THE ROLE OF BONE MARROW INFLAMMATORY CELL PROGENITORS IN ALLERGEN-INDUCED ASTHMA

By

SANDRA C. DORMAN, B.Sc.

A Thesis
Submitted to the School of Graduate Studies
In Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy

McMaster University

© Copyright by Sandra Christine Dorman, July 2004
EOSINPHILOPOIESIS IN ASTHMA

(Physiology and Pharmacology) Hamilton, Ontario

TITLE: The Role of Bone Marrow Inflammatory Cell Progenitors in Allergen-Induced Asthma

AUTHOR: Sandra C. Dorman
B.Sc. (University of Guelph)

SUPERVISOR: Dr. P.M. O’Byrne

SUPERVISORY COMMITTEE: Dr. R. Sehmi
Dr. J.A. Denburg
Dr. M. D. Inman
Dr. G. Cox

NUMBER OF PAGES: xx, 123
ABSTRACT

Asthma is a chronic airways disease characterised by recurrent episodes of wheezing and variable airflow obstruction, which is usually reversible spontaneously or with treatment, and with airway hyperresponsiveness, and airway inflammation. Allergen inhalation by sensitized, atopic asthmatics enhances airway hyperresponsiveness and inflammation, providing a useful model to study allergic asthma.

The aim of this thesis was to characterise the allergen-induced changes in bone marrow eosinophil/basophil (Eo/B) progenitors, their ability to migrate out of the bone marrow and to determine whether these cells accumulate in the airways to participate in the allergen-induced airway inflammatory response. In addition, this thesis attempted to investigate the importance of pro- and anti-inflammatory cytokines and chemokines which contribute to the migration and differentiation of these cells. Bone marrow aspirates, blood and sputum samples were obtained from subjects at various time points both before and following allergen inhalation challenge.

In comparison to isolated early responders, who develop no allergen-induced late asthmatic responses or airway hyperresponsiveness, bone marrow Eo/B progenitor numbers were increased in dual responders, who develop marked allergen-induced airway eosinophilia and airway hyperresponsiveness. Increases in IL-3-responsive progenitors were detected as early as 5 hours post-allergen, and IL-5-responsive progenitors at 12 and 24 hours post-allergen in dual responders only. Bone marrow, blood and sputum IL-5 protein levels increased at 12 and 24 hours in dual responders only and these increases correlated with...
increases in IL-5-responsive progenitors. Additionally, bone marrow IFN-γ levels increased in dual responders at 48 hours coinciding with decreases in bone marrow Eo/B progenitors.

Expression of the receptor for eotaxin (CCR3) was detected on primitive (CD34 immunopositive cells) and eosinophil-lineage committed progenitors (CD34⁺IL-5Rα⁺ cells) by flow cytometry and confirmed by co-localization of CCR3 messenger RNA to CD34⁺ cells using in-situ hybridization. When pre-allergen was compared to 24 hours post-allergen levels, significant increases in bone marrow CD34⁺CCR3⁺ cells were detected in dual responders, who also developed a significant sputum and blood eosinophilia and increased methacholine airway responsiveness. In contrast, a significant attenuation of bone marrow CD34⁺CCR3⁺ cells was observed in isolated early responders. In a dose dependent fashion eotaxin, but not IL-5, stimulated CD34⁺ progenitor cell migration in vitro.

Allergen-induced dual responders also developed a significant decrease in bone marrow SDF-1α 24 hours post-allergen while developing a significant increase in circulating eotaxin and CXCR4⁺ cells. These findings indicate that the bone marrow actively participates in the development and persistence of allergen-induced airway inflammation and the participation is regulated by IL-3, IL-5 and eotaxin and down-regulation of SDF-1α for differentiation and migration.

Eo/B progenitors also migrate into the airway as part of the allergen-induced inflammatory response. In comparison to diluent control, sputum CD34⁺ cells increased at 7 hours following allergen inhalation, an effect which was sustained at 24 hours in the dual responder group only, associated with sustained increases in sputum CD34⁺IL-5Rα⁺ cells,
eosinophils and IL-5 protein levels. These findings indicate that CD34+ cells increase in the airways post-allergen inhalation and have the potential to respond to IL-5, contributing to allergen-induced asthma.

This thesis has demonstrated time-dependent changes in cytokine levels in airway, blood and bone marrow coordinating the activation, recruitment and differentiation of eosinophil/basophil progenitors from the bone marrow to the airways. Furthermore, the activation and trafficking of eosinophil progenitors is more pronounced in asthmatics developing a late inflammatory airway response with associated airway hyperresponsiveness and pronounced eosinophilia. Eosinophil/basophil progenitors, potentially regulated by inflammatory cytokines appear to play an important role in the inflammatory process associated with allergic asthma.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank Dr. Paul O’Byrne for accepting me as a graduate student in his laboratory. From the beginning I knew that Dr. O’Byrne would not lead me astray in the hectic world of research and he has not. Paul is a truly inspirational mentor, especially when you begin to feel uncertain or discouraged. He has a remarkable ability to create enthusiasm for a project and I know this fuels much of the creativity within his lab. For these reasons and many more, thank you Paul.

I would also like to thank my Supervisory Committee, namely, Dr. Roma Sehmi, Dr. Mark Inman, Dr. Judah Denburg and Dr. Gerald Cox. You have all challenged me and made me a stronger and better person and I will never forget any of you.

I am indebted to Dr. Ronan Foley and Dr. Graham Jones, for faithfully coming in week after week, year after year and performing the bone marrow aspirates. It was time away from your family and your work, without which, I would not have succeeded – so thank you both very much.

Many, many thanks to the McMaster crew: Dr. Kieran Killian, who faithfully arrives everyday to oversee patients as well as provide the verbal repartee that kept me on my toes. Dr. Killian has enriched my life in many ways. During our many runs together he instructed me on the ‘ways of the world.’ For this I am very grateful and will miss our chats immeasurably; Dr. Gail Gauvreau took me under her wing early on and has always been a source of inspiration to me both as a woman researcher and as a true friend; Dr. Lorna Wood, taught me everything I know in the laboratory, including the miss-pronunciation of words
such as 'calf.' She also taught me that things outside of the lab are just as, if not more important than things inside; Thanks to Rick Watson for not only being the best respiratory technician on the planet (I am convinced) but for also being a grayt friend; Thanks to George Obminski for his upbeat outlook and all his help with both the subjects and with my computer woes and; I also thank Joceline Otis for her expertise and her undying patience in ‘doing things right.’

Last but not least, I thank my husband Tim for being so understanding and so giving of his love and support. I thank my parents and my sister for always standing by me, for encouraging me, for listening and for keeping my spirits high. For these reasons and many more, I would like to dedicate this thesis to all of you.
TABLE OF CONTENTS

TITLE PAGE ... i
DESCRIPTIVE NOTE ... ii
ABSTRACT .. iii
ACKNOWLEDGEMENTS ... vi
TABLE OF CONTENTS .. viii
LIST OF ABBREVIATIONS .. xii
LIST OF TABLES ... xv
LIST OF FIGURES ... xvi
PREFACE .. xviii

CHAPTER 1: INTRODUCTION .. 1

Asthma ... 1
Allergen Inhalation Challenge .. 2
Eosinophils in Airway Inflammation 4
Hematopoiesis ... 8
Eosinophilopoiesis .. 11
Evidence for Bone Marrow Progenitor Activation in Asthma 12
Progenitor Cell Trafficking .. 13
Evidence for In situ Hematopoiesis 16
CHAPTER 2: KINETICS OF BONE MARROW EOSINOPHILOPOIESIS AND ASSOCIATED CYTOKINES AFTER ALLERGEN INHALATION

CHAPTER 3: ALLERGEN-INDUCED FLUCTUATION IN CC CHEMOKINE RECEPTOR 3 EXPRESSION ON BONE MARROW CD34+ CELLS FROM ASTHMATIC SUBJECTS: SIGNIFICANCE FOR MOBILIZATION OF HAEMOPOIETIC PROGENITOR CELLS IN ALLERGIC INFLAMMATION
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

CHAPTER 4: SDF-1α AND EOTAXIN'S ROLE IN PROGENITOR CELL EGRESS FROM THE BONE MARROW AFTER ALLERGEN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>53</td>
</tr>
<tr>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>Methods</td>
<td>57</td>
</tr>
<tr>
<td>Results</td>
<td>62</td>
</tr>
<tr>
<td>Discussion</td>
<td>67</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>72</td>
</tr>
<tr>
<td>References</td>
<td>73</td>
</tr>
</tbody>
</table>

CHAPTER 5: SPUTUM CD34⁺IL-5Rα⁺ CELLS INCREASE AFTER ALLERGEN: EVIDENCE FOR IN SITU EOSINOPHILOPOEISIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>87</td>
</tr>
<tr>
<td>Introduction</td>
<td>87</td>
</tr>
</tbody>
</table>

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>APAAP</td>
<td>Alkaline phosphatase anti-alkaline phosphatase</td>
</tr>
<tr>
<td>BAL</td>
<td>Bronchoalveolar lavage fluid</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BFU-E</td>
<td>Burst forming unit-erythroid</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>DR</td>
<td>Dual responder</td>
</tr>
<tr>
<td>EAR</td>
<td>Early asthmatic response</td>
</tr>
<tr>
<td>Eo/B CFU</td>
<td>Eosinophil/basophil colony forming unit</td>
</tr>
<tr>
<td>ECP</td>
<td>Eosinophil cationic protein</td>
</tr>
<tr>
<td>EDN</td>
<td>Eosinophil derived neurotoxin</td>
</tr>
<tr>
<td>EPO</td>
<td>Eosinophil peroxidase</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced expiratory volume in 1 second</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein-5-isothiocyanate</td>
</tr>
<tr>
<td>FSC</td>
<td>linear forward light scatter</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulocyte colony stimulating factor</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte/macrophage colony stimulating factor</td>
</tr>
<tr>
<td>GM-CFU</td>
<td>Granulocyte/macrophage colony forming unit</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HDM</td>
<td>House dust mite - D. Farinae</td>
</tr>
<tr>
<td>HPSC</td>
<td>Hematopoietic stem cells</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IER</td>
<td>Isolated early responder</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IL-R</td>
<td>Interleukin receptor</td>
</tr>
<tr>
<td>LAR</td>
<td>Late asthmatic response</td>
</tr>
<tr>
<td>MBP</td>
<td>Major basic protein</td>
</tr>
<tr>
<td>Meg-CFU</td>
<td>Megakaryocytic colony forming unit</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>Macrophage inflammatory protein - alpha</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>NAMC</td>
<td>Non-adherent mononuclear cells</td>
</tr>
<tr>
<td>PAF</td>
<td>Platelet activating factor</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PC<sub>20</sub></td>
<td>Provocative concentration required to cause a 20% fall in FEV<sub>1</sub></td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>PLP</td>
<td>Periodate-lysine PFA</td>
</tr>
<tr>
<td>SDF-1α</td>
<td>Stromal cell-derived factor – 1 alpha</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SSC</td>
<td>Linear side-angle light scatter</td>
</tr>
<tr>
<td>RANTES</td>
<td>Regulated on activation normal T expressed and secreted</td>
</tr>
<tr>
<td>RW</td>
<td>Ragweed</td>
</tr>
<tr>
<td>Th2</td>
<td>T helper 2</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>WBC</td>
<td>White blood cell count</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1 Subject characteristics ... 33
Table 2.2 Airway responses ... 34
Table 2.3 Bone marrow responses ... 36
Table 3.1 Subject characteristics and allergen-induced airway responses 44
Table 3.2 Allergen-induced changes in sputum, peripheral blood and bone marrow
eosinophils ... 46
Table 3.3 Summary of FACs data from peripheral blood 48
Table 3.4 Hemopoietic activity of eotaxin ... 49
Table 4.1 Allergen-induced airway responses .. 77
Table 4.2 Fluctuations in chemokine receptor expression on bone marrow progenitor
cells following allergen challenge ... 78
Table 5.1 Subject allergen and diluent-induced airway responses 88
Table 5.2 Summary of baseline data from induced sputum 89
LIST OF FIGURES

Figure 2.1	Airway responsiveness to methacholine PC$_{20}$ at baseline (BL) and following allergen inhalation	34
Figure 2.2	Changes in sputum, blood and bone marrow eosinophils measured	35
Figure 2.3	Allergen-induced changes in Eo/B-CFU	37
Figure 2.4	Allergen-induced changes in protein levels of IL-5 and IFN-γ in serum and bone marrow supernatant	37
Figure 3.1	Detection of CC chemokine receptor 3 (CCR3) expression on bone marrow CD34$^+$ cells from an atopic asthmatics by multi-gating flow cytometry	45
Figure 3.2	Detection of CC chemokine receptor 3 (CCR3) and interleukin-5 receptor subunit alpha (IL-5Rα) coexpression on CD34$^+$ cells by flow cytometry	47
Figure 3.3	Allergen-induced changes in CD34$^+$ cells and CD34$^+$ cells co-expressing interleukin 5 receptor subunit alpha (IL-5Rα) and CC chemokine receptor 3 (CCR3) in bone marrow aspirates	47
Figure 3.4	Transwell migration assay of bone marrow CD34$^+$ cells in vitro	48
Figure 3.5	Interleukin-5 (IL-5) priming of bone marrow CD34$^+$ cells migratory responses in vitro	48
Figure 4.1	Flow cytometric enumeration of progenitor cell populations in bone marrow aspirates	79
Figure 4.2	Trans-well migration assay of bone marrow progenitor cells	80
Figure 4.3	Allergen-induced changes in CD34$^+$45$^+$ cells in bone marrow aspirates and peripheral blood	81
Figure 4.4	Allergen-induced changes in CXCR4 and CCR3 expression on CD34$^+$45$^+$ cells from bone marrow aspirates and peripheral blood	82
Figure 4.5 Changes in *in vitro* migrational responsiveness of bone marrow progenitor cells following allergen challenge... 83

Figure 4.6 Allergen-induced changes in SDF-1α and eotaxin levels from bone marrow supernatants and plasma... 84

Figure 5.1 Allergen and diluent-induced changes in sputum eosinophil numbers..89

Figure 5.2 Allergen and diluent-induced changes in sputum CD34⁺ cells and CD34⁺IL-5Rα⁺ cells.. 89

Figure 5.3 Allergen and diluent-induced changes in sputum IL-5 protein levels......90
PREFACE

The following studies have been submitted or accepted for publication and form the basis of chapters two, three, four and five of this thesis:

ALLERGEN-INDUCED FLUCTUATION IN CC CHEMOKINE RECEPTOR EXPRESSION ON BONE MARROW CD34+ CELLS FROM ASTHOMATIC SUBJECTS: SIGNIFICANCE FOR MOBILIZATION OF HAEMOPOIETIC PROGENITOR CELLS IN ALLERGIC INFLAMMATION. Roma Sehmi, Sandra C. Dorman, Adrian Baatjes, Rick M. Watson, Ronan Foley, Sun Ying, Douglas S. Robinson, A. Barry Kay, Paul M. O'Byrne, and Judah A. Denburg.
Published: Immunology. 2003; 109(4):536-46.

TRANSMIGRATIONAL RESPONSES OF PROGENITOR CELLS TO EOTAXIN AND SDF-1α IN HUMANS. Sandra C. Dorman, Irene Babirad, Julia Post, Rick M. Watson, Ronan Foley, Graham L. Jones, Paul M. O'Byrne and Roma Sehmi
Submitted: Journal of Allergy and Clinical Immunology

SPUTUM CD34+IL-5Ra+ CELLS INCREASE AFTER ALLERGEN: EVIDENCE FOR IN SITU EOSINOPHILOPOIESIS. Sandra C. Dorman, Ann Efthimiadis, Irene Babirad, Rick M. Watson, Judah A. Denburg, Frederick E. Hargreave, Paul M. O'Byrne, and Roma Sehmi
These studies are clinical studies, completed by the Asthma Research Group in Hamilton, Canada involving the collection of bone marrow aspirates, blood and sputum from human volunteers to assess the activation and migrational responses of progenitor cells following allergen-induced airway responses. These allergen challenge studies required input from many people. Dr. Paul O’Byrne provided and organized the financial support, laboratory space, equipment and technical support. Dr. Kieran Killian supervised the clinical procedures and provided expertise during screening and testing of research subjects. Rick Watson and George Obminski carried out the clinical procedures including allergen and methacholine challenges. Dr. Ronan Foley and Dr. Graham Jones performed the bone marrow aspiration procedures. Julia Post, Irene Babirad and Shauna Denis provided technical support to collect and analyse sputum samples. Dr. Roma Sehmi offered considerable expertise and laboratory space to analyse collected samples. Dr. Judah Denburg, Dr. Gail Gauvreau, Dr. Mark Inman and Dr. Gerald Cox provided additional knowledge and support.

I am the first author on three of the papers which form the basis of this thesis. I was involved with the planning and design of all of the experiments and submitted the proposals outlining the purpose, methods and analysis of the experiments. I was involved with the clinical procedures and performed methacholine and allergen inhalation challenges, sputum induction, blood sampling and I assisted with the bone marrow aspirations. I was responsible for all the subsequent assays on the samples collected including sputum processing, methylcellulose tissue culture, migration assays and cytochemical and immunochemical
staining of the cells. Pilot studies were required to modify the cytokine levels for the samples collected in these experiments. I collected the data and completed the required statistical analyses for each study. The figures and tables included in each paper are my own work and although feedback was provided by the other authors of the papers, it was my responsibility to write each paper.

I am also second author on one of the papers comprising the thesis. In this study I was involved in the clinical procedures as described above and was responsible for the preparation of the bone marrow samples for the subsequent flow cytometric analysis. In collaboration with Dr. Roma Sehmi, I was involved in the preparation of the figures and statistical analyses and provided input into the preparation of the manuscript for this study.
CHAPTER 1
INTRODUCTION

Asthma

The National Heart, Lung and Blood Institute’s Second Expert Panel on the Management of Asthma has defined bronchial asthma as:

“a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role, in particular, mast cells, eosinophils, T lymphocytes and epithelial cells,” (Expert Panel Report 2 1997).

This inflammatory process causes recurrent episodes of airway obstruction, characterized by wheezing, breathlessness, chest tightness and a cough that often is worse at night and in the early morning (Szefler 2004). These episodes, are usually reversible either spontaneously or with treatment. The inflammatory process, or its consequences in airway remodelling, is also associated with the other physiological hallmark of asthma which is an increase in airway hyperresponsiveness to a variety of stimuli (Hargreave et al, 1981). Asthma prevalence rates and incidence has been shown to steadily increase in the world making it a global health concern (American Lung Association 2000).

Environmental allergens are one important cause of asthma and allergen-induced asthma is characterized by an inappropriate immune response to airborne substances. This is associated with a preferential Th2 type immune dominance (Corrigan et al, 1990) and an increased infiltration of eosinophils (Holgate et al, 1992), which are bone marrow-derived inflammatory cells, into the lungs. The effector functions of T cells are determined by the array of cytokines that they produce (Janeway et al, 2001). Th2 type cytokines include interleukin (IL)-4 and IL-13 which, along with B cell ligation via
CD40, initiates the humoral immune response by activating naïve antigen-specific B cells to produce IgE antibodies (Anderson et al, 1995). Other Th2 type inflammatory chemokines and cytokines include, GM-CSF, eotaxin, IL-3, IL-5, and IL-10, all of which are capable of increasing either eosinophil differentiation, activation or recruitment (Wardlaw et al, 1995). Blood and airway eosinophil numbers and severity of asthma are positively correlated (Wardlaw et al, 1988), suggesting a causal role for eosinophils, especially since eosinophil-derived products can contribute to the tissue damage seen in asthma (Houston et al, 1953). Many of the current approaches being studied today to treat allergy and asthma are examining mechanisms to block the differentiation, recruitment and activation of this cell type.

Allergen Inhalation Challenge

Allergen inhalation challenge by sensitized subjects can result in two distinct physiological responses. These are the allergen-induced early response resulting in bronchoconstriction developing within minutes after inhalation of the allergen. This bronchoconstriction is caused by the release of chemical mediators from IgE-coated mast cells, including histamine, cysteinyl leukotrienes and prostaglandins (Gordon et al, 1990), which collectively, cause a rapid increase in airway vascular permeability and contraction of airway smooth muscle (Beasley et al, 1989; Busse 1998; Mulder et al, 1999). This response is transient and usually resolves between 1 to 3 hours (Bentley et al, 1997).

In some individuals, the early response is followed by the development of a late phase response (Booij-Noord et al, 1972; Herxheimer 1952). The late-phase response
can begin as early as 2 hours after allergen inhalation and is characterized by bronchoconstriction, airway inflammation and increased airway responsiveness. The inflammatory component is due to the release of inflammatory mediators including cysteinyl leukotrienes, chemokines and cytokines from the activated mast cells and other cells, possibly including the airway epithelial cells, and airway smooth muscle cells, inducing smooth muscle contraction, airway edema and the recruitment of inflammatory leukocytes in particular, eosinophils, basophils and Th2 lymphocytes (Bentley et al, 1997). These infiltrating cells then provide the potential for an additional source of mediators enhancing the inflammatory response (Weersink et al, 1994). Increased airway responsiveness can be demonstrated using inhaled bronchoconstrictor agonists such as methacholine or histamine. This increase is usually measured 24 hours after allergen inhalation and can persist for several days or even weeks (Cockcroft et al, 1977).

Early and late-phase asthmatic responses can be elicited by experimental challenge in the laboratory (O'Byrne et al, 1987). The development of bronchoconstriction is measured using forced expiratory volume in one second (FEV$_1$) (O'Byrne et al, 1987), which is a reliable and reproducible, albeit indirect, measure of airway caliber. During this test, patients are asked to inspire to total lung capacity and then to exhale as rapidly as possible into a spirometer that records expired air over time. Experimental allergen inhalation challenge, classically involves inhalation of doubling concentrations of allergen until the FEV$_1$ has fallen by 20% of its baseline value. The FEV$_1$ is then monitored every 10 minutes until 30 minutes, every 15 until 90 minutes, again at 120 minutes and then every hour for 7 to 12 hours. (O'Byrne et al, 1987)
Early studies using this clinical model, demonstrated that only 50% of atopic adult asthmatics challenged with inhaled allergens develop both an early and a late asthmatic reaction (dual responders) (Booij-Noord et al, 1972). Those that do not go on to develop late airway responses (isolated early responders) do not develop marked or persisting airway hyperresponsiveness post-allergen inhalation (Cockcroft et al, 1977).

Since the development of dual asthmatic responses after allergen inhalation is known to be associated with increases in inflammatory cells in the airway and this development can be quantified in a laboratory setting (Gauvreau et al, 2000), it allows for a useful clinical model to study increased inflammatory airway responses and associated airway functional changes, by separating subjects into isolated early responders and dual responders.

Eosinophils in Airway Inflammation

Eosinophils are granule-containing cells that can secrete major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidase (EPO) and eosinophil-derived neurotoxin (EDN), all of which can directly cause contraction of smooth muscle (Coyle et al, 1994). In addition, they contain lipid bodies which store arachidonic acid and enzymes, including cyclo-oxygenase and 5-lipoxygenase which are capable of producing prostaglandins and leukotrienes respectively. Eosinophils are also able to synthesize cytokines and chemokines which can increase the overall inflammatory response (Giembycz et al, 1999).
The association between bronchial asthma and eosinophilia in the blood, sputum and tissue is strong and has been noted since the early 1900's (Ellis et al, 1908). However, the debate about a central role of the eosinophil in asthma continues. A causative role has been difficult to prove. While it is generally agreed that the symptoms and alterations in airway physiology are the result of inflammation, in the past, no direct assessment of inflammation of the airways has been used to establish a diagnosis.

Autopsy findings from patients that died during an acute severe asthmatic episode have provided considerable information about the pathological changes seen in the airways. The general pathologic changes include sub-epithelial fibrosis, goblet cell hyperplasia, mucous gland hypertrophy, smooth muscle hyperplasia, mucous plugging, airway edema, epithelial sloughing, increased vascular permeability and inflammatory cellular infiltrate (Laitinen et al, 1994). It has been hypothesized that this ‘airway remodeling’ is the consequence of long standing airway inflammation. Biologically, eosinophils have several features which would allow them to contribute directly to the inducement of these pathological findings. MBP, ECP and EPO have all been shown to cause extensive epithelial damage with epithelial sloughing as seen in asthma (Ayars et al, 1989; Gundel et al, 1991; Motojima et al, 1989). Positive correlations were observed between the concentrations of MBP, the numbers of desquamated epithelial cells in BAL fluid and the degree of bronchial hyperresponsiveness (Wardlaw et al, 1988). In addition, decreases in MBP levels are measurable in successful asthma therapy (Gleich et al, 1979). Further evidence for a role of MBP in asthma comes from Gundel et al.
demonstrating that instillation of MBP into the trachea of primates causes a dose-dependent increase in airway hyperresponsiveness (Gundel et al, 1991).

Other products released from eosinophils include platelet activating factor (PAF) and cysteinyi leukotrienes (Cromwell et al, 1990; Weller et al, 1983). PAF has a number of proinflammatory activities including leukocyte chemoattractant and activating agent (Wardlaw et al, 1986). Inhalation of PAF causes bronchoconstriction in humans and increases in bronchial hyperresponsiveness (Cuss et al, 1986). Eosinophils can produce substantial quantities of PAF (Cromwell et al, 1990). Cysteinyi leukotrienes also exhibit a number of biological properties that may be relevant to asthma including smooth muscle contraction, mucous hypersecretion and increased vascular permeability. Cysteinyi leukotrienes are currently targeted directly in asthma therapy with varying degrees of success (Reviewed in (O'Byrne, 1997)).

Lastly, eosinophils are known to be able to produce proinflammatory cytokines and chemokines including interleukin(IL)-5, Granulocyte/macrophage-colony stimulating factor (GM-CSF), IL-3, IL-8, macrophage inflammatory protein (MIP)-1alpha and regulated on activation normal T expressed and secreted (RANTES)(Braun et al, 1993; Broide et al, 1992; Costa et al, 1993; Kita et al, 1991; Nakajima et al, 1996). Production of these cytokines as well as an ability to present allergen, via major histocompatatibily complex (MHC) II, to T cells gives eosinophils the ability to not only be terminal effectors in asthma, but to also elicit immunomodulatory effects; that being the ability to drive naïve T cells towards a Th2 phenotype (Lucey et al, 1989; Weller et al, 1993).
Eosinophilic infiltration into the airways has in the past, been shown to be significantly correlated with allergen-induced late asthmatic responses (Wardlaw et al., 1988) and subjects developing an early and late asthmatic response also develop significantly greater airway and circulating eosinophilia (Takanashi et al., 1995). In addition, sputum eosinophilia has been shown to correlate with asthma severity (Bousquet et al., 1990) and with airway hyperresponsiveness in asthmatics (Louis et al., 2002; Walker et al., 1991); however, eosinophil numbers in biopsies and sputum have not consistently correlated with bronchial hyperresponsiveness in subjects with mild asthma (Djukanovic et al., 1990; Rosi et al., 1999).

