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Abstract 

Five aspects of disordered solids and polymers have been studied, as follows. 

(l). The temperature and pressure modulation effects on structural relaxation have 

been formulated and simulated. The calculated heat capacity for the modulated conditions 

shows extra features over that for unmodulated conditions, which may cause 

misinterpretation of a disordered solid's characteristics. 

(2). A new mean field approximation in the lattice-hole model is developed for 

monodispersed polymer chains. Calculations of the configurational entropy, Soont for 

polydispersed chains, has led to two predictions, (i) a maximum in the plot of 

configurational heat capacity against the extent of polymerization, and (li) Soont 

remaining positive at 0 K. Both predictions have been verified by others. The lattice 

occupancy density contribution to 800m has been related to a liquid's viscosity and 

divergenc~ of~e viscosity-pressure plots explained. 

(3). From calorimetry and x-ray diffraction studies, a new phase of CuCN. which 

remains metastable on cooling to 77 ~ has been discovered. It shows features 

characteristic of glasses. 800m of this phase has been, calculated by using a flexible chain 

model. 

(4). A calorimetric method for determining the transition from mass-controlled to 

diffusion-controlled reaction kinetics during polymerization has been developed, and 

verified by experiments. In this transition range, the plot of the reaction rate against the 
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reciprocal temperature at fixed value of the extent of polymerization deviates from the 

Arrhenius behavior. 

(5). Dielectric studies of linear chain polymerization of a melt in real time, and the 

polymers ultimately formed have shown that their- properties depend upon the thermal 

history. This is attributed to different molecular level structures, e.g., chains and loops 

formed under different polymerization conditions. 

Altogether these theoretical and experimental studies have a broader consequence 

for our current understanding of the nature of disordered solids and of their formation 

from liquids, both molecular and polymeric. 
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Chapter 1 

Introduction 

Amorphous solids are states of frozen-in disordered structure. On heating they either 

transform to a liquid in a continuous manner or crystallize. These are distinguished from 

crystals which have a long range of order of both molecular positions and orientations, 

and which melt sharply at a certain temperature. Experimentally, a glass, which is one 

type of amorphous solid, is produced by cooling a liquid at a certain rate to a temperature 

where it becomes rigid on the time-scale of one's observations. During this cooling, its 

self-diffusion coefficient, entropy, and volume decrease continuously until a temperature 

is reached when the self-diffusion becomes too slow, and the number of available 

configurations of the liquid does not change during the time period allowed by the 

cooling rate. The configurational contribution to the entropy and volume cease and their 

rates of decrease with temperature become less. At this temperature, the viscosity of glass 

is typically 1013
.
6 Poise, and the molecular relaxation time of the order of 103 seconds. At 

this temperature, the liquid is vitrified and seen as a glass, a dynamically frozen-in liquid, 

and this temperature has been caned the vitrification temperature. When a glass is heated 

the temperature at which its viscosity decreases to 1013
.
6 Poise, and the configurational 

contributions begin to increase is caned the glass transition or glass-softening 
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temperature. At this temperature, the heat capacity and thermal expansion coefficient 

increase. 

Unlike the perfectly crystalline state and liquid state, an amorphous solid is not in 

a thermodynamic equilibrium. At a fixed temperature and pressure, an physical 

properties of a glass change continuously with time. At a fixed temperature, the rate of 

changes decrease with time and with increase in the temperature, the total magnitude of 

the change and the rate of change with time increase. This spontaneous change in the 

properties of a glass with time is known as the structural relaxation. After a certain time, 

the rate of change in properties becomes too small or too slow to be detectable in the 

usual observation period, even though the structural relaxation continues. 

The disorder in a solid may be canonical, i.e., both orientational and positional, or 

only positional. Canonical disorder occurs in all glasses. It has been found that in certain 

plastic crystals, with long range order of molecular positions, there is no long-range order 

of molecular orientations. These crystals also behave like a glass but only in their 

thermodynamics and self-diffusion coefficients. In these cases availability of different 

configurations contributes to the entropy and enthalpy, and therefore these crystals have 

also been caned the glassy crystals. They show the same structural relaxation as glasses. 

A liquid can also be vitrified under isothermal conditions by chemical reactions. 

When its molecules undergo chemical reactions to form an addition product whose size 

grows spontaneously. The liquid's volume, entropy and enthalpy decrease and the 

viscosity increases at a fixed temperature until a time when its viscosity has been 

increased to 1013
.
6 Poise. This has been called the vitrification time. After this time the 
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liquid becomes rigid, and shows the characteristic features of a glass, but with 

occurrences offurther chemical reactions. 

This thesis is aimed at modifying our concepts of thermodynamics and molecular 

kinetics of the glassy state by performing both theoretical and experimental studies. 

Although the various topics studied and experiments performed may seem discrete, they 

form a common theme in the broader aspects of disordered state of liquids and solids, 

both molecular and polymeric. Prediction of the theories presented here have been 

verified by others and results of experiments have been used to test the merits of the 

theories proposed by others. Thus the thesis has a bearing on our fundamental 

understanding of the nature of disorder. Introduction to each subject covered in the 

chapters of this thesis and references to the literature are provided as required. 

This thesis is divided into seven chapters. Each chapter contains a review of the 

subject. The next chapter provides a computer-simulation study of the modulation effects 

on the properties of amorphous solids. The relaxation function and relaxation time were 

calculated for the temperature and pressure modulation conditions during structural 

relaxation at a fixed average temperature, and pressure. Here, the temperature modulation 

effects on normalized heat capacity during a heating process at a :fixed rate were also 

calculated. It is shown that temperature modulation have serious consequences for the 

observed thermodynamic properties. 

In Chapter 3, a new mean field approximation is provided for a monodispersed 

polymer chain system, and a mathematical procedure is developed for its use in a 

polydispersed polymer chain system by using the lattice hole model. Thus the 
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configurational entropy and heat capacity changes during polymerization at different 

temperature and pressure have been determined at different extents of polymerization. 

Finally the configurational entropy theory has been used to relate the configurational 

entropy of a chain polymer system to its viscosity. This calculation is used to explain the 

diverging curves of viscosity as the temperature is decreased at a fixed pressure and the 

pressure is increased at a fixed temperature. 

In Chapter 4, a structural and thermodynamic study of an orientational glass is 

provided, and a statistical model similar to the lattice-hole model used in Chapter 3 was 

developed to calculate the configurational changes of CuCN orientational glass with 

temperature. 

Kinetics of polymerization reaction leading to vitrification is described in Chapter 

5. It also provides a new method of determining the change in the reaction kinetics from 

mass controlled to the diffusion controlled, which ultimately leads to vitrification. The 

reaction kinetics rate changes of these two different types of reaction have been 

mathematically described and distinguished in computational simulation. 

In Chapter 6, changes in the dielectric relaxation spectra during isothermal 

polymerization of a linear chain polymer are reported. The de conductivity. relaxation 

time, stretched exponential parameter and dielectric properties during polymerization are 

determined and discussed. The character also provides the changes in the dielectric 

spectra during cooling after post-polymerization, and discusses the difference in the 

dielectric properties of fully polymerized samples obtained after subjecting to different 

thermal histories. 
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Finally, the conclusions ofthe thesis are given in Chapter 7. 

Because of the rapid emergence of studies in this area, part of the work described 

m this thesis was submitted for publications on scientific journals. The resulting 

publications are listed below: 

1. G. P. Johan, M. Beiner, C. Macdonald. 1. Wang, "The glass-softening temperature 
range and non-Arrhenius dynamics: the case of vitrified water", J. Non-Cryst. Solids, 
278, 58(2000). 

2. J. Wang and G. P. Johan, "Effects of sinusoidal temperature and pressure modulation 
on the structural relaxation of amorphous solids", J. Non-Cryst. Solids, 281, 
91(2000). 

3. J. Wang and G. P. Iohan, "Chain statistics and the changes in the entropy and heat 
capacity during melt polymerization", J. Chem. Phys., 116, 2310(2002). 

4. 1. Wang, M. F. Collins and G. P. Iohari, "CuCN: An orientational glass", Phys. Rev. 
B., 65, 180103(2002). 

5. 1. Wang and G. P. Johan, "The gradual transition from mass-controlled to diffusion­
controlled kinetics during melt polymerization", J. Chem. Phys., 117,9897(2002). 



Chapter 2 

Temperature and Pressure Modulation 

Effects on Structural Relaxation of 

Amorphous Solids 

2.1 Introduction 

One of the characteristic feature of an amorphous solid is that its physical properties 

change monotonically with time, t, when it is kept at a fixed temperature, T, and pressure, 

P. The phenomenon is known as isothermal structural relaxation or physical aging 

[Moynihan et. at. (1976), Kovacs et. at. (1977), Ngai, et. at. (1986), Scherer (1986), 

Johari (1987), Donth (1992), Mastsuoka (1992), Hodge (1994), (1995) and (1997)]. At a 

molecular level, structural relaxation is a consequence of self-diffusion, which brings 

spontaneously the solid's molecular structure to a lower energy and usually higher 

density state. Heating increases the molecular diffusion coefficient, D, and consequently 

increases the rate of structural relaxation k, or decreases the structural relaxation time, r, 

('C= 11k). Cooling decreases D and k and increases To The magnitude of D decreases non-

linearly with decrease in the temperature T at constant pressure, and, in its simplest form, 

which is the Arrhenius equation, D is given by, D - exp(-EIR1), where E is the activation 

energy and R is the gas constant. Also, the magnitude of D decreases non-linearly with 

increase in the pressure P, at constant temperature. These variations are relevant to both 
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the theoretical aspects of non-linear, nonexponential, and irreversible phenomena, and for 

the development of commercial equipment (i.e., Perkin-Elmer, TA Instrumt;::nts) used for 

studying thermodynamic changes by modulated calorimetry. 

As propagation of sound waves occurs by sinusoidal adiabatic compression and 

decompression, and is seen as equivalent to a sinusoidal pressure oscillation, the study of 

pressure modulation effects are also of theoretical and practical significance. Reference to 

the paper published on this subject is: J. Wang and G. P. Johari, J. Non-Cryst. Solids, 

281,91(2000). 

2.2 Computation of Sinusoidal Modulation Effects on Properties 

Properties of a glass change spontaneously with time and this change is affected by 

change in P and in T. Therefore, when measurements are made by using a sinusoidal 

variation of T with t and of P with t, not only would the properties change spontaneously 

with time, but the rate of their change would also vary according to the temperature and 

the pressure at any instant during the sinusoidal cycle. We first formulate and analyze the 

effects of sinusoidal modulation of T or P, and then compute the variation of several 

properties of a glass caused by the sinusoidal modulation of T or P. We then compare the 

changes against the case without modulation. 

2.2.1 Sinusoidal modulation of a variable with time 

First we consider the effects in general terms, namely, how sinusoidal modulation of a 

variable, y, effects an intrinsic property, p, of a material. When the change of y with 

macroscopic time, t, is much slower than the response time of the material's property, the 
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measured value of p is the "equilibrium value". For a sinusoidal variation in y with a 

mean valu~ Yo, a modulation amplitude llyat angular frequency ~,y (I) is given by, 

y(t) = Yo + llysin( ~t) (2.1) 

As y is varied sinusoidally about yo, three cases may arise. (i) If P varies linearly 

with y then the net change in p would be sinusoidal, provided no spontaneous change 

occurs in these properties. (ii) If P varies nonlinearly with y, as for a material's 

thermodynamic properties, such as volume, V, enthalpy, H, entropy, S, heat capacity, Cp, 

the net change in p would be cyclical, not sinusoidal, as do the kinetic properties, 'r and 

D, and other physical properties, such as viscosity 1], permittivity, phonon frequency etc. 

(iii) If P changes spontaneously with t, the net change in p would not be sinusoidal but 

rather cyclical. 

To elaborate, if the temperature of a glass is changed sinusoidally, its properties 

would change with time, t, and the temperature, T, in a reversible manner. The reason is 

that when T is varied sinusoidally with t, D would become time dependent and vary 

cyclically with t. Because of the non-linear dependence of D on T, the maximum increase 

in D that would occur at the maximum temperature of the sinusoidal cycle would be more 

than the maximum decrease in D that would occur at the minimum temperature of the 

sinusoidal cycle. Consequently, the effective D would be more than the value of D(To), 

i.e., D at the mean temperature, To, of the sinusoidal oscillation. The effective magnitude 

of D would correspond to an average temperature higher than To. The structural 

relaxation rate, k, would vary in the same manner as D, and 7: would vary in an inverse 

proportion to k. 
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The rate at which the physical properties of a glass change with t depends upon 

the magnitude of D at that t and T, i.e., D = D(t, T(t)). Therefore, if D of a material did 

not spontaneously change with t, i.e., D(t, T(t)) = D(T(t)), there would be a net change in 

its measured physical property after one cycle of sinusoidal T-modulation which would 

result from the effective D being greater than D(To). The net change in the physical 

property resulting from diffusion would accumulate with both the time and the amplitude 

of the T-modulation. During a given time period, the change observed on temperature 

modulation would be different from the change observed without temperature modulation 

on keeping the sample at a temperature To, with the magnitude of D being D(To). 

2.2.2 A measurable property's second derivative in sinusoidal modulation 

We first formulate the effect of sinusoidal modulation of a quantity, y (T or P), on an 

intrinsic property P of an amorphous materiaL Generally speaking, p is found to change 

nonlinearly with change in y. Therefore, the net change in P at any instant during a phase 

in the upper part of the sinusoidal cycle would not be equal and opposite to the net 

change in p at the corresponding reverse phase during the lower part of the cycle. Thus 

the oscillation of p would become asymmetric about Yo, and consequently, its average 

value, <p >, would not be equal to the value of p(y = yo). As the oscillation of p would be 

asymmetric, the magnitude of <p> would correspond to the new value of y, or 

<Y>, which would be shifted from Yo by an amount, 8y = <y> - yo. The magnitude of 

p during the modulation may be given by the Taylor expansion, 

(dPJ (d2 pJ (y - YO)2 p(y) = Po + - (y- Yo)+ -2 + ..... . 
dy dy 2! 

PYO PYO 

(2.2) 
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On substituting for y from Eq. (2.1), we obtain, 

P(Y)=PO+(~) _ 8YSinmot+(:2~J (~r sin2OJot+..... (2.3) 
Y-YO ~ Y~YO 

The average p over the modulation period of one cycle is then given by, 

1 f+(10/2) 
< p> (t) = - p(t')df' 

to -(to 12) 
(2.4) 

where to (= 21r.lmo) refers to the modulation period. On substituting Eq. (2.3) in Eq. (2.4) 

and integrating over the indicated limits, the odd-order terms of sine mot) are found to be 

zero, and Eq. (2.4) becomes, 

<P>=PO+(~2~J (8~2J+(~4~J (L\~4J+ ..... 
~ y=yo ~ Y=YO 

(2.5) 

The difference between <p> observed on modulation and Po observed without 

modulation is given by, 

< p > -Po = (:2 ~J (L\~2 J+(:4 ~) (L\:44 J+ ...... 
~ Y=Yo ~ Y=YO 

(2.6) 

According to Eq. (2.6), when the modulation amplitude is sman, the fourth and higher 

even-order terms in RHS ofEq. (2.6) can be neglected. Therefore, 

<P>_PO=(:2~J (8~2)+ ...... 
~ Y~Yo 

(2.7) 

Thus the difference, [<p> - Po], would be either positive or negative depending only on 

the sign of the term (d2p1dl) aty = yo. 
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It is known that for entropy, volume and self diffusion coefficient (S, V and D) 

dpidT > 0, and for yiscosity and relaxation time (17 and r), dpidT < O. Moreover, 

(d2p/dr) is positive for the S, V, D, 17, and T, irrespective of whether (dpld1) is negative 

or positive. For S, V and D, dp/dP < 0 and for 17 and T, dpidP > 0, and (d2 pldP2
) is 

positive for all the above-given quantities. Thus, for the properties, S, V, D, 17 and T, the 

sinusoidal modulation of either T or P would result in a higher averaged magnitude <p> 

in comparison with Po obtained without modulation. 

The magnitude of oy would vary with the type of variable y (i.e., Tor P), the 

magnitude of 6.y and the manner in which p changes with y, i.e., dpldy. When y is chosen 

to be T and the property p is such that (dpldy) is positive, as for S, D and V, <y> would 

exceed yo. Similarly, when p is chosen such that (dpldy) is negative, as for the variation 

of T and 17 with T, <p> would still be greater than Po at Yo, but <y> would be less than Yo. 

When y represents P, whose effect is normally opposite to that of T, <p> would also 

exceed Po and <y> would be less than Yo for S, D and Vand more than yo for Tand 11. 

2.2.3 Temperature and pressure modulations without irreversible changes 

The above-given general description may now be made specific for the sinusoidal 

modulation of the variable T or P by using the relaxation time T, as a diffusion related, 

intrinsic property of a material. We may express the variation of T with T in its simplest 

form, by the Arrhenius equation, 

T = Too exp[!~ ] (2.8) 
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where roo is the magnitude of r at a formally infinite temperature, EA is the Arrhenius 

energy and R the gas constant. 

A sinusoidal variation of T (= To + .1Tsin~t) would produce a variation of r, 

according to, 

ret) = roo exp A [ 
E ] 

R(To +.1T sin wot) 
(2.9) 

As described in Section 2.2.2 for a general case, during each sinusoidal cycle, <r> 

would not correspond to r at To. Instead it would correspond to a temperature (To + 01), 

and its average magnitude would be given by: 

1 1t+(to 12) 
< r > (1) = - r(t' )dt' 

to t-(to 12) 
(2.10) 

where t refers to the time at which the observation is made and to (= 2nl au) is the T-

modulation period. 

The corresponding equation for sinusoidal pressure variation at a constant 

temperature is given by, 

[
.1v* ] 

r = r(P = O)exp RT P (2.11) 

where 'Z( P = 0 ) is the magnitude of r at zero pressure, .1V the volume of activation, and 

R the gas constant. For a sinusoidal variation of P, 

PCt) = Po + Msin( ~t) (2.12) 

On combining Eqs. (2.11) and (2.12), 
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(2.13) 

Therefore during a sinusoidal P-cycle, <r> would not correspond to r at Po. Instead, it 

would correspond to (Po + oP), and its average magnitude at t would be given by: 

1 f+(to/2) 
< r > (0 = - r(t')dt' 

to t-(to/2) 
(2.14) 

where to (=2mWo) is the P-modulation period. 

For simulating these effects, we use roo = 10-14 s, the phonon vibration time scale, 

EA = 500 kJ/mol and To = 200 K and calculate the variation of r with t for both the 

unmodulated and modulated conditions; For the latter, we use AT of 1.5 K (as 

recommended by TA instruments) and Wo of 21Cxl0-2 rad S·l (or / = 10 mHz). The 

calculated value of Tis plotted against t on the ordinate scale on RHS in Fig. 2.1(A). For 

the modulated condition, it is shown by the dashed line, and for the unmodulated 

condition, it is shown by the solid horizontal line. The corresponding sinusoidal variation 

of temperature is shown by the solid line. The calculated < r> is also plotted against t as a 

dotted line in Fig. 2.1 (A) for the modulated condition. 

The values of r were calculated for sinusoidal variation of P by using Po = 500 

bar, 'l(P = 0) = 1 S, AV= 100 ml morI
, Wo= 2nxlO-2 rad S·l (/= 10 mHz) and AP = 100 

bar. These values are plotted against t in Fig. 2.1(B) with the ordinate shown on the right 

hand side. For the modulated condition, the corresponding plot is shown by the dashed 

line, and for the unmodulated condition, it is shown by the solid horizontal line. Here the 
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Fig. 2.1. (A). The variation of T with t for sinusoidal modulation (solid line) and the consequent 

change in r(dashed line). (B). The variation of P with t for sinusoidal modulation (solid line) and 

the consequent change in r (dashed line). The horizontal solid lines in A and B represent the 

mean temperature or pressure, To or Po on the left hand side scale, and the relaxation time, ro, at 

To or Po, on the right hand side scale. The horizontal dotted lined represents <r> as labeled. 

Parameters used for the calculation are given in the text. 
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corresponding sinusoidal variation in P and modulated <1'> are shown by the solid line 

and the horizontal dotted hne. 

At the outset of this chapter, we had mentioned that modulation would change the 

rate of a property's spontaneous change with time if the property itself changed 

nonlinearly with Tor P. Mathematical treatment of this observation should be general, 

and here we illustrate it for the diffusion rate, k (= 111'), which varies with T in an 

Arrhenius manner: 

k = koexp( -EN'R1) (2.15) 

where EA is the activation energy. The difference between the average value of <Ie> and k 

both at To may be obtained by combining Eqs. (2.7) and (2.8), 

(2.16) 

or, (2.17) 

where all notations are as described before. For the usual condition, EN'RTo > 2, in Eq. 

(2.17), the LHS term «Ie> - 1<:0) is positive. Accordingly, (<Ie> - ko) would increase 

linearly with (/:11)2 for a given EA and To. Its value would be much more sensitive to the 

term exp(- EA1RTo) than to the cubic term in To in Eq. (2.17). 

Similarly, for pressure modulation, 

k = koexp(-/:1V*PIRT) (2.18) 
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or, 
( 

2 J 2 2 [ * J LlV* 
(
k) _ k :;: d k (M) = (M) kO L1V e - RT 

o dP2 4 4 RT ' 
P=PO 

(2. 19) 

i.e., that the average rate of the process on P-modulation would be greater than its rate in 

the unmodulated conditions, and this difference may be calculated from the knowledge of 

L1V* and ko. 

From the above analysis, we find that the modulation of either Tor P would 

increase the average values of both the relaxation time l' and the relaxation rate k, even 

though l' and k are inversely related by l' = 11k. To summarize, the difference between a 

physical property p in the case of sinusoidal modulation of variable y and in the case of 

non-modulation, [<p> - Pl], is determined by the second derivative of p with respect to 

the variable y, (d2p'dl), multiplied by (AyiI4, which is a quarter of the modulation 

intensity. When (d2p'dl) is positive, as for most cases, sinusoidal modulation ofy would 

increase the average <p> value from the unmodulated Pl value, and this increase can be 

calculated from the dependence of (d2p1dl) on the variable y. 

2.2.4 Formalism of structural relaxation process 

During the structural relaxation process of an amorphous solid at a fixed T and P, the 

magnitude of a physical property, p, such as, H. S, V and D, decreases monotonically 

with t [Moynihan et. al. (1976), Hodge (1994), (1995) and (1997)]. The value of At) 

would approach a constant fJ«, as t approaches 00, i.e., at a formally infinite time. For 

convenience, we define a normalized relaxation function ¢(t) for the property p by, 
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¢;(t) == p(t) (2.20) 
Poo 

It is recognized that for molecular dynamics of a liquid and glass, ¢(t) is written in tenns 

of linear stretched exponential relaxation in macroscopic time t, as originally given by 

Gardon and Narayanaswamy (1970) and Narayanaswamy (1971): 

¢;(t) It 4>1' = ex{-( t )13], 
r(t ~tf) 

(2.21) 

where r is now defined as the characteristic structural relaxation time and j3 is an 

empirical parameter with value between zero and one. More generally, by using the 

Narayanaswamy reduced time variable [Narayanaswamy (1971)], as 

t dt' 
;(t) = fo r(t') , (2.22) 

the nonlinear form of the stretched exponential relaxation function can be written [Tool 

(1946), Gardon and Narayanaswamy (1970), Narayanaswamy (1971), Moynihan et. al. 

(1976), Hodge (1994), (1995)and (1997)]: 

¢J(t) = exp~ q(t)f3 ]= exJ _[rt ~]jJ} 1 Jo ret') 
(223) 

The magnitude of j3 determines both the rate of change in a physical property, e. g., S, H, 

V, the index of refraction at a given instant, and the shape of their plots against t. The 

physical properties of an amorphous solid are described also by its fictive temperature, Tf, 
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which is defined as the temperature at which the material would correspond to its internal 

equilibrium state [Tool (1946), Gardon and Narayanaswamy (1970), Narayanaswamy 

(1971), Moynihan et. al. (1976), Hodge (1994), (1995) and (1997)]. By incorporating the 

Boltzmann time-temperature superposition principle [Boltzmann (1876), Hopkinson 

(1877), Curie (1888)], Trcan be calculated from: 

T" = T. + dT' 1 - ex -iT { [(iT dT" )fJ ]} 
r lIP • q(TIt)r(T") 

(2.24) 

where Tl is the temperature from which cooling of the equilibrium liquid begins, and q is 

the cooling or the heating rate (q = dT1dt). The change in r with t is related to the change 

in r with Tr at a fixed T is described by an equation [Narayanaswamy (1971), Moynihan 

et. al. (1976), Kovacs et. al. (1977), Ngai et. al. (1986), Scherer (1986), Donth (1992), 

Mastsuoka (1992), Hodge (1994), (1995) and (1997)], 

A 
[

XI!:J/ (l-X)M*] r = exp --+ -'----'---
RT RTf 

(2.25) 

where A is the pre-exponential term with units of time, which is found to be much less 

than the characteristic time for the phonon modes [Moynihan et. al. (1976), Hodge 

(1994), (1995) and (1997)], x is the non-linearity parameter, whose magnitude is between 

zero and one, M* is the effective activation energy, R the gas constant and T is the fixed 

temperature. (Note that non-linearity here refers to a departure from the Arrhenius 

equation, for which x 0:= 1.) According to Eq. (2.25), Tofan amorphous solid increases on 

its structural relaxation with time, as Tf decreases with t. 
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During cooling from an equilibrium liquid state, the fictive temperature, Tf, D, H, 

S and V of a glass forming system decrease continuously until a temperature is reached 

when the diffusion becomes too slow to contribute to the energy and volume change in 

the time period allowed by the cooling rate. At this temperature, the liquid is said to be 

vitrified and is seen as a glass. Further cooling of a glass does not decrease its Tr. This T­

invariant value of Tr of the vitrified state is denoted by Tt{O), which is the fictive 

temperature at the end of its cooling process (or the beginning of its isothennal 

relaxation). 

When kept at a T below the vitrification temperature, a glass undergoes structural 

relaxation which may be studied either at a fixed T or with increasing T, by heating at a 

fixed rate. At a fixed T, spontaneous structural relaxation decreases Tr of a glass 

monotonically with t at a rate that itself decreases with decrease in Tr, as for a self­

retarding process. Glassy state of a given material structurally relaxes faster when it has 

been produced by rapid cooling and its Tt{O) is high, than when it has been produced by 

slow cooling and its Tt{O) is low. On heating at a certain rate, structural relaxation is 

affected by both t and T. As t increases, structural relaxation rate decreases at a fixed T, 

and as T is increased at a (mathematically) fixed t, the relaxation rate increases according 

to Eq.(2.25), because Tf decreases. Thus the rate of decrease of Tr is reduced as t 

increases and is increased as T increases. The net change in Tr is determined by the partial 

cancellation of the two effects, which in turn is determined by the heating rate. 

Simon and McKenna (1997) have also done simulations for modulated 

differential calorimetry in glass forming liquids kept at a fixed mean temperature. In their 
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calculations, they used x = 1 in Eq. (2.25) and calculated the dynamic heat capacity C~ 

and C;. The agreement of their calculations with experimental data seemed reasonable 

for glycerol [Birge and Nagel (1985), Birge (1986)] and for poly(vinyl acetate) [Beiner et 

al. (1996)]. No calculations for heating a glass sample, as is done in scanning calorimetry 

was attempted by them, possibly because of the complications in the calculations. 

For computation of rfrom Eqs. (2.23) - (2.25), it is required that cooling and 

heating be done in consecutive, step-wise changes, 6'Fj for T, after a certain time, I1h for 

t. On including the 6'Fj and I1fk steps for cooling and heating processes, we may write, 

(2.26) 

A [
XM O-X)l1h] r = exp --+ ~--"--

n RTn RTr,n-l 
(2.27) 

Tr,n =11 + !6Tj{l-exp[-(!~kJP]} 
J=l k=J k 

(2.28) 

where n is aU inclusive number of steps in the cooling, isothermally keeping a glass and 

thereafter in the heating procedures. For procedures in which isothermal relaxation 

occurs, 6Tk in Eq. (2.28) becomes equal to I1fk . The computational accuracy increases 
~~ ~ 

as the magnitude of 111'; and 11ft in Eq. (2.28) is reduced but the total time for the 

computation also increases. As a compromise between the accuracy and the time required 

for computation, we have used: 111j ~ 0.1 - 0.2 K for cooling, and 1164 K (15.625 rnK) for 
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heating, with Mk of tol16 - to/256 for T-modulation. The integration needed for these 

calculations and the related procedure have been generally accepted as valid and 

appropriate [Moynihan et. al. (1976), Pascheto et. at. (1994), Hodge (1994), (1995) and 

(1997)]. We used Turbo Pascal Software to write programs for our calculations. For the 

calculation of one curve, the typical running time on a Pentium II personal computer 

ranged from half an hour to 12 hours depended on the parameters. 

