~er is applicable'in 
- .,: ':'"~~~,~.: . "-

many fields. , How~ver, 'there is one drawbac~ in the 

'nonlinear observer. Th~ initial state estimate error must 
, , ' 

not be too ',large; otherwise the !'bserver would become an 
, , 

un,stab1e system and would not be able to recover itself. 

The ,orbital dynamics are described ,,in Chapt,er Four. 

The unified state model pr~posed by S. Altman is used as the 

dynamic model of a satellite. In the aerospace industry, 
f~ , 

people tend 'to be more comfortable with the c1a~sica1 model 
'tJ ' 

which uses semi-major axi,s, ,eccentricity, inclination, 

longitude of ascending node, argument of'periapsis, and'true 
, ' 

, 

" 

anomaly of the orbit as orbit:a1 elements. 'With these 

e1emeots, they are able to get a direct feel of the orbit of 

the satellite. The unified state model, on the other hand, " 

uses 'a set of more abstract parameters as orbital elements. ,-
However, this abstractness is more than compensated fo~ by a 

much simpler ,and compa,ct form of the equ"ions describing 
, - , 

the motion,of a satellite. 
, ~ 

, Simulation result's are discussed in Chapte): Five. It 
, , 

has been sh~wn. t7at the m>~l~ne,ar obs~rver~ is ,t:heo!=etic~llY 
~e~n pro~lems of orbi't determi;natien and prediction 

with the unified state model as, ,the dynamic model of the 

satel1it~. 
~, 

, observable 

.' , 

"" , , 

~he., Jacobiy matrices form a 

, " l' ~, f 
p~." and the non l.near portl.ons 0 

" 

.,.' . 
~. .,:J "t .' -. " • 

, ' 

co~p1ete1Y .., 

the dynamic . . 

: ,",>-- • 

, , ' 
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'and measurement models ·satisfy the Lipschitz condition. 

However" the simulation results seem to suggest t,hat its 

practicability is not quite favourable. The time taken for 

the estimated states to, converge to t~e actual states is. 

long. But the more sedous problem is that tll.e initial 

state estimate error has to be small. This criterion turns 

out to be a little difficult to meet. It is comparatively 

easy to make a fairly accurat;e estimate of the orbital state 

C since it is related, to the altitude o.f the satellite. 
" 

But to make close esti~ates of the Euler parameter~ is not 

an easy matter'. 
. .. ~~.:;.-. 

Yet a sufficiently accurate estimate of 

these states is crucial for the stabiliy of the no.nlinea-r 

observer. On the other hand, the nonlinear observ;r is able 

,to give a correc't estimate of the "orbital states once it 

starts tracking* This may not be attainable by oeher 

• 
schemes which inVOIV~inearized models. 

The poor perf nc:;e o...f the n'onl inear observer in the 

simu,lation does not ecessarily indicate; that' it is not 

sui table for: use in the problem of orbi t determination and 

prediction. The sizeo~ the stability region is'a function 

of "the orbital states chosen. It is possible that the 

stability r.egion could be considerably larger if the 

dynamics of ,the satellite are described in some other state 

spaces. This possibility remains to be investi'i!ated. 

~'~ ....... 
In this study, the measurements of the system output 

, , , • 

.~ 

• 
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.are assumed to be noise free. This is not true-. in reality. 
. -

The~efore; sCllle filtering may be n~deCti:.~&f.ore· the output' 
, .. . . . .-" . 

m~asurements ar~. applied· "to the observer. The.stability 

probl~ of the coupled ·system of a filter and a nonlinear 

observer has also to be studied •. 
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APPENDIX A 

DEFINITION OF THE EULER PXRAMETERS 

The rotation of a triad set can be generated by a 

scalar rotation about a directed line from ~e origin of the 

inertial space. This rotation is defined by the unitary 

quaternion 

where the set of four Euler parameters 
" 

e OI cos Cl sin u/2 

e02 cos B sin u/2 
= 

e03 cos y sin u/2 

e 04 cos u/2 

consists of real scalars such that 

The spherical angles, Cl, B, y, are shown in Fig. AI. As an 

alternative, the Euler parameters may be defined in. terms of -, 
the Euler angles, 0, 1, u1 as shown in Fig. A2 in accordance 

with 
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e 01 sin t.j2 cos "(Sl-Ut.) /2 

eoi sin t.j2 sin (Sl-ut.) 12 
= 

e03 co~ t.j2 sin (Sl+ut.) 12 

e0 4 cos 1.12 cos (Sl+ut.) 12 

• 
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APPENDIX B 

GRAVITY HARMONICS 

S.l Zonal Harmonics . (J
2

, J 3' J ) 
4 

1 3 2 
a e1 - £1 

3 R2 
CV 

a e2 
= ,-(,!) II J 2 

(~)4 2 £13 £23 e II 

a e 3 2 (1), £33 
J 2 

4 (5 2 - 3) a e1 <13 £13 ~ 

1 R3 J 
CV 2 (~)5 3 (1 - -a e2 = - ('!) II £23 5'(13) e 3 II 

3 (1 - 5 2 
a e 3 £ 33 (13) 

J3-

35 4 - 30 2 + 3 ae1 £13 £13 

5 R4 J
4 

CVe2 6 
-4 2 - 3) a e2 

= - (a) II (--) £13 <23 (7£13 e II 

• 2 
a,e3 -4 £13 £33 (7£13 - 3) 

J 4 

J 2 = 0.108265 x 10-2 

J 3 = -0.254503 x 10-5 

J 4 = -0.167150 x 10-5 

.. 
" 

\ 
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S.2· Tesseral Harmonics (n = 2, m = 2) 

ae1 T22/ e1 

R2 
CV 

ae2 = 3 \I (~)4 T22/ e2 e \I 
-:. ---a .. 

a e 3 T22/ e3 

T22/ e1 = - (AI < 11. + A2 <12) 

2-
{AI 

2 - 2 
sin A - 2<13 t23 cos Al T22/e2 = 1+£ [ (~2 3-£ 13) 

2 2 
2 t13 £23 A 1 } . - A [ «23 <13) cos l. + sin 

T22/ e3 = 2 [AI « 23 sin l. - t13 cos l. ) - A2 «13 sin A 

+ <23- cos l. ) 1 

• , 
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