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Abstract

This thesis focuses on developing empirical methodologies for improving process op-
eration and product quality, in four important chemical engineering problems, using
multivariate projection methods, such as Principal Component Analysis (PCA) and
Projection to Latent Structures (PLS). The four problems addressed in this work are
concerned with (i) improving and optimizing the trajectories of manipulated variables
in batch processes; (ii) improving the identification of non-parsimonious dynamic pro-
cess models using the Jackknife and the Bootstrap methods; (iii) developing mean-
ingful specification regions for raw materials entering a consumer’s plant and, (iv)
improving transition policies in start-ups, re-starts and grade changeovers that are
routinely performed in multi-product plants.

The first problem addresses the situation where one desires to gain under-
standing of how and when, during the course of a batch, manipulated process vari-
ables have a significant effect on product quality. This amounts to estimating the
sensitivity of product quality to manipulated process variables at various degrees of
completion in a batch process. This information can be used in process development
and in the optimization of already existing processes. The proposed approach involves
adding designed experiments to batch policies currently used and then analyzing the
resulting data bases using multi-way multi-block PLS. A new pathway PLS algorithm
was developed for incorporating intermediate quality measurements collected during

the course of each batch.



In the second problem, the identification of non-parsimonious dynamic process
models is improved through a more judicious selection of the meta parameter in regu-
larization methods (ridge regression) and latent variable methods. These methods are
often used to overcome ill-conditioning frequently encountered in the identification of
such over-parameterized models. A new criterion for selecting the meta parameter
(ridge parameter in regularization methods and the number of components in latent
variable methods) is proposed, based on Jackknife and Bootstrap statistics. It is
shown that this criterion outperforms the use of cross-validation (default criterion)
and leads to the identification of models that are closer to the true process behavior.

Developing an approach for defining multivariate specifications on incoming
raw materials was important because there is a void in the quality control literature
in this area. Specifications are usually defined in a univariate manner, based on past
and often subjective experience. This work provides a sound, data-based approach for
developing truly multivariate specification regions in a variety of industrial situations.
The approach uses PLS methods to analyze historical data on the incoming raw
materials, on the consumer’s plant, and on the consumer’s end product to define
multivariate specification regions for the incoming raw material properties.

The last problem consists of improving the performance of process transi-
tions (start-ups, re-starts and grade changeovers), using historical process data. In
particular, this work addresses two questions: (i) how to improve transition policies
to minimize transition time and amount of off-grade materials, while ensuring safe
operating conditions and (ii) how to ensure that at the end of a transition, steady-
state process conditions are such that good quality products are obtained, and are

consistent with past periods of production.
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Chapter 1

Introduction

Improving process operation and product quality is of paramount importance for the
chemical processing industry. Processes are often required to operate over a wide
range of conditions to satisfy consumer’s demand for various products. The quality
of these products should always meet high standards in spite of disturbances affecting
the process operation, such as variations in raw material properties, environmental
conditions, impurities and so forth. In addition, the profitability of chemical opera-
tions must be ensured through a good control of productions costs and productivity.
To resolve this rather complicated problem, process models either built using funda-
mental principles or using process data (empirical models) are often developed to aid
operators and engineers.

When good fundamental process models are available, a lot can be done to
improve process operation and product quality. For example, these models can be
used to optimize steady-state operation or transitions between different modes of op-
eration. Robust control systems can be designed to reject disturbances and maintain
stable operation. The sensitivity of process operability and product quality to varia-

tions in the properties of raw materials and other disturbances can also be assessed.
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However, when no such detailed fundamental models exist and when they are too ex-
pensive and time consuming to develop, empirical models are a very useful alternative
approach to achieve better process operation and products.

Empirical modelling approaches are also attractive since nowadays, process
measurements are routinely collected using computers, and these data are readily
available for modelling purposes. Often hundreds to thousands of highly correlated
measurements are collected, with some missing values, due to sensor failure and other
reasons. In the past, multivariate projection methods such as Principal Component
Analysis (PCA) and Projection to Latent Structures (PLS) have proven to be suc-
cessful for analyzing these type of data bases in many applications, such as in the
analysis of historical process data, process monitoring and fault detection (Kourti
and MacGregor, 1995; Kourti et al., 1996), soft sensors (Kresta et al., 1994; Roney,
1998), dynamic model identification (MacGregor et al., 1991; Dayal and MacGregor,
1996) and product design (Jaeckle and MacGregor, 1998: Jaeckle and MacGregor,
2000) etc. It would therefore seem logical to extend the application of these methods
for solving other chemical engineering problems.

The objective of this thesis consists of developing sound, empirical methodolo-
gies based on multivariate projection methods, or modifications of them, to solve four
important problems, frequently encountered in chemical engineering. These problems
are: (i) improving and optimizing the process variable trajectories in batch processes;
(ii) identifying better non-parsimonious dynamic models for process control purposes;
(iii) developing multivariate specification regions for raw materials and, (iv) improv-
ing start-ups and grade changeovers and other process transitions in multi-product
plants. A brief description of each problem as well as a discussion of the objectives

and contributions of this work are presented below.
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1.1 Multivariate Analysis and Optimization of Pro-
cess Variable Trajectories for Batch Processes

In the development and optimization of batch processes, it is necessary to under-
stand how and when during the course of a batch, manipulated process variables
affect product quality. For example, in fermentation and polymerization, the batches
often go through several different stages of operation, within which different physical
phenomena occur. Some process variables strongly affecting quality early in the batch
may have no effect beyond a certain degree of completion is reached, while some other
variables may have a consistent impact on quality throughout the batch. Identifying
what features of batch process trajectories affect final product quality is therefore
important to improve the quality of already existing products and for developing new
products.

A common solution to this problem, which is well documented in the litera-
ture, is to make use of a detailed fundamental model of the process in conjunction
with some optimization algorithm. This allows one to compute the optimal tra-
jectories to implement on the manipulated process variables to obtain the desired
product. When such good models are not available, alternative empirical approaches
include Evolutionary Operation (EVOP) and Response Surface Methods (RSM)(Box
and Draper, 1969), however both methods are limited to the optimization of a few
process variables only (steady-state optimization). Another empirical approach is
aimed at classifying the outcome of a batch according to trajectory features, but this
is complex; it involves filtering trajectories using wavelet functions and classification
using decision trees (Bakshi and Stephanopoulos, 1994a, 19945b).

The primary objective of this work was to develop a simpler empirical method

for identifying the features of process variable trajectories that are important for
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product quality. The proposed approach consists of superimposing some designed ex-
periments to currently used batch policies (trajectories), and then extract the desired
information using multi-way multi-block PLS projection methods. The methodol-
ogy is illustrated using simulations of a Styrene-Butadiene Rubber (SBR) emulsion
copolymerization process.

The contribution of this work is twofold. It provides a simple methodology to
gain batch process understanding through identifying the features of batch trajecto-
ries that are important to final product quality. Second, in the course of this work, a
new pathway PLS algorithm was developed to incorporate in the analysis, interme-
diate quality measurements that are collected during the course of each batch. This
additional information allows to extract the desired features using a smaller number
of batch runs (and designed experiments). This was the first time an algorithm was
proposed for analyzing intermediate quality measurements in a physically meaning-
ful fashion. A version of this chapter has been published in the Chemometrics and
Intelligent Laboratory Systems journal (Duchesne and MacGregor, 2000a).

1.2 Jackknife and Bootstrap Methods in the Identi-

fication of Dynamic Models

Non-parsimonious dynamic models, such as finite impulse response (FIR) models
and autoregressive with exogenous variables (ARX) models, are widely used in the
industry for process identification. They provide a lot of flexibility with a minimal
number of structural choices, and are readily incorporated in the design of multi-
variable model predictive controllers. However, parameter estimation of such non-
parsimonious models is often ill-conditioned, due to the large number of lagged input

variables used as predictors. Since it is well known that least squares and minimum
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prediction error estimates are sensitive to correlation among predictor variables, pa-
rameter estimation of non-parsimonious models is rather performed in practice using
regularization methods (such as ridge regression) and latent variable methods (PCR.
PLS, CCR). These methods can achieve lower mean square error in the parameter
estimates (model is closer to true process) in ill-conditioned problems by obtaining a
reduced variance in parameter estimates at the expense of a slight bias. The compro-
mise between variance reduction and bias is chosen via a meta parameter, the ridge
parameter in regularization methods and the number of components in latent vari-
able methods. Whenever the latter methods are utilized, especially for latent variable
methods, cross-validation is typically used to select the number of components (based
on maximizing model predictive power), and this has been shown in past literature to
provide poor results since too few components are generally selected. The objective of
this work is therefore to develop a new criterion to aid in selecting non-parsimonious
dynamic models (through a judicious choice of the meta parameter) that would not
only lead to good model predictions, but that would also lead to capture the correct
process structure (e.g. identify models that are closer to the true process).

The proposed criterion suggests to keep adding latent variables as long as the
sum of squares of the model residuals is decreasing, but to stop when there is evi-
dence that one starts overfitting. This evidence is provided by a measure of the total
variance of the model parameter estimates (which rises rapidly when overfitting oc-
curs), obtained using the Jackknife or the Bootstrap statistical procedures. Through
a few simulation studies, it is shown that the proposed criterion outperforms the use
of cross-validation in most cases (as to provide a better model, in the mean square
error sense), and also shows when least squares can be used for estimating the model
parameters without too much loss.

The contribution of this work is mainly in providing a new criterion for se-

lecting the meta parameter of regularization methods and latent variables methods,
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for improving the identification of dynamic models. In particular, this work proposes
a solution to the well known and unresolved problem of cross-validation selecting too
few components to capture the correct process structure, when latent variable meth-
ods are utilized for parameter estimation. However, the proposed criterion is not
limited to dynamic identification problems, but can be extended to other situations
where the objective is not only to obtain good predictions of the model output, but
also to capture the true process behavior as much as possible. In fact, the motivation
for developing such a criterion arose in the course of the work on batch trajectory
optimization. Better models of the batch process, in the sense that they were closer
to the true process behavior, were obtained when using the number of latent variables
suggested by this new criterion. A version of this chapter has been published in the
Journal of Process Control (Duchesne and MacGregor, 2000b).

1.3 Defining Multivariate Specification Regions

Developing meaningful specification regions for selecting new incoming lots of raw
materials in a customer’s plant is crucial to ensure that the customer’s desired final
product quality is achievable, given the limits of operability of his own process. Defin-
ing such specification regions could be used, for example, to reduce the efforts made by
operators and control systems in compensating for poor quality raw materials. This
could be achieved by reducing the acceptance region for raw materials. However, in
spite of their importance, no standard industrial practice seems to exist for defining
raw material specifications. They are defined rather arbitrarily, based on past and
often subjective experience. For example, one common practice is to set tight limits
on important properties, to a range corresponding to the best supplier’s quality. This

may be due to the void in the quality control literature regarding methodologies for
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developing specifications. Extensive literature exists on univariate measures of qual-
ity (loss functions and desirability functions) and univariate measures of the ability
of a process to meet certain specifications (capability indices), however these always
assume that specifications are already defined.

Another issue encountered in practice (and in the literature) is that quality
is frequently assumed to be a set of univariate properties, while in most process
engineering problems, quality is a truly multivariate property. Material quality is
often judged based on several highly correlated properties and so, applying univariate
specifications on these properties would lead to a high probability of mis-judging
quality. The objective of this research is therefore to propose a sound, empirical
methodology for developing multivariate specification regions for incoming lots of
raw materials entering a consumer’s plant.

The proposed approach accounts for most industrial situations in which not
only raw materials variations affect the final product quality, but the way the con-
sumer’s process is operated may also introduce significant variations. The method
also accounts for the presence of feedforward and feedback control actions (from oper-
ators or control systems) compensating for variations in raw material properties. The
main idea of this approach consists of defining a multivariate specification region that
reflects the sensitivity of consumer’s final product quality to various combinations of
raw material properties, given specific process operational policies. The sensitivity is
evaluated via the use of latent variable models, built over historical consumer’s data
bases (including all available measurements on raw materials, process manipulated
variables and final product characteristics). The proposed approach is illustrated
using simulations of a film blowing process, producing various types of polymer films.

This work greatly contributes to the field as it seems to be one of the very first
attempts to develop a sound (empirical) methodology for defining multivariate speci-

fication regions for selecting new incoming lots of raw materials entering a consumer’s
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plant.

1.4 Analysis of Start-Ups and Grade Transition Prob-

lems

Frequent start-ups or grade transitions are performed in multi-product processes, re-
sulting in important production loss (lost of production time, production of off-grade
materials, etc.). In order to ensure efficient transition operations, two problems need
to be addressed. The first problem consists of finding the best transitions to im-
plement during start-ups and grades changeovers, to miminize transition time and
off-grade materials while maintaining safe operating conditions. Optimization based
on fundamental process models is the most commonly encountered solution in the
literature. However, when these models are not available, data collected from past
transitions could provide useful information on how to improve transition perfor-
mance, since in the past, some transitions were characterized by shorter duration,
smaller amounts of off-specifications materials and safer operation. To reveal this
information from historical data bases, this work proposes an efficient empirical tech-
nique to analyze transition data.

Practical transitional problems can be divided in two situations. One situation
is when several distinct transition policies have been implemented in the past (and
are present in the data bases), with some variations in their implementation. In this
case, determining what transition policies have led to the most desirable performance
is straightforward. However, since a wide range of policies may exist, one could
use the methodology developed in the batch trajectory optimization work to gain
understanding of the features that lead to the most desirable transition behavior.
On the other hand, if only one transition policy has been implemented in the past

(second situation), again with some variations in its implementation, then another
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approach needs to be taken for improving transitions (since the range of variation
in the trajectories is expected to be smaller). It consists of developing a monitoring
region for the transitions, based on the most successful past transitions. Methods
that have been developed and successfully used for batch process monitoring can be
used in this case (Nomikos and MacGregor, 1994a; Nomikos and MacGregor, 1994b;
Nomikos and MacGregor, 1995; Kourti et al., 1995). Monitoring transitions should
allow one to reduce deviations from the most desirable transitions and therefore,
should lead to an improvement in future transitions. This approach is illustrated in
the thesis using an industrial example of a polymerization process.

The second problem is concerned with the final stage of transitions, the steady-
state production of in-specification products. Since multi-product processes operate
over a wide range of conditions, dictated by market demand, the question of how to
guarantee that product grade currently produced is of high quality and is consistent
with past production periods arises. This is the problem of defining “production
readiness”. The key issue is that generally, properties defining true product quality as
seen by customers are never all measured, but only a subset of them are. This subset is
used to judge “overall” product quality and to determine if it meets specifications. In
flexible processes, often multiple operating conditions are capable of targeting the few
quality variables in the desired region. However, the impact of operating differently on
the unmeasured quality variables is unknown. It might happen that some material,
thought to be on target, might in fact be out of specifications even if there is no
evidence from the supplier viewpoint. The objective of this work is to propose an
approach for defining “production readiness” regions. It uses already available process
monitoring tools (PCA and PLS) and data from steady-state periods of production,
for a specific product, that have led to good customer satisfaction in the past. The
concepts are illustrated with a simulation study of a linear low density polyethylene

reactor.
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This research contributes to the field in proposing empirical approaches to ex-
tract the information contained in historical process data collected before, during and
after transitions (start-ups, re-starts and grade changeovers), for solving operational
and quality problems. In particular, the methods allow one to improve transition poli-
cies (reduce transition time and off-grade materials) and to ensure that at the end of
transitions, steady-state processing conditions are such that good quality products.
consistent with the past, are obtained. It seems that the first problem has never
been approached from an empirical point of view, to the author’s knowledge, and the

second problem is rarely discussed in the literature.

1.5 Thesis Outline

This thesis consists of 7 chapters, the first one being the current introduction. Chapter
2 provides some background on multivariate projection methods and related modelling
issues that is necessary for understanding this thesis. Chapters 3-6 form the core of
this thesis. Batch trajectory improvement and optimization is discussed in chapter 3
and the use of Jackknife and Bootstrap methods in dynamic model identification is
presented in chapter 4. Chapters 5 and 6 focus on the development of multivariate
specification regions and on the multivariate analysis of start-up and grade transition
problems, respectively. Finally the results obtained in this thesis are summarized in

chapter 7, where some conclusions are drawn and future work is discussed.



Chapter 2

Background on Multivariate

Projection Methods

This chapter provides a background on some multivariate projection methods and
related modelling issues that are necessary for understanding the work presented in
this thesis. The first section briefly describes the projection methods used throughout
the thesis. Then, modelling issues such as scaling and selection of the number of latent

variables are discussed.

2.1 Methods

Only basic descriptions of Principal Component Analysis (PCA), Principal Compo-
nent Regression (PCR) and Projection to Latent Structures (PLS) are presented in
this section, but for a more rigorous and complete discussion on these methods one

should refer to Burnham et al. (1996).

11
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2.1.1 Principal Component Analysis (PCA)

Principal Component Analysis is a classical multivariate data analysis approach and
a tutorial with some chemical examples can be found in Wold et al. (1987). Figure
2.1 (a) shows a data table, X, that consists of I measurements taken on J different
variables. PCA takes advantage of the correlation structure among the J variables
to summarize X into a few principal components or latent variables. The number
of principal components, 4, is generally smaller than the number variables J and is

often viewed as an estimate of the effective rank of X.

J t

(a) X

®) X Y

wl qr
pT

Figure 2.1: Data vectors and matrices involved in projection methods:
(a) PCA; (b) PLS.
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From a rigorous mathematical point of view, the PCA model building proce-
dure starts with finding the direction in X, or alternatively, finding a linear combi-

nation of z—variables p; that explains the most variance in X:
max {plT X" X pl} subject to p; p1=1.0 (2.1)
1

A first summary variable or score, t;, is obtained simply by projecting X in the
direction of p;, ty = X p;. This high variance direction is then removed from X,
leaving a residual matrix E; = X — t3 P; , containing the variance of X that is not
explained by the first component. The construction of the PCA model can continue
with the computation of a second linear combination p3, explaining the second highest
amount of variance in X. The objective in this case is the same as shown in Equation
2.1, but with replacing p; by pz and X by E,; and imposing the additional constraint
that the second component be orthogonal to the first one (e.g. p; p2 = 0). This
procedure is repeated until the desired number of components is computed. The
final structure of the model is X = T P + E, which can be seen as an eigenvector
decomposition of X. In fact, the p vectors are just the eigenvectors of XT™ X and the
t vectors are the eigenvectors of X X7. When as many components are computed as
there is variables (e.g. A=J), the decomposition of X is perfect and E = 0.

An alternative approach for computing the p and t vectors sequentially is to
use the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm. The starting
point of this algorithm usually consists of mean-centering and scaling of matrix X.
Scaling is discussed in more details in Section 2.2.1. The following steps are outlined

below:
1. Set t to be one column of X
2.p=XTt/tT t

3. p=p/(P" p)
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SN

.t=Xp/(p" P)

[3]]

. Continue iterating between 2. and 4. until convegence on t or p

6. Residual matrix: E=X -t p*

-J

. Store p and t in P and T respectively
8. Calculate next dimensions by returning to 1, using E as the new X

After computing each latent variable, one needs to decide whether another dimension
should be added to the PCA model. Criteria for selecting the number of components

to keep in the model are discussed in Section 2.2.2.

2.1.2 Principal Component Regression (PCR)

Principal Component Regression is used when one wants to model the covariance
structure in X, as in PCA, but also desires to model the relationship between two
blocks of data; a block of predictor variables X and a block of response variables
Y, as shown in Figure 2.1 (b). Regression coefficient estimates for PCR, Bpcr, are
computed in a very similar way as for Multiple Linear Regression (Draper and Smith,
1981):

Bper=(TTT)'TTY (2.2)

where T is the matrix of the scores obtained via a PCA model with a given number of
components. In other words, PCR is just as MLR but instead of projecting Y on X
directly (as does MLR), Y is projected in the reduced space of X, T. The structure
of the PCR model is as follows:

X TP'

Y = TZ3pcr+F =X (P Bpcr)+F (2.3)
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This extention of MLR is particularly useful to reduce the large variance in regression
coefficients obtained from MLR, resulting when X is ill-conditioned. It is even more

useful when X is singular, since (XTX)~! does not exist in that case.

2.1.3 Projection to Latent Structures (PLS)

Projection to Latent Structures, or alternatively, Partial Least Squares is a truly
multivariate latent variable regression method. PLS is used to model relationships
both within and between two blocks of data, X and Y. A tutorial on PLS is found
in Geladi and Kowalski (1986) and a review of PLS history is available in Geladi
(1988). Some mathematical and statistical properties of PLS were also addressed by
Héskuldsson (1988) and by Burnham et al. (1996).

In PLS, the covariance structures of X and Y are modelled via a set of A
latent variables, t and u respectively, as shown in Figure 2.1 (b). However, these
latent variables are computed in such a way that the covariance between the two
blocks X and Y is modelled as well. Mathematically, this is achieved by selecting
a set of linear combinations of X variables, w;, ¢ = 1,..., A, that maximizes the
covariance between the matrix of descriptors X and the matrix of responses Y, under

the following constraints:
max {w; X7 YYT X w; }  subject to W] w;=1 (2.4)
subject to w; w; =0 for i#j
The structure of the PLS model is shown below:

X = TP"+E
Y = TQ +F (2.5)
T = XW

where the A columns of P and Q define the linear combinations of the X and Y
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variables modelling their covariance structure. E and F are just model residuals. It

has been shown by Hoskuldsson (1988) that the vectors w, q, t and u are eigenvectors

of XTYY X, YTXXTY, XXTYY" and YYTXX, respectively.

Instead of computing all the latent variables at once, a version of the NIPALS

algorithm was adapted for sequentially computing the PLS latent variables, one at a

time. This algorithm is outlined below, with the starting point being mean-centering

and scaling both X and Y matrices:

L

[é]]

10.

Set u to be one column of Y

.w=X"Tu/u’ u
. w=w/(wT w)
Lt=Xw/(wT w)

.q=YTt/tT ¢t

u=Yq/(q" q)

Continue iterating between 2. and 6. until convegence on t or u
Residual matrix: E=X-tp ,F=Y—-tq"

Store w, p, t and u in W, P, T and U respectively

Calculate next dimensions by returning to 1, using E and F
as thenew X and Y

Once the PLS model is built using a certain number of dimensions, the re-

gression coefficient estimates can be computed using the following expression:

Bers =W (PTW) Q7 (2.6)
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An interesting feature of PLS is that when all possible latent variables are computed
(A™s* = min{J,I — 1}), the PLS regression coefficient estimates, BpLs, and hence

the predictions of that model, Y = X38p.s, are exactly equal to MLR estimates.

2.1.4 Common Extensions to Projection Methods
Multi-Way data

Multi-way data is obtained when more than two arguments are necessary to describe
a particular measurement, and so measurements are stored in arrays. For chemical
process applications, 3-way arrays are the most commonly encountered type of multi-

way data, as shown in Figure 2.2 (a).
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Figure 2.2: Nature of multi-way (a) and multi-block process data (b).

Arrays such as X mainly arise when trajectories of process variables are measured;
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measurements on J process variables are collected at K sampling intervals in [ in-
stances. For example, this may consist of measurements taken on J process variables
in a batch process, sampled at K intervals (k = K being the end of each batch) and
collected for I batch runs. Similarly, this could consist of transition policies measured
during start-ups or grade changeovers.

To analyze 3-way arrays (X) using the projection methods described in Section
2.1, one often unfolds X into a 2-way matrix. This can be done in six different ways,
but for process applications (analysis and monitoring of batch process data), Nomikos
and MacGregor (1994a, 19945, 1995) and Kourti et al. (1995) suggest that the most
meaningful way to unfold is to slice X along the time dimension and then juxtapose
these submatrices to form an I by KJ matrix. This way of unfolding X is illustrated
in Figure 2.2 (a). Unfolding X in this manner allows projection methods to focus on
explaining variations around the average trajectories (since the unfolded X matrix is
mean-centered) and also allows to readily incorporate productivity and quality data
(Y) into a multi-way PLS analysis.

A comparative study of various methods for analyzing 3-way batch process
data (including projection methods) is found in Westerhuis et al. (1999). Discussions
around other issues, such as unfolding, mean-centering, scaling, trajectory alignment
and the use of the time variable in batch process data analysis are also found in the

latter reference.

Multi-block data

Multi-block data bases are also frequently encountered in process data analysis. This
type of data structure is illustrated in Figure 2.2 (b) and could arise when data are
collected in different sections of the process (or in different successive stages). For
example, Z could consist of measurements taken on the inital recipe (initial condi-

tions) of a batch process, X could include the batch process trajectories (unfolded),
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and Y could characterize the resulting quality of each batch. One could also decide
to block measurements that are similar in nature, such as several temperatures, pres-
sures and flows. Multi-block algorithms have therefore been developed for analyzing
the correlation structure among several data blocks (for example Z and X) using
multi-block PCA. Correlation structure within these blocks and between a response
block Y can also be analyzed using multi-block PLS, where both Z and X blocks
would be predictor variables for Y.

Over the years, many multi-block (and hierarchical) PCA and PLS algorithms
have been suggested to tackle various data analysis problems in chemistry, engineering
and other disciplines. An exhaustive overview and a theoretical comparison of these
different algorithms is found in Westerhuis et al. (1998). Among the theoretical
findings published in this work, the equivalence between the standard PLS algorithm
and the multi-block PLS algorithm proposed by Westerhuis and Coenegracht (1997)
was demonstrated. It was shown that one could obtain the multi-block PLS results
from standard PLS, when built using the same data sets, but with a particular scaling
of the data. This result has been very useful in many instances to accomplish the

work presented in this thesis.

2.2 Modelling Issues

Many issues exist in building empirical process models. However, this section focuses
on two issues arising throughout the work of this thesis: the issues of scaling and of
determining the number of components in projection methods. Some useful model

diagnostic plots are also presented here.
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2.2.1 Scaling

All projection methods decribed in section 2.1 are scale dependent and therefore,
appropriate scaling needs to be performed on all measurements prior to analyzing
them. When no prior process knowledge is available, one common practice is to scale
all variables to unit variance, as this gives them equal importance in the model, with
respect to one another. However, if prior knowledge exists, then scaling should be
modified accordingly. For example, if it is common knowledge that a particular set of
variables is roughly twice as important as another set, the most important set could
be scaled to twice the variance of the less important set of variables.

