
SHOP SCHEDULING IN MANUFACTURING SYSTEMS:

ALGORITHMS AND COMPLEXITY

By

ZHIHUI XUE, B.ENG., M.ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

© Copyright by Zhihui Xue, April 2004

SCHEDULING MANUFACTURING SYSTEMS

Doctor of Philosophy (2004)

(Management Science jSystems)

McMaster University

Hamilton, Ontario

TITLE: Shop Scheduling in Manufacturing Systems: Algorithms and Complexity

AUTHOR: Zhihui Xue, B.Eng. (Nanchang University, Jiangxi, China), M.Eng. (Ts

inghua University, Beijing, China)

SUPERVISOR: Professor George Steiner

NUMBER OF PAGES: ix, 91

ii

Abstract
This thesis describes efficient algorithms and complexity results for some ma

chine scheduling and related problems, which are encountered in automated manu
facturing systems.

We introduce a new class of robotic-cell scheduling models. The novel aspect
is that parts need to reenter machines several times before they are finished. The
problem is to find the sequence of robot move cycles and the part processing sequence
that jointly minimize the cycle time or the makespan. We show that the problems are
computationally intractable with three machines and present polynomial solutions for
a variety of two-machine configurations.

We then consider the problem of scheduling multi-component parts in a two
machine robotic cell, where each part is composed of K identical components to
be processed together on the first machine, then processed on the second machine
individually. We study the cycle time and makespan minimization problems, and
show that both are polynomially solvable.

We investigate the problem of minimizing cycle time in a two-machine job
shop, where each job has at most three operations. We reduce the problem to a two
machine reentrant flow shop problem. By extending previous results on the reentrant
flow shop problem, we propose a new pseudo-polynomial algorithm, as well as a
fully polynomial-time approximation scheme for certain special cases of the job shop
problem. We also describe a 4/3-approximation algorithm for the general problem,
and identify several well-solvable cases.

Finally, we study special cases of the traveling salesman problem on permuted
Monge matrices, which arose from robotic-cell scheduling problems. By using the
theory of subtour patching, we reduce the problems to finding a minimum-b-weight
spanning tree in the patching graph. In general, this problem is NP-hard. We show,
however, that newly defined special properties of the distance matrix allow us to find
in polynomial time a minimum-b-weight spanning tree, and thus an optimal tour, for
these new classes.

III

Preface

This thesis investigates the problems of scheduling automated production pro
cesses and related problems. The study was sparked by real-world applications in
a hi-tech company which designs and manufactures state-of-the-art industrial robots
(motion control devices) for the biotechnology and pharmaceutical segments of the
global Life Sciences market. For detailed motivations, the reader is referred to the
Introduction in Chapters 2 and 3.

A major thrust of research on production scheduling and sequencing is the
design, analysis, implementation, and experimental evaluation of algorithms to solve
critical problems. In this study, we focus on the design and analysis aspects of algo
rithms. The philosophy we take is to introduce a scheduling model, such as reentrant
robotic cell, and then discuss algorithmic issues for such model and its associated
problems. Due to the fact that we are devoted to the theoretic (complexity) analysis
of algorithms, the reader might notice that the scheduling models dealt with in this
thesis are "fundamental"-in the sense they have been abstracted and simplified a
lot from reality.

The thesis consists in part of previously prepared materials. Parts of Chapters
2 and 4 are based on two research papers-"Scheduling in reentrant robotic cells:
Algorithms and complexity" and "On minimizing cycle time in a two-machine job
shop" -coauthored with George Steiner. For these two papers and their results, I am
the primary contributor. Chapter 5 is adapted from the research paper entitled "New
solvable cases of the traveling salesman problem on permuted Monge matrices," which
is a joint work with Vladimir G. Delneko and George Steiner. The paper came into
being from a special case of the traveling salesman problem (TSP) I had studied and
solved in scheduling multi-component parts in a robotic cell (see Chapter 3 for details).
Using the methodology from Delneko, a unified approach for the TSP on more general
distance matrices was obtained and presented. All of the research documented in this
thesis has been carried out during my doctoral study.

iv

Acknowledgements

A doctoral study is not only about solving problems and then writing thesis,
but also about gathering new insight. During this learning process, lowed a lot to
my mentor and advisor, George Steiner, who introduced me to the field of schedul
ing. Since the beginning, he has been actively involved in this research. The many
discussions of the fundamentals of the subject have always been very stimulating to
me. I have enjoyed working with him and learned from him because of his enthusiasm
and his inspiring ideas. I hereby express my sincere thanks to him for his constant
support, guidance, and encouragement.

Apart from George Steiner, I would like to show my appreciation to Prakash
Abad and Stavros Kolliopoulos, for their careful reading of the thesis, their correc
tions, and their valuable suggestions to improve the style. Their classes (on Opera
tions Management and Approximation Algorithms) have taught me many new ideas
and approaches for which I am most thankful.

It has been a pleasure to work with Vladimir G. Delneko of the University of
Warwick (Coventry, UK) on new solvable cases of the traveling salesman problem.
Although our communications were via e-mail, I could always count on his clear,
sound, and timely advice. Thanks Vladimir, this thesis has benefited from your
intelligent advice. Chapter 4 would not have been written without the cooperation of
Nicholas G. Hall. Many thanks for sending us your paper, which led us to study the
cyclic job-shop problem in Chapter 4. Thanks to him also for being on my reading
committee and his constructive comments on my work. I am also grateful to Joris
van de Klundert for sending me his Ph.D. dissertation. Thanks to several anonymous
referees for insightful comments on earlier versions of some parts of this thesis.

I would like to take this opportunity to thank Mahmut Parlar and Linda
Kszyston for their help with all kinds of professional and administrative matters. In
addition, I would especially like to express my gratitude to Paul Stephenson and
Jinliang Cheng for their assistance in my initial settlement in Hamilton in a cold
winter. I still remember the winter storm that I encountered the first time in my life
when I arrived at the Pearson (Toronto) international airport in a chilly night.

The Ph.D. study could not have been finished without the whole-hearted sup
port from my family. I am deeply indebted to my parents, whose love and encourage
ment were total and indispensable even though they were thousands of miles away.

Finally, I gratefully acknowledge financial support from McMaster Graduate
Scholarships and Ontario Graduate Scholarships in Science and Technology. My
thanks also go to Mathematics of Information Technology and Complex Systems
(MITACS) for sponsoring my trips to its Annual General Meeting.

v

Contents

Abstract

Preface

Acknowledgements

List of Figures

List of Tables

1 Introduction
1.1 Preliminaries

1.1.1 Machine scheduling problems
1.1.2 Shop scheduling models ..
1.1.3 Scheduling classification . .

1.2 Cyclic Production and Scheduling.
1.3 Overview of the Thesis

2 Scheduling Reentrant Robotic Cells
2.1 Introduction
2.2 Definitions and Notation
2.3 Two-machine Reentrant Cells ..

2.3.1 Odd number of operations
2.3.2 Even number of operations .

2.4 Three-machine Loop-reentrant Cells.
2.4.1 Single cycles
2.4.2 The general problem

2.5 Summary

3 Scheduling Multi-component Parts in a Robotic Cell
3.1 Introduction

3.1.1 The model
3.1.2 Previous related work.

3.2 Problem Analysis
3.3 Cycle Time Minimization.
3.4 Makespan Minimization .

vi

111

iv

v

viii

ix

1
2
3
3
4
5
6

8
8

10
12
12
13
23
25
29
32

33
33
33
35
37
40
44

3.5 Summary

4 Cyclic Scheduling in a Job Shop
4.1 Introduction...
4.2 Problem Analysis
4.3 Special Cases

4.3.1 Pseudo-polynomial algorithm
4.3.2 FPTAS
4.3.3 Well-solvable cases

4.4 Summary

5 The Traveling Salesman Problem
5.1 Introduction
5.2 Preliminaries

5.2.1 Permutations
5.2.2 Review of the theory of subtour patching.

5.3 Polynomially Solvable Classes

5.4

5.3.1 b-decomposable matrices
5.3.2 A subclass with a faster solution.
Summary

6 Conclusions

Vll

46

47
47
48
54
54
62
64
64

66
66
68
68
69
73
73
81
82

84

List of Figures
2.1 An m-machine robotic cell
2.2 Two-machine cell with 2K + 1 operations.
2.3 The robot move cycle 8 1

2.4 The robot move cycle 8 2 •.•.••.•.•

2.5 Robot move cycles in a three-machine loop-reentrant cell
2.6 Cycle 8~ in the regular three-machine robotic cell

3.1 l-K processing in a two-machine robotic cell
3.2 K-l processing in a two-machine robotic cell
3.3 The robot move cycle 81

3.4 The robot move cycle 8'2
3.5 The assignment ()

11
13
14
15
24
28

34
36
38
39
40

4.1 An example of the block schedule for J121 U J212 . 49
4.2 The structure of the block schedule a' for J212 . . 50
4.3 (a) The partial schedule a' for 3212; (b) The overall schedule a* 51
4.4 (a) The partial schedule a' for 3212; (b) The overall schedule a* 52
4.5 (a) The partial schedule a' for 3212; (b) The overall schedule a* 52
4.6 A no-passing block schedule for RF21f = 31Cmax 54
4.7 A schedule associated with F~,S(tb t2, t3) 57
4.8 Job j as a left-job in a schedule 'ljJ' when <p = (n, n - 1, . .. , 1) 58
4.9 Job j as a left-job in a schedule 'ljJ' when <p = (1,2, ... , n) 59
4.10 Job j as a right-job in a schedule 'ljJ" 60

5.1 A patching graph GIj> = (V, E)
5.2 The assignment <p for C = min {bi + aj, max {J.L, bi , aj } }
5.3 Hierarchical classes of permuted Monge matrices .
5.4 The patching graph GIj> in the example
5.5 A rooted tree for edge replacement

viii

70
73
74
76
80

List of Tables
2.1 An Example in Lemma 2.5 19
2.2 An Example in Lemma 2.6 22
2.3 Complexity Results for Scheduling in Reentrant Robotic Cells 32

5.1 The Example Instance . 75

ix

Chapter 1
Introduction

"The journey of a thousand miles begins with one step. "
-Lao Tzu

Scheduling is the science of allocating limited resources over time to complete a
set of tasks. Typically, the result of allocation is specified in a schedule. For a
given collection of tasks and resources, a schedule is feasible if it does not violate any
accompanying constraints. Sometimes, finding a single feasible schedule is enough.
However, under many circumstances, the goal is to find the best schedule from among
all feasible schedules to achieve certain objective(s), such as the shortest schedule
length or the maximum number of tasks completed before the due dates. Thus
scheduling may be considered as an optimization process.

Relying largely on mathematical methodology, the formal research of schedul
ing began in the early 1950s. The pioneering work by Graham and Johnson has
sparked extensive research in scheduling theory. Since then, scheduling theory has
become one of the most active areas in operations research with a significant number
of problems and models studied in the literature. The attraction of scheduling theory
is not just for its deep mathematical basis but also for its impressive practical use.
More and more of it is being applied to industrial processes and mission-critical com
puter systems, see BlaZewicz et al. (2001) for an overview of scheduling in computer
and manufacturing systems.

Thaditionally, the research on scheduling is motivated by questions arising in
production planning and manufacturing, which has led to the development of a theory
of machine scheduling. In the last two decades, with many new types of manufactur
ing shops, such as flexible manufacturing systems (FMSs) and computer integrated
manufacturing (elM), coming into prominence, the research on machine scheduling
has undergone a profound transition (Lee, Lei, and Pinedo 1997). Often, scheduling
problems in modern manufacturing systems are more complex than classical schedul
ing problems because in most cases additional resources and constraints have to be
satisfied. In some cases, even simultaneous decisions regarding connections between
several limited resources are to be made. For instance, in many automated manufac
turing environments, material handling is performed by computer-controlled robots,
hoists, cranes or vehicles, rendering the performance of the systems highly dependent
on the interaction between the machines and the material-handling devices, both are

1

CHAPTER 1 Ph.D. Thesis· McMaster· Management Science· Z. Xue

the limited resources of interests (Ganesharajah, Hall, and Sriskandarajah 1998). A
good schedule that synchronizes the activities of machine processing and material
handling may not only increase throughput rate, but also reduce work-in-process
and production costs. It is reported that there are more than 600 companies in the
United States and Japan which develop and/or use advanced computer algorithms for
the scheduling of material-handling devices (Kats and Levner 2002). Unfortunately,
most of the classical scheduling models do not incorporate several of the distinct at
tributes of state-of-the-art manufacturing systems. Hence, from both the theoretical
and the practical points of view, investigating new models to tackle these newly posed
scheduling problems is of particular importance.

In this study we will look into several scheduling problems and related prob
lems arising in connection with such manufacturing systems. The intention is to
explore some typical problems and try to gain insights into more complicated real
world problems. In pursuing this line of research, our emphasis is on algorithmic
results and complexity analysis, rather than empirical or simulation studies. Never
theless, we attempt to give a detailed account of both the theory and applications.
Models representing these problems will be formulated and solution methods will be
investigated. For special situations, optimal polynomial-time algorithms will be de
veloped. For some NP-hard problems, much attention is paid to the exact complexity
status and the design of efficient approximate solutions with guaranteed worst-case
performance ratios.

This introductory chapter continues with an extensive explanation of machine
scheduling and a classification of scheduling problems in Section 1.1. A new type
of production method that is frequently encountered in modern manufacturing is
described in Section 1.2. We end this chapter with an overview of the thesis in
Section 1.3.

1.1 Preliminaries

The purpose of this section is to outline the classical scheduling models and
relevant concepts that will be used later. We make every effort to adhere to tradi
tional notation and standard terminology. The scheduling models we shall discuss
are based on the deterministic off-line machine scheduling paradigm, where all data
are assumed to be discrete (Le., non-negative integers) and known with certainty in
advance. Note that, in terms of this assumption, scheduling may be considered as
a part of combinatorial optimization. Throughout this thesis we will make exten
sive use of concepts related to the design and analysis of algorithms. It is expected
that the reader has some familiarity with those concepts which can, for instance, be
found in the text of Cormen et al. (2001). For a rigorous and comprehensive dis
cussion of computational complexity, the books by Garey and Johnson (1979) and
Papadimitriou (1994) are two excellent sources.

2

CHAPTER 1 Ph.D. Thesis· McMaster· Management Science· Z. Xue

1.1.1 Machine scheduling problems

In machine scheduling, the limited resources consist of one or more machines
and tasks are modeled as jobs that can be executed by the machines. A task (job)
first becomes available for processing at its ready time, and it must receive an amount
of processing equal to its processing time. Typically, a problem in machine schedul
ing can be characterized by the types of machines and jobs in the system, by the
scheduling constraints imposed on them, and by a desired optimality principle.

A characteristic of the machine environment is that a machine can handle at
most one job at a time and that each job can be processed by only one machine at
a time. In general, a machine can begin its next job immediately after the current
job is completed, and there are no machine breakdowns at any moment in time. For
all the scheduling problems we consider, it is assumed that preemption is not allowed
during the processing of any operation, which means that the execution of a job on
a machine will proceed without interruption once it starts.

A machine scheduling problem is in fact a sequencing problem if any schedule
can be completely specified by the sequence in which jobs are performed. Being
aware of this fact, we may use the name of schedule and the corresponding sequence
interchangeably when there is no confusion.

In what follows, we describe classical scheduling models. We focus on the
shop scheduling models that are frequently encountered in manufacturing shop floors.
Several books in scheduling, e.g., Blazewicz et al. (2001), Brucker (2001), and Pinedo
(2002) have contained more machine scheduling models, such as the models of single
and parallel machines.

1.1.2 Shop scheduling models

In many manufacturing and production systems, jobs have to be processed by
several machines in a given order. This multi-operation situation is often reflected
in the so-called shop scheduling model, where a number of jobs is to be processed
in a shop consisting of several machines. Usually, it is assumed that the machines
have unlimited buffer space and a job can be stored in the buffer for an unlimited
amount of time. If, however, the machines have limited buffer space, then blocking
occurs when the buffer is full. In this case, the job at the upstream machine cannot
be released into the buffer after completing its processing. It has to remain at the
upstream machine, preventing a job in queue at that machine from beginning its
processing.

To further define shop models, suppose that the order in which a job passes
through the machines, also known as the processing route, is fixed for each job. For
convenience, let us assume that any two consecutive operations of a job are to be
processed on different machines. For otherwise, we can combine these two operations
into a single operation. Two typical models are of interest in this context, namely,

3

CHAPTER 1 Ph.D. Thesis· McMaster· Management Science· Z. Xue

flow shop and job shop.
The job shop model is one of the most general in scheduling theory. In a job

shop, each job consists of a number of operations to be processed on all or some of
the given machines, and each job has its own processing route to follow. Hence to
construct a feasible schedule for a job shop, we have to determine, for each machine,
an order in which the jobs are to be processed. Note that in a job shop, a job may
visit a machine more than once, also a job may not visit a machine at all. The flow
shop is a special case of the job shop. In a flow shop, each job requires processing on
every machine only once and the processing route is identical for all jobs. In general,
jobs are able to pass each other while they are waiting in queues at the machines for
processing, provided that all jobs follow the same processing route. In other words,
in a flow shop each machine may process the jobs in a different order. If, however,
each machine processes the jobs in the same order-that is, no passing among jobs is
allowed, the flow shop is referred to as a permutation flow shop and the schedule is
said to be a permutation or no-passing schedule.

In the aforementioned shop models, there are no precedence relationships
among jobs prescribing the order in which job processings must be carried out. While
the machine sequence (i.e., the processing route) of all jobs is given, the scheduling
problem is to find the best job processing sequence according to a desired optimality
principle.

1.1.3 Scheduling classification

The seemingly infinite number of deterministic machine scheduling problems
makes it clear that there is a need for classification. In general, deterministic machine
scheduling problems may be represented using a three-field notation al,Bif proposed
by Graham et al. (1979). Simply, the three-field notation al,Bif may be sketched as
follows:

• The first field a indicates the machine environment. For instance, a = F or J
denotes the flow shop or job shop model, respectively. The number of machines
m is either part of the problem instance or equal to a fixed constant. In the latter
case, the letter m or a positive integer is added after the machine environment,
e.g., the two-machine job shop model is specified by J2 .

• The second field ,B consists of the job characteristics, i.e., the processing re
strictions and constraints. In contrast to the first field, this field can be empty,
which implies the default of non-preemptive and independent jobs. Examples of
possible entries in this field are ,B = pmtn, meaning that preemption is allowed
(i.e., the processing of any operation may be interrupted and resumed at a later
time), and ,B = prec, meaning that there are precedence constraints between the
jobs (i.e., the processing of a job cannot start before the completion of another
job).

4

CHAPTER 1 Ph.D. Thesis· McMaster· Management Science· Z. Xue

• The third field 'Y specifies the optimality criterion or the objective. An opti
mality criterion assesses the relative merits or performances of competing fea
sible schedules. Examples of commonly used criteria include minimizing the
makespan Cmax (i.e., the maximum completion time of all jobs on all machines)
and minimizing the total weighted completion time L: WjCj of all jobs.

Stating each variation of a scheduling problem by the three-field notation provides a
quick reference point to facilitate comparisons between problems. For instance, the
problem of minimizing makespan in an m-machine permutation flow shop is identified
by the three-tuple FmlprmulCmax , while the problem in a general m-machine flow
shop is denoted by Fm"Cmax .

Above we have given a rough description of the classification scheme. For
further details, the reader is referred to the survey paper by Lawler et al. (1993) and
the book by Pinedo (2002).

1.2 Cyclic Production and Scheduling

Traditional production manufactures a given set of parts with the objective
of minimizing the maximum completion time or makespan. In many modern, high
volume manufacturing environments, a so-called cyclic production is often adopted.
In this method, rather than process a large batch of each part, a small set of parts is
loaded into the system and processed repetitively. For example, consider the need to
process 3,000 units of part A, 2,000 units of part B, and 4,000 units of part C in a day.
A part mix ratio or minimal part set (MPS) is calculated as {3A, 2B, 4C}-namely,
three of A, two of B, and four of C, which is the smallest set of parts in proportion
to the day's production. Then the MPS is fed into the system and produced 1,000
times to fulfill the production target.

For an MPS, after the operations of each part are assigned to the machines,
the processing order in which the operations are processed at a machine must be
specified, and this order must be followed by each MPS. Moreover, the parts in an
MPS are processed by the machines in a specified order. This order is the same for
each MPS.

In this context, we develop the class of cyclic schedules that perform each
required operation on an MPS exactly once. When such a schedule is formed, it will
be identically repeated at regular intervals. To measure the performance of such a
repetitive manufacturing system, where there is no need to track each individual order,
one often-used objective is to minimize the cycle time of an MPS-the time between
completions of successive MPSs, which is equivalent to maximizing the throughput
rate over the long run. (Note that the cycle time objective is different from the
makespan objective. The makespan objective minimizes the length of time from when
production starts until it ends, i.e., the schedule length. Accordingly, algorithmic or
complexity results for a problem with the makespan objective are not necessarily

5

CHAPTER 1 Ph.D. Thesis· McMaster· Management Science· Z. Xue

valid for a problem with the cycle time objective, and vice versa. See Hall, Lee,
and Posner (2002) and Chapters 2, 3 and 4 for details.) Due to its simplicity in
management and control, cyclic production is suitable for producing large quantities
of different parts which have small setup cost. Besides production systems, cyclic
scheduling (i.e., constructing a recurrent schedule) arises in application areas like
compiler design, digital signal processing, railway scheduling, and timetabling as well
(see e.g., Stankovic et al. 1998 and Ernst et al. 2004).

1.3 Overview of the Thesis

The rest of the thesis consists of five chapters. For the sake of enhancing the
readability of this thesis, Chapters 2 to 5, the main body of the thesis, are written
so as to be coherent and fully self-contained in the sense that all formal concepts
and arguments needed to analyze the problems in each chapter can be explained in
detail. This implies that some of the chapters may contain redundant material. Each
chapter is focused on a specific topic, and provides a complete and systematic account
of the research. In each chapter, we provide an introduction that presents sufficiently
relevant information to establish a problem context, and a concluding summary. Brief
descriptions of the problems we study and highlights of our results follow. Note that
in robotic-cell scheduling problems we prefer to use the term "part" instead of "job"
to illustrate the concrete transporter activities. Actually, it has the same meaning as
"job" in scheduling terminology.

Chapter 2 is devoted to the scheduling of m-machine reentrant robotic cells,
where parts need to reenter machines several times before they are finished. The
problem is to find the sequence of I-unit robot move cycles and the part processing
sequence which jointly minimize the cycle time or the makespan. When m = 2,
we show that both the cycle time and the makespan minimization problems are
polynomially solvable. When m = 3, we examine a special class of reentrant robotic
cells with the cycle time objective. We show that in a three-machine loop-reentrant
robotic cell, the part sequencing problem under three out of the four possible robot
move cycles for producing one unit is strongly NP-hard. The part sequencing problem
under the remaining robot move cycle can be solved easily. Finally, we prove that
the general problem, without restriction to any robot move cycle, is also intractable.

Chapter 3 is dedicated to scheduling multi-component parts in a two-machine
manufacturing cell. The cell is served by a robot, which loads, unloads, and moves
parts between machines. Each part is composed of K identical components to be
processed together first on machine M1 , then processed on machine M2 individually.
The objective is to determine the best part processing sequence and the corresponding
robot move cycles to produce the parts efficiently. We study the cycle time and
makespan minimization problems. By showing that both problems can be formulated
as (polynomially) solvable cases of the traveling salesman problem (TSP), we provide

6

CHAPTER 1 Ph.D. Thesis· McMaster· Management Science· Z. Xue

efficient exact solutions to these scheduling problems. An in-depth analysis of the
newly defined cases of TSP is provided in Chapter 5.

Chapter 4 investigates the cycle time minimization problem in a two-machine
job shop, where each job consists of at most three operations. The problem was posed
by Hall, Lee, and Posner (2002). They presented an O(n13p~ax) algorithm to solve a
special case. In this chapter, we reduce the problem to a two-machine reentrant flow
shop problem. By extending previous results on the reentrant flow shop problem, we
propose an algorithm that runs in O(n6p~ax) time and O(n4p~ax) space for some new
cases. We also give an FPTAS for these cases. Furthermore, we identify several well
solvable special cases and present a fast 4/3-approximation algorithm for the general
problem.

Chapter 5 presents collaborative work with Vladimir G. DeYneko. In this chap
ter, we study special cases of the traveling salesman problem on permuted Monge
matrices, which arose from robotic-cell scheduling problems. By using the theory of
subtour patching, we reduce the problems to finding a minimum-b-weight spanning
tree in the patching graph. In general, this problem is NP-hard. We show, however,
that newly defined special properties of the distance matrix allow us to find in poly
nomial time a minimum-b-weight spanning tree, and thus an optimal tour, for these
new classes.

Finally, Chapter 6 draws out the overall implications of the research and poses
some questions for future research.

7

Chapter 2
Scheduling Reentrant Robotic
Cells

2 .1 Introduction

Cellular manufacturing is widely used in modern production systems. The
idea behind cellular manufacturing is to group similar parts together to be produced
in a specialized and integrated manufacturing cell. Typically, the manufacturing cell
consists of a small number of versatile machines that can perform a variety of tasks.
To realize full automation and increase efficiency, these manufacturing cells are usually
served by a single material handling device such as a robot, an Automated Guided
Vehicle (AGV) , a crane, or a hoist, which is used to load, unload, and move parts
between machines. When the device is a robot, these automated systems are often
called robotic cells. For a robotic cell, there are a number of issues to be considered,
e.g., cell design, robot movement, part processing sequence, to name just a few. In
this chapter, we focus on the scheduling issues. Observing that most frequently there
is only one robot (material handling device) in the normal setting, the robot is often
the bottleneck of systems. Therefore, unlike traditional scheduling models in which
we are looking for the processing sequence of parts, both the robot activities and the
part processing sequence should be considered in robotic cells.

Research on scheduling and sequencing in robotic cells has received much at
tention in the literature in recent years. The research falls into two streams. One
stream is devoted to traditional production with the makespan objective. Kise, Sh
ioyama, and Ibaraki (1991) study a two-machine no-buffer manufacturing cell served
by a single AGV, which is equivalent to a two-machine robotic cell. An O(n2 Iogn)
algorithm is given to find the part processing sequence to minimize the makespan
under a given AGV move cycle for n parts. When the manufacturing cell has unlim
ited buffer, Kise (1991) shows that the part sequencing problem is AfP-hard. Hurink
and Knust (2001) strengthen this complexity result by showing that the problem is
strongly AfP-hard. They also give complexity results for other special cases of two-,
three- and m-machine robotic cells with unlimited buffer. Levner, Kogan, and Mai
mon (1995) study a two-machine robotic cell with part-dependent transportation and
setup effects. They derive an O(n3) algorithm to find the part processing sequence

8

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

minimizing the completion time of n parts under a given robot move cycle.
Another stream of research focuses on cyclic production with the cycle time

objective. In a two-machine robotic cell, Sethi et al. (1992) show that there exist
two potentially optimal robot move cycles that produce one unit. When the parts in
an MPS are identical, they provide sufficient conditions under which each of the two
cycles is optimal over all possible cycles. When the parts in an MPS are different,
they show that the part sequencing problem for a given 1-unit robot move cycle can
be solved in polynomial time. Hall, Kamoun, and Sriskandarajah (1997) provide an
O(n4) algorithm that simultaneously optimizes the robot move cycle and part pro
cessing sequence. Aneja and Kamoun (1999) improve this and present an O(nlogn)
algorithm. In a three-machine robotic cell, Sethi et al. (1992) identify six potentially
optimal robot move cycles that produce one unit. When the parts in an MPS are iden
tical, they construct a decision tree for determining the best cycle among these 1-unit
cycles. When the parts in an MPS are different, Hall, Kamoun, and Sriskandarajah
(1997, 1998) show that, four out of the six cycles lead to efficiently solvable part
sequencing problems. For the other two cycles, the part sequencing problem is shown
to be strongly NP-hard. They also prove that the general part sequencing problem
not restricted to any robot move cycle is intractable as well. In an m-machine robotic
cell, Sethi et al. (1992) establish that there are exactly m! potentially optimal robot
move cycles that produce one unit. When the parts in an MPS are identical, Cram a
and van de Klundert (1997) present an O(m3) dynamic programming algorithm to
minimize the cycle time of an MPS over all1-unit cycles: Given a 1-unit robot move
cycle with processing time windows, Levner and Kats (1998) show that the minimum
cycle time problem can be formulated as a parametric critical path problem, and
thus the minimum cycle time can be found in O(m3) time. Ioachim, Sanlaville, and
Lefebvre (2001) propose an O(qm3) algorithm to compute the cycle time for a given
robot move cycle that produces q units. They also develop a dynamic programming
algorithm to identify the optimal q-unit robot move cycle. Moreover, they show that
the results can be extended to the case of different parts in an MPS with a given part
processing sequence. When the parts in an MPS are different, Sriskandarajah, Hall,
and Kamoun (1998) prove that the part sequencing problems associated with 2m - 2
of the m! 1-unit cycles are polynomially solvable, while the part sequencing problems
associated with the remaining cycles are strongly NP-hard. For a general survey on
cyclic scheduling in robotic cells, we refer the reader to Crama et al. (2000) and van
de KI undert (1996).

