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ABSTRACT

The mechanisms regulating the rate-determining enzyme of carbohydrate
oxidation, pyruvate dehydrogenase (PDH), were examined in human skeletal muscle at
rest and during exercise in response to acute respiratory alkalosis and short- and long-
term aerobic training.

Voluntary hyperventilation-induced respiratory alkalosis (R-Alk) delayed PDH
activation during the transition from rest to submaximal exercise. A mismatch between
pyruvate production and its oxidation in R-Alk resulted in a 35% higher lactate
accumulation. These effects were not seen during steady state exercise. The results from
this study suggest that respiratory alkalosis may play an important role in lactate
accumulation during the transition from rest to exercise in acute hypoxic conditions, but
that other factors mediate lactate accumulation during steady state exercise.

Short-term aerobic training did not alter resting skeletal muscle total PDH (PDHt)
and PDH kinase (PDK) activities, or their respective protein expressions compared to pre-
training. In contrast, long-term aerobic training (Post) compared to pre-training (Pre)
resulted in a 31% increased total PDHt activity, partially due to a 1.3 fold increased
protein expression of a PDH subunit, PDHEa. Despite the increased PDHt activity post-
training, there was an approximate 37% attenuated activation of PDH Post after 15 min of
exercise at the same absolute submaximal workload compared to Pre. PDK demonstrated
a 2 fold increased activity Post, partially attributed to a 1.3 fold increased PDK2 isoform
protein expression. The training-induced increased PDK2 isoform expression, pyruvate-

sensitive PDK isoform, coincided with an attenuated skeletal muscle pyruvate content
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Post during submaximal exercise at the same absolute workload. The results of these
findings suggest that aerobically trained human skeletal muscle has an increased maximal
capacity to utilize carbohydrates, evident by increased PDHt, but increased metabolic
control sensitivity to pyruvate during submaximal exercise through increased contribution

of PDK2 to total PDK activity.
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The present thesis was prepared in the “sandwich format™ as outlined in the
School of Graduate Studies’ Guide for the Preparation of Theses. This thesis is
comprised of three original research papers. One of the papers (Chapter 1) has been
published and the two others (Chapters 2 and 3) have been submitted to peer reviewed

journals with the candidate as first author.
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GENERAL INTRODUCTION

The rate of ATP demand during exercise in human skeletal muscle can increase
by up to 100-fold over rest (Hochachka & Matheson, 1992). The intramuscular content
of ATP is limited however and would become quickly depleted if not for the precise
metabolic control exhibited by the muscle. As a result, the rates of ATP production and
ATP utilization are closely matched. This is accomplished primarily through enzyme
regulation, utilizing metabolic pathways that release the chemical energy from their
respective available fuels. At rest and during exercise, the primary fuels utilized by
skeletal muscle are carbohydrates, in the form of plasma glucose and muscle glycogen,
and fats, in the form of plasma free fatty acids (FFA) and intramuscular triglycerides (TG;
see Henriksson, 1995;Holloszy et al., 1998;Hultman, 1995 for review). Amino acids are
also metabolized, but account for less than 3-6% of the energy requirements during
exercise (see Hargreaves & Snow, 2001 for review). Skeletal muscle metabolism is a
complex yet integrated series of processes that lead to a common goal of generating ATP.
Once produced, ATP is the only available form of energy that is utilized by the contractile
apparatus within the muscle. Depending on the source of fuel, ATP regeneration can
occur either through substrate-level or oxidative phosphorylation. Substrate-level
phosphorylation occurs mainly in the cytosolic compartment of the cell via
phosphocreatine (PCr) breakdown and glycolysis. On the other hand, oxidative
phosphorylation occurs in the mitochondria and is dependent on the availability of

NADH, O,, ADP and inorganic phosphate (P;).
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At rest, skeletal muscle utilizes approximately equal amounts of carbohydrates, in
the form of plasma glucose, and fat, in the form of plasma FFA (Van Loon et al., 2001).
During low to moderate levels of exercise (up to approximately 55% maximal workload),
total fat and carbohydrate oxidation rates increase from rest, with contributions from
muscle glycogen and intramuscular triglycerides accounting for over 65% of energy
expenditure (Romijn ef al., 1993;Van Loon et al., 2001). However, the relative
contribution of fat and carbohydrate to total energy expenditure remains similar to rest
(Van Loon et al., 2001). At higher workloads (>70% maximal workload), carbohydrates,
in the form of muscle glycogen, become the dominant fuel source (Romijn et al.,

1993;Van Loon et al., 2001).

Pyruvate dehydrogenase complex

The pyruvate dehydrogenase enzyme complex (PDH), found in the mitochondrial
inner membrane-matrix space, is an important regulatory site between carbohydrate-
derived substrate-level and oxidative phosphorylation in resting and exercising skeletal
muscle (Fig 1). Carbohydrate-derived oxidative phosphorylation is dependent on the
activity level of PDH, as it is the rate-determining enzyme that regulates the entry of
glycolytically produced pyruvate into the tricarboxylic acid (TCA) cycle. The PDH
enzyme reaction is catalyzed sequentially by three components of the complex. Pyruvate
dehydrogenase (E,) is the first component of the enzyme complex that irreversibly
decarboxylates pyruvate. This results in a cascade of enzyme reactions through the other

two enzymatic subunits (dihydrolipoamide transacetylase, E;;
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Figure 1. Simple schematic of skeletal muscle carbohydrate metabolism. Pyruvate
dehydrogenase (PDH) is situated in an important regulatory step between A) substrate-
level phosphorylation and B) oxidative phosphorylation. Phos, glycogen phosphorylase;
CK, creatine kinase; LDH, lactate dehydrogenase; ETC, electron transport chain; PDH,

pyruvate dehydrogenase; TCA cycle, tricarboxylic acid cycle.
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dihydrolipoamide dehydrogenase, E3) resulting in a net production of acetyl-CoA (Voet
& Voet, 1995). In addition, PDH contains a tightly-associated protein (E3bp), anchoring
E3 subunits to the E2 core (Harris et al., 1997), and two regulatory enzymes, PDH kinase
(PDK) and PDH phosphatase (PDP; Denton et al., 1975;Wieland, 1983). Structurally, the
PDH enzyme complex is built around an inner core of 60 E, subunits (see Harris ef al.,
2002 for review). To this core, 30 E; heterotetrameric (02p,) and 12 Esbp subunits are
bound noncovalently, with 12 E; homodimers bound to the complex by way of the E;bp.
Including 1-2 homodimers of PDK and 2-3 heterodimers of PDP, the PDH multienzyme
complex is composed of 222-226 subunits (Harris et al., 2002).

PDH exists in two interconvertable forms; a phosphorylated inactive form and a
dephosphorylated active form (Fig 2). Interconversion of PDH is accomplished by the
two covalent modulators PDK and PDP, which catalyze the phosphorylation and
dephosphorylation of PDH, respectively (Denton et al., 1975;Stansbie, 1976). The PDH-
E o subunit possesses 3 seryl residues that, when phosphorylated, determine the
activation state of PDH. Phosphorylation of the first site (Ser-264; Korotchkina & Patel,
1995;Yeaman et al., 1978) is sufficient for more than 98% inactivation of the enzyme
complex. In addition, the heterotetrameric E; which processes 2 a subunits, exhibits half-
of-the-site reactivity, as phosphorylation of one of the two Ser-264 is needed for
inactivation of the PDH complex. The other two sites are considered barrier sites and
phosphorylation of these sites (Ser-271, site 2; Ser-203, site 3) result in a negligible

decrease in PDH activity (Korotchkina & Patel, 1995;Yeaman ef al., 1978), however,
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Figure 2. Pyruvate dehydrogenase enzyme complex control by a phosphorylation and

dephosphorylation cycle.



PhD Thesis — P.J. LeBlanc McMaster - Medicine

represents a hyperphosphorylated enzyme complex that requires a greater degree of
dephosphorylation by PDP before activation.

The complexity of PDH control by the two covalent modulators in mammals is
enhanced by the presence of four PDK isoforms (PDK1-4; Bowker-Kinley et al., 1998)
and two PDP isoforms (PDP1 and 2; Huang et al., 1998). Inter comparison of both PDK
and PDP isoforms reveals differences in specific activities and kinetic properties, tissue
specific expression and concentration, species-specific tissue distribution, and their
responsiveness to different allosteric regulators, resulting in unique responses to certain
metabolic demands. The isoform-specific response to allosteric modulators will be
discussed in the Dynamic Regulation section below.

PDKI1 has a limited tissue distribution, being only found in cardiac tissue of rats
(Bowker-Kinley et al., 1998) and humans (Gudi et al., 1995). However, in humans, small
amounts are found also in skeletal muscle, liver, pancreas, brain, placenta, lung, and
kidney (Gudi et al., 1995). PDK1 demonstrates a high specific activity compared to the
other isoforms (Gudi et al., 1995). The site specific phosphorylation of the three sites on
Eja by PDK1 compared to the other isoforms is unique in that it has mid (site 1) to low
(site 2) phosphorylation activity, however, it is the only isoform that phosphorylates site 3
(Korotchkina & Patel, 2001).

PDK2 has the lowest specific activity of all the isoforms and is the most
ubiquitous in terms of tissue distribution, being found in heart, brain, spleen, lung, liver,
skeletal muscle, kidney, and testis of rat (Bowker-Kinley et al., 1998). Humans

demonstrate the same tissue distribution, however the highest concentration of PDK2 is
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found in cardiac and skeletal muscle (Gudi et al., 1995). PDK2 demonstrates the highest
rate of PDH-Ea site 1 phosphorylation of all PDK isoforms, and approximately doubles
its activity with a reduced or acetylated E, inner lipoyl domain compared to the oxidized
form (Korotchkina & Patel, 2001).

PDK3 has the highest specific activity of all the isoforms (Korotchkina & Patel,
2001). Its tissue distribution is somewhat different than that of the other PDK isoforms.
In rats, PDK3 has the highest concentrations in testis, but is also found in brain, spleen,
lung, and kidney (Bowker-Kinley et al., 1998), whereas in humans it is present only in
heart and skeletal muscle (Gudi et al., 1995).

The final PDK isoform, PDK4, has a tissue distribution similar to that of PDK2
and 3, with the exception that the relative mRNA abundancy was absent in brain, spleen,
and testis of rats (Bowker-Kinley et al., 1998). Like PDK2, PDK4 was also highest in
concentration in cardiac and skeletal muscles (Rowles e al., 1996).

Very little is known about the two PDP isoforms. The relative activities of each
isoform are quite similar (Huang et al., 1998). PDP1 is preferentially expressed in heart,
brain and testis of rats, with detectable levels in spleen, lung, liver, skeletal muscle and
kidney (Huang et al., 2003). In contrast, PDP2 is abundant in heart, brain, liver, adipose
tissue and kidney, lower levels detected in spleen and lung and below the level of
detection in skeletal muscle and testis (Huang ez al., 1998;Huang et al., 2003).

The regulation of PDH is complex and multifactorial. Acute or short-term
regulation of PDH can be accomplished through covalent, allosteric, substrate and end-

product regulation. On the other hand, more chronic or long-term regulation can occur
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through stable increased protein content of individual components that make up the PDH
complex, which include PDH subunits and the two regulatory proteins PDK and PDP.
For the purpose of this thesis, acute or short-term modulation of PDH has been termed
dynamic regulation whereas more chronic or long-term modulation has been termed

stable regulation.

Dynamic Regulation

There appears to be a direct correlation between the activation of PDH and its
catalytic activity. Previous human skeletal muscle studies have shown that flux through
PDH is approximately equivalent to its level of activity (Gibala et al., 1998;Howlett et al.,
1998;Putman et al., 1995b;Putman et al., 1995a;Watt et al., 2002a) and activation of PDH
through the interaction of metabolic regulators will be equal to its flux. This association
is lost only in situations of limited substrate availability, which was demonstrated in
human skeletal muscle during exercise after a low carbohydrate diet (Putman et al.,
1993). Covalently, the activity of PDH is determined by the proportion of the complex
transformed from the inactive form to the active form, which is mediated by PDK and
PDP. This control of PDH activation is a result of the dynamic combined activity of both
PDK and PDP, with changes to either regulatory enzyme altering the activation state of
PDH. Each of the covalent regulators of PDH is subject to allosteric regulation.
Increased ratios of acetyl-CoA-to-CoA, ATP-to-ADP and NADH-to-NAD" activate PDK
and inhibit PDP (Denton et al., 1975;Pettit et al., 1975). In addition, pyruvate inhibits

PDK (Cate & Roche, 1978), whereas Ca?', insulin, and H' activate PDP (Chen et al.,
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1996). The evidence of dynamic regulation by the allosteric effectors discussed below
are imparted on total PDK and PDP activities and do not reflect individual isoform

response, unless otherwise stated.

Calcium

Calcium (Ca'™") is an important regulator, responsible for PDP-mediated
dephosphorylation and activation of the E a subunit, but only in the presence of
magnesium (Mg""). Increased Ca™" stimulates PDP activity, specifically PDP1 (Huang et
al., 1998) by 1) decreased Ky, of PDP for Mg™" (Thomas et al., 1986) and 2) assisted
binding of PDP with E, (Pettit et al., 1972), more specifically the inner lipoyl domain
(Chen et al., 1996;Yang et al., 1998). In addition, it has been shown that Ca™ can also

inhibit PDK activity (Cooper et al., 1974).

Insulin

Much like Ca™, insulin appears to act on PDP, specifically PDP2 (Huang et al.,
1998). Insulin has been reported to acutely activate PDH through PDP activation
(Macaulay & Jarett, 1985;Nakai et al., 1999;Popp et al., 1980). The mode of action of
insulin is through an increased sensitivity of PDP to Mg independent of changes in Ca*™"
(Thomas et al., 1986). The effects of insulin may not be limited to PDP as it has been
demonstrated in vivo that administration of insulin after 24 hours of starvation restores
PDK activity similar to the fed state in rat lactating mammary gland (Baxter & Coore,

1978) and kidney (Cockburn & Coore, 1995).
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ATP and ADP

The influences of ATP and ADP as allosteric modulators are directed towards
PDK. Phosphorylation, and resultant inactivation, of PDH by PDK is ATP dependent.
ADP competes with ATP for the catalytic binding site (Linn ef al., 1969), thus preventing
ATP-mediated PDK activity. The apparent Ky, values of the PDK isoforms for ATP were
some what similar between PDK 1, PDK3 and PDK4 (50-65 uM) and lower for PDK2 (10
uM; Bowker-Kinley et al., 1998). For PDK2, PDK3 and PDK4, the apparent K; for ADP
were within a similar range (80-120 uM), whereas PDK1 was approximately 3 times

higher (370 uM; Bowker-Kinley et al., 1998).

NADH and NAD"

The effects of NADH and NAD" on mammalian PDH complex in vitro have been
well documented. NADH (0.01-0.5 mM) acts as an allosteric activator of PDK (Cate &
Roche, 1978;Cooper et al., 1975;Kerbey et al., 1979;Pettit et al., 1975) and inhibitor of
PDP (Pettit et al., 1975), whereas NAD" (0.5-2 mM) has no effect on PDK on its own but
reverses the activation induced by NADH (Cooper ef al., 1975). NADH concentration
required to achieve maximal stimulation of PDK is ~20 pM, with half-maximal at about 4
uM (Cate & Roche, 1978). PDK1-3 demonstrate similar activation response with
increased [NADH] (1.1-1.3 fold increase), whereas PDK4 activity approximately doubles
(Bowker-Kinley et al., 1998). It has been hypothesized that the reduction of the lipoyl

moiety of the PDH-E, subunit by NADH is responsible for the increased activation of
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PDK (Cate & Roche, 1978) and inhibition of PDP (Rahmatullah & Roche, 1988). Few
measurements have been made of in vivo [NADH] and [NAD"], with mixed results, due
to methodological differences. In addition to methodology, subcellular distribution of
NADH and NAD" has made it difficult to estimate mitochondrial redox and its effects on
PDH activation. Thus, until the development of a reliable method to determine NADH

and NAD" in tissue, in vivo effects of redox on PDH remain speculative.

Acetyl CoA and CoA

The effects of acetyl-CoA and CoA on PDK occur independent of each other as
well as together. Acetyl-CoA (0.01-0.5 mM) stimulates PDK activity (Cooper et al.,
1975;Kerbey et al., 1979;Pettit et al., 1975), which is increased in the presence of
reducing compounds (e.g. NADH, thiols) (Cate & Roche, 1978;Pettit et al., 1975). In
fact, one of the most recognizable differences between PDK?2 and the other isoforms is its
unique response to acetyl-CoA and a high NADH/NAD" ratio, increasing its activity to
more than 3 fold compared to control (Bowker-Kinley et al., 1998;Popov, 1997). It has
been hypothesized that this stimulation occurs through enhanced acetylation of the inner
lipoyl moiety of PDH-E, subunit (Cate & Roche, 1978). On the other hand, CoA inhibits
PDK activity and the strength of this inhibition is decreased with increasing

NADH:NAD" (Cooper et al., 1975;Pettit et al., 1975).

11
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Pyruvate

Pyruvate serves as both a substrate for PDH and an allosteric inhibitor of PDK. In
vitro, pyruvate has been shown to inhibit PDK activity (Baxter & Coore, 1978;Cate &
Roche, 1978;Cooper et al., 1974). Comparatively, dichloroacetate (DCA), a pyruvate
analogue, inhibits PDK activity in a concentration-dependent manner (Cooper et al.,
1974;Whitehouse ef al., 1974). PDK2 demonstrated the highest sensitivity to DCA of all
the isoforms, whereas PDK3 was relatively insensitive and PDK1 and PDK3 were
intermediate (Bowker-Kinley et al., 1998). The sensitivity of PDK to either pyruvate
(Pratt & Roche, 1979) or DCA (Baker et al., 2000;Popov, 1997) is increased with higher

[ADP].

pH

Both regulatory proteins of PDH are pH sensitive. It has been reported that
bovine kidney and heart PDK have a peak optimum pH of 7.0-7.2 in the presence of
either Mg™ or Mn"", whereas that for PDP is 6.7 in the presence of Mg and 7.5-7.6 in

the presence of Mn"" (Hucho e al., 1972).