For the unmodulated condition, Eqs. (2.23) and (2.24) yield the decrease in ¢ and 

Tf with t. When T is modulated, ¢ and Tf change with t also for the reason that T in the 

exponential tenn of Eq. (2.24) changes according to ~Tsin~t, producing a cyclically 

change in Tf, which is superimposed on the monotonic decrease of Tf with t. Thus ¢ and 

Tf change with t at a fixed To for the unmodulated condition, but change with t at an 

average <1'> for the T-modulated condition. 

For computing the changes due to structural relaxation isothermally, a liquid may 

be cooled rapidly from its equilibrium state at a high temperature to a nonequilibrium 

metastable state of a glass. During the cooling, its molecular dynamics remains much 

faster than the modulation period, and therefore the liquid remains at equilibrium at both 

extremes, T max and T min, of the modulation cycle. For this purpose, the cooling rate itself 

should remain much faster than ~, as long as T» Tg. Thus the effect of modulation 

during cooling is insignificant. When the temperature is in the vitrification range, the 

effects become significant and need to be included in the formalism. These effects may 

then be computed either without T-modulation, or with T-modulation using a selected 

value of ~T. 
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As a thermodynamic or optical property is usually directly related to Tf 

[Narayanaswamy (1971)], the calculations require only that Tf be determined, which may 

then be related to those properties. We use severa] cooling rates, and different values of 

To to calculate the decrease in Tf with t. Since the fictive temperature and the relaxation 

function in a modulation condition vary with the time during a cycle, only average value 

of Tf,mod and ¢ mod can be determined. This average values of <Tf,mod> and <¢ mod> was 

calculated from Eq. (2.4) where <pet) representing <Tf,mod>(t) and <tAno~(t). As an 

example, the material may be cooled from the equilibrium state at 470 K to the non­

equilibrium state at 370 K at 720 K min-l in IlIj steps of 0.1 K, and decrease in Tf may be 

determined during the cooling. The system under computation was kept at To of 370 K 

and its ¢ and Tr computed with changing t using Eqs. (2.23)- (2.25), initially for the 

simplest condition, fl = 1, and x =1, and with InA = -150 and M* = 590 kJ mOrl. The 

calculated values of ¢ and Tr for different conditions are plotted against t in Figs. 2.2(A) 

and 2.2(B), respectively. For the T-modulated case, we use, IlT = 2.5 K and ru;, = 1C mrad 

S·l for cooling the sampJe at 720 K minot, from 470 K to 370 Kin Illj steps of 0.1 K. The 

sample is then kept at To of 370 K, with I1T and ru;, for T-modulation the same as during 

the cooling described above and its tAnod(l) and Tt:mod{t) were calculated by using the same 

values of fl, x, InA and M* as for the unmodulated condition. These tAnod(t) and Tf,mod(t) 

values are also plotted against t in Fig. 2.2(A) and 2.2(B). The difference between the ¢ 

values for the unmodulated and modulated conditions, 8¢ = ¢;Unmod - <tAnod>, is plotted 

against t in Fig. 2.2(C) and that between the Tf values, OTf = Tf,urunod - <Tf,mod> against t 
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in Fig. 2.2(D). These show that ¢unmod and Tr,unmod are, as expected, decreasing functions 

of t, but while ¢mod and Tr,mod remain an overall decreasing function, the decrease is 

superposed on another effect, which causes local oscillations in its slope in the plots 

against t. Values of <¢mod>, <Tf,mOO>, <O¢> and <8Tf> were also determined and these are 

plotted against t in Fig. 2.2(A) to 2.2(D). The curves show that <¢moo> decreases faster 

than tjJ, and that <Tf,mOO> decreases faster than Tr,unmod initially and then decreases slowly. 

This produces the appearance of a cross-over in the their curves at a certain time, Ix. The 

oscillation envelope of <¢mod> is initially large. and tends to vanish as t -+ 00. Similarly. 

the oscillation envelope of Tf,mod is initially large, decreases up to a certain time Ix. and 

thereafter increases and becomes constant as t -+ 00. 

The observation in Fig. 2.2(B) that Tr,mod remains higher than Tf,unmod as t -+ 00 

seems surprising at first sight, and needs to be explained. The increase in T to T max value 

during the modulation brings the sample to a high Tr -state where its structural relaxation 

is faster than at To, and therefore Tr decreases more rapidly at T max than at To. The 

temperature decrease to T min correspondingly causes Tr to decrease more slowly at T min 

than at To. Thus after one modulation, the sample is left with a Tr lower than the Tf 

without modulation at the same t. When t has increased such that, the sample is close to 

the equilibrium state, an increase in T of the sinusoidal cycle to T max causes it to cross the 

equilibrium line. Here Tf now increases with t instead of decreasing with t. A decrease to 

T min of the cycle returns it to the condition where Tr still decreases. Since structural 

relaxation is faster at T max than at T min, the net effect is that <Tf,mod> becomes equal to 

Tf,unmod. When the sample is closer still to the equilibrium state, <Tf,mod> exceeds Tr,unmod, 
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and remain so as t ~ 00. The difference at t ~ 00 is expected to be (~1)2[d2Tddr]/4 at T 

= To according to Eq. (2.7), and to vary with the a.ctivation energy of the relaxation. The 

plots of ¢;, Tf, o¢; and 'i5Tr obtained from the above calculations in Fig. 2.2 show the results 

for the following two conditions, 0) ¢; is a simple exponential, or 13 = 1 in Eq. (2.22), and 

(ii) 'Tvaries in an Arrhenius manner, or x = 1 in Eq. (2.24), and not additionally with Tf. 

We now perform calculations for the condition when ¢; is a stretched-exponential 

function, Le., 0 < 13 ~ 1 in Eqs.(2.23-2.24), and further that 'Tvaries additionally with Tr, 

i.e., 0 < x ~ L For this purpose, we choose InA = -150 and i).h* = 590 kJ mor i
, as in the 

preceding calculations, and use three conditions, (i) /3= 1 and x = 0.5, (ii) 13= 0.5 and x = 

0.5, and (iii) 13 = 0.5 and x = 1. The calculated <8</5> values for these conditions are 

plotted against t in Fig. 2.3(A) and of <5Tr> in Fig. 2.3(B). The plots show that the peak 

in <0</5>, which appears at t of -7 ks, shifts to a shorter t of - 1 ks and its height 

decreases from 0.11 to 0.06 when 13 is decreased from 1 to 0.5. The effect of decreasing x 

or increasing non-linearity is qualitatively similar to a decrease in P, but is enhanced 

when 13 is decreased. The cross-over time, Tx, of <'i5Ti> increases when f3 is decreased at a 

constant x. It increases also when x is decreased at a constant 13. Thus, in principle, a set 

of 13 and x pairs may be found for which Tx would remain constant. 

Next, we consider the effects of a change in the modulation frequency ~ on Tf. 

For that purpose, we use tikJ values as 2n130, lOn/30 and 20nl30 fad S-l, 13= 1, x = 1, InA 

= -150 and i).h* = 590 kJ mor! as before, and calculate <5¢J> and <oTi>. These are 

plotted against time in Fig. 2.4(A) and 2.4(B), respectively, which shows that the height 
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Fig. 2.3. (A). The plots of the average value for Brj; against real time for four pairs of 13 

and x, as noted. (B). Plots of BTf against real time. Parameters used for the calculation are 

given in the text. 
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Fig. 2.4. (A). The plots of the average value for 8¢; against real time for three cases with 

different values of aJo as noted. The curve labeled -aJo is for the condition when the phase 

angle was shifted by n. (B). The pots of oTr, against real time. Parameters used for the 

calculation are given in the text. 
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of the peak in <8rjP decreases on increasing the modulation frequency and the crossover 

time tx of <oTp, which is shown by the crossing of the zero-lin~, shifts to longer time. 

The above-given calculations are based on the conditions that T = To at t = 0, or 

that T increases towards T max of the sinusoidal cycle as the structural relaxation begins 

from TiO). Another condition of interest is when T decreases towards Tmin of the 

sinusoidal cycle as the structural relaxation begins from TiO), i.e. the phase angle is 

shifted by n, or equivalently ~ becomes -~. For this condition, we may write 

LlTsin(~t+ n) in place of ~Tsin(~ t) for the n-shifted phase starting at T = To and 

calculate the values of <rjP and <8Tf> starting from TiO). These values are also plotted in 

Fig. 2.4(A) and 2.4(B). The plots show that up to a macroscopic time, t = n/~, <8rjP 

remains negative and thereafter becomes positive. The position of the peak in <8r/J> is 

shifted to the right and its height decreases in comparison with the height of the peak for 

unshifted phase conditions. This produces two crossover points in the corresponding plot 

of <8Tp in the case of the n--shifted phase angle. The second cross-over point, tx.,2, which 

appears after the <8Tp peak in Fig. 2.4(B), corresponds to the cross-over point tx in the 

normal phase conditions, and its magnitude is less than that of tx. 

2.2.5 Mmbdation during heating 

When an amorphous solid is heated at a certain rate, its structural relaxation time changes 

in two ways, (i) it increases with t as the sample approaches its equilibrium state, and this 

increase occurs at a higher rate when T increases, and (ii) it decreases as T increases. A 

combination of these effects is expressed by Eq. (2.28), with 0 < x ~ L For this purpose, 
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the quantity determined experimentally is the specific heat, Cpo Since Tf is directly related 

to the enthalpy or energy, its derivative with respect to Tyields normalized Cp [Moynihan 

et. at. (1976), Pascheto et. al. (1994), Hodge (1994), (1995) and (1997)]. The calculations 

however yield Cp values normalized by the difference between the Cp at the two extreme 

temperatures of the glass softening range. The normalized Cp is then compared against 

the normalized value of the measured Cpo Henceforth, we drop the notation for 

normalized, and write Cp,n for the nth step of calculations, 

C = dTf = Tf,n - Tf,n-l 
p,n dT T T 

n - n-l 

(2.29) 

For simulating the Cp values during the heating of a glass, we use InA = -355.7, Ah* = 

1147.4 kJ mor l
, which is the same values as used for a typical polymer, polymethyl 

methacrylate [Hodge (1994), (1995) and (1997)]. We also use several values of /3 and x. 

The simulation was begun by cooling the equilibrium liquid from 400 K to To of 375 Kat 

20 K min- l
, using the computational steps of 0.2 K in T. The sample in the simulation 

was kept at 375 K for 1 h in the unmodulated condition and heated to 400 K at 4 K min-l 

in the unmodulated condition using the computational T-steps of 1164 K. The procedure 

was repeated for cooling to 375 K, and the sample was then kept at 375 K for 1 h with T­

modulation using AT= 0.637 K, and tllo = 2n/60 fad S·l. It was finally heated from 375 K 

to 400 K at 4 K min- l with the same T-modulation as at 375 K and using the 

computational steps of 1/64 K. The calculations were performed for four pairs of /3 and x 

values, (i) fJ= 1.0, x = 1, (ii) /3= 0.5, x = 1, (iii) /3= 1, x = 0.5, and (iv) /3= 0.5, x = 0.5. 

For each pair, this yields two curves against the temperature, one curve for Tr,unmod and 
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the second for <li:mod> (calculated by averaging Tf,mod using Eq. (2.4)), which are shown 

in Fig. 2.S(A). The difference, oTr (= <Tr,mod> - Tr,unmod ), between each set of the two 

curves in Fig. 2.S(A) is plotted against Tin Fig. 2.5(B). 

Both <Cp, mod> and Cp, unmod were calculated by differentiating the values of 

<Tf,mOO> and Tr,unmod, provided in the curves of Fig. 2.5(A) with respect to T. These are 

plotted against Tin Fig. 2.6(A) and the difference, oCp (= Cp, unmod - <Cp, mod> ) is plotted 

against T in Fig. 2.6(B). To examine the effect of the phase angle at the start of the 

modulation, <Cp, mod> and oCp were calculated for the condition of modulation with a n:­

phase shift, or equivalently ~ = -2n:/60 rad S-1. These values are plotted in thick solid line 

in Figs. 2.6(A) and 2.6(B). To examine the effects of increase in the annealing period, the 

calculations were repeated with the same parameters, and the annealing period was 

increased from 1 h to 4 h. The plots of the calculated Cp, unmod and <Cp, mOO> and oCp are 

shown in Figs. 2. 7( A) and 2.7(B). Both Cp, unmod and <Cp, mOO> also change with change in 

the cooling rate, heating rate, and the magnitudes of InA and M*, and <Cp, mOO> further 

varies with the modulation frequency and /1T. Clearly, there would be virtually an infinite 

number of shapes of the curves that may be generated to show these variations. But, InA, 

Ah*, f3 and x are unique for a given liquid and glass, and when the cooling rate of the 

liquid and the amplitude of T-modulation are kept fixed, effects of a variation of only two 

quantities need be shown here, (i) variation of the heating rate and (ii) variation of the 

modulation frequency. For that purpose, we recalculate Cp, unmod and <Cp, mod> by using 

the same parameters as used for curves in Fig.2.6(A), but decrease the heating rate from 

4 K min-1 to 1 K min-I. The curves obtained are shown in Fig. 2.8(A) and 2.8(B). In the 
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Fig. 2.5. (A). The plots of Tr, for the T-modulated and unmodulated conditions against the 

temperature during heating of the glass sample at 4 K min-I. (B). The plots of the 

difference, OTf, between <Tt:mod> and Tt:unmod against the temperature. Values of f3 and x 

are as noted. The line labeled 1 is the equilibrium line when T = Tf. Other parameters 

used for the calculation are given in the text. The horizontal lines are at zero values in 

each case, with the same vertical scale. The simulation was done for the sine wave 

function. 
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Fig. 2.6. (A). The plots of Cp for the T-modulated and unmodulated conditions against the 

T during heating of the glass sample at 4 K min-I. (B). The plots of the difference, SCI' 

between the Cp, urunod and <Cp, mod>. Values of j3 and x are as noted. The thick solid lines 

are the plots of <Cp, mod> and BCp for T-modulation in which the phase had been n-shifted 

at the beginning. Other parameters used for the calculation are given in the text. The 

horizontal lines are at zero values in each case, with the same vertical scale. 
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Fig. 2.7. (A). The plots ofCp for the T-modulated and unmodulated conditions against the 

temperature during heating of the glass sample at 4 K min-I, (B). The plots of the 

difference, DCp between the Cp, unmod and <Cp, mOO>. Values of P and x are as noted. Other 

parameters used are the same as for Fig. 2.5, except that the isothermal structural 

relaxation time is increased to 4 h. The horizontal lines are at zero values in each case, 

with the same vertical scale. 
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Fig. 2.8. (A). The plots of Cp for the T-modulated and unmodulated conditions against the 

temperature during heating of the glass sample at 1 K min-I. (B). The plots of the 

difference, oCp between the Cp, Ullnlod and <Cp, mod>. Values of f3 and x are as noted. Other 

parameters used are the same as for Fig. 2.5, except that the heating rate is decreased to 1 

K min-I, The horizontal lines are at zero values in each case, with the same vertical scale. 
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second calculation, we increase (ikJ from 2nl60 rad S-I to 8nl60 rad S-
I and obtain the 

curves shown in Figs. 2.9(A) and 2.9(B). 

2.2.6 Square-wave modulation 

Finally, we detennine the effect of the change in the shape of the modulation 

curve on Tf, 8Tr, C p, urunod and <Cp, mod>. For that purpose the T-modulation was changed 

from a sinusoidal wave to a square wave of the same frequency while keeping other 

conditions the same as in Figs. 2.5 and 2.6, and the quantities of Tr, unmod, <Tr, mod> and 

8Tr, Cp,unmod, <Cp, mod> and 8Cp were recalculated. These values are plotted against the 

temperature in Figs. 2.10 and 2.11. (Note that Fig. 2.10 was obtained by the square wave 

modulation and Fig. 2.5 by the sine wave modulation, the plots in these two figures differ 

in details, although they may look similar.). 

2.3 Discussion 

First, we examine whether the results of T-modulation described above are consistent 

with the precepts of thennodynamic. To do so, we use the preceding method to determine 

the net heat evolved for both the modulated and the unmodulated conditions. This was 

done for structural relaxation at a fixed temperature and thereafter for structural 

relaxation during the heating to a temperature above the glass softening range. It is 

required by the first law of thennodynamics that the CpdT integral between two 

temperatures, one for the glass and second for the equilibrium liquid, be identical, 

irrespective of the values of I1T, (ikJ, /3, x, InA, I1h", cooling rate or heating rates, and the 
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Fig. 2.9. (A). The plots of Cp for the T-modulated and unmodulated conditions against T 

during heating of the glass sample at 4 K min-I. (B). The plots of the difference, bCp 

between the Cp,llomod and <Cp, mod>. Values of fJ and x are as noted. Other parameters used 

are the same as for Fig. 2.5, except that the frequency of sinusoidal modulation has been 

increased to 8n:/60 rad S·l. The horizontal lines are at zero values in each case, with the 

same vertical scale. 



SZ ........... 
E--..f.t...< 
co 

390 -- Tf, unmod (f3= 1, --Tf unmod (f3= 0.5, 

385 

375 
1.5 

1.0 

0.5 

0.0 

-0.5 

-1.0 

-.---- <T > x = 1) ..... <Tf od> x = 1) 
f,mod ,ill if 

.. ' .... 

/ 

/ / -- Tr, unmod (f3= 1, 

- - - <T > x=o 5 t:mod . 

I ......... · ... -- Tr, unmod (13= 0.5, 
A .. ' 

.....•.. _._-- <T > x = 0.5) 

. .-~" .. ' 
...... f,mod 

-.---- (/3= 1 x = 1) _ .... _ ... _ ..... _ .. z._ .. -_ ... _ ..... - .. <1\> .,.- ... 

................. _________ .... D ''110... ,,~)L ... ~-----

" . 
-----(f3=0.5,x=1) '-" •• / 

- .. ---.. :.:-=-,.::. .... ~~:...::..: ... ::-..:..:...: .. ~----~ .... --.. -...,/:.---,r-_ ... "'W""G/"_'U'_-• • 'I,. • 
• • • - - • • • • I, • \ 

"'-"' " _._-- (13 = 0.5, x = 0.52 I 1. __ 
t--_ ......... ca:; ... __ I p~ .... ""---

-.---p--~.~ ~.-" ____ J \ 

B 

.,._._. I \ 

--- (f3=l,x=O.5) I" 
- - - - == """'L_JW?' _ ...... "" I -----------I 

........ I 
.... I 

... I 

" 8 \ 
\ I 

... 1 

375 380 385 390 

T[K] 

37 

Fig. 2.10. (A). The plots of Tr. for the T-modulated and unmodulated conditions against T during 

heating of the glass sample at 4 K min'l. The hne labeled 1 is the equilibrium line for Tf = 1'. (B). 

The plots of the difference, oTr, between <Tf,mod> and Tf,unmod against the temperature. Values of f3 
and x are as noted. Other parameters used for the calculation are given as for Fig. 2.5, except that 

the modulation is according to a square-wave. The horizontal lines are at zero values in each case, 

with the same vertical scale. 



10 
--c 1[,/", 1 

'p, unmod V-' , 

8 
-----<C >x=l) 

p,mod .... - ..... _ .. ,.. --C IR=OS 'p, unmod v> ., 

--_. <C od> x = 0.5) 

6 --C fib 0 5 
1', unmod V-' ., 

4 
·····<C > x= 1) 

p,mod 
G ...... '" 

0... 
\..) 

2 

o 

--c (R= 1 
p, urunod V-', I 

- - -<c >x=O.S) .... J p,mod __ --
A 

8 
_ .• _. (fJ= 1 x = 1) , .. ", ......... , .. , ... ,---, -'II;.-=-=-===: .. : .. ;.......,.-;,-' .. - ...... - .. -~=I..--~--I 

_.-. (.8= 0.5, x::: 0.5) 

6 ... ---_~ __ "¥' ___ ~~~~"a-..t.:: ...... -'"""'T:;."...--....I--"""i 

2 
B 

o 

375 

.. , - .(fJ= O.5,x= 1) 

- - -(fJ= 1, x = 0.5) 

1\ 
I I 

I I 
I I 

I I 
I , 

- .... -- ___ , I .. \ -r-
... / '--'II 

380 385 390 
T[K] 

38 

Fig. 2.11. (A). The plots of Cp for the T-modulated and unmodulated conditions against T 

during heating of the glass sample at 4 K min-I. (8). The plots of the difference, SCI' 

between the Cr, unmod and <Cp, moo>. Values of f3 and x are as noted. Other parameters used 

are the same as for Fig. 2.5, except that the T-modulation is in the form of a square wave 

and not a sine-wave. The horizontal lines are at zero values in each case, with the same 

vertical scale. 
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time for isothermal structural relaxation. This was tested by numerical integration of the 

Cp against Tplots shown in Figs. 2.6 - 2.11, and several more sets of data not shown here. 

The difference between the CpdT integrals for the various conditions was found to be less 

. than 0.04%, which is due to the errors in the averaging procedures and the method of 

integration (multiple Simpson rule) used here. Therefore, we conclude that the 

calculations given here are thermodynamically consistent internally. As most of the 

physical aspects have already been described here, we only discuss the modifications in 

the physical properties resulting from T-modulation in the following six sections. 

2.3.1 Structural relaxation's modification on the net enthalpy and entropy 

The ultimate Tf for the unmodulated condition is the temperature at which the glass is 

isothermally kept The first effect of modulation during isothermal structural relaxation is 

that the effective Tf is raised above the isothermal or mean temperature, To, after the 

cross-over time, tx, in Figs. 2.2-2.4, has been reached. Since enthalpy, entropy and 

volume decrease as Tr decreases and the elastic modulus, refractive index, and phonon 

frequencies increase, this means that the first set of properties would be higher for the 

modulated condition and the second set of properties lower. This would appear as a lesser 

than expected loss in the magnitude of the first set of properties and gain in the second set 

of properties in a structural relaxation experiment. The discrepancy in the properties 

would correspond to an increase in the temperature by STr. As STf itself approaches the 

magnitude of AT as t --?> 00, the discrepancy observed ultimately would correspond to the 

difference between the magnitudes of the property at To and at To + T max- This appears to 

be a natural consequence of a non-linear change in the property with change in T. 
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2.3.2 The time and temperature dependent heat capacity and Tg 

Figures 2.6(A) - 2.1O(A) clearly show that extra features in Cp appear when T is 

modulated during the heating of a glass. When 13= 1, and x =1, the modulation produce a 

second sigmoid-like feature before the equilibrium state of the liquid is reached, as is 

seen in Fig. 2.6(A). This feature persists even after the glass has been structurally relaxed 

isothermally for a longer period of time prior to the heating (see Fig. 2.7(A». The 

decrease in the heating rate from 4 to 1 K min-1 tends to reduce this feature, as seen in 

Fig. 2.8(A), as does an increase in ~ in Fig. 2.9(A), where the shape of the curve is not 

smooth but is defined by wave whose further averaging would reveal the curve. A 

decrease in the magnitude of either 13 or x or both, from unity, changes the shape of the 

feature but more for the modulated condition than for the unmodulated. The maximum 

change is found when x is reduced and 13 is kept fixed. This is seen in the plot calculated 

for the case, f3 = 1, x = 0.5 and seen in Figs. 2.6(A) and 2.7(A). Here T-modulation 

produces the appearance of a second peak at high temperatures, which is only partially 

merged with the initial sigmoid-shape rise. Its magnitude decreases with decrease in the 

heating rate and with increase in ~, as seen in Figs. 2.8(A) and 2.9(A), respectively, 

where the curves apparently require further averaging for smoothing. 

The glass softening temperature, Tg, is usually determined from the intersection 

temperature of two straight lines, (i) the tangent to the point of inflection on the sigmoid­

shape endotherm, and (ii) the extrapolated line from Cp of the glass [Moynihan et. al. 

(1976), Kovacs et. al. (1977), Ngai, et. al. (1986), Scherer (1986), Donth (1992), 
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Mastsuoka (1992), Hodge (1994), (1995) and (1997)]. As the endothermic features 

change on T-modulation, it is dear that Tg determined from the T-modulated experiment 

would be different from that determined from the unmodulated experiment. This is 

shown by the lines drawn on the curve for /3= 1, x = 0.5, in Fig. 2.7(A), and which yields 

a lower Tg for the T-modulated heating than for unmodulated heating. More significantly, 

the extra features observed on T-modulation may lead to a misinterpretation of the 

dynamics of the glass and supercooled liquids. 

2.3.3 The effects of square-wave modulation 

When T-modulation is done by using a square-wave instead of a sine-wave, the effects 

observed become more prominent, because the glass stays at its T max. and T min for a longer 

duration than it does in the sinusoidal modulation. Also, instead of the smooth curves 

which is observed for sinusoidal modulation for the same heating rate and ~, abrupt 

changes in Cp appear at the time (and temperature during heating at a fixed rate) when T 

in the square-wave suddenly increases or suddenly decreases. So, although the features 

become less smooth, the increase in the magnitude of the effect clearly shows that the 

modulation effects are substantial. 

2.3.4 The effects of the phase at the start-stage of modulation 

When the phase angle at the start of the sinusoidal modulation was shifted by n, the extra 

feature of <Cp, mOO> caused by modulation showed a shift for aU the four cases, as seen in 

Fig. 2.6(A). It is evident that in comparison with the results for the condition when the 

phase angle is zero at the start of the modulation, the n-shift in the phase has a lesser 
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effect when {3= 0.5, and x is either 0.5 or 1. The effect is more when {3= 1 and x is either 

0.5 or 1. The difference, 8Cp, also shifts and becomes opposite in sign to that of zero 

phase at the start for the condition when fJ = 0.5 and x is either 0.5 or 1. It shifts by a 

relatively small amount when {3 = 1 and x is either 0.5 or 1. These conditions are more 

evident in the region where the effects of glass softening overwhelm the modulation 

effects when fJ = 1 and x is either 0.5 or 1. So the phase of the sinusoidal oscillation for 

the modulation also determines the shape of the Cp against T curve. When {3 = 1 and x = 

1, <Cp, mOO> with zero phase at the beginning of modulation has qualitatively similar 

features to the unmodulated condition. This similarity is lost when the phase is 1t- shifted. 

This may be useful in determining the optimum modulation results when changes of f).T 

and lU::l are undesirable. 

2.3.5 The relaxation time evolution with temperature 

We now consider how the t-, and T- dependent structural relaxation time, 1; evolves when 

the glass is heated at a fixed rate. To illustrate, we select the conditions used for the 

simulations described already in Figs. 2.5 and 2.6, and the same four pairs of P and x. 

The calculated T for the T-modulated and unmodulated conditions are plotted against Tin 

Fig. 2.12(A), and the ratio, (8T1'tUnmod), is plotted in Fig. 2.12(B). The values of T differ 

most for the unmodulated and modulated pair, when {3= 1, x = 0.5 and less when 0 < {3< 

1, x = 1 or {3= 0.5, x = 0.5. The difference may reach values as high as a factor of7.2 in 

the glass softening region. 
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390 

Fig. 2.12. (A). The plots of 1: against T for the T-modulated and unmodulated conditions 

during heating of the glass sample at 4 K min-I. (B). The plots of the difference, 

O'fdivided by 'funmod, against T. Values of fJ and x are as noted. The parameters used are 

the same as for Fig. 2.5, and are given in the text. 



44 

2.3.6 The linear-response, and the physical aspects of the simulations 

There is currently an ongoing discussion on the limitations of the linear response theory's 

[Landau and Lifshitz (1980)] application for relaxation phenomenon. This is described in 

the papers of Jeong and Moon (1995), Schawe and Theobald (1998), Baur and 

Wunderlich (1998), and Simon and McKenna (1997) and (2000), particularly for those 

processes that lead to configurational freezing on vitrification of liquids. These 

limitations are of course as valid for dielectric and mechanical responses as they are for 

thermal responses. In such cases, the magnitude of the sinusoidal variation of the 

electrical field, strain and temperature is kept sman enough to minimize the non-linear 

effects, but they do not entirely vanish. In particular these effects in a calorimetric 

experiment significantly increase two important properties, (i) the amplitude of the heat 

capacity change at Tg, and Oi) the fraction of higher harmonics in the periodic heat flow. 

n is to be noted that [Schawe and Theobald (1998)] have found that the upper 

limit for the modulation amplitude of 1.5 K is within the linear response for the dynamic 

heat capacity measurements of Polystyrene. The amplitude of 1.5 K used in the 

simulation for isothermal annealing here is the same. The amplitude of 0.637 K used in 

the simulation here during heating is less than half of that. Therefore, effects from the 

non-linear response in l1T have been ignored in our calculations, and this is consistent 

with the recommendation for modulated scanning calorimetry that l1T be equal to the 

ratio of the heating rate to the modulation period, which is 0.637 K, as used here. 

