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The elastic interaction of the new phase coherent
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particles with tetragonai distortion is considered. The..
analysis shows that the elastic energy may be minimized

by the formation of regular tridimensional arrays.

Studies of the variations of the interaction energy

of the Tyapkin array with respect to displacements and

volume perturbation of the particles (in the finite appro­

ximationl, lead to the conclusion that the periodic distri­

bution is stable.
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C:iAPT2R I 

INT~~ODU CTlON 

The phenomenon ~f clustering (or zone formation) 

~o essential to precipitation hardening is the method by 

which an alloy can lower its ·free energy at low tempera­

ture after quenching. 

The total free energy of a quenched and aged 

alloy may be regarded as the sum of the free energies of 
...... 

the matrix and precipitate pnases, the free energy of the 

interfaces (coherent or incoherent) separ3ting the phases, 

and the elastic strain energy of the m~trix and precipi-

t~tes. 

While the'chemical free energies of the matrix 

and precipitate phases generally provide the bulk of the 

driving force, for precipitation, the elastic strain energy 

may significantly affect the kinetic path along which 

the ageing occurs. That is, the elastic strain energy 
• is generally believed to exert a major influence upon the 

distribution and shape of clusters or zones. This point 

has bee~ stressed recently by several authors},9,15,36,38,39 

The phase transformation in a solid is, to a 

large extent, controlled by the elastic deformation in the 

herent, partly coherent and completely incoherent. From 

the microscopic viewpoint, the condition of coherency 

~eans that atoms lying on either side of the two-phase 



/ 

boundary which were neighbours befor~ transformation 

remain neighbours after transformation also. 

Cohetent or semi-coherent coupling .often arises 

during the ~arly stages of a decomposition process, and 

'~lso during a martensite transformation. 

In the investigation of-the coherent stage the 

following important questions arise: 

2 

1. What is the optimum shape of the new-phase particles 

to ensure minimum free energy? 

2. What is the orieDtation of the new-phase particles 

relative to the crystallographic axes of the matrix? 

3. What is ~ne orientational relationship between 

the lattices of the two phases? 

4. What is the mutual spatial distribution of the 

inclusions? 

A complete answer to the questions posed may 
!II 

be obtained by considering the elastic properties of the 

matrix and the precipitate, the crystal geometry of the 

transformation and the surface tension. 

As already mentioned one of the fundamental 

pecularities of certain phase transitions in the solid 

state consists in the fact that they are often ac~ompanied 

by considerable elastic deformations of the parent crystal 

lattice. At the same time the phase transition occurs 

in such a manner that at each step the loss of free 

energy of the system due to the deformation turns out 

to be minimal. The minimization of the elastic energy 



is possible because of the opti~al form and distribution 

of the inclusions of the new phase, which are coherently 

bound to the matrix, and also by means of the formation 

3 

of epitaxial dislocations at the interphase boundaries· 

(violation of coherence), if the possibilities of reduction 

of the stresses due to change of orientations and form 

of the inclusions are limited. 

The aim of this work has been to examine the 

possibility that the strain energy contribution to the 

total driving force for precipitation may be responsible 

for the formation of regular arrays or lattices of pl?te-
\ 

like precipitates. 

, > 

... 
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CHAPTER II 

THEORETl CAL BACKGROUND AND REV lEW OF PREVIOUS l,/JORK 

11.1. The role of elastic energy in phase transformations 
; 

in the solid state . 
• 7 ., " 

As a result of fluctuations in concentration 

ana order parameters, inhomogenities bearing a more or 

less random character arise in the crystal. If the lattice 

~arameters depend strongly on composition, then from the 

macroscopic point of view the inhomogenities of composi-

tion will lead to concentration stresses, inhomogeneous 

strains associated with these, and static displacements 
~ , 

of the atoms in the crystal. As a result of the superposi-

tion of the fields of the displacements created by diffe-

rent atoms, a complex distribution of static displacements 

develops in the solution • 
. 

It is clear that the determination of the stresses 

and ~tatic displace~ents as function~of the coordinates 

of the atoms in the crystal in the above mentioned case 

of a complex and not completely symmetrical fluctuation 

distribution of stresses sources constitutes an extremely 

difficult problem. 

The problem is greatly simplified, however, if 

'lIe u~e the ::lethod 0 f f1 'IC t 11.:ltion 'If[Jves and tr3nsform from 

the displacements of the atom~to their Fourier cQ~ponentsl. 

In the case of long-wave fluctuation waves we 

may carry out a ~acroscopic calculation of 'the static 

4 
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displacement waves, based on the use of equations taken 

from elastic theory and not on any specific model of the 

crystal. ~he amplitudes of the displacement waves are 

expressed in terms of crystal characteristic which may 

easily be determined experimentally. 

In the case of short wave fluctations, the 

macroscopic approach becomes inapplicable. 
() 

For a wave-like change in concentration 

oc(r) = ck exp ( - ikr ) 

corresponding to the k-th fluctuation wave, the displa-

cements and strains also vary in an wave-like manner: 

Ulm 
r a(e Rll + 

o( 6' Rml ] 
= = 

2 a xm OXl 

5 

(2) 

where nl are the components of the 1)nit vector n = k./k 
, 

parallel to the \'{ave vector k, Ak the proportionality 

factors between the amplitudes of the static-displacement 

and concentration waves. 

Followlng K~achaturyanl the elastic energy of 

unit volume of the new phase particle-matrix syste~ has 

the form: 



6 

+ ""1'1 S. '~l 2 J m ~J m 
(3) 

...­
where A is the elasticity modulus tensor, ijlm 
the defor~ation tensor, e (r) is the form function 

equal to unity inside the inclusion and zero outside, and 

6? is the tensor characterizing the crystal geometry 
~J 

of the transformation; twice-repeated indices ever~vhere 

denote summation. 

Transforming to Fourier components, we obtain: 

where u(k) = J d3 r uer) exp [-i(k,r)] 

uer) is the displacement of the point r, and 

8(k) = f d3 r G(r) exp [-i(k,r)] , with the integration 

he~ng taken over infinite space. 

The solution of the equilibrium equation has 

the form: . 

U(k) = 
.. 

where G- 1 (k') , is, the Green's function of the elastic equi-
. 

librium equation. Expressing the e~astic energy of "the 

sys'tem, E1 :; J d3 r fer), in terms of Fourier c"omponents 

+ 
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of the integrand functions, we get: 

1 f d3 
k I 12 - e(k) 

2 (ZI[)3 
A(k) 

where A(k) -_ ( 10k , G- 1 ..l olr) (k 1 G- 1 ..i k ) Q 10 ... = ,°0 Q o 

The energy given by Eqs. 6 and 7 is counted from the 

state of the system 'at which G ij = o. The state 

s·· = a is stressed, and its energy is not at a minimum. 
~J 

The minimum elastic energy is possessed by the state with 

~ij = 0, when both phases are in the ~ree state: 

1 
= - -- 6 <:' • £- <:'. V - -, '1"1 E. <? . c,lo V 2 1J ~J - '2 I\~J m 1J m 

where V is the volume of the new phase. Using Eq. 7 we 

obtain an expression for the elastic energ~reckoned 

from the unstressed state, which is equal to: 

E = E1-E( G: ·=0) 1J = 21 A.iHm f,~j f,~m v,Jd3
k 3 A( ~ )Ie(k J2 

J(21[) k 1 

Eq. 9 ~xpresses the elastic energy in terms of the coef­

and (G- 1)ij which characterize the 

elastic properties of the tr3nsfor~ation, and also in 

terms of the function le(k~2, which characterize the 

shape of the part~cle. 

(6) 

(8) 

(9) 
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To elucidate the orientational relationship 

between the lattices of the phases it is necessary to 

find the angle of rotation of the new-phase particle 

relative to the matrix. The vector of local rotation, ~ , 

at a point is expressed in terms of the displacement at 

this point by the equation: 

( 10) 

Equation 9 is valid if elastic moduli of the inclusions 

and of the matrix are equal. From the structure of Eq. 10 

it follows that the orientation of the invariant plane 

(the orieQtational relationship) depends, generally 

speaking, on the shape of the crystal of the new phase. 

The formation of a single inclusion of the new phase in 

an infinite anisotropic continuum is accompanied by a 

minimum value of the elastic energy if the inclusion 
f---" 

has the form of a thin extended plate, the normal unit 

vector ko of which is determined by the condition,o.f 

maximum·for the quantity A(k/k). 

The answers to the questions posed can be 

formulated: 

1. The opti~um shape of R new-,hase p3r~icle to ensure 

minimum elastic energy is that of a thin plate, with 

length and width ~uch greater than its thickness. 

2; The plane of this plate is perpendicular to one of 

the ko vectors, thus bringing about a maximum A(k/k). 

{ 



3. The direction of magnitude of the angle of rotation 

of the crystallographic axes of this plate are given by 

Eq. 10. The invariant plane is perpendicular to the 

vector <'P> • 
For the case where the crystal geometry of the 

. transformation is described by tensor ~ r: ., which has 
~J 

a tetragonal character, while the matrix has a cubic 

lattice; o 
E. 1 1 = 

when i * j. In that case we have: 

o 

9 

~ 0; 
°0 

o 

1 

o 

o + 

-1/2 

o 

o 

-1/2 

o 

o ( 11 ) 

o ~o 1 

where 

c 1l + 2c 12 1:::. a 1:::..c 
(-2 + - ) 

3 a c 

- 2(c ,1 - c ,2 ) 6,C !:::.a 
0 0 

=: ( + ) 
3 c a 

A 1111 
=: c 11' /\ 1122 :: c 12, 

1\1212 = c44 

For the case of a cubic lattice the matrix (G- 1 )ij has 

. , 



the following form: 

1 
= 
~ 

1 

= - k2 

+ /\ 2 (c 1 1 + 2c 1 2 + c ) n2n2n2 . ~ 44 1 2 3' 

n = kilt, 
6.. = ell - c 12 - 2c 44 

c44 

10 

(12 ) 

The other" components of the tensor ,G-:- 1 (k)ij are obtained 
. 

by cyclic permutation of the Cartesian indices. 

