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ABSTRACT &

The objective‘of satﬁllite orbit determination is to find
accurate values oﬁ.a éet of orbital elements which describes
ﬁhe orbit of the satellite, using observations of “the
satellite. The éxtendéd Kalman filter has been widely used
for the estimation of the orbital staﬁes. The purpose of
this work i; to find an alternative approach that would
redhéé the amount of on-line computation réquired. A
nonlinear observer is proposed for this application. its
stability problem is §tudied througﬁ the second method of
Liapunov. The performance of the nonlinear observer is then
evaluated with simulated orbits. Although many secondary
effects on the dynamics of the satellite have been omitted,

the simulation is indicative of results that can be obtained

in real situations. -
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CHAPTER ONE
_— ' INTRODUCTION

The controi a'cti_or_x regquired to maintain a man-made
satellite in a degired orbit is based on- the estimatic;n of
the orbital states from ground-based measurements. | The
" éxtended Kalmah filter is widely used for orbital trajectory
determination and prediction [1]-[7’].‘, Howe.ver, the dyﬁamicf
mode]l of a satellite is complicated aé well as noﬁlinear.
The use of the extended- Kalman filter requires re-
linearization at each step f%r the calculation of the gain

Qn’a)frix. The amount of computation needed warrants a
powerful computing machine. i

The purpose of this work is to’study the feasibility

of using a Luenberger observer for the estimation of the
#rbital states as an alternative approach. Since the

desired orbit is known beforehand, it is possible to

pre-determine a set of observer gain matrices off-line.
Depending upon the current states\or position of the
satellite, an appropriate observe.r gain matrix is retrieved
from memory for the estimation of the next orbital Vstates.
Thus the amount of on-line cemputation would be very much
reduced. ‘ :
The basic principle of the Luenberger observer for

1




linear systems is discussed in Chapter Two.  An 2lgorithm
o W ' .
for the calculation of the observer gain matrix is

presented. :
. -

-

Chapter Three discusses the extension of observer

-~

theory to nonlinear systems. The objective is to £ind th
cqnditions under which the stat;s of the noﬂiiﬂear observer
approach asymptoticglly-to those of the nonlinear system.
Chapter Four is concerned with'the mathematics used
in orbit determination and prediction. fhe unified st{te -
model developed by S. Altman and the'Tmeasurement model
associated with it are presented. Reference *goordinate
frames, measurement of time and an Earth model are
described. | ¥
| Simulation results for the problem of sate ite orbit
determination and prediction using ponlinear.q;C:rﬁqr are
discussed in Chapter Five.

Chapter Six concludes the results of this work and

suggestions for future research work are also made.
. ~ .
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CEAPTER TWO oL

OBSERVER FOR LINEAR SYSTEMS..

2.1 fntroduction

-

Mucn control engineering is concerned with tﬁe choice
of a feedback controi law to achieve. desired objectives,
such as, optimization with respect. to some perfpfmahce
indices, minimization of the %ffdet_bf noise, reduction of
the sensitivity of the system to plant parameter vamiatiqns.
or achieving arbitrary- dynamics of the system;-v;any feed-
back control designs Eequire the khowledge of the states ofl
the controlled oplant. But the ';tates are not alwavs
available for measurement. One approaéh 1s to generate a
suitable approximation %o the :staté ‘vector which is then
substituteé iﬁ£o the feedback c¢ontrol law.’ The' observer
oroposed b§ D.G. Luenberger in 1964 ([8] is one of the

schemes that give an estimate of the state vector based upon

the measurements of the system inputs and outputs.

-

2.2 Luenberger Observer for Linear Svstems

Consider a linear nth-order svstem

-

Ax () + Bu(t) . (2.1a)

x ()

y{t) Cx(t}. (2.1b)



where x\(t} is the state vector of dimension n, u({t) is the
X N ; .

control "input vector of dimension m, and y(t) is the output

vector of dimension p. 'Denote the estimate of x(t) by %(t)

and construct a model of the original system

F(t) = AR(t) + Bu(t) T2.2)

- If the initial state,” x(0), is known, this model would
provide an exact estimate of the state vector x(t) for all
t. 8ut in general, this information is not available.