Another scaling issue arises when multiple data blocks are used, each having a
different number of variables, or when many similar variables are included in a block,
but in different numbers (e.g. 10 temperatures, 5 lows and 2 pressures). When scaling
all variables to unit variance in such situations, PCA or PLS models will focus more
on the blocks of data having the most variables (since they exhibit more variance; 10
temperatures is 10 variance units while 5 flows is only five variance units). A way to
re-establish a fair use of the variables in the model is to perform a block scaling, just
after scaling all variables to unit variance. The block scaling consists of dividing each
variable within a block by the square root of the number of variabies in that block.
The result of this is that each block of data has equal importance in the PCA or PLS

models.

2.2.2 Number of Components

Another important issue in building empirical models with projection methods is to
select the number of components to keep in the model in a meaningful way. The most

widely used method for selecting the number of components in projection methods
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is cross-validation (Wold, 1978). This method suggests to keep adding latent vari-
ables to the model as long as they significantly improve the predictions of the model
(PCA or PLS). Model predictive ability can be evaluated using the predictive multiple
correlation coefficient Q?(a) = 1 — PRESS(a)/SS-(a — 1). PRESS(a) is the total
prediction error sum of squares obtained by cross-validating a model with a latent
variables. This is performed by dividing the I observations included in the data base
(X and/or Y, see Figure 2.1 (b)) into g groups of size ¢ (I = gq). Then, each group
is deleted one at a time and a PCA or PLS model with a latent variables is built on
the remaining g — 1 groups. The prediction error sum of squares is then computed for
the group not used to build the model. PRESS(a) is the total of the prediction error
sum of squares for all groups. SS,(a—1) is just the residual sum of squares of a model
with a — 1 latent variables. As long as Q? is greater than zero, the a** dimension
is improving the predictive power of the model. Therefore, one should keep adding
latent variables until Q? is consistently lower than zero. Statistical hypothesis tests
are sometimes used to verify if the a** dimension has lead to a sufficient increase in
@? to be added to the model. Further details about this are provided in Chapter 4.

Another statistic that is often used for selecting the number of components is
the fit multiple correlation coefficient R?(a), or alternatively, the explained variance
for a model with a latent variables, R?(a) = 1—SS,(a)/SS::- In this statistic, SS,(a)
is the residual sum of squares of a model (PCA or PLS) with a latent variables, while
SS:oe is the total sum of squares of the original data (before the model is built). As
R? reaches values close to one, a very good fit of the data is obtained. The fit is poor
when R? values are approaching zero.

Several other criteria have been developed for selecting an appropriate number
of latent variables. A good overview of criteria available in the signal processing and
chemometrics literature is found in Valle et al. (1999). A new criterion, useful for

identifying process models that are closer to the true process, is also proposed in
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chapter 4 of this thesis.

2.2.3 Diagnostic Plots

Distance to the model plots and contribution plots are diagnostic plots frequently
used in projection modelling methods. The former are used to verify how well each
observation in the data set projects onto the reduced space of the model (plane
or hyperplane). This is useful to identify outliers and the presence of a different
correlation structure in specific observations. The latter plots provide the contribution
of each variable to a move in the reduced space (projection) or to a change in the
distance to the model. This is useful to gain insight from the data. Each of these

plots is briefly discussed below.

Distance to the model plots

The distance of an observation (measurement on each variables) in the X space, x;,
from the PCA or PLS model is given by the square prediction error of this observation,
defined as SPE; = (x; — %X;)7 (x; — %;), where X; is the projection of x; onto the
reduced space of the model (plane): %; = t;P7. SPE; is therefore a measure of
the perpendicular distance of the observation x; from the plane defined by the PCA
model with A latent variables. Note that we have chosen the distance in X space,
but the equations are the same for the distance in the Y space, just by replacing x;
by y; and %; = t;PT by ¥; = t;QT. When the distance is large, this indicates that
observation x; has a different correlation structure than what was normally seen in the
historical data base used to build the PCA model, and so it is not well captured by this
model. Statistical upper 95% or 99% limits on SPE are often used to determine if a
particular observation should be removed from the model building procedure because
of a too large distance to the model (outlier). Different approaches for defining
these limits are discussed in Nomikos and MacGregor (1994a). One frequently used
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approach is to assume that SPE is approximately distributed as gx*(h), that is a
multiple of a x?>—distribution with h degrees of freedom. The two parameters g
and h are estimated by matching the moments of the distribution, E [gx*(h)] = gh
and Var [gx?(h)] = g*(2h) using the historical data base. For the sample mean of
the distribution, set SPE = m, and for the sample variance of the distribution,
set TiTié(SPEi — SPE)? = v. Solving for g and h, one obtains g = (v/2m) and
h = 2m?/v. Therefore, SPE is distributed approximately as 5~ xi(@), where 1 —a
is the confidence level of the hypothesis test.

Another, but very similar measure of perpendicular distance to the model
is the DMOD statistic. This is just a normalized SPE. For the i** observation
in the X space, the distance is computed as DMODX; = \/ SPE;/(J — A), where

J is the number of variables in X and A is the number of latent variables. Note
that DMODY; can be computed similarly. This measure of perpendicular distance
to the model is shown here since it is used in the SIMCA-P 7.0 (Umetrics, 1998)
software package, that has been often used throughout this thesis. To define an up-
per limit for DMODX, the following distance is used as a reference: DMODX, =

é: SPE;/(I — A-1)(J — A). The statistic (DMODX;/DMODX,)? is then as-
su:led to be approximately F—distributed. One can therefore use this to define an

hypothesis test to decide whether a particular observation has a too large distance to

include in the model building procedure.

Contribution plots

Since the reduced space of PCA and PLS models (score space) is defined by linear
combinations of the variables in X, it is straightforward to identify the contribution
of these variables to the difference between two specific score values. For example,
the contribution of variable z; to the difference between two values along t;, At,

is just Az; py; if PCA is used and Az; w,; if PLS is used (note that z; is the
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mean-centered and scaled value of the original measurement). When computing these
contributions for each variable z;, j = 1,...,J, and plotting these contributions side
by side, one obtains an insighful overview of what variables are strongly associated
with the difference in score values. This information is then used in interpreting
the modelling results. One could also obtain the overall average contribution per
variable for a change in more than one score (Kourti and MacGregor, 1996). The
contribution of each variable to SPE or DMOD can also be computed in a similar
fashion. Contribution plots are often readily incorporated in commercial software

packages, such as SIMCA-P 7.0 (Umetrics, 1998).



Chapter 3

Multivariate Analysis and
Optimization of Process Variable

Trajectories for Batch Processes

3.1 Introduction

Batch and semi-batch processes are encountered everywhere in the processing in-
dustry and are usually used in the low volume production of high value products.
Some examples of products obtained via batch operations include pharmaceuticals,
biochemicals, some polymers and other specialty chemicals. In the development and
optimization of such processes it is essential to understand the effect that process
variable trajectories (histories) have on final product quality. In fermentation and
polymerization, for instance, the batches often go through several stages of opera-
tion, each dominated by different physical and chemical phenomena, which may have
a different influence on some aspects of product quality. For example, some process

variables may have a strong impact on quality only during a particular stage, and
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none before or after. Other variables may have a consistent impact on quality, re-
gardless of the degree of completion of the batch. It is therefore important to identify
the sensitivity of final product quality to changes in the process variables at different
degrees of completion within the course of a batch.

If a fundamental dynamic model of the batch process were available one could
use it to optimize the final product quality through selection of process variable
trajectories. Batch process optimization is well covered in the literature and a good
overview is provided by Terwiesch et al. (1994). Past literature is mainly divided into
off-line or classical optimization (Cawthon and Knaebel, 1989) and batch-to-batch
optimization (Filippi-Bossy et al., 1989; Zafiriou and Zhu, 1990; Dong et al., 1996;
Clarke-Pringle and MacGregor, 1998). The former requires very detailed mechanistic
models and does not account for model mismatch, which renders the solutions sub-
optimal. On the other hand, batch-to-batch optimization was developed to overcome
the difficulties with the classical approach, especially with regards to model mismatch.
The main idea is essentially to use the results of the current batch run to either
update the parameter estimates of a model or to use them as the forward integration
step of the optimization procedure. Then, optimal process variable trajectories are
computed for implementation in the next batch run. The optimization approaches
are quite powerful, but most of the time require the use of mechanistic models, which
are often not readily available.

Empirical approaches to batch trajectory analysis have been proposed. These
involve the analysis of historical batch data. Bakshi and Stephanopoulos (1994a,
1994b) developed a formal methodology to analyze process signals to find temporal
features relating to process performance. The methodology first involves filtering of
the process signals, at different scales, using wavelet functions. Then, a special rep-

resentation of the trends in terms of identifiable episodes is performed, and decision
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trees are built to relate these features to process performance. A fed batch fermen-
tation case study is provided in Bakshi and Stephanopoulos (19945b). A total of 41
batches of normal operating data were available. Temporal features of 14 process
trajectories were successfully identified for the classification of the fermentation vield
into “bad”, “okay” and “good” categories. This approach appears to be effective in
feature extraction, especially qualitative features associated with trends or sequence
of events.

Multivariate statistical methods have also been used very successfully for both
the analysis of historical batch trajectory data and for the subsequent on-line moni-
toring of batch and semi-batch processes. Multi-Way Principal Component Analysis
(MPCA) (Nomikos and MacGregor, 1994a and 1994b; Kourti et al., 1996; Wold et
al., 1998), Projection to Latent Structures (MPLS) (Kourti et al., 1996; Nomikos
and MacGregor, 1995) and Multi-Block Multi-Way Projection to Latent Structures
(MBPLS) (Kourti et al., 1995) were used to model batch trajectory data and to iden-
tify operational problems. Multivariate SPC monitoring schemes were also proposed
based on modelling the correlation structure of the data from the past “in-control"
batch runs. Those monitoring techniques are applied to batch processes that are al-
ready developed and optimized. They are aimed at monitoring the process to ensure
that the variables follow their priorly optimized trajectories as closely as possible.

This research is aimed at extending the use of Multi-Block Multi-Way PLS
to the trajectory optimization stage. The term “optimization” is used in the sense
of obtaining the sensitivities of final product quality to changes in the shape of pro-
cess variable trajectories and subsequently using those for improving final quality.
The proposed methodology is analogous to Response Surface Methods, although it
is more complex since it involves optimizing the shape of the process variable tra-
jectories instead of just the steady-state values of the variables. To make this op-

timization possible a wider range of variations in process trajectories than used for
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SPC applications is required to compute the sensitivities. This may be obtained,
for instance, by manipulating trajectories according to designed experiments or from
multi-product processes, provided that trajectories corresponding to each product
are different enough. The process understanding that can be gained from such an
analysis is illustrated with several simulations of a Styrene-Butadiene Rubber (SBR)
emulsion copolymerization.

Most applications of Multi-Block Multi-Way PLS for batch process analysis
only consider the quality of the final product. However, process variables affecting
quality only over a specific period of time are fairly difficult to identify with final qual-
ity measurements alone. The average effects over the entire batch history will tend to
dominate the batch-to-batch variations in final quality. The collection of intermediate
quality measuremeats obtained throughout the course of the batch should help to iso-
late local effects of variable trajectory changes. A new pathway algorithm, based on
Multi-Block Multi-Way PLS has been developed to incorporate quality measurements
collected during the course of a batch. The algorithm is applicable when the effects
of changes in process variable trajectories on product quality can be assumed to be
linear and additive. By allowing the use of all the intermediate quality measurements,
the new algorithm can considerably reduce the number of runs necessary to identify
time-varying relationships.

The contribution of this research is twofold. It illustrates a methodology to
gain process understanding by analyzing how process variables affect product quality
during the course of a batch. Second, it provides a new Multi-Block Multi-Way
PLS algorithm that incorporates intermediate quality measurements. Its use has the
potential for extension in other modelling applications where similar cause and effect
paths prevail.

The chapter is structured as follows. The nature of semi-batch data is first pre-

sented, along with a discussion of the type of data required for the current modelling
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objectives. The new PLS pathway algorithm is then described. Selected simulations

of the polymerization reactor are described followed by a discussion of the results.

3.2 Nature and Type of Batch Data

The data typically collected on a batch or semi-batch process can be classified into
three blocks (Z, X and Y), as shown in Figure 3.1. The data included in each of
these blocks has been discussed in the literature (Nomikos and MacGregor, 1994a,
1994b and 1995; Kourti et al., 1995).

Z (I x L):

e Measurements taken on L variables, including initial charge recipe, type of
catalyst, any process measurements taken before the batch starts and expected

to have an influence on quality.
X({IxJxK):

e Process variable trajectories. During a batch, measurements taken on J process
variables, sampled K times, for I batches. This block of data includes manipu-
lated and passively observed variables and any computed quantities from those
measurements, such as instantaneous energy balances. Any trajectory feature
that is expected to have an effect on quality should be included into that data
block.

Y (I x Mg):

e Quality and productivity measurements collected at the end and at specified
intermediate times (or degrees of completion) during the course of the batch.

The number of quality variables per Yy block, M}, may differ as only a subset
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of the measured quality variables ma2y be available during the course of the
batch. For example, for a polymerization reactor, conversion may be available
very frequently with an on-line densitometer, but average molecular weight may

be available at the end only.

—— —_—
Initial Conditions  Process Variables
Y., M,
Y, M
M,
Quailty Variables

Figure 3.1: Nature of batch and semi-batch process data with interme-
diate quality measurements.

In this trajectory optimization problem one needs causal information and a
much wider range of variation in the data than typically available from historical
data. Superimposing designed experiments to nominal trajectories is preferred to
ensure that the required type of data is obtained. The methodology presented in
this paper is therefore well suited for pilot plants applications, where the goal is to
look for operating trajectories capable of producing better quality materials. Data

collected from existing multi-product plants may also cover a wide range of operating
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conditions, but would present higher risks of spurious results due to the more poorly

designed nature of the data.

3.3 Modified Multi-Way Multi-Block PLS Algorithm

To analyze the data shown in Figure 3.1, they need to be reorganized to account for
the causal pathway between the blocks. For simplicity, assume that for each batch
run, 2 intermediate quality measurements are available, at time k = k), and k = k2,
in addition to the quality measurements collected at the end of the batch (k = K)).

The three-way array, X, can be dissociated in three parts, each corresponding
to the period included in between intermediate quality measurements: fromk=1to
k = k,, from k = k; + 1 to k = k; and finally from k = k; +1 to k£ = K. Then,
these arrays need to be unfolded in the time dimension (Nomikos and MacGregor,
1994a, 1994b and 1995; Kourti et al., 1995; Westerhuis et al., 1999) to analyse them
with PLS. Denote the resulting 2-way matrices as X;, X3 and Xj respectively. The
complete set of blocks derived from the set of Figure 3.1 along with an indication of
the causal paths between each block is provided in Figure 3.2.

Batch and semi-batch processes are integrating processes, such that any change
in process variables made at a particular time during a batch will affect the behavior
of the remainder of the batch. Therefore, Yy, = f(Z, X1), Yk, = f(Z, X;, X32)
and Yk = f(Z, X1, X3z, X3). The cause and effect path described in Figure 3.2
should be embedded into any model built on the batch data described above.

One approach to analyze the data from Figure 3.2 is to use only one Y block
for each model as though each time interval between Y blocks were from a different
process. Therefore, as many MBPLS models are built as there are intermediate and
final quality measurement blocks as shown in Figure 3.3. The reader is referred to
Westerhuis et al. (1998) for an overview of available MBPLS algorithms.
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Figure 3.2: Causal pathway indicating the relationships between the
recipe and each block of process variables to intermediate and
final product quality.

The problem with this approach is that it does not account for the fact that all the
data is from the same process, that is, successive Yy blocks are highly related to
previous ones, and that the X blocks in each row are the same Xy blocks. The
integrating feature of the batch process has been neglected. Therefore, the weights
(w) corresponding to X, for instance, are estimated three times in the case shown
in Figure 3.3, obviously resulting in three different estimates. This does not provide
a good idea of the “overall” effect that X; has on product quality development. It
would also be better to have only one model describing the impact of the process
variable blocks on all the quality blocks.

To achieve a single model which respects the integrating nature of the batch
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Figure 3.3: Separate Multi-Way Multi-Block PLS models, one for each
block of intermediate quality measurements.

process, one could build jointly and simultaneously all MBPLS models shown in
Figure 3.3, on single Z, X and Y blocks, arranged as in Figure 3.4. A single PLS
model which relates the Yi’'s at any time point to the prior X\’s and Z data can
be estimated using the proposed pathway MBPLS algorithm given in Appendix A.
It consists of some modifications to the commonly used NIPALS algorithm (Geladi
and Kowalski, 1986). The causal path discussed in Figure 3.2 is now embedded into
the resulting model as the new algorithm forces the estimates of w, p and q to be
the same across all MBPLS models of Figure 3.3. However, constraining the values
of w, p and q to be the same is valid only if the responses of quality variables to
a change in a particular process variable are linear and additive (cumulative) and if

the effects of Xy blocks in later operating periods do not depend upon the behavior
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in earlier periods. This is both the strength and the limitation of this new approach.
Great advantages are obtained if the assumption is met, as a single model is obtained
for the whole process, analyzing simultaneously and efficiently all the information
contained in the measurements (Z, X and Yy blocks). On the other hand, if the
assumption is not valid the model can be poor. Examples of both situations will be
presented as well as a procedure aimed at verifying if the pathway model structure is

valid to analyze a particular set of data (test for linear and additive effects).

t t, wu
z X, Y,
z X, X, Y,
z X, X, X, Y
w7 w,’ q°
Py Py

Figure 3.4: Modified Multi-Way Multi-Block PLS algorithm, incorpo-
rating intermediate quality measurements.

The proposed pathway model has several interesting features. It includes
MBPLS as a special case, when quality is measured at the end of each batch only. It
* has potential for handling missing data as MBPLS does. The number of intermediate

quality measurement blocks is not restricted. However, the quality measurements
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should be collected at corresponding times or degrees of completion for each batch.
It accounts for situations in which only a subset of the quality variables measured at
the end of a batch is available during the course of the batch. If the number of quality
variables measured during the batch is always the same as at the end, then the new
algorithm becomes simpler as shown in Appendix A. Finally, the algorithm could be
extended to other problems sharing the same causal pathway. Steady-state modelling

of several units in series from a continuous process is one possible application.

3.4 Simulation of a Styrene-Butadiene Emulsion
Copolymerization

To illustrate the concepts discussed in this paper, simulations based on a detailed
fundamental model (Broadhead, 1984; Broadhead et al., 1985) of a reactor carrying
out the free radical emulsion copolymerization of styrene and butadiene was used.
This reactive system is known to consist of three different stages (Hamielec and To-
bita, 1992), within which different physical phenomena take place. This process is
therefore a good candidate for the application discussed in this chapter.

A schematic representation of the reactor is shown in Figure 3.5. The nor-
mal operating procedure for such a reactor starts with charging an initial recipe of
different materials, as shown in Table 3.1. Then, the reaction mixture is heated up
to its reaction temperature using hot water or steam flowing through the jacket. For
all cases in this chapter, the temperature is controlled at 50°C. Once the reaction
temperature is reached monomers, initiator and chain transfer agent start being fed
according to some feed policies until the end of the batch. The batch duration is
assumed to be 480 minutes for all cases studied.

Three process variable trajectories can be manipulated and are used in the

analysis: the total monomer flow rate (Fys), the initiator flow rate (F;) and the chain
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Table 3.1: SBR recipes for initial charge.

Species (g) | Recipe 1 | Recipe 2
Styrene 249.2 0.0
Butadiene 450.3 0.0
Water 5000.0 5000.0
Initiator 50.0 0.0
Soap 24.0 24.0
CTA 2.0 2.0

transfer agent flow rate (Fcra). The flow rate of styrene and butadiene separately
were always kept in the same ratio, such that only the sum of the two (Fum) is
manipulated. It is further assumed that weight average molecular weight (M), tri-
and tetra-functional long chain branching (B,3 and B,4), total mass conversion (z)
and polymer particle number and average diameter (N, and d;) are measurable and
are appropriate for characterizing polymer quality.

Designed experiments were added to nominal operating conditions in order to
generate a wide range of variations in process trajectories, while maintaining initial
charge recipes constant. The Z matrix therefore does not need to be included in the
analysis for the cases treated in this chapter. Nominal conditions were set constant
at Fys = 5.67, F; = 0.45 and Fcra = 0.014 g/min for the entire batch duration. The
type and frequency of variations correspond to step changes of +20% from nominal
values, implemented every 40 minutes. Direction of the changes were decided accord-
ing to a 23 factorial design, with the first 4 experiments repeated to give 12 changes
per batch. The design is shown in Table 3.2. The frequency of changes should be
chosen fast enough to provide a high resolution to identify how process trajectories
affect quality. However, changes should also be maintained long enough for the ef-
fects to be observable in the measured quality. Periods of 40 minutes were considered

adequate for the reacting system under study.
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Figure 3.5: Reactor for semi-batch emulsion copolymerization of
styrene-butadiene rubber.

In general, if prior knowledge were available about the number of stages, their
sequence and duration, one could build a more appropriate design in which variations
would be focused on each stage specifically. In that situation, a smaller number of
changes and a smaller number of batch runs could be used for extracting the desired
information.

For each case study presented in this chapter, 31 batch runs were generated
by randomizing the order of appearance of each experiment of the design (rows in
Table 3.2). An example of variations implemented on process variables for one such
experiment is provided in Figure 3.6. These variations are designed to gather infor-

mation about effects on product quality, taking place during specific periods of time
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Table 3.2: Factorial design (23) with the first 4 experiments repeated.

Duration (min) | Fa | Fr | Fera
0-40 - - -
40-80 - |+ -
80-120 - | - -
120-160 - | + -
160-200 - |- +
200-240 - |+ +
240-280 + | - +
280-320 + | - +
320-360 - - -
360-400 - + -
400-440
440-480

._{<

|
+

during a batch, or “time specific” effects. However, all 31 trajectories for each pro-
cess variable have about the same average value. This means that these experiments
do not generate information about effects on quality sustained throughout tne batch
duration (“average” or “cumulative” effects). Varying the average of trajectories is
also necessary and hence, 9 additional runs with constant flow rates were generated
by designing the average trajectories using another 23 factorial design with a cen-
ter point. In these additional runs, the values of process variables are maintained
constant for the entire batch duration, as the nominal conditions, but were varied
by + 20% of those nominal values according to the design. The design center point
consists of the nominal conditions. In summary, 40 batch runs were generated for
each case study and those data bases contain the necessary information to identify
both “time specific’ and “average” effects of process variables on product quality.
Some random noise was added on each quality measurements. It was selected

to be approximately 10% of the range of variation in each quality measurement.
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Figure 3.6: Designed variations on Fu, F; and Fera for one batch,
obtained by randomizing the order of appearance of each exper-
iments from the 23 factorial design with the first 4 experiments
repeated (Table 3.2).
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3.5 Analysis and Discussion

3.5.1 Advantages for using the pathway model

A new criterion for selecting the number of latent variables is used, as described in
chapter 4, which is more appropriate than cross-validation when trying to obtain
good estimates of the model parameters. It essentially suggests to continue adding
latent variables as long as the model parameter estimates are stable, and to stop
when overfitting occurs. The model stability is evaluated using the delete-1 jackknife
statistics, which also provide estimates of the uncertainty in the parameter estimates.

Modelling all quality variables (Y) in only one model (e.g. PLS2 vs PLS1)
is not always an optimal choice. For instance, one could observe latent variables
alternating between explaining each Y variable separately or alternating between
explaining groups of Y variables. This may happen when those Y variables or groups
of variables are not spanning the same spaces. This could easily be detected by looking
at the explained variance (Rf,) of each Y variable in each latent dimension, when all
Y variables are modelled together. It therefore makes sense to block Y variables
appearing to span similar spaces together. In this way a reduction in the number of
latent variables for each model and better model performance are expected. In the
case studies shown in this chapter, M,, and NV, were each blocked in a separate model
and the other quality variables, Bp3, Bn4, T and d, were blocked into a third model.

In this first study, initial charge recipe 1 from Table 3.1 is used and 40 batches
designed as described in section 3.4 were run. The X array consists of the values of
the three flow rates (Far, Fr and Fcra) for the 12 time periods and for the 40 batch
runs. It is assumed that the pathway algorithm is valid for analyzing this database.
A procedure to assess the validity of this new algorithm is presented in the next
section. Note that in all case studies, mean-centering and scaling to unit variance has

been applied to each of the X and Yy data blocks prior to analysis. An overview of
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Table 3.3: Overview of the pathway PLS models with 40 batch runs
by means of cumulative sum of squares explained in X and Y
blocks and the cumulative sum of squares predicted of Y after
the specified number of dimensions. Model 1, 2 and 3 correspond
to the following Y variable blocks: My, [Bas Bns T d,] and N,,.

Model | No. PLS dim. | B2 (%) | Ro.cum () | @urm (%)
1 6 38.93 96.38 89.27
2 8 50.81 88.42 78.75
3 9 50.25 90.03 85.92

the model performance is provided in Table 3.3. It shows three cumulative multiple
correlation coefficients, R2 ., RZ .,m and Q2,,,, computed over a specified number
of PLS components. The cumulative R? values give the percentages of the total sum
of squares of X and Y that are explained by the fitted PLS models with the indicated
number of dimensions. The cumulative Q? value is the percentage of the total sum
of squares of Y that can be predicted with these models using a leave-one-out cross-
validation procedure. Regression coefficient estimates for five of the six polymer
properties are shown in Figure 3.7. Resulits for tri-functional branching are not shown,
since they are essentially the same as those of tetra-functional branching. Each plot
contains 36 regression coefficients, 12 for each of the three process variables. The first
12 coefficients provide the impact that Fjs has on the final property of interest, over
each of the 12 sequential periods of 40 minutes during a batch. Subsequently, one
finds the 12 coefficients for the impact of F; and Fcr4. In each plot, the coefficients
corresponding to Fs, Fr and Fcra are all separated with a dashed vertical line. Also
shown are the one standard error estimates for each parameter obtained from the
jackknifing procedure (refer to chapter 4 of this thesis).

Cumulative effects of process variables on final quality are characterized by

large coefficients, which consistently have the same sign over the entire batch duration.
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The effect of Fors on M, and the effect of Fys on My, Bas, z and d, are clearly
identified as cumulative effects. For example, it could be interpreted that the total
amount of chain transfer agent and monomers fed during the first half of the batch
seem to be responsible for molecular weight development. Also notice the exponential
decay of those effects, saying that the same amount of material fed later in the batch
has less impact on final quality. This is expected since it has less time to participate
in reactions. On the other hand, there is obviously something different happening
during the first 40 minutes of the batch as the corresponding regression coefficients
are much stronger for all quality variables. In particular, it seems that the monomer
and initiator feedrates Fy and F; only affect the number of polymer particles (1\7},)
during this first period within each batch and have no effect beyond this first period.
This illustrates a “time specific’ effect, where some aspects of quality can only be
modified during a specific period of time during a batch.