In the above robotic-cell scheduling problems, parts are processed on machines
as in a flow shop. In this chapter, we consider a more general type of robotic cell, in
which parts are required to enter a certain machine or a set of machines more than
once before being completed. This type of processing is called reentrant processing,
and is common in semiconductor manufacturing and flexible machining systems, for
example, the assembly of printed circuit boards (Noble 1989) and wafer fabrication

9

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

(Graves et al. 1983; Elliott 1989). Since Graves et al. (1983) introduced reentrant
processing in a flow shop, many researchers have studied this type of manufacturing
system. Lev and Adiri (1984) deal with a V-shop in which parts visit machines
following the sequence MI - M2 - ... - Mm- I - Mm - Mm- I - ... - M2 -
MI' Wang, Sethi, and van de Velde (1997) examine a chain-reentrant shop in which
each part has the processing route MI - M2 - ... - Mm - MI. Middendorf and
Timkovsky (2002) call this a loop-reentrant shop. Kubiak, Lou, and Wang (1996)
study a hub-reentrant shop where parts follow the route MI - M2 - MI - M3 -
... - MI - Mm - M I , i.e., parts enter the hub machine, M I , and other machines
in alternating fashion. In general, there are numerous types of reentrant processing
possible depending on the processing route, see Middendorf and Timkovsky (2002)
for an extensive survey.

The remainder of the chapter is organized as follows. Section 2.2 contains
definitions and notation. In Section 2.3, we present polynomial-time solutions for
the cycle time and the makespan minimization problems in a two-machine reentrant
robotic cell. In Section 2.4, we explore the potentially optimal robot move cycles in
a three-machine loop-reentrant robotic cell. We study the cycle time minimization
problem under single cycles and mixed cycles. We characterize the easily solvable
and computationally hard cases. Section 2.5 contains our concluding remarks.

2.2 Definitions and Notation

There are m machines MI, ... , Mm , m ~ 2, in an automated manufacturing
cell served by a robot. Due to space limitations and the compact design of the cell,
the machines have no input or output buffer. All parts are available at an input
station (In) at time zero. The robot picks up each part at In, moves it to the first
machine and loads it on that machine for processing; after the processing is completed,
the robot unloads the part and moves it to the next machine for processing, and so
on. After the part completes all of its processing by machines, the robot moves the
finished part to an output station (Out) and drops it there. The input and output
stations have unlimited storage capacity. In, M I , ... ,Mm , and Out are located on the
arc of a circle or on a straight line with the robot at the center. Figure 2.1 illustrates
a circle layout of such robot-centered cell with m machines.

In classical robotic cells, each part being processed passes through the machines
over the same route MI - M2 - ... - Mm. An extension of this is to allow some
of the machines to be visited more than once while all parts still follow the same
processing route. When a part returns to a machine for processing we say that it
requires reentrant processing. Consequently, a robotic cell with reentrant processing
is called a reentrant robotic cell. Without loss of generality, we assume that the
consecutive operations of a part have to be performed by different machines. Both the
operations of the robot and the processing of parts on machines are nonpreemptive.

10

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

In Out

Figure 2.1: An m-machine robotic cell

Since there is no buffer space on machines, any part being produced must be either
on one of the machines or on the robot. Neither a machine nor the robot can handle
more than one part at a time.

A robot move cycle is a sequence of robot moves that returns to the initial
state. A I-unit cycle returns to the same state after the production of a single unit.
Recognizing that a robotic cell is a discrete dynamic system, Sethi et al. (1992) define
the robot move cycle as a sequence of discrete state transitions. We extend their
representation to accommodate reentrant processing. More specifically, a state of the
system is defined by the (m + I)-tuple g = (gll g2, . .. ,gm, gm+1) , where gi E {0, n},
. d {O (h)- M(h)- M(h)+ M(h)+} H

1, = 1,2, ... ,m, an gm+l E I, , Ml , ... , m , 1 , ... , m . ere gi = 0

or n means that Mi is not occupied or is occupied by a part, respectively; gm+1 refers
to the robot position with I denoting the robot at In just as it arrives there and
begins to pick up a part, 0 denoting the robot just as it completes the dropping of
a part at Out and begins to leave there, Mi(h)- denoting the robot at Mi just after
it has finished loading a part on the machine for the hth time, Mi(h)+ denoting the
robot at Mi just before it begins unloading a part from the machine the hth time.
The h superscript is omitted if the part is processed on a machine just once.

We use the following notation to describe a reentrant robotic cell.

n - the total number of parts to be produced or the number of parts
in an MPS.

a
PuCk)

aih, bih , Cih

the processing sequence of parts, a = (a(I), a(2), . .. ,a(n)).
- the kth part in the sequence a to be produced, k = 1,2, ... , n.
- the processing times of part i on machines M1 , M2 and Ma for

the hth time, respectively. (For aih, bih and Cih, the subscript h
is omitted if the part is processed just once.)

6 - the time taken by the robot to move between adjacent location
pairs (In, M 1), (Mi' Mi+1) , i = 1, ... , m - 1, and (Mm, Out).
Travel between any two locations is via intermediate locations.
Thus, e.g., the movement from In to Out takes (m + 1)6 time.

c - the time needed to pick up, (un)load or drop a part by the robot.

11

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Throughout this chapter, all numbers are assumed to be non-negative integers, and
we restrict our analysis to I-unit robot move cycles. For ease of exposition, we assume
that the travel, pick up, load, unload, and drop times are independent of the machines,
but all results in this chapter are also applicable to machine-dependent travel times
and (un)loading times.

Following the three-field notation al.8I'Y for machine scheduling problems, be
sides Pm for flow shops, we use RCm and RRCm under a to indicate a regular
m-machine robotic cell and an m-machine reentrant robotic cell, respectively. Under
.8, we may have 8 i to express that robot move cycle 8 i alone is used. When 8 i is
omitted, any cycle may be used. Also, we use f = 2K or f = 2K + 1 under .8 to
describe the even or odd number of operations for a part, respectively. Under 'Y, we
may have Cmax and Ct to denote the makespan and cycle time objectives, respec
tively. For example, RRC21821Ct denotes the problem of minimizing the cycle time
for producing MPSs in a two-machine reentrant robotic cell, restricted to robot move
cycle 8 2 ,

2.3 Two-machine Reentrant Cells

In any two-machine reentrant robotic cell, with the appropriate numbering of
the machines, the part processing route is always Ml -t M2 -t Ml -t M2 -t .. '. Let
f be the number of operations for a part. Since f may be even or odd, we distinguish
two cases for the RRC211Ct and RRC211Cmax problems: f = 2K and f = 2K + 1,
where K ~ 1. We start with the f = 2K + 1 case.

2.3.1 Odd number of operations

When f = 2K + 1, each part is processed K + 1 times on machine Ml and
K times on machine M 2 • In this case, only one robot move cycle is feasible. Let us
consider the system in the initial state 9 when the robot just arrives at 1 n and begins
to pick up a part, i.e., 9 = (0,0,1). The robot move cycle can be described by the
following sequence of states:

() (n (h)-) (n M(h)+) (n M,(h)-) (n M,(h)+) 0,0,1 ,H,0,M1 ,H,0, 1 , 0,H, 2 , 0,H, 2 , , .,
v

repeat K times for h=1,2, ... ,K

(n (K+1)-) ((K+1)+) () () H,0,M1 , n,0,Ml , 0,0,0, 0,0,1 .

More precisely,

the activities and their times in this cycle are: Pick up part Pu(k): (E), move
it to Ml:(O), repeat K times the activities in the following braces {load the part on
M1:(E), wait for its processing: (au(k)h), unload the part:(E), move it to M2:(O) and
load it on M2:(E), wait for its processing:(bu(k)h), unload the part:(E), then move it

12

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

K

In ~ ____ +-___ ~ Out

Figure 2.2: Two-machine cell with 2K + 1 operations

back to Ml:(b"), where h = 1,2, ... , K}, after this, load part Pq(k) on Ml again: (c:) ,
wait for its processing:(aq(k)(K+1»), unload the part:(c:), move it from Ml to Out:(2b")
and drop it there: (c:) , then move to In: (315). See Figure 2.2 for a diagram. (In the
figure the arc next to "I" symbolizes the initial robot move; the K stands for the
number of robot moves between machines.)

The time required by this cycle can be calculated as

K

Tq(k) = c: + 15 + L)C: + aq(k)h + c: + 15 + c: + bq(k)h + c: + 15) + (c: + aq(k)(K+1) + c:)
h=l

+ 215 + c: + 315
K+l K

= (4 + 4K)c: + (6 + 2K)b" + L aq(k)h + L bq(k)h.
h=l h=l

It is easy to see that the (cycle) time for producing an MPS in any sequence is given
by Ot = E~=l ((4 + 4K)c: + (6 + 2K)b" + E~:/ aih + E~=l bih), which is independent
of the part processing sequence. The makespan for producing the n parts in the MPS
can be derived from Ot by removing the time needed to re-position the robot from
Out to In at the end, i.e., Omax = Ot-3b", which is independent ofthe part processing
sequence as well.

2.3.2 Even number of operations

When f. = 2K, each part has to be processed K times on both machines Ml
and M 2 • This kind of repeated processing frequently occurs in paint shops, where
a part requires a repetitive painting and baking of several coats of paint before it
is finished. Note that when K = 1, the problem reduces to a regular (no reentry)
two-machine bufferless robotic cell, which was studied in Kise, Shioyama, and Ibaraki
(1991), Sethi et al. (1992), Hall, Kamoun, and Sriskandarajah (1997), as well as
Aneja and Kamoun (1999).

Let us consider the system in state g when the robot has just loaded a part
on machine M2 the Kth time, i.e., g = (0, n, M~K)-). We show that, similarly to
the regular robotic cell with no reentry, there are two feasible robot move cycles to

13

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

K

K-J

In .--____ ~---___ Out
2

Figure 2.3: The robot move cycle 8 1

continue from state g, 81 and 82-shown in Figures 2.3 and 2.4. (In these figures
the numbers 1,2, ... show the sequence of the initial steps, whereas K and K - 1
represent the number of a part's moves between machines.) Sethi et al. (1992) have
analyzed the cycle times for the two feasible cycles in the regular robotic cell. In the
following, we show how this can be extended to the K > 1 case.

Lemma 2.1 There are only two robot move cycles (81 and 82) which could minimize
the cycle time for producing MPSs.

Proof. The robot cannot move to Into pick up a new part (and then load it on
M 1) before the current part is loaded on machine M2 the Kth time (i.e., state g).
For otherwise, it would lead to a deadlock, where both machines are loaded with a
part and both parts are waiting for the robot to move them to the next machine.
Thus 9 is the only state in which we have a choice for the next robot move. At this
state, the robot can either move to Into pick up a new part (cycle 8 2) or wait for
the processing of the current part to be finished (cycle 8 1), 0

Cycles 81 and 82 share the common state (0,0, MJK)-). It is clear that
switching from 8 1 to 8 2 or vice versa without wasteful robot moves is possible only
through this state. We will assume without loss of generality that both cycles start
at this state. Then the cycles 8 1 and 8 2 can be described as

8 (II M(K)-) (II M(K)+) (0) (I) (ll M(l)-) (ll M(l)+) 1: 0,H, 2 , 0,H, 2 , O,O, , 0,0, ,H,0, 1 , H,0, 1 ,

(O 0 M(h)-) (O 0 M(h)+) (0 ° M(h+1)-) (0 ° M(h+1)+) (O 0 M(K)-) "2' ,,2' ,'1 , "1 , ,,2
, I

v
repeat K-1 times for h=1,2, ... ,K-1

and

S2: (0,0, MJK)-), (0,0, I), (0,0, M}l)-), (0,0, MJK)+), (0,0,0), (0, 0, M?)+) ,

(O 0 M(h)-) (O 0 M(h)+) (0 ° M(h+1)-) (0 ° M(h+1)+) (O 0 M(K)-)
"2, ,,2' "1 , "1 , "2 .

, I
V'

repeat K-1 times for h=1,2, ... ,K-1

Let J-L = 4c + 66, Ba(k) = ba(k)K + 2c + 215, and Aa(k+1) = aa(k+1)l + 2c + 215.
To determine the time required by each cycle, let us examine now their activities.
Without loss of generality, we assume that the current part is PaCk)'

14

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

K

Figure 2.4: The robot move cycle 82

The activities and their times in robot move cycle 81 are: Wait for part
PuCk) to finish its processing on M2:(bu(k)K), when it is finished, unload the part:(c),
move it to Out:(c5) and drop it there:(c), move to In: (3c5) , pick up the next part,
PU(kH):(c), move it to M1:(c5) and load it on M1:(c), wait for its processing to be
finished:(au(kH)1), unload the part:(c), move it to M2:(c5), after this, repeat K - 1
times the following sub cycle of activities in braces {load part Pu(kH) on M2:(c), wait
for its processing to be finished:(bu(kH)h), unload it:(c), move it back to M1:(c5), load
it again on Ml:(c), wait for its processing:(au(kH)(hH)), unload the part:(c), move it
to M2: (c5), where h = 1, 2, ... , K - I}, finally, load part Pu(kH) on M2: (c).

Then the time required by cycle 81 can be derived as

T;(k)u(kH) = bu(k)K + c + c5 + c + 3c5 + c + c5 + c + au(kH)1 + c + c5
K-l

+ I) c + bu(kH)h + c + c5 + c + au(kH)(hH) + c + c5) + c
h=1

= 2c + 2c5 + (bu(k)K + 2c + 2c5) + (au(kH)1 + 2c + 2c5)
K-1

+ 2: (4c + 2c5 + au(kH)(hH) + bu(kH)h)
h=1

K-1
= (4K - 2)c + 2Kc5 + I)au(kH)(hH) + bu(kH)h)

h=l
+ Bu(k) + Au(k+1). (2.1)

The activities and their times in robot move cycle 82 are: Move to In:(2c5),
pick up the next part, PU(k+l):(c), move it to M1:(c5) and load it on M1:(c), move to
M2:(c5), if needed, wait for part PuCk) on M2:(W2(k)), unload the part:(c), move it
to Out:(c5) and drop it there: (c) , move to M1:(2c5), if needed, wait for part Pu(kH)
to be finished on M1:(W1(k + 1)), unload the part:(c), move it to M2:(c5), after this,
repeat K -1 times the following sub cycle of activities in braces {load part Pu(kH) on
M2:(c), wait for its processing:(bu(kH)h), unload it:(c), move it back to M1:(c5), load
it again on M1:(c), wait for its processing:(au(kH)(hH)), unload the part:(c), move it
to M2:(c5), where h = 1,2, ... ,K - I}, finally, load part Pu(kH) on M2:(c).

15

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Then the time required by cycle 82 can be derived as

T;(k)u(k+1) = 215 + £ + 15 + £ + 15 + W2 (k) + £ + 15 + £ + 215 + WI (k + 1) + £ + 15
K-l

+ L (£ + bu(k+1)h + £ + 15 + £ + a u(k+1)(h+1) + £ + 15) + £
h=l

K-l

= 6£ + 815 + wl(k + 1) + w2(k) + L(4£ + 215 + a u(k+1)(h+1) + bu(k+1)h) ,

h=l

where wI(k+ 1) = max{O, a u(k+1)l - (15 +w2(k) +£+15 +£+2t5)} = max{O, au(k+1)l -

(2£ + 415 + w2(k))} is the robot waiting time at MI for the 1st processing of part
Pu(k+1), and w2(k) = max{O, bu(k)K - (2£ + 4t5)} is the robot waiting time at M2 for
the Kth processing of part PuCk)'

Adding wl(k + 1) and w2(k) and substituting for w2(k), T;(k)u(k+1) may be
simplified as

T;(k)u(k+1) = 6£ + 815 + max{ W2 (k), a u(k+1)l - (2£ + 4t5)}
K-l

+ L (4£ + 215 + a u(k+1)(h+1) + bu(k+1)h)

h=l

= 6£ + 815 + max{max{O, bu(k)K - (2£ + 4t5)}, a U(k+1)l - (2£ + 4t5)}
K-l

+ L (4£ + 215 + au(k+1)(h+1) + bu(k+1)h)

h=l

= 2£ + 215 + max{ 4£ + 615, bu(k)K + (2£ + 215), a U(k+1)l + (2£ + 2t5)}
K-l

+ L (4£ + 215 + a u(k+1)(h+1) + bu(k+1)h)

h=l
K-l

= (4K - 2)£ + 2Kt5 + L(aU(k+1)(h+1) + bu(k+1)h)

h=l

+ max{Jl, BU(k) , Au(k+1)}' (2.2)

Observe that both T;(k)u(k+1) and T;(k)u(k+1) have the term E~:/(au(k+1)(h+1)+
bu(k+1)h) and the constant term (4K - 2)£ + 2K 15. The difference between them is
that T;(k)u(k+1) has the term BU(k) + Au (k+l), while r;(k)u(k+1) has the term max{fL,
Bu(k),Au(k+1)}'

Cycle time minimization

Hall, Kamoun, and Sriskandarajah (1997) have proved that a single robot move
cycle is not optimal, in general, for the cycle time minimization problem in the regular

16

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

robotic cell. They have given an example to show that the cycle time is minimized
by a mix of robot move cycles 8 1 and 82 . This observation clearly remains applicable
for our problem, RRC21.e = 2KICt , too. We can give sufficient conditions, however,
which guarantee that a single robot move cycle is optimal for our problem. Let us
assume in the remainder of the chapter that the biK'S are in non-decreasing order,
i.e., biK ~ b(Hl)K, and let () be an assignment (ordering) for which a6(i)1 ~ a6(i+1)1.

Thus biK + a6(i)1 ~ b(i+1)K + a6(i+1)1 for i = 1,2, ... , n - 1.

Theorem 2.2 The cycle time for producing MPSs is minimized under cycle 8 1 if

bnK + a6(n)1 ~ 28, and under cycle 82 if b1K + a6(1)1 2': 28.

Proof. Since the difference between T;(k)u(k+1) and T;(k)u(k+1) is that T;(k)u(k+1)

has the term BU(k) + A u(k+1) while T;(k)u(k+1) has the term max{J.l, BU(k) , A u(k+1)}, it
suffices to compare these two terms.

• If bnK +a6(n)1 ~ 28 ~ Bu(k)+Au(k+1) ~ Bn+A6(n) ~ 4c+68 = J.l ~ T;(k)u(k+l) ~
T;(k)u(k+1) ~ cycle 81 is optimal;

• If b1K +a6(1)1 2': 28 ~ Bu(k) + A u(k+1) 2': Bl + A 6(1) 2': 4c+68 = J.l ~ T';(k)u(k+1) 2':
T;(k)u(k+1) ~ cycle 82 is optimal. 0

Remark 1 Note that the sufficient conditions in Theorem 2.2 are not dependent on
c. Intuitively, the theorem states that if the processing times are all small compared
to 8, then it is always better to wait for the current part to finish its processing (cycle
8 1). On the other hand, if the processing times are all large in comparison to 8, then
cycle 82 is better, i.e., the robot should load the next part on Ml before the current
part is finished on M 2 •

Remark 2 Solving the RRC21.e = 2KICt problem in general requires determining
the optimal sequence of the 81 and 82 cycles to be applied to the n parts in an MPS. If
this sequence consists of repeating a subsequence of q cycles n/q times (q is a divisor
of n by assumption), then we say that the policy of repeating a q-unit cycle is optimal.
Sethi et al. (1992) have shown that the repetition of the best I-unit cycle dominates
all other policies for an MPS with identical parts in the regular two-machine robotic
cell, i.e., it will yield the maximum throughput rate. As an = a21 = ... = anI = a

and blK = b2K = ... = bnK = b for identical parts, we can see from the above theorem
that using the best I-unit cycle is also optimal for our problem in the case of an MPS
with identical parts.

For the remainder of this section, we consider the general case of our problem
when the sufficient conditions of Theorem 2.2 are not satisfied, i.e., both cycles 8 1

and 8 2 may have to be used to find the minimum cycle time.

17

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Theorem 2.3 The problem of finding the optimal robot move cycle and part pro
cessing sequence to minimize the cycle time in the RRC21f = 2KICt problem can be
formulated as a traveling salesman problem (T8P).

Proof. As stated in Lemma 2.1, at the state 9 = (0, fl, M~K)-), we either wait for
the processing of the current part (cycle 8 1) or move to In to pick up a new part
(cycle 8 2). The elapsed time between two consecutive occurrences of state 9 involving
the processing of parts Pi=uCk) and P j =uCk+1) will be

T uCk)uCk+1) = min{T;Ck)uCk+1)' T;Ck)uCk+1)}

= ~ + r(j) + min{Bi + Aj , max{JL, B i , Aj }}, (2.3)

where ~ = (4K - 2)£ + 2K8, r(j) = E~:/(ajCh+1) + bjh), JL = 4£ + 68, Bi =
biK + 2£ + 28, and Aj = ajl + 2£ + 28.

However, since ~ is constant and r(j) is independent of i, the elapsed time
between the two consecutive states 9 can be viewed as the sum of terms independent of
i plus the distance between city i and j in a TSP with distance matrix C = (Cij), where
C;,j = min{Bi +Aj , max{JL, B i , Aj }}. As a result, the scheduling problem is equivalent
to the problem of finding an optimal tour for this n-city TSP. Suppose that the optimal
tour (part processing sequence) is a* (1), ... , a* (n), a* (n + 1) = a* (1), the minimum
(cycle) time for producing an MPS is then equal to Ct(a*) = E~=1 T u*Ck)u*Ck+1) =

n~ + E;=1 r(j) + E~=l Cu*Ck)u*Ck+1). D

Recall that, based on the well-known Gilmore-Gomory algorithm (Gilmore
and Gomory 1964) for a special case of the TSP, Aneja and Kamoun (1999) have
described an O(n log n) algorithm to solve the special case of the TSP with distance
matrix C = (C;,j) = min{Bi + Aj , max{JL, B i , Aj }}. Therefore, we have the following
corollary.

Corollary 2.4 The RRC21f = 2KICt problem can be solved optimally in O(nlogn)
time.

In Chapter 5, we will generalize and substantially extend the aforementioned
class of distance matrices, and provide a unified polynomial solution for the TSP on
the extended class.

Makespan minimization

We consider now the makespan version of the reentrant robotic-cell problem,
which is denoted by RRC21f = 2KICmax . Beginning from time zero, the makespan
of a schedule is the time at which the last finished part is dropped at the output
station. Here it is assumed that the robot is available at the input station at time

18

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Table 2.1: An Example in Lemma 2.5

1, 1 2 3 4 5
ai 5 860 5 860 5
bi 860 60 860 5 5
Ai 45 900 45 900 45
B· ~ 900 100 900 45 45
A~

~
100 900 100 900 100

zero. Given the similarity between the cycle time and the makespan objectives,
one natural question arises: does the part processing sequence that minimizes the
cycle time of an MPS also minimize the makespan? We will show that the answer
is negative, which makes it necessary to find a different solution for the makespan
minimization problem.

Recall that Kise, Shioyama, and Ibaraki (1991) have studied a two-machine
manufacturing cell served by an Automated Guided Vehicle (AGV), which is equiva
lent to a regular two-machine robotic cell. They have presented an algorithm to find
the part processing sequence to minimize the makespan if the AGV (robot) move
cycle is fixed at 82 , i.e., the RC2182 1Cmax problem. Here we show first that this
policy is suboptimal, i.e., the makespan can be improved by a mix of cycles 8 1 and
82 , Moreover, instead of developing the recursive relations used in Kise, Shioyama,
and Ibaraki (1991) to calculate the makespan for a given part processing sequence,
we will show that the makespan can be derived directly from a solvable case of the
TSP problem.

Lemma 2.5 Following only a single robot move cycle (81 or 82) is not necessarily
optimal for the RRC21f = 2KICmax problem even with K = 1.

Proof. We prove it by an example. Consider the following instance of the RRC21f =
2KICmax problem: K = 1, n = 5, £ = 8 = 10; the ai-S and bi-s are shown in Table
2.1. Thus J-L = 4£ + 68 = 100 and t1 = 2£ + 28 = 40. The Ai = ai + 2£ + 28 and
Bi = bi + 2£ + 28 values are also shown in Table 2.1.

As mentioned earlier, the minimum makespan under robot move cycle 8 1 is
independent of the part processing sequence and can be calculated as the minimum
cycle time under 8 1 minus the robot move time from Out to In, i.e., C~ax = nt1 +
L~=1(Ai+Bi)-38 = 200+(45+900+45+900+45)+(900+100+900+45+45)-30 =
4095.

For a part processing sequence a = (a(l), a(2), . .. ,a(n)), the makespan under
robot move cycle 82 , C!ax(a) , is equal to the sum of the initial time needed to get
part Pu(l) into the first occurrence of state 9 = (0, 0, M;;), plus the sum of T;ik)u(k+1)

for k = 1, ... , n - 1, plus the time needed after the last occurrence of state 9 to get
part pu(n) finished and delivered to Out. Let A~ = max{J-L, Ai}. (The A~ values for the

19

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

example are shown in the last row of Table 2.1.) C!ax(O") may be derived as follows:

n-1

C!ax(O") = c + 0 + c + au(1) + c + 0 + C + L (2c + 20 + max{JL, BU(k) , A u(k+1)})

k=1

+ bu(n) + c + 0 + c
n-1

= Au(!) + L (~+ max{JL, BU(k) , A u(k+l)}) + Bu(n) + 2c - 0
k=1
n-1

= A u(1) + L max{ BU(k) , A~(k+1)} + Bu(n) + n~ - 30.
k=1

(2.4)

To find the best part processing sequence (j that minimizes C!ax (0"), Kise, Shioyama,
and Ibaraki (1991) presented the optimal algorithm Makespan-82 , which fixes the
first part in every possible way and solves an n-city TSP repeatedly.

Algorithm Makespan-82

Input: A~ = max{JL, Ai} and B i , i = 1,2, ... ,n.
1. Let L be a large positive number.
2. For r = 1,2, ... , n do

2a. Find the best n-city TSP tour 0"' with distance matrix C = (C;,j) =
max{Bi' Aj} and A~ = O. Let the length of 0"' be L'.

2b. If L' + Ar < L then L = L' + Ar and (j = 0"'.
Output: The best part processing sequence (j and C!ax(Ci) = L + n~ - 30.

Using Algorithm Makespan-82 , we can find that the part processing sequence (j =
(1,2,3,4,5) will minimize C!ax(O") for the above instance. Calculated by (2.4), the
minimum makespan under 8 2 is equal to C!ax(Ci) = 45 + (900 + 100 + 900 + 100) +
45 + 200 - 30 = 2260.

Let us consider now a mix of cycles 8 1 and 82 , Starting from the first occur
rence of state Q = (0, n, M:;), let the robot follow the sequence of cycles 8 2 , 82 , 82 , 81 ,

Recall that for consecutive parts Pu(k) and P u(k+1), the times of cycles 8 1 and 8 2 are
given by (2.1) and (2.2), respectively. That is, T;(k)u(k+1) = ~ + Bu(k) + A u(k+1) and

T;(k)u(k+1) = ~ + max{JL, BU(k) , A u(k+1)} = ~ + max{ BU(k) , A~(k+1)} for K = 1. As
sume the part processing sequence is 0" = (0"(1),0"(2), . .. ,0"(5)) = (1,2,3,4,5). Then
the time between the first and the last occurrences of state g can be calculated as
E~=1 T;(k)u(k+1)+T;(4)u(5) = (40+900)+(40+100)+(40+900)+(40+45+45) = 2150.
Clearly, it takes 4c + 20 + au (1) = 65 units of time from time zero to get part Pu (1) into
the first occurrence of state Q. It also needs 2c + 0 + bu (5) = 35 units of time after the
last occurrence of state Q to get part Pu (5) finished and delivered to Out. Therefore,
the makespan for producing these five parts is equal to 65 + 2150 + 35 = 2250, which
is less than the minimum makespan using only 8 1 or 82 , 0

20

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

As following a single robot move cycle is not optimal generally, we consider
now both cycles to find the minimum makespan for our problem. The minimum
elapsed time Iij between two consecutive states 9 on parts ~=u(k) and Pj=u(k+1), k =
1,2, ... ,n - 1 can be calculated by (2.3). Then the makespan under part processing
sequence a = (a(1), a(2), . .. ,a(n)) can be calculated as the sum of the initial time
needed to get part Pu(l) into the first occurrence of state g, plus the sum of the Iij's,
plus the time needed after the last occurrence of state 9 to get part pu(n) finished
and delivered to Out, i.e.,

K-l

Cmax(a) = c: + 6 + c: + aU(l)l + c: + 6 + c: + L(bu(l)h + 2c: + 6 + a u(1)(h+1) + 2c: + 6)
h=l

n-l

+ LTu(k)u(k+1) + (bu(n)K + c: + 6 + c:)
k=l

K-l

= 6c: + 36 + aU(l)l + bu(n)K + L (4.:: + 26 + a U(l)(h+1) + bu(l)h)

n-l

+ LTu(k)U(k+1)

k=l

h=l

n-1

= 4.:: + 6 + au(l)l + bu(n)K + ll. + r(a(1)) + LTu(k)U(k+1)

k=l
n-l n

= A u(1) + L du(k)u(k+1) + Bu(n) + L r(a(k)) + nll. - 36,
k=l k=1

where du(k)u(k+1) = min{Bu(k) + A u(k+1) , max{J-L, BU(k) , Au(k+1)}}'

(2.5)

Since in (2.5), nll.-36 is constant and E~=l r(a(k)) is independent ofthe part
processing sequence, it is clear that minimizing the makespan Cmax(a) is equivalent
to minimizing AU(l) + E~:: du(k)u(k+1) + Bu(n)'

We are now ready to show that the optimal part processing sequences are not
the same for the Ct and Cmax objectives.