Recently, a study reported by Leckie et al. has intensified the scrutiny of the role of eosinophils in asthma. This group infused a humanized monoclonal antibody against IL-5 into atopic asthmatic subjects and showed significantly decreased circulating eosinophil counts. They also described a lack of effect on the development of allergen-induced late asthmatic response, or airway hyperresponsiveness and concluded that eosinophils were not essential in the development of these features of allergic asthma (Leckie et al., 2000). Unfortunately, this study was not adequately designed to properly evaluate the role of airway eosinophils in these responses (O'Byrne et al., 2001). Animal studies examining the eosinophil's role in asthma have been equally contradictory and inconclusive (Corry et al., 1998; Hogan et al., 1997; Hogan et al., 1998; Karras et al., 2000; Lee et al., 1997; Mathur et al., 1999; Shardonofsky et al., 1999).

Inhalation of IL-5 by asthmatic subjects has been shown to cause increased airway eosinophilia and airway hyperresponsiveness (Shi et al., 1997). Furthermore,
human studies continuing the examination of anti-IL-5's ability to deplete eosinophils, found that eosinophils in the tissues of the airways and in the bone marrow are only reduced by 50% and treatment had no appreciable effect on eosinophil MBP levels (Flood-Page et al., 2003; Menzies-Gow et al., 2003). No changes in clinical measures of asthma were noted in this study, however since eosinophils were not depleted in the airways, conclusive statements could not be made. Similarly, Kips et al. using a different anti-IL-5 monoclonal antibody found significant reductions in blood eosinophils, without significant differences in sputum eosinophils in subjects with severe persistent asthma treated with oral or high doses of steroids (Kips et al., 2003). As yet, eosinophils cannot be excluded as a target for asthma therapy and in fact, current results provide support for the increased examination of this cell type.

Hematopoiesis

Hematopoetic Stem Cells (HPSC) are self-renewing progenitors that give rise to all lineages of blood cells and are found in all hematopoietic organs, including the bone marrow, blood and spleen of adults (Chertkov 1986). The generation of mature cells from these pluripotent stem cells involves the highly regulated progression through successive stages including commitment to a specific cell lineage, terminal differentiation of lineage restricted progenitors and growth arrest (Bedi et al., 1995). The majority of HPSC are thought to be dormant (G₀) or in the steady state of the cell cycle, with only a few cells supplying all of the hematopoietic cells at a given time. HPSC are capable of extensive replication from which daughter cells may either replace the HPSC or
differentiate along a hematopoietic lineage. The mechanisms controlling the decision to
differentiate or renew are unknown, but two theories currently predominate. The
stochastic model (Till et al, 1964) proposes that the HPSC randomly divide and commit
to either differentiation or self-renewal. Considerable evidence exists to support this
concept (Leary et al, 1984; Leary et al, 1985; Suda et al, 1983; Suda et al, 1984; Till et

Alternatively, the inductive model argues that lineage commitment is dependent
on external stimuli, particularly cytokines, which alter gene transcription and regulate the
survival of cell colonies (Ogawa 1993; Williams et al, 1990). A number of different
cytokines are involved in regulating and modulating hematopoiesis, many of which have
now been identified and characterized, at least at the cellular level. Cytokine effects
include the proliferation/differentiation, survival/programmed cell death and
migration/homing of stem cells (Byung et al, 2000). Cytokine activity can be categorized
as stimulatory, inhibitory or co-stimulatory, although some cytokines can elicit more than
one activity, either via different cell types or different receptors.

It is now generally agreed that a combination of the two proposals exist.
Stochastic processes may determine the preferred differentiation pattern of HPSC
daughter cells, but these may be reinforced or overridden, by external factors along the
developmental pathway (Inman et al, 1998). Whatever the mechanism, the further
differentiation of cells gives rise to committed progenitors which can proliferate and
mature along a single pathway.
An important component to the development and functioning of HPSC is the hemopoietic microenvironment. The marrow stroma tissue is a network of cells which physically support and can directly influence HPSC proliferation, differentiation and migration (Naeim et al, 1996). Accessory cells to the stroma, including T cells and monocytes can also contribute to the microenvironment by secreting multiple cytokines (Mayani et al, 1992). Overall, microenvironmental cells can influence hemopoiesis in either a positive or negative way, by different mechanisms including: direct cell-to-cell contact; secretion of proteins constituting the extracellular matrix and; via the production of cytokines. It is evident that more than one of these mechanisms can operate simultaneously (Mayani et al, 1992).

The development of in vitro assays for hematopoietic progenitor cells has significantly contributed to our knowledge of the regulation of hemopoiesis. Due to the scarcity of progenitor cells in hematopoietic tissue, these cells could only be quantified by their ability to produce clones and these were grown in semisolid media. These 'clones' are made up of a single cell capable of giving rise to a hematopoietic cell colony, termed a 'colony forming unit (CFU)'. The various CFU that can be identified using this technique are, the erythroid (Burst forming unit-erythroid - BFU-E), megakaryocytic (Meg-CFU), granulocyte/macrophage (GM-CFU), eosinophil/basophil (Eo/B-CFU) and lymphocyte-CFU (Pre-B and Pre-T) (Naeim et al, 1996). Identification of progenitor colonies is based on a combination of distinct morphological characteristics and immunohistochemical staining.
More recently, flow cytometry has been used to identify and isolate progenitors based on the expression of cell surface markers. Systematic functional analysis of cell surface antigen expression has led to the identification of rare populations highly enriched for stem cell activity. The cell surface sialomucin-like adhesion molecule CD34 was originally discovered as the result of a strategy to recognize subsets of human marrow cells, but not mature blood and lymphoid cells (Civin et al, 1984). It is now used as a convenient marker for HPSC. CD34 is expressed on 1-5% of mononuclear bone marrow cells, on a subpopulation of hematopoietic cells - both HPSC and early committed progenitors (Krause et al, 1996).

Eosinophilopoiesis

Eosinophils share a common progenitor with basophils (Denburg et al, 1985) and the major cytokines controlling the production of these cell types are IL-3, GM-CSF and IL-5 (Denburg et al, 1989). Of these IL-3 and GM-CSF appear to be important for expansion of the stem cell populations and IL-5 appears to be the growth factor involved in commitment and maturation of the myeloid cells along the eosinophil (Clutterbuck et al, 1989) and basophil pathway (Denburg et al, 1989). Significantly, IL-5, the cytokine responsible for eosinophil survival, activation, migrational responses and adhesion to endothelium for extravasation is an eosinophilopoietin (Clutterbuck et al, 1988). Furthermore, the mRNA for the IL-5 receptor alpha (IL-5Rα) has been co-localized to CD34+ cells, indicating that this may be the phenotype of the earliest Eo/B lineage-committed progenitor cell (Sehmi et al, 1997).
Evidence for Bone marrow Progenitor Activation in Asthma

Evidence for a role for bone marrow progenitors, in particular eosinophil/basophil progenitors in asthma, began with studies that demonstrated: i) elevated blood levels of Eo/B-CFU in atopic subjects compared with normals (Otsuka et al, 1986; Otsuka et al, 1987); ii) increased circulating Eo/B-CFU during acute asthma exacerbations and following allergen inhalation challenge in atopic asthmatics (Gibson et al, 1990; Gibson et al, 1991); iii) increases in Eo/B-CFU during seasonal exposure to allergen in allergic rhinitis (Linden et al, 1999). Together, these results provided indirect evidence that changes in circulating progenitor cell numbers reflected dynamic hemopoietic processes within the bone marrow and supported the hypothesis for progenitor cell transmigration from bone marrow to blood.

The first studies to examine changes in the bone marrow were performed in a dog model and showed significant increases in the number of GM-CFU colonies grown 24 hours after allergen inhalation. In dogs that develop bronchoconstriction with allergen inhalation, the only cell which increases in bronchoalveolar lavage after allergen is the neutrophil (Woolley et al, 1994). Therefore, an increase in GM-CFU was an appropriate bone marrow response. Furthermore, in a murine model, it was demonstrated that intranasal or airway challenge with specific antigen, elicited an airway eosinophilic inflammatory response with significantly increased Eo/B CFU production from the bone marrow (Denburg et al, 1996; Inman et al, 1999).

Wood et al. (Wood et al, 1998) were the first to examine the number of bone marrow Eo/B-CFU grown from humans both before and 24 hours after allergen challenge
in dual and isolated early responders. They found that bone marrow progenitors from dual responders significantly increased 24 hours post-allergen and were more responsive to IL-5 than isolated early responders, consistent with the induction of a late asthmatic response (Wood et al., 1998). This work was supported by work done by Sehmi et al. which showed an increase in IL-5Rα/CD34+ cells from dual responders 24 hours after allergen inhalation challenge (Sehmi et al., 1997). The coinciding increase in both eosinophils and eosinophil/basophil progenitors, in dual responders only, has led to the hypothesis that the bone marrow hemopoietic processes are an essential component to the persistence of airway eosinophilia. As such, Th2 cytokines, with the ability to promote the terminal differentiation and maturation of eosinophil committed lineages, are likely important in promoting eosinophilopoiesis within the bone marrow. In agreement with this, Wood et al. demonstrated significant increases in the number of CD3+ cells expressing IL-5 mRNA in the bone marrow of dual responders compared to isolated early responders 24 hours post-allergen inhalation (Wood et al., 2002). Recent findings now suggest that hematopoietic processes outside of the bone marrow also contribute to the persistence of airway eosinophilia.

Progenitor Cell Trafficking

In conjunction with activation of eosinophilopoiesis within the bone marrow, allergen inhalation challenge may also trigger the release of primitive and lineage-committed progenitors into the blood. The majority of HPSC are located in the bone marrow, but over the last 40 years, it has become clear that among circulating peripheral
blood cells are a low number of progenitor cells (Barnes et al, 1967). During steady state hematopoiesis, HPSC give rise to mature erythrocytes and leukocytes that enter the circulation along with a minimal number of stem cells. During inflammatory states or following the administrations of hematopoietic growth factors more HPSC are mobilized. However, circulating progenitor cells still retain the capability to repopulate the hematopoietic compartment of the bone marrow (homing).

Trafficking, mobilization and homing of HPSC are multifactorial processes that are regulated partially at the level of the bone marrow endothelium. Recruitment from the bone marrow to the blood is an important but poorly understood early step in egress and likely involves down-regulation of specific adhesive interactions, increased motility, migration through the hematopoietic compartment, and transmigration across the sinus endothelium. There also appears to be a chemokinetic as well as a chemoattractive component to mobilization and egress. Recent studies have indicated in particular the chemokine, stromal cell-derived factor-1 alpha (SDF-1α) and its receptor CXCR4, to be involved in regulation of mobilization and homing of HPSC (Aiuti et al, 1997; Mohle et al, 1998; Naiye et al, 1999; Peled et al, 1999).

SDF-1α is a member of the CXC chemokine family and is a potent chemoattractant for hematopoietic stem cells (Murdoch 2000). SDF-1α interacts with its sole G-protein coupled receptor CXCR4 and together are thought to be critical to bone marrow stromal cell homing as mice deficient in either of these molecules have dramatically reduced hematopoiesis (Nagasawa et al, 1996)
CD34+ cells migrate towards SDF-1α in a concentration dependent manner, (Aiuti et al, 1997; Jo et al, 2000; Kim et al, 1998) and inhibition of this migration has been reported and correlated with down-regulation of receptor expression, desensitization of receptor signaling or both (Kollet et al, 2001; Peled et al, 1999; Petit et al, 2002).

In addition to migrational responses, studies have also shown a role for SDF-1α/CXCR4 interactions in the retention of progenitor cells within the bone marrow. Petit et al. had previously demonstrated that Granulocyte-colony stimulating factor (G-CSF) enhanced the number of circulating CD34+ cells (Petit et al, 2002). Liles et al. expanded this work, examining circulating CD34+ cells stimulated with a CXCR4 antagonist, AMD-3100, in comparison and in combination with G-CSF. They found that AMD 3100 significantly increased circulating CD34+ cells after administration, although not significantly greater than those induced by G-CSF. However, the combination of AMD 3100 and cytokine further enhanced the release of CD34+ cells (Liles et al, 2003).

SDF-1α is a highly basic protein that binds avidly to negatively charged molecules including heparan sulfate-like glycosaminoglycans. These molecules capture SDF-1α on cell surfaces and on the extracellular matrix within the bone marrow and facilitate the establishment of local concentration gradients as well as providing attachment sites for progenitor cells (Sweeney et al, 2002). Thus is has been suggested that in homeostatic conditions, many SDF-1α molecules are in an immobilized state. Release and egress of progenitors therefore, is thought to be partially mediated through the inhibition of progenitor attachment to the bone marrow sinus endothelium (Sweeney et al, 2002).
HPSC can also be mobilized from the bone marrow following stimulation with various agents, including hematopoietic growth factors, inflammatory cytokines, chemokines and complement components (Lapidot et al, 2002). Eotaxin, an important inflammatory chemokine up-regulated in asthma (Lamkhioued et al, 1997), has been shown to selectively stimulate the rapid egress of eosinophil progenitor cells from the bone marrow sinuses of guinea pigs into the peripheral circulation (Palframan et al, 1998). It is likely that inflammatory cytokines like eotaxin act by both directly stimulating progenitor cells and by down-regulating adhesion molecules upon the bone marrow endothelial cells.

The purpose of HPSC mobilization is unclear. Possibly, the circulating progenitor cells are just on their way to niches at other bone marrow sites (van der Schoot et al, 1994), however the fact that progenitor mobilization increases during inflammation, a state associated with the increased production and release of inflammatory cells suggests that mobilization serves another purpose.

Evidence for In situ Hematopoiesis

The earliest studies examining in situ hematopoiesis of the airways were performed by Otsuka et al. using nasal-polyp tissue (Otsuka et al, 1987). This group demonstrated that fluctuations in circulating metachromatic cell progenitors were inversely related to nasal metachromatic cell counts and nasal symptoms in allergic rhinitis (Otsuka et al, 1986). They continued this area of research and quantified nasal metachromatic cell progenitors from nasal polyp tissue using colony assays. In the same
study, highly potent metachromatic cell colony stimulating activity was detected in the supernatants from cultured nasal epithelial scrapings, from atopic polyp nasal mucosa only (Otsuka et al, 1987). Onishi et al. in a similar study showed that hemopoietic progenitor cells can be recruited to and subsequently induced to differentiate within nasal allergic mucosa (Ohnishi et al, 1988). Together, these results provided indirect evidence that changes in airway inflammation reflects dynamic hemopoietic processes within the airway tissue and support the hypothesis for progenitor cell transmigration from blood to airway where they can mature in situ into effector cells stimulated by locally produced cytokines.

More recently, Robinson et al. have demonstrated an increase in CD34+ cells in the airways of atopic asthmatics and atopic non-asthmatics compared to normal control subjects. They suggest that patients with chronic inflammation recruit progenitor cells to the site of inflammation (Robinson et al, 1999). Further evidence comes from human studies where CD34+ cells have been extracted from nasal polyp and nasal explant tissue and shown to undergo IL-5-driven proliferation and differentiation into Eo/B-CFU in-vitro and ex-vivo highlighting the presence of true blast cells (Cameron et al, 1999; Kim et al, 1999). Together these studies suggest that mobilization of progenitor cells can lead to recruitment and local expansion within tissues contributing to local production of inflammatory cells.

The aim of this thesis is to examine the role of bone marrow inflammatory cell eosinophil/basophil progenitors in allergen-induced airway inflammation and airway hyperresponsiveness with respect to the following hypothesis:
Overall Hypothesis

Allergen-induced airway inflammation and its associated late responses and airway responsiveness is propagated in part by the activation, mobilization and recruitment of bone marrow eosinophil/basophil progenitors, leading to the increased numbers of airway eosinophils after allergen inhalation.

Specific Hypothesis

1) Allergen inhalation will be associated with time-dependent fluctuations in the number of eosinophil/basophil progenitor cells in the bone marrow, peripheral blood and airways of atopic asthmatic subjects.

2) The allergen-induced changes in eosinophil/basophil progenitors correlate with changes in eosinophil numbers in the bone marrow, blood and airways.

3) The quality and quantity of changes in eosinophil/basophil progenitors differ in subjects with different degrees of airway inflammation and differences in the magnitude of the allergen-induced physiological responses.

4) The differences between subjects with different degrees of airway inflammation will correlate with changes in blood and bone marrow pro-inflammatory cytokines and chemokines.
References

Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. 1997. The chemokine SDF-1α is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185[1]: 111-120.

Herxheimer, H. 1952. The late bronchial reaction in induced asthma. International Archives of Allergy, 3: 323-328.

Nakajima, T., Gleich G. J., & Kita, H. 1996. Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. The Journal of Immunology 156[12]: 4859-4866.

O'Byrne, P. M., Inman, M. D., & Paramswaram, K. 2001. The trials and tribulations of IL-5, eosinophils, and allergic asthma. Journal of Allergy and Clinical Immunology, 108[4]: 503-508.

O'Byrne, P. M. 1997. Leukotrienes in the pathogenesis of asthma. Chest, 111: 27S-34S.

CHAPTER 2

KINETICS OF BONE MARROW EOSINOPHILPOIESIS AND ASSOCIATED CYTOKINES AFTER ALLERGEN INHALATION

Published in the American Journal of Respiratory and Critical Care Medicine in 2004

Sandra Dorman’s contribution:

Experimental design
Collection of clinical data
Processing of laboratory samples
Identification and quantification of colonies
Analysis of data
Preparation of manuscript
Kinetics of Bone Marrow Eosinophilopoiesis and Associated Cytokines after Allergen Inhalation

Sandra C. Dorman, Roma Sehmi, Gail M. Gauvreau, Rick M. Watson, Ronan Foley, Graham L. Jones, Judah A. Denburg, Mark D. Inman, and Paul M. O'Byrne

Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph's Healthcare, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada

Allergen inhalation is associated with increased eosinophil/basophil progenitors in bone marrow 24 hours after allergen inhalation. This study examined the kinetics of eosinophilopoiesis in dual (n = 14), compared with isolated early, responders (n = 12). Dual responders, in contrast to isolated early responders, develop significant sputum and blood eosinophilia and prolonged airway hyperresponsiveness. Bone marrow aspirates were taken before and 5, 12, 24, and 48 hours after allergen inhalation. In dual responders, increases in interleukin (IL)-3-responsive progenitors were detected as early as 5 hours after allergen inhalation, and IL-5-responsive progenitors were detected at 12 and 24 hours. No changes were detected in isolated early responders. Bone marrow IL-5 protein levels increased at 12 and 24 hours in dual responders only and these increases correlated with increases in IL-5-responsive progenitors. In addition, bone marrow IFN-γ levels increased in dual responders at 48 hours. These data demonstrate that in dual responders, there is allergen-induced activation of an eosinophilopoietic process that is rapid and sustained, and a relationship between increased bone marrow IL-5 levels and increased eosinophil production. We propose that after allergen inhalation, time-dependent changes in cytokine levels in the bone marrow control differentiation of eosinophil/basophil progenitors.

Keywords: allergy; cellular differentiation; eosinophils; human; lung

Asthma is recognized by the presence of reversible bronchoconstriction, airway hyperresponsiveness (AHR), and airway inflammation. Environmental allergens are an important cause of asthma and can be studied in the laboratory by allergen inhalation challenge. Allergen inhalation challenge in sensitized subjects typically induces an immediate bronchoconstriction (the early asthmatic response), which is maximized within 30 minutes and resolves between 1 and 3 hours. A proportion of subjects will proceed to develop a second, delayed bronchoconstrictor response (the late asthmatic response), which is associated with prolonged AHR and pronounced airway eosinophilia (1-4). Although in a given individual the development of either a single or a dual response is generally consistent, it is believed that the development of the late response occurs as a continuum within and between individuals, largely on the basis of the dose of allergen inhalated (5). The development of the late response and associated increase in airway responsiveness results in a lowering of the threshold for subsequent allergen exposure, setting up a vicious circle for continuing allergic inflammation in the airways (6, 7).

The size of the late response and the increase in AHR have been shown to correlate with the degree of airway eosinophilia (8). Likewise, studies comparing numbers of circulating eosinophils have shown significant increases 24 hours after allergen inhalation in dual responders only (9-11). Eosinophils, through their ability to release granule-associated proteases, including pro-inflammatory lipid mediators and cytokines, are considered to play a central role in the development of airway inflammation leading to the production of the late asthmatic response. This role, however, is based on circumstantial evidence and identifying mechanism(s) contributing to the development of tissue eosinophilia will provide a better understanding of the importance of this cell in asthma (12-14). There is now substantial evidence supporting the view that activation of specific hematopoietic pathways within the bone marrow is associated with allergen-induced eosinophilic airway inflammation. Early studies demonstrated higher numbers of circulating eosinophil/basophil colony-forming units (Eo/B-CFU) and CD34+IL-5Ra+ (Interleukin (IL)-5 receptor-positive) cells 24 hours after allergen inhalation in dual responders (15, 16). In addition, bone marrow IL-5-responsive Eo/B-CFU were shown to increase 24 hours after allergen inhalation only in dual responders (17). The coinciding increases in both eosinophils and eosinophil progenitors in dual responders only, has led to the hypothesis that the bone marrow hematopoietic processes are an essential component to the persistence of airway eosinophilia. As such, helper T cell Type 2 cytokines, with the ability to promote the terminal differentiation and maturation of eosinophil-committed lineages, are likely important in promoting eosinophilopoiesis within the bone marrow. In agreement with this, we have shown significant increases in the number CD34+ cells expressing IL-5 mRNA in the bone marrow of dual responders compared with isolated early responders 24 hours after allergen inhalation (18). In addition, Sehmi and coworkers have demonstrated a significant increase in the number of bone marrow-derived CD34+ cells expressing IL-5Ra 24 hours after allergen inhalation challenge in dual, but not isolated early, responders (16). Together these results suggest that an IL-5-driven phenotypic switch in the bone marrow environment occurs in dual responders only, favoring eosinophil production and contributing to the development of blood and airway eosinophilia. On the basis of this view, it is plausible that, in isolated early responders—who do not develop a significant or sustained eosinophilic response—cytokines such as IFN-γ and IL-10 may be produced that downmodulate the helper T cell Type 2 environment and therefore prevent or ameliorate the development of airway eosinophilia.

The aims of the current study were twofold. The first was to investigate whether the short-lived airway eosinophilic response mounted by early responders is due to a limited activation of bone marrow eosinophilopoietic processes. For this reason, we examined the changes in bone marrow eosinophilopoiesis, before and 5, 12, 24, and 48 hours after allergen inhalation, both in isolated early and dual responders. The second was to investigate whether any observed differences in bone marrow responsiveness
between the two groups is due to the differences in bone marrow cytokines, including the cytokines necessary for eosinophilopoiesis (IL-5 and IL-3) and the downregulatory cytokines (IFN-γ and IL-10). Overall, understanding how these changes relate to AHR and airway inflammation will help to understand the importance of bone marrow eosinophilopoiesis in the persistence of allergen-induced airway responses.

These results have been previously reported in abstract form (19).

METHODS

Subjects/Design

Twenty-six subjects were included in the study. Subjects were screened and, after allergen inhalation, isolated early responders (n = 12) developed an early fall in FEV₁ > 20% predicted from baseline between 0 and 2 hours, whereas dual responders developed an early and late fall (FEV₁ > 15% predicted) from baseline between 3 and 7 hours (n = 14). Subjects were nonsmokers, using inhaled β₂-agonists intermittently (withheld 8 hours before each visit), and had not experienced respiratory infection or were exposed to altered allergen levels > 2 weeks before allergen inhalation. One subject withdrew because of discomfort from aspiration. Six additional subjects were studied to examine the direct effects of IFN-γ on Eo/B-CFU. This study was approved by McMaster University Health Sciences Centre Ethics Committee and subjects gave written, informed consent before enrollment.

Because of difficulty in obtaining five consecutive bone marrow aspirations, the study was randomized into phases. In Phase 1, aspirates and blood were taken at baseline, and at 5 and 24 hours. Sputum was induced at 7, 24, and 48 hours, and methacholine PC₂₀ (provocative concentration inducing a 20% fall in FEV₁) was measured 24 hours after allergen inhalation. In Phase 2, aspirates and blood were taken at baseline and at 12 and 48 hours, sputum was induced at 7, 24, and 48 hours, and methacholine PC₂₀ was measured 24 and 48 hours after allergen inhalation. Phases were separated by 1 month.

TABLE 1. SUBJECT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>FEV₁ (% Predicted)</th>
<th>Allergen (Inhaled Dilution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IER</td>
<td>2</td>
<td>29</td>
<td>101.2 (Cat:1:8)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24</td>
<td>85.3 (Cat:1:32)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>30</td>
<td>93.9 (HDM:1:16)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>26</td>
<td>117.1 (Cat:1:6)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>24</td>
<td>92.2 (Grass:1:1,024)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>23</td>
<td>98.6 (Cat:1:64)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>51</td>
<td>80.2 (Cat:1:8)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>21</td>
<td>98.9 (Cat:1:64)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>27</td>
<td>98.7 (Grass:1:512)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>19</td>
<td>86.7 (HDM:1:16)</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>23</td>
<td>91.4 (HDM:1:128)</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>39</td>
<td>78.5 (HDM:1:128)</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>27.8 ± 2.37</td>
<td>84.2 ± 3.18</td>
<td></td>
</tr>
</tbody>
</table>

DR	1	26	74.2 (RW:1:512)
	2	23	93.1 (HDM:1:64)
	7	26	85.1 (Cat:1:16)
	9	24	77.8 (RW:1:128)
	11	23	97.3 (HDM:1:256)
	12	52	90 (Cat:1:64)
	13	33	81.9 (Grass:1:2,048)
	16	40	109.4 (HDM:1:128)
	19	32	84.5 (RW:1:256)
	21	41	78.4 (Cat:1:64)
	22	19	84.5 (RW:1:1,024)
	24	27	81.7 (HDM:1:128)
	26	26	90.4 (HDM:1:1,024)
Mean ± SEM	30.5 ± 2.77	86.9 ± 2.81	

Definition of abbreviations: DR = dual responders; HDM = house dust mite (Dermatophagoides farinae); IER = isolated early responders; RW = ragweed.

Allergen/Methacholine Inhalation Challenge

Methacholine inhalation was performed as described by Cockcroft (20). Allergen inhalation challenge was performed as described by O'Byrne and coworkers (21).

Sputum Induction

Sputum was induced and processed according to Popow and coworkers (22). Slides were stained with Congo red and counts from duplicate slides (400 cells per slide) were expressed as a percentage. Immunocytochemical staining was performed with murine monoclonal antibodies to human eosinophil cationic protein (QB2, 0.1 µg/ml; Pharmacia, Uppsala, Sweden).

Bone Marrow Eosinophil/Basophil Progenitors and Blood

Bone marrow aspiration and Eo/B-CFU culture and enumeration were performed according to Wood and coworkers (17). Nondiluent mononuclear cells were cultured with diluent, recombinant human (rh)IL-5 (1 ng/ml), rhIL-3 (1 ng/ml), and rhGM-CSF (granulocyte-macrophage colony-stimulating factor, 10 ng/ml).

Six additional samples were cultured with diluent, recombinant human rhIL-5 (1 ng/ml), and rhIFN-γ (1, 0, 10, and 100 ng/ml) (BD Biosciences Pharmingen, San Diego, CA).

