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ASSTRACT

An investigaﬁion is ﬁadé into the coupled lateral - torsional
response c¢n frame buildings to horizontaily directed earthquake |
excitation. ttention is confined to the accuracy of the static code
provisicn on torsiona] effect with specfa] reference to the National
Building Code of Canada 1§77 {(NBC+77).

A mathematical model to compute the dynamic response of a
building is presented. The formuiation of the generail equation of
- motion to a_honosymmeﬁrica1 building is developed in detail. The
static storey torque is compared with the dynamic torque computed by
using the response spectrum technique as outlined in the Commentary XK
of NBC 77. It has been found that the sympathetic coupled translaticonal
torsional resonance occurs:at the buildings with small eccentricities.
To uniform structure, the static code torque estimate is good if the
effect of sympathetic coupled resonance is not significant. 7o
buildings with large eccentricities, sympathetic resonance s unl{keTy
to occur and the current NBC requirement of doubling the camputed torque-
- for design is a very conservative requirement.

To buildings with eccentrical offset, NBC 80 proposes a
modification on the definition of structural eccentricity. A study in
this aspect is made through the floor torgques comparison between
dynamic analysis and static codes calculations. The results show that
the improvement by NBC‘SO is oﬁ]y partial. Buildings with eccentric
of fsets are irregular buildings, only a dynamic approach can lead to
a realistic estimate of the torque distributions. i
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CHAPTER 1
INTRODUCTION

-

1.1 . General = . -

For fuﬁctional and ag;hitectﬂrai requirements,_bdildingé are,

gene%a11y desigqéa_as!either'symmetri;al,.monbsymmetfica] or aSymmetrica1

structures as shown in Fig.-1.1._ When asymmetficéT buildings are sub-

jectéd to earthquake ground .shaking, tbrsibnaT response wiTT'be,produced

in addition to lateral response. In design, it is necessary to accounf-

_for sueh torsional respOnse, which may induce add1t1ona1 shear force .

-

on the lateral res1st1ng eienents such as co]umns and walls of the bu11d1ng

(shown in Fig. 1.2). ‘
& Se&era] methods of analysis have beeﬁ-proposed to approxima'
the  effect of torsion in buiT@%ngs. For iﬁstance,'the Natjonal Bgﬁ]ding
Code of Canada 1977 (NBC77) has defined‘torszhaT moments (M) in the
hor1zontal plane of the bu11d1ng to be computed in each storey by

(1. -

- using the following formula L m

- w -

- in which Pi is the laterdl force applied to level i-of the building,
'V is the base shear. e, is the design eccentricity which shall be com-
puted by one of the foT]owing‘equatibﬁﬁl whicheVer provides -the greater

stresses:

]

S e, =1.5e +0.05D  or

{0
1}

= 0.5e - 0.05 Dn

‘\.
oo

'P:)'::e~‘ 13'_;‘. )

”
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When the design eccentricity e* exceeds 0.25 DHTHNBCYf requires that .
either a dynamic analysis shall _be made, or the effects of forsibn as
computed in Eq. 1.1 shall be doubled. : |
) ' As.an alternative method, NBC77 also allows the dynamic response
spectrum technique to be used’ for design calculation, provided that

the dynamic value of-base shear V is not less than 90% of the static base
shear.lzz]’]:?‘:l

~

The equivalent static torsional pfovisions in most building codes
in‘the world are generally presented in the same form as the product
of shear force and design‘eccentricify_in each floor. Under such.load
proce&ure, for a bﬁi1ding of given dimensions and weight, a change of
's;ructurai eccentricity e, 1i.e. the distance between the centers of
mass -and rigidity at one level of a building, Qi]l onnyaffect the
torsional moments aE—EﬁjivleveJ, but haé no influence 6ﬁ the storéy
shears. However, many imvestigations based on dynamic analysis have
pointed qut that both the shear and torsional moments are functions of
the bui]d?ng eccentricities.E4] Tso and ASmistJ and Keintié]Es] also
have shown that the modal coup]iﬁg may occur in symmetrical or nearly
symmetrical structurés when the fundamental translational -and torsiongi
periods are nearly equal. A1l these observations are not reflected in
the seismic code provisions.

In order to clarify the efis;ts of coupled torsional-transiational
dynamic responses on buildings due to the: earthquake excitations, the
present study is made to assess the accuracy and applicability of the
code provisions in taking the torsiona] response effecf-into account.

The torsional moment distribution along the height of the building is

taken as the parameter for study. The static torsional moments are

compared to the torsional moments computed by the dynamic response

r,



Particular attention is given to the follow%ng guidelines fromf
tﬁe ﬁBC?? and its commentaries. They are (1) the use of the design
eccentricity expression e, = 1.5e + 0.05 D, (2)-the necessity of
doubling the computed torsional moment when the design eccentricity
eg exceeds a quarter of the floor plan dimension D;. o

The. current computation of static torsional moments in each
floor by most of the building codeé ig réstricted to the local
horizontal plane of the building. It does not take into account the
additional torsional effect; due to the adjacent ffoors in which the
centres of mass and rigidity do not lie vertically above the corresp- .
onding points in the floor under conéideration.

For buildings Qith eccentric offsets (or setbacks), NBC80Q pro-
poses a change of the definition of structural eccentricities (e) to

- “ .
take care of such additional torsional effect. This aspeét of the

modification is studied in this thesis also.

1.2 Review of Past Works

The torsional effects in bui]dings due to seismic loads have .
been investigated. in numerous studies in receqﬁ years. It has been\
shown that thé-coup1ing between translational_énd torsional vibtgéfgns
for a building, in which the centers of mass and rigidity dc not\colincide,
can lead to a considerable dynamic -magnification of torsional moment
Therefore, it is useful to review the existing-knowTedge of the effects
of coupled trans]étfcna] and torsional motions by citing some of the
studies cérriedqui by different authors.

The poss{bi1ity of induced torsional motions to a symmetrical

structure subjectéd to ground motion was illustrated by Tso and Asmis[sj

*\.
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Similarly, the study done by Keiptzel[sj also showed that in the case of
close periods of torsional and translational vibration, a resonance -
Tike 1ncrease of the vibsational amplwtudes could occur.

Due to the earthquake waye not1on N. M. ‘Newmark['l developed
a rational basis for determining torsional earthquake effects in
symmetrical buildings; He concluded that the ratio of the accidental
eccentricity to the- long plan dimension varied a1most directly with
the fundamenta] frequency of vibration of the bu11d1ng and with the
transit time of the earthquake wave motion. He also poinfed out that
the yielding in torsion might be mdch more serious than yielding in
flexure or in linear displacements, and de§ign should provide greater
assurance of resistance to torsional yie?ding than to other types of
yielding. l . )

During the” 1971 San Fernando earthqeake, the importanee of rota-
tional component of ground motion on the torsional responses of many
bei1dings wefe observedfs]. S?ﬁce a1l strong motion seismographs were
designed to record the three,pefﬁendicula% translational motions only,
no actual record on éhe rotational component of earthguake had been‘
obtained. Based on the fundamental reTations in the theory of elasticity,
ehe rotation about a vertical axis could be derived by spatial differ-

{9]

entiation from horizontal displacements; Tso and Hsu

presented torsional

spectrum for design purpose.

Seismic analysis of asymmetrical structures subjected to ortho-
gonal components of ground acceleration we;e;studied by Tso, Biswas[10]
and Fajfar, 2e1e£]1]: The;e-authors all claimed that the response from
bidirectionaT excitation could be approximated by combining the responses

of the system subjected to individual unidirectional excitation in a

root-sum-square {RSS) manner. As another observation, Tso and.Biswas
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had examined the sensitivity of the response parameters considered to
the phase relationship between the two components of ground excitation.
Kan and Chopra[4] developed-a simple procedure for the analysis

of elastic response of torsdional coup]ed'bu11d1ng to earthquake ground

-

Cem

motion. They observed that lateral and torsional motions would be

etrongﬁy coupled when the eccentricities were}large, and less obvious
perhaps,but clearly displayed by force vibrat{on tests, was the strong
coupling between lateral and torfional motions of buildings with close
natural frequencies and essene1al1y co1nc1dent centers of mass and resis-
tance. As a very 1mportant conclusion, they po1nted out that coup11ng
between lateral and torsional motions induced torgue and in general reduced
base -shear, and the effect of torsional couplwng decreased as damp1ng
1ncreased[12] []3] : °

The root-sum-square procedure in dynamic response spectrum

| technique applies only if the per1ods T], T2 are well separated The

R PR T

'study done by Rutenberg, Hsu and Tso[14] ment1oned that the proper
phase relationship between‘thellatera1 Toad effect and torsiona] effect
should be accounted for on e modal basis. The conventional method which
obtained' the response from the worst combination of RSS lateral and
RSS torsiona] Toadings, genera]?y tended to overestimate the response.
In order to take the torsional effects into account,_particu]arTy
when the periods ratio t =-T¢/Tx’ in which T¢ is the uncoupled torsional
period and Tx {s the uncouplied translational period in x axis direction,
is close to one, Fhe new German Seismic Code DIN4149 provides a supple-
mentary fictitieus eccentricity_in-the design eccentricity caIcuTation
to approximate the dynamic effect of vibration coupling. Muller and

Keintzel recommend that 'the approximate method is not excess1ve1y

conservat1ve[ 5]
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1.3 - Objective and Scope

The purpose of the pregént anaTys%s is to study the effects
of coupled translaffona]—taréionéT dynamic résponse on buildings due to
earthquake excitation. Taking {nto account the torsional_fesponse'
effect, both the static and dynamic format of Natjonal Building Code
of Canada (NBC77) are used and compared to examine the accuracy and
applicability of the static code. ‘

To refilect the behéviour of a bui1ding‘undergbing lTateral
loads, a mafhematita1 model consisting of lumped masses and flexural,
shear and torsionai’ springs is created in Chapter 2. The formu]atiqn
of the stiffness matrix referred to an arbitrary reference voint
is discussed in détail in this chapter 2lso. |

Chapfer 3 is devoted to the study of the effects of Sase shear
and torque envelopes when coupled torsionaT;]ateral motidné-are con-
sidered. Three uniform mongosymmetrical frame Eudeings, as shown in | ¢
Fig. 1.3, are used as examples for this study. One building is a
six*storey-structure with uncoupled trans]ationa1 period in X axis (Tx)
is equal to 0.5 séc. The second building %s a twelve-storey struc-
ture with Tx equal to 1.0 sec. The twenty-four storey building with
Tx equal to 2.0 sec., is chosen as the third example. For simplicity,
the 1400 kips of floor weight is used in each building. The fiaor plans
for these three buildingd are shown. The plan dimensions in both X and
Y axes are equal to 100 feet. Small, moderate and exceptionally large
eccentricities are expressed by the ratios of eccentricity (ey) to plan
dimension (D), i.e. e /D = 0.03, e,/D = 0.10 and ey/'oy = 0.50
respectively (shown in Fig. 1.3(d)). Associated with various eccentricities,

the dynamic response spectrum method, according to Commertary X of NBC77,

is used to study the effects of coupled translational-torsional motion.
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The ratios (=) of uhcoupTep torsional periods (T¢) thunCOUpIed Tateral |
periods (Tx) vary in the-rangelof 0.6 to 1.4. Dynamic resﬁonses in
shear force and torque -enveliopes of the three buildings show the similar shape.
For detailed examination, the twelve storey buiiding is chesen to
be studied-in detail for the effect of sympathetiﬁ coupied torsional- .
lateral resonance;

The accuracy and app]icabi]ity'of current s?atic code.(NBC77) in
the torsional provisions is studied in Chapter 4. The formulation of
design ecéentricity (ex),‘and the reguirement of doubling torque when
design eccentricity exceeds 0.25 of the planned dimension are studied.
Torsional provisions in four other countries'(Germany, New.Zea1and,

" Mexico and U.S.A.) building codes are also investigated.

