INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600 | | | | • | |--|--|---|---| ÷ | # SYNTHESES AND CHARACTERIZATION OF XeO4 AND OXIDE FLUORIDES OF XENON(VIII), OSMIUM(VIII), IODINE(VII), AND XENON(II) # By ## MICHAEL GERKEN ## A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Michael Gerken, May 2000 In memoriam Jens Gerken DOCTOR OF PHILOSOPHY (2000) McMaster University (Chemistry) Hamilton, Ontario TITLE: Syntheses and Characterization of XeO₄ and Oxide Fluorides of Xenon(VIII), Osmium(VIII), Iodine(VII), and Xenon(II) **AUTHOR:** Michael Gerken, Dipl.-Chem. (Gerhard-Mercator Universität Duisburg) SUPERVISOR: Professor G.J. Schrobilgen NUMBER OF PAGES: xxix, 354 # **ABSTRACT** Xenon tetroxide was stabilized in SO₂ClF, BrF₅, and HF solvents rendering its 129Xe and 17O NMR spectroscopic characterization possible. The high symmetry about xenon in XeO₄ allowed for the observation of the first ¹³¹Xe resonance of chemically bonded xenon. Spin-lattice relaxation time measurements for 129Xe and 131Xe showed that the spin-rotation and the quadrupolar relaxation, respectively, are the predominent mechanisms of relaxation in XeO₄. The investigation of the ¹²⁹Xe NMR spectrum of [Na]₄[XeO₆] in solution and solid state corrected the previously reported, erroneous value. Xenon tetroxide was shown to act as a Lewis acid towards CH3CN solvent and fluoride ions yielding XeO₄(CH₃CN) and XeO₄F₂², respectively. The XeO₄(CH₃CN) adduct was characterized by 129Xe NMR and Raman spectroscopy and contains the first example of a Xe(VIII)-N bond. The XeO₄F₂² anion was shown to exist as a mixture of its cis- and trans-isomers based on Raman spectroscopy. For the first time, XeO₃F₂ was prepared in SO₂ClF, BrF₅, and HF solvents and characterized by ¹⁹F and ¹²⁹Xe NMR spectroscopy. The novel XeO₃F₃ anion was prepared in low concentrations in SO₂ClF and BrF₅ solvents and was identified by 19F and 129Xe NMR spectroscopy and shown to have a facial trioxo configuration. In the present work, the OsO_4F^- anion was prepared and characterized by X-ray crystallography and vibrational spectroscopy as its $N(CH_3)_4^+$ salt. The $OsO_4F_2^{-2}$ anion had been prepared in admixture with the OsO_4F^* anion and was characterized by vibrational spectroscopy showing its *cis*-diffuoro arrangement. The OsO_4F^* anion was shown to be identical to the anion that had been previously reported and charactized by vibrational and EXAFS spectroscopy and erroneously assigned as the *cis*- $OsO_4F_2^{2*}$ anion. The Lewis acid-base reaction between OsO_3F_2 and fluoride ions and CH_3CN yielded the $OsO_3F_3^*$ anion and the $OsO_3F_2(CH_3CN)$ adduct, respectively. The unambiguous identification of the $OsO_3F_3^*$ anion as the exclusive, facial trioxo isomer was accomplished by determining the crystal structure of $[N(CH_3)_4][OsO_3F_3]$ and by vibrational spectroscopic characterization of the $N(CH_3)_4^*$ and NO^* salts. The $OsO_3F_2(CH_3CN)$ adduct, however, exists as a mixture of its *fac*- and *mer*-isomers in solution and in the solid state based on PF and an The Os(VIII) oxide fluoride, OsO₃F₂, acts as a Lewis base towards strong acids like AsF₅ and SbF₅ in HF solvent yielding [OsO₃F][AsF₆], [OsO₃F][HF]₂[AsF₆], [OsO₃F][HF]₂[AsF₆], and [OsO₃F][HF]₂[SbF₆], which were characterized by Raman spectroscopy. The crystal structures of [OsO₃F][AsF₆], [OsO₃F][HF]₂[AsF₆], and [OsO₃F][HF][SbF₆] showed that the strongly electrophilic OsO₃F⁺ cation expands its coordination sphere by forming contacts with the PnF₆ anions (Pn = As, Sb) and by coordination of HF solvent molecules. The closest approximation to a naked OsO₃F⁺ cation was found in [OsO₃F][Sb₃F₁₆] which was prepared from pure SbF₅ and was characterized by Raman and ¹⁹F NMR spectroscopy and by X-ray crystallography. seven upon reaction with fluoride ions and CH₃CN yielding the OsO₂F₅ anion and OsO₂F₄(CH₃CN). Raman and ¹⁹F NMR spectroscopy showed that the OsO₂F₅ anion has a structure based on a monocapped trigonal prism with a *cis*-dioxo arrangement and a unique fluorine capping a square face formed by four fluorines. NMR spectroscopic data are consistent with a structure for OsO₂F₄(CH₃CN) that is derived from the OsO₂F₅ anion by formal replacement of a fluorine of the square face by CH₃CN. The $IO_2F_5^{2-}$ anion was formed upon reaction of trans- $IO_2F_4^-$ and $[N(CH_3)_4][F]$ and was shown to have a pentagonal bipyramidal trans-dioxo structure based on Raman spectroscopy. The $[N(CH_3)_4]_2[IO_2F_5]$ salt was prepared in admixture with $[N(CH_3)_4][cis-IO_2F_4]$, since the latter salt did not react with fluoride ions. Crystals of $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ were obtained as a reduction product of the $[N(CH_3)_4]_2[IO_2F_5]/[N(CH_3)_4][cis-IO_2F_4]$ mixture in CH_3CN solvent and provide a rare example of coordination of a bridging HF_2^- ligand. The controlled hydrolysis reaction of [XeF][AsF₆] gave rise to the novel H₂OXeF⁺ and Xe₃OF₃⁺ cations, which were characterized by Raman spectroscopy and X-ray crystallography. The Xe₃OF₃⁺ and H₂OXeF⁺ cations provide the first examples of Xe(II) oxide fluorides. The crystal structure of the trigonal modification of [Xe₂F₃][AsF₆] documents the dimorphism of the [Xe₂F₃][AsF₆] salt that has been known for many years exclusively in its monoclinic modification. #### **ACKNOWLEDGEMENTS** I wish to thank Prof. Gary J. Schrobilgen for giving me such an interesting and exciting research project and, overall, for his guidance, enthusiasm, his vast experience, his support and his confidence in me. I appreciate to have shared his excitement for basic chemistry research. I would like to thank the other members of my supervisory committee, Prof. Ronald J. Gillespie and Prof. Richard F.W. Bader for their help and their interest in my research. I thank Helénè P. A. Mercier for her help with many problems, especially concerning X-ray crystallography, and for her unforgetable French cuisine. I want to thank Ayaaz M. Pirani for his initiation in air and moisture sensitive work and NMR spectroscopy. I want to thank Nic LeBlond and Janette Campbell for their friendship over the years and their support in my scientific and personal life during my time in Hamilton. I would like to thank the old and present members of the lab group for their company: Michael Becher, Barbara Fir, Karsten Koppe, John F. Lehmann, Bernie E. Pointner, Neil Vasdev, and Andreas Wegner. I am grateful to Brian Sayer, Dr. Don Hughes, Dr. Jim Britten, George Timmins, and Michael Palme for their assistance. I want to thank Janice L. Hellman from Bruker Canada for her help with recording several FT Raman spectra and Valerie Robinson at the University of Guelph for her help with the solid state NMR sample. I would like to acknowledge the Ontario Ministry of Education and the Department of Chemistry at McMaster University for their financial support. Finally, I would like to thank my parents for the emotional and financial support during all these years. ## KLEINE ASTER Ein ersoffener Bierfahrer wurde auf den Tisch gestemmt Irgendeiner hatte ihm eine dunkelhellila Aster zwischen die Zähne geklemmt. Als ich von der Brust aus unter der Haut mit einem langem Messer Zunge und Gaumen herausschnitt muß ich sie angestoßen haben, denn sie glitt in das nebenliegende Gehirn. Ich packte sie ihm in die Bauchhöhle zwischen die Holzwolle, als man zunähte. Trinke dich satt in deiner Vase! Ruhe sanft, kleine Aster! (1912, Gottfried Benn) A drowned truck-driver was propped on the slab. Someone had stuck a lavender aster between his teeth. As I cut out the tongue and the palate. through the chest under the skin, with a long knife, I must have touched the flower, for it slid into the brain lying next. I packed it into the cavity of the chest among the excelsior as it was sewn up. Drink yourself full in your vase! Rest softly, little aster! translated by Babette Deutsch # LIST OF ABBREVIATIONS AND SYMBOLS #### General AWG American wire gauge ax axial BDH British drug house bupy 4-tert-butylpyridine CCD charge coupled device DFT density functional theory dmpe $(CH_3)_2PCH_2CH_2P(CH_3)_2$ eq equatorial EXAFS extended X-ray absorption fine structure spectroscopy FEP perfluoroethylene/perfluoropropylenecopolymer HOMO highest occupied molecular orbital HPLC high performance liquid chromatography i.d. inner diameter IR infrared spectroscopy Kel-F chlorotrifluoroethylene polymer LDFT local density functional theory
MO molecular orbital MP-2 Møller Plessert, second order MW microwave spectroscopy NLDFT non-local density functional theory NMR nuclear magnetic resonance o.d. outer diameter PE photoelectron spectroscopy Ph phenyl PTFE tetrafluoroethylene polymer RHF restricted Hartree Fock SAE Society of Automotive Engineers SCF self consistent field UV ultraviolet spectroscopy VSEPR valence shell electron pair repulsion # Nuclear Magnetic Resonance δ chemical shift I nuclear spin quantum number J scalar coupling constant in Hertz FID free induction decay SF spectral frequency SW sweep width TD time domain PW pulse width NS number of scans ppm parts per million TMS tetramethylsilane T_{I} spin-lattice relaxation time T_l^{DD} dipole-dipole spin-lattice relaxation time T_i^{CSA} chemical shift anisotropy spin-lattice relaxation time T₁^Q quadrupolar spin-lattice relaxation time T_{l}^{SC} scalar coupling spin-lattice relaxation time T_I^{SR} spin rotation spin-lattice relaxation time T_I^E paramagnetic spin-lattice relaxation time P_{u} , D_{u} imbalance of the valence electrons in the p and d orbitals Δv_{s} line width at half height τ_c rotational correlation time τ_{SR} angular momentum correlation time WF width factor Q quadrupolar moment q electric field gradient η asymmetry parameter of the electric field gradient η solvent viscosity I_m moment of inertia # CSA chemical shift anisotropy # X-ray Crystallography a, b, c, α , β , γ cell parameters V cell volume λ wavelength Z molecules per unit cell mol.wt. molecular weight μ absorption coefficient $\Delta\delta_{\max}$, $\Delta\delta_{\min}$ maximum and minimum residual electron density R conventional agreement index R_w weighted agreement index w overall weight parameter GOOF goodness of fit # TABLE OF CONTENTS | Pag | ζC | |--|----| | CHAPTER 1: INTRODUCTION | | | 1.1. Oxidation State +8 | l | | 1.2. Xenon(VIII) Chemistry | 2 | | 1.3. Osmium(VIII) Chemistry | 5 | | 1.4. Iodine(VII) Chemistry | 5 | | 1.5. The Trans-Influence | 6 | | 1.6. Coordination Number Seven | 8 | | 1.7. Xenon Oxide Fluorides | 5 | | 1.8. Purpose and Scope of the Present Work | 8 | | CHAPTER 2: EXPERIMENTAL SECTION | | | 2.1. Standard Techniques |) | | 2.2. Preparation and Purification of Starting Materials | 5 | | 2.2.1. Purification of HF, BrF, SO ₂ CIF, CH ₃ CN, (CH ₃) ₂ CHOH, and CHF ₃ Solvents 36 | 5 | | 2.2.2. Purification of SbF ₃ , SbF ₅ , and Preparation of AsF ₅ |) | | 2.2.3. Sources and Purification of N ₂ , F ₂ , Xe, Kr, BF ₃ , NO, NO ₂ , and O ₃ | | | 2.2.4. Preparation of XeF ₂ , XeF ₆ , and KrF ₂ | į | | 2.2.5. Drying of CsF, and Preparation of [N(CH ₃) ₄][F], NOF, and NO ₂ F | | | 2.2.6. Preparation of [XeF][AsF ₆] and [H ₃ O][AsF ₆] and Purification of CH ₃ C ¹⁵ N | | | 2.2.7. Preparation of OsO ₃ F ₂ and cis-OsO ₂ F ₄ | | | 2.2.8. Preparation of [Na] ₄ [XeO ₆] | | | 2.2.9. Preparation of [N(CH ₃) ₄][IO ₄] and [N(CH ₃) ₄][IO ₃ F ₄] | | | 2.3. Solution Study of XeO ₄ |) | |---|---| | 2.3.1. Preparation of XeO ₄ in SO ₂ CIF Solutions |) | | 2.3.2. Preparation of XeO ₄ in BrF ₅ and HF Solutions | | | 2.4. Lewis Acid Properties of XeO ₄ | į | | 2.4.1. Preparation of XeO ₄ in CH ₃ CN Solutions | | | 2.4.2. Attempted Preparation of XeO ₄ (CH ₃ CN) in SO ₂ CIF Solutions | | | 2.4.3. Reaction of XeO ₄ with CsF in HF and CH ₃ CN Solvents | | | 2.4.4. Reaction of XeO ₄ with [N(CH ₃) ₄][F] in CH ₃ CN Solvent | | | 2.5. Synthesis and Characterization of Xenon(VIII) Oxide Fluorides | | | 2.5.1. Reaction of XeO ₄ with XeF ₆ in SO ₂ CIF, HF, and BrF ₅ Solvents | | | 2.5.2. Reaction of [Na] ₄ [XeO ₆] with XeF ₆ in SO ₂ ClF, HF, and BrF ₅ Solvents | | | 2.5.3. Reaction of [Na] ₄ [XeO ₆] with HF | | | 2.5.4. Reaction of [Na],[XeO ₆] with AsF ₅ in HF Solvent | | | 2.5.5. Reaction of [Na] ₄ [XeO ₆] with BrF ₅ | | | 2.5.6. Reaction of [Na] ₄ [XeO ₆] with BF ₃ in BrF ₅ Solvent | | | 2.5.7. Reaction of XeO ₄ with KrF ₂ in SO ₂ ClF and HF Solvents | | | 2.5.8. Reaction of [Na] ₄ [XeO ₆] with KrF ₂ in HF, BrF ₅ , and SO ₂ ClF Solvents | | | 2.5.9. Reaction of XeO ₄ with [KrF][AsF ₆] in HF Solvent | | | 2.5.10. Reaction of XeO ₃ with [KrF][AsF ₆] in HF Solvent | | | 2.6. Fluoride Ion Acceptor Properties of OsO ₄ | | | 2.6.1. Synthesis of [N(CH ₃) ₄][OsO ₄ F] | | | 2.6.2. Crystal Growth of [N(CH ₃) ₄][OsO ₄ F] | | | 2.6.3. Synthesis of [N(CH ₃) ₄] ₂ [OsO ₄ F ₂] | | | 2.6.4. Synthesis of [NO]_[OsO,F_] | | | 2.6.5. Attempted Synthesis of [NO ₂] _a [OsO ₄ F _a] | |--| | 2.7. Lewis Acid Properties of OsO ₃ F ₂ | | 2.7.1. Synthesis of [N(CH ₃) ₄][OsO ₃ F ₃] | | 2.7.2. Crystal Growth of [N(CH ₃) ₄][OsO ₃ F ₃] | | 2.7.3. Synthesis of [N(CH ₃) ₄] ₂ [OsO ₃ F ₄] | | 2.7.4. Synthesis of [NO][OsO ₃ F ₃] | | 2.7.5. Synthesis of OsO ₃ F ₂ (CH ₃ CN) | | 2.8. Fluoride Ion Donor Properties of OsO ₃ F ₂ | | 2.8.1. Synthesis of $[OsO_{2}F][HF]_{2}[AsF_{4}]$, $[Os_{2}O_{4}F_{3}][AsF_{4}]$, and $[OsO_{3}F][AsF_{6}]$ | | and Crystal Growth of [OsO ₃ F][AsF ₆] | | 2.8.2. Crystal Growth of [OsO ₃ F][HF] ₂ [AsF ₄] | | 2.8.3. Synthesis of $[OsO_3F][HF][SbF_4]$ and $[OsO_3F][HF]_2[SbF_4]$ | | and Crystal Growth of [OsO ₃ F][HF][SbF ₆]69 | | 2.8.4. Synthesis and Crystal Growth of [OsO ₃ F][Sb ₃ F ₁₆] | | 2.9. Lewis Acid Properties of OsO ₂ F ₄ | | 2.9.1. Preparation of [Cs][OsO ₂ F ₅] | | 2.9.2. Synthesis of [NO][OsO ₂ F ₅] in NOF Solutions | | 2.9.3. Synthesis of [N(CH ₃) ₄][OsO ₂ F ₅] | | 2.9.4. Attempted Synthesis of [N(CH ₃) ₄][OsO ₂ F ₅] from CHF ₃ Solvent | | 2.9.5. Attempted Preparation of [NO ₂][OsO ₂ F ₅] | | 2.9.6. Synthesis of OsO ₂ F ₄ (CH ₃ CN) in CH ₃ CN and SO ₂ ClF Solvents | | 2.10. Fluoride Ion Acceptor Properties of IO ₂ F ₄ | | 2.10.1. Preparation of $[N(CH_3)_4]_2[IO_2F_5]/[N(CH_3)_4][cis-IO_2F_4]$ in CH ₃ CN Solvent | | 2.10.2. Preparation of [N(CH ₃) ₄] ₂ [IO ₂ F ₅]/[N(CH ₃) ₄][cis-IO ₂ F ₄] in CHF ₃ Solvent | | 2.10.3. Crystal Growth of [N(CH ₃) ₄] ₂ [IO ₂ F ₂][HF ₂] | 8 | |--|---| | 2.11. Preparation of Xenon(II) Oxide Fluorides | • | | 2.11.1. Reaction of [XeF][AsF ₆] and H ₂ O in HF Solvent | • | | 2.11.2. Reaction of XeF ₂ and [H ₃ O][AsF ₄] in BrF ₅ Solvent |) | | 2.11.3. Crystal Growth of [H ₂ OXeF] ₂ [F][AsF ₆] |) | | 2.11.4. Crystal Growth of Trigonal [Xe ₂ F ₃][AsF ₆] |) | | 2.11.5. Crystal Growth of [Xe ₃ OF ₃][AsF ₆] | | | 2.12. X-ray Crystallography82 | · | | 2.12.1. Low-Temperature Crystal Mounting | • | | 2.12.2. Data Collections | | | 2.12.3. Solution and Refinement of Structures | | | 2.13. NMR Spectroscopy | | | 2.13.1. Routine Measurements90 | | | 2.13.2. Static Solid State NMR Spectroscopic Characterization of [Na] ₄ [XeO ₆] 90 | | | 2.13.3. <i>T_I</i> -Measurements | | | 2.13.4. 2D-COSY92 | | | 2.14. Raman Spectroscopy | | | 2.15. Infrared Spectroscopy | | | CHAPTER 3: SOLUTION STUDY OF XeO, AND NMR SPECTROSCOPIC | | | CHARACTERIZATION OF [Na],[XeO,] | | | 3.1. Introduction | | | 3.2. Results and Discussion | | | 3.2.1. Characterization of XeO ₄ in SO ₂ ClF, BrF ₅ , and HF Solvents | | | by 129Xe NMR Spectroscopy | | | 3.2.2. Characterization of XeO ₄ in SO ₂ CIF Solvent by ¹⁷ O NMR Spectroscopy 103 | |--| | 3.2.3. Characterization of XeO4 in SO-CIF, BrF5, and HF Solvents | | by 131 Xe NMR Spectroscopy | | 3.2.4. T ₁ Relaxation of ¹²⁹ Xe and ¹³¹ Xe Nuclei in XeO ₄ | | 3.2.5. Raman Spectroscopic Characterization of XeO ₄ in HF Solution | | 3.2.6. Characterization of [Na] ₄ [XeO ₄] by ¹²⁹ Xe NMR Spectroscopy | | 3.3. Conclusion | | CHAPTER 4: LEWIS ACID PROPERTIES OF XeO ₄ | | 4.1. Introduction | | 4.2. Results and Discussion | | 4.2.1. Lewis Acid Properties of XeO ₄ Towards CH ₃ CN | | 4.2.1.1. Preparation and NMR Spectroscopic Characterization of XeO ₄ (CH ₃ CN) 118 | | 4.2.1.2. Raman Spectroscopic Characterization of XeO ₄ (CH ₃ CN) | | 4.2.2. Fluoride Ion Acceptor Properties of XeO ₄ | | 4.2.2.1. Preparation of the cis- and trans-XeO ₄ F ₂ ² Anions | | 4.2.2.2. Raman Spectroscopic Characterization of the | | cis- and trans-XeO ₄ F ₂ ² Anions | | 4.3. Conclusion | | CHAPTER 5: PREPARATION AND NMR SPECTROSCOPIC CHARACTERIZATION OF XeO ₃ F ₂ | | AND THE ATTEMPTED PREPARATION OF NEW XENON(VIII) OXIDE FLUORIDES | | 5.1. Introduction | | 5.2. Results and Discussion | | 5.2.1. Preparation and NMR Spectroscopic Characterization of XeO ₃ F ₂ 134 | | 5.2.2. Preparation and NMR Spectroscopic Characterization of the XeO ₃ F ₃ . Anion 142 | | 5.2.3. Interaction of [Na] ₄ [XeO ₄] with HF | |--| | 5.2.4. Interaction of [Na] ₄ [XeO ₆] with BrF ₅ | | 5.2.5. Interaction of XeO ₄ and [Na] ₄ [XeO ₆] with KrF ₂ in Various Solvents | | 5.2.6. Reaction of XeO ₄ with [KrF][AsF ₆] in HF Solvent | | 5.2.7. Reaction of XeO ₃ with [KrF][AsF ₄] in HF Solvent | | 5.3. Conclusion | | CHAPTER 6: FLUORIDE ION ACCEPTOR PROPERTIES OF O ₅ O ₄ | | 6.1. Introduction | | 6.2. Results and Discussion | | 6.2.1. Syntheses of $[N(CH_3)_4][OsO_4F]$ and $[N(CH_3)_4]_2[OsO_4F_2]$ | | 6.2.2. Reaction of OsO ₄ with NOF and NO ₂ F | | 6.2.3. X-ray Crystal Structure of [N(CH ₃) ₄][OsO ₄ F] | | 6.2.4. Raman and Infrared Spectroscopy of [N(CH ₃) ₄][OsO ₄ F] | | and
[N(CH ₃) ₄] ₂ [OsO ₄ F ₂] | | 6.3. Conclusion | | CHAPTER 7: LEWIS ACID PROPERTIES OF O ₅ O ₅ F ₂ | | 7.1. Introduction | | 7.2. Results and Discussion | | 7.2.1. Fluoride Ion Acceptor Properties of OsO ₃ F ₂ | | 7.2.1.1. Syntheses of $[N(CH_3)_4][OsO_3F_3]$ and $[NO][OsO_3F_3]$ | | 7.2.1.2. Attempted Synthesis of [N(CH ₃) ₄] ₂ [OsO ₃ F ₄] | | 7.2.1.3. NMR Spectroscopic Characterization of the OsO ₃ F ₃ Anion | | 7.2.1.4. X-ray Crystal Structure of [N(CH ₃) ₄][OsO ₃ F ₃] | | 7.2.1.5. Raman and Infrared Spectroscopic Characterization of | | $[N(CH_3)_4][OsO_3F_3]$ and $[NO][OsO_3F_3]$ | 189 | |--|-----| | 7.2.2. Lewis Acid Behaviour of OsO ₃ F ₂ Towards CH ₃ CN | 195 | | 7.2.2.1. Synthesis of Os ₃ F ₂ (CH ₃ CN) | 195 | | 7.2.2.2. Multi-NMR Spectroscopic Characterization of Os ₂ F ₂ (CH ₃ CN) | 96 | | 7.2.2.3. Vibrational Spectroscopic Characterization of Os ₃ F ₂ (CH ₃ CN) | :02 | | 7.3. Conclusion | 10 | | CHAPTER 8: FLUORIDE ION DONOR PROPERTIES OF O ₅ O ₃ F ₂ | | | 8.1. Introduction | 11 | | 8.2. Results and Discussion | 12 | | 8.2.1. Syntheses of the OsO ₃ F* and Os ₂ O ₆ F ₃ * Cations and Solution | | | Characterization of the OsO ₃ F ⁺ Cation by ¹⁹ F NMR Spectroscopy 21 | 12 | | 8.2.2. X-ray Crystallography | 17 | | 8.2.2.1. Structure of [OsO ₃ F][AsF ₄] | 17 | | 8.2.2.2. Structure of [OsO ₃ F][HF] ₂ [AsF ₄] | 25 | | 8.2.2.3. Structure of [OsO ₃ F][HF][SbF ₆] | 28 | | 8.2.2.4. Structure of [OsO ₃ F][Sb ₃ F ₁₆] | 28 | | 8.2.3. Raman Spectroscopy | 32 | | 8.2.3.1. [OsO ₃ F][Sb ₃ F ₁₆] | 12 | | 8.2.3.2. [OsO ₃ F][AsF ₆] and [OsO ₃ F][SbF ₆] | 6 | | 8.2.3.3. $[OsO_3F][HF]_2[PnF_6]$ (Pn = As, Sb) and $[OsO_3F][HF][SbF_6]$ | 7 | | 8.2.3.4. [Os ₂ O ₆ F ₃][AsF ₆] | 8 | | 8.3. Conclusion | 9 | | CHAPTER 9: LEWIS-ACID PROPERTIES OF OsO ₂ F ₄ | | | 9.1. Introduction | ^ | | 9.2. Results and Discussion | |--| | 9.2.1. Fluoride Ion Acceptor Properties of cis-OsO ₂ F ₄ | | 9.2.1.1. Synthesis of OsO ₂ F ₅ | | 9.2.1.2. NMR Spectroscopic Characterization of the OsO ₂ F ₅ . Anion | | 9.2.1.3. Raman Spectroscopic Characterization of the OsO ₂ F ₅ . Anion | | 9.2.2. Lewis Acid Behaviour of cis-OsO ₂ F ₄ Towards CH ₃ CN | | 9.2.2.1. Synthesis of OsO ₂ F ₄ (CH ₃ CN) | | 9.2.2.2. Multi-NMR Spectroscopic Characterization of OsO ₂ F ₄ (CH ₃ CN) | | 9.3. Conclusion | | CHAPTER 10: FLUORIDE ION ACCEPTOR PROPERTIES OF IO,F, | | 10.1. Introduction | | 10.2. Results and Discussion | | 10.2.1. Synthesis of [N(CH ₃) ₄] ₂ [IO ₂ F ₅] | | 10.2.2. Raman Spectroscopic Characterization of [N(CH ₃) ₄] ₂ [IO ₂ F ₅] | | 10.2.3. Formation of [N(CH ₃) ₄] ₂ [IO ₂ F ₂][HF ₂] | | 10.2.4. X-ray Crystal Structure of [N(CH ₃) ₄] ₂ [IO ₂ F ₂][HF ₂] | | 10.2.5. Raman Spectroscopic Characterization of [N(CH ₃) ₄] ₂ [IO ₂ F ₂][HF ₂] | | 10.3. Conclusion | | CHAPTER 11: XENON(II) OXIDE FLUORIDES | | 11.1. Introduction | | 11.2. Results and Discussion | | 11.2.1. Reaction of [XeF][AsF ₆] with H ₂ O in HF and BrF ₅ Solvents and | | Multi-NMR Spectroscopic Characterization | | 11.2.2. Raman Spectroscopy | | 11.2.2.1. [H ₂ OXeF] ₂ [F][AsF ₆] | |---| | 11.2.2.2. Trigonal [Xe ₂ F ₃][AsF ₆] | | 11.2.2.3. [Xe ₃ OF ₃][AsF ₆] | | 11.2.3. X-ray Crystallography | | 11.2.3.1. [H ₂ OXeF] ₂ [F][AsF ₆] | | 11.2.3.2. Trigonal [Xe ₂ F ₃][AsF ₆] | | 11.2.3.3. [Xe ₃ OF ₃][AsF ₆] | | 11.3. Conclusion | | CHAPTER 12: CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK | | 12.1. Conclusions | | 12.2. Directions for Future Work | | REFERENCES | | APPENDIX | # LIST OF TABLES | Table | Page | |-------|--| | 1.1 | Reported OsO ₄ ·Lewis Base Adducts, Their Characterization, and Selected Structural Data | | 1.2 | Known Neutral and Charged Osmium(VIII) Oxide Fluorides | | 1.3 | Geometries of Heptacoordinate Fluorides and Oxide Fluorides | | 1.4 | Known Xenon Oxide Fluorides and Their Methods of Structural Characterization 27 | | 2.1 | Summary of X-Ray Data Collection Parameters | | 2.2 | Typical NMR Spectroscopic Acquisition Parameters for ¹ H, ¹³ C, ¹⁵ N, ¹⁷ O, ¹⁹ F, ¹²⁹ Xe, and ¹³¹ Xe NMR Spectroscopy | | 3.1 | 129Xe and 131Xe NMR Parameters of XeO ₄ | | 3.2 | Temperature Dependence of the ¹²⁹ Xe Chemical Shift and ¹³¹ Xe Absolute Frequency of XeO ₄ in SO ₂ CIF | | 3.3 | 17O Chemical Shifts [ppm] of Main Group and Transition Metal Element Tetraoxo Species | | 3.4 | T ₁ -Values for XeO ₄ in SO ₂ ClF Solution at Different Temperatures at 7.0463 (11.744) T 108 | | 3.5 | Vibrational Frequencies and Their Assignments for Solid and Gaseous XeO ₄ and for a Solution of XeO ₄ in HF | | 4.1 | ¹²⁹ Xe Chemical Shifts of XeO ₂ F ₂ , XeO ₃ and XeO ₄ in Various Solvents | | 4.2 | Raman Frequencies and Their Assignments for a Solution of XeO ₄ in CH ₃ CN | | 4.3 | Raman Frequencies and Their Assignments for [N(CH ₃) ₄] ₂ [XeO ₄ F ₂] and [Cs] ₂ [XeO ₄ F ₂] 129 | | 5.1 | NMR Spectroscopic Data for XeO ₃ F ₂ and XeO ₃ F ₃ | | 5.2 | Raman Frequencies and Their Assignments of the Solid Products of the Interaction Between [Na] ₄ [XeO ₆] and HF at two Different Stages of the Reaction | | 5.1 | Summary of Crystal Data and Refinement Results for [N(CH ₃) ₄][OsO ₄ F] | | 5.2 | Experimental Bond Lengths, Contacts and Bond Angles in [N(CH ₃) ₄][OsO ₄ F] 164 | | 6.3 | Experimental Vibrational Frequencies and Their Assignments for $[N(CH_3)_4][OsO_4F]$ and Calculated Vibrational Frequencies for OsO ₄ F $(C_{3\nu})$ | |------|---| | 6.4 | Experimental Vibrational Frequencies and Their Assignments for [N(CH ₃) ₄] ₂ [OsO ₄ F ₂] and Calculated Vibrational Frequencies for cis-OsO ₄ F ₂ ²⁻ | | 6.5 | Correlation Diagram for the Vibrational Modes of the N(CH ₃) ₄ * Cation in [N(CH ₃) ₄][OsO ₄ F] | | 6.6 | Correlation Diagram for the Vibrational Modes of the OsO ₄ F ⁻ Anion in [N(CH ₃) ₄][OsO ₄ F] | | 7.1 | Summary of Crystal Data and Refinement Results for [N(CH ₃) ₄][OsO ₃ F ₃] | | 7.2 | Experimental Bond Lengths, Contacts and Bond Angles in [N(CH ₃) ₄][OsO ₃ F ₃] 186 | | 7.3 | Experimental Vibrational Frequencies and Their Assignments for [N(CH ₃) ₄][OsO ₃ F ₃] and [NO][OsO ₃ F ₃] and Calculated Vibrational Frequencies for fac-OsO ₃ F ₃ | | 7.4 | Correlation Diagram for the Vibrational Modes of the OsO ₃ F ₃ ⁻ Anion in [N(CH ₃) ₄][OsO ₃ F ₃] | | 7.5 | Correlation Diagram for the Vibrational Modes of the N(CH ₃) ₄ * Cation in [N(CH ₃) ₄][OsO ₃ F ₃] | | 7.6 | Raman Frequencies and Their Assignments for fac-OsO ₂ F ₃ (CH ₃ CN) and mer-OsO ₂ F ₃ (CH ₃ CN) | | 7.7 | Raman Frequencies and Their Assignments for fac-OsO ₂ F ₃ (CH ₃ CN) and mer-OsO ₂ F ₃ (CH ₃ CN) in the Presence of Small Amounts of CH ₃ CN Solvent | | 8.1 | ¹⁹ F NMR parameters of SO ₂ CIF·SbF ₅ , Sb ₂ F ₁₁ , and Sb ₃ F ₁₆ at 100 °C in SO ₂ CIF solvent 216 | | 8.2 | Summary of Crystal Data and Refinement Results for [OsO ₃ F][AsF ₆], [OsO ₃ F][HF] ₂ [AsF ₆], [OsO ₃ F][HF] ₂ [SbF ₆], and [OsO ₃ F][Sb ₃ F ₁₆] | | 8.3 | Bond Lengths, Selected Bond Angles, and Contacts in [OsO ₃ F][AsF ₆], [OsO ₃ F][HF] ₂ [AsF ₆], [OsO ₃ F][HF] ₂ [SbF ₆], and [OsO ₃ F][Sb ₃ F ₁₆] | | 8.4 | Raman Frequencies and Their Assignments for [OsO ₃ F][Sb ₃ F ₁₆] | | 8.5 | Raman Frequencies and Their Assignments for [OsO ₃ F][PnF ₆], Pn = As, Sb | | 8.6 | Raman Frequencies and Their Assignments for [OsO ₃ F][HF][SbF ₆] | | 8.7 | Raman Frequencies and Their Assignments for [OsO ₃ F][HF] ₂ [PnF ₆] (Pn= As, Sb) 242 | | 8.8. | Raman Frequencies and Their Assignments for [Os ₂ O ₆ F ₃][AsF ₆] | | 9.1 | Chemical Shifts and Spin-Spin Coupling Constants Observed in the 19F NMR Spectra of [N(CH ₃) ₄][OsO ₂ F ₅] in CH ₃ CN and HF Solvents | |-----------|---| | 9.2 | Vibrational Frequencies and Assignments for [M][OsO ₂ F ₃], $M = Cs^*$, $N(CH_3)_4^*$, and NO^* . 265 | | 10.1 | Raman Frequencies and Assignments for a [N(CH ₃) ₄] ₂ [IO ₂ F ₅]/[N(CH ₃) ₄][cis-IO ₂ F ₄] Mixture Prepared in CH ₃ CN | | 10.2 | Raman Frequencies and Assignments for a [N(CH ₃) ₄] ₂ [IO ₂ F ₅]/[N(CH ₃) ₄][cis-IO ₂ F ₄] Mixture Prepared in CHF ₃ | | 10.3 | Summary of Crystal Data and Refinement Results for [N(CH ₃) ₄] ₂ [IO ₂ F ₂][HF ₂] 287 | | 10.4 | Important Bond Lengths, Contacts, and Bond Angles in [N(CH ₃) ₄] ₂ [IO ₂ F ₂][HF ₂] 288 | | 10.5 | Vibrational Frequencies and Assignments for [N(CH ₃) ₄] ₂ [10 ₂ F ₂][HF ₂] | | 11.1 | Raman Frequencies and Their Assignments for [H ₂ OXeF] ₂ [F][AsF ₆] (-145 °C) and [Xe ₃ OF ₃][AsF ₆] (-155 °C) | | 11.2 | Raman Frequencies and Their Assignments for Monoclinic and Trigonal
[Xe ₂ F ₃][AsF ₆] 308 | | 11.3. | Summary of Crystal Data and Refinement Results for [H ₂ OXeF] ₂ [F][AsF ₄], Trigonal [Xe ₂ F ₃][AsF ₄] and [Xe ₃ OF ₃][AsF ₄] | | 11.4 | Bond Lengths, Selected Bond Angles, and Contacts in [H ₂ OXeF] ₂ [F][AsF ₄], Trigonal [Xe ₂ F ₃][AsF ₄], and [Xe ₃ OF ₃][AsF ₄] | | A. | Atomic Coordinates (x 10 ⁴) and Equivalent Isotropic Displacement Parameters (pm ² x 10 ⁴) in [N(CH ₃) ₄][OsO ₄ F], [N(CH ₃) ₄][OsO ₃ F], [OsO ₃ F][AsF ₆], [OsO ₃ F][HF] ₂ [AsF ₆], [OsO ₃ F][HF] ₂ [SbF ₆], [OsO ₃ F][SbF ₁₆], [N(CH ₃) ₄] ₂ [HF ₂][IO ₂ F ₃], [H ₂ OXeF] ₂ [F][AsF ₆], trigonal [Xe ₂ F ₃][AsF ₆], and [Xe ₃ OF ₃][AsF ₆] | # LIST OF FIGURES | Figure | Pa | B | |--------|---|---| | 1.1 | Crystal structures of (a) the OsO ₄ Cl anion in $[P(C_4F_5)_4][OsO_4Cl] \cdot CH_2Cl_2$.