Blood (400 cells per slide) and bone marrow (1,000 cells per slide) smears were stained with Diff-Quick (VWR International, West Chester, PA) and counts from duplicate slides were expressed as a percentage. Sputum and bone marrow supernatants were stored at -70°C. IL-5, IL-3, IL-10, and IFN-γ were quantified using ELISAs (BD Biosciences Pharmingen). The lower limits of detection were 4, 7.4, 4, and 4 pg/ml, respectively. Values below these were assigned a value of 2 pg/ml for statistical analysis.

Statistical Analysis

Results were expressed as means ± SEM, except for methacholine PC₂₀, which was expressed as geometric means ± % SEM. Methacholine PC₂₀, IL-5, IL-3, IL-10, and IFN-γ were log₂-transformed before analysis. Because baseline data from all outcomes showed no differences between phases, analyses were performed and data were presented using the average. The effect of allergen on methacholine PC₂₀, cytokine protein levels, sputum, blood, and bone marrow eosinophils; and Eo/B-CFU was analyzed with a mixed model analysis of variance (between group, isolated early versus dual responders; within group, before versus after allergen inhalation). Correlations were analyzed using Spearman’s rho. Significance was accepted as p < 0.05.

RESULTS

Allergen-induced Bronchoconstriction and Airway Hyperresponsiveness

The mean maximal fall in FEV₁ during the early asthmatic response was 28.3 ± 1.65% in dual responders and 21.9 ± 1.54% in isolated early responders. The mean maximal fall in FEV₁ during the late asthmatic response was 20.5 ± 2.04% in dual responders compared with 5.4 ± 1.03% in isolated early responders (Table 2).

Dual responders developed methacholine airway hyperresponsiveness 24 and 48 hours after allergen inhalation. The mean methacholine PC₂₀ fell from 2.4 mg/ml (% SEM, 1.3) at baseline to 0.7 mg/ml (% SEM, 1.6) at 24 hours (p < 0.01) and 1.3 mg/ml (% SEM, 1.3) at 48 hours (p < 0.05) (Figure 1). In contrast, no significant changes in mean methacholine airway responsiveness occurred in isolated early responders after allergen inhalation, being 3.3 mg/ml (% SEM, 1.5) at baseline, 2.2 mg/ml (% SEM, 1.5) at 24 hours, and 2.8 mg/ml (% SEM, 1.5) at 48 hours after allergen inhalation.

Eosinophil Counts in Sputum, Blood, and Bone Marrow

Sputum: After allergen inhalation, there was a significant increase in sputum eosinophils in dual responders at 7, 24, and 48 hours. The numbers increased from 2.4 ± 0.6% at baseline to
TABLE 2. AIRWAY RESPONSES

<table>
<thead>
<tr>
<th></th>
<th>Arm 1</th>
<th></th>
<th>Arm 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC_{in}</td>
<td></td>
<td>PC_{in}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BL 24 h</td>
<td>EAR</td>
<td>LAR</td>
<td>BL 24 h</td>
<td>EAR</td>
</tr>
<tr>
<td>IER</td>
<td>2</td>
<td>2.4</td>
<td>0.7</td>
<td>-15</td>
<td>-19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.9</td>
<td>3.6</td>
<td>-23</td>
<td>-20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>11.4</td>
<td>4.8</td>
<td>-32</td>
<td>-14</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10.3</td>
<td>12.2</td>
<td>-24</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.7</td>
<td>0.3</td>
<td>-19</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.1</td>
<td>6.7</td>
<td>-23</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0</td>
<td>0.2</td>
<td>-29</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.6</td>
<td>5.3</td>
<td>-24</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>14.0</td>
<td>7.9</td>
<td>-23</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.6</td>
<td>0.8</td>
<td>-20</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>9.3</td>
<td>5.6</td>
<td>-33</td>
<td>5.1</td>
</tr>
<tr>
<td>25</td>
<td>2.4</td>
<td>2.6</td>
<td>-26</td>
<td>2.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>7.4 ± 2.45</td>
<td>5.1 ± 1.30</td>
<td>-24 ± 1.5</td>
<td>4 ± 1.4</td>
<td>5.1 ± 1.47</td>
</tr>
</tbody>
</table>

Definition of abbreviations: BL = baseline; DR = dual responder; EAR = early asthmatic response; IER = isolated early responder; LAR = late asthmatic response; PC_{in} = provocative concentration of methacholine inducing a 20% fall in FV.

12.2 ± 2.2% at 7 hours (p < 0.001), 11.5 ± 1.6% at 24 hours (p < 0.001), and 10.8 ± 2.6% at 48 hours (p < 0.001) (Figure 2). Isolated early responders also had an allergen-induced increase in sputum eosinophils from 2.6 ± 0.6% at baseline to 6.9 ± 2.0% at 7 hours, 7.2 ± 1.3% at 24 hours (p < 0.05), and 7.6 ± 1.8% at 48 hours (p < 0.05) (Figure 2). The magnitude of the allergen-induced change in sputum eosinophils was significantly greater in dual responders than in isolated early responders at all time points (p < 0.05). Baseline values were not significantly different between the two groups of subjects. After allergen inhalation, there was a significant increase in the percentage of activated sputum eosinophils (EG2-positive cells) in dual responders, from 1.65 ± 0.66% at baseline to 7.35 ± 1.7% at 7 hours (p = 0.05), 8.68 ± 2.11% at 24 hours (p < 0.005), and 8.7 ± 2.4% at 48 hours (p < 0.005). In contrast, no significant change in percentage of activated eosinophils was detected in isolated early responders at any time point. In addition, the magnitude of the allergen-induced change in sputum eosinophils was significantly greater in dual responders than in isolated early responders at all time points (p < 0.05).

Blood. Allergen inhalation significantly increased the percentage of blood eosinophils in dual responders from 5.1 ± 0.6% at 5 hours and 2.7 ± 0.5% at 12 hours to 5.2 ± 0.8% at 24 hours (p < 0.05) and 5.7 ± 0.8% at 48 hours (p < 0.005) but had a nearly significant increase from baseline, being 4.0 ± 0.5% (p = 0.055) (Figure 2). There was no allergen-induced change in the percentage of blood eosinophils detected in isolated early responders.

Bone marrow. The baseline numbers of eosinophils were not significantly different between the two arms of the study; the mean difference being 1.4 ± 0.3 (Table 3). Allergen inhalation significantly increased bone marrow eosinophils in dual responders at 48 hours when compared with 5 hours (p < 0.005) but not when compared with baseline (Figure 2). In contrast, there was no significant allergen-induced change in the percentage of bone marrow eosinophils in isolated early responders at any time point (Figure 2). The percent change in eosinophils was significantly lower at 5 hours (p < 0.015) in dual responders when compared with isolated early responders.

![Figure 1](image-url). Airway responsiveness to methacholine PC_{in} at baseline (BL) and after allergen inhalation in isolated early responders (open rectangles) and dual responders (solid rectangles). In dual responders only, airway hyperresponsiveness (AIR) increased significantly at 24 and 48 hours compared with baseline. No significant changes occurred in the isolated early responders over time. Difference compared with baseline, *p < 0.05.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
significantly lower in dual responders compared with bone marrow eosinophils increased significantly in dual responders after allergen inhalation. The magnitude of induced increase in sputum eosinophils was significantly greater in dual responders at 7, 24, and 48 hours when compared with isolated early responders at any time point (Figure 4).

There was no change in the level of bone marrow IL-5 protein in isolated early responders at any time point (Figure 4).

There was a significant positive correlation between levels of IL-5 protein detected in the bone marrow and in the serum as measured by the area under the curve from baseline to 48 hours after allergen inhalation (r = 0.973, p < 0.0001). Similarly, there was a significant positive correlation between levels of bone marrow IL-5 protein and the number of IL-5-responsive Eo/B-CFU as measured by the area under the curve from baseline to 48 hours after allergen inhalation (r = 0.448, p < 0.05).

IFN-γ Protein

Serum. After allergen inhalation, there was no change in serum IFN-γ protein levels at any time point in either group of subjects studied.

Bone marrow. The baseline levels of IFN-γ were not significantly different between the two arms of the study; the mean difference was 34 ± 9.7 (Table 3). After allergen inhalation, there was a significant increase in the level of bone marrow IFN-γ protein in dual responders at 48 hours compared with baseline increasing from 126.6 ± 27.8 pg/ml at baseline to 146.5 ± 34.4 pg/ml at 5 hours, 148.4 ± 41.5 pg/ml at 12 hours, 165.5 ± 46.5 pg/ml at 24 hours, and 168.9 ± 30.6 pg/ml at 48 hours (p < 0.01) (Figure 4). In contrast, there was no change in the level of bone marrow IL-5 protein detected in the bone marrow of isolated early responders at any time point tested (Figure 4).

Bone marrow. The baseline levels of IFN-γ were not significantly different between dual responders and bone marrow IL-5 (r = 0.54, p < 0.05), but not between bone marrow IFN-γ and bone marrow, blood, or sputum eosinophils or Eo/B-CFU.

IL-3 and IL-10 Protein

Serum and bone marrow. There was no significant allergen-induced difference over time in the level of IL-3 or IL-10 in either isolated early or dual responders (data not shown).

Cell Culture with IFN-γ

There were no significant changes in the number of IL-3-stimulated eosinophil/basophil colonies grown when incubated with any concentration of IFN-γ. The values with IL-3 alone were 31.8 ± 2.8; and values with IFN-γ were as follows: IFN-γ (100 ng/ml), 33.3 ± 8.1; IFN-γ (10 ng/ml), 40.8 ± 5.8; IFN-γ (1 ng/ml), 40.9 ± 5.3; IFN-γ (0.1 ng/ml), 40.4 ± 6.8.

DISCUSSION

This study has demonstrated, for the first time, that allergen inhalation by dual responders is associated with a rapid onset of
IL-3-dependent eosinophilopoiesis in the bone marrow, detectable as early as 5 hours. In addition, there is sustained IL-5-dependent eosinophilopoiesis at 12 and 24 hours after allergen inhalation in dual responders. IL-5 protein levels increased significantly in serum and bone marrow at 12 and 24 hours after allergen inhalation in dual responders only. Furthermore, there was a significant correlation between IL-5-responsive Eo/B-CFU and IL-5 protein levels in the bone marrow, suggesting that both airway and blood eosinophilia in dual responders are sustained by an IL-5-responsive, eosinophilopoietic process within the bone marrow. Finally, bone marrow IFN-γ protein levels increased 48 hours after allergen inhalation, in association with the reduction of bone marrow IL-5 protein levels and eosinophilopoiesis. Together these results are consistent with the hypothesis that upregulation of bone marrow IL-5 and IL-5-responsive Eo/B-CFU plays an important role in the persistence of allergen-induced airway eosinophilia and airway hyperresponsiveness over 48 hours and that increases in bone marrow IFN-γ downregulate these responses.

The development of both early and late asthmatic responses after allergen inhalation is known to be associated with increases in circulating eosinophils (11), greater increases of activated eosinophils in the airway (23), and the development of airway hyperresponsiveness (24) when compared with isolated early responders. All of these changes were confirmed in this study, although markers for eosinophil activation may not be ideal (25). Contrasting these two groups allows for a useful clinical model of increased eosinophilic airway responses and associated airway functional changes. The groups are, however, not dichotomous and the levels of bronchoconstriction used to discriminate between them are arbitrary. Also, increases in airway eosinophils were seen in the isolated early responders in the present study and in other studies (17, 27). Despite this, it was only the significantly greater increases in circulating and airway eosinophils in dual responders that were associated with increases in bone marrow eosinophilopoiesis.

An increase in peripheral blood Eo/B-CFU was first shown in atopic, compared with nonatopic, subjects (26), and in dual responders 24 hours after allergen inhalation (19). Subsequently, Wood and coworkers (19) described a significant increase in IL-5-responsive Eo/B-CFU 24 hours after allergen inhalation in dual responders, but not in isolated early responders. An increase in the expression of IL-5Rα on bone marrow CD34+ cells in dual responders 24 hours after allergen inhalation helped explain these initial findings (16). The data from the present study extend these observations, demonstrating a rapid activation of eosinophilopoiesis, detectable as early as 5 hours after allergen inhalation, which is at first IL-3 dependent followed by an IL-5-dependent phase for at least 24 hours after allergen inhalation.

The development of tissue eosinophilia in allergic inflammatory responses is known to be orchestrated by a number of mediators, of which IL-5 appears to be central. Studies have shown that IL-5 protein levels are increased in induced sputum after allergen inhalation challenge (4, 27). In addition, we have also shown that IL-5 mRNA in eosinophils colocalized with CD23⁺ cells are increased significantly in the bone marrow of dual responders when compared with isolated early responders (18). This suggests that the local production of IL-5 by T cells in the bone marrow is involved in inducing bone marrow hematopoietic processes. However, it is likely that other mediators are also
involved in the generation of mature eosinophils from pluripotent hematopoietic stem cells, including IL-3. Indeed, IL-3, GM-CSF, and IL-5 all regulate the commitment of progenitor cells along a basophil/eosinophil lineage. IL-3 can induce eosinophil/basophil differentiation, but also has hematopoietic activities, whereas IL-5 is a specific eosinophilopoietin. Early stem cells express receptors for IL-3 and Chatterjee and coworkers have shown that IL-3 has the ability to enhance the number of eosinophil clusters (28). Tavernier and coworkers, on the other hand, have shown that IL-5 is able to upregulate its own receptor on CD34⁺ cells (29). Therefore, with early stimulation via IL-3 the number of eosinophil progenitor clusters increases and in the presence of IL-5 the number of these cells differentiating into mature eosinophils also increases.

IL-3 has been shown in murine models to regulate commitment of early myeloid progenitors to the eosinophil lineage (30). Indeed, this role for IL-3 is supported for the first time in humans by our finding of a rapid increase in ex vivo IL-3-responsive eosinophil/basophil progenitors 5 hours after allergen inhalation. Although IL-3 was not detectable in bone marrow supernatant in this study, it may be that the sensitivity of the assay was inadequate. It is likely that the increased colony numbers seen 12 and 24 hours after allergen inhalation are due to both the early regulation by IL-3 and the terminal differentiation by IL-5. This is supported by observations in an IL-5-deficient murine model in which symptoms and signs of allergic rhinitis were delayed, but not abolished, after nasal allergen inhalation challenge (31,32). Therefore, after allergen inhalation, time-dependent changes in bone marrow cytokines control the expansion and differentiation of eosinophil/basophil progenitors.

The turnover of eosinophils is likely slower in normal hematopoiesis compared with that seen during inflammatory situations. Ishinomori and coworkers have used bromodeoxyuridine (BrdU) in rabbits to examine progenitor cell expansion and transit times. They have shown a transit time for circulating BrdU⁺ cells beginning at 24 hours and peaking between 66 and 78 hours. However, when Staphylococcus aureus was instilled in the lung the transit time was significantly shortened, with BrdU⁺ cells increasing at 12 hours and peaking between 24 and 48 hours. They also found significantly shorter time periods for bone marrow cells in both the mitotic and postmitotic pools (33). This suggests that there is a shorter time for each division or that cells skip a number of divisions. Similarly, we have examined BrdU⁺ cells in dogs exposed to allergen or saline inhalation and found significant increases in BrdU⁺ cells in both the blood and airways of allergen-challenged dogs at 24 hours compared with diluent challenge (34). Together these data show that under stressful circumstances such as during an allergic response, the bone marrow is able to rapidly produce inflammatory cells.

IL-5 is also recognized as a potent eosinophil-activating cytokine (35). Studies have demonstrated the importance of IL-5 in facilitating the release of eosinophils from bone marrow (36). The present study found that in dual responders, IL-5 protein levels peak significantly in the serum before increases in blood eosinophils occur. It is therefore probable that IL-5 regulates eosinophilic responses at several levels, including enhanced bone marrow eosinophil differentiative processes, release of eosinophils from the bone marrow to the blood, and trafficking from the blood into the airways.

Durham and Kay demonstrated an initial fall in circulating eosinophil numbers coinciding with the development of the late airway inflammatory response, followed by a gradual increase peaking at 24 hours (11). Our study corroborates these findings and has shown, for the first time, a similar trend in allergen-induced changes in bone marrow eosinophils, with a drop in eosinophils at 5 and 12 hours, followed by an increase at 24 and 48 hours in dual responders only.

At any given time, the number of eosinophils present in the blood after allergen inhalation depends on three factors: the recruitment of cells into the airways or other tissues, the "margination" of eosinophils in the pulmonary vasculature, and the
recruitment of cells from the bone marrow or other tissues. Likewise, the number of eosinophils present in the bone marrow depends on the release of mature cells into the blood and the ongoing maturation of progenitors. Both margination and bone marrow responses likely contribute to the increases in the number of circulating eosinophils seen at 24 hours, whereas decreased bone marrow eosinophil numbers at 5 hours may be due to egrets of mature eosinophils from the bone marrow into the blood. We suggest that movement of eosinophils between compartments is induced, in part, by increases in circulating IL-5, whereas maturation of progenitors at 12 and 24 hours is dependent on bone marrow IL-5 protein levels. As circulating IL-5 decreased, so too did the egress of eosinophils into the blood. Likewise, bone marrow IL-5 levels diminished, so too did the production of eosinophils by maturing Eo/B-CFU. Therefore, by 48 hours, the number of bone marrow eosinophils was not significantly higher than baseline number.

Similarly, in the airways the number of eosinophils present is dependent on three factors: the number of eosinophils available to recruit from the circulation, the quantity of chemokines produced, and the ability of the tissue to express adhesion molecules for the uptake of eosinophils into the airways. The number of eosinophils available to recruit is dependent on the baseline level of circulating eosinophils, the number of eosinophils in reserve in the tissues, and the number of eosinophils produced by the bone marrow. Expression of chemokines and adhesion molecules will depend on the degree of activation and on the baseline levels of inflammatory cells in the airways. The in situ production of IL-5 in the bone marrow suggests that the bone marrow is not only responding to the airway's inflammation, but is also driving the ongoing inflammatory response.

In contrast to the stimulatory effects of IL-5 and IL-3, IFN-γ, through the attenuation of helper T cell Type 2-driven processes, may play an important role in the resolution of allergen-induced eosinophilic responses (37). One primary antiinflammatory effect of IFN-γ is the reduction of IL-5 production (38). Rait and coworkers have also shown that IL-12 suppressed eosinophilopoiesis via an IFN-γ-dependent mechanism in a murine model (39). On the basis of these results, the present study looked at the production of IFN-γ as a potential downmodulatory cytokine. We found that in the bone marrow supernatant, there is a delayed increase in IFN-γ protein levels in dual responders only. However, when eosinophil/basophil progenitors were cultured in the presence of IFN-γ and IL-5, we were unable to show a direct suppression of Eo/B-CFU. This suggests that, because the increase in bone marrow IFN-γ occurred at 48 hours, a time point that was coincident with a reduction in bone marrow IL-5 protein levels, IFN-γ may be suppressing eosinophil/basophil progenitors indirectly, via suppression of IL-5 production in the bone marrow. However, this must remain speculative, because we were unable to detect a difference in IFN-γ levels between isolated early and dual responders.

The role of the eosinophil in allergen-induced airway responsiveness is currently a subject of much debate. Leekic and coworkers (40) have suggested that IL-5 and eosinophils do not play an important role in allergen-induced airway hyperresponsiveness, although this study was not adequately designed to address this question (12). Murine models have also provided conflicting results (41-45). Foster and coworkers have suggested that these differences may be due to the presence of low levels of airway eosinophils in mouse models, which demonstrate persisting AHR (46). This suggestion is supported by Ficoc-Page and coworkers, who have shown that although an anti-IL-5 monoclonal antibody was able to reduce blood and bronchoalveolar lavage eosinophils, airway tissue and bone marrow eosinophils were reduced by only 50%. In addition, major basic protein (an inflammatory mediator prominently produced by eosinophils) showed no significant reduction with treatment (47).

Conflict of Interest Statement: S.C.D. has no declared conflict of interest; R.S. has no declared conflict of interest; G.M.G. has no declared conflict of interest; M.R.W. has no declared conflict of interest; R.P. has no declared conflict of interest; G.L.J. has received honoraria from Actelion for presentations and from AstaZyme for marketing research; J.A.D. has no declared conflict of interest; M.D.I. has no declared conflict of interest; P.M.O. has no declared conflict of interest.

Acknowledgment: The authors thank Dr. Lorna Wood, Russ Ellis, George Obmish, Shauna Davis, Erin Bawlick, Flavia Mazzia, and Tracy Rennicke for technical assistance, and Joceline Otis for graphic production in this study.

References

28. Clusterbeck EG, Hirs EMA, Sanderson CJ. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6 and GM-CSF. *Blood* 1989;74:1504-1512.

CHAPTER 3
ALLERGEN-INDUCED FLUCTUATION IN CC CHEMOKINE RECEPTOR 3
EXPRESSION ON BONE MARROW CD34+ CELLS FROM ASTHMATIC
SUBJECTS: SIGNIFICANCE FOR MOBILIZATION OF HAEMOPOIETIC
PROGENITOR CELLS IN ALLERGIC INFLAMMATION

Published in Immunology in 2003

Sandra Dorman’s contribution:
Experimental design
Collection of clinical data
Processing of laboratory samples
Analysis of data
Allergen-induced fluctuation in CC chemokine receptor 3 expression on bone marrow CD34+ cells from asthmatic subjects: significance for mobilization of haemo poetic progenitor cells in allergic inflammation

ROMA SEHMI,* SANDRA DORMAN,* ADRIAN BAATJES,† RICK WATSON,* RONAN FOLEY,‡ SUN YING,§ DOUGLAS S. ROBINSON,§ A. BARRY KAY,§ PAUL M. O'BYRNE* & JUDAH A. DENBURG† *Firestone Institute of Respiratory Health, Asthma Research Group, St. Joseph's Healthcare, Divisions of Clinical Immunology and †Allergy, Department of Medicine and ‡Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada, §Department of Allergy & Clinical Immunology, Royal Brompton National Heart & Lung Institute, Imperial College School of Medicine, London, UK

SUMMARY
There is increasing evidence that primitive progenitors migrate from the bone marrow (BM) via the peripheral circulation to tissue sites where they undergo in situ differentiation to provide a continued source of effector cells, such as eosinophils, during an allergic inflammatory response. To study mechanisms of progenitor cell mobilization in allergic reactions, we investigated fluctuations in the expression of the eotaxin receptor, CC chemokine receptor 3 (CCR3), on CD34+ cells from stable asthmatics following allergen (i.e. antigen) challenge. BM aspirates were taken from seven early responder (ER) and 10 dual responder (DR) asthmatics who, following antigen challenge developed only an early bronchoconstrictor response and an early and late-bronchoconstrictor response, respectively. Expression of CCR3 was detected on primitive (CD34+ cells) and eosinophil-lineage committed progenitors (CD34+ interleukin-5 receptor alpha-subunit+ cells) by flow cytometry and confirmed by co-localization of CCR3 messenger RNA to CD34 immunopositive cells using in situ hybridization. When preantigen levels were compared to 24-hr postantigen levels, significant increases in BM CD34+ CCR3+ cells were detected in DR, who also developed a significant sputum and blood eosinophilia and increased methacholine airway responsiveness. In contrast, a significant attenuation of BM CD34+ CCR3+ cells was observed in ER. In a dose-dependent manner eotaxin, but not interleukin (IL)-5, stimulated CD34+ progenitor cell migration in vitro. This migrational response to eotaxin was abrogated by anti-CCR3 monoclonal antibody and primed by preincubation with IL-5. We propose that fluctuations in CCR3 expression on human BM CD34+ cells may facilitate chemokine-mediated progenitor cell mobilization to the peripheral circulation and the resultant development of pulmonary eosinophilia, a cardinal feature of asthma.

Received 20 January 2003; accepted 8 May 2003.

Abbreviations: APAAP, alkaline phosphatase-anti-alkaline phosphatase; BrdU, bromodeoxy uridine; CCR3, CC chemokine receptor 3; CFU, colony-forming units; DR, dual responders; ER, early responders; FACS, fluorescence activated cell sorter; FCS, fetal calf serum; FEv1, forced expiratory volume in 1 second; FITC, fluorescein isothiocyanate; ICC, immunocytochemistry; IL-5Rα, interleukin-5 receptor alpha-subunit; ISH, in situ hybridization; mAb, monoclonal antibody; MACS, magnetic antibody cell sorting; MNC, mononuclear cells; NAMNC, non-adherent mononuclear cells; PE, phycoerythrin; PerCp, peridinin chlorophyll protein; SDF-1, stromal cell derived factor-1; SSC, orthogonal or side light scatter.

Correspondence: Dr Roma Sehmi, Assistant Professor, The Firestone Institute for Respiratory Health, St Joseph's Hospital, Lake Wing, Room L314-6, McMaster University, 50 Charlton Ave. East, Hamilton, Ontario, Canada L8N 4A6. E-mail: sehmi@mcmaster.ca

© 2003 Blackwell Publishing Ltd
INTRODUCTION

There is a considerable body of evidence that increased produc­tion of eosinophil-lineage committed progenitors within the bone marrow is associated with the onset and maintenance of upper and lower airway eosinophilic inflammation in response to allergen exposure in atopic subjects. We have shown that increased numbers of haemopoietic progenitors (CD34+ cells) and CD34+ cells expressing the membrane-bound isoform of interleukin-5 receptor α-subunit (IL-5Ra) are found in the bone marrow of atopic asthmatics, compared with chronic bronchitic and normal subjects. To establish that differential airway responses to allergen are reflected by different progenitor cell responses in the bone marrow, two groups of asthmatic subjects were examined based on their airway responses to allergen:

- early responders (ER), who only develop an early bronchocon­strictor response; and
- dual responders (DR), who, following allergen inhalation, develop both an early and a late broncho­constrictor response. Significant increases in bone marrow CD34+ IL-5Ra+ cells and IL-5-responsive eosinophil/basophil colony-forming units (Eo/Baso-CFU) were only detected in DR who also developed delayed airflow hyperresponsiveness and airway eosinophilia 24 hr postallergen. Similar antigen-driven increases in CD34+ IL-5Ra+ cell numbers, and resultant enhancement of IL-5-dependent eosinophilopoiesis, have become evident in the bone marrow following nasal allergen challenge in various mouse models of eosinophilic airway inflammation.

Although bone marrow haemopoietic events may trigger the increased production and ultimate egress of mature eosinophils from the bone marrow, there is increasing evidence that primitive and lineage-committed progenitors migrate to mucosal tissue sites, where local haemopoietic events may contribute to the increased recruitment of effector cells. In animal studies, using bromodeoxy uridine (BrdU) to label actively proliferating cells undergoing DNA synthesis within the bone marrow, increases in the numbers of BrdU+ cells in the bronchoalveolar lavage fluid 24 hr postallergen are interpreted to reflect the ingress of newly divided myeloid cells in the airways in response to antigen challenge. In human studies, CD34 immunopositive cells were extracted from human nasal polyp and nasal explant tissue and shown to undergo IL-5-driven proliferation and differen­tiation into Eo/Baso-CFU in vitro and ex vivo, confirming the presence of true blast cells in mucosal tissue. Increased numbers of CD34+ IL-5Ra+ cells have also been detected in induced sputum and bronchial biopsy tissue from asthmatics compared with normals. In the latter study, CD34+ IL-5Ra+ cell numbers correlated with asthma severity, as judged by airway calibre, suggesting that control of progenitor cell trafficking may be a prerequisite for reduction of eosinophilic inflammation in the airways in asthma. Little, however, is known about the factors that orchestrate the mobilization of progenitors during an allergic inflammatory response.