Lemma 2.6 A part processing sequence that is optimal for the RRC21f = 2KICt

problem is not necessarily optimal for the RRC21f = 2KICmax problem even with
K = 1, and vice versa.

Proof. By Equation (2.3), minimizing the cycle time of an MPS is equivalent to min
imizing E~=1 du(k)u(k+1)' Thus it suffices to show that a part processing sequence that
minimizes E;=1 du(k)u(k+1) does not necessarily minimize AU(l) + E~:: du (k)u(k+1) +
Bu(n) , and vice versa. Note that we assume a(n + 1) = a(1) for the cycle time
minimization problem.

21

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Table 2.2: An Example in Lemma 2.6

~ 1 2 3
ai 1 1250 1197
bi 1249 1098 1199
Ai 801 2050 1997
Bi 2049 1898 1999
A~

~
2000 2050 2000

Consider the following instance of the RRC21t' = 2KICt and RRC21t' =
2KICmax problems: K = 1, n = 3, £ = b = 200; the ai-S and bi-s are shown in
Table 2.2. Thus J.-L = 4£ + 6b = 2000. The Ai = ai + 2£ + 2b, Bi = bi + 2£ + 2b, and
A~ = max{J.-L, Ai} values are also shown in Table 2.2.

As n = 3, there are only two different cyclic part processing sequences: (1,2,3,
1,2,3, ...) and (1,3,2,1,3,2, ...). Since 2:~=1 du(k)u(k+1) is equal to 2049 + 2050 +
2000 = 6099 if 0'= (1,3,2) and becomes 2050 + 2000 + 2000 = 6050 if 0'= (1,2,3),
the optimal part processing sequence under the cycle time objective is (1,2,3).

However, AU(l) + 2:~:i du(k)u(k+l) + Bu(n) is equal to 801+2050+2000+1999 =
6850 if a = (1,2,3) and becomes 801 + 2049 + 2050 + 1898 = 6798 if a = (1,3,2).
Thus it is clear that (1,2,3) is not the optimal part processing sequence under the
makespan objective. From the six permutations of the part processing sequence, it is
not difficult to verify that the optimal one is (1,3,2). 0

The consequence of the above lemma is that we cannot simply apply the solu
tion method for a cycle time minimization problem to solve the makespan version of
the problem. Nevertheless, we have shown that minimizing the makespan is equiv
alent to minimizing D(O') = AU(l) + 2:~:: du(k)u(k+1) + Bu(n). Furthermore, this is
equivalent to the minimization of 2:~:: du(k)u(k+1) + Bu(n) if 0'(1), the first part to be
processed, is fixed.

Consider an n-city TSP with distance matrix C = (Cij) = min{Bi + A'J,

max{J.-L, B i , A'J} }, where for a fixed r E {1, 2, ... ,n} we have A~ = 0, and A'J = Aj for
j E {1, 2, ... ,n} - r. Since A~ = 0, cu(n)r = Bu(n), and the length of the tour (0'(1) =

r, 0'(2), ... ,O'(n)) is equal to 2:~:i Cu(k)u(k+1) + cu(n)r = 2:~:i d u(k)u(k+1) + Bu(n). This
implies that the minimum makespan of a schedule with a fixed first part can be found
by solving a TSP.

Procedure Makespan-RRC2(r)
1. Let A'J = A j , j E {1, 2, ... ,n} - r.
2. Find the best tour O'*(r) of an n-city TSP with distance matrix C = (Cij)

= min{Bi + A'J, max{J.-L, B i , A'J}} and A~ = O. Let L*(r) be its length.
Return: The best tour O'*(r) and C;ax(r) = L*(r) + Ar + 2:~-1 r(i) + nb.. - 3b.

22

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Procedure Makespan-RRC2(r) contains the detailed steps of finding this min
imum makespan. The best tour o-*(r) and its length L*(r) can be found in O(nlogn)
time (cf. Aneja and Kamoun (1999) and Section 5.3.2). Thus Procedure Makespan
RRC2(r) takes O(n log n) time.

Now by calling Procedure Makespan-RRC2(r) repeatedly for r = 1,2, ... , n,
which will take O(n2 Iogn) time, we can find the optimal solution for the RRC21.e =
2KICmax problem. The minimum makespan is C~ax = minr E{1,2, ... ,n} C~ax(r). There
fore, we have proved the following theorem.

Theorem 2.7 Problem RRC21.e = 2KICmax can be solved optimally in O(n2 Iogn)
time.

2.4 Three-machine Loop-reentrant Cells

There exist many different reentrant processing routes in an m-machine reen
trant robotic cell, when m ~ 3. In this section, we examine a special class of reentrant
processing where parts are to be processed by each machine as in a flow shop and then
go back to the first machine for a finishing operation, i.e., the part processing route
is Ml --+ M2 --+ ... --+ Mm --+ MI' As the part processing route behaves like a loop,
this is referred to as loop-reentrant processing in Middendorf and Timkovsky (2002).
Accordingly, we call such robotic cells loop-reentrant robotic cells. Loop-reentrant
processing can frequently be encountered in real life applications. It reflects certain
manufacturing environments in which there is a primary machine that is responsi
ble for both pre- and post-processing, e.g., a cleaning procedure, while the rest of
operations are to be performed on several secondary machines. Another example
is electronic signal processing, in which signal pulses have to go to a computer for
preprocessing, and then through the sensing and command system for transmission
and retrieval, and finally back to the computer for postprocessing. Note that loop
reentrant processing has also been studied by Wang, Sethi, and van de Velde (1997),
where it was called chain-reentrant processing. We add loop into the f3 field of the
alf3I'Y notation for loop-reentrant robotic-cell problems. Therefore, the problem of
minimizing cycle time in an m-machine loop-reentrant robotic cell is identified by the
three-tuple RRCmllooplCt .

The m-machine loop-reentrant robotic cell is, in a certain sense, a general
ization of the regular m-machine robotic cell without reentry. In the regular m
machine robotic cell, the problem of finding the sequence of robot move cycles and
the part processing sequence which jointly minimize the cycle time is strongly NP
hard for m ~ 3 (Hall, Kamoun, and Sriskandarajah 1998). The strong NP-hardness
of RRCmllooplCt , where m ~ 3, however, does not follow from this in an obvious
way. For example, the regular three-machine robotic cell has six potentially opti
mal robot move cycles for producing one unit, while a three-machine loop-reentrant

23

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

In Out In Out

In Out In Out

Figure 2.5: Robot move cycles in a three-machine loop-reentrant cell

robotic cell has only four potentially optimal cycles that produce one unit. To ex
amine these cycles in detail, let us consider the system in state g when the robot is
ready to unload a part from machine Ml after this part has completed all operations,
i.e., g = (0"", MI2)+). Beginning from state g, the four robot move cycles may be
described by a series of state transitions as follows. (Refer to Figure 2.5 for the steps
of each cycle. The numbers on the arcs depict the order of robot moves.)

81: (0,0, 0, M~2)+), (0, 0, 0, 0), (0, 0, 0, I), (0,0, 0, M~I)-), (0,0,0, M?)+),

(0, n, 0, Mi), (0, n, 0, Mt), (0,0,0, Mi), (0, 0, 0, Mi), (0, 0, 0, MI2)-),

(0,0, 0, M~2)+),

82 : (0,0,0, M?)+), (0,0,0,0), (0,0,0, I), (0,0,0, Mi1)-), (0,0,0, Mt),

(0,0,0, Mi), (0,0,0, MP)+), (0,0,0, Mi), (0,0,0, Mi), (0,0,0, M?)-),

(0,0,0, Mi2)+),

83 : (0,0,0,M?)+), (0,0,0,0), (0,0,0,Mt), (0,0,0,Mi), (0, 0,0,1),

(0,0,0, MP)-), (0,0,0, MP)+), (0,0,0, M2), (0,0,0, Mi), (0,0,0, Mi2)-),

(0, n, 0, Mi2)+) ,

84 : (0,0,0, M?)+), (0,0,0,0), (0,0,0, I), (0,0,0, Mi1)-), (0,0,0, Mi1)+),

(0,0,0, Mi), (0, n, 0, Mi), (0,0,0, M?)-), (0,0,0, Mt), (0,0, n, Mi),

(0,0,0, M?)+).

24

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

2.4.1 Single cycles

We can derive the cycle time for the production of an MPS in sequence a under
each robot move cycle. Since we are dealing with cyclic production of the MPS, we
always have a(n + k) = a(k) for k = 1,2, ... , n.

The elapsed time between the loading of parts Pu(k) and P u(k+1) on machine
M1 for the first time under cycle 8 1 is given by

T;(k)u(k+1) = aU(k)l + e + b + e + bU(k) + e + b + e + CU(k) + e + 2b + e + aU(k)2 + e

+ 3b + e + 4b + e + b + e

= 10c + 12b + aU(k)l + aU(k)2 + bU(k) + Cu(k)'

Thus it is easy to see that, under cycle 8 1 , the production of an MPS in any sequence
has the same cycle time T1 = n(lOe + 12b) + l:~=1 (ail + ai2 + bi + Ci). Therefore, any

part processing sequence is trivially optimal for the RRC31loop, 8 1 1Ct problem.

Under cycle 82 , the time between the loading of part P u(k+1) on machine M 2,

and the loading of part P u(k+2) on machine M 2, can be obtained as

T;(k+1)u(k+2) = b + w3(k) + e + 2b + e + aU(k)2 + e + 3b + e + 4b + e + b + e + b

+ w2(k + 1) + e + b + e + 2b + wP)(k + 2) + e + b + e

where

= lOe + 16b + aU(k)2 + wP)(k + 2) + w2(k + 1) + w3(k),

w~l)(k + 2) =max{O, aU(k+2)1 - (b + w2(k + 1) + e + b + e + 2b)}

= max{O, aU(k+2)1 - 2e - 4b - w2(k + 1)}

is the robot waiting time at M1 for the 1st processing of part Pu(k+2) '

w2(k + 1) = max{O, bu(k+1) - aU(k)2 - 6e - 12b - w3(k)}

is the robot waiting time at M2 for part P u(k+1), and

w3(k) = max{O, Cu(k) - (2b + w~l)(k + 1) + e + b + e + b)}

=max{O, Cu(k) - 2e - 4b - wi1)(k + 1)}

is the robot waiting time at M3 for part Pu(k)'

Adding wi1)(k + 2) and w2(k + 1) and substituting for w2(k + 1), T;(k+1)u(k+2)

may be simplified as

T;(k+1)u(k+2) = lOe + 16b + a u(k)2 + max{w2(k + 1), aU(k+2)1 - 2e - 4b} + w3(k)

= 4e + 4b + max{ 4e + 8b, 2e + 4b + aU(k+2) 1 , bu(k+1) - aU(k)2 - 2e

- 4b - w3(k)} + aU(k)2 + 2e + 4b + w3(k),

25

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

where

w3(k) =max{O, Cu(k) - 2£ - 48 - max{O, a u(k+1)l - 2£ - 48 - w2(kn}

= max{O, Cu(k) - max{2£ + 48, a u(k+1)l - max{O, buCk) - a u(k-l)2 - 6£ - 128

- W3(k - In}}·

Given a part processing sequence a, the time to produce an MPS under cycle
82 is then equal to

n

T2(a) = LT:(k+1)u(k+2)

k=l
n

= n(4£ + 48) + L maxi 4.:: + 88, 2£ + 48 + a u(k+2)1, bu(k+1) - a U(k)2

k=l
n n

- 2£ - 48 - w3(kn + L(au (k)2 + 2£ + 48) + L w3(k), (2.6)
k=l k=l

where w3(k) = max{O, CU(k) - max{2£ + 48, a u(k+1)l - max{O, buCk) - a u(k-l)2 - 6£-
128 - w3(k - In}}.

Under cycle 83 , the time between the loading of part PuCk) on machine M 3,

and the loading of part P u(k+1) on machine M 3, can be obtained as

T;(k)u(k+1) = 38 + £ + 8 +.:: + a u(k+1)l + £ + 8 + £ + 8 + w3(k) + £ + 28 + £ + a u(k)2

+ £ + 38 + £ + 28 + W2 (k + 1) + £ + 8 + £

= 10£ + 148 + a u(k+1)l + a u(k)2 + w2(k + 1) + w3(k),

where

w2(k + 1) = max{O, bu(k+1) - (8 + w3(k) + £ + 28 + £ + a U(k)2 + £ + 38 + £ + 28n

=max{O, bu(k+1) - a U(k)2 - 4£ - 88 - w3(kn

is the robot waiting time at M2 for part P u(k+1), and

w3(k) =max{O, CU(k) - (38 + £ + 8 + £ + a U(k+1)l + £ + 8 + £ + 8n

= max{O, CU(k) - a u(k+1)l - 4£ - 68}

is the robot waiting time at M3 for part PuCk)'

Adding w2(k + 1) and w3(k), T;(k)u(k+l) may be simplified as

T;(k)u(k+1) = 10£ + 148 + a u(k+1)l + aU(k)2 + maxi w3(k), bu(k+1) - a U(k)2 - 4£ - 88}

= 10£ + 148 + a u(k+1)l + a u (k)2 + max{O, Cu(k) - a u(k+1)l - 4£ - 68,

bu(kH) - a U(k)2 - 4£ - 88}.

26

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Given a part processing sequence a, the time to produce an MPS under cycle
83 is then equal to

n

T3(a) = LT;(k)u(k+1)
k=l

n

= n(lO£ + 148) + L(au(k+1)l + au(k)2)

k=l
n

+ L max{ 0, CU(k) - au(k+1)l - 4£ - 68, bu(k+1) - au(k)2 - 4£ - 88}. (2.7)
k=l

Under cycle 84 , the time between the loading of part P u(k+1) on machine M3,

and the loading of part Pu(k+2) on machine M3, can be obtained as

T:(k+1)u(k+2) = 28 + wi2)(k) + £ + 38 + £ + 48 + £ + 8 + £ + aU(k+2)1 + £ + 8 + £ + 8

+ w3(k + 1) + £ + 20 + £ + 8 + w2(k + 2) + £ + 0 + £

where

= lOe + 160 + au(k+2)1 + w2(k + 2) + wa(k + 1) + wi2)(k),

w2(k + 2) = max{O, bu(k+2) - (8 + w3(k + 1) + £ + 28 + £ + 8)}

= max{O, bu(k+2) - 2e - 40 - w3(k + I)}

is the robot waiting time at M2 for part Pu(k+2) '

wa(k + 1) = max{O, Cu(k+1) - aU(k+2)1 - 6£ - 128 - wi2)(k)}

is the robot waiting time at M3 for part P u(k+1), and

wi2)(k) = max{O, a U(k)2 - (8 + w2(k + 1) + e + 8 + £ + 28)}

=max{O, aU(k)2 - 2£ - 48 - w2(k + I)}

is the robot waiting time at Ml for the 2nd processing of part Pu(k).

Adding w2(k + 2) and w3(k + 1) and substituting w3(k + 1), T:(k+1)u(k+2) may
be simplified as

T:(k+1)u(k+2) = 10£ + 160 + aU(k+2)1 + max{w3(k + 1), bu(k+2) - 2£ - 48} + wi2)(k)

= 4£ + 40 + max{4£ + 88, Cu(k+1) - aU(k+2)1 - 2£ - 48 - wi2)(k),

2£ + 48 + bu(k+2)} + aU(k+2)1 + 2£ + 48 + wi2) (k),

27

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

where

wi2)(k) =max{O, a U(k)2 - 26' - 4£5 - max{O, bu (k+1) - 26' - 4£5 - w3(k)}}

= max{O, a U(k)2 - max{26' + 4£5, bu(Hl) - max{O, CU(k) - a u (k+1)l

- 66' - 12£5 - wi2)(k - 1)}}}.

Given a part processing sequence a, the time to produce an MPS under cycle
S4 is then equal to

n

T4(a) = LT;(k+l)a(H2)

k=1
n

= n(46' + 4£5) + L max{ 46' + 8£5, 26' + 4£5 + bu (k+2) , CU(k+1) - a u(H2)1

k=1
n n

- 26' - 4b - wi2)(k)} + L(aa(k+2)1 + 26' + 4£5) + L wi2)(k), (2.8)
k=1 k=l

where wi2) (k) = max{O, aa(k)2 - max{26' + 4£5, ba (H1) - max{O, Ca(k) - aa(k+1)1 -66'-
12£5 - wi2)(k - 1)}}}.

Next we show that the problem of finding the best part processing sequence
using robot move cycle Si, i.e., RRC3lloop, SiICt, is strongly NP-hard for i = 2,3,4.
We begin with the i = 2 case.

Observe the substantial similarity between the S2 cycle and the robot move
cycle S~ in the regular three-machine robotic cell (Sethi et al. 1992). See Figure 2.6
for the S~ cycle. Hall, Kamoun, and Sriskandarajah (1998) have derived that the cycle

s' 2

In 2 Out

Figure 2.6: Cycle S~ in the regular three-machine robotic cell

time for the production of an MPS in sequence a under cycle S~ is given by T~ (a) =
n(4c+4£5) + L:~=1 max{ 4c+8£5, 2c+4£5 +a~(k+2)' b~(H1) -w;(k)} + L:~=1 w;(k), where
w;(k) = max{O, c'u(k) - max{2c + 4£5, a~(k+1) - max{O, b~(k) - 4c - 8£5 - w;(k - 1)}}},
and aj, bj and cj represent the processing times of part j on machines M1 , M2 and
M 3 , respectively, for j = 1,2, ... ,n. Moreover, they have shown that the problem of

28

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

determining the best part processing sequence to minimize T~(a) is strongly NP-hard,
i.e., the problem RC318~ICt is NP-hard in the strong sense.

Consider our problem, RRC3Iloop,82 ICt. Equation (2.6) shows how to com
pute the cycle time to produce an MPS in sequence a under cycle 8 2 . By set
ting au(k)l = a~(k)' bU(k) = b~(k) + a u(k-l)2 + 2c: + 415, and Cu(k) = du(k) , it is easy
to see that minimizing T~ (a) is equivalent to minimizing T2 (a) because the term
E~=l (au(k)2 + 2c: + 415) in T2(a) is independent of the part processing sequence. Fur
thermore, it can be verified that W3 (k) = w~ (k) always, as they are calculated by the
same recursion. We have thus proved the following theorem.

Theorem 2.8 RRC3lloop,82 lCt is strongly NP-hard.

For RRC3lloop, 84 1Ct , Equation (2.8) shows how to compute the cycle time for
an MPS in sequence a under cycle 84 . Similarly to the above, if we set bU(k) = a~(k)'

Cu(k+1) = b'u(k+1) +au(k+2)1 +2c:+4b, and aU(k)2 = dU(k) , then minimizing T~(a) is also
equivalent to minimizing T4(a). Note that the term E~=1(au(k+2)1 +2c:+4b) in T4(a)

is independent of part processing sequence. We have therefore proved the following
theorem.

Theorem 2.9 RRC3lloop,84 lCt is strongly NP-hard.

For RRC3Iloop,83 ICt, the problem is to find the best part processing se
quence that minimizes T3(a) defined in (2.7). Let a U(k+1) = a U (k+1)l + 4c: + 615 and
dU(k) = au(k)2+4c:+8b. We can rewrite T3(a) as T3(a) = 2nc:+ E~=l(au(k+1)+du(k»)+
E~=l max{O, Cu(k) -au(k+1h bu(k+1) -du(k)}. Sriskandarajah, Hall, and Kamoun (1998)
have studied part sequencing problems in a regular four-machine robotic cell. They
have shown that the problem of finding the best part processing sequence that min-
.. T"() ",n (" d") ",n {O elf " b" d"} Imlzes a = L-k=l a u(k+1) + u(k) + L-k=l max 'u(k) - a u(k+1) ' u(k+1) - u(k) ,
where a'J, b'J, c'J, and d'J are the modified processing times of part j on machines
M}, M2 , M3 , and M4 , respectively, j = 1, ... ,n, is strongly NP-hard. (Refer to cycle
89,4 in their paper.) If we let Cu(k) = d~(k)' a u(k+1) = a~(k+1)' bu(k+1) = b~(k+1)' and
dU(k) = d~(k)' then it is clear that minimizing T"(a) is equivalent to minimizing T3(a).

Hence, we have proved the following theorem.

Theorem 2.10 RRC3lloop,83 lCt is strongly NP-hard.

2.4.2 The general problem

In this section, we study the general problem of finding the sequence of 1-unit
robot move cycles and the part processing sequence which jointly minimize the cycle
time in three-machine loop-reentrant robotic cells. Note that the combinations of
cycles 8}, 8 2 , 83 , 84 are allowed for the general problem.

29

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Before we present our result, let us first examine the RC3IS~ICt problem in
detail. Recall that, for RC3IS~ICt, its strong NP-hardness has been proved by a
polynomial transformation of the Numerical Matching with Target Sums (NMTS)
problem to the decision version of the problem (Hall, Kamoun, and Sriskandarajah
1998). The NMTS problem is known to be NP-complete in the strong sense (Garey
and Johnson 1979), and may be stated as follows:

NMTS
Instance: Given three sets of positive integers X = {XI, ... , xd, Y = {YI, ... , Yt},

and Z = {Zl, ... , Zt}, where ~~=IXj = ~~=IYj + ~~=IZj = X.
Question: Can Y U Z be partitioned into t disjoint subsets AI, ... ,At, each

containing exactly one element from each of Y and Z, such that
~aiEAjai = Xj for j = 1, ... ,t?

For a given instance of NMTS, we can create an instance Q' of the RC3IS~ICt
problem with the MPS consisting of three part types and n' = 3t parts as follows:

Part set P' = {Pj, 1 s:. j S:. t} U {Pj, t + 1 S:. j S:. 2t} U {Pj, 2t + 1 S:. j S:. 3t}.
Let aj, bj, and S denote the processing times of part j on machine M I, M2, and M3 ,

respectively, j = 1, ... , 3t.

aj = E + Xj - /3/2,
aj = 3E - /3/2,
aj = 2E - /3/2,

b'· = 3E
J '

bj = 2E,
bj = E + X + Zj-2t,

s = /3/2,
S = X - Yj-t + /3/2,
S = /3/2,

j = 1, ... ,t,
j = t + 1, ... ,2t,
j = 2t + 1, ... , 3t,

where X = E~=lXj, E = 3tX, c = ~ = X/4, and /3 = 4c + 8~. The threshold cycle
time for the production of n' parts is G' =(6t + 2)E + tX + Z, where Z = ~~=l Zj.

The proof of Theorem 11 in Hall, Kamoun, and Sriskandarajah (1998) can be
used to show that to achieve the threshold cycle time G' for problem instance Q', the
elapsed time between the loading of parts Pu(k+1) and Pu(k+2) on machine M2 must be

equal to T~~k+1)u(k+2) = 4c + M + a~(k+2) + /3/2 + w~(k), where E~~lWHk) = tX - Y
and Y = ~~=l Yj. See Hall, Kamoun, and Sriskandarajah (1998) for details.

Now consider the problem RRC3lloop, S2ICt . As shown in the proof of Theo
rem 2.8, by setting au(k)l = a~(k)' buCk) = b~(k) + au(k-I)2 + 2c + 48, and CU(k) = duCk)'
minimizing T~ (a) is equivalent to minimizing T2 (a) . Hence, we can create from Q'
an instance Q of the RRC3lloop, S21Ct problem with an MPS consisting of three part
types and n = 3t parts as follows:

Part set P = {Pj, 1 S:. j S:. t} U {Pj, t + 1 S:. j S:. 2t} U {Pj, 2t + 1 S:. j S:. 3t}.
Let ajl, bj , Cj, and aj2 denote the processing times of part j on machine Ml (the 1st
time), M 2 , M 3 , and MI (the 2nd time), respectively, j = 1, ... ,3t.

ajl = E + Xj - /3/2,
ajl = 3E - /3/2,
ajl = 2E - /3/2,

bj = 3E+2X,
bj = 2E+2X,
bj = E+3X +Zj-2t,

30

Cj = /3/2, j = 1, ... ,t,
Cj = X - Yj-t + /3/2, j = t + 1, ... ,2t,
Cj = /3/2, j = 2t + 1, ... ,3t,

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

and aj2 = X/2 for j = 1, ... , 3t, where E = 3tX, e = 0 = X/4, and /3 = 4e + 80.
Since T2(a) -T~(a) = E~=1(au(k)2+2e+40) = E!~1(X/2+X/2+X) = 6tX = 2E,
the threshold cycle time for the production of n parts in Q is G = G' + 2E =

(6t + 4)E + tX + Z, where Z = E~=1 Zj' Furthermore, since 2E is a constant,
minimizing T2(a) for instance Q is equivalent to minimizing T~(a) for instance Q',
and a part processing sequence a attains the threshold cycle time G' for Q' if and
only if it attains the threshold cycle time G for Q. As mentioned above, a part
processing sequence a achieves the cycle time G' for Q' if the elapsed time between
the loading of parts PuCk+!) and Pu(k+2) on machine M2 is exactly T~1k+!)u(k+2) =

4e + 40 + a~(k+2) + /3/2 +w~(k) for every k, where w~(k) :::; max{O, duCk) - /3/2} < X.
For instance Q, this means that the elapsed time between the loading of parts PuCk+!)
and Pu(k+2) on machine M2 must be equal to T;(k+!)u(k+2) = 4e + 40 + (au(k+2)1 +
/3/2) + (au(k)2 + 2e + 40) + w3(k) = 8e + 120 + aU(k+2)1 + aU(k)2 + w3(k), where
w3(k) :::; max{O, CU(k) - /3/2} < X for each k. Since w3(k) < X and aj2 = X/2 for
j = 1, ... ,3t, cp . T;(k+!)u(k+2) = 8e + 120 + au(k+2)1 + aU(k)2 + w3(k) < 8e + 120 +
aU(k+2)1 + X/2 + X = 13X/2 + au(k+2)1' We show next that the times of other robot
move cycles are strictly larger than the quantity cpo

Under cycle 81, the robot needs to wait for part Pu(k+l) finishing its processing
on M2 and M3, as well as the second operation on MI, then wait for the next part,
Pu(k+2), finishing its processing on Ml before it is loaded on M2, which take at least
bu(k+l) + CU(k+!) + aU(k+!)2 + aU(k+2)1 > cp units of time.

Under cycle 83 , the robot performs at least the following activities: move to
M3:(0), unload part PuCk) from M3:(e), move it back to Ml:(20) and load the part:(e),
wait for its processing: (au(k)2) , unload the part:(e), move it to Out:(30) and drop
the part:(e), move to M2:(20), unload part PuCk+!) from M2:(e), move it to M3:(0)
and load the part:(e), move to In:(30), pick up the next part, PU(k+2):(e), move it to
Ml:(O) and load the part:(e), wait for its processing:(au (k+2)l), unload the part:(e),
move it to M2:(0) and load the part:(e). These activities, not counting the possible
waiting times, take lOe + 140 + aU(k)2 + au(k+2)1 = 13X /2 + au(k+2)1 > cp units of time.

Under cycle 84 , the robot performs at least the following activities: move to
M3:(0), unload part PuCk) from M3:(e), move it back to Ml:(20) and load the part:(e),
move to M2:(0), unload part PuCk+!) from M2:(e), move it to M3:(0) and load the
part:(e), move to M1:(20), unload part PuCk) from Ml:(e), move it to Out:(30) and
drop the part:(e), move to In:(40), pick up the next part, PU(k+2):(e), move it to
Ml:(O) and load the part:(e), wait for its processing:(au (k+2)d, unload the part:(e),
move it to M2:(O) and load the part:(c). These activities, not counting the possible
waiting times, take 10c + 1M + aU(k+2)1 = 13X/2 + aU(k+2)1 > cp units of time.