(b) the 2:1 adduct of OsO ₄ and hexamethylenetetramine, and
(c) OsO ₄ · (R,R) -trans-1,2,-Bis(N-pyrrolidino)cyclohexane. | 8 | | 1.2 | Crystal structures of (a) [OsO ₃ (NOct')] ₂ · N ₂ C ₆ H ₁₂ and (b) trans-[Pt(Bupy) ₂ (NOsO ₃) ₂] | | | 1.3 | Structure of (a) OsO ₃ F ₂ (X-ray diffraction) and (b) cis-OsO ₂ F ₄ (gas phase electron diffraction) | 2 | | 1.4 | (a) Structure of the μ-F(cis-OsO ₂ F ₃) ₂ * cation in the X-ray structure of [μ-F(cis-OsO ₂ F ₃) ₂][Sb ₂ F ₁₁] and (b) the ¹⁹ F NMR spectrum of the OsO ₂ F ₃ * cation in SbF ₃ solvent at 7 °C | 4 | | 1.5 | (a) Structure of the IOF ₆ anion in [N(CH ₃) ₄][IOF ₆] and (b) the ¹⁹ F NMR spectrum of a saturated solution of [N(CH ₃) ₄][IOF ₆] in CH ₃ CN at -40 °C | 7 | | 1.6 | Diagram showing the overlap of the filled p orbitals of the oxygen ligands and the empty d _{2g} orbitals of a transition metal in pseudo-octahedral (a) cis-dioxo and (b) trans-dioxo complexes. | 9 | | 1.7 | Contour maps of the Laplacian, $L = -v^2 \rho(r)$, for CrO_2F_4 through the $[O_2CrF_2]$ -plane, with a diagram showing the positions and relative sizes of the charge concentrations in the outer shell of the core of Cr . | 0 | | 1.8 | The three main stereochemistries for heptacoordination represented by points-on-a-sphere and polyhedral representations, and the structures of the MoF_7 anion in [Cs][MoF_7], the NbF_7 ² anion in [K] ₂ [NbF_7], and the $NbOF_6$ ³ anion in α -[Na] ₃ [$NbOF_6$] | 3 | | 1.9 | Orbital interaction diagrams for (a) a main group and (b) a transition metal AL ₇ molecule 20 | 5 | | 2.1 | Glass vacuum line system | l | | 2.2 | Metal vacuum system | ļ | | 2.3 | Hydrogen fluoride distillation apparatus | , | | 2.4 | Acetonitrile distillation apparatus | ; | | 2.5 | Hot-wire reactor used for the preparation of KrF ₂ | , | | 2.6 | Apparatus for the generation of an aqueous XeO ₃ solution | | | 2.7 | Experimental apparatus for the generation of XeO ₄ in SO ₂ CIF solutions | |------|---| | 2.8 | Experimental apparatus for the generation of XeO ₄ in BrF ₅ solvent | | 2.9 | Pyrex glass reaction vessel equipped with a 4-mm J.Young Teflon/glass stopcock 64 | | 2.10 | Glass reaction vessel used to prepare [N(CH ₃) ₄] ₂ [IO ₂ F ₅] | | 2.11 | Thick wall glass reaction vessel (9 mm o.d., 2.5 mm i.d.) used for reactions in CHF ₃ 77 | | 2.12 | Low-temperature crystal mounting apparatus | | 2.13 | Apparatus for low temperature Raman spectroscopy using the macro chamber of the Jobin-Yvon Mole 3000 instrument | | 3.1 | (a) ¹²⁹ Xe NMR spectrum (82.981 MHz) at -87.5 °C and (b) ¹³¹ Xe NMR spectrum (24.598 MHz) of XeO ₄ in SO ₂ CIF at -76 °C | | 3.2 | Raman spectrum of an HF solution of XeO ₄ recorded in FEP at -74 °C using 514.5-nm excitation. | | 3.3 | (a) Static ¹²⁹ Xe NMR spectrum (55.640 MHz) of solid [Na] ₄ [XeO ₆] at room temperature and (b) ¹²⁹ Xe NMR spectrum (138.983 MHz) of a saturated aqueous solution of [Na] ₄ [XeO ₆] at -30 °C | | 4.1 | Raman spectrum of a solution of XeO ₄ in CH ₃ CN recorded in ¼-in. FEP tube at -38 °C using 514.5-nm excitation | | 4.2 | Raman spectrum of the white reaction product resulting from the reaction of XeO ₄ with CsF recorded in a 1/4-in. FEP tube at -39 °C using 514.5-nm excitation | | 4.3 | Raman spectrum of the white reaction product resulting from the reaction of XeO ₄ with [N(CH ₃) ₄][F] in CH ₃ CN recorded in a ½-in. FEP tube at (a) -40 °C and (b) -165 °C on two different samples using 1064-nm excitation | | 5.1 | ¹⁹ F NMR spectrum (282.409 MHz) of XeO ₃ F ₂ (A) and XeO ₃ F ₃ ⁻ (B) in SO ₂ ClF at -80 °C 139 | | 5.2 | ¹²⁹ Xe NMR spectrum (83.47 MHz) of XeO ₃ F ₂ (A) and XeO ₃ F ₃ . (B) in BrF ₅ at -50 °C 140 | | 5.3 | Empirical correlation of the ¹⁹ F chemical shift and ¹ J(¹²⁹ Xe- ¹⁹ F) coupling constant for selected xenon compounds | | 5.4 | Raman spectrum of the pale yellow solid product of the reaction between [Na] ₄ [XeO ₆] and HF solvent without warming above -78 °C, recorded in a 4-mm FEP tube at -78 °C using 514.5-nm excitation. | | 5.5 | Raman spectrum of white solid product of the reaction between [Na] ₄ [XeO ₆] and HF solvent after warming to -40 °C, recorded in a 4-mm FEP tube at -78 °C using 514.5-nm excitation. | |-----|--| | | using 514.3-nm excitation | | 6.1 | Views of (a) the $[N(CH_3)_4][OsO_4F]$ unit cell showing the packing along the b-axis and (b) the OsO_4F anion and its contacts to $N(CH_3)_4$ cations | | | () =================================== | | 6.2 | Raman spectrum (low-frequency range) of microcrystalline [N(CH ₃) ₄][OsO ₄ F] in a Pyrex capillary at -115 °C using 647.1-nm excitation | | 6.3 | Raman spectrum (low-frequency range) of microcrystalline [N(CH ₃) ₄] ₂ [OsO ₄ F ₂] in a Pyrex capillary at -137 °C using 1064-nm excitation | | 7.1 | Views of (a) the $[N(CH_3)_4][OsO_3F_3]$ unit cell showing the packing along the c-axis and (b) the fac -OsO ₃ F ₃ anion and the two crystallographically independent $N(CH_3)_4$ cations 187 | | 7.2 | (a) Raman spectrum (low-frequency range) of microcrystalline [N(CH ₃) ₄][OsO ₃ F ₃] recorded in a Pyrex glass capillary at -160 °C using 1064-nm excitation; (b) Raman spectrum (low-frequency range) of microcrystalline [NO][OsO ₃ F ₃] recorded in a 4-mm FEP tube at -160 °C using 1064-nm excitation. | | 7.3 | ¹⁹ F NMR spectrum (282.409 MHz) of ¹⁵ N-enriched fac-OsO ₃ F ₂ (CH ₃ CN) (a) and mer-OsO ₃ F ₂ (CH ₃ CN) (a) in SO ₂ CIF solvent at - 80 °C | | 7.4 | ¹⁵ N NMR spectrum (50.687 MHz) of ¹⁵ N-enriched fac-OsO ₃ F ₂ (CH ₃ CN) (A), mer-OsO ₃ F ₂ (CH ₃ CN) (B), free CH ₃ CN (C), and an unidentified species (D) in SO ₂ CIF solvent at - 84 °C | | 7.5 | Raman spectrum of microcrystalline OsO ₃ F ₂ (CH ₃ CN) recorded in a Pyrex glass capillary at -163 °C using 1064-nm excitation | | 7.6 | Raman spectrum (low-frequency region) of solid OsO ₃ F ₂ (CH ₃ CN) in the presence of residual CH ₃ CN recorded in a ½-in. FEP sample tube at -145 °C using 647.1-nm excitation | | 8.1 | Views of (a) the OsO ₃ F ⁺ cation and its contacts to AsF ₆ ⁻ anions in the [OsO ₃ F][AsF ₆] structure and (b) the ([OsO ₃ F][AsF ₆]) ₂ dimer | | 8.2 | Views of (a) the [OsO ₃ F][HF] ₂ [AsF ₆] unit cell showing the packing along the a-axis and (b) the ([OsO ₃ F][HF] ₂ [AsF ₆]) ₂ dimer | | 8.3 | Views of (a) the asymmetric unit of [OsO ₃ F][HF][SbF ₆] and (b) the ([OsO ₃ F][HF][SbF ₆]), helix along the a-axis. | | 8.4 | Views of (a) the $[OsO_3F][Sb_3F_{16}]$ unit cell showing the packing along the c-axis and (b) the OsO_3F^+ and $Sb_3F_{16}^-$ ions | | 8.5 | Raman spectra of (a) microcrystalline [OsO ₃ F][Sb ₃ F ₁₆] recorded in a Pyrex glass capillary at -165 °C using the 1064-nm excitation and (b) microscrystalline [OsO ₃ F][AsF ₆] recorded in a ½-in. FEP sample tube at -150 °C using the 647.1-nm excitation | |------|---| | 8.6 | Raman spectra of (a) microcrystalline [OsO ₃ F][HF][SbF ₆] at -165 °C and (b) microcrystalline [OsO ₃ F][HF][SbF ₆] containing [OsO ₃ F][SbF ₆] at -150 °C recorded in ¼-in. FEP sample tubes using the 647.1-nm excitation. | | 8.7 | Raman spectra of (a) microcrystalline [OsO ₃ F][HF] ₂ [AsF ₆] recorded in a ½-in. FEP sample tube at -140 °C using the 647.1-nm excitation and (b) microcrystalline [OsO ₃ F][HF] ₂ [SbF ₆] under HF solvent recorded in a ½-in. FEP sample tube at -80 °C using the 647.1-nm excitation. 235 | | 8.8 | Raman spectra of microcrystalline [µ-F(OsO ₃ F) ₂][AsF ₄] under HF solvent recorded in a ¼-in. FEP sample tube at -80 °C using the 647.1-nm excitation | | 9.1 | ¹⁹ F NMR spectrum (470.592 MHz) of [N(CH ₃) ₄][OsO ₂ F ₅] in CH ₃ CN solvent at -30 °C;
(a) multiplets corresponding to the OsO ₂ F ₅ and (b) low-frequency region | | 9.2 | ¹⁹ F NMR spectra (470.592 MHz) of [N(CH ₃) ₄][OsO ₂ F ₅] in HF solvent at -80 °C | | 9.3 | Possible structures for the OsO ₂ F ₅ anion based on (a)
a pentagonal bipyramid and (b) a monocapped octahedron together with their expected ¹⁹ F NMR multiplicities and relative intensities | | 9.4 | Possible structures for the OsO ₂ F ₅ anion based on a monocapped trigonal prism, together with their expected ¹⁹ F NMR multiplicities and relative intensities | | 9.5 | ¹⁹ F COSY-45 (470.592 MHz) of [N(CH ₃) ₄][OsO ₂ F ₃] in CH ₃ CN solvent at -30 °C 259 | | 9.6 | Raman spectra of (a) [Cs][OsO ₂ F ₅] and (b) [N(CH ₃) ₄][OsO ₂ F ₅] recorded in a 4-mm FEP tube at -145 °C using the 671.4-nm excitation | | 9.7 | Raman spectrum of a [NO][OsO ₂ F ₅]/OsO ₂ F ₄ mixture under frozen NOF recorded in a 4-mm FEP tube at -150 °C using the 671.4-nm excitation | | 9.8 | ¹⁹ F NMR spectrum (470.592 MHz) of OsO ₂ F ₄ (CH ₃ CN) in CH ₃ CN solvent at -40 °C 269 | | 9.9 | Proposed trajectory of CH ₃ CN attack at cis-OsO ₂ F ₄ | | 10.1 | Proposed trajectories for fluoride attack on (a) cis-IO ₂ F ₄ and (b) trans-IO ₂ F ₄ | | 10.2 | The Raman spectrum of a [N(CH ₃) ₄] ₂ [IO ₂ F ₅]/[N(CH ₃) ₄][IO ₂ F ₄] mixture prepared from CH ₃ CN, recorded at -113 °C using 514.5-nm excitation | | 10.3 | The Raman spectrum of a [N(CH ₃) ₄] ₂ [IO ₂ F ₅]/[N(CH ₃) ₄][cis-IO ₂ F ₄] mixture prepared in CHF ₃ , recorded at room temperature using 514.5-nm excitation | | 10.4 | View of (a) the [N(CH ₃) ₂] ₂ [IO ₂ F ₂][HF ₂] unit cell showing the packing along the b-axis and (b) the IO ₂ F ₂ HF ₂ arrangement | |-------|---| | 10.5 | Raman spectrum of a single crystal of [N(CH ₃) ₄] ₂ [IO ₂ F ₂][HF ₂] recorded in a glass Lindemann capillary at room temperature using the 514.5-nm excitation | | 11.1 | Raman spectrum of 2XeF ₂ ·[H ₃ O][AsF ₆] recorded under frozen HF in FEP at -145 °C using 514.5-nm excitation. | | 11.2 | Raman spectra of (a) trigonal [Xe ₂ F ₃][AsF ₆] under liquid HF at -85 °C and (b) monoclinic [Xe ₂ F ₃][AsF ₆] at -150 °C recorded in FEP using 514.5-nm excitation 305 | | 11.3 | Raman spectrum of [Xe ₃ OF ₃][AsF ₆] recorded under frozen HF in FEP at -155 °C using 1064-nm excitation | | 11.4. | Views of (a) the [H ₂ OXeF] ₂ [F][AsF ₆] unit cell showing the packing along the c-axis and (b) the asymmetric unit of [H ₂ OXeF] ₂ [F][AsF ₆] | | 11.5. | Views of (a) the trigonal [Xe ₂ F ₃][AsF ₄] unit cell showing the packing along the c-axis and (b) the Xe ₂ F ₃ * cation | | 11.6. | Views of (a) the [Xe ₂ OF ₃][AsF ₆] unit cell showing the packing along the a-axis and (b) the Xe ₂ OF ₃ * cation | ## **CHAPTER 1** ## INTRODUCTION # 1.1. Oxidation State +8 The +8 oxidation state is the highest attained oxidation state in the periodic table of the elements and is very rare; only three elements form compounds having the +8 oxidation state, namely, osmium, ruthenium, and xenon.¹ The stabilization of this high oxidation state can only be achieved using highly electronegative elements like F, O, and N. The chemistry of Os(VIII) is the most developed among the three elements because of the high thermodynamic stability of the tetroxide, OsO₄ (Δ H_f° = -390.8 ± 5.9 kJ mol⁻¹),² which forms a number of derivatives. While OsO₄ reacts in aqueous alkali solution according to eq. (1.1) yielding red solutions of perosmates OsO₄(OH)₂²⁻, the less stable RuO₄ is readily reduced to Ru(VII)O₄ under the same conditions (eq. (1.2)).^{1,3} $$OsO_4 + 2OH^{-1} NaOH > OsO_4(OH)_2^{2-}$$ (1.1) $$2RuO_4 + 2OH^{-NaOH} > 2RuO_4 + \frac{1}{2}O_2 + H_2O$$ (1.2) Other than the stable perxenate anion, XeO₆⁴, all the other Xe(VIII) compounds reported in the literature are extremely unstable.⁴ Pure XeO₄ is explosive even at -40 °C which renders synthetic chemistry using the tetroxide extremely difficult.⁵ The replacement of oxygen ligands with fluorine ligands generally leads to the destabilization of the +8 oxidation state. While Ru(VIII) oxide fluorides are unkown, cis-OsO₂F₄^{6,7} and OsO₃F₂⁷ are stable compounds and XeO₃F₂^{8,9} and XeO₂F₄^{9,10} have been prepared in small quantities. In contrast, the highest oxidation state that can be attained in the binary fluorides of these elements is +6 or +7, i.e., XeF₆, ¹¹ RuF₆, ¹² and OsF₇, ¹³ and previous reports of XeF₈¹⁴ and OsF₈¹⁵ have been shown to be erroneous. ^{16,17} # 1.2. Xenon(VIII) Chemistry Although several chemists suggested the existence¹⁸ of xenon compounds and attempted their syntheses,¹⁹ the reactivity of noble gases was only independently discovered in 1962 by Neil Bartlett (Canada)²⁰ and Rudolf Hoppe (Germany).²¹ Prior to this, the noble gases were generally considered inert and incapable of forming chemical compounds. While the chemistry of krypton is limited to the +2 oxidation state, xenon has been found in the +½, +2, +4, +6, and, +8 oxidation states.⁴ Xenon is the only main-group element occurring in the oxidation state +8 and the first Xe(VIII) compound, [Na]₄[XeO₆], was reported as early as 1963,²² shortly after the synthesis of the first xenon compounds. Perxenate salts exhibit surprisingly high stabilities and are kinetically and thermodynamically stable at ambient temperatures and pressures. The perxenate anion has been well characterized in the solid state by Raman,^{23,24} infrared,²⁴⁻²⁶ PE,²⁷ Auger,²⁷ and Mössbauer spectroscopy,²⁸ X-ray crystallography in the [Na]₄[XeO₆]· 8H₂O,^{22,29} [Na]₄[XeO₆]· 6H₂O,^{30,31} and, [K]₄[XeO₆]· 9H₂O salts,³² and X-ray powder diffraction of [Na]₄[XeO₆]³³ and in solution by Raman,^{23,34} infrared,^{23,129}Xe NMR³⁵ and UV spectroscopy.^{36,37} Sodium perxenate can be prepared by hydrolysis of XeF₆ and disportionation of Xe(VI) in alkaline solution according to eqs. (1.3) and (1.4)).²² A more $$XeF_{6(s)} + 4OH_{(aq)} \xrightarrow{NaOH_{(aq)}} + HXeO_{4(aq)} + 3HF_{2(aq)}$$ (1.3) $$2[Na][H][XeO_4]_{(aq)} + 2NaOH_{(aq)} \xrightarrow{NaOH_{(bq)}} > [Na]_4[XeO_6]_{(s)} + Xe_{(g)} + O_{2(g)} + 2H_2O_{(l)}$$ (1.4) economic way involves the hydrolysis of XeF₆ in H_2O followed by basification with NaOH_(aq) and simultaneous ozonization of the solution (eqs. (1.5) and (1.6)).^{38,39} The $$XeF_6 + 3H_2O \xrightarrow{H_2O} > XeO_{3(aq)} + 6HF$$ (1.5) $$XeO_{3(aq)} + O_{3(g)} + 4NaOH_{(aq)} - NaOH > [Na]_4[XeO_6]_{(s)} + 2H_2O_{(l)} + O_{2(g)}$$ (1.6) potassium salt of perxenate has the propensity to crystallize with XeO₃ in its crystal lattice rendering it explosive in the solid state.^{36,40} Foropoulos and Desmarteau⁴¹ generated pure XeO₃ upon reaction of XeF₆ with excess HPO₂F₂ followed by removal of the volatiles at 0 °C. Careful addition of aqueous NaOH to XeO₃ gave an 64% yield of [Na]₄[XeO₆] after two weeks. Other perxenate salts have been prepared by cation exchange in aqueous solution starting from [Na]₄[XeO₆].^{23-27,34,40,42,43} In the late 1960's and early 1970's, the chemistry of Xe(VIII) was extended mainly by John Huston at Argonne National Laboratory who prepared and partially characterized the three other known Xe(VIII) species, XeO₄, XeO₃F₂ and XeO₂F₄. Xenon tetroxide was prepared from perxenate and concentrated H₂SO₄ (eq. (1.7))⁴⁴ and is $$[Na]_4[XeO_6] + 2H_2SO_4 \xrightarrow{H_2SO_{4(conc)}} XeO_4 + 2[Na]_2[SO_4] + 2H_2O$$ (1.7) reported to be a slightly yellow, extremely unstable, explosive compound having a melting point of -35.9 \pm 0.2 °C⁹ and a vapour pressure of 25 Torr at 0 °C.⁴⁵ The enthalpy of formation for XeO₄ has been determined to be $\Delta H_f^{\circ} = 642.2$ kJ mol⁻¹.⁴⁶ Xenon tetroxide has been structurally characterized in the gas-phase by electron diffraction⁴⁷ and infrared spectroscopy,⁴⁵ and in the solid state by Raman spectroscopy.⁴⁸ The oxide fluoride, XeO₃F₂, has been prepared by the reaction of XeO₄ or [Na]₄[XeO₆] with XeF₆ according to the eqs. (1.8) and (1.9) and has been characterized by mass spectrometry⁴⁹ and matrix- $$XeO_4 + XeF_6 \longrightarrow XeO_3F_2 + XeOF_4$$ (1.8) $$[Na]_{4}[XeO_{6}] + 3XeF_{6} -----> XeO_{3}F_{2} + 3XeOF_{4} + 4NaF$$ (1.9) isolation Raman and infrared spectroscopy. The vibrational spectra have been interpreted in terms of D_{3h} symmetry. Xenon trioxide difluoride is expected to be monomeric since its melting point is very low (-54.1 \pm 0.5 °C) and its vapour pressure at -28 °C (24 Torr) is very high, which contrasts with that of its osmium analogue (see 1.3. Osmium(VIII) Chemistry). The oxide fluoride, XeO_2F_4 , was only detected in trace amounts by mass spectrometry and was generated by the reaction of XeO₃F₂ with XeF₆ (eq. (1.10)).¹⁰ $$XeO_3F_2 + XeF_6 \longrightarrow XeO_2F_4 + XeOF_4$$ (1.10) #### 1.3. Osmium(VIII) Chemistry The starting material for all Os(VIII) chemistry is OsO₄, a stable volatile, yellow solid having a melting point of 40.46±0.1 °C⁵⁰ and a vapour pressure of 10 Torr at 26 °C.⁵¹ Osmium tetroxide can be prepared by oxidation of aqueous solutions of osmium species in the +2 to +7 oxidation states using strong oxidizers like HNO₃, KMnO₄, HIO₄, Ce(IV), or Cl₂.¹ The Lewis acidity of OsO₄ towards N-bases, ^{52,42} O-bases, ^{52,61,63-70} and halides ^{55,63,65,72-74} has been studied and several adducts have been characterized by vibrational spectroscopy ^{53,56,62,64,65,70-73} and X-ray diffraction (Table 1.1). ^{55,61,66-71,73} The tetroxide can bind to one or two donor atoms. In 1:1 Lewis acid base adducts, *e.g.*, OsO₄(OH), ⁷¹ OsO₄Cl (Figure 1.1a), ⁵⁵ and in 2:1 adducts, *e.g.*, (OsO₄)₂OH, ⁷¹ (OsO₄)₂·hexamethylenetetramine (Figure 1.1b), ⁵⁷ osmium exhibits distorted trigonal bipyramidal coordination. In the case of osmium binding to two donor atoms, the osmium complex has a pseudo-octahedral *cis*-configuration with the two donor atoms belonging to two bases, *e.g.*, OsO₄(OH)₂. ^{67,67,69} or to one chelating ligand, *e.g.*, OsO₄· (R,R)-*trans*-1,2-bis(N-pyrrolidino)cyclohexane (Figure 1.1c). ⁵⁹ The reaction of OsO₄ with Lewis bases such as NH₃ in
aqueous KOH solution or primary amines in aqueous and organic solvent media have been shown to yield the nitridoosmate anion⁷⁵ and organoimidoosmates⁷⁵⁻⁷⁷ according to eqs. (1.11) and (1.12), Table 1.1 Reported OsO₄·Lewis Base Adducts, Their Characterization, and Selected Structural Data | Adduct | Characterization* | Os-donor atom bond length | Osviens-Os-donor | |---------------------------------------|---|---|------------------| | | | donor atom [pm] | bond angle [°] | | .HO [*] O ^s O | c.a., 3.71 IR71 | | | | .HO ⁽ ('OsO) | e.a., 32,71 IR, 71 X-ray A.71 | O 221(2)/222(2);" 216/2224** | 1,(1)271/(1)671 | | OsO ₄ (OH), ^{2,} | c.a., 32.63,71 IR, 64.63.70,71 Raman, 63 X-ray 66.67.69,76 O 216/216,46 210/21767 | 9.70 O 216/216, ⁴⁴ 210/217 ⁶⁷ | | | OsO4. N-methylmorpholine N-oxide | c.a., "IR, "X-ray" | O 230.5(4)*I | 175.1(3)*1 | | 0s0 , CI | c.a.,3 IR,33 X-ray33 | CI 276.0(2)3 | 179.0(2)35 | | 0,004N ₃ | c.a., 3 IR33 | | | | OsO4F | c.a., ⁷³ IR, ^{72,} Raman ^{72,} | F 207.5(9) | 156.9(4) | | OsO4F ₂ ² | e.a., 1.72.b IR, 72.72.bc Raman, 65.72.bc EXAFS 74.b | 2 | | | OsO4. quinuclidine | c.a.,4 IR,4 Raman,4 X-ray57 | N 237 ⁵⁷ | 180.0³³ | | (OsO4)3. hexamethylene tetramine | e.a., 32.34 IR, 34 Raman, 54 X-ray 57 | N 242 ⁵⁷ | n.r. | | OsO4. N-methylmorpholine | e.a., IR, 61 X-ray 61 | N 244.0(7)*I | 177.7(3)*1 | | OsO ₄ · pyridine | e.a., 4 IR, 3462 Raman 34.62 | | | | OsO ₄ · pyrazine | e.a., MR4 | | | | OsO ₄ · triethylenediamine | e.a., 4 IR, 4 Raman ³⁴ | | | Table 1.1 continued... | Adduct | Characterization* | Os-donor atom bond length | Oavitant-Os-donor | |---------------------------------|---|---------------------------|-------------------| | | | donor atom [pm] | bond angle [°] | | (OsO4)2. 5-methylpyrimidine | e.a., 34 IR54 | | | | OsO4. phthalazine | c.a., ³⁴ IR, ³⁴ Raman ³⁴ | | | | OsO ₄ · isoquinoline | c.a., ³⁴ IR, ³⁴ Raman ³⁴ | | | | OsO4. 1,8-naphthyridinc | Raman, * X-ray** | N 243.8(6)** | 178.4(3)\$6 | | OsO4. 4-pyrrolidinopyridine | X-ray ²⁰⁰ | N 231.8(13) ⁴⁰ | 179.3(8)% | | OsO4. 4-phenylpyridine | X-ray ⁴⁰ | N 241.9(15) ⁴⁰ | 178.8(6) | | OsO4. 4-cyanopyridine | X-ray ⁴⁰ | N 245.2(8) ⁶⁰ | 178.6(4)** | | OsO4 · (dimethylearbamoyl) | X-ray ^{su} | N 249 ³⁴ | | | didydroquinidine | | | | | OsO4· (R,R)-truns-1,2- | X-ray ⁵⁹ | N 232.9(11)/233.439 | 167.3/165.839 | | bis(N-pyrrolidino)cyclohexane | | | | * Abbreviations denote: elemental analysis (e.a.), not reported (n.r.). * The previous characterizations were actually performed on the OsO4F anion, as shown in the present work (see Chapter 6). * Present work. Figure 1.1 Crystal structures of (a) the OsO₄Cl anion in [P(C₆F₅)₄][OsO₄Cl]· CH₂Cl₂, ⁵⁵ (b) the 2:1 adduct of OsO₄ and hexamethylenetetramine, ⁵⁷ and (c) OsO₄· (R.R)-trans-1,2,-Bis(N-pyrrolidino)cyclohexane. ⁵⁹ $$OsO_4 + NH_3 + KOH \longrightarrow [K][OsO_3N] + 2H_2O$$ (1.11) $$OsO_4 + (CH_3)_3CNH_2 \longrightarrow (CH_3)_3NOsO_3 + H_2O$$ (1.12) respectively. Like OsO₄, imidoosmates can act as Lewis acids towards nitrogen donor molecules, such as 1,4-diazabicyclo[2,2,2]octane (Figure 1.2a),⁷⁸ while the OsO₃N⁻ anion has been utilized as a nitrogen bonded ligand in Rh, Ir, Pt, and Au complexes (Figure 1.2b).^{79,80} The preparation of several bis(imido)osmates O₂Os(NR)₂,^{76,77,81} tris(imido)osmates OOs(NR)₃,^{77,81} and tetrakis(imido)osmates Os(NR)₄,^{82,83} have also been reported. Six osmium(VIII) oxide fluorides have been prepared prior to this work (Table 1.2) which include only two neutral oxide fluorides of Os(VIII), namely, OsO₃F₂⁷ and cis-OsO₂F₄.6.7 Osmium trioxide difuoride can be prepared by fluorination of OsO₄ with F₂, ⁵⁴ BrF₃, ⁸⁵ or ClF₃. ⁷ The Raman and infrared spectra of matrix-isolated OsO₃F₂ was assigned to monomeric OsO₃F₂ (D_{3h}). ⁵⁶ However, in contrast to XeO₃F₂, bulk OsO₃F₂ possesses a low vapour pressure indicating an oligomeric or polymeric structure in the solid state. Osmium trioxide difluoride was found to occur in three different modifications, a monoclinic low-temperature (<90 °C) and two orthorhombic high-temperature modifications, which are, according to Raman spectroscopy, composed of fluorine bridged oligomers or polymers. ⁸⁷ The structure of the monoclinic low-temperature α-modification was determined by single crystal X-ray diffraction and contains a zig-zag chain of fluorine-bridged fac-OsO₃F₃ moieties (Figure 1.3a). ⁷ The fluoride ion adduct of OsO₃F₂, a b Figure 1.2 Crystal structures of (a) $[OsO_3(NOct^1)]_2 \cdot N_2C_6H_{12}^{77}$ and (b) trans- $[Pt(Bupy)_2(NOsO_3)_2]_{*}^{80}$ Table 1.2 Known Neutral and Charged Osmium(VIII) Oxide Fluorides^a $$OsO_{4} \xrightarrow{+F} OsO_{2}F \xrightarrow{+F} cis-OsO_{2}F_{2}^{2}$$ $$\downarrow CIF_{3}$$ $$0sO_{3}F^{*} \leftarrow OsO_{3}F_{2} \xrightarrow{+F} fac-OsO_{3}F_{3}^{*}$$ $$\downarrow KrF_{2}$$ $$OsO_{2}F_{3}^{*} \leftarrow cis-OsO_{2}F_{4} \xrightarrow{+F} OsO_{2}F_{5}^{*}$$ $$\mu-F(cis-OsO_{2}F_{3})^{*}$$ ^a Osmium(VIII) oxide fluorides prepared and characterized in the present work are italicized. Figure 1.3 Structure of (a) OsO₃F₂ (X-ray diffraction)⁷ and (b) cis-OsO₂F₄ (gas phase electron diffraction).⁶ OsO₃F₃, has only been studied by vibrational^{7,65,72,88} and EXAFS spectroscopy.⁷⁴ Osmium dioxide tetrafluoride was prepared by fluorination of OsO₄ with KrF₂ according to eq. (1.13)^{6,7} and is a magenta coloured solid having a vapour pressure of 1 Torr at room temperature.⁶ It was characterized by ¹⁹F NMR spectroscopy, ⁶ electron $$OsO_4 + 2KrF_2 \xrightarrow{HF} > OsO_2F_4 + 2Kr + O_2$$ (1.13) diffraction,⁶ vibrational spectroscopy,⁶ but is severely disordered in its crystal structure.⁷ The structure of cis-OsO₂F₄ is pseudo-octahedral with a cis-arrangement of the two oxygen and four fluorine ligands (Figure 1.3b). A report of the preparation of OsOF₆⁸⁹ was found to be erroneous and the product isolated was subsequently shown to be cis-OsO₂F₄.⁹⁰ The only osmium(VIII) oxide fluoride cations synthesized to date have been derived from cis-OsO₂F₄ (Table 1.2). They were prepared by reaction of cis-OsO₂F₄ with the strong Lewis acids, AsF₅ and SbF₅, in HF solvent or in neat SbF₅ according to eqs. (1.14) to (1.16).⁹¹ The dinuclear cation, μ -F(cis-OsO₂F₃)₂*, has been characterized by $$2cis-OsO_2F_4 + 2SbF_5 - \frac{HF}{} > [\mu-F(cis-OsO_2F_3)_2][Sb_2F_{11}]$$ (1.14) $$2cis-OsO_2F_4 + 2AsF_5 \xrightarrow{HF} > [\mu-F(cis-OsO_2F_3)_2][AsF_6]$$ (1.15) $$cis-OsO_2F_4 + nSbF_5 - \frac{SbF_5}{} > [OsO_2F_3][Sb_nF_{5n+1}]$$ (1.16) Figure 1.4 (a) Structure of the μ-F(cis-OsO₂F₃)₂* cation in the X-ray structure of [μ-F(cis-OsO₂F₃)₂][Sb₂F₁₁] and (b) the ¹⁹F NMR spectrum of the OsO₂F₃* cation in SbF₅ solvent at 7 °C containing [XeF][Sb_nF_{5n+1}]: (A) equatorial fluorine, (B) axial fluorine.⁹¹ Raman spectroscopy and X-ray crystallography (Figure 1.4a), while the mononuclear cation was characterized by Raman and ¹⁹F NMR spectroscopy (Figure 1.4b). Density functional theory (DFT) calculations have been employed to obtained energy minimized geometries and vibrational frequencies for Os(VIII)^{6,91} and related transition metal oxide fluoride species, such as Tc(VII)^{92,93} and Re(VII) oxide fluorides.^{93,94} The agreement between the DFT calculations and the experimental structural parameters and vibrational frequencies was found to be reasonably good and resulted in the complete assignment of vibrational spectra. #### 1.4. Iodine(VII) Chemistry Two neutral iodine(VII) oxide fluorides, IO₂F₃^{95,96} and IOF₅⁹⁷ are known. Reports of periodylfluoride, IO₃F, have not been substantiated, which is in contrast with the stability of ClO₃F⁹⁹ and BrO₃F, loo the only bromine(VII) oxide fluoride reported to date. The preferred coordination number of iodine(VII) was found to be six which is exemplified by the dimerisation of IO_2F_3 found in the solid state by X-ray crystallography⁹⁶ and in solution by ¹⁹F NMR spectroscopy.¹⁰¹ The anion derived from IO_2F_3 also exists as a mixture of the six-coordinate *trans*- and *cis*- IO_2F_4 isomers, ^{102,103} unlike the analogous group 7 transition metal oxide fluoride anions, TcO_2F_4 and ReO_2F_4 , ⁹⁴ which exclusively occur as *cis*-isomers. The coordination number of iodine(VII) can be extended to seven and eight as in IF_7 , ¹⁰⁴⁻¹⁰⁷ IOF_6 , ¹⁰⁸⁻¹¹⁰ and IF_8 . ¹⁰⁸ The IOF_6 anion was prepared according to eq. (1.17) and was characterized by ¹⁹F NMR spectroscopy in $$IOF_5 + [N(CH_3)_4][F] \xrightarrow{CH_3CN} > [N(CH_3)_4][IOF_6]$$ (1.17) CH₃CN solution and by X-ray crystallography and vibrational spectroscopy in the solid state (Figure 1.5).¹¹⁰ This anion has a pentagonal bipyramidal structure found for most heptacoordinated main-group fluorides and oxide fluorides, e.g., TeF₇, ^{111,112} TeOF₆^{2-,113} The monovalent anions of the iodine(VII) oxides and oxide fluorides are isoelectronic with the analogous neutral xenon(VIII) species (vide infra). However, the chemistry and stability of isoelectronic species like IO_4 -/XeO₄ and IO_2F_4 -/XeO₂F₄ differ significantly. An extensive and detailed comparison of structural parameters for the two series is very limited because the xenon(VIII) species are thermodynamically and kinetically unstable rendering them difficult to characterize by diffraction and spectroscopic techniques. ## 1.5. The Trans-Influence The influence of the multiply bonded ligands, oxygen and nitrogen, on the lengths of trans metal-ligand single bonds has been extensively discussed in the literature. 114 Besides elongation of the trans-bonds, the most dramatic structural effect attributed to the trans-influence is the observation that do transition metal dioxo- and trioxo-species exclusively prefer the cis- and fac-configuration, respectively. The dioxo- and trioxo-species, cis-OsO₂F₄, cis-TcO₂F₄, cis-ReO₂F₄, cis-VO₂F₄, cis-VO₂F₄,
fac-ReO₃Cl₃, life fac-WO₃F₃, life and fac-OsO₃F₃ (see Chapter 7), exemplify this generalization which contrasts Figure 1.5 (a) Structure of the IOF₆ anion in [N(CH₃)₄][IOF₆] and (b) the ¹⁹F NMR spectrum of a saturated solution of [N(CH₃)₄][IOF₆] in CH₃CN at -40 °C; (A) F_{eq}, (B) F_{ax} of IOF₆, (C) cis-IO₂F₄ impurity. ¹¹⁰ with main-group chemistry, where examples of the *trans*- and *cis*-dioxo isomers are found to coexist as the thermodynamic and kinetic products, respectively, *e.g.*, *trans*- and *cis*- $IO_2F_4^{-102,103}$ trans- and *cis*- $Te(OH)_2F_4^{-118}$ The trans-influence in the dioxo-isomer has been explained in terms of increased d_x - p_x orbital overlap in the cis-dioxo configuration when compared with the trans-dioxo isomer. The d_{xy} , d_{xz} , and d_{yz} orbitals, the d_{zg} set of an octahedral complex, are of the correct symmetry to participate in π -bonding to π -donor ligands cis to each other (Figure 1.6). In the trans-isomer, only two of these three d orbitals have the correct symmetry for π -interaction. In the facial trioxo-isomer, each of the d_{xy} , d_{xz} , and d_{yz} orbitals can interact with two oxygen p_x orbitals, while in the meridional isomer, the p_x orbitals of three oxygens compete for the one d orbital of the octahedral t_{zg} set which is in the plane of the three oxygen ligands. More recently, Gillespie and Bader¹¹⁹ have found that an oxygen doubly bonded to a transition metal element results in a charge concentration, in the outer electron core opposite the double bond, that is significantly larger than that produced by a singly bonded ligand such as fluorine. The contour map of the Laplacian of the electron density $(L = -v^2\rho(r))$ for cis-CrO₂F₄², which is isovalent with cis-TcO₂F₄, cis-ReO₂F₄, and cis-OsO₂F₄, is shown in Figure (1.7) and clearly shows the local charge concentrations in the outer core of the central chromium atom. Additional doubly bonded oxygens avoid these charge concentrations, disfavouring *trans*-dioxo and *mer*-trioxo arrangements. a Figure 1.6 Diagram showing the overlap of the filled p orbitals of the oxygen ligands and the empty diag orbitals of a transition metal in pseudo-octahedral (a) cis-dioxo and (b) trans-dioxo complexes. Figure 1.7 Contour maps of the Laplacian, $L = -\sqrt[3]{\rho(r)}$, for cis-CrO₂F₄² through the $[O_2CrF_2]$ -plane, with a diagram showing the positions and relative sizes of the charge concentrations in the outer shell of the core of Cr. 119 ## 1.6. Coordination Number Seven The geometries of seven-coordinate compounds cannot be reliably predicted by the valence shell electron pair repulsion (VSEPR) model. 120 According to the hard-sphere model, where the least distance between points on a sphere is maximized, the monocapped octahedron is the favoured geometry. However, the monocapped trigonal prism and the pentagonal bipyramid are close in energy and are also observed in hepta-coordinate fluorides and oxide fluorides. Heptacoordinate main-group fluorides and oxide fluorides actually seem to favour the pentagonal bipyramidal structure, while some heptacoordinate transition metal species exhibit monocapped octahedral and monocapped trigonal prismatic structures (Table 1.3). A modification of the VSEPR model correlates the minimum energy structure with the exponent n according to the energy law: $$E = \sum (1/r_{ij}^{n}) \qquad i \neq j \qquad (1.18)$$ where E is the relative energy of seven repelling points on a sphere, r_{ij} is the distance between two of the points, and n is a constant. For 0 < n < 3 (soft repulsion) the pentagonal bipyramid is the minimum energy structure, while for 3 < n < 6 (intermediate repulsion) the monocapped trigonal prism and for n > 6 (hard repulsion) the monocapped octahedron are the energetically preferred structures (Figure 1.8). The most ionic and softest transition metal AF, and AOF₆ species, $TaOF_6^{3-,121}$ NbOF₆^{3-,122-125} ZrF₇^{3-,126} and HfF₇³⁻¹²⁷ have structures based on a pentagonal bipyramid. The disordered structures of the heptafluoride anions, ZrF_7^{3-} and HfF_7^{3-} , which crystallize in a face-centred cubic space Table 1.3 Geometries of Heptacoordinate Fluorides and Oxide Fluorides^a #### Pentagonal Bipyramid AF₇. $$n = 0$$ IF₇, $^{104-107}$ ReF₇ 134 $n = 1$ TeF₇. 111,112 $n = 2$ SbF₇. 2 , 135 BiF₇. 2 . 135 $n = 3$ ZrF₇. 126 HfF₇. 3 . 127 AOF₆. $n = 1$ IOF₆. 110 ReOF₆. 133 $n = 2$ TeOF₆. 2 . 113 $n = 3$ NbOF₆. 3 , $^{121-125}$ TaOF₆. 3 . 121 AO₂F₅. $n = 2$ IO₂F₅. 2 . $n = 3$ UO₂F₅. 3 . 136,137 ## Monocapped Trigonal Prism AF₇ⁿ $$n = 2$$ NbF₇^{2-,129-132} TaF₇²⁻¹³¹ AOF₆ⁿ $n = 3$ TaOF₆³⁻¹³⁸ AO₂F₅ⁿ $n = 1$ OsO₂F₅ #### Monocapped Octahedron $$AF_7^{n-}$$ $n=1$ MoF_7^{-133} WF_7^{-133} ^a Oxide fluorides prepared and characterized in the present work are given in italics. Only fluorides and oxide fluorides with elements in their highest oxidation state are included, however, also heptacoordinate VSEPR geoemetries for lower oxidation states are known: AX₆E (XeF₆¹³⁹), AX₅E₂ (IF₅²⁻, ¹⁴⁰ XeF₅^{- 141}), and AX₅YE (XeOF₅^{- 142,143}) Figure 1.8 The three main stereochemistries for heptacoordination represented by points-on-a-sphere and polyhedral representations, and the structures of the MoF₇ anion in [Cs][MoF₇] (X-ray diffraction), ¹³³ the NbF₇² anion in [K]₂[NbF₇] (neutron diffraction), ¹³⁰ and the NbOF₆³ anion in α-[Na]₃[NbOF₆] (X-ray diffraction). ¹²² NbF₇²⁻ NbOF₆³ MoF, group, were initially interpretated in terms of monocapped octahedral anions. Later, this interpretation was rejected in favour of the commonly accepted model for the anions which is based on a pentagonal bipyramid. The intermediate soft anions $NbF_7^{2-129-132}$ and TaF_7^{2-131} have distorted monocapped trigonal prismatic structures, and the hardest anions, MoF_7^{-133} possess monocapped octahedral structures. However, the presence of two different ligands (F and O), packing effects in the solid state, and anion-cation contacts can favour one geometry over another. Potential energy surfaces for AX₇, AX₆Y, and AX₅Y₂ species, where the A-Y bond lengths is defined as 80% of the A-X bond length, have been calculated based on the energy law (1.18) with n = 6.144 For AX₇ species, the monocapped octahedron and the monocapped trigonal prism were found to be the most stable geometries with a very small energy difference. The minima for AX₆Y and AX₅Y₂ on the potential energy surface correspond to pentagonal bipyramidal geometries with the more strongly bonded Y ligands in the axial positions. Quantitative energy calculations have been performed for the main-group species, TeF₇, IF₇, and XeF₇* at the MP-2, SCF and NLDFT level¹⁴⁵ and indicate that the pentagonal bipyramidal geometry is favoured over the monocapped trigonal prismatic and monocapped octahedral geometries by 5.4 to 23.4 kJ mol⁻¹ and 8.8 to 25.9 kJ mol⁻¹, respectively. The small energy differences are in agreement with the observed fluxionality on the NMR time scale for TeF₇ and IF₇. Theoretical calculations for MoF₇, WF₇, IOF₆, and ReOF₆ have been performed at the RHF level of theory. ¹⁴⁶ For MoF₇ and WF₇, the monocapped octahedral geometry was found to be more stable than the capped trigonal prismatic (pentagonal bipyramidal) geometry by 1.3 (18.0) and 0.4 (4.2) kJ mol⁻¹, respectively, which is in agreement with the X-ray crystal structures of $[Cs][AF_7]$ (A = Mo, W). The most stable geometries for IOF_6 and $ReOF_6$ were found to be the pentagonal bipyramidal with the monocapped octahedral (monocapped trigonal prismatic) geometries being 117.6 (122.2) and 82.0 (131.8) kJ mol⁻¹ higher in energy. The large energy difference parallels the finding that IOF_6 and $ReOF_6$ are non-fluxional on the NMR time scale. 110.133 The preference of main-group heptafluorides for the pentagonal bipyramidal (D_{3k}) geometry has been rationalized by orbital interaction diagrams (Figure 1.9).¹⁴⁶ In the main-group D_{3k} -AX₇ molecule, three filled molecular orbitals, $2a_1'$ and e_2' , are nonbonding. Upon lowering the symmetry to C_{3v} (monocapped octahedron) these three orbitals ($3a_1$ and 2e) can mix with bonding MO's resulting in destabilization of the $3a_1$ and 2e orbitals and the overall structure. A decrease in symmetry in transition metal heptafluorides also allows for mixing between the empty nonbonding d orbitals (e_1'' set in D_{3k} symmetry) with bonding MO's resulting in stabilization of the bonding MO's and the overall structure. #### 1.7. Xenon Oxide Fluorides Xenon oxide fluorides have been prepared with xenon in the +4, +6, and +8 oxidation states (Table 1.4).⁴ Neutral xenon oxide fluorides with xenon in the oxidation state +4 and +6 can be prepared by controlled hydrolysis of XeF₄ and XeF₆, respectively. Xenon oxide difluoride is unstable with respect to oxygen abstraction (eq. 1.19).¹⁴⁷ While Figure 1.9 Orbital interaction diagrams for (a) a main group and (b) a transition metal AL₇ molecule. 146 Table 1.4 Known Xenon Oxide Fluorides and Their Methods of Structural Characterization^a Oxide Fluoride Characterization | Xe(II) | Xe ₃ OF ₃ * | X-ray, Raman | |----------|---|---| | Xe(IV) | XeOF ₂ | ¹⁷ O/ ¹⁹ F/ ¹²⁹ Xe NMR, ¹⁴⁸ Raman, ¹⁴⁷ , ¹⁴⁹ IR ¹⁴⁹ , ¹⁵⁰ | | | XeOF ₃ . | Raman ¹⁴⁷ | | Xe(VI) | XeOF ₃ * | X-ray, 151 170/19F/129Xe NMR, 35,151-153 Raman 152,154,155 | | | XeOF ₄ | X-ray, 156 17 O/19 F/129 Xe NMR, 35,157 Raman, 158,159, IR, 159 MW, 160 Mössbauer 28 | | | XeOF, | ¹⁷ O/ ¹⁹ F/ ¹²⁹ Xe NMR, ¹⁴³ Raman ^{142,143} | | | F(XeOF ₄) ₃ . | X-ray, 142 Raman 142 | | | XeO ₂ F* | X-ray, 156 19F/129Xe NMR, 35,152,153 Raman, 152,155,161 Mössbauer 3 | | | μ -F(XeO ₂ F) ₂ * | X-ray, 156 Raman 161 | | | XeO ₂ F ₂ | X-ray, 93 neutron, 162 17O/19F/129Xe NMR, 35,148,157 Raman, 163,164 IR