The ~lastic energy is given as: . . ...: 

( 0 0 
+ 6 )2 

r 6 + 
n2A _ n43 + 6. cnfn~n3 + ~6tn~'n~ 1 E 0 

= 1 2 Den) 1 1 

( 13) 



• 
1 1 

wher~: 

A = 

B ;: - 1 + 

c .:u + 
c 12 + 2 (\ 2(~ -1 = 

C44 C44 C44 

• 

From Eq. 13 it follows that the elastic energy 

of the crystal takes on its least value when the normal to 

the new-phase plate, n:ko/ko' is oriented in such a.way 

that the right-hand side of Eq. 13 is at a minimum. 

On analyzing Eq. 13 it can be shown that, 

depending on the relationship between the elastic co~stants 

c . 
l.J 

and the v~lue of the numerical factor J, the ?n~rgy 

is a minimum when the vector n. lies either in the plane 
. 

(100), or in (110). This means that the ~uller indices 

of the plane of the crystal form (the plane of the plate) 

may either have the form (hal) or ehhl). 

,,," 
'", 

0 

, , 



To find the invariant plane (the orientational 

relationship) it~s necessary to find the direction of 

the a_xis of rotation. For this we must know th~ direction 
" 1 • 

12 

of t~or G- 6 oko • As the tensor 6~j has tetra-

go~try, then both the vectors ko and G- 1(ko ) 6oko 
lie either in the plane (100) or in (110). Since the vector 

~~> is the vector product of the vectors ko and 

G- 1
(ko ) 6

0
ko , then the axis of rotation lies perpendi-

cular to these planes. Thus when tetragonal deformations 

are present the invariant planes are either (100) or (110). 

All the results derived above are valid while it is possible 

to neglect the contribution made by surface tension. The 

effect of surface tension will be to prevent the "expansion ll 

of the new-phase, particle into an infinitely thin, infini-

tely wide plate. 

In the general case the shape of the inclusion 

will be determined by competition between the elastic 

deformation energy, which is minimal for an inclusion 

in the form of an infinitely thin, infinitely wide plate, 

and the surface tension energy, which conversely, is 

minimal for an inclusion of equiaxial form. 

Recent X-ray and microscopic studies show that 

in a number of cubic solid solution the periodical di-

3tribution of coherent inclusions of the cubic phase 

arise at an early stage of composition. This phenomenon 

was observed in CU-Ni-Co2 ).,.3, Cu-Ni-Fe 1,4, Cu-Be5, 6, in 

a group of nickel-based alloys7,8,9,lO, Au_pt 11 , Fe_Be 12, 



Co_pt 13 • This observation has investigated theoretical, 

work on the elastic interaction between individual 
-,' 

inclusions 14 ,15. 

Eshelby14 has shown that there is no interaction 

among c~ntres of dilatation in an elastically isotropic 

medium. Sometimes particles of a separated phase have 

an "equiaxed" form which is nearly spherical. In ref. 9, 
>!!, 

the interaction potential of two spherical inclusions 

W1S calculated under the assumption that the interaction 

is due to the differences in elastic moduli of the inclu­

sions and matrices, and that the tensor E ~j described 

a pure dilatation. In this case the potential goes as 

1/r6 and decreases rapidly. 

However, defects or precipitates whf6h give 

13 

rise to tetragonal distortions can interact quite strongly. 

The presence of a strong interaction must lead to corre­

lations in the relative positions of the inclusions (short­

range and possibly long-range order) during their formation 

in the field of already formed inclusions and also in their 

subsequent growth. 

In the theoretical work of the elastic interaction 

of tetragonal distorted spheres Khachaturyan and Shatalov15 

have showed that the existence of strain field which 

differ fro~ purely dil~tation fields, le~d~ to a co~pli­

cated angular dependence in the potential even for the 

isotropic continuum model. Following ref. 15, if the 



elastic moduli of both phas~s are equal the elastic 

energy of the medium with the inclusions of the new 

phase, relative to the undeformed state, is: 

14 

( 14) 

where: 6?(p) = A. '1 [01 (p); A'jl is the elastic 
1J 1J m m 1 m 

modul i tensor; r,. .. (r) is the strain tensor; 8
p

< r) lJ 
a function which is one inside the inclusion p and zero 

outside it; z is the number of inclusion types. Trans­

forming to Fourier components Eq. 14 becomes: 

z 

~ I.Jn. 6°(p)G(n) 6°(p)n) ep(k)e~(k) 
p,q 

where k is the wave vector of the Fourier transformation; 

n = k/k; .the symbol ( ••• , ••• ) indicates the scalar product; 
" 6 o(p). and G(k) are operators whose matrix elements 

A 0 
are <6 ij (p) and Gij (k), where Gij (k) is the Fourier 

component of the Green's tensor for the elastic problem. 

~';~e functlon e p(~) can Je r.I'lltl.;>li connected. 

For simplicity it will be considered a medium in which 

there are only two inclusions altogether. Then, if the 

origin is put at the center of mass of one inclusion at 



15 

type p designating the form factor of this simply con-
• nected inclusion by 9 p(k), the form factor of the other . 

simply connected inclusion of type q, located at a distance 

r from the origin, has the form Sq(k)eikr , where eq(k) 

is calculated in a coordinate system with origin at Ir. 
It follows from Eq. 15 that the interaction of 

these two inclusions is given by the expressiort: 

-ikr e 

where: Apq(n) = 10, ~o(p)G(n) ~o(q)n). The quantity 

(16) 

Apq(n) ep(k)e~(k) is the Fourier component of/the pair­

interaction potential. 

Using the isotropic continuum model to solve 

Apq(n), the ~nteraction of two inclusions is-given by 

the expression: 
'" 

E:Pq = 1n 

where 

;l
V
Z [ 

2 DPq 
2 

r3 16 

0( 
f 

and D?q 
4 I 

+ 
DPq 1 4 

are complicated terms dependin~-on 

the orientation of the particles relative to the radius 

(17 ) 
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vector which connects the two particles. The first term 

in Eq. 17 is the interaction for distances much greater 

than the inclusion dimension, and the second term is 

connected with the inhomogeneity of the deformation field 

of one inclusion at the limits of the region occupied by 

the other inclusion. 

The expressions for the total energy of the 

elastic stresses of the system of coherent inclusion may 

be written in the general fdrm: 

16 

+ ( 18) 

The first term in Eq. 18 does not depend on the mutual 

arrangement of the inclusions, it is the sum of the elastic 

self-energies of inclusions. 'The second term in Eq. 18, 

on the contrary, depends on the spatial ~stribution of 

the inclusions. Consequently it represents the stress-
. 

induced interaction energy of the inclusions. caused by 

the interference of the stress fields associated with 

each inclusion. One of the most interesting aspects of . 
the potential in Eq. 18 is that it can have the form ~f 

a potential with a minimum; aE. t l or = O. It has 
~n 

been shown that the.resultirlg~I>otent.ia}s C::l.n be rnonoto­

nrc~L1y-attractive, ~onotonically repulsiva, or can have 

a minimum at a specific value of the interparticle spacing. 

Since Eint ~V1V2' Eint is maximal when 



V 1 = V 2', 0 ther condi tions beil1'lt equal. This ~eClns that the 

inclusions "try" to have the same dimensions if- ,Eint is 

negative, for then Eint is minimal. Thus, the elastic 

interaction appears as a factor which st~bilizes the 

dimensions of the particles if this interaction is at-

tractive. 

The theoretical treat~ent ha~ been extended 

to mul ti particle array,s 16. I twas shovm that three types 

of periodic array~ are possible: a one-dimensional system 

of parallel la~ellae; a two-dimensional d~stribution 

which may be viewed as a planar square macro-lattice 

tormed by rods of the second phase; a three-dimensional 

primitive cubic macro-lattice which is equivalent to 

the macro CsCl •. 

The cause of all modulated structures, inclu-

ding those produced by spinodal decomposition, is the 

minimization of strain energy of the array. All modulated 

or tweed structures thus far observed can be referred 

17 

to one of these general types. Their development in an 

ordinarY'precipitating ~ystem will begin witli randomly 

distributed supercritical nuclei which produce increasing 

displacements as they grow (and coarsen) until the" stresses 

become sufficiently high such th~~ they'affect the dif-

fu:::;ional proces3es. l':12Se \'lill the:! beco~e Ol!lisotr~pic 

in such a way as to favour the gr:owth of periodic arrays 

whose elastic energy is minimum - completely analogous 

" 

i 
iJ 



to those produced by spinodal decomposition when & ia 

significant 17 • 

Thus, coherent precipitation associated with 

coherency strains and higher volume fractions of preci-

18 

pitates will always result in quasi-periodic wave-like 

arrays of matrix and particles which are extremely similar 

to spinodally decomposed structures with composition~waves. 