Moreover, the experimental accuracy available with the commercial equipment is unable 

to detect non-linear response up to l1T < 2 K, which is ~ 1.4 K more than the l1T used 
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here. The advantages of pressure modulation are yet to be recognized, but it seems that 

the non-linear effects in sinusoidal pressure experiments would be considerably less, and 

more tractable than in the temperature modulation. 

Finally we discuss the physical implications of the results. It is evident from our 

discussion that, (i) changes in the modulation period and modulation amplitude have a 

large effect on the apparent heat capacity and the calorimetric signal, and (ii) the 

magnitude of the molecular dynamics-controlling properties calculated from such 

experiments may be used to test the theories of the liquid's molecular dynamics itself. 

Such experimental investigations have not been possible so far, although the effects of 

modulation on chemical reaction processes have been tested [Johari et. at. (1999)]. Also, 

since a pressure-increase has an opposite effect on the molecular dynamic properties of a 

liquid and glass than the temperature-increase, the combined modulation of the two 

would provide us a way of maintaining conditions at which the molecular relaxation time 

would not change in a modulation cycle, thus revealing the change in the static properties 

corresponding to the equilibrium and the molecular relaxed states. It is hoped that this 

study would stimulate interests in new experiments in the currently wide-spread use of 

modulated calorimetry and ultrasonics. 

2.4 Summary 

Mathematical simulation and numerical computation of the temperature modulation 

effects on the structure relaxation process during structural relaxation and heating show 

that the modulation has substantial effects on the observed enthalpy decrease and heat 
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capacity change with time and temperature. The effect of pressure modulatio~ as in an 

ultrasonic experiment, is similar. The shape of the heat capacity against temperature 

curve and the glass softening endotherm are remarkably changed by the modulatio~ as is 

the shape of the enthalpy curve with time. This is the consequence of the nonlinear 

response of a material's diffusion or structural relaxation rate on the temperature, and not 

necessarily from the stretched-exponential and non-linear relaxation characteristics, 

whose changes have been used for describing the structural relaxation of a glass. The 

latter two features add to the changes already caused by the sinusoidal modulation. These 

effects are important in the interpretation of the data obtained by the currently developing 

techniques of sinusoidal temperature-modulation and in the use of ultrasonic waves in 

studying the spinodal decomposition. 

The effect is fundamental to all processes in which temperature, pressure or 

concentration may be sinusoidally modulated. Therefore, it has significance for our 

current efforts in incorporating temperature-modulation in calorimetry [Schawe (1995). 

Mig (1991), Beiner et. al. (1998), Kahle et. ai. (1999)], and studying the frequency­

dependent specific heat [Birge and Nagel (1988), Dixon and Nagel (1988). Birge et. al. 

(1986), Brittmann et. al. (1994)] and thermal conductivity [Brittmann et. ai. (1994)]. In 

addition to its use in monitoring irreversible processes by using ultrasonic waves and in 

studying the spinodal decomposition in a liquid [Brittmann et. al. (1994)]. the 

temperature- and pressure- modulation may provide significance information on the 

second-order phase transformatio~ particularly at the critical point of a liquid [Mayer et. 

al. (1997), Brittmann et. al. (1981)], for which formalisms are available (see citations in 
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Brittmann et. at. (1984)]) in terms of dynamic scaling [Mayer et. at. (1997), Bhattacharya 

and Ferrel (1981)]. 



Chapter 3 

Lattice Thermodynamics 

during Linear Chain Polymerization and of 

Statistics and 

the Polymer 

3.1 Introduction 

There are several phenomenological theories for vitrification of liquids. These theories 

have also been used for the vitrification of polymer melts. Amongst these the free volume 

theory [Turnbull and Cohen (1961) and (1971), Grest and Cohen (1981)] relates the 

viscosity of a liquid to its free volume and the entropy theory [Adam and Gibbs (1965)] 

relates the viscosity to the configurational entropy. For the vitrification of polymer melts 

a general form of statistical thermodynamic treatment has also been used. This treatment, 

is based on the description of the partition function originally given by Mayer and 

Goppert-Mayer (1940), and the quasi-lattice model [Meyer (1939)], and on a mean-field 

approach provided by Bragg and Williams (1934). 

In this mean-field approach, it had been considered that there is, (i) a multiplicity of 

possible configurations within a given volume and internal energy of a system, and, (ii) 

molecular interactions are limited only to the near-neighbors. The quasi lattice model of 

Meyer (1939) combined with the mean field approximation is referred to as the lattice-

48 
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hole model, and this model has been used for describing polymers chains statistics by 

Flory (1941), (1942) and (1956). Flory had originally developed this model for a polymer 

solution (1941, 1942). The mean field approximation was later modified by Huggins 

(1942). The lattice-hole model for a polymer solution which uses the Huggins mean field 

approximation has been generally called the Flory-Huggins model and the mean-field 

approximation is generally referred to as the Flory-Huggins approximation. 

Flory (1956) had calculated the Gibbs free energy of a polymer dissolved in a 

solvent for a special case of polymer chains of equal length (mono-dispersed case) and 

varying covalent bond stiffness distributed on the polymer chains. Based on Flory's 

model, Gibbs and DiMarzio (1958) and DiMarzio and Gibbs (1958, 1959) extended the 

calculation to pure polymers in order to determine the variation of the configurational 

entropy, Sconf, of a polymer with temperature, Le., the decrease in Sconf on cooling a 

polymer melt. Both the Flory's original formalism and the subsequent calculations by 

Gibbs and DiMarzio (1958) for Sconf, have been critically examined on fundamental 

grounds by Gujrati (1980), Gujrati and Goldstein (1981), Milchev (1983), and Wittmann 

(1991). Also, Flory's lattice hole model has been extended and modified several times by 

Gutzow (1962), Milchev and Gutzow (1982), Gutzowand Schmelzer (1995), and Petroff 

et. al. (1996). Wittmann (1991) has discussed this subject and distinguished these models 

on the basis of his view of the mean field approximations. In a monograph on the vitreous 

state, Gutzowand Schmelzer (1995) have reviewed the history of the lattice-hole models. 

Here we first consider the development of these models and their limitations and 

weaknesses, and identify the need for a better mean field approximation. We finally 
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propose a new mean-field approximation and use it for developing thermodynamics of 

the irreversible growth of a polymer chain as occurs during the polymerization process. 

These are provided in the subsequent section. In a section thereafter we would consider 

its application to the process of linear-chain polymerization. In the subsequent Chapter 

we will use 'our mean field approximation for quasi one-dimensional chains in an 

orientationally-disordered crystal. This study has been published in a paper, J. Wang and 

G. P. Johari, J. Chern. Phys., 116, 2310(2002}. 

3.2 The Lattice Hole Model and the Flory-Huggins Approximations 

Flory's original model (1941, 1942, 1956) had been developed for semi-flexible polymer 

chains of identical lengths dispersed in a solvent. In this modeL each lattice site was 

occupied by either one repeat unit (monomer) of the polymer or by one molecule of the 

solvent. The co-ordination number of the repeat unit, z, was kept the same as that of each 

site on the httice, and this number z was defined as the connectivity of the sites on the 

lattice. Thus the quantity z is 4 for both a two dimensional square lattice and three 

dimensional temmedrallattice, 6 for a three dimensional simple cubic lattice, 8 for a hcc 

lattice, and 12 for an fcc lattice and an hcp lattice. The covalent bonds between two 
1 

repeat units of a polymer chain were seen to be either flexible or non-flexible (or rigid), 

The overall covalent bond flexibility,/, of the polymer system was defined as the ratio of 

the total number of flexible covalent bonds to the total number of covalent bonds. 

The exact mathematical solution to polymer chain statistics requires the use of 

graph theory for determining the number of configurations obtained by random, self-

avoiding walks (SAW). Kasteleyn (1962, 1961) has provided an exact solution of SAW 
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problem for the simplest case of a closed-packed collection of dimers without monomers, 

holes or flexible bonds. For a slightly less simple case~ it is generally found that 

mathematical complexity becomes too high to allow an explicit solution [Kasteleyn 

(1962, 1967)]. Because of the lack of explicit solution of SAW models, mean field 

approximations have continued to be used. 

Flory showed that when the flexibility of a polymer chain f exceeds a critical 

value of~ 0.63 (= 1- e-\ a disorder-ordertransition occurs in the state ofa polymer. In a 

later treatment of the Flory model (1956), Gibbs and DiMarzio (1958) interpreted the 

sites occupied by the solvent molecules as empty sites or holes, and therefore modified 

the expressions for an effective coordination number, z. Unlike 'Flory (1956), Gibbs and 

DiM:arzio (1958) incorporated a temperature-dependent population of holes in their 
\ 

model for polymer chain statistics. The hole population was determined by the strength of 

interaction between the polymer's repeat unit and the hole. The resulting model thus had 

a feature which allowed for the generally known finite compressibility of a polymer melt, 

and a decrease in its compressibility with decreasing temperature. Gibbs and DiMarzio 

(1958) found that the value of Soom thus calculated for a polymer system containing 

chains and holes decreased and appeared to become negative below a certain 

temperature. This was seen by them as a confirmation of the Kauzmann extrapolation of 

the entropy of molecular liquids towards the entropy of a crystal [Kauzmann (1948)]. 

How this Soon! would vary with temperature if the free energy calculations are redone in 

the Flory-Huggins approximations and how modifying some of the concepts of 

embedding the repeat units on lattice sites would change these calculations has been 
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already reported by others [Gutzow (1962), Gujrati (1980), Gujrati and Goldstein (1981), 

Milchev and Gutzow (1982), Milchev (1983), Wittmann (1991), Petroff et. af. (1996)] 

and in a monograph by Gutzow and Schmelzer (1995). These papers and the monograph 

may be consulted for details. 

Gibbs and DiMarzio (1958) deduced that Sconf of polymer chains would decrease 

to zero at a temperature, T2. This temperature was found to be 80% to 90 % of a 

polymer's glass softening temperature, Tg. They concluded that an equilibrium liquid on 

cooling would undergo a second order phase transformation of Ehrenfest type at T2• In 

order to examine the arrangements of a single polymer chain on a square lattice, Gujrati 

and Goldstein (1981) used the random walks description and incorporated Kasteleyn's 

[(1962), (1967)] results of self-avoiding random walk on the so-called Manhattan lattice, 

i.e., a special square lattice. From their detailed analysis, they concluded that the Gibbs­

DiMarzio's conclusion (1958) is not derivable from the Huggins approximate solution 

(1942) to Flory's model (1941, 1942), and that even an approximate calculation does not 

lead to a negative value of configurational entropy at a ftnite temperature. This seems to 

remove the basis for the inference of a second order phase transformation at T2, as 

deduced by Gibbs and DiMarzio (1958) and Gibbs (1960). By using Hamilton walks on a 

honeycomb lattice, Gordon et. af. (1976) also showed that the Flory-Huggins 

approximate estimate of Hamilton walks is a gross underestimate. The inference for Sconf 

becoming zero at T> 0 K was also examined by Gutzow (1962, 1972, 1977) and Gutzow 

and coworkers [Milchev and Gutzow (1982), Gutzow and Schmelzer (1995), Petroff et. 

al. (1996)]. Milchev (1983) provided a new argument on the manner of chain-packing in 
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a mono dispersed system, and concluded that Scoof of a polymer would not become zero at 

T2• Rather, it would approach zero only at 0 K. He also showed that for an infinitely long 

polymer chain in the Gibbs-DiMarzio formalism (1958), ScoofWas underestimated by an 

exact value of the gas constant R (= 8.314 J/mol K). Therefore, Soon! of an infinitely long 

polymer chain, with no holes on the lattice sites and no flexible bonds, should be equal to 

R at T2, and not zero, as had been deduced earlier by Gibbs and DiMarzio (1958), 

DiMarzio and Gibbs (1958, 1959), and Gibbs (1960). 

Based on the lattice-hole theory, Sanchez and Lacombe (1976) have developed a 

theory for liquids. They have derived an equation of state for a pure liquid, which is a 

mono-disperse system. Lacombe and Sanchez (1976) also developed a theory for 

mixtures of liquids which is a poly-disperse system. In the calculations of the partition 

functions in both papers, they used the limit approximation that z approaches infInity, as 

in the Guggenheim (1944, 1966) model, although this limit seems formally implausible. 

The result obtained by using this large z limit is equivalent to the result obtained in the 

Flory-Huggins approximations [Sanchez and Lacombe (1976)]. 

We adapt the basic concepts of the lattice-hole model, examine its limitations, and 

propose a new mean-field approximation to obtain a more accurate description of the 

polymer chain statistics. We then use our formalism to describe how Soom would vary 
when polymerization reactions occurring spontaneously in a liquid increase the size of 

the species from molecular size to a distribution of polymer chains of increasing average 

length. From this modified version, we calculate the consequent change in the heat 

capacity and the decrease in the entropy to an equilibrium value at a constant 
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temperature. In this consideration, thermal energy for any given distribution of chain 

lengths continues to maintain a finite population of holes until 0 K is reached on cooling. 

At 0 1(, this population vanishes. As a result of a distribution of chain lengths, Soom 

remains :finite at 0 K. The calculations lead to two new findings: (i) The heat capacity and 

entropy of a liquid should increase in the beginning of its polymerization. (ll) The zero 

value for Soon! would not be reached at T = 0 K for a polydispersed syste~ because the 

temperature-independent entropy of mixing of the various chains of different lengths 

persist at 0 K when polymerization is inhibited. Only for an infmitely long chain polymer 

would the entropy approach zero at 0 K. This is analogous to the case of a mixture of 

isotopes of an element (and other crystals that do not demix) whose entropy of mixing in 

the thermodynamically equilibrium state persists at 0 K. The first finding is consistent 

with the heat capacity measurement performed earlier [Ferrari et. al. (1996)] with the 

intention of determining the increase in structural relaxation time on a liquid's 

spontaneous polymerization at a fixed temperature. The second finding is consistent with 

the inference drawn in earlier studies that the entropy of a liquid in internal equilibrium 

would approach zero at 0 K [Johar~ (2000a), (2000b), (2001a), (2001b)]. The discussion 

of the model and of the calculated quantities and the implications of the calculations are 

included in the subsequent section. 

We also develop a formalism for the change in the configurational entropy and 

heat capacity at different pressures at a fixed temperature, at different temperatures at a 

fIxed high pressure and determine the effects of pressure. This is done for different 

extents of polymerization, thus yielding the surfaces of thermodynamic properties in a 
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temperature-pressure plane for a given average molecular weight. Finaliy, we use this 

formalism for determining how. the viscosity of a given polymer would change with 

change in temperature Of pressure. 

3.3 Polymer Chain Statistics in the Lattice Hole Model 

3. 3. 1 Formalism for a monodispersed polymer 

In a monodispersed linear polymer system, every linear polymer chain has the same 

number of repeat units or monomers, say x. The length of each polymer chain is also 

expressed as the number of repeat units x. When such a system contains N linear chains, 

each of length x, the corresponding lattice contains a total number of (xN + No) sites, 

where No is the number of sites occupied by the holes, or by the solvent molecules as in 

Flory's modeL In this manner, only one repeat unit is placed on one lattice site. For an 

example, if x = 5 and N =10, the mono-dispersed system expressed on a 8x8, two 

dimension, square lattice with z = 4 and No = 14 is shown in Fig. 3.1. 

Fig. 3. 1. Illustration of one configuration of a mono-dispersed polymer system with 

x = 5 and N =10 on a two dimension 8x8 square lattice with z = 4 and No = 14. 
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The number of configurations available for such an ensemble varies with x, N, No, 

z and/, as defined earlier. A comparison of the implications of different approximations 

used in the various lattice models has been done by Wittmann (1991). He expressed these 

models in quantitative terms, occasionally by rewriting the equations in notations 

different from those of the original authors, and then critically examined their 

weaknesses. In Wittmann's (1991) paper, the number of configurations available, or the 

number of microstates of a polymer system in lattice-hole theory is given by, 

fl(N,x,NO./'z) = 

[
-I-fI MU) n zU,m)]{( N(x - 2) X_I )0- f)N(X-2)(_z __ 2)fN(X-2)} 
2N Nt j=l m=l fN(x-2) z-1 z-1 

(3.1) 

where the term liN! is a result of the indistinguishibility of N polymer chains and the 

term lfiV is a result of the fa~t that different sequences in which repeat units are placed to 

form a chain are taken twice. The term in curly brackets is a binomial distribution 

function. It represents the probability that out of the N(x - 2) covalent bonds, there are 

exactly fN(x-2) flexible bonds of high energy E and (11)N(x-2) rigid bonds of zero 

energy, i.e., in the ground state. The probability of a covalent bond being flexible is 

defined by the ratio, (z .. 2)/(z .. 1). The term, M(j) in.Eq. (3.1) is equal to [xN + No - (j .. 

1)x]. It represents the number of ways by which the first repeat unit ofthej-th chain may 

be placed on the lattice after (j .. 1) chains have been already embedded in the lattice. The 

effective coordinate number, z(j. m), in Eq. (3.1) is given by z(j. m) = z(m)[y(j. m)] where 

the definition of the term [y(j, m)] has been different in the different models, z(m) is the 

connectivity for the (m+ 1 )-th repeat unit of a polymer chain after m repeat units have 
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been placed on the lattice in the infinite dilution limit so that the placing of each polymer 

chain is isolated from other repeat units already placed on the lattice. For m = 1, the 

quantity z(m) = z because there are z possible ways to place the second repeat unit, and 

for m 2:: 2, the quantity z(m) = (z -1). The quantities, 1I2N
, liN!, M(j), z(m), and the terms 

in curly brackets of Eq. (3.1) have essentially the same values as those in the Flory 

(1956), Gibbs-DiMarzio (1958) and Milchev (1983) models, but have been expressed in 

general terms with a single set of notations by Wittmann (1991). 

To discuss the meaning of the term [y(j, m)] and examine it critically, we consider 

as follows: The number of ways in which the second repeat unit of the first chain can be 

placed is equal to the coordination number of the lattice, z. There are two conditions for 

[y(j, m)] when m 2:: 2 and/or):?: l. First we consider whether or not [y(j, m)] may be equal 

to L This is the simplest situation of the lattice occupancy, in which none of the nearest 

neighbors of the site of the m-th repeat unit of the )-th chain are occupied by any of the (j 

- 1) chains or (m-2) repeat units of the j~th chain. Here z is also the number of ways in 

which the second repeat unit of the j-th chain can be placed. In this simplest occupancy 

situation but for a realistic value of m :?: 2, none of the nearest neighbors of the site of the 

m-th repeat unit ofthe)-th chain are occupied by any of the (j - 1) chains or (m-2) repeat 

units of the )-th chain. Here (z - 1) becomes the number of ways for placing the (m + 1)­

th repeat unit of j-th chain. As more and more repeat units are placed on the lattice, the 

probability of encountering the simplest situation of z(m) number of ways for placing the 

repeat unit becomes progressively Jess. For the second and general situation of lattice 

occupancy, [y(j, m)]:1= 1, for both values ofm, m = 1 (when) :?: 1) or m :?: 2. 
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Therefore, the quantity [y(j, m)], which may be seen as a scaling factor for 

determining z(j, m) in the equation, z(j, m) = z(m)[y(j, m)], needs to be ascertained. 

Because [y(j, m)] can not be obtained explicitly, approximations have been used. These 

approximations differ in the formalisms developed by Flory (1956), Gibbs and DiMarzio 

(1958), and Milchev (1983) for the lattice hole models. In particular, Flory's model had 

used [y(/, m)] as the ratio of number of available sites to the number of total sites: 

[ ( . m)] = xN +No -[(J -l)x+m] 
Y j, Flory N N x + 0 

(3.2) 

In view of the already noted decrease in Sconf in the Gibbs-DiMarzio formalism (1958), 

which makes Sconf unrealistically negative at T > 0 K, a further mathematical 

consideration of this model is unnecessary, and we do not pursue their formaism. 

Milchev (1983) introduced the concept of an average chain volume in Flory's 

model. He argued that, on average, there is a volume equal to [(xN + No)/N] for each 

chain. Now if (j - 1) chains have already been embedded on the lattice, then an average (j 

- l)[(xN + No)/N] sites are already occupied. The effective remaining number of sites on 

which the j-th chain can be placed would no longer be (xN + No), but only [(xN + No) -

(j - 1) (xN + No)/N]. This leads to, 

[y(j, m ) ]Milchev = 

(xN+No)-[(J-1)x+m] =[ N ](XN+No)-[(J-l)x+m] 

(xN + No) -(J -l)(xN + N o)/ N N -(j -1) (xN + No) 

(3.3) 

Thus Milchev's (1983) and Flory's (1956) approximation are related by, 
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(3.4) 

The configurational entropy is calculated from Sconf = kBlnn where kB is the Boltzman 

constant and n is calculated from Eq. (3.1). For a system with one mole of total repeat 

units, i.e., xN = NA (Avogadro's number), there are four contributions to the molar 

configurational entropy in Flory's model. With the limiting condition of N --+ 00, the 

configurational entropy in Flory's model has been written by Milchev (1983) in the form, 

~=_ (1-B)ln(l-B) InB +!In(':')+!:..ln(x)+(!:..-l) 
R B x x 2 x x 

+(1- ~)-flnf -(1- f)ln(l- f)+ [In(z-2)] (3.5) 

We separate these contributions as follows: 

8 
(8,x) 

(1- B) In(1- B) In B 
--= -...:....-.~-::..-..;:.. 

R B x 
(3.6) 

(z,x) 
S 1 z 
--=-In(-) 

R x 2 
(3.7) 

S
(x) 

1 1 - = -In(x)+ (--1) 
R x x 

(3.8) 

(f,x,z) 

S R =(1- ~)-JlnJ -(1- J)ln(l-J)+ Jln(z-2)] (3.9) 

where the subscript '<conf' from SCf.>nf has been dropped for simplicity, R = ksNA is the gas 

constant, and the quantity, B = xN /(xN + No) is the ratio ofthe number of sites occupied 

by polymer's repeat units to the total number of sites available. This is the fractional 
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lattice occupancy, which has also been caned the dimensionless effective density of the 

lattice. Equations (3.7) and (3.9) are only applicable for x ;::: 2, i.e., for a dimer or a 

multimer system. 

In Flory's approximation of [yV, m)] according to Eq. (3.2), the term [(lIx) - 1] 

has a negative value, and as x increases this negative value increases. Since (1/x)ln(x) is a 

small positive number, gX)IR becomes negative for all values of x. But in Milchev's 

approximation of[y(;, m)] according to Eq. (3.3), the negative term [(l/x) - 1] vanishes in 

the limit of N ~ 00, and therefore [Milchev (1983)], 

(x) 
S 1 
--=-In(x) 

R x 
(3.10) 

Accordingly, Scoo.f approaches zero with x approaching infinity at T approaching zero. 

We consider that the modification of the average volume be instead made on the 

basis of the occupancy of each repeat unit, and not of each chain as in Milchev's 

formalism (1983). To elaborate, the effective remaining number of available sites on 

which (m + 1)-th repeat unit ofj-th chain can be placed depends not only on the embedded 

V-I) chains but also on the m repeat units of the j-th chain itself For each repeat unit, 

there is an effective volume of [(xN + No)/xN] sites. When V-I) chains and m repeat 

units of j-th chain have already embedded on the lattice, then on average [V - 1)x + 

m ][(xN + No)/xN] sites have been occupied. The effective remaining number of available 

sites on which (m + l)-th repeat units ofthej-th chain may be placed is therefore, 

[y(j,m)] = (xN+No)-[(j-l)x+m] = xN{(xN+No)-[(j-l)x+m]) (3.11) 

(xN +No)-[(j _l)x+m](xN +No) {xN -[(j -1)x+m]}(xN +No) 
xN 
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Our approximation for [y(j, m)] is related to Milchev's and Flory's approximations by, 

. ~-~-~. ~. 
[y(},m)] = N [(. 1) ] [y(},m)]Miichev = N [(. 1) ] [y(},m)hlol), 

x - j- x+m x - j- x+m 

(3.12) 

It should be noted that our conclusion from the value of [y(j. m)] in Eq. (3.11) 

yields the same results as Eqs. (3.6), (3.7), (3.9) and (3.10), without requiring the limiting 

condition of N ~ 00. (Details are provided in Appendix A). It is also worth noting that 

Eq. (3.3) leads to 14Mlchey = (N"IMl-1 
Drlory, and our Eq. (3.11) leads to £2= [(xN yxN 

MI1I'(xN)!] Drlory, as described in Appendix A 

3. 3. 2 Formalism for a polydispersed linear chain system 

Since the growth of polymer chains during the addition polymerization produces a 

polydispersed system, we need to consider Scouf of a polydispersed system but within the 

constraint that its value does not become negative at any temperature. For example, one 

configuration of a polydispersed system is shown in Fig. 3.2 on a 8x8 square lattice. 

Fig. 3.2. Illustration of one configuration of a mono-dispersed polymer system on a 

two dimension 8x8 square lattice with z = 4 and No = 19. 
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Gibbs and DiMarzio (1958) have provided a brief description also of a 

polydispersed system in terms of the lattice-hole model, and the Huggins approximation. 

They showed that except for the contribution from the entropy of mixing term, the 

entropy of the polydispersed state depends upon/, z, 8, x and T in a manner identical to 

that of a monodispersed system. Therefore, they replaced only the term x of a 

monodispersed system by the number average molecular weight, i of the polydispersed 

system. 

After discussing the limitations of Gibbs and DiMarzio's (1958) treatment in 

detail, Milchev and Gutzow (1982) formulated the number of configurations available for 

varying degree of polymerization, expressed it in terms of the fractal occupancy of the 

lattice, length and number of polymer chains. They calculated the value of Seon! for a 

fixed e. x, z and f by using the principle of equal molecular reactivity or molecular 

agglomeration, as given by Flory (1936) in his description ofpolydispersity. 

However, we find that Milchev and Gutzow's (1982) formalism for polydispersed 

system can not be used for the purpose of irreversible growth of a polymer in a 

polymerization reaction because of the reversibility of x. In the second part of Milchev 

and Gutzow's formalism (1982). they allowed x to vary with T reversibly, i.e., .the 

polymer chains agglomerated on cooling and deagglomerated on heating maintaining a 

chemical equilibrium at each temperature. In this case, as T ~ 0 K, x ~ 00 and the 

polymer chain becomes infinitely long. On that basis, they calculated the configurational 

entropy of a polydispersed system whose average molecular weight increased with 
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decrease in T. This treatment is valid for a system containing different species at a 

thermodynamic equilibrium, i.e., an equilibrium state of polymerization exists at each 

temperature and that the concentration of monomers and multimers are at a thermally 

reversible eqUilibrium. In their formalism x changes reversibly with T, and this is similar 

to a reversible intermolecular association, when the intermolecularly H-bonded chains in 

alcohols and amides increase in length [Johari and Dannhauser (1969)]. Moreover, this 

manner of calculating the configurational entropy with increase in the intermolecular 

association is not specific to the manner in which that association occurs. All that it 

requires is that the molecular association varies with T. In our treatment, chemical 

reactions lead to an irreversible growth of a macromolecule at a fixed T, which lead to 

volume contraction, and therefore the number of holes on the lattice decreases at a fixed 
\ 

T as a result of chemical reactions. 

In deriving this formalism, we also find that in the limit of monodispersity, 

Milchevand Gutzow's (1982) procedure for calculating the number of configurations 

available leads to the original formula that had been obtained for a monodispersed system 

by Flory (1956) at all temperatures. The detail of our deduction is given in AppendixB. 