163,164 | | | XeO ₂ F ₃ | Raman, 147,164 IR 164 | | | XeO ₃ F | X-ray, 165 Raman, 166 IR 166 | | Xe(VIII) | XeO ₂ F ₄ | mass spec., 10 no structural information | | | XeO ₃ F ₂ | 19F/29Xe NMR, Raman, IR | | | fac-XeO ₃ F; | 19F/29Xe NMR | | | cis-XeO.F. | Raman | | | trans-XeO _s F ₂ ? | Raman | | | | | ^a Oxide fluorides prepared and characterization in the course of the present work are given in italics. $$XeOF_2 \longrightarrow Xe_2 + \frac{1}{2}O_2$$ (1.19) XeOF₄ is a thermodynamically stable liquid (estimated ΔH_f° of -25 kJ mol⁻¹), ⁴⁶ XeO₂F₂ is an endothermic, explosive solid (estimated ΔH_f° of 234 kJ mol⁻¹). ⁴⁶ Except for XeOF₃-, ¹⁴⁷ all anionic and cationic xenon oxide fluorides, that are reported in the literature, are derived from Xe(VI) oxide fluorides. Dinuclear (μ-F(XeO₂F)₂⁻¹), ^{156,161} trinuclear (F(XeOF₄)₃⁻¹)¹⁴² and polymeric (XeO₃F)^{165,166} xenon oxide fluoride species have also been prepared and have fluorine bridged xenon centres. ## 1.8. Purpose and Scope of the Present Work The purpose of this research is to extend the very limited chemistry of xenon in its highest oxidation state, +8. This includes the stabilization and NMR spectroscopic characterization of the explosive XeO₄ in solution and fuller characterization of XeO₃F₂ and XeO₂F₄, the only oxide fluorides reported in the literature. The preparation and NMR and Raman spectroscopic characterization of new Xe(VIII) species is another goal of the present work. The geometries of these xenon(VIII) compounds are analysed with respect to VSEPR rules. Xenon(VIII) species are the only main-group examples that can be directly correlated to analogous osmium(VIII) species and, therefore, are essential for the comparison of main-group and transition metal molecular geometries. In this context, the series of well-characterized anionic and cationic osmium (VIII) oxide fluorides derived from the known neutral oxide and oxide fluorides, *i.e.*, OsO₄, OsO₃F₂, and OsO₂F₄, had to be completed. Another facet of the present research is the preparation and characterization of oxide fluoride species of Xe(VIII), Os(VIII), and I(VII) having coordination numbers exceeding six. Of particular interest are comparisons between geometries found for maingroup and transition metal oxide fluorides of the type AO₂F₅, because the *trans*-influence of the oxygen ligands on the geometries of transition metal oxide fluorides has not been studied for the coordination number 7. The striking absence of any reports of xenon(II) oxide fluorides, which contrasts Xe(IV), Xe(VI) and Xe(VIII) chemistry, rendered the investigation of the reaction of [XeF][AsF₆] with water important. Oxides and oxide fluorides are considered model compounds, since steric effects of the ligands do not dominate the structure. The simplicity of the molecules under investigation renders it possible to verify geometries predicted by models like VSEPR or by theoretical calculations, as performed in the literature by density functional theory calculations. #### CHAPTER 2 #### **EXPERIMENTAL SECTION** ## 2.1. Standard Techniques The compounds used in the course of this work were all moisture-sensitive, consequently, all manipulations were carried out under rigorously anhydrous conditions on glass and metal vacuum line systems, in a dry nitrogen filled glove bag or in the oxygen- and moisture-free (<0.1 ppm) nitrogen atmosphere of a Vacuum Atmospheres Model DLX drybox. Preparative work inside the drybox requiring low temperatures was carried out either in a glass cryowell mounted in the floor of the dry box or in a metal Dewar filled with 4.5 mm copper plated spheres (air rifle BB's) which had been previously cooled in the cryowell by immersion of the cryowell and contents in liquid nitrogen for several hours. Volatile materials that were noncorrosive towards glass in the absence of water (e.g., SO₂ClF and CH₃CN) were manipulated on a Pyrex glass vacuum line equipped with grease-free 6-mm J. Young glass stopcocks equipped with PTFE barrels (Figure 2.1). Pressures inside the glass manifold were monitored using a mercury manometer. Volatile materials which attacked glass (e.g., XeF₆ and HF) were handled on a metal vacuum line constructed from nickel and 316 stainless steel, and equipped with 316 Glass vacuum line system; (A) mercury manometer, (B) dry N2 inlet, (C) liquid nitrogen trap, (D) 6-mm J. Figure 2.1 Young PTFE/glass valve, (E) ball and socket joint. stainless steel valves and fittings (Autoclave Engineers, Inc.), PTFE, FEP and Kel-F (Figure 2.2). Pressures were measured at ambient temperature using an MKS Model PDR-5B power supply and digital readout in conjunction with pressure transducers (effective range, 0 - 1000 Torr) having inert wetted surfaces constructed of Inconel. The pressures were accurate to ±0.5% of the scale. Vacuum on the glass (ca. 10⁻⁵ Torr) and metal lines (ca. 10⁻³ to 10⁻⁴ Torr) was attained by use of Edwards two stage E2M8 direct drive vacuum pumps. Two vacuum pumps were used on the metal vacuum line; one, a roughing pump, was connected to a fluoride/fluorine trap consisting of a stainless tube (ca. 75 cm long, 15 cm dia.) packed with soda lime absorbent (Fisher Scientific, 4-8 mesh). Removal and disposal of volatile, reactive fluorinated compounds was accomplished by pumping through, and entrapment on, a bed of soda lime followed by trapping of the volatile reaction products, CO₂ and H₂O in a glass liquid nitrogen trap. The second vacuum pump provided the high vacuum source for the manifold and was cold trapped with a glass liquid nitrogen trap. All preparative work involving XeF₆, KrF₂, AsF₅, BrF₅ and anhydrous HF was carried out in ¼-in. or 4-mm (AWG #9) o.d. FEP tubes which were heat sealed at one end and connected through 45° flares to Kel-F or stainless steel valves. The FEP sample tubes were dried under dynamic vacuum overnight on a glass vacuum line prior transfer onto a metal vacuum line where they were checked for leaks, passivated with F₂ at 1 atm for 12 h, re-evacuated and then back filled with dry N₂ before transferring to the dry box. Pyrex glass reaction vessels were dried under dynamic vacuum overnight and periodically flamed out by use of a Bunsen flame. Figure 2.2 Metal vacuum system; (A) outlet to liquid nitrogen and charcoal traps followed by a two-stage direct-drive rotary vacuum pump (Edwards, E2M8) - hard vacuum, (B) outlet to soda lime and liquid nitrogen traps followed by a two-stage direct drive rotary vacuum pump (Edwards, E2M8) - rough vacuum, (C) dry N₂ inlet, (D) F₂ inlet, (E) pressure gauge (0-1500 Torr), (F) MKS Model PDR-5B pressure transducers (0-1000 Torr), (G) MKS Model PDR-5B pressure transducer (0-1 Torr), (H) ³/₈-in. stainless steel high pressure valve (Autoclave Engineers, 30BM6071), (I) 316 stainless steel cross, (J) 316 stainless steel L-piece, (K) ³/₈-in. o.d., ¹/₈-in. i.d. nickel tube. Figure 2.2 Metal vacuum system. Nuclear magnetic resonance (NMR) spectra were recorded on samples prepared in FEP tubes (9-mm, 1/2-in., or 4-mm o.d.). The 9-mm o.d. FEP NMR tubes were constructed from lengths of ³/₈-in. (9.5-mm) o.d. FEP tubing by reducing their diameter to 9 mm o.d. in a heated brass cylindrical form using mechanical pressure. One end of the tube was heat sealed by pushing it into the end of a heated thin-walled 10-mm o.d. glass NMR tube previously heated in a Bunsen flame. The other end was fused to ca. 5 cm of 1/4-in. o.d. FEP tubing, which was heat-flared and equipped with a Kel-F valve. The 4-mm o.d. NMR tubing had one end sealed by pushing the tube into the end of a thinwalled 5-mm o.d. NMR tube and the other end was heat-flared for direct attachment to a Kel-F valve. The sample tubes used for recording the NMR spectra were heat sealed under dynamic vacuum at -196 °C with a small diameter nichrome wire resistance furnace. All heat-sealed samples were stored submerged in liquid nitrogen (-196 °C) until they could be spectroscopically characterized. For NMR measurements, the 4-mm, 1/4-in., or 9-mm FEP tubes were inserted into standard 5-mm and 10-mm precision Wilmad NMR tubes before insertion into the NMR probe. Raman spectra of solids that are stable at room temperature and which do not attack glass were recorded on samples in Pyrex glass melting point capillaries. Before use, the melting point capillaries were heated under dynamic vacuum for 24 h at 200 °C and then stored in a drybox in a closed dry N₂-filled glass vessel where they were loaded with the appropriate materials. The ends of the loaded melting point capillaries were filled with dry Kel-F grease before removal from the drybox. The capillaries were then immediately heat-sealed with a miniature oxygen-natural gas torch. Vessels were attached to vacuum lines through thick-walled FEP tubing and ¼-in. PTFE Swagelok connectors by means of PTFE compression fittings or ¼-in. stainless steel Cajon Ultra-Torr connectors fitted with Viton rubber O-rings. # 2.2. Preparation and Purification of Starting Materials # 2.2.1. Purification of HF, BrF₅, SO₂ClF, CH₃CN, (CH₃)₂CHOH, and CHF₃ Solvents Anhydrous hydrogen fluoride (Harshaw Chemical Co.) was purified as described previously¹⁶⁷ and stored at room temperature in a Kel-F storage vessel equipped with a Kel-F valve. Hydrogen fluoride was transferred into reaction vessels by vacuum distillation on a metal vauum line through connections constructed of Teflon, Kel-F and FEP as shown in Figure 2.3. Bromine pentafluoride (Ozark-Mahoning Co.) was purified as described earlier, ¹⁶⁸ and stored over dry KF in a ³/₄-in. o.d. FEP storage tube equipped with a Kel-F valve. Bromine pentafluoride solvent was transferred into reaction vessels by vacuum distillation through fluoroplastic connections. Sulfurylchlorofluoride, SO₂ClF (Research Organic/Inorganic Chemicals Corp.), was purified according to the literature method³⁵ and stored over KF in a glass vessel equipped with a 6-mm J. Young glass stopcock equipped
with a glass barrel. Transfers of SO₂ClF were performed under vacuum using a vacuum line and a Y-shaped side manifold constructed of glass, similar to that shown in Figure 2.4. Fluorine-19 NMR indicated the presence of a trace of SO₂F₂ impurity $[\delta(^{19}F) = 32.4 \text{ ppm}]$. Acetonitrile (Caledon HPLC Grade) was purified according to the literature Figure 2.3 Hydrogen fluoride distillation apparatus; (A) Kel-F HF storage vessel, (B) Kel-F valve, (C) FEP reaction vessel. Figure 2.4 Acetonitrile distillation apparatus; (A) Pyrex CH₃CN storage vessel, (B) glass Y-piece, (C) 6-mm J. Young PTFE/glass valve, (D) FEP reaction vessel fitted with a Kel-F valve, (E) stainless steel Cajon connector. procedure¹⁶⁹ and was transferred under vacuum using a glass vacuum line and a glass Ypiece as shown in Figure 2.4. Isopropanol (Fluka Chemika, 99.5%) was dried over molecular sieves (Type 4A, Caledon) in a dry glass bulb equipped with a 4-mm J. Young glass stopcock. The molecular sieves were dried under dynamic vacuum for 24 h at 250 °C prior to use as a drying agent. Fluoroform, CHF₃ (Canadian Liquid Air, 98%) was transferred through the metal line. Before entering the vacuum manifold, CHF₃ gas was passed through a copper coil cooled to -78 °C in solid dry ice. # 2.2.2. Purification of SbF₃, SbF₅ and Preparation of AsF₅ Antimony trifluoride, SbF₃ (Aldrich) was sublimed under vacuum and transferred into a drybox prior to use. Antimony pentafluoride, SbF₅ (Ozark-Mahoning Co.) was purified by vacuum distillation in an all-glass apparatus and stored in a glass vessel inside a desiccator. Subsequent transfers of SbF₅ were performed by use of an all-glass syringe in the inert atmosphere of a glove bag which had been previously purged with dry nitrogen for 12 h. Arsenic pentafluoride was prepared according to the literature method by the fluorination of AsF₃ in a nickel can.¹⁵¹ The AsF₅ was distilled into a nickel storage cylinder from which it was used without further purification. The metal vacuum line was passivated using AsF₅ prior to distillation of AsF₅ onto a reaction mixture. #### 2.2.3. Sources and Purification of N₂, F₂, Xe, Kr, BF₃, NO, NO₂, and O₃ House nitrogen gas was generated from a liquid nitrogen boil off and redried by passing it through a freshly regenerated bed of type 4A molecular sieves. Fluorine gas (Air Products), Xe (Air Products, 99.995%), Kr (Air Products, 99.995%), BF₃ (Matheson, >99.8%) were used without further purification. Nitrogen oxide, NO (Matheson, >99%), was purified by condensation into a 30-mL nickel can at -196 °C followed by warming the can and contents to -110 °C using an ethanol slush, at which temperature, the N₂O₃ contaminant is involatile, and expanding the NO gas into the reaction can. Nitrogen dioxide, NO₂ (Matheson, >99.5%), was dried over P₂O₃ at room temperature in a Pyrex glass vessel equipped with a 9-mm J.Young Teflon/glass stopcock. Ozone, O₃, was generated by a Welsbach T-408 ozonator using high-purity O₂ (Canadian Liquid Air, zero grade). #### 2.2.4. Preparation of XeF₂, XeF₆, and KrF₇ Xenon difluoride was prepared according to the literature method¹⁵¹ and was stored inside a drybox. Xenon hexafluoride was prepared by a method similar to that outlined by Chernick and Malm. Xenon and fluorine gas were transferred into a nickel can with a xenon to fluorine ratio of 1:22 and a total autogeneous pressure of 56 atm at room temperature. The mixture was heated to 250 °C for 24 h and slowly cooled to 47 °C over a period of 16 h before turning off the furnace and allowing the mixture to cool to room temperature. The product was vacuum distilled into a ½-in. o.d. FEP storage vessel equipped with a Whitey ORM2 stainless steel valve. The purity was assessed using Raman spectroscopy and by comparing the sharp, intense XeF₄ bands at 503 and 543 cm⁻¹ to the broad XeF₆ bands at 582, 636, and 655 cm⁻¹. Only trace amounts of XeF₄ were detected. Krypton difluoride was prepared using a method originally described by Bezmel'nitsyn et al. 170 which was subsequently modified by Kinhead et al. 171 The stainless steel hot wire reactor used in the present work is a modification of the design reported by Kinhead et al. (Figure 2.5).¹⁷¹ The hot-wire reactor was filled with approximately 1000 Torr (0.5 mol) of krypton and subsequently immersed in a 20-L Dewar filled with liquid nitrogen. The reactor was then filled with F₂ to ca. 30 Torr and the DC power source (Miller, Thunderbolt AC/DC arc welder) was adjusted to approximately 6 V and 30 A, giving a dull red nickel filament at thermal equilibrium. The F2 pressure was maintained between 40 and 35 Torr for each 12 h run. At the end of a run, excess fluorine was pumped off through a 1/2-in. FEP U-trap -196 °C before allowing the reactor to slowly warm to room temperature while unreacted krypton and pink, crude KrF2 contaminated with CrO₂F₂ and CrOF₄ was pumped dynamically into the FEP U-trap at -196 °C. The trap was warmed to -78 °C, while pumping, to remove unreacted krypton. The U-tube containign crude KrF2 was warmed to room temperature and a portion of crude KrF2 along with the more volatile chromium oxide fluorides were flash distilled into a 9-mm FEP tube equipped with a Kel-F valve. The remaining KrF2 was distilled into a 9-mm FEP tube equipped with a Kel-F valve for storage at -78 °C. Figure 2.5 Hot-wire reactor used for the preparation of KrF₂ containing a 0.062-in. nickel filament; (A) 1.33-in. medium current solid conductor electrical feedthroughs, (B) copper cooling fins (6 each), (C) #316 S.S. reactor body, (D) viewport, (E) gas inlet. # 2.2.5. Drying of CsF, and Preparation of [N(CH₃)₄][F], NOF and NO₂F The CsF (ICN-KCK Laboratories Inc., 99.9%) was dried by fusion in a platinum crucible, followed by transfer of the red hot clinker to the drybox port where it was immediately evacuated. Upon transferring to the dry nitrogen atmosphere of the glove box, the sample was ground to a fine powder and stored in the drybox until used. The naked fluoride ion source, [N(CH₃)₄][F], was prepared according to the literature method. 172 In a glove bag previously purged with nitrogen, [N(CH₃)₄][OH] was titrated with 47% aqueous HF (Fisher Chemical) to the exact equivalence point (measured with a pH electrode). The product was transferred into a Pyrex drying tube and H₂O was removed under dynamic vacuum at 150 °C. The crude [N(CH₃)₄][F] was recrystallized from isopropanol. After distillation of sufficient isopropanol onto the product to dissolve all the [N(CH₃)₄][F], the water/isopropanol azeotrope was removed under dynamic vacuum, first at room temperature and later at 150 °C by heating with a furnace. The solid, white residue was finely ground inside the drybox and returned to a glass vacuum line port where it was pumped for 12 h at 150 °C. This procedure was repeated until the infrared absorption bands of [N(CH₃)₄][F]·H₂O at 822 and 895 cm⁻¹ showed an intensity comparable to or less than that of the weak N(CH₃)₄ band at 1203 cm⁻¹. Infrared spectroscopy showed the $[N(CH_3)_4][F]$ product was free of SiF_6^{2-} and showed the presence of a small amount of HF2, ca. 3 mol% estimated by 19F NMR spectroscopic characterisation of the [N(CH₃)₄][F] solution in CH₃CN which was maintained below -30 °C to avoid additional HF₂ formation. The latter forms above -20 °C and is the result of proton abstraction from CH₃CN. 172,173 Nitrosylfluoride, NOF, was prepared by reaction of NO and F2 in a 30-mL nickel can. Approximately 0.077 mol (713 Torr) of pure NO was measured using a 2-L nickel measuring can and was condensed into the 30-mL reaction can at -196 °C. After evacuation, the line and 2-L can were filled with F2, which was condensed into the intermediate 30-mL can at -196 °C. This can was warmed to -183 °C with a liquid oxygen bath and the fluorine, free of non-volatile contaminants (HF), was allowed to expand into the line and the measuring can. A total of ca. 0.046 mol (427 Torr) of F₂ was condensed, in two steps, into a 30-mL reaction can and onto the purified NO sample. The reaction can was first warmed to -183 °C for several minutes and was then allowed to warm slowly to room temperature. The excess fluorine was removed under dynamic vacuum at liquid oxygen temperature (-183 °C). This procedure was repeated a second time, resulting in a combined yield of ca. 7.71 g (0.157 mol) NOF. The small amounts of NO₂F (0.5%) and NOF₃ (0.4%) present in the sample were estimated by ¹⁹F NMR spectroscopy [-85 °C; NOF, singlet at 485.37 ppm; NO₂F, triplet at 393.83 ppm, ¹J(¹⁹F- ^{14}N) = 114 Hz; NOF₃, triplet at 365.07 ppm, $^{1}J(^{19}F^{-14}N)$ = 135 Hz]. The metal vacuum line was passivated at least twice with NOF prior to condensing NOF into a reaction vessel. Nitrylfluoride, NO_2F , was prepared by reaction of NO_2 and F_2 in a 30-mL nickel can and was similar to the procedure used to prepare NOF. Approximately 12 g of dry NO_2 was vacuum distilled into a ½-in. o.d. FEP tube that was fused to ca. 5 cm length of ¼-in. o.d. FEP tubing which was flared and fitted to a Kel-F valve. Approximately 3 g of NO_2 was allowed to react with excess F_2 to generate NO_2F that was used for passivation of the nickel can and the metal line. After removal of the crude NO₂F, NO₂ and a small excess of F₂ (purified as described above) were allowed to react in two steps, yielding approximately 13 g of NO₂F. The presence of small amounts of NOF (2.5%) was estimated by ¹⁹F NMR spectroscopy. The metal vacuum line was passivated at least twice with NO₂F prior to condensing NO₂F into a reaction vessel. # 2.2.6. Preparation of [XeF][AsF₆] and [H₃O][AsF₆] and Purification of CH₃C¹⁵N The [XeF][AsF₆]¹⁷⁴ and [H₃O][AsF₆],¹⁷⁵ salts have been prepared as described before. Nitrogen-15 enriched CH₃C¹⁵N (MSD, 99% enriched) was dried over CaH₂ (BDH Chemicals, 99.5%) and vacuum distilled into another vessel onto fresh CaH₂ prior to use. #### 2.2.7. Preparation of OsO₃F, and
cis-OsO₃F. Osmium trioxide difluoride, OsO₃F₂,⁷ and cis-OsO₂F₄⁶ were prepared as described in the literature from OsO₄ (Aldrich, 99.8%) and ClF₃ (Matheson, C.P. grade), and from OsO₄ (Aldrich, 99.8%) and KrF₂ in HF solvent, respectively. The purities of the compounds were checked by Raman spectroscopy to ensure completeness of the reactions. ### 2.2.8. Preparation of [Na]₄[XeO₆] Sodium perxenate was prepared according to the method of Jaselskis et al.¹⁷⁶ and Appelman et al.³⁹ The apparatus used for the generation of an aqueous XeO₃ solution is depicted in Figure 2.6 and consisted of an ½-in. o.d. FEP U-trap containing XeF₆ that was equipped with two Whitey ORM2 stainless steel valves. One side of the U-trap was Figure 2.6 Apparatus for the generation of an aqueous XeO₃ solution; (A) ½-in. FEP trap equipped with Whitey ORM2 stainless steel valves, (B) Telfon capped FEP bottle with Teflon coated stirring bar. connected to a dry N₂ supply while the other end was connected to a dispersing tube comprising 19 Teflon capillary tubes nested together inside a ¼-in. heat shrunk Teflon tube. The dispersing tube was inserted through the Teflon cap of a 130-mL FEP bottle. In a typical preparation, 50 mL of H₂O (Caledon, HPLC grade) was stirred vigorously inside the FEP bottle with a magnetic stirring bar while a dry nitrogen flow was slowly passed through the FEP U-trap carrying XeF₆ vapour into the water. After ca. 4½ h, 5.329 g (0.022 mol) of XeF₆ had been transferred yielding a pale pink 0.43 M XeO₃ solution. Magnesium oxide (BDH) [4.877 g (0.121 mol)] was then added in several steps over a period of 30 min while stirring vigorously. The resulting MgF₂ suspension was centrifuged and the pink solution was decanted off. The remaining solid was washed twice with water and centrifuged. The combined decantates were centrifuged again, yielding a clear, pale pink solution which was stored at 9 °C in a capped FEP bottle until used for the synthesis of [Na]₆[XeO₆]. The XeO₃ solution was converted to [Na]₄[XeO₆] in two batches. Half of the XeO₃ solution was transferred into an FEP bottle and saturated with O₃ for 5 min. After addition of 6 mL of 16 M aqueous NaOH (BDH, >97%), which was freshly prepared to minimize the CO₃²⁻ contamination, a pale yellow solution resulted. Ozone was passed through the solution for ca. 2½ h until the yellow colouration disappeared and a white precipitate of [Na]₄[XeO₆]· nH₂O had formed. The [Na]₄[XeO₆]· nH₂O was isolated by vacuum filtration on a coarse porosity glass frit and washed with small amounts of cold (0 °C) water until the filtrate became yellow, i.e., after the fourth wash. The wet [Na]₄[XeO₆] was dried under dynamic vacuum at room temperature, readily loosing H₂O to give 2.4769 (7.76 mmol) and 2.6359 g (8.26 mmol) of dry [Na]₄[XeO₆] for each of two steps and corresponding to a total yield of 74%. #### 2.2.9. Preparation of [N(CH₃)₄][IO₄] and [N(CH₃)₄][IO₂F₄] Tetramethylammonium metaperiodate, [N(CH₃)₄][IO₄], was prepared by a metathesis reaction analogous to that used to synthesize [Cs][IO₄]. ¹⁰³ Approximately 30 mL of a 0.76 M aqueous solution of [N(CH₃)₄][Cl] (Fluka Chemika, 98%) (2.500 g, 22.80 mmol) was slowly added, with stirring, to *ca.* 40 mL of aqueous [Na][IO₄] (Matheson Coleman & Bell, 99.8%) (4.871 g, 22.77 mmol). A white precipitate formed almost immediately and the resulting mixture was stirred in an ice water bath for 30 min. The powdery, white precipitate was filtered and washed with ice cold water, and the sample dried for 15 h at 88 °C under dynamic vacuum inside a glass vessel. A yield of 3.2643 g (53.7 %) was obtained for [N(CH₃)₄][IO₄]. The purity of the compound was checked by infrared and Raman spectroscopy to ensure no water was present after drying. Tetramethylammonium tetrafluoroperiodate was prepared according to the method of Christe et al. 103 In the drybox, [N(CH₃)₄][IO₄] (0.7937 g, 2.995 mmol) was loaded into a 20 cm long ½-in. o.d. FEP tube heat fused to a 6 cm length of ¼-in. o.d. FEP tubing which was flared and attached to a Kel-F valve. Anhydrous HF solvent (ca. 3.4 mL) was distilled onto the [N(CH₃)₄][IO₄]. The sample was allowed to warm to room temperature, giving a colourless solution. The tube was then agitated for 3 days on a mechanical shaker. The HF was pumped off at 0 °C on the metal line until solid formed, followed by an additional 2 h at room temperature. The tube was then connected to the glass line and any traces of H_2O and HF remaining in the sample were pumped off for 12 h under dynamic vacuum at 45 °C. Fresh anhydrous HF was once again distilled onto the sample and the tube was agitated for a further 2 days, followed by removal of the solvent under dynamic vacuum to give 0.8959 g (96.8% conversion) of a white, crystalline solid. The purity was verified by recording the low-temperature Raman spectrum, which showed the presence of a mixture of $[N(CH_3)_4][cis-IO_2F_4]$ and $[N(CH_3)_4][trans-IO_2F_4]$ ($cis-IO_2F_4$: 207 (3), 235 (<0.5), 330 (35), 366 sh, lattice modes; 394 (19), $v_4(A_1)$; 560 (24), $v_3(A_1)$; 610 (74), $v_2(A_1)$; 847 (75), $v_1(A_1)$; and 870 (13), 880 sh cm⁻¹, $v_{12}(B_2)$; $trans-IO_2F_4$: 251 (5), $v_6(B_{2g})$; 380 (41), $v_8(E_g)$; 560 (24), $v_3(B_{1g})$; 571 (65), $v_2(A_{1g})$; and 813 (100) cm⁻¹, $v_1(A_{1g})$). Fluorine-19 NMR spectroscopy of $[N(CH_3)_4][IO_2F_4]$ in HF solvent indicated an approximate cis- to trans-isomer ratio of 70:30. #### 2.3. Solution Studies of XeO₄ #### 2.3.1. Preparation of XeO₄ in SO₂CIF Solutions The experimental apparatus for the preparation of an SO₂ClF solution of xenon tetroxide is depicted in Figure 2.7. The apparatus consisted of a glass vessel with a rotatable side arm (A). This vessel was connected to the metal submanifold through a 20-cm length of ¼-in. FEP tubing which provided enough flexability to allow agitation. A ¼-in. FEP U-trap (B), equipped with two Whitey ORF2 stainless steel valves, was attached to the main vacuum manifold. A ¼-in. FEP tube (C) was fused to the bottom of the U-tube. A graduated glass vessel (D) equipped with a 6-mm J. Young glass stopcock was connected to the metal vacuum line through a monel Nupro M-4MG-KZ-VH fine Figure 2.7 Experimental apparatus for the generation of XeO₄ in SO₂ClF solutions; (A) glass vessel with rotable side arm, (B) ¼-in. o.d. FEP U-trap equipped with two Whitey ORF2 stainless steel valves, (C) terminal ¼-in. FEP tube, (D) graduated glass vessel, (E) fine metering monel valve (Nupro M-4MG-KZ-VH) (F) main metal vacuum manifold (see Figure 3.2). metering valve (E). Sodium perxenate (0.13 g, 0.41 mmol) was transferred into the glass side arm. The glass bulb contained a mixture of 8 mL of concentrated sulfuric acid (BDH, 95 - 98%) and 7.8 mL of oleum (Baker Analyzed Reagent, 11 - 17% free SO₃). Free SO₃ was removed from the mixture by pumping under dynamic vacuum for at least 1 h on a glass vacuum line prior to use. After cooling the H₂SO₄ vessel and contents in an ice bath, sodium perxenate was slowly added while condensing the generated XeO4 with liquid nitrogen under dynamic vacuum at point X in the FEP U-tube. This was followed by slowly condensing at -196 °C, under dynamic vacuum, ca. 0.5 mL of SO₂ClF from the graduated glass vessel (D) into the FEP trap ca. 15 cm above the point where XeO₄ had been condensed. The rate of distillation was regulated by a metering valve. Under static vacuum, the SO₂ClF solvent was allowed to slowly melt down onto the XeO₄, washing the XeO₄ into the 1/4-in. FEP tube (C). After warming the mixture to -78 °C, a clear yellow solution was obtained and the FEP tube was heat sealed. [Caution! Condensing SO₂CIF too rapidly onto XeO₄ resulted in several detonations even at temperatures near -196 °C because of thermal or pressure shock.] # 2.3.2. Preparation of XeO₄ in BrF₅ and HF Solutions The experimental apparatus is shown in Figure 2.8 and is similar to the apparatus described in Section 2.3.1. Xenon tetroxide was generated from 0.1281 g (0.401 mmol) [84 mg (0.26 mmol)] of [Na]₄[XeO₆] as described in Section 2.3.1 and was condensed at -196 °C under dynamic vacuum at point X in the FEP U-tube. Approximately 0.5 mL of Figure 2.8 Experimental apparatus for the generation of XeO₄ in BrF₅ solvent, (A) glass vessel with turnable side arm, (B) ¼-in. o.d. FEP U-tube equipped with two Whitey ORF2 stainless steel valves, (C) ¼-in. FEP sample tube, (D) FEP T-piece, (E) ¼-in. o.d. FEP tube equipped with a Kel-F valve, (F) metal vacuum line. BrF₅ [0.4 mL of HF] was slowly condensed under dynamic vacuum from the ¼-in. FEP tube (E) at 0 °C into the U-tube at -196 °C ca. 15 cm above the XeO₄. The BrF₅ [HF] solvent was slowly allowed to melt down onto the XeO₄ washing the XeO₄ into the terminal ¼-in. FEP tube under static vacuum. The sample in BrF₅ solvent was allowed to warm to -57 °C, yielding a clear, pale yellow solution before the sample was heat sealed at -196 °C. The sample in HF solvent was not allowed to warm above -196 °C before heat sealing the tube. Melting at -75 °C yielded a clear, pale yellow solution. Samples were stored at -196 °C until it could be characterized by NMR spectroscopy. The sample in BrF₅ [HF] solvent was warmed to -25 °C for 5 min and to 0 °C for 2 min [-23 °C for 3 min] and monitored by low-temperature ¹²⁹Xe NMR spectroscopy after each warming cycle. #### 2.4. Lewis-Acid Properties of XeO. #### 2.4.1. Preparation of XeO₄ in CH₃CN Solutions The experimental setup and the procedure was the same as for the preparation of an XeO₄ solution in BrF₅ (see 2.3.2. Preparation of an XeO₄ Solution in BrF₅ and HF). Sodium perxenate (54 mg, 0.17 mmol) and ca. 0.4 mL of CH₃CN were used for this preparation. The tube was heat sealed under dynamic vacuum at -196 °C without melting the acetonitrile. The sample was allowed to melt inside a fume hood at -35 °C yielding a clear, colourless solution. The sample was stored under liquid nitrogen until it could be characterized by NMR
and Raman spectroscopy. #### 2.4.2. Attempted Preparation of XeO₄(CH₃CN) in SO₂ClF Solutions The experimental setup and the procedure was a combination of those used for the preparation of an XeO₄ solution in SO₂ClF (see 2.3.1. Preparation of a XeO₄ Solution in SO₂ClF) and BrF₅ (see 2.3.2. Preparation of a XeO₄ Solution in BrF₅). Sodium perxenate (107.3 mg, 0.336 mmol) and *ca.* 0.6 mL of SO₂ClF were used. After the preparation of a XeO₄ solution in SO₂ClF solvent, approximately 0.45 mmol of CH₃CN was condensed onto the solution at -196 °C. The tube was heat sealed prior to melting the acetonitrile. The sample was allowed to melt inside a fume hood at -78 °C and the CH₃CN dissolved, yielding a clear, colourless solution. The sample was subsequently characterized by NMR and Raman spectroscopy. ## 2.4.3. Reaction of XeO₄ with CsF in HF and CH₃CN Solvents The experimental apparatus is depicted in Figure 2.8 and the procedure is similar to the preparation of XeO₄ in BrF₅ solvent (see 2.3.2. Preparation of a XeO₄ Solution in BrF₅). A ¼-in. FEP sample tube (C) heat fused to a ¼-in. U-trap (B) was fitted with a Whitey ORF2 stainless steel valve and a Kel-F valve as depicted in Figure 2.8 and dried. The entire assembly was brought into the drybox and loaded with 0.0332 g, 0.219 mmol [0.0302 g, 0.199 mmol] CsF for the HF [CH₃CN] sample. The U-tube was reconnected to the metal line as shown in Figure 2.8. For the generation of XeO₄, 0.0705 g, 0.221 mmol [0.0727 g, 0.228 mmol] of [Na]₄[XeO₆] was weighed into the glass side arm A. Initially, a small amount of HF [CH₃CN] was distilled into the FEP U-tube to wash down small amounts of CsF that had adhered to the upper walls in order to avoid direct contact of solid XeO₄ with CsF. After the XeO₄ had condensed, the remaining solvent was distilled into the FEP U-tube. A total of ca. 0.4 mL of HF [CH₃CN] was used. Melting of the HF sample at -78 °C resulted in a clear, colourless solution. In the case of the acetonitrile, melting at -40 °C yielded a cloudy, pale yellow solution with small amounts of fine white solid at the bottom (CsF). After several minutes, a gel-like precipitate formed and slowly settled. The colour of the solution became lighter and finally colourless. Approximately 1/3 of the sample volume was white precipitate. #### 2.4.4. Reaction of XeO₄ with [N(CH₃)₄][F] in CH₃CN Solvents The experimental apparatus is depicted in Figure 2.8 and the procedure is similar to that for the reaction between XeO₄ and CsF in CH₃CN solvent (see 2.4.3. Reaction of XeO₄ with CsF in HF and CH₃CN Solvents). Inside the drybox, a ½-in. FEP sample tube fused to a ½-in. FEP U-tube, that was fitted with a Whitey ORF2 stainless steel valve and a Kel-F valve, was loaded with 0.0147 g (0.158 mmol) [N(CH₃)₄][F]. The U-tube was reconnected to the metal line as shown in Figure 2.8. For the generation of XeO₄, 0.0945 g, 0.296 mmol of [Na]₄[XeO₆] was weighed into the glass side arm A. A small amount of CH₃CN was initially distilled into the FEP U-tube in order to wash down any [N(CH₃)₄][F] adhering to the upper walls in order to prevent direct contact of solid XeO₄ with [N(CH₃)₄][F]. After condensing XeO₄, the remaining solvent was distilled into the FEP U-tube. A total of ca. 0.4 mL CH₃CN was used. After melting the CH₃CN solvent at -40 °C, a yellow solution with a suspension of a fine, white precipitate was obtained and the sample was heat sealed. A second sample was prepared using 0.0153 g (0.1643 mmol) of [N(CH₃)₄][F], 0.0934 g (0.2926 mmol) of [Na]₄[XeO₆] and ca. 0.4 mL of CH₃CN and yielded a yellow solution containing a fine suspension of a white solid. Most of the CH₃CN solvent was removed under dynamic vacuum at -30 °C yielding a yellow-orange slush. During the heat sealing of both samples, small detonations occurred close to the sealing region that were caused by white particles that remained above the solvent level. # 2.5. Synthesis and Characterization of Xenon(VIII) Oxide Fluorides # 2.5.1. Reaction of XeO₄ with XeF₆ in SO₂ClF, HF, and BrF₅ Solvents The experimental apparatus is depicted in Figures 2.7 and 2.8 and the procedures for the preparation of the solutions have been described above. The weighing vessel containing XeF₆ was connected to the FEP T-piece (D) for the reactions in HF and BrF₅, while in the case of SO₂ClF, glass vessel (A) was substituted by the ½-in. FEP weighing vessel equipped with a Kel-F valve. Prior to distillation, the connections were passivated using fluorine while the XeO₄ solution in SO₂ClF was stored under 1 atm of dry nitrogen at -78 °C. For the reaction in SO₂ClF/HF/BrF₅, 0.1238 g (0.3878 mmol)/0.08205 g (0.257 mmol)/0.1095 g (0.3428 mmol) of Na₄XeO₆ was used for the generation of XeO₄. Approximately 0.6 mL/0.28 mL/0.47 mL of SO₂ClF/HF/BrF₅ solvent followed by 0.0951 g (0.3877mmol)/0.0936 g (0.3816 mmol)/0.1286 g (0.524 mmol) of XeF₆ were condensed onto the XeO₄. The samples were heat sealed and stored at -196 °C until characterized by NMR spectroscopy. The samples were slowly warmed to -10 °C and monitored by low temperature NMR spectroscopy between each warming cycle. # 2.5.2. Reaction of [Na], [XeO,] with XeF, in SO, CIF, HF, and BrF, Solvents For the reactions in SO₂ClF/HF/BrF₅ solvents, a 4-mm [¼-in. o.d.] FEP tube fitted with a Kel-F valve was loaded with 0.035 g (0.11 mmol) [0.0555 g (0.1738 mmol)]/0.0135 g (0.0433 mmol)/0.0162 g (0.051 mmol) of [Na]₄[XeO₆] inside the drybox followed by condensing 0.26 mL [0.66 mL]/0.53 mL/0.35 mL of SO₂ClF/HF/BrF₅ solvent onto the solid. Xenon hexafluoride from a ¼-in. o.d. FEP weighing vessel 0.0292 g (0.119 mmol) [0.4952 g (2.02 mmol)/0.1498 g (0.611 mmol)/0.0969 g (0.4 mmol)] was distilled into the reaction tube followed by heat-sealing the sample. The samples were gradually allowed to warm up to -10 °C and monitored by low-temperature NMR spectroscopy between each warming cycle. #### 2.5.3. Reaction of [Na]₄[XeO₄] with HF In a typical experiment, 0.0256 g (0.0802 mmol) of [Na]₄[XeO₆] was loaded into a 4-mm FEP tube fitted with a Kel-F valve inside the drybox. Approximately 0.3 mL HF was slowly condensed from an ½-in. o.d. FEP tube at 0 °C equipped with a Kel-F valve into the 4-mm FEP tube above the perxenate at -196 °C. The HF was allowed to melt at -78 °C onto the [Na]₄[XeO₆] which yielded a pale yellow solid and occasionally resulted in small explosions which did not rupture the sample tube. The tube was heat sealed and stored at -196 °C. [Caution! Rapid distillation of HF at room temperature onto [Na]₄[XeO₆] at -196 °C caused an explosion that ruptured the FEP tube and destroyed a glass Dewar.] The sample was characterized by ¹²⁹Xe NMR and Raman spectroscopy before and after it was allowed to warm to -10 °C. #### 2.5.4. Reaction of [Na]₄[XeO₆] with AsF₅ in HF Solution Inside the drybox, 0.0184 g (0.0576 mmol) of [Na]₄[XeO₆] was loaded into a 4-mm FEP tube fitted with a Kel-F valve. Approximately 0.18 mL of HF was slowly condensed, at 0 °C, above the perxenate at -196 °C from a ¼-in. FEP HF storage tube fitted with a Kel-F valve. The HF was allowed to melt onto the solid at -78 °C. The manifold was pressurized with AsF₅ (218 Torr, 0.224 mmol) and the gas was condensed into the reactor by cooling the reaction vessel with liquid nitrogen. The tube was heat sealed and stored at -196 °C until characterized by NMR spectroscopy. #### 2.5.5. Reaction of [Na]₄[XeO₆] with BrF₅ Inside the drybox, 0.0155 g (0.049 mmol) of [Na]₄[XeO₆] was loaded into a 4-mm FEP tube fitted with a Kel-F valve. Approximately 0.32 mL of BrF₅ was distilled onto the solid at -196 °C and the tube was heat sealed. The sample was warmed to -10 °C and monitored by low-temperature NMR and Raman spectroscopy between before and after warming of the sample. #### 2.5.6. Reaction of [Na]₄[XeO₆] with BF₃ in BrF₅ Solvent Inside the drybox 0.01338 g (0.042 mmol) [Na]₄[XeO₆] was loaded into a 4-mm FEP tube fitted with a Kel-F valve. Approximately 0.28 mL of BrF₅ was distilled onto the perxenate sample. The mixture was allowed to warm to 0 °C for 10 min and was frozen again at -196 °C. The manifold was then pressurized with BF₃ (119.5 Torr, 0.1226 mmol) and was condensed into the reactor by cooling with liquid nitrogen. The mixture was allowed to melt at -50 °C, yielding a yellow solution and white precipitate. The sample was heat sealed and stored at -196 °C until characterized by NMR spectroscopy. #### 2.5.7. Reaction of XeO4 with KrF2 in SO2CIF and HF Solvents The experimental apparatus is depicted in Figure 2.8. The procedures for the generation of the XeO₄ solutions have been described above. Krypton difluoride was distilled from a ¼-in. o.d. FEP weighing tube into a reaction vessel containing the appropriate XeO₄ solution. In the case of HF solutions, the ¼-in. FEP tube (E) was replaced by the KrF₂ weighing tube and was followed by passivation of the connections using fluorine prior to KrF₂ distillation. During passivation, the XeO₄ solution was kept under 1 atm of nitrogen pressure at -78 °C. Sodium perxenate was used for the generation of XeO₄ solutions in SO₂CIF [HF]; 0.102g, 0.32 mmol [0.07395 g, 0.2316 mmol]. Samples were prepared by distilling 1.04 mL of SO₂CIF [0.21 mL HF] and 0.155 g, 1.27 mmol [0.055 g, 0.4516 mmol] of KrF₂ onto the XeO₄ solution. The sample in SO₂ClF was gradually allowed to warm to -30 °C whereupon gas evolution commenced. The sample was was cooled to and maintained at -35 °C for several minutes prior to heat-sealing. The sample was stored at -196 °C until it could be characterized by NMR spectroscopy. The sample in HF was allowed to warm to -30 °C for 2½ min and was then heat sealed. The sample was subsequently warmed up to 0 °C for 12 min while being monitored by ¹²⁹Xe NMR spectroscopy. # 2.5.8. Reaction of [Na]4[XeO6] with KrF2 in HF, BrF5, and SO2ClF Solvents For the reaction of KrF₂ with XeO₆⁴ in HF/BrF₅/SO₂ClF, 0.013 g (0.041 mmol)/0.0154 g (0.048 mmol)/0.0364 g (0.114 mmol) of [Na]₄[XeO₆] was loaded inside