Intravenous infusion of eotaxin has been shown to stimulate the rapid egress of eosinophil progenitor cells from the bone marrow sinuses of guinea-pigs into the peripheral circulation. In human studies, intravenous infusion of IL-5 stimulated an increase in the numbers of circulating progenitor cells and of eosinophils expressing CCR3, proposing an essential interplay between IL-5 and eotaxin in mobilization of pro-inflammatory cells from the bone marrow. In the present study we have investigated the hypothesis that ligation of the CC chemokine receptor 3 (CCR3) may stimulate the migration of progenitor cells during an allergic inflammatory response. We have studied fluctuations in CCR3 expression on CD34+ progenitors in asthmatic subjects in response to allergen challenge and inves­tigated the function of this receptor on bone marrow progenitors in the context of allergen-induced development of an airway eosinophilic response.

MATERIALS AND METHODS

Materials

Materials were obtained as follows: Percoll from Pharmacia (Uppsala, Sweden); McCoys 5A, Iscove's modified Dulbecco's phosphate-buffered saline (PBS) and fetal calf serum (FCS) from Gibco (Burlington, Ont., Canada); methylcellulose, bovine serum albumin (BSA) grade V, heparin, sodium azide and paraformaldehyde from Sigma Chemical Co. (Mississauga, Ont., Canada); May–Grünwald–Giemsa stain from BDH (Mississauga, Ont., Canada), Diff-Quik stain from American Scientific Products (McGaw Park, IL) and dithiothreitol (Sputolysin) from Calbiochem (San Diego, CA). Stromal cell derived factor-1 (SDF-1), eotaxin and IL-5 were purchased from R & D Systems (Minneapolis, MN).

Antibodies

Phycoerythrin (PE)-conjugated immunoglobulin GI (IgG1) CD34 (HPCA-2), fluorescein isothiocyanate (FITC)-conjugated IgG1, CD45 (anti-HLE1), PE-conjugated isotype-control antibody (i.e. anti-IgG1–PE) and streptavidin-conjugated peridinin chlorophyll protein (PerCP) were purchased from Becton-Dickinson (Mississauga, Ont., Canada). Non-neutralizing monoclonal antibodies (mAbs) directed against the α-subunits of IL-5R (IL-5Ra; α16) were a kind gift from Dr Jan Tavernier (University of Ghent, Belgium). Anti-CCR3 mAb (MAb155) and IgG2a isotype control were purchased from R & D Systems. Cytokine receptor antibodies were biotinylated as previously described.

Subjects

Seventeen non-smokers with mild, stable asthma (seven ER and 10 DR) were studied (Table 1). The asthmatic subjects were classified into two groups based on their airway responses to allergen:

1. ER, who only developed an early fall (of >15% from baseline) in the forced expiratory volume in 1 second (FEV1); and
2. DR, who, following allergen inhalation, developed both an early and a late bronchoconstrictor response (defined as a fall in FEV1 of >15% and >12% from baseline, respectively).

The early and late bronchoconstrictor responses were taken to be the maximal percentage fall in FEV1 within 2 hr after allergen inhalation and between 3 and 7 hr after allergen inhalation, respectively. The definitions of early and late asth­matic response were established before the study, and the subjects were characterized as ER and DR by their airway...
Sex 3M: 7 F 2M: 5 F

Methacholine

Table 1. Subject characteristics and allergen-induced airway responses

<table>
<thead>
<tr>
<th></th>
<th>Early responder asthmatics</th>
<th>Dual responder asthmatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>24 (20-30)</td>
<td>23 (21-50)</td>
</tr>
<tr>
<td>Sex</td>
<td>3 M : 7 F</td>
<td>2 M : 5 F</td>
</tr>
<tr>
<td>% fall in FEV₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAR</td>
<td>31 (43.9-22.1)</td>
<td>27.4 (51.3-17.9)</td>
</tr>
<tr>
<td>LAR</td>
<td>6.1 (9.7-2.9)</td>
<td>16.6 (37.1-12.5)</td>
</tr>
<tr>
<td>Methacholine PC₂₀</td>
<td>Pre-allergen</td>
<td>Post-allergen</td>
</tr>
<tr>
<td></td>
<td>5.2 (11.3-1.0)</td>
<td>4.2 (11.4-0.1)</td>
</tr>
<tr>
<td></td>
<td>5.8 (11.7-0.3)</td>
<td>2.5t,** (17.3-0.1)</td>
</tr>
</tbody>
</table>

Values are presented as medians with ranges except for PC₂₀ values which are geometric means with ranges. **P < 0.005 for within group comparison of pre-allergen versus 24 hr post-allergen log PC₂₀ values and P < 0.05 for between group comparisons of pre-allergen versus 24 hr post-allergen log PC₂₀ values. Dual responder, but not the early responder, asthmatics developed a significant increase in methacholine airway responsiveness 24 hr post-allergen P < 0.005). In addition, there was a significant difference between the two groups in the allergen-induced shift in log PC₂₀ values (P < 0.05).

M, male; F, female.

responses to a screening allergen inhalation challenge. All subjects had a baseline FEV₁ of >70% of the predicted normal on all study days, none had had a respiratory tract infection for at least 4 weeks prior to entering the study and required only infrequent use of inhaled β₂-agonist.15 This study was approved by the Research Advisory Board of McMaster University Health Sciences Corporation, and each subject gave written, informed consent.

Study design
Subjects attended the laboratory on three occasions, as follows:
(1) Visit 1. One week prior to allergen challenge to document full medical history, and to undergo skin-prick test sensitivity testing to allergen extracts, spirometry, methacholine-inhalation test and induction of sputum to assess baseline airway inflammation.
(2) Visit 2. Allergen-challenge procedure. Prior to allergen challenge, a bone marrow aspirate was collected and spirometry measurements were taken hourly for 7 hr post-allergen inhalation to follow the allergen-induced bronchoconstrictor response. Blood samples were taken pre- and 5 hr postallergen challenge.
(3) Visit 3. Blood, sputum and bone marrow aspirates were collected 24 hr postallergen challenge. Spirometry measurements and methacholine inhalation challenges were also performed to assess the changes in airway calibre and hyperresponsiveness.

Allergen-inhalation challenge and methacholine-inhalation challenge
Allergen challenge was performed as described by O’Byrne et al.,19 and the concentration of the allergen extract for inhalation was determined from a formula using skin-prick test and methacholine PC₂₀ results (PC₂₀ = provocative concentration of methacholine causing a 20% fall in FEV₁).20 The starting concentration of allergen was chosen to be three doubling doses below that predicted to cause a 20% fall in FEV₁. Doubling incremental concentrations of allergen were inhaled at 10-min intervals until a decrease of ≥15% occurred in the FEV₁ from baseline.

Methacholine inhalation was performed by the tidal breathing method, as described by Cockcroft et al.21 Subjects inhaled normal saline and then incremental doubling concentrations of methacholine phosphate from a Wright nebulizer for 2 min. The test was terminated when a fall in FEV₁ of 20% of the postsaline value occurred, and the PC₂₀ was calculated.

Indices of inflammation: sputum, blood and bone marrow differential cell counts
Sputum was induced by inhalation of hypertonic saline and processed according to the method of Pizzichini et al.22 Sputum plugs were processed using 0.1% dithiothreitol and Dulbecco’s PBS. Cytospins were prepared from the pelleted cells and differential counts were performed on Diff-Quik-stained slides. Means of duplicate slides were obtained (500 cells counted/slide) and expressed as absolute counts (10⁶ cells/ml). Venous blood was collected into EDTA-treated tubes. Total cell counts were performed using a Neubauer haemocytometer and differential cell counts were made from blood smears stained by Diff-Quik. Similarly, differential cell counts were made from smears of whole bone marrow stained by Diff-Quik. Differential cell counts were obtained from the mean of two slides (1000 cells counted/slide) and cell populations were expressed as the absolute counts (10⁶ cells/ml) for sputum and blood and as percentage values for bone marrow samples.

Isolation and immunofluorescence staining of bone marrow and blood progenitors
For progenitor cell enumeration, heparinized (1000 U/ml) samples of bone marrow (5 ml) were aspirated from the iliac crest, and venous blood (20 ml) was collected. From each sample, low-density mononuclear cells (MNC) were isolated by sedimentation on Percoll density gradients (specific gravity 1.077), as previously described.23 Monocytes were depleted from the MNC fraction by incubation in plastic flasks for 2 hr at 37°. Non-adherent MNC (NAMNC: containing progenitor cells and lymphocytes) were first stained with saturating amounts of biotin-conjugated anti-IL-5Rα, anti-CCR3 or the isotype-control antibody (determined in preliminary studies) in a final volume of 100 μl of ice-cold fluorescence-activated cell sorter (FACS) staining buffer (PBS plus 0.1% NaN₃, 2.5% each of mouse serum and human serum) for 30 min at 4°. The cells were then washed with 3 ml of PBS + 0.1% sodium azide, resuspended in FACS staining buffer and stained with streptavidin-conjugated PerCP together with saturating concentrations of FITC–CD45 IgG1 (anti-HL1) and PE–CD34 IgG1 (HPCA-2) for 30 min at 4°. Lysis buffer (Becton Dickinson Canada) was then added and the cells incubated for 5 min, after which they were washed twice with 3 ml of PBS + 0.1% sodium azide and finally fixed in 500 μl of PBS + 1% paraformaldehyde. Cells were refrigerated until acquired by flow cytometry.

Flow cytometry and gating strategy
The stained NAMNC were analysed using a FACSScan flow cytometer equipped with an argon ion laser [Becton Dickinson Instrument Systems (BDIS)] using the CELLQUEST programme
Phosphatase-anti-human mAb (CD34; Dako, High Wycombe, UK) was used to detect progenitor cells detected by flow cytometry, we co-localized CD34+ cells from a bone marrow aspirate by positive selection using magnetic antibody cell sorting (MACS) (BDIS). Progenitor cells were identified based on their unique CCR3 messenger RNA to CD34 immunopositive cells by immunocytochemistry (ICC), as previously described. In situ hybridization and immunohistochemistry To confirm the cell-surface expression of CCR3 on CD34+ progenitor cells detected by flow cytometry, we co-localized CCR3 messenger RNA to CD34 immunopositive cells by sequential non-radioactive in situ hybridization (ISH) and immunocytochemistry (ICC), as previously described. Briefly, a population of unstimulated CD34+ cells was enriched from a bone marrow aspirate by positive selection using magnetic antibody cell sorting (MACS) (purity determined by flow cytometry to be >85%), and cytospin preparations were prepared as previously described. Peripheral blood eosinophils, purified by negative selection using CD16-coated MACS beads as previously described, were used as a positive control for detection of CCR3 mRNA. The cell phenotypes were first identified by ICC using an alkaline phosphatase-anti-alkaline phosphatase (APAAP) technique and phenotype-specific murine anti-human mAb (CD34; Dako, High Wycombe, UK) (EG2+ Pharmacia). After developing with Fast Red for CD34+ immunostaining, slides were hybridized with 200 ng of digoxigenin-labelled riboprobes for CCR3 (antisense and sense) in hybridization buffer at 50°C overnight, then washed in 2 x saline sodium citrate (SSC), 1 x SSC and 0.5 SSC, respectively; unhybridized probe was removed by digestion with RNAse A. After blocking with 2% normal sheep serum, the slides were incubated with sheep anti-digoxigenin Fab fragment-conjugated alkaline phosphatase (1:200 dilution, Boehringer Mannheim, Mannheim, Germany) at room temperature for 3 hr. The signals were developed with BCIP/NBT (X-phosphate-5-bromo-4-chloro-3-indoly phosphate/nitro-blue tetrazolium). Positive cells expressing phenotypic markers (red colour), mRNA for CCR3 (dark blue colour), or both (mixed colours), were counted (Fig. 2b). A minimum of 200 cells were counted per slide.

Transmigration assay The migrational response of progenitors in vitro was assessed using transwell chambers (24-well cell clusters with 5-μm pore polycarbonate filters (Costar, Boston, MA), as previously described with minor modifications. An enriched population of bone marrow CD34+ cells (purity >85%), isolated from asthmatic subjects by MACS, were loaded into each transwell insert (1 x 10^6 cells per 35 x 10-mm tissue culture dish (Falcon Plastics, Oxnard, CA) in Iscove’s modified Dulbecco’s medium. After developing with Fast Red for CD34+ immunostaining, slides were hybridized with 200 ng of digoxigenin-labelled riboprobes for CCR3 (antisense and sense) in hybridization buffer at 50°C overnight, then washed in 2 x saline sodium citrate (SSC), 1 x SSC and 0.5 SSC, respectively; unhybridized probe was removed by digestion with RNAse A. After blocking with 2% normal sheep serum, the slides were incubated with sheep anti-digoxigenin Fab fragment-conjugated alkaline phosphatase (1:200 dilution, Boehringer Mannheim, Mannheim, Germany) at room temperature for 3 hr. The signals were developed with BCIP/NBT (X-phosphate-5-bromo-4-chloro-3-indoly phosphate/nitro-blue tetrazolium). Positive cells expressing phenotypic markers (red colour), mRNA for CCR3 (dark blue colour), or both (mixed colours), were counted (Fig. 2b). A minimum of 200 cells were counted per slide.

Colonies forming assay Bone marrow-derived NAMNC were isolated, as described above, and cultured in duplicate in 0.9% methylicellulose at 0.25 x 10^6 cells per 35 x 10-mm tissue culture dish (Falcon Plastics, Oxnard, CA) in Iscove’s modified Dulbecco’s medium.
containing 20% FCS, 1% penicillin-streptomycin and 5 x 10^{-5} M 2-mercaptoethanol in the presence of various cytokine growth factors, including IL-5 and eotaxin. Cultures were incubated for 14 days at 37° and 5% CO₂ and then enumerated by light microscopy. Eo/BSO-CFUls were identified by their distinct morphology, previously described as tight granulated, compact round refractile cell aggregates.

Statistical analysis
The data are presented as arithmetic mean ± standard error of the mean (SEM), except PC₂₀ values and absolute numbers of CD₃₄⁺ progenitor cells, which were logarithmically transformed and are expressed as geometric mean and standard error of geometric mean (%SEM). For statistical analyses of CD₃₄⁺ progenitor cells, which were logarithmically analyzed, cytokine growth factors, including IL-5 and eotaxin. Cultures were incubated for 14 days at 37° and 5% CO₂ and then enumerated by light microscopy. Eo/BSO-CFUls were identified by their distinct morphology, previously described as tight granulated, compact round refractile cell aggregates.

RESULTS
Allergen-induced changes in airway physiology
Allergen-induced changes in airway responses (bronchoconstrictor and methacholine PC₂₀) for all asthmatic subjects in this study are summarized in Table 1. Compared with preallergen levels, a significant increase in methacholine airway responsiveness 24 hr after inhaled allergen was detected in DR only (P < 0.005). In addition, there was a significant difference between ER and DR in the allergen-induced shift in log PC₂₀ values (P < 0.05) (Table 1).

Allergen-induced changes in sputum, blood and bone marrow eosinophils
Allergen-induced changes in sputum, blood and bone marrow eosinophil numbers are summarized in Table 2. A significant increase in the absolute number of sputum eosinophils was found in both ER and DR when preallergen levels were compared with those at 7- and 24-hr postallergen inhalation challenge. However, the magnitude of the allergen-induced increase in sputum eosinophil numbers at 7 and 24 hr was significantly greater in DR compared with ER (P < 0.05) (Table 2). In the peripheral blood there was a significant increase in eosinophil numbers at 24 hr postallergen challenge compared to preallergen levels in DR only (P < 0.005). In contrast, no significant change in bone marrow eosinophil numbers was detected in either ER or DR when 24-hr postallergen levels were compared with preallergen levels (Table 2).

Table 2. Allergen-induced changes in sputum, peripheral blood and bone marrow eosinophils

<table>
<thead>
<tr>
<th></th>
<th>Early responder asthmatics</th>
<th>Dual responder asthmatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputum</td>
<td>(n = 7)</td>
<td>(n = 10)</td>
</tr>
<tr>
<td>Pre-allergen</td>
<td>8 ± 1</td>
<td>21 ± 4</td>
</tr>
<tr>
<td>7 hr post-allergen</td>
<td>54 ± 21**</td>
<td>147 ± 19**</td>
</tr>
<tr>
<td>24 hr post-allergen</td>
<td>32 ± 12**</td>
<td>80 ± 8**</td>
</tr>
<tr>
<td>Peripheral blood</td>
<td>(n = 7)</td>
<td>(n = 10)</td>
</tr>
<tr>
<td>Pre-allergen</td>
<td>33 ± 7</td>
<td>25 ± 3</td>
</tr>
<tr>
<td>24 hr post-allergen</td>
<td>34 ± 8</td>
<td>42 ± 4</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>(n = 6)</td>
<td>(n = 5)</td>
</tr>
<tr>
<td>Pre-allergen</td>
<td>2.9 ± 0.8%</td>
<td>3.8 ± 1.6%</td>
</tr>
<tr>
<td>24 hr post-allergen</td>
<td>2.5 ± 0.6%</td>
<td>3.5 ± 1.4%</td>
</tr>
</tbody>
</table>

Data in the sputum and blood are presented as cells/10⁴ per ml and as a percentage of total WBC in the bone marrow. In sputum, significant increases from baseline in eosinophils were detected at 7 hr and 24 hr post-allergen in both early- and dual- responder asthmatics. However, the allergen-induced shift at 7 hr and 24 hr was greater in dual- compared with early- responder asthmatics. A significant increase in blood eosinophil numbers was detected 24 hr post-allergen inhalation challenge in dual responder asthmatics only. There were no significant allergen-induced changes in bone marrow eosinophils in either group of asthmatic subjects when pre-allergen were compared with 24 hr post-allergen levels (**P < 0.005 for within group analysis; *P < 0.05 for between group analysis).

Allergen-induced changes in the phenotype of progenitor cells from bone marrow and peripheral blood
In accordance with previously published findings, no significant change in the total number of bone marrow CD₃₄⁺ cells was found when preallergen levels were compared with 24-hr postallergen levels in either group of asthmatics [DR: 4898 (%SEM 720) to 5623 (%SEM 910); ER: 5129 (%SEM 628) to 4169 (%SEM 510) cells/0.25 x 10⁶ white blood cells (WBC)] (Fig. 3). A significant increase in the absolute number of CD₃₄⁺CCR₃⁺ IL-5Rα⁺ cells when preallergen levels were compared with 24-hr postallergen levels in bone marrow samples from DR [46 (%SEM 9) to 83 (%SEM 18) cells/0.25 x 10⁶ WBC; P < 0.05], but not in ER [55 (%SEM 9) to 48 (%SEM 26) cells/0.25 x 10⁶ WBC], was also detected (Fig. 3).

In enumerating the expression of the eotaxin receptor, CCR₃, on bone marrow CD₃₄⁺ cells, we found similar levels of expression at baseline for both groups of asthmatic subjects (DR: 47 (%SEM 12) versus ER: 79 (%SEM 18) cells/0.25 x 10⁶ WBC). When preallergen levels were compared with 24-hr postallergen levels, a significant increase in the absolute numbers of bone marrow CD₃₄⁺ CCR₃⁺ cells was...
CCR3 expression on CD34\(^+\) cells in asthmatics

Figure 3. Allergen-induced changes in CD34\(^+\) cells and CD34\(^+\) cells co-expressing interleukin-5 receptor alpha-subunit (IL-5Ra\(\)) and CC chemokine receptor 3 (CCR3) in bone marrow aspirates taken from early responder (\(n = 7\)) and dual-responder (\(n = 10\)) asthmatics. Significant increases in both CD34\(^+\) IL-5Ra\(\) and CD34\(^+\) CCR3\(^+\) cell numbers were detected in dual responders 24 hr postallergen. In contrast, a significant attenuation in CD34\(^+\) CCR3\(^+\) cell number was detected in early responders. Horizontal bars represent the geometric mean of each data set. (For statistical significance, a Student's paired \(t\)-test was performed on log-transformed data.) WBCs, white blood cells.

Figure 2. (a) Detection of CC chemokine receptor 3 (CCR3) and interleukin-5 receptor alpha-subunit (IL-5Ra\(\)) co-expression on CD34\(^+\) cells by flow cytometry. An enriched population of CD34\(^+\) cells (purity >85\%) from bone marrow non-adherent mononuclear cells (NAMNC) was collected by a magnetic cell separation technique. Cells were stained with CD34-phycoerythrin (PE), anti-CCR3-fluorescein isothiocyanate (FITC) and anti-IL-5Ro:-peridinin chlorophyll protein (PerCp). (A) CD34-positive staining events were gated (gate R1); (B) cells within R1 were assessed for co-expression of both CCR3 and IL-5Ro:\(\); (C) a 99\% confidence limit was set for this rare cell type (>0.1 % staining with isotype-control antibodies); (D) region statistics show that of the total number of CD34\(^+\) cells counted, 3.42\% were CD34\(^+\) CCR3\(^+\), 0.45\% were CD34\(^+\) IL-5Ra\(\) and 0.45\% were CD34\(^+\) CCR3\(^+\) IL-5Ra\(\) (isotype-control values are expressed in parentheses). The proportion of CD34\(^+\) CCR3\(^+\) IL-5Ra\(\) cells represented 11\% of the CD34\(^+\) CCR3\(^+\) cells and 50\% of the CD34\(^+\) IL-5Ra\(\) cells in this sample. (b) Co-localization of mRNA for CCR3 to CD34- cells using sequential immunocytochemistry (ICC) and in situ hybridization (ISH) on cytospins of bone marrow-derived CD34\(^+\) cells from an atopic asthmatic subject. (A)-(D) Staining with Dig-labelled CCR3 sense (A, B) and antisense (C, D) riboprobes, at low (magnification x 400; a and c) and high (magnification x 1000; b and d) power. Some of the CCR3 mRNA\(^+\) cells (dark blue) are indicated (→). (E) A combination of ICC and ISH in eosinophils (positive control cells) was performed. Single EG2\(^+\) stained red is indicated (△) and single ISH\(^+\) (CCR3 mRNA) are dark blue (▲). Double positive cells are dark red (→). (F) Cytospins of purified bone marrow CD34\(^+\) cell ICC showing CD34\(^+\) cells (→). (G) Single ISH of CCR3 mRNA\(^+\) cells (→). (H) Double ICC/ISH of CD34\(^+\)CCR3\(^+\) cells (→).

detected in DR [47 (%SEM 12) to 100 (%SEM 19) cells/0.25 \(\times 10^6\) WBC, \(P < 0.05\)] (Fig. 3). In contrast, a significant decrease in the absolute number of CD34\(^+\) CCR3\(^+\) cells was detected in bone marrow samples from ER, 24 hr postallergen [79 (%SEM 18) to 38 (%SEM 8) cells/0.25 \(\times 10^6\) WBC, \(P < 0.01\)].

In blood samples, when preallergen levels were compared with 24-hr postallergen levels, there were no significant changes in the total numbers of progenitor cells or the phenotype of CD34\(^+\) cells in both groups of asthmatics (Table 3). However,
Table 3. Summary of FACS data from peripheral blood

<table>
<thead>
<tr>
<th></th>
<th>Early responder asthmatics (n = 7)</th>
<th>Dual responder asthmatics (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD34+/IL5Ra+</td>
<td>741 (77%)</td>
<td>832 (109)</td>
</tr>
<tr>
<td>24 hr post-allergen</td>
<td>776 (108)</td>
<td>1068 (89)</td>
</tr>
<tr>
<td>CD34+/CCR3+</td>
<td>7 (3%)</td>
<td>25 (8%)</td>
</tr>
<tr>
<td>24 hr post-allergen</td>
<td>15 (6%)</td>
<td>18 (6%)</td>
</tr>
<tr>
<td>CD34+/IL5Ra+</td>
<td>6 (3%)</td>
<td>19 (2%)</td>
</tr>
<tr>
<td>24 hr post-allergen</td>
<td>5 (2%)</td>
<td>17 (6%)</td>
</tr>
</tbody>
</table>

Data are presented as cells/μl WBC and expressed as geometric mean and standard error of geometric mean (%SEM). Significantly higher baseline (pre-allergen) levels of CD34+/IL5Ra+ and CD34+/CCR3+ cells were detected in the blood of dual responder compared with early responder asthmatics. However, when pre-allergen were compared with 24 hr post-allergen levels, no significant change in numbers of blood CD34+/IL5Ra+ and CD34+/CCR3+ cells were detected in either group of asthmatics. *P < 0.05 for between group comparisons of baseline levels of progenitor cells.

In comparing pre-allergen blood levels of both CD34+ IL5Ra+ and CD34+ CCR3+ cells, significantly greater numbers of both cell types were detected in DR, compared with ER, asthmatics (Table 3).

In situ hybridization and immunohistochemistry

Co-localization experiments using simultaneous in situ hybridization and immunocytochemistry were performed to confirm that CD34+ progenitor cells express mRNA for CCR3. Non-radioactive in situ hybridization showed that 56-9% of bone marrow CD34+ immunopositive cells expressed CCR3 mRNA. A representative example from an atopic subject is shown in Fig. 2(b).

Transmigration assay

In order to assess the functional role of CCR3 expression on CD34+ cells from atopic asthmatic subjects (n = 4), an in vitro migrational assay was used (Fig. 4). The CXC chemokine, SDF-1 (optimal concentration 100 ng/ml), previously described as a potent progenitor cell chemoattractant, was included as a positive control. 26 Compared with diluent, a significant (but weak) dose-dependent migratory response was detected for bone marrow CD34+ cells stimulated by eotaxin, which was optimal at 500 ng/ml (diluent: 18 ± 2% versus eotaxin (500 ng/ml): 24 ± 1% of CD45+ cells in the bottom well, n = 6, P < 0.05) (Fig. 4). Eotaxin (500 ng/ml) stimulated a migratory response of 4 ± 2.5% CD34+ cells and this was comparable with the level of CCR3 expression detected on an enriched population of bone marrow CD34+ cells by flow cytometry (CCR3 expression on 3-42% of CD34+ cells, Fig. 2).

In the presence of a neutralizing CCR3 mAb (25 μg/ml), eotaxin-stimulated, but not SDF-1-stimulated, CD34+ cell migration was completely abrogated (Fig. 4). In three separate experiments, there was no appreciable migratory response of progenitor cells stimulated by IL-5 over a wide concentration range (5-500 ng/ml) compared with diluent control.