Since Flory's formalism for a monodispersed system had originally led to a negative 

value for the configurational entropy at T > 0 K, and is therefore seen as inappropriate, 

Milchev and Gutzow's (1982) formalism also seems inappropriate for a polydispersed 

system in that respect. It should be noted that in the Milchev formalism (1983) for a 

monodisperse system, the configurational entropy does not become negative at T> 0 K. 
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We use Eqs. (3.6), (3.7), (3.9) and (3.10) for a monodispersed system and 

consider that a polydispersed system is a mixture of many monodispersed sub-systems 

with certain distribution of molecular weights or chain lengths. Hence we calculate the 

configurational entropy of a polydispersed system by using the weighted sum of the 

individual entropy of each monodispersed polymer sub-system plus the entropy of 

mixing, as follows: 

During the spontaneous polymerization process, both the polydispersity and the 

number average molecular weight of a polydispersed linear chain polymer are in non-

equilibrium conditions, and x increase irreversibly with time as the extent of 

polymerization, a, increases at a fixed T. Therefore, we need to describe how a and x 

are related. For a system with total number of repeat units given by N A, x is given by, 

(3.13) 

x=l 

where Nx is the number of polymer chains each chain containing x number of repeat 

N 

units. Hence, the total number of polymer chains is given by, N = ! N x . 

x=l 

There are two limiting conditions: (i) When there are no covalent bonds, i.e., each 

repeat unit is a molecular species. In this case, NI = N A and Nx = 0 for the condition x > 1. 

Oi) When aU molecules become covalently bonded to form one linear chain of -A-A-A-
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type, with NA repeat units of A or and NA covalent bonds. In this case, N NA = 1, N.o.: = 0 

for the condition x < NA . For any condition in between these two limits, the ratio of the 

number of covalent bonds formed to the quantity NA is equal to the extent of 

polymerization, a. This a is related to x by, 

(3.14) 

Equation (3.14) is the familiar Carother's equation [Carother (1936)], which is 

valid for a linear chain polymer system irrespective of the molecular weight or chain 

length distribution. For the special case of a monodispersed system, x = x . 

In a polydispersed system, the number of polymer chains with repeat unit x, Nx, is 

given by: 

(3.15) 

where P x is the probability of occurrence of a polymer chain with repeat unit x and N is 

the total number of polymer chains with different numbers of repeat units. The 

normalization constrain requires that ~ Px = 1. But since N A is already a very large 
=1 

number, the limit NA ~ 00 may be justifiably used, and NA be replaced by 00 for 

summation. 

In the equal reactivity approximation, as given by Flory (1936), the polymer 

chains produced have a distribution which gives Px , as, 
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(3.16) 

In our consideration given above, the configurational entropy of a polydispersed system 

is given by the weighted sum of the individual entropy of each monodispersed polymer 

sub-system plus the entropy of mixing, 

S = (Smono)+Smix = :t(:: SxJ+ :t(-NkBPxlnPx) 
.x=l .x=1 

(3.17) 

where <Smon;> is the weighted entropy of all monodispersed sub-systems and Sx is the 

entropy of a polymer chain of length x, as described by Eqs. (3.6), (3.7), (3.9) and (3.10). 

The first term on RHS of Eq. (3.17) represents the sum for all the monodispersed sub-

systems. It may be written as, 

(Smono) = :t(XNx SxJ= :t{XNx [_ (l-O)ln(I-0) _!nO +..!..lnx]} 
R NA R NA 0 X X 

.x=l .x=l 

+ ~ xNx {..!..In(~) + (1- 2)[_ fIn f - (1- f)ln(1- f) + fln(z - 2)]1 ft NA x 2 x ~ 
(3.18) 

3. 3. 3 Configurational entropy and the extent of polymerization 

The total configurational entropy at any instant during the course of polymerization is the 

sum of five separate contributions, which are associated with the terms 8., z, f, a and the 

entropy of mixing. These contributions may be obtained by separating the RHS of Eq. 

(3.17) into five terms, as follows: 

(n) The fractional occupancy contribution. 

SCe,a) __ ~{XNx[_ (l-O)ln(l-O) InO]} ___ (l-O)lno-O) 
L..J (l-a)lnO (3.19) 

R NA 0 x 0 
.x=l 
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The fractional occupancy of the lattice, B, as defined by B = NA / (NA + No), depends on 

both a and T because No itself depends on both a and T. According to Eyring's (1936) 

hole theory of liquids, 

(3.20) 

where Ub is the energy for formation of one mole of holes in the system (or energy for the 

formation of one hole multiplied by the Avogadro number), VI is the molar volume of a 

repeat unit and 1'0 the "molar volume" of a hole, and 8 = 1'1/1'0. It has been found that for 

Uh = 2 - 20 kJ/moJ, and 0= 1'1/1'0 = 5 - 7 [Eyring (1936)]. Choi and Plazek (1986) have 

found that in a polymerization process, there is less than 10% volume contraction of the 

system from a = 0 to a = 1. Thus, as the net volume decreases, the quantity 0 also 

decreases with the increase of a and tends to saturate when a ~ 1. To incorporate this 

observation empirically in Eq. (3.20), we propose that, 

O=~[I+exp(-X)]=~[I+exp(--1 )] 
1'0 1'0 I-a 

(3.21) 

By using Eq. (3.21) we obtain oas a function of a, and then by using Eq. (3.20) 

we calculate B as a function of a. By using Eq. (3.19) we finally calculate s«(J,a) IR for the 

parameter Ub. = 1500 R, and 'I'd 1'0 = 6.85. Its value is plotted against a also in Fig. 

3.3(A). It decreases monotonically with increase in a, with a decreasing slope of the 

curve of S((J,a) IR against a. 
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Fig. 3.3. (A). The five contributions to the configurational entropy of a polymerizing 

system scaled by the gas constant are plotted against the extent of polymerization at 300 

K. The various contributions are indicated by their notations. (B). The corresponding 

contributions to the configurational heat capacity are plotted against a. 
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(U) The co-ordination number contribution 

s(z,a) Ioo 
xNx {I z} Ioo z z 

--= - -InC - ) =(1- a) (Px In -) = a(1- a) In( - ) 
R NA X 2 2 2 

x=2 x=2 

(3.22) 

We use z = 12 ( i.e., for a fcc lattice), and calculate s(z,a) IR for different values of a. It is 

plotted against a in Fig. 3.3(A). The curve is parabolic in shape since In(zl2) is a 

constant, with a maximum at a= O.S. 

(iii) The extent of reaction cont.ribution 

The summation term in Eq. (3.23) could not be solved analytically. Therefore, the entire 

term sea) IR was calculated numerically for different values of a and plotted against a in 

Fig. 3.3(A). This curve appears like a skewed arc. Since s(a) IR is independent of T, an 

empirical equation was fitted to this curve for convenience. A fit of this curve by the least 

square method gave, 

s(a) 00 

--= (l-a)2LaX-llnx ~ -(l-a)ln(l-a) - O.3495a l.062 (1_a)O.8483 (3.24) 
R x=! 

It should be stressed that this dependence of sea) IR on a differs from that used by 

Milchev and Gutzow (1982), as described here in Appendix B. 
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(iv) The chain flexibility contribution 

s(f,a,~) 00 xN {( 2) ~ 
R = ~ N: 1- x [-flnf-O-f)lnO-f)+fln(Z-2)]f 

= (I-a)t, xPx{(I- ~)- flnf -(1-f)ln(l- f)+ fln(z -Zll} (3.25) 

Whenf is not a function of x, then the net term in the square brackets on RHS of Eq. 

(3.25) remains constant with changing x. Thus, on substitution Eq. (3.16), in Eq. (3.25), 

sCf.a,z) 

--= a 2 
[- fIn f - (1- f)ln(1- f) + fln(z - 2)] 

R 
(3.26) 

This result is the same as that obtained by Milchev and Gutzow (1982), but it has been 

obtained by using a different approach here. 

For polymer chains in a solvent, the flexibility j, which has been considered to be 

independent of x, vanes with Taccording to Flory (1956), 

Ur (z - 2)exp( --) 
f= RT 

Ur 1 +(z - 2)exp( --) 
RT 

(3.27) 

where Ur is the energy needed to excite one mole of flexible bonds from ground state to 

their flexible state. 

Contrary to the above-mentioned independence off on x, we consider that the 

flexibility of covalent bond would vary with x. It is known that during the course of 

polymerization, the viscosity increases and volume decreases. Since a polymer chain 

folds on itself, the flexibility, j, of its segments is affected by its intermolecular or 

interchain environment and is not entirely determined by the intramolecular barriers. 
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Thus/is expected to decrease with increase in the number of covalent bonds formed, i.e., 

with increase in the number of repeat units in the bonded structure. This increase may be 

related to x, the number of the repeat units in a polymer chain in several ways. Out of 

these the two simplest ways are, (i) Ur may be a progressively increasing function of x, as 

has been found from the rapid increase in the activation energy for segmental orientation 

with increase in the chain length in several cases [Johari (1994), Parthun and Johari 

(1995)], and (ii)/oc lIx. As a first approximation, we use the latter dependence of/on x, 

multiply Eq. (3.29) by a factor l/x, 

Uf (z-2)exp(--) 
/= RT 

X[1+(Z-2)eXp(- ~~)r 
or, / oc 1/x (3.28) 

when Uf, z and T are constants. We calculate/as a function of x from Eq. (3.28) by using 

Ur = 700 R, and z = 12, and by substituting / in Eq. (3.28), and then we calculate 

sU,a,z) JR. The quantity s(!,a,z) IR is plotted in Fig. 3.3(A). The curve obtained looks like 

a skewed are, and both its magnitude and shape are temperature dependent. 

(v) The entropy of mixing contribution 

The second term on RHS of Eq. (3.17) is the entropy of mixing of all the sub-

systems. According to the distribution given in Eq. (3.16), this term divided by R is given 

by, 

(3.29) 



72 

This contribution is entirely statistical with a maximum of Rln2 at a = 0.5. The values of 

grrux)IR is also plotted against a in Fig. 3.3(A). 

The net configurational entropy is the sum of the five above-given contributions. 

Its total value at 300 K is expressed as SIR and is plotted against a in Fig. 3.4(A). The 

values SIR calculated for 275 K and 325 K are also plotted in Fig. 3.4(A). These plots 

show that the configurational entropy initially increases, reaches a maximum and then 

decreases as a increases. The curve shifts downwards as T is decreased, its shape 

changes, and the local maximum in the curve shifts to higher values of a. 

It should be stressed that our calculations are for isothermal vitrification of a 

liquid in which polymer chains spontaneously grow and ultimately cause the liquid to 

vitrify under normal conditions and the state becomes kinetically frozen on the time scale 

of one's observations. But when the polymerization temperature is high, the ultimately 

polymerized liquid may remain in a highly viscous equilibrium state at that temperature. 

Although we extend our calculations to different temperatures and show that Sronf 

for a polydispersed system of a fixed chemical structure would not become negative at T 

> 0 K, our calculations differ from those of others who had also determined the variation 
) 

in free energy and Sronf with temperature in a reversible manner. Briefly, we fix the 

temperature and describe the thermodynamics of the changing structure on a lattice in 

which the number of empty sites irreversibly decrease, which decreases the free volume, 

and the effective flexibility is gradually reduced as linear chains form at different sites 

and grow in length as a result of chemical reactions. Also there are four adjustable 

parameters, Ur, Uh, z and the ratio VII vo, which were needed for the calculations of the 
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Fig. 3.4. (A). The net configurational entropy of a polymerizing system divided by the 

gas constant at three temperatures is plotted against the extent of polymerization. (B). 

The corresponding net configurational heat capacity is plotted against a. 
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configurational entropy at temperatures far below the boiling point of the liquid. The 

values of the parameters used here are plausible. but not quantitatively verifiable. 

J. J. 4 Configurational heat capacity change during polymerization 

We now consider how the configurational contribution to the equilibrium heat 

capacity, C, would change as polymerization occurs at a fixed temperature. For a 

polydispersed system, C may be calculated from, 

C = T as = T (as<B,a) ae + as(f,a,z) af ) = c(B,a) + c(f,a,z) 

R R aT R ae aT af aT R R 
(3.30) 

where C({),a) = ~(as«(},a) ae] = - (1- e)[ln(l- e) +ae] Uh 
, R R ae aT e 2 RT 

(3.31) 

C(f,a,z) T as(f,a,z) Of 00 {( 2) } of 
--= = (1-a)LxPx 1-- [-lnf +In(1- f)+ln(z-2)] -

R R of aT x=2 X aT 

= (1;;)f PxU j (X-2)u [- flnf + fln(l- f)+ fln(z-2)] (3.32) 

x=2 [1 + (z - 2)exp( _--L)] 
RT 

The other three contributions, Ca)IR, C Z
, a)/R and Cmix)IR, are formally zero. Equation 

(3.32) was calculated numerically for the condition thatfis a function of x and Eq. (3.28) 

was used. For the same condition as used for obtaining curves in Fig. 3.3(A), values of 

co, a)/R and Ct a, z)/R were calculated and plotted against a in Fig. 3.3(B). The quantity 

co, a)IR decreases with increase in a. because the effective density of the lattice, () 

decrease with increase in a. In contrast, C(f,a,z) IR first increases with a, reaches a 
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maxImum value and then rapidly decreases. The initial increase in cU,a,z) is a 

consequence of the increase in the number of bonds formed, and the concurrent decrease 

is a consequence of the decrease in the flexibility f which leads to an increase in viscosity 

and ultimately to vitrification as a increases. The combination of the two shows a 

maximum. The net values of CIR were determined at 275 K, 300 K and 325 K, and are 

plotted against a in Fig. 3.4(B). Here the heat capacity initially increases, reaches a 

maximum value, and then decreases as a increases. The curve shifts downwards as T is 

decreased, its shape changes, and the maximwn shifts to higher values of a. 

The five contributions to the configurational entropy and the two contributions to 

the heat capacity were also calculated as a function of temperature for a fixed value of a 

= 0.80. Each of these contributions is plotted against T in Figs. 3.5(A) and 3.5(B), 

respectively. Here So, a)IR and s(f,a,z) IR decrease with T and approach zero at 0 K. Also 

the two contributions to the configurational heat capacity decrease towards zero at 0 K. If 

the polydispersity persisted on cooling to 0 K, the terms So, a)IR. sCa) IR and Smix)IR 

would remain constant on cooling and their magnitudes will persist at 0 K. But if the 

state of the polymerizing mixture was maintained at a chemical equilibriwn at aU 

temperatures, the polydispersity would ultimately decrease and an infinitely long chain 

would form at 0 K. In that case the three terms, s(z,a) IR. sea) IR and Smix)IR would also 

approach zero at 0 K. This requires that the equilibrium constants for the various 

polymerization reactions, and the multiplicity of equilibrium constants for the before and 

after covalent bonded species all increase with decrease in T, and loop of a single chain 
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Fig. 3.5. (A). The five contributions to the configurational entropy for a fixed value of a 

(= 0.8) in a polymerizing system scaled by the gas constant are plotted against the 

temperature. The various contributions are indicated by their notations. (B). The 

corresponding contributions to the configurational heat capacity are plotted against the 

temperature. 
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would form at infinite time at 0 K [Johari (1994)]. This requires not only the attainment 

of a configurational thermodynamic equilibrium, but also that of a chemical equilibrium. 

Figure 3.6(A) shows the variation of the total entropy with temperature and Fig. 

3.6(B) that of the configurational heat capacity for three values of a, 0.20, 0.50 and 0.80. 

In the absence of knowledge of the variation of equilibrium constant for polymerization 

with T, which would ultimately cause the polydispersity to vanish at 0 K in the system of 

our interest here, the net configurational entropy is shown to have a finite value at 0 K. 

This value has a maximum for that a at which the sum of the terms, s(z,a) IR. s(a) IR and 

ffmix)IR reaches a maximum value. If the system was not a living polymerization system, 

or if the reaction stopped as a result of attachment of the molecules to the walls of a 

container, or to the extraneous particles or dissolved impurities in the liquid, then this 

entropy will persist as a state entropy at 0 K. This is analogous to the situation of an 

isotopic mixture of elements or compounds. In the case of living polymerization, it would 

decrease to zero as poly-dispersity is expected to vanish once the equilibrium constant in 

favor of the covalent bond formation has approached infinity at 0 K, and the chemical 

equilibrium has been reached at aU temperatures on cooling to 0 K. This requires that 

both the chemical and internal equilibrium be attained before the entropy of the system 

would reach zero at 0 K. If the chemical equilibrium is not attained, the temperature­

independent entropy of mixing would persist. 
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3.4 Pressure Effeds on the lattice chain statistics 

Properties of a polymer ~ystem and the kinetics of polymerization also vary with pressure 

at a fixed temperature. In our calculations in Sections 3.3, a stable polymer and a 

polymerizing system were kept at a fixed pressure of 1 bar. In this section, we calculate 

the effects of pressure on the lattice chain statistics, in particular on the number of 

available configuration of a polymer chain and the consequent thennodynamics. We 

further calculate the effects of temperature on the chain statistics at different fixed 

pressures. 

3.4.1 Formalism for the effects of pressure on the lattice chain statistics 

It is known from Eyring's theory [1936] that increase in pressure raises the energy for 

hole fonnation, because the density increases. According to the hole theory of a liquid 

[Eyring (1936), Hirai and Eyring (1959)], the energy needed to create a hole in the 

structure of a liquid at a pressure P is then given by, 

Uh(P) = Uh + PVo (3.33) 

where Uh is the energy required to create a hole at zero pressure taken as 1 bar here, P is 

the pressure and Vo is the "molar volume of holes", as already mentioned. For polymers at 

0.1 MPa pressure, it has been found that Uh = 2 - 20 kJ/mol, and Vo = 15 - 150 cm3/mol. 

[Eyring (1936), Hirai and Eyring (1959)]. Here, we use, Uh = 1500R (in units of K) ~ 

12.5 kJ/moL For detennining the tenn PVo, we use Vo = 83.14x 10-6 m3/mol, which yields, 

PVo = 8.314 J/mol at 0.1 MPa. Hence, 

Uh(P) = 12500 + 8.314 P (in unit of J/mol ) 
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= (1500 + lxlO-5 P)R (in units ofK). (3.34) 

The magnitude of s(B,a) IR therefore varies with P through the variation of () according to 

Eqs. (3.20) and (3.22). 

3.4.2 The effects of pressure on configu.rational entropy 

Amongst the five above-listed contributions, which are written in the terms of 

Eqs. (3.19), (3.22), (3.23), (3.25) and (3.29), s<8,a)IR of Eq. (3.19) contains the Uh term. 

Therefore S-8,a)IR varies with both T and P, and S/.a,z)IR ofEq. (3.25), varies only with T, 

as long as the chemical structure or a does not change. For three selected values of a of 

0.2,0.5 and 0.8, we calculate the magnitude of s<8,a)IR as a function of pressure up to 100 

MPa at 300 K. This quantity is plotted against P in Figs. 3.7(A), (B) and (C). In these 

figures, the listed magnitudes of the terms, s<mix)IR, s-z,a)IR and S-a)IR do not depend upon 

Tand P, and the listed magnitude ofthe term S/.a,z)IR depends u.pon T. 

The plots in Fig. 3.7 show that for all values of a at 300 K, s<8,a)IR monotonically 

decreases nonlinearly with increase in P. Increase in pressure decreases the S-f),cf)IR at a 

fixed a more at low pressures than it does at high pressures, i. e., the derivative, 

ds<8,a)ldT, decreases with increase in P. For a fixed P and T, S-B,a)IR decreases when a 

increases from 0.2 to 0.8. 

The total of the above described five contributions to the entropy, SIR, was 

calculated for a = 0.2, 0.5 and 0.8 at three temperatures, 275 K, 300 K and 325 K. For 

each temperature it was also calculated as a function of pressure from 0.1 MPa to 100 
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Fig. 3.7. The contribution to the configurational entropy, !/(j.a)/R is plotted against the 

pressure at a temperature of 300 K. The plots in panels A, B, and C are for the extent of 

polymerization 0.2, 0.5 and 0.8, respectively. For a fixed z, the magnitudes of the other 

three contributions, !/mix)/R, !/z,a)/R, !/a)/R which depend only on a, and the magnitude of 

.~r:a:7)IR, which depends on both T and a but not on P, are noted in each panel. 
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MPa. The calculated value of SIR is plotted against P in Figs. 3.8(A), (8) and (C), where 

the T and a values are indica~ed. The plots show that for a fixed value of P and a, SIR 

increases as T is increased from 275 K to 325 K. This is due to increase in both sJJ,a)IR 

and 5f/.a,z)IR with increase in T. The rate of increase in SIR with T, i.e., the derivative 

d[so,a) + 5f/.z,a)]ldThas a higher magnitude at low pressures than at high pressures. 

For the sake of completeness, two more constructions of the entropy related data 

are provided here. In the first construction, we describe the compensation effects of 

changes in pressure and temperature on the net entropy. To do so, P and T were 

calculated for isoentropic conditions, i.e., for fixed values of SIR of a polymer. The 

calculations were done for a = 0.2, 0.5 and 0.8 and several (fixed) values of SIR at 0.1 

interval. These plots are shown in Figs. 3.9(A), (8) and (C), respectively, where the SIR 

values are indicated. 

In the second construction, the change in the entropy with change in both P and T 

are considered. For this purpose, the surfaces of SIR for a = 0.2, 0.5 and 0.8 are 

constructed in the T, P plane. These are shown in Fig. 3.10. The surfaces show the 

variation of the various quantities and the changes in SIR that would occur when for a 

given a, either Tor P, or both, are varied. A change in a in this construction shifts SIR to 

another surface. The surfaces can be used to determine how SIR would change when 

polymerization occurs with either fixed T or fixed P, or with varying T and P. 
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Fig. 3.8. The net configurational entropy (SIR = s:mix)IR + Sz.a)IR + sa)IR + Sf.a,z)/R + 

Se,a}IR), as calculated here is plotted against the pressure. The curves are for the extent of 

polymerization, 0.2, 0.5 and 0.8. The plots in panels A, B, and C, were calculated at 

temperatures of275 K, 300 K and 325 K, respectively. 
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Fig. 3.10. The net configurational entropy (SIR = gmix)/R + gz.a)/R + ga)/R + SJ.a,z)/R + 

g~a)/R) surface in the temperature and pressure plane, as calculated for the extent of 

polymerization, 0.2, 0.5 and 0.8, as indicated. 
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The configurational contribution to the equilibrium heat capacity, C, also changes with T, 

P and a. We calculate [c«z,a)JR] from Eq.(3.32) numerically for the condition that/is a 

function of x, as given by Eq. (3.28). We also calculate c/J,a)IR ff( ,m Eq. (3.31) for which 

Bis calculated from Eqs. (3.20), (3.22) and (3.34). 

For the same a values as used here for calculating gO, r)IR and Sf,z,a)IR, we 

calculate 0~a)IR and CJ.z,a)IR as a function of pressure at 275 K, 300 K and 325 K. Since 

the gmiX)IR, ga)IR and gz,a)IR terms do not vary with T, they do not contribute to the heat 

capacity and therefore the net CIR is only the sum of c~a)IR and c«z,a.)IR terms. This net 

CIR, is plotted against P in Figs. 3.11(A), (B) and (C) at 275 K, 300 K and 325 K, 

respectively, each for avalues of 0.2, 0.5 and 0.8. Variation ofCIR (= c{~a)IR + cr,z,a)IR) 

as a function of a at 300 Kat 0.1 MFa is already shown in Fig. 3.3(B). Since this is the 

only structural contribution to the heat capacity. the plots of CIR against P in Fig. 3.11 

represent the configurational heat capacity. The vibrational contribution is not considered 

here. 

The plots in Fig. 3.11 show that, like the quantity [g~a)IR + sr,z,a)IR~, the quantity , 

CIR[c8,a)IR + cr,z,a)IR] is also a decreasing function of T and P for all valLes of a, and 

that its variation with P is non-linear. Increase in pressure decreases CIR more at a high 

temperature and low pressures than it does at a low temperatures and high pressures, i. e., 

the derivative, dC/dT, decreases with decrease in T at a fixed P, and the derivative, 

dCldP, decreases with increase in P at a fixed T Inter-comparison of the plots in Fig. 
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Fig. 3.11. The configurational heat capacity (= Cif.a.z)!R + co,a)!R), is plotted against the pressure. 

The curves are for different extents of polymerization, 0.2, 0.5 and 0.8. The plots in Panels A, B, 

and C were calculated at temperatures of275 K. 300 K and 325 K, respectively. 
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3.11 also shows that for a fixed P and T, C/ R initially increases when a increases from 

0.2 to 0.5 and then decreases to a certain value when a = 0.8, i. e., the derivative 

dC/da, for a fixed P and T initially has a positive value, which becomes zero as a 

increases toward a certain value, and then finally becomes negative. 

3.4.4 Entropy and heat capacity changes with pressure 

We first consider the various entropy contributions and their variations with a and 

Pat 300 K, as descfi"bed in Fig. 3.7. Since the population of holes for fixed values of a 

varies with both T and P and the flexibility varies only with T, the magnitude of the term. 

g..(J,a)/R depends upon a and also upon both P and T, while that of $l.z,a)IR depends upon 

a and not upon T. (Note that the magnitudes of g..a)IR and g..mix)IR vary with a only, 

g..z,a)IR varies with aand z only, and remains constant with changing T and P, as 

indicated in Figs. 3.10). Comparison of the curves in Figs. 3.7(A), (B) and (C) shows that 

for all pressures, the magnitude of g..(J,a)/R decreases with increase in a and increases with 

increase in T. At a fixed T, g..(J,a) decreases monotonically with increase in P, as if it is 

approaching its limiting value of zero. The slope of the plots, or (d8-(J,a)/dP)r. decreases 

with increase in P, tending towards zero in the high pressure limit. For all pressures, 

(d8-(J,a) I dP)r. decreases when a is increased. 

There is an additional variation of the entropy contribution with a and T that 

comes from the flexibility term, $l.z,a)IR. As has been shown in Fig. 3.3(B), when a 

increases, the Ef/.z,a) I R term. first increases, reaches a maximum value and then decreases 

as a approaches 1. But the S<°,a)/R term which varies with both T and P, decreases 
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monotonically with increase in a. It crosses the maximum, or hump in the plot of 

::f/.z,a)IR. Also, as shown in Fig. 3.5(A), the magnitude of the Stz,a)IR term for a fixed 

pressure of 0.1 MFa increases with T in a sigmoid shape manner. The net effect of 

temperature on the entropy therefore is obtained from the sum of sro,a) /R and Si.z,a)IR 

terms. 

In Fig. 3.8, the net entropy (SIR = Smix)IR + sz,a)IR + sa)IR + Sta,z)IR + s8,a)IR) 

is plotted against P at 275 K, 300 K and 325 K for a = 0.2, 0.5 and 0.8 at each T. It is 

evident that the net entropy decreases with increase in P for a fixed T and a, and that is 

increases with increase in T at a fixed P and a. Moreover the slope of the plots, (dS/dP), 

varies with all the three variables P, T and a. These plots show a combination of the 

effects of increase in a and in T. As a increases, the term s8,a)IR decreases and a 

maximum appears in the values of ::f/.z,a)lR, Smix)IR, Sz,a)IR and sa)IR in the a-plane, as 

has been shown in Fig. 3.3(A). As T increases, both the sr8,a)/R and ::f/.z,a)IR terms 

increase in their characteristic manners, as discussed in the preceding paragraph. 

We now consider the plots of pressure against the temperature for fixed values of 

the net entropy, SIR, as seen in Fig. 3.9. These show that for a fixed value of SIR, the plot 
1 

shifts to lower T as a increases from 0.2 to - 0.5 and thereafter the plot shifts to higher T 

as a increases to 0.8. The plots also show that for P = 0.1 MFa. The slopes for a fixed a 

value, (dP/d1)a, rapidly decreases as SIR increases, and for fixed a and SIR values, 

(dP/d1)a increases as T increases, i.e, to maintain SIR at a constant value, the pressure 

needed at a higher T is more than the pressure needed at a lower T. Since SmiX)/R, Sz,a)IR 
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and sa)IR do not depend upon T, and both gJ.a,z)IR and SfJ.a)IR do, it appears that, as T 

increases, the pressure-dependent term sO,a)IR becomes relatively less prominent than the 

temperature sensitive term, [gJ.a,z)/R + SfJ.a)IRl This indicates that the effect of a decrease 

in the hole occupancy with increase in P is less than the combined effects of increase in 

the hole occupancy and flexibility with increase in T. 

By comparison of the curves in the three panels of Fig. 3.11, it becomes evident 

that for a of 0.2, 0.5 and 0.8, CIR decreases with increase in P and increases with 

increase in T. The rate of decrease with increase in P is highest for a = 0.2 and lowest for 

a = 0.8 and consequently their respective curves cross over. This means that, although 

the Ce.a)IR term varies with P in different ways for different values of a, the net effect is 

such that Ce.a)IR approach the same value at a certain P. A comparison of the plots in 

Fig. 3.11 (A) against Fig. 3.11 (C) indicates that the cross-over pressure for a = 0.2 and a 

= 0.8 curves increases with increase in T. The higher value of CIR for a = 0.5 also 

implies that there is a maximum in CIR against a plot at a fixed pressure. 