It can be seen that spinodal decomposition 

cannot simply be distingiushed by the resulting micro­

structure: the origin of periodically modulated, coherent ., 
arrays is a minimization of elastic strain energy by 

anisotropically stress-affected diffusion in all cases. 

II. 2. Elastic stabilization of arrays of precipitates 

against Ostwald ripening 

Recently it has become clear that the theory 

of Lifshitz18 and Wagner19 derived for a li.qui·d matrix 

can be applied to describe the growth of certain coherent 

precipit~~es. The theory predicts that, when the ra.te 

of coarsening is controlled by the diffusion of the solute 

species through the ma~ix, the variation of the mean 

-radius, r , with time, t ,of a dispersion of spherical 

p3rticles is ~iven by: 

-r3 _ -r3 
o = 

8 0' D Co V; . 
9 R T 

(19) 



where r is the mean particle radius when coarsening 

commences at t = to' t is the specific precipitate-
~. ~ 

matrix interfacial free energy, D and Co are t~e 

diffusivity and equilibrium molar concentration, respe­

ctively, of the solute species in the matr~x phase at 

the temperature T', Vm is the molar volume of the 

precipitate and RT has its usual meaning. 

The experiments have indicated that only in 

the very special case of misfit-free a~loys can the 

spheres 0 f Lifshi tz-Wag,ner size distribution be eXpected. 

In alloys with a certain misfit between V 
$ 0 

and ~'the precipitates again are spheres which 

grow according t6 Lifshitz-#agner law ~t the beginning 

of precipitation. However, at ~ some size, they start 

to change shape and local distribution. 

In-ref. 9 and 10, they found that the occurence 

of this deviation from spherical shape and of the ani­

sotropic local distributions is only a function of 
'-~' 

misfi t between l and K' '. I 

Boyd and Nicholson20 have m~sured coarsening 

rates and particle-size distribution, in Al-eu alloys, 

using the Lifshitz-Wagner theory, modified for the case 

of disc-shape particles. T~ey have found that the 

co~rGening behaViour of e" agrees quantitatively 

and qualitatively wi.th the theory, but the coarse~in..g 

behaviour of e' is anomalous (Fig. 1). 
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Ham et a1 21 reported on the solidification, 

ageing behaviour and creep properties of the inter­

metallic compound Ni3(AI,Ti), strengthened by a bimodal 

distribution of ~ precipitates. They have found, when 
'. 

these alloys are solidified rapidly under planar inter-

face conditions to give a uniformly supersaturated parent 

phase, and then aged, that no correlation of r platelet 

length wit::h ageing time exists for the resulting uni-

~odal dispersion of platelets. Thei have p~esumed that 

the platelets give rise to tetragonal distortion and. 

that the array is st~bilized by elastic interaction. 
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It was shown that the elastic energy tends 

to stabilize equal sized precipitates (Eint~ V1V2 , 

Eint is maximal when,V1 = V2 ), whereas the surface energy 

has a maximum for V1 = VZ' and a certain range of flu­

ctuation in volume will relax to the equal volume state. 

The equilibrium is metastable, because E has surface 
infinite slopes for Vt = 0 and for V2 = 0; thus, a 

large enough fluctuation will cause one precipitate to 

grow at the expense of the other. 

Thus certain types of elastic interaction 

can stabilize two precipitates against competitive growth, 

and it is reasonable to suppose that ela~tic interaction 

can stabilize an array of precipitates against Ostwald 

ripening. 

II. 3. Previous work on Al - 4% Cu 

The precipitation processes in aluminium­

copper have been studied by a variety of techniques 

over the .past fifty years. Theo extensive X-ray investi-
. 22 

gations·have been reviewed by Hardy and Heal • The more 

recent electron microscopy and electrical resistivity 

observations have been discussed by Kelly and Nicholson23 ." 

Thece inve3ti;~tions have de~on3trnted the 

existence of several meta.stable precipitate phases in 

addition to the equilibrium CuAl2 ( e ) phase. The" 

precipitation sequence for a alum~nium - 4% copper 

21 



alloy aged below 175°C is: 

G. P. zones ----- e " ---_ e t ---- e 

Using X-ray techniques, Guinier24 , Prsston25 

and Gerold26 deduced that G.P. zones are thin copper 
/ rich platelets, probably one or two(atom planes thick, 

lying on {lOOt planes of the aluminium matrix. Both 

e " and e' are ordered arrangements of copper and 

aluminium atoms with tetragonal unit cells. The preci­

pitates are thin discs with the c axis perpendicular 

to the habit plane, and the orientational relationship is: 

The structure of e ", as determined by 

Guinier is shown in Fig. 2: 

'. 

FIG.2 
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Silcock et a127 have pointed out that when 

e" forms from G.P. zones, the c parameter change3 

'" from 8.0 to 7.6 ~ as the e" precipitates grow. Because 

the maximum misfit between the e" and matrix lattice 

planes is about 5 percent, e" is coherent across 

all interfa.ces. The misfit in the c direction is 'taken 

up by elastic displacements in the m3trix, as sho~n in 

Fig. 3: 

, , 

'r. 

, 

\ 

G P(2) zone 0 

o:b:4·04 A c:~7 8 A 
Aluminium n~ 
o:b:c:4·C4l 

1111111/ 

" 

, 
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The structure of e ' ,. as determined by Silcock. 

et al is shown in Fig. 4. e' is coherent across the 

i~terface parallel to the habit plane, but owing to the 

large miSfit in the c direction, it is non-coherent 

acro88 the interface at the periphery of the disc • 

'. 

... 

~ 4-Ml-a.l 
s~ c; (/ (1-FI"EIf s.r:.cc:::x .. :::.u.) , 

l...'W.~ 

FIG .4 

24 

e Is tetragonal with a = 6,066 i and c = 4.374 ~. 

For ageing temperatures below 300°C occurs in the grain 

boundaries only. 
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II. 4. An approximQtion for the strain field of a disc-shaped 

G.P. zone 

Several models have been proposed for the strain 

field of disc-shaped zones. Guinier28 based his model 

on the Fourier transform of intensity distributions 

observed from low-angle diffuse X-ray scattering, while 

others29 ,30 calculated intensities from assumed strain .. 
fields, and compared these ~ith intensities observed in 

diffuse X-ray scattering experiments. 

Nabarro31 had noted that a collapsed disc of 

vacancies may be regarded essentially as a prismatic 

dislocation loop. Franz and Kroner 32 showed that a 

disc-shaped preCipitate such as a G.P. zone in which 

the size-factor was negative (AI-Cu, Cu-Be, Au-Ni) could 

also be treated as a prismatic loop having a Burgers 

vector equal in magnitude to the difference in size 

of the solute and solvent atoms. The calculation of 

finite prismat~c loops has been carried out in detail 

by BUllou'gh and Newman33 and Kroupa34 • 

When the diameter of the loop is small compared 

to the detail required, it is possible to treat a pri-

srnatic loop as a pOint singularity in an elastic conti­

nuum)"). Kroupa specialized the deri vation used by :S::;hcl by 1 i+ 

for the more general case of an ellipSOidal inclusion. 

FolloViing Kroup;3'5, the displace:nent at a large distance 
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from the particle, i.e. at n dist~ncc much l~rger than 

the dimensions of the particle is: 

(20) 

where 
8]\(1- \) 

'rhe stress tensor d 6 ., Ground an infinitesimal 
1J 

loop can be calculated from Eq. 20 using Hook's law: 

__ 2kof1~[3(1_2\1) 
d 6 . . .3 2 

1J r r 

+ nkrk(b.r.+r.b.)]+ " ~ J ~ J 

3( 1-2 \J ) 
r2 bknkrir j -

(21) 

~I 

It is apparent that the displacements decrease 

'" 
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'" 
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with distance r as l/rZ and stresses as 1/r3. 

Equations 20 and 21 can be simplified by using a special 

coordinate system, Fig. 5: 

FIG.5 

'x 1 

x 
r 

The loop is at the origin of the coordinate system in 

the x 1x2 plane (n1=n2=O,n3=1) and separately introduces 

displacements and stresses for a pure prismatic infini-

k xl [. - (1-2'Y)+ 3 x~ J u l = 
6 r3 r2 . 

k x2 [ 3 x
2 

] Uz = 6 r3 
-(1-2V)+ 7 

u3 = k x [ ~ 1 - 2 V 
6 r + ~J 

27 
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== kfi [ 
r3 

4 V -

,) 

Z 2 
xl + x3 

+ (1 - Z\) 
r2 

kf1 [ 4 V 3- 1 622 == -:::3 
r 

+ (1 - 2'J) 

where: 

2 
2 x~ 

+ --:-:r­
r 

1 - 2 V -

~~ ~2 
= kfi ~ 

r 1J 5 2 
r 

3 b3 k = dA, 
4J[( 1- V ) 

b -= :~ur.::;er3 vector, 

dA = area of the loop, 

r2 = x2 + x2 + x2 
1 2 3 ) 

~ == shear modulus, 

V == Poisson ratio assumed = 1/3 

28 



II. 5. Interaction between pairs of dislocation loops 

, -'the infinitesimal approximation -

29 

The total ener~y of a pair of disloc~tion loops 

is simply the self energy of each loop plus the interaction 

energy between the two. This lnteraction energy is defined 

as the energy required to create one loop in the stress 

field of another. 