In priming experiments where an enriched population of bone marrow CD34+ cells were preincubated with IL-5 (50 ng/ml) for 1 hr at 37°C, we found a significant increase in the subsequent migratory responses of CD34+ cells to sub-optimal concentration of eotaxin (50 ng/ml, P < 0.05) (Fig. 5).
Table 4. Hemopoietic activity of eotaxin

<table>
<thead>
<tr>
<th></th>
<th>Eo/Baso-CFU</th>
<th>GM-CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluent</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eotaxin (1–500 ng/ml)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IL-5 (1 ng/ml)</td>
<td>12.5 ± 2**</td>
<td>0</td>
</tr>
<tr>
<td>IL-5 (1 ng/ml) + Eotaxin (1 ng/ml)</td>
<td>12.0 ± 1**</td>
<td>0</td>
</tr>
<tr>
<td>IL-5 (1 ng/ml) + Eotaxin (10 ng/ml)</td>
<td>11.5 ± 3**</td>
<td>0</td>
</tr>
<tr>
<td>IL-5 (1 ng/ml) + Eotaxin (100 ng/ml)</td>
<td>12.0 ± 2**</td>
<td>0</td>
</tr>
</tbody>
</table>

Data are presented as Eo/Baso-CFU or GM-CFU detected in 14 day methylcellulose colonies for 0.25x10^6 BM-derived NAMNC plated as previously described. Eotaxin (1–500 ng/ml) did not stimulate the growth of either Eo/Baso-CFU or GM-CFU. In addition, Eotaxin did not enhance the numbers of Eo/Baso-CFU grown in the presence of previously determined optimal concentrations of either IL-5 (1 ng/ml). (**P < 0.01 for comparisons between diluent and cytokine growth factor-stimulated colonies).

In contrast, preincubation with IL-5 did not stimulate the migrational response of progenitor cells to suboptimal doses of SDF-1 (50 ng/ml). The priming effect of IL-5 on the migrational responses of eotaxin-mediated progenitor cells was not enhanced further by longer incubation (either 4 or 24 hr) with CD34+ cells.

Colony-forming assay

In 14-day methylcellulose cultures of bone marrow NAMNC, eotaxin, over a wide concentration range (1–500 ng/ml) did not stimulate the significant growth of either Eo/Baso or granulocyte–macrophage (GM) colonies compared with diluent control (Table 4). In addition, in cultures of NAMNC with optimal concentrations of IL-5 (1 ng/ml), the addition of eotaxin did not further increase the number of Eo/B-CFU detected.

DISCUSSION

The findings from this study confirm that:

1. The CC chemokine receptor, CCR3, is expressed on human primitive (CD34+) and eosinophil lineage-committed (CD34+ IL-5Ra+) progenitors.
2. The number of bone marrow CD34+ CCR3+ cells is significantly increased in DBN asthmatics (who characteristically develop a late-bronchoconstrictor response, sputum and blood eosinophils and increased methacholine airway responsiveness 24 hr post allergen inhalation).
3. A significant attenuation in the number of CD34+ CCR3+ cells was observed in ER asthmatics who do not develop a blood eosinophilia and airway hyperresponsiveness following allergen inhalation.
4. Using an in vitro transwell migration assay to assess the function of CCR3 on progenitor cells, eotaxin stimulates a migratory response by CD34+ cells; and
5. Preincubation with IL-5, which itself does not stimulate CD34+ cell migration, significantly primed the migratory response of CD34+ cells to eotaxin.

Together, these findings suggest that following allergen-inhalation challenge in asthmatics, upregulation of CCR3 expression on CD34+ cells may facilitate chemokine-mediated egress of eosinophil-lineage committed progenitors from the bone marrow to the blood, thereby promoting the development of an eosinophilic response, a distinctive feature of allergic inflammation.

Eotaxin, first described as a potent eosinophil-selective chemotactic activity, was identified by microsequencing as a CC chemokine and shown to mediate its effect through ligation of a specific receptor, CCR3. Although several ligands for CCR3 have been described, including regulated on activation, normal, T-cell expressed, and secreted (RANTES), monocyte chemotactic peptide (MCP)-2, -3 and -4, it is clear that only eotaxin and other, less potent, eosinophil-selective chemotactants (eotaxin-2 and eotaxin-3) mediate their agonist effects mainly through ligation of CCR3. To date, the expression of CCR3 has been shown to be restricted to mature eosinophils and, to a lesser extent, to basophils, some T helper 2 (Th2) cells, mast cells and dendritic cells. Although the expression of CCR3 mRNA has been co-localized to mature and immature eosinophils in bone marrow samples, the expression of CCR3 on CD34+ progenitor cells in asthmatic subjects has not been reported to date. Studies on the sequence of expression of CCR3 on eosinophils have described this receptor as a late differentiation marker. However, these studies were performed on transformed leukemic cell lines, including HL-60 clone 15 cells and AML14 cells, which may sometimes provide different results from findings with freshly isolated cells. Using flow cytometry and limiting-dilution assays to assess eotaxin-stimulated cell proliferation, the expression of CCR3 has been reported on primitive progenitor cells from murine bone marrow. We confirm the expression of CCR3 on human bone marrow and blood CD34+ progenitor cells, at the protein level by flow cytometry and at the mRNA level by sequential immunocytochemistry and in situ hybridization (Fig. 2b). We have previously shown that CD34+ cells can express membrane-bound IL-5Ra, and suggested that this may be the phenotype of the earliest eosinophil lineage-committed progenitor cell. As we have, in the present study, shown for the first time that CCR3 is co-expressed on a subset of CD34+ IL-5Ra+ cells (Fig. 2), we propose that this may be the phenotype of an eosinophil lineage-committed progenitor cell that has the potential to respond to a chemokine signal and egress from the bone marrow sinususes into the peripheral circulation during an allergic inflammatory response. This may account for our findings that increased numbers of both CD34+ CCR3+ and CD34+ IL-5Ra+ cells were detected in the blood of DR, compared with ER, asthmatics (Table 3).

Eosinophils arise from CD34+ pluripotent stem cells that differentiate and mature under the influence of lineage-specific growth factors such as IL-5. An important step in the selective recruitment of eosinophils to sites of allergic inflammation is the mobilization of mature and immature eosinophil pools from the bone marrow sinususes into the peripheral circulation. This traffic has been shown to be mediated by IL-5, acting systemically, and eosinophils, acting locally, at the site of inflammation. Although in some animal models eotaxin has been shown to have myeloproliferative properties, we were unable to detect any colony-forming activity of eotaxin on bone marrow CD34+ cells, either alone or in combination with stem cell factor or IL-5 in 14-day methylcellulose cultures (Table 4). It has been shown that in guinea-pigs eotaxin acts systemically to...
activate the bone marrow and stimulate mobilization of both mature eosinophils and eosinophil progenitors: using an in situ perfusion system of guinea-pig femoral bone marrow, eotaxin infusion into the arterial supply stimulated not only a rapid selective release of eosinophils into the draining vein but the release of eosinophil colony-forming progenitor cells as well.15 In contrast, infusion of IL-5 stimulated the delayed and sustained release of mature eosinophils, but not of eosinophil progenitors. In the present study, we used an in vitro transwell migration assay to investigate the role of the CCR3 receptor on human CD34+ progenitor cells. We showed that ligation of the CCR3 receptor resulted in a migratory response by bone marrow CD34+ cells to eotaxin and that the proportion of progenitors that migrated to eotaxin was comparable with the level of CCR3 expression detected on enriched CD34+ cells (Fig. 4). The migrational response elicited by eotaxin was modest compared with that elicited by SDF-1, previously described as a potent progenitor cell chemoattractant.6 Our findings with eotaxin are in contrast to results reported by Autili et al. who showed a negligible chemotactic effect of eotaxin on CD34+ cells isolated from normal donors.26 This disparity is further supported by our recent findings that CD34+ cells from atopic asthmatics have a significantly greater migrational response to eotaxin than progenitor cells from normal subjects.44 Based on our findings that IL-5 can prime a CD34+ cell migratory response to eotaxin (Fig. 5), it is probable that elevated levels of IL-5 in atopic asthmatics compared with normal subjects may cause in vivo priming, resulting in the observed migratory responsiveness of CD34+ cells from atopic asthmatics to eotaxin.45

In the present study, we have shown that although no changes in the total numbers of CD34+ cells were detected in the bone marrow, the number of CD34+ CCR3+ and CD34+ IL-5Ra+ cells were significantly increased in DR 24 hr postallergen (Fig. 3). We propose that whereas upregulation of IL-5Ra on CD34+ cells within the bone marrow may favour increased eosinophilopoiesis within that microenvironment, the upregulation of CCR3 on CD34+ cells may favour increased traffic of progenitor cells from the bone marrow to the peripheral circulation in the presence of a positive concentration gradient of chemokines, such as eotaxin. The inability to detect similar significant changes in the blood at 24 hr may reflect the speed of homing of the progenitors or the dilutional effect of the blood (Table 3). Moreover, the kinetics of change in the progenitor cell population may be different within the blood compared to the bone marrow compartment; this is the subject of an ongoing study.

In long-term culture studies, it has been shown that IL-5 upregulates CCR3 expression on differentiating eosinophils within 3-7 days.46 Relevant to this we have recently reported that mRNA levels of IL-5 are significantly increased within the bone marrow of DR compared with ER asthmatics 24 hr postallergen challenge.37 It is therefore probable that local increases in IL-5 alone or in combination with other proinflammatory factors within the bone marrow may upregulate CCR3 expression on CD34+ progenitor cells from DR asthmatics. Conversely, our findings of significantly lower levels of blood-derived CD34+ CCR3+ and CD34+ IL-5Ra+ cells in ER compared with DR asthmatics (Table 3), and downregulation of CCR3 expression on CD34+ cells from ER asthmatics in response to allergen challenge (Fig. 3), may reflect an active means of preventing progenitor-cell mobilization from the bone marrow sinuses. Studies have shown that eotaxin treatment of differentiated acute myeloid leukemia (AML) cells results in marked downregulation of CCR3 expression for at least 18 hr,17 and that IL-3 causes a significant downregulation of CCR3 expression on eosinophils.48 Whether increased local generation of eotaxin, or possibly IL-3, within the bone marrow of DR compared with DR asthmatics causes the ligand-mediated internalization of CCR3 and thus the observed significant attenuation of CD34+ CCR3+ cell numbers postallergen, still remains to be investigated.

Under normal conditions of haemopoiesis, the bone marrow acts as a site for the turnover and traffic of mature leucocytes to the peripheral circulation. However, in inflammatory conditions, such as atopic asthma, in addition to the increased release of mature eosinophils, increased egress of primitive and eosinophil-lineage-committed progenitor cells occurs. Although the precise mechanisms which trigger progenitor cell traffic remain to be fully elucidated, this study provides evidence to support the hypothesis that, through upregulation of CCR3 in vivo, increased responsiveness to an eotaxin gradient may result in the mobilization of eosinophil progenitors from the bone marrow to the peripheral circulation during an allergic inflammatory response. Our results also point out the likelihood that the effects of both IL-5 and eotaxin may have to be abrogated if eosinophil inflammation is to be fully controlled.

ACKNOWLEDGMENTS
The authors gratefully acknowledge financial support from the Canadian Institutes for Health Research and the Wellcome Trust Foundation, UK. We are grateful to Lorna Wood for her role in recruitment of patients for this study, Tracey Rereich for spatum processing and Quin Meng for technical support in performing in situ hybridization. Roma Sehmi is a recipient of a Centennial Research Fellowship from the Canadian Institutes for Health Research.

REFERENCES
13 Eftimiadis A, O’Byrne PM, Hargrave PE, Sehmi S. Induced sputum elevated CD34+ progenitor cells in asthmatics Am J Respir Crit Care Med 2002; 165:A482.
32 Daugherty BL, Siciliano DS, Ferguson PG, O’Byrne PM. Increased mature and immature CCR3 messenger RNA+ eosinophils in bone marrow from patients with atopic asthma compared with atopic and non-atopic control subjects. J Allergy Clin Immunol 1999; 104:723–42.

44 Dorman S, Post J, Foley R, O'Byrne PM, Sehmi R. Chemokine receptors on bone marrow CD34+ cells from asthmatic subjects: evidence for a dissociation between levels of receptor expression and migrational responsiveness of progenitors. Am J Respir Crit Care Med 2003; 167:[Abstract A642].

46 Robinson DS, North J, Zeibergioglu K et al. Eosinophil development and bone marrow and tissue eosinophilia in atopic asthma. Int Arch Allergy Appl Immunol 1999; 118:98–100.

CHAPTER 4

SDF-1α AND EOTAXIN’S ROLE IN PROGENITOR CELL EGRESS FROM THE BONE MARROW AFTER ALLERGEN CHALLENGE

Submitted for publication in the Journal of Allergy and Clinical Immunology.

Sandra Dorman’s contribution:

- Experimental design
- Collection of clinical data
- Processing of laboratory samples
- Identification and quantification of colonies
- Analysis of data
- Preparation of manuscript
SDF-1α and Eotaxin’s role in Progenitor Cell Egress from the Bone Marrow after Allergen Challenge.

Authors: Sandra C. Dorman BSc., Irene Babirad, Julia Post, Rick M. Watson RT, Ronan Foley MD, Graham L. Jones MD, Paul M. O’Byrne MD, MB, FRCPI, FRCPC, FCCP and Roma Sehmi PhD.

Address: Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare and the Department of Medicine, McMaster University, Hamilton, Ontario, Canada.

Funding Sources: This work was supported by the Canadian Institutes of Health Research.

Address correspondence and reprint requests to Dr. Roma Sehmi, Assistant Professor, The Firestone Institute for Respiratory Health, St. Joseph's Hospital, Luke Wing, Rm L314-6, McMaster University, 50 Charlton Ave East, Hamilton, Ontario, Canada, L8N 4A6. Tel: (905) 522-1155 ext 5927. Fax: (905) 540-6510. Email address: sehmir@mcmaster.ca
ABSTRACT

Background: CCR3 expression on progenitors mediates migration to eotaxin, in vitro. CXCR4 and SDF-1α are important for stem-cell homing to hemopoietic compartments.

Objective: This study investigated chemokine effects on progenitor egress from bone marrow.

Methods: Marrow aspirates were obtained from normals, atopic non-asthmatics and asthmatics (dual and early). Additionally, aspirates and blood were obtained from dual and early responders before, 5 and 24h after allergen inhalation. Changes in receptor expression and migration were compared between groups and over time.

Results: CXCR4, but not CCR3, expression was greater in normal subjects compared with asthmatics. Likewise, SDF-1α, but not eotaxin, stimulated transmigration of more progenitors from normal subjects. A positive correlation existed between intensity of CXCR4 expression and magnitude of migration to SDF-1α in vitro. Allergen inhalation attenuated both intensity of CXCR4 expression and SDF-1α levels in marrow from dual when compared to early responders, 24h post-allergen. In contrast, circulating eotaxin and intensity of CCR3 expression on circulating progenitors increased in dual versus early responders at 5 and 24h post-allergen. Also in dual responders, increases in the proportion of circulating progenitors expressing CXCR4 was detected at 24h post-allergen, while decreases in responsiveness to SDF-1α and an increase in responsiveness to eotaxin were found for marrow progenitors, 24h post-allergen compared to pre-allergen.

Conclusion: Following allergen inhalation, a down-regulation in CXCR4 on progenitors...
and subsequent reduced responsiveness to SDF-1α may result in reduced progenitor retention to marrow stroma and subsequent peripheral egress, mediated in part, by CCR3 and its ligand eotaxin.
INTRODUCTION

Activation of hemopoiesis within the bone marrow is associated with the onset and maintenance of airway inflammation in asthma.1,2 In conjunction with this activation, allergen inhalation may also trigger the release of primitive and lineage-committed progenitors into the blood. Early studies have demonstrated: \textit{i)} elevated blood levels of eosinophil/basophil colony forming units (Eo/B-CFU) in atopic subjects compared with normals;3 \textit{ii)} increased circulating Eo/B-CFU during acute asthma exacerbations and 24h following allergen inhalation challenge in atopic asthmatics and;4,6 \textit{iii)} increases in circulating Eo/B-CFU during seasonal exposure to allergen in allergic rhinitis.7,8 Together, these results provide indirect evidence that in allergic asthma, changes in circulating progenitor cell numbers reflect dynamic hemopoietic processes within the bone marrow and support the hypothesis for progenitor cell transmigration from bone marrow to blood.

After allergen inhalation, allergic asthmatics can be classified into two groups, labelled early responders and dual responders. Dual responders develop prolonged airway hyperresponsiveness, pronounced airway, blood and bone marrow eosinophilia, eosinophil-lineage commitment and increased IL-5-driven eosinophilopoiesis within the bone marrow with an associated increase in circulating Eo/B-CFU, not seen in early responders, following allergen challenge.4-6,9 The difference in bone marrow responses between these groups suggest that significant progenitor cell migration out of the bone marrow only occurs in the dual responder group.

Homing and retention of hemopoietic cells in the bone marrow occurs via specific
chemokines, in particular, stromal cell-derived factor-1α (SDF-1α). Interfering with SDF-1α interactions and its ligand, CXCR4, blocks the in vivo homing of HPSC to the bone marrow and mobilizes stem cells for release into the circulation. HPSC can also be mobilized from the bone marrow following stimulation with various agents, including hemopoietic growth factors, inflammatory cytokines, chemokines and complement components. Eotaxin, an important inflammatory chemokine up-regulated in asthma, has been shown to selectively stimulate the rapid egress of eosinophil progenitor cells from the bone marrow sinuses of guinea pigs into the peripheral circulation. In human studies, we have shown that both CD34⁺ and CD34⁺IL-5Rα⁺ cells from bone marrow and blood express CCR3 at a protein and mRNA level and that this receptor is up-regulated on progenitor cells following allergen inhalation challenge. In addition, we found that eotaxin stimulated directional migration of progenitor cells, in vitro. More recently, Lamkhioued et al. have demonstrated that under conditions that promote Th2 type differentiation, CCR3 surface expression is up-regulated on CD34⁺ progenitor cells from cord blood. Together, these studies suggest that eotaxin is an important inflammatory chemokine that may promote the egress of HPSC from the bone marrow. The role of various groups of chemokine receptor families including CCR3 and CXCR4 have not been investigated in the context of progenitor cell mobilization during an allergic inflammatory response in asthmatic subjects.

The purpose of this study was twofold: first, to the enumerate the level of chemokine receptor expression on progenitors from asthmatics and normals and to relate this to the magnitude of migrational responsiveness of these cells; and second, to
investigate the effect of allergen challenge on production of the chemokines and the corresponding level of receptor expression on progenitor cells, with a view to understanding how these chemokines modulate the egress of progenitors out of the bone marrow during an allergic inflammatory response.

MATERIALS AND METHODS

Study Design

Subjects were screened and classified as normal, atopic non-asthmatic, early or dual responders. Normal and atopic subjects visited the laboratory once, when medical history, skin prick test sensitivity, spirometry and bone marrow aspirate samples were taken. Early and dual responders attended the laboratory on 4 occasions: visit 1, one week prior to allergen challenge, medical history, skin prick test sensitivity, spirometry, blood and bone marrow aspirate samples were taken; visit 2, one day prior to allergen challenge, methacholine inhalation test was performed; visit 3, allergen challenge was performed and blood and bone marrow aspirate were taken at 5h post-challenge; visit 4, 24h post-challenge, methacholine inhalation challenge, blood and bone marrow aspirate were performed.

Antibodies

Phycoerythrin (PE)-conjugated IgG1 CD34 antibody (HPCA-2), fluorescein isothiocyanate (FITC) conjugated IgG1 CD45 antibody (anti-HLE1), PE conjugated isotype control antibody (i.e. anti IgG1- PE) and streptavidin conjugated peridinin chlorophyll protein (PerCp) were purchased from Becton Dickinson, Canada.
(Mississauga, ON). Anti-CXCR4, Anti-CCR3 mAb, IgG\textsubscript{2a} isotype control and IgG\textsubscript{2b} isotype control were purchased from R&D systems (Minneapolis, MN, USA).

Subjects

Nine non-atopic, non-asthmatic subjects (determined by negative skin-prick test and PC\textsubscript{20} greater than 32mg) and five asymptomatic atopic non-asthmatic subjects (determined by clinical history, positive skin prick-test and PC\textsubscript{20} greater than 32mg) participated. In addition, thirty subjects with mild, stable, atopic asthma and baseline FEV\textsubscript{1} >70\% predicted were enrolled. For post-allergen comparisons, atopic asthmatics were broken into two groups: early; and dual responders. Dual responders, in contrast to early responders, develop prolonged airway hyperresponsiveness and significant bone marrow activation. Post-allergen, early responders (n=14) developed an early fall in FEV\textsubscript{1} >20\% from baseline between 0-2h, while dual responders developed an early and late fall (FEV\textsubscript{1} >15\%) from baseline between 3-7h (n=16). Subjects were non-smokers, using inhaled \(\beta_2\)-agonists intermittently (not used 8h before each visit) and had not experienced respiratory infection nor were exposed to altered levels of allergen two weeks prior to allergen inhalation. This study was approved by the Ethics Committee of McMaster University Health Sciences Centre and subjects gave written, informed consent before study entry.

Methacholine and Allergen Inhalation Tests

Methacholine inhalation challenge was performed as described by Cockcroft.18 The test was terminated when a fall in FEV\textsubscript{1} of 20\% of the post-saline value occurred, and the provocative concentration of methacholine causing a 20\% fall in FEV\textsubscript{1} (PC\textsubscript{20})
was calculated.

Allergen inhalation challenge was performed as described by O'Byrne et al. using a Wright nebulizer. The allergen extract was selected and diluted for inhalation at a concentration determined from a formula using both the results from the skin test and the methacholine PC_{20}.^{20}

Isolation and Immunofluorescence Staining of Bone Marrow and Blood Progenitors

Bone marrow aspiration and blood progenitor enumeration were performed according to Wood et al. Non-adherent mononuclear cells (NAMNC; containing progenitor cells and lymphocytes) were first stained with saturating amounts of biotin-conjugated anti-CXCR4, anti-CCR3 or the relevant isotype control antibody (determined in preliminary studies) in a final volume of 100μl of ice cold FACS staining buffer (PBS plus 0.1% NaN₃, 2.5% each of mouse serum and human serum) for 30 minutes at 4°C. The cells were then washed with 3ml PBS plus 0.1% sodium azide, resuspended in FACS staining buffer and stained with streptavidin-conjugated PerCp together with saturating concentrations of FITC conjugated IgG₁ CD45 antibody (anti-HLE1) and PE-conjugated IgG₁ CD34 antibody (HPCA-2) for 30 minutes at 4°C. Lysis buffer (Becton Dickinson Canada, Mississauga, ON) was then added to the cells and incubated for 5 minutes after which the cells were washed twice with 3ml PBS plus 0.1% sodium azide and finally fixed in 500μl of PBS plus 1% paraformaldehyde. Cells were refrigerated until acquired by flow cytometry.

Cells were analysed using a FACScan flow cytometer equipped with an argon ion laser (BDIS). Progenitor cells were identified based on their unique cell size; granularity
and immunofluorescence characteristics. Off-line analysis was performed using the PC lysis software as supplied by BDIS. True CD34+ blast cells were identified as cells with CD34high/CD45dull staining as previously described. Chemokine receptor expression on progenitors was expressed as either proportion of total progenitor cells (percent of CD34+45+ cells) or as the intensity of receptor expression (specific mean fluorescence intensity, SMFI) on 4000-5000 CD34+45+ cells.

Transmigration Assay

The migrational response of progenitors *in vitro* was assessed using transwell chambers (24-well cell clusters with 5-μm pore polycarbonate filters, Costar, Boston, MA, USA) as previously described with minor modifications. An enriched population of bone marrow CD34+ cells (purity >85%) by MACS, were loaded into each filtered transwell insert (1x105/100μl). These transwell inserts were then placed in a larger well containing 600μl dilutions of the chemoattractant (SDF-1α (25, 50, 100 or 200ng/ml), eotaxin (50, 100, 200 or 500ng/ml) or diluent) in serum-free medium, previously incubated for 15 min at 37°C in 5% CO\textsubscript{2}. After 4h, the filtered transwell insert was carefully removed and the cells in the bottom chamber (representing migrated cells) were aspirated. These cells were resuspended in FACS staining buffer and stained with PE-conjugated CD34 mAb and FITC-conjugated CD45 mAb, as described above. To obtain absolute values of migratory cells, flow cytometric counts for each sample were obtained during a constant predetermined time period. Since a constant number of CD34+45+ cells were added to the top well for all migrational assays performed, the migrational data for responding progenitor cells are presented as total CD34+45+ cell numbers counted in the
lower well.

Serum and Bone Marrow Supernatant

Serum and bone marrow supernatant were stored at -70°C. Eotaxin and SDF-1α were quantified using standard ELISA (R&D systems, MN, USA). The lower limits of detection were 5 and 18pg/ml respectively.

Statistical Analysis

Results were expressed as mean ± SEM, except for methacholine PC\textsubscript{20} which was expressed as geometric mean and %SEM. Methacholine PC\textsubscript{20} was log\textsubscript{10} transformed prior to analysis. The difference between normals, atopic non-asthmatics and atopic asthmatics at baseline was analysed using a repeated measures ANOVA (between group: normal versus atopic non-asthmatic versus dual responder versus early responder). The effect of allergen on methacholine PC\textsubscript{20}, CD34+45+ cell numbers, proportion of CD34+45+ expressing CXCR4+ and CCR3+ were analysed using a repeated measures ANOVA (between group: early versus dual responders; within group: pre versus 5 and 24 hours post-allergen inhalation). Transmigration data of CD34+45+ cells were log transformed and analysed using a repeated measures model ANOVA (between treatment: diluent versus various concentrations of chemokines and; between group: normal versus atopic non-asthmatic versus early and dual responder asthmatics). Comparisons of migrational responses of CD34+45+ cells before versus 24h after allergen were analysed using a student’s T test for dependent samples for each concentration of cytokine and diluent control. Cytokine protein levels were analysed using nonparametric testing (Kruskall Wallace between group: early versus dual responders and Wilcoxon for within
RESULTS

Chemokine Receptor Expression on Progenitor Cells

In agreement with previous studies, we found that significantly greater numbers of CD34+45+ cells were detected in the bone marrow of atopics compared with normal subjects¹⁶·¹⁷·²¹·²² (Figure 1a). More specifically, significantly greater CD34+45− cell numbers were detected in bone marrow aspirates from atopic non-asthmatics compared with both dual and early responder asthmatics and normal subjects. In addition, significantly greater numbers of CD34+45+ cells from bone marrow were detected in dual responders compared with early responders (p<0.05) and normals (p<0.01) but not between early responders and normals (atopic non-asthmatics: 7285±1727; dual responders: 6532±435.7; early responders: 4945±389.5; and normal subjects 4206±402 CD34+45+ cells / 0.25x10⁶ WBCs) (Figure 1a).