The results in Figure 3.7 can be used to optimize the process to achieve
modified quality variables. To obtain a higher number of polymer particles, a low
flow rate of monomer and a high flow rate of initiator should be used early in the
batch, since N, can not be modified beyond about 40 minutes. This will also lead to
a low Bns and M, and to a high z and d, during that period. However, these can
be modified in the remainder of the batch by appropriately selecting Fcra and Fu
respectively. The conclusions drawn from these empirical results are corroborated by
polymerization principles. For example, polymer particles are only generated early
in the batch, during a “nucleation” period and their number remains constant after
this period is over (after about 10% conversion). A low Fjs extends the nucleation
period and a high F increases the rate of particle nucleation, both resulting in an
increased N,. On the other hand, total mass conversion (z) is the ratio of the total
mass of polymer to the sum of total mass of monomers and polymer at any time in

the reactor. Increasing F), therefore leads to operation at lower conversion levels and
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vice versa.

To illustrate the gain that is obtained by collecting intermediate quality mea-
surements, the results of Figure 3.7 are compared with those obtained in Figure 3.8
using the same 40 batch runs but with only the final quality measurements available.
Similar results are obtained for cumulative effects since variations in Y are domi-
nated by them. However, exponential decay effects are not as appararent and the
dependence of the number of polymer particles (Np) on Fpe and Fy only during the
first period is not as evident. This shows the advantage of using intermediate quality
measurements as the “time specific’ effects are more easily identified.

Another advantage of using intermediate quality measurements is the addi-
tional information brought into the model. One would therefore expect to be able to
reduce the number of batch runs over that when only the final quality is available and
still extract similar trajectory. To illustrate this, a subset of 16 runs were selected
from the set of 40 described in section 3.4. Four runs with constant trajectories for
the entire batch duration were used to identify average effects. The remaining 12
runs were randomly selected among the 31 runs on which designed variations around
nominal conditions have been implemented. When this reduced data set is analyzed
with the pathway algorithm, the regression results shown in Figure 3.9 are obtained.
Although only 16 runs were used (highly fractionated design), the results were very
similar to the case showed in Figure 3.8 with 40 runs and only the final quality

measured.

3.5.2 Validation of the assumption behind the pathway model

The assumption behind the pathway algorithm (Figure 3.4) is that the effects of the
X blocks are linear and additive. In other words the weights and loadings (w’s and
p’s) associated with each Xy block are constant and independent of what happened

in earlier blocks. In this section we test the validity of this assumption by building a
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Figure 3.9: Regression results with the pathway algorithm, using 16
batch runs.
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series of MBPLS models, one for each intermediate quality measurement block (Yy)
as in Figure 3.3. If the assumption is valid then the estimated effects for each block in
each of the multi-block models should stay nearly constant. To illustrate this, the case
study of section 3.5.1 with 40 batch runs is used. For simplicity, consider the effects
that Fys and F; have on B, during the first 40 minutes of the batch (first regression
coefficient for Fys and Fy). These effects are estimated 12 different times since they
are involved in each MBPLS model. Their 12 estimates are plotted sequentially in
Figure 3.10 along with their estimated standard error. The estimates of the effects of
both of these variables on B4 for the first period appear to be resonably consistent
for the models built at the 12 different periods. Similar results were found using other
response variables and different periods. This implies that the assumption behind the
pathway model is not unreasonable in this case.

On the other hand, when batch data is generated using initial charge recipe
2 (Table 3.1) and using the same process variable trajectories as the previous study,
much different results are obtained. Figure 3.11 shows again the estimates of the
effect that Fyr and F; have on By4 during the first 40 minutes, as estimated from the
12 MBPLS models built on this new data set. One can clearly see a consistent change
in the estimates of these effects based on the Y data available at the different times.
This suggests that this data should not be analyzed as a whole with the new pathway
algorithm and therefore the only valid approach is to build multiple MBPLS models
as in Figure 3.3, at least for the B4 response.

Another but “overall” measure for validation of the patbhway model structure is
the total prediction error sum of squares PRESSy. Table 3.4 shows the PRESS for
each quality variable, computed for all samples during the course of the each batch,
for the pathway and the local models built on the data generated with recipe 1 and
9. The sum of these PRESS values provide PRESSy. When the pathway model
structure is valid, the PRESSr is expected to be similar for both model structure,
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Figure 3.10: Effects of flow rates of monomers and initiator on tetra-
functional branching level during nucleation, estimated using lo-
cal MBPLS models, when initial charge recipe 1 is used.
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although it would always be smaller for the local models. However, if the pathway

structure is not valid, then the PRESSr corresponding to the pathway model should

have a much higher discrepancy with the value obtained for the local models. This

situation is clearly shown in Table 3.4 where the PRESSr is a factor of 2 higher

when using recipe 2, while it is only 35% higher with recipe 1.
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Figure 3.11: Effects of flow rates of monomers and initiator on tetra-
functional branching level during nucleation, as estimated using
local MBPLS models, when initial charge recipe 2 is used.

3.6 Conclusion

This chapter has developed an empirical methodology using designed experiments
and analyses based on multi-block PLS algorithms for batch and semi-batch process
improvement and optimization. The procedure is based on identifying the sensitiv-
ity of final product quality to the shape of process variable trajectories (histories).
Understanding how and when during the course of a batch process variables have an

impact on quality is essential for suggesting modifications to operating policies that
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Table 3.4: Comparison of prediction error sum of squares per quality
variable and total prediction error sum of squares for the pathway
model and local PLS model structure, built using 40 runs and
generated with recipe 1 and 2.

Recipe | Model Structure | M, B4 T Ny d, PRESSr
1 local 30.81 | 48.44 | 23.00 | 78.35 | 91.73 272.33
pathway 50.22 | 56.55 | 81.10 | 65.87 | 113.62 367.36
2 local 26.91 | 140.70 | 46.74 | 31.78 | 47.80 293.93
pathway 131.04 | 332.90 | 71.43 | 23.10 | 45.62 604.09

may result in improved quality. Two types of effects were identified, namely cumula-
tive and time-specific effects. Cumulative effects have an impact on product quality
due to the accumulation of some species over the entire batch duration. On the other
hand time-specific effects are those where quality is modified but only over a particular
period of time during a batch. They are usually associated with stages of operation
in which different physical phenomena dominate. Identification of trajectory features
affecting quality was illustrated using a simulation study of styrene-butadiene rubber
emulsion copolymerization. Useful insight about the process was gained through the
proposed analysis.

A new pathway PLS algorithm was proposed, which allows one to make use of
intermediate quality measurements. It consists of a modified multi-way multi-block
PLS algorithm in which the pathway relationships between process variables and
intermediate product quality is taken into account. The pathway model structure is
valid under the assumption of linear additive effects between the process variables

and quality. A procedure to verify this assumption was also provided.



Chapter 4

Jackknife and Bootstrap Methods in
the Identification of Dynamic Models

4.1 Introduction

Non-parsimonious model structures such as finite impulse response (FIR) models and
autoregressive with exogenous variables (ARX) models are often used in dynamic
model identification. They provide a lot of flexibility to capture complex industrial
process behavior while requiring a minimal number of structural choices. They are
also readily incorporated in some multivariable controllers (e.g. DMC).

However, parameter estimation of non-parsimonious models is often ill-condi-
tioned, due to the large number of lagged input variables used as predictors. In
that situation, it is well known that least squares and minimum prediction error esti-
mates are sensitive to correlation among the predictor variables and can lead to poor
results. Regularization methods (such as ridge regression) and Latent Variable meth-
ods (Principal Component Regression, Partial Least Squares and Canonical Variates)
have therefore been proposed as alternatives to multiple regression for parameter es-

timation of FIR and ARX models (Ricker, 1988; MacGregor et al., 1991; Wise and

a1
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Ricker, 1992 and 1993; Dayal and MacGregor, 1996 and 1997; Shi and MacGregor,
2000). These methods can achieve lower mean square error in ill-conditioned prob-
lems by obtaining a reduced variance in the parameter estimates at the expense of a
slight bias. To reach any given compromise, both regularized least squares regression
and latent variable regression make use of a meta parameter, the ridge parameter
and the number of latent variables respectively. The meta parameter is embedded
into the regression procedure and needs to be selected. This introduces the model
selection problem that is the motivation of this work.

Cross-validation (Wold, 1978) has been a commonly used technique for the
selection of regularized least squares and latent variable models. It is based on maxi-
mizing the model predictive ability. Such a criterion for model selection is appropriate
when prediction is the motivation for model building, as it is in inferential sensor de-
velopment. However, the objective of process identification is to build models for
purposes such as control system design and simulation. These models are usually in-
verted in designing controllers. Not only should the model provide good predictions,
but most importantly it should also capture the correct process structure (e.g. dead-
time). Ricker (1988) and MacGregor et al. (1991) showed that PCR and PLS models
selected using cross-validation performed poorly in determining the process dead-time
since too few latent variables were kept in the model. They concluded that adding
extra latent variables is necessary. The importance of these extra latent variables (as-
sociated with smaller eigenvalues) when inverting the FIR model was demonstrated
by Dayal and MacGregor (1996), who investigated the robust stability and control
performance of FIR models identified with several different methods.

To illustrate the problem of using cross-validation in identification, consider a
single-input single-output first order system with four periods of dead-time, corrupted
by a random white noise. In this example, PLS is used to estimate the parameters

(Wold, 1978; Geladi and Kowalski, 1986). Throughout this work, the SIMCA-P 7.0
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(Umetrics, 1998) software package has been used to build PLS models selected using
cross-validation. For each new latent variable added to the model (a =1,2,...,4),a
statistical hypothesis test is performed to verify if the predictive multiple correlation
coefficient, Q2 = 1 — PRESS(a)/SS;(a—1), has been increased sufficiently to include
the new dimension a. PRESS(a) is the prediction error sum of squares obtained by
cross-validation for the at* latent variable. The PRESS is calculated by dividing the
n observations into g groups of size ¢ (n = gq). Then, each group is deleted one at a
time, and a model is built using the remaining (g9 — 1) groups. The prediction error
sum of squares is computed for the group not used to build the model. The process is
repeated leaving each group out once and only once. The PRESS is then the total
of the prediction error sum of squares for all groups. SS,(a ~ 1) is the sum of squares
of the residuals of the PLS model containing a — 1 latent variables. Therefore Q2 is a
measure of the percent of the variance remaining after (a—1) latent variables that can
be predicted by adding the a** latent variable. Since Q? is not truly F—distributed,
the test is based on a reference distribution obtained from simulation studies. The
reader is referred to Stahle and Wold (1987) and Wakeling and Morris (1993) for more
details.

Two latent variables were found significant by cross-validation, when identify-
ing the first order system. The results are shown in Figure 4.1. The dependence of the
explained variance of the input and output signals (R2 and R3) and the dependence
of the output prediction error sum of squares (PRESS) on the number of latent
variables () is shown in Figure 4.1 a) - ¢). The PLS model with two latent variables
has captured enough information to explain most of the variance of the output and
to predict it fairly well. However, it used only a small amount of information about
the input. Adding more latent variables leads to models having approximately the
same explained variance and predictive power for the output (R? and PRESS), but

it uses more information about the input, as R? increases. This means that several
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linear combinations of the lagged inputs provide equally good models for prediction.
This is mainly attributable to correlation among predictor variables. It is therefore
difficult to assess if the right process structure has been captured by the model when
using a prediction criterion.

Figure 4.1 d) and e) show the true and estimated impulse and step responses
of the first order system with two PLS dimensions. Clearly, the model based on two
latent variables does not provide satisfactory estimates of the dead-time and dynamic
response and when used for control, might lead to poor performance and robustness
properties. The reason for poorly estimated dead-time with two latent variables is
shown in Figure 4.1 f). It presents a comparison between the true input sequence
and its explained value by the PLS model. The explained input sequence behaves as
if the true input was highly filtered. The degree of filtering depends on the number
of dimensions kept in the model. See Wise and Ricker (1992) for further details.
The fact that the square edges of the true input sequence are not modelled is mainly
responsible for the poor dead-time estimation. Substantial improvement of the FIR
model structure could be achieved by adding more latent variables, which would use
more information about the input sequence. In this example, cross-validation clearly
leads to choosing too few latent variables to capture the FIR model structure.

The present work is concerned with developing a more appropriate objective
criterion for selecting the meta parameter of latent variable regression methods, when
the objective is to capture the structure of a process model. This is the case in dy-
namic model identification for process control. It is assumed that the model structure
(FIR or ARX) is already chosen and is valid with respect to both the process and
the type of disturbance affecting it. The proposed criterion is illustrated using PLS
as the parameter estimation method, but it is not limited to PLS and can be applied

to any latent variable method or any regularized least squares method. It is based



4 JACKKNIFE IN IDENTIFICATION

..............0..‘."'
o8}t . @)
o6l -
N R
Q L
0.4} .
0.2
0
0 20 40
a
1
(b)
0.98} ...
27 0.96
0.94
0.92
20 40
a
25
()
20
”n
A
215
Q.
10
5
0 20 40
a

7 and 9 v and 0, 107!

uand 4

-
[$)]

-t

°
o

0

1 Introduction

(@)

200 300

observation #

Figure 4.1: Typical FIR identification results using PLS: a) explained
variance in the input space versus number of latent variables; b)
explained variance in the output space versus number of latent
variables; ¢) output prediction error sum of squares; d) impulse
weights (solid: true; dashed: estimated); e) step weights (solid:
true; dashed: estimated); f) PRBS input sequence (solid: true;

dashed: estimated).



4 JACKKNIFE IN IDENTIFICATION 2 Jackknife and Bootstrap 36

on the Jackknife or the Bootstrap statistics. It allows one to capture more informa-
tion about the model structure and also provides an assessment of the uncertainty in
parameter estimates. A more judicious choice of the number of latent variables is ob-
tained, lying in between the number suggested by cross-validation and the maximum
number of dimensions, corresponding to the least squares estimates. The concepts
are illustrated with simulations on a system taken from MacGregor et al. (1991).
The chapter is organized as follows. The Jackknife and the Bootstrap statisti-
cal methods are first presented, leading to a description of alternative model selection
criteria based on them. The simulation studies are then presented and their results

analyzed. Then, some conclusions are drawn.

4.2 The Jackknife and the Bootstrap Statistics

The Jackknife (Quenouille, 1949; Tukey, 1958) and the Bootstrap (Efron, 1979) are
statistical computer based methods used to assess the uncertainty in statistics com-
puted from finite samples. They provide estimates of bias and standard error, which
allow computing approximate confidence intervals with a minimal number of assump-
tions (Efron and Tibshirani, 1993). However, bias estimation is not covered in this
section since uncertainties in estimating bias are often larger than for estimating stan-
dard errors (Efron and Tibshirani, 1993). Only information about the Jackknife and
the Bootstrap that is relevant to the paper is presented here, but more information
about existing methods for estimating standard errors is provided in Appendix B.
Martens and Martens (1999) have recently used jackknifing methods in PLS regres-
sion to obtain approximate confidence intervals on various parameters of the PLS
model. This is implemented in the latest version of Unscrambler (Camo-ASA, 1998).
In this chapter we propose a procedure based on the jackknife method for selecting

the number of components to use in PLS models. Approximate confidence intervals
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on the resulting model parameters are also obtained as a byproduct of this proce-
dure. The reader is referred to (Efron and Tibshirani, 1993; Gray and Schucany,
1972; Efron, 1983) for more details on the Jackknife and Bootstrap.

4.2.1 The Jackknife

The delete-1 Jackknife (Efron and Tibshirani, 1993) is most commonly encountered
in the literature and is conceptually very simple. Consider a data sample of size n,
X = (1, T2, .., ZIn-1,Tn), Mmeasured from a given process, and a parameter estimate
6 = f(x) estimated from it. The delete-1 Jackknife estimate of standard error of
f is obtained by deleting each of the n observations, one at a time, and computing

replicates of § using the remaining sampled data:

0{=f(I]_,xg,..-,I“_[,I".{.I,---,In_[,xn) (4.1)

This process is repeated for ¢ = 1,2,...,n, until each observation has been deleted
once and only once, thereby generating n jackknife replications of 4. The jackknife
estimate of standard error is given by Efron and Tibshirani (1993):

— n—1& - 3,12
3tejack,1=[ - > (9:'—9)2] (4.2)

=1

where 8 is the average of the n jackknife estimates (6;). The factor (n — 1)/n has
been chosen such that (Et\ejukJV is an unbiased variance estimator of the sample
mean (e.g. § = z). However, there is no guarantee that -;t?jw,x is unbiased for other
statistics.

For large data samples, using the delete-1 jackknife may be too computation-
ally intensive and a grouped jackknife may be used. It consists of removing selected
groups of observations instead of only one observation at the time. Again, each group

of observations is deleted once and only once. Assume a sample of size n is divided
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into g groups of size ¢ (n = gq), the grouped jackknife standard error estimator of 8
is (Shao and Wu, 1989):

. ~1 R
Stejack,g = [g—g—- Z (9, - 9)':‘ (43)
=1

Since the grouped jackknife includes the delete-1 jackknife as a special case, Equation
4.3 will be used throughout this chapter.

Although rarely discussed in the literature, some assumptions are required to
ensure that 5tej, is a valid estimator of the natural errors in g. The main underlying
assumptions are that the collected data set and the jackknife subsamples be represen-
tative of the population. The subsampling should also be balanced. The latter means
that the jackknife subsamples should have approximately the same proportion of data
collected from each region of the original sampling space. More details on balanced
sampling are available in Miller (1974) and Hinkley (1977). The jackknife subsam-
pling method breaks down for very small samples. It is also limited to statistics that

are not too unsmooth nor too non-linear (Efron and Tibshirani, 1993).

4.2.2 The Bootstrap

The bootstrap is more recent and usually more computationally intensive than the
jackknife. The basic idea, which is similar to Monte Carlo simulation, is to randomly
resample x, b times, with replacement. The b bootstrap subsamples have the same
size as the original data set, x, and allow one to compute b bootstrap replications of 6
(6;). The bootstrap estimate of standard error for § is given by Efron and Tibshirani
(1993):

R _ 1/2
Steboot = [Z (6; — 6)2/(b— 1)} (1.4)
=1

The underlying assumptions of the jackknife also apply to the bootstrap. The

number of bootstrap subsamples (b) is set by the user and is not limited to the
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number of observations in the original data set. A large b allows one to gather more
information about the standard error in 6 and the bootstrap is more efficient with
unsmooth or non-linear statistics (Efron and Tibshirani, 1993). However, resampling
with replacement may lead to some unrealistic bootstrap samples. Generating a
large number of subsamples is therefore recommended, but this greatly increases

computation time.

4.3 A Jackknife Criterion for Selecting the Number
of Latent Variables

The Jackknife criterion has been developed for improving the selection of non-parsimonious
dynamic models. Before describing the criterion, the structure of the FIR and ARX
models investigated in this paper are presented in turn.
The FIR model is of the form:
m

Y= ; vi (27Y) ui + e (4.3)
where m is the number of input variables. »; (z~!) is a polynomial in the backward
shift operator (z~!) containing the impulse weights, v;;, between the :** input and

the output variable:
vi N =uvo+vig 27 g 27 i+ by 2T (4.6)

The polynomial order, r, should be chosen to be greater than the process settling
time. Step weights are easily obtained as the cumulative sum of the corresponding

impulse weights: .
J
Mg =Y. Vik (4.7)
k=0

where 7; ; is the step weight of the i** input at lag j.
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ARX models are of the following form:

A Ny= Z B; (z7') uis + e (4.8)
i=1

They have more flexibility for modelling colored disturbances, but are also non-
parsimonious models, except for fairly trivial cases. Consider a more parsimonious
model of the form y = (B/A) u;+(D/C) uz+(F/E) e, where each input effect is mod-
elled separately, and A to F are finite polynomials in z~!. To convert this two input
parsimonious model to ARX form would involve the following. Multiplying through
by the inverse of the noise model gives (E/F) y = (BE/AF) u1 + (DE/CF) u; +e.
Expanding each rational polynomial term into a finite impulse response form yields
the ARX form. Only in the single case where A = C = E and F = 1 will the ARX
model be parsimonious, i.e. Ey =B u;+ D u; +e.

Common approaches to estimating parameters in dynamic models are the
Output Error Method (OEM) and the Prediction Error Method (PEM) (Ljung, 1999;
Soderstrom and Stoica, 1989). Fitting the FIR model (Equation 4.5) by ordinary least
squares (OLS) would correspond to OEM for e being an arbitrary disturbance, and to
PEM if e were white noise. For ARX models (Equation 4.8) the PEM is simply OLS.
An important point in the following section of this paper is that OLS corresponds
exactly to PLS regression when all possible dimensions are used (i.e. when the number
of PLS components is equal to the number of parameters to be estimated). This
will generally lead to parameter estimates with large variance. These models often
give poor predictions and controllers with poor performance or robustness (Dayal
and MacGregor, 1996). It is for this reason that regularized least squares or latent
variable methods such as PLS are generally preferred over PEM/OLS methods for
fitting these non-parsimonious models.

The objective in model identification is not just to obtain a model which will
give good predictions of the output, but to obtain a good approximation to the true

underlying dynamic behavior of the process so that the controller design (involving
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inversion of the model structure) will result in good control of the process output or
the simulations with different types of input variations will give reliable results. We
will interpret this objective as obtaining the best estimates of the true impulse or
step response of the process. If the model is parameterized as a finite impulse or step
response function (see equations 4.6 and +.7), this would imply that the objective
is to obtain the best estimates of the model parameters v or n. Past literature
(Ricker, 1988; MacGregor et al., 1991; Dayal and MacGregor, 1996) have shown that
using cross-validation as a stopping criterion will usually lead to a poorly estimated
impulse or step response of the process because too few latent variables are selected.
Therefore for process identification it would seem logical to use the largest number
of latent variables consistent with capturing the underlying model structure, but to
stop when there is evidence that one is starting to fit noise. The sum of squares of
the model residuals (SSE) will always decrease as one adds more latent variables and
so it can not be used alone to select the appropriate model. The proposed jackknife
criterion complements the SSE profile by revealing when the model is overfitting
the data. The criterion is a measure of the total variance of the impulse or step
response parameters, estimated by jackknifing or boostraping. The proposed model
selection criterion therefore suggests that one continue to add latent variables as
long as the SSE and the total variance of the parameter estimates are decreasing or
stable, and to stop when adding more latent variables leads to a sustained increase
in the parameters uncertainty as measured by the jackknife criterion. The jackknife
criterion alone will not select the model having the best fit, but provides a measure
of the model parameter stability and of the occurrence of overfitting. However. it
will be shown by simulation studies that the joint use of the SSE profile and the
jackknife stability criterion leads to the selection of models that coincide well with
the minimum mean square error (M SE) between the true and estimated impulse and

step weights.
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The jackknife stability criterion is obtained by building a PLS model, with a
latent variables, on each of the jackknife or bootstrap subsamples. For each dimension,
e =1,2,..., 4, the total sum of squares of the estimated parameters, about their
sample mean, is evaluated:

P b -
SSia) =3 3 {6i(e) - 8;(a)}° (4.9)

Jj=1 =1

where p and b are respectively the total number of parameter estimates (6) and the
number of jackknife (or bootstrap) subsamples. 6;;(a) is the i** replicate of the jth
parameter estimated using a latent variables and 5,- (a) is its sample mean over all b
replicates.

When computing several latent variables, the result of the procedure is a
stability profile, SS;(a), that, when used in conjuction with the SSE profile, provides
the basis for selecting the number of latent variables that should be kept in the model.
When a significant portion of the noise is being fitted, SS;(a) should rise rapidly with
subsequent latent variables. A break should appear in the stability profile, suggesting
that adding further dimensions is degrading the model. In other words, the proposed
criterion suggests that one keep adding latent variables to the model as long as the
residuals are small and the model is consistently estimated.

Figure 4.2 shows the results that are obtained for the first order process dis-
cussed in section 4.1, when using the proposed criterion. The model stability profile.
shown in Figure 4.2 (a), suggests that it is possible to add up to 6 latent variables to
the model before significant overfitting takes place, as SS;(a) rises rapidly beyvond 6
dimensions. Note that the OLS solution corresponds to using all 35 dimensions. The
model with 6 dimensions captures more information about the input sequence and
especially about the square edges, as can be observed in Figure 4.2 (b). Better esti-
mates of the dead-time and the impulse and step response are obtained as shown in

Figure 4.2 (c) and (d) (compare with Figure 4.1). The error sum of squares between
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the true and estimated impulse and step weights is decreased by a factor of two and
a factor of four respectively. Further illustration of the improvements that can be

achieved using the stability profile in identification are presented in section 4.5.
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Figure 4.2: FIR identification results estimated with 6 latent variables
as selected by the Jackknife criterion: a) model stability profile for
35 latent variables; b) PRBS input sequence (solid: true; dashed:
estimated); c) impulse weights (solid: true; dashed: estimated);
d) step weights (solid: true; dashed: estimated).

A parallel can be drawn between the procedure discussed in this section and
the selection of the ridge parameter (k) in ridge regression using what is commonly
called the ridge trace (Hoerl and Kennard, 1970a and 1970b). The ridge trace proce-
dure corresponds to plotting the model parameter estimates as a function of increasing
values of the ridge parameter. This also achieves a reduction in the variance of the

parameter estimates at the expense of an increasing bias. The ridge parameter is then
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usually chosen to be that when the estimates appear to become stable. The proposed
Jackknife stability profile can be used to select the ridge parameter in a more objec-
tive manner. As the ridge parameter (k) is increased the jackknifed sum of squares
of the parameter estimates SS;(k) will decrease sharply and then stabilize (plateau)
when the variations in parameter estimates due to fitting noise has been reduced.
The value of the ridge parameter at this stabilizing point should be used. Note that
the stability traces SS;(k) for ridge regression and SS;(a) for PLS regression work
in the same manner but in opposite directions since variance is reduced (and bias
increased) for increasing values of k but for decreasing values of a.

An additional benefit from Jacknifing is that one can obtain estimates of the
standard errors of the impulse and step response weights using equation 4.3. This

allows one to plot approximate confidence intervals on the impuise and step responses.

4.4 Simulations

The ability of the proposed criterion to select better non-parsimonious dynamic mod-
els for control is illustrated through various simulation studies. A multi-input single-
output dynamic system used in MacGregor et al. (1991) is also used in this study
because it includes most of the common types of dynamic responses encountered in
practice, namely processes with and without delay, first and higher order systems,
inverse response and a variable with no effect.