For the general caGe using Kroupa's notation: 

where: 

loop 2, 

<5 ii) is the stress tensor from loop 

n{2) _ unit normal at loop 2, 

b12 ) - Burgers vector of loop 2, 

8 A (2) - area of loop 2 

(subscripts follow the Einstein convention). 

at 

For a parallel prismatic dislocation loops 
, 

(Fig. 6) Eq. 23 becomes: 

Ei n t :: - Tl a 
2 6 33 b 

where: a = loop diameter, 

<5 3.5 = stress field of at 2, 

b = Burgers vector of loop 2. 



where: 

FIG.6 

Substituting 6 33 from Eq. 22 gives: _ 

[ 
.1_8xj 

3 + ~ -
R 

f = shear modulus, 

R2 __ 2 2 x2 
xl + x 2 + 3 

4~~j] . (25) 

! 

.. 
; 
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Similarly for perpendicular prismatic loops 

(Fig. 7): 

Substitution 6 11 from Eq. 22 gives: 

~" ::­int 

\ 

31 

(26) 
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EXamples of this kind of interaction for 

various relative orientations of precipit~tes are given 

by Eurin et a136 • It has been shown that, depending of 

the configuration, interaction can be strongly attractive, 

strongly repulsive and other configurations which are 

intermediate between the~e extremes. For example, the 

edge-face configuration is strongly attractive and the 

face-face configuration is~strongly repulsive. 

From these interaction energies (and derivative 

forces) one can proceed to larger nu~ber of loop~ in 

~ifferent c~nfiguration; a balance may be obtained"be­

tween the repulsion of two parallel coaxial loops end 

a loop placed ,midway perpendicular to both, etc. · 

Fillingham et a137 have also used the infini­

tesimal loop approximation to calculate several ordered 

arrays of disc shape~ zones in order to describe "tweed" 

structures and the diffraction contrast they yield in the 

transmission electron microscope. 

{"'-
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CHAPTER III 

INTERACcrIONS AHONG .FINIT::: PRECIPITATES 
c 

Brown et al 38 and Khachaturyan and Shatalov15 

have shown that the e'lastic interaction among the preci-

pi tates causing tet'ragonal distortions, in finite pre­

cipitates is qualitatively distinguishable from that in the 
. , 

infinitesimal approximation. 

In order to determine the interaction energies 

between two disc-shape precipitates more precisely, the 
, 

following pr~c~dure has been performed. A plate, taken 

in'approximation as one disl~cation loop, was divided 

into one hundred small platelets. After calculating the 

interaction energies among all of the platelets (using 

the infinitesimal approximation) the sum of all these 

energies was taken giving the total interaction energy 

between two preCipitates. 

This kind of calculation of interaction energies 

6ives qualitatively and quantitatively different results 

from that"using the infinitesi~al approximation. In ad­

dition, an app~oximation of square plate-like preCipitate 

sh~e was assumed instead of equilibrated disc-shape e' 
precipitate. This is expected to influence to some extent 

the quantitative results but not qualitative results. 

A comp~ter was used to calculate interaction energ~e~ 
. 

of finite preCipitates because of the large number of 

~ 

33 
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summation of interaction energies involved; between two 

plates a sum of 104 interaction energies was required. 

Before starting the calculation of the total 

elastic energy of an array, the following conditions 

were r'equi.red: 

1. The minimum distance from the central precipitate 

for which the infinitesimal approximation method may 

be used. 

2. The distance between precipitates which gives the 

m~1imum interaction energy. 

To find the first condition, the interaction 

--':-:._ energies between two plates when they are mutually 

parallel (face-face and edge-edge configuration) and 

when they are perpendicular (edge-face configuration 

and edge-edge configuration) were calculated. The distance 

between the plates after each calculating step was 

increased by an increment of 1/10 length of the plates. 

The interaction energies according to these four combi­

nations are shown in Figs. 8,9,10 and 11. This is corn-

34 

pared with the interaction of infinitesimal precipitates 

(broken lines). From Fig.8 it is clear that the interaction 
-
energy of two finite square plates in face-face confi-

o , 

guration is much less positive (repulsive) than the 

inter3ction energy of two infinitesimal precipitates 

of th~ same configuration. 

This stems from the interaction of the elements 

! 
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.. 

far away from the centres of the precipitates. More 

important, this interaction energy of elements far 

away from centres of the precipitates leads to the 

minimum in the inter'action energy of two finite pre­

cipitates when they are mutually perpendicular in both 

combinations (as shown in Figs. 10 and 11). The ap-

pearance of the mini~um on the interaction energies» 

curves gives a tridimensional stable configuration 

with respect to the displacement of the central plate, 

as will be shown later. A different result is obtained 

by using the infinitesimal approximation, where the 

displacement in same particular direction leads to 

mechanically unstable tridimensional configuration. 

This conclusion is in agreement with Figs. 10 and 11 

where each displacement in the infinitesimal approxi­

mation leads the system to a lower energy state. Ac­

cording to the interaction energy curves (finite and 

infinitesimal) for all of these combinations a minimum 

distance of 50 units ( 5 times the edge length) from 

the central loop is considered a reasonable point at 

which to begin using the infinitesimal approximation in 

computing the interaction energ~es. Figs. 10 and 11 show, 

that the minimum interaction energy appears at different 

distances from the central precipitate depe~ding on nu-

tual configuration. From these curves it is apparent -

that the tridimensional configuration may be obtained 

35 



by combining parallel (repulsive) and vertical (attra­

ctive) confi5urations in different ways. 

Because, in general, a tridimensional array 
r 

will be made up of parallel and perpendicular combina­

tions, the separation of neighbouring plates correspon-

ding to a minimum in energy, if such a minimum exists, 

will not be that given by Fig. 10 or by Fig. 11, but 

will be determined by some balance between attractive 

3nd repulsive configurations. 

A Tyapkin array39 was chosen for study (Fig.12). 

The energy as a function of precipitate separation (co­

ndition 2) wa~ determined by calculating the total intcr-

action energy for different distances between neigh-

bouring precipitates. 

The total energy of an array may be expressed 

as: 

N N-1 N 

36 

Etotal = L Eself + 

i=l 
:L L (28) 

i=l j=i+1 

where Eself is the self energy of a loop, N is th~ 

total number of loops being considered, (E. t)" is 
~n ~J 

the interaction energy between the i-th and j-th loops. 

Since the self energy for (identical) loops, however 

i. 
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" 
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oriented, is constant for a ~iven number of loops, this 

was neglected during computation. The interaction energies 

of precipitates lying in the limit of 50 units distance 
f 

were computed using the finite approximation while the 

interaction energies of precipitates lying further away 

from the central precipitate were computed using the infi-

nitesimal approximation. 

The summation required care, since specific 

decisions were required (as the computation proceeded 

outward from a central loop) to determine the presence 

of a loop, and the distance between loops for which an 

interaction energy was being computed. 

37 

The total elastic energy per plate of the Tyapkin 

array versus the distance between the plates is shown 

in Fig. 13. 

It is seen that there is a minimum on the 

energy)curve (short range order) for a distance between 

neighbouring precipitates of about 15 units. This is dete­

rmined e.g., by combinations of the potentials given in 

Figs. 8 - 11. 

In order to estimate reliability of the appro­

ximation involved in treating precipitates more than 

50 units from the central precipitate as infinitesioal, 

the corresponding calculation was performed for a cut-

off radius of 100 units for interparticle separatiQn~ 

near that for minimum energy (Fig. 14). 
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The Table I shows the total number of preci-

pitates enclosed by spheres of radius 50 and 100 units, 

for near-neighbour separations of 13,15 and 17 units. 

Table 1 

number of p3rticles 

radius 

distance (centre to centre) 

13 15 17 

50 186 130 96 

100 1450 902 622 

By comparing the elastic energy curves of Fig. 

14 is apparent that the energy difference is small and 

that the ~nergy minimum occurs at the same separati?~ 

for both curves. 

The total elastic energy per plate of the 

Tyapkfn array versus the number of precipitates is shown 

in Fig. 1'). 

As indlcated on the di~gram these energies 

• 

were calCUlated for 1/8 of the sphere. Crudely, the total 

number of preCipitates is - 8 times greater. For example, 

38 
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--the point of 800 particles sbown in Fig. 15 corresponds 

to the total nu~ber of about 5 to 6 thousand precipitates. 

flg. 15 shows that the elastic energy reaches a minimum 

and that, on further addition of precipitates to the 

system, the energy starts to increase monotonically. 

It can be concluded that the greatest contribution to the 

elastic energy of the array co~es from the nearest neigh-

bours; this is in agreement with the potential decrease 

v/ith 1/r3 ( 6 ij '-' 1/r3). 

In order to show the existence of a fundamental 

difference between the energy vs. separation curves for 

finite precipitates and those for infinitesimal precipi-

tates the total elastic energy pe~ plate of the TYapkin 

array as a function of interparticle distance was calcu­

lated using the infinitesimal approximation (Fig. 16). 

It is obvious that this curve shows no ~inimum, and that 

it becomes increasingly more negative for smaller dis­

tances between the plates. 

On ttie basis of this data it would appear that 
'. 

the Tyapkin array should be stable since it possesses 
, ' 

~ minimum in the interaction energy curve. 

However, such a simple equilibrium criterion 

is incomplete.' In order to be sure that the periodical 

distribution of inclu3ions is stab~e, it is necessary 

to study the changes Of the interaction .energy of pre­

cipitates with respect to their displacement from the 

39 
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position of the ideal lattice sites, and to the volume 

perturbations as well. 

