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The elastic interaction of the new phase coherent

pértiéées with tetragonal distortion is considered. The
analysis shows that the elastic energy may be minimized
by the formation of regular tridimensional arrays.

Studies of the variations of the interaction energy
of the Tyapkin array with respect to displacements and
volume perturbation of the particles (in the finite appro-
ximation) lead to the conclusion that the periodic distri-

bution is stable.
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CAAPTZR I
INTRODUCTION

The phenomenon &f clustering (or zomne formation)
50 essentlal to precipitation hardening is the me thod by
which an alloy can lower its .free energy at ldw tempera-
ture after quenching.

The tﬁtal free energy of a quenched and aged
alloy may be regarded as the sum of the free energies of
the matrix and precipitate pna;;s, the free energy of the
interfaces (coherent or incoherent) separating the phases,
and the elastic strain energy of the matrix and precipi-
tates.

While the'chemical free energies of the matrix
and precipitate phases generally provide the bulk of the
driving force for precipitation, the elastic strain energy
may significantly affect the kinetic path along whiéh
the ageing occufs._That is, the elastic strain energy
is generally believed té exert a major influence upon the
distribution and shape of clusters or zones. This point
has beer stressed recently by several %uthorsj'9’15’36’38’39

The phase transformation in a solid is, to a
large extent, controlled by the elastic deformation in the
matriv, Tarze types N7 counling are possidble, l.o., co-
nerent, partly coherent and completely incoherent. From
the microscopic viewpoint, the condition of coherency

means that atoms lying on either side of the two-phase
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boundary which were neighbours beforg transformation
remain neighbours after transformatioﬁ also.

Cohe?ent or semi-coherent coupling often arises
during the early stages of a decomposition process, and
‘Aalso during a martensite transformation.

In the investigation of -the coherent stage the
following important questions arise: ‘

1. Qhat is the optimum shape of the new-phase paréicles
to ensure minimum free energy?

2. What is the oriemtation of the new-phase particles
relative to the crystallographic axes of the matrix?

3. What is the orientational relationship between
the lattices of the‘two phases?

4. What is the mutual spatial distribution of the
inclusions? |

A complete answer to the questions posed may
be optained by considering the elastic properties of the
matrix and the precipitate, the crystal geometry of the
transformation and the surface tension.

“ As already mentioned one of the fundamental
pecularities of certain phase transitions in the solid
state consists in the fact that they are often accompanied
by considerable elastic deformations of the parent crysta}
lattice, At the same timé the phase tramnsition occurs
in such a manner that at each étep the loss of free
energy of the system due to the deformation turns out

to be minimal. The minimization of the elastic energy



is possible because of the optimal form and distribution

of the inclusions of the new phase, which are coherently
bound to the matrix, éhd also by means of the formation

of epitaxial dislocations at the interphase boundaries~
(violation of coherence), if the possibilities of reduction
of the stresses due to change of orientations and form

of the inclusions are limited.

The aim of this work has been to examine the
possibility that the strain energy contribution to the
total driving force for precipitation may be responsible
for the formation of regular arrays or lattices of plate-

like precipitates. ‘ .

P



CHAPTER II
THECRETICAL BACKGROUND AND REVIEW OF PREVIOUS WORK

IX1.1. The role of elastic energy in phase transformations

in_the solid state . 7 o

As a result of fluctuations in concentration
and order parameters, inhomogenities bearing a more or
less random character arise in the crystal. If the lattice
/ arameters depend strongly on composition,‘then from the
Eacroscopic point of view the inhomogenities of composi-
tion will lead to concentration stresses, inhomogeneous
strains associated with these, and static displacements
~of the Ztoms in the crystai. As a result of the superposi-
tion of the fields of the displacements created by diffe-
rent atoms, a compiex distribution of staiic displacements
develops in the solution.
It is clear that the determinatioﬁ of the stresses
and static displacements as functions.of the coordinates
of the atoms in the crystal in the above mentioned case
of a comﬁiex and not completely symmetrical fluctuaﬁion
distrib&tion of stresses sources constitutes an extremely
difficult problen.
_ The proolem is greatly simplified, howgver, if
we use the method of fluctuation waves and transform from
the diSplaéements of tﬁe atoms' to their Fourier cqmponentsl.

In the case of long-wave fluctuation waves we

may carry out a macroscopic calculation of the static

-
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displacement waves, based on the use of equations taken
from elastic lheory and not on any specific model of the
crystal. The amplitudes of the displacement waves are
expressed in terms of crystal characteristic which may
easily be determined experimentally.

In the case of short wave fluctations, the

macroscoplic approach becomes inapplicable.
é

For a wave-like change in concentration
Sclr) = ¢, exp ( = ikr ) (1)

corresponding to the k-th fluctuation wave, the displa-

cements gnd strains also vary in an wave-like manner:

1| 3SR 2(SR)
U=~ | —— + —B |-
2 L O x, 0%
1 [ .
= ; k (n A, + niA ) ¢, exp ( - ikr ) (2)

where nlh are the components of the unit vector n~;-k/k
parallei to the wave vector k, Ak the proportionality .
factors between the amplitudes of the static-displacement
and concentration waves.

fFollowing Knachaturyanl the elastic energy of
unit volume of the new phase particle-matrix system has

the form:
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f(r) = 6gje(r)6i {5im eijélm

pp’
where A is the elasticity modulus tensor, E’ij is

1jlm
the deformation tensor, © (r) is the form function
equal to unity inside the inclusion and zero outside, and
é;gj is the tensor characterizing the crystal geometry
of the transformation; twice-repeated indices everywhere

denote summation.

Transforming to Fourier components, we obtain:

GO ié‘i’jkje(k) (&)

A 1j1m¥3
where u(k) = jﬂds r u(r) exp [~i(k,r)]
u{r) is the displacement of the point r, and
O(k) = ‘[ & r O(r) exp [—i(k,r)] , with the integration
being taken over infinite space.
'The solution of the equilibrium equation hqs

the forq:

k) = 1000 67 (k) SR (5)

-~

where G"(k)‘ is.the Greens function of the elastic equi-
~librium equation. Expressing the elastic energy of the

system, E} = lde r f(r);, in terms of Fourier components

?



of the integrand functions, we get:

] 1 d3k'e ,2 - “
S P— A

! 2 Jai)3 ()

where A(k) = ( é;ok, g™ éok) = ( k, éoG—] éok ) (7)

The energy given by Eqs. 6 and 7 is counted from the

state of the system at which E;ij = 0. The state

E’ij = 0 is stressed, and its energy is not at a minimum.
The minimum elastic energy is possessed by the state with

éij = 0, when both phases are in the free state:

o o
Ayjim €95 6% V (8)

.
— — g ey o. .o. = e
E(644=0) = 3 6136” V= -

|-

where V 1is the volume of the new phase. Using Eq. 7 we
obtain an expression for the elastic energ&g)reckoned
from the unstressed state, which is equal to:
! ok k

E=E-E(3::=0) = — Nsai7. £9: ES_ V| — A(-)l@(k)‘a

1 ij > ijlm ~ij ~lm Y/ (2!C)3 k
- | (9)
Eq. 9 expresses the elastic energy in terms of the coef-

s éij and (G"‘)ij which characterize the

elastic properties of the transformation, and also in
terms of the function I@ (k)la, which characterize the

shape of the particle. e



To elucidate the orientational relationship {
between the lattices of the phases it is necessary to
find the angle of rotation of the new-phase particle
relative to the matrix. The vector of local rotation, P,
at a point is expressed in terms of the displacement at
this point by the equation:

4> k

1
Sz = | —— 0 ()|°
<f vJ(ajl)B’

k, G (k) éok ' (10)

Equation 9 is valid if elastic moduli of the inclusions
and of the matrix are equal. From the structure of Eq. 10
it follows that the orientation of the invariant plane
(the oriemtational relationship) depends, generally
speaking, on the shape of the crystal of the new phase.
The formation of a single inclusion of the new phase in
an infinite anisotropic continuum is accompanied by a
min}gum value of the elastic energy if the inclusion
hasttﬁe form of a thin extended plate, the normal unit
vector kb of which is determined by the condition of
maximum-for the quantity A(k/k).
The answers to the questions posed can be

formulated:

1. The optimum shape of a new—phase particle to ensure
minimum elastic energy is that of a thin plate, with
length and width much greater than its thickness. ’

2. The plane of this plate is perpendicular to one of

the k_ vectdrs, thus bringing about a maximum A(k/k).

[ o



5. The direction of magnitude of the angle of rotation
of the crystallographic axes of this plate are given by
Eq. 10. The invariant plane is perpendicular to the
vector <¥>.