The process under investigation is a five input, one output system corrupted

by a noise, D,:

5
ye=2_ Zis+ D, (4.10)
=1
where
0.15 z—*

21t = 1085 -1

Uyt (4.11)
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Table 4.1: Disturbance variance characteristics.

Noise Structure | o2 o}
White 0.0104 | 0.0104
ARI 0.0016 | 0.2210
0.045 z™!
= 119
Z2,2 (1 —0.85 Z—l) (1 -0.7 Z"l) U2 ¢ (4,1_)
027" 0.12 z~5

2= |Tha et 1-08z1) (1-06 1)) (4.13)
Z4,t = 0.0 Uyt (4.14)
0.3 278 i
Zoe = T g7 71 Use (4.15)

Dynamic elements for inputs 1, 2 and 5 have unit gain, while a gain of 0.5 and 0
are defined for input 3 and 4 respectively. Two different noise structures have been
studied: a white noise sequence and a nearly non-stationary autoregressive (ARI)
disturbance, respectively:

D = a, (4.16)

1
*~ (1-0992-1) (1 — 0.4 z1)

where a, is a white noise N (0, 02) sequence. The variance characteristics of each noise

D

Qe (4.17)

sequence are given in Table 4.1.

Independent Pseudo-Random Binary Sequences (PRBS) were used for each
process input. The magnitude and switching interval of the five PRBS sequences are
found in Table 4.2. Note that the magnitude of the PRBS corresponding to input 2
is half of the gain of the second transfer function, while it is greater or equal to the
gain of all other transfer functions. In addition, the switching interval on input 2 is
rather slow. The second transfer function is therefore expected to be more difficult

to identify and should have a greater uncertainty, due to lower signal to noise ratio.
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Table 4.2: Characteristics of the designed PRBS input sequences.

Input Number | Magnitude | Switching Interval
1 1.00 6
2 0.43 10
3 1.00 6
4 0.75 1
5 1.20 3

In this work, FIR models with 35 lags of each input variable were enough to
cover the five dynamic relationships (MacGregor et al., 1991). A total of 175 impulse
weights therefore need to be estimated.

The proposed criterion for non-parsimonious model selection is compared to
cross-validation on the basis of the mean square error between the true and estimated
impulse and step weights:

5 34

1"ISEimp - 2 z: (17,"]' - V,‘J)z (4.18)
i=l j=0
5 34

MSEgqep = Z z (Mg — 77:',1')2 (4.19)
i=l j=0

The M SE measures the closeness of fit to the true models. MSE;;, mainly focuses
on the process dynamics, while M SEg,, focuses more on the steady-state gains.

In all cases, non-parsimonious model selection is performed using the grouped
jackknife statistic whose estimates of standard error have been shown reasonable by a
Monte Carlo simulation (see Appendix B). This choice is also motivated by its strong
algorithmic similarity with cross-validation, that is already implemented in standard
PLS software packages. The number of subgroups to use in the jackknife procedure
was investigated using the simulation study with good input design described in sec-
tion 4.5.1. The stability profile and the estimates of standard error on the parameters

were computed using successively 10, 30, 60 and 100 jackknife subgroups. However,
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the corresponding stability profiles were found very similar and all suggested keeping
about the same number of dimensions in the model. The proposed criterion is not
very sensitive to the number of subgroups provided that the number of subgroups
is not too small, and the data do not have small clusters in different regions. In
this chapter, jackknifing with 30 subgroups was used since it provided a reasonable

compromise between accuracy and computation time.

4.5 Results

The usefulness of the proposed non-parsimonious model selection criterion is illus-
trated through three case studies. The first two cases investigate a process corrupted
by a white noise sequence, where a good and a poor experimental design (corre-
lated inputs) have been implemented. In the third case, a process with a nearly
non-stationary autoregressive disturbances is identified. A total of 335 observations
were utilized for FIR model identification and computation of the SS(a) profiles and
the M SE’s. This ensures that after initializing the calculations, 300 data points are

available for the identification in all cases.

4.5.1 Identification of models with white noise
Good Input Design

In the base case study, the MISO process with white noise is identified assuming a
FIR model. The five inputs are manipulated according to the design shown in Table
4.2. With a good design such as this, one would expect a very broad range of model
dimensions (A) to give good results. The modelling results are presented in Figure
4.3 to 4.5.

The impulse and step response stability profiles, the sum of squares of the

model residuals and the mean square error for the impulse and step responses for the
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first 50 PLS dimensions are shown in Figure 4.3. Cross-validation stopped the model
building procedure at 4 latent variables. However, the stability profile for the impulse
response (SS;) shows a very slowly rising profile up to about 12 latent variables, and
a steeper rise beyond that, while that for the step response (SS;) shows a very flat
profile in which increased variance does not appear to occur until beyond 20 to 30
latent variables. This implies that one could select between 6 to 12 dimensions and
still obtain a stable model, but with smaller residual variance (SSE) than with cross-
validation. As expected, a broad range of latent variable choices would appear to be
acceptable. We have chosen 10 dimensions in this case as it accounts for most of the
steep decrease in SSE (a factor of 4 smaller than the cross-validation results) while
still giving stable impulse and step weight estimates.

Both M SE profiles confirm that one would obtain better models by adding
more latent variables to the 4 dimensions suggested by cross-validation, as a minimum
on the M SFE profiles is not attained until 12 and 14 latent variables for the impulse
and step responses respectively. Any choice between 8 and 15 latent variables would
give low MSE’s. The range of dimensions suggested the jackknife criterion covers
this low M SE region relatively well. Note that the OLS (PEM in this case) solution
would correspond to taking the maximum 175 components. As suggested in the plots
of the jackknife statistics, and confirmed in the MSE;n, plot this would lead to a
poorer model.

Figures 4.4 2nd 4.5 show the true and estimated impulse and step weights for
the 5 inputs (plotted in a sequence one after the other), obtained with 4 and 10 latent
variables (e.g. with cross-validation and the proposed criterion). Approximate 95%
confidence intervals around the estimated impulse and step responses are also plotted.
It consists of a two standard error limit, estimated through jackknifing. Improvements
in each estimated transfer function are noticeable. The dead-time of the first transfer

function is better estimated and significant reduction in the step weights uncertainty
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for the second transfer function is achieved. The inverse response of the third transfer
function is closer to the true response and so is the fourth transfer function. Finally,
the estimated gains of all five transfer functions are also improved.

Using the proposed selection criterion only led to marginal improvements in
this case because of the well designed nature of the experiments. The matrix of
predictors (lags of inputs) is well conditioned, the signal to noise ratio in the data
was high (Jy, noise free/Tnoise = 14) and the disturbance structure was a simple white
noise. These all contribute to a straightforward identification problem. However,
as the conditioning of the predictor matrix gets worse and when an autocorrelated
disturbance is present, the identification problem gets more difficult and the proposed

selection criterion will be much more useful, as shown in the following examples.

Correlated Inputs (Poorer Design)

When correlation between process inputs is introduced (poorer design), the predictor
matrix gets more ill-conditioned. Cross-validation could be more misleading in se-
lecting the right number of latent variables to capture the process structure. Indeed,
the number of possible combinations of lagged inputs that can adequately predict the
output should be greater.

To simulate a poorer design of the inputs, linear combinations of the PRBS
sequences, shown in Table 4.2, have been taken to generate the following correlation

structure among the inputs:

( U U2 us Uq us \
u; 1.0 -0325 0216 -—-0.421 0.324
uz 1.0 -0.132 0.946 -0.079
. . (4.20)
uz : 1.0 -0.324 -0.029
ug : : 1.0 -0.090

\us | : : 10
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Again, the white noise sequence with variance shown in Table 4.1 has been added
to the process signal. The calculated signal to noise ratio is still large at about 13.
Identification results using an FIR model are shown in Figure 4.6 to 4.8.

Only 4 dimensions were found significant by cross-validation. However, as
shown in Figure 1.6, several additional dimensions could be added to the model
without significantly degrading it. The total variability of the FIR model (SS;) is
stable up until about 12 dimensions, beyond which overfitting becomes significant.
The stability profile for the step response (SS;), on the other hand, goes through a
minimum and remains stable until about 16 components. We have chosen 12 latent
variables in this case, as it decreases the SSE by almost a factor of 6 compared
to cross-validation results without leading to instabilities. The jackknife criterion
again leads to better models than cross-validation as confirmed by the M SE profiles
for the impulse and step responses. These reach minima with 14 and 12 dimensions
respectively. Notice the similarity between the stability profiles and the MSE profiles
beyond 12 latent variables. The same similarity was also evident in the first example
(Figure 4.3).

The true and estimated impulse and step weights are shown in Figure 4.7
and 4.8. Clear improvements on dead-time and gain estimation have been achieved
by using 12 latent variables suggested by the jackknife criterion as opposed to 4
suggested by cross-validation. Note that the approximate confidence intervals on the
step responses (Figure 4.8) are also smaller using 12 latent variables, again reflecting
the improved estimates. However, if one uses OLS for parameter estimation (which is
equivalent to PLS with 175 components), much worse results are obtained as shown
in Figure 4.9. All of the estimated step responses are very noisy and the approximate
confidence limits (obtained again by jackknifing) are much larger than those for PLS
obtained with 12 components. The estimated step response for input 2 and 4 are

particularly poor. This shows the benefits obtained from using appropriately selected
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latent variable regression or regularized least squares methods.

4.5.2 Identification of models with structured disturbances

Identification of the MISO process with a nearly non-stationary autoregressive dis-
turbance (Equation 4.17) is investigated in this section. The variance characteristics
of the noise are given in Table 4.1 and the input PRBS design sequences are those
proposed in Table 4.2. Both FIR and ARX model structures are used to identify the
process dynamic relationships.

The high variance and low frequency content of the nearly non-stationary
disturbance lead to a more difficult identification problem and poorer estimates of the
gains. Fitting the first difference of the inputs and the output significantly improves
the parameter estimates by removing the non-stationarity. Differencing is therefore

used prior to identifying the FIR and ARX models. The signal to noise ratio with
the differenced signals is about 4.

FIR model structure

The lower signal to noise ratio causes cross-validation to stop the model building
procedure at even fewer dimensions, as observed by Kresta (1992). Only two latent
variables are found significant for the prediction of the output. The stability, the
SSE and the M SE profiles are shown in Figure 4.10 for the first 100 PLS dimensions.
The behavior of the stability profiles (SS; and SS;) are very different in this case.
After an apparent increase from 6 to 12 latent variables, SS; falls to a much lower
minimum around 30 latent variables. On the other hand, SS; continuously rises until
12 dimensions, after which it goes through a minimum around 28 latent variables
before a final rise. Meanwhile the residual sum of squares continues to decrease. This
suggests that one has to add more than 20 dimensions in order to obtain a stable

model with a low SSE. We have chosen 30 dimensions in the following analysis
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Figure 4.9: Step weights obtained with FIR model with white noise
and poorer experimental design: identification using OLS (or
PLS with 175 components). True response—solid line, estimated
response—dots, two-standard error limits based on jackknifed es-
timates of variance—dashed line.

because it corresponds essentially to the minimum in both jackknife stability profiles.
and to the point where the fit error (SSE) levels out at an effective minimum. It
is worthwhile noting, however, that in this case OLS or PEM (equivalent to the use
of PLS with 175 dimensions) could also be used without much loss since neither of
the jackknife stability statistics exhibit too large of an increase by going to very high
dimensions. In this sense the criterion can be used to verify whether OLS or PEM
can safely be used on any particular data set.

The shape of the jackknife stability profiles in Figure 4.10 warrants some
discussion. The small values of SS;(a) at very low dimensions, and the local minimum
in SS;(a) around 5 coupled with the large residual sum of squares (SSE) in this region
imply that although one is obtaining poor models (large SSE’s), the parameters
are being consistently estimated (low SS;(a), SSi;(a)). Figure 4.11 shows the step
responses estimated using a = 1,8 and 12 (dotted lines) and a = 20,30 and 100
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(dashed lines) latent variables. Clearly, PLS appears to be capturing very little of
the steady-state gain information in the fitted responses until one adds more than 12
latent variables. Only at higher dimensions (20 to 30) is the complexity of the model
sufficient to capture both the dynamic and steady-state response (see the MSE’s
in Figure 4.10 and step responses in Figure 4.11). The maxima in the jackknife
statistics around 12 dimensions reflects the instability in the parameter estimates
as one transitions between the two regions. Because of the nonstationary nature
of the disturbance (Equation 4.17) the data were differenced prior to identification
in order to remove the large low frequency component of the disturbance. This
filtering operation also reduces the information on the steady-state process gains in
the differenced data. Hence, the dominant early latent variables (a = 1,...,12)
capture mainly the higher frequency dynamic response information, while the latter
latent variables (a > 12) capture the smaller amount of information on the steady-

state gains.

Step Weights

0 20 40 60 80 100 120 140 160 180
Number of lags
Figure 4.11: Step responses obtained with FIR model with non-
stationary autoregressive disturbance: True response—solid line,
estimated response with 1, 8 and 12 dimensions—dots, estimated
response with 20, 30 and 100 dimensions—dashed line.
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The MSEimp and M SEg,, profiles in Figure 4.10 clearly show that a model
with 2 latent variables (cross-validation) is totally inadequate to capture the process
structure, as 30 and 25 latent variables are necessary to reach the minimum values of
MSE;m, and MSEg,, respectively. The proposed jackknife criterion again leads to
the selection of a model very close to that giving the minimum MSE’s. Figure 4.12
and 4.13 shows the impulse and step weights obtained using cross-validation and the
jackknife criterion (2 and 30 latent variables respectively). A very major improvement

in all aspects of the estimated process dynamics is obtained.

ARX model structure

As discussed earlier the ARX model is an alternative non-parsimonious model whose
advantage is the ability to accomodate colored disturbances more directly. For the
simulated example in this paper the ARX model required almost as many parameters
as the FIR model in order to capture the different dynamic responses. A total of 25
lags of each input and one lag of the output were found appropriate (126 parameters
to be estimated). The model identification results for the ARX models using cross-
validation and the jackknife criterion are almost identical to those obtained for the
FIR models, as shown in Figure 4.14 to 4.16.

Cross-validation suggests that only 3 components are significant. However,
this model has great instabilities and is also poorly estimated, as shown in Figure
4.14 by the means of the SS;, SS; and the SSE profiles. To obtain a stable model
with low residuals, one need to add more than 17 components. The model stability
seems to be best in between 17 and about 30 latent variables, but OLS/PEM would
not lead to important loss in this case either. We have chosen 30 components in this
example. It is clear from Figure 4.14 that selecting more than 17 latent variables
would lead to low MSE’s. Figure 4.15 and 4.16 show the estimated impulse and
step responses obtained with 3 and 30 latent variables (cross-validation and jackknife
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Figure 4.12: Impulse weights obtained with FIR model and ARI dis-
turbance: selected with cross-validation (a = 2) and the pro-
posed criterion (@ = 30). True response—solid line, estimated
response—dots, two-standard error limits based on jackknifed es-
timates of variance—dashed line.
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criterion). As for the example with a FIR model, clear improvement in almost all
aspects of the process dynamics is obtained when using the jackknife criterion to

select the number of PLS components.

4.5.3 Alternative criteria

Alternative criteria for model selection have also been investigated. The Akaike In-
formation Criterion (AIC) (Akaike; 1974), commonly used in parsimonious model
identification was investigated. However, for the cases studied, the number of model
parameters is so large that the AIC always suggested keeping only one latent vari-
able in the PLS model. The AIC does not appear to be a viable approach for the
non-parsimonious models considered in this chapter.

Another criterion is to use the lack of fit diagnostics proposed by Box and
Jenkins (1970), originally developed for testing the structure of parsimonious trans-
fer functions and noise models. Upon failure of these tests, modifications to model
structures are suggested. Cross-correlation between inputs and residuals at different
lags and autocorrelation of the residuals are used for that purpose. An appropriate
transfer function model should not lead to significant cross-correlation coefficients
between each input and the residuals. In addition, the residuals should not be signif-
icantly autocorrelated. The same idea could be applied for selecting the number of
latent variables in PLS. When too few latent variables are included in the estimation
procedure, the resulting lack of fit should be reflected in the above diagnostic tools,
suggesting that further latent variables be added. The estimated cross-correlation
coefficients 7, ; between each input, i =1,...,5, and the residuals, é, and the auto-
correlation coefficients of the residuals 7; ; for the FIR model of section 4.5.2, selected
using cross-validation are shown in Figure 4.17. Bartlett’s approximate 95% confi-

dence intervals for those coefficients are also provided.
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Figure 4.14: Process with non-stationary autoregressive disturbance
and ARX model: model stability profiles for the impulse and
step responses, sum of squares of the model residuals and mean
square error for the impulse and step responses.
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Figure 4.15: Impulse weights obtained with ARX model and ARI dis-
turbance: selected with cross-validation (e = 3) and the pro-
posed criterion (@ = 30). True response—solid line, estimated
response—dots, two-standard error limits based on jackknifed es-
timates of variance—dashed line.
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Figure 4.16: Step weights obtained with ARX model and ARI dis-
turbance: selected with cross-validation (¢ = 3) and the pro-
posed criterion (a = 30). True response—solid line, estimated
response—dots, two-standard error limits based on jackknifed es-
timates of variance—dashed line.
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When selected with cross-validation (a = 2), the FIR model for transfer func-
tions 1-3 and 5 show serious lack of fit (Figure 4.13). For such serious lack of fit one
would have expected to see all the cross-correlation tests on the residuals clearly vio-
lated. However, only the cross-correlation plot for input 5 might lead one to suspect
an inadequate model for this input. The reduced information content of the data (low
signal to noise ratio and small number of observations) could be responsible for failure
to detect the lack of fit. To check this, the same study was reproduced using 1950
observations, but similar results were obtained. The inability of the cross-correlation
tests to detect even gross model inadequacies such as these appears to arise from the
presence of so many adjustable parameters in the non-parsimonious models. Even
though each input model is very inadequate the residuals are small, not highly au-
tocorrelated, and not highly cross-correlated with any of the inputs. It seems that
inadequate fits of some inputs can be compensated by the inadaquate fits of other in-
puts with the result that one still obtains small uncorrelated residuals. Therefore, the
Box and Jenkins diagnostic tests can not be used reliably to select non-parsimonious
dynamic models.

Using 1950 observations allowed us to assess the sensitivity of the Jackknife
stability profile to the number of observations. The shape of the resulting profile was
essentially the same as the one shown in Figure 4.10, and led to the selection of about

the same number of latent variables.

4.6 Conclusion

A new criterion based on the Jackknife or the Bootstrap statistics has been developed
in this work to improve the selection of non-parsimonious dynamic models, built
for control system design or simulation purposes. The procedure is applicable for

selecting the meta parameter of latent variable regression methods (number of latent
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variables) and regularized least squares regression methods (the ridge parameter).
This methodology also has the advantage of providing estimates of the standard
error and approximate confidence intervals for the impulse and step responses. The
performance of the proposed criterion has been illustrated and compared to cross-
validation through various identification case studies, in which PLS was used for
parameter estimation.

Many papers have shown the inadequacy of cross-validation to guide in choos-
ing a model capturing the right process structure. This is very important when the
models are to be inverted as they are in controller designs or used in simulation with
different input structures. The proposed criterion is based on selecting a model hav-
ing both a low sum of squares of the residuals and stable parameter estimates. The
procedure provides a stability profile for the model parameters, as a function of the
number of latent variables. Several cases were simulated to illustrate the use of the
stability profile. In essentially all cases investigated the parameter stability profile se-
lected the numier of latent variables to be very close to the number which minimized
the mean square error for the impulse and step response models. This results in a
model capturing most of the process structure. This approach outperformed the use
of cross-validation in all cases and aiso gave better results than OLS/PEM. It alsc
shows when the latter approach can be used without too much loss.

The Box and Jenkins auto and cross-correlation diagnostic tests were also
investigated as a mean of selecting the number of latent variables. However, they
were shown to be unreliable for providing evidence for lack of fit. This seems to be
attributable to the large number of parameters estimated in the non-parsimonious
models. As a result they appear to be of little use for model validation and for
determining the number of latent variables when non-parsimonious models are being
used. The proposed stability profile approach suggested in this chapter seems to be

one of the few reliable methods for selecting the number of latent variables required
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to capture the model structure.
The use of the Jackknife is generally preferred to the Bootstrap since it is
less computationally intensive and because of its algorithmic similarity with cross-

validation, which is already implemented in most PLS software packages.



Chapter 5

Defining Multivariate Specification

Regions

5.1 Introduction

Developing meaningful specification regions for selecting lots of raw materials enter-
ing a consumer’s plant is essential to ensure that consumer’s desired final product
quality is achievable. Furthermore, the economic consequences of being able to es-
tablish meaningful specification regions are enormous. For the supplier of materials,
if he can establish and meet specification regions that will consistently ensure con-
sumer satisfaction, he can potentially gain a significant increase in market share. For
the consumer, knowing what specifications he must place on incoming materials to
ensure smooth operation of his process and to achieve the required quality of his own
product will allow him to easily select suppliers who can meet these specifications
or work with suppliers to achieve them. The resulting improvement in his product
quality should also allow him to increase market share of his product. In addition,
by more precisely defining raw material specifications needed for his process he may

potentially be able to expand his supplier base and accept lower cost materials that
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are perfectly satisfactory for him. However, in spite of their importance, no standard
industrial practice seems to exist for defining raw material specifications. They are
rather defined arbitrarily based on past and often subjective experience. For instance,
one practice is to set tight limits on important properties, to a range correponding to
the best supplier’s quality. Specifications are not only based on achievable final prod-
uct quality but also account for process operating ability. For example, in polymer
extrusion and film blowing, specification on raw polymer melt index MI (measure
of viscosity) is largely based on the ability of the equipment to process the polymer
easily.

Very few papers discussing issues around setting specifications on incoming
raw materials have been found in the quality control literature. The importance
of specifications for selecting good quality materials is always emphasized (Brinkley,
1991; Yarborough, 1995a and 1995b; Redlich, 1996), but methods for computing them
are never discussed. The focus of these papers is, most of the time, on general quality
management issues. Although literature exists for defining quality via univariate
measures, using concepts such as loss functions (Taguchi, 1986; Fathi, 1990) and
desirability functions (Harrington, 1965; Brown, 1990), these always assume that
the product specifications are already available. Process capability indices (Cy, Cox;
Cp.m) are also used to provide measures of the ability of a process to meet certain
specifications. Therefore there is a need to develop a methodology for defining raw
material specification regions on a sound analysis of supplier and consumer data bases.

In general, it is also assumed that raw material quality can be assessed uni-
variately, using a one variable at a time approach. This is valid when the raw material
properties of interest are independent from one another. In reality, the various prop-
erties one can measure on any given product are often highly correlated. Polymers,

for instance, could be characterized by several viscosity measurements at different
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temperatures or shear stresses, or by melt flow indexes and density, which are all cor-
related measurements. In the manufacture of synthetic fibers quality measurements
often consist of extentional measures under various loads, the elongation at break,
and the load at break, all of which are point measurements along a stress \ strain
curve. These measures are highly correlated with one another and with other quality
measures such as denier, etc. In that situation, product quality is determined by the
joint values of all measured properties. In other words quality is truly a multivariate
property, requiring the correct combination of all the measured characteristics. When
univariate specifications are used to select raw material having correlated properties,
significant amounts of material may be misclassified. This can be discussed by refer-

ence to Figure 5.1.

Figure 5.1: Problem of using univariate specifications on correlated raw
material properties (z; and z;).
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Consider z; and z; to be two correlated raw material properties. Also assume the
elliptical region “A” to be the true multivariate region within which raw materials are
good quality. The square region “B” is a corresponding univariate specification region,
accepting the same variance on each individual property as the multivariate region.
Clearly, all raw materials falling into the region included in between the elliptical
region “A” and the square region “B” correspond to accepting poor quality material.
To improve the selection process, one could shrink region “B” to the square region “C".
A lot less poor quality material would be accepted, but all the good quality material
falling into areas of the ellipse located outside region “C” would be rejected. Indeed,
the gray zones in Figure 5.1 all correspond to misclassified raw material quality.

To the author’s knowledge, the only approach for defining multivariate specifi-
cations on raw materials has been proposed by De Smet (1993). Partial Least Squares
regression (PLS) is first used to build a model between raw material properties and
consumer’s final product quality, available from historical data bases. In a second
step, a region in the projection space of the model is defined to include most observa-
tions associated with good final product quality. This multivariate region can then be
used to monitor and select new lots of raw materials entering the plant. The potential
of this methodology has been illustrated with a simulation and an industrial example.
However, several issues with this approach were not resolved. Indeed, this method as-
sumes that the consumer’s final product quality is out of control mainly due to poor
raw material quality. However, a more general and realistic situation is that both
supplier raw material variations and variable process operation are responsible for
poor product quality. In addition, feedforward and \ or feedback control actions from
operators or control systems are often implemented on such processes. When process
variations and control actions have an important impact on final product quality, it
becomes more difficult to build a satisfactory model for the effect of raw materials

on product quality. The specification regions or incoming materials required by any
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consumer will depend very much on how he operates his own process. Uncontrolled
variability in his process will inflate his product quality variations and require tighter
specifications on the supplier raw material in order to achieve his final quality spec-
ifications. On the other hand, the use of good feedforward and feedback control in
the consumer’s process will compensate for some of the raw material variations and
allow for wider specifications on incoming raw materials.

The objective of this research is to generalize the methodology proposed by
De Smet (1993) to account for more industrial situations. The concepts are illustrated
using a detailed simulator of a film blowing process, aimed at producing various kinds
of polymer films.

The chapter is divided as follows. Data requirements for defining specifications
are first discussed, followed by a description of the simulation studies. The proposed
methodology is then described and illustrated.

5.2 Nature and Type of Data

The data necessary for developing multivariate specification regions involves three
blocks, Z, X and Y, as shown in Figure 5.2. The type of measurements to be
included within each block is discussed below.

Z(IxL):

e This block includes a total of L measurements characterizing the quality of each
of the I lots of raw materials sent to the consumer. The set of measurements
may not totally define the effect of raw materials on consumer’s final product
quality, but forms a currently accepted set of measurements for raw material

quality. Specification regions will be developed for these measures.
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X (I xJ):

e Steady-state processing conditions used to process each of the I lots of raw
materials should be summarized in this data block. It consists of averaged
measurements collected on a total of J manipulated variables and independent
disturbance variables in the consumer’s plant. Any other type of process mea-
surements should not be included in this block to avoid potential correlation to
one or some raw material properties, which would lead to a misleading analysis.
Only correlation allowed between Z and X is through feedback or feedforward

control actions.
Y (I x M):

e It is assumed here that consumer’s final product quality and process operability
measures can be adequately assessed and characterized by a set of M measure-

ments. These measures will be used to assess the results of variations in Z and
X.