Therefore, the interaction energy calculations 

were made for the Tyapkin array but with the central 

plate's position altered a small amount, i.e. subjected 

to a virtual di~placement along x, y and z axes 

(the coordinate axes being disposed as shown schemati­

cally: ( ~Y) and the total interaction energy 

calculated after each displacement. The results of the 

energies of finite precipitates are shown in Figs. 17 

and 18. 

The energy was calculat~d for the displacement 

in x and z directions. The displacement in y dire­

ction has not been taken into account due to symmetry. 

From Figs. 17 and 18 it is seen that the interaction 

energy increases by successive increment of the displace­

ment along x(y) or z axes. 

Consequently, the Tyapkin unit cell as a perfect 

array is also a mechanically stable configuration. 
'. 

In addition, the Tyapkin array was tested for 

stability with respect to the displacement by applying 

the infinitesimal approximation as Fillingham et' a137 did. 

The results of these calculations are shown in Figs. 

19 and 20. It can pe seen that the array is mechanically 

stable Dnly in the z direction, 'while it is unst~ble 

40 

in the x and y directions because the energy d~crease8 
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during displace~ent of the centrnl plate from its central 

position. 

The c~use of this quite opposite conclusion 

is apparent because the interaction potentials for two 

finite precipitates in the perpendicular configuration 

possess a minimum, (which is not the case with the po-

tentials in infinitesimal approximation), as shown and 

discussed in relation to Figs. 8 - 11. 

As already mentioned Eurin et a1 36 have stu-

died various pos3ible arrays of precipitates. They 

further attributed the\formation of these arrays to the 

elastic interactions associated with cubic-tetragonal 

transformation strains. 

We have chosen some arrays and calculated their 

elastic ener~ies by considering the interaction energies 

of finite precipitates. The chosen lattices are schemati­

cally represented in Fig. 21 and their corresponding 

energies are tabulated in table II. 

All arrays listed in table II were characterized 

by the precipitates of the same aspect ratio and the 
• 

same Burgers vector (lOOOxl000xl00 R, b = 4 R). 
The <)121 > and <3213 > arrays are shown 

in Figs. 22 and 23. 

The precipitates are pl~ced in n si~e cubic 

lattice of parameter d/2, forming four sublattices of 

centres ~i (i=1,2.3,4) having cubic symmetry of t~e 
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* b = e t, where t is the thickness (100 i) of the 

precipitate and t is the constrained elastic mismatch(4xl0-2 ). 

: . 

I 

I 
. 1 
t 
t 

f 
~ 
~ 

~ 
~ 

r 

F 

. ,-



· ' 

," 

I 

FIG. 22 < 3121> ARRAY 



· ' . 

\ 

-

FIG .23 <3213> ARRAY 
,. -

, I 
\ E-

" 1-



~ , , . 

same parameter d. 

The notation <1'> <2> and <3> in Fig. 

21 denotes those precipitates whose tetragonal axes 

coincide with and crysta-

llographic axes, respectively. 

Table II 

configuration of energy per unit volume 
array 

ergs x 104 

0(1 0(2 cX~ c/.. lt 

1023 " - 22.3135 

3121 - 13.6695 

3213 - 13.6700 

1032 - 8.5225 

1302 - 8. 4645 

By denoting some configurations with <pqz:s> , 

the nuc:J.ei <6> correspond to 

the sites o{l cJ.. 2 eX} and 01. 4 (p,q,r,s = 1,?,3). For 

example, the configuration <:'210» represents the 

preci pi ta tes < 1 > pl3.ced at si tes ot.. 1 :lnd cI- .3' 

< 2> the precipitates placed at site cJ.. 2 while the 

si te d... 4 is not filled. The total interaction energy 

was calculated for the precipitates enclosed by a sphere 
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of radius of 50 units whereas the distance between pre­

cipitates was taken as 15 units. 

[001J 

[010J 

,. 

FIG.21 

only the 

From all va~arrays listed in table II 

Tyapkin ar~~::s~sses the property that the 

environment of eaoh precipitate is identical to~th~t. 
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of every other precipitate. To calculate the total energy 

~ . 



per unit volume of all arrays listed in table II, it was 

necessary to take into account how many precipitates 

possess a gi ,en environment and how many such configu­

ra tions 'exist. 

The results listed in table II show that the 

elastic energy depends strongly on configuration and 

that it can be minimize~ in arrays which avoid strongly 

repulsive interactions between neighbouring precipitates. 

-, ' The.distance of 15 unj.ts between the precipi­

tates taken in calculatine the interaction energies given 

in table II was chosen on the basis of the Tyapl{in array 

as the most stable for that particular distance. 

However, some l<J.ttices could furth~r minimize 
t 

the elastic energy by decre~sing the distance between 

the preci;>itates, as shown in Fig. 24. Th,e elastic energy, 

of the Tyapkin array is also shown on the Same fi~ure 

for comparison. 

The total number of precipitates enclosed by 

sphere of radius of 50 units for separations of 11, 13, 
1 

15 and 17 units belonging to the Tyapkin array and the 
. 

<3213> array ar~ shown in the table III. It should 

be emphasized that the energy of the «3~13:> array 

shown in Fig. 24 is the energy of a plate in the most 

favourable configuration and not the energy of the array. 

The total interaction energy per mole o~ tpe 

Tyapkin array containing precipitates characterized by 
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.... ., 
1000xl000xl00 ~ dimensions and by Burgers vector of 4 ~, 

is 0.03725 cal. 

By increasing the Burgers vector to 10~, 

the precipitate volume remaining the same (1000xl000x 

100, ~) the interaction energy was increased to 0.238 cal. 

'( 
Table III 

number of particles 

array 
, 

distance(centre to centre) 

11 13 15 17 

Tyapkin 186 130 96 

3213type A . 384 250 17Q 

• 
The total interaction energy of a particular 

array is ·.~onstant for g~"~en volume frac'ti.on and gi v~n 

aspect ratio and misfit. 

The interaction energy per plate is not constant 

for given volume fraction and given aspect ratio, for 
.'''' U 

it is proportional to the volume of the pracipitqte. 

For instance, this energy is - 6.694xl0- 13 ergs for 

precipitates characterized by the dimensions of 100x 

100xlO, R and by Burgers vector 01 0.4 R. 
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, 
By increasing the precipitnte volume by 1000 times re-

taining the same aspect ratio (1000xl000xl00, ~t b = 4 ~), 

the interaction energy becomes - 6.694xl0-10 ergs. By 

increasing Burgers vector to 10 ~ for the same volume 
"'" 

of precipitates (1000xlOOOxl00, ~), the interaction energy 

becomes more negative, i.e. - 4.18xl0-9 ergs. 

These facts become important when considering 

Ostwald ripening between two precipitates when the surface 

energy decrease is also very small. For example, by de­

creasing the volume of one preCipitate by 5'~ in respect 

to the other one, ~e surface energy diminution due to 

the Ostwald ripening is only 2.3xl0- 11 ergs (both preci­

pitates have had the dimensions of lOOOxl000xl00, ~). 

As emphasized above, the elastic energy tends 

to stabilize the precipitates of the same size, while 

the surfa'ce energy is a maximum then. 

In order to investigate the stability of a 

regular lattice against Ostwald ripening the variation 

of the elastic energy of the Tyapkin array with sma~~ 
" \ 

volume ~xchanges between neighbouring pz"'ecipitate-s was 

investigated. 

The ch~nge of the elastic energy for volume 

transfer between one p[1ir of neighbouring precipitates 

along the x or y axis was calculated. The corresponding 

'" calculation was thei performed for mass transfer in the 

z direction. The volume perturbation was carried out 
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at fixed aspect ratio. First, the energy change of the 

isolated pair of neighbouring precipitates was calculated. 

The results are given in Fig. 25 and Fig. 26. Fig. 25 

shows that in the case of the edge-edge configuration 

(x, y - direction) the elastic energy is minimal if the 

precipitates are of the same size. Thus, the elastic 

interaction appears as a factor which stabilizes equal 

dimensions of the particles, if this interaction is at­

tractive 15 • Fig. 26 shows the cha!1ge of the elastic ene~gy 

due to volume changes between the pair of precipitates 

in the face-face configuration (z -direction). 

If the interaction is repulsive (Eint is posi­

tive), then it t~nds to promote the diffusional growth 

of one precipitate at the expense of the other. 

From the interaction energies of pairs of pre­

cipitates (as a function of volume perturbation) it might 

be then concluded that the Tyapkin lattice is stable 

with respect to volume perturbations in the x( y) di-

rection but ,not in the z direction. 
~ , 

This conclusion, however, would be reached 

without considering the possible stabilizing influence 

of the lattice against the volume transport in the z 

direction. This possibility might come from the fact 

that the first nearest neighbours 0 f the (fyapkin lattice 
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are in the edge-edge configuration with negative int~raction 

energies which, as shO\'ln in Fig. 25, have a stab~Jizing 
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effect, while the second order neighbours in the z 

direction have the opposite effect. 

In order to investigate the stability of the 

pair in the strain field of the lattice, the following 

calculations were done: 

- The total interaction energy per plate for equal 

size (perfect) precipitates surrounded by a interaction 

sphere of radius of 60 unitG, of precipitates spaced 15 

uni ts apart waG cCllcul .. :'\ted. 

.... ~ .. - The energy of the perfect lattice ( b.. V = 0) was 

icalculated and' compared with an imperfect one, \,i th the 
.r ,,' 

""~~ same number of precipitates. 