For the case where the crystal geometry of the

- transformation is described by tensor £ which has

o
ij?
a tetragonal character, while the matrix has a cubic

. oL o _ o _ o _ o _
lattice; £, = €355 = N a/a, €33 =.0 c/c, €35 =0
when 1i # j. In that case we have:

0 -1/2 0 " 0
8i5= G,l0° 1 ol + &,] o -i/2 o0 (11)

0 0 1 O\\ 0 1

where
c,, *+ 2c c,., *+ 2c Aa Ac _
éo - 11 12 6(131 - 11 12 2 +
3 3 a c
-~
6... _ 2(C‘1 - cla) ( Ac . Aa
o 3 c a

A]lli = €y %4122 = S ?\1212 =

For the case of a cubic lattice the matrix (G~ 1)%J has

-y, .
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the following form:

2 2.2
cll-(c1,-c45)n] + £§(c11+c]2)n2n3

DI

ﬁJ -

chh D(n)
(12)
2
k D(n)

“uy

_ 2 2 2
where D(n) = c]1+£>(c]]+c}2)(n]n2 + nynz + n2n3) +

2 2.2 2.
o A (cyq + 2¢y5 + cuq)n]nanB,

A Cyy = Cyp = &€

i} Ll
“uy

n = k/k,

The other components of the tensor ,G'.'](k)ij are obtained
by cyclic permutation of the Cartesian indices.

The elastic energy is given as:

S 2 .
(&, + &,))
- o] 0 2, _ .k N cnn2n? 2ne
;= > Dlm) % + n]A n]B + L_Ln1d2n5 + 2&r2n2n3

B

(13)
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where: & - 6o
o]

o}
C c C
A N B AU it B S 2 A’Z - 2Xf A2 4,
iy Ly 4y
Cc c C
B= 4L -1+ 8’2 L _;QX 12 4y
Cc c c
Lk INA Ly
c (o4 C
e T
Ly Cu Ly -

From Eq. 13 it follows that the elastic energy
of the crystal takes on its leaét value when the normal to
the new-phase plate, n:ko/ko, is oriented in such a.way
that the right-hand side of Eq. 13 is at a minimum.

On analyzing Eq. 13 it can be shown that,
depending on the relationship between the elastic constants
Clj and th2 value of the numerical factor X , the energy
is a minimum when the vector n 1lies either in the plane
(100), or in (110). This means that the Miller indices
of the plane of the c¢rystal form (the plane of the plate)

may either have the form (hOl) or (hhl).

- '
. I s . .
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To find the invariant plane (the orientational
relationship) it “is necessary to find the direction of
the axis of rotation. For this we must know the direction
of the vecjor é-]<5oko‘ As the tensor <5gj has tetra-
gopal sympbtry, then both the vectors ko and é-‘(ko) éoko
" lie either in the plane (100) or in (110). Since the vector

<> is the vector product of the vectors k, and
E'x-](ko) éoko’ then the axis of rotation lies perpendi-
cular to these planes. Thus when tetragonal deformations
are present the invariant planes are either (100) or (110).
All the results derived above are valid while it is possible
to neglect the contribution made by surface tension. The
effect of surface tension will be to prevent the "expansion"
of the new-phase particle into an infinitely thin, infini-
tely wide plate.

In the general case the shape of the inclusion
will be determined by competition between the elastic
deformation energy, which is minimal for an inclusion
in the form of an infinitely thin, infinitely wide plate,
and the éhrface tension energy, which conversely, ié-
minimal'for an inclusion of equiaxial form.

Recent X~ray and microscopic studies show that
in a number of cubic solid solution the periodical di-
stribution of coherent inclusions of the cubic phase
arise at an early stage of composition. This phenonmenon
vas observed in Cu-Ni—C02%3, Cu-Ni—Fel’h, Cu-Be5’6, in

a group of nickel-based alloys7’8’9’10, Au-Pt", Fe-BelZ,
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Co-Pt13. This observation has investigated theoretical
work on the elastic interaction between individual
inclusionslu"S.

Eshelby‘“ has shown that there is no interaction
among centres of dilatation in an elastically isotropic
medium. Sometimes particles of a separated phase have
anﬂ"equiaxed“ form which is nearly spherical. In ref. 9,
the interaction potential of two spherical inclusions
w2s calculated under the assumption that the interaction
is due to the differences in elastic moduli of the inclu-
sions and matrices, and that the tensor 6’$j described
a pure dilatation. In this case the potential goes as
1/r6 and decreases rapidly.

However, defects or precipitates whith give
rise to tetragonal distortions can interact quite strongly.
The presence of a strong interaction must lead to corre-
lations in the relative positions of the inclusions (short-
range and possibly long-range order) during their formation
in the field of already formed inclusions and also in their
subsequgnt growth,

o In the theoretical work of the elastic interaction
of tetragonal distorted spheres Khachaturyan and Shatalov]5
have showed that the existence of stfain field which
differ from purely dilstation fields, leads to a compli-
cated angular dependence in the potential even for the

isotropic continuum model. Following ref. 15, if the

N
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elastic moduli of both phases are equal the elastic
energy of tne medium with the inclusions of the new

phase, relative to the undeformed state, is:

z
i
Egy = % (5fl’j(p) Eij(r) ep(r) + g>\ijlm ﬁij(r) 6lm(r))d3r
p=1 :
(14)
where: ng(p) = Aijlm 6({m(p); Aijlm is the elastic

moduli tensor; 6ij(r) is the strain tensor; ép(r)
a function which is one inside the inclusion p and zero
outside it; 2z 1is the number of inclusion types. Trans-

forming to Fourier components Eq. 14 becomes:

¥4
1T . ) &> k
E ., = -~ — (n, 8°(p)G(n) &°(p)n) O (k) O (k) ——
Fel ZZ“ PR O IRA BT Y %
b,q

(15)

where k 1is the wave vector of the Fourier transformation;
n = k/k; .the symbol (...,...) indicates the scalar product;
é)o(p)- and G(k) are operators whose matrix elements
are éngj(p) and Gij(k)’ where Gij(k) is the Fourier
component of the Green’s tensor for the elastic problem.
’he function Gp(‘fz) can ve multiply connected.
For simplicity it will be con;idered a medium in which
there are only two inclusions altogether. Then, if ti'le

origin is put at the center of mass of one inclusion at
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type p designating the form facgor of this simply con-
nected inclusion by EBp(k), the form factor of the other
simply connected inclusion of tyﬁe q, located at a distance
r from the origin, has the form eq(k)eikr, where eq(k)
is calculated in a coordinate system with origin at /r.

It follows from Eq. 15 that the interaction of

these two inclusions is given by the expression:

3
i . d” k .
Pa _ _ _ + -1kr
Ein = . J‘qu(n) ep(k) @q(k) e (2_/7)3 (16)

where: qu(n) = (n, éo(p)G(n) éo(q)n). The quantity
qu(n) eé(k)ea;(k) is the Fourier component of the pair-
interaction potential.

Using the isotropic continuum model to solve
A__(n), the interaction of two inclusions is-given by

Pq
the expression:

v.v. | 2 pPd ( B2 + R2 ) pPY
gPd _ _12 e i (17)
n 16 r 5r
= .
§

where ng and Dﬁq are complicated terms depending-on

the orientation of the particles relative to the radius
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vector which connects the two particles. The first term
in Eq. 17 is the interaction for distances much greater
than the inclusion dimension, and the second term is
connected with the inhomogeneity of the deformation field
of one inclusion at the limits of the region oécupied by
the other inclusion.

The expressions for the total energy of the
elastic stresses of the system of coherent inclusion may

be written in the general forn:

E = E + E, (18)

The first term in Eq, 18 does not depend on the mutual
arrangement of the inclusions, it is the sum of the elastic
self-energies of inclusions. The second term in Eq. 18,

on the contrary, depends on the spatial dastribution of

the inclusions. Consequently it represents the stress-
induced interaction energy of the in&lusions, caused by

the interference of the siress fields associated with

each inc}ugion. One of the most interesting aspects of

the potential in Eq. 18 is that it can have the form of

a potential with a minimum; aEint/ Adr = 0., It has

been shown that the.resulting poteniials tan be monoto-

~ ntesIly attractive, monotonically repulsive, or can have

a minimum at a specific value of the interparticle spacing.

Since E. . ~ V.,V E is maximal when

int 1722 int
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V1 = Vé: other conditions being equal. This means that the
inclus;ons "try" to have the same dimensions if',Eint is
negative, for then Eint is minimal. Thus, the glastic'
interaction appears as a factor which stabilizes the
dimensions of the particles if this interaction is at-
tractive. &

The theoretical treatment hag been extended

]6. It was shown that three types

to multiparticle arrays
of periodic arrays are possible: a one-diménsional system
of parallel lamellae; a two-dimensional distribution

which may be viewed as a planar square macro-lattice

formed by rods of the second phase; a three~-dimensional
primitive cubic macro-lattice which is equivalent to

the macro CsCl.