We now consider the observation in terms of the configurational states of a 

polymer. In terms of the energy landscape [GoldsteiJ} (1969)] or inherent structure model 

[Debenedetti and Stillinger (2001)], as a system's T is raised at a fixed volume,the 

probability that its configurations will occupy states corresponding to the higher energy 

minima of potential energy increases. Consequently, the probability of finding the 

system's configurations in a multiplicity of different higher energy minima increases, and 

the system's Soonf, which is here equal to the sum, [Se.a)IR + Sf.z,a)IR], increases. But 



91 

increase in P decreases the volume, which changes the potential energy landscape of the 

system, for a fixed a value or a fixed chemical constitution in our study. For different a 

values at a fixed volume, the chemical structures differ and therefore the potential 

landscapes will differ. By varying P and T together at a fixed a, one may maintain a fixed 

volume and examine whether Sconf of the system at different P and T but fixed volume 

and fixed a conditions remain constant. Alternatively, one may determine a variety of P, 

T conditions for a system of a given a (fixed chemical structure) and fixed ScootiR. These 

P, Tvalues are plotted in Fig. 3.9. The plots are for SIR values of 1.0 to 1.5 when a = 0.2, 

1.4 to 2.1 when a = 0.5 and 1.1 to 1.6 when a = 0.8. It is clear in Fig. 3.9 that the plots of 

P in a temperature plane fan-out as T is increased. 

There is little doubt that the decrease in the entropy, enthalpy and volume on 

polymerization irreversibly (and on decrease in T and increase in P, reversibly) are 

related to the increase in viscosity, Tj, which ultimately vitrifies a polymerizing liquid as 

long as the liquid's temperature is lower than the glass softening temperature, Tg of the 

fully polymerized state. In terms of the entropy theory [Adam and Gibbs (1958)], as Scoof 

decreases, Tj increases at a fixed T Since the temperature-, and pressure-independent 

terms in the entropy contributions have no role in determining Tj, and further that sJJ,a)IR 

alone is sensitive to pressure at a fixed polymerization temperature, Tpo1ym, it alone is 

equivalent to Scoof. As any increase in pressure decreases s/J,a)/R, the application of 

pressure would raise 17 to above 1013
.
6 Poise at Tpolym, and thus vitrify the liquid. This is 

equivalent to raising the liquid's Tg by application of pressure. Thus the vitrification 
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temperature increases with increase in pressure at a fixed T and a. This is consistent with 

the well-known observation that application of pressure increases Tg of polymers and of 

aU liquids. Since an increase in a at a fixed T and P also vitrifies a liquid, there is an 

equivalence between P and a at a fixed T. This equivalence may be determined by 

making fixed temperature cuts through the various Scoof surfaces in a T, P plane, each 

surface for a different value of a, as given in Fig. 3.10. 

3.4.5 The ma::rlmum in the entropy and heat capacity 

A comparison of the plots for different a values in Figs. 3.8 shows that there 

would be a local maximum in the net entropy, SIR, at a certain value of a. Similarly the 

plots of the net heat capacity, CIR, in Fig. 3.11 show that there would be a maXimum in 

its plot against a. For a fixed temperature of 300 1<. the SIR and CIR values were 

calculated at 0.1 MPa, 10 MPa and 100 MPa at different values of a. The SIR are plotted 

against a in Fig. 3.12(A). The plots show a broad maximum whose position shifts 

slightly to higher a as P is increased. The corresponding plots of CIR also show a 

maximum in Fig. 3 . 12(B). This maximum shifts to a higher a values with increase in P. 

We now consider why CIR shows a maximu~ in its plot against a. To do so we 

return to the manner in which the polymerization process has been considered here. As 

the polymer chain grows by formation of one C-C bond, the structure of the liquid 

changes and its configurational state enters a new potential energy landscape [Goldstein 

(1969), Debenedetti and Stillinger (2001)] with different number of energy minima of 

different depths and shape. This would also occur if the number of covalent bonds 
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configurational heat capacity (= c;if.a,z)/R + C"a)IR) is plotted against the extent of 

polymerization for the corresponding P and T conditions. 
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remained the same in the polydisperse system but the molecular weight distribution 

changed by one less C-C bond on one chain and one more C-C bond in another chain. It 

is not possible to describe such a new energy landscape quantitatively, but some idea may 

be gained in qualitative terms. Since 'lj of the equilibrium liquid increases as a increases 

at a fixed value of T and P, this means that the number of available minima in the energy 

landscape for that thermal energy decreases. For fixed T and P conditions, a decrease in 

the number of available minima is possible only if the new potential energy surface of an 

a with one more C-C bond were to contain a greater population of deeper energy minima 

than the potential energy surface of the initial state of one less C-C bond . 

. 3.4.6 The Viscosity of a Polymer System at Different Pressures and Temperatures 

According to Adam and Gibbs' (1958) configurational entropy theory, the viscosity of a 

liquid can be related to its configurational entropy by: 

'lj = 'flo exp( C / TS c> (3.35) 

where 'ljo is the pre-exponential factor, C is a constant and its dependence on temperature 

is neglected, and Sc is the configurational entropy of the liquid. From Eq. (3.35) we 

obtain: 

(3.36) 

For a polymer system with fixed a, g..miX)/R, g..z,a)/R and g..a)/R are independent of the 

temperature and pressure, Sf.Of.,Z)/R depends on temperature but not on pressure. Since 

only g..8,a)/R changes with pressure and temperature, only this part of the configurational 
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entropy will contribute to the change of viscosity when the pressure and temperature are 

varied. 

For convenience, we calculate RI[Ts8,a)], which is proportional to In ~, as a 
1Jo 

function of both the temperature and pressure for fixed values of a = 0.2, 0.5 and 0.8. 

The plots of RI[Ts8,a)] against 1000lT for P = 500, 400, 300, 200, 100, 50 MFa are 

shown in Fig. 3.13. The plots of RI[Ts8,a)] against P for T = 550, 500, 450, 400, 350, 

300,250 K are shown in Fig. 3.14. From Fig. 3.13, we have already found that the 

curves of RI[Ts8,a)] against 1000lT at different values of fixed pressure are concave 

upward, and diverge from each other with the increase of 1000/T, i.e., the curves are 

fanning-out. From Fig. 3.14, we found that the curves of RI[Ts8,a)] against P at different 

values of fixed temperature are also concave upward and fanning-out. But the separation 

between the curves of RI[Ts8,a)] against P at different fixed T in Fig 3.14 is much less 

than the separation between the curves of RI[TS8,a)] against 1 OOOIT at different fixed P in 

Fig 3.13. Such "fanning-out" behavior had been observed experimentally in the plots of 

loge 1J) against 1000/T at different densities, which is equivalent to different pressure, for 

triphenyl phosphite [Ferrer et al. (1998)], in the plots of log(1J) against P at different 

fixed T for ortho-terphnyl and salol [Schug et al. (1998)], in the plots of loge 1') against P 

at different fixed T obtained from light scattering of poly(bisphenol A-co-

epichlorohydrin), glycidyl end capped [paluch et. al. (2000)], and in the plots of loge 1') 

against P at different fixed T obtained from dielectric relaxation spectroscopy of 

triphenylomethane triglycidyl ether [Paluch (2001)]. 
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We also calculated RI[TSc] at different fixed P and RI[1\slf.a,z)+ 8e,a~] at different 

fixed T (plots not shown here). Neither the plots of RI[TSc] against 1000lT at different 

fixed P nor the plots of RI[1\slf.a,z)+ 8~a~] against P at different fixed T show fanning­

out. This may imply that only the contribution from the hole occupancy to the 

configurational entropy of a polymer system, 8~a) is responsible for the entropy in Adam 

and Gibbs's theory (1958). We conclude that the use of 8~a) in Eq. (3.35) for Adam and 

Gibbs' entropy theory should be valid also for a molecular system. Johari's (2003) 

inclusion of the PAVterm in their equation extends this analysis. 

3.5 Summa:ry 

Computations of the 'contributions to the configurational entropy done within the 

precepts of the lattice-hole model, but with different and more realistic mean field 

approximation, show that the configurational heat capacity and entropy of an equilibrium 

liquid undergoing polymerization isothermally would first increase as the extent of 

polymerization increases and then decrease, thus showing a broad maximum in a plot 

against the extent of polymerization. The position of this maximum varies with the 

temperature of polymerization. Of the five contributions to the configurational entropy, 

four show a maximum in their plots against the extent of polymerization, but only one of 

these four contributes to the configurational heat capacity. It is shown that if the 

polydispersity in the frozen-in liquid structure or that developing during a liquid's 

polymerization was deliberately inhibited by the interaction of molecules with the 

container and impurities in the liquid, the configurational entropy would not reach zero at 
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OK. Rather, it will remain finite at values that are equal to the temperature-independent 

entropy of mixing of the entities in a polydispersed system, even when the number of 

holes in the system has reached zero. This is analogous to the finite entropy of an isotopic 

mixture of elements or compounds in the crystal state. Only if the polydispersity was lost 

and a single chain was formed at 0 K, then the entropy would tend to zero. 

The finding of the maximum in the heat capacity as polymerization occurs is 

consistent with the experimental observations that have showed that the heat capacity of 

the equilibrium state of a polymerizing mixture reaches a maximum before decreasing 

according to an inverted sigmoid shape when the liquid vitrifies. In the equilibrium state 

the heat capacity plot against the extent of polymerization shows only the broad 

maximum and no inverted sigmoid shape [Iohm et. al. (1999)]. Only this broad 

maximum would be found experimentally if polymerization temperature is high enough 

that the completely polymerized state remains a liquid. 

Independent experiments on polymerization in systems that do not vitrify on 

complete polymerization have more recently been performed with the aim of determining 

whether this maximum can be observed. In this study [Johari, et. al. (2002)]. the heat 

capacity has been measured during the course of polymerization of diglycidyl ether of 

bisphenol-A (DGEBA), and Cyclohexylamine (CRA) by a new technique oftemperaiure 

modulated calorimetry, as described in Chapter 2. The measured data provided the net 

heat capacity, i.e., the sum of configurational, vibrational and anharmonic force 

contributions, which showed a maximum. But the maximum was found to shift toward 

higher a values when the polymerization temperature was decreased. The difference 
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between the shift observed from calculations and that found experimentally is attributable 

to the extra contributions from phonons and anharmonic forces which change with a. 

The calculations also show that the temperature-dependent entropy would become 

zero for all distributions of chain lengths when no holes are left at 0 K. For a pure 

monodispersed polymer, i.e., without the entropy of mixing, the total configurational 

entropy of the system containing (theoretically) infinitely long chains, would approach 

zero at 0 K. This formalism removes the problem of a hypothetical second order 

transition at an (unobservable) temperature below T" which had been deduced in the 

original chain statistics model by Gibbs and DiMarzio (1958). The calculations given 

here seem reasonably general, although we have ignored any local correlation of 

molecular orientations, which may also play a role. This is done in favor of a self-
\ 

consistent approach to polymer chain statistics during an irreversible process of a 

macromolecule's growth. 

The mean field approximation used here has made the temperature dependence of 

the configurational entropy of polymer chains to agree with the third law of 

thermodynamics, i.e., that the entropy should approach zero only at 0 K. In addition, the 

statistical model with a new mean field approximation developed here has provided us an 

approach to the study of the kinetics of polymerization and relations between the 

thermodynamic properties and the extent of polymerization. This statistics may be used 

in reverse for degradation of polymers in which a polymer chain length is decreased at 

random sites by ultraviolet or other high-energy irradiation. 
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In this fonualism, a liquid with a structure chosen from a multiplicity of its 

partially polymerized states may be vitrified by cooling both experimentally and 

theoretically and can be mutually compared. In this case, each state would foHow a 

different path of the heat capacity, and entropy, which provides structural information on 

the polymer, as proposed by others earlier [Petroff et. al. (1996)] by using more 

approximate models. 

Finally, it is worth considering the implications of these observations for the use 

of the potential energy landscape or inherent structure models currently used for 

computer simulation of the configurational entropy of liquids [Goldstein (1969), 

Debenedetti and Stillinger (2001)]. During melt polymerization at a constant temperature, 

the potential energy landscape does not remain fixed. As covalent bonds form, the 

number of configurations changes, and the system's state belongs to a new 

configurational space in new energy landscape, i.e., the system continuously shifts into a 

different energy landscape with increase in the extent of polymerization. For a polymer 

system withNA number of monomers, supposing the extent of polymerization is 0.1, i.e., 

0.1 NA number of bonds have been formed, there would be at least O.INA number of new 

energy landscapes, and much more if the distribution of chain lengths is considered. The 

current capability at computer simulation, which allows use of a limited number of atoms 

(103 _106
) in an ensemble, may show the features deduced from our mean field 

approximation, but would require inclusion of additional tenus for the entropy of mixing. 



Chapter 4 

Structure and Thermodynamics of a New 

Orientational Glass, CuCN 

4.1 Introduction 

We have so far considered the dynamics of a polymer chain whose segments are oriented 

at random. There are also crystals in which linear chains formed by atoms or ions, can 

exist and occupy the lattice sites. These chains can exist in conditions of partial disorder. 

Such chains, which are usually in one dimension along a crystal lattice, provide a simpler 

model for the chain statistics. The majority of such crystals have an orientational disorder 

of atoms or molecules, and their kinetically frozen disordered state has been caned an 

orientational glass. Most such crystals consist of non-spherical molecules that occupy the 

lattice sites of a crystaL At high temperatures these molecules undergo hindered rotations, 

in a manner similar to those of molecules in a liquid, in which translational diffusion also 

occurs. Molecules in such crystals have an orientational degree of freedom at high 

temperatures, which kinetically freezes at low temperatures just as the molecular motions 

m liquids kinetically freeze at their vitrification temperature. As the temperature is 
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lowered, the material can bypass its first...order transition to a perfectly-ordered crystal, 

and supercool. On supercooling, the rotational motions become progressively slower and 

the time scale of their motions becomes comparable to the experimental time scale. At 

this temperature, the structure kinetically freezes into what is called an orientational glass 

[Hochli et. af. (1990)]. Because molecules in these solids occupy crystal lattice sites, the 

kinetic freezing, which is phenomenologically equivalent to a glass transition, can also be 

modeled. Such modeling is less complicated because of the absence of the translation 

diffusion of molecules. 

Configurational excitations of the non-spherical rigid groups confined to lattice 

sites, which have also been called the "configurons", are seen as useful for understanding 

the manner in which slowing of molecular diffusion vitrifies a liquid. In the 1980s, 

different compositions of mixed KCN - KBr crystals were seen as an "orientational 

glass". (In contrast, an archetype of canonically disordered solids is SiOl). This is mainly 

because freezing-in of the orientations of their ellipsoid-shaped CN group produced 

unusual features in their electrical, mechanical and vibrational properties, as reviewed by 

Hochli et. al. (1990). At that time. it had seemed that only mixed crystals could be used 

for this study, even though three entities in such crystals, two anions and one cation, had 

complicated interpretations oftheir data. 

Since our interest is in disordered crystals with linear chains, we searched for such 

crystals and found that AgCN forms linear chains along the c-axis of its crystal structure 

in the R3m space group by neutron scattering study [Browmaker et. al. (1998)], but there 

has been no indication whether or not the arrangement of the CN group in such 
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structures is disordered. We considered copper cyanides containing the cation of the same 

periodic table group (group ill), that may show the behavior of an orientational glass with 

linear chains in one dimension. In this chapter we describe experimental studies of even 

simpler "orientational glasses", namely, CuCN. We also provide a thermodynamic 

approach to the configurational entropy and heat capacity changes in the CuCN crystal, 

based on the chain statistics similar to the lattice model studied in Chapter 3. A multi­

nuclear magnetic and quadrupole Resonance study has shown that CuCN molecular 

structure is composed of linear chains -Cu-C-N- [Kroeker et. al. (1999)]. Part of this 

study has been published in: J. Wang, M. F. Collins and G. P. Johan, Phys. Rev. B., 65, 

180103(2002). 

4.2 Experimental Methods 

CuCN (99.99 % purity) was purchased from Aldrich Chemicals. The as-received 

sample is of off-white color and its density is 2.92 glcm3
. It had been prepared by 

flocculation of CuCN precipitate from an aqueous solution as described by Barber 

(1943). The particle size of the as-received CuCN was 1 - 5 j.lm, which became air-borne 

easily. On heating to 593 K in an Argon atmosphere and cooling back to 298 K, its color: 

changed from white to beige. After such heat treatment, its particles appeared to repel 

each other when attempts were made to grind it in an agate mortar and pestle. 

The powder was mounted on a glass plate, and x-ray diffraction spectra were 

obtained at 298 K using three instruments. (i) Nicolet diffractometer, which uses the Cu­

Ka radiation to obtain the diffraction pattern in the range 10 0< 2 (} < 50 0 in steps of 0.04 
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0, (ii) Guinier camera, which uses only the CU-Kal line and (iii) Brucker DB Advance 

diffractometer, which also uses the Cu-Ka radiation in order to .obtain the diffraction 

pattern in the range 20 0< 2(}< 130 ° in steps of 0.03 0. 

A differential scanning calorimeter (Perkin-Elmer Corp. model DSC 4) was used 

for calorimetric studies. The instrument was calibrated with indium for both the 

temperature and the heat effects. Open and sealed aluminum and copper pans were used 

to contain the sample and argon was used as the purge gas. The baseline was determined 

for the empty pans prior to the experiment, and this base line was subtracted from the 

measured DSC signal. The temperature was corrected for the thermal lag. From repeat 

measurements, accuracy of the heat of transformation is 2 %. 

4.3 Structu.ral stu.dies by x-ray diffraction 

Powder x-ray diffraction of the as-received CuCN measured at 298 K and of that heated 

to 533 K and thereafter cooled to 298 K showed no change in the diffraction peaks. The 

spectra of the latter CuCN sample is shown in Fig. 4. 1 (A). Standard powder x-ray 

diffraction data in the literature provides two structures of CuCN, (i) monoclinic (JCPDS 

1-492) without unit cell parameters [Norberg and Jacobson (1957)] and (ii) orthorhombic 

(JCPDS 9-152) in a unit cell with a = 1.279 run, b = 18.14 run, c = 7.82 run, Z = 36, Dx = 

2.951 glcm3 and Dm = 2.97 glcm3 but no atomic positions [Cromer et. al. (1957)]. The 

peaks observed in Fig. 4. 1 (A) are attributable to the suggested monoclinic (JCPDS-ICCD 

1-492) [Norberg and Jacobson (1957)] and orthorhombic structure (JCPDS-ICCD 9-152) 

[Cromer et. al. (1957)], whose lines are shown in Figs.4.1(B) and 4.1(C), 
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Fig. 4. L Powder x-ray diffraction patterns of, (A) the as-received eueN measured at ~ 298 K, 

(B) the lines and their relative intensities for the reputed structure in the orthorhombic unit cell for 

suggested monoclinic structure from JePDS 1- 492, (e) the lines and their relative intensities for 

the orthorhombic structure from JCPDS 9- 152 and (D) the new phase of CueN obtained after 

heating to 593 K in an argon environment and thereafter cooling to 298 K. 
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respectively. Because of the lack of information about these structures, it was not 

possible to determine the relative amounts of the two phases in the as-received CuCN. 

Powder x-ray diffraction of the CuCN solid, which had been obtained by heating 

the as-received sample to 593 K in argon atmosphere, is shown at 298 K in Fig. 4.1(D). 

The peak positions and intensities in the diffraction pattern obtained by using the Guinier 

camera in the range of 10 0< 2 B < 90 ° were fitted by Gaussian function, and 11 peaks 

were identified. The data were input into CrysFire program which integrates eight 

different programs for indexing the powder diffraction data. The several solutions 

obtained from TRlOR90 program for possible unit cells were input to another program 

CheckCell and were compared against the entire Guinier diffraction pattern. "Systematic 

- -
absences" suggested that the space group should be among the R3, R3, R3m, R3 m, and 

R32 set. For Z= 3, i.e., three molecules in the unit cell, this set of rhombohedral unit cells 

predicts a theoretical density Dx of 2.94 glcm3
• The R3m space group was found to fit 

wen and for that group Rietveld refinement of the data obtained from D8 diffractometer 

was done by using FullProf program. This refinement gave satisfactory results. 

The Rietveld refinement was then done by choosing C and N positions in the 

lattice. The best fit for one set of positions for C and N atoms was found to be: a = b = 

0.6028 nm, C = 0.4823 nm, at = f3 = 90 0, and y = 120 0. Further refinement gave two 

different, but equally probable, positions of C and N atoms. The final fitting parameters 

are: a = b = 0.6035 nm, C = 0.4829 nm, with residual R = 5.91 % and;t = 3.25 %. This 

refinement is compared against the measured diffraction spectra of the CueN phase in 

Fig. 4.2, and the atomic positions and occupancies in the unit cell are shown in the insert 
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Fig. 4.2. Results of the Rietveld analysis of the powder x-ray diffraction ofCuCN after heating to 

593 K in an argon environment and thereafter cooling to 298 K. The circle symbols represent the 

powder x-ray diffraction data and the solid line going through the symbols represents the Rietveid 

fitting results. The dashed line is the difference between the diffraction data and the fitting results. 

The dashed line was shifted vertically by -1000 for better illustration. Insert is the unit cell of 

CuCN structure, with the positions of Cu indicated by large circles, those of C by small fined 

circles and those ofN by small empty circles. 
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of Fig. 4.2. The final values are: x = 0, y = 0, z = 0, and occupancy 1.0 for Cu. The 

respective values for other atoms are: 0,0, OAOO and 0.5 for C(1); 0, 0, 0.648 and 0.5 for 

N(1); 0, 0, 0.627 and 0.5, for C(2)~ and: 0, 0, 0.390 and 0.5, for N(2). Inclusion of the 

anisotropic effect did not lead to further refinement. Because the low atomic scattering 

factors ofC (0.017) and N (0.029) in comparison with Cu (2.0) in x-ray diffraction, it was 

difficult to resolve the positions of C and N atoms in the CuCN structure from only x-ray 

diffraction, not even after considering the randomness of the CN orientational groups. 

Thus according to the structural analysis using the x-ray diffraction, the new CuCN phase 

has chains of (N-Cu-C)n in the crystal, which appear to be confined to one-dimension 

with a distortion caused by inter-chain interactions. 

4.4 Calorimetric studies 

The rate of heat release, (dH/dt)q, which is equivalent to the specific heat, Cp = 

(dH/dt)qlq, measured on heating the as-received CuCN at q '= 30 Klmin is shown by 

curve (1) in Fig. 4.3 (A). Since this Cp is both time and temperature dependent, strictly 

speaking, it is the "apparent Cp", whose magnitude contains the effects of heat released or 

absorbed by the sample during its structural relaxation. We will use the term Cp here with 

the preceding meaning. It shows a broad sigmoid shape rise in the 330 - 380 K range and 

a large endothermic peak due to the phase transformation in the 550 - 580 K range, as 

determined from x-ray diffraction and described in Section 4.3. The total heat absorbed in 

this transformation is 850 J/mol and the transition temperature determined from the 

slopes of the peak is 563 K. This corresponds to an entropy increase, !1S, by 1.5 J/(mol K) 

on structural transformation of euCN. According to the Born-von Karman relation 
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Fig. 4. 3. (A). The differential scanning calorimetry thennogram ofCuCN obtained by heating at 

30 Klmin heating rate is shown by curve (1), and that of the structurally transfonned sample 

which had been cooled to 77 K and then heated is shown by curve (2). (B). The enlarged parts of 

curves (1) and (2) in Fig. 4.3(A) show the sigmoid shape Cp-increase for the original CueN and 

of its new phase. 
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(1912), bS = 8-). - SI = Rin( Vz/Vl), where R is the gas constant, S2 is the entropy of phase 2, 

S 1 is the entropy of phase 1, and Vz is the characteristic phonon frequency of phase 2, and 

VI is the characteristic phonon frequency of phase 1. Assuming that there is no other 

contribution related to configurations, the increase in the entropy on the phase 

transformation indicates a 20 % increase in the phonon frequency on transformation of 

the original mixed crystals made from flocculation process. 

The new phase was cooled to 77 K and reheated. Its thermogram is provided in 

Fig. 4.3 (A). It shows no endothermic peak in the 550 - 580 K range. Therefore, the 

structural transformation is irreversible. But the new phase still shows the sigmoid-shape 

increase in Cp which has shifted to a somewhat higher temperature range of350 - 380 K. 

These sigmoid shape curves are clearly seen by comparison of curves (1) and (2) on an 

enlarged scale in Fig. 4.3(B). The Cp increase at the end of the sigmoid-shape curve is 

estimated as 1.2 J/(mol K) from curve (2) in Fig. 4.3 (B). 

The samples were then annealed at T= 318.2 K, 323.2 K and 328.3 K for 1.8 ks. 

The Cp of these annealed samples plotted against the temperature is shown in Fig. 4.4. 

These sigmoid-shape Cp curves are sharper than for the unannealed samples and become 

even sharper as the annealing temperature is increased. This is a characteristic feature of 

enthalpy relaxation and is well known for glasses [Ritland (1956), Kovacs (1963), 

Goldstein (1964), Hodge and Huvard, (1983), Hodge (1983), (1987), (1994), (1995) and 

(1997)]. We therefore conclude that the Cp change observed for CuCN is due to the onset 

of reorientational motions, indicating kinetic unfreezing of orientational disorder. 
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Fig. 4. 4. The differential scanning calorimetry thermogram of CuCN sample obtained by 

heating at a rate of 30 Klmin. is shown by curves for the conditions of, (1) without 

annealing, (2). annealed at 318.2 K for 30 min. (3). annealed at 323.2 K for 30 min. (4). 

annealed at 328.2 K for 30 min. The dotted line for each curve indicates the baseline for 

each scan ifthere is no glass transition. 
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The Cp values of curve (2) in Fig.4.3(B) was normalized and the data was fitted 

by using the procedure described in Chapter 2 section 2.2.4 and Eqs.(2.24 - 2.29). Fitting 

was done by an algorithm described earlier [Hodge and Huvard (1983), Hodge (1983), 

(1987), (1994), (1995) and (1997)] and the calculations were confirmed by new algorithm 

written in Pascal program, as described in Charter 2. The parameters obtained are: InA = 

-28.35, x = 1.0, f3 = 0.74, and M* = 95 kJ/mol. The normalized Cp both for the 

experimental and the fitting results are plotted against temperature in Fig. 4.5. The 

calculated relaxation time r and fictive temperature Tf are plotted against temperature in 

Fig 4.6(A) and (B). 

4.5 Chain statistics of a linear chain in the CuCN orientational glass 

Here we adapt the idea of the lattice-hole model developed in Chapter 3, and calculate the 

configurational entropy change with increase in temperature. We consider that the 

number of holes or vacancies in the CuCN crystal per mole at these temperatures is on 

the order of 10-17
, or the fractional population of 10-6, which is much less than that on the 

order of 10-1 used for polymers. Because of the low population of vacancies, their 

contribution to the configurational entropy can be ignored, as is usually done for crystals. 

In structural terms, the Cu atoms in the CuCN crystal are exactly located on the 

lattice sites, but the C and N can lie either on or off these sites, as in Fig. 4.7(A). Thus the 

orientational group CN may lie along c axis or at an angle to it We treat each CN group 

as "rigid" when its orientation is along the c-axis, and as "flexible" when its orientation is 

not along c axis direction. From a consideration of the symmetry of the lattice, we deduce 
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Fig. 4.5. The normalized heat capacity Cp,n plotted against the temperature. The circles 

denote the data from the DSC measurement and the solid line is the best fit to the data 

obtained by using Eqs.(2.26) - (2.29). 
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Fig. 4.6. (A). The calculated relaxation time 1(t) plotted against temperature during the 

heating at 30 Klmin. (B). The calculated fictive temperature Tf is plotted against the 

temperature during the heating at 30 Klmin. The solid line is for the calculated Tr and the 

dashed straight line for Tf = T 
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Fig. 4.7. (A). The illustration of orientations of eN groups in the cell structure with R3m 

space group of the new eueN phase. (B). The projection of the Cu atoms on a-b plane. 

The dashed line indicate the projections of the three possible orientation directions of the 

CN groups departing from each axis along c direction. 
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that the number of possible directions for different orientations direction is three, i.e., 

there are three equivalent orientation directions of the CN group, as shown in Fig. 4.7(B). 