The elastic energy of the imperfect lattice 

was calculated in the following way: 

Fig. 27 shows two unequal preCipitates, and 

the lattice of pla.tes that interacts with this pair. 

The preCipitates of the same distance and the same envi-

I"onment are marked with the same number. For eXample, 

the interaction for plate 

equal sized precipitates 

was obtained by replacing 

and 2 by unequal sized 

plates l' and 2'. 'fhe energy per plate (work to form 

the plate in the strain field of the other plate) is 

Given by the 'summation: 
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where LBint ( 1 '-L) is the sum of interactions of the 

unperturbed precipitates with the enlarged plate 1'. 

The summation was done for the precipitates enclosed 

by the sphere of radius of 60 units (giving 192 preci­

pitates). Eint (1'-2) is the interaction energy between 

the enlarged precipitate l' and the unperturbed precipi-

tate. 2'. Eint (1'-2') is the interaction energy between 

the enlarged precipitate l' and the diminished precipi­

tate 2'. 

The total energy per plate 2' was obtained 

in the same way but with the imperfect plate 2' taken 

as the central plate; 

In all other cases, the central plate was un­

perturbed. surrounded by perfect neighbours except ~~r 

precipi~ates It and 2'. 

To calculate the total interaction energy ~er 

plnte of $ome perfect precipitate} it was necessary to 

find the position and the distance of the imperfect pre-

cipitates l' and 2' . " and to determ1ne whether both 

of them or only one was enclosed by the sphere of rad~us 

of 60 units. This radius of 60 units was chosen in order 
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to ensure that the interactions between 2'-5 and 1'-6 

were included. (In other words, it was desirable to make 

sure that the most unstable configurations were taken 

into account in calculating the total interaction energy 

of the imperfect lattice). 

The total interaction energy per plate 3 was 

obtained in the following way: 

where IEp is the total interaction energy per plate 

when 8ll precipitates are of the same size. Eint (3-1) 

is the inte~~ction energy of the pair of the perfect 

precipitates 3 and 1. Eint (3-1 t ) is the interaction 

energy between the perfect central precipitate 3 and 

the imperfect precipitate 1'. Eint (3-2) is the inter­

kction energy between the pair of perfect precipitates 
'. 

3 and ,2. Eint (3-2') is the interaction energy between 

the perfect central precipitate 3 and the imperfect 

precipitate 2'. Similarly, the tQtal interaction energy 

per pl~te 4 is: 

\ 
\ 
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In the total internction energy per plate 7 ~nd 8 

only one imperfect precipitate was enclosed: 

Eint (7) = ~Ep-Eint(7-1)+Eint(7-1') 

and 

Eint (8) = ~Ep-Eint(8-2)+Eint(8-2') 

The interaction energies of the other pairs 

were calculated in the analogous way. 

The total energy of the imperfect lattice was 

obtained by summing the interaction energies of each plate 

with the lattice. The total energy of the perfect lattice 

was compared with this value. 

The results of these ca}culations are shown 

in Fig. 28. It is seen that the volume perturbations in 

the z ~ire6tion lead to an increase in the total energy 

of the lattice, in spite of the strong positive inter­

~ction energy of the p3ir of precipitutes in the face-

face conft~uration. 

On the basis of the results shown in Fig. 28 

51 

it io tentatively concluded that the lattice has a 

stabilizing effect in respect to these ~olume perturbations. 
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A detailed analysis of all interaction energies 

show that the biggest stabilizing contribution comes 

from the nearest neighbours in the edge-face configuration, 

as shown in Fig. 25. As already mentioned, the equili-

brium is metastable, because E has infinite surface 

slopes for V1 = 0 and for V2 = 0: thus, a large flu-

ctuation will cause one precipitate to -grow at the expense 

of the other. 

Testing of the Tyapkin lattice in x(y) di­

rection was not dC-because it is obvious that the 

lattice is stable in these directions, for the first 

nearest neighbours are in the edge-edge configuration 

which is stable with respect to the'volume perturbation, 

in" accordance with the above discussion. 
A) 

It is interesting to note that the same result 

is obtained for 6. E, when the pairwise interactions of 

all precipitates (within the sphere of radius of 60 units) 

with the precipitates l' and 2' are summed. This 
. 

result is presumably due to the mutual cancellation of 
'. 

interactions a~ong unperturbed precipitates. 
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CdAPTER IV 

CONCLUSIONS AND SUGGBSTIONS FOR 

FUTURE .'/ORK 

IV. 1. Conclusions 

• 

. 1. The elastic interaction among finite precipitates 

causing tetraeonal distortions is qualitatively 

and quantitatively distingui5hable from that for 

infinitesimal precipitates. 

2. The difference between the elastic energy of 

finite precipitatas and of precipitates in infi­

nitesimal approximat~ comes from the interaction 

of the elements far aW8Y)from the centres of pre-
I 

cipitates. ~ 
,,/ 

This "peripheral" interaction causes a minimum 

in the interaction energy when two precipitates 

are mutually perpendicular, while in the parallel 
'. 

configuration it leads to considerable decrease . 
of the interaction e~ergy (otherwise positive). 

~he appea~ance of the minimum on the interaction 

curves leads to stability of the Tyapkin tridi-

mensional array. 

The optimum separation ~t square ~rec1pitates , , . 

, is seen to occur at a separation (centre to 
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centre) of about 1.5 times the edge length. 

5t. Qul te the opposite result was obtained from 

, calculatiods based on the infinitesimal appro­

ximation. 

6. ',~rther miIJ.imization of the elastic energy may 

possibly be achieved py choosing different 

configurations and by varying the distance be­

tween neighbo'uring precipitates. . ~ , 

• 

54 

> 7 . " The gre~test contribution in the elastic energy 

. , 
Q' 

I '" ' 

. 
of ~n array comes from the closest neighbours 

8. It was sh~wn that the Tyapkin array is ,mechani-
, . . 

cally stable since any displacement of the centr~ 
precipitate in ~itherthe ~"( Y' ) . or Z" di- " 1 
rection leaves the system in the 'higher energy 

,state •. 
'. . 

9. The 'invest,igations of the Tyapkin array via the 

10. 

displacement of the central loop in infinitesimal . ' 

a~prOximation have shown this array to be unstab~e.· 

"T~e reason for this lies ,in the elastic energy· 
" curve versus distance in.infinitesimai approxi-

mation Which does not.possess·a minimum. 

The investig~tions of th~ 'stability on the, 
, . . 
vo~ume perturbations between the,nearest neighb~~rs 

, " 

bf the .Ty~~kin lattice in x ( y) and z di-

", 

, " 

" 

" 

" 

: i 
: j 



rections show that the edge-face configuration 

(x and y directions) is stable with respect 

to these volume perturbations, while the face­

face pair co~figuration (z direction) is the 

unstable one.' The reason for this lies in th·e 

fact that the edge-face configuration is attra­

ctive while the face-face configuration is repu­

lsive. 

11. The investigation of the variation of the total 

elastic energy of the Tyapkin arr.«y caused by 

volume exchange between the nearest neighbours 

. 12. 

in the z direction (the face-face configuration) 

shows that the lattice has a stabilizing effect. 

The lattice therefore possesses the minimum 

elastic interaction energy when all precipitates 

are of the same dimensions. 

Besides detailed investigation of the Ty~pkin 

array, 'the 'elastic energies of' the o.ther arrays 

w~re' calculated and 'it was shown that they were 

',l~ss stable th~n the Tyapkin.array. They have 

not been tested for stability against small 

perturbatian~. . " 

.. 

55 

, . 

.1 
\ 

. ' 
", 

" ,.' .' 

: '. I 
I , i 

.. 
'. 

r 

A 
, :·1 

J 
J 



.. 

(' 

IV. 2. StJGGESTION FOR FUTURE WORK \ 

The theoretica~ considerations presented here 

have shown that regular arrangements of precipitates 

may lower the elastic energy of the system. 

Of primary importance is the need for some 

experimental investigations to show that e' precipi­

tates in Al-Cu alloy ar'~ arranged in a regular array 

whi~h minimizes the elastic energy of the system as a 

whole. That it is possible to'get lo~g range periodic 

arrange men ts 0 f e t precipitates in Al-Cu alloy is 
~ 

clear from Fig. 29. This electron micrograph was taken 

by C.M. Sargent. 
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The simtlar periodic structure could be explained 

as due to an adequate tilting of some sections of the 

regular array of precipitat~s. As an example, Fig. 30 

is the schematic repres~htation of the section (110) 

of the 1213 array and of the possible effects due to 

slight tilti~g of the given section. ... 
'. .;., 

,. , 

The most suitable technique for solving this 

problem is to form images using reflections character­

istic of the ~recipitation phase, because in th~s case 

'(as distinct from the ~right or dark field photogFaphs' 

using matrix reflections) the image is not obscured 

• by the effepts connected with elastic d.~formations of 
the matrix'. .'. .,. 
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S~multaneously with experiment~ to determine 
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the spatial distribution of the precipitated phase in 

aging of Al-4% eu alloy, an investigation upon the influ­

ence of the external stress on the morphology and kinetics 

of coarsening 0 f precipitates' would be expected to gIve, 

valuable data regarding the stability of the array_ 
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~ APPENDIX 
, 

Computation of interaction energies 

Program 1: 