Luenberger proposed an observer with dynamics given by

- X(t) = AR(t) + Bu(t) + G[CR(t) - v()] (2.3)

where G is the observer gain matrix. The state estimate

error vector

x(£) = ®{t) - x(t) S (2.4)

satisfies the differential equation:

x(t) = (A + GC) x(t) {2.3)
The solution of this differential equation is

x{t) = x(0) A F GOt (2.6)

1T the- observer gain matrix G-is chosen in such a way that
all the eigenvalues of (A + GC) have negative real parts,
the state estimate error vector will decay- to zero

eﬁentually no matter how large thHe initial estimate error



ot
[}

ma? be. The structure of an observer is illustrated in .

Figure 2.1.

f

2.3 -Désign of Luenberger Observer Gain

Corresponding to the real matrices A and C of‘ a
linear system, the set of eigenvalues of the matrix, (A +
"GCY, cén be made to correspond to the set of eigenvalues of
any'real matrix of the same order by suitable choice of the
gain matrix G if and only if (C, A) is completely observable
[9]. Alihough the existence of the gain matrix is
guaranteed if the system 1is completely observabie,
calculation of the appropriate gain matrix to achieve given(\\'
eigenvalue placement can be.a difficult ého:e; One approach
is to transform the system into the observable cénonical
form before proieeding further fof'the calculation of gain

matrix.

Consider a completely observable system

Ax (t) + Bu(t) (2. 7a)

x(t)

y(t) = Cx(t) ' (2.7b)

It can be transformed into the observable canonical form by
a similarity transformation with the new state vector X(t)

given by :

x(£) = Qx(t) | (2.8)
and :

5 = Qag~t  (2.9a)
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1
B = QOB ' (2.9b)
g =cq?t - (2.9¢)
In particulﬁgf’”zaﬁ\\fifiices A and T have the following
. . N
structures
1 Pa eee Ay
_tiB2r o Bag eee By
A = . R . (2.10)
A “e -
| 1 o2 op |
wikth
- iy o7
Aij sij Nn- a{ij) en- (2.11)
i i
and
Ny 4
£ 0 .- 0
ny
- n L
0 £° ... 0
g =1 . . ! (2.12)
nP
0 ] fn
h— p—
where Gij is the Kronecker delta, N, is 2 nilpotent matrix
i
of index n; as shown below:
[0 .0 0 ... 0 0]
1 0 o ... 4] 0
1 c ... © 0
N = |. . . . o (2.13)
nj : : : : :
0 0 0 ... O 0 )
0 0 o ... 1l Q_




8
e, is the nith unit vector of dimension ny and
i .- . )
. - .. . . . R
a(ij) = [aj(ij) aj(ij) ---( a, (i3] (2.14)
. i
n; i
and fn_ is the nith unit row vecteor of dimension nj and
i )
~ p » ‘
In. =n {2.15)
. i .
i=1
For exanple,
0 ‘ 0o ... 0O -al(ll)
]; H .o 0 -az(ll)
0 1 ... 0 -aj(l
Ryy = . ] ] . (2.18)
! 0 0 . 1 . -an (11)
L 1 .
and _
\ 0 ... O0- —al(IZ)T
0 0 ... © -a,(12)
Alz = . . . . (2-17)
- - - 3
- 0 0 ... 0 -'“1(12)

Note that the eigenvalues of a block diagonal matrix
are the eigenvalues of the blocks on the main diagonal.
Now, suppose a set of eigenvalues has been chosen for the
observer, we may form a block diagonal_patrix D which has
main diagonal blocks with the s#me size and structure as the

corresponding blocks on the main diagonal of the A matrix.



-
-
. 9
- - /)
D11 0 ... 0 :
0 Doy . O S -
D = 22 | (2.18)
. . _ - »
T 0 .0 - D
L PP
where = - .
0 0 - e —do .
- 1 0 L -dl
_lo0 1 ... -@ -
Dy = 2 (2.19)
0 0 -d
i ny=1]
Note that the characteristic eguation of the block Dii is
L J .
T+ dni—l s + ... +dys” +d;ys +d9 =0 (2.20)

Therefore, the matrix D can be formed easily once the
eigenvalues‘have been chosen and the characteristic eguation
for each block has been obtained.

The observer gain matrix G for the system in the
observable canonical form can be readil calculated gy

solving the matrix equation

A +GC=0D (2.21)

Then the observer gain matrix for the original system can be
otained "by the transformation

A
_l_
G =20 G (2.22)
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Since the eigenvalues of a matrix are invariant under
3 - - ' - 4 - :

similarity transformation, the eigenvalues of (A + GC) are

the same as those of the matrix D.