The above argument shows that the cycle times for the production of an MPS
for instance Q under robot move cycles other than 82 are larger than G, and switching
to other cycles will increase the cycle time. Thus, 82 is the only robot move cycle that
can achieve the threshold cycle time of G for instance Q. Since there exists a schedule

31

CHAPTER 2 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Table 2.3: Complexity Results for Scheduling in Reentrant Robotic Cells

Problem Complexity Reference
RRC21f = 2KICt , K 2: 1 O(n log n) Corollary 2.4
RRC21f = 2KICmaJo K 2: 1 O(n2 Iogn) Theorem 2.7
RRC21f = 2K + 11Ct , K 2: 1 trivial Section 2.3.1
RRC21f = 2K + 11CmaJo K 2: 1 trivial Section 2.3.1
RRC311oop, SllCt trivial Section 2.4.1
RRC311oop, SilCt , i = 2,3,4 strongly NP-hard Theorem 2.8, 2.10, 2.9
RRCmllooplCt , m 2: 3 strongly NP-hard Theorem 2.11

(J" for RC3IS~ICt on problem instance Q' with cycle time T~((J") ~ G' if and only if
there exists a solution to the NMTS problem (Hall, Kamoun, and Sriskandarajah
1998), this implies the following result.

Theorem 2.11 The RRC31loopiCt problem is strongly NP-hard.

2.5 Summary

We have studied the problem of scheduling to minimize the cycle time or
makes pan in m-machine reentrant robotic cells. The decisions to be made include de
termining the sequence of I-unit robot move cycles and the part processing sequence.
We have established some interesting new complexity results sharpening the boundary
between easy and hard problems. When m = 2, the cycle time minimization problem
can be formulated as a solvable special case of the TSP, and hence is polynomially
solvable. We have also showed that the makespan minimization problem can be solved
in 0 (n 2 log n) time. When m = 3, we studied a special class of reentrant robotic cells
named loop-reentrant robotic cells with the cycle time objective. We showed that,
under three out of four potentially optimal robot move cycles that produce one unit,
the part sequencing problem is strongly NP-hard. Under the remaining cycle, the
part sequencing problem can be solved easily. Finally, the general problem without
restriction to any robot move cycle was proved to be strongly NP-hard too. A sum
mary of our complexity results for scheduling in reentrant robotic cells appears in
Table 2.3.

32

Chapter 3
Scheduling Multi-component Parts
in a Robotic Cell

3 .1 Introduction

3.1.1 The model

Consider a generalization of the classical robotic-cell scheduling model as fol
lows: In a flexible manufacturing cell, there are two machines, Ml and M2, and a
robot all without buffer. The parts are available at the input station (In) at time zero.
Each part i (i = 1,2, ... , n) consists of K 2: 1 identical components to be processed
together first on machine Ml for ai time, then processed on machine M2 item-by-item,
each component requiring bi processing time. As each part involves one processing
step at the first machine and K processing steps at the second machine, we label this
type of processing as 1-K processing.

For each part, the robot first picks it up at In, then moves it to the first
machine, M 1, and loads it on that machine for processing; after the processing is
completed, the robot unloads the part and moves it to the second machine, M 2, for
processing its individual components. Since the components need the robot to per
form the loading and unloading tasks at M2 before or after each of the K processing
steps, these K steps cannot be combined into one single step. After all of its com
ponents are processed on M 2 , the robot moves the finished part to an output station
(Out) and drops it there. During the entire process, both the operations of the robot
and the processing of parts (components) on machines are nonpreemptive. The K
components of a part are handled as a whole except at machine M2 . In, MI, M2 , and
Out are located on the arc of a circle or on a straight line with the robot at the center.
Figure 3.1 exhibits the movement of a part (or component) in such a two-machine
robotic cell. The input and output stations have unlimited storage capacity. Since
there is no buffer space on machines, any part (component) being produced must be
either on one of the machines or on the robot. Neither a machine nor the robot can
handle more than one part at a time.

This model has a variety of applications. Our study was, in particular, inspired
by a real-life application in an automated pharmaceutical laboratory in which a large

33

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

In Out

Figure 3.1: 1-K processing in a two-machine robotic cell

number of samples need to go through a given chemical process. Each sample is a
set of test tubes. Sample i (1 ~ i ~ n) is composed of K test tubes. After a sample
is picked up from an input station, it is moved to an instrument (Ml)-a versatile
and flexible (multifunctional) machine-for a chemical process. When the process
finishes, the sample is moved to the reader (M2) to measure the data for each test
tube (one by one). When all measurements are taken, the sample is dropped at an
output station. To realize automation and increase efficiency, a robot performs all
moving, loading and unloading tasks during the whole process.

This model is also encountered in semiconductor test facilities consisting of
burn-in ovens and particular testers in sequence, where the oven is viewed as a batch
processing machine and the tester is modeled as a unit-capacity machine. A batch
processing machine is one where a number of components (jobs) are processed together
as a batch. That is, similar tasks are batched or grouped together to avoid setup time
or setup cost. Batch processing machines are widely used in flexible manufacturing.
Examples of batch processing machines in semiconductor manufacturing are etchers
in wafer fab and burn-in ovens in final test. Here the processing of each batch consists
of two stages. The first stage is undertaken on the batch processing machine common
to all components in a batch. All of these components start and finish processing at
the same time. The second stage is undertaken on the unit-capacity machine for each
component at a time. Components are regarded as single indivisible entities. Thus,
once the processing of a component on a machine has started, this operation must be
completed before this component can be processed on any other machines.

In this chapter, we concentrate on the scheduling of operations in such robotic
cells. We examine both the problem of minimizing the maximum completion time
(i.e., the makespan) for producing a given set of parts and the problem of minimizing
the cycle time of a minimal part set (MPS) in cyclic production. (A formal definition
of MPS and related issues are provided in Section 1.2.) Notice that there is only
one robot in the normal setting. Thus the robot is often the bottleneck of systems.
Therefore, unlike the traditional scheduling which only concerns the processing se
quences of parts, both the robot move activities and the part processing sequences
should be optimized in order to improve the productivity of these systems.

34

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

We use the following notation to describe the scheduling model.

n - the total number of parts to be produced or the number of parts in
an MPS.

K - the number of identical components in a part, K ~ 1. It is a constant.
a the processing sequence of parts, a = (a(I), a(2), ... ,a(n)).

PuCk) the kth part in the sequence a to be produced, k = 1,2, ... ,n.
ai - the processing time of part i on (machine) MI.
hi - the processing time required for each component of part i on M2 •

8 - the travel time taken by the robot to move between adjacent location
pairs (In, MI), (MI' M2), and (M2' Out). Travel between any two
locations is via intermediate locations. Thus the movement, e.g.,
from Into Out takes 38 time.
the time needed to pick up, (un)load, or drop a part (or component)
by the robot.

Throughout this chapter, all numerical data are assumed to be non-negative integers,
unless explicitly denoted otherwise. For the sake of brevity, we assume that the travel,
pick up, load, unload, and drop times are independent of the machines, but all results
in this chapter are also applicable to machine-dependent travel times and (un)loading
times.

Following the three-field notation al.8h' for machine scheduling problems, we
employ RC2 under a to indicate a two-machine robotic cell. Under.8, we use l-K
to indicate the l-K processing. Under "I, we may have Cmax or Ct to denote the
makespan or cycle time objective, respectively. For instance, RC211-KICt means
minimizing cycle time of producing K-component parts with l-K processing in a
two-machine robotic cell.

Remark The mirror image of l-K processing is K-l processing in which each part
has K processing steps at MI and one processing step at M 2 , see Figure 3.2. Many real
life manufacturing processes follow this model. For example, in assembly of printed
circuit boards (PCBs), several components should be inserted at specified points on a
bare PCB by a so-called component placement machine before a postprocessing step,
for instance, a cooling, inspection or packaging operation by another machine. Due
to the reversibility of the process, it is easy to see that the results for l-K processing
are also applicable to K-l processing.

3.1.2 Previous related work

There has been a lot of research work on different variants of robotic-cell
scheduling. For traditional production with makespan objective, Kise, Shioyama,
and Ibaraki (1991) study a two-machine no-buffer flow shop with part transportation
done by an Automated Guided Vehicle (AGV). An O(n2 Iogn) algorithm is given

35

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

In Out

Figure 3.2: K-1 processing in a two-machine robotic cell

to find the optimal part sequence to minimize the makespan under a given AGV
move cycle. When the machines have unlimited buffer, Kise (1991) proves the prob
lem to be NP-hard. More complexity results for special cases with unlimited buffer
are identified by Hurink and Knust (2001). Agnetis, Pacciarelli, and Rossi (1996)
analyze the lot scheduling in a two-machine cell where the machines are equipped
with a swapping device, allowing the AGV to exchange a new part for the one re
leased by a machine. Each lot is composed of a given number of identical parts to
be processed consecutively. The goal is to determine a sequence of n lots so that the
makespan is minimized. While the problem is NP-hard, an optimal solution that
runs in O(n log n) time is given for a special case. Panwalkar (1991) considers a two
machine flow shop in which parts are transported from the first machine to the second
by a robot. While the first machine has no buffer, the second machine has unlimited
buffer. Panwalkar presents an O(n2) algorithm to minimize the makespan. Levner,
Kogan, and Levin (1995) extend Panwalkar's results by allowing non-negligible load
ing/unloading times, and suggest an O(n log n) algorithm for finding an optimal part
sequence that minimizes the makespan. Levner, Kogan, and Maimon (1995) deal
with a robotic cell with part dependent transportation and setup effects, and derive
an O(n3) algorithm to minimize the makespan. Hertz, Mottet, and Rochat (1996)
investigate a scheduling problem in a robotized analytical system where a chemical
treatment has to be performed on each one of n identical samples. The chemical
treatment is represented by a predetermined ordered set of tasks to be carried out on
several resources. Here a robot is used to transport the samples between the resources
(i.e., machines and storage units). The time spent by a sample in a resource is not
fixed in advance but bounded by given minimal and maximal values. Moreover, it is
imposed that the time between the end of a task and the beginning of another task
be within a given maximal value. A heuristic algorithm is proposed to minimize the
makespan.

For cyclic scheduling in robotic cells, Crama and van de Klundert (1997)
present an O(m3) dynamic programming algorithm to find the optimal robot move
sequence to minimize the cycle time in an m-machine robotic cell with identical parts.
Sethi et al. (1992) explore a two-machine robotic cell and show that two robot move

36

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

cycles exist. For any given robot move cycle, they find the optimal part process
ing sequence to minimize the cycle time. Hall, Kamoun, and Sriskandarajah (1997)
propose an O(n4) algorithm that optimizes both the robot move cycle and part pro
cessing sequence for multiple parts in the two machine case. Aneja and Kamoun
(1999) improve the algorithm and present an O(nlogn) algorithm based on the well
known Gilmore-Gomory algorithm (Gilmore and Gomory 1964) for a special case of
the traveling salesman problem (TSP). Agnetis (2000) considers a similar problem
with no-wait-in-process constraint and shows that the problem of minimizing cycle
time is also solvable in O(nlogn) time for multiple parts in two-machine robotic cells.
For a general survey on robotic scheduling problems, we refer the reader to Crama et
al. (2000) and Middendorf and Timkovsky (2002).

The remainder of the chapter is arranged as follows. In Section 3.2, we analyze
the movement of the robot and establish that there are only two potentially optimal
robot move cycles in the cell. In Section 3.3 we formulate the problem of minimizing
cycle time as a TSP and show that it is solvable in O(nlogn) time. Section 3.4
investigates the makespan version of the problem. Finally, Section 3.5 concludes this
chapter.

3.2 Problem Analysis

A robot move cycle is a sequence of robot moves that returns to the initial state.
A 1-unit cycle returns to the same state after the production of a single unit (part).
Recognizing that a robotic cell is a discrete dynamic system, Sethi et al. (1992) have
defined the robot move cycle as a sequence of discrete state transitions. We extend
their representation to accommodate the 1-K processing in the two-machine robotic
cell. More specifically, a state of the system is defined by a 3-tuple g = (g}, g2, g3),
where gi E {0, n}, i = 1,2, and g3 E {I, 0, Mt)-, Mt)+}, j = 1,2. Here gi = 0

or n means that machine Mi is not occupied or is occupied by a part (component),
respectively; g3 refers to the robot position with I denoting the robot at In just as it
arrives there and begins to pick up a part, 0 denoting the robot just as it completes
the dropping of a part at Out and begins to leave there, Mt)- denoting the robot
at Mj just after it has finished loading the hth component of a part on the machine,
Mt)+ denoting the robot at M j just before it begins unloading the hth component
of a part from the machine. As all the components of a part are treated together at
M 1 , the h superscript is omitted if the part is processed on M 1 •

Let us consider the system in the initial state g when the robot has just loaded
the 1st component of a part on machine M2 , i.e., g = (0,0, M?)-). There are two
types of feasible robot move cycles, 8 1 and 82 (shown in Figures 3.3 and 3.4), to
continue from state g: The robot can either wait for the current part to finish all of
its processing on machine M2 (81) or move to the input station to pick up a new part
some time during the processing of the current part on machine M2 (82), Described

37

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

5

In _----~----.. Out
3

Figure 3.3: The robot move cycle 8 1

by a sequence of states, the robot move cycles are

81: (0,0, Mi1)-), (0,0, M?)+), (0, 0, Mih)-), (0,0, Mih)+) , (0, 0, 0), (0,0, I), , ,
v

repeat K-1 times for h=2,3, ... ,K

and

8;: (0,0, Mi1)-), (0,0, Mi h - 1)+), (0,0, Mih)-), (0,0,1), (0,0, Ml)' (0,0, Mir)+), , .,
v

repeat r-1 times for h=2,3, ... ,r

repeat K-r times for h=r+1,r+2, ... ,K

for r = 1,2, ... ,K. Without loss of generality, let us assume that the current part is
Pq(k). Then

the activities and their time requirements in robot move cycle 81 are:
Wait for the 1st component of part Pu(k) to finish its processing on M2:(bu(k»), when
it is finished, unload the component:(£), after this, repeat K - 1 times the following
sub cycle of activities in braces for h = 2,3, ... ,K {load the hth component on M2:(£)'
wait for its processing:(bu(k»), unload it:(£)}, then, move the part to Out:(6), drop it
there:(£), move to In:(36), pick up the next part Pu(k+1):(£), move it to M1:(6), and
load it on M1:(£)' wait for its processing:(aq (k+1»), unload the part:(£), move it to
M2:(8), and load the 1st component of part Pu(k+1) on M2:(£)' (See Figure 3.3. The
numbers 1, 2, ... on the arcs show the sequence of steps; K - 1 represents the number
of repeats.)

The time required by robot move cycle 8 1 can be calculated as follows:

T1 = bu(k) + £ + (K - 1)(£ + bU(k) + £) + 8 + c + 36 + c + 8 + c + aq (k+1) + c + 8 + c

= 6£ + M + bU(k) + (K - 1)(2£ + bU(k») + au(k+1)' (3.1)

38

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Figure 3.4: The robot move cycle S;

Depending on the time when the robot moves from machine M2 to the input
station, the second type of robot move cycle has K possible scenarios. In the rth
scenario, denoted by S; (r = 1,2, ... ,K), the robot moves over to the input station
after loading the rth component of the current part on machine M 2 .

The activities and their time requirements in robot move cycle S; are:
Repeat r - 1 times the following sub cycle of activities in braces for h = 2,3, ... , r
{wait until the (h -l)th component of part Pu(k) finishes its processing on M2:(bu(k»),
unload the component: (c), load the hth component on M2: (c)}, then, move to In: (2b),
pick up the next part Pu(k+l):(C), move it to M1:(b), and load it on Ml:(C:)' move to
M2:(b), if needed, wait for the rth component of part Pu(k) to finish its processing on
M2:(W2(k)), unload it:(c:), repeat K - r times the following sub cycle of activities in
braces for h = r + 1, r + 2, ... ,K {load the the hth component of Pu(k) on M2:(C:)'
wait for its processing:(bu(k»), unload it: (c:)}, then, move Pu(k) to Out:(b), drop it
there: (c:) , move to M1:(2b), if needed, wait for the part Pu(k+1) to finish its processing
on Ml:(wJ.(k + 1)), unload it:(c:), move it to M2:(b), and load the 1st component of
part Pu(k+1) on M2:(C:)' (See Figure 3.4. The numbers 1,2, ... on the arcs show the
sequence of steps; r - 1 and K - r represent the number of repeats.)

The time required by robot move cycle S'2 can be calculated as follows:

T; = (r - l)(bu(k) + 2c:) + 2b + c + b + c + b + w2(k) + c + (K - r)(c + bU(k) + c:)

+ b + c: + 2b + wi' (k + 1) + c: + b + c:
= 4c: + 4b + (r - 1)(2c: + bU(k») + 2c: + 4b + w2(k) + (K - r)(c: + bU(k) + c:)

+ wi'(k + 1)
= 4c: + 4b + (r -1)(2c: + bU(k») + max{w2(k) + 2c + 4b + (K - r)(2c + bu(k»),

au (k+l)}
= 4c + 4b + (r - 1)(2c + bU(k») + max{2c + 4b + (K - r)(2c + bu(k»),

bU(k) + (K - r)(2c + bu(k»), au(k+l)}, (3.2)

where w2(k) = max{O, bU(k) - (2c + 4b)} is the robot waiting time needed for a
component of part Pu(k) at machine M2, and wJ.(k + 1) = max{O, au(k+l) - (b +

39

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

b L_----...,a8(j)
j-

bio+1 r-------4I a8 (io+l)

b2 r-------4I a
8(2)

Figure 3.5: The assignment ()

w2(k) +€+ (K - r)(€+bu(k) +€) +8 +€+28)} = max{O, aU(k+I) - (2€+48 +w2(k) +
(K -r)(2€+bu(k»))} is the robot waiting time needed for part Pu(k+I) at machine M1
after the rth component of part Pu(k) has been loaded on M2. The last two equalities
above were obtained by substituting these expressions.

Lemma 3.1 For the K scenarios of robot move cycle type 821 Ti ~ T; ~ ... ~ Tf.

Proof. Consider two scenarios 82 and 8;+I (r = 1,2, ... , K - 1). Using (3.2), we
have 7;+I = 4€+48+r(2€+bu(k») +max{2€+48+ (K -r-1)(2€+bu(k»), bu(k)+(K -r-
1)(2€+bu(k»), au(k+I)} = 4€+48+(r-1)(2€+bu(k»)+max{2€+48+(K -r)(2€+bu(k»),
bU(k) + (K - r)(2€ + bu(k»), au(k+1) + (2€ + bu(k»)}.

Since max{2€ + 48 + (K - r)(2€ + bu(k»), bU(k) + (K - r)(2€ + bu(k»), aU(k+I) +
(2€+bu(k»)} ~ max{2€+48+ (K -r)(2€+bu(k»), bU(k) + (K -r)(2€+bu(k»), au(k+1)},
we obtain T;+I ~ T; (r = 1,2, ... , K - 1). This completes our proof. 0

The above lemma implies that the best action is to load a new part on machine
M1 for processing as early as possible in an 82-type robot move cycle, which makes
sense intuitively. Thus to find the minimum cycle time for producing an MPS, we
only need to consider robot move cycles 81 and 8i.

3.3 Cycle Time Minimization

In this section, we restrict our attention to the class of cyclic schedules. We
show first that a single robot move cycle (81 or 8i) is optimal for cycle time mini
mization under certain sufficient conditions. Without loss of generality, let us assume
that the bi-s are in non-decreasing order, i.e., bi ~ bi+b and let () be an assignment
(ordering) for which aO(i) ~ aO(i+1). In the rest of this section () will be used to denote
this assignment. A depiction of () appears in Figure 3.5. Thus bi+aO(i) ~ bi+I +aO(i+1)
for i = 1,2, ... ,n - 1.

40

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Theorem 3.2 The cycle time for producing an MPS is minimized under cycle 81 if
bn + aU(n) :::; 2b", and under cycle 8J if bi + aU(I) ~ 2b".

Proof. Suppose a(k) = i and a(k + 1) = j. From Equations (3.1) and (3.2), we
know that TI = 6c: + 6b" + bi + (K - 1)(2c: + bi) + aj and Ti = 4c: + 4b" + max{2c: +
4b" + (K - 1)(2c: + bi), bi + (K - 1)(2c: + bi), aj} .

• If bn + aU(n) :::; 2b" =} Tl = 6c: + 6b" + bi + (K -1)(2c: + bi) + aj :::; 6c: + 8b" + (K -
1)(2c: + bi) :::; Ti =} cycle 81 is optimal;

• If bi + aO(I) ~ 2b" =} Tl = 6c: + 6b" + bi + (K - 1)(2c: + bi) + aj ~ 6c: + 8b" + (K -
1)(2c: + bd =} TI ~ Ti =} cycle 8i is optimal. 0

Remark As al = a2 = ... = an = a and bi = b2 = ... = bn = b for identical parts,
one of the two sufficient conditions is always satisfied in this case. Thus, we can see
from the above theorem that the repetition of the best one-unit cycle dominates all
other policies for identical parts in this robotic cell.

Generally, (Le., when sufficient conditions do not apply) following a single
robot move cycle for different parts is sub-optimal for the cycle time minimization
problem, Le., the cycle time can be improved by a mix of robot move cycles 81 and
8i. We state this in the following lemma.

Lemma 3.3 Following a single robot move cycle (81 or 8i) is not necessarily optimal
for RC2/1-K/Ct .

Proof. When K = 1, our problem is equivalent to the cycle time minimization
problem with regular processing in the two-machine robotic cell. Hall, Kamoun, and
Sriskandarajah (1997) have proved that a single robot move cycle is not optimal for
a specific example. 0

As a consequence, we must consider a mix of robot move cycles to find the
minimum cycle time. Recall that there are only two robot move cycles (81 and 8J)
which need to be considered. For these two cycles, the only state in which switching
from 81 to 8J or vice versa is possible, without wasteful robot moves, is the state
g = (0, fl, M~I)-).

Using Equations (3.1) and (3.2), the minimum possible elapsed time between
two consecutive states g involving the processing of parts Pi=a(k) and P j =a(k+1) will
be Tij = min{TI' Ti}, i.e.,

Tij = min{6c: + 6b" + bi + (K - 1)(2c: + bi) + aj,

4c: + 4b" + max{2c: + 4b" + (K - 1)(2c: + bi), bi + (K - 1)(2c: + bi), aj}}

= 4c: + 4b" + min{2c: + 2b" + bi + (K - 1)(2c: + bi) + aj,

max{(K - 1)(2c: + bi) + max{2C: + 4b", bi}, aj}}.

41

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Since 4c + 4<5 is constant, Tij can be viewed as this constant plus the distance between
city i and j in a TSP with the distance matrix C' = «j) = min{2c + 2<5 + bi + (K -
1)(2c + bi) + aj, max{(K - 1)(2c + bi) + max{2c + 4<5, bi}, aj}}. As a result, the
scheduling problem is equivalent to the problem of finding an optimal tour for this
n-city TSP.

Theorem 3.4 The problem of finding the optimal robot move cycle and part pro
cessing sequence to minimize the cycle time in RC211-KICt can be formulated as a
TSP.

Now consider the matrix C = (Cij) = min{A + 7] + Kbi + aj, max{A + (K -
1)bi + max{ 7] + p, bi }, aj}}, where A, 7], P and K are given non-negative constants. It
is easy to see that when A = 2(K - l)c, 7] = 2c + 2<5, and p = 2<5, this matrix is the
same as the distance matrix C' defined above. Next we will establish that the TSP
with a distance matrix of the form of C is polynomially solvable.

Define Bi = A+(K -l)bi+max{7]+p, bi} and Fi = A+7]+Kbi for i = 1,2, ... , n.
It is easy to verify that the distance matrix CO = (Cio(j») = min{A + 7] + Kbi + aO(j) ,
max{A + (K - l)bi + max{7] + p, bi}, aO(j)}} can be calculated as a sub-matrix

Cio(j) = Fi + aO(j) (3.3)

of sum type if bi + aO(j) :::; P for any 1 :::; i, j :::; n, and a sub-matrix

(3.4)

of Gilmore-Gomory type if bi + aO(j) > p for any 1 :::; i, j :::; n. Note that bi + aO(i) :::;
bi+l + aO(i+1) for all i = 1,2, ... ,n - 1, and consider the following cases:

• If bn + aO(n) :::; p, then CO = (CiO(j)) = Fi + aO(j). In this case, every tour has the
same length E~=1 Fi + Ej=1 aO(j) = n(A + 7]) + K E~=1 bi + Ej=1 aj, and thus
any tour is optimal.

• If b1 + aO(I) > p, then CO = (CiO(j)) = max{Bi , aO(j)}, in which case the TSP can
be solved by the Gilmore-Gomory algorithm.

Therefore, the only remaining case of interest is when there exists an io, 1 :::; io :::; n-1,
such that bio + aO(io) :::; P < bio+1 + aO(io+1)' The remainder of the section deals with
this case. Note that the assignment 0 in this case, divided by a base line (see the
dashed line of Figure 3.5), is composed of two parts: the part including arcs (i,O(i))
for i :::; io and the part including arcs (i, O(i)) for i ;::: io + l.

An n x n matrix C = (C;j) is a Monge (distribution) matrix, if it fulfills the
so-called Monge property:

Cij + Ci'j' :::; Cij' + Ci'j for all 1 :::; i < i' :::; nand 1 :::; j < j' :::; n. (3.5)

42

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Furthermore, C = (Cij) is a permuted Monge (distribution) matrix, if there exists
a permutation ¢ such that Ct/J = (Cit/J(j») is a Monge matrix. The Monge property
has received considerable attention in combinatorial optimization. It often makes
otherwise computationally hard problems solvable in polynomial time. For a thorough
survey of the extensive results on this subject, the interested reader is referred to
Burkard, Klinz, and Rudolf (1996). The following crucial lemma shows that our
matrix belongs to this class.

Lemma 3.5 The assignment () is a permutation for which CO = (Cio(j») is a Monge
matrix. In other words, C = (Cij) = min{A + TJ + Kbi + aj, max{A + (K - l)bi +
max{TJ + p, bd, aj}} is a permuted Monge matrix.

Proof. To show that CO = (Cio(j») = (~j) is a Monge matrix, we have to prove that
~ii' jj' = dij + ~, j' - dij' - di, j ~ a for all 1 ~ i < i' ~ n and 1 ~ j < j' ~ n.

Recall that the bi-s are in non-decreasing order and () is the assignment for
which aO(j) ~ aO(j+1)' If dkl has been calculated according to Equation (3.4), then all
dpl with p > k and all dkq with q > I have to be calculated with (3.4) as well. This
clearly implies that ~kplq ~ a for these cases, because max is a Monge function. In
other words, an n x n matrix C = (Cij) with Cij = max { ei, Ii} satisfies the Monge
property, i.e., inequality (3.5). Similarly, if dk'l' has been calculated according to
Equation (3.3), then all dpl' with p < k' and all dk'q with q < I' have to be calculated
with (3.3) as well, which implies ~pk'ql' = O. Therefore, it suffices to consider ~ii'jj'
when dij is calculated by Equation (3.3) and di'j' is calculated by Equation (3.4).
Four possible scenarios for dij, and ~'j are thus left to be considered.

Case I: Both dij, and di'j are calculated by (3.3).

In this case, ~ii'jj' = Fi + aO(j) + max{Bi" aO(j')} - Fi - aO(j') - Fi, - aO(j)·
Notice that (dij) is initially defined as min{(3.3), (3.4)}. If we substitute for the term
max{Bi" aO(j')} in ~ii'jj' the larger value Fi, + aO(j') , we obtain a as a result. This
yields ~ii'jj' ~ O.

Case II: Both dij, and di'j are calculated by (3.4).

In this case, ~ii' jj' = Fi + aO(j) + max {Bi" aO(j')} - max { Bi, aO(j')} - max { Bi, ,
aO(j)}. If we replace Fi + aO(j) by the larger value max{Bi, aO(j)}, we still have ~ii'jj'
non-positive because max is a Monge function. Hence, we get ~ii'jj' ~ a as well.

Case III: dij, is calculated by (3.3) and di'j is calculated by (3.4).

In this case, Ll.ii'jj' = Fi+ao(j) +max{Bi', aO(j')} -Fi -aO(j') -max{Bi " aO(j)} =
max{ aO(j) + B i" aO(j) +aO(j')} -max{ aO(j') + B i " aO(j') +ao(j)}. As aO(j) + B i , ~ aO(j') + Be,
we have ~ii'jj' ~ O.

Case IV: dij, is calculated by (3.4) and di'j is calculated by (3.3).

In this case, ~ii'jj' = Fi+ao(j) +max{Bi " aO(j')} -max{Bi' aO(j')} -Fi, -aO(j) =
max{Fi + Be, Fi + aO(j')} - max{Fi' + Bi , Fi, + aO(j')},

43

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

By definition,

Fi + Bi, = A + TJ + Kbi + A + (K -l)bi' + max{TJ + p,bi,}

= A + ", + Kbi, + A + (K - 1)bi + maxi ", + p, bi' } + bi - bi'

= A + TJ + Kbi' + A + (K - l)bi + max{TJ + p + bi - bi', bi}.

As bi ~ bi', we obtain Fi+Bi, ~ A+TJ+Kbi,+A+(K -l)bi+max{TJ+p, bd = Fi,+Bi .