Buildings wﬁth eccentric offset (or?setbacks) will induce
additional torsional effect besides the local floor tqfque due to the'
non-coincidence of centers of mass and rigidity in the plan. NBC80
proQides a modification on the definition of structural eccentricity
(e) to take this situ;tion into accountETs]. Buildings with top .two,
four and six floors as the eccentric offset portion of the twelve storey

. frame bui]ding are taken as examples to examine the improvements and

~

discrepancies of NBC80 modification. ' . _ : .
It is hoped that the present work will provide some.insight

to the effects of coupled trans]ationaT-taréiepa1 ﬁotions on bui]dings

and provide some comments on the adequacy and ;ccuracy of the éurrent

National Building Code of Canada.



CHAPTER 2
MATHEMATICAL MODEL

2.1 Introduction

Nhen a building is subjected to 1ata§§1 Toads, a frame struc-
ture will deflect predominantly in a shear mode andﬁg shear wall struc-
ture wii] deflectgpredominantly in 2 bending mode. In order to perform
dynamic éna]ysis and study the effect of coup]ed‘trans]ationaf and
:tbrsional motion for building;’Whi;h consist of-framés or walls, a
dynamic mathematical model comprised of.1umped mésses';nd shear and
fleiural.sgrings is created to represent the tgo types of gtructufes.

A two-dimens{onaT plane model is first studied to verify the ac-
curacy‘of the model. By applying static horizontal forces to the models
and their corresponding real structures, the horizontal deformations can be
compared. These results demonstrate that the proposgd model can represent
the building behaviour when the building is subjected to horizﬁntaT force.

The dynamic analysis of an asymmetrical building will need
a three-dimensional mode1rwhich will consist of shear, flexural and
torsional springs. The derivation of the stiffness matrix for this

spatial model will be discussed in detail within this chapter also.

2.2 -Mode111ng of Plane Structures

2.2.1 The Configuration of the Model

Under horizontal loading, the lateral deflection of a building

will consist of two parts, namely, chord drift and web drf%t; To
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delineate the fiexural and shear behaviour of a structure, 2 unit model,
" which inc{udes shear (Ks)'and_flexurai (K) springs and'mags, will be
‘considered as shown in Fig. 2.1(a). 'Fig; 2.1(b) shows -that when the mass
of the model is rotated e‘by moment M, the spring Ks‘wi11 not be affected.
Fié. 2.1(c).describes the mass as it is shifted A horizontally by 2
Torce P , the spring K will not be stretched. Therefore the stif%nesses
“of springs K and Ks can be taken to_represent the bending and shear

stiffnesses of the structure.

2.2.2 The Eveluation of Spring Stiffness for Naliwand Frame Structures

The stiffness of flexural springs (K) can be derived as shown
in Fig. 2.1(5). Consider unit rotation to be & =1 due to external
-momeﬁt (M). The internal forq&s (F) developed by elongation and
sébrtening of (K) springs are ' ‘ - ‘

Fekt &) |
To satisfy the static equilibrium condition, the external force (M)

must be equal to the internal force (F a). Hence,

2

M=K~ -

roj e

and the stiffness of flexural spring (K) is

k=%, -4 (2.1)
a
in which the term of (gjﬁrepréSents the flexuraff;tiffness (kf) of
the unit model.. /-

4
|

. The stiffness of shear sﬁring (Ks)‘can be defined as the shear
stiffness of the unit directly. As shown in Fig. 2.1(c), the stiffness
of the shear spring (Ks) is |

k=2

s 3 .- ;2.2)
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- Figs. 2.2 and 2.3 show that flexural deformation dominates wall
structure and shear deformation is predominate in frame structure.
To represerit the wall structures, the stiffnesses of shear spring and

flexural spring of the model canlbe taken as

K, wall = JEEL (1T 4.~ (2.3)
s h3 6Ea”
4+ S8
5Gh
_2F1 i _
K, wall = —-2— “ (2_4)
a h . _

For frame structure, according to Heidebrecht and Smith[17],

the shear sﬁring stiffness is

R, frame = ¢ 2Elp 1 1 (2.5)
S " 3 o 2l..
i h i
1+
I i
by . b,
R+ —=)
5 ¢ E,

|

assuming that the contraflexural points are 1péated at the mid—épan
of the beams and mid-height of the columns. The flexural spring

<
stiffness for the frame structure is given by

K, frame = o %% | (2.6) -

where o is a %actor which depends on the structural blan layout and
geometric properties of the columns. For example, for a fgur-bay,
fraﬁg\structure {shown in Fig. 2.3), ¢ =-1.25 assuming {he area,

Y?HHQJS modulus and height of the celumns are uniform.

2.2.3  The Formation of Stiffness Matrix for Multi-Degree of

"Freedom Model ™~

For a muiti-unit model, (shown in Fig. 2.4(a)}), a single unit .

is first isolated to study the equifibrium of the static elastic forces
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Fig.2.3 Shear and Flexural Deformations of Frame Structure
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{e3-e2)a3 = Ksy-aj
12N

AKB

: »

Xj- Absolute displacement of unit (i)

Aj- Relative displacement between
unit u{i-1) and u(i)

O3~ Absolute“overturning ratation
of unit(i) ~

Xi- Stlffness of flexu*al spring
Kgy-Stiffness of shear sohlng

< " (a) . R 7 . .
"Fig.2.4 Relationship” of Geometry and Forces of Multl-degvee of
_ Freedom Unit

-
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A
-

when the madel is 'subjected to external Tlateral forces (shown in
.Fig. 2.4(b)). Consider the second unit for example; horizontal force

equilibrium gives . : : .

and moment equilibrium leads to

My - Ky (- 8) T2ty Ky (83 - 85) 7 23

N\

T+ K, Ay T 5 =0 (2.7)

in which K_ , K_ , K, and K ‘are the stiffnesses of shear and flexural
52 53 3 3

springs for unit 2 and 3 respectively, A2 and A3 are the relative hori-
zontal displacements and 92 and € are the absolute rotations with
respect to the vertical axis for unit;l? and 3.

For any unit (i), Eq. 2.7 can be genera1ized‘as

P. =K A, -K- ~°aA.

i Ss i S35+ i+]
and 2 2
a3 ai+1 . .
e I R e (8547~ 80 7 Ky
h. h.
i . . i+l . .
- — A, K - —" &a. K (2.8)
. 2 sy 2 o Tsin .

Fig. 2.4(a) shows that the absolute horizontal displacement

' Xi of'any unit cén*be expressed by the relative displacement ::x_I and

overturning rotations ei, ai_], such that

h.
- 1
I A R N
) . | h

or  Er=Xi o X g - (g et g (2.9)

i



-

Substituting Eq. 2.9 into Eq. 2.8 yields

P; = -(Kéi) X & TR

sl TR T ) T ,
- g ) Sy T K Ry 3K hi+lj "
- Sy i SR AN 2
e n ' ; | :
o; + (K, M) - e Py (2.10)
1+1 )
K, - B K, o m Ke e e
and My = () X 2 JERS
L2
Ksi+1 - Rin Ks, n K, . a.°
- (—— ) - + (— - - 1) .6
e i+] 4 2 i-1
2 2
2 2 K .h° K h,
IR B M B £ M SO I -
2 2 4 4 j
2
' 2 K h.
Kja - 34 Siq1 17
- § 7 ) e 8 (2.11)
.

Rearranging the Egqs. 2.10 and 2.11 into a matrix form, the stiffness

~matrix for the four-unit plane model is given in Eq. 2.12 and it can

be symbolized as,

P K X : Kie X ' B
{ﬁ}=——-¢-- e (2.13)
Kox « Rgg | -
where [K ]T = K .1 -
gx x&
.\ »



where

and

11

K2
K22
K23

33
34

44

L sym

F 5 Ky

K22

i xXg i
: '1
[
l
1
Lo
i
|
|
{
KGE =
0 Q0 -
Ko O
K33 Kyg
Kag
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(2.12)



and

ahd

‘Kzz

11

12

K21
K22
23
32
33
K34
43

44

Ky, ]

11~

(1 &2 0L 07
R K Ky O e
0 Ky Kgy Ky =
|0 C Kz X4
= -1 -h -k . hy) g
1y Th 2
‘ 2‘-152 T
= Yy n
- _?. (}S<2 i - K. . h)
li szh' 2 S5 T3
2 S4 T3
_]?Ks3 - 3
gy,
%Ks4 - h4
-5 K, * s ~
- - ]E Ks4 . hy
(%1 K2 00 0]
) 22 %23 O
K33 X5
LSym K
%_ ('a12 R a22 Ky) + %— (Ks] h.[2 + Ksé . hzz)
"33 Ky %, - S
%(322 . K, +a32 - K3) -:~%(KSZ . h22+ K. . h32)

20



! ‘
K23 = - %—a32 . 53 + %—Kss - h32
Kz ® %'(asz - Kyt 342" Kg) + %'(Kss Syt ¢ s, ',h42)
%4=‘%%2'&+%K%‘hf |
2 2

2.2.4 Verification of the Model

To ascertain whether the model can be used to représent the
behaviour of a building under horizontal loading, a five-storey single
bay reinforced concrete frame structure tshown %n Fig. 2:5) ﬁnd.a ten-
storey reinforced concrete wall structure (shown in Fig. 2.6) are
chosen as examples. Based on—the pfoposed model,.a 'plane frame' ,/
programme énd also the moment area method are used to compare the
correépondiné horizontal displacements of the two structures and their
equivalent models, when they are subjected to lateral 1o§ds.

Table (2.1) 1ists the comparison of horizontal displacements
in five cases for the five-storey frame buiiding. By using Eq. 2.6

for the flexural spring stiffness {K) and Eq. KS = I 1251_, which

h3
assumes infinite rigid beam for the frame structure, Case I displays
the proposed model's horizontal absolute dispTacements.(Xi, where i
represents the number of unit of the model or the floor of the building}.
Case Ii uses the same shear spring stiffness (KS) as Case I but
greatly increases the flexural spring stiffness (K)‘to examine the
infjuence of flexural spring stiffness of the model for frame structure.

Case III adopts Eq. 2.5 to evaluate the shear spring stiffness and



22

Y =
7.29 ¥ | E
P —
. 688 S ' :1
: P
L1 ko 4 |
. — —1
k < - ™
3.53 — 3 - 3
= = FE—
» o
3.07 k IS 2 I . T
-—h ——————
. 147 18", -
+7°slab it
' . 1 X
B 7 S L S S A S S S
. : l 25
Fig.2.5 Testing Model 1 - R.C. Single Span Frame
10 K
—— —_—t -
10
9
8
7.
6 3
5 n .
. W
4 o
2
l ‘ . x
A A e { v \
1 20
i

[ 4%

~

Fig.2.6 Testing Model 2 - R.C. Wall (£=10")



Table 2.1 The Effects of Flexural Stiffness and Shear Stiffness to a Frame Structure. (Static Analysis).

.