C INTERACTION ENERGY OF TWO SQUARE PLATE SHAPED PARTICLES 
C IN THE FACE-FACE CONFIGURATION AS A FUNCTION OF 
C SEPARATION 

DIMENSION STE1(20),STE2(20),STE3(20),STE4(20), 
lXl(20),X2(20),Yl(20),Y2(20),Z2(50) 
READ(5,500)(Z2(LZ2),LZ2:1,12) 

500 FORMAT(12F5.1) 
READ(5,501)X1INI 

501 FORMAT(Fl0.l) 
S=1.0 

~=9 
Zl=O.O 
X1(1)=X1IN1 
DO 10 I::: 1 ~M 

Xl(I+l)=Xl(I)+S 
10 CONTINUE 

\ 

N=M+l 
DO 20, 1=l,N 
X2 (.J: )=x1( I) 
Yl(I)=X1(I) 
Y2(I)=X1(I) 

20 ·CONTINUE 
DO 200 LZ2=1; 12 

'STE1(1)=0.0 
STE2( 1 )=0.0 
STE3(1)=O.O 
STE4( 1 )=0.0 

.. , 
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DO 210 LX1=1,N . 
00 220 LX2=l,N 
00 230 LY1=1',N 
00 240 L Y2= 1 , N 
VX=X2(LX2)-X1(LX1) 
VY= Y2(LY2.)- Y1 (LY1 ) 
VZ=Z2(LZ2) 
SR=VX**2+VY**2+VZ**2 

'R=SQRT(SR) 
VA=Z2(LZ2) **2 
VB=18.0*VA!SR 
VC=45.0*VA**2/SR**2 
VD=3.0+VB-VC 
VE=(-1.9E-7/(SR*R»*VD 
STE4(LY2+1 )=STE4'(LY2)+VE 

240 CONTINUE 
STE3(LY1+1)=STE3(LY1)+STE4(N) 

230 CONTINUE 
STE2(LX2+1)=STE2(LX2)+STE3(N) 

220 GONTINUE 
STE1(LX1+1)=STE1(LX1)+STE2(N) 

210 CONTINUE 
WRITE(6,600)Z2(LZ2),STE1(W) 

59 

600 FORMAT(lH ,10X,2HD=,F5.1,2X,5H*****,13HTOTAL ENERGY=,E15.7) , .... 
200 CONTINUE 

STOP 
END" 

£rogram 2: 

C 

IN'rERACTION ff £NEJWY OF TWO SQ~ARE PLATE SHAPZD,. PARTICLE'S 

IN THE EDGE-FACE CONFIGURATION AS A FUNCTION OF SEPARATION 
DI~NSION aTE1 (qO) ~ STE2(40), STE3(40), STE4(40 ).: ' ~ . 

1 X1(40), Y1(4b) , YC(40), ~(40) ~ 
READ (,5 ,500)( YC( I), I=l , 1,2) 

, ;;.-

·500 FORMA~( ·12F5. 1 ) 
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XO;::-5.5 
DO 10 K=1,10 { 

I 
Xl (K)=XO+IC ,,/ ", . .----
Y1 (K)=X1 (K) 
Z2(K)=X1(K) 

10 CONTINUE 

DO 200 1= 1 , I 2 
STE1(1)=0.0 
STE2(1)=0.0 
STE3(1)=0.0 
STE4( 1 )=0.0 
DO 210 LX1 =1,10 
DO 220 LY2=1, 10 
DO 230 L Y 1 = 1 , 10 
DO 240 LZ2=1, 10 
VP=YC(I)-5.5+LY2 
VY= VP- Y1 (LY1 ) 
VX::Xl (LXt ) 
VZ=Z2(LZ2) 

.SR=VX**2+VY**2+VZ**2 
R=SQRT( SR) '. 

, A 

VA=VP**2+~(LZ2)**2 

VB::: VP * zi( nz2 ) 

VC=3.0*VA/SR 
VD=45.0*VB**2/SR~*2 

'. 
VE:: 1 .0+ VC- VD 

VF=(-1.9E-7/(SR*R»*VE 
STE4(LZ2+1)=STE4(LZ2)+VF 

2.40 --CONTINUE 

. ~TE3(LYl +1 )=S~E3(LYl )+STE4( 10) 
c!30 CONTINUE : 

'STE2(LY~+1 )=STE2(LY2)+STE3( 10) 
" 220 CONTINU~ . ~ 

~TE1(LX1+1)=STE1(LX1)+STE2110) 
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210 CONTINUE 
, 

WRITE(6,600)YC(I),STE1(10) 
600 FORMAT(lH ,10X,2HD=,F5.1,2X,5H***~·, 13HTOTAL E~ERGY=E15.7) 
200 CONTINUE 

STOP 
END 

Program 3: 

C THE TYAPKIN ARRAY (THE FINITE APPROXIMATION) - VERTICAL 
C 

C 

PLATES-
DIMENSION STE1(300),STE2(300),STE3(300),STE4(300), 

1 Xl(300),Yl(300},XC(300),YC(300),ZC(300) 
READ(5,500)(XC(I),I=l,N) 

500 FORMAT(NF5.1) 
N IS A FUNCTION OF THE VOLUME'FRACTION FOR A GIVEN ARRAY 
READ (5,501)(YC(I),I=1,N) 

501 FOlli~AT (NF5.1) 
,-I, 

READ(5,502)(ZC(I)',I;::1,N) 
502 FORMAT(NF5.1) 

XO=-5.5 
DO 10 K= 1,10 
Xl (K)=XO+K 
Yl (K)=Xl (K) 

c 1 0 CONTINUE 
SUME=O.O . " 
D9 190 1= 1, N 

XX::XC(I) 
YY=YC(I) 
ZZ=ZC(I) 
SRI=XX**2+YY**2+ZZ**2 
RI=SQ.RT(SRJ:) 
IF(RI-100.O)11,11,190 

1 1 DO 200 K X= 1 , 1 0 

DO 210 KY=1,10 

DO 220 JX=1 t 10 
DO 230' J Z= 1 , 1 0 ,. 
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s'rEt ( 1 )=0.0 
STE2(t)=0.0 
STE3(l)=0.0 
STE4{ 1'>,=0.0 
VP=XC(I)-5.5+JX "I' 

VR=ZC(I)-5.5+JZ 
VX=VP-Xl (KX) 
VZ=VR 
VY= YC(I)- Yt (KY) 

f 

SR=VX**2+VY**2+VZ**2 t 
R=SQRT(SR) ~ 

t 
~ 

VA=VP**2+VR**2 ! 
! 

VB::VP*VR ~ 
i 

VC=3.0*VA/SR 1 
· VD:45.0*VB**2/SR**2 -

~ VE=1.0+VC-VD -: · VF=(-1.9E-?/(SR*R»*VE i 
j 

STE4(JZ+l)=STE4(JZ)+VF I -
i 

230 CONTINUE ~ 
· 

STE3(JX+l)=STE3(JX)+STE4(10) -
! 

= 
220 CONTINUE 

STE2(KY+)=STE2(KY)+STE3l10) --

210 CONTINUE .. 
STEl (KX+l)=STEl (KX)+STE2(10) 

200 CONTINUE 
WRITE(6,600)STE1(10) .. 

600 F6RMA~(lH ,5X,13HT?TAL ENERGY=,E15.7) 
SUME=SUME+STE1(10) 
WRITE(6,700)SUME 

700 FORMAT( 1 H ,5X,12HSUME ENERGY=,E15.7) 
190 CONrINUE 

2~ 

" s'rop 
END 

" 
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Program 4: 

C THE TYAPKIN ARRAY (THE FINITE APPROXIMATION) - PARALLEL 
C PLATES -

DIMENSION STE1(300),STE2(300),STE3(300),STE4(300), 
1 X1(300),Y1(300),XC(300),YC(300),ZC(300~ 
READ(5,500)(XC(I),I=1,N) 

500 FORMAT(NF5.1) 
C N IS A FUNCTION OF THE VOLUME FRACTION FOR A GIVEN ARRAY 

READ(5,501)(YC(I),I=1,N) 
501 FORMAT(NF5.1) 

READ(5,502)(ZC(I),I=1,N) 
502 FORMAT(NF5.1) 

XO=-5.5 
DO 10 K=l t 10 
Xl (K)=XO+K 
Y1 (K)=X1 (K) 

10 CONTINUE 
SUME:::O.O . 
DO 190 1= 1 ,N . 
XX=XC(I) 
YY=YC(I) 
ZZ=ZC( I) 
SRI=XX**2+YY**2+ZZ**2 
RI=S,<tRT( SRI) 
IF\RI-100.0)1',",'90 

11 DO 200 KX=1,10 
Db 210 KY=1,10 
DO 220 JX= 1 ,10 

DO 230 JY=l, 10 
51'E1(1)=0.0 
sr~L2 ( 1 ) =0 .0 

$'l'E3( 1 )=0.0 
STE4(l)=O.O 
VP=XC( I )-5.5+JX 
VQ=YC(I)-5.5+JY 

~ VZ::ZC( I) 
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VX=VP-Xl (KX) 
VY=VQ .. Yl (KY) 
SR=VX**2+VY**2+VZ**2 
R=S~RT( SR) 

VA=ZC(I)**2 
VB=18.0*VA!SR 
VC=45.0*VA**2/SR**2 
VD=3.0+VB-VC 
VE=(-t.9E-7i{SR*R»*VD 
STE4(JY+l)=STE4(JY)+VE 

230 CONTINUE 
STE3(JX+l)=STE3(JX)+STE4(10) 

220 CONTINUE 
STE2(KY+l)=STE2(KY)+STE3(10) ~ 

210 CONTINUE 
STE1(KX+l)=STE1(KX)+STE2(10) 

200 CONTINUE 
WRITE(6,600)STE1(10) 

600 FORMAT(lH ,5X,13HTOT~ ENERGY=,E15.?-) 
SUME=SUME+STE1(10) 
WRITE(6,700)SUME 

700 FORMAT(1H ,5X,12HSUME ENERGY=E15.7) 
190 CONTINUE 

STOP 
END 
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Program 5: . 