Moreover, it is clear that Fi + aO(j') ~ F i , + aO(j'). These imply !l.ii'jj'''~ 0 again.

This completes our proof. D

The distance matrix being permuted Monge does not automatically lead to
an efficient solution for a TSP, since it is known that it remains NP-hard even on
this restricted class of matrices (Sarvanov 1980). On the other hand, in Chapter 5
we will investigate special cases of the TSP on so-called b- decomposable (permuted
Monge) matrices. Since our matrix D = CO can be partitioned by an index io (1 ~
io ~ n - 1) into two sub-matrices D' = (d~j) = Fi + aO(j) for i,j ~ io and D" =
(dij) = max{Bi' aO(j)} for i,j > io, such that D' is a sum matrix and D" is a Gilmore
Gomory matrix, it belongs to the class of b-decomposable matrices (cf. Section 5.3.1).
Assuming that the permutation for a b-decomposable matrix is given a priori, we will
establish that the TSP is solvable in O(nlogn) time on such matrices. For details of
the algorithm and more general cases, we refer the reader to Chapter 5. As for our
case the permutation (assignment) () can be found by sorting the bi and ai values in
such a way that bi ~ bH1 and aO(i) ~ aO(Hl) , which requires O(nlogn) time, it follows
that our TSP is solvable in O(nlogn) time. For the scheduling problem, this leads
to the following theorem.

Theorem 3.6 The RC211-KICt problem can be solved optimally in O(n log n) time.

3.4 Makespan Minimization

In this section we consider the makespan version of the robotic-cell problem,
which is denoted by RC211-KICmax • In general, the makespan and cycle time are
two different performance measures. Beginning from time zero, the makespan of a
schedule is the time at which the last finished part is dropped at the output station.
Whereas, the cycle time of a schedule is the elapsed time between completions of
successive MPSs. Consequently, a part processing sequence that is optimal for a
problem with the cycle time objective is not necessarily optimal for a problem with
the makespan objective, and vice versa. (The same example as in the proof of Lemma
2.6 in Section 2.3.2 can be used to demonstrate this even for K = 1.)

As following a single robot move cycle is not optimal generally, which is shown
to be true even for the classical robotic-cell problems with K = 1 (cf. Lemma 2.5 in

44

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Section 2.3.2), we consider both robot move cycles 8 1 and 8i to find the minimum
makespan.

To find the minimum makespan, we know from the discussion preceding Theo
rem 3.4 that the elapsed time between two consecutive states Q involving the process
ing of parts ~=u(k) and Pj =u(k+1), k = 1,2, ... ,n - 1 is equal to Iij = min{TI, Ti} =

4£ + 40 + ~j' where ~j = min{2£ + 20 + bi + (K -1)(2£ + bi) + aj, max{(K -1)(2£ +
bi) +max{2£+40, bi}, aj}}. By adding the time required to reach the first occurrence
of state Q by part Pu (l) and the time needed after the last occurrence of state Q to
get part pu(n) finished and delivered to Out, the makespan under part processing
sequence a = (a(l), a(2), . .. ,a(n)) can be calculated as follows. (Here we assume
that the robot is available at the input station at time zero.)

n-l

Cmax(a) = £ + 0 + £ + a u (l) + £ + 0 + £ + LTu(k)U(k+1) + bu(n) + £
k=l

+ (K - 1)(£ + bu(n) + £) + 0 + £
n-l

= 6£ + 30 + a u (l) + bu(n) + (K - 1)(2£ + bu(n») + LTu(k)u(k+1)

= (4n + 2)£ + (4n -1)0 + aU(l) + H(a),

where H(a) = bu(n) + (K - 1)(2£ + bu(n») + E~:i du(k)u(k+1)'

k=1

Since (4n+2)£+(4n-1)0 is constant, it is clear that minimizing the makespan
Cmax(a) is equivalent to the minimization of aU(l) +H(a). Furthermore, this is equiv
alent to minimiziiIg H(a) if a(l)-the first part to be processed-is fixed, i.e., let
a(1) = u, where 1 :::; u :::; n.

Now let us consider an n-city TSP with distance matrix C = (C;j) = min{2£+
20 + bi + (K - 1)(2£ + bi) + aj, max{(K - 1)(2£ + bi) + max{2£ + 40, bi}, aj}},

where aj = aj ~ 0 for j E {I, ... ,n} - u and au = -2£ - 20 :::; O. Since Cu(n)u =
bu(n) + (K - 1)(2£ + bu(n»), the length of the tour (a(l) = u, a(2), ... ,a(n)) is equal

to E~:iCu(k)u(k+1) + cu(n)u = E~:ic'u(k)U(k+1) + bu(n) + (K - 1)(2£ + bu(n») = H(a),
which is minimized by the optimal tour. Thus the minimum makespan, under the
condition that the first part is fixed as a(1) = u, can be obtained by solving this
TSP. Since the first part a(l) could be 1,2, ... ,n, the minimum makespan can then
be found by solving the TSP for every possible choice of the first part, i.e., by letting
u = 1,2, ... , n. The detailed steps are contained in Algorithm Makespan-1-K.

As the optimal tour length L*(u), for any given u, can be found in O(n log n)
time by the Algorithm b-Decomposable stated in Section 5.3.1, Algorithm Makespan-
1-K takes O(n2 Iogn) time. Thus we have the following result.

Theorem 3.7 The RC211-KICmax problem can be solved optimally in O(n2 Iogn)
time.

45

CHAPTER 3 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Algorithm Makespan-1-K
Input: c, 0, K, ai and bi (i = 1,2, ... ,n).
1. Let L be a large positive number and aj = aj (j = 1,2, ... ,n).
2. For u = 1,2, ... ,n do

2a. Find the best tour a*(u) of an n-city TSP with distance matrix C = (c;j)
= min{2c + 20 + bi + (K - 1)(2c + bi) + aj, max{(K - 1)(2c + bi)+
max{2c + 40, bd, aj}} and au = -2c - 20. Let L*(u) be the tour length.

2b. If L*(u) + au < L then L = L*(u) + au and a* = a*(u).
3. The minimum makespan C~ax = L + (4n + 2)c + (4n - 1)0.
Output: C~ax and the optimal part processing sequence a*.

3.5 Summary

We have studied the problem of scheduling multi-component parts in a two
machine robotic cell. The objective was to find the optimal part processing sequence
and robot move cycle which jointly minimize the cycle time or the makespan. We
showed that these problems can be formulated as special cases of the TSP. By show
ing that these special cases of the TSP are solvable in polynomial time, we have
presented an O(nlogn) algorithm for the problem with the cycle time objective and
an O(n2 Iogn) algorithm for the problem with the makespan objective.

46

Chapter 4
Cyclic Scheduling in a Job Shop

4.1 Introduction

Hall, Lee, and Posner (2002) studied a two-machine cyclic job shop scheduling
problem, where the maximum number of operations for any job is bounded by a
constant k ~ 1. A typical cyclic schedule consists of the repeated processing of a
minimal job (part) set (cf. Section 1.2). Formally, the problem may be formulated
as follows.

We are given a minimal job set 3 = {I, 2, ... , n} in a job shop consisting of
two machines, Ml and M2. Each job j E 3 has mj operations Oij (i = 1,2, ... ,mj)
to be processed in the order Olj ---+ 02j ---+ •.. ---+ Omjj where mj ::; k. Operation Oij
has to be performed on a specified machine Ml or M2 without interruption for Pij
time units, where all Pij'S are assumed to be positive integers. We assume that any
two consecutive operations of the same job are to be processed on different machines;
for otherwise, they can be combined into a single operation. The machines have
unlimited buffer and a job can be stored in the buffer for an unlimited amount of
time. Moreover, it is assumed that each machine can handle at most one operation at
a time, and each operation can be processed only by one machine. Let Si (a) and e;. (a)
be the earliest start time and the latest completion time, respectively, of any job on
machine Mi (i = 1,2) in a schedule a for 3. We call Ti(a) = e;.(a) - si(a) the running
time of Mi in a. The running time of the schedule a is defined by maxi=l,2 Ti(a).
Lee and Posner (1997) establish that in order to minimize the cycle time of a cyclic
schedule, we only need to determine an operation sequence for a minimal job set
that minimizes the running time of the corresponding schedule for this job set. They
also show that the cycle time of the corresponding cyclic schedule can be defined as
Ct(a) = m~=l,2 Ti(a). The goal of the problem is to find a feasible schedule a*
that has the minimum cycle time, i.e., Ct(a*) = minu Ct(a). Following the standard
notation for scheduling problems, we denote this problem by J21mj ::::; klCt .

Hall, Lee, and Posner (2002) described an O(n) algorithm for this problem
for the k = 2 case. In addition, they showed that the problem becomes NP-hard
when k = 3 and even strongly NP-hard when k = 5. For a special case of the
problem J21mj ::; 31Ct which satisfies the condition that there is a "consistent" job
order for generating partial schedules, they presented an O(n13p~a.x) algorithm to

47

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

solve it. However, whether the general J21mj :S klCt problem can be solved in
pseudo-polynomial time when k = 3 or 4 remained an open question.

In this chapter, we reexamine the k = 3 case, i.e., when each job has at
most three operations. We show that J21mj :S 31Ct can be polynomially reduced
to minimizing the makespan in a two-machine reentrant flow shop. Based on this
insight, we apply previously known and newly obtained results for the reentrant
flow shop problem to J21mj :S 31Ct . We extend previous results for the reentrant
flow shop problem by presenting a new pseudo-polynomial algorithm, as well as a
fully polynomial time approximation scheme (FPTAS) for certain special cases. This
leads to new pseudo-polynomial time solutions for additional special cases of the
J21mj :S 31Ct problem. We also describe a polynomial time approximation algorithm
for the general case of J21mj :S 31Ct .

The remainder of the chapter is organized as follows. In Section 4.2, we show
that the J21mj :S 31Ct problem is reducible to the two-machine reentrant flow shop
problem, and describe an O(nlogn)-time 4/3-approximation algorithm for it. In
Section 4.3, we consider special cases of the reentrant flow shop problem and the
J21mj :S 31Ct problem. We present new optimal, and approximate solutions to both
problems. A few well-solvable special cases are also distinguished. Finally, Section
4.4 contains our conclusions.

4.2 Problem Analysis

Notice that a job may have one, two, or three operations, and we call a job a
one-operation job, two-operation job, or three-operation job accordingly. Based on job
processing routes, we divide the job set .1 into six subsets: .Ji (i = 1,2) consisting
of the jobs that have to be processed on machine Mi only; .Jij (i, j = 1,2 and i =1= j)
consisting of the jobs that have to be first processed on machine Mi and then on
Mj; .1121 and .1212 consisting of the jobs with processing routes M1 -+ M2 -+ M1
and M2 -+ M1 -+ M 2, respectively. Without loss of generality, we assume that the
machines have been indexed such that LjE.1212 P2j 2: LjE.1121 P2j·

To attain the optimal schedule for the J21mj :S 31Ct problem, similarly to Hall,
Lee, and Posner (2002), our strategy is first to build a best partial schedule a" for the
three-operation jobs, i.e., the minimum-cycle-time schedule for .1121 U .1212' Following
this, we insert the one- and two-operation jobs into a" so that they do not create
any additional idle period between operations, thus obtaining a complete schedule
for:T. As we will demonstrate later, through a careful arrangement, the one- and
two-operation jobs can be scheduled separately after the three-operation jobs have
been optimally sequenced. Recall that the running time of a machine is the time
from when a machine starts any processing of any job until it ends all processing.
During its running time, a machine may be idle for some time. We call any such
idle period suspend time for that machine. The total suspend time of a machine is

48

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

M) J.21 .:7212 J.21

~====~======~====~
M2 1-1 ___ .:1...;;2=12~_--,-__ .::r.-=12.;;...1 _---'I 1 __ .:1_21_2_-,

Figure 4.1: An example of the block schedule for .:1121 U .:1212

different from the total idle time, since the latter also includes times a machine may
be idle for before it does any processing. It is easy to see that minimizing the cycle
time can be achieved by minimizing the total suspend time of every machine. Our
partial schedule a" will also have this property. Furthermore, in the insertion of one
and two-operation jobs into the partial schedule a", we will schedule these jobs in a
way which will reduce the suspend times of both machines Ml and M2 in a" as much
as possible.

We present our solution procedure in more detail now. Let us start with
the three-operation jobs. For these jobs, Hall, Lee, and Posner (2002) have identified
several important properties, which may be stated in the following theorem. Note that
Characteristic b uses the nonrestrictive assumption that EjEJ212 P2j ?: EjEJl21 P2j'

Theorem 4.1 (Hall, Lee, and Posner 2002) For the problem J21mj = 31Ct , there
exists an optimal schedule with the following characteristics:

a. On each machine Ml and M2, all the first operations of jobs precede all the
second operations of jobs, which precede all the third operations of jobs.

b. All of the second operations on machine M2 are processed concurrently with the
second operations on machine MI.

c. There is no idle period between any operations on machine MI' Also, there is
no idle period between any pair of first operations, second operations, or third
operations on machine M2 .

d. The first, second, and third operations of all jobs in .:1121 or .:1212 are processed
in the same sequence on each machine.

A block of operations is a set of operations that are performed consecutively on
a machine without idle period between them. From the above theorem, we know that
there exists an optimal schedule for the jobs in .:1121 U .:1212 where on each machine, the
first operations, the second operations, and the third operations each form a block.
Furthermore, in this schedule, there is no suspend time on machine M1, and .:1121

starts its second operation on M2 no earlier than the time at which .:1212 starts its
second operation on MI' Note that when the elapsed time between the completion
of the first operations and the start of the third operations of .:1212 on machine M2
in a schedule is greater than E jEJl21 P2j, there is some slack in this schedule so that
the second operations of .:1121 can start earlier or later without affecting the cycle
time. Thus, in order to specify a unique starting time for J121, we assume that the
set of second operations of .Ji21 starts its processing immediately after the set of first

49

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

.7;12

M21 L-___ :J-=2.:.:12~_---I

Figure 4.2: The structure of the block schedule (7' for .1212

operations of :1212 finishes its processing on M 2 • Figure 4.1 illustrates an example of
such block schedules. Note also that the schedule shown has a positive suspend time
on M2 but no such time on MI.

Since we know from Theorem 4.1 (Characteristic b) that all of the second op
erations of the jobs in :1121 can be processed concurrently with the second operations
of the jobs in .1212, it is clear that the timings of the three operations of :1121 are
independent from each other in such block schedules. As a result, any sequence for
the three operations of the jobs in .Ji21 is optimal (Hall, Lee, and Posner 2002).

Let us consider now the sequence for the jobs in .1212. Lev and Adiri (1984),
Wang, Sethi, and van de Velde (1997), as well as Drobouchevitch and Strusevich
(1999) study a two-machine reentrant flow shop problem, where each job j, j E
{I, 2, ... ,n}, has a sequence of three operations in the order 0 1; -+ O2; -+ 0 3;. For
each job j, operations 0 1;, O2;, and 03j have to be processed without preemption
along the route M1 -+ M2 -+ M1 (or M2 -+ M1 -+ M2) for PI;, P2; and P3; time units,
respectively. Each machine can only process one operation at a time, and there is
unlimited input and output buffer space available for each machine. The objective
is to determine a feasible schedule minimizing the makespan or the maximum com
pletion time. We denote this problem by RF21£ = 31Cmruo where £ is the number of
operations of a job. Since the maximum running time and the maximum completion
time are always reached on the machine processing the first and third operations of
the jobs in the two-machine reentrant flow shop, the cycle time objective is equivalent
to the makespan objective .. Furthermore, the schedule minimizing the makespan will
also minimize the total suspend time of each machine. Observe that each job in :1212

has the processing route M2 -+ M1 -+ M2. It follows that the sequence minimizing
the total suspend time on each machine for the jobs in :1212 and its corresponding
schedule can also be found by solving the RF21£ = 31Cmax problem. Let (7' be the
best schedule generated for the jobs in :1212. The schedule (7' can decompose into
blocks too (Wang, Sethi, and van de Velde 1997). More precisely, (7' is composed of
three blocks, with each block representing an operation of the jobs in :1212. More
over, machine M1 has no suspend time in (7', and if there exists any suspend time
on machine M 2 , it is always between the end of the first operations and the start
of the third operations. The structure of the block schedule (7' is depicted in Figure
4.2. (The dashed lines indicate the critical operation set, as defined in Hall, Lee, and
Posner (2002).) More properties of the schedule (7' will be discussed in Section 4.3.l.

Once we have the schedule (7', we can insert the three operations of :1121 in
blocks, and in any order, into (7' to obtain (7". We simply follow the rules in Theorem

50

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

(a)

M. 1.1; u.1;21 J;21 1
(b)

Figure 4.3: (a) The partial schedule a' for :1212; (b) The overall schedule a*

4.1. Note that if the suspend time of M2 in a' is not long enough, inserting the second
operations of :1121 into this slot may force us to shift some of the other blocks to the
left or the right on M 2 • This will be discussed in detail later on, but we describe
now how to schedule the one- and two-operation jobs. After the best partial schedule
a" for the three-operation jobs has been constructed (Figure 4.1 shows the possible
structure for a"), we insert the one- and two-operation jobs into a" in blocks so that
they never increase the suspend times of M1 and M2 . Specifically, we

1. insert the first operations of :Ii U :112 in arbitrary order before (or after) the
first operations of :1121 on machine M 1 , insert the second operations of :112 in
arbitrary order after the second operations of :1121 on machine M 2 ; and

2. insert the first operations of :12 U .:J21 in arbitrary order before the second oper
ations of :1121 on machine M 2 , insert the second operations of :121 in arbitrary
order before (or after) the third operations of :1121 on machine MI.

Let us call the schedule resulting after all these insertions a*. Figures 4.3, 4.4, and
4.5 show the different situations which may occur during the construction of a*. Let
Cmax(a') be the length of the best partial schedule a' for :1212, i.e., the schedule
generated by solving the RF21t' = 31Cmax problem. Define ~ = LjE.J"212U .J"2 U .J"21 Plj +
LjE.J"l2l U .J"12 P2j + LjE.J"212 P3j - Cmax(a'), which is the difference between the total
processing time on machine M2 and the length of a'. We are now ready to discuss the
properties of the schedule a* for :1 and show that a* is actually an optimal schedule
for J21mj ::; 31Ct .

Recall that in the partial schedule a" machine Ml has no suspend time. The
insertion of one- and two-operation jobs into a" would not create any suspend time
on machine M 1 , because Ml never has to wait for the arrival of a second operation
from :121 or a third operation from :1121' Thus Ml has no suspend time in a* either.
Therefore, to prove that a* is optimal, it suffices to prove the minimality of the
running time or the suspend time only for machine M 2 . There are two cases to be
considered:

Case 1: ~ < a (see Figure 4.3). In this case, machine M2 has I~I units of suspend
time between the completion of the second operations of :112 and the start of the
third operations of :1212 in: a*. The running time of machine M2 in a* is Cmax (a').

51

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

As Cmax(a') is a lower bound for the running time of M2 , the schedule a* is indeed
optimal, and its cycle time is given by Cl(a*) = max{Cmax(a'), EjE..11U..112U..1121Plj +
EjE..1212U..121 P2j + E jE..1121 P3j}.

Case 2: ~ 2:: 0 (see Figures 4.4 and 4.5). In this case, we will show that there is no
suspend time on machine M2 in a*, i.e., M2 never has to wait for a job from 3212
to become available for its third operation. Thus schedule a* is obviously optimal,
and its cycle time is given by C;(a*) = max{EjE..11U..112U..1121Plj + EjE..1212U..121P2j +
EjE..1121P3j,EjE..1212U..12U..121Plj + EjE..1121U..112P2j + EjE..1212P3j}. Let t23 be the time
between the start of the second and third operations in a'.

M. 1 .7;12
(a)

M2 .7;12 i i .7;12
i+-- t23 ·1- dl~

M. 1..1; u..1;21..1;21 I .7;12 1.7;1 1 ..1;21
(b)

M21 I.7;UJ 2.1 1..1;21 .7;12 ..1;21 .7212
! !

Figure 4.4: (a) The partial schedule a' for 3212; (b) The overall schedule a*

If E jE..1121U..112 P2j > t 23 , then a* can be constructed as shown in Figure 4.4.
In this schedule, the first operations of 3212 are shifted to the left so that M2 has no
suspend time after the insertion of all operations, and the second operations of 3121
and .1212 start simultaneously at the time of the left dashed line in Figure 4.4b. Since
E jE..1121 U..112 P2j > t23, we also have to shift the third operations of 3212 to the right
so that they will start ~1 = E jE..1121 U..112 P2j - t23 units of time later than in a' at the
time represented by the right dashed line in Figure 4.4b.

M. .7;12
(a)

r-~-1 M2 .7;12 i .7;12
! I- t23 '1

M. 1..1; ~..1;21..1;21 1 .7;12 1.7;1 1..1;21 1
(b)

I 1.7; U.7;.1 1..1;21 M2 .7;12 ..1;21 .7;12

Figure 4.5: (a) The partial schedule a' for .7212; (b) The overall schedule a*

If E jE..1121U..112 P2j ~ t 23 , then a* can be constructed as shown in Figure 4.5.
In this schedule, the first operations of 3212 start ~ units of time earlier than in a'.
The shifting of the first operations of .1212 to the left by ~ will make exactly the right
amount of time available on M2 to process the operations of 32 U 321 U .1121 U .112

52

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

in a contiguous fashion. Clearly, this schedule is feasible because of the assumption

Ej E.Jl21U.Ji2 P2j ::; t 23 ·

Finally, combining Cl ((Y*) and Cj: ((Y*) from the two cases together, the cycle
time of the optimal schedule (Y* for J21mj ::; 31Ct can be obtained as

where Cmax((Y') is the length of the best partial schedule (Y' for 3212' Once we have
(Y', all remaining jobs can be inserted into (Y' in O(n) time. Thus we have proved the
following result.

Theorem 4.2 Consider the subset of jobs 3212 in a J21mj ::; 31Ct problem. If (Y'

is an optimal schedule for the corresponding RF21£ = 31Cmax problem on the job set
.7212, then we can construct an optimal schedule (Y* from (Y' for J21mj ::; 31Ct in linear
time.

The above theorem tells us that, to find the optimal solution for the J21mj ::;
31Ct problem we need to consider the sequence only for the jobs in .7212, which can
then be solved as an RF21£ = 31Cmax problem. Unfortunately, the problem RF21£ =
31Cmax has been shown to be NP-hard by Lev and Adiri (1984), but whether it is
NP-hard in the ordinary or strong sense remains an open question.

Consider an NP-hard cost-minimization problem II. An algorithm A is said
to be a p-approximation algorithm for problem II, if for any instance I of II it always
delivers a feasible solution whose cost is at most p times the optimal cost. In this case,
the value p (p > 1) is called the performance guarantee or the worst-case performance
ratio of the approximation algorithm A.

Drobouchevitch and Strusevich (1999) have presented an O(nlogn) time ap
proximation algorithm with a worst-case performance ratio of 4/3 for RF21£ = 3lCmax.
Thus, we can use this approximation algorithm to find a good approximation of the
best partial schedule for J212' Then a 4/3-approximation algorithm for J21mj ::; 31Ct

may be simply developed as follows:

1. Apply the Drobouchevitch-Strusevich algorithm to find a good partial schedule
a for .7212;

2. Follow the steps as shown previously to insert all jobs in .7 - .7212 into a.
Let (j be the resulting whole schedule generated in Step 2. It is clear that the cycle
time of (j is given by

53

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

I-block 3-block

Mil PH PlZ PH P 14 'Pl5 'P31 'P32 , P33 P34 , P35

M2 P2l P22 P23 P24 P25

2-block , ..
0

Figure 4.6: A no-passing block schedule for RF21f = 31Cmax

where Cmax({T) is the length of the partial schedule (j.
As the Drobouchevitch-Strusevich algorithm is a 4/3-approximation algorithm

for RF21f = 3lCmax , we have Cmax((j) ::; ~Cmax(a'). Substituting this inequality into
Ct(a) and comparing Ct(a) with Ct(a*), it is easy to see that Ct(a) ::; ~Ct(a*). Since
the Drobouchevitch-Strusevich algorithm runs in O(n log n) time and Step 2 can be
performed in O(n) time, we obtain the following result.

Theorem 4.3 There exists an O(nlogn)-time 4/3-approximation algorithm for the
problem J21mj ::; 31Ct .

4.3 Special Cases

For the RF21f = 31Cmax problem, Wang, Sethi, and van de Velde (1997)
have studied the special case when the first and the last operations of any job are
identical, i.e., Plj = P3j for j = 1,2, ... , n. The RF21f = 31Cmax problem is still
NP-hard for this restricted case (Lev and Adiri 1984; Hall, Lee, and Posner 2002),
but they developed a pseudo-polynomial time algorithm to solve it. Their dynamic
programming algorithm runs in O(n5p~ax) time and O(n3p~ax) space, where Pmax =

max19$3,1$j$nPij. In this section, we show that additional cases can be solved in
pseudo-polynomial time. We also describe an FPTAS for them.

4.3.1 Pseudo-polynomial algorithm

A schedule is called no-passing (or permutation) if all jobs go through the
machines in the same order. For the problem RF21f = 3lCmax , Wang, Sethi, and
van de Velde (1997) have shown that it suffices to consider only no-passing block
(also termed compact) schedules which are composed of three blocks, with each block
representing an operation of the jobs. Thus, throughout this section our analysis is
restricted to such schedules. Figure 4.6 exhibits a no-passing block schedule with the
three blocks on five jobs.

Consider any no-passing block schedule 'IjJ that is feasible for the problem
RF21f = 31Cmax with job set N = {1,2, ... ,n}. Suppose 'IjJ is associated with the

54

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

permutation (sequence) 7r = (7r(1), 7r(2), ... ,7r(n)) of N. Let a, b, and c denote the
total processing time of the 1st, 2nd, and 3rd operation of all the jobs, respectively,
i.e., a = E;=I PIj, b = E;=I P2j, and c = E;=I P3j. Then the makes pan of the
schedule'lj; can be derived as

Cmax('lj;) = maxi a + c, L('lj;)},

where

L{.pl ~ l~;;n {t,Pl'(j) + ~P2,(j) + tp3,(j)} . (4.1)

If Cmax('lj;) = L('lj;) and L('lj;) is attained by J-L = U and v = v, then the jobs 7r(u)
and 7r(v) are called critical in 'lj; (Drobouchevitch and Strusevich 1999). For example,
jobs 2 and 4 are critical in the schedule shown in Figure 4.6, and the makespan of
the schedule is given by E~=I PIj + E;=2 P2j + EJ=4 P3j· The schedule 'lj; is uniquely
determined by the permutation 7r, except when Cmax('lj;) = a + c there may be some
slack in 'lj; such that the 2-block (i.e., the block representing the 2nd operation of the
jobs) can be shifted to the left or the right without affecting the makespan. Thus,
in order to specify a unique starting time for each block, we assume that no block in
'lj; can start processing earlier than required to realize the makespan of the schedule.
(For ease of exposition, in the rest of the chapter, we shall denote a schedule by its
job processing sequence when this leads to no ambiguity.)

Let Sij('lj;) and Cij('lj;) be the start time and completion time of operation Oij
in the schedule 'lj;, respectively. (Note that Cij('lj;) = Sij('lj;) + Pij.) We observe that
there exists a unique job k* in any schedule 'lj;, such that

where 'lj;(i) denotes the ithjob in 'lj;, i = 1,2, ... , n. In other words, k* is the first job in
'lj; whose second operation is finished later than a. Using job k* as a partition job, the
job set N can be partitioned into three subsets with respect to 'lj;: NI = {jlj -< k*},
M = {jlj >- k*}, and {k*}, where j -< k* and j >- k* mean that j precedes k* and
j follows k*, respectively. Here, M is referred to as the set of left-jobs, i.e., the jobs
scheduled before the partition job k*, and N2 is referred to as the set of right-jobs,
i.e., the jobs scheduled after the partition job k*. For example, in Figure 4.6, job
4 is the partition job with NI = {1, 2, 3} and N2 = {5}. Thus, the schedule 'lj; can
be represented by an ordered NI followed by job k* and then by an ordered N2 •

Observe that the schedule 'lj; can also be expressed as the composition of three partial
schedules along with the partition (NI' k*,N2) of N. More precisely, the first partial
schedule, 'lj;I, consists of the l-operations (i.e., 1st operations) and the 2-operations
of the jobs in Nli the second partial schedule, 'lj;2, consists of the 2-operations and
the 3-operations of the jobs in Mi and the third partial schedule, 'lj;3, consists of

55

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

the operations of job k* and the operations on MI scheduled between Olk. and 03k •.

Since both 'l/JI and 'l/J2 involve only two machines, these partial schedules can be viewed
as schedules in a classical two-machine flow shop. Recall that a schedule constructed
by Johnson's rule (Johnson 1954) is optimal for the makespan minimization problem
in the classical two-machine flow shop, which is denoted by F211Cmax . Let the triple
(Q,s, t) be an instance of F211Cmax with a job set Q and processing time vectors s
for the first machine and t for the second machine. Johnson's rule can be simply
described as follows.