‘[I
i
CASE 1 CASE II CASE 111 CASE 1V CASE V T
Unit-|Htelght] Welght Dig- '
of of K= -A-:; Ks-xs!%—.?- placemenw .
Floor |unit | untt XL x | ¥ % | ok | remt | M K | K= Xy Xy
1 |15t | s7.7¢k| 39200 | 474.22) 0.053 [ 10" }a74.22 o.0525 | 100 231.98 | 0.107] 1010 | 313,02 | 0.0793) o0.070
"2 | 120 | 57.76%| 4%000 | 92¢.22| 0.070 | 10" |o926.22 |o0.0760 |10 463,17 | 0.154] 100 | 463.17 | 0,126 | o0.110
3 | 120 | 57.76%| 49600 | 926.22 | 0.099 | 10'® |926.22 |0.0957 [10°) 463.17 | 0.194 | 101 | 463,17 | 0,166 | 0.160
4 [ 120 | 57.76%| 49000 | 926.22 | 0.116 [10'° Jo926.22 |o0.111 |10 463.17 | 0.224 | 1010 | 4e3:27 | oh196 | 0.190
s | 110 | 47.76%| 53455 |1202.40] 0.124 [10™® [1202.40 {0.117 (10" | 661.44 | 0.235 | 10'° | 661,44 | 0,207 | 0.205
[ 1 )
‘g 1281 (14 L2 1 ip/t
Kg*y Unit - X = Kip/ft
P oL X X = £t
: (<> + Y h
by * B3 E = 3000 X8l

€¢
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assumes that the contraflexural points are all located at the mid-span
. of the‘béams and mid-height of the colums. As a further comparison,
the shear spring stiffness evaluation at the gkﬁund fToqr of the frame
building is modified in Case IV. The contraflexural points of the
columns at the ground floor are raised tﬁ 2/3 Hy to consider. that the
columns &'t the fixed end are not allowed to rotate.. By using the
'plane frame' programme% Case V displays the 'exact' static horizonta]
disp]acements_(xi, i =1 to5) for the 'real' frame building. Some
observations can be generalized as follows:
(1)  The flexural spring stiffness (K) is an insignificant factor
in frame structures. It can be deducéd from Cases I and II in
which the disp1aceﬁents are very close despite the fact that
the magnitude of flexural sprihg stiffness (K) are changed
greatly in Case II. -
(%) The assumption of flexible floor beams is significant in-assessj
iné the shear sti%fness for frame structures. For example,
the shear stiffness (KS) calculated using Eq. 2.5 in Case III
is a1%ost 50% that of Cases I and II.
(3) To allow for the flexibility of the floor béams and columns,
Ehe assumption of points of contraflexture at mid-span of beams
and mid-height of columns is valid to most of the frame structure.
waever, the end condition o% the columns at the ground'shou1d
“be taken into account. = In Case IV, the inflection points of
columns move upward at about 2/3 H], as suggested by W. Sﬁhue11er[]8],
and the lateral displacements calculated in this case are the -
élosest to the 'exact' solution given by the'plane frame' pro-

gramme indicated in Case V.
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The validity of fhe model to represent wall structure can be
stu@ied in Table 2.2.  According to Eqs. 2.3 aha‘2;4, the stiffnesses
~of shear and flexural springs are used to-calculate the |
horizontal disp]acemenfs-for the reinforced concrete wall structure
in Case I. By keeping the same f1e£hra1 spring stiffness as-in Case I,
Case II considers the magnitude of shear spring stiffness to be increased
grossly. As a comparison,’ﬁhe ‘exact' horizonta1'disp1acements of the‘
wall structure computed by moment afea metﬁod.are'listed in Case III,

Some observations can be drawn as follows:

{1) The shear spring stiffness is an insensible parameter to wall
structure. The comparison of lateral displacements in Case I
and Case II show only 2% change in Iaterai'disp]acemenf;'while
the shear spring stfffness KS is changed by 8,440 times.

(2) The static lateral displacements are nearly equal in Case II

| from the model and Case III from the 'real' structure. This
is & result that in beam theory, shear-deformation of the beam
is neglected.

Based on these sample calculations, it is felt that the mathe-
matical model is a fairly good model to represent the behaviour of wall
and frame structures subjected to lateral loading. Moreover, ignoring
shear defromation in wall structure and'%]exuraT deformation in frame
structure is justified in evaluating the shear and flexural spring
.stiffnesses respectively. This model will be used in the

dynamic analysis of building in the remqinihg_pprtion of this thesis:

)
L —

.



{Moment
CASE 1 CASE 1T - . CASE III Area

unlt_— T - Hothod)
Floor | melght | weight | «x Kq x.1072 | «x X | x107?]  x107?
1 16¢ 1.11% [ 107500 [ 110507.8 [ 0,065 [ 107500 { 10'® | 0,037 0. 058
2 16+° 3.11% | 107500 | 118507.0 | 0.237 | 107500 | 10}® | o0.220 | 0,222
3 16¢ 3.11% [ 107500 | 110507.8 | 0.505 [107500 [ 102° | o0.479 0.402
A 16" 3.11% | 107500 | 120507.0 | 0.055 107500 | 10! | o.022 0.826
5 16" 1.11*% | 107500 |118507.0 | 1.28 |107500 | 10*0 | 1.24 1,240
6 16 3.12% | 107500 | 118507.8 | 1.76 |107500 | 10*® | 1.7 1,715
7 16" 1.11% | 107500 [118507.8 | 2.20 |107500 | 10'° | 2.23 2,237
B 16¢ 3.11% | 107500 { 118507.8 | 2.85 | 107500 | 101® | 2.79 2,794
9 16 3.1% | 107500 |118507.8 | 3.44 | 107500 | 2010 |. 3.37 3.376
10 16 3.01% | 107500 {110507.0 | 4,04 [107500 | 10%° | 3.96 1.969

" Unit + B = 4300 koi
' K = Kip/ft *
’ X = ft

Table 2.2 The Effect,

o]

i’

"lexural Stiffness and Shear Stiffness to a Wall Structure, (Static Analysis)

i

9¢



2.3 Spatial Structure Mode]iing é%

2.3.1 The Configuration of the Model
¢ ‘ =

In order to‘study the coupled iorsiona]-trans1ati5ﬁ§; sejsmic-
' responses on buildings,a three. dimensional médel based on the similar
features of the.-plane structurg model is creﬁted as shown fn Fig. 2.7.
Analogous to Fig. 2.1, Ks s KS .

and Kx’ Ky are the shear springs and

X Y

flexural springs of the unit ingX and Y direc;ions respectively. For
 the unit with center of mass and center of rigidity does not coincide,
an additional torsional spring K¢ is added betwegn the units and e, s
e_y represent the eccentricities in the X and Y directions.

Any tranﬁverse force applied through the center of rigidity
(or shear center} wj]] not cause torsfon, also, when the structure
is subjected t5 applied torque, the twist takes piace around the shear
center and there is no lateral displacement. Following these mechanical
principles and thé definition of stiffness, the shear springs are
arranged to allow the reaction forces. in both X ahd/or Y directions
to pass through the shear center, the flexural springs in either X or
Y direction are located in a plane which crosses the center of rigidity.
To represent the torsional stiffness of the model the torsional spring
is left in a position to let the torque be directly applied aréUnd the .shear
center (shown in Fig. 2.7). Therefore, when the reference point is at
the center of rigidity, the stiffness matrix [X] of-this model would
be a diagonal matrix, regardless whether it represents a symmetrical,
wnnosymmetrica1'or asymmetrical structure. Symbo]icél1y, the stiffness

matrix of a unit model, referring to the center of rigidity is

Kx 0 0 : ‘
(K] = 0 K 0 - (2.14)
. y )
0o .0 K



Voo 7 27 717 7 787 % Ly,

g | Ksx , )
Kx -~ ' - K¢ - Kx
Ky 1
- ? _E&LTR
L lem
o '//' | b
N
(ST LS L

- a

Kx'Ky_ Flexural springs in X and

Y axes .
- KgyrKgy™ Shear springs in X and
Y axes
K¢ - Torsional spring

8

Fig.2.7 Spatial Spring Model



1n which K and Ky are the trans1at1ona1 st1ffnesses of the unit in
X, Y-axes_directions respect1ve]y.and‘K¢ is the torsional stiffness

. ‘ o . . %
of the unit referring to its center of r1g1ditx.

2.3.2 The Formu1at1on of Genera1 Stiffness Matrix °

. In the dynamxc analysis,. the resultant of the inertia forces
‘act at the center of mass, the elastic forces occur at the center of

rigidity (shown.an Fig. 2.8). When these two centers do not coincide,
- : 1 L ’ 3
torsional response will result. il

For a spat1a1 multi-unit model, the stiffness matrix and mass

-

matr1x can be very complex, especially when the reference point is A
arb1trary. In order to illustrate the process of stiffness matrix
fbrmu]ation, a ‘monosymmetrical multi-unit model tshown in Figs. 2.9

and 2.10) with~refergnée point of each unit at_the center of mass is
stud}ed in detail. The units of the mbde? are uniform and the centers
of mass and rigidity of each unit are originally Tacated on two vertical

axes.

The study is spIit into threéaparts‘which_ére lateral response
in X direction, torsional andléverturning responses of the unit. Fig.
2.]0‘disp1ays that the absolute Tateral displacement Xi of ény unit is:

| | h
_ : . . _l _ .
g2 X v ok r gy v e) gt 05 - 05) e

Therefore, “the relative displacement aX; of shear spring of unit i is:

_ . g h. - |
_ il
rAx- - X- - 'x_i_-[ - (8_]--‘ + e-) (¢-

i i it 2 i 7 %) - ey_i (2.15)

. The’equilibrium equation of motion for one unit in the X direction

is - | - A .
M:X., + K . 8%, - K . X, «~M. g 2.16
S B T Tsxpyy T TTiH éi i x(Y; ( )
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Substituting aX; into Eq. 2;15 'J"ie'['ds,”

Mx.—‘(‘K ). X, 4 + (K _*K .‘_).',‘x_.f-(:st-);jx‘iﬂ_u

171 SX; i-1 SX; SX547 1 2 4]
hs h T, <
1 .
- (K. .=) .8, - (K =+ - K Lhd N I
) SX; 2 i-1 SX; 2 SX{41 2 i
h. .
+1
+ (K ) Leq F (K e ). &
SX547 2 i+l SX; ¥; i-1
( K ) ( G
- {K . e . e (-8 . e o B
X Y S%a T Yia T X4y '-Vi}\ \
- Mgy - (2.17)
i x(t)i )

In matrix. form, it is shown in Eq. 2.187

The equilibrium equation of torsional motion at the center of

-

mass 1is
e . - . Ad. ., - .Y SU
Tyl + K 005 = Ky e By - K- 0%
+ K__ - . AX._H . e = M. ;{,_2 5.(1:) B ©(2.19)
. SX54 i Yi41 iy
Substituting Eq. 2.15 into Eq. 2.19 yields:
I .‘??&(K e ) X "-l(K .e +K . e ) X:
¢ Sy - ¥yt e SXp Yy Xy Yyt
. ) x - hs
. S . — :
Sxi_}_] _ e.y.i_.;_] i+l (st.ieyi - 2 ) ei'] :
h. . h. .- .
+{K_. .e .—=--K . e i k2 SRPY
;0 Yy 2 Xy T g 2 0T
- (K . e ity . K ..+ 2
( SXs 49 Y 2 ) +] ( ¢3 st_i : ey,i ) %1



- = (K

LT

i+1

2

.
Yin

- %541 T 7 L Gy

G

]

AJ%O? £q. 2.20 can be rewritten into a.matrix form as Eq. 2.21.

S5ym

and

0  o0-*
.M, 0
\\'
\
A Y
\\'

-~
I

[Kegl =

33

(2.205

-

(2.18)

- rX9)
0 7% 1
x.
- ' _5.2. p - :
.0 %2 + [Kxx; Kxe} Kx¢31 CH }-— -[Mlﬁl} gx(t)-
SR ®2 |
0 11
Mn anJ _L:¢_24
| y N
ki Kz 0 0 v -
Koo K3 000
Sym N - wKn—l, n
Knn -
sx. * Ksx
1 2
- sx2:
K. +K .
5x, 5X g
-K
SXs.
X,
K
‘ SXn D
K K O - -0
1 K2 K3 O 0
Q. ’ ™~ .
: ~ .
' ~ . Kn-], n
| 0 Kn,n-1\ Knn
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=
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¢f1 ¢T X
- .2
L 00 | {30 4 re g -5
2 . , | 2 [Kox © Kog 1 Kyo e;?
sym : 1ot . -
¢n_ L n ) ‘ ¢'§
L %)
= - D& I} G4y ‘ 5 (2.21)
where - K | K, O 0 -
(Kyyd = K22 Koz 00 0
f \\ -
[ :
.
sym ‘ _\ ~ Kn-'l ,n
~
~
- Knn -
and
K'['I = = (st] ¥4 + KSXZ eyz) )
K = K. .e -
12 . $Xo) Yo
Kog = - ( sx, eyz * st3 eyS)
- = K . e
K23 SX4 Y3
= 4 . e
-T,n X Yy
K = - K . e d
nn sx. T ¥,
Tk K O 0 ]
[che] = Koy Koo Ky 0---0
0 \\ R .
) N ;
\\\ Kn-],n
_0 Kn,n—'l nn J
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and
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In Fig. 2.10, &, denotes rocking angle of unit i. The equili-
brium eqiation of rocking motion can be written as,

5 g ﬁj ,oa !
Lo % = Ky (Bgaq = 85) - 5+ K )8y = 854) -

}1.