D = Q(A + GC) Q'l | (2.23)

In principle, the choice of the observer eigenvalues
is completely arbitrary. The eigenvalues can be moved
towards minus infinity, thus, vielding extremely :aﬁid
convérgence. However, to do so would requfre very large
gains. Since the output v(t) will 1inevitably- contain at
least a small amount of measurement noise, this will tend to
be maénified if the observer is too fast. o 1in practicef
the eigenvalues. of the obsecver are selacted to be somewhat
more negative Gthan those of the svystem to be observed so

that- convergence of the estimated states to the states of

the system is faster than other system effects.



CEAPTER THREE

OBSERVER FOR NONLINEAR SYSTEMS

3.1 Introduction

Since the—first publication of Luenberger observer
theory thch _concentratéd' on purely deterministic,
continuous-time, liqear, and time-inbaziant systems, it has
been extended to include time-varying systems, discrete
systems and stochaséic systems {12]}-[14]. For nonlinser
systems, some studies have also been reported [15]-([17].
However, these studies invariably involve re-linearization
of the nonlinear'system.function at each step to calculate a
new observer gain matrix. In this chapter, attempts are
made to find the conditions under which the states of a
nonlinear observer can be made to approach those of the
nonlinear system without re-linearization at every step.

In the case of 1linear systems, the question of
convergence of the state estimate error can be studied by
examining the éigenvalues of the observer. But the concept
of eigenvalues 1s meaningless in the case of nonlinear
systems. Hence, the second method of Liapunov will be used
to study the stability problem of nonlinear observers [18]-

[21]. f
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3.2 Stability of Nonlinear Systems
3.2.1 Definitions of Stability
Consider a nonlinear system
x(t) = £(x,t) (3.1)

The following stability definitions are based on the nature
of the systen time response tﬂét results from initial
conditions in a particular region of the state space. Let
S{«) be an open spherical region of radius e > 0 around the

origin, that is, S(e) consists of all the points x such that
Pix]l € a ) (3.2)

where ||x|| is the Euclidean norm of x given by

2 2 2
lxli = (x] + x5 + x3 + ... + x)

a3

Definition 1 (stability in the sense of Liapunov)

The origin ©f the state space of egn. (3.1) is said

to be stable in the sense of Liapunov if corresponding to

p—r

each S(R), there is an S(r) such that solution of egn. (3.1}
starting in S{r) does not leave 3(R)] as t approaches
infinity.

Definition 2 (Asymptotic Stability)

If the origin of the state space of egn. (*1) 1is

1

stable in the sense of Liapunov, ané if, in addition, savery
'

solution of egn. (3.1) starting in S(r) not only stavs

within S(R) but approaches the origin as t = =, then the
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system is said to be aé&mptotically stable.
Definition 3 (Instabilipy)
. ~ The origin of the state space of egn. (3.1l) is said

to be unstable if for some positive number R and any r, no
matter how small, there is always a point in S(r) such that

a trajectory of the seolution starting at thisﬁ}oint leaves

-*5(R).

According to Definition 1, an oscillator is stable in
the sense cf Liapunov if the amplitude of the oscillation
remains fixed with time. We shall not refer to systems that
are stable in the sense of Liapunov as belng stable. Rather
we shall use the word stable to refer to svstems which are
asvmptotically stable.

Note that the region S(R) is a function of S{:); But
the relationship of the size of S{R) with respect to S(r) is
not Known. Definition 2 savs nothing about the extent of
the region of allowable 1initial conditions, other than to
specifyvy a rather vague region S(r). For a nonlinear system,
this region may be very “small. The second method of
Liapunov may be used to determine the stability of a system
as well as to give an approximate estimate of the size of

the stabilitvy region.

{
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FIGURE 3.1

GRAPHICAL REPRESENTATIONM OF
STABILITY DEFINITICNS

14
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3.2.2 The Second Method of Liapunov®

A.M. Liapunov presented two methods for the study of

the stability of systems of ordinary d@fferential equations

éiven by_ - ,
x = £(x) o (3.4)°

The first, rect, metﬁﬁd requires a knowledge of the

solution &f the differ ntial equation. .The second, -or

direct, mdthod requires.no knowledge of the solution and

provides ohly stability inférhatl

asically, .the seco method 1

|

ergy concept. A system is known to be stable if its
total energy is continuously decreasing. With this as the

starting point, Liapunov formed generalized energy

function, known as Liapunov function. Any positive definite

scalar function V(x) with continuous first partial

\

If there exists a real séalar function VI(x}.,

derivatives is a possible Liapunov- function.