the drybox into a 4-mm FEP tube fitted with a Kel-F valve. Approximately 0.6 mL/0.32 mL/0.25 mL of HF/BrF₅/SO₂ClF solvent was distilled onto the solid followed by condensing 0.0772 g (0.634 mmol)/0.1049 g (0.86 mmol)/0.0135 g (0.111 mmol) of KrF₂ into the reaction tube. The samples in HF and SO₂ClF were heat sealed under dynamic vacuum. The sample in BrF₅ was gradually warmed up to 0 °C at which point slow gas evolution was observed. The sample was then cooled and heat sealed and stored at -196 °C until characterized by NMR spectroscopy. # 2.5.9. Reaction of XeO₄ with [KrF][AsF₄] in HF Solvent The experimental apparatus is depicted in Figure 2.8 and the procedure for the preparation of a solution of XeO₄ in HF is described above. Sodium perxenate (0.08365 g, 0.262 mmol) was used for the generation of XeO₄. After distillation of *ca.* 0.57 mL of HF onto the XeO₄, the solution was melted at -78 °C and the ½-in. o.d. FEP tube (E) containing HF was replaced by a weighing tube containing KrF₂. During passivation of the connections with F₂, the solution of XeO₄ in HF was maintained under 1 atm of dry nitrogen at -78 °C. Krypton difluoride (0.046 g, 0.378 mmol) was distilled under dynamic vacuum into the FEP trap and was condensed into the terminal FEP tube (C) under static vacuum. The manifold was pressurized with AsF₅ and the gas was condensed in two portions into a ¼-in. FEP tube by cooling it with liquid nitrogen (total; 1500 Torr, 1.54 mmol). The FEP tube was replaced by the weighing vessel and after F₂ passivation of the connections, AsF₅ was condensed under dynamic vacuum into the tube. Addition of AsF₅ to the clear, pale yellow solution of XeO₄ and KrF₂ in HF resulted in cloudiness and some gas evolution. After 3 min, the sample was heat sealed. While recording the NMR spectrum at -78 °C, the sample developed large amounts of white precipitate, which was subsequently characterized by Raman spectroscopy. #### 2.5.10. Reaction of XeO3 with [KrF][AsF4] in HF Solvent Inside a glove bag, 27 µL (1.5 mmol) of H₂O was syringed into a ¼-in. FEP sample tube equipped with a stainless steel valve. After distillation of approximately 0.6 mL of HF onto the water and thorough mixing, 0.1238 g (0.5047 mmol) of XeF₆ was condensed onto the solution at -196 °C. The mixture was allowed to warm stepwise to -78 °C and to room temperature to ensure complete hydrolysis of XeF₆ to XeO₃. Krypton difluoride (0.1180 g, 0.9688 mmol) followed by ca. 1.54 mmol of AsF₅ were condensed onto the frozen mixture. Upon melting the HF at -78 °C, slow gas evolution ensued and the solution became yellow and a white precipitate formed. The reaction tube was heat sealed after the sample had been maintained at -78 °C for ca. 20 min. at which time gas evolution still had not ceased. #### 2.6. Fluoride Ion Acceptor Properties of OsO. #### 2.6.1. Synthesis of [N(CH₃)₄][OsO₄F] Anhydrous CH₃CN (0.95 mL) was condensed into a tube containing 0.2293 g (0.9021 mmol) of OsO₄ at -196 °C. The OsO₄ dissolved upon warming the mixture to room temperature to give a pale yellow solution to which, after transferring to a drybox and cooling to -110 °C, a stoichiometric amount of [N(CH₃)₄][F] (0.0858 g, 0.9212 mmol) was added. Upon thawing and warming to -20 °C outside the drybox, a red-brown precipitate formed at the [N(CH₃)₄][F] - OsO₄/CH₃CN solution interface. Upon mixing at room temperature, the red-brown precipitate merged with the yellow OsO₄/CH₃CN solution to produce a homogeneous orange precipitate. Removal of CH₃CN under dynamic vacuum at room temperature yielded a very finely divided orange powder. #### 2.6.2. Crystal Growth of [N(CH₃)₄][OsO₄F] Sufficient CH₃CN (0.76 mL) was distilled onto 0.0483 g (0.1768 mmol) of [N(CH₃)₄][OsO₄F] to solubilize the solid at 40 °C. Large orange, plate-shaped crystals were grown by placing the tube inside a closed Dewar of water at 40 °C and allowing it to cool to ambient temperature over a period of five days. The supernatant was carefully pipetted off the sample inside a glovebag previously purged with dry N₂ and residual CH₃CN was removed from the tube containing the crystals by rapid evacuation at room temperature for ca. 30 s. The FEP reaction tube containing the crystals was transferred to a drybox equipped with a microscope where the crystals were removed, mounted inside 0.5-mm i.d. Lindemann capillaries, and heat sealed. The crystal used for X-ray data collection had the dimensions, 0.400 x 0.442 x 0.0084 mm³. #### 2.6.3. Synthesis of $[N(CH_3)_4]_2[OsO_4F_2]$ Approximately 0.4 mL of anhydrous CH₃CN was condensed onto 0.1642 g (0.6460 mmol) of OsO₄ at -196 °C and warmed to room temperature to effect dissolution. Approximately two equivalents of [N(CH₃)₄][F] (0.1219 g (1.3087 mmol)) were added to the frozen OsO₄/CH₃CN mixture at -110 °C as described in the preceding section. Upon warming to -25 °C, a red-brown precipitate formed at the [N(CH₃)₄][F] - OsO₄/CH₃CN solution interface, which when agitated, yielded a homogeneous, brown precipitate. The solvent was removed under dynamic vacuum at -20 °C followed by pumping at ambient temperature to give 0.2645 g of a light brown, ochre-colored powder. Raman spectroscopy revealed the presence of a mixture of [N(CH₃)₄]₂[OsO₄F₂], [N(CH₃)₄][OsO₄F], and [N(CH₃)₄][F]. The product mixture (0.2289 g) was loaded into arm A of a two-arm (hshaped) Pyrex glass vessel (Figure 2.9) and approximately 1.2 mL of CH₃CN was condensed onto the mixture at -196 °C. The mixture was washed 12 times at -30 °C by decanting the faint yellow solution together with some suspended material into arm B of the vessel at -30 °C followed by back-distillation of the CH₃CN onto the brown mixture under static vacuum. After removal of CH₃CN, 0.1818 g (80%) of an ochre-colored material was recovered, which, according to its Raman spectrum, still contained significant amounts of [N(CH₃)₄][OsO₄F]. Thirteen additional washings were performed on 0.1727 g of material between -25 and -30 °C, yielding 0.1205 g (70%) of ochre [N(CH₃)₄]₂[OsO₄F₂] containing only a minor amounts of [N(CH₃)₄][OsO₄F] impurity. The Figure 2.9 Pyrex glass reaction vessel equipped with a 4-mm J.Young Teflon/glass stopcock. $[N(CH_3)_4]_2[OsO_4F_2]$ salt was found to be a significantly weaker Raman scatterer and more prone to decomposition in the laser beam (1064-nm excitation) than $[N(CH_3)_4][OsO_4F]$. #### 2.6.4. Synthesis of [NO] [OsO4F] Approximately 1.8 mmol NOF was condensed onto 0.0657 g (0.2585 mmol) of OsO₄ inside a 4-mm FEP tube equipped with an Kel-F valve at -196 °C. Upon melting the NOF at -78 °C a yellow-brown solid was initially observed. After agitation, a dark brown suspension formed. Excess NOF was removed under dynamic vacuum at -78 °C, yielding a brown, finely divided solid. The tube was sealed under dynamic vacuum and stored at -196 °C. # 2.6.5. Attempted Synthesis of [NO₂]_a[OsO₄F_a] Approximately 0.07 mL NO₂F was condensed onto 0.0156 g (0.061 mmol) of OsO₄ in a 4-mm FEP tube equipped with a Kel-F valve at -196 °C. Maintaining the sample at -78 °C for two days and subsequent removal of the NO₂F at -78 °C did not provide any evidence for reaction when monitored by Raman spectroscopy. Condensation of 0.3 mmol of NO₂F (ca. 5.5 atm) onto the OsO₄, followed by warming to 55 °C for 1 h, also did not result in a reaction. # 2.7. Lewis-Acid Properties of OsO₃F₂ # 2.7.1. Synthesis of $[N(CH_3)_4][OsO_3F_3]$ Approximately 0.4 mL of anhydrous HF was condensed onto 0.1005 g (0.364 mmol) of OsO₃F₂ in a ¼-in. FEP tube at -196 °C. Upon warming to room temperature, OsO₃F₂ was found to be insoluble in HF. Addition of [N(CH₃)₄][F] (0.0342 g, 0.367 mmol) to the frozen OsO₃F₂/HF mixture at -110 °C followed by warming to room temperature and mixing, resulted in a clear orange solution. Removal of HF solvent under dynamic vacuum at -78 °C yielded 0.1299 g (0.3517 mmol; 97% yield) of an orange powder. Samples for NMR spectroscopy were prepared using 0.0487 g (0.1319 mmol) [0.0191 g (0.0517 mmol)] and 0.2 [0.2] mL of CH₃CN [HF] solvent in 4-mm FEP tubes and resulted in a yellow-orange supernatant and an orange precipitate in CH₃CN and a clear, yellow solution in HF. #### 2.7.2. Crystal Growth of [N(CH₃)₄][OsO₃F₃] Approximately 0.57 mL of CH₃CN was condensed onto 0.0034 g (0.0123 mmol) $[N(CH_3)_4][OsO_3F_3]$ at -196 °C which yielded a clear orange solution upon warming to 0 °C. Removal of CH₃CN solvent at 0 °C over a period of *ca.* 1 h yielded thin orange plates as a coating on the walls of the FEP tube. Crystals were selected and mounted at -120 °C as described in Section 2.12.1. The crystal used in this study had the dimensions, $0.30 \times 0.15 \times 0.01$ mm³. #### 2.7.3. Synthesis of $[N(CH_3)_4]_2[OsO_3F_4]$ Inside a drybox, 0.0471 g (0.1717 mmol) of OsO₃F₂ and 0.03205 g (0.34409 mmol) [N(CH₃)₄][F] were loaded into a ¼-in. FEP reactor at -150 °C. After condensing approximately 0.55 mL of CH₃CN onto the mixture, the CH₃CN solvent was allowed to melt at -40 °C resulting in a dark brown suspension upon agitation. After 1h of reaction time, the CH₃CN was removed under dynamic vacuum at -38 to -32 °C yielding a grey, finely divided solid. #### 2.7.4. Synthesis of [NO][OsO,F,] Approximately 0.04 mL of NOF was condensed into a 4-mm FEP reaction tube containing 0.0500 g (0.181 mmol) of OsO₃F₂ at -196 °C, warmed to -78 °C and agitated for ca. 90 min. Removal of excess NOF at -78 °C yielded a light orange, ochre-colored solid, which was found to decompose upon warming to room temperature. #### 2.7.5. Synthesis of OsO₃F₂(CH₃CN) Approximately 0.1 mL of CH₃CN was condensed onto 0.0545 g (0.1973 mmol) of OsO₃F₂ in a ¼-in. FEP tube at -196 °C. Upon warming to -40 °C and agitation, a redbrown precipitate formed under an orange solution. Excess CH₃CN was removed under dynamic vacuum at -40 °C initially yielding a dark red-brown solid. Further pumping gave an orange-ochre solid. An NMR sample was prepared from 0.0305 g (0.1104 mmol) of OsO₃F₂ and
approximately 0.3 mL of CH₃CN in a 4-mm FEP tube. NMR samples of OsO₃F₂(CH₃CN) [OsO₃F₂(CH₃C¹⁵N)] in SO₂ClF solvent were prepared by condensing 0.02 mL CH₃CN [0.0065 g (0.1546 mmol) CH₃C¹⁵N] onto 0.0335 g (0.129 mmol) [0.02081 g (0.0753 mmol)] of OsO₃F₂ in a 4-mm FEP tube at -196 °C. After melting the CH₃CN at -40 °C and initial mixing, *ca.* 0.3 mL [0.2 mL] of SO₂ClF was condensed onto the mixture at -196 °C. # 2.8. Fluoride Ion Donor Properties of OsO3F2 # 2.8.1. Synthesis of [OsO₃F][HF]₂[AsF₆], [Os₂O₆F₃][AsF₆], and [OsO₃F][AsF₆] and Crystal Growth of [OsO₃F][AsF₆] Inside a drybox, 0.09203 g (0.333 mmol) OsO₃F₂ was loaded into a ¼-in. o.d. FEP reaction tube equipped with a Kel-F valve. Approximately 0.5 mL of HF was condensed into the tube at -196 °C and followed by ca. 0.7 mmol of AsF₅. Osmium trioxide difluoride dissolved upon warming to ambient temperature yielding a clear yellow-orange solution. Removal of most of the HF solvent and excess AsF, at -78 °C for ca. 3 h resulted in the formation of an orange crystalline precipitate under ca. 0.1 mL of HF, which was identified by Raman spectroscopy as [OsO₃F][HF]₂[AsF₆]. Addition of ca. 0.5 mmol of AsF, and 0.57 mL of HF followed by complete removal of the HF solvent at -78 °C over a period of ca. 5 h yielded straw-yellow [OsO₃F][AsF₆]. Distillation of ca. 0.3 mL of HF onto the solid resulted in a yellow solution above a heterogenous mixture of yellow ([OsO₃F][AsF₆]) and orange ([Os₂O₆F₃][AsF₆]) solids at -78 °C as identified by Raman spectroscopy. Thorough agitation at -78 °C resulted in an orange precipitate comprised exclusively of [Os2O6F3][AsF6]. Condensation of an additional 0.4 mmol of AsF₆ onto the mixture resulted in complete dissolution of the solid close to room temperature and did not yield a precipitate at -78 °C. Approximately 0.05 mL HF was removed at -78 °C resulting in yellow precipitate, which was identified by Raman spectroscopy as [OsO₃F][AsF₆]. After redissolving the precipitate, yellow crystals were grown at -78 °C over a period of 12 h. The solvent was removed under dynamic vacuum at -78 °C and yellow crystals were selected and mounted at -110 °C as described in Section 2.12.1. The crystal used in this study had the dimensions, $0.12 \times 0.10 \times 0.10$ mm³. An NMR sample in a 4-mm. o.d. FEP tube was prepared using 0.0303 g (0.1097 mmol) of OsO_3F_2 , 0.2 mL of HF, and 1.5 mmol of AsF_5 (ca. 13.5-fold molar excess). # 2.8.2. Crystal Growth of [OsO₃F][HF]₂[AsF₆] Crystals of $[OsO_3F][HF]_2[AsF_6]$ were obtained from a sample composed of 0.1032 g (0.374 mmol) of OsO_3F_2 and ca. 0.9 mmol of AsF_5 in 0.85 mL of HF. Orange crystals of $[OsO_3F][HF]_2[AsF_6]$ grew during slow removal of the HF solvent and excess AsF_5 under vacuum at -78 °C. After almost complete removal of the HF solvent, a portion of the crystalline sample turned yellow ($[OsO_3F][AsF_6]$). The pumping was discontinued and the FEP tube was immediately back-filled with dry nitrogen while maintaining the sample at -78 °C. Orange crystals were selected and mounted at -117 °C as described in Section 2.12.1. The crystal used in this study had the dimensions, 0.25 × 0.20 × 0.05 mm³. # 2.8.3. Synthesis [OsO₃F][HF][SbF₆] and [OsO₃F][HF]₂[SbF₆] and Crystal Growth of [OsO₃F][HF][SbF₆] Inside the drybox, 0.03962 g (0.2217 mmol) of SbF₃ was transferred into the vertical arm of a ¼-in. o.d. FEP T-shaped reactor equipped with a Kel-F valve. After condensation of approximately 0.6 mL of HF onto the SbF₃, the mixture was allowed to react with F₂ at room temperature until white solid SbF₃ had dissappeared, *i.e.*, completely reacted to form SbF₅. Inside the drybox, 0.06342 g (0.2296 mmol) of OsO₃F₂ was added to the frozen solution. Warming to room temperature yielded a clear yellow-orange solution. Upon cooling to -78 °C, clusters of orange needles grew and were identified as $[OsO_3F][HF]_2[SbF_6]$ by Raman spectroscopy. Removal of the HF solvent at -78 °C and briefly at room temperature under dynamic vacuum yielded solid straw-yellow $[OsO_3F][HF][SbF_6]$. After redissolving the yellow solid in approximately 0.6 mL of HF at room temperature, orange clusters of cyrstals and yellow plates grew upon cooling to -78 °C over a period of ca. 12 h. The HF solvent was decanted into the side arm of the T-reactor, which was subsequently heat sealed under dynamic vacuum while the crystals were maintained at -75 °C. Yellow crystals were selected and mounted at -100 °C as described in Section 2.12.1. The crystal used in this study had the dimensions, 0.08 × 0.04 × 0.03 mm³. In a separate experiment using 0.538 g (0.3001 mmol) of SbF₃, 0.0695 g (0.2516 mmol) OsO₃F₂ and ca. 0.6 mL of HF, small amounts of [OsO₃F][SbF₆] were observed by Raman spectroscopy upon removal of the HF solvent (pumped on for 3h at -78 °C and 5 min at room temperature). Pumping at room temperature for 5 h did not increase the amount of [OsO₃F][SbF₆] significantly. Pumping on the sample at 45 °C, at which temperature the sample was a liquid, for 2 h using a mercury diffusion pump, resulted in a decrease in the relative Raman intensities of the OsO₂ stretches of [OsO₃F][SbF₆] compared to those of [OsO₃F][HF][SbF₆]. Distillation of 0.6 mL of HF onto the solid resulted in dissolution of the solid at room temperature and slow precipitation of yellow [OsO₃F][HF][SbF₆]. Reduction of the solution volume to 0.17 mL at -78 °C followed by redisolution of the solid at room temperature resulted in the precipitation of $[OsO_3F][HF]_2[SbF_6]$ at -78 °C. # 2.8.4 Synthesis and Crystal Growth of [OsO₃F][Sb₃F₁₆] Inside a glove bag, 0.9393 g (4.334 mmol) of SbF₅ was syringed into a ¼-in. o.d. FEP reaction tube equipped with a Kel-F valve. Inside a drybox, 0.0847 g (0.3067 mmol) of OsO₃F₂ was added to the frozen solution (ca. -140 °C) and the reaction mixture was warmed to 55 °C outside the drybox, yielding a clear straw-yellow solution upon sonication. The solution was placed in a water bath at 55 °C and allowed to cool to 35 °C for 2 h yielding copious amounts of straw-yellow flaky crystals. Excess SbF₅ was removed under dynamic vacuum at ambient temperature over a period of 5½ h yielding 0.2906 g of straw-yellow plates of [OsO₃F][Sb₃F₁₆] (theor. 0.2841 g for a 1:3 stoichiometry of OsO₃F₂:SbF₅). Straw-yellow crystals were selected and mounted at -120 °C as described in Section 2.12.1. The crystal used in this study had the dimensions, 0.14 × 0.10 × 0.005 mm³. An NMR sample of OsO₃F₂ in neat SbF₅ was prepared in a ¼-in. o.d. FEP tube using 0.0538 g (0.1948 mmol) of OsO₃F₂ and 2.41 g of SbF₅. Samples for NMR spectroscopy were prepared in 4-mm o.d. FEP tubes equipped with Kel-F valves by dissolving 0.0274 g (0.0296 mmol) [0.0302 g (0.0326 mmol)] of [OsO₃F][Sb₃F₁₆] in *ca*. 0.35 mL of SO₂ClF [0.18 mL of HF], yielding a clear yellow solution upon warming to -78 °C [clear yellow solution upon warming to room temperature]. #### 2.9. Lewis-Acid Properties of OsO,F. #### 2.9.1. Preparation of [Cs][OsO₂F₅] Inside the drybox, 0.071 g (0.238 mmol) of OsO₂F₄ and 0.0325 g (0.214 mmol) of CsF (10% excess of OsO₂F₄) were loaded into a 4-mm FEP tube fitted with a Kel-F valve. The mixture was heated to 90 °C several times for periods of one minute followed by Raman characterization of the dark coloured solid. The mixture was then heated to 150 °C until the Raman spectrum of the now red solid showed only small amounts of unreacted OsO₂F₄. The reactor was connected to the glass vacuum line through a ¼-in. FEP trap and the excess OsO₂F₄ was pumped off under dynamic vacuum at room temperature for ca. 1 min until no further OsO₂F₄ condensed into the trap at -196 °C; 0.0961 g of a light brown solid was recovered. Decomposition occurred during the transfer into a dry glass NMR tube. #### 2.9.2. Synthesis of [NO][OsO₂F₅] in NOF Solutions Inside the drybox, 0.0586 g (0.1965 mmol) of OsO₂F₄ was transferred into a 4-mm FEP tube. Approximately 0.18 mL of NOF was condensed onto the solid yielding a red-brown solution above undissolved OsO₂F₄. # 2.9.3. Synthesis of $[N(CH_3)_4][OsO_2F_5]$ Inside the drybox, 0.0408 g (0.1368 mmol) of OsO₂F₄ and 0.0157 g (0.1685 mmol) of [N(CH₃)₄][F] were loaded into a 4-mm FEP tube at low temperature (ca. -150 °C). Upon condensation of approximately 0.04 mL of NOF onto the solid and melting the NOF at -78 °C, a vigorous reaction (boiling of the NOF solvent) ensued during which the purple/white heterogeneous mixture progressively changed in colour from green-brown to ochre and finally to orange. The NOF solvent was removed under dynamic vacuum at -78 °C. An NMR sample in 0.2 mL NOF was prepared using 0.0634 g (0.2126 mmol) of OsO₂F₄ and 0.0207 g (0.2222 mmol) of [N(CH₃)₄][F]. Samples for NMR spectroscopy in CH₃CN [HF] solvents were prepared from 0.0373 g (0.1268 mmol) [0.02758 g (0.0925 mmol) of OsO₂F₄, 0.0127 g (0.1363 mmol) [0.00873 g (0.0937 mmol)] of [N(CH₃)₄][F] and excess NOF solvent. After removal of the NOF, approximately 0.3 [0.3] mL of CH₃CN [HF] solvent was condensed onto the solid. #### 2.9.4. Attempted Preparation of [N(CH₃)₄][OsO₂F₅] from CHF₃ Solvent Inside the drybox, 0.0549 g (0.184 mmol) of OsO₂F₄ and 0.0176 g (0.189 mmol) of [N(CH₃)₄][F] were transferred into a 4-mm FEP tube at low temperature (ca. -140 °C). After condensation of approximately 0.18 mL CHF₃ onto the mixture, melting the CHF₃ solvent at -105 °C resulted in dissolution of [N(CH₃)₄][F] and a pale orange colouration of the solution. Raman and ¹⁹F NMR spectroscopy only showed OsO₂F₄ as the solid and CHF₃, [N(CH₃)₄][F] and an HF₂ impurity in the solution. #### 2.9.5. Attempted Preparation of [NO₂][OsO₂F₅] Approximately 1 mmol of NO₂F was condensed onto 0.0493 g (0.165 mmol) of OsO₂F₄ in a 4-mm FEP sample tube and was maintained at -78 °C for 12 h with no apparent reaction between the colourless, clear NO₂F and OsO₂F₄. After removal of the NO₂F under dynamic vacuum at -78 °C, only OsO₂F₄ was detected by Raman spectroscopy. Approximately 0.35 mmol of
NO₂F was condensed onto OsO₂F₄ and the reactor was warmed to 55 °C for approximately 1h (*ca.* 6 atm NO₂F). After removal of the NO₂F at -78 °C, no evidence for the formation of [NO₂][OsO₂F₅] was found by Raman spectroscopy. # 2.9.6. Synthesis of OsO₂F₄(CH₃CN) in CH₃CN and SO₂ClF Solvents Approximately 0.25 [0.2] mL of CH₃CN [SO₂ClF] was condensed onto 0.0353 g (0.118 mmol) [0.0026 g (0.0087 mmol)] of OsO₂F₄ in a 4-mm FEP tube, resulting in a deep red-brown solution at -40 °C [clear, colourless solution on top of a purple solid at -78 °C]. Subsequent distillation of excess CH₃CN (ca. 0.014 mL) onto the sample in SO₂ClF and mixing at -78 °C yielded a pale red solution on top of small amounts of orange precipitate. #### 2.10. Fluoride Ion Acceptor Properties of IO2F4 # 2.10.1. Preparation of [N(CH₃)₄]₂[IO₂F₅]/[N(CH₃)₄][cis-IO₂F₄] in CH₃CN Solvent Inside the drybox, [N(CH₃)₄][IO₂F₄] (0.5726 g, 1.853 mmol) was added to side B of the previously vacuum dried glass reaction vessel depicted in Figure 2.10. A stoichiometric amount of [N(CH₃)₄][F] (0.1753 g, 1.882 mmol) was added to side A of the reaction vessel. Anhydrous CH₃CN was condensed into side B of the reaction vessel, and then into side A at -196 °C on a glass vacuum line. The [N(CH₃)₄][F]/CH₃CN mixture was transferred to side B of the reaction vessel containing [N(CH₃)₄][IO₂F₄] in CH₃CN Figure 2.10 Glass reaction vessel used to prepare [N(CH₃)₄]₂[IO₂F₅]; (A) Pyrex glass reaction vessel (side A), (B) Pyrex glass reaction vessel (Side B) containing a Telfon coated magnetic stir bar, (C) 4-mm J. Young Telfon/glass stopcock. Α while both arms were immersed in an acetone bath adjusted to -30 °C with dry ice. The reactants were stirred for 2 h at -30 °C using a magnetic stir bar. Anhydrous CH₃CN was removed under dynamic vacuum over a period of 16 h while slowly warming from -20 to 0 °C, yielding 0.7970 g of a fine, white powder. Inside the drybox, the [N(CH₃)₄]₂[IO₂F₅]/[N(CH₃)₄][cis-IO₂F₄] mixture (0.3433 g) was loaded into side A of the glass reaction vessel depicted in Figure 2.9. Anhydrous CH₃CN was distilled onto the mixture under static vacuum at -196 °C. The mixture was allowed to warm to -20 °C, was agitated, and then allowed to settle. After 2 h, the CH₃CN solvent was decanted to side B of the reaction vessel, and then distilled back to side A at -196 °C. Washing of the [N(CH₃)₄][cis-IO₂F₄] salt was carried out two more times at 4 h intervals before the CH₃CN solvent was pumped off on the glass vacuum line for 12 h while warming from -30 to 25 °C. Distillation of CH₃CN onto the mixture was repeated, followed by eight more washings of [N(CH₃)₄][cis-IO₂F₄] and the removal of CH₃CN under dynamic vacuum, to yield 0.1382 g (0.3436 mmol) of a fine, white powder. ## 2.10.2. Preparation of [N(CH₃)₄]₂[IO₂F₅]/[N(CH₃)₄][cis-IO₂F₄] in CHF₃ Solvent Inside the drybox, [N(CH₃)₄][IO₂F₄] (0.0771 g, 0.2495 mmol) was loaded into side B of the thick wall glass reaction vessel depicted in Figure 2.11. A stoichiometric amount of [N(CH₃)₄][F] (0.0258 g, 0.2770 mmol) was then loaded into side A of the reaction vessel. The reaction vessel was attached to the metal line and anhydrous CHF₃ was condensed into the vessel by passing the CHF₃ through a previously vacuum dried helix made of ¼-in. copper tubing and packed in solid dry ice. Once the reaction vessel was Figure 2.11 Thick wall glass reaction vessel (9 mm o.d., 2.5 mm i.d.) used for reactions in CHF₃. flame sealed below the ¼-in. Teflon Swagelok union (point C), the vessel was placed in a Dewar containing a 95% ethanol/liquid nitrogen slush at -107 °C, the [N(CH₃)₄][F]/CHF₃ mixture was combined with [N(CH₃)₄][IO₂F₄] inside tube B of the reaction vessel and was shaken for 30 min at 0 °C. After the mixture was allowed to stand at 0 °C for 12 h, CHF₃ was distilled back to side A of the reaction vessel at -196 °C and side B of the reaction vessel was flame sealed off. A white crystalline powder was obtained. A Raman spectrum of the sample was recorded directly on the sealed off portion of the thick wall glass reaction vessel containing the solid sample. #### 2.10.3. Crystal Growth of [N(CH₃)₄]₂[IO₂F₂][HF₂] The white solid obtained from the extraction of a [N(CH₃)₄]₂[IO₂F₅]/[N(CH₃)₄][cis-IO₂F₄] mixture using acetonitrile (see 2.10.1. Preparation of [N(CH₃)₄]₂[IO₂F₅]/[N(CH₃)₄][cis-IO₂F₄] in CH₃CN) was used for crystal growth. Approximately 6 mL of CH₃CN was distilled onto the solid in arm B of the apparatus (Figure 2.9) followed by dissolution of the solid at 50 °C. Side arm B was placed inside a glass Dewar containing water at 50 °C, covered with a styroform lid, and was allowed to cool to room temperature over a period of 4 days. Some solvent condensed into side arm A and several needle shaped crystals were observed above the solvent level in arm B. Side arm A was placed inside a ice water bath for three days reducing the volume of solvent in arm B at which point, in addition to the long needle-like crystals, cubic crystals were also observed. The acetonitrile from arm A was pipetted out inside a glove bag before pumping off the residual CH₃CN inside arm B on a glass vacuum line for 1 min. The reactor was pressurized with one atmosphere of dry nitrogen and transferred to the drybox. As noted earlier, two different crystal morphologies were obtained and both were mounted inside the drybox and heat sealed inside 0.1 mm glass Lindemann capillaries. The needle-like crystal used for X-ray data collection had the dimensions: $0.8 \times 0.02 \times 0.08 \text{ mm}^3$. #### 2.11. Preparation of Xenon(II) Oxide Fluorides ## 2.11.1. Reaction of [XeF][AsF₆] and H₂O in HF Solvent In a typical experiment, 8.0 µL of H₂O (0.44 mmol) was syringed into a ¼-in. o.d. FEP reaction tube equipped with a Kel-F valve inside a well-purged dry nitrogen-filled glove bag. Approximately 0.4 mL of HF was condensed into the tube at -196 °C and the water was mixed with the HF at room temperature. After transferring the FEP tube into a drybox at room temperature, 0.1549 g (0.4566 mmol) of [XeF][AsF₆] was added to the frozen H₂O/HF mixture followed by warming to -78 °C outside the drybox. The sample was maintained at -78 °C. An NMR sample was prepared by loading, inside the drybox, 0.20849 g (0.6146 mmol) [XeF][AsF₆] into a 10-mm o.d. FEP tube fused to a piece of ¼-in. o.d. FEP tubing connected to a Kel-F valve. Approximately 2.35 mL of HF was condensed onto the [XeF][AsF₆] at -196 °C. The [XeF][AsF₆] dissolved upon warming the mixture to room temperature. Inside the drybox, 11.5 μL (0.60 mmol) of enriched H₂O (21.9% ¹⁷O and 42.7% ¹⁸O) was syringed on top of the frozen [XeF][AsF₆]/HF mixture and the vessel and reactants were transferred cold (<-100 °C) to the outside the drybox where the sample was heat sealed and stored at -196 °C until it could be studied by NMR spectroscopy. ## 2.11.2. Reaction of XeF₂ and [H₃O][AsF₆] in BrF₅ Solvent Inside the drybox, 0.0419 g (0.2015 mmol) [H₃O][AsF₆] and 0.0372 g (0.2197 mmol) XeF₂ were loaded at low temperature (ca. -150 °C) into a 4-mm o.d. FEP tube connected to a Kel-F valve. Approximately 0.25 mL of BrF₅ was condensed into the tube at -196 °C and the FEP tube was heat sealed. #### 2.11.3. Crystal Growth of [H,OXeF],[F][AsF.] Inside a glove bag well purged with dry N_2 , 8.0 μ L (0.44 mmol) of H_2O was syringed into a %-in. o.d. FEP tube with a %-in. o.d. FEP side arm fused to it and equipped with a Kel-F valve. Approximately 0.38 mL of HF was condensed into the tube at -196 °C and the water was mixed well with the HF at room temperature. After transferring the reaction tube into the drybox at room temperature, 0.14871 g (0.4384 mmol) of [XeF][AsF₆] was added to the frozen H_2O/HF mixture followed by warming to -78 °C outside the drybox. After approximately 12 h at 78 °C, an orange solid was present. The supernatant was decanted into the cooled side arm, which was subsequently sealed off, followed by removal of the residual HF solvent in the main FEP tube at -78 °C under dynamic vacuum. Crystals were selected and mounted at -110 °C as described in Section 2.12.1. The crystal used for the X-ray structure determination had the dimensions, 0.2 × 0.18 × 0.08 mm³. ## 2.11.4. Crystal Growth of Trigonal [Xe₂F₃][AsF₆] Inside a well-purged glove bag, 8.0 µL (0.44 mmol) of H₂O was syringed into the vertical arm of an FEP T-shaped reactor (vide supra). Approximately 0.5 mL of HF was condensed onto the water at -196 °C which dissolved at room temperature. After transferring the reaction tube into a drybox at room temperature, 0.4446 g (1.311 mmol) of [XeF][AsF₆] was added to the frozen H₂O/HF mixture followed by warming to -78 °C outside the drybox. After maintaining the sample for 7½ months at -78 °C, the Raman spectrum of the solid under HF solvent showed only the presence of [Xe₂F₃][AsF₆] and [XeF][AsF₆]. The solid was dissolved at approximately -20 °C, where gas evolution was observed, and immediately cooled to -30 °C where gas evolution almost ceased and a white solid started to precipitate. Cooling the sample to -40 °C for ca. 1 h resulted in the growth of colorless crystals of [Xe₂F₃][AsF₆]. The temperature was gradually lowered to -75 °C with no significant further crystallization. The supernatant was decanted into the side arm at -78 °C, which was subsequently sealed off, followed by removal of residual HF solvent at -75 °C under dynamic vacuum. Crystals were selected and mounted at -94 °C as described in Section 2.12.1. The crystal used for the X-ray data acquisition had the dimensions $0.1 \times 0.08 \times 0.05 \text{ mm}^3$. ## 2.11.5. Crystal Growth of [Xe₃OF₃][AsF₆] Inside a well-purged glove bag, 11.0 µL (0.61 mmol) of H₂O was syringed into a ¼-in. o.d. FEP tube with a ¼-in. o.d. FEP side arm fused to it and equipped with a Kel-F valve. Approximately 0.5 mL of HF was condensed into the tube at -196 °C and the water was mixed well with the HF at room temperature. After transferring the reaction tube