The cause of all modulated structures, inclu-
ding those produced by.Spinodal decomposition, is the
minimization of strain energy of the array. All modulated
or tweed structures thus far observed can be referred
to one of these general types. Their developzment in an
ordinary ‘precipitating gystem will begin with randomly
distributed supercritical nuclei which'prodube increasing
displacemeénts as they grow (and coarsen) until the stresses
become sufficiently high such that they affect the dif-
fusional processes, ra23e2 will then becone sanisotropic
in such a way as to favour the growth of periodic arrays

whose elastic energy is minimum - completely énalogous s

.
A
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to those produced by spinodal decomposition when § is
significant]?. ‘

Thus, coherent precipitation associated with N
cohefency strains and higher volume fractions of preci-
pitates will always result in quasi-periodic wave-like
arrays of matrix and particles which are extremely similar
to spinodally decomposed structures with compositioﬁiwaves.

It can be seen that spinodal decomposition
cannot simply be distingiushed by the resulting micro-
structure: the origin of periodically modulated, coherent

arrays is a minimization of elastic strain energy by

anisotropically stress-affected diffusion in all cases.

IT. 2. Elastic stabilization of arrays of precipitates

against Ostwald ripening

Recentl& it has become clear that the theory

18 and Wagner‘9 derived for a liquld matrix

of Lifshitz
can be applied to describe the growth of certain coherent
precipitates. The theory predicts that, when the rate
of coarsening is controlled by the diffusion of the solute
speclies through the maﬁgix, the variation of the mean
radius, * , with time, t , of a dispersion of spherical
particles is given by:

8 yDc, Vo

=3 _ =3 m » -
r- - r = t -t i
p TR ) (19)

T



where r 1is the mean particle radius when coarsening
commences at t = t_, X is the specific precipitifi;
matrix interfacial free energy, D and Co are éﬁe
diffusivity and equilibrium molar concentration, respe-
ctively, of the solute species in the matrix phase at
the temperature T, V, 1s the molar volume of the
precipitate and RT has its usual meaning.

The experiments have indicated that only in

the very special case of misfit-free atloys can the

spheres of Lifshitz-#agner size distribution be expected,

In alloysﬁwith a certain misfit between X
and X" the prebipitates again are spheres which
grow according to Lifshitz-¥agner law at the beginning
of precipitation. However, at a some size, they start

to change shape and local distribution.

Inref. 9 and 10, they found that the occurence

of this deviation from spherical shape and of the ani-
sotropic local distributions is only a function of

misfit b?tween 3’ and X‘ ’. , ‘
' Boyd and Nicholsonzo have measured coarséning
rates ahd particle-size distribution, in Al-Cu alloys,
using the Lifshitz-Wagner theory, modified for the case
of disc-shape particles. They have found that the
coarsening behaviour of & *? agrees gquantitatively

and qualitatively with the theory, but the coarsening

behaviour of & ? is anomalous (Fig. 1).

19
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face conditions to give a uniformly supersaturated parent

phase, and then aged, that no correlation of X‘;ﬂatelet

length

[ . 240°C(9) o
200°C (8"
. 190°C (6" y
i 165°C (8)
Hoec (8)
10 100 1900

FIG.I

Ham et alal reported on the solidification,

behaviour and creep properties of the inter-

wvith ageing time exists for the resulting uni-

nmodal dispersion of platelets; They have presumed that

the platelets give rise to tetragonal distortion and.

that the array is stabilized by elastic interaction.

~
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It was shown that the elastic energy tends
to stabilize equal sized precipitates (Eint’v ViV,

E is maximal when‘V1 = VZ)’ whereas the surface energy

int
has a maximum for V] = VZ’ and a certain range of flu-
ctuation in volume will relax to the equal volume state.

The equilibrium is metastable, because E has

surface
infinite slopes for V] = 0 and for V2 = 0; thus, a
large enough fluctuation will cause one precipitate to
grow at the expense of the other. -

Thus certain types of elastic interaction
can stabilize two precipitates against competitive growth,
and it is reasonable to suppose that eladtic interaction
can stabilize an array of preclpitates against Ostwald

ripening.

II1. 3. Previous work on Al - 4% Cu

The precipitation processes in aluminium-
copper have been studied by a variety of techniques
over the .past fifty years. The- extensive X-ray investi-
gations - have been reviewed by'Hardy and Healaa. The more
recent electron microscopy and electrical resistivity
observations have been discussed by Kelly and NicholsonZB,
These investizations hgve demonstrated the
existence of several metastable precipitate phases in

addition to the equilibrium CuAl, ( ©) phase.vThé

precipitation sequence for a aluminium -~ 4% copper
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alloy aged below 175°C is:

G. P. zones ——-= O 7’ e O - O
Using X-ray techniques, Guinierah, Preston'25
and Gerold26 deduced that G.P. zones are thin copper
rich platelets, probably one or two/atom planes thick,
lying on {100} planes of the aluminium matrix. Both
©?’’ and ©? are ordered arrangements of copper and
aluninium atoms with tetragonal unit cells. The preci-
pitates are thin discs with the ¢ axis perpendicular

to the habit plane, and the orientational relationship is:

{100} e, @’”{wo}d

The structure of © *’, as determined by

Guinier is shown in Fig. 2:

S 75 % AWRINIUM
25% COPPER

STRUCTURZ OF 8° (AFIER &AM &) coapeR

FIG.2
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Silcock et al®’ have pointed out that when

© ’> forms from G.P. zanes, the ¢ parameter changes

< from 8.0 to 7.6 } as the ©°*® precipitates grow. Because

the maximum misfit between the ©’? and matrix latfice
planes is about 5 percent, © ?? is coherent across
a1l interfaces. The misfit in the ¢ direction is taken
uo by elastic displacements in the matrix, as shown in

Fig. 3:

GP{2)
0ne

3 cr2 zone o 1k -
0:bz=4-04 A c==78A h

Aluminium__mqtrix
ozb=cz4.C4 X ’

AT

FIG.3 | .
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The structure of © ?,- as determined by Silcock
et al is shown in Fig. 4. © ' is coherent across the
interface parallel to the habit plane, but owing to the
large nigfit in the ¢ direction, it is non-coherent

across the interface al the periphery of the disc.

fe— ctsXi—)
STRUCTWZ CF ¢ (AFTE.R SHECSX $zALY |
END DY

FIG.4

© is tetragonal with a = 5.065 ® and ¢ = 4.374 Q.

For ageing temperatures below 300°C occurs in the grain

boundaries only.



o

25

I1. 4, An approximation for the strain field of a disc-shaped

G.P. zone

Several models have been proposed for the strain

28

field of disc-shaped zones. Guinier ased his model

on the Fourier transform of intensity distributions
observed from low-angle diffuse X~ray scattering, while

other§29’30 calculated intensities from assumed strain

fields; and compared these with intensities observed ig
diffuse X-ray scattering experiments,

Nabarrosl had noted that a collapsed disc of
vacancies may be regarded essentially as a prismatic
dislocation loop. Franz and Kroner32 showed that a
disc-shaped precipitate such as a G.P. zone in which
the size-factor was negative (Al-Cu, Cu-Be, Au-Ni) could
also be treated as a prismatic¢ loop having a Burgers
vector equal in magnitude to the difference in size
of the solute and solvent atoms. The calculation of
finite prismatic loops has been carried out in detail
by Bullodgh and Newman33 and Kroupan. |

When the diameter of the loop is small compared

. to the detail required, it is possible to treat a pri-

smatic loop as a point singularity in an elastic conti-

iy - !
nuum’7. {roupa specialized the derivation uged by zshclbyh
for the more general case of an ellipsoidal inclusion.

Following Kroup335, the displacement at a large distance
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from the particle, i.e. at a distance much larger than

the dimensions of the particle is:

K 1-2y 3rib rpn,r
(o] 1Yk kM1M1
dui = ;§ - nlbkrk+binkrk-ribknk + 3 da  (20)
[ 3
1
where k =

°o " T g (1-V)

The stress tensor d(%ij around an infinitesimal

loop can be calculated from Eq, 20 using Hook’s law:

dd.. = 2kof( s1-2v) b, r, niry +(4V -1)b.n § s +
ij r} r2 k k711 k¥k 1]

3V
' “‘“’”ii}f‘&ibj)*‘ = | Pkrk(niTytrang) ¢

r

-

3(1=-2V)

R,
+ mr (byratrsba) i+ r

knkrirj -

15 i
- — bbrknlrlrirj ) dA (21)

rh - Lﬂ//

It is apparent that the displacements decrease

[N S

‘ g,r.,..,-.‘.a--w

o
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with distance r as l/r2 and stresses as l/rj.
Equations 20 and 21 can be siﬁplified by using a special

coordinate system, Fig. S:

FIG.5

The loop is at the origin of the coordinate system in
the Xy X5 plane (n1=n2=0,n3=1) and separately introduces
displacements and stresses for a pure prismatic infini-

tesimal dislocation loop (b1=b2=0’b3=b) whiTH are:

. . >
k x . 3 x
u1= ! -(]-2\))’*‘ "'—2'1
er T
_ 5
k x 3x
u2=6r§ - (1 -2V) + - (22)
. 2

ot
N
]
~
=
1
n
<
+
ap

(02}
]
4




wvhere:

it

2 2
k Ly -1 X7 + X
r 3 r
k M [ 4V -1 X2 + x°
-3 +(1-2V)—£——é—2
r 3 r
[ 2 L
kf{ 1 2 X 5 x
> )}
—3 - f — -
r t} r I‘b'
x] X2 Y 5x2
k 5" 1 - 2 - ___é
H r: ra
_ > 1
X, X X
1 %2 *3
k M 1 - 5
p= 2 |
»XZ ) _ fg ;
kM __*Sé 1 - 55
r L r 4
3 b
k = ~ ——=2— dA,
41 (1-V)
b = Bursers vector,
dA = area of the loop,
2 2 .
M = shear modulus,
Y = Poisson ratio assumed = 1/3

(22)

28
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ITI. 5. Interaction between pairs of dislocation 1o00ps

« =~ the infinitesimal approximation -

The total energy of a pair of dislocation ioops
is simply the self energy of each loop plus the interaction
energy between the two. This interaction energy is defined
as the energy required to create one loop in‘the stress
field of another.