Intrinsic and free forms of PDK and PDP

PDK is known to exist in two states, intrinsic (bound) and free (unbound; Jones &
Yeaman, 1991;Kerbey et al., 1984;Mistry et al., 1991). Intrinsic PDK binds to the
innermost lipoyl domain of the E; component of PDH (Ravindran et al., 1996) and

represents only 15-30% of the total PDK activity (Kerbey et al., 1984;Mistry et al.,

12
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1991;Vary & Hazen, 1999). Shifts from free to intrinsic PDK may enhance the enzyme
activity with little or no change in protein synthesis. In addition, intrinsic PDK activity is
enhanced when associated with higher ratios of reduced or acetylated forms of the E,-
lipoyl domain compared to the oxidized form (Korotchkina & Patel, 2001), which is
dependent on the intramuscular content of allosteric modulators of PDK. Although this
hasn’t been studied directly, it can be assumed that the same intrinsic and free forms of
PDP also exist. The activity of PDP is altered through changes in intramuscular content
of allosteric modulators, thus altering PDP’s association with the inner lipoyl domain of

the PDH-E, subunit.

PDH regulation in human skeletal muscle during submaximal exercise

The glucose-fatty acid (G-FA) cycle, first proposed by Randle and colleagues (see
Randle, 1998 for review), suggested that carbohydrate utilization by muscle is down
regulated with increased availability and utilization of fat. It was postulated that
increased fat oxidation increased muscle citrate and acetyl-CoA content, resulting in
inhibition of phosphofructokinase and PDH, respectively. The possibility exists that this
regulatory mechanism may regulate fuel utilization in human skeletal muscle at rest,
however, there has been some controversy regarding the existence of the G-FA cycle
during exercise.

Numerous studies have examined the regulation of PDH activation during
submaximal exercise in human skeletal muscle. These studies were carried out using

various submaximal exercise intensities, altered substrate availability, induced acid-base
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changes, and altered oxygen delivery in an attempt to ascertain which of the allosteric
modulators are responsible for regulating the exercise-induced activation of PDH and
determine the existence of the G-FA cycle in human skeletal muscle during exercise.

The activation of PDH during exercise is dependent on the intensity of exercise,
with higher intensities resulting in higher PDH activation (Howlett ez al., 1998). This
correlation may be due to exercise-dependent alteration in [Ca™"], glycogenolytic flux
(thus pyruvate availability) and/or energy status of the cell (ADPy), known modulators of
PDH.

Acute increases in fat availability, with the infusion of Intralipid for 30 min,
resulted in an attenuated activation of PDH during moderate intensity exercise (40-65%
VOomax; Odland et al., 1998;0dland et al., 2000). The increased fat availability to the
muscle at the early stages of exercise stimulates fat metabolism, resulting in an increased
mitochondrial [NADH], and decreases glycogenolysis, resulting in decreased pyruvate
availability. NADH inhibits PDP and activates PDK (Pettit et al., 1975) where as
pyruvate inhibits PDK (Baxter & Coore, 1978;Cate & Roche, 1978;Cooper et al., 1974),
resulting in an attenuated activation of PDH. This effect is lost at higher intensities of
exercise (85% VOamax; Dyck et al., 1993) as other modulators, such as Ca™ and ADPy,
may override the effects of NADH and pyruvate.

In contrast, acute increases in carbohydrate availability to skeletal muscle with
nicotinic acid (Stellingwerff et al., 2003) or carbohydrate (Watt et al., 2002b) ingestion or
epinephrine infusion (Watt et al., 2001) increased PDH activation, and thus carbohydrate

oxidation, during submaximal exercise. This was attributed to epinephrine-induced
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increases in intramitochondrial Ca™" (Stellingwerff et al., 2003;Watt et al., 2001) or
carbohydrate-induced increase in plasma insulin (Watt et al., 2002b), with no changes
seen with the other PDH modulators.

Increasing acetyl-CoA to CoA ratio in vivo with a low carbohydrate diet (Putman
et al., 1993;St. Amand et al., 2000) or acetate infusion (Putman et al., 1995b) decreased
the activation of PDH at rest. The modulation of acetyl-CoA:CoA on PDH activation is
lost during submaximal exercise, being overridden by PDH modulators such as pyruvate
(Putman et al., 1993;Putman et al., 1995b). Thus, it appears that both acetyl-CoA and
CoA are important regulators of PDH activation at rest but not during exercise.

Intramitochondrial [pyruvate] and carrier-mediated mitochondrial pyruvate
transport have been proposed as a source of control over PDH activation (see Wieland,
1983 for review). Some studies have demonstrated that pyruvate availability in
exercising human skeletal muscle correlates with the level of PDH activation (Howlett et
al., 1998;0dland et al., 2000;Parolin et al., 1999;Putman et al., 1993;Putman ef al.,
1995a;Putman et al., 1999;St.Amand et al., 2000). However, recent studies demonstrate
an altered pyruvate flux through PDH, despite no change in skeletal muscle pyruvate
content (Stellingwerff et al., 2003; Watt et al., 2002b;Watt et al., 2002a). This
discrepancy regarding the contribution of skeletal muscle pyruvate in regulating PDH
activation may be attributed to; 1) intramitochondrial [pyruvate] would influence PDH
activation, however, the [pyruvate] reported are of the whole muscle, 2) changes in
skeletal muscle pyruvate content needed to alter PDH activation may be too small to

detect as the K of pyruvate in human skeletal muscle is currently unknown 3) other
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modulators, such as ADPy, may be more important in regulating PDH activation, with
pyruvate playing a minor role.

Alterations in systemic acid-base status lead to changes in lactate production and
endogenous and exogenous skeletal muscle carbohydrate catabolism. These changes
have been attributed, in part, to the differences in pH optima of the two covalent
modulators of PDH, PDK and PDP. Decreased systemic pH, through metabolic acidosis,
resulted in a decreased activation of PDH during incremental submaximal exercise
(Hollidge-Horvat et al., 1999). This is contrary to what would be expected if the
activation of PDH was dependent on the pH optimums of both PDK and PDP, with an
acidotic state (intramuscular pH; 6.8 in control vs. 6.6 in acidotic) that would favor PDP
and inhibit PDK. Contrary to acidosis, metabolic alkalosis resulted in an increased
activation of PDH during incremental submaximal exercise, however, only during 60%
VOomax (Hollidge-Horvat et al., 2000). Again, this is contrary to what would be expected
if the pH optima of PDK and PDP solely determined the activation of PDH, with an
elevated pH during alkalosis favoring an increased PDK activity and inhibiting PDP.
These results suggest that factors other than pH sensitivity of PDK and PDP contribute to
PDH activation with induced metabolic acid-base alterations.

Elevated whole body and muscle lactate accumulation during exercise in a
hypoxic environment has been attributed to delayed activation of skeletal muscle PDH
(Heigenhauser & Parolin, 1999). Changes in O, availability to the whole body do not
necessarily translate to changes in O, supply at the exercising muscle, thus affecting PDH

activation during exercise, since alterations in muscle blood flow help maintain VO,
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(Adams & Welch, 1980;Bender ef al., 1988;Knight et al., 1993). However, changes in O,
availability may indirectly alter PDH activity. Hypoxia (10.9% inspired O,) delayed the
activation of PDH at the onset of exercise, with no changes in the intramuscular content
of known regulators of PDH (Parolin et al., 2000). Although not measured, it was
hypothesized that the hyperventilation-induced increase in muscle pH contributed to the
delayed activation of PDH with hypoxia. This effect was lost later in exercise as pH
decreased in parallel with increased lactate accumulation.

In summary, the regulation of PDH activation during exercise in human skeletal
muscle is not as previously proposed by the G-FA cycle, as the regulation of acetyl-CoA
imparted on PDH is lost during exercise. During exercise, intensity-dependent changes in
skeletal muscle [Ca™'] crudely activate PDH, whereas changes in [pyruvate], energy

status of the cell (ADPy), and redox (NADH and NAD") fine tune PDH activation.

Stable Regulation
PDH and its subunits

Long-term or chronic alterations to the activation state of PDH can be
accomplished through stable changes in the absolute levels of the PDH complex subunits,
thus increasing total PDH (PDHt). Changes in the expression of PDH subunit genes, and
resultant altered PDHt, would increase maximum potential carbohydrate oxidation. Thus,
alterations to overall metabolism (e.g. repeated bouts of exercise) would be reflected in

adaptive changes in PDHt and expression of PDH subunits.
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A few studies have examined the effects of training on human skeletal muscle
PDHLt activity, demonstrating no change after 8 days of aerobic exercise (Putman et al.,
1998) and 5 weeks of strength exercise (Ward et al., 1986). However, a recent study
reported an increase in PDHt activity with long-term aerobic exercise in mouse hind limb
(Houle-Leroy et al., 2000), suggesting that prolonged aerobic training may alter skeletal
muscle PDHt activity in humans.

In contrast, no studies have been conducted to examine the relative transcriptional
and translational responses of the PDH subunits in skeletal muscle during adaptive
changes in PDHt. However, three studies examined PDH subunit expression in response
to obesity (Amessou ef al., 1998), altered diet (Da Silva et al., 1993), and suckling to
weaning transition (Maury et al., 1995) in rat non-muscle tissues. Also, increased PDH
subunit expression, with concomitant increased PDHt activity, has been demonstrated in
differentiating 3T3-L1 adipocytes (Hu ef al., 1983). Thus, long-term regulation of PDHt
involves coordinated regulation of PDH subunit transcriptional and/or translational

expression.

PDK and PDP

Alterations in absolute levels of either PDH regulatory protein, PDK and PDP,
could also contribute to the regulation of PDH activation. The rate of activation of PDH
is dependent on the ratio of active PDK and PDP, thus change in the expression of either
covalent modifier would alter the rate of activation or inactivation of PDH. Skeletal

muscle PDK responds to physiological and pathological perturbations, demonstrating
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increased activity in rats with fasting (Fuller & Randle, 1984;Peters et al., 2001a;Stace et
al., 1992;Sugden et al., 2000a; Wu ef al., 1999), high-fat feeding (Holness et al., 2000),
chemically-induced diabetes (Fuller & Randle, 1984;Wu et al., 1999), aerobic training
(Nakai et al., 1999), and sepsis (Vary, 1991;Vary & Hazen, 1999), along with high-fat
feeding in humans (Peters et al., 1998;Peters et al., 2001b). In contrast, only one study
examined the effects of physiological or pathological perturbations on skeletal muscle
PDP, reporting no changes in PDP activity in rat hind-limb with fasting or alloxan
diabetes (Fuller & Randle, 1984). The only studies to demonstrate changes in PDP
activity were restricted to non-muscle tissues, reporting decreases in PDP activity during
starvation in rat kidney (Cockburn & Coore, 1995) and starvation and diabetes in rat heart
and kidney (Huang et al., 2003). Thus, stable regulation of PDK, rather than PDP, may
be central to control of the activation state of PDH in skeletal muscle.

Little information is available regarding the contribution of PDK1 and 3 isoforms
in adaptive changes to skeletal muscle PDK activity due to their relative tissue
distribution, since PDK2 and 4 are the most abundant isoforms present in skeletal muscle.
A recent study that examined the relative response of PDK isoforms in rat skeletal muscle
demonstrated no change in PDK1 protein content with fasting (Peters et al., 2001a).

More studies, specifically in humans, are needed to ascertain the relative importance of
PDK1 and 3 to adaptive increased PDK activity.

Most of the literature has focused on the adaptive response of PDK4. Rat skeletal

muscle PDK4 demonstrated increased protein expression with fasting (Peters et al.,

2001a;Sugden et al., 2000a; Wu et al., 1999), streptozotocin-induced diabetes (Wu ef al.,
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1999), high fat feeding (Holness et al., 2000), and hyperthyroidism (Sugden et al.,
2000b). High fat feeding (Peters et al., 2001a), starvation and streptozotocin-induced
diabetes (Wu et al., 1999) also increased skeletal muscle PDK4 mRNA levels. The
effects seen with fasting and diabetes are reversed with refeeding (Sugden et al.,
2000a;Wu et al., 1999) and insulin (Wu et al., 1999), respectively. To date, only one
study has examined PDK4 mRNA and protein expression together, reporting an increase
in both with a high fat diet in human skeletal muscle (Peters et al., 1998). Other human
skeletal muscle studies only examined mRNA, reporting increased PDK4 with starvation
(Pilegaard et al., 2003) and recovery from an acute bout of exercise (Nordsborg et al.,
2003;Pilegaard et al., 2000). These increases in PDK4 expression have been attributed to
fatty acid activation of peroxisome proliferators-activated receptors (PPAR), specifically
PPARa (Huang et al., 2002;Wu et al., 1999;Wu et al., 2001). Thus, it appears that
PDKA4, the “lipid-status” responsive isoform (Sugden et al., 2001), responds to acute
alterations in lipid availability.

Few studies have examined the adaptive response of PDK2, reporting
unresponsive expression to fasting (Peters et al., 2001a;Sugden et al., 2000a;Wu et al.,
1999) and streptozotocin-induced diabetes (Sugden ef al., 2000a;Wu ef al., 1999) in rats
and to high fat diet (Peters et al., 1998) in humans. However, one study examined the
correlation between insulin sensitivity and PDK mRNA in skeletal muscle of a population
of Pima Indians, demonstrating that PDK2, and to a lesser extent PDK4, mRNA were

correlated with clinical characteristics of the onset of type II diabetes (Majer ez al., 1998).
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Thus, the role of PDK2 may be to mediate PDH activity during more long-term

perturbations (e.g. exercise training, diabetes).

Rationale for the Following Studies

The primary purpose of this thesis was to assess the control of PDH activation,
and thus carbohydrate metabolism, in human skeletal muscle during exercise. This was
accomplished by examining the mechanisms by which allosteric and covalent modulators
regulate PDH during acute (respiratory alkalosis, short-term aerobic exercise) and chronic

(long-term aerobic exercise) perturbations.

First Study — Respiratory Alkalosis

During periods of acute hypoxia, submaximal exercise at a given absolute power
output results in increases in both muscle and plasma lactate concentrations compared to
normoxia (Brooks et al., 1992;Brooks et al., 1998;Green et al., 1992b;Katz & Sahlin,
1987;Parolin et al., 2000). The concept of lactate production was previously ascribed to a
reduction in oxygen supply, with lactate production supplementing the reduced ATP
supply from oxidative phosphorylation. Recently, it has been suggested that lactate
production may be due to an imbalance of pyruvate metabolism rather than limited
oxygen supply (see Heigenhauser & Parolin, 1999 for review). The flux-generating
enzyme of pyruvate production, through glycogenolysis, is glycogen phosphorylase
(Phos), whereas pyruvate-derived acetyl-CoA availability for the TCA cycle is controlled

by PDH. A mismatch between pyruvate production and pyruvate oxidation leading to
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excess pyruvate will result in it being converted to lactate by the enzyme lactate
dehydrogenase (LDH). This takes place simply by mass-action effects because LDH is
an enzyme with an equilibrium constant that favors lactate over pyruvate in skeletal
muscle (Voet & Voet, 1995). Thus, increased pyruvate production and/or decreased
pyruvate oxidation will lead to an increased lactate accumulation.

Hyperventilation is a direct result of hypoxia, with ventilation rates rising to 150-
200 % above normoxia (Lenfant & Sullivan, 1971). The result of hyperventilation is an
associated alkalosis in the blood, with a rise in pH of 0.1-0.3 units (Davies et al.,
1986;Edwards & Clode, 1970;Zborowska-Sluis et al., 1970). The elevated blood pH may
translate into an elevated muscle pH (Heisler, 1975), which would potentially increase
and decrease the activity of both PDK and PDP, respectively, resulting in a decreased
activation state of PDH. Thus, extracellular alkalosis through voluntary hyperventilation
may account, in part, for decreased PDH activation and result in increased lactate
production seen during bouts of hypoxia.

The purpose of the first study was to examine the effects of respiratory alkalosis,
through voluntary hyperventilation, on the activation state of PDH, along with its
metabolic regulators, and lactate production in human skeletal muscle at rest and during
exercise. The hypothesis was that hyperventilation will result in decreased activation of
PDH due to the pH sensitivity of both PDK and PDP, with a resultant increase in lactate
production. In addition, rates of glycogenolysis, along with Phos activity and its
metabolic regulators, will also be examined, to ascertain their contribution to increased

lactate production seen with respiratory alkalosis.
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Second Study — Short- and Long-Term Aerobic Training, Covalent Modulators

During exercise at maximal oxygen uptake, carbohydrates are the only fuel
utilized in skeletal muscle, mainly in the form of muscle glycogen (see Hultman, 1995 for
review). Repeated bouts of aerobic exercise have been shown to increase maximal
oxygen uptake, muscle glycogen storage, and muscle glycogen utilization during exercise
at maximal oxygen uptake (see Henriksson, 1995 for review). Central to this adaptation
may be PDH, where training-induced mitochondrial biogenesis may result in an increased
total PDH (PDHt). To date, only two studies have examined the effects of training on
human skeletal muscle PDHt, demonstrating no change after 8 days of aerobic exercise
(Putman et al., 1998) and 5 weeks of strength exercise (Ward ef al., 1986). However, a
recent study reported an increase in PDHt activity with long-term aerobic exercise in
mouse hind limb (Houle-Leroy et al., 2000), suggesting prolonged aerobic training may
alter skeletal muscle PDHt activity in humans. Also, few studies have examined the
relative transcriptional and translational responses of each PDH subunit during adaptive
changes in PDHt, reporting changes exclusively in non-muscle tissues (Amessou et al.,
1998;Da Silva et al., 1993;Maury et al., 1995).

Another skeletal muscle adaptive response to prolonged aerobic training is a
greater reliance on fat for ATP synthesis during submaximal exercise (Henriksson,
1977;Hurley et al., 1986;Martin et al., 1993;Phillips et al., 1996b), resulting in a net
glycogen sparing effect. PDH is an important regulatory site for carbohydrate

metabolism. The activation of PDH is a dynamic system and alterations in either PDK
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and/or PDP activity will affect PDH activity. A training-induced attenuated activation of
PDH may be due to an increased PDK or decreased PDP. Regulation of PDK may be
central to control of the activation state of PDH in prolonged metabolic perturbations,
including aerobic training, since skeletal muscle PDK activity responds to a number of
physiological and pathological perturbations in rats (Fuller & Randle, 1984;Holness ef al.,
2000;Nakai et al., 1999;Peters et al., 2001a;Sugden et al., 2000a;Vary & Hazen,

1999;Wu et al., 1999) and in humans (Peters et al., 1998;Peters et al., 2001b), whereas
skeletal muscle PDP activity is unresponsive in rats (Fuller & Randle, 1984).

The complexity of PDH control by PDK is enhanced by the presence of four
isoforms (PDK 1-4; Bowker-Kinley et al., 1998), with PDK2 and 4 being the most
abundant isoforms represented in human skeletal muscle (Gudi et al., 1995). Each
isoform has differing concentrations, specific activities, and kinetic properties, resulting
in unique responses to certain metabolic demands. PDK4, the “lipid-status” responsive
isoform (Sugden et al., 2001), responds to acute alterations in lipid availability whereas
PDK2 demonstrates a higher sensitivity to the energy status of the cell (Bowker-Kinley et
al., 1998;Popov, 1997) and is highly sensitive to pyruvate (Bowker-Kinley et al.,
1998;Gudi et al., 1995;Popov, 1997), possibly making it the “energy-status” responsive
isoform and suggesting the importance of PDK?2 in a training-induced attenuation of PDH
during exercise post-training.