Collecting the data base shown in Figure 5.2 implies that one is able to trace the
processing conditions used for each lot of raw materials, and the final product quality
that resulted from these process conditions and lots of raw materials.

In industrial data bases, variations in final product quality (Y) due to raw
materials may be overwhelmed by variations due to the process and disturbances (X).
In such a situation, it would be difficult or even impossible to develop specifications
for raw material properties as their effect on final product quality would be masked
by the effects of process variations and measurement noise. To overcome this typical
situation, multivariate design of experiments (Wold et al., 1986; Kettaneh-Wold et al.,
1994) could be used to supplement variations in Z, and therefore identify its effect on
Y. Raw material properties can not be designed. However, suppliers often have some

lots of raw materials not sent to consumer for some reason (thought as not appropriate
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for this particular consumer). The idea of multivariate design of experiments consists
of selecting, among these lots of raw materials, a few that have a greater span of
the raw material space than the historical data on raw materials already used by the
consumer. To assist in the selection process, Principal Component Analysis (PCA)

can be used. These concepts are discussed further and illustrated in section 5.4.2.

Consumer’s Process

X
s
s
3 Z X Y
-9
S
S
1
— L _— ! — M
Raw Material Properties Process Variables Quality Variables

Figure 5.2: Data collected by the consumer.

5.3 Simulation of a Film Blowing Process

To illustrate the proposed methodology for setting multivariate specifications on
raw materials, a first-principles based simulator of a film blowing process is used
(Sidiropoulos, 1995). The simulator, B-Filmcad 1.0, was provided by Polydynamics
Inc (Polydynamics, 1996). A schematic representation of the film blowing process is
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shown in Figure 5.3. A raw polymer is fed into an extruder for mixing and melting.
After a given residence time, the polymer melt reaches a die shaped as an annuli.
Often, multi-layer films with concentric annuli and different polymers in each are
produced, but here we consider only a single layer film with one annulus. At the die
exit, air is blown inside the extruded polymer to obtain a given inflation pressure.
This allows the formation of a bubble-shaped film of a desired internal diameter. The
film of polymer is then cooled while being continuously conveyed to cutters and other
finishing devices. The cooling process is controlled by blowing ambient air on the
outer surface of the film.

Cooling air: T,, h

s ®

Cooling air: T,, h

FLH

Moiten polymer: C, p. n(T), at flow rate Q

Figure 5.3: Typical film blowing process.

This is necessary to achieve desired film properties. After a certain distance from
the die exit, called the frost line height (FLH), the final film properties are deter-

mined and remain constant. The data generated using the simulator consists of 12
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raw polymer properties (Z), 3 process variables (X) and 2 film properties (Y). The
heat capacity (C,) and the density (p) of the polymer and the dependence of the
raw polyvmer viscosity on temperature as given by Equation 5.1, are assumed to be

adequate for characterizing the raw polymer quality.

n(T) =ny exp [—-a (T-Ty) +c {(T _lTs)d - (T _1 T, )4 }] (5.1)

Parameters a, ¢ and d are characteristics of the polymer (fitting parameters). n;

is the polymer viscosity at the reference temperature Ty, and T; is its solidification
temperature. To include the dependence of viscosity on temperature as an effect (Z),
the viscosity at 10 different temperatures along the curve were collected. The effect
of raw material variations on film quality is assumed to be captured by measuring
C,, p and 10 values of n(T') for each lot of raw polymer.

Important process manipulated variables are the polymer flow rate (Q) and
the air flow rate. However, the latter is replaced by the maximum local heat transfer
coefficient (h,) along the bubble, since the simulator does not allow modifications to
the air flow rate. The last process variable considered is the ambient air temperature
(T,), which is a major process disturbance affecting cooling conditions and hence,
film properties.

Film quality is assumed to be characterized by the full stress in the machine
direction (FM DS), taken beyond the frost line, and the frost line height itself (FLH).
The F'LH is not a true film property, but is important to control since the film stresses
are related to this variable.

A total of 3 cases are studied. Each consists of a data base similar to the one
shown in Figure 5.2, including 50 lots of raw materials. To simulate different lots of
raw materials, the values of the parameters of the viscosity function (7y, a, ¢ and d)
and the values of polymer properties C, and p were generated as random draws from
normal distributions, with means equal to some nominal conditions and standard

deviations as given in Table 5.1. The nominal values chosen for the raw material
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properties correspond to a LDPE polymer (Sidiropoulos, 1995). For example, the
values for one lot of raw material generated in Section 5.4.1are(nfacd Ty T, C, p] =
(19831 0.017871 6.06 0.992 180 95 2134 1042]. These values are used to obtain one
row of Z. Part of the variations in processing conditions were obtained in a similar
fashion, but since Q and h, are manipulated in Sections 5.4.2 and 5.4.3 to control
film properties, their corresponding standard deviations shown in Table 5.1 are the
result of both random variations and control actions. More details concerning process
variations are provided in Sections 5.4.1 to 5.4.3. For the parameters and properties
of the lot of raw material discussed previously, the corresponding row of X (processing
conditions) is [Q T, ho] = [110 20 22]. Finally, the corresponding film properties (row
of Y) is obtained by implementing the values of Z and X into the simulator.

For each viscosity curve, polymer viscosity was measured at the following
10 temperatures: 96, 97, 102, 103, 137, 138, 146, 147, 194, 195 °C. Raw material
properties (Z) are the same for all cases studied unless otherwise stated. The process
was constrained to always produce a film of a thickness of 0.088 mm and a blow-up
ratio of 1.8 (ratio of bubble diameter to die diameter), using a die temperature of
195°C (i.e. process already has perfect control on these properties). Further discussion
on variations implemented on parameters of Table 5.1 are specific to each case study,
and are defered until they are presented in later sections of this chapter.

Random independent measurement noise were added to Z and Y variables.
The standard deviation of the noise added on each variable is about 10% of the
standard deviation of the noise-free variable. However, since viscosity measurements
belong to the same curve, and are therefore highly correlated, the noise sequences
added to these measurements are perfectly correlated, but still with standard devia-
tions of about 10% of the standard deviation of noise-free viscosities. Such correlated
noise structure would make sense, for instance, if all the errors were coming from a

lab bias (different viscometer settings, bias in temperature sensors changing between
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Table 5.1: Nominal conditions and standard deviation between lots of
raw material properties and processing conditions in each of the
three simulation case study.

o
Parameter Nominal Value | Section 5.4.1 | Section 5.4.2 | Section 5.4.3
ny (Pa-s) 16077 2429.7 2429.7 2429.7
a (-) 0.02113 0.00306 0.00306 0.00306
c () 5.71 0.86 0.86 0.86
d (-) 1.0 0.17 0.17 0.17
Ty (°C) 180 0.0 0.0 0.0
T, (°C) 95 0.0 0.0 0.0
C, (J/kg-°C) | 2300 183.9 106.5 183.9
p (kg/m?3) 900 141.6 141.6 141.6
Q (kg/h) 110 0.00 8.34 2.34
T, (°C) 20 0.00 6.70 6.63
ho (W/m2-K) | 22 0.00 3.20 6.13

days, etc.). This is not entirely realistic, but this is used for illustration purposes
only.

5.4 Methodology for Developing Specifications and

Illustrations

A sound data-driven methodology to develop specifications on raw materials is to
directly take into account their effect on consumer’s final product quality. For raw
material properties appearing as weakly or not related at all to final quality, no
specifications are required. However, for those properties or combination of properties
that seem strongly related to quality, tighter specifications are needed. Therefore, one
needs a reliable mapping between quality space (Y) and raw material space (Z). This
is not always obvious to obtain from historical data as variations in the consumer’s

process may also significantly affect final product quality.
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Disturbances and operator actions may introduce process variations that lead
to larger variations in product quality. On the other hand, operator or control sys-
tems actions may also be aimed at rejecting variations due to raw materials and
other disturbances using feedback and feedforward control schemes, and may lead to
reduced variations in product quality. To develop raw material specification properly,
one needs to make an assumption on the type of process variations contained in the
historical data base. In addition, an assumption on future process behavior is also
required. Most practical situations can be classified in three categories according to
the type of process variations that are present: (i) no significant process variations
affecting quality; (ii) significant process variations affecting quality, but these varia-
tions are uncorrelated with raw materials; (iii) significant process variations affecting
quality, and these are correlated with raw materials because of feedback and feed-
forward control. The proposed methodology for developing specifications in each of
these cases is described below and illustrated using simulations of the film blowing

process described in section 5.3.

5.4.1 Absence of Significant Process Variations Affecting
Quality

This is the simplest situation in which the key assumption is that consumer’s quality
variations are due only to raw material variations. The objective is therefore to
develop a specification region for raw material properties, such that most lots of raw
materials leading to poor quality are rejected.

Consider the simple example depicted in Figure 5.4, in which specifications
need to be developed for 2 raw material properties (z; and z;) based on 2 quality
characteristics (v, and y;). In the y;, — y, plot, dots identify good consumer’s final

product quality, while crosses correspond to poorer quality products. This would, in
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general, be addressed by quality control personnel. The general idea for developing
the specification region for z; and z; consists of mapping the points corresponding to
good quality from y-space (dots) into raw material property space (see the z; — z,
plot in Figure 5.4). Then, an elliptical boundary, (z — ) 2:1 (z—%)T = c., is used to
define the region in 2-space where fall most of the raw material properties associated
with good consumer’s final product quality. In the elliptical region expression, 3, is
the covariance matrix of raw material characteristics, estimated using only the raw
material properties associated with good consumer final product quality (dots), and
c¢. corresponds to the size of the specification region. The latter can be selected to
minimize the total number of misclassified points, n, (e.g. sum of dots falling outside
and crosses falling inside the elliptical region). When more than 2 z—variables are
measured, the specification region can be defined by setting an upper limit on the
Hotelling’s T? (Anderson, 1984), T? = (z — i)i:l(z — Z)7. Therefore, the limit set
on T2 is simply the value selected for c;.
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Figure 5.4: Simple example of developing specifications for 2 raw ma-
terial properties z; and z, based on 2 quality variables y; and
Y2-

Since a range of c, values may exist to achieve nearly the same minimal value

for n,, another criterion can be used to select a more precise value for ¢, within that
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range. It consists of choosing the value that best balances type I and type II errors,
defined as follows. Type I error (or producer’s error) consists of the proportion of
truly good lots of raw materials that would be rejected by the consumer, under a
given specification region, among all truly good lots of raw materials sent to the
consumer. On the other hand, type II error (or consumer’s error) is defined as the
proportion of truly poor lots of raw materials that are accepted by the consumer,
under a given specification region, among all the truly poor lots of raw materials
sent to the consumer. It is important to note that both errors are competing with
one another. Reducing the area, the volume or the hypervolume of the raw material
specification region would achieve a lower type II error, at the expense of a higher
type I error and vice-versa.

This simple approach, illustrated for the case where only 2 z and 2 y variables
are available (Figure 5.4), becomes much more difficult when many raw material
properties and many final consumer’s product quality characteristics are measured
(several z’s and y’s), and also when these spaces are not full rank. In such a situation,
one needs a model to define the region in Z space that is important to quality, Y.
Latent variable regression methods such as Principal Component Regression (PCR),
Cancnical Coordinate Regression (CCR) and Projection to Latent Structures (PLS)
can be used for that purpose. In particular, it would make sense to use PLS since it
models high covariance directions within Z and Y, as well as the covariance structure
in between theve data blocks, via a few latent variables T. The structure of the PLS

model is shown below:

Z = TP +E
= TQ +F (5.2)
T

W

where the columns of W are just the linear combinations of raw material properties
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(Z) that are important for final consumer’s product quality (Y). The number of
these combinations, or number of latent variables A, can be computed using the
approaches described in the background section (chapter 2). These latent variables
define a reduced space of dimension A, summarizing the raw material property space
Z. The projection of Z onto that space is denoted as T. Covariance structures within
Z and Y are defined by P and Q respectively. The reader is referred to the background
chapter 2 for further details on the PLS model. One could therefore map good quality
points from the Y space to the reduced space of the model (T), and then use the
same methodology as discussed before to obtain the elliptical specification region.
If the number of latent variables, A, is greater than 2, one could again define the
specification region by setting an upper limit on the Hotelling’s T2, applied on the
latent variables (e.g. T? = i t2/s?;), where s} is the estimated variance of ;.
Since speciﬁcationsJ;e defined in reduced space T instead of in the original
raw materials space Z, one must also ensure that new incoming lots of raw materials
are also well summarized by the PLS model. A valid specification in reduced space
involves not only monitoring the projection of the properties from new incoming lots
of materials (T), but also requires monitoring the distance of this projection from
original measurements. For the ith lot of raw material having measured properties z;,
the distance of these measurements from the reduced space T is given by the square
prediction error SPE; = (2; — ;)7 (2;—2;), where Z; is simply the projection of z; onto
the reduced space (T): z; = t; PT +e; = Z; + €;. When this distance is higher than a
given limit, the new lot becomes suspicious. This suggests that its properties reflect a
different correlation structure than seen before in the historical data base. It is then
impossible to predict the impact of this lot of raw materials on final product quality.
It might be safer to reject it, even if the projection of its properties into reduced space
of the model fall in the region of good quality raw materials. Upper limits on SPE are
computed assuming that it is distributed approximately as g x2(h), that is a multiple
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of a x?-distribution with h degrees of freedom (Nomikos and MacGregor, 1994a).
The two parameters g and h and estimated by matching the first two moments of the
distribution using the historical data base.

In this work, a 95% limit was used to monitor the SPFE of new incoming lots
of raw materials. In the PLS model building stage, however, a higher limit (99%)
is often used to avoid removing useful information (only extreme outlier points are
removed). If such a high limit on SPE was also used for monitoring new incoming
lots of raw material, consumers would have a higher chance to accept poor lots of raw
materials and a higher type II error could result. Since there is no need to use the
same limit on SPE for the model building stage and the acceptance stage, we will
use a 95% limit for the specifications in order to reduce the chances of accepting poor

materials.

IMlustration

To illustrate the definition of raw material specification regions when raw materials
are the major source of variation affecting quality, data was generated as described
in Table 5.1. Processing conditions (X) were maintained constant at nominal con-
ditions for all lots of raw materials and so, X is not required for this analysis. Two
examples are shown in this section, both requiring latent variable models since a large
number of highly correlated Z variables are measured. In the first example, all 12
raw material properties are assumed measurable and are measured. However, in the
second example, variations in p are still implemented, but this property is assumed
not measurable. This is to illustrate the practical problem that not all important
properties of materials are measured or are measurable. The results of both examples
are compared below.

A summary of the PLS modelling results built between raw material properties
(Z) and the 2 quality variables (Y') for both examples is presented in Table 5.2. Shown
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Table 5.2: Summary of the PLS modelling results, for the situation
where variations in quality Y are due only to raw materials Z.

all properties | 4 89.4 96.8 95.5
p unmeasured | 2 76.1 75.4 72.2

are the number of components (A) kept in the model, as determined by leave-one-out
cross-validation, as well as three cumulative multiple correlation coefficients, R%mm,
R% .m and Q% ... Cumulative R? values give the percentages of the total sum of
squares of Z and Y that are explained by the fitted PLS models with the indicated
number of dimensions. Cumulative Q% value is the percentage of the total sum of
squares of Y that can be predicted with these models using a leave-one-out cross-
validation procedure. Cross-validation was used throughout this chapter for selecting
the number of PLS components and the procedure was performed using the SIMCA-P
7.0 software (Umetrics, 1998). For the situation where all Z properties are measured,
a very good model is obtained with high amount of explained and predicted variance
in Y. However, when p is not measured, only 2 latent variables are found significant
(instead of 4) and a much poorer model is obtained, in terms of variance explained
and predicted in Y. Since variance in Y due to p is left unexplained, the specification
region for Z in this case should lead to a higher number of misclassified points and
to higher type I and type II errors.

Quality measurements (Y) and the specification region for Z for both exam-
ples are shown in Figure 5.5 and 5.6 respectively. Assume that based on consumer’s
judgement (involving quality characteristics FLH and FMDS), 29 batches of final
product were identified as good quality (dots), while 21 were identified as poorer qual-
ity (crosses). Since 4 latent variables were found significant to model variations in Z

that are important for Y, the specification region in projection space (T) for the first
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example is based on the Hotelling’s 72. The region developed for the second example
is shown by the means of an ellipse, since the PLS models has only 2 dimensions. To
select the specification limit in both cases, different values of cz were assumed and the
corresponding number of misclassified points (n,) and type I and type II errors were
computed. The results are shown in Table 5.3. When all properties are measured,
the total number of misclassified points is minimal for cr = 6.0, while type I and type
II errors are low and well balanced. This value was therefore imposed as the limit
on T2. On the other hand, a value for cr in between 4.1-3.9 can be chosen for the
situation where p is unmeasured, since these values are equivalent in terms of number
of misclassified points and type I and type II errors. We have selected cr = 4.0 in this
case. Note that in both Figure 5.5 and 5.6, some observations appear to have higher
distance to the model SPE; (observations 1, 23, 49 and 50 for the first example and
observations 10 and 22 for the second example), and these would have been rejected
if this was an on-line monitoring situation. Therefore, observations having a SPE
value higher than the 95% limit were never used in computing Y7, ne and the type I
and type II errors, and this holds for all case studies presented in this chapter.
When comparing both examples, the key result is that when p is not mea-
sured (but varies) a higher number of misclassified raw materials is obtained (n, =7
compared to 2), as well as larger type I (6.89% compared to 3.70%) and type II errors
(26.31% compared to 5.26%). Indeed, poor final products quality (crosses) may be
obtained because of too large or too low density (p), but with a correct combination
of all the other raw material properties. If p is not measured, one would never have

evidence that poor product quality could have been caused by raw materials.
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Figure 5.5: Specification region on raw material properties, for the sit-

uation where variations in Y are mainly due to raw materials and
all 12 raw material properties are measured.
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Table 5.3: Selection of the specification limit in projection space, cr, in
terms of total number of misclassified points, n,, and type I and

type II errors.
p measured p not measured

cr | ne| Typel (%) | Type Il (%) {cr | n: | Type I (%) | Type II (%)

10.0 {7 |0.00 36.84 70|17 | 3.45 84.21

9.0 |6 |0.00 31.58 6.0 16 | 3.45 78.95

80 {6 {3.70 26.32 3.0) 12| 345 57.89

7.0 |5 |]3.70 21.05 42|18 |6.89 31.57

6.0 |2 |3.70 5.26 417 |6.89 26.31

5.0 |7 12222 5.26 40|17 |6.89 26.31
3917 |6.89 26.31
30|19 |13.79 26.32
20| 12| 34.50 10.53

5.4.2 Significant Process Variations Affecting Quality,
but Independent of Raw Material Properties

This section is concerned with developing specification regions for raw materials (Z)
when variations from the process (X) are also significantly affecting quality (Y).
However, it is assumed here that process variations are independent of the variations
in raw materials. In other words, this means that there is no feedback or feedfor-
ward control efforts made, either by operators or control systems, to compensate for
variations in raw materials.

It is important to recognize here that whether or not process variations af-
fecting quality can be removed in future operation will have an important impact
on the specification regions for raw materials. In the next paragraphs, development
of specification regions is addressed for the situation where process variations will

remain in future operation, and the situation where these variations can be removed.
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Process variations will remain in future

If one assumes that process variations can not or will not be removed in the future, the
objective for developing specification regions for raw materials is to achieve desired
final product quality most of the time, in spite of process variations that also affect
quality. Under the assumption that future process variations will remain consistent
with the past (e.g. as seen in the historical data base), these variations are ignored,
and treated as an unexplained source of variance in quality, and specification regions
can be developed just as described in section 5.4.1. This should, in general, lead to a
greater number of misclassified points since poor final product quality can either be
caused by raw materials or by processing conditions. For example, one could process
a truly good lot of raw material, but according to the proposed methodology, this lot
would be classified as poor whenever processing conditions are such that final product
quality is poor. Tighter specification regions than when part or all process variations
can be removed in the future will be obtained, since these specification regions are
shrunk to meet quality requirements after process variations are added.

As the magnitude of quality variations due to the process increases relative
those due to raw materials, it becomes more difficult to build a good model between
Z and Y. This is a typical industrial situation where raw material variations are
overwhelmed by process variations. To improve the model, one may need to generate
more information about the effect of Z on Y. This can be obtained by processing a
few additional lots of raw materials, selected using multivariate design of experiments.

This is exemplified later in this section.

Process variations can be removed in future

If process variations affecting quality can and will be removed (partly or entirely) in
the future through redesign of the process or changing operating procedures, then one

can accept more variations in raw materials to meet the same quality requirements.
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Specifications on raw materials are therefore developed based on the quality variations
that would have been obtained had process variations been removed in the past (Y*).

This can be estimated as follows:
Y"=Y-XBx=ZBz+F (5-3)

where Bx and Bz are regression coefficients estimated using any latent variable re-
gression method. F contains modelling errors (unmeasured disturbances, measure-
ment noise, non-linearities and so forth). When applying the same quality judgement
to Y* (than for Y), one should find that a different set of final products meet quality
requirements than when the judgement is based on Y. For example, if a good quality
raw material was processed under poor conditions with the result that final product
quality is poor, removing the effect of the process from measured quality Y should
move estimated quality Y* back into desired region. Specification regions developed
based on Y* should lead to a smaller number of misclassified points and lower type I
and type II errors, since process variations are accounted for and are removed from Y.
The reduced variability in Y* should also lead to larger specification regions. Note
that one could also remove only a fraction of the process variation, X Bx, from Y

and still use the same methodology to develop the specification regions.

Illustration

In this section, it is desired to illustrate one common practical situation where vari-
ations in quality due to the process overwhelms those caused by raw materials. To
create such a situation, the standard deviation of variations in C, were decreased
by almost half compared to the case of section 5.4.1, while all other raw material
properties remain the same (see Table 5.1). This decreases the magnitude of varia-

tions in quality (mainly in FLH) due to raw materials relative to variations caused
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Table 5.4: Summary of the PCA and PLS modelling results, for the
situation where variations in quality Y are due to raw materi-
als Z and to the process X, but these sources of variations are

uncorrelated.

R, (%) zum (%)
Model Al 2 X Y VA Y
PLS Z-Y 31815 - 5491 - 27.9
PCA Z 31831 - - | 58.1 -
PLS Z-Y with MDOE {3 | 787 - [629| - 43.6
PLS Z-X-Y 6 |87.5(/968)96.4| - 91.0

by the process. Process variations consist of two types: random variations imple-
mented on Q, h, and T, and feedforward compensation for variations in T, using Q
and h, simultaneously. Random variations on Q and h, (manipulated variables) are
used to mimic operator variations in implementing the processing conditions and in
responding to different events. Variations in T, simulate a measured process distur-
bance. This disturbance is rejected by a feedforward controller to maintain cooling
conditions. For example, when T, is higher, h, is increased and Q is decreased. This
leads to a greater cooling rate and a reduced cooling load and therefore, this main-
tains F LH within certain limits. The magnitude of random variations implemented
on Q are threefold compared to feedforward variations, based on standard deviation.
Random variations in h, are about the same level as the feedforward changes. In this
mode of operation the variations in the process variables X (Q, h, and T,) are highly
correlated among themselves, but are not correlated with the raw material variables
(2).

When process variations can not or will not be removed in future operation,
then process measurements X are ignored and one could identify the effects of Zon Y
directly using PLS. A summary of modelling results is given in Table 5.4. However,

since process variations account for an important portion of variations in quality,
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a poor model is obtained (R%_,, = 54.9% and Q%_,, = 27.9%). and almost no
variations in FLH is explained because it exhibits less variation, since the feedfor-
ward control has reduced the variability arising from the process disturbance (T},).
If one still wants to develop a specification region, then more information needs to
be generated for characterizing the effect of Z on Y. This can be achieved through
multivariate design of experiments (refer to section 5.2). To select additional lots
of raw materials to process, a PCA analysis was performed on the joint properties
of past lots of raw materials received by consumer and properties of 8 new lots not
sent to the consumer. Two components were found significant and the results of this
analysis are summarized in Table 5.4 and in Figure 5.7. Observations numbered 51-
58 correspond to the lots of raw materials not sent to the consumer. The idea of
multivariate design is to select a few additional lots, among 51-58, that span a wider
range in the projection space of past lots of materials. We have selected lots 51, 53,
55 and 56 (circled) on that basis. Note that lot 53 also has a high distance to the
projection space (DMODX) and therefore will bring some new information that has
never been seen in the past. This should help to achieve a better definition of the
specification region.

After processing the 4 additional lots of raw materials (51, 53, 55 and 56),
using processing conditions that are consistent with past operation, the resulting
quality measurements were collected. The new Z and Y data were added to the
existing data and a new PLS model was built on the joint data set. This model shows
significant improvement in predicting variations in quality caused by raw materials
(Q% um = 43.6%), as summarized in Table 5.4, especially for variations in FLH. The
results are summarized in Table 5.5. The left half of Table 5.5 shows that limits of
cr = 5.0 and ¢y = 6.0 achieve the same value for n,, but ¢y = 5.0 leads to a better
balance between the type I and type II error. This limit was therefore selected and

the specification region for raw materials is presented in Figure 5.8. Multivariate
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Figure 5.7: Results of a PCA analysis on the measured raw material
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Table 5.5: Selection of the specification limit in projection space, cr, in
terms of total number of misclassified points, n,, and type I and

type Il errors.
Process variations remain Process variations removed
cr | ne | Typel (%) [ Type I (%) | cr [ ne | Typel (%) | Type II (%)
80121} 0.00 60.00 13.0(9 | 0.00 50.00
7.0 {10 {0.00 50.00 120 | 8 | 0.00 44.44
609 |3.45 40.00 11017 |3.22 33.32
5019 |6.90 35.00 10416 | 3.22 27.70
4.0 |13 | 27.59 25.00 1005 | 3.22 22.21
30|15} 41.38 15.00 93 |6 | 6.45 22.21
8.0 |8 |19.35 11.11

design points are circled in this figure.