For the general case using Kroupa’s notation:

E (2) ég) b§2)5A(2) | (23)

int = B4

where: G5§;) is the stress tensor from loop 1 at
loop 2,
n§2) - unit normal at loop 2,
biZ) - Burgers vector of loop 2,
(9A(2) - area of loop 2
(subscripts follow the Einstein convention).

" For a parallel prismatic dislocation loops

(Fig. 6) Eq. 23 becomes:

E. , = - K a° &35 D ' (24)

int

where: a

]|

loop diameter, .
535 = stress field of 1 at 2,
b

Burgers vector of loop 2.



Substituting @)33 from Eq. 22 gives: .

o4 2 2 b4
JLa b= M 18x% 45x
SRl ol I
where: ffz shear modulus,
R2 = x? + xg + x%
X2
AN
N ba Ny
\ 4

@

I,

s

FIG.6
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Similarly for perpendicular prismatic loops

(Fig. 7):

Eint = - ﬁ'—aa 6-‘} b (26)

Substitution 6” from Eq. 22 gives:

o T a2 H 3( x5 + xg ) 15 x5 >_<§
et e | TR T
(27)
X3
N\
\
\ »

[ i



Examples of this kind of interaction for .
various relative orientations of precipitates are given
by Eurin et a136. It has been shown that, depending of
the configuration, interaction can be strongly attractive,
strongly repulsive and other configurations which are
intermediate between these extremes., For example, the
edge~-face configuration is strongly attractive and the
face-face configuration is  strongly repulsive.

From these interaction energies (and derivative
forces) one.can proceed to larger number of loops in
gdifferent configuration; a balance may be obtained-be-
tween the repulsion of two parallel coaxial loops and
a loop placed midway perpendicular to both, etc.®

Fillingham et al37 have also used the infini-
tesimal loop approximation to calculate several ordered
arrays of disc shaped zones in order to describe 'tweed"
structures and the diffraction contrast they yield in the

transmission electron microscope.

32



CHAPTER III
INTERACTIONS AMONG FINITZ PRECIPITATES

Brown et a138 and Kh;chaturyan and Shatalov’5
have shown that the elastié interaction among the preci-
pitates causing tetragonal distortidns, in finite pre—.
cipitatgs is qualitatively distinguishable from that in the
infinitesimal approximation.

In order to determine the interaction energies
between two discfshape precipitates more precisely, the
following procedure has been performed. A plate, taken
in"approxiﬁation as one dislocation loop, was divided
into one hundred small platelets. After calculating the
interaction energies among all of the platelets (using
the infinitesimal approximation) the sum of all these
energles was taken giving the total interaction energy
between two precipitates.

This kind of calculation of interaction energies
Zives qualitatively gnd quantitatively different results
from that using the infinitesimal approximation. In ad-
dition, én approximation of square plate-like precipitate
shape was assumed instead of equilibrated disc-shape O ?
precipitate., This is expected to influence to some extent
the quantitative results but not gqualitative results.

A compqter was used to calculate interaction energies

of finite precipitates because of the large number of \
° .

35
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summation of interaction energies involved; between two
plates a sum of 101+ interaction energies was required.

Before starting the calculation of the total
elastic energy of an array, ;he following conditions
were required:

1. The minimum distance from the central precipitate
for which the infinitesimal approximation method may
be used.

2. The distance between precipitates which gives the
ma¥imum interaction energy.

To find the first condition, the interaction
energies between two plates when they are mutually
parallel (faceiface and edge-édge configuration) and
when they are perpendicular (edge-face configuration
and edge-~-edge configuration) were calculated. The distance
between the plates after each calculating step was
increased by an increment of 1/10 length of the ‘plates.
The interaction energies according to these four combi-
nations are shown in Figs. 8,9,10 and 11. This is com-
pared w%tﬁ the interaction of infinites%mal precipit;tes
(broken lines). From Fig.8 it is clear that the interaction
énergy of two finite square plates in fgcg-face confi-
guration is much less positive {(repulsive) than the
interaction energy of two infinitesimal precipitates /h\\
of the same configuration. —

This stems from the interaction of the elements

| aeesenn
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far away from the centres of the precipitates. More
important, this interaction energy of elements far
away from centres of the precipitates leads to the
minimum in the interaction energy of two finite pre-~

cipitates when they are mutually perpendicular in both

combinations (as shown in Figs. 10 and 11). The ap-
pearance of the minimum on the interaction energies?’
curves gives a tridimensional stable configuration
with respect to the displacement of the central plate,
as will be sho&n later. A different result is obtained
by using the infinitesimal approximation, where the
displacement in same particular direction leads to
mechanically unstable tridimensional configuration.
This conclusion is in agreement with Figs. 10 and 11
where each displacement in the infinitesimal approxi-
mation leads the system to a lower energy state. Ac-
cording to the interaction energy curves (finite and
infinitesimal) for all of these combinations a minimum
distance gf 50 units ( 5 times the édge length) from ‘
the centpél loop is considered a reasonable point at

which to begin using the infimitesimal approximation in

computing the interaction energies. Figs. 10 and 11 show-

that the minimuam interaction energy appears at different
distances from the central precipitate depending on nu-
tual configuration. From these curves it is apparent -

3

that the tridimensional configuration may be obtained

35



by combining parallel (repulsive) and vertical (attra-
ctive) configurations in different ways.

Because, in general, a tridimensional array
will be made up of parallel and perpendicular'combina—
tions, the separation of neighbouring plates correspon-
ding to a minimum in energy, if such a minimum exists,
will not be that given by Fig. 10 or by Fig. 11, but
will be determined by some balance between attractive
and repulsive configurations.

A Tyapkin array39
The energy as a function of precipitate separation (co-
ndition 2) wabs determined by calculating the total inter-
aétion energy for different distances between neigh-
bouring precipitates,

The total energy of an array may be expressed

as:

N N-1 N

was chosen for study (Fig.12).

36

¥
1
Etotal = E selr * 3 E é CBying )yy (28

i=1 i=1 j=i#1

wnere Eself is the self energy ot a loop, N 1is the
total number of loops being considered, (Eint)ij
the interaction energy between the i~th and j-th loops,

is

Since fhe self energy for (identical) loops, however -
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oriented, is constant for a given number of loops, this
wvas neglected during computation. The interaction energies
of precipitates lying in the limit of 50 units distance
were computed using the finite approxim;tion while the
interaction energies of precipitates lying further away
from the central precipitate were computed using the infi-
nitesimal approximation.

The summation required care, since specific
decisions were required (as the computation proceeded
outward from a central loop) to determine the presence
of a loop, and the distance between loops for which an
interaction energy was being computed.,

The total elastic energy per plate of the Tyapkin
array versus the distance between the plates is shown
in Fig. 13. * ‘

It is seen that there is a minimum on the
energy Jcurve (short range order) for a distance between
neighbouring precipitates of about 15 units. This is dete-
rmined e.g., by combinations of the potentials given in
Figs. 8 - 11. ’

' In order to estimate reliability of the appro-
ximation involved in treating precipitates more than
50 units from the central precipitate as infinitesimal,
the corresponding calculation was performed for a cut-
off radius of 100 units for interparticle separations
near that for minimum energy (Fig. 14).

t
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The Table I shows the total number of preci-

pitates enclosed by spheres of radius 50 and 100 units,

- for near-neighbour separations of 13,15 and 17 units.
Table I
- number of particles
radius

distance (centre to centre)

13 15 17
50 186 130 96
100 1450 902 622

By comparing the elastic energy curves of Fig.
‘ 14 is apparent that the energy difference is small and
\\ that the energy minimum occurs at the same separatipq
for both curves.
The total elastic energy per plate of the
Tyapk}n array versus the number of precipitates is shown
in Fig., 15.
As indicated on the diagram these energies
were calculated for 1/8 of the sphere. Crudely, the total

number of precipitates is ~ 8 times greater. For example,
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the point of 800 particles snown i;’Fig. 15 corresponds

to the total number of about 5 to 6 thousand precipitates.
Fig. 15 shows thak the elastic energy reaches a minimum
and that, on further addition of precipitates to the
system, the energy starts to increase monotonically._

It can be concluded that the greatest contribution to the
elastic energy of the array comes from the nearest neigh-
bours; this is in agreement with the potential decrease
with 1/r0 ( ésij ~ 1/17).