into the drybox at room temperature, 0.2082 g (0.6138 mmol) of [XeF][AsF₆] was added to the frozen H_2O/HF mixture followed by warming to -78 °C outside the drybox. After maintaining the sample at -78 °C for ca, three weeks, red dendrimeric clusters of crystals appeared above orange-brown precipitate. The red crystals were isolated after approximately $4\frac{1}{2}$ months by decanting the supernatant into the cooled side arm, which was subsequently sealed, followed by removal of the residual HF solvent from the crystals under dynamic vacuum at -78 °C. Crystals were selected and mounted at -90 °C as described in Section 2.12.1. The crystal used in the X-ray data collection had the dimensions, $0.14 \times 0.12 \times 0.10$ mm³. #### 2.12. X-ray Crystallography #### 2.12.1. Low-Temperature Crystal Mounting A low-temperature crystal mounting technique was utilized for thermally unstable and/or moisture sensitive crystals. Each FEP reactor containing crystals was cut open below the Kel-F valve under a flow of dry nitrogen while maintaining the crystals at -78 °C. The crystals were then quickly dumped from the chilled tube onto an aluminum trough cooled by passing a flow of dry nitrogen through a 5-L Dewar of liquid nitrogen (Figure 2.12). The temperature of the trough had been previously adjusted between -100 and -120 °C and had been measured with a copper-constantan thermocouple inserted midway into the stream ca. 2-mm above the trough. Each crystal was selected under a stereo-zoom microscope and mounted on a glass fibre using an inert perfluorinated polyether, Fomblin Z-15, Z-25, and Z-60 (Ausimont Inc.). The glass fibre had previously been attached using epoxy to a metallic pin that was, in turn, magnetically mounted on Figure 2.12 Low-temperature crystal mounting apparatus, (A) 5-L silvered glass Dewar containing liquid N₂ enclosed in a metal container, (B) two-hole rubber stopper, (C) silvered glass Dewar, (D) glass jacket, (E) aluminum trough chilled by cold N₂ flow, (F) metal stand, (G) z-adjustable dial, (H) xy-adjustable dial, (I) glas fibre attached to metallic pinon a wand. a wand. The polyethers selected for crystal mounting were sufficiently viscous to adhere to the crystal, engulf it, and freeze quickly thereafter. The attached crystal was quickly (< 30 s) transferred to the goniometer head of the X-ray instrument using cryotongs, which had been chilled by liquid nitrogen for ca. 5 min prior to use, and attached by means of a magnetic interface. #### 2.12.2. Data Collections The parameters used for the collection of diffraction data are summarized in Table 2.1. The diffraction data for $[N(CH_3)_4][OsO_4F]$ were collected on a Syntex P2, diffractometer with graphite-monochromatized Ag-K_a radiation (λ = 56.086 pm). Accurate cell dimensions were determined at T = -50 °C from a least-squares refinement of the setting angles (χ , ϕ , and 20) obtained from 29 accurately centered reflections (with 15.32° $\leq 2\theta \leq 32.25$ °) chosen from a variety of points in reciprocal space. Integrated diffraction intensities were collected using a θ - 20 scan technique with scan rates varying from 1.5 to 14.65°/min. (in 20) and a scan range of \pm 0.50° so that the weaker reflections were examined most slowly to minimize counting errors. During data collection, the intensities of three standard reflections were monitored every 97 reflections to check for crystal stability and alignment. Over the course of data collection, no decay was observed. Corrections were made for Lorentz and polarization effects. Empirical absorption corrections were applied using the Ψ -scan method ($\Delta \phi$ = 10°, 0 0 1). The data sets for $[N(CH_3)_4][OsO_3F_3]$, $[OsO_3F][AsF_6]$, $[OsO_3F][HF]_2[AsF_6]$, $[OsO_3F][HF][SbF_6]$, $[OsO_3F][Sb_3F_{16}]$, $[N(CH_3)_4]_2[HF_2][IO_2F_2]$, $[H_2OXeF]_2[F][AsF_6]$, Table 2.1 Summary of X-Ray Data Collection Parameters. | | (N(CII,),][OsO,F] | [N(CH,),][OsO,F,] | [OsO ₃ F][AsF ₄] | [OsO ₁ F][HF] ₂ [AsF ₆] | |-----------------------------------|---------------------------|---------------------------|---|---| | diffractometer | Syntex P2, | Siemens P4 | Sicmens P4 | Siemens P4 | | | | with CCD | with CCD | with CCD | | crystal-to-detector distance [cm] | | 3.9910 | 4.9870 | 5.0000 | | γ (bm) | 56.086 | 71.073 | 71.073 | 71.073 | | T [K] | 223 | 156 | 147 | 156 | | abs. corrections | psi scan | SADABS | SADABS | SADABS | | h | -11 to 11 | -20 to 19 | 6 01 6- | -4 10 6 | | * | -18 to 18 | -16 to 16 | -14 to 14 | 01 01 9- | | 1 | -14 to 18 | -14 to 14 | . II to II. | -25 to 25 | | 0 [deg.] | 2.82 to 27.58 | 2.30 to 26.45 | 2.95 to 27.58 | 2.08 to 27.88 | | no. measured refl. | 3996 | \$009 | 6546 | 5212 | | no. indep. refl. | $1214 (R_{ini} = 0.0636)$ | $1739 (R_{ini} = 0.0958)$ | 1535 (R _{mt} = 0.0703) | 1887 (R _m = 0.0417) | Table 2.1 continued... | | [OsO,F][HF][SbF,] | [OsO,F][Sb,F _{is}] | [H,OXeF],[F][AsF ₆] | [Xe ₂ F,][AsF,] | |-----------------------------------|---|------------------------------|---------------------------------|---------------------------------| | diffractometer | , in the state of | | | | | | Signens r4 | Sigmens P4 | Siemens P4 | Siemens P4 | | | with CCD | with CCD | with CCD | with CCD | | crystal-to-detector distance [cm] | 4.9870 | 5.0140 | 5.0140 | 4.9870 | | չ [րm] | 71.073 | 71.073 | 71.073 | 71.073 | | T [K] | 140 | 160 | 147 | 157 | | abs. corrections | • | SADABS | SADABS | SADABS | | ų | 9 01 9- | 11 to 11. | -10 to 10 | 11 0111- | | - | -12 to 12 | 11 to 11 | -10 to 10 | 11 01 11- | | 1 | -18 to 19 | -8 to 8 | -16 to 16 | -13 to 13 | | 0 [deg.] | 2.11 to 27.51 | 2.69 to 23.60 | 3.12 to 27.50 | 2.73 to 24.92 | | no. measured rest. | 7515 | 4041 | 4546 | 5348 | | no. indep. refl. | 3278 (R _m = 0.0678) | $620 (R_{im} = 0.2172)$ | $327 (R_{int} = 0.0346)$ | 802 (R _{int} = 0.0573) | Table 2.1 continued... | | [Xe,OF,][AsF,] | [N(CH,), ,[HF,][IO,F,] | |-----------------------------------|--------------------------|---------------------------------| | diffractometer | Siemens P4 | Sicmens P4 | | | with CCD | with CCD | | crystal-to-detector distance [cm] | 4.9840 | 3.9910 | | γ [bm] | 71.073 | 71.073 | | T [K] | 156 | 210 | | abs. corrections | SADABS | SADABS | | ų | 8 01 6- | -18 to 18 | | ¥ | -12 to 12 | -10 to 6 | | 1 | -10 to 11 | -17 to 17 | | θ [deg.] | 3.06 to 28.67 | 1.69 to 26.32 | | no. measured refl. | 3798 | 6405 | | no. indep. refl. | $1215 (R_{im} = 0.0371)$ | 1584 (R _{im} = 0.0249) | [Xe₂F₃][AsF₆], and [Xe₃OF₃][AsF₆] were collected with the program SMART¹⁷⁷ on a P4 Siemens diffractometer equipped with a Siemens SMART 1K CCD detector and a rotating anode with graphite-monochromated Mo K_a radiation (λ = 71.073 pm). The diffraction data collection consisted of a full ψ rotation at χ = 0° using (1200 + 50) 0.3° frames, followed by a series of short (100 frames) ω scans at various χ and ψ settings to fill the gaps. The data collection was carried out in a 512 × 512 pixel mode using 2 × 2 pixel binning. A complete sphere of data was collected, to better than 0.8 Å resolution. The data was reduced with the program SAINT,¹⁷⁷ which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots. The program SADABS¹⁷⁸ was used for the scaling of diffraction data, the application of a decay correction, and an empirical absorption correction based on redundant reflections. #### 2.12.3. Solution and Refinement of the Structures The final refinement results for each compound are listed in the crystal data and refinement result Tables, which can be found in subsequent Chapters. The final atomic coordinates and equivalent isotropic displacement coefficients for each structure are listed in Appendix I. The XPREP program¹⁷⁹ was
used to confirm the unit cells and the crystal lattices. Direct methods were used to solve the structures in the appropriate space groups which generally located the positions of the heavy atoms. Full-matrix least-squares refinements of the positions and isotropic thermal parameters of the assigned atoms and successive difference Fourier syntheses revealed the positions of the remaining atoms. The final structure solutions usually involved the refinement of anisotropic thermal parameters and the setting of the weight factor to the values recommended by the program. The crystal of $[OsO_3F][HF][SbF_6]$ was a merohedral twin (ca. 40:60). Therefore, a proper absorption correction could not be performed and the fluorine and oxygen atoms were only refined isotropically. In the structure of $[OsO_3F][Sb_3F_{16}]$, the Os atom was found on a special position ($\overline{4}$...) resulting in a disorder between the three O and the F atoms in the cation. In addition, the fluorine atoms in the Sb₃F₁₆ anion were disordered between two orientations. As a consequence, the oxygen and fluorine atoms of the anion and cation could only be refined isotropically. In the structure of $[H_2OXeF]_2[F][AsF_6]$, the atom at the special position (m.mm) was defined as a fluoride ion. On the basis of the Raman spectra, the two crystallographically related ligands around xenon were defined as a positionally disordered oxygen and a fluorine. In the trigonal $[Xe_2F_3][AsF_6]$ structure, the $Xe_2F_3^+$ cations suffer from an orientational disorder around the two Xe atoms. While it was not possible to define the two positions for the terminal fluorine atoms, it was possible to split the positions of the F_6 atoms. The AsF_6^- anion exhibits a 70:30 orientational disorder and the fluorine atoms of the AsF_6^- anion were refined isotropically. In the structure of $[Xe_3OF_3][AsF_6]$, Xe(1) was located at a general position which results in a positional disorder. The electroneutrality required the presence of an oxygen bridge in the $Xe_3OF_3^+$ cation which, in conjunction with the split Xe(1) position, results in two possible disorder models (see 11.2.3.2. X-Ray Crystal Structures; $[Xe_3OF_3][AsF_6]$). The AsF_6^- anion in this structure is disordered between two orientations. #### 2.13. Nuclear Magnetic Resonance Spectroscopy #### 2.13.1. Routine Measurements NMR spectra were recorded unlocked (field drift < 0.1 Hz h⁻¹) on a Bruker AC-300 spectrometer (7.0463 T) equipped with an Aspect 3000 computer and a Bruker DRX-500 spectrometer (11.7440 T) connected to a Silicon Graphics Indy workstation. Typical acquisition parameters are given in Table 2.2. For low-temperature work, the NMR probe was cooled using a nitrogen flow and variable temperature controller (BV-T 2000). Bruker 5-mm ¹H/¹³C/¹⁹F/³¹P QNP and 10-mm broad band probes were used with the AC-300 console. The DRX-500 spectrometer was equipped with a Bruker 5-mm broad band inverse probe tunable from 23 to 202 MHz and a Bruker 10-mm broad band probe. The ¹H, ¹³C, ¹⁵N, ¹⁷O, ¹⁹F, and ¹²⁹Xe NMR spectra were referenced at room temperature to external samples of neat TMS, TMS, CH₃NO₂, H₂O, CFCl₃, and XeOF₄, respectively. The ¹³¹Xe NMR spectra were referenced to xenon gas dissoved in Freon-114 (-5262 ppm) and the absolute frequency was determined (see Chapter 3). The chemical shift convention used is that a positive (negative) sign indicates a chemical shift to high (low) frequency of the reference compound. ## 2.13.2. Static Solid State NMR Spectroscopic Characterization of [Na]₄[XeO₄] A static ¹²⁹Xe NMR spectrum of solid [Na]₄[XeO₆] was recorded on a Bruker ASX-200 spectrometer using a solenoid probe. The ¹²⁹Xe NMR spectrum was referenced using xenon dissolved in Freon-114 in a glass capsule at room temperature as the secondary standard, which has previously been referenced to the primary standard, XeOF₄, ~ Typical NMR Spectre Table 2.2 | lable 2.2 | Typical NMR | Spectroscopic | Acquisition | Typical NMR Spectroscopic Acquisition Parameters for 'H, 13C, 15N, 17O, 19F, 129Xe, and 131Xe NMR | Ŧ, | ري
اي | ž. | O, 14F | , ¹²⁹ Xe, | and | ısı Xe | NMR | |-------------------------|--|--------------------|-----------------|---|----|-------------|---------------|---------|------------------------------|----------|----------|-----| | | Spectroscopy | | | | | | | | | | | | | Acquisiton
Parameter | μ. | \mathcal{O}_{ff} | N _{S1} | 0,1 | | ਜ਼
ਜ਼ | | 139Xe | Ð | u'Xe | ခွ | | | SF [MHz] | 300.135 | 75.469 | | 40.688 | | 282 231 | = | 82 081 | | 7 | 24 600 | | | TD | 16 K [16 K] | [16 K] | | 16 K | | [64 K] | | 3 62 | · | <u> </u> | ,
, | | | SW [kHz] | 7 [3.6-10] | [18] | | 20 | | [50-100] | _ 5 | 00 | | 4 75 | 4 | | | Hz/Pι | 0.860 [0.439-1.221] | | | 6.104 | | [1.526 | [1.526-3.052] | 6.104 | 4 | 2 441 | = | | | PW [µs] | 2 [2] | [2] | | 20 | | [3] | | 4 | • | <u> </u> | • | | | SN | 500 [100-750] | [3700] | | 400 | | 0001 | [1000-10000] | 00 | 1000-40000 | 2000 | 0 | | | SF | 500.133 | 125.761 | 50.687 | 67.784 | | 470.385 | Š | 138.302 | 302 | 40 008 | 800 | | | T | [32 K] | [16 K] | [16 K] | × ∞ | | 64 K [64 K] | 64 K | 3. K | | 2 2 | | | | SW [kHz] | [10] | [29] | [20] | 30 | | 100 1 001 | . [8 | 90 | | 2 0 | 2 | | | Hz/Pt | [0.305] | [1.769] | [3.052] | 3.67 | | 1.526 | 1.526 [1.526] | 3.05 | | 3.07 | _ | | | PW [μs] | [2.5] | [5] | [12] | 15.7 | | 2.5 [2.5] | | 01 | | 43.5 | | | | NS | [100] | [0006] | [150000] | | | 500 [3 | 50-2000 | 9001 | 500 [350-2000] 1000 to 21000 | | | | | a Values are f | a Values are for a 10-mm [5-mm] probe. | robe. | | | | | | - | | | . | | | | | | | | | | | | | | | | on an Bruker AC-300 spectrometer (vide supra): -5263 ppm. The sample was placed inside the magnet for ca. 15 hours prior to acquisition and several spectra using one pulse were acquired in order to identify foldings. The spectra were acquired in a 64 K memory with a spectral setting of 125 kHz, yielding an acquisition time of 0.262 s and data point resolution of 1.907 Hz/data point. The FID was processed with a line broadening of 50 Hz. #### 2.13.3. T₁-Measurements Measurements of the spin-lattice relaxation times, $T_1(^{129}Xe)$ and $T_1(^{131}Xe)$ of XeO_4 in SO_2CIF at variable temperatures were performed on the Bruker AC-300 [DRX-500] spectrometer using a 10-mm BB probe and a regular inversion-recovery experiment (pulse sequence: π - τ - π /2-acquisition). A total of 50 [15/30] and 200 [50] scans were accumulated for each ^{129}Xe and ^{131}Xe NMR spectrum, respectively, which were acquired using sweep widths of 20 kHz [^{129}Xe : 10 kHz; ^{131}Xe : 20 kHz] and TD = 16 [16] K. The FIDs were processed using a line broadening of 20 [2] Hz. A total of 10 to 14 [16] τ values were used including $\tau_{\infty} = 5$ [8 and 5] s and 300 [300] ms for ^{129}Xe and ^{131}Xe , respectively. The T_1 values were obtained by iterative exponential fitting of the intensity values *versus* τ using standard Bruker software. #### 2.13.4. 2D-COSY The 2-dimensional ¹⁹F COSY-45 NMR spectra were recorded on a Bruker DRX-500 spectrometer using sweep widths of 60 to 80 kHz and 32 to 64 scans. The number of data points in the F1 [F2] dimension was 2 [8] K resulting in a data point resolution of 8.5636 and 9.766 Hz/data point in the F2 dimension. #### 2.14. Raman Spectroscopy Raman spectra were recorded on a Jobin-Yvon Mole S-3000 spectrograph system equipped with a 0.32 m prefilter, adjustable 25 mm entrance slit, and a 1.00 m triple monochromator. Holographic gratings were used for the prefilter (600 groves mm⁻¹, blazed at 500 nm) and double monochromator (1800 groves mm⁻¹, blazed at 550 nm) stages. The 514.5 nm line of an Ar ion laser and the 647.1 nm line of a Kr ion laser were used for excitation of the samples. The spectra were recorded by signal averaging using a Spectraview-2D CCD detector equipped with a 25 mm chip (1152 × 298 pixels) and at a laser powers of 300 mW for Ar* and 100 mW for Kr* at the sample and slit settings corresponding to a resolution of 1 cm⁻¹. In the case of micro samples prepared in melting point capillaries, an Olympus metallurgical microscope (Model BHSM-L-2) was used to focus the excitation laser to a 1 µm spot on the sample. Low-temperature spectra of samples in sealed Pyrex melting point capillaries were recorded in a lowtemperature microchamber mounted on the microscope stage. Low-temperatures were achieved by flowing dry N2 gas, chilled by passing through a 50 L tank of liquid nitrogen, along the external walls of the sample tube or capillary. The temperature was measured using a copper-constantan thermocouple (error ± 0.8 °C). Low temperature spectra of flame sealed 5 mm o.d. thin wall Pyrex glass NMR tubes, 4-mm FEP tubes, and 1/4-in. FEP tubes were recorded using the macro chamber (Figure 2.13). The Raman spectrometer Figure 2.13 Apparatus for low temperature Raman spectroscopy using the macro chamber of the Jobin-Yvon Mole 3000 instrument; (A) Kel-F valve flare-sealed (45° SAE) onto the FEP sample tube, (B) rubber septum, (C) unsilvered glass Dewar, (D) copper-constantan thermocouple, (E) glass ball and socket joint, (F) steel mount for adjustment of the sample tube in the laser beam. was frequency calibrated using the 730.4 cm⁻¹ line of neat indene prior to running samples. Typically, 10 reads having 30 s integration times were summed for the Raman spectra. Raman spectra were also recorded on a Bruker RFS 100 FT Raman spectrometer equipped with a quartz beam splitter, a liquid nitrogen cooled Ge diode detector and an R495 low-temperature accessory. The backscattered (180°) radiation was sampled. The scanner velocity was 5 kHz and the wavelength range for acquisition was 5894 to 10394 cm⁻¹ when shifted relative to the laser line at 9394 cm⁻¹, giving a spectral range
of 3501 to -999 cm⁻¹. The actual usable Stokes range was 50-3500 cm⁻¹ with a spectral resolution of 1 cm⁻¹. The Fourier transformations were carried out by using a Blackman Harris 4-term apodization and a zero-filling factor of 2. The 1064-nm line of a Nd YAG laser (400 mW maximum output) was used for excitation of the sample with a laser spot of < 0.1 mm at the sample. Typically, 500 scans or 1000 scans for weak scatterers were acquired using laser powers of 200 mW. #### 2.14. Infrared Spectroscopy FT-infrared spectra were recorded on a Bio-Rad FTS-40 spectrometer at ambient temperatures on AgCl discs or on powders in sealed polyethylene bags for regular and far infrared acquisition, respectively. The polyethylene bags were filled with a sample and temporarily sealed with Kel-F grease inside the drybox before they were heat sealed outside the drybox. Silver chloride (Alfa, Premion, 99.999%) pellets were made in three layers from vacuum dried AgCl using a Wilks minipress inside the drybox. The middle layer of a AgCl sample mixture was hermetically sealed by the two outer AgCl layers. The spectra consisted of 64 scans acquired with a resolution of ±2 cm⁻¹ and a 5 kHz scan speed and the background which was recorded prior to spectral acquisition was subsequently substracted from the spectrum. An 6 micron mylar beam splitter was used for the far infrared spectrum. #### CHAPTER 3 # SOLUTION STUDY OF XeO, AND NMR SPECTROSCOPIC CHARACTERIZATION OF [Na],[XeO,] #### 3.1. Introduction Xenon forms two binary oxides, namely solid XeO₃ and gaseous XeO₄, which are both endothermic compounds decomposing explosively into their elements releasing 402¹⁸⁰ and 642 kJ mol⁻¹, ⁴⁶ respectively. Despite their hazardous natures, structural data have been obtained by an X-ray diffraction study of XeO₃₆, ¹⁸¹ and an electron diffraction study of XeO₄₆, ⁴⁷ Two xenon oxide anions, the HXeO₄ and XeO₆, anions, have been isolated as the Na^{+,23,182} K^{+,182} Cs^{+,182,183} and Rb^{+,182} salts and as the Li^{+,40} Na^{+,22,23,26,29,30,31,33,36,39,41} K^{+,32,36,40} Cs^{+,23,34,40} Rb^{+,40} Ba^{2+,24,36} La^{3+,24,40} Am^{3+,25} Cu^{2+,40} Ag^{2+,40} Zn^{2+,40} Pb^{4+,40} Th^{4+,40} and UO₂^{2+,40} salts, respectively. While salts of the XeO₆, anion were found to be remarkably stable, [Na][HXeO₄] is less stable than [Na]₄[XeO₆], but more stable than XeO₃. ¹⁸² Unlike its frequent use for the structural characterization of xenon fluoride and oxide fluoride species, ¹⁴⁸ NMR spectroscopy had not played an important role in the characterization of the HXeO₄ and XeO₆, anions, because of the absence of spin-spin coupling information in natural abundance samples and their instability in aqueous media. Xenon possesses two spin-active isotopes, 129 Xe ($I = ^{1}/_{2}$, 26.4 % natural abandance) and 131 Xe ($I = ^{3}/_{2}$, 21.1 % natural abandance). Xenon-129 is widely used for the characterization of xenon compounds and porous materials such as zeolites loaded with xenon gas. 184,185 Far less work has been done on 131 Xe NMR spectroscopy. Although the natural abundance of 131 Xe is similar to that of 129 Xe, the quadrupolar nature of 131 Xe causes fast spin-lattice relaxation in asymmetric environments resulting in no reported 131 Xe chemical shift of chemically bonded xenon. Prior to this study, only 131 Xe NMR spectra of elemental xenon have been reported in the literature. 184,186 Xenon-131 chemical shifts and spin-lattice relaxation times have been determined for liquid and solid xenon and the solvent dependence of 131 Xe chemical shift and T_I -values have been investigated for xenon in various solvents. #### 3.2. Results and Discussion ## 3.2.1. Characterization of XeO₄ in SO₂CIF, BrF₅, and HF Solvent by ¹²⁹Xe NMR Spectroscopy Solutions of XeO₄, which is highly explosive in the solid and gaseous states, have been prepared for the first time making non-hazardous handling of XeO₄ possible at low temperatures. The preparation of SO₂ClF, BrF₅, and HF solutions of XeO₄ have provided the solution NMR spectroscopic characterization of XeO₄ for the first time. The ¹²⁹Xe chemical shifts of XeO₄ in SO₂ClF (-80 °C), BrF₅ (-50 °C), and HF (-75 °C) solutions are -92.9, -94.7 and -85.5 ppm, respectively (Figure 3.1 and Table 3.1). Compared to other xenon species, e.g., XeF_2 ($\delta(^{129}Xe) = -1905$ ppm in SO_2ClF , 25 °C; -1592 ppm in HF, 25 °C), these changes in chemical shift are very small, indicating Figure 3.1 (a) ¹²⁹Xe NMR spectrum (82.981 MHz) at -78.5 °C and (b) ¹³¹Xe NMR spectrum (24.598 MHz) of XeO₄ in SO₂ClF at -76 °C. Table 3.1 129Xe and 131Xe NMR Parameters of XeO₄ | δ(¹²⁹ Xe) [ppm] | Ξ(¹³¹ Xe) [Hz] | δ(¹³¹ Xe) [ppm] ^a | Solvent | T [°C] | |-----------------------------|----------------------------|--|---------------------|--------| | -92.9 | 8 243 147 | -93.2 | SO ₂ ClF | -78.5 | | -85.8 | 8 243 133 | -86.2 | HF | -75 | | -94.7 | 8 243 205 | -94.9 | BrF ₅ | -50 | ^a Calculated using eqs. (3.6) and (3.7), with respect to the hypothetical ¹³¹Xe signal of XeOF₄ (see text for details). Table 3.2 Temperature Dependence of the ¹²⁹Xe Chemical Shift and ¹³¹Xe Absolute Frequency of XeO₄ in SO₂ClF | T, °C | δ(¹²⁹ Xe) [ppm] | Ξ(¹³¹ Xe) [Hz] | |-------|-----------------------------|----------------------------| | | | | | -42 | -90.0 | 8 243 172 | | -50 | -90.8 | 8 243 163 | | -60 | -91.6 | 8 243 158 | | -70 | -92.5 | 8 243 150 | | -78.5 | -92.9 | 8 243 148 | that the tetrahedral molecule interacts only weakly with its solvent environment (see 3.2.3. Characterization of XeO₄ in SO₂ClF, BrF₅, and HF Solvent by ¹³¹Xe NMR Spectroscopy). The small differences are likely attributable to differences in the bulk susceptibility of the solvents which can also vary with temperature. The temperature dependence of the ¹²⁹Xe chemical shift of XeO₄ was studied in SO₂ClF solvent up to 0 °C where decomposition becomes rapid. The chemical shifts and the corresponding temperatures are listed in Table 3.2 and are found to increase slightly with increasing temperature. Only XeO₄ was observed by ¹²⁹Xe NMR spectroscopy in HF and BrF₅ solutions, indicating that no fluorination or fluorine-oxygen exchange between XeO₄ and HF and BrF₅ had occurred, and is in agreement with the Raman spectroscopic characterization of XeO₄ in HF solvent (see 3.2.5. Raman Spectroscopic Characterization of XeO₄ in HF Solution), but contrasts with the solvolytic behaviour of the isoelectronic IO₄ anion (eqs. (3.1) and (3.2)). $$IO_4^- + 4 \text{ HF} \longrightarrow IO_2F_4^- + 2 H_3O^+ + 2 HF_2^-$$ (3.1) $$IO_4 + 2 BrF_5 \longrightarrow IO_2F_4 + 2 BrOF_3$$ (3.2) The dynamic chemical shift ranges reported for ¹²⁹Xe in different oxidation states are very large: ¹⁴⁸ $$\delta(^{129}\text{Xe}(0)) = -5460 \text{ to } -5331 \text{ ppm}$$ $$\delta(^{129}\text{Xe(II)}) = -3967.5 \text{ to } -574 \text{ ppm}$$ $$\delta(^{129}\text{Xe}(IV)) = -662.8 \text{ to } 595 \text{ ppm}$$ $$\delta(^{129}\text{Xe(VI)}) = -357.9 \text{ to } 704.3 \text{ ppm}$$ The ¹²⁹Xe environments of Xe(VIII) compounds are expected to be less shielding than those of Xe(VI) compounds. It is therefore suprising that ¹²⁹Xe in XeO₄ is significantly more shielded (-92.9 ppm for XeO₄ in SO₂CIF at -80 °C) than in XeO₃ (217 ppm for XeO₃ in H₂O at room temperature). ^{148,187} The low-frequency chemical shift of XeO₄ can be explained with Jameson and Gutowsky's formulation for the paramagnetic shielding term (eq. (3.3)), ¹⁸⁸ which normally dominates the chemical shifts of heavy nuclei, $$\sigma^{p} = -\left(\frac{2e^{2}h^{2}}{3\Delta m^{2}c^{2}}\right)\left(\left\langle\frac{1}{r^{3}}\right\rangle_{p}P_{u} + \left\langle\frac{1}{r^{3}}\right\rangle_{d}D_{u}\right)$$ (3.3) where Δ is the average excitation energy, $<1/r^3>_p$ and $<1/r^3>_d$ are the expectation values for $1/r^3$ with r as the radius of the valence p and d orbitals, P_u and D_u represent the "imbalance" of the valence electrons in the p and d orbitals centred on the atom in question. Calculations on a small number of xenon species have shown that a localized description of the bonding employing d hybridization provides a more satisfactory description than a delocalized description without d hybridization. Moreover, the approach showed that ΔE , $< r^{-3}>_{5p}$ and $< r^{-3}>_{5d}$ can be regarded as essentially constant over the entire range of $\delta(^{129}Xe)$ so that P_u and D_u determine variations in $\delta(^{129}Xe)$. For spherically symmetric closed shell atoms, P_u and D_u have their minimum value of zero. In the tetrahedral XeO₄ molecule P_u and D_u are close to zero, resulting in a small paramagnetic contribution to the chemical shift, *i.e.*, higher shielding of the xenon nucleus. ## 3.2.2. Characterization of XeO₄ in SO₂ClF Solvent by ¹⁷O NMR Spectroscopy The ¹⁷O NMR spectrum of natural abundance XeO₄ in SO₂ClF was recorded at -78 °C. Besides the solvent signal at δ = 226 ppm (Δv_{s_1} = 80 Hz), a weak signal at 509 ppm (Δv_{s_1} = 46 Hz) was observed. The ¹⁷O chemical shift of XeO₄ follows the previously noted trend for tetrahedral MO₄* molecules in which ¹⁷O becomes more deshielded as the atomic number of M increases within a period. The ¹J(¹²⁹Xe-¹⁷O) coupling was not observed because of the low intensity and broadness of the signal. The broadness of the ¹⁷O resonance is partially a consequence of the quadrupolar nature of the ¹⁷O nucleus (I = 5 /₂, natural abundance = 0.037%). The low temperature and the relatively high viscosity of SO₂ClF at that temperature decrease the rotational correlation time, τ_{e} , and therefore, the quadrupolar relaxation rate and the line width (see eqs. (3.9), (3.10) and 3.2.4. T_I Relaxation of the ¹²⁹Xe and ¹³¹Xe Nuclei in XeO₄). The ¹⁷O chemical shift for XeO₄ complements the table of chemical shift values for the known tetrahedral MO₄** species with M in the highest possible oxidation state (Table 3.3).
¹⁸⁹ With an ¹⁷O chemical shift of 509 ppm, the oxygens in XeO₄ are far more deshielded than in IO₄* (243 ppm). Since the hypothetical anions SbO₄** and TeO₄** have not been prepared yet, the comparison cannot be extended to the next nearest neighbours in the periodic table. Compared to the ¹⁷O chemical shift of XeO₃ in H₂O (278 ppm), ¹⁹⁰ the XeO₄ resonance is, as expected, far more deshielded. Similar pronounced differences among the ¹⁷O chemical shifts of the MO₄** species could not be found among the MO₃** series and the ¹⁷O resonances of ClO₃*, BrO₃* and XeO₃ lie close together (287, 297, 278 ppm). ^{190,191} The high-frequency ¹⁷O chemical shift is evidence for the extremely high Table 3.3 ¹⁷O Chemical Shifts [ppm] of Main Group and Transition Metal Element Tetraoxo Species¹⁸⁹ | | | | | Group | | | | | |-----------------|---|------------------|------------------|-------|-------------------------------|--------------------------------|------------------|------| | 5 | 6 | 7 | 8 | | 15 | 16 | 17 | 18 | | | | | | | PO ₄ ³ | SO ₄ ² · | ClO ₄ | • | | | | | | | 99 | 167 | 292 | | | VO ₄ | ³⁻ CrO ₄ ² | - MnO | · - | | AsO ₄ ³ | SeO ₄ ² | BrO ₄ | | | 568 | 835 | 1230 | | | 108 | 204 | 360 | | | - | MoO ₄ | ²- TcO₄ | RuO ₄ | | • | - | IO ₄ | XeO, | | | 831 | 748 | 1106 | | | | 243 | 509 | | - | WO ₄ ²⁻ | ReO ₄ | OsO ₄ | | | | | | | | 420 | 569 | 796 | | | | | | ^a Present work. electron withdrawing power of Xe(VIII). ## 3.2.3. Characterization of XeO₄ in SO₂ClF, BrF₅, and HF Solvent by ¹³¹Xe NMR Spectroscopy Besides the ¹²⁹Xe nucleus ($I = \frac{1}{2}$), which is frequently used in NMR spectroscopic characterization of xenon containing compounds, ¹³¹Xe is the only other naturally occurring xenon isotope (21.4% natural abundance) which is NMR active. It is, however, quadrupolar with I = $\frac{3}{2}$, providing the very efficient quadrupolar relaxation pathway (see 3.2.4. T₁ Relaxation of the ¹²⁹Xe and ¹³¹Xe Nuclei in XeO₄). Interaction of the quadrupole moment with an electric field gradient (efg) often broadens the NMR resonances to the extent that they are indistinguishable from the spectral baseline. The line width factor, WF (eq. (3.4)) which is characteristic for a specific quadrupolar nucleus, gives an indication $$WF = Q^2 \left[\frac{2I + 3}{I^2 (2I - 1)} \right] \tag{3.4}$$ of the size of the interaction between the nuclear quadupole moment and the efg. Until recently, WF of 131 Xe (19 x 10^{-59} m⁴) 192 only permitted the observation of 131 Xe NMR signals from monoatomic xenon gas. 184,186 The high symmetry of XeO₄ (T_d symmetry) has made possible the observation of the first 131 Xe NMR chemical shift of chemically bound xenon (Figure 3.1). Since the standard for 129 Xe NMR spectroscopy, neat XeOF₄, does not give rise to an observable 131 Xe NMR signal, the 131 Xe NMR signal of XeO₄ was referenced to the 1 H NMR signal of TMS at exactly 100 MHz by determination of its absolute frequency Ξ (eq. (3.5)). For practical use, ¹³¹Xe chemical shift with respect to $$\Xi(^{131}Xe) = \frac{v(^{131}Xe, XeO_{\nu})}{v(^{1}H, TMS)} \cdot 100 MHz$$ (3.5) xenon gas dissolved in Freon 114, δ', can be calculated according to eq. (3.6). The absolute frequency for xenon gas dissolved in Freon 114 at 30 °C was determined to be $$\delta' = \frac{\left[\Xi(^{131}Xe, XeO_4) - \Xi(^{131}Xe, Xe gas, solvent Freon 114)\right]}{\Xi(^{131}Xe, XeO_4)} \times 10^6$$ (3.6) 8 200 540 Hz. Since the value for the 131 Xe frequency of XeOF₄ is not available, the frequency of the 131 Xe resonance of XeO₄ is used in the denominator of eq. (3.6), instead. This introduces a small systematic error with the $\delta(^{131}$ Xe) values being too low by approximately 0.5 ppm. Ignoring any significant primary isotope effects the chemical shift with respect to the hypothetical 131 Xe NMR signal for XeOF₄ can be calculated using eq. (3.7). The absolute frequencies and calculated chemical shift $\delta(^{131}$ Xe) of XeO₄ in SO₂ClF, $$\delta(^{13i}Xe) = \delta'(^{13i}Xe) - 5262 \text{ ppm}$$ (3.7) HF, and BrF₅ solvent are listed in Table 3.1. The observation of a ¹³¹Xe NMR signal in SO₂ClF, BrF₅ and HF solvents unambiguously proves the assignment of the ¹²⁹Xe chemical shift to tetrahedral XeO₄. It also shows that no static or dynamic interaction between the solvent molecules and XeO₄ occurs since any distortion of XeO₄ from its ideal T_d symmetry would cause the ¹³¹Xe nucleus to relax by means of quadrupolar relaxation and broaden the signal significantly and also serves to support the inertness of XeO₄ towards HF and BrF₅ established by ¹²⁹Xe NMR spectroscopy. The calculated ¹³¹Xe chemical shifts are in excellent agreement with the δ (¹²⁹Xe) values. The linewidth of the ¹³¹Xe resonance with $\Delta v_{s_1} = 18$ Hz (SO₂ClF solvent at -79 °C) is surprisingly narrow. Nuclei with comparable width factors like ⁷¹Ga and ²⁰⁹Bi with WF = 16 x 10⁻⁵⁹ m⁴ and 10 x 10⁻⁵⁹ m⁴, ¹⁹² respectively, exhibit larger line widths in highly symmetric environments at room temperature. For GaX₄, X = Cl, Br, I, line widths of 100 Hz have been observed ¹⁹³ and the line width of the ²⁰⁹Bi signal of BiF₆ at room temperature was found to be 44 Hz. ¹⁹⁴ Unlike XeO₄, the anionic nature of these tetrahedral and octahedral species result in ion pairing in solution possibly causing distortion of the symmetry and an increase in the effective volume (see eq. 3.10 in 3.2.4. T_I Relaxation of the ¹²⁹Xe and ¹³¹Xe Nuclei in XeO₄) and, as a consequence, in broader NMR signals. The line width of 18 Hz for XeO₄ indicates the absence of any significant distortion from T_d symmetry as a consequence of the pronounced rigidity of the tetrahedral molecule with four large Xe=O double bond domains. ## 3.2.4. T_I Relaxation of the ¹²⁹Xe and ¹³¹Xe Nuclei in XeO₄ Spin-lattice relaxation rates for the 129 Xe and 131 Xe nuclei in XeO₄ dissolved in SO₂ClF were studied at variable temperatures and two different magnetic field strengths using a standard inversion recovery experiment. The T_I -values and their corresponding temperatures are given in Table 3.4. The spin-lattice relaxation times of 129 Xe and 131 Xe Table 3.4 T_I -Values for XeO₄ in SO₂ClF Solution at Different Temperatures at 7.0463 (11.744) T | T [°C] | $T_{I}(^{129}\text{Xe}) \text{ [ms]}$ | $T_i(^{131}\text{Xe}) \text{ [ms]}$ | |--------|---------------------------------------|-------------------------------------| | | | | | -42 | 423 | 46.1 | | -50 | 444 | 40.3 | | -61 | 554 | 36.2 | | -70 | 701 (743) | 29.6 (29.4) | | -76 | 801 | 26.7 | | -79 | (834) | (24.9) | range from 423 to 834 ms and from 24.9 to 46.1 ms, respectively. Several relaxation mechanisms can contribute to the observed total spin-lattice relaxation time T_i , the nuclear dipole-dipole interaction (T_i^{DD}) , the chemical shift anisotropy mechanism (T_i^{CSA}) , the nuclear quadrupole interaction (T_i^{Q}) , scalar coupling (T_i^{SC}) , spin rotation mechanism (T_i^{SR}) and the interaction with paramagnetic species, *i.e.*, unpaired electrons (T_i^{E}) . The overall relaxation time is given by eq. (3.8). For quadrupolar $$\frac{1}{T_1^{TOT}} = \frac{1}{T_1^{DD}} + \frac{1}{T_1^{CSA}} + \frac{1}{T_1^{Q}} + \frac{1}{T_1^{SC}} + \frac{1}{T_1^{SR}} + \frac{1}{T_1^{E}}$$ (3.8) nuclei the very strong quadrupolar interaction normally dominates the spin lattice relaxation time. The rate of quadrupolar relaxation is given by eq. (3.9) where I is the $$\frac{1}{T_1^Q} = \frac{3}{40} \left[\frac{(2I+3)}{I^2(2I-1)} \right] \left[1 + \frac{\eta^2}{3} \right] \left[\frac{e^2 Qq}{\hbar} \right]^2 \tau_c$$ (3.9) nuclear spin quantum number, η the asymmetry parameter, Q the quadrupole moment, q the electric field gradient, e the electronic charge, and τ_e the rotational correlation time. The rotational correlation time is the average time for a molecule to rotate by one radian and is a function of temperature T, effective volume of the molecule V and the viscosity of the solvent η as described by the Stokes-Einstein equation (3.10). In the extreme $$\tau_c = \frac{V \eta}{k T} \tag{3.10}$$ narrowing condition the tumbling of the molecule increases with increasing temperature and less effectively induces relaxation. Therefore, T_i^Q increases with increasing temperature as can be seen from equations (3.9) and (3.10) and was found for ¹³¹Xe in XeO₄. For some low Q nuclei, like ⁹Be (I = 3/2, Q = 52.88(38) x 10^{-31} m²)¹⁹⁵ in Be(H₂O)₄²⁺, it was found that the spin rotation mechanism becomes the important relaxation pathway at higher temperatures, *i.e.*, > 50 °C.¹⁹⁶ This results in a maximum in a plot of T_i vs. T since T_i^{SR} follows an inverse T dependence (vide infra). This could not be observed for ¹³¹Xe in XeO₄ because the magnitude of its quadrupole moment (Q = -120(12) x 10^{-31} m²)¹⁹⁵ is much larger than that of ⁹Be and it is not possible to increase the temperature sufficiently because of the kinetic and thermodynamic instability of XeO₄. The inverse temperature dependence of T_I (¹²⁹Xe) in XeO₄ indicates that the spin rotation relaxation is the dominant relaxation pathway. The spin-rotation mechanism is the only spin-lattice relaxation mechanism which exhibits a decrease in T_I with increasing temperature. Spin-rotation relaxation is induced by the interaction of the nuclear spin with the fluctuating local magnetic field generated by the angular change of rotation of the molecules and its bonding electrons and is given by eq. (3.11) where C is the spin $$\frac{1}{T_1^{SR}} = \frac{2kT}{3h^2} I_m C^2 \tau_{SR}$$ (3.11) rotation coupling constant, I_m is the moment of inertia, and τ_{SR} is the angular momentum correlation time. The average time a molecule spends in any given angular momentum state τ_{SR} is given by eq. (3.12) As expected for the highly symmetric XeO₄ molecule, the $$\tau_{SR} \cdot \tau_C = \frac{I_m}{6kT}, \quad for \, \tau_{SR} <
\tau_C$$ (3.12) CSA relaxation mechanism was not found to play a role in the total spin lattice relaxation time, since no significant differences in T_I values were found for ¹²⁹Xe- and ¹³¹Xe- T_I measured at two different field strengths (T = 7.0464 T and 11.744 T) (Table 3.4). Seppelt et al. ^{187,197} reported ¹²⁹Xe T_I values for several xenon compounds assuming a dominant dipole-dipole mechanism. A thorough study of spin-lattice relaxation rates of ¹²⁹Xe in XeF₂ was performed by Jokisaari et al. ¹⁹⁸ They estimated the dipole-dipole mechanism to be negligible. The T_I vs. temperature plot showed a maximum indicating that the CSA mechanism was dominant at low temperatures and that the spin-rotation mechanism was dominant at high temperatures. No maximum in the T_I vs. temperature plot could be found for ¹²⁹Xe in XeO₄. The nuclear dipole-dipole relaxation mechanism is not expected to make a significant contribution to T_I because only spin-dilute nuclei are present in XeO₄. ## 3.2.5. Raman Spectroscopic Characterization of XeO₄ in HF Solution The Raman spectrum of XeO₄ in HF solvent was recorded at -74 °C (Figure 3.2) and the observed frequencies are listed in Table 3.5 and are compared with those of gaseous^{45,48} and solid XeO₄.⁴⁸ The solution spectrum resembles that of XeO₄ in the gas Raman spectrum of an HF solution of XeO₄ recorded in FEP at -74 °C using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines. Figure 3.2 Table 3.5 Vibrational Frequencies and Their Assignments for Solid and Gaseous XeO₄ and for a Solution of XeO₄ in HF | | Frequencies* [cm ⁻¹] | | Assignment | | |-------------------------|----------------------------------|---|----------------------------------|--| | XeO _{4(s)} 48 | XeO _{4(g)} 45,48 | XeO ₄ in HF solvent ^b | $XeO_4(T_d)$ | | | -195 ℃ | r.t. | -74 °C | | | | 875.9
867.0
860.5 | 87 <i>7</i> ° | 878 (5.5) | v ₃ (T ₂) | | | 767.1 | 773 | 776 (100) | $v_i(A_i)$ | | | | | 580 v.br. | unassigned | | | 311.5
301.8
295.7 | 305.7° | 305 (7.5) | v ₄ (T ₂) | | | 280.0