Currently, little information is available regarding the adaptive changes in PDHt
and/or PDK in human skeletal muscle with short- or long-term aerobic exercise, and if

these adaptations can be detected at the level of gene and/or protein expression. Thus, the
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purposes of the second study were to determine if 1 and 8 weeks of acrobic exercise
would: 1) increase PDHt activity, with a concomitant increase in PDH subunit mRNA
and protein, 2) increase PDK activity, with a concomitant increase in PDK isoform
mRNA and protein. The hypothesis was there will be no change in PDHt and PDK
activity after 1 week of aerobic exercise, along with no change in protein expression. In
contrast, 8 weeks of aerobic exercise will increase both PDHt and PDK activities, along
with increased protein expression. Transcriptional products (nRNA) were not expected
to change after 1 or 8 weeks as muscle biopsies were taken 24-48 hours after the last
exercise bout to avoid the transient effects on transcriptional rate postulated to occur up to
24 hours after exercise. Measurements of citrate synthase (CS) and cytochrome oxidase
(COX) maximal activities and protein expression will be used to confirm exercise

training-induced alterations to skeletal muscle gene expression.

Third Study — Long-Term Aerobic Training, Allosteric Modulators

Repeated bouts of aerobic exercise carried out over several weeks (aerobic
training), decreases carbohydrate utilization in skeletal muscle at the same absolute
workload, resulting in a greater reliance on fat for ATP production, a net glycogen
sparing effect, and less lactate accumulation (Henriksson, 1977;Hurley et al., 1986;Martin
et al., 1993;Phillips et al., 1996b). These changes have been credited to increased muscle
capillarization, increased metabolic oxidative capacity due to increased mitochondrial

biogenesis, and increased activity of mitochondrial enzymes (e.g. PDH, CS, B-HAD).
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The training-induced increase in metabolic oxidative capacity, and resultant
tighter coupling between ATP supply and demand, would result in a reduced reliance on
energy sources such as phosphocreatine (PCr), with an improved ATP/(ADP + P;) ratio in
the muscle (Dudley ez al., 1987;From et al., 1990;Henriksson, 1977;Hochachka &
McClelland, 1997;Holloszy, 1967). This, in turn, would reduce the accumulation of P;
and free ADP (ADPy) which, together with NADH and oxygen, are known regulators of
oxidative phosphorylation (From et al., 1990). Alterations to these metabolic variables
post-training would also impart allosteric regulation on certain enzymes in skeletal
muscle, more specifically glycogen phosphorylase and PDH. However, small but
significant metabolic alterations have been observed in humans after 5-10 days of aerobic
exercise, suggesting alterations in oxidative phosphorylation need not be linked to and
occur simultaneously with changes in mitochondrial capacity and density (Cadefau et al.,
1994;Chesley et al., 1996;Green et al., 1991;Green et al., 1992a;Jones & Yeaman,
1991;Mistry et al., 1991;Phillips et al., 1995;Phillips et al., 1996a;Putman et al., 1998).
In the only study to examine the effects of short-term training on human skeletal muscle
PDH, Putman et al. (1998) demonstrated, after 7 days of aerobic training, there was no
change in PDH activation during exercise, but reported a decreased post-transformational
flux through Phos. Little is known of the adaptive changes that take place after several
weeks of aerobic exercise and how allosteric regulation of PDH during exercise differs
from short-term aerobic training.

During exercise, the major factor determining energy requirement in contracting

skeletal muscle is the rate of ATP hydrolysis. The rate of energy production, determined
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by the amount of enzymes in energy-producing catabolic pathways, becomes limiting
only when the energy need of the cell exceeds the maximal catalytic capacity of the rate-
determining steps of these pathways (Holloszy & Coyle, 1984). As shown in Chapter 2,
upregulation of PDK, thus possibly decreasing the activation of PDH, would play an
important role in training-induced regulation of carbohydrate metabolism. Thus, a
possible consequence of an adaptive increase in mitochondrial biogenesis, and the
associated enzymatic pathways, is that the aerobic energy production pre-training
becomes “submaximal” for the muscle after prolonged aerobic training (Holloszy &
Coyle, 1984).

Unlike short-term, long-term aerobic training would result in larger attenuated
levels of ADP;and P;, imparting greater post-transformational regulation on Phos during
exercise. The resulting decreased glycogenolytic flux, along with increased pyruvate
sensitive PDK2 demonstrated in Chapter 2, may result in a released inhibition of PDK by
attenuated levels of glycogenolytically-derived pyruvate. Along with attenuated levels of
ADPy, long-term aerobic training may result in an attenuated activation state of PDH
during exercise.

Thus, the purpose of the third study was to examine the effects of long-term
acrobic exercise on PDH activation and its metabolic regulators in skeletal muscle during
exercise. The hypothesis was that long-term aerobic exercise will decrease the activation
of PDH during exercise at the same absolute workload pre-training, due to attenuated

levels of glycogenolytically-derived pyruvate. In addition, rates of glycogenolysis, along
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with Phos activity and its metabolic regulators, will also be examined, to ascertain their

contribution to decreased glycogen utilization post-training.
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CHAPTER 1.  Effects of respiratory alkalosis on human skeletal muscle metabolism at

the onset of submaximal exercise. (Published in J. Physiol. 544: 303-313)
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INTRODUCTION

During acute hypoxia, submaximal exercise at a given absolute power output
results in increases in both muscle and plasma lactate concentrations compared to
normoxia (Katz & Sahlin, 1987; Brooks et al., 1992; Green et al., 1992; Brooks et al.,
1998; Parolin et al., 2000a). These effects were thought to be due to a limitation in O,
supply to the muscle, resulting in anaerobic lactate accumulation. A recent study has
shown that the intracellular PO, of the exercising muscle is reduced during hypoxia, but
to a level that is above the critical level at which mitochondrial respiration is

compromised (Richardson et al., 1998). In addition, increased muscle blood flow helps

to maintain whole body VOz (Adams & Welch, 1980), and the VOZ of the exercising leg
(Bender ef al., 1988; Knight et al., 1993) at normoxic levels during hypoxia. Thus, it
seems unlikely that hypoxia-induced lactate accumulation during submaximal exercise is

solely the result of a limited O, supply to the exercising muscle.

In contrast to steady state exercise, the increase in VO, during the transition from
rest to exercise is slowed during hypoxia (Hughson & Kowalchuk, 1995). It has been
suggested that lactate accumulation during this transition in hypoxia may be due to
“metabolic inertia” rather than limited O, supply (Timmons et al., 1998). The term
metabolic inertia refers to a delayed flux through metabolic pathways responsible for
aerobic ATP production. Recent studies from our laboratory have shown that within the
first minute of exercise, the increased lactate accumulation in hypoxia was a result of an
enhanced glycogenolytic flux through glycogen phosphorylase (Phos) combined with a

delayed activation (inertia) of pyruvate dehydrogenase (PDH) (Parolin et al., 2000a).
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These results were partially reversed when PDH was activated by administration of
dichloroacetate (DCA) before exercise (Parolin et al., 2000b). Decreased pyruvate
oxidation, due to delayed activation of PDH, potentially reduces the availability of
oxidative substrates for aerobic ATP production. As a result, there is a greater reliance on
glycolysis and phosphocreatine degradation to regenerate ATP. The mismatch between
pyruvate oxidation and its production results in a net lactate accumulation, because any
excess pyruvate is converted to lactate by the near-equilibrium enzyme lactate
dehydrogenase.

Hyperventilation usually accompanies hypoxemia, with ventilation rates rising by
150-200% above normoxic values (Hughes et al., 1968; Lenfant & Sullivan, 1971). This
results in arterial blood pH increasing by 0.1-0.3 units (Edwards & Clode, 1970;
Zborowska-Sluis et al., 1970; Davies et al., 1986). Previous studies have shown an
association between hyperventilation and lactate accumulation (Eldridge & Salzer, 1967;
Edwards & Clode, 1970; Brice & Welch, 1985; Davies ef al., 1986) and it has been
suggested that the change in pH, rather than an oxygen limitation is the main contributing
factor that results in an increased lactate accumulation (Davies ef al., 1986). Thus,
respiratory alkalosis may account, in part, for the increased lactate accumulation seen
during exercise with acute hypoxia.

The present study was designed to determine the role of the rate-determining
enzymes, PDH and Phos, and their regulatory factors in lactate accumulation during
respiratory alkalosis in human skeletal muscle during exercise. Lactate accumulation is a

function of adjustments in the activation of the aerobic ATP producing metabolic
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pathways and/or alterations in glycogenolytic/glycolytic flux (see Spriet et al., 2000 for
- review). Thus, we hypothesized that respiratory alkalosis might result in increased
glycogenolytic flux and a delayed activation of PDH with a concomitant increase in
lactate accumulation. The effects of respiratory alkalosis were examined relative to
control at rest, at 1 min during the transition from rest to exercise and after 15 min of

submaximal exercise.

METHODS

Subjects
Eight healthy, active males were recruited to participate in the study (age 22 + 1.2

(SEM) yr; height 181.3 + 2.2 cm; weight 77.6 + 3.4 kg). Individuals were asked to
consume similar diets and refrain from caffeine, alcohol, and exercise for 48 hours before
each trial. Individuals served as their own control. Oral and written explanation of the
experimental protocol and its attendant risks were provided and informed consent was
obtained from each subject. The study was approved by the McMaster University Ethics

Committee.

Pre-experimental protocol
Individuals completed an initial incremental maximal exercise test on an electro-

magnetically braked cycle ergometer (Lode Excalibur, Quinton Instruments, Seattle,

WA.) to determine VO,max and maximal work capacity using a metabolic measurement

system (Quinton Q-Plex 2, Quinton Instruments, Seattle, WA.). One week later,
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individuals returned to establish the degree of hyperventilation to attain an end tidal PCO,
(PerCO,) of approximately 20-25 mm Hg, to mimic the PerCO, measured during hypoxia
(Parolin et al., 2000a). PerCO, was monitored breath-by-breath and the subject ‘targeted’
the desired Pg7CO, displayed continuously on an osci.lloscope during the equilibration

period (20 minutes at rest prior to exercise) and the experimental protocol (15 minutes at

55% VOomax). This was repeated several times to familiarize the subject with the

conditions of the study and ensure consistency of the experimental procedure. The

workload required to obtain 55% VOsmax Was confirmed through these practice trials.

Experimental protocol

The experimental protocol was conducted during normoxia (Con) or normoxia
with hyperventilation (R-Alk), on two occasions separated by 1 week. The order of the
Con and R-Alk trials was randomized and took place at the same time of day for each
subject. Prior to the beginning of the protocol, a venous catheter was inserted in the
anticubital vein of the forearm for blood sampling and was maintained patent with saline.
One thigh was prepared for needle biopsies of the vastus lateralis. Incisions were made
through the skin to the deep fascia under local anesthesia (2% lidocaine without

epinephrine) as described by Bergstrom (1975). Subjects exercised for 15 min at 55% of

their VOamax. Blood samples were taken at pre-equilibration (R-Alk only), before

exercise (time 0), and after 5, 10, and 14 minutes of exercise. Muscle biopsies were taken
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at pre-equilibration (R-Alk only), before exercise (time 0) and after 1 and 15 minutes of

exercise.

Blood sampling and analysis

Venous blood samples (~ 7 ml) were collected in heparinized syringes (Sarstedt,
Germany) and placed on ice. Blood was centrifuged at 15,900 g for 2 min to isolate
plasma. One portion of plasma was incubated with 5 M NaCl (4:1 plasma:NaCl) at 56°C
for 30 min and then frozen for later analysis of free fatty acids (Wako NEFA kit, WAKO
Chemicals, Richmond, VA). A second portion of plasma was deproteinized with 0.5 M
perchloric acid (PCA) (1:2 plasma:PCA) and then frozen for later analysis for glucose,

lactate, and glycerol (Bergmeyer, 1983).

Muscle analysis

Muscle biopsies were immediately frozen in liquid N,. A small piece (4-26 mg)
was chipped from each biopsy (under liquid N,) for determination of the fraction of PDH
in the active form (PDH,; Putman et al., 1993). The remainder of the sample was freeze
dried, dissected free of blood and connective tissue, and powdered. One aliquot was
analyzed for total (a+b) and active Phos (Phos,+, and Phos,, respectively; Young et al.,
1985) and the maximal velocity and mole fraction of Phos a+5b and Phos a were
calculated from the measured activities as described by Chasiotis et al. (1982). Phos
measurements were made only on exercise samples because resting samples must be kept

at room temperature for 30 seconds before freezing for accuracy, which would have
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required additional biopsies (Ren & Hultman, 1988). Previous studies have reported
values of ~10% for the mole fraction of Phos a at rest (Chesley et al., 1996; Parolin et al.,
1999). A second aliquot was extracted in 0.5 M PCA and 1 mM EDTA, neutralized to
pH 7.0 with 2.2 M KHCOj and analyzed for acetyl-CoA, free CoA, acetylcarnitine, free
carnitine, (Cederblad et al., 1990), ATP, pyruvate, lactate, phosphocreatine, creatine,
glucose, glucose 6-phosphate (G-6-P), glucose 1-phosphate (G-1-P), fructose 6-phosphate
(F-6-P), glycerol 3-phosphate (Gly-3-P) (Bergmeyer, 1983), and glycogen (Harris et al.,
1974). All muscle metabolites were normalized to the highest total creatine content for a

given individual to correct for non-muscle contamination.

Calculations

Arterial PCO, was estimated (ePaCO,) from PgrCO; and Vr according to Jones et
al. (1979). PDH, flux was estimated from PDH, as measured in wet tissue and converted
to dry tissue using the wet-to-dry muscle ratio of 4:1 at rest and 4.5:1 during exercise
(Putman et al., 1998). Pyruvate production was calculated from increases in muscle
lactate and pyruvate and in blood lactate concentrations, plus the flux of pyruvate through
PDH,. Lactate accumulation was calculated from changes in muscle and blood lactate
concentrations. The distribution volume of blood lactate was assumed to be 0.64 x body
weight (Astrand et al., 1986) and the active muscle weight was assumed to be 9 kg wet
weight. This calculation does not account for lactate oxidation by other tissues and would

result in a slight underestimation of lactate accumulation.
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Estimates of glycogenolytic rate during the first min of exercise were derived
from increases in muscle G-6-P, F-6-P, Gly-3-P, plus pyruvate production from rest to 1
min of exercise. The average glycogenolytic rate during the subsequent 14 min of
exercise was calculated from the reduction in muscle glycogen concentration during 15
min of exercise minus the estimated glycogen utilization in the 1% min of exercise,
divided by time.

The rate of ATP turnover from PCr was calculated from the decrease in PCr
concentration. The rate of ATP turnover from glycolysis was calculated from pyruvate
production (1 mmol glycosyl unit was equal to 3 mmol ATP). The rate of ATP turnover
from oxidative phosphorylation originating from carbohydrate sources was calculated
from total acetyl-CoA production by PDH (1 mmol of pyruvate oxidized was equal to 15

mmol ATP). These calculations were based on the mean data.

Statistical analysis

All data are presented as means + SEM. A two-way analysis of variance
(ANOVA) (Steel and Torrie, 1980) with repeated measures was used to establish
differences between conditions and time. Tukeys post hoc test was used to determine
significance (p<0.05). Assumptions for normality were verified by generating
appropriate residual plots. Data transformations (log, square root, and inverse square

root) were used when appropriate to meet the above assumption.
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RESULTS

Cardiorespiratory measurements
Mean VO for the group was 3.4 + 0.2 I/min. Hyperventilation was attained by
a 2.1- and 1.8-fold increase in expiratory ventilation (V) at rest and exercise,

respectively, and was accompanied by similar VOz, VCOZ, and RER and lower P1rCO,,

and ePaCO; in R-Alk compared to Con (Table 1.1).

Muscle measurements

After the 20 min pre-equilibration in R-AlKk, all values were similar to those of
Con (Tables 1.2-1.5 and Fig 1.1 and 1.3), with the exception of muscle [acetylcarnitine],
which was higher in R-Alk compared to Con (Table 1.4).

After 1 min of exercise, PDHj increased during both conditions compared with
rest but was lower in R-Alk (Fig 1.1). After 15 min of exercise, there was no difference
in PDH, between conditions. The mole fraction of Phos a was unaffected by R-Alk after
1 and 15 min of exercise (Fig 1.2).

Resting muscle [glycogen] was similar between conditions (Table 1.2). At the
end of 15 min of exercise, muscle [glycogen] decreased by 24 and 36% during both Con
and R-Alk, respectively. Muscle [G-1-P] and [pyruvate] were unaltered by exercise and
were similar between conditions. Muscle [G-6-P] was also similar between conditions,
however muscle [G-6-P] in R-Alk increased above resting values after 15 min of exercise.

Muscle [F-6-P] did not differ between conditions at rest but after 1 min of exercise,
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muscle [F-6-P] in Con increased above resting values and was higher than R-Alk. After
15 min of exercise, [F-6-P] in Con returned to levels similar to rest and did not differ
from R-Alk, which was higher than resting levels. [Gly-3-P] was unaltered by exercise in
Con but increased above resting levels in R-Alk during exercise and was higher than in
Con after 15 min of exercise.

Resting muscle [lactate] was similar between conditions. After 1 min of exercise,
muscle [lactate] increased in R-Alk and was higher than in Con (Table 1.2, Fig 1.3).

After 15 min of exercise, muscle [lactate] was higher than rest in both conditions, but was
not different between conditions.

Muscle [ATP] was unaltered by exercise and similar in the two conditions (Table
1.3). Muscle [PCr] decreased after 1 and 15 min of exercise compared with rest in both
conditions. Muscle [Cr] similarly increased after 1 min of exercise in both conditions and
did not change after 15 min of exercise compared with the first minute.