1- ‘ .- N : .
. R N (2.22)
141 ; 1oz & " T8 (x) ~

Again, substituting Axi in Eq. 2.15 into Eq. 2.22, one obtains:

Lo KR R R &
I_s8. + ( ) X, 5 - ( ) R, - ——— X,
8; 1 2 7 7=l _ 2 i 2 Ji+
2 2 2 2 2 2
Kx a; Ks hi K as” *+ Kiggr iy K h1 + Ks. h ™
(- — + 1 ) 8, 4 + (— + it i
2 4 i-1 2 4 i
2 . P4
K +3d. K -h; K h.e
P B - B (i Y (2.23)
2 2 i+] 2 Y541
K h.e ~K h. e -~ K h..q&
iy S.,7 itly Ss, v it1l7y. .
i i i+] it] i+] i+ = .
* 2 Yoy 2 ) o4 7 - g, - 9o (F)

or, Eq. 2.23 can be formed into a matrix as Eq. 2.24.
The assembly of equations 2.18 , 2.21 and 2.24 ]eéds to the
undamped general equation of the motion in x direction, when the refer-

ence point is at the center of mass namely,

M 0 0 X X M 0 O éx
0o I, 0 61+ [K] {6} = =]0 I, 0 . gy} (2.25)
o o .l le ) Lo o 1, 9,

where the generalized stiffness matrix [K] is

.
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XX X8 . X¢
[Kl=1 ¢
, ‘ KSX Kae' Ka¢ (2.26)
K. K
K¢X K¢8 $¢
By eliminating rocking moment response,'assuming Ie = 0, the
overturning rotation 8 can be written as |
I AP
8 = - Kee (KBx . X +_Ke¢ . o) (2.27)
Therefore, 2 condensed stiffness matrix [K] results, -
- (K - K K -1 K\ ) (K, =K K o VK. ) |
[K] - [ XX X8 ° 88 . toUex X6 %6 C -gs8 : 8¢:_ ] (2 28)
| (Kox = Koo - Keg - Kgyd  (Kgy = Ko - Kggs Kg,)

This condensed matrix [K] is still a symmetrical ma

(Kx¢ - K Kee_1 . Ke¢)r = (K¢x - K - K
since '{::Z>*x§j’

(A-B)T = AT -7

(Asc)T = ¢l . 8" . Al

Using the same

axis for the spatial modelling can be obtained.

trix, because

Tk )

procedure, the general dynamic equation of motion in Y

The condensed stiffness

- ! z
matrix [K] to an asymmetrical structure, in which the reference point

is the center of mass, can be written as

-1 -
(Kxx YN Keax -Kox) 0 (Kx¢'Kxe‘Kaex -K
-1
- 0 : ) (K Kgg  -K
[K] = _ YY Kye ey XQ ye
(Ko Keo Koo T (K, Kig Kyg e (5 Keo Koo
PX 00y POy Y %y ¢ X
-1
B 'Kex) ‘Key) 'K¢a Ko K b

%



where .

~and

0 Sttt O 61 )
I -0 | ls a
2~ 2} * [Kgy
U~ 8 | .
8, n
= - [Ie] {I}ge(t)
(K K 0
exd = | K1 Ky Ky3 O
i \\ -
-Kn,n-1
K11 = %;(ist . h}+le
1 X2
_ 1
Kg = -7 - Ksx, = M2
= l K h
KZl 2 $Xo T2
_1,
K22 -2 : stz_' h? * SXq
= - =, K . h
‘ K?3 2 SX3 w§
: 1
= - . . h
Kn-],n 2 X n
_ 1
Kn,n-1 2 stn - 0y
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2.3.3° f%e General Equation of Motion P

Eq. 2.25 represents the general equatipn of motion where the
reférence po1nt is at thglcenter of mass. While the ré?erence point

"

of motion 1sarb1trany1n the spat1a1 mndeI]1ng, the mass matrIx will
no longer be—;-d1§gona1 matr1x.

Fig. 2.11 shows that in the-X and Y coordinate system, an arbit-
ranyboinf p and centers of mass and rigidity are 16cated at (Xp, Yp),
‘(Xm, Ym) and. (Xr, Yr) respect1{e1y. The trans}étidnaiidispTacements

"~ in the X and Y axes of any point (i) of the unf%_are defined as l.I',I and
Vi and the rotation of the unit as counter-clockwise direction as
positive siép is indicated by ¢. The géneraT‘equation of undamped

: motion in terms of the displacements of an arbitrary point p for a single

unit 15_
- M 0 MY - 7 u
: - 1Yy - Yl P
M : -M(X. - v
0 . M( 5 X) Yo
L‘M(Yp - Ym) -M(xp - Xm) Ip ] ) ' .
I X 0 Kx(Yp - L Up
+ K ' - oy . >
0 ¥ ) KY(XP Xr) VP
Syt ot _ _ ®
I A K It
M 0 0 7 'gx
{‘“Q |
= - M .
0 //) 0 gy
L 0 . 0 'I¢ ] o J
where I_ = Ilr+ ME(X_. - X )2 + (Y -rY 52]
p m p.m P me
o - 2 _ 2 . -
Kp Ko + K, (Yp Yr) + Ky (xp xr)_ | | (2.30)
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In bquétion‘2.30,~1ﬁ-is‘mass polar moment of inertia of the

unit refErreé to the mass center. The elements ofrstiffness'matrix can -

" be expressed by the torsional (Kb) and_shear (Ks),‘flexural (K)'sprihg

' stiffness in bofp X'and Y directions of the model:

Ke = Kgx = = sz- h) . (Kx é - + Sx_; h25-1 . (‘ %s§ - h) -
Ky = Kgy = (- 3 h) (K¥ ;bz M Ksy4. hz_)-]' (- E)"z’z;'h')
: Kx(vp' - Y - -st._. (Y, - Y- (- KS"‘Z'-h) : K’f > l + KS";' hz)"‘1 ]
2 .2 )

T : K
Ky(xp - X)) = - Key = (X5 - Xp) - (- s-VZ ) (g¥2 + = . "

K.. .'h
P X 2 X1

e

-

add KR = K¢ is the torsional stiffness of the unit referred to its center

of r%gidity. ' To arbitrary boint p, the term K§¢ can be expressed as

]
-

.. ) Ca .
k¢ = _y 32 _ YA h _
_ KP‘ [Ké + st“. (Yp_ Xr),-+ Ksy . ($p Xr)r {[st.' E{Yp Yr)] .
2 2 o
K,.. a K.. - h K.. - h -
X sx_ o -1 sx_° : . ~ h
( 2 + 4 ) . ["—é_"'- (Yp = Yl‘)]} - {[Ksy . 'é'{xp - XY‘):I .
2 2 . |
K, - b K -h K., - h y
Y sy © - sy _
(g T (XD

i S
. _
When Eq. 2.30 applies to a multi-unit model, each element of the

‘mass matrix"in-Eq. 2.30 becomes a diagonal matrix. Let EMY1'= Y ‘-Ym
. . i 9
- Xm,, the mass matrix for a multi-unit model can be Qritten‘as

ancleM}(_I =.Xp;
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The st1ffness matrix in Eq. 2.30 for a multi-unit mode1 is replaced

by the condensed stiffness matrix [K] (Eq. 2.29) while the eccentr1c1t1es

of center of r1g1d1ty to the arb1trary po1nt (p) app11ed 1nto Eq. 2: 29

For examSTe,'

n K2 0o
[Kxx] - Ky Kyz O
\\ .
\\
sSym SN
| -
where-,
K = K" ‘
11 S%q $X,
K = -K
12_ $Xy
= + K -
K22 ‘sxz_ sx3
= ‘_Kl'

=

r K

- | v _ o
_ are defined as ER_Y_I . Ypi Yri and ERXi ~pi xfi Symbol1ca11y, the
‘stiffneSS matrix is V _ _
. _.I . . . . -1 _
[ (Kex~Kye Keex ~Kax) G . (Kx¢ X8 Keex 'st¢)
. _'I - -
(Kyy K_ye'Kee 'Key) (Ky¢- ye'Kee -Kg ¢)4
4 b AR
, | | -1
. oK .
sym N R TR
) -1
-K . .K Ko
8 ae, - ..
| Oy By Ty
The terms'of Kex> Kygo Keéx’ Kx¢"gyy? K¢$~are all matrices which_have
been shown in Eq:-2.18, 2.2 and 2.24 but the eccentricities e and e;
- o Y. i
shall be substituted by ERY. and\Ein'respectiveJy. P .

| {
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« and

- and

where

k. 1" =[k 1= K1 Kz Kz 0---0
58 - 5_on 2z
X X. 0 . \\
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: L2
Koo = =(K. +K__ '. ERV.Z2 + K . ERX.2)
12 %5 s§2 .2 5 2
Kpp = K, + K, +K. - ERY22 PR ERY32
S I B *3
| o ,
+ Ksyz . ERX2 Ksy3 - ERX, .
2 - 2
= (K. +K ERY.Z + K ERX.,2)
K23 o3 " texg T 53 T Kayg 3
K o= -(K, +K.  -ERYZ+K ERX_2)
n-1, ¢n SXp . n .syn n
K=K +K ERY % + K ERX 2
v e Usx ' sy n

Sub§t1tut1ng st_, Kx-’ ERYi, a; by KS ’ Ky s ERX% and_bi, matrices

iX i Y3
3 > » K i i -
[Kyy] [Kya] [Ky¢] C aey] and EKey¢] can be sﬁown to havg s1mj1ar forms

L4

Consequently, the detailed description of Eq. 2.30 applied to
multi-unit model is_comp1icated. However, this equation is
.very useful, particularly when the dynamic analysis is applied to offset

buildings in Chapter 4.



CHAPTER 3
THE EFFECTSVOF'COUPLED TRANSLATIONAL AND TORSIONAL
MOTION IN MONOSYMMETRICAL FRAME BUILDING

3.1 Introduction

tompletejy symmetrical structures-do not exist. Oﬁing to inevitable
eccentricity, it is necessary to téke'coup]éd response into account for
buildings which are SQﬁjected to earthquake excftation. In Chapter 1, a
reviéw of ﬁany invéstigations on the effects of seismic coupled lateral-
torsional response on buildings is présented; The general conclusions are
as follows:

(1) Coupled lateral and torsional motions cause torque and reduce

base shear. _

(2) The effect of torsional coupling depgnds'stroneg on w¢/ W,
the ratio of uncéupied torsional frequency to ﬁ%éoﬁp]ed
lateral fundamental frequency. .

A-parametric study on the effect of coupled motions ig'made in this
Chapter. Particular attention is given to the circumstance when the
phenomenon of sympathetic coupled torsional-transilational resonance occurs.
Three groups of monosymmetrical uniform frame structures are studied in*
this Chapter. They are a six-storey building with uncoupled translationai
heriod Tx=0.5 sec, a'twelve—storey building with Tx=1.0 sec and a twenty
four-storey structure with Tx=2.0 sec.(shown in Fig. 1.3} ‘

. Different ratios of uncoupled torsioné1'beriods to uncoupled translational

periods related to sma]ljeccenﬁricity(e/D = (0.03), modefate eccentricity
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(e/D = 0.10) and eXteptioné]Ifarge eccentricity(e/D = 0.50) in each
building group are considered. A dynamic’analysis by applying the

- response spectrum method according tg Commentary K of National Building
Code of Canada(NBC 77){15 carried out. As a compérison, the static
éhéar force and torsional calculations based on NBC 77.are a]so.ca1;

culated for each building.