Theorem 1 (Local Asymptotic Stability)

continuous with continuous first partial derivatives, such’

that, | . - /)
> ) W
S (1) V() =0 -
(2) V(x)}) > 0 for x # 0
(3) V(x) <0 for x # 0 N

o4

then, egn. (3.4} is stable in tﬁé neighbourhood of the

a generalization ofﬁ//U~\\
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origin.-

Theorem 2 (Global Asymptotic Stability)
If there exists a real scalar function V(x),.

continuous with continuous first partial derivatives, such

that, :
(1) V{(0) =20 -
(2)' V(x).> 0 for x ¥ 0
(3) V(x) = = as [[x]]| + =
(4) G(x{ <0 -

(5) V(x) not identically zero along any trajectory

of the solution of the system other than the

-

origin

then egn. (3.4) Is globally asymptotically stable.

The mosﬁ powe{ful feature o¢0f the second method of
Liapunov is the fact that the Liapunov function V(x) is not
unigque. As long as one Liapunov function for a system can
be shown to exist, the system is at least asymptotically
stable in the neighbourhood of the origin, or equilibrium
point, of the system. No longer has one to search for a
single unigue solution to the ‘differential equation X =
£(x), but one out of many possib;e Liapunov functions. The
search for such a function is the main difficulty with this

approach.
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-

3.2.3 Liapunov Function A _ .

In order to show that .a system 1is asymptotically
stable, it is éuff;cient to show that at least one Liapunov
function exists. . However, it must be noted that failure to

find one does not necessarily imply that the system is

Py

‘unstable. The process of finding one possible Liapunov

function“forla system is presented below.
-~ ¥ .

{(a) Linear Systems

-

Consider a linear system

x = Ax - (3.5)

and a general gquadratic function

"\T .
Vix) = x"Rx (3.6)

Differeﬁtiate V(x) with respect to time,
T(x) = x*(RA + ATR) «x (3.7)
Let :
Q= -(RA + aTrj (3.8)
If an arbitrary positive definite matrix is selected for the
matrix Q and then solve egn. (3.8) for R, the positive
definiteness of R 1is both necessary and sufficient for
asymptotic stability of the linear system.
To determine the positive definiteness of the matrix

R, we may apply Sylvester's Theorem which states that:
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' ‘In order that a meatrix R be positive definite,
it is necessary and sufficient that each of
the following
11 T12
det [rll], det . s o=~y Get(R)
] F21 T2z
be pqsitive.
(b) 'Nonlinear Systéms i
Consider a nonlinear system
x = £(x) (3.9)
Expand £(x) in a Taylor series about Xqr
47 f(x) = f(xo) + EET {x - xo) + higher order terms
‘ 3X _
’j;fo (3.10)
For simplicity, let Xq = 0 be the origih and eguilibrium
point of the system. This is always possible by a sinmple
linear transformation of coordinates.
f(xo) =0 X (3.11)
since .xo is the equilibrium point of the system. Egn.
(3.10) becomes
x = Fx + g(x) (3.12)

where ¥ is the Jacoblan matrix and g(x) consists o¢f the

second and higher order terms. Consider a general guadratic

function

. ——



V(x) = x Rx (3.13)

Differentiate V(x) with respect to time

V(x) = -xTQx + 2x°Rg (x) ' ‘ (3.14)

-

where

Q = -(RF + F'R) : (3.15)

If an arbitrary positive definite matrix is selected for Q
and solve egn. (3.15) for R, the positive definiteness of R
is both necessary and sufficient for asymtotic stability of
the linear portion of the nonlinear system. - If thé linear
portion i; asymptotically stabie, a finite region of
stability for the nonlinear system 1s assured since the last
term in egn. (3.14) can only contain termg,ef third order or
higher. By making x sufficiently sm9£l, the first term
which contains .only  second-order te?ﬁg predominates in the

neighbourhood of the origin.