In order to show the existence of a fundamental
difference between the energy vs. separation curves for
finite precipitates and those for infinitesimal precipi-~
tdates the total elastic energy per plate of the Tyapkin
array as a function of interparticle distance was calcu-
lated using the infinitesimal approximation (Fig. 16).

It is obvious that tﬁis curve shows no minimum, and that
it becomes increasirngly more negative for smaller dis-
tances between the plates.

On the basis of this data it would appear_that
the Tyapkin array should be stable since it possesses
a minimum in the interaction energy curve. |

However, such a simple equilibrium criterion
is incomplete. In order to be sure that the periodical
distribution of inclusions is stable, it is necessary
to study the changes of the interaction energy of pre?

cipitates with respect to their displacement from the

‘Jx
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position of the ideal lattice sites, and to the volume
perturbations as well.

Therefore, the interaction energy calculations
wvere made for the Tyapkin array but with the central
plate’s position altered a small amount, i.e. subjected
to a virtual displacement slong x, y and z axes
(the coordinate axes being disposed as shown schemati-
cally: ( /ifa-Y ) and the total interaction energy
calculated a;ter each displacement, The results of the
energies of finite precipitates are showﬁ in Figs. 17
and 18.

The energy was calculated for the displacement
in x and 2z directions. The displacement in y dire-
ction has not been taken into account due to symmetry.
From Figs. 17 and 18 it is seen that the interaction
energy increases by successive increment of the displace-
ment along x(y) or =z axes.

Consequently, the Tyapkin unit cell as a perfect
array is'also a mechanically stable configuration.‘__

r_ In addition, the Tyapkin array was tested for
stability with respec£ to the displacement by applying
the infinitesimal approximation as Fillingham et a13? did.
The reéults of these calculations are shown in Figs.
19 and 20, It can be seen that the array is mechanically
stable only in the 2z direction, 'while it is unstable

in the x and y directions because the energy decreases

-t
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during displacement of the central plate from its central
position.

The cause of this quite opposite conclusion
is apparent because the interaction potentials for two
finite precipitates in the perpendicular coﬁfiguration
possess a minimum, (which is not the case with the po-
tentials in infinitesimal approximation), as shown and
discussed in relation to Figs. 8 - 11,

As already mentioned Eurin et 3136 have stu-
died various passible arrays of precipitates. They
further attributed thé® formation of these arrays to the
elastic interactions associated with cubic-tetragonal
transformation strains,

We have chosen some arrays and calculated their
elastic energles by considering the interaction energies
of finite precipitates. The chosen lattices are schemati-
cally represented in Fig. 21 an% their corresponding
energies are tabulated in table II.

All arrays listed in table II were characterized
by the pr;cipitates of the same aspect ratio and thé”
same Burgers vector (1000x1000x100 R, b = {4 ﬁ;.

The <3121 > and <3213 > arrays are shown
in Figs. 22 and 23.

The precipitates are placed in a siﬁgzé cubic
lattice of parameter d/2, forming four sublattices of

centres of; (i=1,2,3,4) having cubic symmetry of the

* b = £t, where t is the thickness (100 }) of the

ﬁrecipitate and € is the constrained elastic mismatch(qxIO“a).
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same parameter d.

The notation <1><2> and <3> 1in Fig.
21 denotes those precipitates whose tetragonal axes
coincide with  [100] , [010] and [001]  crysta-

llographic axes, respectively.

Table TI

configuration of energy per unit volune
ey ergs x 104

oLy oy oy Ay
1023 ; - 22,3135
3121 - 13.6695
3213 - 13.6700
1032 - 8.5225
1302 - 8. 4645

, By denoting some configurations with <pqrs>,
the nuclel <p> <q> <r> and <s> correspond to
the sites of; o, 013 and o, (p,q,r,s = 1,2,3). For
example, the configuration <{1210> represents the
precipitates <1> placed at sites o, and 045,
< 2> the precipitates placed at site o > while the
site of, is not filled. The total interaction enefgy

was calculated for the precipitates enclosed by a sphere

42
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of radius of SO units whereas the distance between pre-

cipitates was taken as 15 units.

1
[ [001] ,
! 4 {4
1 1
012 ! 0(‘5 % 2
Fg_ 2 /1 |
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1 oly .
[100]
, FI1G.21
From all va s arrays listed in table Il

only the Tyapkin ar#ay possesses the property that the
environment of each precipitate is identical to” that.

of every other precipitate. To calculate the total energy
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per unit volume of all arrays listed in table II, it was
necessary to take into accodnt how many Precipitates
possess a given environment and how many such configu-
ratioﬁS‘exist.

The results listed in table II show that the
elastic energy depends strongly on configuration and
that it can be minimized in arrays whiqh avoid strongly
repulsive interactions between neighbouring precipitates.
- The.distance of 15 units between the precipi-
tates taken in calculating the interaction energies given
in table II was chosen on the basis of the Tyaplkin array
as the most stable for that particular distance.

However, séme lattices could further minimize
the elastic energy by decreasing the distan;e between
the precipitates, as shown in Fig. 24. The elastic energy .
of the Tyapkin array is also shown on the same figure
'for comparisén. '

The total number of precipitates enclosed by
sphere of radius of 50 units for separations of 11, 13, _
15 and 17 units belonging to tﬁe Tyapkin arr%y and‘fﬁe
<:3213I5 array are shown in the table III. It should
be emphasized that the energy of the <3213> array
shown in Fig. 24 is the energy of a plate in the nmost
favourable configuration and not the energy of the array.

The total interaction energy per mole of the

Tyapkin array containing precipitates characterized by

-
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1000x1000x100 R dimensions and by Burgers vector of 4 &,

is 0.03725 cal. ,

By increasing the Burgers vector to

~

10 1,

the precipitate volume remaining the same (1000x1000x

45

100, R) the interaction energy was increased to 0.238 cal.

(

Table III o
number of particles
array
distance(centre to centre)
11 13 15 17
Tyapkin 186 130 96
32‘3type A | 384 250 17Q

The total interaction energy of a particular

array is»gonstant for given volume fraction and given

aspect ratio and misfit.
The interaction

fo} g;xen volume fraction

it is ;LOportional to tﬁe

For instance, this energy

5

and given aspect ratio, for
volume of the precipitate.

is - 6.694}{10"13 ergs for

precipitaﬁes characterized by the dimensions of 100x

100%10, % and by Burgers vector of 0.4 R.

energy per plate is not constant
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By increasing the precipitate vdlume by 1000 times re-

taining the same aspect ratio (1000x1000x100, %, b = 4 R),

~-10

the interaction energy becomes - 6.694x10 ergs. By

s

increasing Burgers vector to 10 ® for the same volume
of precipitates (1000x1000x100, ), the interactionaénergy
becomes more negative, i.e. -~ 4,18x10™7 ergs.

These facts become important when considering

Ostwald ripening between two precipitates when the surface

Zim A i w w

energy decrease is also very small. For example, by de-
creasing the volume of one precipitate by 5\% in respect

to the other one, the surface energy diminution due to

the Ostwald ripening is only 2.3x10™1! ergs (both preci-
pitates have had the dimensions of 1000x1000x100, ).

H
P
I

L
¥
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As emphasized above, the elastic energy tends

to_stabilize the precipitates of the same size, while

the surface energy is a maximum then.

In order to investigate the stability of a
~ regular lattice against Ostwald ripening the variation
of the e;?stic energy o{ the Tyapkin array with small
volume exchanges between neighbouring ptecipitates was
investigated. |

The change of the elastic energy for volume
transfer between one pair of neighbouring precipitates
along the x or y axis was calculated. The corresponding
calculation was then performed for mass transfer in the

z direction. The volume perturbation was carried out

"ﬁ v o= . .
a0 T T

r o m—
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at fixed aspect ratio. First, the energy change of the
isolated pair of neighbouring precipitates was calculated.
The results are given in Fig. 25 and Fig. 26. Fig. 25
shows that in the case of the edge-edge configuration

(x, y - direction) the elastic energy is minimal if the
precipitates are of the same size. fhus, the elastic
interact;on appears as a factor which stabilizes equal
dimensions of the particles, if this interaction is at-
tractive‘5. Fig. 26 shows the change of the elastic energy
due to volume changes between the pair of precipitates

in the face-face configuration (z -direction).

If the interaction is repulsive (Eint is posi-
tive), then it tends to promote the diffusional growth
of one precipitate at the expense of the other.

From the interéction energles of pairs of pre-
cipitates (as a function of volume perturbation) it might
be then concluded that the Tyapkin lattice is stable
with respect to volume perturbations in the =x( y ) di-
rection but not in the =z direction.