Muscle [free CoA] was similar between conditions and did not change with
exercise (Table 1.4). In contrast, [acetyl-CoA] increased after 15 min of exercise in both
conditions. Muscle [free carnitine] in Con decreased after 15 min of exercise compared
with rest and 1 min of exercise. [Free carnitine] in R-Alk decreased after 1 min of
exercise and decreased even further after 15 min of exercise. Muscle [acetylcarnitine]

was similar between conditions and increased after 15 min of exercise.
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Figure 1.1. Muscle pyruvate dehydrogenase in its active form (PDHa) at rest and during
exercise in control and respiratory alkalosis. Values are means + SEM; * denotes

significance from rest; + denotes significance from control.
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Figure 1.2. Muscle phosphorylase a mole fraction during exercise in control and

respiratory alkalosis. Values are means + SEM.
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Figure 1.3. Muscle lactate concentration at rest and during exercise in control and
respiratory alkalosis. Values are means = SEM; * denotes significance from rest;

denotes significance from control.
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Blood metabolites
Blood [glucose], [glycerol], and [free fatty acids] did not change with exercise and
were similar between conditions (Table 1.5). Blood [lactate] increased with exercise and

was higher in R-Alk compared with Con at rest and during exercise.

Glycogenolysis
During the first minute of exercise, the glycogenolytic rate was higher in R-Alk
compared to Con (Fig 1.4). During the subsequent 14 min of exercise, glycogenolytic

rates were similar between conditions and did not differ from the first min.

Pyruvate production and oxidation and lactate accumulation

In Con during the first min of exercise there was a lower rate of pyruvate
production compared with the subsequent 14 min of exercise, with a lower rate of
pyruvate oxidation and no difference in lactate accumulation (Fig 1.5). In contrast, a
higher rate of pyruvate was produced in R-Alk during the first minute compared with the
subsequent 14 min of exercise, with a lower rate of pyruvate oxidized and more lactate
accumulation. During the first minute of exercise, there was a higher pyruvate production
and lactate accumulation and lower pyruvate oxidation in R-Alk compared with Con.
Between the first and fifteenth minute of exercise, were no differences in pyruvate
production and lactate accumulation between conditions and pyruvate oxidation was

lower in R-Alk compared to Con.
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Figure 1.4. Estimated rates of muscle glycogen use during exercise in control and

respiratory alkalosis. Values are means + SEM; * denotes significance from control.
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Figure 1.6. ATP turnover rates from PCr degradation, glycolysis, and oxidative
phosphorylation during the transition from rest to exercise in control and respiratory

alkalosis.
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ATP turnover at the onset of exercise

During the first minute of exercise in Con, 37% of the total ATP turnover was
attributed to glycolysis (26%) and PCr degradation (11%; Fig 1.6). ATP regeneration
through the TCA cycle/electron transport chain (oxidative phosphorylation) accounted
for the remaining 63% of total ATP turnover. In R-Alk, 48% of the total ATP turnover
was attributed to glycolysis (37%) and PCr degradation (11%). Oxidative

phosphorylation accounted for the remaining 52% of total ATP turnover.

DISCUSSION

The present study examined the acute effects of respiratory alkalosis, through
voluntary hyperventilation, on the regulation of skeletal muscle metabolism at rest,
during the transition from rest to exercise and during steady-state submaximal exercise.
At rest, no effects on muscle metabolism were observed in response to R-Alk. During
the first min of exercise, R-Alk resulted in a greater pyruvate production, despite no
difference in the mole fraction of Phos a or glycolytic intermediates. In addition to
increased pyruvate production in R-Alk, a delayed activation of PDH resulted in lower
pyruvate oxidation. This mismatch in pyruvate production and oxidation resulted in
greater lactate accumulation in both muscle (Fig 1.3) and plasma (Table 1.5) in R-Alk
during the transition from rest to exercise. In contrast, there was no additional
accumulation of muscle and plasma [lactate] during steady state exercise. Hence, an

elevated lactate accumulation associated with respiratory alkalosis during exercise was
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explained by the differing fluxes through the rate-determining enzymes, Phos and PDH,

at the onset of exercise.

Respiratory alkalosis

Voluntary hyperventilation resulted in a reduction in ePaCO, from 35.6 to 20.8
mmHg at rest (Table 1.1). A drop of approximately 15 mmHg in PaCO; would translate
to a rise in plasma pH from 7.42 to 7.59 (Siggard-Anderson, 1963). A change in
extracellular pH (ApH.) induced by respiratory alkalosis has been associated with a 0.67
increase in intracellular pH (ApH;) of rat diaphragm (Heisler, 1975). Thus, assuming a
muscle pH of 7 in Con and a ApH, of 0.17, intramuscular pH for R-Alk can be estimated
at 7.11. This increase in intramuscular pH may be the contributing factor to the changes

seen in muscle metabolism.

Oxidative phosphorylation
Mitochondrial oxidative phosphorylation is represented by the following
equation:

NADH + 0.50, + H + 3ADP + 3P; = NAD" + H,0 + 3ATP

and the rate of ATP production is regulated by O, availability, NADH]/[NAD'], and
[ADP][P;]/[ATP] (Wilson, 1994). Changes in any of the parameters result in a
compensatory change in the others to drive oxidative phosphorylation.

PDH is a mitochondrially bound rate-determining enzyme that regulates the

entrance of glycolytically produced acetyl units into oxidative metabolism. Two
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enzymes covalently modify PDH, PDH kinase (PDK) and PDH phosphatase (PDP).
PDK catalyzes the phosphorylation, and resulting inactivation, of PDH whereas PDP
dephosphorylates the enzyme, thereby activating PDH (Denton ef al., 1975; Stansbie,
1976). The amount of PDH in its active form (PDH,) determines its activity. In turn,
both PDK and PDP are allosterically modulated by increased ratios of acetyl-CoA to
CoA and NADH to NAD", with increased ratios activating PDK and inhibiting PDP
(Denton et al., 1975; Pettit et al., 1975; Stansbie, 1976). Other modulators include
pyruvate (Cate & Roche, 1978) and ATP to ADP ratio (Denton et al., 1975), which
inhibits and activates PDK respectively, and Ca>* and H*, which activate PDP (Chen et
al., 1996).

During the transition from rest to exercise, Ca”" release from the sarcoplasmic
reticulum is probably the primary stimulus for the activation of PDH. Ca®" release
stimulates PDP and dephosphorylates PDH, rendering it more active. In the present
study, PDH activation increased during the first min of exercise in Con with no further
increase in PDH activity after the subsequent 14 min of exercise, which is consistent with
previous studies (Howlett et al., 1999; St.Amand et al., 2000; Parolin et al., 2000a). In
R-Alk there was a delayed activation of PDH during the first min of exercise, similar to
the effects of hypoxia (Parolin ef al., 2000a). During the transition from rest to exercise,
none of the typical allosteric modulators were affected by R-Alk, with the exception of
[H']. Both PDK and PDP have pH optimums of 7.0-7.2 and 6.7-7.1, respectively (Hucho
et al., 1972). The rate of activation of PDH is dependent on the ratio of active PDK and

PDP, thus a slight change in the activity of either covalent modifier would alter the rate
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of activation or inactivation of PDH. An increase in intramuscular pH of 7 in Con to 7.11
in R-Alk may slow the activity of PDP and potentially enhance the activity of PDK,
resulting in a delayed activation of PDH.

A delayed activation of PDH may cause a mismatch between ATP utilization and
aerobic ATP production. Reduced flux through PDH during the transition from rest to
exercise in R-Alk may result in metabolic inertia, delaying the availability of
carbohydrate-derived substrate to the TCA cycle and the subsequent production of
reducing equivalents for oxidative phosphorylation. In R-Alk, a similar [ATP] and O,
availability during the transition from rest to exercise and a lower [NADH] and [H'] may
require higher free [ADP] and [P;] to drive oxidative phosphorylation and maintain the
same ATP turnover rate as Con. Free [ADP], calculated from the near-equilibrium
reaction of creatine kinase (Dudley et al., 1987), was higher in R-Alk compared to Con
(130 £29 and 92 + 13 pmol/kg dry wt respectively). As a result, the increase in free
[ADP] may stimulate glycogenolysis in R-Alk.

Previous studies have shown there is a delayed O, uptake response during
respiratory alkalosis during the transition from rest to exercise (Ward et al., 1983;
Hayashi et al., 1999). It has been hypothesized that this delay may be due to impaired O,
off-loading from hemoglobin (Hayashi et al., 1999) or decreased blood flow (Brice &
Welch, 1985; Gustafsson et al., 1993; Karlsson ef al., 1994) through exercising muscles.
We cannot disregard the fact that respiratory alkalosis in the present study may impair
both diffusive and/or conductive delivery of oxygen to the exercising muscle. However,

the present study demonstrated similar effects seen during hypoxia (Parolin et al., 2000a),
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suggesting the importance of metabolic inertia, at the level of PDH, on oxidative
phosphorylation at the onset of exercise.

After 15 min of exercise, the activation of PDH in R-Alk was similar to Con and
none of the typical allosteric modulators were affected by R-Alk. Previous studies of
steady state submaximal exercise during acute hypoxia (Parolin ef al., 2000a) and
‘metabolic alkalosis (Hollidge-Horvat et al., 2000) have shown an elevated PDH, and
intramuscular [pyruvate], which exerted a feed-forward effect on PDH,. The present
study did not show any differences in intramuscular [pyruvate] between conditions.
Similar PDH, activities between conditions may be attributed to alterations in the acid-
base status of the muscle. The alkalizing effects of hyperventilation are transient and
lactate accumulation during the first min of exercise in R-Alk may have reduced the
estimated pH differences between conditions. However, the time course of pH changes

in the muscle is difficult to determine during this transition from rest to exercise.

Phosphocreatine degredation and glycolysis

The regeneration of ATP is also possible through phosphocreatine (PCr)
degradation and glycolysis. PCr degradation was similar between conditions during
exercise and did not differ in regeneration of ATP during the transition from rest to
exercise. However, glycogenolytic rate was higher in R-Alk compared to Con during the
first min of exercise and may have been the major contributor that maintained ATP

turnover rates similar between conditions.
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Phos is a flux-generating enzyme of glycogenolysis in skeletal muscle and is
subject to both covalent and allosteric regulation. Phos a, the more active form, is active
in the absence of AMP whereas Phos b requires AMP. Covalent transformation from
Phos b to a is mediated by Phos kinase a, which in turn is allosterically regulated by
epinephrine and cytosolic Ca®*. Post-transformational allosteric regulation of Phos b is
mediated by AMP and IMP, and inhibited by ATP and G-6-P. Of equal importance in
regulating both Phos a and b is one of the substrates, inorganic phosphate (P;; Chasiotis et
al., 1982). R-Alk compared to Con resulted in an elevated pyruvate production during
the first min of exercise, in the absence of any change in the percent mole fraction of
Phos a. This would suggest that enhanced glycogenolysis in R-Alk, with no change in
Phos a transformation, is likely a result of post-transformational modulation.

The levels of intramuscular G-6-P did not differ between conditions and although
not estimated in the present study, free [AMP] and free [P;] have been shown to be
similar during the first min of exercise during acute hypoxia (Parolin et al., 2000a).
However, an increase in pH, due to respiratory alkalosis, may influence the concentration
of the monoprotonated form of P;, HPO42', over the diprotonated form, H,PO,4". The
monoprotonated form is considered to be the only active substrate for Phos (Kasvinsky &
Meyer, 1977). Estimated intramuscular free [P;] at the onset of exercise in Con increased
from the assumed resting concentration of 10.8 mmol/kg dry wt to a calculated level of
25.5 £ 5.2 after 1 min of exercise. The concentration of free P; during the first min of
exercise was calculated as the difference between resting and exercise [PCr], less the

accumulation of G-6-P, F-6-P, and Gly-3-P, plus the assumed resting concentration of
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10.8 mmol/kg dry wt (Dudley et al., 1987). A change in estimated intramuscular pH
from 7 in Con to 7.11 in R-AlKk prior to the onset of exercise would result in an increase
of HPO4* from 15.4 to 16.9 mmol/kg dry wt, assuming a pK, of 6.82 (Voet & Voet,
1995) and no change in free P;. This 10% increase in substrate availability for Phos may
account for some of the increased pyruvate production, through increased glycogenolytic
flux, seen during the transition from rest to exercise in R-Alk. Another factor
contributing to increased glycogenolytic flux in R-Alk may be a result of the previously
mentioned elevated intramuscular free [ADP], which may have led to an increased [IMP],
which in turn may have activated Phos b.

The elevated pH in R-Alk would also affect another key enzyme that regulates
glycolysis, phosphofructokinase (PFK). PFK catalyzes the conversion of F-6-P to
fructose 1,6-bisphosphate with the use of ATP (Voet & Voet, 1995), and is subject to
allosteric modulation by a number of metabolites. ATP and H" inhibit whereas ADP,
AMP, P;, and F-6-P activate the enzyme complex. During the transition from rest to
exercise in R-Alk compared to Con, elevated pH, [ADP], and [P;] and lower F-6-P would
stimulate PFK. As a consequence, a better match between PFK and glycogenolytically
produced ATP would partially compensate for the decreased oxidative ATP production,
due to the delayed activation of PDH.

After 15 min of exercise, the percent mole fraction of Phos a, along with the
glycogenolytic rate and pyruvate production, were all similar between conditions. This is
contrary to what has been shown in previous studies of both acute hypoxia and metabolic

alkalosis. During steady state exercise, hypoxia (Parolin ef al., 2000a) and metabolic
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alkalosis (Hollidge-Horvat et al., 2000) resulted in significant decreases in the mole
fraction of Phos a and an increase in glycogen utilization and pyruvate production. The
increased glycogenolytic rate was a result of post-transformational regulation of Phos
through increases in intramuscular free AMP and free P; (Hollidge-Horvat et al., 2000;
Parolin et al., 2000a). The absence of these metabolic changes in the present study may
be attributed to alterations in the acid-base status of the muscle. As previously
mentioned, intramuscular lactate accumulation in R-Alk during exercise would have
decreased the pH of the muscle, thereby potentially reversing the effects of respiratory

alkalosis seen prior to the transition from rest to exercise.

Lactate accumulation

At rest, no differences were seen in intramuscular [lactate] between conditions.
However, it is interesting to note that plasma [lactate] was higher in R-Alk after 20 min
of hyperventilation compared to Con. This is consistent with previous studies examining
the effects of hyperventilation on plasma lactate in humans (Eldridge & Salzer, 1967;
Edwards & Clode, 1970; Davies ef al., 1986). Plasma [lactate] represents the balance
between lactate uptake and release from tissues. Thus, the elevated plasma lactate that
accompanies hyperventilation may be related to increased lactate appearance and/or
decreased lactate removal from the plasma. An increased lactate appearance may be due
to increased lactate production of respiratory muscles due to increased work of breathing.
However, it has been shown that isocapnic hyperventilation is not associated with a rise

in blood lactate (Huckabee, 1957; Edwards & Clode, 1970; Martin ef al., 1984; Engelen
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et al., 1995). Increased lactate appearance in plasma may also be due to glycolysis in
erythrocytes, which is stimulated by low PCO; or high pH (Murphy, 1960; Zborowska-
Sluis & Dossetor, 1967) and may contribute to the elevated plasma lactate at rest.

Several studies have demonstrated that respiratory alkalosis decreases the
clearance of lactate from plasma by active and inactive tissues (Eldridge et al., 1974;
Druml et al., 1991). It has been demonstrated previously that inactive muscle during
exercise responds in much the same way as active muscle, demonstrating an increase in
PDH, (Putman et al., 1999). Thus, PDH, activity in inactive muscle during respiratory
alkalosis may also be delayed, resulting in less lactate oxidation in inactive muscle and
less lactate clearance from plasma.

Intramuscular lactate accumulation is also a function of the rate of efflux from the
muscle. Lactate movement across the muscle occurs via a monocarboxylate lactate-
proton cotransport protein (MCT), and as such is the rate-determining step in lactate
efflux (Bonen et al., 1997). The increased intramuscular [lactate] in R-Alk compared to
Con at the onset of exercise may have resulted in a slight increase in the rate of lactate
appearance in the blood from rest to 5 min of exercise. MCT is known to be sensitive to
changes in concentration of the transport components, lactate and H', demonstrating
increased lactate movement out of the cell with increased lactate in the cell and increased
pH outside the cell (Juel & Halestrap, 1999). The combined respiratory alkalosis and
elevated intramuscular [lactate] may have resulted in an enhanced movement of lactate

out of the muscle.
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Summary and conclusions

This study demonstrates that respiratory alkalosis has a profound impact on
muscle metabolism at the onset of exercise, resulting in increased lactate accumulation.
This supports the claims from previous studies that hyperventilation-induced respiratory
alkalosis during hypoxia plays an important role in increased lactate accumulation during
exercise (Edwards & Clode, 1970; Adams & Welch, 1980; Davies ef al., 1986; Parolin et
al., 2000a).

In the present study, respiratory alkalosis resulted in metabolic effects that are
found during the transition from rest to exercise and are similar to the effects seen during
acute hypoxia (Parolin et al., 2000a). Hyperventilation prior to and during constant-load
exercise resulted in a delayed activation of PDH during the transition from rest to
exercise. This delayed activation of PDH was presumably a consequence of a
hyperventilation-induced increase in muscle pH, as end-tidal PCO, (and presumably
PaCO,) was reduced from approximately 33 to 17 mmHg, and may be related to the pH
sensitivity of the covalent modifiers PDK and PDP. A delayed activation of PDH would
result in a concomitant decrease in carbohydrate-derived substrate availability for
oxidative ATP production and increased lactate production. The cellular energetics
dictate that to maintain a similar ATP production in R-Alk compared to Con, a higher
[ADP] and [P;j] are needed to drive oxidative phosphorylation. As a result, a higher
intramuscular [ADP] and/or [P;] would stimulate glycogenolysis through Phos in the
absence of covalent modification. Phos is further stimulated with an increased

concentration in the monoprotonated form of P; due to an increase in pH. The mismatch
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in pyruvate production and oxidation with respiratory alkalosis possibly explains the
lactate accumulation seen in acute hypoxia during the transition from rest to exercise.

In contrast, the pH effects seen during the transition from rest to exercise are lost
during steady state exercise as a greater increase in lactate accumulation in R-Alk early in
exercise presumably resulted in a greater metabolic acidosis to offset the effects of the
respiratory alkalosis. This is contrary to what has been shown during acute hypoxia,
where the rate of pyruvate production continued to exceed the rate of pyruvate oxidation,
resulting in further lactate accumulation (Parolin ef al., 2000a). The regulation of lactate
accumulation is multifactorial and more work is required to ascertain what factors are

responsible for lactate accumulation during steady state exercise in acute hypoxia.
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CHAPTER 2.  Effects of aerobic training on pyruvate dehydrogenase and pyruvate
dehydrogenase kinase in human skeletal muscle. (Submitted to J. Physiol.