273.6 | n. obs. | 267 (5.5) | v ₂ (E) | | | | | 156 (7) | unassigned | | ^a Values in parentheses denote relative Raman intensities; abbreviations denote: not observed (n.obs.); room temperature (r.t.), very broad (v.br.). Frequencies were obtained by Raman spectroscopy if not indicated otherwise. ^b Bands arising from the FEP sample tube were observed at 294 (8), 381 (5), 386 (6), 578 (1), 733 (27), and 750 (3). ^c Bands were observed in the infrared spectrum of XeO₄ vapour.⁴⁵ phase (differences ≤ 3 cm⁻¹), indicating that the structure of XeO₄ in HF solvent is that of the undistorted tetrahedral molecule found in the gas phase and is in accord with the ¹³¹Xe NMR spectroscopic findings (see 3.2.3. Characterization of XeO₄ in SO₂ClF, BrF₅, and HF Solvent by ¹³¹Xe NMR Spectroscopy). # 3.3.6. Characterization of [Na]₄[XeO₆] by ¹²⁹Xe NMR Spectroscopy The previously reported ¹²⁹Xe chemical shift of XeO₆⁴ (2077 ppm)³⁵ has been frequently quoted as the upper limit of the dynamic range of the ¹²⁹Xe nucleus. ^{124,199} In light of the high shielding observed for ¹²⁹Xe in XeO₄, an extreme high-frequency shift of the XeO₆⁴ anion seemed unlikely. Therefore, [Na]₄[XeO₆] was reinvestigated by ¹²⁹Xe NMR spectroscopy. A sample of solid [Na]₄[XeO₆] placed inside the magnet for less than one hour, did not give rise to any observable ¹²⁹Xe NMR signal after one scan. However, after allowing the sample to equilibrate inside the magnet for ca. 12 h, i.e., after the spins had alligned in the magnetic field, a very broad resonance was observed at ca. -720 ppm ($\Delta v_{ij} = 5000 \text{ Hz}$) with one scan (Figure 3.3). The long time required for equilibration (spin allignment) corresponds to a very long spin-lattice (T_i) relaxation time which is consistent with solid [Na]₄[XeO₆] being a spin-dilute system without a facile T_i relaxation pathway. The ¹²⁹Xe nucleus in [Na]₄[XeO₆] is far more shielded than in XeO₄, which is consistent with the large negative charge. The chemical shift of -720 ppm falls into the range found for Xe(II) compounds, such as XeF⁺ in SbF₅ solvent (25 °C) at -574 ppm, ³⁵ and is lower than any ¹²⁹Xe chemical shifts reported for Xe(IV) and Xe(VI) species (*vide supra*). ¹⁴⁸ The broadness of the NMR line presumably is a consequence of anion distortion from ideal O_h symmetry in the solid state. The assumption of a significant distortion is supported by the failure to observe a ¹³¹Xe NMR signal. A saturated aqueous solution of [Na]₄[XeO₆] (pH = 14) gave rise to a broad ¹²⁹Xe NMR signal at -748 ppm (Δv_{s_1} = 450 Hz) at 30 °C (Figure 3.3) which is in good agreement with the value obtained from the static solid state spectrum. It has been shown by UV spectrophotometry that [Na]₄[XeO₆] dissolves in water (0.003 M) according to eq. (3.13) with HXeO₆³⁻ as the major xenon species in solution at pH > 12. At pH 6 to 8, $$[Na]_4[XeO_6] + H_2O - 4Na^+ + HXeO_6^3 + OH^-$$ (3.13) $$HXeO_6^{3} + H_2O - H_2XeO_6^{2} + OH^{-1}$$ (3.14) H₂XeO₆² was found to be the predominant species in solution (eq. (3.14)).36,37 In acidic solutions, [Na]₄[XeO₆] decomposes almost instantaneously upon formation of H₃XeO₆² (eqs. (3.15) and (3.16)). Even at pH 11.5, an aqueous solution of [Na]₄[XeO₆] (0.003 M) $$H_2XeO_6^{2} + H_2O \Rightarrow H_3XeO_6 + OH$$ (3.15) $$H_3XeO_6^- \rightarrow HXeO_4^- + \frac{1}{2}O_2^- + H_2O$$ (3.16) was found to decompose at a rate of about 1% per hour. The ¹²⁹Xe chemical shift of -748 ppm has to be attributed to the HXeO₆³ anion. The broadness of the ¹²⁹Xe NMR signal Figure 3.3 (a) Static ¹²⁹Xe NMR spectrum (55.640 MHz) of solid [Na]₄[XeO₆] at room temperature and (b) ¹²⁹Xe NMR spectrum (138.983 MHz) of a saturated aqueous solution of [Na]₄[XeO₆] at -30 °C. is likely a consequence of acid-base equilibria (3.13) to (3.15) and slow decomposition yielding paramagnetic O_2 . #### 3.3. Conclusion The previously known XeO₄ has been stabilized in solution and characterized by 129 Xe, 131 Xe, and 17 O NMR spectroscopy. The highly symmetric environment around xenon in XeO₄ gave rise to a surprisingly narrow 131 Xe NMR signal ($\Delta v_{v_1} = 18$ Hz; SO₂CIF solvent at -79 °C), the first reported 131 Xe NMR resonance of chemically bound xenon. The temperature dependance of 129 Xe spin-lattice relaxation time established the dominance of the spin-rotation relaxation mechanism. The temperature dependance of 131 Xe T_I -values is in agreement with the dominant quadrupolar relaxation. The investigation of solid and aqueous [Na]₄[XeO₆] by 129 Xe NMR spectroscopy showed that the previously reported chemical shift³⁵ was erroneous and the correct value exhibits an extreme low-frequency shift. #### CHAPTER 4 ## LEWIS-ACID PROPERTIES OF XeO. #### 4.1. Introduction Xenon tetroxide is the only neutral main-group tetroxide that has been prepared. Its infamous instability in the solid state has thus far prevented investigations of its Lewis-acid properties. The stability of XeO₄ in solution (see Chapter 3) made it possible to study its solution chemistry. The transition metal analogue, OsO₄, behaves as a Lewis acid towards a variety of nitrogen donor molecules and fluoride ions (see 1.3. Osmium(VIII) Chemistry and Chapter 6). The present Chapter investigates Lewis acid properties of XeO₄. Xenon tetroxide is expected to behave in a similar fashion as OsO₄. #### 4.2. Results and Discussion #### 4.2.1. Lewis-Acid Properties of XeO, Towards CH, CN 4.2.1.1 Preparation and NMR Spectroscopic Characterization of XeO₄(CH₃CN). Xenon tetroxide dissolves in CH₃CN solvent yielding a clear, colourless solution (eq. (4.1)) which was characterized by ¹²⁹Xe NMR spectroscopy at -40 °C. In the ¹²⁹Xe $$XeO_4 + CH_3CN \Rightarrow XeO_4(CH_3CN)$$ (4.1) NMR spectrum, only a singlet at 224.9 ppm was observed. This extreme high-frequency shift with respect to $\delta(^{129}\text{Xe})$ of XeO₄ in SO₂ClF (-92.9 ppm; -80 °C), HF(-85.8 ppm; -75 °C), and BrF₅ (-94.7 ppm; -50 °C) solvents indicates a strong interaction between XeO₄ and the donor solvent acetonitrile resulting in the formation of the XeO₄(CH₃CN) (I) $$O = Xe - NCCH_3$$ adduct with approximate $C_{3\nu}$ symmetry, analogous to the adduct formation of OsO₄ with various N donor molecules (see 1.3. Osmium(VIII) Chemistry). ⁵³⁻⁶¹ The deshielding of the ¹²⁹Xe nucleus in XeO₄(CH₃CN) can be explained in terms of Jameson and Gutowsky's formula for the paramagnetic shielding term (eq. (3.3)). ¹⁸⁸ For spherically symmetric closed shell cases like Xe_(g), the minimum value of zero results and corresponds to the most shielded NMR environment for the nuclide in question. In the tetrahedral molecule, XeO₄, the "imbalance" in the electron population, P_{ν} and D_{ν} , is small. Upon coordination of CH₃CN, the P_{ν} and D_{ν} terms are expected to increase resulting in a paramagnetic shift (shift to higher frequency) of the ¹²⁹Xe NMR signal. No signal near the corresponding chemical shift value of XeO₄(CH₃CN) (5487 ppm with respect to Xe gas in Freon 114) was detected in the ¹³¹Xe NMR spectrum of XeO₄ in CH₃CN indicating that the tetrahedral symmetry of XeO₄ is significantly lowered in the CH₃CN adduct. No separate ¹H and ¹³C NMR signal for complexed CH₃CN in the adduct could be detected because of fast exchange on the NMR time scale between complexed CH₃CN and free CH₃CN solvent. Prior to this work, a significant high-frequency shift has also been found for the ¹²⁹Xe resonance in xenon(VI) oxide fluorides, XeOF₄ and XeO₂F₂, in CH₃CN solvent (Table 4.1). ¹⁴⁸ Only a small difference in chemical shift values for XeO₃ dissolved in H₂O and CH₃CN has been found and indicates strong interactions of XeO₃ with both solvents. No ¹²⁹Xe chemical shift value for XeO₃ in a non-coordinating solvent is available. The attempted reaction of XeO₄ with an excess (>1.5-fold) CH₃CN in SO₂ClF solvent gave rise to an
¹²⁹Xe NMR signal at -95.64 ppm (-80 °C) corresponding to XeO₄ dissolved in SO₂ClF. The absence of a ¹²⁹Xe resonance for XeO₄(CH₃CN) indicates the presence of equilibrium (4.1), where adduct formation is only observed with a large excess of CH₃CN. 4.2.1.2. Raman Spectroscopic Characterization of XeO₄(CH₃CN). A Raman spectrum of the clear solution of XeO₄ in CH₃CN was recorded at -37 °C. A trace of the spectrum is shown in Figure 4.1 and the Raman frequencies with their tentative assignments are listed in Table 4.2. Eight bands, excluding the internal ligand bands, are expected for XeO_4L ($C_{3\nu}$), $L=CH_3CN$ and belong to the irreducible representations $4A_1+4E$ with all modes being Raman and infrared active. Three bands were observed in the Xe-O stretching region. The stretching modes at 782 and 902 cm⁻¹ are shifted by 6 and 14 cm⁻¹, respectively, to higher frequency compared to those of XeO_4 in HF solvent. However, the weighted average of the stretching frequencies decreases from 853 cm⁻¹ for XeO_4 to 841 cm⁻¹ for XeO_4 (CH₃CN) Table 4.1 ¹²⁹Xe Chemical Shifts of XeOF₄, XeO₂F₂, XeO₃ and XeO₄ in Various Solvents ¹⁴⁸ | Species | δ(¹²⁹ Xe) [ppm] | Solvent | T [°C] | |---------------------------------|-----------------------------|--------------------|--------| | XeOF ₄ | 0 | neat | 25 | | | 23.7 | HF | -50 | | | -29.9 | CFCl ₃ | 24 | | | 164.7 | CH ₃ CN | -40 | | | | | | | XeO ₂ F ₂ | 171.0 | HF | -50 | | | 263.0 | CH ₃ CN | -40 | | | | | | | XeO ₃ | 217.0 | H ₂ O | 25 | | | 218.1 | CH ₃ CN | -40 | | | | | | | XeO ₄ * | -85.8 | HF | -75 | | | 224.9 | CH ₃ CN | -40 | ^a Present work. Raman spectrum of a solution of XeO₄ in CH₃CN recorded in ¼-in. FEP tube at -38 °C using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines; daggers (†) denote CH3CN bands. Figure 4.1 Table 4.2 Raman Frequencies and Their Assignments for a Solution of XeO₄ in CH₃CN | | | | |--|--|--| | Frequencies ^a [cm ⁻¹] | Assignment $XeO_4L (C_{3\nu}); L = CH_3CN$ | | | XeO ₄ (CH ₃ CN) ^b | | | | | | | | 2272 (67)sh | v(CN) | | | 942 (8)sh | v(CC) | | | 902 (19) | $v_1(A_1), v_{as}(XeO_4)$ | | | 840 (13) | $v_3(E)$, $v_{as}(XeO_4)$ | | | 782 (100) | $v_2(A_1), v_s(XeO_4)$ | | | 538 (2) | $v_3(A_1), v_s(XeN)$ | | | 340 (7) | δ(XeO ₄) | | | 308 (9) | δ(XeO ₄) | | | | | | ^a Values in parentheses denote relative Raman intensities. ^b Bands arising from the FEP sample tube were observed at 733 (25), 594 (1), 572 (<0.5), and 292 (4) cm⁻¹; bands arising from CH₃CN solvent were observed at 381 (542), $v_8(E)$; 920 (1142), $v_4(A_1)$; 1041 (14), $v_7(E)$; 1374 (256), $v_3(A_1)$; 1414 (78), 1448 (100), $v_6(E)$; 1827 (6), 2090 (2), 2204 (96), $2v_4+v_4$; 2228 (33), 2253 (3311), $v_2(A_1)$; and 2293 (222) cm⁻¹, v_3+v_4 (see ref. (200)). which correspond to an overall weakening of the Xe-O bonds upon adduct formation. The weak, new band at 538 cm⁻¹ is tentatively assigned to the Xe-N stretch, since no XeO₄ or CH₃CN bands appear in this region. Only two of the four bending modes were observed. The two unobserved bending modes are likely hidden by the strong CH₃CN solvent band at 381 cm⁻¹ or are too weak to be observed. Complexation shifts for some of the CH₃CN bands of XeO₄(CH₃CN) were observed as weak shoulders on the intense, broad CH₃CN solvent bands. # 4.2.2. Fluoride Ion Acceptor Properties of XeO4 4.2.2.1. Preparation of the cis- and trans-XeO₄F₂²⁻ Anions. The reaction of XeO₄ and CsF in HF solvent did not yield a new Xe(VIII) oxide fluoride anion. The ¹²⁹Xe and ¹³¹Xe NMR and Raman spectra showed only the presence of XeO₄ in solution. Thus, XeO₄ is a weaker Lewis acid than HF (eq. (4.2)). However, when the reaction was carried out in $$CsF + HF + XeO4 \xrightarrow{HF} > [Cs][HF2] + XeO4$$ (4.2) $$2CsF + XeO_4 \xrightarrow{CH_3CN} > [Cs]_2[XeO_4F_2]$$ (4.3) CH₃CN solution, a white precipitate formed according to eq. (4.3). While the ¹²⁹Xe NMR spectrum of the solution showed that small amounts of XeO₄(CH₃CN) (δ = 224.9 ppm) were still present, the Raman spectrum of the white solid established the presence of the new xenon oxide fluoride anions, *trans*-XeO₄F₂²⁻ (II) and *cis*-XeO₄F₂²⁻ (III). The reaction of XeO₄ and [N(CH₃)₄][F] in CH₃CN solvent yielded a white solid according to eq. (4.4) under a yellow solution. The yellow colouration of the solution is $$2[N(CH_3)_4][F] + XeO_4 \xrightarrow{CH_3CN} > [N(CH_3)_4]_2[XeO_4F_2]$$ (4.4) in contrast to the colourless solution of XeO₄ in CH₃CN in the absence of [N(CH₃)₄][F], indicating the presence of a new xenon(VIII) oxide fluoride in solution, presumably [N(CH₃)₄][XeO₄F]. However, ¹²⁹Xe NMR spectrum of the yellow solution did not show a signal. This behaviour resembles that of a solution of [N(CH₃)₄][OsO₄F] in CH₃CN which also did not produce a ¹⁹F NMR signal and is a consequence of exchange (see Chapter 6). Other than the colouration, no further evidence for the XeO₄F anion was found. The white precipitate was characterized by Raman spectroscopy showing the presence of the *trans*-XeO₄F₂²⁻ (II) and *cis*-XeO₄F₂²⁻ (III) anion bands as well as the N(CH₃)₄* cation bands. During the preparation, a small amount of the white solid was left above the solvent level at room temperature for several minutes. It only detonated when the FEP sample tube was heat-sealed near the solid deposit. This indicates that the $[N(CH_3)_4]_2[cis-XeO_4F_2]$ and $[N(CH_3)_4]_2[trans-XeO_4F_2]$ salts are remarkably stable and is likely a consequence of pseudo-octahedral xenon environment, as found for the XeO₆⁴ anion. 4.2.2.2. Raman Spectroscopic Characterization of the cis- and trans- $XeO_4F_2^2$ Anions. The Raman spectra of $[Cs]_2[XeO_4F_2]$ and $[N(CH_3)_4]_2[XeO_4F_2]$ are shown in Figures 4.2 and 4.3 and the observed frequencies with their tentative assignments are listed in Table 4.3. A priori, three different anions can possibly be formed, XeO_4F (C_{3v}), trans- $XeO_4F_2^{2-}$ (D_{4h}), and cis- $XeO_4F_2^{2-}$ (C_{2v}). In the case of XeO_4F , the normal modes span the reducible representation $\Gamma = 4A' + 4E$ where all modes are Raman and infrared active and three Xe-O stretching bands are expected (2A' + E). A total of 15 bands are expected for cis- $XeO_4F_2^{2-}$ ($6A_1 + 2A_2 + 3B_1 + 4B_2$) where all modes are Raman active, while A_1 , B_1 , and B_2 are infrared active and the four Xe-O stretches should be observed in the Raman spectrum. For trans- $XeO_4F_2^{2-}$, 11 bands are expected ($2A_{1g} + 2A_{2u} + B_{1g} + B_{2g} + B_{2u} + E_g + 3E_u$) where only A_{1g} , B_{1g} , B_{2g} , and E_g are Raman active, while the other modes are infrared active and the two Xe-O stretching bands (A_{1g} and B_{1g}) should be observed in the Raman spectrum. Several Raman spectra of the white precipitate resulting from the reaction between XeO₄ and CsF or [N(CH₃)₄][F] in CH₃CN were recorded at different reaction times in different sample regions which allowed a distinction to be made between two groups of signals in the Xe-O stretching region. For the Cs⁺ (N(CH₃)₄⁺), salts Xe-O stretching bands were observed at 767 and 793 (770 and 800) cm⁻¹ for the one compound and at 825, 809, and 757 (828, 785, 760, and 722) cm⁻¹ for a second compound. Since the stretching FEP tube at -39 °C using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines; daggers (†) denote Raman spectrum of the white reaction product resulting from the reaction of XeO, with CsF recorded in a 1/4-in. CH₃CN bands. Figure 4.2 Figure 4.3 Raman spectrum of the white reaction product resulting from the reaction of XeO₄ with [N(CH₃)₄][F] in CH₃CN recorded in a ½-in. FEP tube at (a) -40 °C and (b) -165 °C on two different samples using 1064-nm excitation. Asterisks (*) denote FEP sample tube lines; daggers (†) denote CH₃CN bands. Table 4.3 Raman Frequencies and Their Assignments for $[N(CH_3)_4]_2[XeO_4F_2]$ and $[Cs]_2[XeO_4F_2]$ | Frequencies* [cm ⁻¹] | | Assignment | | | |--|----------------------|--|--|--| | [N(CH ₃) ₄] ₂ [XeO ₄ F ₂] ^{b.c} | $[Cs]_2[XeO_4F_2]^d$ | trans-XeO ₄ F ₂ ² | cis-XeO ₄ F ₂ ² | | | | 833 (2)sh | | | | | 828 vw | 825 (13) | | $v_{x}(XeO_4)$ | | | | 817 (16)sh | | B (***** 4 / | | | 785 w | 809 (29) | | $v_{ss}(XeO_4)$ | | | 800 w | 794 (3) | v _{ss} (XeO ₄) | | | | 770 s | 765 (19) | $v_s(XeO_4)$ | | | | 760 m | 757 (100) | | v _s (XeO ₄) | | | 720 s | , , | | $v_{as}(XeO_4)$ | | | 598 w | 597 (3)° | v(Xe-F) | v(Xe-F) | | | 538 vw | 536 (1) | v(Xe-F) | (616-1) | | | 420 vw | | Xe-O/F bends | | | | 109 w | | | | | | 394 s | | | | | | 391 m | | | | | | 336 w | 334 (4) | δ(XeO) | | | | | 327 (4) | · | | | | | 319 (4) | | | | | | 198 (2) | | | | | | 186 (1) | | | | | | 127 (<0.5) | | | | ^a Values in parentheses denote relative Raman intensities; abbreviations denote: shoulder (sh), very strong band (vs), strong (s), medium (m), weak (w), very weak (vw). ^b Because of low signal-to-noise ratio and significant overlap, numerical relative intensities are not listed (see Figure 4.3). - ^c The N(CH₃)₄ cation modes were observed at 460 vw, v₁₉(T₂); and 958 m cm⁻¹, v₁₈(T₂) (see ref. (201, 202); bands arising from the FEP sample tube were observed at 293 s, 380 s, 386 vs, 579 w, 734 vs cm⁻¹; bands arising from CH₃CN solvent were observed at 380 s, v₈(E); and 921 vs cm⁻¹, v₄(A₁) (see ref. (200)). - ^d Bands arising from the FEP sample tube were observed at 732 (47), 597 (3), 576 (4), 386 (29)sh, 381 (42), 292 (12), and 280 (3) cm⁻¹; bands arising from CH₃CN solvent were observed at 381 (42), v₈(E); 919 (43) cm⁻¹, v₄(A₁) (see ref. (200)). - ^e This band overlaps with a band arising from the FEP sample tube. frequencies of
these two XeO₄F adducts appear in the same frequency range, the formation of the *trans*- and *cis*-XeO₄F₂²⁻ anions was assumed, rather than the XeO₄F and XeO₄F₂²⁻ anions. A significant difference in the Xe-O stretching frequencies of the XeO₄F₂²⁻ and the XeO₄F anions is expected, by analogy with the OsO₄F and OsO₄F₂²⁻ anions (see Chapter 6). The assignment of the *trans*- and *cis*-isomer to the two groups of Xe-O stretching bands is based on the number of observed Raman bands. The bands at 757 (760) and 765 (770) cm⁻¹ are assigned to the symmetric Xe-O stretching frequencies of the *cis*- and *trans*-XeO₄F₂²⁻ anions and are shifted to lower frequency with respect to the symmetric stretch of XeO₄ at 776 cm⁻¹ (see 3.2.5. Raman Spectroscopic Characterization of XeO₄ in HF Solvent). The asymmetric Xe-O stretching bands of both anions appear at much lower frequencies than that of XeO₄ (878 cm⁻¹) indicating a more polar, weaker Xe-O bonds in the anions. Two weak bands were detected at 536 and 597 cm⁻¹ in the Xe-F stretching region providing additional support for two xenon oxide fluoride species. The salts, $[N(CH_3)_4]_2[cis-XeO_4F_2]$ and $[N(CH_3)_4]_2[trans-XeO_4F_2]$, were significantly weaker Raman scatterers than their Cs⁺ analogues. The occurance of fluorescence in the case of the $N(CH_3)_4$ ⁺ salts in Raman spectra excited by the Ar⁺ (514.5-nm) and Kr⁺ (647.1-nm) lasers complicated the characterization. #### 4.3. Conclusion It was shown that XeO₄ acts as a Lewis acid towards fluoride as well as nitrogen bases, like its more stable transition metal analogue, OsO₄. In contrast to OsO₄F₂² (see Chapter 6), which exists only as the *cis*-isomer, Raman spectroscopic evidence was found for the presence of the *cis*-XeO₄F₂²⁻ and *trans*-XeO₄F₂²⁻ anions. The XeO₄(CH₃CN) adduct provides the first example of a Xe(VIII)-N bond. ### **CHAPTER 5** # PREPARATION AND NMR SPECTROSCOPIC CHARACTERIZATION OF XeO₃F₂ AND THE ATTEMPTED PREPARATION OF NEW XENON(VIII) OXIDE FLUORIDES #### 5.1. Introduction Two oxide fluorides of xenon(VIII), XeO_3F_2 and XeO_2F_4 , have been reported in the literature. Xenon trioxide difluoride has been prepared by Huston from the reaction of solid XeO_4 or $[Na]_4[XeO_6]$ with XeF_6 by fluorine-oxygen metathesis. ^{8,9,49} The first evidence for XeO_3F_2 was obtained from mass spectrometry, ⁴⁹ followed by Raman and infrared spectroscopic characterization of matrix-isolated XeO_3F_2 which indicated a monomeric structure with D_{3k} symmetry (structure I). Xenon dioxide tetrafluoride was only observed in the mass spectrum as the product of the reaction between XeO₃F₂ and XeF₆ in XeOF₄ solvent.¹⁰ Rapid decomposition to XeOF₄ prevented the structural elucidation of XeO₂F₄. Unlike OsO₂F₄, XeO₂F₄ is expected to exist as its *cis*- (structure II) and trans-isomer (Structure III), since the isoelectronic IO₂F₄ anion has been found as a mixture of cis- and trans-IO₂F₄ (see Chapter 10). 102,103 Attempts to fluorinate XeO₄ to XeO₃F₂ using FSO₃H, F₂, KrF₂, SbF₅, ClF₃, ClF₅, IF₅, and IF₇ have failed.^{9,10} Chlorine trifluoride and ClF₅ act as reducing agents towards XeO₃F₂ forming ClO₃F and lower, non-specified xenon compounds.¹⁰ Also, the reaction of XeO₃F₂ with SbF₅ and IF₇ did not yield XeO₂F₄.^{9,10} Instead, solid adducts have been reported which were not further investigated. #### 5.2. Results and Discussion # 5.2.1. Preparation and NMR Spectroscopic Characterization of XeO₃F₂ Xenon trioxide difluoride, XeO₃F₂, was prepared by reaction of XeO₄ with XeF₆ in SO₂ClF, HF, and BrF₅ solvents by a fluorine/oxygen metathesis reaction (eq. (5.1)) by $$XeO_4 + XeF_6 \longrightarrow XeO_3F_2 + XeOF_4$$ (5.1) analogy with the synthetic approach of Huston. The reaction of [Na]₄[XeO₆] with XeF₆ in SO₂ClF and BrF₅ yielded XeO₄ and XeOF₄ as the initial products according to eq. (5.2) $$[Na]_4[XeO_6] + 2XeF_6 \longrightarrow XeO_4 + 2XeOF_4 + 4NaF$$ (5.2) based on ¹²⁹Xe ([Na]₄[XeO₆] + 16.5XeF₆ in SO₂ClF, -78 °C; XeOF₄: 13.4 ppm, ¹J(¹²⁹Xe-¹⁹F) = 1119 Hz; XeO₄: -93.40 ppm; XeF₆: -41.0 ppm, Δν₂ = 340 Hz) and ¹⁹F ([Na]₄[XeO₆] + XeF₆ in SO₂ClF, -82 °C; XeOF₄: 94.89 ppm, ¹J(¹²⁹Xe-¹⁹F) = 1114 Hz; XeF₆: 115.92 ppm; [Na]₄[XeO₆] + 8XeF₆ in BrF₅, -55.5 °C; XeOF₄: 94.89 ppm, ¹J(¹²⁹Xe-¹⁹F) = 1101 Hz; XeF₆: 118.23 ppm) NMR spectroscopy. Reaction (5.2) occurs at temperatures as low as -80 °C in SO₂ClF. Huston reported reaction (5.2), in the absence of a solvent, and characterized the products by mass spectrometry.⁴⁹ The vigorous, sometimes explosive interaction of [Na]₄[XeO₆] with HF solvent at -78 °C yields XeO₄ according to eq. (5.3) and two new, insoluble xenon oxide species, whose nature could $$[Na]_4[XeO_6] + 8HF \longrightarrow XeO_4 + 2H_2O + 4[Na][HF_2]$$ (5.3) not be unambiguously determined (see 5.2.3, Interaction of [Na]₄[XeO₆] with HF). Xenon tetroxide generated by eqs. (5.2) or (5.3) subsequently reacts with XeF₆ according to eq. (5.1) yielding low concentrations of XeO₃F₂. The rate of reaction (5.1) was very slow at -40 °C. Only a very small amount of XeO₃F₂ was observed in the ¹⁹F NMR spectrum after warming a sample of [Na]₄[XeO₆] with an excess of XeF₆ in SO₂ClF to -40 °C for 15 min. Reaction (5.1) was found to be rapid above -20 °C, and after 2 to 3 min at -10 °C, ¹²⁹Xe and ¹⁹F NMR signals arising from XeO₃F₂ could be detected in samples of XeO₄ or [Na]₄[XeO₆] with XeF₆ in BrF₅ solvent. The concentration of XeO_3F_2 increased at -10 or 0 °C, however, the increase in the total amount of XeO_4 indicated that decomposition of XeO_3F_2 to $XeOF_4$ and O_2 , likely through XeO_2F_4 as an intermediate (eqs. (5.4) and (5.5)), was also taking place at $$XeO_3F_2 + XeF_6 \longrightarrow [XeO_2F_4] + XeOF_4$$ (5.4) $$[XeO_2F_4]$$ ----> $XeOF_4$ + $\frac{1}{2}O_2$ (5.5) a significant rate. No direct NMR spectroscopic evidence for the intermediate formation of XeO₂F₄ was found at any time during the experiment, presumably because decomposition (5.5) is rapid above -40 °C. The rapid decomposition of XeO₃F₂ in the presence of XeF₆ has also been reported by Huston. However, when a sample of XeO₄ with excess XeF₆ in BrF₅ was allowed to warm between -30 and -25 °C for 3 h and 40 min, the 129Xe NMR spectrum showed that the signal for XeO4 had disappeared while the signal for XeO₃F₂ was still present, indicating that the decomposition of XeO₃F₂ does not occur at an appreciable rate at -30 °C. Even at 0 °C, the decomposition of XeO₃F₂ was not as rapid as described by Huston.8 It has not been possible to prepare XeO3F2 in the higher concentrations needed for synthetic work because it is difficult to control the rates of XeO₃F₂ formation and the competing decomposition. Huston's preparative approach of reacting neat XeO₄ and XeF₆ will be utilized in the future, followed by the stablization of the generated XeO₃F₂ in SO₂ClF, BrF₅, and HF solvents, and may provide a means to obtain concentrations of XeO₃F₂ sufficient to investigate its Lewis acid and base chemistry. In samples of [Na]₄[XeO₆] and XeO₄ with XeF₆ in HF solvent, XeO₂F₂ was detected in solution besides XeOF₄ (19 F; [Na]₄[XeO₆] + 8XeF₆, -80 $^{\circ}$ C; XeOF₄: 91.00 ppm, 1 J(129 Xe- 19 F) = 1146 Hz; XeO₂F₂ 88.45 ppm, 1 J(129 Xe- 19 F) = 1218 Hz). The formation of XeO₂F₂ can be explained according to reaction (5.6) or by the decomposition of XeO₃F₂ to O₂ and XeO₂F₂ (eq. (5.7)), which was suggested by Huston. In the sample of [Na]₄[XeO₆] with XeF₆ in HF, also hydrolysis reactions (5.8) and (5.9) with water that was generated by eq. (5.3) will increase the concentrations of XeOF₄ and XeO₂F₂. Several $$2XeO_4 + XeF_6 \xrightarrow{HF} > 2XeO_3F_2 + XeO_2F_2$$ (5.6) $$XeO_3F_2 \longrightarrow XeO_2F_2 + ½O_2$$ (5.7) $$XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$$ (5.8) $$XeOF_4 + H_2O \longrightarrow XeO_2F_2 + 2HF$$ (5.9) samples in HF and BrF₅ solvents also generated XeF₂ at temperatures as low as -30 °C (129 Xe; XeO₄ + XeF₆ in BrF₅, -50 °C; XeF₂: -1665.8 ppm, 1 J(129 Xe- 19 F) = 5623 Hz). The formation of XeF₂ in these reactions is not well understood, but might result from the decomposition of XeO₂F₂ (eq. (5.8)), which is formed by reaction (5.6) or (5.7). Xenon difluoride dioxide is known to be thermodynamically unstable with respect to decomposition to O₂ and XeF₂, however, it was found to be kinetically stable at room temperature for several weeks.²⁰³ The reaction conditions may somehow lower the kinetic barrier to decomposition (5.10). $$XeO_2F_2 \longrightarrow O_2 + XeF_2$$ (5.10) In contrast to Huston's preparation, XeO₃F₂ was obtained in SO₂ClF, HF, and BrF₅ solutions making possible the first NMR spectroscopic characterization of XeO₃F₂. The ¹⁹F NMR spectrum of XeO₃F₂ obtained from the reactions of [Na]₄[XeO₆] with XeF₆ in SO₂ClF is shown in Figure 5.1, and the ¹²⁹Xe NMR spectrum of XeO₃F₂ obtained from a sample of XeO₄ and XeF₆ in BrF₅ is shown in Figure 5.2. The NMR spectroscopic data for XeO₃F₂ in SO₂ClF, HF, and BrF₅ at -80, -75, and -50 °C, respectively, are listed in Table 5.1. The presence of XeO_3F_2 was established based on the multiplicity of the ¹²⁹Xe NMR signal. The ¹²⁹Xe NMR spectrum of XeO_3F_2 consists of a triplet at -414.5 ppm with ¹ $J(^{129}Xe^{-19}F) = 991$ Hz (-80 °C in SO_2ClF) and results from coupling between ¹²⁹Xe with two equivalent fluorine atoms. The ¹⁹F NMR spectrum shows a singlet at 229.5 ppm (-80 °C in SO_2ClF) with a single set of ¹²⁹Xe satellites and arises from the two equivalent fluorine ligands in XeO_3F_2 spin-spin coupled to the central ¹²⁹Xe (natural abundance, 26.44%). The ¹²⁹Xe chemical shift of XeO_3F_2 appears at lower frequency than the resonance of XeO_4 (-92.9 ppm at -79 °C in SO_2ClF ; see Chapter 3) and is in accord with the general trend of monotonic deshielding of the central atom with increasing oxygen substitution that is, for instance, found for the series (XeF_6)₄ (-35 to -60.8 ppm), $XeOF_4$ (-29.9 to 23.7 ppm), XeO_2F_2 (171.0 to 173.2 ppm), XeO_3 (217.0
ppm). ¹⁴⁸ This trend has been attributed to resonance structures $Xe=O \leftrightarrow Xe^*-O$, which result in increases in the P_u and D_u terms in eq. (3.1) and a decrease in the paramagnetic shielding term. ¹⁸⁸ ¹⁹F NMR spectrum (282.409 MHz) of XeO₃F₂ (A) and XeO₃F₃ (B) in SO₂CIF at -80 °C. Figure 5.1 ¹²⁹Xe NMR spectrum (83.47 MHz) of XeO₃F₂ (A) and XeO₃F₃ (B) in BrF₅ at -50 °C. Figure 5.2 Table 5.1 NMR Spectroscopic Data for XeO₃F₂ and XeO₃F₃. | | Chemical | Shift [ppm] | ¹ J(¹²⁹ Xe- ¹⁹ F) [Hz] | Solvent | T [°C] | |-----------------------------------|----------|-------------------|--|---------------------|--------| | | 19F | ¹²⁹ Xe | | | | | XeO ₃ F ₂ | 229.5 | -414.5 | 991 | SO ₂ CIF | -80 | | | 223.9 | -412.9 | 1015 | HF | -75 | | | | -413.5 | 994 | BrF ₅ | -50 | | XeO ₃ F ₃ · | | -689.3 | 1403 | BrF ₅ | -50 | | | 300.5 | | 1349 | BrF ₅ | -50 | | | 297.7 | | 1373 | SO₂CIF | -80 | However, the ¹²⁹Xe chemical shift of -414.5 ppm (-80 °C in SO₂CIF) is lower than the known chemical shift range of Xe(VI) species (-357.9 to 704.3 ppm) and contrasts with the general trend of increasing chemical shift with increasing formal oxidation number found for Xe(0) to Xe(VI) (see Chapter 3) and for the positive oxidation states of other spin-active nuclei. ²⁰⁴ The ¹⁹F chemical shift of XeO₃F₂ at 229.5 ppm (-80 °C in SO₂CIF) is significantly more deshielded than ¹⁹F resonances in lower oxidation state xenon fluorides and oxide fluorides confirming the presence of a Xe(VIII) species. This high-frequency shift is expected since xenon in its highest oxidation states efficiently removes electron density from the fluorine ligands and deshields the latter. The coupling constant of 991 Hz (-80 °C in SO₂CIF) is consistent with a change in the sign of the coupling constants occurring on going from Xe(VI) to Xe(VIII) as suggested by Gillespie and Schrobilgen. ²⁰⁵ This finding will be discussed in the following section together with the # 5.2.2. Preparation and NMR Spectroscopic Characterization of the XeO₃F₃. Anion The XeO₃F₃ anion was prepared in low concentrations in samples containing XeO₄ and XeF₆ in BrF₅ as well as in samples of [Na]₄[XeO₆] and XeF₆ in BrF₅ and SO₂ClF. The anion was generated, together with XeO₃F₂, after allowing the samples to warm between -15 to -10 °C for several minutes. However, the exact conditions for the formation of XeO₃F₃ are presently not well understood. Attempts to generate larger amounts of XeO₃F₃ failed and the reproducibility of its preparation was poor. Reaction temperatures as low as -25 °C do not seem to give rise to detectable amounts of XeO₃F₃, moreover, XeO₃F₃ that was previously present disappeared at that temperature. Longer reaction times at -10 °C did not yield higher concentrations of XeO₃F₃ presumably because of a competing decomposition. The counter cations are thought to be the XeF₅*/Xe₂F₁₁* cations in the sample containing XeO₄ and XeF₆ in BrF₅ since XeF₆ is known to be a good fluoride ion donor (eq. (5.11)). Fast exchange of the xenon and $$nXeF_6 + XeO_3F_2 \xrightarrow{BrF_5} [Xe_nF_{5m+1}][XeO_3F_3]; n = 1,2$$ (5.11) fluorine environments of the $XeF_5^*/Xe_2F_{11}^*$ cations with those of XeF_6 prevented the NMR spectroscopic observation of the cations. No fluorine ligand exchange between the $XeF_5^*/Xe_2F_{11}^*$ cations and the BrF_5 solvent occurs, since the ¹⁹F resonances of BrF_5 show well resolved ¹⁹F-¹⁹F couplings (-55 °C; F_{xx} : 274.21 ppm; F_{eq} : 136.21 ppm; $^2J(^{19}F_{-}^{-19}F) = 75$ Hz). The NaF generated in samples containing [Na]₄[XeO₆] and XeF₆ in SO₂ClF and BrF_5 (eq. (5.2)) presumably acts as the fluoride ion source according to eq. (5.12). The $$NaF + XeO3F2 = \frac{SO.CIF/BrF3}{SO.CIF/BrF4} > [Na][XeO3F3]$$ (5.12) XeO₃F₃ anion was never observed in HF solvent indicating that HF is a better fluoride ion acceptor than XeO₃F₃. The ¹²⁹Xe and ¹⁹F NMR spectra of XeO₃F₃ are shown in Figures 5.1 and 5.2, respectively, and the corresponding NMR data are listed in Table 5.1. The presence of XeO₃F₃ was established based on the mulitplicity of the ¹²⁹Xe NMR signal. The ¹²⁹Xe NMR spectrum of XeO₃F₃ shows a quartet at -689.3 ppm with ¹J(¹²⁹Xe-¹⁹F) = 1403 Hz (-50 °C in BrF₅) arising from three equivalent fluorine ligands coupled to the central xenon. The ¹²⁹Xe chemical shift is more shielded than the neutral parent compound, XeO₃F₂. This is in agreement with the general finding that the central atoms in the anions are more shielded than in their neutral precursors.²⁰⁴ The binomial quartet multiplicity of the ¹²⁹Xe NMR signal indicates a fac-arrangement of the three fluorine ligands (structure IV) whereas the mer-arrangement is expected to give rise to a binomial doublet and triplet. Although a fast intramolecular exchange in a pseudo-octahedral *mer*-XeO₃F₃-isomer could account for the observed ¹²⁹Xe NMR spectrum, it is not very likely at low temperature. The detection of the ¹³¹Xe NMR signal or ¹³¹Xe-¹⁹F coupling in the ¹⁹F spectrum would unambiguously confirm the *fac*-geometry, since the electric field gradient at the central nucleus for *fac*-ligand arrangements is zero. ²⁰⁶ Unfortunately, the low intensity of the NMR signals did not permit the observation of a ¹³¹Xe NMR signal or ¹³¹Xe satellites at -50 and -80 °C in BrF₅ and SO₂ClF solvents, respectively. The ¹⁹F NMR spectrum consists of a singlet at 300.5 ppm (-50 °C in BrF₅) with ¹²⁹Xe satellites, ${}^{1}J({}^{129}\text{Xe}{}^{-19}\text{F}) = 1349$ Hz. Although a dissociative chemical exchange of F would give a single ¹⁹F resonance, it would also lead to collapse of the ${}^{1}J({}^{129}\text{Xe}{}^{-19}\text{F})$ coupling and can be ruled out on the basis of the observation of the 1:3:3:1 quartet in the ¹²⁹Xe NMR spectrum (*vide supra*). The difference between the coupling constants obtained in the ¹⁹F and ¹²⁹Xe NMR spectra arises from the poor signal to noise ratio in the ¹²⁹Xe NMR spectrum. The size of this coupling constant confirms the suggested reversal in the sign of the one-bond ¹²⁹Xe-¹⁹F coupling constants on going from Xe(VI) to Xe(VIII) species.²⁰⁵ It has been noted that the ranges of ¹J(¹²⁹Xe-¹⁹F) for Xe(II), Xe(IV), and Xe(VI) fluorides and oxide fluorides are nearly non-overlapping: ¹⁴⁸ $${}^{1}J({}^{129}Xe(II)-{}^{19}F_{terminal}) = -7594 \text{ to } -5572 \text{ Hz}$$ ${}^{1}J({}^{129}Xe(II)-{}^{19}F_{bridge}) = -5117 \text{ to } -4828 \text{ Hz}$ ${}^{1}J({}^{129}Xe(IV)-{}^{19}F) = -3913 \text{ to } -2384 \text{ Hz}$ ${}^{1}J({}^{129}Xe(VI)-{}^{19}F) = -2724 \text{ to } 1512 \text{ Hz}$ ${}^{1}J({}^{129}Xe(VII)-{}^{19}F) = 991 \text{ and } 1373 \text{ Hz}$ The ${}^{1}J({}^{129}Xe^{-19}F)$ coupling constants for $XeO_{3}F_{2}$ and $XeO_{3}F_{3}$ are 991 Hz and 1373 Hz (-80 °C in $SO_{2}CIF$), respectively, and are the first reported ${}^{1}J({}^{129}Xe^{-19}F)$ couplings for Xe(VIII) compounds. Originally reported by Frame²⁰⁷ and significantly extended by Gillespie and Schrobilgen, 205,208 an empirical correlation was found between ${}^{1}J({}^{129}Xe^{-19}F)$ and the ${}^{19}F$ chemical shift. This correlation suggests the opposite sign for the coupling constants of $XeOF_{3}^{+}$ and XeF_{3}^{+} relative to those of the remaining species (Figure 5.3). The NMR spectroscopic data of $XeO_{3}F_{2}$ and $XeO_{3}F_{3}^{-}$ extend the validity of this empirical correlation to xenon(VIII) species and, since $\delta({}^{19}F)$ for $XeO_{3}F_{2}$ and $XeO_{3}F_{3}^{-}$ are at higher frequency, the empirical correlation implies a positive ${}^{1}J({}^{129}Xe^{-19}F)$ coupling constant. However, the range for ${}^{1}J({}^{129}Xe(VIII)^{-19}F)$ overlaps with that of Xe(VI) species. Figure 5.3 Empirical correlation of the ¹⁹F chemical shift and ¹J(¹²⁹Xe-¹⁹F) coupling constant for selected xenon compounds. ## 5.2.3. Interaction of [Na], [XeO,] with HF Condensation of HF onto dry sodium perxenate resulted in a vigorous, sometimes explosive reaction. Rapid distillation of HF solvent led to detonations that ruptured the FEP sample tube. It was therefore important to slowly condense and freeze HF at -196 °C onto the sample tube walls above the [Na]₄[XeO₆] followed by slow melting of the HF at -78 °C. Even during this improved procedure some smaller detonations have occurred which, however, were not intense enough to rupture the FEP sample tubes. The interaction between [Na]₄[XeO₆] and HF at -78 °C yields a pale yellow precipitate under HF solvent. Characterization of the solution by ¹²⁹Xe NMR spectroscopy before and after warming the sample to -40 °C showed only the presence of XeO₄ which is formed according to eq. (5.3). The pale yellow solid was characterized by Raman spectroscopy at -78 °C under liquid HF. The spectrum is shown in Figure 5.4 and the frequencies are listed in Table 5.2. After allowing the sample to warm to -40 °C, a Raman spectrum of the white solid was recorded (Figure 5.5 and Table 5.2). The Raman spectrum of the pale yellow solid contained signals attributed to solid XeO₄ exhibiting splitting of the degenerate modes previously reported for the solid state Raman spectrum of XeO₄. ⁴⁸ In addition, six new Raman bands were observed. The solid did not contain any perxenate after contact with HF, since the intense perxenate band at 679 cm⁻¹ was not detected. The pale yellow colour of the solid is most probably caused by XeO₄. Upon warming to 40 °C, XeO₄ dissolved and its Raman bands disappeared. All bands that were observed in the Raman spectrum of the pale yellow solid, except a weak Raman spectrum of the pale yellow solid product of the reaction between [Na],[XeO,] and HF solvent without warming above -78 °C, recorded in a 4-mm FEP tube at -78 °C using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines. Figure 5.4 Raman spectrum of white solid product of the reaction between [Na]4[XeO₆] and HF solvent after warming to -40 °C, recorded in a 4-mm FEP tube at -78 °C using 514.5-nm excitation.