If process variations could be completely removed in future operation, then
specifications are based on estimated quality that would be obtained had process
variations been removed in the past Y* (instead of based on measured quality Y).
Estimates of Y* are shown in Figure 5.9 (top plot), and were computed using Equation
5.3. Regression coefficients (Bz and Bx) were estimated using PLS with both Z and
X merged in one single predictor matrix. Since Z and X have different number of
variables, block scaling based on the square root of the number of variables in each
block was used in order to give them equal importance in the model. A total of 6
components were found significant and modelling results are provided in Table 5.4.
Predictions of this model (Q% ., in Table 5.4) are now much better, since it takes
process variations into account. The variability in the corrected F' LH* shown in
Figure 5.9 is clearly reduced compared to the original FLH measurements (Figure
5.8), since variations introduced by process variables (Q, h, and T,) are removed.
However, the effect of these variables on FMDS are not as strong as on FLH and
so, variations in FMDS* (Fig. 5.9) are similar to variations measured in F'M DS

(Fig. 5.8).
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Figure 5.8: Specification region on raw material properties, based on
the PLS model supplemented with designed experiments (obser-
vations 51, 53, 55 and 36).
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To assess what product might have been good or bad, the same quality judge-
ment was applied to Y* as was previously done for Y. Note that the same number
of final products were identified as good quality (32), but when judging Y* instead
of Y, the sets of final product meeting quality requirements are different. These
new good quality points need to be mapped into the projection space of Z, which
is different than the projection space (T) of the PLS model described above, since
that model includes both the effect of Z and X. One can separate the effects of the
two blocks and obtain the projection space of Z, T,, directly from the above PLS
model using the work of Westerhuis et al. (1998). The reader is referred to the back-
ground chapter 2 of this thesis for further details. The right half of Table 5.5 shows
the performance of the specification region for different limits. A value of cr = 10.0
was chosen since it leads to only 5 misclassified points and to relatively small type I
and type II errors (3.22% and 22.21% respectively). This specification region is also
shown in Figure 5.9. Accounting for process variations and removing them from Y
leads to a better classification of raw materials. This is shown by a lower minimum
number of misclassified points, n, (5 compared to 9), and lower type I and type II
errors (3.22% and 22.22% compared to 6.90% and 35%).

5.4.3 Significant Process Variations Affecting Quality,
Correlated with Raw Materials

A more realistic industrial situation is one where both raw material (Z) and pro-
cess (X) variaticns have a significant effect on quality (Y'), but control actions are
implemented by operators or control systems to compensate for some of the varia-
tions in raw materials and other disturbances. Control actions (feedback and \ or
feedforward) imply that part of X is collinear with Z. In this section, we look at

the procedure for defining specification regions under three different scenarios: (i)
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assuming feedforward \ feedback control will remain in place thereby continuing to
eliminate part of the variability arising from variations in the raw materials Z; (ii)
assuming that the feedforward \ feedback control will be eliminated (i.e. stop fiddling
with the process). This of course will lead to much tighter specification limits be-
ing required on incoming materials; (iii) assuming one actually were to improve the
feedforward \ feedback control scheme to the best possible one. This would lead to
the largest specification region on the raw materials and hence, would allow one to
accept lower quality materials from larger number of suppliers and reduce costs. The

procedure for each of these three scenarios is discussed in turn.

Feedforward \ feedback control remains in future

Although much of the raw material variations may be eliminated by the feedforward
\ feedback control schemes, there is still a need to define specification regions to reject
those more extreme variations in the raw materials that can not be compensated by
the control system. A latent variable model can be built between Z and Y, to assess
how much variance in Y (under control) is explained by Z. A poor model would
result if the control system compensates for most of variations due to Z or if not
enough information is available from the data base (such as missing measurements
on raw materials). In the former case, one may need to augment the data with
designed materials (MDOE points), provided that these materials introduce large
enough variations in Y so that the control system can not eliminate them. If the
model explains significant variations in Y, than one could define a specification region
for raw materials using the methodology presented in section 5.4.1. Such a region
would lead to rejection of those lots of raw materials for which control systems can

not ensure good quality products.
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Feedforward \ feedback control eliminated in future

If the objective is to eventually eliminate the control efforts made to compensate for
poor raw material quality, then a new approach needs to be adopted. Instead of
defining specifications based on actual quality measurements, Y, one should rather
based them on the quality that would have been obtained if no control had been
done (Y*). Estimating Y* involves decomposing process variations into a component
that is collinear with raw materials, X!, and a component that is orthogonal or

independent from raw material variations, X+:
Y=XBx+ZBz+F=(X”+XJ‘)Bx+ZBz+F (5.4)

It is assumed that X/ arises from control systems (or operators) in compensating for

raw material variations. It is obtained by projecting X onto Z:
Xl=27(Z272)'2'X (5.5)

If Z is singular or close to singular, as will usually be the case, then (Z7Z)~! can
be evaluated using any generalized inverse or using any latent variable regression
method, such as PCR, CCR and PLS. The second component, X+, contains all other
process variations that are uncorrelated with Z, and is simply obtained by subtracting
X!l from X:

Xt=x-Xxl! (5.6)

The estimate of quality that would have been obtained if no control actions had
beer done to compensate for raw material variations is obtained using the following
expression:

Y'=Y-X!Bx=X'Bx+ZBz+F (5.7)

which simply adds to Y the variations in quality introduced by raw materials that
have been eliminated by the operators and control systems (—X!! Bx). The only
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assumption for Y* to be a valid reconstitution of the quality had no control been
performed is that Bx reflects the cause and effect relationship between X and Y
(causal estimate). Estimating causal process effects, B, from historical data may be
possible only in the case where X* is full rank and has enough variations to observe
its effect in Y. If these conditions are met, then one could obtain an estimate of
B% by regressing Y onto the joint matrix made of Xt and Z. However, even if
possible, such estimates of B from operating data will usually be very poor. Better
estimates of the causal effects (B%) of X on Y can be obtained using a few designed
experiments. On the other hand, if control systems are into place, estimates of the
process gains may already be available. Process gains are causal estimates of Bx and
could be used to compute Y* directly from equation 3.7.

Once a valid estimate of Y* is obtained, one could develop specifications on
raw materials according to one of the following two situations. If it is assume that
X1 will remain in the future, then the specifications are developed just as in section
5.4.1, considering Y = Y*. On the other hand, if it is assumed that X+ can and will
also be removed in the future, the specifications are computed as shown in section
5.4.2, where Y = Y* and X = X*. In both cases, tighter specifications should be
obtained than when control actions remain in future operation, since variations in Y*

are expanded compared to variations in Y.

Defining specifications under improved feedforward \ feedback control

Another problem related to development of specification regions for raw materials
is to assess how specification regions would change under better (or worse) control
systems. For example, one might desire to accept raw materials from more suppliers
in order to buy cheaper materials and to take advantage of a greater availability of
these. To achieve this, improved control systems may be required to compensate for

the increased variability of raw materials. The approach, however, again requires
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causal estimates of the process gains (B%) and a simulation to compute new control
actions and disturbances (Xgew) resulting from the use of a modified control system.

The strategy first involves estimating the effects of raw materials on quality
(Bz) and modelling errors (F). This can be accomplished using a latent variable

model relating Y, to Z as follows:
Y.=Y-XB$=ZBz+F (5.8)

Once these are estimated, one should make use of simulations to compute process
variations under a modified control system, X,.w, and use this to obtain an estimate

of quality Ynew that would be obtained under these conditions:
Ynew = Xn‘w ch + z Bz + F (5-9)

Finally, one could develop specification regions for the modified control system based
on a latent variable model relating Z and Y pew, similarly as in the approach described

in section 5.4.1.

Illustration

In this section, the results of developing specification regions for the first two sce-
narios are presented: feedforward \ feedback control remains in future and control
eliminated in future. When generating the data, correlation between Z and X is
introduced via a feedforward control that corrects for some of the variations in C,
using the polymer flow rate Q. Only A, is then used as a feedforward variable to
control cooling conditions, which are still affected by the disturbance, T,. Variations
in T, are the same as these used in section 5.4.2. However, the standard deviation of
random variations added on Q and h, are only about a quarter of their control varia-
tions. These random variations mimic operator variations in implementing operating
conditions, but could also be interpreted as designed experiments aimed at allowing

a direct identification of process gains B% from the data.
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Table 5.6: Summary of the PLS modelling results, for the situation
where variations in quality Y are due to raw materials Z and to
the process X, but these sources of variations are correlated.

Model AR cum () | BY ey (%) | Qum (%)
PLS Z-Y, FMDS only 2| 674 82.6 772
PLS Z-Y*, FLH® and FMDS" | 4| 893 84.8 78.4

Figure 5.10 presents the specification region on incoming raw materials when
feedforward \ feedback remain in future operation. Poor final product quality in
this case is mainly characterized by too large or to small values for FM DS, since
FLH is well controlled (feedforward actions removing variations in T, and Cp). As a
result, building a latent variable model between Z and Y leads to almost no explained
variations and predictions of FLH. One therefore only needs to judge quality based
on FMDS. For purpose of illustration, a total of 33 observations were considered
as good quality. The specification region shown in Figure 5.10 was obtained using
a latent variable model built with FM DS only. A summary of modelling results is
provided in Table 5.6. The performance of the specification region developed for raw
materials when control actions remain in future operation is shown in Table 5.7 for
different values of cr. A limit of c¢r = 4.6 was chosen.

On the other hand, if raw material specifications need to be developed for the
situation where the control policy was to be eliminated, then the resulting region is
presented in Figure 5.11. The key result is that quality variations are now clearly
expanded as compared to the previous case study (see Figure 5.10). This expansion
corresponds to an estimate of the additional variations in quality, introduced by raw
materials (C, in this case), that will no longer be removed by the feedforward control
system. Values for FLH* and FMDS" are therefore estimates of the variations in
quality that would have been observed if no control efforts had been done to compen-

sate for poorer raw materials. Figure 5.12 shows a comparison of the reconstituted
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Figure 5.10: Specification region on raw material properties, assuming
that process variations will remain in the future. Specifications
based on how properties related to polymer viscosity affect FMDS.
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Table 5.7: Selection of the specification limit in projection space, cr, in
terms of total number of misclassified points, n,, and type I and

type II errors.

Control actions remain Control actions removed
cr | ne | Typel (%) | Type Il (%) | er | n. | Type I (%) | Type II (%)
8.0}1150.00 93.75 10.0 | 17 | 0.00 70.83
7.0 14 | 0.00 87.50 9.0 {14 0.00 58.33
6.0112 | 0.00 75.00 8.0 (15| 4.54 58.33
5.0 11§ 3.13 62.50 70 |13 4.54 50.00
4619 |3.13 50.00 6.0 |11 {9.09 37.50
4.0 | 12 | 12.50 50.00 5.9 |10} 9.09 33.33
3.012 ¢ 21.88 31.25 58 |10 13.64 29.16
2.0 | 15 | 40.63 12.50 4.0 |12} 36.26 16.66

3.0 |16 { 63.60 8.33

variance in quality Y* (dots) to its true value (plain line). Measured quality vari-
ations under control Y is also shown (crosses). In this example, it was possible to
obtain reasonable causal estimates of process gains B% directly from the collected
data, because of the presence of independent random variations implemented @ and
ho. If no such independent variations were included in the data, process gains would
have had to be obtained using an independent identification study.

The raw material specification region (middle and bottom plots of Figure 5.11)
was developed based on a latent variable model between Z and Y*. The results are
provided in Table 5.6. Since variations removed by the control systems have been
reconstituted, the hypothetical quality (Y*) needed to be judged using both FLH*®
and FMDS*®. A total of 24 batches of final product was considered as good quality,
which is significantly less than when control actions remain in the future. However,
this was expected due to the expanded variance of Y* compared to Y. The right haif
of Table 5.7 provides the information necessary for the selection of the limit to set on

T?2. Both c¢r = 5.9 and ¢r = 5.8 achieve the same minimal number of misclassified
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Figure 5.11: Specification region on raw material properties after partly
restoring the variability in product quality, as if no control had
been done (other process variations ignored).



5 MULTIVARIATE SPECIFICATIONS 4 Methodology 130

200

3

-
[o2]
[=]

FLH, reconstituted
S &
o

8

3

100 120 140 160 180
FLH, no control

-
o
A

FMDS (z10%), reconstituted

A

N
.

4 5 § 7 8 9 10
FMDS (z10%), no control
Figure 5.12: Reconstituted variance in product quality as if no control
had been done. (Crosses indicated data under control; dots in-
dicate reconstituted data; plain line defines the locus of perfect
reconstitution of variance under no control actions.



5 MULTIVARIATE SPECIFICATIONS 5 Other Related Issues 131

points, but the value of 5.8 is preferred since it leads to a better balance of type I
and type II errors.

Specification regions developed for the two scenarios considered in this section
are not easily comparable since latent variable spaces are different, but clearly that
region with control eliminated will require much smaller raw material variations.

Issues involved in comparing the size of these regions are discussed in the next section.

5.5 Other Related Issues

5.5.1 One-sided specifications

One-sided specifications may arise in different situations. For example, some raw
material properties (Z) may have an adverse effect on quality or productivity only
when they attain values that are too low. Limitations in process operating ability may
also require one-sided specifications (in polymer extrusion, can not process too high
viscosity polymers etc.). Under several one-sided specifications, the region of good
quality raw materials defined in the original measurement space (Z) or in the reduced
space of a latent variable model (T) may also need to be open a one end. However,
since the empirical approach proposed in this work is based on a finite Z data set, it
may be difficult to identify one-sided specifications without prior knowledge. This is

one limitation of the proposed approach.

5.5.2 Comparing multivariate specification regions

In developing multivariate specification regions, one may desire to compare the size
of the regions obtained under different situations or assumptions. One approach for
comparing the size of elliptical region is to compute its volume or hypervolume. When

no latent variable model is used, the hypervolume v of an elliptical region in Z space,
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(z - 2) E:l (z — )7 = c;, is obtained as follows:

v=TI._, §- (5.10)
which is simply the product of all principal axes of this elliptical region (Ortega,
1987), and ), is the i** eigenvalue of $°'. In this expression, Z remains scaled (to
unit variance in this work) to remove the units, otherwise the size of the elliptical
regions would be dominated by variables in Z having large units. However, computing
hypervolumes is limited to cases where Z is not singular or nearly singular, as the
hypervolume v in such a situation would tend to infinity.

If a latent variable model is used to develop the specification region, then the
region in the projection space of the model (T) must be mapped into the scaled raw
material property space Z (different models may have projection spaces of different
dimensions and therefore, T space is not a good basis for comparison). The mapping
of the specification region from the projection space to the raw material space is
done on the basis that Z can be approximated by Z = T PT or, alternatively,
T = Z P. Substituting the expression for T, the elliptical region in Z space becomes
(z—-2) P 37 PT (z2—-%)7 = cr. Then, Equation 5.10 is used replacing cr for c;, M
becomes the it* eigenvalue of P 2;1 PT, and the product is computed from i = 1 to
A only. It is important to note that comparing specification regions based on latent
variable models also requires the models to have a similar structure (e.g. the same
method, the same variables and scaling). However, one problem with this approach
is that the number of dimensions in latent variable models is often lower that the
number of original variables (e.g. A < L) and in such a situation, P ‘Z;I P7 is of
rank A (only has A non-zero eigenvalues). This implies that no specification limits
are required in the remaining (L — A) dimensional space (i.e. infinite limits in these
dimensions and therefore, infinite hypervolume). Defining a meaningful comparison
between specification regions developed based on latent variable models still requires

more investigation.
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5.5.3 Several raw materials in the same process
requiring specifications

Consider the case where 2 different raw materials are entering the same process as
depicted in Figure 5.13, either from the same supplier or different suppliers, where
Z, and Z, are the measured properties on each material. The key issue when devel-
oping specifications in such a situation, is to decide if specifications should be defined
independently for each supplier material or jointly. To address that, one could build
a multi-block latent variable model using the data base shown in Figure 5.13 (a) and
verify if the projection vector (scores) corresponding to Z; and Z; are significantly
correlated to one another. If they are not, then specifications could be developed
independently for each supplier, using the same methodology as presented in this
chapter. On the other hand, specifications on Z, and Z; should be developed jointly
(as shown in Figure 5.13 (b)) when there is a synergy between the properties of both
raw materials (e.g. projection vectors are highly correlated). For example, if raw ma-
terial # 1 has certain properties very low, then this material can be accepted as long

as certain properties of raw material # 2 are quite high, etc.

5.5.4 Process Capability Indexes

Process capability indexes are used to estimate how likely is a given supplier of ma-
terials to meet consumer’s requirements for these materials. It is therefore often used
as a criterion for selecting suppliers. When only one measurement is monitored, then
a univariate capability index is appropriate. Methods for computing various univari-
ate capability indexes are well covered in the literature (Juran et al., 1974; Taguchi,
1986; Taguchi et al., 1989). Consider Figure 5.14 (a), where u is the targetted value

for the property of interest, z;cr and zycr are the lower and upper supplier control
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Figure 5.13: Developing specifications on raw materials bought from
more than one supplier.

limits, usually defined as three standard deviations, based on supplier’s process com-
mon cause variations. z;s; and Zys are the lower and upper consumer specification
limits. One common univariate capability index is the Cpx:

. (z - -z N - -z _
Cox = mm{ USL #’ B LSL} - mm{ USL #’ U LSL } (5.11)
3s 3Is Zycr — H H—TLCL

where s is the estimated standard deviation from the supplier’'s process (common
cause variations).

When more than one material property needs to be monitored, then a mul-
tivariate capability index (MC,) should be used. A good review of available multi-
variate capability indexes is provided by Wierda (1994). According to Wierda, there
exist three approaches for computing MC,’s. In one approach (Wierda, 1993), the
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Figure 5.14: Process capability indexes: (a) univariate; (b) multivari-
ate.
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consumer specification limits consist of a L-dimensional box. The MCj, is just a func-
tion of the probability that products from a given supplier fall into this L-dimensional
rectangular region (multivariate normal distribution is assumed). This is an exten-
sion of the univariate Cpx (Equation 5.11). To account for correlation among the
properties, one could use the same definition for Cpx and compute the probability
that products from a given supplier fall into an elliptical specification region instead
of an L-dimensional box. A second line of approach, proposed by Kotz and Johnson
(1993), makes use of loss functions instead of specification areas.

The last approach for defining multivariate capability indexes is based on el-
liptical specification regions, (Z—7) A~} (Z-7)T = . Such specification regions are
recommended since they take into account correlation among monitored properties,
and this is the thesis of this chapter. Figure 5.14 (b) shows a multivariate example
in two dimensions. The larger elliptical region is the specification area provided by
the consumer. The smaller region is one where most of producer’s data fall into. In
general, the location, the size and the shape of these two elliptical regions may be
different. Chan et al. (1991) proposed the following index:

L
Com =\ FE=T AT =T (5:12)
Cp.m is essentially inversely proportional to the average Mahalanobis distance of the
supplier data from the consumer’s target. Another MC; is introduced by Pearn et al.

(1992), and explicitely takes into account the proportion of non-conforming items:

C2=

2 (5.13)

YN

where ¢2 is chosen to achieve a proportion of 0.0027 non-conforming items, which cor-
responds to the 0.9973 quantile of a chi squared distribution with v degrees of freedom

(assuming that Z is distributed according to a multivariate normal distribution):

Pr{z-n A (Z-7)T < 2] = 0.9973 (5.14)
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This amounts to finding an elliptical region, concentric to the consumer’s specifica-
tion region, that would include 99.73% of producer’s data. Computation of C§ is
straightforward when both supplier and consumer elliptical regions share the same
location and shape, but only differ in size. However, in the general case where this
does not hold, the authors recognized that it would be rather complicated to compute
C2.

We therefore suggest a simpler approach for computing a M C,, index, based on
a direct extension of univariate Cp, (see Eq. 5.11). The first step involves rewriting

the univariate Cp, x expression in terms of the Mahalanobis distance:

_mm{fmr& \/Lsm} {JDJD} 515)
o V=N = Dc:’ \ Dicx '

Similarly, the M C, x could be defined as:

2
MCyy = mm{,l 9—2%} (5.16)
D¢ |,

where Ds; and D¢ are the Mahalanobis distances from the location of supplier’s

region, to the consumer’s specification limit and supplier’s limit, respectively, taken
along the same direction (angle §). This is also shown schematically in Figure 5.14
(b). One could start from any angle and then compute Dsz, D¢ and the term within
brackets in Equation 5.16 at desired angle steps until 360 degrees is reached. Finally,
one would take the minimum ratio as the measure of MC, ;. More investigation is

required in this area.

5.6 Conclusion

This chapter looks at the problem of developing a methodology to define meaningful
specification regions for raw materials entering a consumer’s plant. Such specification

regions are essential for selecting good quality raw materials that are easily processed
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and that allow consumers to meet quality requirements for their own products. In
spite of the importance of specification regions for the industry and although, exten-
sive literature exists in the quality control area, no sound methodology for defining
such regions have been found. Specifications seems to be set arbitrarily, based on past
and often subjective experiences, usually using univariate measures. However, mea-
surements collected for characterizing raw materials are often correlated and therefore,
quality should be assessed multivariately, through correct combinations of properties.
An approach for developing multivariate specification regions is therefore proposed in
this chapter based on a sound, empirical analysis of historical data bases.

In the proposed approach, specifications are placed on combinations of raw
material properties that appear to strongly affect final consumer’s product quality. It
is also recognized that the way raw materials are processed in the consumer’s plant will
have an effect of final product quality. The approach therefore covers most practical
situations, which can be classified in three categories, according to the type of process
variations that are present: (i) no significant process variations affecting quality; (ii)
significant process variations affecting quality, but these variations are uncorrelated
with raw materials; (iii) and significant process variations affecting quality, and these
are correlated with raw materials because of feedback and feedforward control. The
appropriate methodologies for developing specification regions under each of these

scenarios are illustrated using simulation studies of a film blowing process.



Chapter 6

Analysis of Start-Up and Grade

Transition Problems

6.1 Introduction

This chapter examines the applicability of multivariate statistical methods to pro-
cess analysis and monitoring during transitions. By transition we define continuous
process transitions from grade to grade, the start-up of a continuous process or the
re-start of a continucus process that went on hold (e.g. flow rates stopped) due to a
technical problem. In multi-product continuous processes, transitions from grade to
grade account for a significant portion of process time. As an example, it has been
reported that gas-phase linear low-density polyethylene (LLDPE) reactors can cycle
between as many as 50 different polymer grades (Xie et al., 1994), to satisfy specific
customer demands. Another common type of transition consists of process start-ups,
either from empty units or a re-start, after a process hold caused by disruption from
steady-state production. The former occurs when process is shut down for scheduled
maintenance or when physical process modifications need to be done for producing

another grade of material. Re-starts, however, are necessary after disruptions such

139
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as sudden electrical and equipment failures, uncontrolled operation and so forth. Al-
though necessary, all of these transitions lead to important loss of production time
and amounts of off-grade materials. When a transition reaches its final stage, an ad-
ditional issue consists of deciding when the transition is over, or alternatively, when
is the process ready for the production of in-specification products. The objective of
this work is therefore twofold. Part of this chapter is dedicated to developing tran-
sition policies or to monitoring existing policies to achieve a reduction in transition
time and amounts of off-grade materials. The second section focuses on the prob-
lem of defining “production readiness” and “start-up readiness” regions. Solution to
both problems could be relatively straightforward when detailed mechanistic process

models are available, but since this is often not the case, data base approaches are
developed.

6.1.1 Improving Transition Policies

Grade transitions, start-ups and re-starts all share the same three common stages:
the initial conditions, the transition and the final steady-state. This is depicted in
Figure 6.1. Each dot in this figure correspond to a summary of all process measure-
ments, averaged over a specific steady-state production period, and variables ¢, and
t, are summary variables. Just before a transition begins, the state of the process
defines the initial conditions. This corresponds to “state 1” in Figure 6.1. Initial con-
ditions for a transition from a grade A to a grade B are the steady-state conditions
currently observed for production of grade A. For a fresh start-up, initial conditions
could include, for example, the initial charge of the process, or recipe, the supplier of
ingredients or the conditions of initial feed to a reactor. Initial conditions for re-starts,
on the other hand, correspond to process conditions developed as a result of the hold,
such as increase in temperature, uncontrolled polymerization and so forth. The type

of data base collected during the three stages of transitions is shown in Figure 6.2.
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Initial conditions (Z;) are characterized by a collection of L measurements obtained
for I transitions, and should fall within a certain range of conditions to guarantee
successful transitions.

The second stage consists of the actual transition from one state to another, as
illustrated by the means of paths numbered I to I'V in Figure 6.1. The path followed
by each transition should be one that minimizes transition time and amount of off-

grade materials, while ensuring safe operation.

Figure 6.1: Summary the three common stages followed by any tran-
sition. Initial conditions: “state 1”; tranmsition: paths I-IV; final
steady-state: “state 2” .

Such transition policies are typically developed using detailed mechanistic process
models, in conjunction with optimization algorithms (Sargent and Sullivan, 1979;

Farber and Laurence, 1986; McAuley and MacGregor, 1992; Xie et al., 1994; Ohshima
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et al., 1994; Flender et al., 1996; Wang et al., 2000). Sub-optimal policies based
on first principles models are also encountered in the literature. A discussion of the
relative merits of a few, sub-optimal grade transition policies for olefin polymerization
is provided by Debling et al. (1994), while Verwijs et al. (1995) proposes qualitative
rules for achieving successful start-ups of continuously operated chemical reactors.
Mechanistic models are, however, often not readily available or difficult and time
consuming to develop. In these situations, a data base approach to improve transition
policies would be very useful.

For each transition, process measurements are gathered on J process variables,
sampled at K intervals, and are stored in a three-way array X, as shown in Figure
6.2

K
=
2
.9 .
2 Z, X Z, Y
= |
I [
L J N M
S S —_— _— —_—
Initial Conditions Process Variables Final Steady-State  Objective
function

Figure 6.2: Nature of the data collected for the transition problem.

Data block Z; consists of measurements collected on N process variables during
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the final steady-state achieved after each transition (third stage). This data block
will be discussed in more details in section 6.1.2. Finally, the last data block, Y,
contains M measurements characterizing transition performance. It typically consists
of transition time, amounts of off-grade materials, overall performance classification
using “good”/“bad” categories and so forth. Data block Y should be viewed as the
objective function used for improving transition policies and therefore, any important
measurements defining “desirable” transitions or any combination or function of them
should be included in Y.