Nov. 2003)
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INTRODUCTION

During exercise at maximal oxygen uptake, carbohydrates are the dominant fuel
utilized in skeletal muscle, mainly in the form of muscle glycogen (see Hultman, 1995 for
review). Repeated bouts of aerobic exercise have been shown to increase maximal
oxygen uptake and muscle glycogen storage (see Henriksson, 1995 for review). In
addition, training has also shown to increase glycogen utilization during exercise at
workloads eliciting maximal oxygen uptake (see Henriksson, 1995 for review). Central
to this adaptation may be pyruvate dehydrogenase (PDH), which modulates carbohydrate
metabolism by regulating the entrance of carbohydrate-derived acetyl units into the
tricarboxylic acid cycle. To date, only two studies have examined the effects of training
on human skeletal muscle total PDH (PDHLt) activity, demonstrating no change after 7
days of aerobic exercise (Putman et al., 1998) and 5 weeks of strength exercise (Ward et
al., 1986). However, a recent study reported an increase in PDHt activity with long-term
aerobic exercise in mouse hind limb (Houle-Leroy ef al., 2000), suggesting prolonged
aerobic training may alter skeletal muscle PDHt activity in humans.

PDH is a multienzyme complex, comprised of pyruvate dehydrogenase (E,),
dihydrolipoyl transacetylase (E,), and dihydrolipoyl dehydrogenase (E3; Denton et al.,
1975; Wieland, 1983), along with a tightly-associated protein (E;bp), anchoring E;
subunits to the E; core (Harris ef al., 1997), and two regulatory enzymes, PDH kinase
(PDK) and PDH phosphatase (PDP; Denton et al., 1975; Wieland, 1983). To date, few

studies have examined the relative transcriptional and translational responses of each
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PDH subunit during adaptive changes in PDHt, reporting changes exclusively in non-
muscle tissues (Da Silva et al., 1993; Maury et al., 1995; Amessou et al., 1998).

Another skeletal muscle adaptive response to prolonged aerobic training, during
submaximal exercise, is a greater reliance on fat for ATP synthesis (Henriksson, 1977,
Hurley et al., 1986; Martin et al., 1993; Phillips et al., 1996b), resulting in a net glycogen
sparing effect. In a recent study, we demonstrated an attenuated rise in PDH activation
during the same absolute submaximal exercise after 7 weeks of prolonged aerobic
exercise (LeBlanc ef al., 2003). Thus, the control of PDH appears to play a central role
in the training-induced shift from carbohydrate to fat metabolism in skeletal muscle
during exercise, however, the mechanism is currently unknown. The activation of PDH
is covalently regulated by PDK, which phosphorylates and inactivates, and PDP, which
dephosphorylates and activates PDH. The activation of PDH is a dynamic system and
alterations in either PDK and/or PDP activity will affect PDH activity. With prolonged
aerobic training, an attenuated activation of PDH may be due to a stable increased or
decreased protein, and thus intrinsic activity, of PDK and PDP, respectively. Regulation
of PDK may be central to control of the activation state of PDH in prolonged metabolic
perturbations, including aerobic training, since skeletal muscle PDK activity responds to
a number of physiological and pathological perturbations in rats (Fuller & Randle, 1984;
Nakai et al., 1999; Vary & Hazen, 1999; Wu et al., 1999; Holness et al., 2000; Sugden et
al., 2000; Peters et al., 2001a) and in humans (Peters et al., 1998; Peters et al., 2001b),

whereas skeletal muscle PDP activity is unresponsive (Fuller & Randle, 1984).
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The complexity of PDH control by PDK is enhanced by the presence of four
isoforms (PDK1-4; Bowker-Kinley et al., 1998), with PDK2 and 4 being the most
abundant isoforms represented in human skeletal muscle (Gudi ef al., 1995). Each
isoform has differing concentrations, specific activities, and kinetic properties, resulting
in unique responses to certain metabolic demands. PDK4 responds to acute alterations in
lipid availability and has been termed the “lipid-status™ responsive isoform (Sugden et
al., 2001) where as PDK2 demonstrates a higher sensitivity to the energy status of the
cell (Popov, 1997; Bowker-Kinley ef al., 1998) and is highly sensitive to pyruvate (Gudi
et al., 1995; Popov, 1997; Bowker-Kinley et al., 1998), suggesting the importance of
PDK?2 in a training-induced attenuation of PDH activation during exercise post training.

Currently, little information is available regarding the adaptive changes in PDHt
and/or PDK in human skeletal muscle with short- or long-term aerobic exercise, and if
these adaptations can be detected at the level of gene and/or protein expression. Thus,
the purposes of the study were to determine if 1 and 8 weeks of aerobic exercise would:
1) increase PDHLt activity, with a concomitant increase in PDH subunit mRNA and
protein, 2) increase PDK activity, with a concomitant increase in PDK isoform mRNA
and protein. We hypothesized there will be no change in PDHt and PDK activity after 1
week of aerobic exercise, along with no change in mRNA or protein. In contrast, 8
weeks of aerobic exercise will increase both PDHt and PDK activities, with a
concomitant increase in transcriptional and translational products, thus allowing for
greater potential carbohydrate flux through PDH yet greater metabolic control of

carbohydrate utilization through inactivation of PDH by PDK. Measurements of citrate
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synthase (CS) and cytochrome oxidase (COX) maximal activities and protein expression

were used to confirm training-induced alterations to skeletal muscle gene expression.

METHODS
Subjects

Eight healthy, active men were recruited to participate in the study (age 22 + 1 yr;
height 181.6 + 2.2 cm; weight 83.3 + 2.6 kg). Individuals were asked to consume similar
diets and refrain from caffeine, alcohol, and exercise for 48 hours before each trial. Oral
and written explanation of the experimental protocol and its attendant risks were provided
and informed written consent was obtained from each subject. The study was approved
by the McMaster University Ethics Committee in accordance with the Declaration of

Helsinki.

Pre-experimental protocol
Individuals completed an initial incremental maximal exercise test on an electro-

magnetically braked cycle ergometer (Lode Excalibur, Quinton Instruments, Seattle,

WA.) to determine maximal work capacity and maximal oxygen uptake (VOamax) UsIng a

metabolic measurement system (Quinton Q-Plex 2, Quinton Instruments, Seattle, WA.).

Exercise Training Protocol
Individuals were aerobically trained on a cycle ergometer at a power output that

reflected 75% of their maximal O, uptake for 1 hour per day, five days a week for a total
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of 8 weeks. For the first week, the 1 hour of training was broken up into four 15 min
intervals with 5 min rest in between. For the second and third weeks, the 1 hour of
training was broken up into three 20 minute intervals with 5 and 2.5 minutes rest in
between, respectively. For the fourth to eighth week, the 1 hour of training was broken
up into three 20 minute intervals with 1 minutes rest in between. On the fourth and
eighth week, individual subjects completed an incremental maximal exercise test to
determine changes in maximal work capacity and O, uptake so adjustments could be
made to the workload to reflect 75% of their maximal O, uptake, and to determine the

adaptive response in maximal O, uptake, respectively.

Muscle sampling

Two muscle biopsies (~80-120 mg each) were obtained at rest before and after 1
and 8 weeks of aerobic exercise. Studies were performed at the same time of day.
Individuals served as their own control. One thigh was prepared for needle biopsies of
the vastus lateralis muscle as described by Bergstrom (1975). Incisions were made
through the skin to the deep fascia under local anesthesia (2% lidocaine without
epinephrine). Resting muscle biopsies were taken 24-48 hours after the last exercise
bout, to avoid the transient effects on transcriptional rate postulated to occur up to 24
hours after the last exercise bout (Neufer ez al., 1998; Pilegaard et al., 2000). The first
biopsy was immediately processed for mitochondrial isolation. The second biopsy was

immediately frozen by plunging the needle into liquid nitrogen.
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Enzyme activities

Intact mitochondria (Makinen & Lee, 1968; Peters et al., 1998) were extracted
from 45-110 mg fresh muscle and an aliquot was used to determine PDK and PDHt
activities (Fatinia et al., 1986; Peters et al., 1998) with the exception that PDK activities
were determined at 37°C. The final mitochondrial suspension required an incubation
time of 20 min at 30°C with 10 uM carbonyl cyanide m-chlorophenyl-hydrazone, which
decreased ATP concentration to zero and resulted in complete conversion of PDH to the
active form (Peters et al., 1998). As such, during the PDK activity assay, the time point
that represents “zero time” also represents “total PDH activity” (Peters e al., 1998).
Fractional recovery of intact mitochondria (25 + 2%) was used to convert mitochondrial
activities of PDHt to mmol min! kg wet wt'! (Peters et al., 1998). CS and COX maximal

enzyme activities were measured on 17-40 mg frozen muscle (Carter et al., 2001).

Western blotting

Mitochondria were diluted to a final protein concentration of 1 pug pl™ as
previously described (Peters ef al., 2001b). Standard SDS/PAGE electrophoresis was
performed as previously described (Peters ef al., 2001b) with the exception of a 12 %
separating gel and 10 pg of mitochondrial protein loaded per lane. Electrophoretically
separated proteins were transferred onto Protran nitrocellulose membranes (0.45 um pore
size, Schleicher & Schuell, NH, USA) using the Trans-blot semi-dry electrophoretic
transfer cell (BioRad, CA, USA) with a transfer buffer containing 34.8 mM Tris base,

31.2 mM glycine, 0.03% (w/v) SDS, and 20% (v/v) absolute ethanol. Membranes were
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incubated in TBST buffer (20 mM Tris base, 137 mM NaCl, 0.1% (v/v) Tween 20, pH
7.5) with 5% (w/v) non fat dry milk for 1 hour to block all non-specific binding sites.
Membranes were then incubated for 1 hour in 5% milk/TBST containing monoclonal
antibodies against PDH subunits (E;a, E>, and Esbp; Molecular Probes, OR, USA), CS
(Chemicon, CA, USA), or COX-II and IV subunits (Molecular Probes, OR, USA), or
polyclonal antibodies against PDK isoforms (PDK1-4; Santa Cruz Biotechnology, CA,
USA). The membranes were washed and then incubated for 1 hour in 5% milk/TBST
containing either goat anti-mouse IgG (peroxidase conjugated, Sigma, Ont, CAN) or
bovine anti-goat IgG (peroxidase conjugated, Santa Cruz Biotechnology, CA, USA).
Membranes were again washed and antibody-antigen complexes were visualized on
autoradiography film (Hyperfilm ECL, Amersham Biosciences, NJ, USA) after addition
of chemiluminesent substrate (ECL, Amersham Biosciences, NJ, USA). Relative
densities were quantified using Scion Image (Scion Corporation, MD, USA). Blots were
washed, stained with DB-71 (Hong et al., 2000) and total protein per lane was used to
normalize loading between lanes on each blot. To correct for differences in blotting
efficiency between gels, a rat standard was included in every gel. PDK antibodies were
tested for cross-reactivity against purified PDK isoform proteins and did not cross-react
with each other under the loading and detection conditions used for Western-blot analysis

(data not shown).
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Total RNA isolation and reverse transcription

Total RNA from 6-27 mg of frozen muscle was isolated using the FastRNA Kit-
Green (Q-BIOgene, CA, USA) protocol and reagents. Total RNA concentrations were
determined spectrophotometrically at 260 nm and purity at 280 nm. First strand cDNA
was generated from 0.5 pg RNA using AMV Reverse Transcriptase (Promega, WI, USA)
as previously described by Wadley et al. (2001). The cDNA was stored at —80°C for

subsequent analysis.

Real-time PCR analysis

Primers were designed using Primer Express™ software package version 1.0
(Applied Biosystems, CA, USA) from gene sequences obtained from GenBank (CS,
AF047042; PDH-E o, NM_000284; PDH-E,, NM_001931; PDH-E3bp, NM_003477;
PDK1, NM_002610; PDK2, NM_002611; PDK3, NM_005391; PDK4, NM_002612).
The primer sequences were validated using BLAST (Altschul et al., 1990) to ensure
homology between primer and desired mRNA of human skeletal muscle. Primer
sequences are shown in Table 1. Quantification of mRNA expression was performed (in
triplicate) by real-time PCR using the GeneAmp® 5700 sequence detection system
(Applied Biosystems, CA, USA) as described previously (Wadley et al., 2001; Tunstall ez
al., 2002). To compensate for variations in input RNA amounts, and efficiency of
reverse transcription, f3-actin (GenBank, NM_001101) mRNA was quantified, and results

were normalized to these values as described previously (Wadley ef al., 2001; Tunstall et
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al., 2002). B-actin mRNA levels did not change in response to 1 or 8 weeks of training
(results not shown), similar to previous aerobic training studies in rat (Murakami ef al.,

1994) and human skeletal muscle (Wadley ez al., 2001).

Statistical analysis

All data are presented as means + SEM. A two-way analysis of variance
(ANOVA) with repeated measures was used to establish differences between condition
and time. Tukeys post hoc test was used to determine significance. Assumptions for
normality and independence were verified by generating appropriate residual plots. Data
transformations (log, square root, and inverse square root) were used when appropriate to

meet the above assumptions.

RESULTS

The effects of the exercise training program are evident by a significant increased
maximal oxygen uptake after 8 weeks, increasing from 3.51 + 0.15 to 4.05 = 0.15 1 min™’
(p<0.05). This was accompanied by a 40 and 41% increase in CS and COX maximal
activity, respectively, which was not seen after 1 week (Table 2.2). Proteins of CS and
both COX subunits did not change after 1 week of aerobic training (Fig 2.1). CS protein
increased 54% after 8 weeks of training, as did COX-II and IV protein, demonstrating a
12 and 62% increase, respectively. CS mRNA were unchanged after 1 (1.11 + 0.20 fold)

and 8 (0.98 + 0.15 fold) weeks of training compared to pre-training.
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Table 2.2. Maximal enzyme activities before and after 1 and 8 weeks of aerobic training.

Training (weeks)

0 1 8
CS 202+ 1.6 233+ 1.6 28.2 + 1.7%%
COX 124+2.0 84=+1.1 17.5+ 1.4%%
PDHt 3.75+0.24 3.65+0.35 4.93 +£0.38*F
PDK 0.09 + 0.01 0.11 £0.02 0.18 £ 0.03*%

Values are means + SEM; enzyme activity expressed in mmol/min/kg wet wt. except for
PDK which is expressed min’'; CS, citrate synthase; COX, cytochrome ¢ oxidase; PDHLt,
total pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase * denotes

significance from pre-training; 1 denotes significance from 1 week.
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Figure 2.1. Mitochondrial protein content of CS, COX-II, and COX-IV before and after 1
and 8 weeks of aerobic training. * denotes significance from rest; ¥ denotes significance

from 1 week.
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PDHt did not differ after 1 week of exercise but increased by 31% after 8 weeks
(Table 2.2). There was no change in the protein expression of PDH subunits after 1 week
of exercise and only PDH-Ea increased 1.3 fold after 8 weeks (Fig 2.2). Both PDH-Ea
and PDH-Es;bp mRNA were unaffected by exercise training and PDH-E, was lower after
8 weeks of exercise compared to 1 week (Table 2.3).

PDK activity did not differ after 1 week of exercise but approximately doubled
after 8 weeks (Table 2.2). There was no change in the protein expression of PDK
isoforms after 1 week of exercise and only PDK2 increased 1.3 fold after 8 weeks (Fig
2.3). PDK3 was undetectable in the present study. PDK isoform mRNA levels were

unaffected by exercise training (Table 2.3).

DISCUSSION

The highly adaptive nature of skeletal muscle with repeated bouts of exercise
allows for metabolic remodeling, leading to enhanced functional capacity. To our
knowledge, this is the first study to examine the effects of short- and long-term aerobic
training on enzyme activity and gene and protein expression of both PDH and PDK in
human skeletal muscle. The major novel findings from the present study were that 8
weeks, but not 1 week, of aerobic training in human skeletal muscle resulted in a; 1) 31%
increase in PDHt activity, thus increasing the maximum potential capacity to utilize
carbohydrates, and 2) 2 fold increase in PDK activity, thus potentially attenuating the
activation of PDH during submaximal exercise. Increased PDHt activity was

accompanied by increased PDH-Ea protein expression whereas increased PDK activity

80



PhD Thesis — P.J. LeBlanc McMaster - Medicine

400
1 Training (weeks)
0 1 8
350 -
OPDHEN i e e
5007 WPDHE2 e e o
=
35
Q - E i
% 250 | N PDH-bp s
.-“é
©
—~ 200 -
C
9
e
8
c 150 -
Q
9
% 100 -
50 -
0 .

0 1 8
Training (weeks)

Figure 2.2. Mitochondrial protein content of PDH-Ela, PDH-E2, and PDH-E3bp before
and after 1 and 8 weeks of aerobic training. Legend demonstrating protein for a
representative subject. * denotes significance from pre-training; ¥ denotes significance

from 1 week.
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Figure 2.3. Mitochondrial protein content of PDK 1, PDK2, and PDK4 before and after 1
and 8 weeks of aerobic training. 1 denotes significance from pre-training. Legend

demonstrating protein for a representative subject.
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Table 2.3. Skeletal muscle mRNA content of PDH-E 0, PDH-E,, PDH-E;bp and PDK 1-4

before and after 1 and 8 weeks of aerobic training.

Training (weeks)

0 1 8
PDH-Ea 1.296 + 0.146 1.547 £ 0.209 1.277+0.119
PDH-E, 0.092 + 0.009 0.119£0.020 0.076 £+ 0.0097
PDH-E;bp 0.076 + 0.008 0.102+0.016 0.073 £ 0.009
PDK1 0.004 + 0.001 0.005 £ 0.001 0.003 + 0.001
PDK2 0.207 +£ 0.038 0.269 + 0.057 0.150+0.017
PDK3 0.002 £ 0.0002 0.002 £ 0.0002 0.002 + 0.0001
PDK4 0.005 + 0.002 0.005 + 0.002 0.005 + 0.001

Values are means £ SEM with n=8; mRNA content expressed in arbitrary untis; PDH,
pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase. 1 denotes significance

from 1 week.
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was accompanied by increased PDK2 protein expression. Despite changes in activity and

protein expression of PDHt and PDK, mRNA levels did not differ with training.

Mitochondrial oxidative capacity

An important by-product of repeated bouts of aerobic exercise is mitochondrial
biogenesis (Hood, 2001), defined by increases in mitochondrial content following
training. Training also increases the mitochondrial capacity to produce ATP, resulting in
tightly coupled oxidative phosphorylation and higher level of respiratory control.
Depending on the training protocol and the pre-exercise trained state of subjects,
mitochondrial adaptations may require 1-6 weeks before reaching a higher steady-state
level (Hood, 2001). Thus the maximal activity and gene expression of representatives of
the TCA cycle (CS) and electron transport chain (COX) will give insight into the
adaptation to the training program.