Asterisks denote (*) FEP sample tube lines. Table 5.2 Raman Frequencies and Their Assignments of the Solid Products of the Interaction Between [Na]₄[XeO₆] and HF at two Different Stages of the Reaction. | Frequency | [cm ⁻¹] | Assignment ^b | |------------|---------------------|-------------------------| | sample ma | intained below | | | -78 °C° | -40 °C⁴ | | | 875 (5) | | XeO_4 , $v_3(T_2)$ | | 867 (5) | | | | 861 (6) | | | | | 869 (1) | B, v(Xe-O) | | | 844 (2) | | | | 840 (6) | | | | 837 (16) | | | | 826 (1) | | | | 821 (1) | | | | 814 (2) | | | 808 (28) | 808 (5) | A, v(Xe-O) | | | 799 (4) | B, v(Xe-O) | | 793 (3) | 794 (26) | В | | 787 (2) | | | | | 770 (2) | В | | 767 (100) | | XeO_4 , $v_i(A_i)$ | | 764 (53)sh | 765 (5) | A, v(Xe-O) | | | 759 (3) | Β, ν(Xe-O) | | | 755 (3) | B | | 742 (17) | 743 (100) | В | | | 724 (1) | В | Table 5.2 continued... | Frequency | a [cm ⁻¹] | Assignment ^b | | |-----------------------|-----------------------|-------------------------|--| | sample ma | intained below | | | | -78 °C° | -40 °C⁴ | | | | | 370 (1) | B, bending modes | | | | 360 (4) | | | | | 343 (10) | | | | | 330 (5) | | | | | 327 (2)sh | | | | 320 (7) | 318 (1) | A | | | 310 (16) | | XeO_4 , $v_4(T_2)$ | | | 300 (19) ^e | | 4 4 6 7 | | | | 290 (5) | В | | | 277 (13) | | XeO_4 , $v_2(E)$ | | | 270 (11) | | 333 24,5 12(2) | | | | 205 (<0.5) | В | | | | 177 (1) | | | | | 166 (3) | | | | | 144 (1) | | | | | 135 (3) | | | ^a Spectra recorded on solid under HF solvent in ½-in. FEP sample tubes at -80 °C using the 514.5-nm excitation. Relative Raman intensities are given in parentheses. ^b The two groups of frequencies that could be distinguished are assigned to the yet unidentified products A and B. ^c Bands arising from the FEP sample tube were observed at 751 (12), 733 (86), 597 (3), 578 (8), 386 (21), 381 (22), and 293 (32) cm⁻¹. ^d Bands arising from the FEP sample tube were observed at 733 (5), 597 (<0.5), 578 (<0.5), 386 (1), 381 (1), and 293 (2)sh cm⁻¹. ^e This band overlaps with a band arising from the FEP sample tube. band at 787 cm⁻¹, were found in the Raman spectrum of the white solid after warming the sample to -40 °C. Recording Raman spectra at different reaction times allowed the identification of two groups of Raman bands based on their simultaneous increase or decrease in relative intensities. The bands at 808, 764, and 320 cm⁻¹ are assigned to product A, which decreased in relative intensity, while bands assigned to product B increased in intensity upon warming the sample to -40 °C for nine hours (Table 5.2). Because XeO₄ does not interact with fluoride ion in HF solvent and because of the apparent absence of Xe-F stretches in the Raman spectra, products A and B are unlikely to be xenon oxide fluorides. Moreover, water generated by reaction (5.3) would be expected to hydrolyze intermediate oxide fluorides. A sample of [Na]₄[XeO₆] treated with excess AsF₅ in HF that was not allowed to warm above -78 °C only displayed a ¹²⁹Xe NMR signal for XeO₄, indicating the absence of oxide fluoride anions, which are expected to react with AsF₅ to give neutral or cationic oxide fluorides. The primary reaction of the XeO₆⁴ anion with anhydrous HF likely leads to the formation of intermediate perxenic acid, H₄XeO₆, according to eq. (5.13), which rapidly $$XeO_6^+ + 8HF - \frac{HF}{} > [H_4XeO_6] + 4HF_2$$ (5.13) $$[H4XeO6] \xrightarrow{HF} > XeO4 + 2H2O$$ (5.14) $$[H_4XeO_6] - \frac{HF}{} > H_2XeO_5 + H_2O$$ (5.15) $$[H_4XeO_6]$$ - $\frac{HF}{}$ > XeO_3 + $2H_2O$ + $\frac{1}{2}O_2$ (5.16) decomposes upon water abstraction to XeO₄ (eq. (5.14)) or possibly to H₂XeO₅ (eq. (5.15)). Another decomposition pathway is reduction to Xe(VI) and O₂ evolution according to eq. (5.16), which has been documented in aqueous solutions. The Raman frequencies of product A resemble those found for HXeO₄, The Nowever, the intensities of the Xe-O stretches are not in agreement. Product A could be an anionic derivative of the presently unknown metaperxenic acid, H_2XeO_5 . The existence of monomeric XeO_3F_2 (D_{3k}) with a xenon coordination number five suggests the possible existence of the H_2XeO_5 (= $XeO_3(OH)_2$) molecule, which is the product of formal exchange of the two fluorines in XeO_3F_2 with two hydoxide groups. The larger number of bands for product B compared to A indicates that B has a lower symmetry. A condensation reaction of A could occur at -40 °C yielding a dinuclear Xe(VIII) oxide species corresponding to B, similar to eq. (5.17). The hydrogen metaperxenate anion, $HXeO_5$, in equation (5.17) would be the $$H_2XeO_5 + HXeO_5 \longrightarrow (HO)O_3XeOXeO_4 + H_2O$$ (5.17) Lewis acid-base adduct between XeO₄ and OH⁻, whose osmium analogue OsO₄OH⁻ has been prepared and characterized by infrared spectroscopy.⁷¹ ## 5.2.4. Interaction of [Na]₄[XeO₆] with BrF₅ Sodium perxenate and BrF₅ did not react at -10 °C, a temperature at which XeO₄ does not decompose at a significant rate. The addition of a Lewis acid (BF₃) also did not result in reaction. The only signals observed in the ¹⁹F NMR spectrum of the solution were those of BrF₅ and a minor amount of BrO₂F (209 ppm), which is not believed to be generated by reaction with perxenate, since no evidence for a fluorinated xenon product was found. Hydrolysis (5.18) of BrF₅ with residual H₂O from [Na]₄[XeO₆] is likely the cause for the small amount of BrO₂F. $$BrF_5 + 2H_2O \longrightarrow BrO_2F + 4HF$$ (5.18) # 5.2.5. Interaction of XeO₄ and [Na]₄[XeO₆] with KrF₂ in Various Solvents The reaction of XeO₄ with KrF₂ in SO₂CIF and HF did not result in any reaction other than the decomposition of KrF₂ close to 0 °C and the fluorination of SO₂CIF to SO₂F₂. The reaction of sodium perxenate with KrF₂ in SO₂CIF only gave rise to the fluorination of the solvent. However, the reactions of [Na]₄[XeO₆] with KrF₂ in HF yielded small amounts of XeOF₄ (δ (1°F) = 89 ppm , ${}^{1}J$ (12°Xe-1°F) = 1209 Hz) without warming the sample above -78 °C and no evidence for Xe(VIII) oxide fluoride formation was obtained. The reaction mixture of [Na]₄[XeO₆] and KrF₂ in BrF₅ gave small amounts of BrO₂F (δ (1°F) = 207.9 ppm) and XeOF₄ (δ (1°F) = 98.2 ppm; ${}^{1}J$ (12°Xe-1°F) = 1205 Hz) after warming the sample to 0 °C for 1 h and 15 min without any evidence for the formation of a Xe(VIII) oxide fluoride species in the 1°F NMR spectrum. Warming the mixture to room temperature for 10 min resulted in an additional weak 1°F NMR signal for XeO₂F₂ (δ (1°F) = 96.3 ppm). The intermediate formation of XeO₃F₂ is unlikely, since no evidence for its presence was found in the 1°F NMR spectrum. The observation of XeO₅F₂, and BrO₂F is likely the result of hydrolyses (5.6), (5.7), and (5.18) with residual water from the [Na]₄[XeO₆] sample. ## 5.2.6. Reaction of XeO₄ with [KrF][AsF₆] in HF Solvent Warming a sample of XeO₄ and [KrF][AsF₆] in HF to -78 °C resulted in gas evolution and the formation of a yellow solution and large amounts of white solid. The ¹²⁹Xe NMR spectrum of the yellow solution showed a broad resonance at 543.7 ppm, Δν₄ = 170 Hz and no XeO₄ was detected. The nature of the broad singlet cannot be unambiguously determined and the presence of the Xe(VIII) cation, XeO₃F⁺, is possible, since a high-frequency shift with respect to its neutral parent compound, XeO₃F₂ (-414.5 ppm in SO₂ClF, -80 °C) is expected. However, since the XeO₂F⁺ cation exhibits a similar high-frequency shift (600 ppm in SbF₃),³⁵ a reduction from Xe(VIII) to Xe(VI) cannot be excluded. Such a reduction could proceed via an intermediate XeO₃F⁺ cation, which decomposes according to eq. (5.19) to XeO₂F⁺ and O₂. The ¹J(¹²⁹Xe-¹⁹F) coupling constant $$[XeO_3F][AsF_6]$$ -> $[XeO_2F][AsF_6]$ + $\frac{1}{2}O_2$ (5.19) of XeO₂F⁺ (95 Hz)³⁵ is too small to be observed in the present case. The broadness of the signal likely arises from large amounts of solid present in the NMR sample. The Raman spectrum of the white precipitate showed unreacted starting material, [KrF][AsF₆], and the presence of [O₂][AsF₆] indicating that oxidation of oxygen from XeO₄ to O₂⁺ and possibly reduction of Xe(VIII) had occurred. No Xe-O stretching band was observed in the Raman spectrum of the solid indicating that all xenon oxide and oxide fluoride species are dissolved in HF solvent. ## 5.2.7. Reaction of XeO3 with [KrF][AsF4] in HF Solvent The reaction of XeO₃ with [KrF][AsF₆] in HF to -78 °C resulted in gas evolution and the formation of a yellow solution and large amounts of white precipitate similar to the analogous reaction using XeO₄ (see 5.2.6, Reaction of XeO₄ with [KrF][AsF₆] in HF). After allowing the mixture to react at -78 °C for ca. 20 min, two broad singlets were observed at 540 and -450 ppm, while the reaction and the gas evolution continued. Over a period of approximately 30 minutes, the signal at -450 ppm disappeared, while the intensity of the broad singlet at 565 ppm (Δv_{s} = 500 Hz) increased and another signal appeared at 186 ppm. The 129Xe resonance at 540 ppm has also been observed in the reaction between XeO₄ and [KrF][AsF₆] (see 5.2.6, Reaction of XeO₄ with [KrF][AsF₆] in HF) and possibly corresponds to the XeO₃F⁺ cation, as the oxidative fluorination product, or the XeO₂F⁺ cation. Since the Raman spectrum of the white precipitate showed the presence of O₂⁺ (1859 and 1865 cm⁻¹), indicating the oxidation of oxygen from XeO₄, the presence of the latter xenon cation seems more plausible. No Xe-O stretches were observed in the Raman spectrum of the white precipitate. The 129Xe NMR signal at -450 ppm is attributed to the xenon(VIII) oxide fluoride, XeO₃F₂, which presumably forms according to eq. (5.20) and (5.21) via the XeO₃F⁺ cation. However, oxygen from XeO₃F₂ $$XeO_3 + [KrF][AsF_6] \xrightarrow{HF} > [XeO_3F][AsF_6] + Kr$$ (5.20) $$[XeO_3F][AsF_6] + 2HF \xrightarrow{HF} > XeO_3F_2 + [H_2F][AsF_6]$$ (5.21) is presumably oxidized to O_2^+ , which has been observed in the
white precipitate, yielding XeO_2F^+ and small amounts of $XeOF_3^+$, which was also found in the ¹⁹F NMR spectrum (186 ppm) as a product. #### 5.3. Conclusion The xenon(VIII) oxide fluoride, XeO₃F₂, has been characterized by ¹²⁹Xe and ¹⁹F NMR spectroscopy for the first time in HF, SO₂CIF, and BrF₃ solvents. The novel XeO₃F₃ anion has been prepared and characterized by NNR spectroscopy and is shown to have a facial arrangement in solution. The ¹²⁹Xe-¹⁹F spin-spin couplings observed for XeO₃F₂ and the *fac*-XeO₃F₃ anion provide the first examples of ¹J(¹²⁹Xe^{VIII}-¹⁹F) coupling and extend the previously established empirical correlation between ¹J(¹²⁹Xe-¹⁹F) and $\delta(^{19}F)$. Based on this correlation, values of ¹J(¹²⁹Xe^{VIII}-¹⁹F) have a positive sign, which is opposite to the signs of most ¹J(¹²⁹Xe-¹⁹F) couplings. Attempts to obtain sufficiently high concentrations of XeO₃F₂ for preparative use, were not successful. The reaction between [Na]₄[XeO₆] and HF yields XeO₄ and two new xenon oxide species that could not be unambiguously identified. #### **CHAPTER 6** ## FLUORIDE ION ACCEPTOR PROPERITIES OF OsO4 #### 6.1. Introduction Osmium tetroxide has been shown to act as a Lewis acid towards a large number of organo-nitrogen bases, 52-61 which have been characterized by vibrational spectroscopy⁵²⁻⁵⁶ and by single crystal X-ray diffraction.⁵⁵⁻⁶¹ Lewis acid-base adducts of OsO₄ with oxygen donor molecules have been prepared with the bases, OH^{- 52,63-71} and Nmethylmorpholine N-oxide.61 Halide adducts of osmium tetroxide with fluoride63,65,72,74 and chloride55 have been reported. The OsO4Cl and OsO4N3 anions were synthesized in CH₂Cl₂ solvent using the PPh₄⁺ cation and characterized by infrared spectroscopy and the OsO₄Cl anion has been structurally characterized by X-ray crystallography as the [PPh₄][OsO₄Cl] salt.⁵⁵ The cis-OsO₄F₂²⁻ anion has reportedly been obtained as its Cs⁺ and Rb⁺ salts from aqueous solutions, 63,65,72,74 and the vibrational spectra have been interpreted in terms of the cis-isomer. 72 In a subsequent study, these workers have determined average Os-O and Os-F bond lengths for the compound they formulated as [Cs]₂[cis-OsO₄F₂] using EXAFS spectroscopy.74 Adduct formation between OsO4 and weaker Lewis bases such as OH- 52.63-67.69-71 and (R,R)-trans-1,2-bis(N-pyrrolidino)cyclohexane⁵⁹ was also shown to yield hexacoordinate osmium species. Although the composition was not reproducible, it was suggested that the CsF·OsO₄ adduct, which was obtained from the reaction of CsF and OsO₄ in cold water, contains the OsO₄F⁻ anion and was characterized by elemental analyses and vibrational spectroscopy.⁷² The present work was undertaken to reinvestigate the formation and characterization of the OsO₄F and OsO₄F₂² anions for which there is ambiguous and conflicting evidence in the literature and provides the first definitive structural studies of the OsO₄F and *cis*-OsO₄F₂² anions in the solid state. #### 6.2. Results and Discussion ## 6.2.1. Syntheses of $[N(CH_3)_4][OsO_4F]$ and $[N(CH_3)_4]_2[OsO_4F_2]$ The compound, [N(CH₃)₄][OsO₄F], was obtained as an orange solid from the reaction of stoichiometric amounts of [N(CH₃)₄][F] and OsO₄ in CH₃CN solution according to eq. (6.1). The formation of the [N(CH₃)₄][F] adducts of OsO₄ is instanta- $$[N(CH_3)_4][F] + OsO_4 - \frac{CH_3CN, RT}{-} -> [N(CH_3)_4][OsO_4F]$$ (6.1) neous and initially yields a brown $[N(CH_3)_4]_2[OsO_4F_2]$ precipitate (vide infra) in sample regions where local concentrations of $[N(CH_3)_4][F]$ are high, but is reversible upon thorough mixing, yielding an orange precipitate of $[N(CH_3)_4][OsO_4F]$. The $[N(CH_3)_4][OsO_4F]$ salt is slightly soluble in CH_3CN at -40 °C giving an orange solution whereas no significant solubility was found for $[N(CH_3)_4][OsO_4F]$ in CHF_3 at temperatures as high as 0 °C. Attempts to observe a ¹⁹F NMR signal for OsO₄F in CH₃CN solvent at -40 °C were unsuccessful, and is likely attributable to intermediate intermolecular exchange between the labile fluoride ligand of OsO₄F and low concentations of free fluoride ion (eq. (6.2)). Under these conditions, the ¹⁹F NMR signal is likely to be broad $$OsO_4F + CH_3CN \rightleftharpoons OsO_4 \cdot CH_3CN + F$$ (6.2) and rendered indistinguishable from the baseline. This is consistent with the long Os-F bond observed in OsO₄F (see 6.2.3. X-ray Crystal Structure of [N(CH₃)₄][OsO₄F]) and with the low Os-F stretching frequency observed in the infrared spectrum of OsO₄F (see 6.2.4. Raman and Infrared Spectroscopy of [N(CH₃)₄][OsO₄F]). The compound, $[N(CH_3)_4]_2[OsO_4F_2]$, was initially obtained in admixture with $[N(CH_3)_4][OsO_4F]$ and $[N(CH_3)_4][F]$ by reaction of OsO₄ with a stoichiometric amount of $[N(CH_3)_4][F]$ in CH₃CN solution according to eq. (6.3). Under CH₃CN solvent, $[N(CH_3)_4]_2$ $$2 [N(CH_3)_4][F] + OsO_4 \frac{CH_3CN_4 - 20 \text{ °C}}{2 [N(CH_3)_4]_2[OsO_4F_2]} > [N(CH_3)_4]_2[OsO_4F_2]$$ (6.3) $[OsO_4F_2]$ is dark brown but is light brown-ochre in color when dry. The reaction does not go to completion, presumably because $[N(CH_3)_4][OsO_4F]$ has a low solubility in CH₃CN at -20 °C and is occluded by $[N(CH_3)_4]_2[OsO_4F_2]$. Repeated washing with CH₃CN at -30 °C produced $[N(CH_3)_4]_2[OsO_4F_2]$ having only a minor $[N(CH_3)_4][OsO_4F]$ impurity. #### 6.2.2. Reaction of OsO4 with NOF and NO,F Osmium tetroxide reacts with excess liquid NOF at -78 °C yielding a deep brown suspension after intermediate formation of a yellow solid, which presumably corresponds to a mixture of [NO]₂[OsO₄F₂] and [NO][OsO₄F], respectively (eq. (6.4)). Removal of $$nNOF + OsO_4 - NOF - [NO]_n[OsO_4F_n] ; n = 1,2$$ (6.4) (6.77 ppm, J = 110 Hz; 10.5 ppm, J = 90 Hz) and a weak quartet at 15.45 ppm (J = 101 Hz). The origins of these signals are presently not understood. No reaction of OsO₄ was observed with excess liquid NO₂F at -78 °C and with *ca*. 5.5 atm of NO₂F at temperatures as high as 55 °C. The difference in reactivity between NOF and NO₂F is consistent with the longer and more ionic N-F bond length in NOF (152 pm)²¹⁰ than that in NO₂F (135 pm).²¹¹ ## 6.2.3. X-ray Crystal Structure of [N(CH₃)₄][OsO₄F] Details of the data collection parameters and other crystallographic information for [N(CH₃)₄][OsO₄F] are given in Table 6.1. Important bond lengths, contacts and angles for [N(CH₃)₄][OsO₄F] are listed in Table 6.2. The crystal structure consists of well-separated $N(CH_3)_4^+$ cations and OsO_4F anions. The tetrahedral $N(CH_3)_4^+$ cation lies on a C_2 -axis giving rise to two crystallographically independent N-C bond lengths which are equal within experimental error and which have the expected values. The OsO_4F anion exhibits a distorted trigonal bipyramidal geometry (C_4 point symmetry) (Figure 6.1) in which Os(1), F(1), O(1) and O(2) lie on a crystallographic mirror plane and the two equatorial oxygens, O(3) and O(3A), are symmetry related. The packing can be viewed as an approximate primitive cubic array of $N(CH_3)_4^+$ cations with OsO_4F anions occupying all cubic sites (distorted CsCl structure) (Figure 6.1). The OsO_4F anions exhibit long contacts to four $N(CH_3)_4^+$ cations forming one face of the cation cube. The equatorial O(3) and O(3A) atoms point and the O(1)-Os-F(1) bond angle bend towards this face as a consequence of contacts Table 6.1 Summary of Crystal Data and Refinement Results for [N(CH₃)₄][OsO₄F] | | [N(CH ₃) ₄][OsO ₄ F] | | |--|---|--| | formula | C ₄ H ₁₂ FNO ₄ Os | | | space group | Abm2 (No. 39) | | | a [pm] | 701.74(14) | | | b [pm] | 1140.1(2) | | | c [pm] | 1092.5(2) | | | α (deg) | 90 | | | β [deg] | 90 | | | γ [deg] | 90 | | | V [10 ⁶ pm ³] | 874.1(3) | | | Z [molecules/unit cell] | 4 | | | mol. wt | 347.35 | | | calcd density [g cm ⁻¹] | 2.639 | | | colour, morphology | orange plate | | | size [mm³] | 0.400×0.442×0.0084 | | | μ [mm ⁻¹] | 7.894 | | | data/restraints/parameters | 1214/1/57 | | | final agreement factors | $R^a = 0.0282$ | | | | $R_{w}^{b} = 0.0748$ | | | GOOF | 1.135 | | | Extinction coefficient | | | | $\Delta \delta_{\rm max}/\Delta \delta_{\rm max}$ [e $10^{-6} \rm pm^{-3}$] | 2.081/-1.458 | | | $R = \sum F_o - F_o \sum F_o .$ | | | $^{^{\}bullet}R = \sum |F_o| - |F_c| / \sum |F_o|.$ ^b $R_w = \sum |(|F_o| - |F_c|)w^5|/\sum (|F_o|w)$ where $w = 1/[\sigma^2(F) + (0.0344)^2 + 4.94]$. Table 6.2 Experimental Bond Lengths, Contacts and Bond Angles in $[N(CH_3)_4][OsO_4F]$ # [N(CH₃)₄][OsO₄F] | | Bond Lengths an | d Contacts [pm] | | |------------------|-----------------|-----------------|-----------| | Os(1)-F(1) | 207.5(9) | Os(1)-O(1) | 171.5(9) | | Os(1)-O(2) | 167.4(12) | Os(1)-O(3) | 171.1(8) | | N(1)-C(1) | 148.4(11) | N(1)-C(2) | 147.3(11) | | O(1)C(2A) | 281.6(10) | O(1)C(2B) | 281.6(10) | | O(3)C(2D) | 282.7(16) | F(1)C(2) | 328.0(14) | | F(1)C(2C) | 328.7(14) | | | | | Bond Angl | es [deg.] | | | O(1)-Os(1)-F(1) | 156.9(4) | O(1)-Os(1)-O(2) | 101.4(5) | | O(1)-Os(1)-O(3) | 98.5(4) | O(2)-Os(1)-O(3) | 118.4(4) | | O(3)-Os(1)-O(3A) | 115.2(8) | O(2)-Os(1)-F(1) | 101.7(5) | | O(3)-Os(1)-F(1) | 70.2(4) | C(1)-N(1)-C(1A) | 109.4(10) | | C(1)-N(1)-C(2) | 110.6(6) | C(1)-N(1)-C(2A) | 108.3(8) | | C(2)-N(1)-C(2A) | 109.6(11) | | | Views of (a) the [N(CH₃)₄][OsO₄F] unit cell showing the packing along the b-axis and (b) the OsO₄F anion and its contacts to N(CH₃)₄ cations (thermal ellipsoids are shown at the 50% probability level). Figure 6.1 between the axial O(1) and the symmetry-equivalent O(3) and O(3A) atoms of OsO₄F- and the methyl groups of the N(CH₃)₄⁺ cations. These O···H₃C contacts range from 281.6(10) to 282.7(16) pm and are significantly shorter than the sum of the CH₃ and O van der Waals radii (340 pm).^{212,213} Significantly weaker F···H₃C contacts of 328.0(14) pm and 328.7(14) pm (van der Waals sum, 335 to 350 pm)^{212,213} also
exist in [N(CH₃)₄][OsO₄F]. The O···H₃C and F···H₃C contacts result in zig-zag layers in the *ab*-plane consisting of alternating N(CH₃)₄⁺ and OsO₄F⁻ rows (Figure 6.1). The equatorial Os-O(3)/Os-O(3A) bond lengths (171.1(8) pm/171.1(8) pm) and the axial Os-O(1) bond length (171.5(9) pm) are identical within experimental error and are equal, within 3 σ , to that determined by EXAFS for OsO₄F₂² (170.1(2) pm).⁷⁴ Based on the present study (see 6.2.4. Raman and Infrared Spectroscopy of [N(CH₃)₄][OsO₄F] and [N(CH₃)₄]₂[OsO₄F₂]), the reported vibrational spectrum of the anion studied by EXAFS has been shown to be that of the OsO₄F anion. The Os-O(2) bond length of 167.4(12) pm is significantly shorter and can be explained by packing effects (vide infra). The Os-O(1), Os-O(3), and Os-O(3A) bond lengths are in good agreement with the mean Os-O bond length of 171.3(8) pm reported for OsO₄.²¹⁴ The short Os-O(2) bond length is still in the range found for the terminal Os-O bond lengths in the adducts, OsO₄-quinuclidine (169.7 to $172.2 \text{ pm})^{57}$ and $OsO_4(OH)OsO_4^-$ (162(4) to 177(3); 164(4) to 171(3) pm).⁷¹ The contacts between O(1), O(3), O(3A), and F(1) and the N(CH₃)₄⁺ cations occur only on one side of the cubic hole occupied by the anion (vide supra and Figure 6.1) leaving O(2) without long contacts and sterically less crowded, resulting in a significantly shorter Os-O(2) bond. The Os-F bond (207.5(9) pm) in the OsO₄F anion is very long compared to the Os-F bond lengths in cis-OsO₂F₄ (188.3(3) pm and 184.3(3) pm)⁶ and the terminal Os-F bond in $(OsO_3F_2)_{\infty}$ (187.9(1) pm),⁷ and is in excellent agreement with that reported by EXAFS for OsO₄F (204.8(29) pm), which has been previously mistaken for the OsO₄F₂²⁻ anion.⁷⁴ This bond is, however, considerably shorter than O₄Os-donor atom bond lengths found in the literature, which range from 2.21(2) Å in OsO₄(OH)OsO₄⁻⁷¹ to 2.760(2) Å in OsO₄Cl^{-,55} reflecting the strong Lewis base character of the fluoride ion. The two crystallographically independent O_{xx} -Os- O_{eq} angles, O(1)-Os-O(2) and O(1)-Os-O(3), are $101.4(5)^{\circ}$ and $98.5(4)^{\circ}$, respectively. This comparatively small difference in O-Os-O bond angles is in agreement with the O_{xx} -Os- O_{eq} angles found in previously characterized OsO₄ adducts and is reflected in the similarity of the vibrational spectra of the adducts (see 6.2.4. Raman and Infrared Spectroscopic Characterization of $[N(CH_3)_4][OsO_4F]$) and indicative of the rigidity of the OsO₄ moiety. Surprisingly, the O(1)-Os-F(1) angle $(156.9(4)^{\circ})$ is highly distorted from the O_{xx} -Os-X angle (X = donor atom) found in other Lewis base adducts of OsO₄ where the reported O_{xx} -Os-X angles range from 180.0° in OsO_4 quinuclidine⁵⁷ to $175.1(3)^{\circ}$ in OsO_4 N-methylmorpholine N-oxide.⁶¹ The VSEPR model¹²⁰ predicts that the most energetically favoured geometry for OsO₄F is a distorted trigonal bipyramid with one oxygen and the fluorine in the axial positions and the remaining three oxygen atoms in the equatorial positions bent towards the fluorine. This was also the optimized geometry found using local density functional theory (LDFT) calculations.²¹⁵ In the crystal structure of [N(CH₃)₄][OsO₄F], the geometry of the OsO₄F anion is, however, found to be a distorted trigonal bipyramid with the fluorine displaced towards one edge of the trigonal plane of the three equatorial oxygens. As a consequence of the rigidity of the OsO₄ moiety, the Os-F bond is quite ionic and can be easily distorted by close contacts with the cations. Because of the greater spatial requirements of Os-O double bond domains, the OsO₄-unit essentially retains its geometrical integrity with the O_{3x}-Os-F angle distorted by 23.14° from the ideal 180° bond angle of a regular trigonal bipyramid. In light of the computational findings, the distortion of the O_{3x}-Os-F angle is soley attributed to packing and is the consequence of strong O···H₃C and somewhat weaker F···H₃C anion-cation contacts (vide supra). # 6.2.4. Raman and Infrared Spectroscopy of [N(CH₃)₄][OsO₄F] and [N(CH₃)₄]₂[OsO₄F₂] The [N(CH₃)₄][OsO₄F] and [N(CH₃)₄]₂[OsO₄F₂] salts were characterized by Raman (Figures 6.2 and 6.3) and infrared spectroscopy. The observed vibrational frequencies and their assignments for [N(CH₃)₄][OsO₄F] and [N(CH₃)₄]₂[OsO₄F₂] are given in Table 6.3 and 6.4, respectively. The anion mode assignments are based on recent LDFT calculations.²¹⁵ The N(CH₃)₄* cation mode assignments are those of Berg²⁰¹ and Kabisch²⁰² and are not further discussed. The OsO₄F anion (C₅ point symmetry) possesses 12 fundamental modes of vibration belonging to the irreducible representations 8A' + 4A", which are all infrared and Raman active. The room temperature Raman spectrum of [N(CH₃)₄][OsO₄F] consists of seven bands assigned to OsO₄F and those attributed to the N(CH₃)₄ cation, while several anion bands were split at -115 °C resulting in 14 anion bands. Correlation of the Raman spectrum (low-frequency range) of microcrystalline [N(CH3),][OsO4F] in a Pyrex capillary at -115 °C using 647.1-nm excitation. Figure 6.2 Raman spectrum (low-frequency range) of microcrystalline [N(CH₃)₄]₂[OsO₄F₂] in a Pyrex capillary at -164 °C using 1064-nm excitation. Asterisks (*) denote bands arising from the OsO₄F' anion. Figure 6.3 Table 6.3 Experimental Vibrational Frequencies and Their Assignments for [N(CH₃)₄][OsO₄F] and Calculated Vibrational Frequencies for OsO_4F : $(C_{J_V})^{215}$ | | Frequency* [cm.¹] | cm. ₁ } | | Assignments for OsO.F. under C. C. 1 or sum | |----------------------------------|------------------------------|-----------------------------------|--------------|---| | IRbs, 25 °C | Raman ^{4,c} , 25 °C | °C Raman ^{4,t} , -115 °C | Calc.(LDFT)* | | | 956 vs ^h | 951 (13)h | 954 (7)* | 918 (372) | v _i (A') [v _s (E)], v _n (OsO _{lm}) | | 922 sh | 921 (100) | 921 (100) | 931 (18) | v ₂ (A') [v ₁ (A ₁)], v ₁ (OsO _{1,} + OsO) | | 910 sh | 903 (19) | 912 (10)
90k (11) | 918 (372) | v ₆ (A") [v ₅ (E)], v _n (OsO _{log}) | | 893 vs | 893 (40) | 902 (2)
898 (32)
893 (23) | 893 (167) | $v_{i}(A') [v_{i}(A_{i})], v_{i}(O_{s}O_{bq} - O_{s}O_{ai})$ | | 858 w
855 w
723 w
472 w | | | | | | 427 s | | | 471 (49) | v4(A') [v,(A,)], v(OsF) | | 394 m° | 395 (32) | 395 (34) | 397 (8) | v _s (A') [v ₆ (E)], δ ₆ (OOs-O) | | 340 m° | | | 397 (8) | v _{io} (A") [v _o (E)], δ _o (O _o -Os-O _o) | | 326 s° | 327 (7) | 330 (6)
327 (7)
324 (3) | 338 (68) | v ₆ (A') [v ₄ (A ₁)], δ _{inv} (OsO ₁ α) | | 307 s° | 311 (5) | 310 (6) | 322 (22) | $v_{7}(A')$ [$v_{7}(E)$], $\delta_{a}(OsO_{2q} + O_{a} \cdot O_{s} \cdot O_{qq})$ | Table 6.3 continued... | | Frequency [cm. ⁺] | ın.¹J | | Assignments for OsO ₂ F under C. IC I pt sym | |-------------|-------------------------------|-----------------------------------|--------------|--| | IRbs, 25 °C | Raman ^{4,} , 25 °C | °C Raman ^{4,f} , -115 °C | Calc.(LDFT)* | | | 231 w* | | 232 (<0.5) | 322 (22) | $v_{11}(A'') [v_7(E)], \delta_{11}(OsO_{1cq} + O_{11}-Os-O_{cq})$ | | 215 m° | 215 (14) | 217 (13)
214 (16) | 183 (9) | $v_{\text{sl}}(A')$ [$v_{\text{sl}}(E)$], $\delta_{\text{sl}}(O_{\text{sO}_{\text{leq}}} - O_{\text{sl}} \cdot O_{\text{sl}} \cdot O_{\text{eq}})$ | | .w 861 | | | 183 (9) | $v_{13}(A'')$ [$v_{\mathbf{i}}(E)$], $\delta_{\mathbf{i}\mathbf{i}}(OsO_{2m}\cdot O_{\mathbf{i}\mathbf{i}}\cdot Os\cdot O_{cq})$ | | | 83 (1) | | | lattice mode | Abbreviations denote: shoulder (sh), very strong band (vs), strong (s), medium (m), weak (w), very weak (vw). * Intensities for far IR are denoted with (*). ^c The N(CH₃), cation modes were observed in the infrared spectrum at 373 w, v₄(E); 465 s, v₁₀(T₂); 956 vs, v₁₄(T₂); 1293 w, v₁₇(T₂); 1420 m, 3032 m, 3337 vw, 3404 vw, 3492 vw cm⁻¹, v_{cn3} and binary bands (see ref. (201,202)). ⁴ Values in parentheses denote relative Raman intensities. ^e The spectrum was recorded on microcrystalline solid in Pyrex glass melting point capillary using the 647.1-nm excitation. The N(CH₃)₄* cation modes were observed in the Raman spectrum (25 °C) at 462 (6), v₁₉(T₂); 756 (10), v₃(A₁); 951 (13), v₁₈(T₂); 1182 (1), v₇(E); 1287 (2), v₁₇(T₂); 1416 (5), v₁₆(T₂); 1188, v₁(E); 1290, v₁₁(T₂); 1414, v₁₄(T₂); 1464, v₂(A₁); 1483, v₄(E); and 2813, 2963, 3028 cm⁻¹, v_{C11,} and binary bands (see ref.(201,202)); relative intensities are not reported for the high frequency bands due to slow decomposition of the sample in the laser beam (647.1-nm line of Kr* laser). v_{In}(T₂); 1453 w, v₂(A₁); 1494 s, v_n(E); and 1699 w, 1802 w, 1829 w, 2171 vw, 2367 w, 2490 w, 2528 w, 2589 w, 2818 w, 2865 w, 2926 w, 2963 w, (201,202)). The spectrum was recorded on microcrystalline solid in Pyrex glass melting point capillary using the 1064-nm excitation. The N(CH₁₎₁, cation modes were observed in the Raman spectrum (-115 °C) at 379 (1), v_s(E); 458 (4), 463 (3), v₁₀(T₂); 756 (4), v₁(A₁); 954 (7), v_{1s}(T₂); 1175, 1182, 1461 (7), v₂(A₁); 1475 (9), v₆(E); and 2815 (10), 2877 sh, 2893 sh, 2922 (20), 2952 (31), 2982 (16), 3029 (50) cm⁻¹, v_{CH3} and binary bands (see ref. Infrared intensities, in km mol', are given in parentheses. This band overlaps with vis(T2) of N(CH3), Table 6.4 Experimental Vibrational Frequencies and Their Assignments for [N(CH₃)₄]₂[OsO₄F₂] and Calculated Vibrational Frequencies for cis-OsO₄F₂²⁻²¹⁵ | | Frequency* [cm ⁻¹] | | Assignments for cis -OsO ₄ F_2^2 - under C_N pt sym | |----------------|--------------------------------|-------------|--| | IR,° 25 ℃ | Raman, de -164 °C | Calc.(LDFT) | | | 872 s | 872 (100) | 881 (79)
 $v_1(A_1)$, $v_s(OsO_{2css} + OsO_{2cross})$ | | 852 vs | 852 (15) | 854 (256) | $v_0(B_1), v_{as}(OsO_{2rrans})$ | | 813 vs | 813 (27) | 842 (342) | $v_{13}(B_2), v_{as}(OsO_{2cis})$ | | 793 s
774 m | 792 (12) | 833 (121) | $v_2(A_1)$, $v_s(OsO_{2crs} - OsO_{2crsss})$ | | 428 s | | 415 (50) | $v_3(A_1), v_s(OsF_2)$ | | 403 s | 403 (12) | 392 (24) | $v_{10}(B_1), v_{ss}(OsF_2)$ | | | 393 (24) | 381 (14) | $v_{14}(B_2)$, $\delta_{reck}(OsO_{2rans} o.p.) + \delta_{reck}(OsO_{2ras} i.p.)$ | | | 378 (8) [#] | 380 (0) | $V_7(A_2)$, $\delta_{reck}(OsO_{2cis} o.p.)$ | | | 340 (8) | 355 (41) | $V_4(A_1)$, $\delta(OsO_{2trans}$ i.p.) | | | 322 (11) | 325 (9) | $v_{15}(B_2)$, $\delta_{uuv}(OsO_{2trans} + OsF_2 o.p.)$ | | | | 301 (88) | $v_{11}(B_1)$, $\delta(OsO_{2cs} o.p. + O_{trans}-Os-F i.p.)$ | | | 268 (3) | 292 (40) | $v_3(A_1)$, $\delta(OsO_{2cts} i.p.+ OsF_2 i.p.)$ | | | | 239 (0) | $v_s(A_2)$, $\delta_{rock}(OsO_{2trans} + OsF_2 o.p.)$ | | | 175 (3) | 182 (1) | $v_{12}(B_1)$, $\delta(OsO_{2cis} o.p O_{mass}-Os-F i.p.)$ | | | 119 (6) | 122 (1) | $v_6(A_1)$. $\delta(OsF_2 i.p OsO_{2cs} i.p.)$ | | | 97 (3) | | | ^a Abbreviations denote: shoulder (sh), very strong band (vs), strong (s), medium (m), weak (w), very weak (vw). ^b Abbreviations denote: in-plane (i.p.), out-of-plane (o.p.). ^c The N(CH₃)₄ cation modes were observed in the infrared spectrum at 465 s, $v_{19}(T_2)$; 961 vs, $v_{18}(T_2)$; 1061 w, 1084 w, 1187 w, 1255 w, 1266 w, 1300 m, $v_{17}(T_2)$; 1378 w, 1426 m, $v_{16}(T_2)$; 1452 m, 1459 m, $v_2(A_1)$; 1498 vs, $v_6(E)$; and 1549 w, 1644 w, 1725 w, 1945 w, 2247 w, 2379 w, 2543 w, 2610 w, 2772 w, 2833 w, 2856 w, 2875 w, 2927 m, 2969 m, 3025 s, 3124 w cm⁻¹, v_{CH_3} and binary bands (see ref. (201,202)). Bands associated with the OsO₄F impurity were observed in the Raman spectrum at 901 s, $v_3(A')$ and 921 w, $v_3(A')$ cm⁻¹. ⁴ Values in parentheses denote relative Raman intensities. The spectrum was recorded on microcrystalline solid in Pyrex glass melting point capillary using the 1064-nm excitation. The N(CH₃)₄° cation modes were observed in the Raman spectrum (-164 °C) at 378, $v_8(E)$; 460 (9), $v_{19}(T_2)$; 755 (15), $v_3(A_1)$; 953 (9), $v_{18}(T_2)$; 1290 (4), $v_{17}(T_2)$; 1470 sh (9), 1478 (17), $v_2(A_1)$, $v_6(E)$; and 2830 (14), 2898 (14) sh, 2923 (23), 2966 (23), 3017 (41) cm⁻¹, v_{CH_3} and binary bands (see ref. (201,202)). Bands associated with OsO₄F° impurity were observed in the Raman spectrum at 893 (3), $v_3(A')$ and 920 (14), $v_2(A')$ cm⁻¹. f Infrared intensities, in km mol-1, are given in parentheses. This band overlaps with v₈(E) of N(CH₃)₄*. Correlation Diagram for the Vibrational Modes of the N(CH₃), Cation in [N(CH₃),][O_SO₄F]* Table 6.5 | | A ₁ (Ra, IR) $2(v_1 - v_8)$, $2(v_9 - v_{19})$, 2R, 2T (-T) | | 2(V ₁ - V ₈), 2(V ₉ - V ₁₉), 2K, 2T | B ₁ (Ra, IR) 4(v ₉ - v ₁₉), 4R, 4T (-T) | - B ₂ (Ra, IR) 4(v ₉ - v ₁₉), 4R, 4T (-T) | |---------------------------------------|--|-------------------|---|---|---| | Crystal
Symmetry, $C_{2\nu}^{\ b}$ | A, (Ra, IR) 2(| | -A ₂ (Ra) 2(| B, (Ra, IR) 4(| B ₂ (Ra, IR) 4(| | Site
Symmetry, C, | | V | | | | | Cation
Symmetry, T _d | \rightarrow \bar{\pi} | A ₂ —— | ш | T | T_2 | | | 4(v ₁ - v ₃) | 4v ₄ | $4(v_s - v_g)$ | 4(v4 - v12), 4R | 4(v ₁₃ - v ₁₉), 4T | * The symbols T and R denote translatory and rotatory (external) modes, respectively, and Ra and IR in parentheses denote Raman and infrared activity, respectively. ^b Space group Abm2, Z = 4. free anion symmetry of OsO₄F⁻ (C_s) to the anion site symmetry (C_s) and the unit cell symmetry (C_{2v} , space group Abm2) predicts that the A' modes of the free anion are each split into A₁ and B₁ components in the Raman and infrared spectra (Table 6.5). The A" modes are expected to split into A₂ and B₂ components in the Raman spectrum while they are not split in the infrared spectrum. Correlation of the free cation symmetry of N(CH₃)₄⁺ (T_d) to the cation site symmetry (C_2) and the unit cell symmetry (C_{2v}) predicts that all bands ($v_1 - v_{19}$) are Raman and infrared active (Table 6.6). In the Raman spectrum, $v_1 - v_8$ and $v_9 - v_{19}$ are expected to be factor-group split into A₁ and A₂ and into A₁, A₂, B₁, and B₂ components, respectively. In the infrared spectrum, $v_1 - v_8$ are not expected to be split while $v_9 - v_{19}$ are expected to split into A₁, B₁, and B₂ components. Only the cation bands, v_7 (E) and v_{19} (T₂), were split into three and two components, respectively, in the low-temperature Raman spectrum. No formally inactive bands of the free cation were visible as a result of activity under the factor-group. Three bands in the room-temperature Raman spectrum at 921, 903, and 893 cm⁻¹ were assigned to the Os-O stretching modes, $v_2(A')$, $v_3(A')$, $v_9(A'')$, respectively. The fourth stretching mode, $v_1(A')$, is presumably hidden under the cation band at 951 cm⁻¹. The Os-O stretches of the adducts OsO₄·1,8-naphthyridine,⁵⁶ OsO₄·N-methylmorpholine N-oxide,⁶¹ and OsO₄·N-methylmorpholine⁶¹ were found near 950 cm⁻¹ and do not exhibit a strong dependence on the nature of the donor molecule presumably as a result of the rigidity of the OsO₄ moiety. The strongest Raman band at 921 cm⁻¹ corresponds to the totally symmetric stretching mode $v_2(A')$ while the bands at 954 and 912 cm⁻¹ can be assigned to the asymmetric stretching modes $v_1(A')$ and $v_3(A')$, respectively. The band Correlation Diagram for the Vibrational Modes of the OsO₄F⁻ Anion in [N(CH₃)₄][OsO₄F]* Table 6.6 | Crystal