This corresponds to z = 4 in the lattice model, as described already in Chapter 3. Since 

every eN group in a chain is capable of reorientation, which is unlike the linear polymer 

chains in which one of the two end covalent bonds is rigid in flexibility, the 

corresponding entropy from orientationaI contribution from eN chains would be different 

from that in a polymer. Specifically, for eN chains, this contribution has the termfln(z) 

instead of the termfln(z -2) in Eq. (3.26), and therefore, 

s(j,Z) 

R = - / In / - (1- /) In(l- /) + / In( z) , (4.1) 

where z, which has been defined as the co-ordination number in the case of polymers is 

equivalent here to the orientation degeneracy. The reason is the equivalence of the three 

orientations, and/being a measure of the ability of orientation instead of the flexibility in 

the case of polymers. The quantity /, is therefore a measure of the probability that a eN 

group is not along the c-axis direction. We use an equation corresponding to Eq. (3.27), 

and calculate f, from, 

zexp(- UO
) 

/= RT 
U 

l+zexp(--O) 
RT 

(4.2) 

where Uo is the excitation energy for one CN group to change its position from that in 

which it is orientated in the c-ruds direction to a position in which it is inclined to the c-

axis. From the derivative ofEq. (4.1), the configurational heat capacity is given by, 
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(4.3) 

The configurational entropy and heat capacity were calculated according to Eqs. 

(4.1 - 4.3) with Uo = 1l.5 kJ/mot The calculated Sf. z)/R and Cf. z)IR are plotted in Fig. 

4.8(A) and (B). At 400 K, the configurational entropy is about 0.52 R ::::I 4.3 J/(mol K) and 

the configurational heat capacity is about 0.15 R ~ 1.2 J/(mol K), which is approximately 

the same as the ep increase occurring sigmoidally in Fig. 4.3(B). This justifies our use of 

Uo = 11.5 kllmot 

The above given calculation shows that on cooling from 400 K to 350 K, the 

kinetic freezing-in of the number of configurational states corresponds to M conf = 0.52 R 

and .1.Cp = 0.15 R, i.e., these states do not contribute at the time scale of 1 s for 0.5 K 

temperature change during the DSe scan obtained at a heating rate of 0.5 Kls (30 

Klmin.). This is also seen from the magnitude of the relaxation time in Fig. 4.6(A) in 

which rchanges from Is at 400 K to 73 sat 350 K. 

It is well known that the sigmoid-shape increase in Cp is a characteristic feature of 

the onset of molecular diffusion in the glass-softening range in canonical glasses. The 

new metastable rhombohedral form of eueN is certainly in the orientationaUy disordered 

state, and at least one of the low-energy forms of eueN crystals present in the as-

received eueN, which was prepared by the flocculation process, is in an orientationaHy 

disordered state at 298 K. But the onset of their configurational contribution occurs at 

different temperatures, 350 K for the new form and 338 K for the as-received form. 
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Fig. 4.8 (A). The calculated orientational contribution to the configurational entropy 

divided by gas constant for the orientational disorder in the linear chains modeled for the 

arrangement of eN group is plotted against the temperature. (B). The corresponding 

contribution to the configurational heat capacity divided by gas constant is plotted against 

the temperature. 
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It is also conceivable that the Cp increase in the 340 - 375 K range in aU the three 

forms of CueN is due to the increase of anharmonic force contributions in the librational 

motions of CN on their lattice sites. In this theory, which has been justified for another 

orientational glass T1N02 [lohari et. al. (2000)], a vacancy defect randomly diffuses to 

the neighboring site of the eN group. The proximity of the vacancy and CN group 

distorts, asymmetrically, the shape of the potential energy well and thus increases the 

anharmonic force contribution from librations of the CN group. Therefore the Cp 

increases on orientational unfreezing. This increase is small and is spread over a broader 

range due to the low activation energy for vacancy diffusion. In as much as vacancy 

diffusion leads to a change in the configuration of a crystal, this Cp -increase may be seen 

also as configurational, but its contribution to Cp is much less. According to this 

mechanism, slowing of the vacancy diffusion rate and decrease in the vacancy population 

would cause a loss in the number of configurations on cooling leading to the formation of 

an orientational glass. Conversely, increase in the vacancy diffusion rate and population 

on heating would cause gain of configurons and thus a rise in Cp, as has been observed 

for T1N02 [Johan et. al. (2000)]. Our model calculations can not be performed for T1N02, 

because its crystal do not contain chain structures. The success of the model calculations 

in this case nevertheless shows that the orientational glass of euCN consisting of chain 

structure in one dimension can be thermodynamically treated in the same manner as 

polymer chains of a canonical glass. 

4.6 Summary 
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The observations on the eueN crystals enable us to examine the behavior of configurons 

in orientational glasses more simply than has been possible from a study of KeN-KBr 

and related mixed crystals, where quadrupole interactions appear to dominate [Hochli et. 

al. (1990)]. Although their excess entropy over an ordered crystal phase can not be 

determined, the study of eueN crystals would provide a simpler approach to understand 

the merit of configurational and vibrational contributions to Cp and entropy of canonical 

glasses. The thermodynamic and kinetic behaviors of these glasses are currently being 

computer-simulated in terms of the potential energy landscape or inherent structure 

models of a condensed phase, but within the precepts of statistical mechanics and 

harmonic approximation [Debenedetti and Stillinger (2001)]. In one such approach, the 

structure of the CueN crystal as an orientational glass can be seen to belong to a deep 

configurational minimum from which escape to a neighboring minimum of a lower­

energy, ordered crystal structure is thermally improbable, i.e., the high-temperature form 

is metastable with respect to the low-temperature form. This deep minimum for the 

crystal may be seen to have a corrugated bottom rather than a round one, with 

corrugations of different depths representing configurations of lower energy. These 

configurations are achievable by the diffusion of vacancies but still in the disordered 

arrangement of the high-temperature crystal phase. Asymmetry of the potential energy 

corresponding to each corrugation represents the anharmonic forces, which change when 

the vacancy appears next to a non-spherical CN group. In this case, the Cp rise on the 

onset of configurational changes is a reflection of the accessibility of the local minima 

envisaged as corrugations in a deep potential minimum of a potential landscape. 



Chapter 5 

The Polymerization Reaction kinetics 

5.1 Introduction 

In most liquid state chemical reactions, the liquid's viscosity, 1], is low and the reaction 

product does not significantly raise 1], or lower the diffusion coefficient of the reactants, 

D. Since the rate of such reactions is determined by the molar concentration of the 

reacting entities, the reactions are caned mass-controlled. They follow the classical laws 

of reaction kinetics, i.e., (i) the reaction rate coefficient, k, remains constant with increase 

in the extent of reaction, a, or with the reaction time t, and, Oi) k varies with the 

temperature, T., according to the Arrhenius equation, k = koexp(-EIR1), where ko is the k 

value at formally infinite T., E is the activation energy and R the gas constant. 

In contrast, when a chemical reaction occurs in liquids of high 1] or low D, the 

probability of reaction depends upon the probability of encounter between the reacting 

pair, and not only upon the concentration of the reactants. Such probability of encounter 

between the reacting entities depends on the their diffusion coefficients. These chemical 

reactions are caned diffusion~controned. Several reviews on the subject of diffusion-

control in reaction kinetics have appeared, written by Wilemski and Fixman (1973, 

1974a, 1974b), Doi (1975), Calef and Deutch (1983), Zumofen et. al. (1985), Keizer 
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(1987), Zwanzig (1990), Plonka (1986, 2001)]. Also, comprehensive experiments and 

mathematical descriptions of the diffusion-controlled kinetics of the ligand binding have 

been provided by Calef and Deutch (1983), and by Zwanzig (1990). These are of 

significant biological interest. Wilemski and Fixman (1973, 1974a, 1974b) and Doi 

(1975) have described the diffusion control in the segmental motions of polymer chains, 

and the intra-chain reaction of ring closure in a flexible-chain polymer. 

Polymerization by addition reactions in a liquid is an example of a case in which 

TJ is low and D is high at the initial stages. As polymerization progresses, TJ gradually 

increases and D decreases. Hence the reaction kinetics, which is initially mass-controlled, 

becomes ultimately diffusion-controlled. Also, as the reacting entities becoming bigger in 

size, D decreases. This in tum decreases the reaction rate. The resulting negative 

feedback between the physical process of diffusion and the chemical process of 

polymerization brings both diffusion and polymerization to a virtual halt, and the liquid 

vitrifies before polymerization has reached its full extent [Johari (1994)]. Thus the extent 

of polymerization does not reach its maximum value of one. In an exceptional case of 

polymerization occurring at a high T, the fully polymerized state remains a low-viscosity 

liquid and the reaction kinetics may remain mass-controUed. Despite the many studies 

available on the reaction kinetics of both types [Calef and Deutch (1983), Zumofen et. al. 

(1985), Keizer (1987)], little is known on either the experimental manifestation of the 

gradual transition from mass-controlled kinetics at the initial stage of polymerization to 

diffusion-controlled kinetics at later stage in real time, or about the criteria that could be 

used for investigating it. In the following, we provided a method for determining the 
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onset of transition from mass-controlled to diffusion-controlled kinetics and an 

experimental study of a polymerization reaction as an example of the procedure and its 

use. Part of the study has been published in: 1. Wang and G. p, Johari, J. Chem. Phys., 

117, 9897(2002). 

5.2 Experimental Methods 

For this study we chose a stoichiometric mixture of 4, 4' diaminodicyclohexyl 

methane, also known as p-aminodicyclohexyl methane and diglycidyl ether of bisphenol­

A, because changes in the dielectric properties and kinetics of polymerization of this 

mixture have been studied several times by Tombari et. al. (1999), (2000) and Cardelli et. 

al. (2002), and these could be used for comparison with our studies. Para­

aminodicyclohexyl methane (PACM) of 99.5% purity was purchased from Fluka, and 

electronic grade diglycidyl ether of bisphenol-A (DGEBA) was purchased from Shell 

Chemicals. The molecule weight of PACM is 210.4 and its functionality is 4. The 

molecule weight of OOEBA is 380 and its functionality is 2. Both PACM and DGEBA 

were used without further purification, These were weighed in appropriate amounts to 

prepare a stoichiometric mixture and immediately transferred to the aluminum pan of a 

Perkin-Elmer differential scanning calorimeter, Model 4. The rate of heat evolved, 

(dH/dt)T, at a fixed polymerizing temperature T poly was measured with time, t, up to ~ 9 

ks. Thereafter the sample was then cooled from the T poly to 313.2 K and heated at q = 10 

Klmin and (dH/dt)q was measured at different T during the heating from to 313.2 K to 

548.2 K. 
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In the general chemical reaction mechanism of a diamine with a diepoxide, one 

epoxide group of the linea~ molecule diepoxide opens to accept one H atom of one of the 

NH2 group of the diamine. Thus a covalent bond forms between the terminal C atom of 

the diepoxide molecule and N atom of the amine, and the 0 atom of the epoxy group 

becomes an OH group. The second H atom of the now secondary amine similarly forms a 

covalent bond with another diepoxide molecule. Since PACM is tetrafunctional, i.e., 

contains four reacting H atoms in the two NH2 groups, it connects with four 

(difunctional) DGEBA molecules and hence the polymerization of a stoichiometric 

mixture of 1 mole of P ACM and 2 moles of DGEBA produces a three dimensional 

random network structure on complete polymerization. In this random network rings of 

different sizes exist. The chemical structures of P ACM and DGEBA and the reaction are 

shown in Fig. 5.1. 

5.3 Results 

The extent of polymerization of the liquid at a certain time, t, and at constant temperature 

T poly. was determined as fonows: The total heat evolved, MfJ, on polymerization at T. 

was determined by adding two quantities: (i) the total heat evolved during isothermal 

polymerization at T poly, and (ij) the heat evolved during heating the partially polymerized 

sample at 10 Klmin from T poly to a temperature T max, at which the rate of heat evolution 

becomes negligible. For the first, (dHldt)T against t obtained from the isothermal 

measurements at T poly was integrated as: 
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(1) 

(2) 

(3) and (4) 

Fig, 5,1. The chemical structures of p-aminodicyclohexyl methane (P ACM) and 

diglycidyl ether of bisphenol-A(DGEBA), and the four steps of polymerization reactions 

which forms polymer network in the 1:2 ratio P ACM and DGEBA mixture, 
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i
tpo1Y (&1) Mil == - dt 
o dt T 

(5.1) 

For the second, the (dE/dt)q against T obtained from the heating measurements was 

integrated as: 

rq'!llaX 1 (&1) Miz = - - dT 
poly q dt q 

(5.2) 

The total heat evolved of polymerization, Mf is the sum of MIl and MIz. 

(5.3) 

The heat of polymerization, was determined from Eqs. (5.1-5.3). It was found to be 188 ± 

9 kJ/mol(DGEBA) for the PACM-DGEBA stoichiometric mixture. 

For the isothermal polymerization starting at t = 0, the total heat evolved until the 

time tis: 

/ili.(t) = (t(dE) dt 
Jo dt T 

The extent or the degree of polymerization, a, at time t was calculated from: 

aCt) = M/(t) = _1_ rt(dH) dt 
Mi O MIo Jo dt T 

(5.4) 

(5.5) 

By using Mf of 188 kJ/mot obtained above, a(t) was determined from Eq. (5.5) for the 

polymerization of several P ACM-DGEBA samples at different fixed temperatures. The 

rate of heat released, (dH/dt)T, as a function of the polymerizing time, t, for the PACM-

DGEBA mixture kept at five different polymerizing temperatures, 333.2 K, 338.2 K, 

343.2 K, 348.2 K and 353.2 K, is plotted against tin Fig.5.2(A). These plots show the 
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Fig. 5.2. (A) The rate of enthalpy release measured during polymerization of the 

stoichiometric PACM-DGEBA mixture at five fixed temperatures, as indicated, is plotted 

against the polymerization time. (B) The extent of polymerization, a, of the 

stoichiometric PACM-DGEBA mixture at the indicated temperatures is plotted against 

the polymerization time. 
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minimum as a result of the heat released, which is a characteristic of an exothermic 

process. Fig. 5.2(B) shows the plots of a against the polymerization time at the same 

temperatures. The glass softening temperature of the almost fully polymerized P ACM­

DGEBA mixture was measured. It was - 439 K. Therefore in this study at a fixed T poly, 

the liquid vitrified before reaching complete polymerization. 

5.4 Discussion 

Because of the different experimental and theoretical aspects, the results of this study are 

discussed in several sections each covering a different aspect of the polymerization, as 

follows: 

5.4.1 Effects of the extent of polymerization at a fned temperature 

As mentioned earlier, when the reaction rate coefficient, k. does not change with a or the 

reaction time, the reaction kinetics is mass-controlled. Conversely, if k is found to change 

with a or the reaction time, the reaction kinetics is no longer mass-controlled. Therefore, 

in our studies of the polymerization kinetics, we first need to determine k. Its value can be 

determined only from relevant equations for the overall order of the polymerization 

reaction. This overall order of reaction is obtained by fitting various equations for 

different orders of reactions to the experimental data and then determining which one of 

the simplest equation for the overall reaction fits the data. 

Studies of polymerization kinetics of DGEBA and amines by differential scanning 

calorimetry have shown that for the network polymerization reactions of DGEBA with a 

variety of diamines, the rate of polymerization is initially given by [Horie et. al. (1970)], 
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(
da) m n dt = (k1 +k2a )(l-a) (5.6) 

where kl and k2 are related to the rate coefficients for the primary and secondary amine 

reactions provided they have equal reactivity, and m and n are empirical parameters. But 

after a certain time for polymerization when a has reached a certain value, 

polymerization occurs according to first order rate equation, 

(~) =k(l-a) (5.7) 

This has been interpreted in terms of the secondary amine reaction dominating the 

polymerization kinetics of the diamine-diepoxide mixtures at long times or at high a 

values. Thus the order of the overall polymerization reaction becomes reduced to a first 

order rate process. Therefore, we calculate k from Eq. (5.7) and the data in Fig. 5.I(B). 

The logarithmic plots of the quantity k (= [(daldt)/(l-a)]r) against a at polymerization 
~ 

temperatures of 333.2 K, 338.2 K, 343.2 K, 348.2 K and 353.2 K are shown in Fig. 5.3. 

Here the plots beginning at a = 0.4 show that there are two regions of a in terms of the 

variation of In[(daldt)/(1-a)]r at each temperature. In the first region, In(k) appears to 

decrease towards a plateau-value with increase in a and in the second region, it decreases 

progressively more rapidly with increase in a. The region of constant k is an indication 

that the first order reaction rate is being approached or else it has already been reached. 

In the second region of the plots in Fig. 5.3, the quantity In[(daldt)/(l-a)]r 

decreases progressively more rapidly as a increases. To relate this observation to the 

transport properties, we recall that independent studies of polymerization of the diamine-
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Fig. 5.3. The logarithmic value of [daldtl(1-a)] for the stoichiometric PACM-DGEBA 

mixture is plotted against the extent of polymerization a at five fixed temperatures, as 

indicated. 
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diepoxide mixtures have shown that TJ [Ahg et. al. (1989), Malkin and Kulichikhin 

(1991)], dielectric relaxation time (Tdiel) [Parthun and Johari (1995), Wasylyshyn and 

Johari (1997), Tombari et.al. (1997), (1999)] and ultrasonic relaxation time (Tulson) [AUg 

et. al. (1992), Parthun and Johari (1995)] increase progressively more rapidly as a 

increases at a fixed T. Alternatively stated, their In(lI17), In(lIrdiel) and In(lI'ZUlson) 

decrease progressively more rapidly as a increases. This is the same manner in which 

In[(daldt)/(1-a)]r decreases in the second region of the plots in Fig. 5.3. This shows that 

k may be approximately proportional to the inverse of 17, Tdiel and 'ZUlson. 

The plots in Fig. 5.3 also show that as T poly is decreased, the onset of the rapid 

decrease in In(k) shifts to lower value of a. An analogous shift has also been observed in 

the plots of In(lI17) against a by AUg et. al. (1989), and Malkin and Kulichikhin 

(1991),and in the plots Ofln(1lrdiel) against a by Parthun and Johari (1995), Wasylyshyn 

and Johari (1997), and by Tombari et.al. (1997, 1999). Similar behavior has also been 

found in the plots of In(lIrulson) against a by Alig et. al. (1992), and Parthun and Johari 

(1995). These observations show that the progressively rapid decrease in InCk) with 

increase in a is a consequence of the increase in 17 during the course of polymerization, 

and therefore it is an indication of the onset of diffusion-controlled reaction kinetics. The 

lower the polymerizing temperature, the lower is the a value for this onset. 

5.4.2 Effects of the polymerization temperature at a fixed extent of polymerization 
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It is also wen known that at high temperatures where "I of a liquid (of a fixed structure or 

fixed a ) is in the centiPoise to Poise range, and where D is correspondingly high, the 

temperature dependence of D and "1-1 follows the Arrhenius equation [Andrade (1930)], 

D (or "1-1) = A exp[-EA IRl1 (5.8) 

Where EA is the Arrhenius energy. A is the preexponential term and R is the gas constant. 

At low temperatures where D is low and '17 is high, the temperature dependence of the 

two quantities deviates from the Arrhenius equation and tends toward an equation of the 

type provided by Vogel (1921), Fulcher(1925), and Tammann(1926), 

D (or "1-1) = A exp[-B/(T-To)] (5.9) 

where A, B and To are a material's constant. In graphical terms, this means that the plot of 

In(D or '17-1) against liT is close to a straight line at high T where D is high and '17 is low 

and that the plot bends downward at low T where D is low and '17 is high. 

In the simplest approximation for a diffusion-controlled kinetics in liquids, it is 

expected that k would vary with T in the same manner as 1]-1 and D vary with T, i. e., k 

would also foHow the Vogel-Fulcher-Tammann equation. Thus, as a mass-controlled 

polymerization kinetics changes gradually to diffusion-controlled kinetics, the In(k) 

against liT poly plot for a flXed value of a would be a straight line initially at high T poly 

and then bend downwards progressively more rapidly as T poly decreases. Thus the 

bending of the In(k) against lITpoly plots would serve as another indication of the onset of 

diffusion-control kinetics. This would also be the case if '17 of the liquid in the conoidal 

aggregations is increased by decreasing T, allowing thereby the use of Smoluchowki's 



134 

fonnalism (1917) for such aggregation, and of its later modification by Waite (1958) for 

bimolecular chemical reactions. 

To examine the effect of temperature on k through the change in D and 17 with T, 

and not through the change in the reacting entities' size, values of In(k) for several fixed 

values of a were read from Fig. 5.3 and is plotted against lITploy in Fig. 5.4. (Note that a 

fixed structure at a fixed a value is an approximation here, because a multitude of 

distributions of molecular weights in the partially polymerized liquid can be consistent 

with a given a value.) For polymerization of the DGEBA-PACM mixture up to a time 

when a < 0.75, the In(k) plots in Fig. 5.4 are linear over the temperature range of 333.2 -

348.2 1(, and follow the Arrhenius equation, k= koexp(-EAlRTpoly). 

For these plots, (i) In(ko) = 17.3 ± 0.6 and E = 48.8 ± 1.7 kJ/mol when a = 0.55, 

(ii) In(ko) = 16.8 ± 0.7 and E = 48.2 ± 2.1 kJ/mol when a = 0.6, (iii) In(ko) = 16.5 ± 0.7 

and E = 50.7 ± 1.9 kJ/mol when a = 0.65, (iv) In(ko) = 16.5 ± 0.7 and E = 50.7 ± 1.9 

kJ/mol when a = 0.7, and, (v) In(ko) = 22.2 ± 0.4 and E = 65.2 ± 1.1 kJ/mol when a = 

0.75. 

Over the temperature range covered in Fig. 5.4, the plots for a> 0.75 begin to 

curve downwards, thus indicating a deviation from the Arrhenius behavior towards the 

Vogel-Fulcher-Tammann type behavior. Although the data provided here are insufficient 

for fitting the curves to the equation of the type, k CD and 17-1) ex: exp[-BI(T-To)], it is 

clearly evident that for a fixed high values of a, m(k) becomes progressively more 

sensitive as liT poly increases in the temperature range studied. More accurate data 
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Fig. 5.4. The logarithmic value of the reaction rate coefficient, k, for the stoichiometric 

PACM-DGEBA mixture at different extents of polymerization, a, is plotted against the 

reciprocal polymerization temperature. The value of a for each plot is indicated by the 

symbols. 



136 

perhaps obtained from other measurement techniques are needed to determine the 

parameters A, B and To of this equation. Here, we conclude that the onset of the 

downward curvature indicates a change from mass-controlled to diffusion-controHed 

kinetics. 

A comparison of the plots for different values of a in Fig. 5.4 also shows that the 

onset of diffusion-control shifts towards higher temperatures as a increases. However, 

there is a difficulty in determining the onset of the curvature in the plots in Fig. 5.4, and 

that prevents us from obtaining a precise value of T or a for the onset of diffusion 

control. 

The plots may also be interpreted in terms of the polymerization time, t instead of 

a. For a given polymerization temperature, say 353.2 K, the onset of diffusion control 

would be in the t range where a is between 0.8 and 0.85. Similarly, for 343.2 K, the onset 

of diffusion-control is in the t range where a is between 0.75 and 0.8. On the basis of 

these plots, we also deduce that a polymerization reaction can be brought from its mass­

controlled kinetics to diffusion-controlled kinetics by decreasing Tpo1y for a fixed a, or by 

increasing a at a fixed Tpo1y, or else by a combination of both changes. 

We propose that a simple polymerization reaction may be maintained in the mass­

controlled domain by raising the liquid's temperature which decreases 'I] while a 

continues to increase. In this procedure, the polymerizing liquid may be heated at a rate, 

which would raise k and maintain a low viscosity of the polymerized state. An aspect of 

this method has been described earlier [Tombari et. ai. (1999)] without reference to 

diffusion control kinetics. In that study [Tombari et. aJ. (1999)], dielectric measurements 
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finding the temperature-time conditions so that fun polymerization could be achieved in 

the shortest time. 

The calorimetric procedure described here seems more direct than the procedure 

of step-pressure application [Wasylyshyn and Johari (1998), (1999)] or of dielectric data 

analysis [Johari and Wasylyshyn (1999), McAnanama et. al. (2000)], as used earlier for 

detecting the onset of diffusion control in polymerization kinetics. 

5.4.3 Distinction between the simulated reaction rates for mass- and diffusion-

controlled reactions 

We now consider how the measured reaction rate data can be used to distinguish between 

the mass-controlled kinetics and diffusion-controlled kinetics of a polymerization 

process. In general, the rate of a bimolecular reaction is related to a by, 

(daldt)T= k[l- af (5.10) 

When one reacting entity is in excess of the second or if one entity diffuses toward a 

substrate and reacts with it, the reaction rate is given by the first order rate equation, 

(daldt)r= k[l- a]. (5.11) 

The rate coefficient of the mass-controlled kinetics, kmass, which is independent of a, in 

this case is, 

1, = [(da I dt)] 
finlass (1-a) . (5.12) 

In contrast, the rate coefficient of a diffusion-controlled kinetics, krutr, varies with 

a in the same manner as D of the least mobile reacting entity varies with a. Therefore, to 
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relate kdiff with a, one needs the relation between D and a. This relation is not known, but 

the dielectric relaxation time, "die!, which is inversely proportional to D, has been related 

to a in the studies of the diamine-diepoxide polymerization reactions [Tombari and 

Johari (1992), Wasylyshyn and Johari (1997), Tombari et. al. (1997)], and it has been 

found that, 

rd.ie! = rdiel(O)exp[Sd], (5.13) 

where rd.iel(O) is a constant pre-factor and refers to rd.ie! at the beginning of the 

polymerization at t = 0 when a = O. The parameter S is a function of T, but not a function 

of a, and p (p ~ 1 - 4) is a dimensionless parameter which varies with T poly. On replacing 

"d.iel in Eq. (13) by kd.iff-1
, 

kwff= kwtr(0)exp[-Sd], (5.14) 

where kwtr(0), a constant pre-factor, refers to kdiff when the polymerization time, t = 0, or 

a=O. 

For convenience of description in terms of the polymerization time domain, we 

consider that starting from t = 0, the extent of reaction for a mass-controlled kinetics, 

amass, is equal to extent of reaction for a diffusion-controlled kinetics, awtr, i.e., a(0) = 

amassCO) = awtrCO), and further that, (damasJdt)t=O = (dlXdialdt)t=O. With these conditions, 

kmass(O)[l - amass(O)] = kditrCO)[l - awtrCO)]exp[ ·Sa(OYl 

Since, amass(O) = awtr(0) = a(O), 

(
kmass(O)J= exp[-Sa(OYl 
kdiff (0) 

(5.15) 

(5.16) 
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The quantities, S, a(O) and p are positive. Therefore, exp[-Sa(0fJ < 1. This means that, 

By replacing kin Eq. (5.12) by kmass and on rearranging, we obtain, 

( 
damass J = knmss (O)dt 
I-amass 

(5.17) 

By integrating Eq. (5.17) on both side we obtain, 

In[l-amass (t)] = -km:ass (O)t +C1 (5.18) 

where C1 is an integration constant. For the condition of lrmass(t) = a(0) when t = 0, we 

find C1 = In[l-a(O)] and Eq. (5.18) leads to, 

arllass(t) = 1 - [1- a(O)]exp[-kmass(O)t], (5.19) 

and (d~7") = k""..(O)[l - a(O)]exp[-k"..,(O)t] (5.20) 

By substituting kdiff from Eq. (5.14) for k in Eq. (5.11) and denoting a(t) by <Xdin(t), 

(d~7 ) = ~O)[(l - <Xdifl(t)]exp[-S<Xdin(tY] (5.21) 

By rearranging Eq. (5.21), 
( 
___ d_a.=diff""'--__ p_] = kdin(O)dt 
(l-adiff )exp(-Sadiff ) 

(5.22) 

(5.23) 

where C2 is an integration constant which is equal to zero because the integration is from 

the polymerization time, t = O. 
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The LHS ofEq. (5.23) can not be expressed by elemental functions even for the 

simple.st case of p = 1. Nevertheless, lXdirrCt) can be calculated by numerical integration 

for each value of a from a = a(0) to a = a(oo) = 1. For this purpose, we use values for 

lXmass(O) and amrrCO) as 0.5, kditiO)= 1 x 106 
S-I, S = 130.254, p = 2.5, and calculate Clmass(t) 

and ama{t). The calculated plots are shown in Fig. 5.5(A). The relevant derivatives, 

(dClmasJdt) and (darutrldt), are plotted against the polymerization time t in Fig. 5.5(B) and 

the ratio (dlXmasJdt)/( damff/dt), against t in Fig. 5.5(C). The relevant derivatives, 

(dClmasJdt) and (damffl'dt), are also calculated in the a-domain and plotted against a in 

Fig. 5.6(A) and the ratio [(damasJdt)/(damaldt)]y, against a is plotted in Fig. 5.6(B). 