C 

c 
T,HE 'rYAPKIN ARRAY (THE INFINITESIHAL APPROXUlt\TION) 
- I!ERTICAL LOOP3 - (D=15.0) 

COHMON RRI(200),RVE(200) 
DIH2~SION XC(300),YC(300»)6C(300),~UHE(300) . , 
WRITE(6,500) . 

500 FORMAT( 1 H , 5X, 8HDISTANCE, ?X, 6HENERGY, 9X, 13HSUH OF ENERGY/) 

IJL=l 

DO 5 I=l,200' 
RRI (I).=o.o 
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5 RVE(I)=O.O 
DO 10 1=30,180,30 
DO 20 J=30,180,30 
DO 30 L=30,180,30 
XO=-30.0 
YO=-15.0 
·ZO=-15.0 
XC( I)=XO+I 
YC(J)= YO+J 
ZC(L)=ZO+L 
XX=XC( I) 

YY=YC(J) 
ZZ=ZC(L) 
SRI=~~**2+YY**2+ZZ**2 

RI=.:>QRT(SRI) 
IF(RI-50.0)10,10,100 

100 VA=YC(J)**2 

VB::3.0*VA!SRI 
VC=XC( I) *ZC(L) 
~=45.0*VC**2/SRI**2 

VF=4.0-VB-VD 
VE:(-1.9E-3/(SRI*RI»*VF, 
CALL ORDER(IJL,VE,RI) 
IJL=IJL+l 

30 CO~TINUE 
20 CONTINUE 
10 CONTINUE 

SUME(l):::RVe;(l) 
.IJ=IJL-l . 

DO 50 I=l,IJ 
50 StiME«(+1)=3UMB(I)+~VE(1+)~ 

,WRITE( 6, 600) (RRI (I) ,RVE( I), SUl4Et 1),1= 1, IJL) , , 
600 FOm4AX(5X,3E15.7) 

STOP 
END 
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SUBROUTINE ORDER{IJL,VE,RI) 
....... 

"-

DIME~SI~N TRI(200)t TVE(200) 
COMMON RRI(200),RVE(200) 
DO. 100 1:::1, rJL , 
IF(RRI(I)-RI)10,20 t 20 

20 DO 5 J=l ,IJL 
'rRI (J)=o.o 

5 TVE(J)=O.O 
DO 30 J:::I,IJL 
TRI(J-I+l)=RRI(J) 

30 TVE(J-I+l)=RVE(J) 
""", 

RRI( I)=RI 
RVE(I)=VE 
IT:::IJL-I+1 
DO 40 J=l~IT 
RRI(I+J)=TRI(J) "(t 

40 RVE(I+J)=TVE(J) 
RETURN 

10 IF(I.EQ.IJL) GO TO 200 

100 CONTINUE 
200 RRI(IJL)=RI 

RVE( IJL)= VE 
RETURN 
END 

Program 6: 
C THE TYAPKIN ARRAY (lHE INFINITESIMAL APPROXIMATION) 
C - PARALLEL LOOPS - (0:::15.0) 

COMMON RRI(200),RVE(200) 
DHIENSION XC(300), YC(300) ,ZC(300) ,SUHE(300 ) 

WRlr:'E(6,500) 
?oo FO~MAT(lH ,5X,8dDL5TA}iCE,7X,6HSN'ERGY,9X, 13:rSUM OF ENERGY/) 

IJL::1 
DO 5 1=1,200 
RRI(I)=O.O 

5 RVE(I)=O.O 
DO 10 1=30,180,30 
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DO 20 J:::30,180,30 
DO 30 L::: 30, i 8'0 , 30 
XO:-30.0 
YO:::-30.0 
ZO=-30.0 
xC(I ):::XO+I 
YC(J)=yo+J 

~ ZC(L)=ZO+L 

t . 

, XX=XC(I) 
YY::: YC(J)" 
ZZ=ZC(L) ~ 
SRI=XX**2+YY**2+~Z**2 

"-

RI=S:tRT(SRI) 
IF(RI-50.0)10,10,10a 

100 VA=ZC(L) **2 
VB=18.0*VA/SRI 
VC=45.0*VA*~2/SRI**2 

VD.:3.0+VB-VC 
VE=(-1.9E-3!(SRI*RI»*VD 
CALL ORDER(IJL,VE,RI) 
IJL;::IJL+l 

30 CONTINUE 
20 CONTINUE 
10 CONTINUE 

SUl-fE( l);::RVE( 1 ) 

IJ~IJL-l 

DO -50 1=1, IJ 
50 SUME(I+l):::SUME(I)+RVE(I+l) 

WRITE(6,600)(RR1(L),RVE(r),SUME(I),I;::1,IJL) 
600 FORMAT(5X,3E15.7) 6 . 

S!OP 

END 

SUBROUTINE O~DER(IJL,VE,RI) 
DIMENSION-TRI(200),TVE(20a) 
COHMON RRI(200),RVE(200) 

' ....... ' : " , . 
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DO 100 I:::l,IJL 
IF(RRI(I)-RI)10,20,20 

20 DO 5 J = 1 ,IJL 
TRI(J)=O.o 

S TVE(J)=O.O 
DO 30 J=I,IJL 
TRICJ-I~)=RRICJ) 

30 TVE(J-I+l)=RVE(J) 
RRICI )=lU 
RVE(I)=VE 
IT=IJL-I+l 
DO 40 J= 1, IT 
'RRI(I+J)=TRI(J) 

40 RVE(I+J)~TVE(J) 
RETURN 

1 0 CONTINUE 
2 0 RRI(IJL)=RI 

RVECIJL)=VE 
RETURN 
END 

GO TO 200 
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Program Z: 

c 
c 

VOLUME PERTURBATION BETWEEN TWO FINITE PLATES IN THE 

EDGE-F~CE CONFIGURATION 
DIMENSION STE1(300),STE2C300),STE3C300),STE4C30Q), 

1 AB1(100),AB2(100),X1IC100),Y2I(100),Z2I(lOO),Xl(100), 

1 Yl(100),Y2~100),Z2(100) 
READ(S,SOO)(AB1(K),K=1,4) 

500 FORHATC1iF20. 7) 

~E.\D( 5, 501)( AB2(K), ~\= 1,4) 
501 FORMAT(4F20.7) 

READ(5,502)(X1I(K),K=1,4) 
502 FORMAT(4F20.7) 

READ(S,503)(Y2I(K),K=1,4) 

" ' 

". 
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503 FORHAT.( 4F20. 7) 
READ(5,504)(Z2I(K) ,K=l ,'4) 4 

504 FORMAT(4F20.7) 
• 

DO 150 L=1,11,5 
DO 5 Ke:1,4 
s= 1.0 
M=9 
Xl(1)=X1I(K) 
DO 10 l=l,M 
X1(I+l)=X1(I)+S+AB1(K) 

10 CONTINUE 
N=M+l 
DO 20 I=l,N 
Yl(I)=X1(I) 

20 CONTINUE 
Y2(1)=Y2I(K)+L-l.0 
DO 30 1=l,M 
Y2(I+l)=Y2(I)+S-AB2(K) 

30 CONTINUE 
Z2( 1 )=Z21 (K) 
DO 40 I=l,M 
Z2(I+1)=Z2(I)+S-AB2(K) 

40 CONTINUE 
STE1(1)=O.O 
STE2(l)=O.O 
STE3(1)=0.0 
STE4( 1 )=0.0 
DO 200 LX1=1,N 
DO 210 LY1=1,N 
DO 220 LY2=1,N 
DO 230 L Z2 = 1 ,N 
VX=X1 (LX1 ) 
VY = Y2 ( L Y2 ) - Y 1 (L Y 1 ) 
VZ=Z2(LZ2) 
SR=VX**2+VY**2'+VZ**2 
R=SQRT(-SR) 

" ,. 
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VA=Y2(LY2)**2+Z2(LZ2)**2 
VB=Y2(LY2)*Z2(LZ2) 
VC=3.0*VA/SR 
VD=45.0*VB**2/SR**2 
VE=1.0+VC-vp 
VF=(-1.9E-7/(SR*R»·VE 
STE4(LZ2+1)=STE4(LZ2)+VF 

230 CONTINUE 
STE3(LY2+1)=STE3(LY2)+STE4(N) 

220 CONTINUE 
STE2(LY1+1)=STE2(LY1)+STE3(N) 

210 CONTINUE 
STE1(LX1+l)=STE1(LX1)+STE2(N), 

200 CONTINUE 
WRITE(6,600)AB1(K),Y2(1),STE1(N) 

\ 

\ 

\ 
J 
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600 FORNAT(lH ,5X,4HAB1=,Fl0.4,5X,3HY2:,F19.4,10X,7iIENERGY=,E15.7) . 
5 CO~TINUE " 

150 CONTINUE 
STOP 
END \'. -"'. 
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