Johnson's Rule for (Q, s, t):
1. Partition Q into two subsets U and W with U containing all the jobs with

Sj ~ tj and W all the jobs with Sj > t j .
2. Sort U in non-decreasing order of Sj and W in non-increasing order of t j .

3. Output the ordered U followed by the ordered W as the optimal job sequence.

Let Pll P2, and P3 be the processing time vector of the 1st, 2nd, and 3rd
operations of all the jobs in N, respectively. With respect to the jobs in NI and N2 ,

Wang, Sethi, and van de Velde (1997) have established the following property for any
instance of RF21l = 3lCmax .

Theorem 4.4 (Wang, Sethi, and van de Velde 1997) There exists an optimal schedule
consisting of a partition (Nb k*, N2) of N such that the jobs in NI are sequenced
according to Johnson's rule for (NI' PI, P2) and the jobs inN; are sequenced according
to Johnson's rule for (N;, P2, P3), where k* is the partition job.

A no-passing block schedule 'I/J for RF21l = 31Cmax specifies a unique start time
for the 2-block. Therefore, we can guess an integer time point s, where ° ~ S ~ a, at
which the 2-block starts. Then we enumerate all feasible schedules (there might be
none) for the jobs such that their I-operations are scheduled in the time interval [0, a]
and their 2-operations are scheduled in the time interval [s, s+b]. A feasible schedule
'I/J must satisfy S2j('I/J) ~ C1j('I/J) for each job j EN. Since we cannot predetermine
the time at which the 3-block starts, we temporarily put all the 3-operations in the
time interval [a + b, a + b + c], see Figure 4.7. When a feasible schedule is found,
the 3-block will be shifted to the left as much as possible to compute the makespan.
To preserve the feasibility, the start time of 03j after the shift must be not earlier
than the completion time of 02j. Hence, job j can be shifted to the left by at most
dj('I/J) = S3j('I/J) - C2j ('I/J) units of time. (Note that any left-job can be shifted to the
left by exactly b units of time as its 2-operation is always completed no later than
time point a.) This shift is called the slack of job j in the schedule 'I/J. We also define
the slack of a right-job set T in 'I/J as minjETlS'j('I/J). Thus the 3-block can only be
shifted to the left by tl.('I/J) = minjEN{b,lS'j('I/J)} units oftime. (Note that for any left
job j' EN, IS'jl('I/J) = S3jl('I/J) - C2jl('I/J) ~ b.) We call tl.('I/J) the slack of the schedule
'I/J and the makespan of'I/J is then equal to a + b + c - tl.('I/J). Therefore, for a given

56

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

o 11 a a+b a+b+t3 a+b+c
I I I I I I ~

~ 1 V'(l) 1 ¥l(2) I .. · [_~J 1 ¥l<n)1

~ 1 Vf(l) 1 ¥l(2) 1 ... [~J ... l¥I<n)1

..
o s s+b

time point s, the best schedule is the one that maximizes !::::.(1/J). This insight serves
as the basis of our new solution for special cases of RF21f = 31CmaJo as we will show
that !::::.(1/J) can be recursively calculated. Naturally, we will generate partial schedules
during the enumeration process, and the slack in a partial schedule can be calculated
likewise.

From Theorem 4.4, we know that there is an optimal job processing sequence
for the problem RF21£ = 31Cmax which may be regarded as a concatenation of three
subsets of jobs, namely,

1) the left-jobs in Johnson's order for (PI, P2), followed by

2) a partition job, followed by

3) the right-jobs in Johnson's order for (P2, P3).

Without loss of generality, let us assume hereinafter that the jobs in N have been
re-indexed according to Johnson's rule for the first two operations, i.e., (PI, P2). Let
¢ = (¢(1), ¢(2), ... ,¢(n)) denote the ordering of N according to Johnson's rule for
the last two operations, i.e., (P2, P3). Next we show that the RF21£ = 31Cmax problem
is pseudo-polynomially solvable if

¢=(n,n-1, ... ,1) (4.2)

or
¢ = (1,2, ... ,n). (4.3)

Condition/Equation (4.2) or (4.3) implies that the two orderings of N, derived by
applying Johnson's rule for the first and the last two operations, are in the reverse or in
the same order, respectively. It is easy to verify that when Plj = P3j for j = 1, 2, ... , n,
we have ¢ = (n,n-1, ... , 1). Thus our solution for RF21£ = 31Cmax under Condition
(4.2) is a new solution for a larger class than the one solved in Wang, Sethi, and van
de Velde (1997).

Given a partition job k, where kEN, and an integer time point s, where
o ~ s ~ a, it is clear that if we know the left-jobs, then the right-jobs are also known
(as the complementary set to the left-jobs), and the whole schedule can be determined.
Thus, to find the optimal schedule, it suffices to consider only the different possibilities

57

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

for the left-jobs. Therefore, for j = 1, ... , k - 1, k + 1, ... ,n, we will implement a
subroutine to generate the best (partial) schedule for the set of jobs {I, 2, ... ,j} \ {k}
such that the total length of the I-operations, 2-operations, and 3-operations of the
left-jobs is t l , t2 , and t3 , respectively.

Let Ff,S(tl, t2, t 3) denote the maximum slack of the right-jobs for any schedule
for the set of jobs {I, 2, ... ,j}\{k}, j = 1, ... , k - 1, k + 1, ... , n, such that the 1-
operations, 2-operations, and 3-operations of the left-jobs fill up the time intervals
[0, t l], [8,8 + t 2], and [a + b, a + b + t 3], respectively, see Figure 4.7. It is clear
that the schedule corresponding to F~'s (tl' t2 , t3) is the best schedule of N \ {k} for
some given tl, t2 , t3 , k, and 8 values. We now derive recursive relations to calculate
Fjk,S(tl, t2, t3)' Since job j can be scheduled either as a left-job or as a right-job, we
have two scenarios.

First, consider job j as a left-job in a (partial) schedule 'IjJ'. We can obtain this
schedule by inserting job j as the last left-job into the partial schedule 'IjJ associated
with Fjk,:",sl(tl - Plj,t2 - P2j,t3 - P3j). See Figures 4.8 and 4.9. Clearly, the insertion

o tl - Plj tl a a+b a+b+t3 a+b+c
I I I I I I I ~

I I
o s+b

Figure 4.8: Job j as a left-job in a schedule 'IjJ' when ¢ = (n, n - 1, ... , 1)

of job j is possible only if S2j('IjJ') ~ Clj('IjJ'), i.e., 8 + t2 - P2j ~ t l ; otherwise, the
I-operation and 2-operation of job j would overlap. Since the 2-operation of a left-job
is always completed no later than time point a, it is clear that any left-job has a slack
of b time units. Now let us consider the slack of the right-jobs in 'IjJ'. We discuss
separately the aforementioned two cases of ¢:

If ¢ = (n, n - 1, ... , 1), then all previously scheduled right-jobs were located
in the reverse direction starting from the right end of their block, and thus the slack
of the right-jobs in 'IjJ' is the same as in 'IjJ because their schedule remains intact. See
Figure 4.8. Therefore, the slack of the right-jobs in a feasible schedule 'IjJ' is given by
b.r ('IjJ') = Ff,:",sl (tl - Plj, t2 - P2j, t3 - P3j). Thus,

b.r('IjJ') = { Fjk,:",sl (t l - Plj, t2 - P2j, t3 - P3j), if 8 + t2 ~ tl + P2j;
-00, otherwise,

where b.r('IjJ') = -00 means that the schedule 'IjJ' is infeasible.

If ¢ = (1,2, ... , n), then all previously scheduled right-jobs were located in
increasing order of their index starting immediately to the right of the partition job

58

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

k, and thus the l-operations, 2-operations, and 3-operations of these right-jobs will
start Plj, P2j, and P3j units of time later in 'l/J' than in 'l/J, respectively, when job j is
inserted. See Figure 4.9. In this case, the slack of the right-jobs in 'l/J' may increase by

o 11 - Plj II a a+b a+b+/3 a+b+c
I I I I I I I ~

o s s+b

Figure 4.9: Job j as a left-job in a schedule 'l/J' when ¢ = (1,2, ... , n)

P3j - P2j if P3j > P2j or decrease by P2j - P3j if P3j < P2j compared to what it was in 'l/J.
(Note that the slack of a right-job j" in a feasible schedule 'l/J' is always positive because
83j ll ('l/J') ~ a + b + t3 and C2j ll ('l/J') :::; s + b.) Therefore, the slack of the right-jobs in a
feasible schedule 'l/J' is given by !:l.r ('l/J') = Fjk:",sl (tl - Plj, t2 - P2j, t3 - P3j) + P3j - P2j if

Fjk:",sl (tl - Plj, t2 - P2j, t3 - P3j) > 0; otherwise, !:l.r ('l/J') = F/:",sl (tl - Plj, t2 - P2j, t3 - P3j).

(Here Fjk:",sl (ti - PIj, t2 - P2j, t3 - P3j) :::; 0 implies that the schedule 'l/J is infeasible or
there is no right-job in a feasible 'l/J.) Thus,

Fjk:",SI (ti - PIj, t2 - P2j, t3 - P3j) + P3j - P2j,
if s + t2 ~ tl + P2j and Ff:",sl (t l - Plj, t2 - P2j, t3 - P3j) > OJ

!:l.r ('l/J') = Fjk:",sl (tl - Plj, t2 - P2j, t3 - P3j) ,

if s + t2 ~ tl + P2j and Fjk:",sl (tl - Plj, t2 - P2j, t3 - P3j) :::; 0;
-00, ifs+t2 <tl +P2j,

where !:l.r ('l/J') = -00 means that the schedule 'l/J' is infeasible.

Second, consider job j as a right-job in a (partial) schedule 'l/J". We can obtain
this schedule by adding job j to the partial schedule associated with Fj":...sl(tl, t2, t3).
Since a right-job always starts its 2-operation later than time point a, it is clear
that job j automatically satisfies the feasibility condition in the schedule 'l/J". Let
a(j) = ~{=I,i#Pli' b(j) = ~{=I,i#P2i' and e(j) = ~{=I#kP3i' where 1 :::; j :::; n. To
calculate the slack of job j in 'l/J", we consider the two cases of ¢ again:

If ¢ = (n, n - I, ... , I), then the I-operation, 2-operation, and 3-operation
of job j in 'l/J" is scheduled in the time intervals [a - a(j) + tI, a - a(j - I) + tl],
[s+b-b(j)+t2, s+b-b(j -1)+t2], and [a+b+c-c(j)+t3, a+b+c-c(j -1)+t3],

respectively. See schedule 'l/Jr in Figure 4.10. Furthermore, the given ¢-order implies
that any other right-jobs, which have a smaller index than j, are placed to the right of
job j in 'l/Jr. It is easy to see that the slack of job j in 'l/J" is equal to 8j ('l/J") = 83j ('l/J") -

59

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

o t, a
I I I

b(j-l)-12

o s s+b

Figure 4.10: Job j as a right-job in a schedule 'l/J"

C2j ('l/J") = a+b+c-c(j) +t3 - (8+b- b(j -1) +t2). Therefore, the slack of the right
jobs in 'l/J" is given by ilr('l/J") = mini Fjk~SI (tl' t2, t3), a+c+t3 +b(j -1) - 8 -t2 - c(j)}
if Fjk~SI (tI, t2, t3) =f. 0; otherwise, ilr ('l/J") = a + c + t3 + b(j - 1) - 8 - t2 - c(j). (When

Fjk~SI (tb t2, t3) = 0, there is no right-job in the feasible, partial schedule associated

with Fjk~SI(tbt2,t3).)
If ¢ = (1,2, ... , n), then the I-operation, 2-operation, and 3-operation of job j

in 'l/J" is scheduled in the time intervals [Plk + a(j - 1), Plk + a(j)], [8 + P2k + b(j - 1),
8 + P2k + b(j)], and [a + b + P3k + c(j - 1), a + b + P3k + c(j)), respectively. See
schedule 'l/J~ in Figure 4.10. Furthermore, the current ¢-order implies that any other
right-jobs, which have a smaller index than j, are placed to the left of job j in
'l/J~. In this case, the slack of job j in 'l/J" is equal to OJ('l/J'') = S3j('l/J") - C2j ('l/J") =

a+b+p3k+C(j -1) - (S+P2k+b(j)). Therefore, for this case the slack of the right-jobs
in 'l/J" is given by ilr('l/J") = mini Fjk~SI (tl' t2, t3), a + b + P3k + c(j - 1) - s - P2k - b(j)}
if Fjk~Sl (tI, t2, t3) =f. 0; otherwise, ilr('l/J") = a + b + P3k + c(j - 1) - s - P2k - b(j).

As Fjk,S(tt, t2, t3) is the larger of the slack of the right-jobs in 'l/J' and 'l/J", we

have Fjk,S(tb t2, t3) = max{ilr('l/J') , ilr('l/J")}. The initialization of the recursion can
be set by

F,k,S(t t t) = { 0, if tl = t2 = t3 = 0;
o b 2, 3 _ 00 otherwise ,

for 1 ~ k ~ n, 0 ~ 8 ~ a, 0 ~ tl ~ a, 0 ~ t2 ~ b, and 0 ~ t3 ~ c. Moreover, if j = k,
we let F;,S(tl , t2, t3) = Fj~Sl(tb t2, t3).

Finally, we have to take into account the possible effect of the partition job
k on the slack, as well as on the feasibility of the schedule. For this, consider now
the partition job k in the schedule 'ljJ~,S(tl' t2, t3) associated with F;"S(lt, t2, t3). We
schedule k immediately after the left-jobs. More precisely, we put the I-operation, 2-
operation, and 3-operation of job k in the time intervals [tb tl +Plk], [8+t2' 8+t2+P2k],
and [a + b + t3, a + b + t3 + P3k], respectively. See Figure 4.7. This is possible only if

a. S2k('l/J~,S(tl' t2, t3)) 2:: Clk('l/J~,S(tI, t2, t3))' i.e., s + t2 2:: tl + Plk; otherwise, the
I-operation and 2-operation of job k would overlap; and

60

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

b. s + t2 ~ a and s + t2 + P2k > a; otherwise, job k cannot be the partition job.

Let Gk,S(t}, t2, t3) denote the slack of the right-jobs and the partition job in the sched
ule 'lj;~,S(h, t2, t3). As S3k('lj;~,S(t}, t2, t3)) - C2k ('lj;~,s(tl' t2, t3)) = (a + b + t3) - (s + t2 +
P2k), we have

{
min{F~,s(tl' t2, t3), (a + b + t3) - (s + t2 + P2k)} ,

Gk,S(tb t2, t3) = if s + t2 2: tl + Plk and a - s - P2k < t2 ~ a - s;
-00, otherwise,

where Gk,S(t1, t2, t3) = -00 means that the schedule 'lj;~,s(tb t2, t3) is infeasible.

The overall maximum slack !~,A'lj;*) for right-jobs can be found as

The minimum makespan is then given by Cmax('lj;*) = a + b + c - min{b, ~r('lj;*)}.
The optimal partition (Ni, k* ,N;;) of N can be retrieved by backtracking. Finally,
schedule the jobs in Nt in increasing order of the indexes, followed by job k*, followed
by the jobs in N;; in <,b-order to obtain the optimal schedule 'lj;*.

The worst case computation time and space required by the above algorithm
can be determined as follows. There are at most O(nabc) states for the functions
Fjk,S(t1 , t2, t3) with fixed k and s. There are at most n partition jobs k and a time
points s. Therefore, there are at most O(n2a2bc) recursive equations to be solved
in the dynamic programming algorithm. As the calculation for each recursive equa
tion takes constant time, the overall running time of the algorithm is bounded by
O(n2a2bc), which is clearly pseudo-polynomial. Since only recursive functions take
up space and there are at most O(nabc) states for the functions Fjk,S(tb t2, t3) with
fixed k and s, it is easy to see that the algorithm requires O(nabc) space. Thus we
have proved the following theorem.

Theorem 4.5 There exists a dynamic programming algorithm that solves the problem
RF21£ = 31Cmax under Condition (4.2) or (4.3) in O(n6p~ax) time and O(n4p~ax)
space, where Pmax = maxl::;i::;3,1::;j::;n Pij.

Unfortunately, the above dynamic programming recursion does not work for
arbitrary <,b-orders, since when adding a job j as a right-job, it can be positioned
anywhere among the previously placed (scheduled) right-jobs from {I, 2, ... ,j - I}
in a schedule. Our solution uses the fact that ¢ is a monotone order. This approach
could be further extended to the case when ¢ consists of a fixed number r of monotone
segments, for example to "pyramidal" ¢-orders corresponding to r = 2.

Returning to the J21mj ~ 31Ct problem, if Condition (4.2) or (4.3) is satisfied
by 3212, then the best sequence for 3212 and its corresponding schedule a' can be

61

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

produced by the above dynamic programming algorithm, which takes O(n6p~ax) time
and O(n4p~ax) space. After the partial schedule a' for 3212 has been built, the job
insertion can be performed in O(n) time and constant space. Thus, the optimal
schedule a* for J21mj ::; 31Ct can be found in O(n6p~ax) time and O(n4p~ax) space.
We therefore have the following result.

Corollary 4.6 The problem J21mj ::; 31Ct under Condition (4.2) or (4.3) for the
jobs in 3212 can be solved in O(n6p~ax) time and O(n4p~ax) space, where Pmax =

max1::;i9,1::;j::;n Pij·

4.3.2 FPTAS

Consider an NP-hard cost-minimization problem II. An algorithm A is said
to be a fully polynomial time approximation scheme (FPTAS) for II if on input (1, f),
where I is any instance of II and € > 0 is an arbitrary error bound, it always returns
a solution whose cost is at most (1 + €) times the optimal cost and its running time
is bounded by a polynomial in the size of instance I and II€. Under the assumption
P =f NP, an FPTAS is the best one can hope for an NP-hard optimization problem
(see e.g., Vazirani (2001) for explanations). Due to the fact that the existence of
FPTASs is intimately related to the existence of pseudo-polynomial time algorithms,
the natural question arises whether it is true for the RF21.e = 31Cmax problem. In
this section we give a positive answer to this question.

A pseudo-polynomial time algorithm displays exponential behavior only when
an input instance includes exponentially large numbers. Thus, to obtain an FPTAS
for our problem, we exploit the idea of rounding down the input so that the numbers
become polynomial in n and then apply the pseudo-polynomial time algorithm. This
rounding incurs some loss of precision, but we will show that the resulting minimum
makespan is at most (1 + €) times the optimal makespan.

Suppose there exists a pseudo-polynomial time algorithm, which will be called
Pseudo-RF2 hereafter, for the general or special cases of the RF21.e = 31Cmax problem.
Let Lx J denote the largest integer that does not exceed x. An FPTAS is described as
follows.

Algorithm FPTAS-RF2
Input: Pij (i = 1,2,3 and j = 1,2, ... ,n) and € > o.
1. Let a = L,7=1 P1j, b = L,7=1 P2j, C = L,7=1 P3j, and

K = €max{a + c,b}/(n + 2).
2. For i = 1,2,3 and j = 1,2, ... ,n, define fiij = [Fiji K J.
3. Using these modified processing times as input, apply Algorithm Pseudo-RF2

to the modified problem to find its optimal processing sequence (T.

Output: A no-passing block schedule for the original problem in which jobs are
processed according to (T.

62

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

In what follows, we show that Algorithm FPTAS-RF2 is indeed an FPTAS for
RF21.e = 3lCmax. Without loss of generality, we assume that the jobs are re-numbered
in such a way that a = (1,2, ... , n). Moreover, we assume Cmax(a) =1= a + c; otherwise,
the schedule a is optimal for the original problem as well. Suppose that jobs u and
v are critical in schedule a, i.e., Cmax(a) = ~~=lPlj + ~~=uP2j + ~;=vP3j. As
KPij :::; Pij :::; KPij + K for i = 1,2,3 and j = 1,2, ... , n, we derive

n

Cmax (a) = L Plj + L P2j + L P3j
j=l

n

:::; L(Kplj + K) + L(Kp2j + K) + L(Kp3j + K)
j=l

= K (tilli + ~j>,i + t.il3i) + (n + 2)K.

Since for the optimal schedule a*, we deduce from (4.1) that

C_{(J') = max { a + c, If,!~n {tPI"U) + tP2"U) + tP3"U)} }
{

J.L v n }
2: K max: ~ Plu* (j) + ~ P2u* (j) + ~ P3u* (j) l~J.L,v~n L.J L.J ~

J=l J=J.L J=V

(
U v n)

2: K ?=Plj + ~P2j + ~P3j .
J=l J=U J=V

The last inequality is obtained from the fact that a is optimal for the modified prob
lem.

Combining the above two formulas, we get Cmax(a) :::; Cmax(a*) + (n + 2)K =
Cmax(a*)+tmax:{a+c, b}. Then using the observation that Cmax(a*) 2: max:{a+c, b},
yields the desired upper bound Cmax(a) :::; (1 + t)Cmax(a*).

It is not difficult to see that the running time of Algorithm FPTAS-RF2 is
bounded by a polynomial in the input size and l/t. As an example, let us take
a look at the pseudo-polynomial time algorithm presented in Section 4.3.1. Since
the running time of the dynamic programming algorithm on the modified prob
lem is o (n2(j;2bC) , the running time of Algorithm FPTAS-RF2 is not more than
O(n2a2bc/ K4) = O(n6 /t4), which is polynomial in nand 1/t. Also, it is easy to
find that this algorithm requires O(nzfbC) :::; O(nabc/ K 3) = O(n4 /t3) space. We thus
have the following theorem.

Theorem 4.7 If there exists a pseudo-polynomial time algorithm for the RF21.e =
31Cmax problem, it admits an FPTAS too.

63

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

4.3.3 Well-solvable cases

If we consider only no-passing block schedules, the RF211! = 31Cmax problem
is equivalent to the three-machine flow shop problem-denoted by F31lCmax-with
the additional constraint that no 3-operation can start until all jobs finish their 1-
operation. For a given instance of RF211! = 3lCmax , we first solve it as an F311Cmax

problem. Let 7r} denote an optimal (block) schedule for the F311Cmax problem. If
Cmax (7r}) > a + c, then the schedule 7r} is also feasible and optimal for RF211! =

31Cmax because max{Cmax (7r}), a + c} is a lower bound on the minimum makespan.
If Cmax (7r}) :::; a + c, we can easily turn 7rp into a feasible schedule 7rRF for RF211! =
31Cmax by delaying the start of 3-operations at the time when all the I-operations are
completed. In this case, Cmax (7rRF) = a + c and 7rRF is optimal too. Relying on such
reduction, Wang, Sethi, and van de Velde (1997) have identified the following special
cases of RF211! = 31Cmax that are solvable in O(n log n) time.

Case 1: One machine dominates another in terms of processing times, i.e., one of the
following conditions holds:

1. minj {Plj} ~ maxj {P2j }.
2. minj {P3j} ~ maxj {P2j }.
3. minj {P2j} ~ maxj {Plj }.
4. minj{P2j} ~ maxj{P3j}.

Case 2: Recessive second stage: P2j :::; min{Plj,P3j} for all j.

Case 3: Constant second stage: P2j = constant.

Using Theorem 4.2, this leads to the following corollary.

Corollary 4.8 The problem J21mj :::; 31Ct under anyone of the above conditions for
the jobs in .1212 can be solved in O(nlogn) time.

Aside from the listed cases, there are additional polynomially solvable cases
for F311Cmax . On the basis of the above discussion and Theorem 4.2, if the condition
for those special cases is satisfied by the jobs in 3212, then J21mj :::; 31Ct is solvable
in polynomial time as well.

4.4 Summary

We have studied the cycle time minimization problem in a two-machine job
shop, where the maximum number of operations of any job is bounded by three.
We reduced the problem to the makespan minimization problem in a two-machine
reentrant flow shop. Based on previously known and newly extended results for the
reentrant flow shop problem, we devised exact and approximate solutions for special
cases of the job shop problem. We also presented an approximate solution for the

64

CHAPTER 4 Ph.D. Thesis· McMaster· Management Science· Z. Xue

general case of the problem, and recognized a few polynomially solvable cases. The
exact complexity status of the general problem remains an open question for future
research.

65

Chapter 5
The Traveling Salesman Problem

5.1 Introduction

The traveling salesman problem (TSP) is one of the most widely studied prob
lems in combinatorial optimization. Simply, the problem may be stated as follows:
Given a collection of "cities," find the shortest tour that visits all of them exactly
once and returns to the starting city.

The TSP belongs to the class of difficult optimization problems, as it is strongly
NP-hard. Nevertheless, many special cases of it can be solved in polynomial time
when the distance matrix satisfies certain properties. For a comprehensive review of
the extensive results on this subject, the interested reader is referred to the earlier
survey by Gilmore, Lawler, and Shmoys (1985), as well as the recent papers by
Burkard et al. (1998) and Kabadi (2002).

The TSP plays an important role in applications like production scheduling. A
large number of scheduling problems can be formulated as special cases of the TSP,
and many well-solvable cases of the TSP originate from scheduling problems. For
example, we know that a special case of the TSP with distance matrix C = (ct.j) =
max{fi, ej} can be solved by the Gilmore-Gomory algorithm (Gilmore and Gomory
1964), which was originally designed to solve the problem of sequencing jobs on a
one-state-variable machine. This also can be used to find the minimum makespan in
the two-machine no-wait flow shop scheduling problem in O(n log n) time (Reddi and
Ramamoorthy 1972). Thus investigating special cases of the TSP that can be solved
by polynomial algorithms is of great practical significance.

An n x n matrix C = (Gij) is a Monge (distribution) matrix, if it fulfills the
so-called Monge property:

Cij + Ci'j' ~ Cij' + Ci'j for all 1 ~ i < if ~ nand 1 ~ j < j' ~ n.

Furthermore, C = (Cij) is a permuted Monge (distribution) matrix, if there exists
a permutation ¢ such that C</J = (Ci</J(j)) is a Monge matrix. These matrices can
be recognized and their permutation ¢ can be found in O(n2) time (Burkard et al.
1998). The Monge property has received considerable attention in combinatorial
optimization (Burkard, Klinz, and Rudolf 1996), as its particular structure often leads
to easier solutions for problems. For instance, for the linear assignment problem with

66

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

a Monge cost matrix, the identity permutation ¢(i) = i for i = 1,2, ... ,n is an optimal
solution. Based on this fact, if ¢ is the permutation for which C4J is a Monge matrix,
then ¢ is an optimal assignment for C. See e.g., Gilmore, Lawler, and Shmoys (1985)
for details.

For the TSP with a Monge distance matrix, there exists an optimal tour which
is pyramidal. If we number the cities by 1,2, ... ,n, then a tour is called pyramidal,
if starting from the initial city 1, they are first visited in increasing order of their
index, and then the remaining cities are visited in decreasing order. For example,
the six-city tour 1 ~ 3 ~ 5 ~ 6 ~ 4 ~ 2 ~ 1 is pyramidal, but the tour
1 ~ 5 ~ 3 ~ 6 ~ 4 ~ 2 ~ 1 is not. For any distance matrix C = (Cij) , a shortest
pyramidal tour can be found by an efficient dynamic programming scheme in O(n2)

time: Let Q(i, j) denote the length of a shortest pyramidal path from city i to city
j that visits every city in {I, 2, ... ,max{ i, j}} exactly once. Here, a path is said to
be pyramidal, if it first passes through the cities in descending order of index from i
to 1 and then in ascending order of index from 1 to j. By decomposing a pyramidal
path into smaller parts, it is not difficult to see that

{ j-I}
Q(j,j + 1) = Il!!f~. Q(i + 1, i) + Ci,j+I + L Ck+1,k

- J k=i+I

and

Q(j + l,j) = Il!!f~. {Q(i, i + 1) + Cj+1,i + f Ck,k+1} .
- J k=i+I

Note that Et:'!+1 Ck+1,k = E{:'!+1 Ck,k+1 = 0 if i 2:: j - 1. Starting from the initial
conditions Q(I,2) = CI2 and Q(2,1) = C21, this recurrence allows us to compute
Q(i, j) for all 1 ~ i, j ~ n and i =I j. For example, the recurrence yields

Q(2, 3) = Q(2, 1) + CI3, Q(3, 2) = Q(I, 2) + C31,

Q(3, 4) = mini Q(2, 1) + CI4 + C32, Q(3, 2) + C24},

Q(4,3) = min{Q(l, 2) + C4I + C23, Q(2,3) + C42},

Q(4,5) = mini Q(2, 1) + CI5 + C32 + C43, Q(3,2) + C25 + C43, Q(4, 3) + C35},

Q(5,4) = mini Q(I, 2) + C5I + C23 + C34, Q(2, 3) + C52 + C34, Q(3,4) + C53}

for n = 5. The length of a shortest pyramidal tour Tn on cities 1,2, ... ,n is then
given by

C(Tn) = min{Q(n - 1, n) + Cn,n-l, Q(n, n - 1) + Cn-I,n}'

See e.g., Gilmore, Lawler, and Shmoys (1985) for details. Further improvement in
the time complexity can be achieved if the distance matrix C is a Monge matrix. By
exploiting the combinatorial structure of Monge matrices, Park (1991) showed that
the calculation can be speeded up so that the TSP on Monge matrices is solvable in
O(n) time.