3.3 _Nonlinear Observer

The objective of this section is to find the
conditions under which the states of a nonlinear observer
will apprcach those @f the nonlinear system. Consider an

nth-order nonlinear system
x = f(x) (3.16a)
Yy = h(x} © (3.16b)

Let x5 be a nominal operating point and expand’ £(x) and h(x}

t
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about x, in Taylor series.

x = £(x) = f(xo) + Fx - xol + fl(x - xo) (3.17)

¥y = h(x) = h{x,) +_a[x - xé} + by (x - x4) (3.18)

where F and B are the Jacobian matrices consisting of first:

partial derivative of f(x) and h(x) evaluated at x = Xq and
fl(; - xo)'and hl(x - xo) consist of second and higher order
terms. '

Construct a nonlinear observer

2 = £(%) + G{h(X) - ¥) (3.19)

where G is the observer gain matrix such that all the
eigenvalues of (F + GH) have negatf%e real parts. The state

estimate error vector

X =X - x (3-20)
is governed by the differential equation

; = (F + GH); + [fl(x - X4 + x) - fl(x - xo)]

+ Glhy(x - xg + x) - hy(x - xg)1 (3.21)

0

sASsSUMe fl(x - xo) satisfies a Lipschitz condition for

all x= - x, in a certain region S(a) containing the origin x

=0

CIHEp(x - xg + x) - £ (x - X} 1| < e [1X]] (3.22)

———— e

—
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where o is a positive constant. Assume also that Ghy (x-xq)
» .
satisfies a2 Lipschitz condition for all x - Xy in a certain

region S(b) containing the origin ; =0
116h) (x = xg + x) - Ghy(x - %) || < 8 [[X]]  (3.23)

- where B8 is a positive constant.

.Consider a gquadratic function

V(x) = x'Rx (3.24)

Evaluate the derivative of V(;) along the trajectory of egn.

(3.21).

Vi{x} = ;T[R(F + GH) + (F + GH)TR];

T

+ 2x"RIf; (x - Xg + x) - £,(x - x3)]

+ 2 R{G[h  (x = xg + x} - hy(x = x)]} (3.25)

Let

-Q = R(F + GH) + (F + GH)'R (3.26)
Then :
V(x) < -f1xT0x|| + 211x"RI| (alix|]) + 2] Ix°RI| (8]1xlD)

(3.27)
where |ix||, ||Ql|, |IR|| are the Euclidean norms given by
- n -
xt] = (@ 252 (3.28)
i=1

lell = (2 1 Qi) (3.29)
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' n n
lRlp =z r Reo/? (3.30)
< i=1l =1 *J
8y Schwarz's inequality
. = T2 ' ~ ~ 2
Vix) < —-11QH=1lx11™ + 2uIlRII'lIXI[2+ 28] [RIT=|1x]|]|
N . (3.31)
IED .
lell = q (3.32)
[IRI| = ¢ . ' (3.33)
where g and r are positive numbers:.then
- V(x) < -(q - 2ar - 287) |lx|1® (3.34)
Thus, if :
g - 2r{e + 8) >0 ] ({3.35)

then Q(x) < 0, and egn. (3.21) 1is locally asymptotically

stable.

error,
(1)
(2}

(3)

(4)

The above result implies that the state estimate

X, will eventually approach, zero 1i£

(F, H)Y is a completely observablé pair,

the nenlinear terms in the system to be '6bserved—
satisfy a Lipschitz condition 1in .the region
mini{S(a},S{b)! containing the origin x = 0,

the initial state estimate error, X{(0), is
suefficiently small that it 1is within the stability

region, and

{3.35) is satisfied.
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3.4 Example

Consider a second-order nonlinear system

s _ 2 _
xl = xl 3x2
. (3.36a)
] Xz = xl - Xz + u
and
y = x2 & x (3.36b)
1 %2 :

where u is the input and y is the output of the system. The

Jaceobian matrices, F and H, are given by

--2x1 -3 _
F = {(3.37)
1 -1
X=X
and
H = [le lJI {3.38)
' X=X

If the initial state esitmate is il(O) = 0 and 22(0) =0

o -3
F = (3.39)
1 -1
and
H = [0 11 - (3.40)
The eigenvalues of F are at s = -0.5 = j(JIT/Z). Note that
(F, H) 1s already in observable canonical form. If the

eigenvalues of the linearized portion of the observer are

chosen to be at s = -2, then



25

. -11. o
G = (3.41)
-3

The nonlinear observer is given by

-

‘.‘_"2"""
Xy = =Xy - 3x2 -y
. (3.42)
) Xy = X - X, + U - 3y
* where
y=vy - x§ - x, (3.43)
If the contrel input u = =2, the steady state
L -
solution of the system is
xl(ss) = 1.372
x2(ss) = -0.628

Figures 3.3(a) and 3.3(b) indicate the time responses of the
system and the observer for initial states, xl(O) = 0.5 and

x,{0) = 0.5. The states of the observer approach those of

2
the system in spite of the initial estimate errors.