'-This conclusiSn, however, would be reachéd‘
withoutlconsidering the possible stabilizing influence
of the lattice against the volume transport in the 2z
direction. This possibility might come from the fact
that the first nsarest neighbours of the Tyapkin lattice
are in the edge~edge configuration with negative interaction

energies which, as shown in Fig. 25, have a stabilizing

. B
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effect, while the second order neighbours in the =z
direction have the opposite effect.

In order to investigate the stability of the
pair in the strain field of the lattice, the following’
calculations were done:

~ The total interactio; energy per plate for equal
size (perfect) precipitates surrounded by a interaction
sphere of radius of 60 units, of precipitates spaced 15
units apart was calculated.
*,. = The energy of the perfect lattice ( AV = 0) was
!calculated and comparcd with an imperfect onei(with the

ey

same number of precipitates. <

The elastic energy of the idperféct lattice
was calculated in the following way:

Fig. 27 shows two unequal precipitates, and
the lattice of plates that interacts with this pair,
The precibitates of the same distance and the same envi-
ronment are marked with the same number. For example,
the interaction for plate 1 was obtained by replacing
equal sized precipitates 1 and 2 by unequal sized
plates 1° and 2’. The energy per plate (wq?k to form
the plate in the strain field of the'other plate) is

given by the summation:

X Bine(io) =ZEint(l’—L)" Eint(10-2)* Bint(10-22)

e .
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where Eigint(l’-L) is the sum of interactions of the
unperturbed precipitates with the enlarged plate 17,
The summation was done for the precipitates enclosed

by the sphere of radius of 60 units (giving 192 preci-
pitates). Eint(l’—Z) is the interaction energy between
the enlarged precipitate 1?
tate' 2",Eint(1’~2’) is the interaction energy between
the enlarged precipitate 1? and the diminished precipi-
tate 2.

The total energy per plate 2’ was obtalned

in the same way but with the imperfect plate 2’ taken

as the central plate:

Bint(20) = 2 Eint(22-L)" Bint(22-1)* Eint(20-17)

In all other cases, the central plate was un-

perturbed, surrounded by perfect neighbours except for

precipitates 1? and 2. . -

To calculate the total interaction energy per
plote of some perfect precivitate, it was necessary to

find the position and the distance of the imperfect pre-

cipitates 1? and 2’ and to determine whether’both

of them or only one was enclosed by the sphere of radius

of 60 units. This radius of 60 units was chosen in order

49

and the unperturbed precipi-
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to ensure that the interactions between 2?-5 and 1°-6
were included. (In other words, it was desirable to make
sure that the most unstable configurations were taken
into account in calculating the total interaction energy
of the imperfect lattice).

The total interaction energy per plate 3 was

obtained in the following way:

Eint(3) =2iEp"Eint(3—1)+Eint(3—1f)'Eint(3-2)+Eint(3-2’)

where EEEP is the total interaction energy per plate
when all“precipitates are of the same size. Eint(3-1)

is the intepqction energy of the pair of the perfect
precipitates 3 and 1, Eint(3-1’) is the interaction
energy between the perfect central precipitate 3 and
the imperfect precipitate 1°?. Eint(}-a) is the inter-
Bction energy between the pair of perfect precipitatgs

3 and ,2; Eint(}-a’) is the interaction energy between
the perfect central precipitate 3 and the imperfect‘

precipitate 2?. Similarly, the tatal interaction energy

per plate 4 is:

Eint(y) = Zin"Eint(u-a)*Eint(a-zs)‘Eint(q-l)*Eint(4-1:

50

)

R

PR
-

o ) o ——

IE IR e mmmem s W w0 e

LON N T

e
[

§ A



In the total interaction energy per plate 7 and 8

only one imperfect precipitate was enclosed:

Eint(7) = ) Bp=Fint(7-1)*Eint(7-17)

and

Eint(8) ZZFP"Eint(8—2)+Eint(8—2’)

The interaction energies of the other pairs
were calculated in the analogous way.

The total energy of the imperfect lattice was
obtained by summing the interaétion energies of each plate
with the lattice. The total energy of the perfect lattice
was compared with this value.

The results of these calkculations are shown
in Fig. 2@. It is seen that the volume perturbations_;n
the =z ﬁireétion lead to an increase in the total energy
of the lattice, in spite of the strong positive inter—‘
action energy of the pair of precipitates in the face-
face confisuration,

On the basis of the results shown in Fig. 28

it is tentatively concluded that the lattice has a -

stabilizing effect in respect to these ‘volume perturbations.

51
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52
A detailed anaiysis of all interaction energies
show that the biggest stabilizing contribution comes
from the nearest neighbours in the edge-face configuration,
as shown in Fig. 25. As already mentioned, the equili~

brium is metastable, because E has infinite

surface
slopes for V, = 0O and for V>, = 0: thus, a large flu-
ctuation will cause one precipitate to -grow at the expense
of the otner.

Testing of the Tyapkin lattice in x(y) di-
rection was not dS%:ﬁbecause it is obvious that the
lattice is stable in these directions, for the first
nearest neighbours are in the edge-edge configuration
which is stable with respect to the volume perturbation,
in‘acsgrdance with the above discussion.

It is interesting to note that the same result
is obtained for AE, when the pairwise interactions of
all precipitates (wigkin the sphere of radius of 60 units)
with the precipitates 1 and 2° are summed. This

result is presumably due to the mutual cancellation of

interactiéns among unperturbed precipitates.
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CAAPTER IV
CONCLUSIONS AND SUGGESTIONS FOR
FUTURE JORK

Conclusions ' e

Te

The elastic interaction among finite precipitates
causing tetragohal distortions is qualitatively
and quantitatively distinguishable from that for
infinitesimal precipitates.

The difference between the elastic energy of
finite precipitates and of precipitates in infi-
nitesimal approximation comes from the interaction

of the elements far awa§>from the centres of pre-

i

cipitates. b

P
This '"peripheral' interaction causes a minimum

in the interaction energy when two precipitates
are mutually perpendicular, while in the pgrallel
configuration it leads to considerable decrease
6f the interaction energ& (otherwise positive).
The appearance of the minimum on the interaction
curves leads to stability of the Tyapkin tridi-
mensional a;ray.

The optimum separation of square precipitates,

is seen to occur at a separation (centre to

53
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centre) of about 1.5 times the edge length.
'i; Quite the opposite result was obtained from
. calculation’s based on the infinitesimal appro-

ximation.

H

6. . TFurther minimization of the elastic energy may
possibly be achieved by choosing different
" configurations and by varying the distance be-
tween Peighbduring precipitates.
7. The greatest contribution in the eiastic energy
of an arfay comes from the closeét néighbdurs
S O~/ ), |
8. It wés shown that the'$yapkin array isnmecgaﬁi~ ,
cally stable since any displacement of the central
precipitate in either the X k ¥y) or z di-
rection leaves the éystem in fhe‘higher.energy
, state.’
9. The 1n€?stigations of the Tyapkin array via the
displa;ement of the cenfral loop in infinitesimal
approximation have shown this array to be ungtable.‘.

The reason for this lies in the elastic energy -

~ curve versus distance in . infinitesimad approxi-

{

mation which does not.possess a minimum.
10.  The investigations of the 'stability on the,

> volume perturbations between the nearest neighboprs'

()

of the Tyapkin lattice in x (y ) and 2z  di-



1.

12.

rections show that the edge-face configuration

( x and y directions ) is stable with respect
to these volume berturbations, while the face=~
face pair configuration ( z direction ) is the
unséable one. The reason for this lies in the
fact that the edge-face configuratioﬁ is attra-
ctive while the face-face configuration is repu-
lsive.

The investigation of the variation of the total
elastic energy of the fyapkin array caused by
volume exchange between the nearest neighbours
in the z direction (the face-face configuration)
shows that the lattice hgs a stabilizing effect.
The lattice therefore possesses the minimum
elastic interaction energy when all’precipitates
are of the same dimensions. ‘

Besides detailed invéstigation of the Tyabkin
array, the elastic energies of ‘the otﬁgr arrays

were calculated and it was shown that they were

leds stable than the Tyapkin array. They have

"not been tested for stability against small

perturbations.
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IV. 2. SYGGESTION FOR FUTURE WORK N\

The theoretical considerations presented here
have shown that regular arrangements of precipitates
may lower the elastic energy of the system,

Of primary importance is the need for some
experimental investigations to show that ©? precipi-
tates in Al1-Cu alloy are arranged in a regular array
which minimizes the elastic energy of the system as a
whole. That it is possible to-get long range periodic
arrangements of © ? precipitates in Al-Cu alloy is
clear from Fig. 29. This electron microgr;;h was taken
by C.M. Sargent.

The similar periodic structure could be explained
és due to an adequate tiltiﬁg of some sections of the
regular array of precipitates. As an example, Fig. 30
i§ the schematic represehtatién of the section (110)
of the 1213 array énd of the possible effects due to
slight tilting of the given section. .