67

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

A matrix C = (~j) of the form ~j = aibj with real numbers ai and bj , 1 ~
i, j ~ n, is called a product matrix. Sarvanov (1980) proved that the TSP on product
matrices is NP-hard. Since product matrices are contained in the more general class
of permuted Monge matrices, it follows immediately that the TSP with a permuted
Monge matrix is also NP-hard.

In this chapter, we investigate special cases of the TSP on permuted Monge
matrices. Our work is related to cases of the TSP studied in the context of scheduling
a two-machine bufferless robotic cell, where a robot is used (as a material handling
device) to load, unload, and move parts between machines, see Sethi et al. (1992),
Hall, Kamoun, and Sriskandarajah (1997), Aneja and Kamoun (1999), Crama et
al. (2000), Middendorf and Timkovsky (2002), as well as Chapters 2 and 3. An
optimal solution of this scheduling problem can be found by solving an n-city TSP
with distance matrix C = (~j) = min{bi + aj, max{J.L, bi, aj}}, where J.L, bi' and
aj's are given non-negative numbers. By using the Gilmore-Gomory algorithm as a
subroutine on auxiliary problems, Aneja and Kamoun (1999) described an O(n log n)
time algorithm for this TSP. Our study of a robotic scheduling problem dealing with
K -component parts gave rise to a more general version of the TSP with distance
matrix C = (~j) = min{A + TJ + Kbi + aj, max{A + (K - 1)bi + max{TJ + p, bi}, aj}},
where all parameters are given non-negative numbers again (cf. Chapter 3). This
matrix was shown to belong to the class of permuted Monge matrices in Chapter 3.
Notice also that when K = 1 and A = TJ = 0, then this last distance matrix reduces
to the matrix of Aneja and Kamoun (1999).

In this chapter, we define a hierarchy of new classes of permuted Monge dis
tance matrices. Using the theory of subtour patching, we give new, polynomial-time
solutions for the corresponding cases of the TSP. We also discuss efficient recognition
algorithms for these matrices. Our algorithms also solve the K-component robotic
scheduling problem introduced in Chapter 3 and its special case-the problem stud
ied in Aneja and Kamoun (1999). Our most general algorithm has O(n2) complexity,
which can be improved to O(n log n) in some special cases.

The remainder of the chapter is organized as follows. In Section 5.2, we intro
duce several definitions and review the theory of subtour patching. In Section 5.3, we
derive our main results for both the general and the special cases. We demonstrate
our new algorithm on an example in the chapter. Section 5.4 concludes the chapter
with our final remarks.

5.2 Preliminaries

5.2.1 Permutations

For any n-city TSP with a given n x n distance matrix C = (~j), we denote
the set of cities by {1, 2, ... , n}. A permutation ¢ on these n elements, which may be

68

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

written as

¢ = (¢t!) ¢~2) ::: ¢(n))'
corresponds to an assignment i -+ ¢(i) for i = 1,2, ... , n with the associated cost
c(¢) = 2:~=1 Ciq,(i)' An optimal assignment is one that minimizes the cost, and can
be computed in polynomial time. An assignment can also be expressed as a directed
graph G = (V, E) with vertices V = {1,2, .. . ,n} and arcs E = {(i,¢(i)) : 1 ~ i ~ n},
representing the fact that ¢(i) is visited immediately after city i. It is easy to see that
every vertex of G has both in-degree and out-degree exactly one. (Given a directed
graph, the in-degree of a vertex is the number of arcs that point to it and the out
degree of a vertex is the number of arcs that point away from it.) If the associated
graph G is connected-there is at least one path from every vertex to every other
vertex, then ¢ forms a (TSP) tour, and ¢ is said to be a cyclic permutation. Otherwise,
¢ consists of several subtours (or cycles).

Often, an assignment (i.e., permutation) ¢ is stated in compact form in terms
of factors. Let ill i2, ... , iq be distinct elements of {1,2, ... , n}. If ¢(ik) = ik+1 for
k = 1,2, ... , q - 1, and ¢(iq) = ill then (iI, i2, ... , iq) is called a factor (or cycle, or
subtour) of the assignment ¢. A factor with q = 1 (in this case ¢(i1) = i1) will be
called a trivial factor. For example, the assignment

(123456) ¢= 325 6 14 =(1,3,5)(2)(4,6)

has three factors (or subtours) ¢l = (1,3,5), ¢2 = (2), and ¢3 = (4,6). Among these
three, ¢2 is a trivial factor.

We can modify an assignment ¢ by multiplying it with a permutation 1/J,
which produces a new assignment ¢' defined as ¢'(i) = ¢ 0 1/J(i) = ¢(1/J(i)) for i =
1,2, ... ,n. A transposition (i, j) is a permutation that interchanges i and j. An
adjacent transposition is of the form (i, i + 1). Performing (i, j) on the permutation ¢
yields the permutation ¢' = ¢o(i,j) with ¢'(i) = ¢(j), ¢'(j) = ¢(i), and ¢'(k) = ¢(k)
for k =I i, j. Recall that the product of two transpositions is a non-commutative
operation if they have a common index, otherwise it is commutative. For a given
permutation ¢, the cost of performing transposition (i,j) on ¢ is defined by cq,(i,j) =

c(¢ 0 (i, j)) - c(¢) = Ciq,(j) + Cjq,(i) - Ciq,(i) - cj</>(j).

5.2.2 Review of the theory of subtour patching

As our solution technique is based on the theory of subtour patching, we briefly
review its important points that will be used in this chapter; the interested reader is
referred to Gilmore, Lawler, and Shmoys (1985) and Burkard et al. (1998) for a more
comprehensive coverage.

In general, the strategy of subtour patching works as follows: First solve an
assignment problem for the given distance matrix. If the optimal assignment ¢ is a

69

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Figure 5.1: A patching graph Gr/J = (V, E)

tour, it is clearly optimal for the underlying TSP, as the cost of ¢ is a lower bound on
the length of an optimal tour. Otherwise, the assignment ¢ consists of r ~ 2 subtours
¢b ¢2, ... ,¢n i.e., ¢ = ¢1¢2··· ¢r· In this case, patch the subtours together by a
series of transpositions so as to yield an optimal solution for the TSP. More precisely,
if i and j are in different subtours of ¢, then performing the transposition (i, j) on
¢ will patch these two subtours into a single tour. A series of transpositions, in any
order, can be expressed as a single permutation by forming their product. For an
optimal assignment ¢, a permutation '!jJ is called a patching permutation if ¢ 0 '!jJ is
a cyclic permutation (tour). Thus the problem is "Given an optimal assignment ¢,
find an optimal patching permutation '!jJ* such that ¢ 0 '!jJ* is an optimal tour."

In order to determine an optimal patching permutation, it is often useful to
examine the so-called patching graph. With respect to a given optimal assignment
¢, a patching graph G r/J = (V, E) may be constructed as follows: The vertices are
the subtours ¢i of ¢, 1 ~ i ~ r. Every edge e E E corresponds to an adjacent
transposition (i, i + 1), that is, if city i is in subtour ¢j and city i + 1 is in subtour ¢k,
j =F k, then the two corresponding vertices in Gr/J are connected by an edge labeled
(i, i + 1). For the sake of simplicity, we will refer to edge (i, i + 1) as 1.. Since the
same pair of vertices may be connected by multiple edges, this construction will yield
a connected multigraph with r vertices and at most n - 1 edges. As an example,
suppose we have an 11-city TSP with the optimal assignment ¢ = ¢1¢2¢3¢4¢S =

(1,11)(2,10)(3,6,9)(4,7)(5,8). The corresponding patching graph Gr/J = (V, E) is
shown in Figure 5.1, where V = {¢i: 1 ~ i ~ 5} and E = {(i,i + 1) : 1 ~ i ~ 1O}.

A spanning tree T of a graph G is a tree connecting all its vertices. A per
mutation obtained by multiplying a set of adjacent transpositions which correspond
to a spanning tree in Gr/J is called a tree permutation. Gilmore and Gomory (1964)
have shown that every tree permutation is a patching permutation. For example, the
edges I, 2, 5, and "7 form a spanning tree in Gr/J of the above example (see the bold
lines of Figure 5.1). Thus the product of the transpositions (1,2), (2,3), (5,6), and
(7,8), in any order, forms a tree permutation, which patches together the subtours
of ¢ into a tour. With each edge 1. in Gr/J, we associate a non-negative weight Wi that
represents the cost of performing the corresponding transposition (i, i + 1) on ¢, i.e.,

70

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Wi = c(¢ 0 (i, i + 1)) - c(¢) = c4>(i, i + 1). The weight w(T) of a tree T is defined as
the sum of the weights of the edges in T. A minimum-weight spanning tree, or MST
for short, is a spanning tree of G whose weight is minimum.

Recall that if a permutation (assignment) 'I/; consists oft subtours '1/;17 '1/;2, ... , 'l/;t,
then

t

c(¢ 0 '1/;) - c(¢) = L (c(¢ 0 'l/;i) - c(¢)) , (5.1)
i=l

see Theorem 14 in Gilmore, Lawler, and Shmoys (1985). Corresponding to a given
spanning tree T, we define 'l/;r as a patching permutation that minimizes (5.1). An
n x n matrix C = (Cij) will be called a Gilmore-Gomory matrix if it is defined by

(5.2)

where the given functions g1 and g2 are integrable, and g1(X) + g2(X) ~ 0 for all x.
(Note that from the above assumption, functions 91 and g2 need not be strictly non
negative.) To solve a special case of the TSP with distance matrix (5.2), Gilmore and
Gomory (1964) developed a subtour-patching strategy that uses only adjacent trans
positions with minimum total cost, which can be found by determining an MST for
the patching graph. Burdyuk and Trofimov (1976) and Gilmore, Lawler, and Shmoys
(1985) proved that this basic patching strategy of using only adjacent transpositions
is extendible also to permuted Monge matrices. Their result is essentially contained
in the following theorem.

Theorem 5.1 (Burdyuk and Trofimov 1976; Gilmore, Lawler, and Shmoys 1985)
Let C4> = (Ci4>(j») be a Monge matrix. For any cyclic permutation 7r, there exists a
spanning tree T = {iI, i2 , ••. , ir-d of the patching graph G4> and a sequence a for
performing the transpositions of T such that the permutation ¢r = ¢ 0 (iu (1), iU(1) +
1) 0 (iu (2), iu (2) + 1) o· .. 0 (iu(r-l), iu(r-l) + 1) is a cyclic permutation with c(¢r) ::; c(7r).

Theorem 5.1 is important as it allows us to restrict our search for an optimal
patching permutation only to those permutations which can be formed of adjacent
transpositions of G4>, but it does not say anything about how to find the spanning
tree T corresponding to these transpositions and the sequence a in which they have
to be multiplied. In the following we take a closer look at these problems. A set of
edges in G4> is said to be dense if it is of the form {I, i + 1, ... 3} with j ~ i. Let T
be a spanning tree for the patching graph G4>' We partition the set of edges (i.e., the
transpositions) of T into t (1 ::; t ::; r -1) dense, pairwise disjoint subsets T(ib jl) =

{i1,i1+1, ... ,j1},T(i2,j2) = {i2,i2+1, ... ,j2}, ... ,T(it,jt) = {it ,it +l, ... ,jt},
which will be called branches hereafter, such that T = T(ib jl)UT(i2 ,h)U" ·UT(it,jt)
and jk + 1 < i k+1 for k = 1,2, ... , t - 1. Refer to the example illustrated in Figure

71

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

5.1. Suppose again that T = {I, 2, 5, 7}. Then T is composed of three branches
with I(1, 2) = {I,2}, I(5,5) = {S}, and I(7,7) = {7}. Since jk + 1 < i k+1 for
any two branches I(ik,jk) and I(ik+bjk+l), k = 1,2, ... ,t -1, the permutations
corresponding to transpositions of different branches have no common element and
thus are commutative and can be performed independent of each other in any order.
Furthermore, since the patching costs of these permutations are additive by Equation
(5.1), the best patching permutation corresponding to T can be identified by finding
the minimum cost permutation for each branch and taking the product of these. It is
well known that, as branches are dense, performing transpositions of a branch I(i, j)
in any order will yield a pyramidal tour on the set of cities {i, i + 1, ... ,j,j + I}.
Hence, the best patching permutation ¢r can be derived by constructing a shortest
pyramidal tour on the set of cities {ik' ik + 1, ... ,jk, jk + I} for each branch I(ik' jk)
of T, where 1 ~ k ~ t. Since finding the shortest pyramidal tour on a given set of
cities is solvable in polynomial time, the remaining hard part of the problem is how
to find the best spanning tree.

Let us now define the b-weight wfj of a branch I(i, j) by

where ¢; is a shortest pyramidal subtour corresponding to the branch I(i,j). Also,
we define the weight Wij of a branch I(i, j) as the total weight of the edges in the
branch, i.e., Wij = E{=i Wk· Note that from these definitions, we have Wfi = Wii =

Wi = cq,(i, i + 1) for a branch I(i, i) that contains only edge I. Further, we define
the b-weight wb(T) of a spanning tree T as the total b-weight of its branches, i.e.,
wb(T) = E~=l WLjk· It is easy to verify from the definitions of ¢r and wb(T) that
wb (T) = c(¢ 0 ¢r) - c(¢). As c(¢) is constant, ¢r is an optimal patching permutation
if and only if the corresponding spanning tree T has minimum b-weight. In other
words, the best spanning tree T* is actually a minimum-b-weight spanning tree of Gq,.
Thus, the TSP on permuted Monge matrices is essentially reduced to the problem of
finding a spanning tree of Gq, with minimum b-weight.

If the distance matrix C is a permuted Monge matrix, then it has been estab
lished by Burkard et al. (1998) that for any branch I(i,j), we have wfj ~ Wfk+wt+1,j

for 1 ~ i ~ n - 1 and i ~ k < j ~ n -1, and wfj ~ E{=i Wk (= Wij) for 1 ~ i ~ j ~ n,
i.e., the b-weight is super-additive. This further implies that for a spanning tree Tits
b-weight is never lower than its weight, i.e., wb(T) ~ w(T). A permuted Monge ma
trix is said to be a b-weight-additive matrix if the b-weight of any branch is additive,
i.e., wfj = Ek=i Wk for 1 ~ i ~ j ~ n. It is important to note that these matrices
can be recognized in O(n2) time combining Park's (1991) method for computing the
b-weights with the algorithm for recognizing permuted Monge matrices. From the
definition of an MST and Theorem 5.1, we know that the cost of the optimal assign
ment ¢ plus the weight of the MST T for Gq" i.e., c(¢) + w(T), is a lower bound on
the length of an optimal tour, which is equal to c(¢) + wb(T*) as explained above.

72

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

bn a;(n)

b j
a;(j)

b;'+1 a;(io+l)

b.

'0
a;(io)

b2 a;(2)

bl a;(I)

Figure 5.2: The assignment ¢ for C = min {bi + aj, max{fL, bi , aj }}

Consequently, if the subtours of ¢ can be patched with cost w(T), the resulting tour
is clearly optimal, and we are done. Since for b-weight-additive matrices, the b-weight
of a spanning tree is the same as its weight, the MST is the best patching tree in this
case. It can be shown that the b-weight-additivity property is satisfied by Gilmore
Gomory matrices (Burkard et al. 1998). Hence, Gilmore-Gomory matrices form a
subclass of the b-weight-ad.ditive matrices.

5.3 Polynomially Solvable Classes

5.3.1 b-decomposable matrices

Consider an n x n permuted Monge matrix C = (C;j) such that D = (dij) with
dij = C;4>(j) is a Monge matrix. We call C b-decomposable if D can be partitioned
by an index io (1 ~ io ~ n) into two b-weight-additive sub-matrices D' = (d~j) for
i,j ~ io and D" = (d'0) for i,j > io. Note that if io = n, then D" is empty and D
itself is a b-weight-additive matrix. We show in this section that the class of the TSP
with a b-decomposable distance matrix is solvable in polynomial time.

As we have already noted, this special case of the TSP originated from robotic
cell scheduling problems. Let us take a look, for example, at the aforementioned
matrix C = (C;j) = min{bi + aj,max{fL,bi,aj}}, where fL is a given constant and
all numbers are non-negative. Without loss of generality, we assume that the cities
have been renumbered so that b1 ~ ... ~ bn . Let ¢ be an assignment (ordering)
for which a¢(i) ~ a¢(i+l)' See Figure 5.2 for an illustration. It can be shown that
¢ is an assignment for which C4> = (Ci</>(j») is a Monge matrix (Aneja and Kamoun
1999). Observe that bi + a</>(i) ~ bi+l + a</>(i+l) for all i = 1,2, ... , n - 1. If there
exists an index io, io < n, such that bio + a4>(io) ~ fL < bio+1 + a4>(io+1) , then the
Monge matrix D = C4> = (Ci4>(j») can be split into two sub-matrices D' = (d~j)
and D" = (d'0) , where D' is a sum matrix, i.e., d~j = bi + a4>(j) for i,j ~ i o, and

73

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Permuted Monge
NP-hard

b-decomposable

Figure 5.3: Hierarchical classes of permuted Monge matrices

dij = max{fJ.,bi,a¢(j)} for i,j > io is a Gilmore-Gomory matrix. For a sum matrix,
it is b-weight-additive. (In fact, the b-weight of any branch is always zero because
all (cyclic) permutations on the n cities have the same cost.) Thus matrix C is b
decomposable. It was shown in Chapter 3 that the matrix of the robotic scheduling
problem with K-component parts, as mentioned in Section 5.1 (defined in Section
3.3), is also b-decomposable. Actually, both scheduling problems lead to matrices
belonging to the subclass of b-decomposable matrices in which D' is a sum matrix.
Of course, the class of b-decomposable matrices is substantially larger, as a matrix in
it can have any b-weight-additive sub-matrix for its two parts. Figure 5.3 depicts a
hierarchy of these newly defined matrix classes.

Let us return now to b-decomposable TSP-s in general. Since ¢ is the per
mutation for which C¢ = (Ci,p(j») is a Monge matrix, ¢ is an optimal assignment for
C, and ¢ is also optimal for the TSP in case it is a tour. As a result, hereafter,
we concentrate on the case when ¢ consists of r 2: 2 subtours. Let G,p = (V, E)
be the patching graph relative to ¢. We will use the subtour-patching technique by
reformulating our TSP as a minimum-b-weight spanning tree problem.

For a given spanning tree T of G¢, we begin with a characterization of the
branches of T. Let I (i, j) be a branch of T. If I (i, j) does not contain the edge io,
then the weights of the whole edge set of I(i, j) are either in D' or in D", and thus
W~j = Wij, because both D' and D" are b-weight-additive. Otherwise, it is known that
W~j 2: Wij. As we will demonstrate later, the branch containing the edge io, if it exists,
is of primary interest among all branches of T, as it is the only branch which may

74

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Table 5.1: The Example Instance

cities 1 2 3 4 5 6 7 8 9 10
ai 100 120 10 32 130 90 30 110 20 39
bi 5 15 25 36 45 83 95 106 117 125

a</l(i) 10 20 30 32 39 90 100 110 120 130
</>(i) 3 9 7 4 10 6 1 8 2 5

not be b-weight-additive. From here on, we will refer to this branch as a b-branch.
Let us examine now specifically the MST T of G</I' Note that during the

construction of T by Kruskal's (1956) algorithm (see e.g., Ahuja, Magnanti, and
Orlin 1993), if there is an edge available with the same weight as edge i o, we consider
that edge first. This manner of construction will ensure that T does not have a b
bra~ch unless it is necessary. If T does not contain a b-branch, then the b-weight
of T is the same as the weight of the tree, and the TSP is solved by using this
MST as a patching tree. If T contains a b-branch, then it must be of the form
I(ho, jo) = {ho, ... , io - 1, io, io + 1, ... ,jo} for some ho :::; io and jo ~ io. Then

the b-weight of T is calc~lated as the b-weight W~o,jo of the branch I(ho,jo) plus ,the

weights of all edges in T\I(ho,jo). If I(ho,jo) = {io}, then w~o,jo = Who,jo = Wio'

implying that wb(T) = w(T), which means T is a minimum-b-weight spanning tree.
Thus we assume for the remainder of the discussion that II(ho,jo)1 > 1. Clearly,
W~o,jo can be obtained by using an algorithm for finding a shortest pyramidal tour on
the set of cities {ho, ... , io -1, io, io + 1, ... ,jo, jo + I} with the corresponding distances
extracted from the matrix D = (dij) = (Ci</l(j))' Since D is a Monge matrix, this can be
done in linear time by using Park's (1991) recursions. Note that in Park's recursions,
by computing the length of a shortest pyramidal tour on the set of cities {I, 2, ... , n},
we can obtain at the same time the lengths of the shortest pyramidal tours for all
sets of cities {I, 2, ... ,j} for j = 2, ... , n. Therefore, these recursions allow us to
calculate in linear time all b-weights W~o,ho+1' W~o,ho+2'" . ,W~o,jo' Now let us compare
the weight u;...ho,jo of the branch I(ho,jo) with its b-weight. If w~o,jo = Who,jo" then the

~weight of T is the same as the weight of the tree, and the problem is solved by usin~
T as a patching tree. Otherwise, i.e., in the case when W~o,jo > Who,jo' the MST T
may not be the best spanning tree to patch the subtours of </>, as illustrated by the
following example.

Example Let us consider a lO-city TSP with the distance matrix C = (Cij) =

min{bi + aj, max{tL, bi , aj}}, where tL = 80. The b's and a's are given in Table 5.1.
Observe that the bi-s are in the order bi :::; bi+1' Table 5.1 also shows the ordering </>

for which a</l(i) :::; a</l(i+ 1) •

As discussed above, C</I = (Ci</l(j)) is a Monge matrix and thus </> is an optimal
assignment for C. FUrthermore, it is easy to see that </> consists of six subtours

75

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

5 9 = (9,10)

Figure 5.4: The patching graph Gq, in the example

¢ = ¢1¢2¢3¢4¢5¢6 = (1,3,7)(2,9)(4)(5,10)(6)(8), and the cost of ¢ is equal to c(¢) =
L~=I Ciq,(i) = 803. The patching graph Gq" as shown in Figure 5.4, has 6 vertices and
9 edges. (In Figure 5.4, the numbers in bold are edge-weights.)

Since b4 + aq,(4) < /1 and b5 + aq,(5) > /1, we have io = 4, which means that
D' = (d~j) = bi+aq,(j) for all i,j :::; 4, and D" = (d'0) = max{/1, bi, aq,(j)} for all i,j > 4.
The weights of the edges as determined by Wi = Ciq,(i+I) + Ci+l,q,(i) - Ciq,(i) - Ci+1,q,(i+I)

are as follows: WI = W2 = W3 = 0, W4 = 4, W5 = 3, W6 = 5, W7 = 6, Ws = 7, and
Wg = 5. It is easy to see that T = {I, 3, 4, 5, 7} is an MST in Gq" and it is indicated in
bold line in Figure 5.4. The spanning tree contains three branches 1"(1,1),1"(3,5) and
1"(7,7). According to the patching scheme, we have to calculate the b-weight of the
tree, which is the sum of the three branches' b-weights. The b-weight of 1"(1,1) and
1"(7,7) is 0 and 6, respectively. Now let us consider the set of cities {3, 4, 5, 6} with
the corresponding distances extracted from the matrix D = (dij) = (Ciq,(j)). Using
the recursions introduced in Section 5.1, we can obtain

Q(I,2) = 57, Q(2, 1) = 66,

Q(2,3) = 66 + 64 = 130, Q(3,2) = 57 + 75 = 132,

Q(3,4) = min{66 + 90 + 77, 132 + 90} = 222,

Q(4,3) = min{57 + 83 + 75, 130 + 83} = 213.

Then we have C(73) = min{130 + 77, 132 + 75} = 207 and C(74) = min{222 + 83,
213 + 90} = 303. By backtracking, a shortest pyramidal tour on cities 3,4,5,6 is
74 = (3,5,6,4). The b-weight of branches 1"(3,4) and 1"(3,5) can thus be determined
as Wt4 = C(73) - L~=3 Ciq,(i) = 207 - 55 - 68 - 80 = 4 and W~,5 = c(74) - L~=3 Ciq,(i) =
303 - 55 - 68 - 80 - 90 = 10, respectively. Unfortunately, the inequality W~,5 >
W3 + W4 + W5 = 7 holds for this branch. In this case, another spanning tree may have
a lower b-weight. For instance, the spanning tree T' = {"2, 3, 5, 6, S} has a b-weight of

15, which is lower than wb(T) = WI + W~ 5 + w7 = 16. (Since T' contains no edge i o,
its b-weight can easily be calculated as w'b(T') = w(T') = 15.)

~

The above example demonstrates that the MST T may not have minimum
b-weight if W~o,jo > Who,jo' Thus we need to determine a minimum-b-weight spanning

76

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

tree T* for this case, which may contain a b-branch. Of course, if we knew which of
the b-branches has to be included in the patching tree, the other edges could easily be
found by any of the greedy algorithms for finding an MST, such as Kruskal's (1956)
algorithm. Hence, our focus here is on the selection of the b-branch. A straightforward
strategy would be to search through all possible b-branches. Before we present our
more efficient search procedure, we note that we cannot restrict the choices of the
b-branch only to sub-branches of I(ho, jo)-the b-branch of the MST T. For example,
if we decide to remove edge ho from the tree T (and from the branch I(ho,jo)), a
new edge has to be added to form a spanning tree in the patching graph. If the
edge selected happens to be the edge jo + 1, its addition will create a new branch
I'(ho + 1,jx) with jx > jo. For instance, in the example above, if we remove edge 3
from T and add edge 6, a new branch I' (4, 7) = {4, 5, 6, 7} will be created.

A b-branch must start with an edge Ti with 1 ~ h ~ io. We call such a branch
a bh -branch. Let h min be the minimal possible index of the starting edge of a b-branch
in the patching graph GQ>. The b-branches can then be chosen exclusively from among
bh-branches with h min ~ h ~ io. It is clear that h min can be easily determined as the
smallest index h (h ;::: 1) for which {Ti, h + 1, ... ,io} is a cycle-free path in GQ>' For
the example above, since it will create a cycle 1 -t 2 -t 1 when edge I is inserted, we
have h min = 2.

We are now ready to state our search strategy: For each h, hmin ~ h ~ io, first
find a minimum-b-weight spanning tree Tk in G<J> \ {h - 1} among all trees containing a
bh-branch (we define GQ> \ {a} = GQ». After this, find the minimum-b-weight spanning
tree Tb among the Tk -so

Next we give details of a linear-time procedure to find the tree Tk. This means
that the tree Tb can be obtained in O(n2) time. To find an MST when the underlying
graph changes, we use the following lemma from Ahuja, Magnanti, and Orlin (1993).

Lemma 5.2 Let T be an MST for a graph G. If an edge (i,j) ofT is removed from
G, which results in a graph G' = G\ {(i,j)} and two components ofT containing sets
of vertices V' and V", then T' = TU {(i', j')} \ {(i, j)} is an MST for G', where (i', j')
is an edge with the minimum weight in the cut [V', V"] of G' .

Proof. The proof follows from the "cut optimality conditions" for a minimum-weight
spanning tree. That is, for every edge (i,j) of T', its weight is not larger than the
weight of any edge (k, l) contained in the cut of G' formed by deleting edge (i,j)
from T'. See e.g., Theorem 13.1 in Ahuja, Magnanti, and Orlin (1993, p. 518) for
details. D

Given h, h min ~ h ~ io, we first find, if possible, a spanning tree Th in
G~ = GQ> \ {h - 1} with minimum weight W(Th) among all trees containing the edges

Ti, h + 1, ... ,io: Start with the initial working sub-tree {Ti, h + 1, ... ,io}, then Th can
be determined by Kruskal's MST algorithm, which keeps adding to the tree the next

77

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

smallest-weight edge from those that remain as long as it does not create a cycle.
It should be noted here that the removal of edge h - 1 from Gq, may disconnect
the patching graph, which would make finding a spanning tree in G~ impossible.

Therefore, if rh does not exist, then there is no Tk either; otherwise, let I(h, jh) =
{h, h + 1, ... , io, io + 1, ... ,jh} be the b-branch in rh. Then the b-weight of it can
be calculated as the b-weight of the branch I(h, jh) plus the weights of all edges
in Th \I(h,jh), i.e., wb(Th) = WLh + W(Th) - L:,{:hWk. For spanning trees of Gq,
which contain a bh-branch, there is a simple but very useful property as shown in the
following lemma.

Lemma 5.3 For any spanning tree T oj Gq, that contains a branch I(h, j) such that
j 2:: jh, its b-weight is not less than that OjTh' i.e., wb(T) 2:: wb(rh).