3.2 Uncoupled Fundamental Translational and Torsional Periods

The study of genéra] eduation of motion in Chapter 2 presents
- equation (2.30) of which the referencé,point can be arbitrary. In a
monosymmetrical structure, when the reference point is at the center of

rigidity(shown in Fig.2.9), the terms of X_ and X. of £qQ.2.30 are equal

p
. to Xm,and yp is equal to Yy Therefore, the off-diagonal elements of

stiffness matrix are all equal to zero. let e = yp(br yr) - Y reprasent

Y
the monosymmetrical structure's eccentricity in y axis direction, the
undamped free vibration equation of motion in terms of the displacements

at tie_center of rigidity is

inwhich I, =1 +M-e
] ¢ m y

Based on the above equation, the uncoupled translational periods (Tx) can
be defined by the condition that the torsional rotation (¢) is set to

zero. i.e.

(M1 &3+ [K T &b = o - (3.1)
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'_Analogbus1y; when the structure is only rbtated around the center of
rigidity, the inertia torque occurs at center of mass is I- %.. An
additional frans]ationa1 inéréié force occured at center of mass, due
to the eccentricity(ey), is M - ey‘- % . Hence, the ﬁncoup1ed tor-

siqnal fundamental period T¢can be obtained by equation

L1, 1. {er+LkI1{sd=0 - (3.2)
where I, =1 + M- e?2 . b
¢ .m Y :
3.3 The Comparison of Base Shear Between Stiff and Flexible Structure

‘Due to seismic excitation, a stiff(short period) structure may
develop largerbase shear than a f]exibie(]ong period) structure. In NBC 77,

the formulation of static base shear V = ASFKIW, in which § = 394§—- is

- VT
‘the seismic coefficient and T is the fundamental period of the structure,
has reflected this fact. According to Commentary K of NBC 77, the

lateral dynamic storey forces Pi for any mode i are computed from eduation

ek = M fek vy .S, - (3.3)

1

-

v

-where~[ M ] is the mass matrix of thg §%rﬁcture, column vector {¢} is
the mode shaﬁe%, Y; is the modal participation factor and Sa_i is the
spectral acceleration. As shown in the peak ground motion bounds and
elastic average response spectrum(shown‘in Fig.3.1), the spectral
acceleration Sa increases when the fundamental periods and damping -
ratio-decrease. |

Table{3.1) lists the base shears by equiva}ent static calculation
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Building . I Iz . IIT
™ " 0.5 (sec) 1.0 (sec) 2.0 (sec)
Total Height .6 x 11' - o" 12 x 11'-0" 24 x 11'-0"
Total Weight (W) 8,400 & 16,800% 33,600°
Static '
Calculatioge o
*% ’ b £
V=ASFKIW = 1 a23.33% 672.0% . | 10e6.73F
o 0.5 - ;
o 0.63 0.5 ° 0.40
" R.S.S. N
Dyvnamic & = 0.05 .
Analysis
k . ’ k.
_ . 762. | 7s57.0% 750.60
{ pY =D {0 v; S & PR |
Sa; | 0.10g 0.05g \ 0.03}_/

o4
Table 3,1 Base Shear Compariscon Between Static Calculation
. and Dynamic Analysis : - ’

N H n
[
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and dynamic analysis combined by root-sum-square{RSS) method for the

‘three frame buildings under the assumption that the buildings are

symmetric structures. (i.e: e, = ey = 0) " It is interesting to notice that

.

the dynamic base shear for the six-storey(T, = 0.5sec) building with total’

weight 8,400k is larger than the_twelv%—storey(Tx = 1.0sec) building with -

total weight 16,800k .. Tables 3.2 (2} to (d) d::il:ijphe cantribution of
spectral acceleration and mode 'shapes to the sh orce calculation.

For example, in the first mode, the largest base shear occyrs at the six-

_sto}ey bﬁi]ding due to the higher spectral acceleration SaI and larger

magnitudes of mode shapes {9 } . _
Commentary J and K of NBC 77 1imit the base shear computed from
a dynamic analysis to be not less than 90 per cent of that obtained by

the static procedure. The base shear study mentioned above shows that

for short period stiff structures, the static base shear underestimates

the dynamic apalysis by a factor of 1.8. Therefore, the hecessity of
dynam%c analysis for earthquake engineering is more apparent..

Dynamiﬁ analysis by response spéctrum method is adopted in this’
tﬁesis. BDue to the"assumption of linear elastic strucéure behaviour in
the Duhamel *integr'a][]g:l equation,ilhe numerical cﬁefficient K in the
static procedure is chosen as equal to two to exclude the consideration
of ductility for the frame structure. - | -

3.4 The Consequence of Coupled Translational and Torsional Motion to

Base Sheaf

The equivalent static base shear formulation of NBC 77 does not

reflett the contribution of eccentricity and coupled motion to the seismic

response of structure. However; the comparison of dynamic basekfhéar to

-
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u Tx) = 0.5 SEC ' %, = 1.0'6EC : Tx, = 2,0 BEC
H * :
I, vy 1 vy : M
L 9, 1 | 881 | (shear) hl | ' 1y 88 | gl (W] 9.y fy |81 | (shear)
1 [1400% | 0,130 I 756.30% 1400 [o.0465 } -] | 723,79 |2000 |0.0420 711,62
2 | 1400 0.2544 713.07 | 1400 |0.0932 4 713,13 |2600 |0.0069 , 702.00
3 | 1400 0.3648 | 2,2793 ( 0.10] 628.67 {1400 |0.1393 691.74 {2800 {0.1314 602,31
|l 4 [1400 0.4551 507.62 | 1400 [0,1841 659.76 |2800 [0.175 652,40
5 | 1400 0,5197 356,62 | 1400 |0,2268 | 3,1538 | 0,05 | 617,50 |2000 |o-2163 13,1269 | 0.03 | 612:4%
6 | 1400 0,5550 184,16 | 1400 |0.2666 565,45 |2096 |0.2592 562,75
7 1400 |o0.3020. | 504,27 |2600 |0,2972 503,74
] 1400 [0.3349 434,78-|2000 [0.3318 | | | 436.00
9 1400 |0,3622 - | 357.92 2800 [0.3623 | | 360,54
10 1400 |0,3044 274.79 |2000 |0, 38082 , 270.06
11 4 1400 |0.4011 166.56 {2800 |0, 4090 185,69
12 1400 |0.4119 , 94,52 |2000 |0.4243 . | 96.60
R.6.5, V baga =| 762.6 R.B.§. V base o 7570 R.8.8. V bass = | 790.60
Table 3,2 (a) 1lst Mode Dynamic Shear Forces Comparison for Building with T, = 0.5 sec. (eyx
1 1,0
L 2.0
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1 t N V] ) ; Vi !
. ey | (v d2 Ya gaz [{8hear) | M] |. P2 Ya gay [(shear) | (W] | 2 Y.2 | a3 [{Bhesr)
1 1400 -{-0,3668 | 93,29 14bo | 0.1456 208,61 | 2000 0.1440 [ 107,20,
2 1400 |-0.5502 : 47.30] 1400 { 0.27094 181,35 | 2800 | 0.2662 , 269,00
3 1400 |-0.4593 |-0.7452 | 0.12 |- 21, %[ 1400 | 0.3501 130,62 | 2600 0,3566 199,99
4 1400 -0.1392 |. - 79.01] 1400 | 0,3904[" 63,39 200 | 0,3978 107,16 | »

5 1400 | 0,2514 - 96.43| 1400 | 0.3834 K - 11,19| 2800 0:3865 . ' 3.60
L6 1400 | 0.5108 - 64.95] 1400 | 0.3163| 1.1143| 0,12~ 82.97| 2600| 0.3240 |1,1004] 0,08~ 97,00
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. 12 . .1400 |-D, 3983 - 74.56| 2800(-0,4016 | - 104,54
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1 1400 ‘|- '0.519) } 27.37{ 1400 |-0.2350 | 65.45 | 2800 |- o.&ug' 134,63

2 1400 |- 0,3710 : - 7.85| 1400 [-0,3820( 40,01 { 2000 |- 0,2033 84,04
3 1400 | ..2533)~ 0.4036) 0.12- |- 33.00] 1400 |-0,3853 | -0,75 | 2000 |- 0,3096 3.25
4+ | 1400 | o0.5505 - 15.79| 1400 [-0.2436 - 39,65 | 2800 |- 0,2514 . 79,60

5 1400 | 0.1368 - 21.54| 1400 [-0.0107 |- 0,624 | 0,12 }- 65.20 | 2600 |- 0.0205 [-0.6334 0.12 |-133.54
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1 1400 0.5507 ' 7.91 | 1400 J-0.3077 30,97 | 2000 | -0.2073 63.21
2 1400 | -0.1321 - 9.66 ] 1400 [-0.3929 '8,78 | 2000 | ~0,3932 ) 18,43
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9 1400 [-0,3993 14.12 | 2800 | -0, 3991 -31, 44
10 : 1400 |-0,2434 . 14,60 | 2800 | =0, 2505 ' -26.73
11 1400 | 0.0889 - 32,24 | 2800 ] 0.0794 -63,24
12 / 1400 | 0.3581 1 | 25.83 {2800 | 0.3545 -51.67
‘ . ) E%'
] * . A .
R.B.8, V bagse = | 762.6 R.8.8. V base = | 757,0 R,6.8, V base = |790,6

Table 3.2 (4)
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stat1c base shear for tﬁg three monosymmetrical frame structures(shown in .‘
Fig.3.2) exh1b1ts that the dynamic base shear w111 decrease when the
eccentricity 1ncrease§._ Fig.3.2 also shows thét the dynamic base shear

drops abruptly when thé center of rigggity is close to the center of mass

and the uncoupled torsionat—period is equa] to tﬁe uhCoupTéd tréns]ationa]
period. Actually, thﬁs'is one of the phenoména of syﬁpathetic torsioﬁaT

and translat%onal resonance wﬁich occurs in structures with. small eccentricities.

Fufther study of this particu]ar'aspect will be discussed in Section 3.6.

3.5 The Study of Dynam1c Torque Affected by Eccentr1c1txfand Coupied

Mot1on

-

Based on the‘rogfzfgm-SQUare rule, dynamic torsions are shown in

Figs.3.3 to 3.11 for bu11d1ngs with smgll, medium and exceptionally large

eccentr1c1t1es as?zc1 , pled torsional periods which vary in the ‘
neighbourhood of yhtoupled trans]at1ona1 per1ods

the equivalent stat1c base shear(vs) is not a function of
structural ecéentrjcity and'éoup1ed-mo£ion, the dynamic torques(Mt) are
‘norma1ized by a faﬁtor of VS/Vd in each circumstance before it is compared

with the static torque calculation of NBC 77 in this thesis. J?;

| ‘The d1str1but1on of dynam1c torque envelopes for the three %;ame
Jbui]dings are s1m11ar. For s1mp11c1ty, the study of the twelve-storey bu11d1ng
is used for discussion in detail. ‘The following comments can be made:

(1) Sympathetic coupled torsional-lateral resonance eccurs in

buildings with small eccentricities when the uncoupled
“torsional pe%idd is equal to uncoupled lateral period. Fig.

3.3.displays the fact that the RSS dynamic torque is four.times the

kl
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staic torque when the eccentr1c1ty is sma11(1 e. e/0 =0. 03)
s
In the case of bu11d1ng wzth moderate eccentr1c1ty(say e/D = 0 10)

the rat1o of dynamic torque tb static torque.is about two.

(2) The current static torsion des1gn crxterlon in NBC ?7 requires

-

- 7 the doub11ng of the torque when the des1gn eccentr1c1ty e,

exceeds one-quarter of the dimension of the strictural pTan dn

- -

the direction of computed eccentr1c1t However, the dynamic

tors1on fcr the structure w1th except1ona11y 1arée eccentr1c1ty )

. (i.e. e/D = 0.5) is only one-third of stat1c‘::;ooe,/’Therefore,
S the sympathetic resonance‘ig?not signifioaht n.the building -.