However, if the process to be observed starts at the
initial states, xl(O) = -0.55 and x2(0) = 1, the nonlinear
observer fails to give close estimates of ‘the states. because
the initial estimate error vectér is so large that 1t Ea}ls
outside the stability region of the nonlinear observer.
Figures 3.4(a) and 3.4(b) show the trajectories of the

« system and the observer.

As 1is evident from eqgn. (3.23), the size of the
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stability region is affected by the choice of observer gain
matrix G. If the eigenvalues'of the linear portion of the
observer are chosen to be at s = -3 instead of -2, the new

observer gain matrix becomes

-6
G =1 ‘ (3.44)
-5 i

and the nonlinear observer is given by

-~ ~

S 2 -
Xy -Xy - 3x2 - By

{(3.45)

- ~

X. = X, - X

2 T Xy T ¥yt U5y

The change of the observer gain matrix alters the stability
region of the observer. With the initial states of the

system, xl(O) = -0.55 and x,(0) = 1, the nonlinear observer

2

given by egn. (3.45) is able to give a correct estimate of

the states of the system. The motions of the system (3.26)

and the nonlinear observer (3.45) are shown in Figures

3.5(a) and 3.5(b).
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CHAPTER 4

ORBITAL DYNAMICS

-

4.1 Introduction

The orbit of a satellite 1is defined by a set of
orbital elements at a specified time. The objective of orbit

determination is to produce an accurate set of orbital
h)

elements and use them to predict the sSatellite position and

velocity at any desired time. ‘

Many sets of dynamical variables are available for
selection as orbital elements and use in aerospace system
and trajectory formulation for design and operational
computation. Although no one set can be universally most
efficient for all mission reguirements, significant
differences exist in their utility as the result of diverse
functional forms of the c¢onsequent constraint eduations.
The dynamic model of a satellite used in this work is the
unified state model developed by S. Altman [27], as further
modified by P. Chod;l[ZB].

In this chapter, the mathematics fAsed in satellite
orbit determination are described. Th 2 include the state
model of a satellite, the co-ordinate sets, and the
mezsuramant model which relates the observation measurements
to tﬁe orbital elements of the state model.

33
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4.2  Reference Frames

. The motion and the position of a sétellite afe best
described in a coordinate fréme that is.fixed both in space
and in time. For this pur?ose, we choose an inertiéi frame
ané-fix it at a certain epoch. However, ﬁhe measurements of
the position of a satellite from an observation site on the
surface of Earth are made in a different coordinate frame,
Enqwn as ‘the observation frame. The dynamic model of the
satellite uses yet another set of coordinate frames so that
it is in -a simple‘and compact form. Several other
coordinate frames which serve as links will be described

below along with these three coordinate frames.

4.2.1 Inertial Reference Frame

Origin - at Earth center of gravity and coordinate
axes
X - direction of the vernal equinox at epoch
Y - direction forms right~handed system with X
and 7 axes
Z - directed North and normal to eguator

4.2.2 Earth Fixed Cartesian

Origin =~ at Earth center of .gravity and coordinate

axes

X - direction of prime meridian intersection
> with eguator

Y - on equator forming right-handed system

with X and 2 axes

{\/—\
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4.2.3

4.2.4

4.2.5

~
b

2.6

z - directed Horth and.normal to the eguator

Earth Fixed Spherical

Origin - at EBarth center of gravity and coordinate
r - 'radial distance to the point being
measured '
La - latitude, positive north of equator
Lo - longitude, east of prime meridian .

Topocentric Local Tangent

Origin - at observation site and coordinate axes
E - projection of the East direction 1in the
local horizon plane
N - projection of the Nort#t direction in the
local horizon plane )
U - local vertical

Observation Frame

Origin - at observation site and coordinates

El - elevation, angular measurement from the
horizon to the range vector

Az - azimuth, an angle measured in the plane of
the local horizon. It is measured from
the projection of the North direction
eastward to the projection of the range
vector

o - radial distance to the point being
measured
Y

QOrbit Frame (fl f2 f3)

Origin - at Earth center of gravity and axes

»~
£, - in the eorbit plane such that the angle
between fl and the ascending node is equal
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to the longitude of the ascending node in
inertial coordinates ’

-

in the orbhit plane and normal to fl such
that the satellite moves from £, to £,

. . r
forms a right-handed coordinate svsten
with £, and f2 and is in the direction of
the orbit angular momentum

4.2.7 QOrbit Frame (el e, e3)

~Origin - at Earth center of gravity and axes
e, - directed towards .the satellite
e, - 1in the orbit plane and normal to ey such
that the 