A comparison of various classes of chemokine receptors on bone marrow progenitors showed that the intensity of CXCR4 expression on CD34+45+ cells was significantly higher in normal subjects (33.9±6.5) when compared to dual responders (5.7±0.6; p<0.001) and early responders (6.9±1.0; p<0.001) but not atopic non-asthmatics (22.7±4.5) (Figure 1b). By comparison, there was no difference in the intensity of CCR3 expression on CD34+45+ cells between any of the subject groups (dual responders: 4.8±0.9; early responders: 3.8±0.5; atopic non-asthmatics: and normals: 62
6.8±1.7). Similar findings were obtained when we analysed the data as the percentage of bone marrow CD34⁺45⁺ cells that expressed either CXCR4 (normals 34±5.0% versus dual responders: 13±3.0%; p<0.05; early responders: 7±1.1%; p<0.05; atopic non-asthmatic: 27±4.5% CD34⁺45⁺ cells) or CCR3 (normals: 1.4±0.2%; dual responders: 1.8±0.4%; early responders: 1.3±0.1%; atopic non-asthmatic: 1.1±0.3% CD34⁺45⁺ cells).

Baseline Transmigration of Progenitor Cells

To investigate the relationship between levels of chemokine receptor expression and functional responsiveness, we enumerated the migrational responses of bone marrow derived progenitor cells to SDF-1α and eotaxin, *in vitro*. SDF-1α stimulated a significant dose dependent migrational response of CD34⁺45⁺ cells from all subject groups, optimal at 200ng/ml (Figure 2a). For between group comparisons, the number of CD34⁺45⁺ cells transmigrating towards SDF-1α was significantly greater in normals compared to atopic non-asthmatics and asthmatic subjects at optimal concentrations (200ng/ml; 609±173, 279±64 and 111±55 CD34⁺45⁺ cells respectively, p<0.05)(Figure 2a). No difference in the magnitude of migrational response to any dose of SDF-1α tested was detected in comparisons between dual and early responder asthmatics (data not shown). For all subjects, a significant positive correlation was observed between the intensity of CXCR4 expression on CD34⁺45⁺ cells and the magnitude of progenitor cell migrational response to SDF-1α at 200ng/ml (r=0.33, p<0.05) and 100ng/ml (r=0.43, p<0.05).

Eotaxin stimulated a weak migrational response for bone marrow CD34⁺45⁺ cells which was significantly greater than diluent only at 500ng/ml for all groups of subjects (p<0.05) (Figure 2b). There was a trend for a greater migrational response by progenitor
cells from asthmatics compared with normals to eotaxin, but this was not significant (Figure 2b).

Allergen-induced Fluctuations in Bone Marrow and Peripheral Blood Progenitors Cells

To assess the role of the CXCR4/SDF-1α and CCR3/Eotaxin axis on the egress of progenitor cells from the bone marrow in allergic inflammation, allergen challenge was performed on two groups of asthmatic subjects: dual responders and early responders, and progenitor levels in the bone marrow and blood were enumerated. Allergen-induced airway responses are outlined in Table I.

Bone Marrow Changes: In accordance with previous studies, no significant change in the number of bone marrow CD34^+45^+cells was detected over 24h following allergen challenge in either group of asthmatic subjects^6;16;21 (Figure 3). No significant change in the proportion of bone marrow CD34^+45^+ cells expressing CXCR4 or CCR3 was detected overtime following allergen in either group of asthmatic subjects (Figure 4). Similarly, no significant allergen-induced change in the intensity of CXCR4 or CCR3 on bone marrow CD34^+45^+ cells was detected overtime. However, for between group comparisons, significantly lower intensity of CXCR4 expression on progenitor cells was detected in dual responders compared with early responders at 24h post-allergen (dual responders: 2.9±1.4, early responders: 8.9±2.4, p<0.05) (Table II). In contrast, significantly higher intensity of CCR3 expression on CD34^+45^+ cells were detected in the bone marrow of dual responders compared to early responders at 24h post-allergen (dual responders: 4.13±0.9, early responders: 2.4±1.4, p<0.05) (Table II).
Peripheral Blood Changes: Enumeration of circulating progenitor cells showed that following allergen inhalation, dual responders developed a significant decrease in the number of CD34+45+ cells at 5h compared to baseline and compared to 24h levels (Figure 3). The numbers of hemopoietic progenitors decreased from 931±139.8 cells pre-allergen to 740±103.4 cells at 5h (p<0.05) and subsequently increased to 1015±125.8 cells at 24h (p<0.05) post allergen. In contrast, in early responders no change in circulating CD34+45+ cell numbers at any time point was found following allergen challenge (Figure 3).

Following allergen inhalation, dual responders developed a significant increase in the proportion of peripheral blood CD34+45+ cells expressing CXCR4 at 5h and 24h compared to baseline. Cell numbers increased from 12±3.4% pre-allergen to 28±7.3% at 5h (p<0.05) and to 28±8.9% of CD34+45+ cells at 24h post allergen (p<0.05) (Figure 4a). By contrast, in early responders there was no significant change in the proportion of circulating CD34+45+ cells expressing CXCR4 at any time point post-allergen challenge (Figure 4a). For both groups of asthmatics there was no significant allergen-induced change in the proportion of circulating CD34+45+ cells expressing CCR3+ cells (Figure 4b).

Allergen-Induced Changes in Transmigration of Progenitor Cells

To investigate the effect of allergen challenge on functional responsiveness of progenitor cells, comparisons of the chemokine-stimulated migrational responses pre versus post-allergen were performed in dual responder asthmatics. Following allergen challenge there was a reduction in the stimulated migrational response of bone marrow.
CD34⁺45⁺ cells to a sub-optimal concentration of SDF-1α at 100ng/ml (Figure 5a). In contrast, the stimulated migrational response to a sub-optimal concentration of eotaxin (200ng/ml) was significantly greater when pre-allergen levels were compared with post-allergen levels (Figure 5b).

Allergen-Induced Changes in SDF-1α and Eotaxin

SDF-1α: Following allergen inhalation, there was no significant change in the amount of circulating SDF-1α over time in either group (Figure 6a). In contrast in the bone marrow, following allergen inhalation, dual responders developed a significant decrease in SDF-1α at 24h post-allergen compared to baseline. Protein levels were 1666±61.8pg/ml pre-allergen; 1630±69.9 pg/ml at 5h and 1460±79.2pg/ml at 24h post allergen (p=0.05). In early responders, there was no change in SDF-1α levels over time following allergen inhalation. Between group comparisons showed that at 24h post-allergen significantly lower levels of SDF-1α were detected in dual responders compared to early responders (p<0.05) (Figure 6a).

Eotaxin: Following allergen inhalation, dual responders developed a significant increase in the amount of eotaxin in the blood at 5h post allergen compared to baseline. Protein levels increased from baseline being: 81±11.2pg/ml; to 101±9.9 pg/ml at 5h (p<0.05) and; 96.6±12.1pg/ml at 24h post-allergen. By contrast, there was no significant change in eotaxin levels in early responders following allergen inhalation. There was also significantly more eotaxin at 5h post allergen in dual responders compared to early responders (p<0.05)(Figure 6b). No change in bone marrow eotaxin levels was detected over time in either any group pf asthatics (Figure 6b).
DISCUSSION

The distinctive findings of this study are that in the bone marrow \((i)\) at baseline, there are significant differences in the level of CXCR4 but not CCR3 expression on progenitor cells from various groups of subjects, \((ii)\) a significant correlation exists between the magnitude of the migrational response and the level of CXCR4 expression on progenitor cells, \((iii)\) a down-regulation of CXCR4 expression on CD34\(^+\)45\(^-\) cells from dual compared with early responders at 24h post-allergen, and \((iv)\) a significant reduction in migrational responsiveness to SDF-1\(\alpha\), \textit{in vitro}, when pre-allergen levels are compared with 24h post allergen levels in dual responders. In addition, the level of eotaxin in the peripheral blood and the level of SDF-1\(\alpha\) in the bone marrow also fluctuate in response to allergen challenge at times that are consistent with progenitor cell movement. Together, these findings support the hypothesis that following allergen-inhalation challenge in asthmatics, down-regulation of SDF-1\(\alpha\) in the bone marrow and increased eotaxin in the peripheral blood together with relevant fluctuations of the receptors on CD34\(^+\)45\(^-\) cells may facilitate chemokine-mediated egress of progenitors from the bone marrow to the blood.

CD34 antigen is a monomeric O-sialylated glycoprophoprotein whose expression is restricted to developmentally early lymphohemopoietic stem and progenitor cells. We have previously shown increases in the number of eosinophil/basophil colony forming units 24h after allergen inhalation and during seasonal flares.\(^6^8\) In addition, Robinson \textit{et al.} have also shown the presence of immunopositive CD34 cells in bronchial biopsies and found an increase in the number of these cells in asthmatics compared to
normals. Concurrent with these findings we have recently shown increases in the number of sputum CD34+45+ cells in the airways of dual responder asthmatics at 7 and 24h post-allergen inhalation. In the present study, for the first time we have shown fluctuations in the number of circulating CD34+45+ cells, decreasing significantly at 5h in dual responders only, a time-point preceding the 7h increases previously seen in sputum CD34+45+ cells. Together these results suggest that during an asthmatic exacerbation, bone marrow progenitor cells are both activated and released into the circulation where they may then home to the airway tissue undergoing an allergic inflammatory response.

SDF-1α, first described as a potent hemopoietic stem cell-selective chemokine, was identified by micro-sequencing as a CXC chemokine and shown to mediate its effect through ligation of a specific receptor, CXCR4. SDF-1α is produced by all stromal cells and is bound within the marrow by heparans and proteolycans. Therefore, ligation of CXCR4 by SDF-1α is not only a migrational stimulus but is also retentive for progenitor cells within the bone marrow. Petit et al. have proposed that manipulation of SDF-1α-CXCR4 interactions may be an improved way to control the navigation of progenitor cells between the bone marrow and blood. To examine this hypothesis, they investigated the mobilization of hemopoietic progenitor stem cells (HPSC) induced by intravenous injection of granulocyte colony-stimulating factor (GCSF), a method widely used in clinical transplantation. Using ELISA and immunohistologic analysis of human bone marrow plasma they showed sharp transient increases in marrow plasma SDF-1α followed by significant reduction within 24 hours of treatment which was not seen in the blood. Furthermore, it has been demonstrated that the mobilization of HPSC by GCSF
was due to the disruption of the CXCR4-SDF-1α chemotactic pathway resulting in the loss of chemotactic response of the CXCR4 to its ligand13 and the proteolytic degradation of SDF-1α.14 As both SDF-1α and CXCR4 are essential for the homing and retention of HPSC in the bone marrow, the interruption of ligation may represent a critical step in the mobilization of HPSC into the peripheral circulation.13 The current study is consistent with these findings by showing a reduction in bone marrow SDF-1α levels at 24h, a decrease in the intensity of CXCR4 expression on bone marrow CD34+45+ cells and increases in circulating CD34+45+ CXCR4− cells at 5 and 24h following allergen inhalation. The increase in circulating CD34+45+ CXCR4+ cells prior to the measured decrease in SDF-1α presumably reflects the initial cleavage process where cells become non-responsive and are released into the circulation. This is supported by the decrease in the number of bone marrow CD34+45+ cells transmigrating towards SDF-1α at 24h compared to baseline numbers (Figure 5a).

Interestingly SDF-1α ligation has also been shown to arrest progenitor cell cycling, preventing apoptosis, but promoting a transition into quiescence.27 In the present study, the decrease in measurable SDF-1α occurs at a time which has previously been shown to be associated with an increase in eosinophilopoiesis in dual responders only.6 Therefore SDF-1α, in addition to allowing the egress of progenitor cells from the bone marrow, may also contribute indirectly to the increased production of inflammatory cells in this site. This is in agreement with our findings that a significant increase in IL-5 responsive Eo/B-CFU formation was detected in dual responders.9

Eotaxin, first described as a potent eosinophil-selective chemokine, was identified
by micro-sequencing as a CC chemokine and shown to mediate its effect through ligation of a specific receptor, CCR3. CCR3 expression on progenitor cells has now been shown by several groups. We have also previously shown the ability of these cells to transmigrate towards eotaxin which was abrogated by monoclonal antibodies against CCR3. In the same study, we found significant increases in CCR3 expression on bone marrow CD34+ cells from dual responders 24h following allergen inhalation. In the current study, we confirm the expression of CCR3 on human bone marrow and blood CD34+45+ cells and show that following allergen challenge there was a significant increase in the intensity of CCR3 expression on CD34+45+ cells from bone marrow of dual responder asthmatics (Table II).

In guinea pigs, eotaxin acts systemically to activate the bone marrow and stimulate mobilization of both mature eosinophils and eosinophil progenitors. Using an in situ perfusion system with guinea pig femoral bone marrow, eotaxin infusion into the arterial supply stimulated not only a rapid selective release of eosinophils into the draining vein but the release of eosinophil colony-forming progenitor cells as well. In the current study, we have shown for the first time, significant increases in circulating eotaxin levels at 5h in dual responders only. The inability to detect similar significant increases in circulating CD34+CCR3+ cells at 5h may reflect the speed of homing of the progenitors or the dilution effect of the blood.

Pre-allergen, CCR3 expression on CD34+45+ cells was not significantly different between groups. Similarly, there were no differences between groups in the ability of the CD34+45+ cells at pre-allergen to transmigrate towards eotaxin. In contrast, the
significant differences in CXCR4 expression between groups was associated with increases in the number of CD34^+45^+ cells transmigrating towards SDF-1α. Together these results suggest that chemokine receptor expression reflects the ability of these cells to respond to stimulus. This is further supported by our findings of a significant positive correlation between the intensity of CXCR4 expression on progenitor cells and the magnitude of the migrational response to SDF-1α.

Under normal conditions of hemopoiesis, the bone marrow acts as a site for the turnover and traffic of mature leukocytes to the peripheral circulation. However, in inflammatory conditions such as atopic asthma, in addition to the increased release of mature eosinophils, increased turnover of bone marrow and blood progenitors also occurs. Although the precise mechanisms which trigger progenitor cell traffic remain to be fully elucidated, this study demonstrates that fluctuations in CXCR4 and CCR3 receptor expression on bone marrow CD34^+45^+ cells together with changes in chemokines, SDF-1α and eotaxin protein levels play a role in orchestrating the release from bone marrow stromal compartments and subsequent egress of progenitors to the peripheral circulation in allergic inflammatory responses. These results also point out the likelihood that the activation of the bone marrow may have to be abrogated if airway inflammation is to be fully controlled.
ACKNOWLEDGEMENTS

The authors would like to thank George Obminski for technical assistance, Joceline Otis for graphic production and My Lin Duong for statistical analysis in this study.
REFERENCES

20. Cockcroft DW, Murdock KY, Kirby J, Hargreave FE. Prediction of airway responsiveness to allergen from skin sensitivity to allergen and airway

Table I

Allergen-induced Airway Responses

<table>
<thead>
<tr>
<th></th>
<th>Early Responder Asthmatics</th>
<th>Dual Responder Asthmatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>% fall in FEV(_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAR</td>
<td>21.9±1.54%</td>
<td>28.3±1.65%</td>
</tr>
<tr>
<td>LAR</td>
<td>5.4±1.03%</td>
<td>20.5±2.04(†)</td>
</tr>
<tr>
<td>Methacholine PC(_{20})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Allergen</td>
<td>3.3mg/ml (%SEM 1.5)</td>
<td>2.4mg/ml (%SEM 1.3)</td>
</tr>
<tr>
<td>Post-Allergen</td>
<td>2.2mg/ml (%SEM 1.5)</td>
<td>0.7mg/ml (%SEM 1.6) († ‡)</td>
</tr>
</tbody>
</table>

FEV\(_1\): Forced expiratory volume in 1 second; PC\(_{20}\): provocative concentration of methacholine inducing a 20% fall in FEV\(_1\); EAR: early airway response; LAR: late airway response; difference within group: \(† P<0.05\); and difference between groups: \(‡ P<0.05\)

Blood, bone marrow and airway eosinophil numbers for a subset of these patients has been reported in AJRCCM 2004\(^{34}\)
Table II

Fluctuations in Chemokine Receptor Expression on Bone Marrow Progenitor Cells Following Allergen Challenge

<table>
<thead>
<tr>
<th>Receptor Expression on BM CD34⁺45⁺Cells</th>
<th>Pre-Allergen</th>
<th>5h Post-Allergen</th>
<th>24h Post-Allergen</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR (n=16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR3 (SMFI)</td>
<td>4.8 ± 0.9</td>
<td>4.9 ± 0.87</td>
<td>6.13 ± 0.9*</td>
</tr>
<tr>
<td>CXCR4 (SMFI)</td>
<td>5.7 ± 1.9</td>
<td>9.02 ± 5.26</td>
<td>2.9 ± 1.4</td>
</tr>
<tr>
<td>ER (n=14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR3 (SMFI)</td>
<td>3.8 ± 0.5</td>
<td>3.9 ± 2.21</td>
<td>4.4 ± 1.4</td>
</tr>
<tr>
<td>CXCR4 (SMFI)</td>
<td>6.9 ± 1.0</td>
<td>10.5 ± 5.02</td>
<td>8.9 ± 2.4*</td>
</tr>
</tbody>
</table>

BM: bone marrow; h: hour; DR: dual responders; ER early responders; SMFI: Specific mean fluorescence intensity; difference between group: *P<0.05.
Figure 1 Progenitor cells in bone marrow aspirates from dual responders (DR, n=16), early responders (ER, n=14), atopic non-asthamtics (ANA, n=5) and normals (N, n=9). Data are expressed as mean ± SEM of cells per 0.25x10⁶ WBC for CD34⁺⁴⁵⁺ cells and as specific mean fluorescence intensity (SMFI) for chemokine receptor enumeration on CD34⁺⁴⁵⁺ cells. Difference between group: *p<0.05, **p<0.01, ***p<0.001
Figure 2 Trans-well migration assay of bone marrow progenitor cells from asthmatics (dual and early responders, DR/ER, n=9), atopic non-asthmatics (ANA, n=5) and normals (N, n=9). SDF-1α stimulated a dose-dependent migrational response of CD34+ cells optimal at 200ng/ml for all groups. The magnitude of transmigration was greatest in normal subjects. Eotaxin stimulated a dose-dependent migrational response of CD34+ cells optimal at 500ng/ml for all groups. Difference within group: † p<0.05; difference between group: *p<0.05.
Figure 3 Allergen-induced changes in CD34⁺45⁺ cells in bone marrow and peripheral blood from dual responders (DR, n=16) and early responders (ER, n=14). Peripheral CD34⁺45⁺ cells decreased at 5h followed by an increase at 24h post-allergen in DR only. No change in blood progenitors was detected in ER at any time point following allergen challenge. Difference over time: † p<0.05.
Figure 4 Allergen-induced changes in CXCR4 and CCR3 expression on CD34+45+ cells from bone marrow and peripheral blood from dual responders (DR, n=16) and early responders (ER, n=14). Peripheral CD34+45+ cells expressing CXCR4 increased at 5h and 24h post-allergen in DR only. Difference within group: † p<0.05.
Figure 5 Trans-well migration assay of bone marrow progenitors before and after allergen inhalation in dual responders (n=6). 24h post-allergen, migrational responses to SDF-1α (100 ng/ml) decreased compared to pre-allergen. In contrast, migrational responses to Eotaxin (200ng/ml) increased. SDF-1α and eotaxin stimulated an increased migration compared to diluent. Difference with diluent: † p<0.05; difference over time: *p<0.05.
Figure 6 Allergen-induced changes in SDF-1α and eotaxin levels from bone marrow supernatants and plasma taken from dual responders (DR, n=16) and early responders (ER, n=14) at baseline (BL), 5 and 24h post-allergen inhalation. Bone marrow SDF-1α levels decreased at 24h, while circulating eotaxin levels increased at 5h in DR only. Difference within group: † p<0.05; difference between groups: *p<0.05.
CHAPTER 5

SPUTUM CD34⁺IL-5Rα⁺ CELLS INCREASE AFTER ALLERGEN

EVIDENCE FOR IN SITU EOSINOPHILOPOIESIS

Published in the American Journal of Respiratory and Critical Care Medicine in 2004

Sandra Donnan’s contribution:

Experimental design
Collection of clinical data
Processing of laboratory samples
Identification and quantification of colonies
Analysis of data
Preparation of manuscript
Sputum CD34+IL-5Rα+ Cells Increase after Allergen Evidence for In Situ Eosinophilopoiesis

Sandra C. Dorman, Ann Efthimiadis, Irene Babirad, Rick M. Watson, Judah A. Denburg, Frederick E. Hargreave, Paul M. O'Byrne, and Roma Sehmi

Eosinophil lineage-committed progenitors increase in the bone marrow of subjects with asthma developing allergen-induced airway hyperresponsiveness and eosinophilia. Also, higher numbers of circulating eosinophil/basophil colons have been demonstrated 24 hours after allergen inhalation and in bronchial and nasal biopsies of allergic individuals. These cells may undergo in situ eosinophilopoiesis, suggesting that after allergen inhalation, progenitor cells traffic from the bone marrow to the airways, providing an ongoing source of effector cells. To examine this possibility, CD34⁺ and CD34⁺IL-5Rα⁺ cells were measured in induced sputum from allergic subjects with asthma at baseline and at 7 and 24 hours after allergen and diluent inhalation, using flow cytometry. Isolated early responders (n = 7) were contrasted to dual responders (n = 5), who develop allergen-induced sputum and blood eosinophilia and airway hyperresponsiveness, and to normal control subjects. At baseline, there were significantly fewer sputum eosinophils and CD34⁺ cells in normal control subjects compared with subjects with asthma. Sputum CD34⁺ cells increased at 7 hours after allergen inhalation in both groups of subjects with asthma, which was sustained at 24 hours in the dual responder group only, associated with sustained increases in sputum CD34⁺IL-5Rα⁺ cells, eosinophils, and interleukin-5. These results indicate that eosinophil progenitors may migrate to the airways and may differentiate toward an eosinophil phenotype.

Keywords: stem cell mobilization, asthma, airway

Activation of specific hematopoietic pathways within the bone marrow is associated with allergen-induced eosinophilic airway inflammation (1,2). In conjunction with the activation of eosinophilopoiesis, allergen inhalation challenge may also trigger the release of primitive and lineage-committed progenitors into the blood (4,5). Evidence to support progenitor cell migration to the site of inflammation comes from recent studies on humans, where CD34 immunopositive cells have been extracted from human nasal polyp and ex vivo tissue and shown to undergo interleukin (IL)-5-driven proliferation and differentiation into eosinophil/basophil colony-forming unit (in vivo and ex vivo) (6,7), highlighting the presence of true blast cells. In addition, increased numbers of CD34⁺IL-5Rα⁺ cells have been detected in asthmatic bronchial biopsy tissue (8).

It is not known whether progenitor cell numbers in the airway increase in response to allergen inhalation in subjects with asthma. Therefore, the aim of the current study were twofold. First, it was investigated whether there is time-dependent changes in the number of CD34⁺ and CD34⁺IL-5Rα⁺ cells in the airways of subjects with asthma after allergen inhalation. Thus, sputum samples were induced before and at 7 and 24 hours after allergen and diluent inhalation. Second, it was determined whether there is an association between progenitor cells and airway eosinophilia. Therefore, sputum samples were induced in dual responders, isolated early responders, and normal control subjects. Some of these results have been reported previously in an abstract (9).

METHODS

Study Design

Nineteen subjects with mild, atopic asthma and baseline FEV₁ greater than 70% predicted participated. Postallergen, isolated early responders (n = 7) developed a fall in FEV₁ greater than 20% from baseline between 0 and 2 hours, whereas dual responders developed an early and late fall (FEV₁ > 15%) from baseline between 3 and 7 hours (n = 5). Subjects were non-smokers, using inhaled steroids, and asthma were enrolled. This study was approved by the Ethics Committee of McMaster University Health Sciences Centre, and subjects gave written, informed consent before study entry.

Allergen/diluent challenges were randomized with a 2-week washout period between. Subjects attended the laboratory on six occasions: at Visit 1 and 4, medical history was documented and skin-prick test sensitivity to allergen extract (Visits 1 only), sputum eosinophils, methacholine inhalation test, and sputum induction were performed; at Visits 2 and 5, allergen/diluent challenge and sputum induction at 7 hours postchallenge were performed; at Visits 3 and 6, methacholine inhalation challenge and sputum induction were performed.

Normal control subjects visited the laboratory once, when medical history was documented and skin prick test sensitivity, spirometry, and sputum induction were performed.

Allergen-Diluent and Methacholine Inhalation Challenge

Allergen challenge was performed as described by O'Byrne and coworkers (10), and the concentration of allergen extract was determined from a formula using skin prick test and PEF (provocative concentration of methacholine causing a 20% drop in PEF) (11). Diluent control was physiologic saline.

Methacholine inhalation was performed as described by Cockcroft and coworkers (12).

Sputum Induction

Sputum was induced by hypertonic saline inhalation and processed according to Pizzichini and coworkers (13). Cytospins were prepared and means of duplicate slides (40 fields) were expressed as absolute counts (10⁶ cells/ml). supernatants were separated by centrifugation and stored at −70°C. IL-5 levels were quantified using commercially available ELISAs (Pharmingen, San Diego, CA). The lower limit of detection was 4 pg/ml.

Flow Cytometry

Progenitors were stained and identified according to Sehmi and coworkers (2). True CD34⁺ blast cells were identified as cells with CD34⁺CD45⁺.
staining, as described previously, and expressed as absolute cell counts per milliliter of sputum sample. Cytokine receptor antibodies were biotinylated, as described previously (2). Nonneutralizing monoclonal antibodies directed against the α-subunits of IL-5R (IL-5Rα; e16) was a kind gift from Dr. Jan Tavernier (Ghent University, Belgium).

Statistical Analysis
Results were expressed as mean ± SEM, except for PCO, which was expressed as geometric mean ± SEM. PCO, IL-5, and sputum values were log-transformed to fit a normal distribution before analysis. The allergen-induced changes from baseline in PCO, CD34+ cell numbers, CD34+ IL-5Ra+ cells, cytokine protein levels, and sputum eosinophils were analyzed using a repeated measures analysis of variance (between treatment: allergen vs. diluent; between group: isolated early vs. dual responders vs. normal control subjects; within group: baseline vs. 7 hours vs. 24 hours; Statistica 5.1; Statsoft, Tulsa, OK). Correlations were analyzed using Spearman’s ρ. Statistical significance was accepted as p values less than 0.05.

RESULTS
Airway Responses
The baseline FEV1 values were similar on all study days. Dual responders had a greater fall in FEV1, between 3 and 7 hours after inhaled allergen and a significant decrease in PCO, 24 hours after inhaled allergen (p < 0.05), which was not demonstrated in isolated early responders. No changes occurred after diluent challenge in either group (Table 1).

Eosinophils
Both isolated early and dual responders had significantly more eosinophils at baseline compared with normal control subjects, being 1.0 ± 0.34 × 10^6/ml (p < 0.01), 1.4 ± 0.53 × 10^6/ml (p < 0.01), and 0.9 ± 0.093 × 10^6/ml, respectively (Table 2).