It should be recognized that data bases collected for transitions (Figure 6.2)
are similar to those obtained from batch processes. Improvement of batch pro-
cess operation has already been addressed through process monitoring and diagnosis
(Nomikos and MacGregor, 19944, 1994b and 1995; Kourti et al., 1995), and through
analysis of trajectory features for batch process optimization (Duchesne and MacGre-
gor, 2000a). An important section of this chapter is dedicated to extending the use

of these methods for improving the performance of grade transitions, start-ups and

re-starts.

6.1.2 Defining “Production Readiness”

The final steady-state operation (“state 2” region in Figure 6.1) achieved after a
transition is another important issue in the transition analysis. When transitioning
from a grade A to a grade B, the final steady-state consists of a window of conditions
for production of grade B, while for a fresh start-up or re-start, it consists of a window
of operating conditions known to produce acceptable products.

Developing regions to assess production readiness is essential to ensure that
after a transition is over, steady-state conditions are such that high quality products
are obtained, and are consistent with past periods of production. Defining produc-

tion readiness is not trivial, as it should be based on the “overall” product quality
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(experienced by customers), while only a few properties are typically measured and
used to target final steady-state operation. The problem is that the operating con-
ditions may sometimes be fairly different from what is normally used to produce
acceptable product for the consumer. This may be due to several reasons, for exam-
ple when some process variables are left at the settings corresponding to a previous
grade or another operating mode, preferences of different teams of operators \ engi-
neers, economics, etc. However, multi-product processes are generally flexible enough
to achieve specifications on the few measured quality properties, in spite of these
differences. This situation is illustrated in Figure 6.1, where the final steady-state
conditions for transitions I, III and IV are different and fall outside the operating
region that is normally used (“state 2” ellipse). These processing conditions may still
achieve the desired quality on measured properties, but the impact that a different
combination of operating conditions may have on the overall product quality as seen
by customers is unknown. For example, consider a linear low density polyethylene
(LLDPE) fluidized bed reactor transitioning between two grades of polymer. Grade
quality of LLDPE copolymers is typically assessed using measureable melt flow index
(MI) and density (p), to infer the full compositional and molecular weight distribu-
tions, CCD and MWD (McAuley and MacGregor, 1992). However, since M I and
p only measure the location (mean) of the MW D and the CCD, respectively, they
do not account for variations in the shape of these distributions, which is very im-
portant for customers. When buying two polymer products with the same M and
p, but produced under different conditions, a customer may find that they behave
differently (i.e. one is more difficult to process than the other). The supplier could
receive complaints regarding the quality of the one polymer product, even if M1 and
p were both within specifications.

Very few works related to this problem have been reported in the literature.
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McAuley and MacGregor (1992) briefly discussed that using only a few quality vari-
ables to define production readiness in a gas-phase LLDPE reactor, in their case MI
and p, does not ensure that the overall polymer quality (MWD and CCD) is on
target. Another contribution is provided by Wurl et al. (1999), but is presented later
since it is more related to the “start-up readiness” problem.

A logical solution to the production readiness problem is to target processing
conditions as well as measured quality properties into a desirable region. This region
should be based on steady-state conditions that have led, in the past, to good cus-
tomer satisfaction. This can only be addressed based on a joint collaboration between
suppliers and customers, as only customer feedback makes this problem observable.
The data base available for defining a production readiness region is shown in Fig-
ure 6.3. The matrix containing steady-state conditions, Z,, is characterized by N
process measurements, collected for I steady-state periods. A second block of data,
Y,,, may also be available and could help in identifying the successful steady-state
production periods. It may consist of quality variables, other than those used as
product specifications, or customer feedback on product quality obtained during all
or some steady-state periods. Feedback could be in terms of a “good” or “poor” clas-
sification of quality. Once desirable steady-state periods are identified, multivariate
projection methods, such as Principal Component Analysis (PCA) and Projection to
Latent Structures (PLS), are used to develop production readiness regions. This is
developed similarly as for multivariate statistical process control charts for continuous
processes (Kourti et al., 1996; Zullo, 1996).

Definition of “start-up readiness” is another practical problem that could be
solved in a similar fashion as for the “production readiness” problem. An example of
start-up readiness issues encountered in the film coating industry is described here;

it involves synchronizing two sections of the process before the start-up is initiated
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Figure 6.3: Nature of the data collected for defining production readi-
ness.

(coating operation begins). One section is aimed at bringing the materials and so-
lutions involved in the coating operation to specified temperatures, viscosities, etc.,
and is also responsible for delivering these solution to the coating devices. Process
lines delivering these solutions need to be purged before the start-up is initiated. The
second section of the process involves equipement for conveying the film to coating
devices and also requires some adjustments prior to the start-up. However, coat-
ing solutions are generally aging and need to be used within a certain time window.
Clearly, if the decision to initiate the start-up happens too early or too late, this may
cause poorer transient performance and may even cause the failure of the start-up
procedure. Therefore, a start-up readiness region could be developed to help syn-

chronizing the processing conditions in both sections of the process and hence, ensure
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desirable start-up performance. This region would be based on operating conditions
prevailing just before initiating the start-up procedures that led, in the past, to desir-
able performance. Again, this would involve building PCA or PLS models for defining
the good operating region.

Such an approach to solve a similar problem is found in Wurl et al. (1999),
who proposed to use existing methods for multivariate process monitoring to reduce
the start-up time of a batch filament extrusion process. Their approach consists of
building a Projection to Latent Structure (PLS) model on good production data and
use this model to monitor processing conditions during the start-up. The model
allows one to detect operational inconsistencies with good production. Then, contri-
bution plots are used to provide a diagnosis, identifying what variables are associated
with such inconsistent operation. In the final step of their method, the authors in-
terpret the results of this diagnosis to modify process operation to achieve a shorter
start-up procedure. However, care should be used when interpreting the results of
contribution plots in this situation. Since the model was built on production data
(no design of experiments), it does not necessarily reflect the true cause and effect
process relationships. Interpreting contribution plots as indicators of cause and effect
would be incorrect in this situation.

In the next sections of this chapter, methodologies for improving transition
policies and for defining production readiness are presented and illustrated in turn.
An industrial polymerization case study is used to illustrate the former. A LLDPE

reactor simulation study is used for the latter.
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6.2 Methodology and Illustrations

6.2.1 Analysis of Transition Policies

The first step of the procedure for improving transition policies involves a post-
analysis of all the available data, as shown in Figure 6.2 (except for Zz). That is
use the full set of data in a multi-block way and detect if from the projection space
one could distinguish between good and bad cases. This is essential to verify if known
problems are observable from the collected process data and furthermore, once ob-
servability is established, to determine if the problems can be diagnosed. Muiti-way
multi-block PCA and PLS can be used to provide such evidence. The nature of the
transition data can be of two types and leads to two different problems and solution
procedures. Consider Figure 6.4, showing score plots describing the two typical sit-
uations that one could encounter with transitions. Each dot in the figure represents
a summary of the entire history of a transition. The first situation represents cases
where a few distinct transition policies have been used in past operation. This is illus-
trated by the upper plot of Figure 6.4, where very distinct clusters are obtained and
each correspond to a specific transition policy (4 policies are shown in this example;
scatter within a cluster is due to random variations of a specific policy). This type of
data would result, for instance, when different policies are deliberately implemented
for the purpose of improving future operation, as in a designed set of experiments.
This data could also result from different teams of operators \ engineers using different
ways of implementing the transitions. When such a range of very distinct transitions
is available from historical data, it is then straightforward to identify which policy
is the best, in terms of transition time, amount of off-specification material and so
forth. However, this data could allow one to gain significant process insight in identi-
fying trajectory features that are associated with better start-up or grade changeover
performance. The process knowledge gained through such an analysis represents a
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potential for improving and optimizing transitions. Identification of trajectory fea-
tures for transient optimization has already been developed and presented in chapter
3 of this thesis. Discussion on the multiple policy problem are therefore not pursued

further here.
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Figure 6.4: Summary of transitions history; upper plot correspond to
the situation where several policies are used, lower plot correspond
to situation were only one policy is used, but with variations in
its implementation (dots: good tranmsition performance; crosses:
bad transition performance).

Alternatively, the post-analysis results can rather be similar to those shown
in the lower plot of Figure 6.4. This second situation exists when there is really only

one transition policy, but operators \ engineers are responsible for variations in its
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implementation. Some of these variations lead to slightly different lengths of transi-
tions, but still acceptable performance (e.g. dots in this figure). These variations are
not systematic and result from different problems in process that eventually affect
the transition. On the other hand, other variations may lead to much longer tran-
sitions and significantly degrade transition performance (systematic variations), but
typically, the problem at the source of these variations is not the same every time
(this is shown by the crosses). When such a situation prevail, one could use past tran-
sitions that have led to shorter transition times, smaller amounts of off-specification
materials and safer operation, and develop a monitoring scheme for the transitions
based on the best ones (dots), to ensure that future transitions are consistent with
the most desirable ones. Of course, this involves defining what a desirable transition
means. For example minimizing off-specification material may lead to greater savings
than mimizing transition time. Once the best or most desirable transitions are iden-
tified, one could use the multivariate statistical process control techniques, developed
for batch processes (Nomikos and MacGregor, 19944, 1994b and 1995; Kourti et al.,
1995), to build a monitoring region for the transitions. By reducing systematic vari-
ations around the desired policy through such a monitoring scheme, one would also
expect consistent transitions and associated savings. An industrial example of the
situation considered here is presented later in this section.

Another key issue that needs to be addressed is the alignment of trajecto-
ries collected during transitions (X). Since variations exist in implementing these
transitions, the time necessary to reach steady-state operation also varies and hence,
the length of process variable trajectories are different from transition to transition.
However, multivariate statistical techniques developed for batch processes (MPCA.
MPLS) require trajectories of the same length and so, these need to be aligned. The
issue of alignment is to remove the time duration factors leaving only the trajectory

shape factors to be analyzed by the MPCA or MPLS methods. The different time
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durations of various sections of the transition or the total time can be including into
the Z or Y data blocks. Two approaches already exist for aligning trajectories: the
indicator variable approach (Nomikos and MacGregor, 19945; Kourti et al., 1996) and
the warping approach (Kassidas et al., 1998). A more complete review of methods for
aligning trajectory data is also provided by Westerhuis et al. (1999). The simplest
method is to find an appropriate indicator variable, reflecting the progress of the
transition, and then plot the trajectories according to this variable. The behavior of
indicator variables must be monotonic (increasing or decreasing) and should always
start and end to similar values for all transitions. When no such variable exist, the
alternative is to use methods such as dynamic time warping (Kassidas et al., 1998)
to synchronize the trajectories. This is accomplished by a compression or expansion
of specific sections of the trajectories (nonlinear warping). Although these alignment
approaches are different, they have the common requirement that the basic shape of
the trajectories must be similar. For example, a data base containing multiple dis-
tinct transition policies, as implied in the top plot of Figure 6.4, could not be aligned
as a whole since the basic shape of the trajectories would be different. Alignment

would only make sense for each policy, separately.

Industrial example

Improvement of transient operation is illustrated using data from a continuous in-
dustrial polymerization process. The problem is one of recovering from disruption
of steady-state production. When operating in steady-state, interruption of process
operation may occur for many different reasons. When this happens, the process
remains on hold until the problem is fixed, after which the process is re-started. This
means that flows to and from the process are stopped. During the hold period, the
content of the different process units remains within the units and so, reactions con-

tinue to progress. The re-start operation therefore consists of recovering steady-state



6 START-UP AND GRADE TRANSITION PROBLEMS 2 Methodology 152

production regardless of the state that the process reached during the hold, until the
cause of disruption is fixed and the process is ready for re-start.

Available for this analysis are data sets from 24 re-starts for the production
of a specific polymer. The data is organized into 4 blocks: the steady-state operation
prior to the hold Zss (24 x 26); the conditions during the process hold just prior to
re-start Zpola (24 x 6); the start-up trajectories X (24 x 13 x 100) and the start-
up performance criteria Y (24 x 4). In this case, two data blocks (Zs, and Zhoid)
are used to describe initial conditions prior to the re-start (e.g. Z, in Figure 6.2).
The steady-state conditions prior to hold (Z,,) describe the state of the process and
the conditions in the reactor just prior to when the flows had to be stopped. The
steady-state data consists of averaged conditions over a period covering one process
residence time. On the other hand, the conditions Zpoa describe the state that the
reactor content reached during the hold.

Re-start performance criteria includes the amounts of two types of off-specifica-
tion materials, the start-up duration and an “overall” classification of transition per-
formance into “good”, “acceptable” and “poor” categories. This judgement was made
by process engineers and takes into account all aspects of re-start performance that
are important for the company. The main objective of the company is to minimize
the amounts of off-grade materials produced during the re-start, and so minimizing
transition duration was not really as important for them. In addition, reducing one
type of off-grade material is more important relative to the other. This should be
reflected by some kind of weighting between the two amounts of off-grade, which is
rather subjective. It was therefore decided to use the “overall” classification of re-
start performance as a single criterion. This is also subjective, but it is more general
and this judgement includes the most important aspects for the company. Since it
was found impossible to discriminate between data sets falling into the “good” and

“acceptable” categories using the available data, these two groups were merged. The
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performance criterion (Y) is therefore a simple dummy variable, taking a value of +1
for “good” or “acceptable” re-starts and a value of —1 for poorer re-starts.

Prior to any analysis, it was decided to align the trajectory data (X) using
the indicator variable approach. The indicator variable is the cumulative mass flow
rate of a key reactant divided by the estimated weight of the reactor content (which
is full at all times). This indicates the number of residence times that have passed
since the begining of the re-start procedure. It always starts at zero, but needs to be
truncated at a point where final steady-state is reached. In this example, truncating
after 6 residence times was found appropriate as most of the material, that remained
within the units during the hold, is discharged and a stable steady-state behavior is
obtained after this period of time. As an example of alignment, consider Figure 6.5
showing the trajectories of two process variables before and after being aligned.

Multi-block multi-way discriminant PLS was used to perform a post analysis
of the 24 re-start data sets, and the results are summarized in Table 6.1. The multi-
block PLS algorithm used is the one published by Westerhuis and Coenegracht (1997).
Each block was scaled to unit variance such that all the blocks are treated with equal
importance in the model. Satisfactory discrimination between “good”™*acceptable”
and “poor”’ re-start data sets was obtained using two PLS components. The first
component accounts for most of the discrimination as it explains 40% of the variance
in Y, while about 27% is explained by the second component. The percentage of
explained variance for each predictor block indicate how much variations are used in
modelling Y and therefore, R? values depend on the number of variables included
in each block but not related to Y. With only 21% explained variance, Z,s; and
X have several variables that can not be associated with “good” or “poor” quality.
Nevertheless, it is important to keep these variables for process monitoring as, in
future operation, they could indicate faults that were not present in the historical

data base.
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The importance of each predictor block (% Weight) is also shown in Table

6.1. It is computed as the percentage that each super weight squared accounts for

in the norm of the super weight vector. Super weights are obtained from the MPLS

procedure, when the scores of each predictor block are put altogether into one matrix,

and a PLS model is built using this new predictor matrix and Y (Westerhuis and

Coenegracht, 1997). Super weights give the relative importance of each predictor

block in explaining variations in Y. The first component focuses more on the hold

data block and the second, on the steady-state and re-start trajectories. All three
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Table 6.1: Summary of the multi-block multi-way discriminant PLS
analysis. R?2,, is the accumulated percentage of variance ex-
plained by the model, and % weight gives the relative importance
of each block to that component.

R:,.. (%) % Weight
Component | Zss | Znoid X Y Zss | Zhola X
1 13.02 | 43.95 | 12.36 | 40.27 { 17.88 | 51.52 | 30.60
2 21.21 | 45.67 | 21.01 | 67.00 {[ 27.94 | 14.60 | 57.46

predictor blocks appear important in explaining Y (discrimination).

Figure 6.6 shows the score plots corresponding to each of the three blocks of
predictors and the super level, which can be seen as an overall result. In each of these
plots, dots are used to identify “good” or “acceptable” re-starts and crosses are used
for “poor” re-starts. No very distinct clustering pattern (discrimination) is obtained
in the steady-state data block. This suggests that steady-state data by itself can not
explain “poor” start-up performance, but contributes to explain some aspects of it. ¢,
essentially focuses on variables related to production rate. Data sets corresponding
to lower production rates fall on the positive side of ¢; and higher production rates,
on negative side of t;. On the other hand, ¢, captures extreme variations in a few
process variables. Since data sets number 10 and 15 had a much different value than
usual for these variables, they appear as outliers on 2,.

The data collected during the hold, however, reveal a very important aspect
of the start-up problem. Two clusters appear, one including observations 17-18 plus
20-24, and the second including the remaining observations. Since re-starts numbered
17-24 had much longer hold periods than usual, this leads one to suspect that hold
duration has a significant impact on re-start performance. While the process is on
hold, it acts as a batch process, such that concentrations of some reactants and heat

accumulate. When holds have extended durations, the accumulation is such that
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reactions bring some of the key process conditions to a very different region, and this

explains the two clusters in the scores of the hold block. The scaled values taken

by one such key variable are shown in Figure 6.7, where the two operating regions

are separated using a horizontal dashed line. The fact that most data sets in the

range of 17-24 fall in the “poor” category suggests that once the longer hold region is

reached (i.e. region above the dashed line in Figure 6.7), it becomes difficult or even

impossible to recover from these holds with “good” re-start performance. Polymer re-

action engineering knowledge also supports this empirical evidence. Therefore, when
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this region is reached, one could empty part or all content of the process and then
start-up with fresh materials. This would avoid the costs associated with processing

materials that are bound to produced large amounts of off-grade materials.
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Figure 6.7: Values reached by a key process variable during the 24 hold
periods. (dots: “good” re-starts; crosses: “poor” re-starts).

The separation between “good”-“acceptable” and “poor” re-starts is best shown
in the score plot corresponding to the re-start trajectories. Most of the “good” and
“acceptable” data sets cluster very closely to one another, while the “poor” data sets
are projected in different areas. The reason for such a spread among the “poor” sets
is attributable to the wide variety of problems at the source of “poor” performance.
A relatively similar clustering appears at the super score level, suggesting that both
the hold data and trajectories have a great contribution in explaining the production
of large amounts of off-grade materials. This emphasizes the importance of monitor-
ing the hold conditions and the start-up trajectories to minimize off-grade products.
However, steady-state conditions should also be monitored to detect any abnormal

situation and appropriate remedial actions should be implemented to avoid adverse
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effects on re-start performance. Note that observations 11 and 12 could not be dis-
criminated by any of the predictor blocks. The problem causing them to fall into the
“poor” category is unobservable from the collected data. In addition, start-up number
18 appears as an outlier in the score space of the trajectories and at the super score
level. This is essentially due to a much higher production rate during the re-start
procedure.

The proposed solution to this re-start problem involves developing a monitor-
ing procedure for the re-start trajectories (X), allowing one to recover steady-state
operation with good performance, but for a limited range of variations in the steady-
state conditions (before hold) and in the hold conditions (key hold variable below the
dashed line in Figure 6.7). This procedure assumes that a monitoring scheme for the
steady-state conditions (Z,,) is already into piace.

A statistical process control (SPC) monitoring scheme has therefore been de-
veloped for the trajectories. It involves building limits around the projection space
(scores) and residuals, as the re-start progresses, using only the data sets correspond-
ing to the desired performance (“good” and “acceptable”). The procedure for com-
puting these limits have been developed elsewhere (Nomikos and MacGregor, 1994a,
1994b and 1995). Data sets numbered 17-24 are not used in this analysis, since they
appear to correspond to a different class of operating conditions (longer holds), and
only 2 “good” or “acceptable” data sets are available in this region. The SPC limits
are therefore built using only 9 re-starts. It should be emphasized here that building
SPC limits with such a small number of data sets can be misleading, as the range
of variation correponding to desired transient behavior may not be entirely spanned.
However, the analysis shown next is a good illustration for the methodology proposed
in this chapter.

The limits were developed based on a multi-way principal component analy-
sis (MPCA). The number of components is typically chosen using a cross-validation
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procedure but with only 9 start-ups, cross-validation results were inconsistent. How-
ever, 2 components were found sufficient to detect abnormalities in “poor” data sets
when these are monitored using the limits. We have therefore chosen 2 components
on that basis, for illustration purpose, but more data should be collected and the
MPCA model should be updated as new re-start data become available. Figure 6.8
and 6.9 show the results that one would have obtained if re-starts 10 and 13 would
have been monitored. These figures show multivariate monitoring charts for the in-
stantaneous square prediction error (SPE;ss) and for the scores (t; and t;). The
dashed and plain lines on these plots correspond respectively to 95% and 99% limits.
Contribution to deviation in SPE;,,: are also shown in Figure 6.8 and 6.9, at different
sampling intervals (k).

For both re-start 10 and 13, the alarm on SPE;,, early in the transition
(k = 8) is due to variable number 2. The behavior of variable 2 during these re-starts
is shown in Figure 6.10 and is compared to its normal or desired behavior, defined the
by “good” and “acceptable” sets (1-9). Clearly, in both cases, variable 2 remained at
a high value for a much longer period of time. In addition, for re-start 10, variable 2
in the early part of the transition also had a much higher value than what is normally
observed. This explains the alarm on the scores as well. Variable number 2 has
a strong influence on the heat balance of the process and hence, on the reactions.
When this variable reaches higher values for a longer period of time, especially early
in the re-start, and when no corrective actions are implemented, then variable 5 and
6 generally take a longer time to settle to desired steady-state values. This is shown
in the contribution plots for re-start 10 (k = 60) and re-start 13 (k = 18), where
variables 5 and 6 have higher values than usual. Polymerization knowledge again
supports this empirical evidence and suggests that this behavior on variable 5 and 6
is strongly associated with production of more off-grade material.

The slow drift in the SPE;,s for re-start 13, from about sampling interval
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“good™“acceptable” data sets # 1-9; dashed line: “poor” start-
up # 10; dashed dotted line: “poor” start-up # 13).

k = 50, is caused by a slowly increasing production rate. This is indicated by large
contributions of variables 7 and 8, shown in the contribution plots for sampling inter-
val k = 70. The combination of high values for variable 5 and 6 and higher production
rate should normally lead to even larger amounts of off-grade materials.

The faults for the other “poor” re-start data sets were also identified, but not
shown here. The procedure described in this chapter has demonstrated (even with
crude limits obtained from only 9 re-starts) that had an on-line monitoring scheme
been in place, these problems in the process operation would have been detected early
enough to alert operators and prevent off-specification material from forming.

To conclude this section, Table 6.2 summarizes the four steps involved in the
proposed methodology. This procedure can be further refined to modify the limits
based on new information (data) collected from holds. In the present case, the limits
were developed for process re-start trajectories, but only from a certain class of holds

(i.e. hold variables were within a range). As more data become available, the limits
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Table 6.2: Summary of the proposed methodology for improving tran-
sitions.

Step Description
1 | trajectory alignment (descriptor variable or DTW)
2 | post analysis - discriminant PLS: find blocks responsible
3 | set MSPC limits for monitoring trajectories
4 | test if limits would have detected poor transitions

could be modified to account for different ranges of hold variables.

6.2.2 Production Readiness Analysis

The final stage of a transition is the steady-state production of in-specification prod-
ucts. To meet customer requirements, one needs to ensure high quality products,
consistent with past periods of production. A logical way to achieve this is to target
processing conditions and measured quality properties to regions known to produce
good products. It is assumed here that multivariate monitoring charts are already
developed and used for targeting measured quality properties and therefore, this sec-
tion focuses on defining a successful region for processing conditions, as explained in
section 6.1.2. This region is based on a close collaboration between a supplier and his
customers, who should provide feedback on product quality made during each steady-
state period of interest. In this chapter, customer feedback on quality is also assumed
already available, but this is a common assumption for any statistical process con-
trol (SPC) related problems. The production readiness region should warn operators
\ engineers whenever processing conditions (approaching steady-state) are different
than those that normally lead to good product. This is valid, unless prior knowledge
suggests that specific differences in operating conditions have no effect on “overall”
quality. Projection methods such as PCA and PLS have been shown successful for

fault detection and process monitoring (MacGregor and Kourti, 1995) and are used
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for developing production readiness regions.

To define such a region, one should first project the processing conditions
from common cause variations around target (Zz.), onto the reduced space or score
space (T) obtained through a PCA analysis. If direct customer feedback on final
product quality is available, in terms of “good” or “poor”, or if additional quality
variables are measured (other than targetted ones), this information should be in-
cluded in a second data block, Y, and the reduced space should be computed using
PLS. Then, an elliptical region of the form of (tec — tec) Z;: (bee — tee)T = T2 is
used to define production readiness. Here i:: is the estimated covariance matrix
of T.. and T? defines the size of the elliptical region. The latter is estimated using
the Hotelling’s T? distribution, T2 ~ 5'—',31_!%1& Fo(A, I — A), at critical level o
(Anderson, 1984). I and A are respectively the number of observations in Z2.c and
hence, in Tcc, and A is the number of components used in the PCA or PLS analysis.
Since this production readiness region is defined in reduced space, the distance of
each observation from this region must also be monitored. For the i** observation,
the distance from the region (or residuals) can be measured by the square prediction
error, SPE; = (2,; — Z2;) " (22 — 22), where 2y; is the estimate of z,; obtained by
PCA or PLS: z,; = t; PT + E = #,; + E. Approaches for computing upper lim-
its on SPE are discussed in Nomikos and MacGregor (1994%). A valid production
readiness region therefore consists of two monitoring charts, one for the projection
space (score space) and one for the distance from this projection space (residuals).
Final steady-state operation has reached this region when projected conditions fall
within the limits of the projection space and when the residuals are below an upper
limit. Only when both processing conditions and measured quality have reached their
successful regions should the transition be considered terminated and product sold as

in-specification.
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Simulation example

The concepts related to definition of production readiness are now illustrated using
a detailed mechanistic model of a gas-phase LLDPE reactor (McAuley et al., 1990;
McAuley, 1992). A schematic diagram of the LLDPE reactor is shown in Figure 6.11.
A fluidized bed reactor is used to carry out copolymerization of ethylene and butene
(copolymer) by the means of a Ziegler-Natta catalyst. Such a catalyst has multiple
sites, but the model approximates this using only 2 sites. The fresh feeds of the
system consists of ethylene (Fg.), butene (Fpy:), hydrogen as a chain transfer agent
(Fg) and inerts (nitrogen). These gases maintain the fluidization of the bed, within
which polymer particleé are growing. Feed rates of ethylene and inerts are also used
to control reactor pressure (P). The catalyst (F,;) is fed directly into the reaction
zone. The bed level or weight (B,,) is controlled by manipulating the polymer outflow
rate (Fpoiyou)- Since the conversion per pass is low, unreacted monomers coming out
of the reactor are recycled.