Z}bosseséés large eccentricity.and the criterion of the preSent -

bu11d1ng code to doub]e the des1gn torque for such cases is

a consenyat1ve requ1rement. .

(3} In general, the static desigq-torque in¥NBCf77~i§ a good

estimate when the fuhdaﬁ%ntah!oncoupTed torsional period- is

removed‘f'Zb per cent from-the uncoupled fundamental

translgtional period.

»

.\“ )

3.6 The Study of Sympathet1c Resonance

The frequenc1es of the three monosymme*r1ca1 frame bu11d1ngs with

éma11(e/D 0. 03), moderate(e/D 0.10) and except1ona]]y Targe(e/D 0. S)

T eccentr1c1t1es assoc1ated with d1fferent ratuos”of uncoupTed tors;onal per1ods

i‘

.:;EQ uncoupled trans]at1ona1?§er1ods are tabulated in Tab1es 3.3 (a) to ().

\5 .

cﬁﬁne can observe froNvthe tabtes. that for structure w1th small eccentr1c1t1es, ]

) the frequenc1es are d1s§§pbuted~1n pairs. | w1th1n e ch pa1r, the frequenc1es

. are close to one another For v1sua11zat1on the

.1rst four_moda1

-

"_ frequenc1es for the bu11d1ng with ﬂ’ 1.0_Sec are R oS

‘ P .
N o A - — . .
.. - R _ R . & : ] I )
A . . # w5, R . =f R . ey, T .
. ‘. oo
. .

.?‘

« N . < ~
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x =-0.03 D

=1

w2

o4

w5-

wb

0.8 fz-4s8

15.81736.817

6. 534

59.424

74,563

N2, 427

14.0%

KR1.602

59,05

66,695

1.0

h.118

JY

13.osu3§.'s7s

B8.419

57.357

€1.799

11.289

n.mu)u.s

37.513

53.

-60.514

. . 1.2

b.o.«:s

12.65630.611

37.313

Ag.050

€0.221

EZ=0.10p

.

o/ w3

@2

w3 w4

w5

wb

0.8

J12. 066

EG-S3D

3s. 53.5#49. 523

57.300

75.557

0.9

[11.757

115,353

34.622

M5, 186

55.759

72.557]

11.278

14.404] 33.20342. 405

53.391

68.199

10.656

13.859

31.363

<0.8311

50.362

€5.727

9.984

(13.55%

29.38)4

9.934

47.137

62.120

2= 0.50D

b

m"l

‘i =TerT]

w2

w3

m#lmS

0.8

10.367

30. 177

30,575

49.14464-737

76.674

0.9

9.85%4

28.135

26.147

dG.SGJGl.?BS

73.121

1.0

9.420

Ve
126.59

27.2M5 LG.SBG

sg.788

69.567

; : ' .1

-8.956

25.432

26.377

k2.374

55.856

66.095

. 1.

B.SQB

24.528

25,065

0.24

3
53.042

62.763]

L

3

-

Table 3.3 (a) Frequencies for Building

A .

T = 0.5 Sec., £ =".05
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s

.

-

) <

T . . . -
_ S - '
2= 0.03 D = . , .
'l'Téﬂ; w1 w 2 m3.‘ w4 jab wb w7 ] wB m9_‘1lm10 a | wl2
N 0.8 | 6246 7.887|18.733}23.541] 31_65¢] 38.853)¢3_792l53_539] 55.258{e5. 774 67.384] 75.272
©.5 | 6.210] 7.052{18.618{22. 055 31. 424 34.836ls3. ¢00]a5. 020 5'4.74160.4591:65.157 71.930
2.0 | 6.058| 6.524]18.12¢ hs-szs 30.1%4 ;2.7'15 41-639]45.270] 52.441]56. 95 4] 62.396] 67.787
1.1 | s.631] 6.364|16.812]25. 078} 27:78€ 32.23738.252 34.5394 48.197[56.192] 57.338] 65.575
1.2 | s.180] 6.330|15.480018. 584] 25564 32129035, 226 a¢. 329] 4438552740 55.999{ 60.315}
. .“\. ) N . .
E=0.20D .

T-T:p/'l;v'm‘] w2 m‘-3'm4'm5 w b u_zims w9 wlidl 11| wi2 |
0.8 | 6.031] 8.414] 16.076l25. 12930, 468 {41.626 |42_08es3. 067 [57. 393 63, 16a{72_251 | 72.268
0.9 | 5.877| 7.675{ 17.602]22.93929.547 [38.162 [40.78751. 412{52.639 |52, 19066306 | 70.010
1.0 | s.630] 7.201] 16.671|21.54428. 164 | 36.037{38. 5545 048 |49, 741 5. 240l62. 650 66.635
1.1 | 5.328| 6.928 15.925/20.74536. 462 |34.862 | 36. 43545} 9548 48.14154.670/60.704 | 62.534
1.2 | 4.992] 6.777] 14.922]20.30724.709|34. 046 34.24::4;.391 47.272{51.018]58.351 | 59.625

N
. z=opop ‘

=T vl w2{w3 [oslos o o7 wsfws luir] wtif w2
0.5, | 5.181}15_009| 15.621k6.012]35_508 45.089 |45, 360(53.872|61.635 |68.414 74.116| 75,239
0.9 | 4.946[14.014 14.86624.770[34,183 |42.082[43.102151.276[58.662 55.112470.229 20.542)
1.0 | 4.710|13.254 14.14323.534]32. 470 | 35,795 | <0.933]s8. 696|55. 708 |62, 834 66.527] 6. 986
1.1 | 4.477]12.667 13.44722-33130.506 | 38. 052} 38 833 46.190]52. 839 |58.64d 63,529} 63,741

# 1.2 | 4.254]12.205 12.79021.183}29.217 | 36.665] 36.887]43.800|50.203 |55,60960.240| 61.595

.
ms‘-} 3.3. &) Frequencies for Building. T = 1,00 Sec,, § = 0.05



E=0.03D . " i

[

o) wif w2 ed |waius jus {a7]w8es. |aio] wtt] w2

0.8 [3.125 [3.954 [9.463 |11.805{16.400 |19.505 [22.731|26.884,28.749 |33.84] 34.247] 39.217

0.9 [3.107 |3.535 [5.399 [10.56416.172 17.58i 22.383|24.269]28.269 35.59& 33.663 36.410

1.0 ]3.030 |3.263 |9.104 | 9.81§15.221 [16.813 |20.99223.288(26.438 [29.443 31.457] 35.065

1.1 (2.822 [3.184 [B8.435 | 9.632]13.954 116,673 {19.231123.110(24.207 [28.79¢ 29.23]1| 32.936

1.2 [2.601 [3.167 |7.767 9.589112.825 16.629|17.67322,242]23.053 [26.460 29.161 30.261

-

Z=o0.10D ' N .

T'Tw; w ] @2 w3 w4 tws w6 w7 w8 |ws Jwio| wit] iz |

0.8 3.017 }4.207 {9.118 {12.584|15.674 |20.863 21..702 27,41Y28,936 {32.645 36.459 3'?‘./375 /

0.8 {2.540 [3.838 [8.886 b.l.sos 15,103 {12.341 {20,883 25.34656,733 31,379 33.710] ﬁsu.g

1.0 [2.B20 |3.601°18.479 [10.827j14,285 18,402 ]12,727) 24,86325.466 {29,595 32.153| 33.863

0

1.1 j2.664 §3.464 |7.98% [10.446(13.347|17,902 118,41523,195/24.797 27,503 31,334 31,577

1.2 |2.496 [3.390 |7.472 j10,237112.423]17.125 17..6-4121,57024.433 25.664 29,356] 30,889

E= 0,50 D ' . : . .

oy

o) 01| w2fw3 [wa]us fes fw7 [ws|ws {win] anf a2

0.8 |2.593 {7.422 ]7.951 |13.28818,376|22,65% 123,237]27,633)31,.627|35.11]] 38.034 38-._155

0.9 [2.474 h6:944 7.546 |12,.62417,444 |21,139{22,03%26,220{30,006 |33,314 35.699 36.093

;1-0 2.356 [6.570 |7.171 |11.96116.526 20,003 [20,.87224,5829{28,412|31,539 33.838 34.174/.

2.1 [2.240 6.276 |6.818 {11.32615.643]19,139 [219.755{23.493]26.880}29.837 32,323 32,551

1.2 |2.128 |6.03B |6.491 |10.72414.807 (18,451 {18,721122,22625,431 28._22% 30,58) 31.512

. " & _ | . -. . ;

Table 3.3 (c) Frequencies for Building ~ T_= 2.C0 Sec. , § = 0.05



depicted in Fig.3.12.
<;SN“- _ . The study of‘mbde shapes and modal parti&ipat;on factors for a
, ' building with T,=1.0secat:t=T, /T =1.01is indicated in Figs.3.13
to 3.15 and Table$ 3.4 to 3.6 0 - R |
Attention is drawn to the bu%1dings with small/eccentricities.
—The mode shapes, modal participation factors and periods of si; modes for
the small eccentric building with = = T, / T = 1.0 are shown in Fig.3.13 and
Table 3.4.. _It.is interesting to_notiég that in the first fobr modes, the

+ periods, the mégnitudes‘of translational and torsional mode shapes, and modal

.  participation factors are close in each pair of modes.” According to the

-

dynamic force equation(Eq.3.3), pairwise modal contributions consist of )
‘near1y-identicaT'moda1 §hear %orces(both maghitudes‘and signs), but the modal

- ﬁi}. lorques have the same magnitudes with opposite signs. |

' * In another words, iﬁ a building with sma]TAéctentricitx under sympathetic |

resonance condition, the pairwise moda1LFontrjbutions é}e-out.of phasé (phase_
angle 8=r ) for torques and in phase ( 8=o ) for shear forcef.

o f Moreover, o@ﬁng to .the periods being close in the lower two pairs'of

modés; the root-sum-squafé(RSS) rule in combining the modal contri ions

will exaggerate the design torsions-and underestimate the response of |

shear force for the small eccentfic bui]diﬁgs with équaT uncoupled

translational and torsional periods (Y.e. T =T, / Tx = 1.0). The ‘mode

shapes and modal participation factors for struitures with moderate

- gccentricities at v = 1;0, generai]y appeér in the same patterns and

. charactqrs(%hown in Fig.3.14 -and Table 3.5). HQwevér, owing to the
’ gi?ferencé?in pairwise modé periods, the cross modal torque interfereﬁce, .

;;”F, ' as mentioﬁed before to the small eccentrjc*budeiné,,is not so significant
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in this case. _ _ |

F1g=3.15 and Table 3.6'exhjbit‘the mode shaﬁes, modal participation
factors and periods for the building with exceptional large ecceﬁtricities
wheﬁ = 1.0 . It is observeq that the mode peridds ;re well sgbarated and
the cross modal tbrﬁd! interference does not affect the dynémic response
foé this building, even thugh the uncoup]ed‘torsionﬁj'gdd tbanﬁjationéi
. periods are equal. # _
‘ In order to display the effect of cross Modal torqué interference,
* the dynamic modﬁihbase shears and base'torques for the twelve-storey

. i\ .
buildings with small, moderate and large eccentricities at Tt =T, / Tx = 1.0

B o]
are listed in Table 3.7 .

3.7 The Discussion of the RSS Rﬁle for ModaT‘Conéribution

' The maximum elastic force in mode i is given in quation 3.3, in
which Sai is the spectral acceleration for ith mode. Because the maxima °
_.in each mode usually do not occur at the same time, the method of square
root of the sum of the squares of the modal response is proposedrpo. -
obtain the‘maximum total response. For instance, the @akimpm total shear

'] -

force (P) is approximated By

.