After allergen inhalation, in dual responders, eosinophils increased from 1.6 ± 0.51 × 10^6/ml preallergen to 15.4 ± 5.72 × 10^6/ml at 7 hours (p < 0.01) and to 14.7 ± 4.03 × 10^6/ml at 24 hours (p < 0.001) postallergen. In addition, cell numbers increased at 7 hours (p < 0.01) and at 24 hours (p < 0.05) compared with diluent inhalation (Figure 2B). In contrast, isolated early responders showed no change in CD34+ cells postallergen compared with baseline. However, compared with diluent challenge, there was a significant increase in the numbers of CD34+ cells at 7 hours (p < 0.05) followed by a significant decrease at 24 hours (p < 0.05). There was also a trend for a difference between groups at 24 hours (p = 0.096). There was a significant positive relationship between CD34+ cells and eosinophils measured by the area under the curve from baseline to 24 hours (r = 0.48; p < 0.05).

CD34+IL-5Ra+ Cells
No significant differences occurred in baseline CD34+IL-5Ra+ cell numbers between groups (Table 2). After allergen inhalation, dual responder CD34+IL-5Ra+ cells increased from 2 ± 0.88/ml preallergen to 14 ± 4.24/ml at 7 hours (p < 0.05) and to 48 ± 14.7/ml at 24 hours (p < 0.01) postallergen. In addition, CD34+IL-5Ra+ cells increased at 7 hours (p < 0.05) and at 24 hours (p < 0.05), compared with diluent inhalation (Figure 2B). In contrast, isolated early responders showed no change in CD34+IL-5Ra+ cells postallergen compared with baseline. However, compared with diluent challenge, there was a significant increase in CD34+IL-5Ra+ cells at baseline (p < 0.005) and at 7 hours (p < 0.005). Dual responders also had significantly more CD34+IL-5Ra+ cells at 24 hours compared with isolated early responders (p < 0.001) (Figure 2B). There was a significant positive relationship between CD34+IL-5Ra+ cells and eosinophils, measured by the area under the curve from baseline to 24 hours (r = 0.5; p < 0.05).

IL-5 Protein
There were no significant differences in baseline IL-5 levels between groups. Dual responders demonstrated significantly more IL-5 protein at 7 and 24 hours postallergen compared with diluent challenge. Levels increased from 6.3 ± 0.78 pg/ml preallergen to 9.8 ± 1.68 pg/ml at 7 hours (p < 0.05) and to 9.2 ± 0.94 pg/ml at 24 hours postallergen (p = 0.05) and were 6.2 ± 0.75 pg/ml preallergen to 6.7 ± 0.55 at 7 hours and 6.8 ± 0.67 pg/ml at 24 hours postdiluent. In contrast, isolated early responders showed no significant differences in IL-5 protein levels.

Dual responders also had significantly more IL-5 protein in the sputum supernatant at 24 hours compared with isolated early responders (p < 0.01) (Figure 3). The change in IL-5 protein levels at 7 hours correlates positively with the change in IL-5Ra expression at 24 hours in both groups (r = 0.49; p < 0.005).

TABLE 1. SUBJECT ALLERGEN AND DILUENT-INDUCED AIRWAY RESPONSES

<table>
<thead>
<tr>
<th>Condition</th>
<th>Early Responder with Asthma</th>
<th>Dual Responder with Asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergen % decrease in FEV₁</td>
<td>35.6 ± 3.11</td>
<td>31.2 ± 3.37</td>
</tr>
<tr>
<td>LAR</td>
<td>5.4 ± 1.15</td>
<td>24.2 ± 3.05</td>
</tr>
<tr>
<td>Diluent % decrease in FEV₁</td>
<td>3.1 ± 1.37</td>
<td>2.9 ± 3.27</td>
</tr>
<tr>
<td>LAR</td>
<td>1.8 ± 1.72</td>
<td>2.4 ± 1.36</td>
</tr>
</tbody>
</table>

Definition of abbreviations: EAR = early airway response; LAR = late airway response; PCO = provocative concentration of methacholine causing a 20% drop in FEV₁.

Values are presented as means ± SEM except for PCO values, which are geometric means with percent SEM in parentheses.

p < 0.01 for within-group comparison of preallergen versus 24-hour postallergen log₁₀PCO values.

p < 0.05 for between-group comparisons of preallergen versus 24-hour postallergen log₁₀PCO values.
TABLE 2. SUMMARY OF BASELINE DATA FROM INDUCED SPUTUM

<table>
<thead>
<tr>
<th></th>
<th>Normal Control Subjects</th>
<th>Isolated Early Responders</th>
<th>Dual Responders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosinophils, (\times 10^6) cell/ml</td>
<td>0.2 ± 0.90</td>
<td>1.0 ± 0.34*</td>
<td>1.4 ± 0.53*</td>
</tr>
<tr>
<td>CD34+ cells/ml</td>
<td>1 ± 0.48</td>
<td>33 ± 17.3</td>
<td>27 ± 7.4*</td>
</tr>
<tr>
<td>CD34+IL-5Ra+ cells/ml</td>
<td>0 ± 0.01</td>
<td>6 ± 2.10</td>
<td>3 ± 0.78</td>
</tr>
</tbody>
</table>

Values are presented as mean ± SEM. Isolated early and dual responder means are calculated from the average of the diluent and allergen baseline.

Isolated early and dual responder subjects with asthma had significantly increased eosinophils and CD34+ cells at baseline compared with normal control subjects. There was no difference in baseline CD34+IL-5Ra+ cells.

*p < 0.01 for between-group comparisons.

*p < 0.05 for between-group comparisons.

DISCUSSION

The novel findings of this study are: (1) CD34+ cells can be detected in human sputum; (2) the proportion of airway CD34+ cells is greater in subjects with asthma compared with normal control subjects and fluctuates after allergen inhalation challenge; (3) the proportion of CD34+ cells expressing IL-5Ra increases in dual responder subjects with asthma only; and (4) this change in IL-5Ra expression occurs in conjunction with increases in IL-5 protein levels. These findings indicate that in subjects with asthma, after allergen inhalation, trafficking of CD34+ progenitors to the airways occurs, with upregulation of IL-5Ra expression, which, in the presence of IL-5, may mediate the in situ differentiation of progenitor cells into eosinophils.

Although changes in the levels of sputum progenitor cells would suggest the trafficking of progenitors from the peripheral circulation, one cannot disregard the possibility of in situ proliferation of progenitors. Although previous studies would suggest that a systemic source of the progenitors is likely, namely bone marrow via the blood, the current study is limited by the lack of peripheral blood data collected from the same subjects.

The development of both early- and late-asthmatic responses after allergen inhalation is known to be associated with increases in circulating eosinophils (14), greater increases of activated eosinophils in the airway (15), activation of eosinophilopoiesis in the bone marrow (6), and the development of airway hyperresponsiveness (16), when compared with isolated early responders. Contrasting these two groups allows for a useful clinical model of increased eosinophilic airway responses and associated airway functional changes. The current study suggests that the greater increases in eosinophils seen in the dual responders may in part be due to the in situ production of eosinophils by CD34+ cells. Although the number of CD34+ cells measured is small when compared with total sputum numbers, this is not surprising considering that progenitors are self-sustaining and differentiate into colonies of cells.

Robinson and coworkers (8) have examined bronchial biopsies and confirmed both the presence of true blast cells and an increase in progenitor cells in subjects with atopy and asthma and subjects with atopy but without asthma compared with normal control subjects, concluding that the increase in CD34+ cells was a feature of atopy. The data from the current study confirm these findings because both groups of subjects with asthma demonstrated significantly more CD34+ cells at baseline compared with normal control subjects and extends them, demonstrating a rapid increase in CD34+ cells, potentially reflecting an influx from the circulation as early as 7 hours and sustained for 24 hours after allergen inhalation challenge in dual responders.

Figure 1. Comparison of sputum eosinophil numbers at baseline (BL) and at 7 and 24 hours after diluent (open/stippled) and allergen (hatched/solid) inhalation challenge. Sputum eosinophils significantly increased at 7 and 24 hours postallergen inhalation compared with BL and with diluent challenge in both isolated early and dual responders. *p Values less than 0.01, comparison with BL; †p values less than 0.05, comparison with diluent.

Figure 2. Comparison of sputum CD34+ cells (upper panel) and CD34+IL-5Ra+ cells (lower panel) at baseline (BL) and at 7 and 24 hours after diluent (open/stippled) and allergen (hatched/solid) inhalation challenge. CD34+ and CD34+IL-5Ra+ cells significantly increased at 7 and 24 hours postallergen inhalation, compared with BL and with diluent challenge in dual responders. Isolated early responders, CD34+ cells increased at 7 hours and decreased at 24 hours compared with diluent challenge, whereas CD34+IL-5Ra+ cells were significantly increased at 7 and at 24 hours compared with diluent challenge. Dual responders also had significantly more CD34+IL-5Ra+ cells at 24 hours compared with isolated early responders. *p Values less than 0.01, comparison with BL; †p values less than 0.05, comparison with diluent; ‡p values less than 0.001, comparison between groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
In the same article, Robinson and coworkers (8) also demonstrated an increase in CD34+ IL-5Ra messenger RNA cell numbers in the airways of subjects with asthma only, compared with subjects with atopy but without asthma and normal control subjects. They concluded that the ability to respond to IL-5 was a feature of asthma. The present study was unable to show differences in the amount of IL-5Ra expression at baseline between groups. However, we did not observe the intracellular messenger RNA levels.

Kim and coworkers (6) have confirmed the presence of CD34+ cells in nasal polyps and, using methycellulose colony assays, showed that nasal polyp tissue contained myeloid colony-forming cells. In addition, Cameron and coworkers (7), using an ex vivo allergen challenge model from nasal mucosa, showed an increase in eosinophils, suggesting that these cells had differentiated locally in an IL-5-dependent process. This study corroborates these findings and demonstrates an increase in CD34+ IL-5Ra+ cells in the airways after allergen inhalation. We have as yet not been able to show the presence of true blast cells because sputum culture is hampered by treatment with sputolysin and its lack of sterility. However, these results support the concept that local tissue differentiation and expansion of eosinophils may occur in asthma affecting humans.

IL-5 is likely to be a central cytokine in the development of tissue eosinophilia in asthma. Studies have shown that IL-5 protein levels are increased in induced sputum after allergen inhalation challenge (17, 18), and this study confirms these findings. IL-5 is also a potent eosinophilopoietin (19), and expression of membrane-bound IL-5Ra is believed to be the phenotype of the earliest eosinophil lineage-committed progenitor (2). In the present study, the increase in IL-5 was positively correlated with the delayed upregulation of the IL-5Ra on CD34+ cells in the dual responder group at 24 hours, supporting the hypothesis that IL-5 upregulates its own receptor and suggesting the in situ differentiation of these cells in the presence IL-5.

Recently, anti-IL-5 therapy has been developed to block eosinophil production, migration, and activation in allergic asthma. Although this therapy has been shown to be effective in reducing circulating eosinophil numbers (20, 21), it has not been shown to be equally effective in reducing bone marrow and airway tissue eosinophils. Flood-Peige and coworkers (21) demonstrated a median percent reduction of only 50% for both airway tissue and bone marrow eosinophils. In a related study, Mezine-Gow and coworkers (22) extended these findings, showing that anti-IL-5 therapy had no effect on blood or bone marrow CD34+ cell numbers but decreased CD34+ IL-5Ra messenger RNA+ cells in the bronchial mucosa. Although eosinophilia is primarily driven by IL-5, other cytokines, including granulocyte-macrophage colony stimulating factor and IL-3, also induce eosinophil production (19). The presence of CD34+ cells in the airways capable of responding to other inflammatory cytokines may explain why anti-IL-5 could not completely abolish airways eosinophils.

Under normal conditions of homoeostasis, the bone marrow acts as a site for the turnover and traffic of mature leukocytes to the peripheral circulation. However, in inflammatory conditions such as atopic asthma, there is an increased release of both mature eosinophils and bone marrow eosinophil lineage-committed progenitor cells. Although the precise mechanisms that trigger progenitor cell traffic remain to be fully elucidated, this study showed for the first time that there are increased numbers of CD34+ cells in the sputum of subjects with asthma and that these cells increase after allergen inhalation. In addition, in the presence of IL-5, phenotypic changes occur in the expression of IL-5Ra, together supporting a potential for local differentiation of progenitors in the airways.

Conflict of Interest Statement: S.C.D. has no declared conflict of interest; A.F. has no declared conflict of interest; L.H. has no declared conflict of interest; R.M.W. has no declared conflict of interest; E.H. has no declared conflict of interest; M.O.B. has no declared conflict of interest; R.S. has no declared conflict of interest.

Acknowledgment: The authors thank George Otmianowski and Shaunah Denis for their technical assistance and Jason Ohi for graphic production in this study.

References

SUMMARY OF FINDINGS AND GENERAL DISCUSSION

SUMMARY OF FINDINGS

The results of studies described in this thesis indicate that the bone marrow plays an active role in allergic airways disease, through the increased production and release of eosinophils and eosinophil progenitors in response to an inhaled allergen. These changes are regulated by cytokines produced in the bone marrow, blood and airway tissue. In addition, these studies suggest that these cells contribute to the development of the persistent physiological abnormalities that can occur after an inhaled allergen.

In the first study, the kinetics of the bone marrow’s response and bone marrow cytokine production following allergen inhalation were examined in mild asthmatic subjects developing both an early and late airway response, as well as in subjects developing an isolated early airway response. We demonstrated, for the first time, a rapid activation of the bone marrow, via an IL-3 dependent mechanism, followed by a sustained activation, which was IL-5 dependent, in dual responders only. The IL-5 dependent increases correlated with increases in IL-5 protein and IFN-γ in the bone marrow. Peak levels of IFN-γ occurred at a time when eosinophil progenitors were decreasing, although a direct effect of IFN-γ in reducing eosinophil progenitor production in vitro could not be shown.

In the second and third study, we examined the biology of progenitor cell recruitment into the blood and the airways by chemokines associated with asthma, namely IL-5 and eotaxin, as well as fluctuations in the production of the chemokines,
eotaxin and SDF-1α, and their receptors, in the blood and bone marrow during an allergic inflammatory response.

In the second study, progenitor cells were stimulated ex vivo with cytokines in a concentration dependent manner and migrational responses were measured. We found eotaxin was able to directly stimulate CD34+ cell migration, which was enhanced by the presence of IL-5. We also demonstrated for the first time, that CD34+ cells could express the eotaxin receptor – CCR3 and that there are allergen-induced fluctuations in the expression of this receptor. Specifically, dual responders showed an increase in CCR3 at 24 hours post allergen, whereas isolated early responders had a decrease at 24 hours. These findings suggest that the release of progenitor cells from the bone marrow involves both phenotypic changes on the surface of the cells, which depend on the microenvironment of the bone marrow and that eotaxin and IL-5 synergistically stimulate progenitor mobilization in vivo.

This conclusion was supported by the third study which showed increases in eotaxin levels in the peripheral blood and decreases in SDF-1α levels in the bone marrow post-allergen inhalation. Receptor expression was shown to correlate with responsiveness to chemokine-induced migration and there were time-dependent fluctuations in chemokine receptors, specifically increases in bone marrow CCR3+/CD34+ and decreases in CXCR4+/CD34+ cells, as well as increases in circulating CXCR4+/CD34+.

In the fourth study, we examined the changes in airway progenitors in both isolated early and dual responders. We demonstrated, for the first time, that CD34+ cells
can be detected in sputum and these cells are decreased in normal control subjects when compared to mild asthmatic subjects. In addition, following allergen inhalation challenge, increases in CD34+ cells were measured and in dual responders only, these cells had increased expression of IL-5Rα, which is believed to be an indication of eosinophil lineage commitment. The increases in IL-5Rα were correlated with increases in IL-5 protein levels. Following allergen-inhalation in asthmatics, trafficking of progenitors to the airways occurs. These findings suggest that in the presence of IL-5, up-regulation of IL-5Rα expression occurs on CD34+ cells which may mediate the in situ differentiation of progenitor cells into eosinophils, contributing to the overall airway eosinophilia and allergic inflammation.

In summary, the studies described in this thesis have demonstrated that eosinophil progenitors are influenced by inhalation of allergen in allergic asthmatic subjects, not only by an increased production of eosinophils in the bone marrow, but also with a controlled trafficking of their progenitors cells into the blood and into the airway tissues. The studies also showed a variation in the degree of bone marrow activation and traffic between asthmatic subjects, with those who develop allergen-induced dual responses having a more pronounced response, when compared to isolated early responders. Since dual responders also develop a more pronounced allergen-induced airway inflammatory response and airways hyperresponsiveness, this suggests a connection between the bone marrow’s activation and the development of these airway changes.

The aim of this thesis was to investigate the association between the activation, mobilization and recruitment of bone marrow eosinophil/basophil progenitors and the
allergen-induced airway inflammation and its associated late responses. Specifically, we hypothesized that allergen inhalation would be associated with fluctuations in bone marrow, blood and airway progenitor cells, eosinophils and cytokines and that these changes will vary depending on the magnitude of the allergen-induced physiological response. These data are consistent with our overall hypothesis and our specific hypothesis 1, 2, 3 and 4. These data suggest that while abrogation of IL-5 may reduce eosinophil production, activation and infiltration, it will not completely nullify this cell type, as the allergen-driven events occurring in the bone marrow involve both up-regulatory and down-regulatory cytokines and chemokines, suggesting that the inhibition of this organ will require pleiotropic factors.

GENERAL DISCUSSION

The aim of this thesis was to examine the role of bone marrow inflammatory cell progenitors in clinical models of allergen-induced asthma. The results obtained suggest that inflammatory progenitor cells contribute to the ongoing airway pathology through increased marrow production, trafficking and infiltration into the inflamed airway site. The data also suggest that IL-3, IL-5 and eotaxin play important roles in this process, through increased progenitor cell turnover, increased trafficking to the airways, via the circulation and through up-regulation of specific receptors. In addition, fluctuations in responsiveness to the homeostatic chemokine; SDF-1α and increases in Th1 type cytokines also coordinate and control the progenitor cells’ responsiveness.
Eosinophils are derived from the eosinophilic progenitor: Eo/B CFU (Denburg et al, 1985). IL-5 is recognized for its unique ability to promote the terminal differentiation and maturation of these progenitors (Clutterbuck et al, 1989) and expression of the IL-5Rα on progenitor cells is considered indicative of a commitment towards an eosinophilic phenotype (Sehmi et al, 1997). IL-5 has been intensely studied because of this function as well as its ability to activate and induce the migration of mature eosinophils, a cell considered to be important in the development of airway inflammation in asthma (Sanderson et al, 1992). Recently, studies examining the role of IL-5 in asthma using a monoclonal antibody against IL-5 have suggested that eosinophils may not be as important in airway inflammation as previously predicted (Leckie et al, 2000). Anti-IL-5 has been shown to abolish circulating eosinophils but not airways or bone marrow eosinophils (Flood-Page et al, 2003; Menzies-Gow et al, 2003). This thesis provides a potential explanation for these results. We demonstrated that in the bone marrow eosinophilopoiesis is occurring at an early stage with IL-3, not IL-5, illustrating how bone marrow eosinophilopoiesis could persist in the absence of IL-5. In addition, we found increases in eosinophil progenitors in the airways, suggesting the production of eosinophils can occur in situ and does not require infiltration from the circulation. Further work demonstrating the ability of these cells to form colonies is needed to confirm this.

Another important finding of this study was the correlation between IFN-γ and bone marrow activation in dual responders only. We had hypothesized that IFN-γ may be important in preventing the activation of the bone marrow in isolated early responders.
However, increases in bone marrow IFN-γ occurred late after allergen inhalation and appeared to be more important in causing the resolution of eosinophilopoiesis rather than preventing its onset. We have previously shown that T cells producing IL-5 in the bone marrow increase following allergen inhalation (Wood et al, 2002), it may now be important to examine changes in T cell types in the bone marrow post-allergen and whether a switch from a Th2 to a Th1 phenotype is beneficial in resolving the inflammatory response. Interestingly, we were unable to show a direct suppressive effect of IFN-γ on Eo/B CFU, suggesting that this cytokine’s actions are via an indirect pathway, potentially by suppressing the production of IL-5 or by suppressing the expression of the IL-5Rα (Rais et al, 2002).

Another important finding in this thesis is the differences in bone marrow responses between isolated early and dual responders. We had previously shown that dual responders demonstrated an increased responsiveness to IL-5 and increased up-regulation of IL-5Rα, when compared to isolated early responders (Sehmi et al, 1997). The current studies extend these findings by showing increased expression of the CCR3 receptor, changes in cytokine and chemokine responses in all three compartments examined, as well as fluctuations in both eosinophilopoiesis and progenitor numbers between these two groups. Overall, we found no change in any of the measurements examined in the bone marrow of the isolated early responders. However, the changes demonstrated in this group reflect the changes seen in the dual responder, without achieving statistical significance. This may be because the identification of isolated early and dual responders is based on an arbitrary cut-off of a decline in FEV₁ of 15% at 7
hours. Many isolated early responders have some airway constriction at 7 hours. This suggests that neither the development of late responses nor the magnitude of the airway inflammatory response are dichotomous, but rather a continuum of responses.

An important, novel finding described in this thesis is the increase in CD34$^+$ cells in the sputum. Induced sputum is a useful technique, which utilizes aerosolized saline to promote the expectoration of cell plugs from the lumen of the airways. This technique has been recognized to be a non-invasive, reliable and responsive technique which can give insight into the inflammatory changes in the airways (Gauvreau et al, 1999; Gauvreau et al, 1999). In addition, sputum eosinophil numbers have been shown to correlate with airway mucosal biopsy numbers although other cell types have been less representative (Fahy et al, 1995). This thesis provides a new method in which to examine airway progenitor cell changes, but it raises questions as to how these changes will correlate with airway tissue and, perhaps more importantly, why progenitor cells would migrate into the lumen of the airways. Airways remodeling is considered necessary for the persistence of asthma and consists of epithelial sloughing, mucous gland hyperplasia, extra cellular matrix deposition below the basement membrane and increased volume of airway smooth muscle. It may be that epithelial denudation of the epithelial cells allows these progenitor cells, resident in the epithelium, to escape into the airway lumen similar. Alternatively, chemokines may leak out into the lumen with the exudation of plasma and thereby induce chemotaxis of these cells. It will be important for future studies to both compare sputum CD34$^+$ cell numbers to biopsy and to examine their capacity to produce eosinophils in situ.
A limitation of this study is the subject selection needed to examine for sputum progenitors. FACS analysis on sputum samples requires large quantities of sputum to be collected in order to successfully stain these cells. This means that subjects unable to produce large quantities of sputum were excluded from this study. We are likely therefore to have selected subjects whose cells migrated into the airway lumen, representing increased severity of disease.

This thesis has also looked at the role of the homeostatic chemokine SDF-1α in progenitor trafficking. This chemokine has been studied extensively for its use in bone marrow transplants and in AIDS research, but relatively little has been done examining its function in airways disease. We have shown for the first time the reduction in the amount of SDF-1α in the bone marrow following allergen inhalation. This suggests that inflammatory cytokines co-operate with homeostatic cytokines in mediating a rapid transfer of progenitors from the bone marrow to the blood. Unlike IL-5, SDF-1α is produced by the bone marrow stroma and its reduction coincides with increasing bone marrow IL-5 levels, suggesting fundamental changes in the marrow microenvironment occur in concert to allow egress of eosinophils and their progenitors.

A somewhat surprising result from this thesis was the significant differences in bone marrow CD34+ cell numbers measured between isolated early and dual responders. In the past, although there has been a trend for a difference between these groups, this has not reached statistical significance. This finding suggests that in dual responders, more progenitor cells are in the G0 stage of cycling and are therefore primed to rapidly respond to allergic stimuli and produce new colonies of eosinophils. Interestingly, SDF-1α has
been shown to induce quiescence in bone marrow progenitors, via induction of a switch to the G0 stage of cycling (Cashman et al, 2002). Although differences in baseline levels of SDF-1α were not detected between the groups, down-regulation of this cytokine may allow for more cells to enter a cycling stage.

Lastly, the results described in this thesis continue to support an important role for the activation of the bone marrow in allergic asthma and emphasizes the fact that the pathophysiology of asthma is a complex process. Thus, it is unlikely that any single molecule or cell type is capable of inducing or causing persistence of asthma on its own. This may explain why, to date, the most effective therapy in asthma remains inhaled corticosteroids - drugs capable of suppressing many different aspects of the cellular and immune response - and why therapies targeting only a single pathway in asthma have failed.

In summary, inhaled allergen challenge leads to increases in local and systemic mediator production and release which, in addition to their stimulatory effect on bone marrow progenitors, are also involved in the recruitment of these progenitor cells to the airways. The results from this thesis suggest that inhalation of allergen is also associated with activation of Th1 type cytokines as well Th2 type cytokines, particularly in subjects who develop both an early and late airway responses and more marked eosinophilic airway inflammation. Inhaled allergens also increase trafficking of eosinophil progenitors into the airways, which occurs in both isolated early and dual responders, but only persists in and expresses IL-5Rα in dual responders, who also develop increased IL-5 protein levels. These observations support in situ eosinophilopoiesis in the airways.
Finally, the therapeutic implications of this research point to a strong requirement for systemic control of the immune response in regulating the changes occurring in the airways.

LABORATORY TECHNIQUES

For all four studies, subjects were selected based on their airway responses and then allocated as either isolated early or dual responders. In the first study, subjects had 6 bone marrow aspirates in total spread out over 48 hours. Because of the number of bone marrow samples required, the study was divided into 2 arms. The first arm had baseline bone marrow aspirates taken in the morning before allergen challenge, and then again 5 and 24 hours after allergen inhalation. The second arm had a baseline aspirate taken as well as aspirates at 12 and 48 hours after allergen inhalation. Each arm was separated by one month. The benefit of this design was that the arms of the study could be randomized and the pre-allergen aspirates served as the subject’s own control. The drawback however, was the timeframe over which external, environmental factors could affect the bone marrow responses. We controlled for these factors by measuring baseline methacholine before allergen inhalation, ensuring the subject was within 2 doubling doses of their normal PC_{20} and by instilling the same dose of allergen in each arm of the study. The cost and discomfort associated with aspirate prevented us from including a control arm with diluent challenge, however the fact that measurable differences occurred between groups, argues against that potential for diurnal variation alone to cause the changes seen post-allergen.
The methylcellulose colony forming assay used to identify bone marrow Eo/B CFU has been extremely instrumental in characterizing the role of the bone marrow and the progenitor cell in asthma. However, the length of time required to grow colonies (14 days), and the assumption that colony growth under artificial in vitro conditions truly reflects the number of lineage-specific progenitors in vivo are inescapable problems. Having said this, our lab and others have shown this technique to be reliable and repeatable. This is hi-lighted by the fact that we were able to measure similar results within individuals in the two arms of study number one.

Complementing the methylcellulose data and extending this work, we looked at the surface expression of IL-5Rα, CCR3 and CXCR4 on CD34⁺ cells using antibodies directed against these molecules, in collaboration with Dr. Roma Sehmi. Flow cytometry is a rapid and reproducible means of qualifying surface marker expression. A drawback of flow cytometry is that often only a small number of cells are present that are positive for the marker of interest and it can be difficult to distinguish a true positive from non-specific or artificial staining. This can be overcome by the use of isotype control antibodies, which have no reactivity with the marker being examined. Isotype control antibodies were used in all flow cytometric analyses performed as part of this thesis. In addition, multi-parameter sequential-gating strategy to gradually eliminate contaminating cells that stain non-specifically with anti-CD34, a technique which has previously been shown to accurately enumerate CD34⁺ progenitor cells (Sutherland, 1994) was employed. All measurements were made by a third, blinded party.
In the second and third study, migrational assays were employed to examine responsiveness of progenitor cells to chemokine. The drawbacks of this technique are that the cells are stimulated artificially \textit{in vitro}. This problem was overcome in study three by removing cells before and after allergen inhalation and comparing migrational responses within individuals. In addition, all assays included a diluent control arm to exclude random, non-specific migration.