Since the ratio, 

( 
(dadiff / dt) ) = ( 1-adiff (t) )exP[sa(o)p - Sadiff (tY] 
(damass / dt) 1-amass (t) 

(5.24) 

The ratio in the pre-exponential term in Eq. (5.24) increases as t increases, because amass 

initially increases more rapidly with t than amff. The exponential term in Eq. (5.24) 

decreases with t, because Samtiff increases with t and Sa(Of is a constant. Since the 

increase in the pre-exponential term with t is much slower initially than the decrease in 

the exponential term, the ratio [(dlXdiffl'dt)/(damasJdt)] in Eq. (5.24) decreases initially with 

t. At longer times, as lXmass ~ 1, the pre-exponential term in Eq. (5.24) increases more 

rapidly and compensates for the decreasing exponential term. Consequently, the plot of 

the ratio [(damn/dt)/(dlXmasJdt)] against t shows a local minimum. Also, there are two 

points in Fig. S.5(B) at which this ratio is equal to 1, one point is at the (assumed) t = 0, 
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Fig. 5.S. (A). The calculated a for mass-controlled and diffusion-controlled reactions is plotted 

against the logarithmic reaction time. (B). The corresponding da/dt values for a mass controlled 

and diffusion controlled reaction are plotted against the logarithmic reaction time. (C). The ratio 

of corresponding calculated (dlldialdt)/(da.nasJdt) values are plotted against the logarithmic 

reaction time. In (A) and (B), curve 1 refers to the mass-controlled, and curve 2 to the diffusion­

controlled reaction kinetics. 
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Fig. 5.6. (A). The calculated daldt for mass-controlled and diffusion-controlled reactions 

is plotted against the extent of polymerization a. Curve 1 refers to the mass-controlled, 

and 2 to the diffusion-controlled reaction kinetics. (B). The ratio of corresponding 

calculated (dlldurldt)/( damassldt) values is plotted against the extent of polymerization a. 
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and the second at Ix = 60 ks, where curve 1 crosses curve 2, and (dlXdirrldt) = (damassldt). 

Before tx, (d~.;rrldt) < (damassldt), and after tx• (dadirrldt) > (damassfdt). 

We now compare the shape of the plots of (dlXdialdt) and (damassldt) in the a­

domain, i. e., irrespective of the difference in polymerization time. Since lXdiff= amass and 

a(O) < lXditit), the quantity (dlXdiff/dt) in Eq. (5.24) will be less than (damassldt). Except at t 

= 0, where (dlXdialdt) and (damassldt) are assumed to be equal, there is no condition in the 

a-domain for which (dlXdiff/dt) would be equal to (damassldt), as is seen in Fig. 5.6(A) and 

(B). The distinction between the mass-controlled and diffusion-controlled kinetics 

therefore appears in the plots of (damassldt) and (damw'dt), at high a values. We conclude 

that changes in the shape of such plots with a may be used as an indication of the change 

in the reaction kinetics from mass-controlled to diffusion-controlled. 

5.5 Summary 

As the extent of polymerization increases at a fixed temperature, the increase in the 

liquid's viscosity causes a decrease in the reaction rate coefficient, as the mass-controlled 

polymerization kinetics changes gradually to diffusion-controlled polymerization 

kinetics. This change is indicated by a progressively more rapid increase in the negative 

slope of the plot of logarithmic rate coefficient against the extent of polymerization. The 

onset of diffusion-control may be determined from such plots. This onset shifts to a lower 

extent of reaction when the polymerization temperature is decreased. 

For a fixed extent of polymerization after the viscosity has reduced to a relatively 

high value, the reaction rate coefficient decrease with decrease in the polymerization 
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temperature in the same manner as the reciprocal of the liquid's viscosity. This would 

indicate that the polymerization kinetics has become diffusion-controlled. The 

temperature for the onset of diffusion control at a certain extent of reaction may be 

determined from the plots of logarithmic rate coefficient against the reciprocal 

polymerization temperature. For higher extents of polymerization, the onset temperature 

is higher. 

The simulated plots of the reaction rates for the mass-controlled kinetics are 

distinguished from those for the diffusion-controlled kinetics. For aU extents of 

polymerization, the rate for the former kinetics remains higher than the rate for the latter 

kinetics. In the polymerization time domain, the rate for mass-controlled kinetics is 

higher than that of the diffusion-controlled kinetics up to a certain time, and then 

becomes lower. The ratio of the two rates goes through a maximum at a certain time of 

polymerization. 



Chapter 6 

Dielectric 

Conditions 

6.1 Introduction 

Properties and Polymerization 

Dielectric spectroscopy has recently been developed as a technique for studying the 

physical property changes that occur during the course of polymerization of a molecular 

liquid [Johari (1993, 1994)]. The technique is also seen to be useful for studying polymer 

degradation. Experiments may also be conducted either isothermally or with decreasing 

or increasing temperature or a combination of the three [Tombari et. at. (1997)]. In this 

spectroscopic technique, the real and imaginary components of the dielectric premittivity, 

~and 8/~ respectively, are measured as function of frequency over a wide range from 0.1 

Hz to 12 GHz. This also leads to determination of the dc conductivity, 0"0, at different 

times during the course of polymerization or of polymer degradation. The shape of the e' 

and s"spectra changes as polymerization progresses and the position of the spectra shifts 

along the frequency scale [Johari (1993, 1994), Tombari et. at. (1997)]. In addition, the 

equilibrium dielectric permittivity, the infrared polarizabiHty and the optical refractive 

145 
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index change because the density increases on polymerization or on polymer's 

degradation [To,mbari et. al. (1997), Johari et. al. (1999), Wasylyshyn et. al.(1997, 

1999)]. 

Polymerization performed at a fixed temperature does not reach completion when 

the temperature is low. But a low temperature is necessary for performing polymerization 

when the molecular liquids are volatile or have a low boiling point or else decompose at 

high temperature. Once polymerization has occurred to a limited extent the vapor 

pressure decreases and boiling point increases. Thereafter, the partially polymerized 

mixture may be heated to a higher temperature to allow further polymerization until the 

maximum limit of polymerization is reached. This process is known as post­

polymerization. 

During the course of polymerization chemical structure of the liquid changes as 

much as new covalent bonds form although the entities in the polymer structure remain 

the same as in the molecular liquid state if polymerization is additive. Thus dielectric 

spectroscopy has been used to study the effects of these chemical structure changes on 

the physical state of a polymerizing mixture or of a polymer degrading to its oligomer 

structure. 

Here, we provide results of an experimental study of typical polymerizing 

mixture, aniline and resorcinol diglycidyl ether, and its analysis in terms of its physical 

state as observed by dielectric spectroscopy performed during the course of 

polymerization. In order to familiarize a reader with the subject of dielectric 

spectroscopy, we first provide a brief background to the dielectric phenomenon. 
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6.2 The Dielectric Polarization and Relaxation Formalism 

When a constant external electric field Eo is applied at time t = 0, to a homogeneous, 

isotropic and linear dielectric medium containing electric dipoles under constant 

temperature and pressure, the polarization P changes with time according to, 

pC!) = Pu + (PR - P u)[l- ~(t)], (6.1) 

where Pu is the instantaneous polarization which includes both the infrared and the 

electronic polarization, PR is the equilibrium or long-time limit of the polarization and ~t) 

is a relaxation function of the material. The term (PR-Pu)[l-~t)] is a measure of the time­

dependent polarization. The value of ~t) is 1 when t = 0, and 0 when t -» 00. Thus, PCt = 0) 

= Pu" and pet = 00) = PRo The electrical displacement, D, is defined by, 

D(t) = 80E(t) + pet) = 808(t)E(t) , (6.2) 

where .Q) is the permittivity of vacuum (= 8.8542 pF/m), and t;(t) is called the relative 

permittivity of the dielectric material. Its magnitude is given by 

8(t) = 800 + (8s - 800Xl-~(t)] = 800 + ~8[1-~(t)], (6.3) 

where 800 is the limiting high-frequency relative pennittivity approximated at t = 0 or at a 

frequency in the low limit of the infrared spectra, and 8s is the limiting low-frequency 

relative permittivity approximated for the condition when t -» 00. The latter is also caned the 

equilibrium permittivity. The difference ~8 == (Bs - 800) is known as the magnitude Of strength 

of the dielectric relaxation and it is a measure ofthe orientation polarization. 

When the applied electric field is sinusoidal in time, it is expressed as a complex 

function as: 
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E$ (t) = Eo exp(icot) , (6.4) 

where, Eo is the amplitude of the electrical field, (j) is the angular frequency (co = 2rcf, wht:re 

fis the frequency) and i =r-1. The complex electric displacement is given by: 

D" (t) = 8 $ E* , (6.5) 

where 8* is now the complex dielectric function 

According to the Boltzmann superposition principle [Boltzmann (1876), Hopkinson 

(1877), Curie (1888)], 8* in the frequency domain may be written as, 

/' (co) = 800 + 6.8 fa eXP(-icot{ - a~;t) ]dt , (6.6) 

where the integral term is the Laplace transformation of the function (-d¢Vdt). Equation (6.6) 

therefore describes the frequency dependence of &"( co) according to the relaxation function 

¢i..t). By separating the real and imaginary parts of 8* E 8' - i8" in Eq. (6.6), 

&'("'1;"~ =R~r exp(-i .... {- a:t)}It}, (6.7) 

and, ";;) =Im{r eXp(-i .... {- a~;t)}}, (6.8) 

where 8' is called the dielectric permittivity, 8 '1 the dielectric loss. These two quantities 

define the loss tangent or the loss factor as, mno E 8'18~ For our convenience here, the 

normalized complex dielectric function N*(co), normalized dielectric permittivity N(co) and 

normalized dielectric loss N'( co) are defined as: 

(6.9) 
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(6.10) 

(6.11) 

Debye (1929) had shown that for dielectric relaxation of most liquids at high 

temperatures, the relaxation function in the time domain is given by, 

(6.12) 

where 'ZQ, is the relaxation time. In the frequency domain, therefore, Eqs.(6.6) - (6.8) for 

Debye relaxation function become, 

.. 
& -&«J=N*({)))= 1 

11& 1 + ian-o ' 
(6.13) 

(6.14) 

(6.15) 

tan 8 = 11&an-0 

11& + &00 (l + ())2f' 0 
2

) 
(6.16) 

The Debye relaxation function ofEq. (6.12) has been found to be an approximation 

for the dielectric behavior of liquids or of dilute solutions containing simple polar molecules 

and at not too low temperatures, or too viscous a state. In reality, for a variety of molecular 

liquids, ceramics, glasses, polymers, and polymer solutions, the relaxation function is m.ore 

complex, and has been described by empirical equations obtained by fitting to the data In 

dielectric studies performed in the frequency domain, the empirical functions have been 



150 

known as, Cole-Cole (1941, 1942), Fuoss-Kirkwood (1941), Davidson-Cole (1950), 

Havriliak-Negami (1966, 1967), lohnscher (1975) and Hill (1978). 

An empirical function most widely used since 1980 is the stretched exponential 

relaxation function. It was first introduced by Kohlrausch (1847), for mechanical 

deformation of fibers in the time domain. Williams and Watts (1970) adapted the stretched 

exponential relaxation function for dielectric studies in the frequency domain. The stretched 

exponential relaxation function is thus generally referred as KWW function. It is written as: 

(6.17) 

where j3 is the stretched exponential parameter whose value is between 0 and 1, and TO is the 

characteristic relaxation time. Although its form in the time domain, i.e., Eq. (6.17), is 

mathematically simple, its corresponding frequency domain form is mathematically 

somewhat complex and has to be calculated numerically. Accordingly, for 0 <j3< 1, N'and 

N" have been vvritten as [Moynihan et aZ. (1973), Lindsey and Patterson (1980), Dishon et 

al. (1985) and Muzeau et al. (1991)], 

W(z) = I-mV(j3, z), 

N"(z) = mQ(j3,z), 

where z = o)To, and V(j3, z) and Q(j3, z) are integral terms, as defined below, 

V(P,z) =~ r;xp(-uP)sin(zu)du, 
'it Jo" 

Q(j3,z) = ~ r;xp(-uP)cos(zu)du, 
'it Jo" 

(6.18) 

(6.19) 

(6.20) 

(6.21) 
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where u is a variable for integration. Equations (6.20) and (6.21) have been calculated 

numerically by Moynihan et al. (1973), Lindsey and Patterson (1980), Dishon et al. (1985) 

and Muzeau et al. (1991) for 13 between 0.1 and 0.7 and for z (=mro) between 10-3 to 104
. 

The stretched exponential function has also been mathematically expressed as a 

superposition of exponential relaxation functions with a relaxation time distribution function 

g(T) as, 

¢J(t) = J/(T)expC-tIT)dr, (6.22) 

within the normalization condition, 

j!-(T)dT = 1. (6.23) 

Therefore, the average relaxation time, < T> is given by 

< T >= [w(r)dT = (¢(t)dt. (6.24) 

Moynihan et al. (1973) have combined Eqs. (6.17) and (6.24) to express <P in 

terms of To and 13 through a gamma function of 1113. 

(6.25) 

6.3 Experimental Methods 

The chemicals used as the precursors were, Aniline (AN) and Resorcinol diglycidyl ether 

(RDGE). Aniline of better than 99.0% purity was purchased from Anachemia, and 
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Resorcinol diglycidyl ether of better than 99% purity was purchased from Aldrich 

Chemicals. These chemicals were liquids at ambient temperature. Their molecular 

structures and polymerization reactions are shown in Fig. 6.1. Stoichiometeric mixtures 

of AN and RDGE in molar ratio of 1: 1 were prepared by weighing in a total amount of 

about 2 grams, thoroughly mixed mechanically and transferred to a glass vial of diameter 

10 mm and length 35 mm. A miniature capacitor with 18 parallel plates was immersed in 

the liquid mixture contained inside the vial. The capacitor's electrical capacitance (~ 16 

pF) was measured precisely in air before it was inserted to the vial. A copper-constantan 

thermocouple was also immersed in the liquid, the electrical connections were made and 

the vial was sealed. It was then inserted into the hole drilled thermostat block already 

maintained at a predetermined temperature. The temperature of the thermostat block was 

controlled during both heating and cooling cycles at a constant rate, or else it was kept at 

predetermined temperature for performing experiments under isothermal conditions. The 

detailed method has been described earlier [Wasylyshyn et. al. (1997)] 

The dielectric permittivity and loss spectra was measured over the frequency 

range 10 Hz - 500 MHz by using QuadTech Model 7400 Precision LCR Meter. The 

accuracy of QuadTech 7400 was set at ± 0.25%. A Labview program run on a PC 

computer was used to record the data automatically. The data acquisition program 

allowed us to coUect a complete set of spectra containing 48 frequency data points 

equally spaced on a logarithmic frequency scale, in 30 - 45 s. The data files thus 

obtained contained the permittivity If, the dielectric loss c', and the ac conductivity 
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Fig. 6.1. The chemical structures of aniline (AN) and Resorcinal diglyddyl ether 

(RDGE), and the first three steps of polymerization reaction which forms linear polymer 

chain in the 1: 1 AN and RDGE mixture. 
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measured at the time of polymerization, tpoly and the temperature T poly. The data were 

continuously measured at a time interval of 1 - 5 minutes, depending upon the time 

elapsed since the polymerization began. For a typical dielectric permittivity of If - 4.0 

and loss factor of If' - 0.1, the accuracy of & are Illf ~ ± 0.01 and Illf' - ± 0.00025. The 

absolute accuracy of the temperature measurement is less than 0.5 K and the relative 

accuracy of the time measurement is less than 0.05%. 

The glass transition temperature, Tg of the completely polymerized AN and 

RDGE mixture was determined by using the method described in Section 2.3.2 on the 

differential scanning calorimetry data measured as described in Section 5.2. It was found 

to be about 333 ± 1 K. Five samples of the mixture were polymerized by keeping 

isothermally at different temperatures, Tpoly for different times, tpoly. These were: 303.2 K 

for 260 ks, 313.2 K for 86 ks, 323.2 K for 60 ks, 333.2 K for 60 ks, 343.2 K for 54 ks. 

After polymerization of each sample at the above mentioned temperatures and 

time periods, the sample was cooled to 298 K, heated at a rate of qh = 0.3 Klmin to a 

post-polymerization temperature, T post, which is wen above Tg• The isothermal post­

polymerization time, tpost, was 60 ks. For the samples with Tpoly at 303.2,313.2 and 333.2 

K, T post was set at 400 K and for samples with T poly at 323.2, and 343.2 K, T post was set at 

373 K. Details of the thermal history of each sample during polymerization and post­

polymerization are provided in Table 6.1. 
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Table 6.1. The polymerization conditions for AN-RDGE mixture. 

Tpo!y tpoly 'lh Tpost tpost 

I:K] [ks] [KImin] (KJ [ks] 
303.2 260 0.3 400.2 60 

313.2 86 0.3 400.2 60 

323.2 60 0.3 373.2 60 

333.2 60 0.3 400.2 60 

343.2 60 0.3 373.0 60 

6.4 Results and Data Analysis 

The equipment had been designed to collect spectra at two minute intervals during the 

period of polymerization. Therefore, in a typical polymerization period, more than one 

hundred If and e" spectra of a polymerizing mixture at each of the preselected 

polymerization temperature were collected. Here, the spectra obtained only at selected 

time, tpoly, during the progress of polymerization are included. These spectra are shown in 

Figs. 6.2 - 6.6, where the polymerization time has been indicated. The spectra correspond 

to the polymer structure formed at time tpoly during the isothermal polymerization. 

In Figs. 6.2-6.6, when the e"peak was in the frequency range from 10 Hz to 500 

MHz, the measurement range of QuadTech Model 7400 Precision LCR Meter, the 

spectra of both If and e" can be analyzed by fitting to KWW relaxation function and 

using Eqs. (6.10 - 6.11, 6.18 - 21). Over this frequency window, the contribution to 

measured e" and E! from the electrode polarization effect were calculated in the manner 

given earlier [Wasylyshyn et. al. (1997)]. It was found to be at most 2%, and was 

neglected. Therefore, the measured If value is only from the mixture's dipolar 
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Fig. 6.2. The spectra of e' and &" measured during the course of polymerization for AN-

RDGE mixture at 303.2 K. The symbols correspond to different tpoly (ks) as: (.) 0.20, 

(.) 24.3, (.A.) 50.3, (+) 65.2, C'Y) 75.2, (x) 85.2, C+) 95.1, (*) 105.2, (0) 115.1. 

(0)125.0, (A) 150.1, ('\7) 260.3. 
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Fig. 6.3. The spectra of &'and &"measured during the course of polymerization for AN-

RDGE mixture at 313.2 K. The symbols correspond to different tpoly (ks) as: CM) 1.0, ce) 

10.0, CA) 20.0, C+) 30.0, ('Y) 39.9, (x) 49.9, (+) 59.9, (*) 72.9, (0) 85.7. 



10 

8 

6 

1.0 

0.8 

-~t¢ 0.6 

0.4 

10
3 

f[Hz] 

158 

Fig. 6.4. The spectra of 8' and 8" measured during the course of polymerization for AN~ 

RDGE mixture at 323.2 K. The symbols correspond to different tpoly (ks) as: (III) 5,0, (e) 

10.0, (A) 15,0, (+) 20.0, (-.) 25.0, (x) 30.0, (+) 35.0, (*) 40.0, (0) 45.0, (0)50.0, (~) 

55.0. 
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6.5. The spectra of e'and e"measured during the course of polymerization for AN-RDGE 

mixture at 333.2 K. The symbols correspond to different 'poly (ks) as: (.) 5.0, (e) 10.0, 

(A..) 15.0, (+) 20.0, (..-) 25.0, (x) 29.9, (+) 35.1, (*) 40.0, (0) 48.0, (0)57.9, (A) 66.9. 
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Fig. 6.6. The spectra of e'and e"measured during the course of polymerization for AN~ 

RDGE mixture at 343.2 K. The symbols correspond to different tpoly (ks) as: (.) 1.01, 

(.) 2.03, (a\.) 3.05, (+) 4.07, (T) 4.94, (x) 7.55, (+) 10.0, (*) 15.1, (0) 57.8. 
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orientation, i.e., E = E dip. When the mixture's viscosity is low, as at the early stage of 

polymerization, or at a high temperature above its Tg, the ionic impurities have a high 

mobility and since these ions transport the electrical charge, the dc conductivity is high. 

This increases the de conductivity contribution to Sff according to the equation [von 

Schweidler (1907), Manning and Bell (1940)]: 

S"di (/') = s"( n __ 0'_0_ 
r . . 2nsof 

(6.26) 

where O() is the dc conductivity, or 0(/ --+0), &J is the pennittivity of vacuum (= 8.8542 

pF/m) and f is the frequency in Hz. Since, S'~lip --+ 0 as f -'; 0, Eq. (626) in the low 

frequency limit becomes, log[s'ij)] = log[0(/(21r&J)] - log(f), and a plot of )og[s'tm 

against log(/) is a straight line with a slope of 1. and intercept log[ c;/(2fT $1)]. The value of 0(1 

at different tpoly was determined from such plots. 

The loge 0'0) for mixture polymerizing at 303.2,3] 3.2,323 .2,333.2 and 343.2 K is 

plotted against the 10g(tpoh) in Fig. 6.7. In this figure the magnitude of log( O()) decreases 

rapidly with increase in tpolv with a progressively increasing negative slope for 

polymerization perfonned at 303.2K and 313.2 K. In contrast, the slope of the plot for 

polymerization performed at 323 .2 K and 333.2 K tends to decrease at high value of fpoly. 

For polymerization performed at 343.2 K, the plot remains horizontal with a near zero 

slope. 

We should note here that in our measured frequency range of 10Hz - 500 MHz, 

only the a-relaxation, i.e., the primary relaxation at temperature around and above Tg, 

could be observed. Thus in aU the equations given in Section 6.2, Ss should be 
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Fig. 6.7. The logarithmic dc conductivity log( 0"0) is plotted against log(tpoly) during the 

polymerization of AN-RDGE mixture. The symbols correspond to different T poly (K) as: 

(d) 303.2, (0)313.2, ('\1) 323.2, (C) 333.2, «,,) 343.2. 
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corresponding to £0:, s and &:0 should be corresponding to £0:, 00. The difference AE should 

thus correspond to AEa. = (Eo:, s - Eo:, 00), the magnitude of the a-relaxation. Since we do not 

deal with other relaxation processes, the subscript a will henceforth be dropped. 

The parameters of AE, &:0, j3 and To were obtained by fitting with the KWW 

relaxation function according to Eqs. (6.10 - 6.11, 6.18 - 21) to both & dip and E'dip spectra 

simultaneo~ly. The tabulated fonTIS of N'(ano) and N"(ano) for this function were taken 

from calculations by Moynihan et al. (1973), Lindsey and Patterson (1980), Dishon et al. 

(1985) and Muzeau et al. (1991). In the fitting procedures using Eqs. (6.10 - 6.11, 6.18 -

21), AE, Eeo, j3 and TO were input as adjustable parameters. The & dip and E'dip spectra and 

the curves calculated from KWW relaxation function by Eqs. (6.10 - 6.11, 6.18 - 21) were 

plotted in three graphs simultaneously, two of which were & and E" spectra and the third 

was the complex plane plots or the Cole-Cole plot of & against E". The four parameters 

Ac, &:0, j3 and TO were adjusted manually until all the three calculated curves fitted the 

corresponding experimental data in each graph window. The fitting parameters Ac, &:0, /3 

and TO were obtained for one set of & dip and c'dipo An example of a typical fit of the & dip 

and E'dip spectra and the Cole-Cole plot is shown in Fig. 6.8(A), (B) and (C) for the AN­

RDOE mixture polymerized at 303.2 K and at tpoly 94.3 ks. The absolute fitting precision 

is 0.01 for Ac and &0, and /3. The relative fitting precision for To is 1%. The fittings were 

done for the selected spectra at different polymerization time for AN-RDOE mixture 

polymerized at different temperatures. The value of <P was then calculated from Eq. 

(6.25) from the known values fJ and TO. The obtained parameters fJ and log< P for all the 
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Fig. 6.8. A typical fitting of dielectric spectra &ill" and &fillp with KWW model for AN­

RDGE mixture polymerizing at 303.2 K and at tpoly of 94.3 ks: (A). &illp and (B). &J'~p. 

They are plotted against frequency f in logarithmic scale. (C). the Cole-Cole plot of 8'dip 

against &ill". The symbols correspond to data obtained and the solid Hnes are the fitting 

results with KWW relaxation function. 
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five polymerization temperatures are plotted against log(tpoly) in Fig. 6.9(A) and (B). The 

values of 8s (= f:aJ + IlE), ~ and Il& obtained from this analysis are plotted against 10g(/poly) 

in Fig. 6.10. 

The samples polymerized at different temperature were then cooled to 300 K and 

heated at 0.3 Klmin to a post-polymerization temperature T post and allowed to further 

polymerize for 60 ks to ensure complete polymerization if it may not have already 

occurred. The post-polymerization temperature, T post was 373 K or 400 1(, which is 40 K 

and 67 1(, respectively, higher than the Tg of 333 K of the fully polymerized polymer, as 

measured here. Thus we consider that polymerization was completed after the post­

polymerization within 60 ks at 373 K and at 400 K. Following the post-polymerizatio~ 

the samples were cooled from the post-polymerization temperature at 0.3 Klmin to 300 K 

and the dielectric measurement were performed during the cooling. The &' and &"spectra 

were measured during the cooling from post-polymerization temperatures to room 

temperature. An example of a typical &' and e" spectra at different temperatures during 

cooling from 400 K to 300 K is shown in Fig. 6.11 for the sample polymerized at 333.2 K 

for 60 ks and post-polymerized at 400.2 K for 60 ks. The above-described methods were 

used for obtaining 00. Il.&, f:aJ, p and To for each spectrum thus obtained for all the five 

samples which had been polymerized at selected temperatures. The log(oo) is plotted 

against 100011' in Fig. 6.12 for all the five samples. The obtained parameters p and log<t.> 

for all five samples of AN-RDGE mixture are plotted against 100011' in Fig. 6.13, and 8s, 

~ and Ileare plotted against 1000ITin Fig. 6.14. 
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KWW relaxation function for AN-RDGE mixture during polymerization: (A). non­

exponential parameter /3, (B). logarithmic average relaxation time log<t>. These are 

plotted against log(tpoly) during polymerization for AN-RDGE mixture. The symbols 

correspond to different T poly (K) as: (A) 303.2, (0)313.2, ('\7) 323.2, (D) 333.2, (0) 

343.2. 
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Fig.6.1l. The spectra of s'and c"measured during cooling from 400 K to 300 K for AN­

RDGE mixture polymerized at 333.2 K for 60 ks and post-polymerized at 400.2 K for 60 

ks. The symbols correspond to different temperature (K) as: (C)399.7, (0)389.3, 

(.1.)379.6, (¢)369.3, (+)360.1, (x)355.5, (*)350.5, ("')345.1, (111)340.5, (.)329.9, 
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Fig. 6.12. The logarithmic de conductivity loge 0"0) plotted against 1000lT for AN-RDGE 

mixture measured during cooling from post polymerization temperature to 300 K. The 

symbols correspond to different polymerization history as: (~)Tpoly = 303.2 K, tpoly = 260 

ks, T post = 400.2 K, tpost = 60 ks. (O)T poly = 313.2 K, tpoly = 86 ks, T post = 400.2 K, tpost = 

60 ks, (V)T poly = 323.2 K, tpoly = 60 ks, T post = 373.2 K, tpost = 60 ks, (O)T poly = 333.2 K, 

tpoly = 60 ks, T post = 400.2 K, tpost = 60 ks, (O)T poly = 343.2 K, tpoly = 60 ks, T post = 373.2 K, 

tpost = 60 ks. 
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Fig. 6.13. The parameters obtained by fitting the dielectric spectra Cdip and c/fdip with KWW 

relaxation for AN-RDGE mixture measured during cooling from post polymerization temperature 

to 300 K: A. non-exponential parameter /3, B. logarithmic average relaxation time log<t.>. They 

are plotted against 10001T. The symbols correspond to different polymerization history as: 

(A)T poly = 303.2 K, tpoly = 260 ks, T post = 400.2 K, tpost = 60 ks, (O)T poly = 313.2 K, (poly == 86 ks, 

T post = 400.2 K, tpost = 60 ks, (V)T poly = 323.2 K, tpoly = 60 ks, T post = 373.2 K, tpost = 60 ks, (C)T poly 

= 333.2 K, tpoly = 60 ks, T post = 400.2 K, tpost = 60 ks, (O)T poly = 343.2 K, tpoly = 60 ks, T post == 313.2 

K, tpost = 60 ks. 
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Fig. 6.14. The parameters obtained by fitting the dielectric spectra 8dip and 8"Qjp with KWW 

relaxation function for AN-RDGE mixture measured during cooling from post polymerization 

temperature to 300 K: A. 6$, B. 8ro and C. Ile. They are plotted against lOOOIT. The symbols 

correspond to different polymerization history as: (Il)T poly = 303.2 K, tpoly = 260 ks, T post = 400.2 

K, tpost = 60 ks, (O)T poly = 313.2 K, tpoly = 86 ks, T pos! = 400.2 K, tpost = 60 ks, (V)T poly = 323.2 K, 

tpoly = 60 ks, T post = 373.2 K, tpost = 60 ks, (lJ)T poly = 333.2 K, tpoly = 60 ks, T post = 400.2 K, tpost = 

60 ks, (O)T poly = 343.2 K, tpoly = 60 ks, T post = 373.2 K, tpost = 60 ks. 
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6.5 Discussion 

6.5.1 Dieledric changes d~ring the polymerization process 

The rapid decrease in log(oo) with the increase of tpoly during polymerization at 303.2 K 

and 313.2 K in Fig. 6.7 indicates that the mobility of the ionic impurities in the mixture 

decreases very rapidly during the course of polymerization. But for the sample being 

polymerized at 343.2 K, 00 tends to approach a high limiting value of oo~ 2.37xl0-6 81m. 