In the present study, 1 week of exercise did not alter the maximal activity or gene
expression of CS and COX. This is consistent with the majority of previous studies,
reporting that 5-12 days of aerobic exercise in humans did not change maximal activities
of trained skeletal muscle mitochondrial enzymes (Green et al., 1991; Green et al., 1992;
Phillips et al., 1995a; Phillips et al., 1996a; Putman et al., 1998). However, a couple of
studies have demonstrated an increased CS maximal activity after 7-10 days of aerobic
training (Chesley et al., 1996; Spina et al., 1996). The metabolic adaptations to short-
term aerobic training remain controversial and will not be discussed in this paper. In

contrast, after 8 weeks of exercise, the present study demonstrated an approximate 40%
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increase in maximal activities of CS and COX. This is consistent with another human
study using a similar training program (Carter et al., 2000). There was also a
concomitant increase in gene expression of these two enzymes at the level of translation.
The increases seen in CS and COX II and IV proteins are similar to previously reported
values in exercise trained skeletal muscle of rats (Booth, 1991; Samelman et al., 2000)
and humans (Dubouchaud et al., 2000; Bengtsson et al., 2001). Therefore, the present
study demonstrates a clear adaptation in skeletal muscle typically seen with long-term

aerobic exercise.

Short-term training — PDHt and PDK
Five days of aerobic exercise did not alter PDHt activity or PDH subunit
expression in human skeletal muscle. This is consistent with a recent study which

demonstrated that PDHt activity was unresponsive to 7 days of aerobic exercise in

humans (60% VOmax for 2 h daily; Putman et al., 1998), however, PDH subunit

expression was not measured. In addition, numerous studies have shown no difference in

VOsmax, and thus maximal skeletal muscle carbohydrate oxidative capacity, after 5-10
days of aerobic exercise (Green et al., 1991; Green et al., 1992; Green et al., 1995;
Phillips et al., 1995b; Phillips et al., 1996a).

As hypothesized, 5 days of aerobic exercise was not enough to elicit changes in
PDK activity or the expression of any of the PDK isoforms. This is similar to a previous

study, despite no measurements of PDK activity or isoform protein expression, which
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reported no change in PDK4 transcriptional rate or mRNA content in human skeletal
muscle after 5 days of aerobic exercise (Pilegaard et al., 2000). Previous studies of short-
term aerobic exercise in humans (5-10 days) have shown that metabolic adaptations
precede changes to mitochondrial capacity, demonstrating reductions in lactate
production and phosphocreatine and glycogen utilization (Green et al., 1991; Green et al.,
1992; Green et al., 1995; Phillips et al., 1995b; Phillips ef al., 1996a; Putman ef al.,
1998). It was hypothesized that these adaptations were possibly mediated through
allosteric modulation of PDH and glycogen phosphorylase (Putman et al., 1998). Thus
any regulation of PDH with short-term aerobic exercise would be through acute
regulators acting on PDK and PDP rather than changes to PDK or PDP maximal

activities.

Long-term training - PDHt

The effect of long-term aerobic exercise on skeletal muscle carbohydrate
utilization is an intricate balance between the control of carbohydrate utilization, through
the activation of PDH, and the maximum potential capacity to utilize carbohydrates. In
addition to increases in muscle mitochondrial volume, prolonged aerobic exercise
training enhances the maximum potential carbohydrate flux in exercise trained compared
to untrained skeletal muscle (see Goodyear & Kahn, 1998; Holloszy ef al., 1998;
Wojtaszewski & Richter, 1998; Henriksen, 2002 for review). This increased maximum
potential for carbohydrate utilization may be at the level of PDH, through stable increases

in PDHt activity. This is the first study to report an increased PDHt activity (31%) in
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human skeletal muscle after long-term aerobic exercise. In contrast, the only other study
to examine the effects of repeated bouts of exercise on PDHt in humans reported no
change in activity in triceps muscle after 5 weeks of strength exercise (Ward et al., 1986).
Due to differences in muscle adaptation with strength and aerobic exercise, it is difficult
to compare these studies.

It was hypothesized that the increased skeletal muscle PDHt activity after 8 weeks
of exercise would be paralleled by increased PDH subunit protein expression. This was
true only for PDH-E,a, which increased 1.3 fold after 8 weeks of exercise. This is
consistent with previous studies examining tissues other than skeletal muscle. Maury et
al. (Maury et al., 1995) demonstrated an increased PDHt activity and PDH-Ea protein
content in rat adipose tissue during the suckling-weaning transition, in which milk, a
high-fat low-carbohydrate diet, is progressively replaced at weaning by an adult low-fat
high-carbohydrate diet. In addition, livers of genetically obese (Amessou ef al., 1998)
and fat-free fed (Da Silva er al., 1993) rats demonstrate increased PDHt activity and
PDH-E,a gene expression, with little or no change in the other subunits measured. This
is of importance because the PDH-E, tetramer (a,f,) carries out the non-reversible
decarboxylation of pyruvate and the E a subunit has three phosphorylation sites which,
when phosphorylated, inactivate the PDH complex (Patel & Korotchkina, 2001).
Although not measured in the present study, it would be expected that PDH-E would
increase in parallel to PDH-Ea. In addition, a lack of significant increases in the other
PDH subunits measured suggests that the amount of the Ea subunit, and possibly the E,

heterotetramer, is rate-determining for the formation of new PDH complexes, as
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previously suggested for other tissues (Maury et al., 1995). Thus, it appears that an
increased expression of the E; subunit accommodates an increased PDHt activity in
human skeletal muscle with long-term aerobic exercise.

Despite the increased PDHt activity and PDH-Ea with long-term aerobic
exercise, no differences were detected in PDH subunit mRNA. Altered mRNA content is
a product of the rate of mRNA production (gene transcription), degradation (mRNA
stability), and subsequent protein production (translation). It is known that a single bout
of exercise results in a transient increase in transcriptional rate of genes in skeletal muscle
during the recovery period, believed to return to pre-exercise levels after 24 hours
(Neufer et al., 1998; Pilegaard et al., 2000). In addition, studies on cytochrome oxidase
gene expression in rats have reported that increased mRNA in skeletal muscle with
chronic electrical stimulation is a result of time-dependent increased mRNA stability
(Freyssenet et al., 1999). There also appears to be translational and/or post-translational
regulation of gene expression that occurs with exercise training in skeletal muscle of rats
(Booth, 1991). The adaptation to repeat bouts of exercise may be due to the cumulative
effects on any of these factors that contribute to gene expression, thus altering the level of
skeletal muscle mRNA. As a result, it becomes difficult to interpret the mRNA results
from the present study until further studies are done to determine what effect aerobic

exercise training has on skeletal muscle mRNA stability and translational rates.
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Long-term training - PDK

Long-term aerobic training results in a greater reliance on fat for ATP synthesis
during submaximal exercise (Henriksson, 1977; Hurley et al., 1986; Martin et al., 1993;
Phillips et al., 1996b), resulting in less reliance on carbohydrates and a net glycogen
sparing effect. Activities of PDK and PDP, and resultant activation state of PDH, play
important role in this adaptation to training. In the current study, 8 weeks of aerobic
exercise increased PDK activity approximately 2 fold. It is important to note that this
increased PDK activity persisted after a rigorous mitochondrial preparation, and thus was
not due to altered mitochondrial effectors known to increase PDK activity. The increased
PDK post training reported in the present study is consistent with aerobic training in rats,
demonstrating an increased PDK after 8 weeks of voluntary wheel running (Nakai et al.,
1999). Increased PDK activity with long-term aerobic training would result in greater
phosphorylation, and resulting inactivation, of the aforementioned 31% increased PDHt.

The long-term aerobic training-induced adaptations in skeletal muscle metabolism
are not limited to the carbohydrate side. Previous studies have demonstrated greater
adaptive increases in fat metabolism relative to carbohydrate metabolism in aerobically
trained skeletal muscle (Davies et al., 1981; Wibom et al., 1992; Bizeau et al., 1998).
Thus although aerobic training increases the maximal capacity to oxidize carbohydrates,
there is a greater relative increase in enzymes that suppress carbohydrate flux (e.g. PDK)
and enhance fat metabolism during submaximal exercise post training.

The increased PDK activity reported in the current study may be attributed to a

1.3 fold increase in PDK2 protein, with no change detected in protein of the other
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isoforms measured. To our knowledge, this is the first study to examine the effects of
prolonged aerobic exercise training on the expression of PDK isoforms. Previous studies,
focusing on dietary manipulation and acute disease states, reported an increased PDK4
protein in skeletal muscle during high fat diet (Holness et al., 2000), fasting (Wu ef al.,
1999; Sugden et al., 2000; Peters et al., 2001a), and insulin resistance (Wu et al., 1999)
in rats and high fat diet in humans (Peters et al., 2001b). It appears that the adaptive
response of skeletal muscle PDK4 is to acute alterations in fat availability, termed the
“lipid status”-responsive PDK isoform (Sugden et al., 2001). In contrast, previous
studies examining the less active but more abundant isoform PDK2, report no change to
acute physiological (Wu et al., 1999; Sugden et al., 2000; Peters et al., 2001a) or
pathological (Wu et al., 1999) perturbations. PDK?2 is important because it has a strong
synergistic inhibition by ADP and dichloroacetate (DCA; Gudi ef al., 1995; Bowker-
Kinley et al., 1998), a unique response to high NADH/NAD ratio plus acetyl-CoA,
increasing its activity to more than 300% of the control (Bowker-Kinley et al., 1998), and
appears to respond to chronic perturbations, such as non-insulin-dependent diabetes
mellitus (Majer ef al., 1998). This evidence, along with the finding of the present study,
suggests that chronic alterations to energy metabolism and energy status of the cell favor
an upregulation of PDK?2, possibly making this the “energy status”-responsive PDK
isoform.

A recent study conducted in our laboratory demonstrated a significantly lower
activation of PDH during steady state submaximal exercise in individuals after 7 weeks

of aerobic exercise (LeBlanc et al., 2003). We concluded that the altered flux through
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glycogen phosphorylase, influenced by cellular energy status, attenuated the exercise-
induced increase in muscle [pyruvate], thus releasing inhibition on PDK. In the present
study, the training-induced adaptive increase in skeletal muscle PDK2, which is highly
sensitive to pyruvate, may be important in regulating PDH activation during submaximal
exercise post training.

With only an approximate 25% increase in PDK2 protein content in skeletal
muscle, there appears to be other factors responsible for a two fold increase in PDK
activity. One possible contributor may be the other PDK isoforms found in the muscle,
but in lower quantities. Both PDK1 and 3 demonstrate 2-25 times higher specific activity
compared to PDK?2 and 4 (Bowker-Kinley et al., 1998). Thus, small changes in training-
induced protein expression of PDK1 and 3 would result in large changes in relative
contribution to total PDK activity. Other possible contributors other than increased
protein synthesis may be the interaction between PDK and the PDH complex. PDK is
known to exist in two states, intrinsic (bound) and free (unbound; Kerbey et al., 1984;
Jones & Yeaman, 1991; Mistry et al., 1991). Intrinsic PDK binds to the innermost lipoyl
domain of the E, component of PDH (Ravindran ef al., 1996) and represents only 15-
30% of the total PDK activity (Kerbey et al., 1984; Mistry et al., 1991; Vary & Hazen,
1999). Shifts from free to intrinsic PDK may enhance the enzyme activity with little or
no change in protein synthesis. In addition, intrinsic PDK activity is enhanced when
associated with higher ratios of reduced or acetylated forms of the E,-lipoyl domain
(Korotchkina & Patel, 2001). More specifically, the activity of PDK2 approximately

doubled with reduced/acetylated E, compared to the oxidized form (Korotchkina & Patel,

91



PhD Thesis — P.J. LeBlanc McMaster - Medicine

2001). To date, no study has examined the effects of long-term aerobic training on the
expression of intrinsic and free PDK and the interaction between these two forms of PDK
and the PDH-E, lipoyl domain.

Similar to PDH mRNA, PDK isoform mRNA was unaltered with exercise
training, which is consistent with a recent study that examined high-intensity training in
human skeletal muscle (Nordsborg et al., 2003). Again, this may be due to the transient
nature of gene expression of these proteins with exercise, which may not be detectable
during the sampling time frame (24-48 hours after last exercise bout). Despite no change
in PDK mRNA with aerobic exercise training, the reported increase in PDK?2 protein
would suggest an increased gene expression of this protein. It is possible that the
cumulative effect of transient increases in PDK2 mRNA following each bout of exercise
may have contributed to the stable increase in PDK?2 protein after 8 weeks of exercise.
Previous studies, possibly representing more short-term sustained perturbations, reported
increased PDK4 mRNA with fasting (Wu et al., 1999; Peters et al., 2001a) and
streptozotocin-induced diabetes (Wu et al., 1999) in rats and during recovery from a
prolonged bout of exercise in 5 day trained humans (Pilegaard et al., 2000), with little or
no change to PDK2 mRNA. It is believed that potential fat-dependent promoters, such as
peroxisome proliferators-activated receptor a (see Sugden ef al., 2001 for review), are
responsible for the increased PDK4 transcription. To date, no study has examined which
exercise-induced promoters may stimulate gene expression of PDK isoforms, more
specifically PDK2. There are numerous mechanical, metabolic, neuronal, and hormonal

factors (see Fluck & Hoppeler, 2003 for review) that could contribute to an upregulation
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of PDK2 expression with exercise training. Future experiments will have to determine
which regulatory parameters are linked to altered PDK2 transcription and translation.

We have demonstrated in the present paper that prolonged aerobic training up
regulated the amount and activity of PDHt and one of its regulatory proteins, PDK. The
other covalent regulator of PDH, PDP, was not measured in this study, however, it may
be speculated that it also increased with exercise training to accommodate the overall
increase in the enzyme complex. To date, there are two known isoforms of PDP in
mammals; PDP1 and PDP2. PDP1 is Ca™ -sensitive and preferentially expressed in
skeletal muscle, whereas PDP?2 is relatively unaffected by the absence or presence of
Ca", is insulin sensitive, and found more abundantly in liver and adipose tissue (Huang
et al., 1998). Few studies have examined the effects of physiological or pathological
perturbations on PDP, reporting mixed results. The only study to examine skeletal
muscle reported no change with acute starvation and streptozotocin-induced diabetes in
rats (Fuller & Randle, 1984). More work is needed to establish the relative contribution
of PDP to skeletal muscle adaptations to more prolonged physiological (e.g. exercise

training) or pathological (e.g. obesity, diabetes) conditions.

Summary and conclusion

The present study clearly demonstrates that long-term aerobic training influences
carbohydrate utilization in human skeletal muscle. The alterations are evident at the level
of PDH and its control. Eight weeks of aerobic exercise increased PDHt activity, thus

increasing the maximal potential capacity to oxidize carbohydrates. This was mainly due
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to increased expression of PDH subunit genes, more specifically the E a subunit. Also,
aerobic exercise training increased PDK activity, thus increasing the level of control on
PDH. This was in part due to increased expression of PDK2. As a result, exercise
trained skeletal muscle would have an increased maximal capacity to utilize
carbohydrates during maximal oxygen uptake, with an increased metabolic control

sensitivity to pyruvate during submaximal exercise through increased PDK?2.
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CHAPTER 3.  Seven weeks of aerobic training attenuates the exercise-induced activation
of pyruvate dehydrogenase in human skeletal muscle. (Submitted to Amer.

J. Physiol. Nov. 2003)
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INTRODUCTION

Carbohydrates and fat are the major metabolic fuels for ATP production in
skeletal muscle at rest and during exercise (see 11 for review). At workloads above 65-
70% of maximal oxygen uptake, carbohydrates, primarily in the form of muscle
glycogen, become the dominant fuel source (43, 45). Exercise at the same absolute
workload, thus similar ATP turnover rates, after several weeks of repeated bouts of
aerobic exercise (aerobic training) result in a greater reliance on fat for ATP synthesis
(18, 24, 31, 35), with less reliance on carbohydrates, a net glycogen sparing effect, and
less lactate accumulation in skeletal muscle.

A common theory to explain the regulation of fat and carbohydrate use in skeletal
muscle with prolonged aerobic training centers around the importance of mitogenesis,
and the resulting increased muscle oxidative potential and tighter coupling between ATP
supply and demand (9, 18, 21). During exercise, the major factor determining energy
requirement in contracting skeletal muscle is the rate of ATP hydrolysis. The rate of
ATP production, determined by the amount of enzymes in energy-producing catabolic
pathways, becomes limiting only when the energy need of the cell exceeds the maximal
catalytic capacity of the rate-determing steps of these pathways. Thus, a possible
consequence of an adaptive increase in mitochondria, and the associated enzymatic
pathways, is that the aerobic energy production pre-training becomes “submaximal” for
the muscle after prolonged aerobic training (22). This improved capacity of aerobic
energy production results in a greater respiratory control sensitivity, with smaller relative

changes in cytosolic modulators of oxidative phosphorylation (9). This is a result of
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reduced reliance on energy sources such as phosphocreatine (PCr), with an added
improvement ATP/(ADP + P;) ratio in the muscle, and reduced accumulations of P; and
free ADP (ADPy). Both P; and ADPy, together with NADH and oxygen, are known
regulators of oxidative phosphorylation (9). Alterations to these metabolic parameters
also influence enzyme systems in skeletal muscle, more specifically glycolysis. Two
important enzymes of the glycogenolytic/glycolytic pathway are glycogen phosphorylase
(Phos), a flux-generating enzyme of glycogenolysis, and pyruvate dehydrogenase (PDH),
a rate-determing enzyme that regulates the entrance of glycogenolytically/glycolytically
produced acetyl units into oxidative metabolism. Since both Phos and PDH play
important roles in dictating the rate of carbohydrate-derived acetyl units for ATP
production suggest that the response of these enzymes, and their regulators, to prolonged
aerobic training may provide insight into aerobic training-induced regulation of skeletal
muscle substrate utilization.

Previous studies have demonstrated that 3-12 days of aerobic training can induce
changes in skeletal muscle fuel utilization, energy metabolism, and lactate accumulation
prior to changes in oxidative capacity (12, 13, 15, 33, 34), with no changes in PDH
activation (37). However, the question remains whether extending the training duration
to increase the exercising muscle respiratory capacity, and possible alterations to PDH
and Phos, will exaggerate or replace the metabolic adaptations observed early in training.

To date, no studies have examined the effects of prolonged aerobic training on the
activation states of Phos and PDH in human skeletal muscle, or the roles that these two

enzymes may play in regulating the shift from carbohydrate to fat utilization post-
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training. Thus, the aim of the present study was to investigate potential changes in Phos
and PDH activity, along with the regulatory factors which control the activation states of
these enzymes, during submaximal exercise in human skeletal muscle after 7 weeks of
aerobic training. We hypothesized that prolonged aerobic training would increase
mitochondrial oxidative capacity and reduce disturbances to the energy status of the cell,
resulting in less glycogen breakdown, due to reduced flux through Phos and PDH, during

submaximal exercise at the same absolute workload.