The final study used flow cytometry on sputum derived cells, which is a new, and useful technique. However, until confirmed and expanded upon, results from this study need to be interpreted with care. Sputum induction and processing have been carefully evaluated and optimized to maximize cell collection, but, apoptosis and degranulation of cells within the sputum and repeated sputum induction and/or inhalation of methacholine to determine \(\text{PC}_{20} \) preceding sputum induction may alter cell collection and induce variability. To reduce the effects of apoptosis and degranulation all samples were processed immediately after induction. To control for potential sources of variability we used a diluent-controlled cross-over study design. In addition, supporting data from biopsy studies which show both the presence of \(\text{CD34}^+ \), \(\text{CD34}^+ / \text{IL-5R} \alpha \text{mRNA}^+ \) cells as well as increased overall numbers in asthmatic compared to normal subjects support our interpretation of this data. As previously mentioned in order to measure CD34 and IL-5R\(\alpha \) expression using control antibodies, adequate quantities of sample is required. Subjects unable to produce sputum or whom produce very small amounts of sputum, were by necessity disqualified from participating in the study.
STATISTICS

Each subject used in this study acted as their own control. Repeated samples were obtained from each subject during each arm of the study. All results in this thesis were graphed for distribution, and all normally distributed data was analysed using repeated measures (rm) ANOVA, with between group comparisons: isolated early; dual; and normal subjects and within group comparisons: over time; or with treatment. RmANOVA is a powerful statistical tool in a randomized cross-over study design, since the error term is based only on the variability within subjects. This allows for practical sample sizes to demonstrate changes within groups over time. Results that were not normally distributed were analysed with Mann Whitney U for between group differences and with Friedman’s followed by Wilcoxon for within group differences. All correlations were performed using spearman’s rho and Pearson correlation coefficient and significance was accepted at p<0.05.

FUTURE DIRECTIONS

We have demonstrated bone marrow activation and mobilization is required for allergic asthmatics developing late responses in association with airway hyperresponsiveness and airway eosinophilia. However, these studies have not answered a central question, “is the activation and mobilization of the bone marrow progenitors an essential component for persisting asthma?”

It will be important to further investigate whether currently available anti-inflammatory therapies are effective in attenuating the bone marrow’s responses by
acting directly on the marrow, or indirectly through effects on airway mediator production. This is particularly relevant for inhaled corticosteroids, as the mechanism of steroid action on bone marrow responses, is, at yet, unknown.

It will also be important in the future to establish the effect of directed therapy, for example with monoclonal antibodies against IL-5 or drugs blocking the eotaxin receptor (CCR3 antagonists) on bone marrow responses, as well as airway eosinophilia in asthma and whether clinical benefit can be obtained with these treatment approaches.

Further work is also needed to examine the role of sputum progenitor cells in persisting airway eosinophilia. CD34+ cells need to be isolated from sputum and shown to have the capacity to produce colonies of cells. CD34+ numbers need to be compared to biopsy samples and it may be of some use to compare CD34+ cell numbers in subjects with other airway diseases, such as cystic fibrosis or chronic obstructive pulmonary disease to see if this is a feature of asthma, or a feature of airways disease.

Lastly, more work needs to be done on the role of IFN-γ in resolving eosinophilopoiesis. Until now, we have not examined mechanisms in resolving bone marrow activation. This thesis has given a useful time-course in predicting when bone marrow responses decrease and one potential component initiating this response. This work needs be expanded.

In conclusion, this thesis has demonstrated a role for bone marrow inflammatory progenitor cells in allergic asthma and has highlighted the potential for these cells to become activated and migrate out of the bone marrow and into the airways. Further research in this area should be aimed at establishing the importance of this pathway in
asthma, in particular at examining therapies which would prevent or reduce the activation and trafficking of these cells. A more complete understanding of these fundamental concepts will provide a basis for the development of novel therapeutic interventions and potentially explain discrepancies in current interventions in allergy and asthma.
References

interferon-gamma-dependent manner in a mouse model of asthma. *Clinical and Experimental Allergy*, 32: 627-632.

APPENDIX 1

MATERIALS AND METHODS

Subjects

In all studies, subjects had stable asthma, with a greater than 70% predicted baseline FEV₁, were non-smokers, none used medication other than intermittent inhaled β₂-agonists which was withheld 8 hours before each laboratory visit, and none had experienced a respiratory tract infection nor were knowingly exposed to altered levels of allergen two weeks prior to allergen inhalation. On initial visits to the laboratory, a full medical history was taken and skin/prick tests were performed. Subjects were considered atopic if they had one or more positive wheal-and-flare responses to skin/prick tests. Subjects were instructed to refrain from rigorous exercise and caffeine the morning of scheduled visits and to refrain from alcohol consumption the night before bone marrow aspiration. Subjects were classified as dual responders if they developed both an early and late phase asthmatic response to allergen, as defined by a greater than 15% drop in FEV₁ from baseline, or as isolated early responders if they developed only an early fall in FEV₁ of greater than 20% from baseline. All human studies were approved by the Ethics Committee of the McMaster University Health Sciences Centre and subjects gave their written, informed consent to participate prior to study entry.

Spirometry

The forced expiratory volume in one second (FEV₁) was used as a measurement of lung function and was assessed using a Collins 14L water-sealed spirometer and kymograph (Warren Collins, Braintree, MA, USA).
Skin/prick test

The cutaneous skin/prick test was used to assess the atopic status of each subject and to predict the dose of allergen required to cause a 20% fall in FEV1 (predicted allergen PC20)(Chai et al, 1975). Serially diluted allergen extracts (0.02 ml) were administered cutaneously using a 26-gauge 3/8” needle, to the lateral part of the upper arm. In addition, a diluent control and histamine based control (0.01 mg/ml) were administered. The reactions were read after 20 min and recorded as the largest diameter of the wheal elevation produced by the diluent control subtracted from that produced by the allergen. The results were expressed in millimetres of wheal.

Methacholine Inhalation Test

Methacholine inhalation challenge was performed as described by Cockcroft et al, (Cockcroft et al, 1987). Subjects inhaled normal saline and then increasing, doubling concentrations of methacholine phosphate (0.03 to 32mg/ml) from a Wright nebulizer (output: 0.13ml/min; airflow:8L/min; particle size aerodynamic mass median diameter 1 to 1.5μm)(Roxon Medi-Tech Ltd., Montreal, QC, Canada) containing 3 ml of solution for 2 minutes each. FEV1 was initially measured in triplicate, and then repeated at 30, 90, (and at 180 and 300 if necessary) seconds after each inhalation period. The test was terminated when a fall in FEV1 of 20% from baseline occurred. The percent reduction in FEV1 was calculated for each concentration using the lowest post-saline value to the lowest post-methacholine value. The methacholine provocative concentration causing a 20% decrease in FEV1 (Methacholine PC20) was calculated using linear interpolation of the last two points on the non-cumulative concentration-response curve.
Allergen Inhalation Challenge

Allergen inhalation challenge was performed as described by O'Byrne et al. using a Wright nebulizer (O'Byrne et al., 1987). The allergen extract was selected and diluted for inhalation at a concentration determined from a formula using both the results from the skin test and the methacholine PC_{20} (Cockcroft et al., 1987). The formula, derived by single linear regression, was: \(y = 0.69x + 0.11 (r=0.85) \), where \(y = \log_{10}\text{allergen PC}_{20} \) and \(x = \log_{10} (\text{Methacholine PC}_{20} \times \text{skin sensitivity}) \). The skin sensitivity value was the smallest allergen dilution that gave a wheal of 2 mm in diameter in the skin prick test. The starting concentration was chosen to be three doubling doses below this predicted dose. Baseline measurements of FEV\(_1\) were followed by inhalation of allergen for 2 minutes, using the same method as for methacholine challenge. The FEV\(_1\) was measured at 10 minutes and doubling concentrations of allergen were inhaled until a decrease of 20% or more occurred in the FEV\(_1\) from baseline. The percent reduction in FEV\(_1\) was calculated for each concentration using the highest baseline value to the post-allergen value. At this point FEV\(_1\) was measured at 10, 20, 30, 45, 60, 90 and 180 minutes and then every hour for 7 hours. The allergen-induced early response was defined as the maximal decrease in FEV\(_1\) between 0 and 2 hours and the late response was defined as the maximal decrease between 3 and 7 hours after allergen inhalation.

Sputum Induction

Sputum was induced and processed according to Popov et al. (Popov et al., 1994). Subjects inhaled 3, 4 and 5% aerosolized saline for 7 minutes each until sufficient sample was obtained or FEV\(_1\) dropped by 20% from baseline. Cell plugs were removed, placed
in an eppendorf tube and the weight was recorded. Then 0.1% dithiothreitol (Sputolysin, Calbiochem) and Dulbecco's phosphate buffered saline (GIBCO, Grand Island, NY, USA) were added sequentially to the sample in volumes equal to four times the weight of the sputum portion (in mg) and mixed mechanically with a Pasteur pipette. The cell suspension was filtered through 52μm nylon gauze (BNSH Thompson, Scarborough, Ontario) to remove debris and mucous, and the volume of the filtrate was recorded. The total cell count was measured using a Neubauer hemocytometer and the results expressed as 10⁶ cells/ml. The sample was then centrifuged for 10 min the supernatant was removed with a pipette and stored at -70°C. The cell pellet remaining was adjusted to a concentration of 1x10⁶ cells/ml with DPBS and cytospins were prepared onto glass slides (4 total) and on Aptex (3-aminopropyltriethoxysilane)(Sigma Chemical Co., St. Louis, MO, USA) coated slides (8 total) using a Shandon III cytocentrifuge (Shandon Southern Instruments, Sewickley, PA). Differential counts were performed in a blinded fashion on Diff-Quick stained slides. Mean counts from duplicate slides were obtained (400 cells counted per slide) and expressed as a percentage or absolute counts (10⁴ cells/ml). Aptex coated slides were fixed for 10 min in periodate-lysine-paraformaldehyde (McLean & Nakane, 1974) and washed in 15% sucrose (Sigma Chemicals, St Louis, MO) for 10 min and then stored at -70°C. These slides were used for immunocytochemical staining which was performed with murine monoclonal antibodies to the activated form of human eosinophil cationic protein (ECP) at 1.0 μg/ml (EG2)(Pharmacia Upjohn, Uppsala, Sweden)(Girgis-Girbado et al, 1994). For staining, slides were thawed, washed with DPBS, followed by wash buffer (DPBS plus 0.01M HEPES(GIBCO, Grand Island, NY)
and 0.01% saponin (SIGMA Chemicals, St. Louis, MO)) for a total of threes 5 minute washes. Slides were then blocked with 75% human AB serum (SIGMA Chemicals, St. Louis, MO) for one hour followed by 25% normal rabbit serum (SIGMA Chemicals, St Louis, MO) for 30 min. Slides were washed for 5 min with wash buffer and then incubated overnight at 4°C with the primary antibody, mouse anti human ECP (EG-2)(1µg/ml)(Pharmacia, Uppsala, Sweden) or with a non immune mouse IgG₁ antibody (1 µg/ml) (SIGMA Chemicals, St Louis, MO) as a negative control. Slides were then washed three times with wash buffer and positive cells were visualized using the alkaline phosphatase anti-alkaline phosphatase (AAPAAP) technique (Cordell et al, 1984). Slides were incubated for 45 min with a 1:50 dilution of rabbit anti-mouse IgG (DAKO Laboratories, Copenhagen, Denmark) followed by 45 min in a 1:50 dilution of a mouse monoclonal APAAP (DAKO Laboratories, Copenhagen, Denmark). Slides were washed 3 times (5 min each) in wash buffer following each antibody incubation. The alkaline phosphatase was developed for 3 min using the New Fuchsin Substrate System (DAKO Laboratories, Copenhagen Denmark) with added Levamisole (1.25mM) (SIGMA Chemicals, St. Louis, MO) to block endogenous alkaline phosphatase activity. Slides were counterstained with Mayer’s hematoxylin (SIGMA Chemicals, St. Louis, MO) for 3 min and mounted in an aqueous medium (GVA mount, Zymed Labs, San Francisco, CA). Results are expressed as percentages of 500 cells counted under light microscopy.

Sputum processed for flow cytometry underwent the same collection criteria, however, only 2 slides were prepared for Diff-Quik staining. The remaining cell suspension was divided equally in to 5 tubes with an optimum of 1x10⁶ cells/tube.
Blood Samples

Venous blood samples were collected into vacu-containers containing nothing, ethylenediaminetetraacetic acid (EDTA) and sodium heparin for serum collection, smear preparation and flow cytometry respectively. Vacu-containers with blood only were left to sit for 20 minutes to allow for complete clotting before being centrifuged for 10 min. Serum was collected with a sterile pipette and 1 ml samples were placed in labelled eppendorf tubes and then stored at -70°C. Total cell counts were performed using a Neubauer hemocytometer (Neubauer Chamber; Hauser Scientific, Blue Bell, PA, USA) and differential cell counts were made from blood smears stained with Diff-Quik (American Scientific Products, McGaw Park IL). Mean counts from duplicate slides were obtained (400 cells counted per slide) in a blinded fashion and expressed as a percentage. Cells were classified using standard morphologic criteria. Blood collected for flow cytometry was diluted to 50 ml with McCoy’s 5A medium and mononuclear cells were separated using 65% Percoll density gradients (Pharmacia Upjohn, Uppsala, Sweden). The cells were then washed with McCoy’s 5A medium followed by 2-hour incubation on plastic to remove adherent cells (at 37°C in McCoy’s 5A medium supplemented with 15% foetal bovine serum (GIBCO), 1% penicillin/streptomycin (GIBCO) and 5×10⁻⁵ M 2-mercaptoethanol). The remaining non-adherent mononuclear cells (NAMCs; containing progenitor cells and lymphocytes) are then enumerated using a Neubauer hemocytometer and 1 x 10⁶ cells/ml are aliquoted into tubes for staining.

Bone Marrow Aspirates
After administering local anaesthetic (Xylocaine), 3-6 mls of bone marrow was aspirated from the posterior iliac crest by a qualified physician, using an aspiration needle (16x2"; Sherwood Medical, St Louis, MO) into a 10ml syringe containing 1ml hepalen (1000U/ml)(Leo Laboratories, Canada). Prior to processing, smears were prepared on glass slides. Smears were stained with Diff-Quik and mean counts from duplicate slides were obtained in a blinded fashion (1000 cells counted per slide). Cells were classified using standard morphologic criteria and were expressed as percentage and total number of eosinophils (immature and mature forms). Next total leukocyte counts were performed using a hemocytometer and bone marrow aspirates were centrifuged. Bone marrow Supernatant was collected using a sterile pipette and 0.5ml samples were stored at -70°C.

Bone Marrow Culture

Heparinized bone marrow was diluted to 50 ml with McCoy's 5A medium (GIBCO, Grand Island, NY) and mononuclear cells were separated using 65% Percoll density gradients (Pharmacia Upjohn, Uppsala, Sweden). The interface of the mononuclear-rich cell fraction was then washed with McCoy's 5A medium followed by 2-hour incubation on plastic to remove adherent cells (at 37°C in McCoy's 5A medium supplemented with 15% foetal bovine serum (GIBCO), 1% penicillin/streptomycin (GIBCO, Grand Island, NY) and 5×10^{-5} M 2-mercaptoethanol (final concentration) (SIGMA Chemicals, St Louis, MO). Non-adherent mononuclear cells (NAMCs; containing progenitor cells and lymphocytes) were then cultured (2.5 x 10% cells per 35 x 10mm tissue culture dish; Falcon plastics, Oxnard, CA), in duplicate in supplemented
Iscove’s Modified Dulbecco’s medium (GIBCO, Grand Island, NY) with 1% penicillin/streptomycin and 5×10^{-5} M 2-mercaptoethanol (final concentration), 0.9% methylcellulose (Sigma Chemical Co., St. Louis, MO) and 20% foetal bovine serum. To evaluate allergen-induced changes in Eo/B CFU, NAMC were grown in vitro in the presence of diluent, rhIL-5 (1 ng/ml), rhIL-3 (1 ng/ml) and rhGM-CSF (10 ng/ml) (Pharmingen, Markham, ON, Canada). Cultures were incubated for 14 days at 37°C and 5% CO$_2$ and then enumerated by light microscopy. Eo/B CFUs were identified by a distinct morphology, previously described as tight granulated, compact round refractile cell aggregations (Denburg et al, 1985).

Serum and supernatant analysis

Sputum supernatant, blood serum and bone marrow supernatant were separated by centrifugation and stored at -70°C as described above. Cytokine protein levels were quantified using commercially available ELISAs (Pharmingen, San Diego, CA, USA). All samples for a given cytokine and from each of the 3 sources were run simultaneously. As instructed by the manufacturer, wells were coated with capture antibody (1:250 dilution at 100µl) and stored overnight at 4°C. One row of wells was left uncoated as a negative control. The next morning, plates were washed 3 times with cold wash buffer, followed by cold PBS and all wells were coated with 200µl blocking agent (PBS + 3% Bovine serum albumin) for 2 hours at 37°C. Wells were then rinsed with cold PBS and standards and samples were added at 100µl for 2 hours at room temperature. Standards were added to the negative control row plus 2 other positive control wells. Next, wells were washed 5 times with cold wash buffer and rinsed with cold PBS, followed by
addition of working detector (detection antibody:enzyme reagent 250/250 ratio in diluent) mixed just before applying. 100μl was placed in the wells for 90 minutes at room temperature. Wells were then washed again 5 times with cold wash buffer followed by rinsing with cold PBS and 100μl of substrate solution was added for 30 minutes at room temperature in the dark. This was followed by the addition of 100μl of stop solution (2N H₂SO₄). Plates were immediately read for absorbance at 450nm with correcting wavelength of 540nm. The two rows of standards were compared for repeatability and the negative control wells were confirmed to be at or near zero. This row was averaged and subtracted from all other readings to adjust for background noise. The two rows of standards were averaged and used to plot a graph of absorbance versus known concentrations of cytokine protein in pg/ml. Calculating the slope of this graph, we then used this equation to convert the absorbance values for the samples into pg/ml. The lower limits of detection were given by the manufacturer and values below this were assigned a value of 2 pg/ml for statistical analysis. Readings were blinded.

Transmigration assays

Bone marrow NAMC, separated as described above are washed with magnetic cell sorting (MACS) buffer (phosphate-buffered saline (PBS) supplemented with 0.5% bovine serum albumin and 5mM EDTA) and incubated for 20 minutes on ice in the dark, with antibody-conjugated MicroBeads targeting CD3 and CD16 surface receptors (Miltenyi, Biotec). The cell suspension is then run through a magnetic cell sorting system (MACS,) (Miltenyi, Biotec), which binds the magnetically labelled cells and eliminates
them from the suspension, and allows the non-magnetic, untouched cell fraction to pass though, leaving an enriched population of progenitor cells (purity>85%).

The migrational response of progenitors in vitro was then assessed using transwell chambers (24-well cell clusters with 5-μm pore polycarbonate filters, Costar, Boston, MA, USA). The enriched population of bone marrow CD34+ cells were resuspended in RPMI media (GIBCO, Grand Island, NY) plus 4% BIT (Stem cell technology) at 2 x 10^6 cells/ml. Filters were washed with RPMI+4%BIT and progenitor enriched cells were loaded into each filtered transwell insert (1x10^5/100μl). These transwell inserts were then placed into larger wells containing either 600μl of diluent or chemoattractants (SDF-1α and eotaxin) in serum-free medium, at concentrations of 200, 100, 50 and 25μg/ml which were previously incubated in the wells for 15 min at 37°C in 5% CO₂. The transwell system was then incubated for 4h at 37°C and 5% CO₂. After which, the filtered transwell insert was carefully removed and the cells in the bottom chamber (representing migrated cells) were aspirated. These cells were resuspended in RPMI media (GIBCO, Grand Island, NY) plus 4% BIT and stained with PE-conjugated CD34 mAb and FITC-conjugated CD45 mAb, as described below. To obtain absolute values of migratory cells, flow cytometric counts for each sample were obtained during a constant predetermined time period. Data for CD34+ cell enumeration are expressed a percent of total numbers of CD45+ cells counted in the bottom chamber.

Flow cytometry

All samples were run by a third blinded party. Cells were first stained with saturating amounts of biotin-conjugated anti-IL-5Rα, anti-CCR3, anti-CXCR4 or isotype
control antibody (determined in preliminary studies) in PBS plus 0.1% NaN₃, 2.5% each of mouse serum and human serum followed by simultaneous staining with streptavidin PerCp, PE-conjugated CD34 mAb (HPCA-2) and FITC-conjugated CD45 mAb (anti-HLE-1) (Becton Dickinson, Canada)™ or PE-linked IgG₁ isotype control (Bectin Dickinson, Canada) in a final volume of 100μl PBSNaN₃ for 30 min at 4°C. Lysis buffer (Becton Dickinson, Canada) was then added to the cells and incubated for 5 min after which the cells were washed twice with 3 ml PBS NaN₃ and finally fixed in 500 μl PBS plus 1% paraformaldehyde (BDH Inc, Toronto, ON).

Antibodies.

Phycoerythrin (PE)-conjugated IgG₁ CD34 antibody (HPCA-2), fluorescein isothiocyanate (FITC) conjugated IgG₁ CD45 antibody (anti-HLE1), PE conjugated isotype control antibody (i.e. anti IgG₁- PE) and streptavidin conjugated peridinin chlorophyll protein (PerCp) were purchased from Becton Dickinson, Canada (Mississauga, ON). Non-neutralizing monoclonal antibodies directed against the α-subunits of IL-5R (IL5Rα; α16) was a kind gift from Dr. Jan Tavernier (University of Ghent, Belgium). Cytokine receptor antibodies and isotype matched controls were biotinylated using a long-arm biotin procedure (Coligan et al, 1991) in which biotin was coupled to azide free protein via a hydroxysuccinimide ester after incubation with N-hydroxysuccinobiotin (SIGMA Chemicals, St Louis, MO); excess biotin was then removed by dialysis against borate buffered solution, pH 8.6) (BDH, Mississauga, ON).

Flow Cytometry and Gating Strategy
Cells were analysed using a FACScan flow cytometer equipped with an argon ion laser and using the Cell Quest programme (Becton Dickinson Instrument Systems, BDIS). Five data parameters were acquired and stored in list mode files: linear forward light scatter (FSC), linear side-angle light scatter (SSC), log FITC, log PE and log PerCp fluorescence; each measurement contained 50,000 events. Compensation settings were established using CalBrite beads (BDIS) and confirmed using NAMNC stained with anti-CD34-PE, anti-CD45^+FITC or anti-IL-5Rα-PerCp. Off-line analysis was performed using the PC lysis software as supplied by BDIS. There parameters identified progenitor cells based on their unique cell size, granularity and immunofluorescence characteristics. True CD34^+ blast cells were identified as cells with CD34^{high}/CD45^{dull} staining as previously described. We used a multi-parameter five sequential-gating strategy that has previously been shown to accurately enumerate CD34^+ progenitor cell numbers in various biological samples (Sutherland et al, 1994). The rationale for sequential gating was to gradually eliminate contaminating cells that non-specifically take up anti-CD34 (Sutherland et al, 1996). Briefly, a primary gate using CD45 staining versus SSC (region R1) was set up to quantify total leukocytes and distinguish contamination events such as platelet aggregates and other debris which can non-specifically take up anti-CD34. Primitive cells characteristically express CD45 at low to intermediate levels (Borowitz et al, 1993) and therefore CD45^+ events generate a stable denominator in the calculation of the absolute CD34^+ value. Sequential gates were then set up: CD34 staining in region R1 versus SSC (region R2), CD45 versus SSC of CD34^+-gated events in R2 (region R3: to identify blast cells), and FSC versus SSC to confirm the lymphoblastoid characteristics of
the gated CD34\(^+\) cells in region R3 (i.e., low to medium SSC and FSC; region R4). Without changing any of the gates, analysis of the same cell sample stained with CD45-FITC and PE-linked isotype control antibody were performed. Enumeration data were derived from the gate statistics: events in gate G4 (-events in R1 to R4) after staining with CD45-FITC/CD34-PE minus events in G4 stained with CD45-FITC/PE-linked control antibody were used to calculate the absolute number of true CD34\(^+\) blast cells in the test sample.

In three-colour analysis, events in region R4 were back scattered onto a dot plot of CD34-PE versus staining by PerCp-linked cytokine receptor monoclonal antibodies or control antibody, and data were collected as percent positive cells at the 99% confidence limit (i.e. relative to a marker set to include only 1% of cells stained with control antibody). The data presented are the mean of duplicate assessments and the intra-assay variability was always less than 5%.

In Situ Hybridization and Immunohistochemistry

To confirm the cell surface expression of CCR3 on CD34\(^+\) progenitor cells detected by flow cytometry, we co-localized CCR3 messenger RNA to CD34 immunopositive cells by sequential non-radioactive *in situ* hybridization (ISH) and immunocytochemistry (ICC), as previously described (Ying *et al.*, 1997). A population of unstimulated CD34\(^+\) cells was enriched from a bone marrow aspirate by positive selection using a magnetic cell separation technique (MACS) (purity determined by flow cytometry, >85%). These cells were cytospun on Poly-L-lysine-coated slides, fixed in 4% PFA in PBS for 30 min and washed in 15% sucrose in PBS. Peripheral blood
eosinophils, purified by negative selection using CD16 coated MACS beads as described above, were used as a positive control for detection of CCR3 mRNA. The cell phenotypes were first identified by ICC using an alkaline phosphatase antialkaline phosphatase (APAAP) technique and phenotype-specific murine anti-human mAb (CD34, Dako, High Wycombe, UK and EG2+, Pharmacia, Uppsala, Sweden). After developing with Fast Red for CD34+ immunostaining, slides were hybridized with 200ng of digoxigenin-labelled riboprobes for CCR3 (antisense and sense) in hybridization buffer at 50°C overnight, then washed in 2 x SSC, 1 x SSC and 0.5 SSC, respectively; unhybridized probe was removed by digestion with RNase A (Ying, S., Robinson, D. S., Meng, Q., Rottman, J., Kennedy, R., Ringler, D. J. et al. 1997). After blocking with 2% normal sheep serum, the slides were incubated with sheep anti-digoxigenin Fab fragment conjugated AP (1:200, Boehringer Mannheim, Mannheim, Germany) at room temperature for 3 h. The signals were developed with BCIP/NBT (X-phosphate-5-bromo-4-chloro-3-indoly phosphate/ nitro-blue tetrazolium). Positive cells expressing phenotypic markers (red colour), mRNA for CCR3 (dark blue colour), or both (mixed colours) were counted (Panel 1). A minimum of 200 cells were counted per slide.
References