A bleed stream is therefore necessary to prevent build up of materials and impurities.
Bleed rate (Fjeeq) is adjusted using the bleed valve position (1,). Since the reaction
is exothermic, heat is removed from the recycled gas stream before returning into the
reactor, using a water-cooled heat exchanger. Reactor temperature (7;) is controlled
using a cascade control system, adjusting the cooling water temperature feeding the
exchanger (T\in)- To stabilize the polymerization reaction, ethylene concentration
in the recycle stream is also controlled at a specific level using the rate of fresh
ethylene feed. A nonlinear property control scheme is implemented on the process to
maintain the two measured polymer quality variables, instantaneous MI and p, close
to their set-points (McAuley and MacGregor, 1993). “Overall” polymer quality can
be assessed by the overall compositional and molecular weight distributions (CCD
and MW D), computed using Stockmayer’s bivariate distribution for a two monomer

system (McAuley et al., 1990).
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Bleed

Figure 6.11: Gas-phase Linear Low Density Polyethylene (LLDPE) re-
actor.

To simulate a common cause variaticn region for process operation, 20 steady-
state periods for the production of a specific polymer grade (M = 12 g/min, p = 920
g/L) were generated, by randomly varying the reactor temperature set-point (Tp),
the bed level set-point (B, sp), the feed of catalyst (F,.) and the bieed valve position
(vp), around nominal conditions. The values of these variables were maintained con-
stant during the entire steady-state periods, but were varied between them. Nearly
non-stationary auto-regressive disturbances on the amount of impurities and on the
relative amounts of each type of catalyst active sites as well as random measurement
error on M and p were also added to the simulations. For each production period,
the nonlinear controller maintained M I and p near their specifications in spite of dis-

turbances and variations in operating conditions. Table 6.3 shows the nominal values
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Table 6.3: Process nominal conditions.

Tip (K) | Bu,sp (tonnes) | Fepe (kg/h) | vp (%)
Nominal value | 360.00 65.0 5.00 0.30
Std 1.19 0.9 0.11 0.02

and sample standard deviation for each of the 4 process variables. To introduce some
collinearity within the 4 manipulated process variables, By sp and F_,, were varied in
a correlated manner with a sample correlation coefficient of 0.84.

Three additional sets of operating conditions were also simulated, but includ-
ing systematic differences not seen in the common cause data. However, even for
these conditions, similar M I and p were obtained due to compensation from the non-
linear controller. Steady-state periods number 21 and 22 were generated similarly as
for common cause variation data, but reactor temperature set-point was left at other
settings in both cases. Values of 350.1 K and 369.5 K were implemented on T, for
runs number 21 and 22 respectively. Steady-state period number 23 was also gener-
ated as common cause data, but B, s, and F, were varied in negatively correlated
fashion. Figure 6.12 shows the measurements collected on M and p every 18 minutes
(upper plot), for each of the 23 steady-state production periods. Averaged MI and
p values over these periods are also shown in Figure 6.12 (bottom plot). Clearly,
the apparent polymer quality as measured by M and p still appears to be good for
operating periods 21 to 23. This demonstrates that the process has enough flexibility
to achieve the same measured polymer quality in spite of all sources of variations.

If polymer quality could have been completely characterized by measuring the
overall CCD and MWD for all 23 production periods, the results shown in Figure
6.13 would have been obtained. Average steady-state process conditions were used
for computing the CCD’s and MW D’s. Distributions associated with periods 1-20

and 23 are very similar and only vary due to common cause sources of variations.
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However, operation in periods 21 and 22 clearly lead to a very different product, even
if M I and p were within specification. It is expected that supplier would have received
complaints for these products, without having evidence for such poorer quality. It
is for this reason that we assume that a the supplier would use steady-state periods
1-20 and 23 as an initial basis for developing the production readiness region.

A total of 11 process variables (Z;) are currently measured on the fluidized
bed reactor: Fge, Fout, Fa, Featy Foteeds Fpotyouts Try Twin, P, By and v,. These
measurements were averaged over their corresponding steady-state periods and PCA
was therefore chosen for this analysis. The results are shown in Figure 6.14. Note
that mean centering and scaling to unit variance was applied to Z; prior to the PCA
analysis, which was computed using the SIMCA-P 7.0 software (Umetrics, 1998).
Three components were found significant by leave-one-out cross-validation and so,
the Hotelling’s T? statistic is used to show the projection space. DMODX is the
measure of perpendicular distance from the projection plane used in the SIMCA-P
7.0 software, but this is just a scaled SPE with similar distribution properties.

Figure 6.14 shows that steady-state operation for periods 1-20 and 23 is fairly
consistent, as these sets of measurements project in a similar area (similar T? val-
ues) and also have a relatively small distance to the model (DMODX), except for
period 23 that is clearly detected as an outlier. High DMODX value for this produc-
tion period illustrates a situation where the correlation structure among operating
conditions is different from what is normally used (B, s, and F.,. were varied in a
negatively correlated fashion as opposed to positively). Although no major customer
complaints were obtained for materials produced under these conditions, not enough
data is available to confirm that this different way of operating the process consistently
leads to high quality. It is therefore safer to remove such outlier observations before
developing production readiness regions, unless prior knowledge suggests keeping it.

A new PCA analysis was carried out using only production periods 1-20.
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Figure 6.14: Results of the PCA model built on steady-state production
periods 1-20 and 23: Hotelling’s T2 and distance to the model
computed with 3 significant components.

Again, three components were found significant and a summary of modelling results
is given in Table 6.4. The R? value gives the percentage of the total sum of squares of
Z, that is explained by each component (A =1, 2, 3) of the fitted PCA model. The
Q? value gives the percentage of the total sum of squares of Z2 that can be predicted
with this model using a leave-one-out cross-validation procedure. Cumulative R? and
Q? statistics are also provided. The production readiness region is developed in the
score space (T) of this new PCA model. Figure 6.15 shows the region defined for
the first two components, since the problem is clearly shown in two dimensions. It
consists of 95% limits for both the t, — t, space and for the DMODX[2]. However,

the region is also shown for the complete model (3 components), using the Hotelling’s
T? and DMODX|3].
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Table 6.4: Summary of the PCA model, by the means of the percent
explained and percent predicted variance of Z,, R?,_.z and Q222

respectively.
A }£22 (%) Z .cum (%) 422- (%) ZLcum (%)
1 0.460 0. 460 0.283 0.283
2 0.328 0.788 0.481 0.628
3 0.183 0.971 0.802 0.926

Steady-state periods 21 and 22 were not considered for developing the produc-
tion readiness region, since customer complaints were obtained for materials produced
during these periods. The averaged steady-state conditions for periods 21 and 22 were
projected onto the reduced space of the PCA model, as if they would be monitored
on-line, and their projection results are also shown in Figure 6.15. Clearly, these sets
of operating conditions are different, both in the projection space (¢, —¢; or T?) and in
the distance from this space (DM ODX[2] and DMODX(3]), due to unsual tempera-
ture set-points. Had a production readiness region been implemented on-line, reactor
temperature would have caused an alarm when approaching steady-state. This would
have warned operators and engineers about the problem and immediate remedial ac-
tions could have been taken. Production of large amounts of poor quality materials
could have therefore been avoided.

The results shown in Figure 6.13 warrant some additional explanations. Op-
eration during steady-state periods 21 and 22 were at different reactor temperatures.
A higher temperature increases the incorporation of ethylene monomer relative to
butene and is therefore responsible for the shift of CC D to lower butene composition.
Higher temperature also favors chain transfer reactions relative to propagation reac-
tions, and leads to production of shorter polymer chains. The proportion of shorter

chains in MW D is therefore greater.
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6.3 Conclusion

Empirical methodologies for improving transition policies (grade changeover, start-
ups and re-starts) and for defining production readiness have been presented in this
chapter. These can be used for improving process and product quality when mecha-
nistic models are not readily available. Improvement and optimization of trajectories
during transitions would result in reduced amounts of off-specification materials and
transition time, and this could also lead to faster reponse to market demand. On the
other hand, a better definition of production readiness should ensure that a specific
product grade is of high quality and is consistent with past production.

Improving start-up or grade transition from an empirical point of view, is
based on the fact that in the past, some transitions were better than others, in terms of
amounts of off-grade materials, transition duration and safety conditions. Developing
a monitoring procedure for transient periods, based on the best transitions achieved
in the past, seems to be a logical solution. This invoives the use of multivariate
statistical techniques such as multi-way principal component analysis (MPCA) and
multi-block multi-way projection to latent structures (MBPLS). The concepts were
illustrated using re-start data from an industrial polymerization process. Insightful
empirical evidence was obtained by analyzing such data, on how to achieve a reduction
in amounts of off-specification materials.

In flexible multi-product plants, many combinations of steady-state operating
conditions may lead to achieve desired product quality specifications. However. prod-
uct quality is never completely characterized and specifications are rather based only
on a few measured quality variables. The impact of using different operating condi-
tions on the unmeasured aspects of product quality is unknown. A customer buying
such a product may find that it behaves differently or is more difficult to process, even

if the few quality specifications are met. In this work, it was proposed to alleviate
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this problem by targeting processing conditions as well as the few measured quality
variables to a desirable region, known to achieve good quality. Principal component
analysis (PCA) was used for defining the desirable steady-state operation region. It
was shown, by simulation studies of a linear low density polyethylene (LLDPE) reac-
tor, that targeting steady-state process operation to such a desirable region improves
product quality and consistency, regardless of the operating region one is transitioning

from.



Chapter 7

Summary and Conclusions

The general objective of this thesis was to develop sound, empirical methodologies
to solve a few important chemical engineering problems related to improvement of
process operation and product quality. The following four problems were addressed in
this thesis: (i) empirical optimization of batch process trajectories; (ii) improvement
in the identification of non-parsimonious dynamic models using the Jackknife or the
Bootstrap statistics; (iii) development of multivariate specifications for incoming raw
materials to a consumer’s plant, and (iv) improvement of start-ups and grade transi-
tion policies in multi-product plant. In the following sections, the work done in each
area is summarized, the contributions to the field are outlined and some conclusions

are drawn.

7.1 Multivariate Analysis and Optimization of Pro-
cess Variable Trajectories for Batch Processes

The problem that was addressed in chapter 3 is that of obtaining the sensitivities

of the final product quality in batch processes to manipulated process variables at
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various degrees of completion during the course of each batch. This information
can then be used for process and product development as well as for improving and
optimizing the policies of existing processes. The main contribution of this work is
in providing a simpler, empirical approach to batch process optimization.

The proposed approach is based on adding designed experiments to currently
used batch policies to generate the information required for the optimization. The
type of designed experiments necessary to extract both time varying relationships,
between the manipulated process variables and final product quality, and relationships
that are consistent within the course of a batch was discussed. The collected data
is then analyzed using the multi-way multi-block PLS method, and the regression
coefficients derived from this method are used as the sensitivities. Various simulation
studies of a Styrene Butadiene Rubber (SBR) emulsion copolymerization reactor were
used to illustrate the proposed approach. Useful process insight for improving and
optimizating this process was obtained when applying the empirical method developed
in this work. It was also shown that only a few batch runs were necessary to extract
relationships that are consistent during the course of a batch, but a much greater
number of runs to extract time varying relationships were needed.

To help reducing the number of runs (and designed experiments), a new path-
way PLS algorithm was also developed in this work, which incorporates intermediate
product quality measurements collected during the course of each batch. This al-
gorithm is valid under the assumption of linear and additive effects and a test was
proposed to assess this assumption. In the simulations considered in this research,
the number of runs was reduced by half, but the new algorithm still allowed the
extraction of similar information. The new pathway algorithm is another important
contribution to the field, as this seems to be one of the first times that intermedi-
ate quality measurements have been embedded into a single, multivariate analysis of

batch data. The use of this algorithm can potentially be extended to other problems,
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when similar pathway relationships between blocks of data hold. A good example of
another application would be the modelling and analysis of steady-state data (process

variables and quality variables) collected from different process units in series.

7.2 Jackknife and Bootstrap Methods in the
Identification of Dynamic Models

The problem of selecting the meta parameter in regularization methods (ridge param-
eter) and latent variable methods (number of latent variables) for parameter estima-
tion of non-parsimonious dynamic models is addressed in chapter 4. Cross-validation
is the default criterion used for selecting meta parameters, based on maximizing the
model predictive ability, but it has been shown in the literature that this criterion
suggests often keeps too few latent variables to capture the underlying process struc-
ture. It is crucial that such dynamic models capture the process structure as well as
possible when these models are used for designing controllers or for process simulation
under different conditions. This work contributes to the field by proposing a new cri-
terion for selecting meta parameters that not only achieves good model predictions,
but that also captures the correct process behavior (e.g. the model is closer to the
true process).

The proposed criterion jointly uses two profiles, computed for a range of latent
variables: (i) the model residual sum of squares (SSE) and (ii), the total variance of
the estimated impulse (SS;) of step responses (SS;), obtained via the Jackknife or
the Bootstrap procedures. The former profile measures how well the model fits the
data with a given number of latent variables, but never gives an indication of when
overfitting of the data occurs. Evidence for overfitting is given by the latter profile.
which rises rapidly when noise and disturbances are being fitted by the model. The

proposed criterion therefore suggest to keep adding latent variables as long as the
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SSE and the total variance of the parameter estimates are decreasing or stable, and
to stop when adding more latent variables leads to a sustained increase in parameter
uncertainty.

Simulation studies were used to illustrate the new criterion. In all cases stud-
ied, using PLS for parameter estimation, the proposed criterion led to choosing better
models (in the mean square error sense) than when these models are selected via cross-
validation. It was also shown to give models that correspond closely to those having
the lowest M SE deviations from the true process. It also indicates when least squares
can be used for estimating the parameters without to much overfitting of the data.
The new approach also provide approximate confidence intervals for the estimated
impulse and step responses.

7.3 Defining Multivariate Specification Regions

Defining meaningful specification regions for incoming lots of raw materials entering
a consumer’s plant is essential for ensuring that consumer’s meet their final product
quality requirements, given the way they operate their process and their operability
limits. However, in spite of their importance, there is void in the quality control
literature on how to define these specification regions. This may explain why there
seems to be no standard industrial practice for developing specifications; they appear
to be defined in an arbitrary fashion, based on past and often subjective experiences.
In addition, quality is often assessed using univariate measures while quality is, most
of the time, a truly multivariate property. This research provides the first approach
to developing meaningful multivariate specification regions.

The proposed approach is based on a sound, empirical analysis of historical
data bases (including measurements on raw material properties, consumer’s process

operating conditions and final product quality characteristics). The method covers
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most industrial situations, in which not only the raw materials, but also the way
the consumer’s operate is own process may affect the final product quality. The
situation where feedforward and feedback control actions are implemented (either
by operators or control systems) to compensate for raw material variations is also
considered. The idea consists of obtaining the latent variable space of raw material
properties that affect final consumer’s product quality and then, mapping the regions
of raw material properties that yield good quality, given an assumption on the way the
process will operate in the future. This can be done using latent variable modelling
techniques. Then, the lots of final product judged by the consumer’s as good quality
are mapped into the raw material property space (or its approximation obtained with
latent variable models) and an elliptical boundary is defined to include most good
lots of raw materials while excluding most of the poorer ones. Consumer’s process
operability limits can also be accounted for in developing the specifications in a very
similar empirical fashion. The key result of this approach is that large specification
limits are placed on combinations of raw material properties that appear to have
weak or no significant effect on final product quality, and tighter specifications on
those combinations of properties having a strong impact on final product quality.
Simulations studies of a film blowing process, used to produce various kinds of polymer
films, was used to illustrate the proposed approach, in different industrial situations.

The work presented in this chapter is by far the most open ended problem
treated in this thesis. It is one of the first attempts to develop a sound approach to de-
fine multivariate specification regions. This should provide a basis for future research
in this area. In particular, further investigation is required in the following areas: (i)
how to better define the boundary of the specification region; (ii) how to compare the
sizes of specification regions developed under different assumptions, or built using dif-
ferent historical data sets and (iii), how to define meaningful multivariate capability

indices to compare suppliers of raw materials.
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7.4 Analysis of Start-Ups and Grade Transition

Problems

Chapter 6 of this thesis focused on the analysis of problems related to transitions
in multi-product plants (start-up, re-start, grade changeover). In particular, the
following two issue were addressed: (i) finding the best transition policies to achieve
a reduction in transition time and off-grade materials while ensuring safe operation
and (ii), ensuring that products obtained after a transition are of high quality and are
consistent with past periods of production. A common solution to the first problem
is to optimize a detailed fundamental model. However, since such a good model
is not always available, there was a need for developing an empirical approach for
improving transition performance. On the other hand, the second problem is rarely
discussed in the literature and so, a systematic study of this problem was required.
The contribution of this work is twofold; it provides a sound empirical method to
improve transition policies, and an approach to help ensuring high and consistent
product quality.

Two solutions are proposed for improving transition performance, depending
on the number of transition pclicies that have been implemented in the past. When
multiple distinct policies have been implemented, it is straightforward to identify
which policy is the best, but one could take advantage of the larger range of vari-
ations to gain insight on the features of transition policies associated with desired
performance. This is achieved using the method proposed in this thesis for batch
optimization (chapter 3). On the other hand, when only one transition policy has
been used in past, but with variations in its implementation, then one could build a
monitoring scheme based on the most desirable transitions achieved in the past. The
monitoring scheme would allow for removing variations around the desired policy and

a more consistent operation should result, as well as associated savings. The second
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solution (only one transition policy) was illustrated using an industrial polymerization
example.

The problem with ensuring high and consistent product quality after a tran-
sition arises from the fact that multi-product plants may often be flexible enough
to achieve similar measured product quality characteristics using different sets of
steady-state operating conditions. However, since these quality measurements are al-
most never sufficient to completely characterize “overall” product quality, the impact
of using various sets of steady-state conditions on the unmeasured quality variables is
unknown. It is therefore suggested to always target process operation into the same
region (defined for a specific product). This region is developed using already exist-
ing monitoring techniques (based on PCA and PLS) and past successful steady-state
production periods. The concepts related to the definition of “production readiness”
regions were illustrated using simulations of a linear low density polyethylene reac-

tor.
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Appendix A

Pathway-PLS Algorithm

In this section only the new PLS pathway algorithm is described. However, one could
also incorporate in the analysis a Z data matrix as a separate block in a straightfor-
ward fashion. The multi-block pathway algorithm would consist of any multi-block
algorithm (Westerhuis et al., 1998) in which the part corresponding to X is replaced
by the pathway algorithm described below.

For simplicity, the “stair’ matrix consisting of Xy blocks, k¥ = 1,2,3 (Figure
3.4), is designated as X,. Similarly, the long matrix filled with Y blocks is designated
as Y,. Note that Y variables collected in each intermediate samples (Y blocks)
should be located in the first columns of Y,. It is also assumed that the data (X,
Y,) is mean-centered and appropriately scaled prior to be used in the algorithm. Each
X, and Yy blocks are mean-centered and scaled independently prior to be arranged
as in Figure 3.4. Auto-scaling has been used throughout this work. The modified
NIPALS algorithm is shown below as a pseudo-Matlab code, where the *.” operator
as in “a; : a;” means from a; to a;. In addition, the following indexes are defined:
f is the number of Y blocks, I is the total number of batches, J is the number of
process variable trajectories, M, is the number of quality variables in block Y, and

M. is the maximum number of quality variables among all Yy blocks.
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1. Start with u set to a full length column of Y,
2. Forb=1to f

ar=1+0b-10J,ao=J+(b-1)J,a3=1+(b-1)1

w(ay : ap, 1) = Xq(as : fl,a; : a2)T u(es : fI,1) / u(as : f1,1)T u(as :
fI,1)

end
3. Scale w to unit length
4. Forb=1to f
gy =1+b-Va=I+0-ND,aa=1+(b-1)J,aa=J+(b-1)J
t(ay : @2,1) = X,(a1 : az,1:bJ) w(1:5J,1) / w(l:bJ,1)T w(l:bJ,1)
end

5. Form=1to Mmaz

c equals all observation numbers from Y, for which measurements on vari-

able m are available.
q(1,m) = Y,(c,m)T t(c, 1) / t(c, 1)T t(c,1)
end
6. Forb=1to f
a;=1+Gb-1)I,a=I+b-1)1
u(a; : a2, 1) = Ya(ay a2, 1: Ms) q(1: My, 1) / (1 : Me, 1)T q(1: M5, 1)

end
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7. Check convergence of u. If no convergence, go to 2
8 Forb=1to f

aa=1+0b-1)J,aa=J+(b-1)J,a3=1+(b—-1)I

pla; : a2, 1) = Xs(az : fl,a; : b t(as : fI,1) / tlas : fI,1)7 t(as :
fI,1)

end
9. Compute residual matrix for X block:
Forb=1to f
ay=1+G-)]a=1+((b-1)J,as=J+(b-1)J
E(a, : fI,a2:bJ) = Xs(ar: fI,a2:bJ) — t(a; : fI,1) p(a2 : a3, )T
end
10. Compute residual matrix for Y block:
Forb=1to f
ag=1+0G-1)1,aa=I+(b-1)1I
F(a, : a2,1: My) = Ys(a1 : a2, 1 : M) — t(a) : az,1) q(1 : Mo, T
end
11. Store w, p, t, uand q in W, P, T, U, Q respectively

12. Compute next dimension by returning to 1, using E and F as the new X, and Y,
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Note that if the same quality variables are measured in all intermediate sam-

ples (all M,’s are equal), then steps 3, 6 and 10 become the same as the standard

NIPALS algorithm:
5.q=Y, Tt/ tTt
6. u= Ys q / qT q

10- F=Y,—th



Appendix B

Comments on the Evaluation of

Standard Errors

Other methods are available and specifically developed for the estimation of standard
errors in PLS parameter estimates. These methods are also limited to cases where the
predictor matrix, X, is full rank. Instead of using a Monte Carlo type of resampling
procedure, these alternative methods are rather based on a local linearization of the
PLS estimators. Those estimators are slightly non-linear statistics and therefore the
linearization, using a Taylor expansion around the measured data (X and y), is orly
an approximation. Hoskuldsson (1988) proposed a zeroth order expansion, which
assumes that regression coefficients estimated using PLS with e dimensions (B%.s)
is independent of y. Later, Phatak et al. (1993) refined this expression with a first
order linearization. A closed form expression is obtained, but requires the evalua-
tion of a Jacobian matrix (derivatives of 3%, s with respect to y) that is relatively
computationally intensive to obtain. Phatak’s expression also suffers from numeri-
cal instability when the number of latent variables gets large. More recently, Faber
and Kowalski (1997) adopted a Error-In-Variable (EIV) approach to standard error

estimation in PCR and PLS. They derived a new expression for the situation where
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both X and y variables are corrupted by a noise. This expression includes the one
proposed by Phatak et al. (1993) as a special case, when most of the noise comes
from y.

To justify the use of the jackknife in this work, its performance is compared to
the bootstrap and to Phatak’s approach. In identification, it is reasonable to assume
that most of the noise comes from y, so Faber and Kowalski's expression would
lead to the same results as Phatak’s, and is therefore not used here. The process
under investigation is the one corrupted by an ARI disturbance, identified using a
FIR structure using 300 observations (section 4.5.2). The basis for comparison of
the above three methods is their closeness to the true standard error of each of the
175 estimated impulse weights. The true standard errors are estimated via a Monte
Carlo simulation. A total of 500 data sets, each containing 300 data points, were
generated using the MISO process model described in section 4.4. On each data
set, a PLS model is built including 30 latent variables. The standard error on each
individual parameter was computed with all 500 replicates, which is assumed to be
precise enough to be representative of the truth.

Results of the comparison are shown in Figure B.1. Two variations of the
approach of Phatak et al. are shown, which differ in the way the natural error in y (03)
is estimated: using the PLS residuals with modified degrees of freedom (St phatak.1);
and with the residuals of standard Least-Squares (5t€ppatak2)- Both the jackknife
and the bootstrap standard error estimates (;Ejack and Stepeor) are computed using
30 groups. The plain line in each plot represents the locus of perfect prediction
of the true standard error (ste) on each parameter estimate. The dots correspond
to the estimated standard error on each impulse weight, using the three considered
methods. In this example, the jackknife, the bootstrap and Phatak’s approaches have
been used on only 5 randomly selected data sets from the 500 generated by the Monte

Carlo study. Performing the three estimation methods on the 500 data sets would be
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extremely computationally intensive and is beyond the scope of this work. A few data
sets provide a rough idea about the variance of each method in estimating standard
error.

Using Phatak’s approach as published (Phatak et al., 1993) leads to estimates
of standard error that are approximately two orders of magnitude greater than the
true values. This is attributed to the inverse of the matrix, that the authors called
M, which is numerically unstable. It involves a Krylov matrix that is very poorly
conditioned in this case due to the large number of latent variables (¢ = 30). Con-
ditioning problems with this expression have already been recognized by the authors
(Phatak, 1993). A pseudo-inverse has therefore been used in this case to overcome
the ill-conditioning problem, but both variations of Phatak’s approach grossly under-
estimated the standard errors. This method works extremely well in some cases, as
shown in Phatak et al. (1993), but ill-conditioning problems do limit its ability to
provide precise standard error estimates, especially when several latent variables are
kept in the model.

On the other hand, both the jackknife and the bootstrap give satisfactory
results. The jackknife seems slightly better, but the bootstrap could perform equally
well if more samples, say 200 or more, would be generated. This emphasizes the
need to use a large number of subsamples in bootstrapping, which makes it more
computationally intensive. Both resampling methods tend to slightly overestimate
the standard error. Although unbalanced sampling could explain overestimation, it
does not seem to be the case here. The fact that expressions 4.3 and 4.4 are not
guaranteed to be unbiased is a more likely explanation. In addition, the slight non-
linear behavior of the PLS estimates could potentially cause overestimation as well.
The impact that non-linear statistics have on jackknife estimates of standard errors
is discussed in Efron and Tibshirani (1993). However, the inflation of the standard

error estimates is not severe enough to invalidate the use of the jackknife.
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Figure B.1: Comparison of true (plain line) and estimated (dots) stan-
dard error of PLS parameter estimates using various methods:
Phatak’s with least-squares and PLS estimates of error variance
(Stephatak,1 and 5t€phatak2), jackknife and bootstrap.
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In addition to being less computationally intensive, the jackknife algorithm
shares a high degree of similarity with cross-validation, which is already implemented
in most multivariate statistical software packages. The main difference consists in
storing the estimated parameters after each cross-validation round. This is another
advantage for using the jackknife which seems to be a good candidate for use in

identification.