METHODS
Subjects

Eight healthy, active men were recruited to participate in the study (age 22 + 1.0
(SEM) yr; height 178.9 £ 2.0 cm; weight 91.6 + 4.3 kg). Individuals were asked to
refrain from caffeine, alcohol, and exercise for 48 hours before each trial. Individuals
also consumed the same diet 24 hours prior to each trial, confirmed by subsequent
nutritional analyses of dietary records (Nutritionist 5, ver. 1.7, First DataBank Inc., CA).
The dietary analysis revealed that the diets consisted of 2751 + 168 kcal (53 £ 2%
carbohydrates, 30 + 2% fat, and 17 + 1% protein). Prior to each experimental protocol,
subjects consumed a standardized high carbohydrate meal (711 kcal; 87% carbohydrate,
3% fat and 10% protein) that was provided for them. Verbal and written explanation of
the experimental protocol and its attendant risks were provided and informed consent was

obtained from each subject. The study was approved by the Hamilton Health
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Sciences/Faculty of Health Sciences Research Ethics Board in accordance with the

Declaration of Helsinki.

Pre-experimental protocol
Individuals completed an initial incremental maximal exercise test on an electro-

magnetically braked cycle ergometer (Lode Excalibur, Quinton Instruments, Seattle,

WA.) to determine maximal work capacity and VOamax using a metabolic measurement

system (Moxus Modular VO2 System, AEI Technologies, Inc., Pittsburgh, PA).

Training Protocol

Individuals were trained on a cycle ergometer at a workload that elicited 75% of
their maximal O, uptake for 1 hour per day, five days a week for a total of 7 weeks. For
the first week, the 1 hour of training was broken up into four 15 min intervals with 5 min
rest in-between. For the second and third weeks, the 1 hour of training was broken up
into three 20 minute intervals with 5 and 2.5 minutes rest in-between, respectively. For
the third to eighth week, the 1 hour of training was broken up into three 20 minute
intervals with 1 minutes rest in-between. On the fourth week, individual subjects
completed an incremental maximal exercise test to determine changes in maximal work
capacity and O, uptake so that adjustments could be made to the workload in order to

maintain a training intensity equivalent to 75% of each subject’s maximal O, uptake.
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Experimental protocol

Each subject participated in two experimental trials, before (PRE) and after
(POST) 7 weeks of submaximal aerobic training. Studies were performed at the same
time of day. Individuals served as their own control. Prior to the beginning of the
exercise protocol, a venous catheter was inserted in an anticubital vein for blood
sampling and was maintained patent with saline. One thigh was prepared for the
extraction of needle biopsy samples from the vastus lateralis as described by Bergstrom
(2). Three incisions were made through the skin to the deep fascia under local anesthesia
(2% lidocaine without epinephrine). Subjects cycled to exhaustion at the same absolute
workload (206 + 5 W), eliciting 80% of their peak power output pre-training. Expired

gases were collected during steady state exercise pre- (25-30 min) and post- (20-30 and

55-70 min) training for the determination of VO, and RER and averaged over the
sampling time. Blood samples were taken at rest and after 10 min of exercise. Muscle

biopsies were obtained at rest and after 5 and 15 min of exercise.

Blood sampling and analysis

Venous blood samples (~ 7 ml) were collected in heparinized syringes (Sarstedt,
Germany) and placed on ice. Blood was centrifuged at 15,900 g for 2 min to isolate
plasma. One portion of plasma was incubated with 5 M NaCl (4:1 plasma:NaCl) at 56°C
for 30 min and then frozen for later analysis of free fatty acids (Wako NEFA kit, WAKO
Chemicals). A second portion of plasma was deproteinized with 500 mM perchloric acid

(PCA; 1:2 plasma:PCA) and then frozen for later analysis for glucose and lactate (1).
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Mouscle analysis

Muscle biopsies were immediately frozen by plunging the needles into liquid N,.
Small pieces were chipped from each biopsy (under liquid N) for determination of the
activity of PDH in the active form (PDH,; 40) and citrate synthase (CS; 20). The
remainder of the sample was freeze dried, dissected free of blood and connective tissue,
and powdered. One aliquot was analyzed for total (a+b) and active Phos (Phos a+b and
Phos a respectively; 48) and the maximal velocity and mole fraction of Phos a+b and
Phos a were calculated from the measured activities as described by Chasiotis et al. (5).
Phos measurements were made only on exercise samples because accurate resting
samples are obtainable only if the biopsy is held from liquid nitrogen freezing for 30
seconds, due to Ca™" release during muscle sampling, which artificially increases the
transformation of Phos b to a (42). Thus it was deemed unethical to obtain extra samples
for resting Phos and previous studies have reported values of ~10% for the mole fraction
of Phos a at rest in human skeletal muscle (42). A second aliquot was extracted in 500
mM PCA and 1 mM EDTA, neutralized to pH 7.0 with 2.2 M KHCOj; and analyzed for
acetyl-CoA, free CoA, acetylcarnitine, free carnitine (4), ATP, pyruvate, lactate,
phosphocreatine, creatine, glucose, glucose 6-phosphate (G-6-P), glucose 1-phosphate
(G-1-P), fructose 6-phosphate (F-6-P), and glycerol 3-phosphate (Gly-3-P; 1). The final
aliquot was used to measure muscle glycogen (17). All muscle metabolites, along with
Phos, PDH and CS enzyme measurements, were normalized to the highest total creatine

content for a given individual to correct for non-muscle contamination.
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Calculations

The concentrations of ADPsand free AMP (AMPy) were calculated from the near-
equilibrium reactions of creatine kinase and adenylate kinase, respectively (7), however
these calculations do not provide information as to the exact location of these metabolites
within the cell. The concentration of free inorganic phosphate (P;) was calculated as the
difference between resting and exercise [PCr], less the accumulation of G-6-P, F-6-P, and
Gly-3-P, plus the assumed resting concentration of 10.8 mmol/kg dry wt (7).

Previous studies have shown that in vivo flux through PDH is similar to its in
vitro level of activity at varying exercise power outputs (10, 23, 38, 39). Thus pyruvate
oxidation, estimated by PDH, flux, was calculated from PDH, activity as measured in wet
tissue and converted to dry tissue using the wet-to-dry muscle ratio of 4:1 at rest and
4.5:1 during exercise (37).

Pyruvate production was calculated from the sum of the measured rate of muscle
lactate and pyruvate accumulation, plus the rate of blood lactate accumulation
(distribution volume of blood lactate was assumed to be 0.64*body weight), plus the flux
of pyruvate through PDH,. The calculation of blood lactate accumulation does not
account for lactate oxidation by other tissues and would result in a slight underestimation

of lactate accumulation.
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Statistical analysis

All data are presented as means + SE. A two-way analysis of variance (ANOVA)
with repeated measures was used to establish differences between condition and time.
Tukeys post hoc test was used to determine significance (p<0.05). Assumptions for
normality and independence were verified by generating appropriate residual plots. Data
transformations (log, square root, and inverse square root) were used when appropriate to

meet the above assumptions.

RESULTS

Cardiorespiratory measurements
VOomay increased 5% after 7 weeks of aerobic training (PRE, 3.90 £+ 0.15 1/min;

POST, 4.13 £ 0.13 I/min; p<0.05). VO, during exercise was unchanged before and after
training (PRE, 3.03 £+ 0.08 I/min; POST, 2.88 + 0.07; p=0.17). RER decreased post-

training (PRE, 1.07 + 0.03; POST, 0.98 + 0.01; p<0.05).

Muscle enzymes

Training resulted in increased resting muscle CS maximal activity from 26.8 + 1.4
to 34.1 + 3.4 mmol/min/kg wet wt (p<0.05). The activity and Vg of Phos and mole
fraction of Phos a were unaffected by training after 5 and 15 min of exercise (Table 3.1,

Fig 3.1). PDH, increased during exercise compared to rest in both conditions, with no
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Table 3.1. Glycogen phosphorylase activity during exercise before and after 7 weeks of

aerobic training.

Pre-training

Post-training

Phos

5 min 15 min 5 min 15 min
Totala+b 81.8+79 83.9+9.1 759+£5.3 76.0 £ 6.8
A 20.5+3.6 223+4.6 18.0+1.8 20.5+2.0
Vmaxa+b 110+ 10 120+ 13 96+ 9 102+9
Vinax @ 47+ 8 51+10 39+5 47+ 5

Values are means + SEM and are expressed in mmol glycosyl units kg dry wt”' min™".
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Figure 3.1. Muscle phosphorylase a mole fraction during exercise before and after 7
weeks of aerobic training. Values are means + SEM. Note: resting values are based on

previous studies (see Methods for details).

112



PhD Thesis — P.J. LeBlanc McMaster - Medicine

further increase after 5 min of exercise (Fig 3.2). After 15 min of exercise, PDH, was

lower in POST compared to PRE.

Muscle metabolites

Resting muscle [glycogen] was higher POST compared to PRE at all time points
(Table 3.2). At the end of 15 min of exercise, muscle [glycogen] decreased by 49 and
17% during PRE and POST, respectively. Glycogenolytic rate was lower POST
compared to PRE (Fig 3.3). At rest, all glycolytic intermediates were similar between
conditions (Table 3.2). G-1-P was not detectable. After 5 min of exercise, muscle
[glucose] was elevated compared to rest but there was no difference between conditions.
After 5 min of exercise muscle [G-6-P], [F-6-P], and [Gly-3-P] were lower POST
compared to PRE. With the exception of muscle [G-6-P], all glycolytic intermediates
were lower after the last 10 min of exercise POST compared to PRE.

Resting muscle [pyruvate] and [lactate] were similar between both conditions
(Table 3.2). During exercise, both muscle [pyruvate] and [lactate] increased from rest.
After 5 min of exercise, muscle [pyruvate] was similar between conditions, however,
after 15 min of exercise, [pyruvate] was lower POST compared to PRE. After both 5 and
15 min of exercise, muscle [lactate] was lower POST compared to PRE.

Muscle [ATP] was unchanged during exercise in both conditions (Table 3.3).
Muscle [PCr] decreased during PRE after 5 min of exercise, with no further change
during the last 10 min of exercise. In comparison, muscle [PCr] decreased during POST

only after 15 min of exercise and remained higher during exercise compared to PRE.
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Figure 3.2. Muscle pyruvate dehydrogenase in its active form (PDHa) at rest and during
exercise before and after 7 weeks of aerobic training. Values are means + SEM; * denotes

significance from rest; T denotes significance from pre-training.
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Figure 3.3. Estimated rates of muscle glycogen use during exercise before and after 7

weeks of aerobic training. ¥ denotes significance from pre-training.
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Calculated [ADPy], [AMPy], and [P;] increased in PRE after 5 and 15 min of exercise and
were higher than POST at both time points. In contrast, [ADP¢] and [AMPy] were
unaffected by exercise in POST and free [P;] was higher at 15 min of exercise compared
to 5 min and rest.

With the exception of muscle [acetylcarnitine] being lower POST compared to
PRE after 5 min of exercise, muscle [acetyl-CoAl], [free CoA], and [free carnitine] at rest

and during exercise were unaffected by training (Table 3.4).

Blood metabolites
Blood [glucose] and [free fatty acids] did not change with exercise and were
similar between conditions (Table 3.5). Blood [lactate] increased with exercise and was

higher PRE compared to POST at 10 min of exercise.

Pyruvate production and oxidation and lactate accumulation

In the first 5 min of exercise, less pyruvate was produced and less lactate
accumulated POST compared to PRE, with no change in pyruvate oxidation (Fig 3.4).
During the subsequent 10 min of exercise, there was less pyruvate produced and oxidized

and less lactate accumulation POST compared to PRE.

DISCUSSION
This is the first study to examine the effects of prolonged aerobic training on the

activation state of both Phos and PDH in human skeletal muscle at rest and during
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Table 3.5. Plasma lactate, glucose, and free fatty acid (FFA) concentration at rest and

during exercise before and after 7 weeks of aerobic training.

Metabolite Condition Rest Exercise
Lactate PRE 0.73+0.15 5.11+£0.39*%
POST 0.80+0.13 3.13 £ 0.25*+
Glucose PRE 439 £0.31 4.02+0.34
POST 470+ 0.35 4.09+0.13
FFA PRE 0.19£0.02 0.18 £0.04
POST 0.13+£0.03 0.13£0.02

Values are means + SEM; exercise samples were taken after 10 min of exercise; all
measurements are expressed in mM; FFA, free fatty acid; * denotes significance from

rest; T denotes significance from pre-training.
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submaximal exercise. The effects of aerobic training were evidenced by improved
maximal O, uptake, 27% increase in citrate synthase maximal activity and an
approximate doubling of endurance capacity (results not shown). The major novel
finding from the present study was that the acute exercise-induced activation of PDH was
attenuated after 7 weeks of aerobic training during submaximal exercise. These effects
were not seen at rest. This attenuation may be due to a series of events resulting from
prolonged aerobic training. First, the 7 week training program significantly increased the
oxidative capacity of skeletal muscle, evident with an increased maximal CS activity.
This resulted in an improved coupling of ATP supply and demand during exercise with
less reliance on PCr stores for ATP resynthesis, resulting in lower skeletal muscle
[ADPs], [AMP¢], and [P;], and higher [PCr] post-training. Despite no change in the mole
fraction of Phos in the more active form (Phos a), attenuated levels of its allosteric
regulators (ADPy, AMPy, and P;) resulted in decreased glycogenolytic flux through Phos
due to post-transformational regulation. Finally, the decreased glycogenolytic rate
resulted in less pyruvate production from glycogenolysis, in addition to attenuated levels

of ADPy, resulted in a possible stimulation of PDK and decreased activation of PDH.

Control of glycogenolysis

In the present study, glycogenolytic rate and resulting pyruvate production during
exercise was lower in POST compared to PRE. Previous studies have shown a
conservation of glycogen content in trained skeletal muscle (14, 18, 24, 25, 29). The

changes in glycogenolytic flux through Phos during exercise demonstrated in the present
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study with prolonged aerobic training took place in the absence of any change in total
Phos activity or the percent mole fraction of the more active form of Phos (Phos a). This
is similar to what has previously been shown in short-term aerobically trained human
skeletal muscle (6). Previous studies have demonstrated that exercise-induced covalent
transformation of Phos b to a is always well in excess of glycogenolytic flux at
submaximal exercises (6, 23, 34). As a result, the decreased glycogenolytic rate in POST
compared to PRE is more likely due to post-transformational regulators linked to energy
balance.

Post-transformationally, Phos b is up regulated by AMP; and IMPy, and inhibited
by ATP and G-6-P whereas Phos a is up regulated only by AMP (8, 26). Recently, it has
been demonstrated in vitro that Phos a is also up regulated by ADPy (44). In addition, the
availability of one of the substrates, P;, is critical in increasing the catalytic rate of Phos
(5). After 5 and 15 min of exercise in POST, there was a decreased reliance on PCr,
resulting in 50-63% reduced availability of P;, and a 46-70% and 24-47% attenuated
increase of AMPyrand ADPy, respectively. These results are consistent with what has
been previously demonstrated with long-term aerobic training (14, 34) and similar, but of
a greater magnitude, that those demonstrated with short-term aerobic training (12, 13, 34).
The increased muscle oxidative capacity POST, with attenuated levels of ADPs, AMPy,
and P;, may represent potentiated effects seen before changes in training-induced
increases in muscle mitochondrial content. Thus long-term aerobic training further
attenuates exercise-induced disturbances to the energy status of the cell, resulting in

further decreased flux through Phos and larger net glycogen sparing.
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Control of pyruvate utilization

The present study demonstrated an attenuation of the exercise-induced activation
of PDH. This is the first study to report changes in human skeletal muscle PDH
activation with training, with a previous study demonstrating no change in PDH
activation during exercise after 7 days of aerobic exercise (37). Thus, it appears that the
regulation of PDH during exercise POST represents an adaptation that replaces the
underlying mechanisms responsible for metabolic adjustments observed early in training.

PDH activity is controlled by the relative activities of PDH kinase (PDK) and
PDH phosphatase (PDP) which inhibit and activate PDH, respectively. Increased ratios
of ATP/ADP and NADH/NAD" stimulate PDK and inhibit PDP. In addition, pyruvate
inhibits PDK, whereas Ca®>" and H" activate PDP. The increased [Ca'"] at the onset of
exercise stimulates PDP and crudely activates PDH where as the other allosteric
modulators fine tune PDH activation. The effects of allosteric modulators on PDK
activity are mediated by altering the association of PDK with the PDH complex, more
specifically the E; component. PDK exist in two states, intrinsic (bound) and free
(unbound; 27, 28, 32). Intrinsic PDK binds to the innermost lipoyl domain of PDH-E,
(41) and represents only 15-30% of the total PDK activity (28, 32, 46). Thus shifts from
free to intrinsic PDK, which is dependent on the concentration of allosteric modulators,
would increase total PDK activity.

The apparent mechanisms regulating the attenuated exercise-induced activation of

PDH post-training are potentially mediated by two allosteric modulators. The improved
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mitochondrial oxidative potential with POST attenuated the increased ADPs during
exercise, thus increasing ATP/ADP ratio, stimulating PDK and attenuating PDH
activation. Also, reduced glycogenolysis/glycolysis during exercise POST was associated
with attenuated skeletal muscle [pyruvate], which in turn may have released inhibition on
PDK and reduced activation of PDH after 15 min of exercise. The inhibition constant
(Kj) of pyruvate for PDK has been reported in cardiac muscle to be in the range of 0.08-2
mM (see 47 for review). Assuming the fluid volume of muscle is 75% of the total
volume, muscle [pyruvate] after 15 min of exercise decreased from 0.31 mM PRE to 0.15
mM POST. Although the K; of pyruvate in human skeletal muscle has yet to be
confirmed, the possibility remains that it may be similar in magnitude to the pyruvate
concentrations we observed pre-training in the present study. Another important
regulatory mechanism of pyruvate-mediated inhibition of PDK is its integration with
ADP, where an increased ATP/ADP ratio decreases the sensitivity of PDK to pyruvate
(36). Thus, an increased ATP/ADP ratio, in combination with a decreased pyruvate
content, would decrease the activation of PDH possibly due to increased PDK activity. It
is important to note that the pyruvate and ADP¢ concentrations reported here are of the
whole muscle cell and further research is needed to ascertain the subcellular distribution
of these modulators since the inner mitochondrial concentration would influence the
activity of PDK.