The reason is that the polymerization temperature of 343 K is 10 K above the glass 

transition temperature of 333 K for the completely polymerized AN-RDOE mixture. 

Thus the AN-RDOE mixture polymerized at 343 K did not further polymerize and 

therefore its viscosity, although low, did not increase. In this condition, the 

polymerization temperature is higher than the vitrification temperature of its fully 

polymerized state, and the already high mobility of the ionic impurities also does not 

decrease with polymerization time at a fixed temperature. 

In Fig. 6.9{A), the value p is in the range 0.35 to 0.38 for the five polymerization 

temperatures. Considering the fitting error of 0.01 for P. its value either slightly increases 

with the polymerization time or remains constant. Also it remains constant with change in 

the polymerization temperature. This seems to be consistent with Tombari et. al. 's 

results (1997) for the isothermal polymerization of another linear chain structure of 

cyclohexylamine(CHA)-DOEBA mixture at 314.2 K. In their report, premains constant 

at 0.39. 

In Fig. 6.9(B), the values of log<r> increase very rapidly with polymerization 

time for the mixture polymerized at 303.2, 313.2. 323.2 and 333.2 K. This rapid increase 
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of log<t> with the increase of polymerization time is caused by the rapid increase of 

viscosity of the mixtures during the course of polymerization. For the mixture 

polymerizing at 343.2 1(, the log<t> increases very slowly and tends to approach a 

constant value of -5.626 «r> ~ 2.37xl0-6 s). Such an approach to the upper <r> limit 

with polymerization occurs when the viscosity of a polymerizing mixture remains 

constant, and the state remains a liquid at the condition when the polymerization 

temperature is above the glass transition temperature of the fully polymerized product. In 

this case, T poly of 343.2 K is 10K above the Tg• 

We now consider the change in the magnitude of orientation polarization, 6&, 

during the course of polymerization. Onsager (1939), Kirkwood (1939) and Frohlich 

(1958) had developed a general statistical theory of the static dielectric constant for a 

dipolar molecule system, according to which, 

(6.27) 

where No is the number density of the dipoles, g is the dipolar orientational correlation 

factor, jI() is the vapor-phase dipole moment, and all other terms have the same meaning 

as before. 

At a fixed temperature during polymerization, the volume of the polymer mixture 

decreases during the polymerization by as much as 10% [Choi and Plazek (1986)]. If 

there is no other change in the dipolar orientational correlation factor g and in the vapour-

phase dipole moment jI(), both 8s and E«; should increase with increase in the extent of 

polymerization, because the number density of the dipoles No. increases. The decreases of 
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Bs with the increase oflog(tpoly) seen in Fig. 6.10(A) should therefore be attributed to the 

decrease of the gj.1r/ during polymerization, when the epoxide ring of RDGE opens, 

reacts with N-H group of aniline to form a covalent bond. This process eliminates the 

dipoles of one N-H group and of one epoxide ring, and produces a new dipole of O-H 

group and a new N-C covalent bond. The increase in Eoc, with the polymerization time in 

Fig. 6.10(B) is therefore the net effect of the increase in Nd and the decrease of the p.o2 

during the course of polymerization. The decrease of Bs and the increase of Eoc, on 

polymerization therefore decrease Ac(= Bs- Eoc,), as seen in Fig. 6.10(C). We calculate the 

term [(Eoc,+2)/3]2[&sI(2Bs + Eoc,)] in Eq. (6.27) and find that it increases with the increase in 

tpoly. For example, it decreases from 1207 to 867 with the increase of tpoly from 4.87 ks to 

4.98 ks for the sample polymerized at 303.2 K. Thus we conclude that the decrease of Ac 

with the increase of log(tpoly) is due to the effect of decrease of the gp.o2 during the 

polymerization. 

Tombari et al. (1997) have reported that the value of Eoc, decreases gradually from 

4.2 to 4.1 and the value of Bs decreases gradually from 7.0 to 6.8 during the 

polymerization of the CHA-DOEBA mixture at 314.2 K. Johari et al. (1999) also 

reported that the value of Eoc, decreases gradually from 4.2 to 4.1 and the value of Bs 

decreases gradually from 7.5 to 7.0 for CHA-DGEBA mixture polymerized at 300.2 K. 

We find that the value of Eoc, instead increases gradually from 4.3 to 4.4 and the value of Bs 

decreases gradually from 9.5 to 9.4 during the polymerization of the AN-RDOE mixture 

at 313.2 K. For our AN-RDGE mixture being polymerized at 303.2 K, we also find that 
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the value of 800 increases gradually from 3.8 to 4.3 and the value of 8s decreases gradually 

from 9.9 to 9.5. Our observation that 8s decreases with the increase of polymerization 

time is consistent with the results obtained by Tombari et al. (1997) and by Johari et al. 

(1999), but our observation of 800 increasing with the increase of tpoly is inconsistent with 

their results. This difference could come from the difference in the respective 

polymerization mixtures' characteristics such as Nd, g and f.1o and the structure formed. 

We also find that the lower the polymerization temperature, the higher is the amount of 

net changes in 8s and 800 during the same polymerization time. 

6.5.2 Dielectric properties of the polymerized state 

We now consider the dielectric properties of the polymerized state. In Fig. 6.12, 

the values of loge 0-0) generally decreases. The plot bends downward with the decrease in T, 

as expected and observed generally. The curves of loge 00) against 1000!T for the two 

samples with different Tpo1y of313.2 K and 333.2 K but same Tpost of 400 K are parallel to 

each other. The curves of loge 00) for the two samples with 1poly of 303.2 K and Tpost of 400 

K, Tpoly of 323.2 K and Tpost of 373 K seem to merge with the decreases of 1000!T, and 

separate with the increase of 10001T. The curve of loge 00) for the sample with Tpo1y of 

343.2 K and Tpost of373 K is separated from the curves oflog(o-o) of the other four samples. 

The slopes of these five curves are closely similar. By fitting the Arrhenius equation to 

these data, we obtain an activation energy of 175 ± 20 kl/mot 
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In Fig. 6.l3(A), the values of the non-exponential parameter prange from 0.30 to 

0040 for five samples and the changes are between 0.01 - 0.03 for each sample. 

Considering the fitting error of 0.01 for P. we oonclude that the p value remains 

unchanged or increases very slightly for each sample with decrease in T. The p values are 

obviously different for different samples. This difference could come from the structural 

difference, which will be discussed in the last paragraph of this section. In Fig. 6.13(B), 

although the log<t> curves are separated from each other, their slopes are almost the 

same. By fitting the Arrhenius equation to these data, we obtain an activation energy of 

260 ± 40 kJ/mo~ which is higher than the activation energy for de conductivity. This 

means that the diffusion of the ionic impurities have a lower activation barrier than the 

dipolar relaxation process. The first process involves a random translational diffusion of 

relatively smal~ spherical ions, but the second process involves both the hindered 

translational and rotational motions of polymer chains that may have already been 

entangled. 

In Fig. 6.14(A) and 6.14(B), the values of &s and Coo for all five samples increase 

monotonically with the decrease in T. The values of 11& (=&S-Coo) for different sample 

show different types of changes. The values of 11& increases with decrease in T for three 

samples, and remains unchanged for one sample. Since 11& is determined by six variables 

in the Onsager-Kirkwood- Frohlich equation, namely, &s, &co, Nd, g, Po and Tin Eq. (6.27), 

the temperature dependence of b.& would reflect the net effect of changes in all these six 

variables. The variation of b.& on 1000lT can be predicted only when the temperature 
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dependence of all the five variables Ss, Sr:;:;, Nd, g and f.-kJ is known. In our study these are 

not known. 

If the five samples, whose polymerization at different temperatures has been studied 

here, were to have been completely polymerized, the difference between the curves in Figs. 

6.12 - 6.14 would corne from their different polymer structures resulting from their different 

thermal histories. Although all aniline and RDGE completely react or fully polymerize, they 

do not necessarily form long linear chains. Ideally, the completely polymerized linear chain 

polymer will only form one loop of a single chain. In practice, they tend to form smaller 

loops (as opposed to smaller chains which would react ultimately to form longer chains or 

loops) with varying numbers of repeat units. The molecular weight of the loops, and the 

distribution of the molecular weights of the loops, might be different in each sample. Such 

difference will result in different diffusion coefficients of ionic impurities and different 

viscosity of the system and hence different dc conductivities. A difference in polymer 

structure would also result in different distributions of dipoles and dipolar orientational 

correlation, which are evident from the variations of the parameters /3, TO, &s, ~ and Ils for 

different samples, as is seen in Figs. 6.12 - 6.14. Tombari et. al. (1998) have found a 

similar effect in the CHA-DGEBA mixture. However, they had found that for a fixed 

temperature and extent of polymerization a, only the values of S8 and To differ significantly 

when the thermal history of polymerization differs. 
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6,,6 Summary 

The real time dielectric spectroscopy of a linear chain polymerizing syste~ 1: 1 ratio of 

aniline and resorcinol diglycidyl ether mixture, were measured during polymerization at 

different fixed temperatures. The dielectric spectra during the isothermal polymerization 

were found to develop differently with polymerization time. For polymerization of the 

liquid at a temperature below the vitrification temperature of the fully polymerized state, 

the peak position of the dielectric loss against frequency decreases monotonically from 

high frequency to low frequency and move out the lower frequency limit of 10Hz, and 

the dc conductivity and the relaxation time decrease monotonically, with time. For 

polymerization of the liquid at a temperature above the vitrification temperature of the 

fully polymerized state, the peak position of the dielectric loss spectrum decreases 

slightly and then ceases to decrease below 200 kHz, and the dc conductivity and the 

relaxation time approach their respective constant values with time, as polymerization 

reaches completion. The stretched-exponential parameter for the spectra remain constant 

for the mixture polymerized for different times and at different temperatures. Other 

dielectric properties change monotonically with polymerization time with different rates 

at different polymerization temperatures. 

Dielectric spectra of samples post-polymerized at high temperatures were also 

measured at different temperatures. The spectra showed that the dielectric properties of 

the fully polymerized state depend upon the polymerization history. A difference in the 

distribution and the molecular weights of the chains and loops formed appear to 

determine the dielectric properties of the polymer. 
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The activation energy obtained for dc conductivity for the fully polymerized state 

is found to be 174 kJ/mol and independent of the polymerization history. This is 85 

kJ/molless than the activation energy obtained for dielectric relaxation time. This means 

that the ions have a lower energy barrier for translational diflUsion than the dipolar 

vectors in the entangled polymer chains and loops in the fully polymerized state have for 

angular diffusion. 



Chapter 7 

Conclusions 

Because of the discrete nature of the studies, it is appropriate to provide separate 

conclusions in order ofthe study described in this thesis. 

(1). Mathematical considerations of the modulation effects on a physical property 

of an amorphous material held at a fixed mean temperature but under sinusoidal 

modulation of temperature with time, have shown that the second derivative of the 

magnitude of the property with respect to temperature determines the changes observed 

in the average magnitude of a property relative to those observed in the unmodulated 

condition. Sinusoidal modulation of pressure on an amorphous material at a fixed mean 

pressure has a qualitatively similar effect on the average physical property. 

When the temperature of a material is sinusoidally modulated and it is also heated 

at a constant rate, the average normalized heat capacity against temperature shows extra 

features relative to the unmodulated conditions. These features depend on, (i) the extent 

of non~linearity of the relaxation time with real time, expressed in terms of the non~ 

exponential decrease of the fictive temperature with time, (ii) the broadness of the 

distribution of relaxation times, expressed as the stretched exponential parameter, (iii) the 

nature of modulation (sine wave or square wave), (iv) the modulation amplitude, (v) the 

modulation frequency, and (vi) the heating rate. These extra features may lead to a 

180 
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misinterpretation of the sigmoid-shaped endothermic feature of the glass-softening region 

and an incorrect estimate of the glass transition temperature. Its importance is to be 

recognized by Perkin-Elmer and T A Instruments which produce instruments for such 

measurements. 

(2). The earlier calculations of the configurational entropy of linear chain 

polymers, which had implied a negative configurational entropy, has been corrected by 

providing a new mean field approximation, and calculations performed with this 

approximation within the precepts of the lattice hole model show that the configurational 

entropy would approach a positive value at 0 K, in contrast to the current belief that the 

configurational entropy would approach a negative value at 0 K. This has been verified 

by others since the publication of our report. 

Calculations of the configurational entropy and heat capacity as a function of 

temperature, pressure and the extent of polymerization perfonned by using Eyring' hole 

theory and Flory's flexibility bond concepts, have shown that the configurational heat 

capacity will reach a maximum value during the course of polymerization and then will 

decrease, thus showing a local maximum. This prediction has also been verified by others 

since the publication of our study. 

Calculations combined with the configurational entropy theory of viscosity have 

shown that the normalized viscosity of a polymer would increase progressively more 

rapidly with increase in pressure at a fixed temperature and such plots against pressure 

would diverge. This is consistent with the known observations on polymers. 
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(3). In their thermodynamic behavior, CuCN crystals have shown features of a 

glass, and an endothermic effect resembling the glass-liquid transition. This crystal is 

designated as an orientational glass. Its x-ray powder diffraction has shown that a new 

phase of CuCN forms when the known phase of the crystal is heated to 593 K. The new 

phase has a higher enthalpy than the original sample and on cooling it remains metastable 

at 77 K. The structure of the new phase is in the R3m space group, with Cu atoms located 

at (0, 0, 0) sites of the unit cell. Because of the orientational disorder, the C and N atom 

positions could not be determined. The CN chains are found to be aligned along the c­

axis with frozen-in random orientations of CN at room temperature. This new phase also 

shows an endothermic feature associated with the glass transition, as well as the effects of 

structural relaxation during physical aging. Its structural relaxation time determined by 

fitting of the normalized values of the measured heat capacity to a non-linear and non­

exponential relaxation model, has shown an Arrhenius increase with decreasing 

temperature. The chain statistics of the -Cu-CN-Cu-CN- performed in the same manner 

as those of the polymer chains in the lattice-hole model led to reasonable values of its 

configurational entropy and heat capacity due to orientational motions. 

(4). A study of diglycidyl ether of bisphenoI-A, an epoxy resin, reacting with p­

aminodicyclohexyl methane, at different fixed temperatures to produce a polymer 

structure, has allowed us to determine the characteristic feature of the change in 

polymerization reaction kinetics. In this study, as the extent of polymerization increased, 

the chemical reaction kinetics changed gradually from the initially mass-controlled 

process to an ultimately diffusion-controlled process and deviations occurred from the 
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Arrhenius plot of the reaction rate. A method for studying this change, which is 

developed here showed that the extent of polymerization at which the change occurs 

decreases with decrease in the polymerization temperature. This has been supported by 

the numerical simulations of the two cases of the mass-controlled and diffusion­

controlled reactions. 

(5). Dielectric spectroscopy study of the isothennal polymerization of aniline and 

resorcinol diglycidyl ether mixtures which upon chemical reaction fonn a linear chain 

polymer has shown that the dipolar part of the dielectric spectra has a distribution of 

relaxation times which remains constant as polymerization occurs, the dc conductivity 

and the static permittivity decreases, the relaxation time increases. The rate of these 

changes varies with the temperature of polymerization and the manner in which the glass 

transition temperature increases with increase in the extent of polymerization. Further 

polymerization of the mixture to the fullest extent at higher temperatures has led to a 

material of different dielectric properties depending upon the polymerization temperature. 

This demonstrates that the ultimate polymer structure, in tenns of the distribution and the 

molecular weights of linear polymer chain andlor polymer chain loops, varies with the 

polymerization history. 



Appendix A 

The Number of Configurations Available for the 
Monodispersed Polymer Chain System 

For a monodispersed polymer system, by using Flory's approximation ofEqn. (3.2) in 

Chapter 3, the quantity in square brackets ofEq. (3.1) can be simplified as: 

N x-I 
1 1 

N' Ii M(j) [z(j,m)]Flory 
·2 j=l m=l 

N x-I . 
1 1 D[ N N (. 1) lD ( )(xN +No)-[U -l)x+m] = --- x + 0 - ] - x z m ~---=-';'-"--"----'---"'::' 

N! 2N . (xN +NO) 
}=1 m=l 

= _1 (Z)N (z _1)N(x-2) ( 1 )N(X-l)D
N 

[xN + No - (j -1)x]! 
N! 2 xN +NO . [xN +NO - jx]! 

}=1 

=l...(Z)N (z_1)N(x-2)( 1 )N(x-l) (xN +No)! 
N! 2 xN +NO No! 

= (!..)N (z _l)N(x-2) ( 1 )N(x-l) (xN + No)! 
2 xN + NO NINO! 

(AI) 

Therefore, the number of configurations in Flory's model (1957) can be simplified as: 

x {( N(x - 2) X_I )(1-nN(X-2)(z - 2)fN(X-Z)} 

jN(x-2) z-1 z-l 
(A2) 

= (!..)N ( 1 )N(x-l) (xN + NO )! ( N(x - 2) )(Z _ 2)fN(x-2) 
2 xN +NO N!NO! .fN(x-2) 

For Milchev's monodispersed model (1983), using his approximation of Eq. (3.3), the 

quantity in square brackets ofEq. (3.1) can be simplified as: 
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N x-I 

~! 2~ IT MU)IT [zU,m)]Milchev 
j=l m=l 

N x-I 
1 1 il[N N (OI)]il ()N{xN+NO-[U-l)x+m]} = - -- x + 0 - J - x z m ---'--~--=-:=---~--="::'-

N!2N 0 [N-(j-l)](xN+NO) 
J=1 m=l 

N 0 

=_1 ('::')N(z_I)N(x-2)( N )N(X-Oil [xN+NO-(J-l)x]! 

N! 2 xN +No j=l [N -U -l)](x-l)[xN +No - jx]! 

= _1 ('::')N (z _1)N(x-2) ( N )N(x-O (xN + No)! 
N! 2 xN + No NO!(NI)(x-l) 

= ('::')N (z_I)N(X-2) ( 1 )N(x-l) (xN + No)! (NN )(X-1) 
2 xN+No N!No! N! 

(A3) 

Since the quantity in the curly brackets ofEq. (3.1) in Chapter 3 is the same for Flory's 

(1957) and Milchev's (1983) models, the numbers of configurations available in the two 

models are related by, 

(A4) 

For the condition that N = 1, ilMilchev = ~Iory, which means that Milchev's· model will 

also yield negative entropy when T> 0 Kjust as Flory's model. Thus Milchev's model is 

correct only for N -+ 00 and should be modified to be valid for other values of N;?: 1. 

For our model, using the approximation for the effective volume of each repeat 

unit, i.e., Eq. (3.11), the quantity in square brackets ofEq. (3.1) can be simplified as: 
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lIN 
N' N M(j) z(j,m) 

·2 I=l m=l 

x-l 

N x-I 
1 1 n[ N N (. 1)]n ( ) xN{xN +NO -[(j-l)x+m]) = - -- x + 0 - J - x z m ---'-------"-----"-""'---'---....::.:..-. 

N!2N . {xN-[(j-l)x+m]}(xN+NO) 
)=1 m=l 

=_1 (Z)N (z_1)N(x-2)( xN )N(x-l) 
N! 2 xN+No 

xn
N 

[xN +NO -(j-1)x][xN +No -(j-1)x-l]![xN - jx]! 

. [xN + NO - jx]![xN -(j -1)x-l)]! 
J=l 

=_1 (':')N (z _1)N(x-2) ( xN )N(x-l) 
N! 2 xN+No 

xn
N 

[xN + NO -(j -l)x]![xN - jx]![xN -(j -l)x] 
. [xN + NO - jx]![xN - (j -l)x]! 

)=1 

=~(':')N(z_1)N(X-2)( xN )N(x-l) (XN+NO)!_l_n
N 

{xN-[(j-l)x]} 
Nt 2 xN +NO No! (xN)!. 

J=l 

(AS) 

Therefore, the number of configurations available in Eq. (AI) can be simplified 

as: 

.a = (':')N (z_1)N(x-2)( xN )N(x-l) (xN + No)! xN 
2 xN +No (xN)!No! 

x{( N(x-2) )(_1 )0-!)N(X-2)(Z_2)fN(X-2)} 

fN(x-2) z'--l z-1 

= (':')N( Nx )N(x-1) (NX+NO)!XN(N(X-2»)(Z_2)fN(X-2) (A6) 
2 Nx+No (Nx)!NO! fN(x-2) 

Thus the number of configurations available .a can be related to ~ilchev and .Q=lory: 

(XN N!yt (xN)xN N! 
.a = (Nx)! ~ilchev = NN (xN)! .Q=lory 

(A7) 
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x x 
For N = 1, our model yields Q = ~QF10ry = ~QMilchev' which is different from 

x~ xl 

Milchev's model (1983). In the limit of N -'7> 00, we use Stirling's approximation, N! == 

» 1 andflV(x-2) =fNA(1-2Ix»> 1. By using Stirling's approximation In(A!) == AinA - A 

for A» 1, it gives, 

In(AJ:=In( A~. J==A[-fJ 1n fJ-(I-fJ)ln(1-fJ)] 
fJA (fJA)~[(1- fJ)A]~ 

Therefore, In " == N A 1-'::- [- I InI - (1- I) In(l- .n] (
N(X-2)J (?) 
fNC, - 2) .X 

(AS) 

Recalling xN l(xN + No) = e, 

(A9) 

In( xN )N(x-l) = N(x-l)ln(e) = NA(l-~)ln(B) 
xN+No x 

(AlO) 

According to the Boltzmann equation, Swnf = kBlnQ, and therefore, 

~ = kB InQ(N,x,No,f,::) = _ (1- e) In(l- e) _ InB + ~ln(':-) + !lnx 
R kBN A B x x 2 x 

+(1- ~)- flnf -(1- f)ln(l- f)+ f in(::-2)] (All) 

Thus Eq. (All) is the sum ofEqs. (3.6), (3.7), (3.9) and (3.10). 



AppendixB 

The Configurational Entropy for a Polydispersed 

Polymer Chain System 

For a polydispersed system with distribution ofEq. (3.16), Milchev and Gutzow's (1982) 

equation for the net Soon{ can be separated to obtain the contribution from the fractional 

occupancy to the configurational entropy as, 

R 
(Bl) --= 

where, 

(B2) 

co 

=-(l-a)2 ua u In'-B~ -(u+l)au +ua
u+1 ~ (B3) 

u=l 

For a monodisperse polymer system, i.e., Pu = 1 for u = x and Pu = 0 for u if.:. x, we found 

that L = 0 from Eq. (B2). Thus Eq. (Bl) becomes: 

Sea) =_ (l-8)In(l-8) _InB -(l-.l) 
R 61 x x 

(B4) 

which contains the exact negative term, -(1 - .l) as Flory's model. This means that if 
x 

Milchev and Gutzow's (1982) model for a polydispersed system is reduced to a 
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monodisperse system, the negative entropy term would appear, which is inconsistent with 

~he third law of thermodynamics. This means that Milchev and Gutzow's model (1982) 

for a polydispersed polymer chain system would still lead to a negative entropy term, 

which is inappropriate. 

For polydisperse system, Milchev and Gutzow (1982) calculated L numerically 

and gave the best fitting as, 

The other contributions to the configurational entropy are, 

S(mix) 1 _ _ _ _ 
--= =[xlnx-(x-l)ln(x-l)] 

R x 

s(j,x,z) 2 

R = -(1- ~) [flnf +(1- f)ln(l- f)- fln(z-2)] 

(B5) 

(B6) 

(B7) 

(B8) 

Originally, Milchev and Gutzow (1982) used jln(z-l) in Eq. (B8), instead of jln(z-2) 

which Flory (1957) and Gibbs and DiMarzio (1958) had used and which Milchev (1983) 

and Wittmann (1991) later used for a monodispersed system. This is also applicable to a 

polydispersed system. 

In order to compare the results of their approach against the results of our 

approach, Eqs. (Bl) and (BS)- (BS) can be written in terms of a, 



S(B,a) 

= (l-O)ln(l-O) -(l-a)lnO-a+La 
R 0 

(1- 0) In(l- 0) (1 ) 1 0 -2
1 

O.f.3 
~ - -a n -a+a 

() 

s(z,a) 

R = a(l-a)ln(~) 

s(f,a,z) 

--= -a2 [flnf +(1- f)ln(l- f)- fln(z-2)] 
R 

s(mix) 

-R- = -aln(a)-(l-a)ln(1-a) 
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(B9) 

(BlO) 

(BII) 

(BI2) 

Equation (B9) corresponds to our Eq. (3.19), but with the extra negative term 

1 2 
-a +a2(}3. Equations (B1O), (Bll) and (BI2) are exactly the same as our Eqs. (3.22), 

(3.26) and (3.29), but obtained by our approach. We find that Milchev and Gutzow 

(1982) had overlooked one contribution to the configurational entropy in their deduction, 

which we have deducted from their approach to be equal to, 

s(a) -
lnx 

-= -a(l-a)ln(l-a) =-:-
R x 

Equation (BI3) corresponds to our Equation (3.23), but it is different in its form. 

(B13) 
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Nomenclature 

Variables 

a 

fJ 
8 

&" 

p 
a-
T 

OJ 

n 
f 
«p 
Cp 

CP.conf 

D 
E 

f 
H 
b.lJ* 
k 
N 
No 
P 
Pu 
PR 

q 
S 
Sconf, Sc 

Description 

extent of polymerization 
non-exponential parameter 
volume ratio of a repeat unit (monomer) to a hole 
dielectric constant 
frequency-dependence of dielectric constant 
time dependence of dielectric constant 
real part of the dielectric constant 
imaginary part of the dielectric constant 
limiting low-frequency relative permittivity 
limiting high-frequency relative pennittivity 
magnitude of the dielectric relaxation 
normalized relaxation function 
viscosity 
fractional lattice occupancy, or dimensionless effective density of a 
lattice 
general property 
conductivity 
relaxation time 
angular frequency 
microcanonical partition function, or the number of microstates 
reduced time variable 
relaxation function 
heat capacity under constant pressure 
configurational heat capacity under constant pressure 
diffusion coefficient 
activation energy 
flexibility of polymer chain 
enthalpy 
activation enthalpy 
relaxation rate 
number of polymer chains in a polymer system 
number of holes in a polymer system 
pressure 
instantaneous polarization 
eqUilibrium or long-time limit of the polarization 
heating or cooling rate 
entropy 
configurational entropy 
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x 
x 

x 
y 

Constants 

time 
temperature 
fictive temperature 
glass transition temperature 
activation energy of flexible bonds 
activation energy of holes 
activation energy of eN group orientated from c-axis 
"molar volume" of a hole 
molar volume ofa repeat unit (monomer) 
volume 
non-linear parameter 
number of monomers on a polymer chain, or chain length 

average chain length of a polymer system 
general variable (general force) 
coordination number of lattice 

Description 

absolute dielectric constant in vacuum, 8.854 pF/m 
Boltzman constant, 1.381 x 10-23 JIK 
Avogadro number, 6.022x J 02:' ImoI 
gas constant, 8.314 J/(mol·K) 
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