Proof.:... Notice that both Th and T have the edges h, h + 1, ... ,io, io + 1, ... ,jh.
Since Th has minimum weight among all spanning trees containing a bh-branch, the
total weight of the remaining edges of T is not less than the same in Th-that is,
W(Th) - L:,{:hWk. Moreover, as the b-weight fulfills the property W~j 2:: W~k + W~+l,j
for any i :s; k < j, it is easy to verify that wb(T) > Wk,jh + W(Th) - L:, {:h Wk =

b ~
W (Th). D

Lemma 5.3 tells us that we can restrict our search for the tree Tk only to
Th and trees containing sub-branches of I(h,jh). We will take advantage of this
observation in our search. If the b-weight of the branch I(h, jh) is the same as its
weight, i.e., Wk,jh = Wh,jh' then Tk = Th; otherwise, we assume without loss of
generality that jh 2:: io + 1. The search for Tk can be conducted by computing next,
one by one, the b-weights for the MST-s containing branches I(h,j - 1), j = io +
1, io + 2, ... ,jh. Notice that if we remove, for instance, edge"J for some j E rio + 1, jh]
from Th , then based on Lemma 5.2, the MST that contains the branch I(h, j -
1) = {h, h + 1, ... ,io, io + 1, ... ,j - 1}, if it exists, can be found by connecting two

components of Th \ {"J} by the edge s(j) with the minimum weight ws(j) in the cut

between the two components of Th \ {"J}. Furthermore, it is easy to verify that the

b-weight of this spanning tree is equal to W(Th) - L:,{=h Wk + ws(j) + WL-l· As we
already mentioned above, all b-weights W hb i ,Whb i +1' ... , wk J" can be calculated in

) 0 ,0 , h

linear time. At this point, the only question left to be answered is how to find in
linear time the "replacement" edges s(j) for all j with io + 1 :s; j ::; jh.

In order to identify the replacement edges, we represent the tree Th as a rooted
tree with the vertex (subtour) containing index io + 1 as the root. For each vertex u in
the tree Th, we assign a pointer p(u) to be the largest index of the edges from I(h,jh)
on the path from the root to vertex u. For the vertices for which the path from the
root does not contain any edge from I(h,jh) at all, we define p(u) = i o. For the root,

78

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

we assign its pointer to be i o. Now consider an edge I of G.p \ {h - 1}, which is not in

the tree Th. Suppose it connects vertices VI and V2 with P(VI) = hI and P(V2) = h2'
hI ::; h2. If hI < h2' then this edge can be used as a replacement edge after removing
anyone of the edges hI + 1, ... ,h2; otherwise, i.e. when hI = h2' it cannot be used
as a replacement for any edge"] with io + 1 ::; j ::; jh at all, as it will not be in
any cut between the two components of Th \ {"]}. Therefore, by looking through the

sorted list of edges (e.g., in non-decreasing order of weight) not included in 'h, we
can identify a best replacement edge, if possible, for each edge"] with io + 1 ::; j ::; jh.
Thus clearly, the entire replacement search can be executed in linear time.

Let h = 4 in the example above (see also Figure 5.5). It is easy to verify that an
MST of G.p \ {h - 1} = G.p \ {3} that contains a bh-branch is Th = T4 = {I, 4, 5, 6, 7}.
So I(h,jh) = I(4, 7). Note that edge 3 has been removed from the patching graph
G.p. The pointers p are defined as follows: P(cP4) = 4, P(cP5) = 5, P(cPI) = 6, p(cP6) = 7,
P(cP2) = 6, and P(cP3) = 4. Here edges '2, 8 and 9 are not in the tree. For edge '2,
as P(cPI) = P(cP2), it cannot be used as replacement for any of the edges 5, 6 and
7. For edge 8, as p(cP2) = 6 and p(cP6) = 7, it could be a replacement for edge
7. For edge 9, as P(cP4) = 4 and P(cP2) = 6, it could be a replacement for edges 5
and 6. Now let us determine the minimum-b-weight spanning tree T% in G.p \ {3}
among all trees containing a b4-branch. It is clear that the b-weight of branch I(4, 4)
is equal to W~ 4 = W4 = 4. Using the dynamic programming scheme, the b-weight
of branches I(4, 5), I(4,6), and I(4, 7) can be computed as follows: Consider the
set of cities {4, 5,6,7, 8} with the corresponding distances extracted from the matrix
D = (dij) = (Ci</>(j)). Compute the recursions

Q(1,2) = 75, Q(2, 1) = 77,

Q(2,3) = 77 + 90 = 167, Q(3,2) = 75 + 83 = 158,

Q(3, 4) = min{77 + 100 + 83, 158 + 100} = 258,

Q(4, 3) = min{75 + 95 + 90, 167 + 95} = 260,

Q(4,5) = min{77 + 110 + 83 + 95, 158 + 110 + 95, 260 + 110} = 363,

Q(5,4) = min{75 + 106 + 90 + 100, 167 + 106 + 100, 258 + 106} = 364.

Then we obtain C(T3) = min{167 + 83, 158 + 90} = 248, C(T4) = min{258 + 95,
260 + 100} = 353, and C(T5) = min{363 + 106, 364 + 110} = 469. This gives us
wts = C(T3) - L:~=4 Ci.p(i) = 248-238 = 10, Wt6 = C(T4) - L:J=4 Ci</>(i) = 353-338 = 15,

8 ~

and wt7 = C(TS) - L:i=4 Ci</>(i) = 469 - 448 = 21. Therefore, the tree T4 has a b-
weight of w b (T4) = WI + w~ 7 = 21. It is easy to verify that the MST-s containing
branches I(4, 4), I(4,5) and'I(4,6) are {I,4,6,7,9}, {I,4,5,7,9} and {I,4,5,6,8},
respectively. Furthermore, the b-weight of these trees is 20, 21 and 22, respectively.
Hence, we have T% = {I, 4, 6, 7, 9} and wb(T%) = 20.

Similarly, we can find that T3 = {I, 3, 4, 5, 7} in G</> \ {'2}. As already shown,
the computation of the b-weight for branch I(3,5) gives wt4 = 4 and w3,s = 10.

79

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

·· .. 9=(9,10)

.. ··· ..)=(2,3) ~

Figure 5.5: A rooted tree for edge replacement

Replacing edge 5 with edge 6 in 1'3, we obtain the tree {I, 3, 4,6, 7}. Its b-weight

is equal to WI + wg 4 + W6 + W7 = 15, which is lower than wb(T3) = WI + wg 5 +
W7 = 16. This yields Tg = {I, 3, 4, 6, 7} and wb(Tg) = 15. Again, beginning from

1'2 = {2, 3, 4, 5, 7} in Gt/> \ {I}, we can find that T~ = {2, 3, 4, 6, 7} and wb(T~) = 15.
Since both T~ and Tg have the same minimum b-weight among {T~, Tg, Tt}' we can
choose T~ or Tg for Tb.

Until now, we have assumed that the minimum-b-weight spanning tree T*
contains a b-branch. It is possible, however, that T* does n2t contain a b-branch at
all. For this scenario, we can simply find a spanning tree To with minimum weight
w(To) in Gt/> \ {io}. Clearly, To has minimum b-weight among all spanning trees that
do not have a b-branch. In the case of our example, To = {I, 3, 5, 6, 7} with a b-weight
(weight) of 14.

Finally, after Tb and To have been determined, we select for T* the one with
the lower b-weight. Since the entire search procedure is exhaustive in nature, T* is
obviously the optimal spanning tree for this problem.

Returning to our example, since To has the lowest b-weight, we have T* =
To = {I, 3, 5, 6, 7}. Now equipped with T*, an optimal tour T* can be obtained
by T* = ¢ 0 (1,2) 0 (3,4) 0 (7,8) 0 (6,7) 0 (5,6) = (1,3,7)(2,9)(4)(5,10)(6)(8) 0

(1,2) 0 (3,4) 0 (7,8) 0 (6,7) 0 (5,6). Note that we have followed the special order
of the optimal pyramidal subtour (5,8,7,6) while performing the transpositions of
the branch 7"(5,7). As a result, an optimal solution for the TSP is given by the
tour 1 ---7 9 ---7 2 ---7 3 ---7 4 ---7 7 ---7 6 ---7 10 ---7 5 ---7 8 ---7 1 with a length of
c(¢) + wb(T*) = 803 + 14 = 817.

The following algorithm is the straightforward summary of our overall solution
strategy.

80

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

Algorithm b-Decomposable
Input: A b-decomposable permuted Monge matrix CCP = (Cicp(j)) with the permuta
tion ¢.
Output: An optimal TSP tour.

BEGIN
Construct the patching graph Gq,;

Define the Monge matrix D = (dij) as dij = Ciq,(j);
Define the weights of the edges in Gcp by Wi = d i ,i+1 + di+l,i - d ii - di+l,i+1;

Sort the edges of G cp into non-decreasing order by the weights Wi;

Find an MST T of G cp trying to delay the inclusion of edge io in the tree as long
as possible;
IF T does not contain edge io THEN

Patch all subtours of ¢ by using edge-transpositions from T in the order of
an optimal pyramidal subtour for each of its branches.

ELSE

END

Find a spanning tree To with minimum weight in G cp \ { io };
Find a minimum-b-weight spanning tree Tb in Gcp among those containing a
b-branch;
IF the weight of To is less than the b-weight of Tb THEN

Patch all subtours of ¢ by using edge-transpositions from To in the order
of an optimal pyramidal subtour for each of its branches.

ELSE
Patch all subtours of ¢ by using edge-transpositions from Tb in the order
of an optimal pyramidal subtour for each of its branches.

Now let us consider the running time of the algorithm. It takes O(nlogn)
time to sort the edges of Gcf>. As previously described, l' and To can be found by
Kruskal's (1956) algorithm for the MST, which requires in this case only O(n) time
because the edges are in sorted order. Using the pointers, it takes O(n2) time to
determine all Tk-s and Tb. The time to perform each of the remaining procedures is
O(n). Therefore, the running time for the entire algorithm is O(n2). Thus we have
proved the following theorem.

Theorem 5.4 Let C = (Cij) be an n x n b-decomposable permuted Monge matrix with
an optimal assignment ¢. Then the TSP with distance matrix C is solvable in O(n2)

time.

5.3.2 A subclass with a faster solution

In the preceding section, we have studied TSP-s whose matrix can be decom
posed into two b-weight-additive sub-matrices. In this section, we show that this TSP

81

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

is solvable in O(n log n) time if one of the two sub-matrices is a sum matrix. In partic
ular, we establish that the bottleneck step of finding the minimum-b-weight spanning
tree Tb in Algorithm b-Decomposable can be executed in linear time. Without loss
of generality, we assume that the matrix D' = (d~j) for i,j ~ io is the sum matrix.

First, it is interesting to note that if the distance matrix is a sum matrix, then
for a given permutation 'Ij;, the cost of performing any transposition on 'Ij; is always
zero. Thus, when D' is a sum matrix, the edges of the patching graph Gcp can be
classified into two classes: The first class contains the edges z for i ~ io - 1, and
their weight is zero; the second class consists of the edges z for i 2:: io, which have
non-negative weight.

Now consider a series of edge-transpositions (i, i+ 1), (i+ 1, i+2), ... , (j,j + 1)
in Gcp with i < io -1 and j 2:: io. If we first perform, in any order, all transpositions for
i 2:: io -1, the remaining transpositions can always be performed with zero cost. This
observation implies that for any b-branch T(i,j) in Gt/> with i < io - 1, its b-weight
is the same as that of T(io - 1,j). Hence, while looking for T b , it is unnecessary
to consider those spanning trees that contain a bh-branch with h < io - 1. In other
words, to find a minimum-b-weight spanning tree Ti in Gt/> \ {h - 1} among all trees
containing a bh-branch, we need to consider only two cases, h = io - 1 and io, if
io > 1 or only one case, h = io, if io = 1. (In the example above, the two cases are
h = 3 and 4.) Therefore, the tree Tb can be found in only O(n) time and this yields a
conceptually simpler solution for the problem studied by Aneja and Kamoun (1999).

Corollary 5.5 Let C = (C;j) be an n x n b-decomposable permuted Monge matrix
in which one of the b-weight-additive components is a sum matrix. If an optimal
assignment ¢ is given for C, then a minimum b-weight spanning tree and an optimal
TSP tour can be found in O(nlogn) time.

Let us take a look again at the TSP studied by Aneja and Kamoun (1999)
and the K-component robotic scheduling problem in Chapter 3. The Monge matrix
D = Ct/> = (C;¢l(j)) in these cases can be split into a sum sub-matrix and a Gilmore
Gomory sub-matrix. Since the optimal assignment ¢ can be found by sorting the bi

and ai values so that bi ~ bi+! and acp(i) ~ acp(i+!), which requires O(nlogn) time, it
follows that these special cases of the TSP are solvable in O(nlogn) time.

5.4 Summary

We studied the TSP on a special case of permuted Monge matrices, called
b-decomposable matrices, where the corresponding Monge matrix can be partitioned
into two b-weight-additive sub-matrices. The study of this case of the TSP was
motivated by robotic scheduling problems. We have discussed how this new class
of matrices can be recognized in polynomial time. Based on the subtour-patching

82

CHAPTER 5 Ph.D. Thesis· McMaster· Management Science· Z. Xue

technique, we formulated the TSP on this special class of matrices as a minimum-b
weight spanning tree problem and described an O(n2) algorithm for it. Furthermore,
we considered a special case of b-decomposable matrices whose one component is a
sum sub-matrix, and showed that the optimal solution can be obtained faster for this
case. As a byproduct of this, we have given a new algorithm and a simpler proof for
the special TSP studied in Aneja and Kamoun (1999).

83

Chapter 6
Conclusions

"Science never solves a problem without creating ten more."
-George Bernard Shaw

We have studied several scheduling problems which generalize the classical
robotic-cell scheduling models. Two aspects of our scheduling models were distin
guished: reentrant processing and 1-K processing. We examined various robotic-cell
problems with respect to these new types of processing. In this process, we have clas
sified which problems in question are polynomially solvable and which are computa
tionally intractable. Specifically, we showed that the problems are strongly NP-hard
with three machines and presented polynomial solutions for a variety of two-machine
configurations. For the two-machine case, future developments may deal with more
complex systems incorporating multiple robots, as well as taking processing time
windows into account. Processing time window is a very general form of process
ing requirements that specify both the minimum and the maximum time a part can
spend on a machine. Such constraints arise in a vast array of practical situations.
For instance, in steel and chemical industry the duration of an annealing process can
neither be too short nor be too long because it would affect the products' quality or
characteristics.

A key factor in dealing with real-world robotic-cell problems is the development
of accurate methods of modelling production in robotic cells. In practical applica
tions, however, it is difficult to model all existing restrictions and costs properly in a
mathematical model: It is known that the classical m-machine robotic-cell scheduling
problems are already strongly NP-hard when m = 3 (Hall, Kamoun, and Sriskan
darajah 1998). The difficulty ofthe problems is compounded if additional constraints
(e.g., release and due time) are involved. These constraints reflect requirements in
certain real-life production environments. In this regard, a realistic approach is to
decompose complex problems into relatively independent and tractable subproblems.
Here we can perhaps take advantage of a hierarchical modelling strategy whereby
a complicated problem is broken into pieces, each piece is modeled, and the pieces
are stitched together in such a fashion that they form a comprehensive model for
the underlying phenomenon-an issue which is worthy of further investigation. It is
needed to point out that a number of the assumptions made in the analysis of reen
trant and 1-K processing in the robotic cells, such as identical components and equal

84

CHAPTER 6 Ph.D. Thesis· McMaster· Management Science· Z. Xue

number of components for all parts, may not always be valid in practice. However,
these efforts have yielded considerable insights into the structure of these hitherto
little examined problems, which might be used as a guideline for designing pragmatic
solutions (e.g., heuristics) to larger problems. For example, the efficient algorithms
for the two-machine case can offer a basis for fast practical algorithms when m ~ 3.
Of course, extensive research on developing algorithms for the different types of part
processing found in automated manufacturing environment, as well as computational
experiments using real data, are required before solid conclusions as to the viability of
these methods can be reached. Our work indicates this is a fruitful avenue to pursue.

There are numerous deterministic scheduling problems arising in the reentrant
processing environment of which this thesis addressed only a few (Middendorf and
Timkovsky 2002). We simply paid some attention to robotic-cells and problems which
we believed to be particularly important and interesting. We hope that our work will
spawn some interest along this line of research.

For the scheduling problem J21mj ::; 31Gb we have reduced it to the RF21l =
31Gmax problem. This important result turns out to be very useful. By taking a
closer look at the previous results on the RF21l = 31Cmax problem, we provided
extended results, which can be handily applied to J21mj ::; 31Ct . Although the exact
complexity status of the RF21l = 31Gmax problem remains an open question, we now
have a better understanding of the mysterious nature of the problem. Definitely,
determining its complexity status will be of great importance because it sheds light
on other hard open questions in job shop scheduling.

It is interesting to compare the two-machine job shop problem with cycle time
and makespan objectives. When there is no idle time in the beginning of the schedule,
the J21mj ::; 31Gt problem is easily seen to be identical to the makespan version of the
problem, which is denoted by J21mj ::; 3lGmax • The exact complexity status of the
J21mj ::; 31Gmax problem is a long-standing open question (Lenstra, Rinnooy Kan,
and Brucker 1977). In view of the above, one could suspect that the J21mj ~ 31Cmax

problem can also be handled by a similar approach as for J21mj ~ 31Ct . Recent
results, however, suggest that one should be cautious here. Properties shared by
an optimal schedule for the cycle time minimization problem may not carryover
to the makespan minimization problem. It is worth mentioning that an optimal
schedule for the J21mj ::; 31Gmax problem is not necessarily a permutation schedul~
which perhaps makes this problem more intricat~in contrast to the situation for
the J21mj ::; 31Gt problem. Here a job shop schedule is said to be a permutation
schedule if in any stage the jobs with the same processing route are processed in the
same sequence. See Drobouchevitch and Strusevich (1998) for details.

Jansen, Solis-aba, and Sviridenko (2003) have recently studied the makespan
minimization in an m-machine job shop where each job has at most k operations, i.e.,
the Jmlmj ::; klGmax problem. They described a linear time approximation scheme
for it. It is not difficult to verify that this approximate result is applicable to the

85

CHAPTER 6 Ph.D. Thesis· McMaster· Management Science· Z. Xue

cycle time version of the problem as well, i.e., the Jmlmj :::; klCt problem. (For an
NP-hard cost-minimization problem II, an algorithm is said to be a polynomial time
approximation scheme (PTAS) if for every instance I of II and for every € > 0, it
always returns a solution whose cost is at most (1 + €) times the optimal cost and its
running time is bounded by a polynomial in the size of instance I.)

Finally, we have studied special cases of the traveling salesman problem on
permuted Monge matrices, which arose from the robotic-cell scheduling problems.
With respect to these special cases of the TSP, we defined a new class of matrices
b-weight-additive matrices-as a subclass of permuted Monge matrices for which the
b-weight of any branch is equal to the total weight of the edges in that branch.
Although these matrices can be recognized in O(n2) time combining Park's (1991)
method for computing the b-weights with the algorithm for recognizing permuted
Monge matrices, it remains an open question how to recognize and characterize them
by algebraic properties. Another interesting question worthy of further probing is
whether our polynomial-time solution approach can be extended to larger class of
distance matrices.

86

Bibliography
Agnetis, A. 2000. Scheduling no-wait robotic cells with two and three machines.

European Journal of Operational Research 123:303-314.

Agnetis, A., D. Pacciarelli, and F. Rossi. 1996. Lot scheduling in a two-machine cell
with swapping devices. lIE Transactions 28:911-917.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network flows: Theory, algo
rithms, and applications. Upper Saddle River, NJ: Prentice Hall.

Aneja, Y. P. and H. Kamoun. 1999. Scheduling of parts and robot activities in a two
machine robotic cell. Computers and Operations Research 26:297-312.

BlaZewicz, J., K. H. Ecker, E. Pesch, G. Schmidt, and J. W~glarz. 2001. Scheduling
computer and manufacturing processes. 2d ed. Berlin, Germany: Springer
Verlag.

Brucker, P. 2001. Scheduling algorithms. 3d ed. Berlin, Germany: Springer-Verlag.

Burdyuk, V. Y. and V. N. Trofimov. 1976. Generalization of the results of Gilmore
and Gomory on the solution of the traveling salesman problem. Engineering
Cybernetics 14:12-18.

Burkard, R. E., V. G. De'lneko, R. van Dal, J. A. A. van der Veen, and G. J. Woeg
inger. 1998. Well-solvable special cases of the traveling salesman problem: A
survey. SIAM Review 40:496-546.

Burkard, R. E., B. Klinz, and R. Rudolf. 1996. Perspectives of Monge properties in
optimization. Discrete Applied Mathematics 70:95-161.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. 2001. Introduction to
algorithms. 2d ed. Cambridge, MA: The MIT Press.

Crama, Y., V. Kats, J. van de Klundert, and E. Levner. 2000. Cyclic scheduling in
robotic fiowshops. Annals of Operations Research 96:97-124.

Crama, Y. and J. van de Klundert. 1997. Cyclic scheduling of identical parts in a
robotic cell. Operations Research 45:952-965.

Drobouchevitch, I. G. and V. A. Strusevich. 1998. Heuristics for short route job shop
scheduling problems. Mathematical Methods of Operations Research 48:359-375.

87

BIBLIOGRAPHY Ph.D. Thesis· McMaster· Management Science· Z. Xue

Drobouchevitch, I. G. and V. A. Strusevich. 1999. A heuristic algorithm for two
machine re-entrant shop scheduling. Annals of Operations Research 86:417-439.

Elliott, D. J. 1989. Integrated circuit fabrication technology. 2d ed. New York, NY:
McGraw-Hill.

Ernst, A. T., H. Jiang, M. Krishnamoorthy, and D. Sier. 2004. Staff scheduling and
rostering: A review of applications, methods and models. European Journal of
Operational Research 153:3-27.

Ganesharajah, T., N. G. Hall, and C. Sriskandarajah. 1998. Design and opera
tional issues in AGV-served manufacturing systems. Annals of Operations Re
search 76:109-154.

Garey, M. R. and D. S. Johnson. 1979. Computers and intractability: A guide to the
theory of NP-completeness. San Francisco, CA: W. H. Freeman.

Gilmore, P. C. and R. E. Gomory. 1964. Sequencing a one state-variable machine: A
solvable case of the traveling salesman problem. Operations Research 12:655-
679.

Gilmore, P. C., E. L. Lawler, and D. B. Shmoys. 1985. Well-solved special cases. In
The traveling salesman problem: A guided tour of combinatorial optimization,
ed. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys,
87-143. Chichester, England: John Wiley & Sons.

Graham, R. L., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. 1979.
Optimization and approximation in deterministic sequencing and scheduling:
A survey. Annals of Discrete Mathematics 5:287-326.

Graves, S. C., H. C. Meal, D. Stefek, and A. H. Zeghmi. 1983. Scheduling of re-entrant
flow shops. Journal of Operations Management 3:197-207.

Hall, N. G., H. Kamoun, and C. Sriskandarajah. 1997. Scheduling in robotic cells:
Classification, two and three machine cells. Operations Research 45:421-439.

Hall, N. G., H. Kamoun, and C. Sriskandarajah. 1998. Scheduling in robotic cells:
Complexity and steady state analysis. European Journal of Operational Re
search 109:43-65.

Hall, N. G., T.-E. Lee, and M. E. Posner. 2002. The complexity of cyclic shop
scheduling problems. Journal of Scheduling 5:307-327.

Hertz, A., Y. Mottet, and Y. Rochat. 1996. On a scheduling problem in a robotized
analytical system. Discrete Applied Mathematics 65:285-318.

88

BIBLIOGRAPHY Ph.D. Thesis· McMaster· Management Science· Z. Xue

Hurink, J. and S. Knust. 2001. Makespan minimization for flow-shop problems with
transportation times and a single robot. Discrete Applied Mathematics 112:199-
216.

Ioachim, I., E. Sanlaville, and M. Lefebvre. 2001. The basic cyclic scheduling model
for robotic flow shops. INFOR 39:257-277.

Jansen, K., R. Solis-aba, and M. Sviridenko. 2003. Makespan minimization in job
shops: A linear time approximation scheme. SIAM Journal on Discrete Math
ematics 16:288-300.

Johnson, S. M. 1954. Optimal two- and three-stage production schedules with setup
times included. Naval Research Logistics Quarterly 1:61-68.

Kabadi, S. N. 2002. Polynomially solvable cases of the TSP. In The traveling salesman
problem and its variations, ed. G. Gutin and A. P. Punnen, 489-583. Dordrecht,
The Netherlands: Kluwer Academic Publishers.

Kats, V. and E. Levner. 2002. Cyclic scheduling in a robotic production line. Journal
of Scheduling 5:23-41.

Kise, H. 1991. On an automated two-machine flowshop scheduling problem with
infinite buffer. Journal of the Operations Research Society of Japan 34:354-
361.

Kise, H., T. Shioyama, and T. Ibaraki. 1991. Automated two-machine flowshop
scheduling: A solvable case. IIE Transactions 23:10-16.

Kruskal, J. B. 1956. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7:48-50.

Kubiak, W., S. X. C. Lou, and Y. Wang. 1996. Mean flow time minimization in
reentrant job shops with hub. Operations Research 44:764-776.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. 1993. Se
quencing and scheduling: Algorithms and complexity. In Logistics of production
and inventory, ed. S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, 445-
522. Volume 4 of Handbooks in operations research and management science.
Amsterdam, The Netherlands: Elsevier Science Publishers.

Lee, C.-Y., L. Lei, and M. Pinedo. 1997. Current trends in deterministic scheduling.
Annals of Operations Research 70:1-41.

Lee, T.-E. and M. E. Posner. 1997. Performance measures and schedules in periodic
job shops. Operations Research 45:72-91.

89

BIBLIOGRAPHY Ph.D. Thesis· McMaster· Management Science· Z. Xue

Lenstra, J. K., A. H. G. Rinnooy Kan, and P. Brucker. 1977. Complexity of machine
scheduling problems. Annals of Discrete Mathematics 1:343-362.

Lev, V. and I. Adiri. 1984. V-shop scheduling. European Journal of Operational
Research 18:51-56.

Levner, E. and V. Kats. 1998. A parametric critical path problem and an application
for cyclic scheduling. Discrete Applied Mathematics 87:149-158.

Levner, E., K. Kogan, and 1. Levin. 1995. Scheduling a two-machine robotic cell: A
solvable case. Annals of Operations Research 57:217-232.

Levner, E., K. Kogan, and O. Maimon. 1995. Flowshop scheduling of robotic cells
with job-dependent transportation and set-up effects. Journal of the Operational
Research Society 46:1447-1455.

Middendorf, M. and V. G. Timkovsky. 2002. On scheduling cycle shops: Classifica
tion, complexity and approximation. Journal of Scheduling 5:135-169.

Noble, P. J. W. 1989. Printed circuit board assembly: The complete works. New York,
NY: Halsted Press.

Panwalkar, S. S. 1991. Scheduling of a two-machine flowshop with travel time between
machines. Journal of the Operational Research Society 42:609-613.

Papadimitriou, C. H. 1994. Computational complexity. Reading, MA: Addison-Wesley
Publishing Company.

Park, J. K. 1991. A special case of the n-vertex traveling-salesman problem that can
be solved in O(n) time. Information Processing Letters 40:247-254.

Pinedo, M. 2002. Scheduling: Theory, algorithms, and systems. 2d ed. Upper Saddle
River, N J: Prentice Hall.

Reddi, S. S. and C. V. Ramamoorthy. 1972. On the flow-shop sequencing problem
with no wait in process. Operational Research Quarterly 23:323-331.

Sarvanov, V. 1. 1980. On the complexity of minimizing a linear form on a set of cyclic
permutations. Soviet Mathematics - Doklady 22:118-120.

Sethi, S. P., C. Sriskandarajah, G. Sorger, J. Blazewicz, and W. Kubiak. 1992. Se
quencing of parts and robot moves in a robotic cell. The International Journal
of Flexible Manufacturing Systems 4:331-358.

Sriskandarajah, C., N. G. Hall, and H. Kamoun. 1998. Scheduling large robotic cells
without buffers. Annals of Operations Research 76:287-321.

90

BIBLIOGRAPHY Ph.D. Thesis· McMaster· Management Science· Z. Xue

Stankovic, J. A., M. Spuri, K. Ramamritham, and G. C. Buttazzo. 1998. Deadline
scheduling for real-time systems: EDF and related algorithms. Boston, MA:
Kluwer Academic Publishers.

van de Klundert, J. 1996. Scheduling problems in automated manufacturing. Ph.D.
diss., University of Limburg, Maastricht, The Netherlands.

Vazirani, V. V. 2001. Approximation algorithms. Berlin, Germany: Springer-Verlag.

Wang, M. Y., S. P. Sethi, and S. L. van de Velde. 1997. Minimizing makespan in a
class of reentrant shops. Operations Research 45:702-712.

91