The most suitable technique for solving this

K

problem is to form images using reflections character-

“

istic of the precipitation phase, because in this case .
(as distinct from the bright or dark field photographs
using matrix reflections) the image is not obscured

by the effects connected with elastic deformations of

the matrix., =~ K - «
: 5 ) .
Simultaneously with experiments to determine °

- ) : * St o &
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the spatial distribution of the precipitated phase in
aging of Al-4% Cu alloy, an iﬁvestigation upon the influ-
ence of the external stress on the morphology and kinetics
of coarsening of precipitates would be expected to give .

valuable data regarding the stability of the array.
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. APPENDIX

Computatioh of interaction energies

Program 1:

C INTERACTION ENERGY OF TWQ SQUARE PLATE SHAPED PARTICLES
C IN THE FACE~FACE CONFIGURATION AS A FUNCTION OF
C SEPARATION
DIMENSION STE1(20),STE2(20),STE3(20), STE4(20),
1X1(20),X2(20),Y1(20), Y2(20),22(50)
READ(5,500)(22(L22),L22=1,12)
500 FORMAT(12F5,1)
READ(S5,501)X1INI
501 FORMAT(F10.1)
S=1,0
M=9
Z21=0.0
X1(1)=X1INI

DO 10 I=1,M
X1(I+1)=X1(I)+S

10 CONTINUE
N=M+1
DO 20, I=1,N
X2(I)=X1(1) ,
Y1(I)=X1(I) '
Y2(1)=X1(I)

20 -CONTINUE
DO 200 LZ2=1,12
‘STE1(1)=0.0
STE2(1)=0.0
STE3(1)=0.0
STE4(1)=0,0

S P - -



240

230

DO 210 LX1=1,N

DO 220 LX2=1,N

DO 230 LY1=1,N

DO 240 LY2=1,N
VX=X2(LX2)-X1(LX1)
VY=Y2(LY2)-Y1(LY1)

VZ=22(L22)
SR=VX**2+VY**2+VZ* %2
'R=SQRT(SR)

VA=Z2(LZ2)**2

VB=18.0*VA/SR
VC=45,0*VA**2/SR**2
VD=3.0+VB-VC
VE=(-1.9E-7/(SR*R) ) *VD

STEL4 (LY2+1)=STE4 (LY2)+VE
CONTINUE _
STE3(LY1+1)=STE3(LY1)+STEL(N)
CONTINUE
STE2(LX2+1)=STE2(LX2) +STE3(N)

FORMAT(1H ,10X,2HD=,F5,1,2X, SH*****, 1 3HTOTAL ENERGY=,E15.7)

INTERACTION ‘ENERGY OF TWO SQUARE PLATE SHAPED, PARTICLES
IN THE EDGE-FACE CONFIGURATION AS A FUNCTION OF SEPARATION

220 CONTINUE \
STE1 (LX1+1)=STE1 (LX1)+STE2(N)
210 CONTINUE
WRITE(6,600)22(L2Z2),STE1(N)
600
200 CONTINUE
" STOP .
END® )
Program 2:
c
' DIMENSION‘ﬁgEI(uo);STza(AO),STE5(40),STEQ(40);-
1X1(40), Y1 (40), YC(40),ZR(40)
READ(5,500) (YC(1),1=1, 12)
500

FORMAT(12F5. 1)
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XO:"5 . 5

DO 10 K=1,10 ;
X1(K)=X0#K. .~
Yi(K)=X1(K)  °
Z2(K)=X1(K)

10 CONTINUE
DO 200 I=1,12
STE1(1)=0.0
STE2(1)=0.0
STE3(1)=0.0
STE4(1)=0.0
DO 210 LX1=1,10
DO 220 LY2=1,10
DO 230 LY1=1,10
DO 240 LZ2=1,10
VP=YC(I)=5,5+LY2
VY=VP-Y1(LY1)
VX=X1(LX1)

VZ=22(LZ2)

, SR=EVX*#2+VY**24VZ**2
R=SQRT(SR)
VA=VP**2+22(LZ2) **2
VB=VP*22(F£%2)
VC=3,0*VA/SR ,
VD=45,0*VB**2/SR**2
VE=1.0+VC-VD
VF=(~1.9E-7/(SR*R) ) *VE
STE4(LZ2+1)= STE&(LZ2)+VF

240 -CONTINUE

STE3(LY1+1)= STEB(LY1)+OTE4(10)'

230 CONTINUE -
STEZ(LY2+1) =STE2(LY2)+STE3(10)
220 CONTINUE
STE1(LX1+1)= STE1(LX1)+STE§(10)

*3
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210 CONTINUE

600 FORMAT(1H ,10X,2HD=,F5,1,2X,5H***** |3HTOTAL ENERGY=E15.7)

200

WRITE(6,600)YC(I),STEI(10)

CONTINUE
STOP
END

Program 3:

C
C

500

501

502

10

1

DO 220 JX=1,10

THE TYAPKIN ARRAY (THE FINITE APPROXIMATION) - VERTICAL
PLATES-

DIMENSION STE1(300),STE2(300),STE3(300),STE4(300),

} X1(300),Y1(300),XC(300),YC(300),2C(300)

READ(5,500) (XC(I),I=1,N)
FORMAT(NF5. 1)

N IS A FUNCTION OF THE VOLUME'FRACTION FOR A GIVEN ARRAY
READ (5,501)(¥C(I),I=1,N)

FORMAT (NF5.1) .

READ(S,502) (2C(1), I=1,N) g

FORMAT(NF5.1)  -*

X0==5.5 \

DO 10 K=1,10

X1(K)=X0+K

¥1(K)=X1(K) S ¢ .

CONTINUE
SUME=0.0

DO 190 I=1,N
XX=XC(I)
YY=YC(I)
77=2C{1I) *
SRI=XX**2+YY**2+27%%2

RI=SQRT(SRI)

IF(RI-100,0)11,11,190 °

DO 200 KX=1,10

DO 210 XK¥=1,10

o

DO 230 JZ=1,10

T,
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230

220

210

200

600

700
190

STE1(1)=0.0
STE2(1)=0.0
STE3(1)=0.0
STEQ(]):0.0
VP=XC(I)-5,5+JX ‘
VR=ZC(I1)-5,5+J2
VX=VP=-X1(KX)

VZ=VR

VY=YC(I)-Y1(KY)
SR=VX**2+VY**24VZ**2
R=SQRT(SR)
VA=VP**2+VR**2
VB=VP*VR

VC=3,0*VA/SR
VD=45,0*VB**2/SR**2
VE=1,0+VC-VD
VF=(-1,9E-7/(SR*R) ) *VE
STEL(JZ+1)=STE4(JZ) +VF
CONTINUE
STE3(JX+1)=STE3(JX)+STEL(10)
CONTINUE
STE2(KY+1)=STE2(KY)+STE3(10)
CONTINUE

STE1 (KX+1)=STE1(KX)+STE2(10)
CONTINUE /
WRITE(6,600)STE1(10) |

FéRMA@élH , 5X, 13HTOTAL ENERGY=,E15.7)
SUME=SUME+STE1(10) '
WRITE(6,700)SUME

FORMAT(1H ,5X, 12HSUME ENERGY=,E15.7)
CONTINUE
STOP
END
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Program 4:

C
C

THE TYAPKIN ARRAY (THE FINITE APPROXIMATION) - PARALLEL
PLATES - ,
DIMENSION STE1(300),STE2(300),STE3(300),STE4(300),
1 X1(300), Y1(300),XC(300), YC(300), 2C(300)
READ(5,500)(XC(I),I=1,N)
500 FORMAT(NFS.1)
N IS A FUNCTION OF THE VOLUME FRACTION FOR A GIVEN ARRAY
READ(5,501)(YC(I),I=1,N)
501 FORMAT(NF5.1)
READ(5,502)(2C(I),I=1,N)
502 FORMAT(NF5,1)
X0=-5.5
DO 10 K=1,10
X1(K)=X0+K
Y1(K)=X1(K)
10 CONTINUE
© SUME=0.0
DO 190 I=1,N -
XX=XC(I)
YY=¥C(I)
7Z=2C(1)
SRI=XX**2+YY*¥24ZZ**2
RI=SQRT(SRI)
IF(RI-100,0)11,11,190
11 DO 200 KX=1,10 |
DO 210 KY=1,10
DO 220 JX=1,10
DO 230 JY¥=1,10
STE1(1)=0.0
STE2(1)=0.0
STE3(1)=0.0
STE4(1)=0.0
VP=XC(I)-5.5+JX
VQ=YC(I)-5.5+JY
¢ VZ2=2C(I)

Nohen| o P oretons i
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VX=VP-X1(KX)
VY=VQ-Y1(KY)
SR=VX**2+VY**2+Vz*#2
R=S3RT(SR)
VA=ZC(I)**2
VB=18.0*VA/SR
VC=45.0%VA**2/SR¥*2