- 2 2 L ees .
Prax _4/(P1)max o Popay * ;3'4)
In a system with two degrees of freedom hav}ng classical modes, when the
two natural frequencies are close to each other, that is, when-%f%{%%-<<1
the response functions exhibit béating and behave as a sine or cosine'

wave of frequency w o T Wy, modulated by a trigonometric function of

>
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frequency Wy = g - This phenomenon may illustrate the situations
described in previous section. However, to obtain the total maximum
response of a structure, Newmark and Rosenblueth presented-én equation[ZO]

to modify the approximated RSS method. i.e.

¥ .

&

2 2 Q. . T .
Q = Q;° +‘§z_ i-~3 . - (3.6)‘
i %3 . 2 .
. m..i - m'j
where g .. = — —
Q” : E.imi+ E-',j mj
and wli = ws 1 - E? is the‘damped frequency.

In this thesis, 5 per cent damping ratio ( & ) is adOpted for a11

the examples, SO g E = £ = 0. 05 and w'; = mi s -w'j = W ; are used
for simplicity. _Therefore, the simplfied results lead to .. = wy T w3
J E(“’i+wj)

~ Based on this form, the dynamic design base shear and torqué
are computed once more for the twe1ve store; monosymmetr1ca1 building
with different eccentr1c1t1es. The compar1son of the difference of base
shear and torque between equations (3.4) and (3.6) are shown in Figs.
3.16 to 3.19 under the condition that the uncoupled torsional period is equal

to uncoupled translational period. - ‘ |,
Intuitively, equation 3.6 drops the torque and increases the

shear forces dramatically when the eccentricity is small. For.ihstance,

the RSS ru1é underestihates_the base shear to the structures with small

and‘moderate éccentricities by the factors of 0.78 and 0.93 respectively,
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it the.caicuTétions are compared betweén £q.3.4 and Eq.3.6 . On the other
hand, the RSS rule overestimates-the base torque of these tﬁolstructures'

by the factors of 1.67 and 1.08 respectively. Consequently, the normalized .
v bl

dynamic torques (ﬁt = Mt-ﬁ‘ s ) by equation'B.G differ from the calcula-

d

tion of equation 3.4 by a factor of 2.14 for the structure with e/D = (0.03
and 1.16 for the structure with e/D = 6.10 . /

3.8 Conciusions

The.study of dynam%c base shear and torgue in;the ‘coupled
translatgqna1 and torsional response in monosymmetricé} frame buildings
leads to the following conclusions: | - -

(1) The coupled torsional-transiational sympathetic resonance
occurs in the structures with smél] eccentricities. ?he
c}osenesg of the 6bup1ed periods is the governing factor to
the phenomenon of torsional coupling. . -

(2) For the structures with large eccentricitieé, the ratio of '
uncoupled torsiofal to translational periods does not reflect

the effegt of the' closeness of couplied periods. For

jnstance,

he first and second periods are 1.33 sec and
0.47 sec respectively for the building with exceptionally
large eccentricities(e/D = 0.5), even when the uncoupled
torsional and trahs]atibnal per%ods are both 1 second .
The cross modal torque interference in this Ease is indeed
.very small. -

(3) The Cuf}ent static torque caicu1ation in NBC 77 defines

A

that the torsion should be doubled when the design



(4)

- e —— e B et JR—

.
» ’ -
-

eccentricity (ey) exceeds 0.25 Dn is a conservative |

requirement. -
The.cdnventiona1 RSS rule exaggefates‘the torsion and
diminishes shear force responses when the center of mass is
close to the center of résisgance of the structure and

the uncoupled translational and torsional perioﬁg are
approximately. equél. The equation (3.6) is believed‘to be
the 'best' estimate of maximum total respanse, particulafly
to the structures with couﬁied motions; periods arg_not

well separated..

&«
C e
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CHAPTER 4 \_Z -
TORSIONAL PROVISIONS IN BUILDING CODES

4.1 Introduction

-

Subsection 4.1.9 'Effects of Earthquakes® of NBC 77 defines

”\the static formulation of torsional bomenfs (Mtx)_and‘design eccent;icity
(ex).* When the design eccentricity (e ) exceeds 0.25 Dn, Building Code
(NBC 77) requires that a dynamic analysis shall be ﬁade or the torsion

" shall be doubled. -Commentary J”and K of NBC 77 allow the.ysé of

analysis by response spectrum method and 1imi® the dynamic base shear

-

such that it can not be less than ‘90 per cent of static base shear.

In order to study the accuracy'of the static code provision on
torsional effect, the normalized dynamic torques studied in Chéptef 3
are compared to the static calculations according to NBC 77. Mono-
symmetrical frame bu{1dings with uncoupﬁed translational period (Tx)
equals one second and various eccentricities are taken as examples.
Moreover, the static fors%ona] provisions supplied by another four
countries building codes (i.e. Germany, Mexico, U.S.A. and New'Zea1aﬁd
codes) are investigated at the same time.

For irregulér bui]d%ﬁgs with eccentrical offset (or setback),
NBC 80 modifies the fowmulation of static eccentricity (e). Also, it

is s;udied and discusséd in this chapter.

4.2 Torsional Provisions in Building Codes

A Most seismic Bdi]ding.C6Qgs formulate the static torsional moment
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at each storey by multiplying the storey shear and a quantity termed
'design ecéentricity‘_(ex). ‘As tabulated in Table 4.1 most building

codes, - except the German code, define the design eccentriciiy into

- two parts. Generally, the first part is a function of the eccentricitj'_

de%}ned‘as‘the distance between the mas§ center and the resistance .
center. This part accounts for the complex motion of torsion and the
effect o%_thé simultaneous action of the twolhorizbﬁté1rground motion.
NBC 77, Méxican and New Zealand codes iﬁfroduce a magnification factor
. by 50 per ceat'to 70 per cent. The second term is ca]led"accfdﬁgta1
eccentricity to attribute other factor;,such as the variations in the
estimates’ of the relative rigidities,'uncertéin estimates of dead and
Tive }oads at-the floor levels, addition of wall pané]s and partitions
after completion of the‘bui]ding, variation of the stiffness with time
énd inelastic or p]astié action. The effect. of possiS1e torsional
motion of the ground is also considered. In éeneral, this term is a
?Gnctiqn of‘p-— the maximum dimension of the Storey measured perpendic-
ular to the direction of lateral ground motion. e§E>

 Canadian Code {NBC) is one of the few codes in which dynamic
analysis by using fesponsq spectrum technique can be applied as an
. alternative for design calculation. For cdmbining the maximum response
from different modes, the root-sum-square rule is utilized. | .

As well as indicated in. Commentary K of .NBC 77, the study of

“effects of coupled motion in Chapter 3 has demonstrated that the static

torsional moment is a good estimation when T 4s out of the range of

I per cent. Because the envelopes of floor torques for. both static
and dynamic analysis to the three %rame buﬁﬁdings are similar, only the
base torques (MEO)'of the 12-storey buildings are chosen to study the

- accuracy of building codes.

-



Country beaign Eccentricity Comment
Canada ([1] ex = 1,5e + 0,05D Torsional shear on member
or ey = 0,5¢ ~ 0.05D bhaged on worse of two
cases
Germany [21] ey = ¢ + a7y + 0.05D Torslonal shear on member
or ey = e ~ 0.05D based on worso of two
cases
Mexico [22] ex = 1.5e + 0.10n _Torsional Shear, on member
or e, = e - 0,10D based on worag of two -
, ' cases
New Zealand 23] ey = 1.76 ~ a2/D + 0.10D| Torsional shear on member.|.
or ey = a - 0,10D based on worse of two » *’
cases C
> !
Turkey [24] ey = 8 + 0,05D -
v.s.n, [25] ey = e + 0,050 Negative torsional shear
' on membar neglaected.
U.S.A. e, = ¢ + 0,05D Torsional shear on member
or ey = @ ~ 0,05D based on worae of two

(ATC 3~06) {26]

cages.

=

e = structural eccentricity

e) = eccentricity factor to allow for aympathetié regonance effect [15)

b = plan dimensicn of Floor

Table 4.1 The Formulations of Design Eccentricity of Different Countriag

£6
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‘As shown in ?igs. 4;1 and 4.2, the normalized dynamic base
torques by RSS rule'accdrding to Commentary K of Nét'77 and Newmafk and
Rosenblueth equation (Egq. 3.6) are presented ;1th var{0us ratios (7) of
uncoupled torsionalkperipds to translational period%.- If_c;n be seen .
again, the dynamic RSS torgques are substantfal?y reduced in the buildings
with sﬁél] eccentricitfes due to the cross modal torque inferferehce.

Thg other torsional moments of five seismic codes are also presented.
The results show that the German code pro&ides a gdbd estimate, particu-
tarly when the uncoupled torsional and translational periods are equal.

This ts because there is an additional term e_ in the German code's

1 :
design eccentricity which takes into account the effect of -sympathetic

coupled resonance[TSJ. The other four seismic codes have no provision

for this effect. In decreasing order of undérestihstion, they are the _ . .-

New Zealand code, Mexican code, Canadian code and the U.S. code.

For a building in which the design ecéentricity excéeds 25 per
cent of plan dimension, NBC 77 ?equirés the statié torque to be doubled.
Fig. 4.3 shows the normalized dynamic and static torqueg for the 12-
stofey frame building with exceptionally large eccentricity( e/D = 0.5).
As a comparison, a curve marked 1/2 NBC is also presented tojshow if
the requiremeﬁt of-doub]ing‘torque is ignored. It can be_seen that the
static torque‘curve'wﬁthout doubling has conservatively enveloped the
dynamic torque curve. It shows further that the doquiné static torque
as currently specified in NBC 77 is a very conservativé requirement for

buildings with large eccentricity.

. _ )
4.3 Buildings with Eccentrical O0ffset

.

The design eccentricity ey defined in NBC 77 is a local measure-

ment in each storey of the building. To an irregular building with the

=3
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Feature of eccentrical offset (shown in Fig.4.4), NBC 80 provides a
modification on the definition of structural eccentricity {(e). For

:_ floor x, e is given by equation’

-

N
e = : - . * ’ - (4-])
N : o ‘ .
r P,
. j=x 1

whe}é ei¥.f distance betﬁeen the ?enter of mass At floor i to the center

'of resistance at floor x and N is the total number of floor. Equati&n(4.1)

essentially es;ab]ishes.an equivalent structura? eccentricity for Floor x by
considering all the torques caused by shear forces in and above floor x. -

Therefore, the effect of eccentr1c5offse% of the upper stowies can be taken
into consideration. | | _ i .

The establishment of general equation of motion in Chapter 2(Eq.2.30)

allows the'dypamic analysis for a bui]dind to be referred to an arbitrary*

'point conv?niently. In order to cTirify the applicability of new equation(4ﬁ1i;

K comparigbﬂaof dynamic and static analysis according to Canadian Building

Code is Ziff)ﬁg;hgildings with the features of eccentrical offset. Within
each fiooF, the floor E%an is assumed symmetrical. _ ,

As shown 3@ Fig.4.4, the eccentric offset {loor plan 15 arranged
to-reduce half of the floor dimens{ons in Y axis {(half qumber of floor co1umns'

are reducded in the same‘time). Therefore, the centers o% mass or rigidity

of Fhe offset floors and centers of mass or rigidity of the %1oors of the lower

pdrtion of the building do not 1ie on one vertical axis, and the structural '

eccentridity is entirely due to the eccentric offset.

Three frame buildings with two, four and six eccentric offset top

stories are censidered (shown in Fig.4.6). Assuming that the
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columms in each floor are regutarly symmetrically spaced han of mass
" and Tnterstorey lateral stiffness are taken for the offset fToor,

»becausg the translat1ona1 stiffnesses in "X and Y d1rect1ons are

: m

and Ky =i§l kyi
in which kxiand-kyiare the Tateré?’§f$ffness of each colum in'X and Y
axes respective1yvand m is the total number of columns in the lower
porﬁion of building's floor plan. .