PDH control can also be accomplished through stable alterations to PDK. The
complexity of PDH control by PDK is enhanced by the presence of four isoforms (PDK1-

4; (3), with PDK2 and 4 being the most abundant isoforms represented in human skeletal
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muscle (16). Each isoform has differing concentrations, specific activities, and kinetic
properties from each other, resulting in unique responses to certain metabolic demands.
A recent study conducted in our laboratory demonstrated that 8 weeks of aerobic training
resulted in a 2-fold increase in PDK activity, mainly due to increased pyruvate-sensitive
PDK2 (30). Thus, this evidence supports the idea of a pyruvate-mediated feed-forward
regulation of PDH during exercise post-training.

It has been shown that the level of PDH activity is similar to flux through this
enzyme at varying exercise power outputs (10, 23, 38, 39). As a result, the decreased
PDH activation, and resultant pyruvate oxidation, may be compensated through increased
fatty acid metabolism. Previous human studies have shown that prolonged aerobic
training induces an increased fat oxidation, more specifically intramuscular lipolysis, in
trained skeletal muscle compared to pre-trained during submaximal exercise (see 11, 19,
22 for review). Since the exercise bout was done at the same absolute workload, thus the
same ATP turnover rate, the amount of fatty acid (palmitate) that would be needed to
account for this difference in pyruvate-derived oxidative ATP production would be
approximately 10 mmol of palmitate for each leg during the 15 min of exercise post-
training. With an estimated 91 mmol of glucosyl units oxidized per leg during the 15 min
of exercise post-training, this would equate to approximately 90% carbohydrates and10%

fat.
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Summary and conclusions

The present study clearly demonstrates that long-term aerobic exercise influences
skeletal muscle carbohydrate utilization during exercise. This study supports the theory
that training-induced mitochondrial biogenesis improves the energy status of the cell, thus
regulating carbohydrate metabolism partially through metabolic regulators of both Phos
and PDH. This is in contrast to short-term training that imparts regulation solely on Phos.
Improved control of aerobic energy production, with a decreased reliance on substrate
level phosphorylation, led to an attenuation of ADPy, AMPy, and P;, known post-
transformational activators of Phos. Reduced flux through the glycogenolytic pathway
reduced pyruvate availability and, in addition to attenuated levels of ADPy, resulted in an
attenuated exercise-induced activation of PDH. This was possibly due to allosteric

modulator-induced and/or training-induced increase in PDK activity.
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GENERAL CONCLUSIONS

A majority of the information in the literature regarding dynamic regulation of
PDH has utilized in vitro analysis of rodent, bovine, and swine tissue homogenates or
isolated proteins (see Denton ef al., 1975;Wieland, 1983 for review). With regards to in
vivo PDH regulation, the focus has been mainly on rodents in a variety of tissues (see
Harris ef al., 2002 for review). However, recently the importance of PDH regulation of
human skeletal muscle in vivo has been examined in relation to oxygen availability
(hypoxia and hyperoxia), acute and chronic dietary manipulation (high fat, high
carbohydrate), acid-base perturbations (metabolic acidosis and alkalosis), acute hormonal
alterations (epinephrine), and short-term training at rest and during exercise at differing
intensities and durations (Heigenhauser & Parolin, 1999;Spriet & Heigenhauser, 2002).
The studies outlined in the preceding chapters add new information concerning the
dynamic and stable regulation of PDH in human skeletal muscle in vivo and how this
regulation may influence fuel selection and lactate production at rest and during exercise.

The first study (Chapter 1) examined the effect of hyperventilation-induced
respiratory alkalosis on the dynamic regulation of PDH activity and lactate metabolism at
rest and during exercise in human skeletal muscle. This study reinforces the idea that
PDH is a significant contributor to metabolic inertia and lactate accumulation during
hypoxia. This study also identifies respiratory alkalosis as a potential source of hypoxia-
related attenuation of PDH at the onset of exercise.

The final two studies examined aerobic training-induced adaptations in PDH and

PDK activities (Chapter 2) and subsequent alterations in the regulation of PDH activation
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during submaximal exercise (Chapter 3). These studies demonstrate the adaptive
response of the PDH enzyme complex to aerobic training, both at a dynamic and stable
regulatory level. These studies also expand our knowledge of the role different PDK
isoforms play in regulating PDH.

The present chapter collectively summarizes the important findings from these
studies and makes recommendations for future research initiatives into the topic of PDH

regulation in human skeletal muscle.

PDH regulation by hyperventilatory-induced respiratory alkalosis

Results from the study outlined in Chapter 1 demonstrated the relative role of
hyperventilatory-induced changes in pH that contributed to lactate production during
hypoxia. Voluntary hyperventilation resulted in an increased calculated pH in plasma and
muscle. This resulted in a possible pH-induced stimulation of PDK and/or inhibition of
PDP, resulting in a delayed activation of PDH during exercise. The importance of this
study is in demonstrating that respiratory alkalosis accounted for approximately 57% of
muscle lactate produced at the onset of exercise during hypoxia (Parolin et al., 2000).
Also, the delayed activation of PDH was similar in magnitude, as demonstrated during
respiratory alkalosis in Chapter 1 and during hypoxia (Parolin e al., 2000). This suggests
that O, delivery to the working muscle at the onset of exercise was not solely responsible

for the delayed activation of PDH and resultant lactate accumulation.
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Future studies

Despite the convincing evidence of the important role respiratory alkalosis plays
in skeletal muscle and whole body lactate production at the onset of exercise during
hypoxia, there are certain limitations to the study that warrant future research.

The argument for pH-induced regulation of PDK and PDP is based on two
assumptions; 1) calculated respiratory alkalosis-induced elevated pH in skeletal muscle,
based on isolated rat diaphragm (Heisler, 1975), reflect increases seen iz vivo and 2) PDK
and PDP pH sensitivity demonstrated in vitro for bovine kidney and heart (Hucho ez al.,
1972) are similar to human skeletal muscle in vivo. These limitations need to be
addressed to verify the assumptions and ensure the elevated pH seen with respiratory
alkalosis is an underlying mechanism of hypoxia-induced skeletal muscle lactate
production at the onset of exercise in humans.

The isoform expressions of PDK and PDP in human skeletal muscle may
contribute to altered activities with respiratory alkalosis. It is known that PDK2 and
PDK4 are the most abundant isoforms in human skeletal muscle (Gudi et al., 1995),
however, there is no information regarding the PDP isoform distribution in human
skeletal muscle. In addition, there have not been any studies regarding the relative pH
sensitivities of each of the PDK and PDP isoforms. Thus, PDK and PDP individual
isoform isolation and in vitro determination of pH sensitivity, along with PDP skeletal
muscle isoform distribution, are required to ascertain the importance of isoform
expression and distribution in respiratory alkalosis-induced regulation of skeletal muscle

PDH activation and resulting lactate production.
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Aerobic training-induced alterations to the PDH enzyme complex and implications
during exercise
PDHt

It is known that aerobic training increases the maximal carbohydrate oxidative
capacity of skeletal muscle. The results of Chapter 2 demonstrate that the training-
induced increase in maximal oxygen uptake may, in part, be linked to the adaptive
increase in total PDH complex, and not on representative enzymes of the tricarboxylic
acid cycle (citrate synthase) and electron transport chain (cytochrome oxidase) in human
skeletal muscle. This was evident by a closer association between PDHt and maximal O,
uptake, demonstrated by a slight excess (1.3 times) of PDHt activity in contrast to
considerable excess for citrate synthase (9 times) and cytochrome oxidase (6 times)
maximal activities. These observations follow the concept of metabolic symmorphosis
proposed by Hochachka et al. (1998), in which enzymes operating far from equilibrium
are regulated the least where as equilibrium enzymes are adjusted the most. The aerobic
training-induced increase in PDHt was accompanied by a change in only one of the PDH
subunits measured, a 1.3 fold increase in PDH-Ea.

Despite a 31% increase in PDHt seen in Chapter 2, the results of Chapter 3
demonstrate an attenuated submaximal exercise-induced increase in PDH post-training,
which may be at the level of PDK. These results are similar to a study that examined
branched-chain 2-oxoacid dehydrogenase (BCOAD), another mitochondrial enzyme that

requires dephosphorylation for activation, in human skeletal muscle with long-term
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aerobic training. McKenzie and colleagues (2000) demonstrated that 38 days of
endurance exercise training resulted in a 50% increase in total BCOAD yet the percent
activation during exercise at the same absolute submaximal workload was 2 fold lower in
post-training compared to pre-training. The aerobic training-induced changes seen in
Chapters 2 and 3 emphasize the adaptive capacity of skeletal muscle to utilize more
carbohydrates at maximal oxygen uptake, evident by an increased PDHLt, yet down-

regulate PDH during submaximal exercise so as to use more fat post-training.

PDK

Another skeletal muscle adaptive response to aerobic training is a switch in fuel
utilization from carbohydrate to fat during submaximal exercise. Activation of PDH, a
key regulatory step for carbohydrate metabolism, may be central to this adaptation. The
results of Chapter 2 demonstrate that aerobic training approximately doubled PDK
activity, representing a stable increase rather than changes to allosteric modulators. The
aerobic training-induced increase in PDK was accompanied by a change in only one of
the PDK isoforms measured, a 1.3 fold increase in PDK2.

The importance of a two-fold increase in PDK activity seen in Chapter 2 is
reflected in the results of Chapter 3, which demonstrate an attenuated exercise-induced
PDH activation post-training. The aerobic training-induced increase in PDK2, the
pyruvate-sensitive PDK isoform, coincides with an attenuated skeletal muscle [pyruvate]

during submaximal exercise post-training. Thus, aerobic training-induced down

137



PhD Thesis - P.J. LeBlanc McMaster - Medicine

regulation of skeletal muscle PDH during submaximal exercise appears to be at the level

of PDK.

Future studies
Link between exercise and increased PDH complex proteins

There is convincing evidence in Chapter 2 that demonstrates long-term aerobic
exercise stimulates a stable increase in PDK and PDHt activities and protein expression.
The importance of an increased PDK?2 protein expression in skeletal muscle with aerobic
training was discussed in Chapters 2 and 3, however, the significance of a 1.3 fold
increase in PDH-Ea subunit remains elusive. It is known that the PDH-E o subunit is a
component of the rate-determining, non-reversible step of the PDH reaction and is the
regulatory component of the heterotetrameric E; subunit, which when phosphorylated
inactivates the PDH complex. Although this specific increase in the E;a subunit, with no
changes in any of the other subunits, has been previously demonstrated in non-muscle
tissue (Amessou et al., 1998;Da Silva et al., 1993;Maury et al., 1995), the importance of
this remains unanswered. It has been postulated that the amount of the E ;o subunit, and
possibly the E; heterotetramer, is the rate limiting step in the formation of new PDH
complexes. Further studies are needed to address this possibility.

Despite an increased PDH-E a and PDK2 protein expression, the regulatory
signals responsible for this training-induced increase are currently unknown. There are a
number of exercise- and training-linked stimuli that may contribute to the aerobic

training-induced increase in gene expression. These include stretch and muscle tension,
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calcium fluxes during muscle contraction, energy status of the cell, substrate availability,
and circulating hormones (Hargreaves & Cameron-Smith, 2002). These stimuli result in
activation of kinases (e.g. protein kinase C, AMP kinase) and phosphatases (e.g.
calcinurin) with exercise, which in turn stimulate transcription factors (e.g. nuclear
respiratory factor, c-Jun, c-Fos) that alter transcription and translation of targeted genes of
interest during the recovery period from exercise (see Hood, 2001 for review). Currently,
it is unknown as to which transcription factor(s) or signaling pathway(s) link repeated
bouts of exercise with increased protein expression of the PDH enzyme complex in
human skeletal muscle. As a result, more work is needed to establish which stimuli
contribute to the adaptive phenotypic changes seen in skeletal muscle with repeated bouts

of exercise.

Skeletal muscle regional adaptation

The results of Chapter 2 reflect an aerobic training-induced adaptation to the PDH
complex, an intermitochondrial enzyme. Two populations of mitochondria exist within a
skeletal muscle cell: subsarcolemmal (SS), which are near the sarcolemma, and
intermyofibrillar (IMF), which are between the myofibrils (Hoppeler et al., 1973). The
mitochondrial isolation technique used in Chapter 2 preferentially extracted SS
mitochondria and thus reported alterations to activities of PDK and PDHt would reflect
that population. This is in contrast to PDH measurements in Chapter 3 which were done
on whole muscle, which would reflect both populations. Previous studies examining the

differential response of SS and IMF to endurance training have shown somewhat similar
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responses, although different in magnitude, between the populations (Bizeau et al.,
1998;Chilibeck et al., 2002;Roussel et al., 2000). However, no studies have been
conducted to examine the potential differential PDHt and/or PDK responses of each
mitochondrial population. Thus, further research is needed in this area to assess the
relative contribution of both mitochondrial subpopulations to exercise-induced

attenuation of PDH activation post-training.

Association between PDK protein and activity

With only an approximate 25% increase in PDK2 protein content in skeletal
muscle post-training, there appear to be other factors responsible for an aerobic training-
induced two fold increase in PDK activity. As discussed in Chapter 2, this discrepancy
may be due to; 1) contributions by other PDK isoforms and/or 2) interaction between
PDK and PDH (bound vs. unbound).

Despite no changes seen in skeletal muscle protein content of PDK1 and 4 pre-
and post-training, and undetectable levels of PDK3, we can not rule out the contribution
of these isoforms to the aerobic training-induced increase in PDK activity. Specifically,
PDK3 demonstrates approximately 2-25 times higher specific activity compared to the
other PDK isoforms (Bowker-Kinley et al., 1998), and small changes in training-induced
protein expression of PDK3 would result in large changes in relative contribution to total
PDK activity. Thus, more sensitive methods are required to ascertain the important
relative contribution of all PDK isoforms, specifically PDK3, to the aerobic training-

induced increase in PDK activity.
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Increased PDK activity can occur in the absence of increased PDK protein
expression. The association of PDK with the innermost lipoyl domain of PDH-E,
determines its two states, intrinsic (bound) and free (unbound), with all PDK isoforms
demonstrating increased activity in the intrinsic form (Korotchkina & Patel, 2001). To
date, no study has examined the effects of long-term aerobic exercise on the expression of
intrinsic and free PDK and the interaction between these two forms of PDK and the PDH-
E; lipoyl domain. Utilizing immunoprecipitation methodology, one may quantify the

relative intrinsic-to-free ratio of each PDK isoform in response to exercise and training.

Contribution of PDP to aerobic training-induced PDH regulatory adaptation

Changes in protein or activity to either PDK or PDP would alter the regulation of
PDH activation. Starvation, high fat feeding, and chemically-induced diabetes result in
an enhanced phosphorylated, and inactivated, state of PDH in most tissues of the rat
(Holness et al., 2000;Peters et al., 2001a;Sugden et al., 2000a;Wu ef al., 1998;Wu et al.,
1999;Wu et al., 2000). Although increased PDK activity could account for the inactive
state of PDH during starvation, high fat feeding, and diabetes, a much greater effect
would be achieved with a concomitant decreased PDP activity. In fact, starved and
chemically-induced diabetic rats demonstrated decreased PDP activity in heart and kidney
(Huang et al., 2003). Thus, changes in PDP opposite to changes in PDK may occur to
maximize the inactivation of PDH.

Currently, there is little information regarding PDP activity in mammalian skeletal

muscle, with only one study demonstrating no change in PDP activity in starved and
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chemically-induced diabetic rats (Fuller & Randle, 1984). To date, no studies have
measured PDP in human tissues, let alone in skeletal muscle. The possibility of opposite
changes in PDK and PDP, along with the results of Chapter 3, demonstrate the need for
further investigation into the relative contribution of altered PDP activity in attenuated
exercise-induced PDH activation post-training in human skeletal muscle.

There are two known isoforms of PDP in mammalian tissues; PDP1 and PDP2.
PDP1 is Ca""-sensitive and preferentially expressed in skeletal muscle, whereas PDP2 is
relatively unaffected by the absence or presence of Ca™, is insulin sensitive, and found
more abundantly in liver and adipose tissue, with small amounts present in skeletal
muscle (Huang et al., 1998). The relative PDP isoform distribution is currently unknown
in human skeletal muscle and more research is needed to ascertain which, if not both,

isoforms of PDP may be altered with aerobic training.

Role of aerobic training-induced adaptation of the PDH enzyme complex in metabolic
disorders

The benefits of aerobic training on improving whole body and skeletal muscle
health are numerous. Physically active individuals are at a reduced risk of developing
chronic degenerative disorders such as type 2 diabetes, obesity, coronary heart disease
and hypertension. Physical activity has also been shown to improve skeletal muscle
metabolism, including fat oxidation, insulin sensitivity, glucose disposal, and lactate
handling, to name a few. The importance of the adaptive response of PDH regulation in

these metabolic disorders has been emphasized using a rodent model (see Harris et al.,
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2002;Randle, 1994;Sugden et al., 2001;Sugden & Holness, 2003 for review). However,
care must be taken when extrapolating these PDH enzyme complex-adaptive responses
found in rodents to a human model. An attempt to understand the role of the PDH
enzyme complex in the aerobic training-induced adaptive response in healthy human
skeletal muscle, as evident by the results demonstrated in Chapters 2 and 3, will assist in
establishing the relative contribution PDH enzyme complex adaptation plays in the
improvements in skeletal muscle post-training with specific metabolic disorders

associated with the lack of physical activity.

Summary

The studies outlined in this thesis offer new insight into the dynamic and stable
regulation of PDH activation in human skeletal muscle. The results of the first study
reinforce the importance of dynamic regulation of PDH in modulating lactate production
in exercising human skeletal muscle. It also identifies PDH as a key contributor to the
delayed onset of catabolic fuel utilization. The second study demonstrated that the
training-induced increase in maximal oxygen uptake may be dependent on the adaptive
increase in total PDH complex, and not on representative enzymes of the tricarboxylic
acid cycle and electron transport chain. In addition, this study represents only the third
human study to measure PDK activity in skeletal muscle and the first to show an adaptive
response of PDK2 to a physiological perturbation (training). The combined
determinations of mRNA, protein, and enzyme activity of this study provide a complete

picture of exercise-induced regulation of PDH, something that is not often done in the
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literature. The third study expands our knowledge of the importance of dynamic
regulation of PDH activation in metabolic fuel selection during exercise post-training,
demonstrating the significance of the training-induced increase in PDH and PDK2 from
the previous study. Both aerobic training studies identify the role different PDK isoforms
may play in regulating the activity of PDH in response to different metabolic
perturbations and provide a complete examination, from molecular to whole body, of the

adaptive response and plasticity of skeletal muscle.
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