VD=3,0+VB-VC

VE=(-1.9E-7/{SR*R))*VD

STEL (JY+1)=STE4(JY)+VE

230 CONTINUE
STE3(JX+1)=STE3(JX)+STE4(10)

220 CONTINUE
STE2(KY+1)=STE2(KY)+STE3(10) Lo

210 CONTINUE :
STE1(KX+1)=STE1 (KX)+STE2(10)

200 CONTINUE
WRITE(6,600)STE1(10)

600 FORMAT(1H ,5X,13HTOTAL ENERGY=,E15.7)
SUME=SUME+STE1(10) ‘
WRITE(6,700)SUME

700 FORMAT(1H ,5X,12HSUME ENERGY=E15.7)

190 CONTINUE
STOP
END

9

A

Program'gt‘

C
C

THE TYAPKIN ARRAY (THE INFINITESIMAL APPROXIMATION)

- VERTICAL LOOPS - (D=15.0)

COMMON RRI(200),RVE(200) _

DIMENSION xc<3oo),Yc(3oo),zc(3ob),§UM3(300)

WRITE(6, 500) | _ ’
500 FORMAT(1H ,5X,8HDISTANCE,7X,6HENERGY,9X, 13HSUM OF ENERGY/)
IJL=1 _ ‘ ' ”
DO 5 I=1,200 ' ' ;
RRI(1)=0.0 '

b

7
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5 RVE(I)=0.0 ' 4
DO 10 1=30,180,30
DO 20 J=30,180,30
DQ 30 L=30,180,30
X0=~3%0.0
Y0=-15.0
Z0=-15.,0
XC(I)=X0+I
YC(J)=YO+J
ZC(L)=20+L
XX=XC(I)
YY=YC(J)
22=2C(L)
SRI=XX**2+YY**2+722%*2
RI=3QRT(SRI)
IF(RI-50.0)10,10,100
100 VA=YC(J)**2
VB=3,0*VA/SRI
VC=XC(I)*ZC(L)
VQ:QS.O*VC**Z/SRI**Z
VF=4 ,0~VB=VD
VE=(-1.9E-3/(SRI*RI))*VF,
CALL ORDER(IJL,VE,RI)
TJL=IJL+1
30 CONTINUE
20 CONTINUE
10 CONTINUE
SUME(1)=RVz(1)
,1J=I1JL~1
DO 50 I=1,1J
50 SUME(IL+1)=3UME(I)+RVE(L+1)
WRITE(6,600) (RRI(I),RVE(I),SUME(I),I=1,1JL)
' 600 FORMAT(5X,3E15.7)
STOP
END
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SUBROUTINE ORDER(IJL,VE,RI) , -
DIMENSION TRI(200),TVE(200)
COMMON RRI(200),RVE(200)
DO.100 I=1,IJL .
I1F(RRI(I)-R1)10,20,20

20 DO 5 J=1,IJL ,
TRI(J)=0.0

5 TVE(J)=0.0 -

DO 30 J=I,IJL . -

TRI(J-I+1)=RRI(J)

30 TVE(J=-I+1)=RVE(J)
RRI(I)=RI
RVE(L)=VE
IT=IJL-I+1 -,
DO 40 J=1,IT
RRI(I+J)=TRI(J)

L0 RVE(I+J)=TVE(J)
RETURN

10 IF(I.EQ.IJL) GO TO 200

100 CONTINUE

200 RRI(IJL)=RI
RVE(IJL)=VE
RETURN y
END

Program 6:
C THE TYAPKIN ARRAY (THE INFINITESIMAL APPROXIMATION)
c - PARALLEL LOOPS - (D=15.0)
COMMON RRI(200),RVE(200)
DIMENSION XC(300),¥C(300),%C(300),SUME(300)
WRITE(6,500) |
500 FORMAT(1H , 5%, 84DISTANCE, 7X, 6HENERGY, 9X, 1345UM OF ENERGY/)
1JL=1 ’ -
DO 5 I=1,200
RRI(I)=0.0
5 RVE(I)=0.0
- DO 10 I=30,180,30

— e - a A
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+ XX=XC(I)

100

30
20
10

50

500

"VB=18,0*VA/SRI
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DO 20 J=30, 180,30

DO 30 L=30,180,30 .
X0=-30,0 .
Y0=-~30.0

Z0=-30,0

XC(I)=X0+I

YC(J)=Y0+J

ZC(L)=20+L

YY=YC(J)"

22=2C(L) N
SRI=XX**2+YY**2452%*2
RI=SJRT(SRI) '
IF(RI-50.0)10,10,100 . / _ %\;
VA=ZC(L)**2 ]

LI S Y

VC=45.0*VA**2/SRI**2

VD=3.0+VB-VC |

VE=(~1.9E-3/(SRI*RI))*VD

CALL ORDER(IJL,VE,RI)

IJL=IJL+1

CONTINUE

CONTINUE

CONTINUE

SUME(1)=RVE(1)

1J21JL~1 o - .
DO 50 I=1,1J

SUME(I+1)=SUME(I)+RVE(I+1)

WRITE(6,600) (RRI(L),RVE(I), SUME(I),I=1,IJL)
FORMAT(5X, 3E15.7) 5 . A

STOP

END

SUBROUTINE ORDER(IJL,VE,RI)

DIMENSION “TRI(200), TVE(200)

COMMON RRI(200),RVE(200)

PO e
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DO 100 I=1,1JL
IF(RRI(I)-RI)10,20,20

20 DO 5 J=1,1JL
TRI(J)=0.0

5 TVE(J)=0.0
Do 30 J=I,IJL _ .
TRI(J~I+ )=RRI(J) -

30 TVE(J-I+1)=RVE(J) B
RRI(I)=RI
RVE(I)=VE
IT=1JL-I+1 '
DO 40 J=1,IT 1
'RRI(I+J)=TRI(J)

4O RVE(I+J)=TVE(J) i

RETURN

1JL) GO TO 200

. 100 CONTINUE
200 RRI(IJL)=RI
RVE(IJL)=VE

RETURN

END
Program Z:
C VOLUME PERTURBATION BETWEEN TWO FINITE PLATES IN THE 2
C EDGE-FACE CONFIGURATION

DIMENSION STE](}OO),STEZ(SOO),STES(}OO),STE&(BOQ),

1 AB](100),ABZ(lOO),X]I(lOO),Yal(IOO),ZZI(100),Xl(IOO), ’ F

1 Y1(100),Y2(100),22(100) -
READ(5,500) (AB1(K),K=1,4) ‘ .
500 FORMAT(§F20.7) .
READ(5,501) (4B2(K),X=1,4) ot
501 FORMAT(LF20,7)
READ(5,502) (X1I(K),K=1,4)
502 FORMAT(4F20.7)
READ(5,503) (Y2I(K),K=1,4)

T —— ————
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503 FORMAT(4F20.7)
READ(5,504) (Z2I(K),K=1,4)
504 FORMAT(4F20.7)
DO 150 L=1,11,5
DO 5 K=1,b4
S=1.0
M=9
X1(1)=X11(K)
DO 10 I=1,M
X1(I+1)=X1(I)+S+AB1(K)
10 CONTINUE
N=M+1
DO 20 I=1,N
Y1(I)=X1(I)
20 CONTINUE
Y2(1)=Y2I(K)+L-1.0
DO 30 I=1,M :
Y2(I+1)=Y2(I)+S-AB2(K)

<&

" 30 CONTINUE

22(1)=221(K)

DO 40 I=1,M

72(I+1)=22(I)+S-AB2(K)
4O CONTINUE ‘

STE1(1)=0.0

STE2(1)=0.0

STE3(1)=0.0

STEL(1)=0.0

DO 200 LX1=1,N

DO 210 LY1=1,N

DO 220 LY2=1,N

DO 230 Lz2=1,N

VX=X1(LX1)

VY=Y2(LY2)-Y1(LY1)

Vz=22(LZ2)

SR=VX**2+VY**24VZ**2

R=SQRT(SR) .
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220

210

200

600

150
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VA=Y2(LY2)**2+22(LZ2) **2
VB=Y2(LY2)*Z2(LZ2)
VC=3.0*VA/SR
VD=45.0*FB**2/SR**2
VE=1.0+VC~VD
VF=(-1,9E-7/(SR*R) ) *VE
STE4(LZ2+1)=STE4(LZ2)+VF
CONTINUE
STE3(LY2+1)= STE}(LY2)+STE4(N)
CONTINUE
STE2(LY1+1)=STE2(LY1)+STE3(N)
CONTINUE
STE1(LX1+1)=STE1 (LX1)+STE2(N) |
CONTINUE
WRITE(6,600)AB1(K),Y2(1),STE1(N)

N

FORMAT(1H , 5X,4HAB1=,F10.4,5X, 3HY2=, F10.4, 10X, 7HENERGY=, E15, 7)
CONTINUE _ - — oo
CONTINUE ' )

' STOP - :
END C—
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