- * By further assuming that the lateral stiffness of each column in
both X_and Y axes are equal, i.e. kxi = kyi’ 31% of floor torsiona1
stiffness and mass poiar moment of inertia at the regular lower portion
- of the Bui1ding can be taken for the offset floors. Since_the floor _

torsional stiffness {Kél}?ibwthe'1ower portion of the building is

ta
)
nm3
~
Fad
[
+
nht43
Fal
<
~
r

and the torsional stiffness (K

) in the offset floor is
$2 _

Co=d03 ko .xie Tk, . Oh -
¢2. 2 :'1 y1 S 1 - 1-=-[ ‘k,h X1 2

¢ =1 ci i
ad K. =Nt Sk e
92~ 2527 & Vel i .
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, K 5 Z e 2
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Mass polar moment of intertia for the floor in the 1bwef partion

of the building refer to the center of mass is

I¢f_= Ixx * Iyy
_at ..,
B R

-

where p is the floor area mass density. _And the mass polar moment of

intertia for the offset floor is

PR R GO
22 P-72- "8

Hence . Iéz _':5 : , : T e
T..°76 ~ 0.31 -
$1

As shown in Fig. 4.5, the reference, points for the lower portion
of the building are‘chosen_agnthe floor cgnter o% massl(or rigidity}. The |
reference points for fhe eccentric offset floors are located on the vert-
jcal axis ﬁhroﬁgh the‘floor centers ofjmass {or rigidity)lof the lower
portion of the building. After the dynamic analysis is completed for each
mode, the dyhamic shéar_for§g§ and torques occured at these fictitious
reference points are transferred back to the 'real' center of mass (or
rigidity) for the eccentric floors. It can be seen from the figure, |
- the torﬁue (free vectors) are unrestricted moving to center of mas§ of the
offset floor while transfer shear force (sliding vector) to the center
of mass (or rigidity) involves an additional torque at the center of mass
. of the offset floors. ' (

Figs. 4.7 tq 4.9 show the cpmparison of stpre;\torgues occured
at floor mass centers to the three irregular buildings. ;%ée calculations
are based on NBC 77, NBC 80 and dynamié response spectrum ysis. The
final dynamic éorque énve1ope is the result of the RSS combination of

_ twelve modal response. The natural frequencies of these buildings are shown
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Mode 1ow | o w., | w Tw | w uw; W

10

11

- Y

Structure A | 4.834 | 6.909 | 14.304 | 20.109 | 22,076 | 27.484 | 32,105 | 36.880

42.216

46.099

52,179

.54.448

iStructure B|[5.134 ] 7.693 |12.932 | 17,381 22.057( 30.050 { 31.922{ 37.069

: \
43.400

45,208

51.892

54,628

Structure C | 5.324| 7.900 | 11.692 | 17.682 | 23.298 28.12i 33,224 38.792

41.374

44.639

52.489

54.934

Table K 4.2 ‘The Frequencies of Eccentric Offget Structures A,F and C

= soL
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It can be seen that the prop ed'structura]_eccentﬁicity:fe) by
ﬁBC 80 improves the storey torque at the iower portion of the st%ucture‘

. due to the top offset. However, it overestimates the dynamic analysis
- even if the doubling torque requirement is fgnored when the design eccen-
tticity (e ) exceeds 25% of the length of the structure. ’ :

At the top offset part, the storey torques retaln the same _
formats for both NBC 77 and NBC 80, but the dynamic torque diagrams show
that there are Substant1a1 tors1ona1 moments. For exampie, in the bu11d1hg
with six-storey offset, the dynamic torque at the bottom of the offset is
more than'eeven times.the static value predicted by the code formulae.

The replotting ofAthree dynamic torque curves are shown in Fig.
4.10. It is interesting to note that not only the magnitude of the storey
torque increases as the nuﬁber of.offset floors increoses, but also the
shapes of the curves changing. For the bui]ding with six offset fToors, .
the dynam1c torque at the bottom of the offset stories is 1arger than the
ltorque of the floor below 1t No static code has been able to simulate
such a distribution of torque and it can have considerab]e design impli-
cations since the torsionai stiffness of the offset stories is ﬁorma11y
smaller than the lower part of the building.

The study described above demonstrates that the modification of
the structura] eccentricity e in NBC 80 is applicable to buildings with
eccentric offsets, but its application to such buildings should be carried
put with caution. The new formula Tleads to conservoti{e estimates on the

main portion of the building, but it has the same drawback at the offset
portion as NBC 77. So, the improvement is only partial. Buildings with
eccentric offsets are irregular buildings, only a dynamic approach can

lead to a realistic estimate of the torque distribution. Building codes
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. | A T
should .state, explicitly that the static method is on1_y‘ ;pp'l'icab'le to _
buﬂd:Ings whose™ centers of mass'and centers of resistances lie on 'two
vertical lines. 'A dynamic analysis is necéssary if the structures does
not satisfy such stated conditions.’
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- CHAPTER 5
CONCLUSIONS

The use of the mathematical models has énabled the dynamic analy--
sis-to be applied to syﬁmetrical, monosymmetrical ana.asymmetfica1 uni-
form buildings and irregu]ér buildings. 'The research indicated in the
previoﬁs chapters concentratés'on the effects"o% coupTed tfansiaéiona1
and torsional motions of the frame buildings due to earthquaké qﬁgitation;
Based on NBC77, both static and dynamic éna1yses on shear force'agd
torsional provisionguare performed and studied. The results of the
investigation can be stated as follows: ' . -

1. NBC77 static torque formula pfov%des adequate description of
storey torques along the height of the bullding when‘thg mass
centers and centers of resistance of the floors 1ie on two
Vertica1 axes aﬁd the effect of sympathetic qoup?ed'resonance
is not significant.

2. Sympathetic coupled resonance of torsional-ana Tateral vib-
.rations occurs in the buildings with small eccentricities when
uncoupled torsional and lateral periods are close to each other.
In this kind of-buiiding, the cfoseness of pair-wise lower
-natura1~periods creatgs severe modal coupiing. However, when
the uncoupled torsional period;is not within 20% of the uncoupled
lateral period, the effect of ﬁymbathgtic resonance can be .

r

negiected.

1Nna
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3.- Sympathetic coupled resonance occurring in a building reduces -

i

'sheareryce response and stiﬁulates-torqué.

4’ Buildings ﬁith 1arge_eé¢entri§ities do not possess the closeness
of:pair-wise Tower periods. Sympathetic coupled resonance-is
unTike]y to accur in buildings of this kind even whén' the
Uncoﬁpled-torsiona1 pericd is almost equal to thé uncoupled

lateral heriod. For such'build{ngs; the Building Code (NBC??) -~
static tprque formulae adequately eitimates the storey torque.
Doubling of the static torque when the design eccentricity exceeds
O.ZQ*Dn is a very EonserVative requirement.

5. . Compared with sfatic code provisions, dynamic anaﬁysis permits

a more realistic descriﬁtion'of the behaviour of a building
“which is subjected to earthquake Toadings. To reflect the
dynamic and static properties of a.cdmp1ex bu?]ding‘(for example,
| uncoup1ed-trans1ationé1 and torsional perjods, various struc-
tural eccentritities and an irregh]ar layout in plan and/or
elevation) pnly dynamic analysis can take these into account.
Therefore, the necess%ty of dynamic analysis is apparent.

6. The use of the RSS rule in the response spectrum techn{que should
be carried out with caution. It js.be1ieved that the expression
given in éq. 3.6 provides the “best' maximum combined.so1htion.
for each mode. The RSS rule will overestimate the.torqﬁe values

\@nd underestimate the‘Shear forces when the pair-wise Tower
periods of the structure are close. |

7. A comparison of the building codes from five-different countries
with respect to torsional proyisions shows that.the current
German Code proyides a good estimate of forsion; An édditional

factor in the calculation of design eccentricities should be

-
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considered in the Canadiaﬁfsui]ding Code when the effect of

sympa%héfic‘coupled resonance is significant.. .
8. " “The modification of structural eccentricity in NBC80 is appli-
cable to Eui]dings With:eccent?ic offsets. ‘waever,_the |
investigation shows that the improvement is only partial.
Tﬁe-new_fofmula iﬁdfpates a,consérﬁhtive estimate;hﬁ the main .“A
~ portion of the building and keeps the same‘torqﬁe value as
‘NBC77'at the eccentric offset portion. Dynamic study demOnst;
rates that the torques af'the-offset portion are grossly
;ndérEStimated. Buildings with eccentric gffsetg are irregular . ¢
bu{ldinqé. 0n1y'the'dynamic approach, such as the fesponse :
- "spéctrum tebhnique, can-Teéd to a realistic estimate of the.
torque distribution. - _
,/’;51 - The sfudy of the eccentric‘offset building also shows that the
: ddubl%ng of the torque requirement is not apﬁ1icab]e to- the
torsional calculation for irregular buildings when the des%gn

eccentricity exceeds 0.25 D .

IS
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APPENDIX - - E;

LIST OF SYMBOLS

o
.A' - cross sectional area of column.of the
-, frame building
aj, bj - floor plan dimensions of the building
" in x, y axes respectively for unit (i)
C.M, ' © - center of mass
C.R.. - - center of rigidity
D> 0 - plahdimension of the building in the
: . diredtion of the computed eccentricity
Dy, l - plan dimension of the building iny
: ) axis /direction <2
e : - computed structural eccentricity
- between the center of mass and center
of rigidity at the level being
considered )
ey ey . -~ computed structural eccentricity in
' x and y axes direction
eix - distance between centre of mass at
; : floor i to center of rigidity at floor x
eq | - - supplementary fictitions eccentricity
: in German code DIN 4149 - . "\
E - Young's modulds
EMx3, EMyj ~— mass eccentricity related to reference
- . point in x,y directions of unit (i)
ERxi, ERyj - eccentricity of center of rigidity
retated to reference point in x»y
. directions of unit (i)
F : - ~developed spring force of the mathemati-

cal model

.G = - shear modu1ﬁs



Kpi

Kxx, K88, K, KxB,
- Kx¢ and Ko¢

Ksxis» Ksyj

Kxi, Kyi

Kei

‘moment of inertia d

Co T .16

ground lateral acceleration in x directfon
and ground torsional acceleration

unit (i) height of the‘building

mass polar moment of ‘inertia of unit (i)
mass moment of inertia in rocking motion

mass polar moment of inertia refer to mass
center of unit (i)

mass polar moment of inertia refer to
arbitrary point P of unit (i) .
torsional stiffness refer to center of
rigidity of unit (i)

torsional stiffness refer to arbitrary
point P of unit (i) _

symbols of stiffness matries of the model

shear spring stiffness in x and y directions
respectively of the mathematical model for
unit (i)

. flexural spring stiffness in x and y

directions respectively of the mathematical
model for unit (i)

torsional spring stiffness of the
mathematical model for unit (i)

stiffness matrix of model

condensed stiffness matrix of model
static torsional moment at level x
dynamic base torque .

dynamic torque

normalized dynamic torque



Ups Vps Ums Vms Ur, Vr
V or Vg

Vd
Wy
»

Xp, Yps Xm:‘Yms Xr, Yr

A

mass of unit (i) of the model
overturning moment at uﬁit (i)
lateral force at unit (i)

model participation factogkof mode i

polar radius of gyration of mass (i)
of the model '

uncoupled period of lateral vibration

- of the building in seconds in the x
axis direction

uncoupled torsiona1‘period of vibration
of the buiiding in seconds -

disp]écements of points P, C.M. and C.R.

minimum lateral seismic static force at
the base of the structure

dynamic base shear

natural frequencies of mode {f-
damped frequency

positions of points P, C.M. and C.R. in
x-y cartesian coordinate axes

absolute-lateral displacements of unit (i)

abso}utg\overturning rotation of unit (i)

re}gtive lateral displacement between

“unit (i-1) and unit (i)

. absolute torsional rotation of unit (i)

ratio of uncoupled torsional period (T&)
to uncoupled lateral period (Tx) of
vibration of the building

spectral acceleration in mode i

%



-l ad el

+

mode shapes of modé i
damping ratio
mass density of unit

unit column vector

~

118