Symmetry, $C_{2\nu}^{b}$ | - A ₁ (Ra, IR) 2(v ₁ - v ₈), 2R, 4T (-T) | Ra) 2(v ₉ - v ₁₂), 4R, 2T | ·B ₁ (Ra, IR) 2(v ₁ - v ₈), 2R, 4T (-T) | B ₂ (Ra, IR) $2(v_9 - v_{12})$, 4R, 2T (-T) | |-------------------------------------|--|--|---|---| | Site Crys
Symmetry, C, Sym | | A ₂ (Ra) | —————————————————————————————————————— | B ₂ (F | | Anion
Symmetry, C, | Α′ | | Α" | | | | 4(v, - v8), 8T, 4R | | 4(v9 - v12), 4T, 8R | | * The symbols T and R denote translatory and rotatory (external) modes, respectively, and Ra and IR in parentheses denote Raman and infrared activity, respectively. ^b Space group Abm2, Z = 4. at 893 cm⁻¹, with its intense infrared counterpart, is assigned to the asymmetric stretching mode v₀(A") which mainly involves motion of the equatorial oxygen atoms O(3) and O(3A). The bands at 912 and 893 cm⁻¹ are factor-group split in the low-temperature Raman spectrum into A₁ and B₁ and into A₂ and B₂ components, respectively. As expected, the Os-O bonds of the OsO₄F anion are more polar and the stretching bands are shifted to lower frequencies relative to those of OsO4,48 i.e., the totally symmetric stretch is shifted from 965.2 cm⁻¹ (v₁(A₁) in OsO₄) to 921 cm⁻¹ (v₂(A') in OsO₄F'), while the degeneracy of the asymmetric stretch of OsO₄, v₃(T₂), at 960.1 cm⁻¹ is removed and the frequencies are shifted to 951, 903, and 893 cm⁻¹ in the OsO₄F⁻ anion. No Os-F stretch was observed in the Raman spectrum of OsO₄F, which is in agreement with the apparent absence of Os-X stretches reported for the Raman spectra of other OsO4. Lewis base adducts in the literature. The Raman intensity of Os-X stretches is expected to be low because of the rather ionic character of the Os-X dative bond. However, the strong band at 427 cm⁻¹ assigned to the Os-F stretching mode, v₄(A'), can be observed in the infrared spectrum. This frequency is also in accord with the assigned Os-OH stretching frequencies in OsO₄OH and (OsO₄)₂OH which range from 485 to 490 cm^{-1,71} The vibrational bands below 400 cm⁻¹ correspond to bending modes and their assignments are based on density functional theory calculations. Two geometries are possible for the $OsO_4F_2^2$ anion, the cis- and the transarrangements. A total of 15 vibrational modes spanning the irreducible representations $6A_1 + 2A_2 + 4B_1 + 3B_2$ under C_{2v} point symmetry (the plane of cis-OsF₂ is taken as the xz-plane) are expected for the cis-isomer with all modes Raman active and A_1 , B_1 , and B₂ infrared active, while 11 vibrational bands belonging to the symmetry species 2A_{lg} + $2A_{2u} + B_{1g} + B_{2g} + B_{2u} + E_g + 3E_u$ are expected for trans-OsO₄F₂²⁻¹ under D_{sh} symmetry with A_{1g} , B_{1g} , B_{2g} , and E_{g} Raman active and A_{2u} and E_{u} infrared active. This results in four (Raman and infrared active) and three Os-O (mutually exclusive infrared (E_u) and Raman active (A_{1g}, B_{2g})) stretching bands for cis- and trans-OsO₄F₂²⁻, respectively. The Raman and infrared spectra of [N(CH₃)₄]₂[OsO₄F₂] show four vibrational bands at 872, 852, 813, and 792 cm-1 which are attributed to Os-O stretches and are indicative of the cis-arrangement, which was found to be the stable arrangement based on density functional theory calculations.²¹⁵ The preference of the cis-isomer over the trans-isomer for pseudo-octahedral do transition metal oxide fluoride has previously been shown for other dioxo species, e.g., cis-OsO₂F₄,6 cis-TcO₂F₄,92 and cis-ReO₂F₄.94 The Os-O stretching frequencies of cis-OsO₄F₂², reported in the present work occur in the range found for the well characterized OsO4(OH)22- anion64.65,70,71 and agree well with those obtained from LDFT calculations. As in the case of the OsO4F anion, no Os-F stretching bands were observed in the Raman spectrum. In the infrared spectrum, however,
bands at 428 and 403 cm⁻¹ were assigned to the symmetric and asymmetric Os-F stretch which are only 13 and 11 cm-1 higher than the calculated frequencies, respectively. The vibrational bands below 400 cm⁻¹ were tentatively assigned to bending modes based on LDFT calculations. The vibrational frequencies obtained for cis-OsO₄F₂² in the present work are in total disagreement with the vibrational frequencies previously reported and assigned to this anion.^{65,72} Rather, the previously reported frequencies are shown to belong to the OsO_4F anion, and the EXAFS data attributed to the $OsO_4F_2^{2-74}$ must now be ascribed to the OsO_4F anion (see 6.2.3. X-ray Crystal Structure of $[N(CH_3)_4][OsO_4F]$). #### 6.3. Conclusion The X-ray crystal structure of [N(CH₃)₄][OsO₄F] extends the number of structurally well characterized Lewis acid-base adducts of OsO₄. The OsO₄F anion exhibits an unprecedented distortion from trigonal bipyramidal VSEPR geometry¹²⁰ with an O_{3x}-Os-F angle of 156.9(4)° instead of the expected 180° that is observed in the related OsO₄· Lewis base adducts. The vibrational frequencies assigned to [N(CH₃)₄]₂[OsO₄F₂] are consistent with the *cis*-arrangement for the OsO₄F₂²· anion, however, they are in complete disagreement with those previously reported for the *cis*-OsO₄F₂²· anion, ^{65,72} proving the presence of the OsO₄F anion in the previously reported Lewis acid-base adducts of OsO₄ with fluoride ion. #### **CHAPTER 7** # LEWIS-ACID PROPERTIES OF OsO3F2 #### 7.1. Introduction The Lewis acidity of OsO₃F₂ has been demonstrated by the synthesis of the OsO₃F₃ anion as the Na⁺, K⁺, Cs⁺, Rb⁺, and Ag⁺ salts. The K⁺, Cs⁺, and Ag⁺ salts are formed by reaction of OsO₄ with BrF₃ and KBr, CsBr, and [Ag][IO₃], respectively, in excess BrF₃ at room temperature⁸⁵ and the Cs⁺, Rb⁺, K⁺, and Na⁺ salts by reaction of OsO₃F₂ with the corresponding alkali metal fluorides. The facial geometry was suggested for the OsO₃F₃ anion based on the vibrational spectra of the Cs⁺, K⁺, Rb⁺, and Na⁺ salts^{65,72,88}. Bond lengths for the OsO₃F₃ anion in [K][OsO₃F₃] have been estimated from EXAFS spectroscopy. Other than the OsO₃F₃ anion, no other Lewis acid-base adducts of OsO₃F₂ have been reported. The facial arrangement is most frequently encountered for trioxo transition metal species, *e.g.*, *fac*-ReO₃Cl₃², 116 *fac*-WO₃F₃³, 117 and has been explained in terms of the *trans*-influence of the doubly bonded oxygen ligand (see 1.5.) The *Trans*-Influence). The vibrational spectra of the ReO₃F₃², 216 MoO₃F₃³, 117 and WO₃F₃³, 217 anions, however, have been assigned in terms of the *mer*-isomer. The present study provides the first detailed structural study of the fac-OsO₃F₃ anion in the solid state and in solution by single crystal X-ray diffraction, vibrational and NMR spectroscopy. The first nitrogen base adduct of OsO₃F₂, OsO₃F₂(CH₃CN) has been characterized by NMR and Raman spectroscopy. #### 7.2. Results and Discussion # 7.2.1. Fuoride Ion Acceptor Properties of OsO₃F₂ 7.2.1.1. Syntheses of the $[N(CH_3)_4][OsO_3F_3]$ and $[NO][OsO_3F_3]$. Osmium trioxide diffuoride reacts with excess NOF over a period of ca. 90 min according to eq. (7.1) to NOF + OsO₃F₂ $$\frac{\text{NOF, -78 to -60 °C}}{\text{NO}}$$ [NO][OsO₃F₃] (7.1) give light orange to ochre colored [NO][OsO₃F₃] at temperatures between -78 and -60 °C. The [NO][OsO₃F₃] salt was insoluble in liquid NOF up to its boiling point (-56 °C) and is unstable at ambient temperature. The compound, $[N(CH_3)_4][OsO_3F_3]$, was obtained as a solid orange product by the reaction of stoichiometric amounts of $[N(CH_3)_4][F]$ and OsO₃F₂ in HF solution followed by removal of HF under dynamic vacuum (eq. (7.2)). $$[N(CH_3)_4][F] + OsO_3F_2 \xrightarrow{HF, RT} > [N(CH_3)_4][OsO_3F_3]$$ (7.2) Although OsO_3F_2 is insoluble in anhydrous HF, it rapidly dissolves in the presence of $[N(CH_3)_4][F]$ to give a pale orange solution of $[N(CH_3)_4][OsO_3F_3]$ at room temperature which has a high solubility in HF even at -78 °C. The salt is moderately soluble in CH₃CN at room temperature. 7.2.1.2 Attempted Synthesis of $[N(CH_3)_4]_2[OsO_3F_4]$. The reaction of OsO_3F_2 and $[N(CH_3)_4][F]$ in a 1:2 ratio in CH₃CN solvent yielded a brown solid, which exhibited no significant solubility in CH₃CN, presumably according to eq. (7.3). Solvent removal gave $$2[N(CH_3)_4][F] + OsO_3F_2 \xrightarrow{CH_3CN, -40 \, ^{\circ}C} > [N(CH_3)_4]_2[OsO_3F_4]$$ (7.3) rise to a grey solid product, which was unstable at room temperature. The presence of $[N(CH_3)_4]_2[OsO_3F_4]$ could not be verified, since the grey solid product decomposed readily in the beam of the YAG laser (1064 nm) and no Raman band could be detected even at -160 °C using laser powers as low as 50 mW. 7.2.1.3. NMR Spectroscopic Characterization of the OsO₃F₃. Anion. The ¹⁹F NMR spectrum of [N(CH₃)₄][OsO₃F₃] in CH₃CN solvent at -20 °C consists of a singlet at -! 16.8 ppm ($\Delta v_{s_1} = 23$ Hz) with ¹⁸⁷Os ($I = \frac{1}{2}$, 1.64% natural abundance) satellites which is assigned to the OsO₃F₃ anion. The magnitude of the coupling (${}^{1}J({}^{187}Os-{}^{19}F) = 32$ Hz) is consistent with those found in cis-OsO₂F₄ (35.1 and 59.4 Hz for coupling with the fluorines *trans* and cis to the oxygens). A broad, weak singlet at -170.0 ppm ($\Delta v_{s_1} = 125$ Hz) indicates the presence of small amounts of HF₂ exchanging with HF that was not completely removed during the preparation of [N(CH₃)₄][OsO₃F₃]. In addition to the HF solvent signal at -194.1 ppm (singlet, $\Delta v_{_{94}} = 10$ Hz), the ¹⁰F NMR spectrum of $[N(CH_3)_4][OsO_3F_3]$ in HF solvent at -80 °C shows a broad singlet at -164.0 ppm ($\Delta v_{_{1}} = 270$ Hz) corresponding to the OsO_3F_3 anion undergoing slow chemical exchange with HF solvent. 7.2.1.4. X-ray Crystal Structure of $[N(CH_3)_4][OsO_3F_3]$. Details of the data collection parameters and other crystallographic information for $[N(CH_3)_4][OsO_3F_3]$ are given in Table 7.1. Important bond lengths and angles for $[N(CH_3)_4][OsO_3F_3]$ are listed in Table 7.2. The N(CH₃)₄⁺ cations pack in an approximate cubic primitive array with the OsO₃F₃⁻ anions occupying all cubic sites (distorted CsCl structure) (Figure 7.1). The anions and cations in the crystal structure are well separated and exhibit only weak contacts between the oxygen and the methyl groups (O···H₃C: 306(2) to 336(2) pm) and between the fluorines and the methyl groups (F···H₃C: 321(2) to 335(2) pm). The nitrogen of the N(CH₃)₄⁺ cation is located on a special position (2) and has an arrangement of carbon atoms that is tetrahedral within experimental error. The bond lengths in both independent cations are the same within experimental error and have the expected values. The environment around the osmium atom is hexacoordinate with Os-O bond lengths (170(1) to 173(1) pm) significantly shorter than the Os-F bond lengths (191(1) to 197(1) pm). The oxygen and fluorine atoms exhibit a facial arrangement about Os with O-Os-O bond angles that are considerably larger than 90°, i.e., 102.8(8) to 101.2(7)°, and F-Os-F bond angles that are considerably smaller than 90°, i.e., 79.9(4) to Table 7.1 Summary of Crystal Data and Refinement Results for [N(CH₃)₄][OsO₃F₃] | | [N(CH ₃) ₄][OsO ₃ F ₃] | | |---|--|--| | formula | C ₄ H ₁₂ F ₃ NO ₃ O ₅ | | | space group | C2/c (No. 15) | | | a [pm] | 1634.7(4) | | | b [pm] | 1347.5(3) | | | c [pm] | 1143.6(3) | | | α [deg] | 90 | | | β [deg] | 134.128(4) | | | γ [deg] | 90 | | | V [10 ⁶ pm ³] | 1808.1(7) | | | Z [molecules/unit cell] | 8 | | | mol. wt | 369.35 | | | calcd density [g cm ⁻³] | 2.714 | | | colour, morphology | orange plates | | | size [mm³] | 0.30×0.15×0.01 | | | μ [mm ⁻¹] | 14.125 | | | data/restraints/parameters | 1727/0/111 | | | final agreement factors | $R^a = 0.0614$ | | | | $R_{\omega}^{b} = 0.1508$ | | | GOOF | 1.005 | | | Extinction coefficient | 0.00043(12) | | | $\Delta\delta_{max}/\Delta\delta_{mm}$ [e 10 ⁻⁶ pm ⁻³] | 3.681/-3.919 | | $^{^{2}}$ R = $\sum |F_{o}| - |F_{c}| \sqrt{\sum} |F_{o}|$. ^b $R_w = \sum |(|F_o| - |F_c|)w^{2s}|/\sum (|F_o|w)$ where $w = 1/[\sigma^2(F) + (0.0344)^2 + 4.94]$. Table 7.2 Experimental Bond Lengths, Contacts and Bond Angles in $[N(CH_3)_4][OsO_3F_3]$ ## $[N(CH_3)_4][OsO_3F_3]$ | | | | |----------------|--|---| | Bond Lengths a | nd Contacts [pm] | | | 197(1) | Os(1)-F(2) | 191(1) | | 194(1) | Os(1)-O(1) | 170(1) | | 172(1) | Os(1)-O(3) | 173(1) | | 151(2) | N(1)-C(2) | 148(2) | | 150(2) | N(2)-C(4) | 149(2) | | Bond Ang | gles [deg.] | | | 80.4(5) | F(1)-Os(1)-F(3) | 79.9(4) | | 80.4(5) | O(1)-Os(1)-O(2) | 102.8(8) | | 101.3(7) | O(2)-Os(1)-O(3) | 101.2(7) | | 87.4(6) | F(1)-Os(1)-O(2) | 87.2(6) | | 87.8(7) | F(2)-Os(1)-O(3) | 89.0(5) | | 86.5(6) | F(2)-Os(1)-O(3) | 89.4(5) | | 109(2) | C(1)-N(1)-C(2) | 110(1) | | 111(2) | C(3)-N(2)-C(3A) | 110(2) | | 110(1) | C(4)-N(2)-C(4A) | 108(2) | | | 197(1) 194(1) 172(1) 151(2) 150(2) Bond Ang 80.4(5) 80.4(5) 101.3(7) 87.4(6) 87.8(7) 86.5(6) 109(2) 111(2) | 194(1) Os(1)-O(1) 172(1) Os(1)-O(3) 151(2) N(1)-C(2) 150(2) N(2)-C(4) Bond Angles [deg.] 80.4(5) F(1)-Os(1)-F(3) 80.4(5) O(1)-Os(1)-O(2) 101.3(7) O(2)-Os(1)-O(3) 87.4(6) F(1)-Os(1)-O(2) 87.8(7) F(2)-Os(1)-O(3) 86.5(6) F(2)-Os(1)-O(3) 109(2) C(1)-N(1)-C(2) 111(2) C(3)-N(2)-C(3A) | Figure 7.1 Views of (a) the $[N(CH_3)_4][OsO_3F_3]$ unit cell showing the packing along the c-axis and (b) the fac-OsO_3F_3 anion and the
two crystallographically independent $N(CH_3)_4$ cations (thermal ellipsoids are shown at the 50% probability level). 80.4(5)° (Figure 7.1). This is in agreement with the greater repulsion of the Os=O double bond domains when compared to the Os-F single bond domains. The Os-O and Os-F bond lengths in $[N(CH_3)_4][OsO_3F_3]$ agree well with those determined by EXAFS $[K][OsO_3F_3]$, *i.e.*, 169.8(2) and 191.9(15) pm, respectively. The Os-O bond lengths in $[N(CH_3)_4][OsO_3F_3]$ are larger compared to those of the neutral parent compound, $(OsO_3F_2)_{\infty}$, which has a polymeric fluorine-bridged chain structure in the solid state, with Os-O bond lengths of 172.7(1), 168.8(1), and 167.8(1) pm. The terminal Os-F bond length of 187.9(1) pm in $(OsO_3F_2)_{\infty}$ is shorter than those in $[N(CH_3)_4][OsO_3F_3]$, which is in accord with the greater polarities of the Os-O and Os-F bonds in the anion. The fac-isomer of OsO_3F_3 is expected to be more stable than the mer-isomer because each filled p orbital on an oxygen competes for the three available empty d_{12g} orbitals on the osmium. An alternative view involves charge concentrations in the outer electron core of osmium located opposite to the doubly bonded oxygens. Additional doubly bonded oxygens avoid the positions of these charge concentrations, disfavouring the trans-dioxo and mer-trioxo arrangements. Similar arguments have been advanced to account for cis-dioxo arrangements (see 6.2.4. Raman and Infrared Spectroscopic Characterization of $[N(CH_3)_4][OsO_4F]$ and $[N(CH_3)_4]_2[OsO_4F_2]$). The preference for the facial arrangement in MO_3F_3 (M = transition metal having a do configuration) moieties has also been demonstrated by the X-ray crystal structures of $[Li]_2[Ta_2O_3F_6]$, 218 $(OsO_3F_2)_{\infty}$, 7 $[Ba]_4[Mo_2O_5F_7][HF_2]_3 \cdot H_2O_7^{219}$ and $Pb_5W_3O_9F_{10}$. 7.2.1.5. Raman and Infrared Spectroscopy of $[N(CH_3)_4][OsO_3F_3]$ and $[NO][OsO_3F_3]$. The $[N(CH_3)_4][OsO_3F_3]$ and $[NO][OsO_3F_3]$ salts were characterized by low-temperature Raman spectroscopy and, in the case of $[N(CH_3)_4][OsO_3F_3]$, by room-temperature infrared spectroscopy. The Raman spectra are shown in Figures 7.2a and 7.2b, and the assignments made using frequencies calculated from LDFT²¹⁵ and are listed in Table 7.3. Assignments are based on the fac-OsO₃F₃ anion (C_{3v} point symmetry). The 15 vibrational modes have the symmetries $4A_1 + A_2 + 5E$ with A_1 and E vibrations being Raman and infrared active and the A2 vibration being inactive. The present assignments for OsO₃F₃ are in agreement with those previously reported by Griffith. 65 Jezowska-Trzebiatowska et al., 38 and Levason et al., 72 except for v_s(OsO₃) which is assigned to bands at 920 (N(CH₃)₄*) and 934 (NO*) cm⁻¹ in the present work. This mode was assigned to an infrared band at 950 cm⁻¹ by Griffith⁶⁵ and Jezowska-Trzebiatowska,⁸⁸ but was not observed in the present work and was suspected by Levason et al. 72 to arise from the hydrolysis product, OsO₄. All vibrational modes with E symmetry but one (v₈) are split in two components in the low-temperature Raman spectrum of [N(CH₃)₄][OsO₃F₃]. Correlation of the free anion symmetry of $OsO_3F_3^-(C_{3\nu})$ to the anion site symmetry (C_1) and the unit cell symmetry (C_{2k}) (space group C2/c) predicts that all the vibrational bands are Raman and infrared active and are split into Ag and Bg components and into Au and B_u components in the Raman and infrared spectrum, respectively (Table 7.4). Correlation of the free cation symmetry of $N(CH_3)_4^+(T_d)$ to the cation site symmetry (C_2) and the unit cell symmetry (C_{2k}) predicts that all bands are Raman and infrared active (Table 7.5). In the Raman and infrared spectra, v1 - v8 are not expected to show factor-group splitting, Figure 7.2 (a) Raman spectrum (low-frequency range) of microcrystalline [N(CH₃)₄][OsO₃F₃] recorded in a Pyrex glass capillary at -160 °C using 1064-nm excitation; (b) Raman spectrum (low-frequency range) of microcrystalline [NO][OsO₃F₃] recorded in a 4-mm FEP tube at -160 °C using 1064-nm excitation. Asterisks (*) denote FEP sample tube lines. Table 7.3 Experimental Vibrational Frequencies and Their Assignments for $[N(CH_3)_4][OsO_3F_3]$ and $[NO][OsO_3F_3]$ and Calculated Vibrational Frequencies for fac-OsO $_3F_3^{-215}$ | | Free | lneuch, [cm.,] | | Assignment (C_3) | |---------------------------------------|-----------------------------------|---------------------------------|--------------------|---| | [N(CH ₃) ₄][0 | OsO ₃ F ₃] | [NO][OsO,F | <u>.1</u> | | | IR ^b | Raman ^{c.4} | Ramance | Calc.(LDFT) | fac-OsO ₃ F ₃ | | 25 ℃ | -160 °C | -160 ℃ | | | | 920 m | 920 (100) | 934 (100) | 941 (76) | $v_i(A_1), v_i(OsO_3)$ | | 909 vs | 912 (43)
908 (42) | 920 (29) | 930 (350) | $v_6(E)$, $v_{as}(OsO_3)$ | | 609 w | | | | | | 567 s | 573 (11) | 555 (6) | 599 (128) | $v_2(A_1)$, $v_1(OsF_3)$ | | 506 s
494 s | 504 (4)
493 (3) | 483 (5) | 526 (115) | $v_7(E)$, $v_{aa}(OsF_3)$ | | | 402 (2)
385 (43) | 386 (45) ² | 374 (8)
371 (8) | $v_{ij}(E)$, $\delta_{ia}(OsO_3)$
$v_{ij}(A_1)$, $\delta_{ij}(OsO_3)$ | | | 339 (<0.5)
328 (<0.5) | 332 (4) | 323 (55) | $v_{\mathfrak{g}}(E)$, $\delta_{\mathfrak{m}}(OsF_{\mathfrak{f}}) + \delta_{\mathfrak{m}}(F-Os-O)$ | | | 316 (3)
310 (3)
301 (2) | 307 (2)
295 (7) ^g | 321 (16) | $v_4(A_1), \delta_s(OsF_3)$ | | | 235 (3)
230 (1) | 249 (2)
234 (5) | 233 (3) | $v_{10}(E)$, $\delta_{aa}(OsF_3)$ - $\delta_{aa}(F$ -Os-O) | | | | | 190 (0) | $v_5(A_2)$, $\tau(OsF_3)$ wrt OsO_3 | | | 102 (<0.5)
84 (2) | 128 (32)
89 (69)
72 (100) | | lattice modes | ^a Symbols denote: shoulder (sh), very strong band (vs), strong (s), medium (m), weak (w), very weak (vw). ^b The N(CH₃)₄* cation modes were observed in the infrared spectrum at 464 w, $v_{19}(T_2)$; 953 m, $v_{18}(T_2)$; ## Table 7.3 continued... 1291 w, $v_{17}(T_2)$; 1381 vw, 1421 w, $v_{16}(T_2)$; 1453 w, 1461 m, $v_{2}(A_1)$, 1492 w, $v_{6}(E)$; and 1828 w, 2365 vw, 2856 m, 2926 m, 2957 m, 3041 m cm⁻¹, v_{CH_3} and binary bands (see ref.(201,202)). - c Values in parentheses denote relative Raman intensities. - Spectrum recorded on microcrystalline solid in a Pyrex glass melting point capillary using the 1064-nm excitation. The N(CH₃)₄* cation modes were observed in the Raman spectrum (-160 °C) at 457 (6), 467 (2), $v_{10}(T_2)$; 742 (2), 749 (9), 756 (5), $v_3(A_1)$; 948 (15), 965 (1), $v_{10}(T_2)$; 1175 (2), 1181 (2), $v_1(E)$; 1290 (2), $v_{12}(T_2)$; 1410 sh, 1414 (2), $v_{16}(T_2)$; 1445 (<0.5), 1460 (7), $v_2(A_1)$; 1472 (9), $v_6(E)$; and 1501 (1), 2808 (4), 2816 (4), 2868 (1), 2876 (1), 2889 (3), 2908 (4), 2913 (4), 2922 (7), 2931 (5), 2962 (18), 2979 (6), 2986 (6), 2997 (5), 3002 (5), 3024 (9), 3035 (27), 3046 (10) cm⁻¹, v_{CH_3} and binary bands (see ref. (201,202)). - ^c Spectrum recorded on microcrystalline solid in a 4-mm FEP sample tube using the 1064-nm excitation. The NO^{*} cation mode was observed in the Raman spectrum (-160 °C) at 2319 (37) cm⁻¹, v(NO); Bands arising from the FEP sample tube were observed at 295 (7), 386 (45), 578 (3), 733 (21), and 750 (3) cm⁻¹. - f Infrared intensities, in km mol-1, are given in parentheses. - ⁸ This band overlaps with a band arising from the FEP sample tube. Correlation Diagram for the Vibrational Modes of the OsO₃F₃ Anion in [N(CH₃),][OsO₃F₃]* Table 7.4 | C_{jk} | $2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6R, 6T | $2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6R, 6T | $2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6R, 6T (-T) | 2(v ₁ - v ₅), 4(v ₆ - v ₁₁), 6R, 6T (-2T) | |--------------------------------------|---|---|--|---| | Crystal
Symmetry, C _{2h} | A _s (Ra) | B, (Ra) | A _u (IR) | B _u (IR) | | Site
Symmetry, C, | | | | | | Anion
Symmetry, C _J , | V V | / | A ₂ | я | | | 8(v ₁ - v ₄), 8T | | 8v _s , 8R | 8(v ₆ - v ₁₁), 8R, 8T | * The symbols T and R denote translatory and rotatory (external) modes, respectively, and Ra and IR in parentheses denote Raman and infrared activity, respectively. ^b Space group C2/c, Z = 8. Correlation Diagram for the Vibrational Modes of the N(CH₃)₄ Cation in [N(CH₃)₄][O₈O₃F₃]* Table 7.5 | | Cation
Symmetry, T_d | Site
Symmetry, C, | Crystal
Symmetry, C_{x}^{b} | a f | |------------------|---------------------------|----------------------|----------------------------------|---| | | | | | | | $4(v_1 - v_3)$ | Ā | | A _k (Ra) | $2(v_1 - v_8), 2(v_9 - v_{19}), 2R, 2T$ | | 40,4 | A_i | A | B (Ra) | $4(v_9 - v_{19}), 4R, 4T$ | | $4(v_s - v_g)$ | B | X | | | | 4(v9 - v12), 4R | T | | A _u (IR) | $2(v_1 - v_8)$, $2(v_9 - v_{19})$, $2R$, $2T$ (-T) | | 4(v13 - v14), 4T | T | N B | B _u (IR) | 4(v ₉ - v ₁₉), 4R, 4T (-2T) | ^a The symbols T and R denote translatory and rotatory (external) modes, respectively, and Ra and IR in parentheses denote Raman and infrared activity, respectively. ^b Space group C2/c, Z = 8. while $v_9 - v_{19}$ are expected to be factor-group split into A_g and B_g components and into A_u and B_u components in the Raman and infrared spectrum, respectively. Splittings were observed for the $N(CH_3)_4^+$ cation modes v_{16} , v_{18} , and v_{19} in the low-temperature Raman spectrum. Fewer bands are split in the low-temperature Raman spectrum of $[NO][OsO_3F_3]$ and may result from a higher site symmetry for the $OsO_3F_3^-$ anion in the crystal lattice of $[NO][OsO_3F_3]$ salt. While the Os-O stretches appear at lower frequencies in the Raman spectrum of $[N(CH_3)_4][OsO_3F_3]$ than in that of
$[NO][OsO_3F_3]$, the opposite trend is observed for the Os-F stretches. This suggests stronger cation—F contacts in the structure of $[NO][OsO_3F_3]$ and is supported by the splitting of the Raman bands associated with fluorine ligand motions. The Os-O stretches in OsO₃F₃ anion appear at considerably lower frequencies when compared to those of its neutral parent compound $(OsO_3F_2)_{\infty}^{7}$ and is corroborated by longer, more polar Os-O bonds in the anion (see 7.2.1.4. X-ray Crystal Structure of $[N(CH_3)_4][OsO_3F_3]$). ## 7.2.2. Lewis Acid Behaviour of OsO₃F₂ Towards Nitrogen Bases 7.2.2.1. Synthesis of OsO₃F₂(CH₃CN). Osmium trioxide difluoride dissolves in CH₃CN at -40 °C to give an orange solution according to eq. (7.3). Removal of excess CH₃CN $$OsO_3F_2 + CH_3CN - \frac{CH_3CN}{} > OsO_3F_2(CH_3CN)$$ (7.3) initially yielded a wet, red-brown solid. Complete solvent removal yields yellow-ochre OsO₃F₂(CH₃CN), which is stable at room temperature for several days and does not release CH₃CN under dynamic vacuum at room temperature. The OsO₃F₂(CH₃CN) adduct is very soluble in CH₃CN at -40 °C and is slightly soluble in SO₂ClF at -80 °C. 7.2.2.2. Multi-NMR Spectroscopic Characterization OsO₃F₂(CH₃CN). The ¹⁹F NMR spectrum of OsO₃F₂(CH₃CN) in CH₃CN solvent at -40 °C consists of a singlet at -99.6 ppm, which is less shielded than the ¹⁹F resonance of the OsO₃F₃ anion (-116.8 ppm) and which is consistent with the neutrality of the OsO₃F₂(CH₃CN) adduct. A singlet corresponding to complexed CH₃CN was found at higher frequency (2.55 ppm) in the ¹H NMR spectrum than the ¹H resonance for uncomplexed CH₃CN solvent (2.06 ppm, ¹J(¹³C-¹H) = 136 Hz). The ¹⁹F NMR spectrum of OsO₃F₂(CH₃CN) in SO₂CIF solvent at -80 °C comprises a singlet at -97.61 ppm with ¹⁸⁷Os satellites (¹⁸⁷Os: $I = \frac{1}{2}$, natural abundance = 1.64%), ¹ $J(^{187}Os^{-19}F)$, of 39 Hz. The ¹⁸⁷Os-¹⁹F coupling constant of the OsO₃F₂(CH₃CN) is larger than that of the OsO₃F₃ anion (32 Hz), corresponding to more covalent Os-F bonds in the neutral adduct. Nitrogen-15 enrichment of CH₃CN in SO₂CIF resulted in a doublet splitting of the signal at -96.84 ppm, $^2J(^{19}F^{-15}N) = 21$ Hz (Figure 7.3) which is consistent with the fac-OsO₃F₂(CH₃CN) (structure I) in which one CH₃CN is coordinated to the osmium centre and the two fluorine ligands are chemically equivalent. Facial trioxo arrangements have also been found for the fac-OsO₃F₃ anion (see 7.2.1.4. X-ray Crystal Structure of [N(CH₃)₄][OsO₃F₃]) and for (OsO₃F₂)_∞. In addition to the singlet at -97.61 ppm, two weak doublets at -17.91 ppm and -47.95 ppm, ${}^{2}J({}^{19}F^{-19}F) = 134$ Hz and weak singlets at -68.87, -71.91, -72.84, and -72.87 ppm were observed in SO₂ClF solvent, but not in CH₃CN. The ¹⁵N-enriched sample gave rise to an additional doublet splitting on the high-frequency doublet, ${}^{2}J({}^{19}F^{-15}N) = 20 \text{ Hz}$ (Figure 7.3). These splitting patterns are consistent with mer-OsO₃F₂(CH₃CN) (structure II), which is unexpected, since the facial arrangement of the oxygen atoms is anticipated to be more stable. A ¹⁹F-¹⁵N coupling was not resolved for the second doublet. Two-bond couplings involving fluorine, ²J(¹⁹F-X), were found to exhibit no consistent dependency on the F-M-X bond angle. Therefore, an unambiguous assignment of the two doublet resonances could not be based on the expected magnitudes of the cis and trans 19F-15N coupling. The low-frequency doublet was, however, assigned to the fluorine cis to the CH₃CN ligand based on the trans-influence of the doubly bonded oxygen and the steric crowding in the plane of the three Os=O double bond domains. This results in a more ionic Os-F bond and in a more shielded fluorine environment than that of the fluorine trans to the oxygens. The weak singlets, which did not split upon 15N enrichment could not be assigned. The ¹H NMR spectrum of OsO₃F₂(CH₃CN) in the presence of excess CH₃CN in SO₂ClF at -80 °C comprises an intense signal at 1.51 ppm, ${}^{1}J({}^{13}C{}^{-1}H) = 136$ Hz, for Figure 7.3 ¹⁹F NMR spectrum (282.409 MHz) of ¹⁵N-enriched fac-OsO₃F₂(CH₃CN) (a) and mer-OsO₃F₂(CH₃CN) (a) in SO₂ClF solvent at - 80 °C. uncomplexed CH₃CN, a singlet at 2.02 ppm with ¹³C satellites, ¹J(¹³C-¹H) = 139 Hz assigned to fac-OsO₃F₂·CH₃CN (structure I), a singlet at 3.04 ppm assigned to mer-OsO₃F₂(CH₃CN) (structure II), an unassigned broad signal at 2.33 ppm and a weak doublet at 7.19 ppm, ${}^{1}J({}^{19}F-{}^{1}H) = 479$ Hz corresponding to an HF impurity. The assignment of the ¹H resonances at 3.04 and 2.02 ppm to the mer-OsO₃F₂(CH₃CN) and fac-OsO₃F₂(CH₃CN) isomers, respectively, is supported by the ratio of their integrated intensities which matches the ratio of the combined intensities of the 19F doublet resonances (-17.91 and -47.95 ppm) and the ¹⁹F singlet resonance at -97.61 ppm. The complexation shift for fac-OsO₃F₂·CH₃CN in SO₂ClF (0.51 ppm) agrees well with that observed in CH₃CN solvent (0.49 ppm) and is consistent with the complexation shifts of TcO₂F₃·CH₃CN (0.37 ppm)⁹² and ReO₂F₃·CH₃CN (0.59 ppm).⁹⁴ The complexation shift of 1.53 ppm for mer-OsO₃F₂(CH₃CN) is much larger than that for fac-OsO₃F₂(CH₃CN) (0.51 ppm), which is in accord with the stronger Os-N bond anticipated for the ligand trans to a fluorine when compared to that of a ligand trans to an oxygen. This significantly stronger Os-N bond may be the driving force for the change in geometry from fac-trioxo to the mer-trioxo configuration. The approximate 1:1 intensity ratio between the broad 'H resonance at 2.33 ppm and that of mer-OsO₃F₂(CH₃CN) at 3.04 ppm was found in different NMR samples having different relative concentrations of the mer- and fac-OsO₃F₂(CH₃CN) and suggests a second, labile CH₃CN molecule in the coordination sphere of the mer-OsO₃F₂(CH₃CN) that exchanges with free CH₃CN solvent resulting in broadening of the ¹H resonance at 2.33 ppm. The ¹³C{¹H} NMR spectrum contains signals at 117.50 ppm and 0.86 ppm for free CH₃CN and signals at 2.24 and 3.15 ppm for the methyl carbon in fac-OsO₃F₂(CH₃CN) and mer-OsO₃F₂(CH₃CN), respectively. In contrast to TcO₂F₃·CH₃CN⁹² and ReO₂F₃·CH₃CN, occupation shifts for ¹³CN were observed. The ¹⁵N NMR spectrum of ¹⁵N-enriched OsO₃F₂(CH₃CN) (Figure 7.4) in the presence of excess CH₃CN in SO₂ClF at -84 °C comprised a singlet at -138.34 ppm for free CH₃CN, a triplet at -197.28 ppm with $^2J(^{19}F^{-15}N) = 20$ Hz for fac-OsO₃F₂(CH₃CN) and a doublet at -258.62 ppm with $^2J(^{19}F^{-15}N) = 18$ Hz for mer-OsO₃F₂(CH₃CN). A broad singlet observed at -72.08 ppm may be attributed to a labile second CH₃CN ligand in the coordination sphere of mer-OsO₃F₂(CH₃CN), which was suggested based on ¹H NMR spectroscopy. Although only the fac-OsO₃F₂(CH₃CN) isomer was observed in the ¹H and ¹⁹F NMR spectra in CH₃CN solvent, a mixture of fac- and mer-OsO₃F₂(CH₃CN) was observed in the solid state after removal of CH₃CN solvent (see 7.2.2.3. Raman Spectroscopy of OsO₃F₂(CH₃CN)). The absence of an NMR signal corresponding to the mer-OsO₃F₂(CH₃CN) isomer (structure II) in CH₃CN solvent presumably is a consequence of an intermediate exchange of the CH₃CN ligand with free CH₃CN solvent, and therefore between the two fluorine environments. The apparent absence of the mer-OsO₃F₂(CH₃CN) isomer (structure III) can be explained in terms of steric crowding in the plane containing three oxygens and one CH₃CN ligand, which is expected to destabilize the adduct. ¹⁵N NMR spectrum (50.687 MHz) of ¹⁵N-enriched fac-OsO₃F₂(CH₃CN) (A), mer-OsO₃F₂(CH₃CN) (B), free CH₃CN (C), and an unidentified species (D) in SO₂CIF solvent at - 84 °C. Figure 7.4 Attempts to grow single crystals of OsO₃F₂(CH₃CN) from SO₂ClF and a mixture of SO₂ClF and CH₃CN failed because of a very flat solubility curve for the CH₃CN adduct in these solvents. 7.2.2.3. Vibrational Spectroscopic Characterization of OsO₃F₂(CH₃CN). The mixture of fac- and mer-OsO₃F₂(CH₃CN) was characterized by infrared (25 °C) and low-temperature Raman spectroscopy (-163 °C). The Raman spectrum is shown in Figure 7.5 and the infrared and Raman frequencies with their tentative assignments are listed in Table 7.6. The Raman spectrum of OsO₃F₂(CH₃CN), which was isolated from CH₃CN solvent, was the same as that of the precipitate in an NMR sample of OsO₃F₂(CH₃CN) in SO₂ClF solvent indicating the presence of the same isomers in both solvents. The Raman spectrum of red-brown OsO₃F₂(CH₃CN) in the presence of small amounts of free CH₃CN is shown in Figure 7.6 and the Raman frequencies are listed in Table 7.7. The Raman spectrum of solid OsO₃F₂(CH₃CN) isolated from CH₃CN solvent comprises eight bands between 900 and 970 cm⁻¹, the typical range for Os-O stretching modes and the C-C stretches of the CH₃CN ligands. The number of stretching bands in this region, three Os-O stretches and one C-C stretch for each isomer, confirms the existence of two OsO₃F₂(CH₃CN) isomers and is in accord with the solution multi-NMR spectroscopic findings for solutions of OsO₃F₂ and CH₃CN in SO₂ClF solvent. The observation of four Os-F stretching bands in the Raman and infrared spectra provides further evidence for the presence of two OsO₃F₂(CH₃CN) isomers. The modes associated with the CH₃CN moiety exhibit complexation shifts Figure 7.5 Raman spectrum of microcrystalline OsO₃F₂(CH₃CN) recorded in a Pyrex glass capillary at -163 °C using 1064-nm excitation. Table 7.6 Raman Frequencies and Their Assignments for fac-OsO₂F₃(CH₃CN) and mer-OsO₂F₃(CH₃CN) | Fre | quency* [cm ⁻¹] | Assignmen | * | |--------------------|-------------------------------|--|--| | IR. 25 °C | Raman, -165 °C | fac-OsO ₂ F ₃ (CH ₃ CN) (C ₄) | mer-OsO ₂ F ₃ (CH ₃ CN) (C ₄) | | 3286 vw | | (v ₂ +v ₄) | (v ₂ +v ₄) | | 3015 w | 3013 (5)
2990 (2) | $v_{as}(CH_3) (v_5(E))$ | $v_{ss}(CH_3)$ ($v_s(E)$) | | 2957 sh | • • | | | | 2942 m
| 2943 (28) | $v_i(CH_3) (v_i(A_i))$ | $v_i(CH_3) (v_i(A_i))$ | | 2935 m | | | 1 (- (- 1)) | | 2928 sh | 2930 (17) | | | | 2873 vw | | | | | 2856 w | | | | | 2334 s | 2330 (23) | $v(CN) (v_2(A_1))$ | v(CN) (v ₂ (A ₁)) | | 2304 w | 2299 (5) | | • | | 2264 vw | | $(2v_4+v_3)$ | $(2v_4+v_8)$ | | 2055 vw | | | | | 1879 vw | | | | | 1836 vw | | | | | 1822 vw | | | | | 1731 vw | | | | | 1701 vw
1524 vw | | | | | 1457 w | | | | | 1414 w | 1410 (3) | $\delta_{\mathbf{z}}(\mathrm{CH_3}) \ (\mathrm{v_6}(\mathrm{E}))$ | $\delta_{\mathbf{m}}(CH_3) \ (v_6(E))$ | | 1360 m | 1357 (10) | $\delta_{s}(CH_{3}) (v_{3}(A_{1}))$ | $\delta_{i}(CH_{3}) (v_{3}(A_{1}))$ | | 1290 vw | | | | | 1176 vw | | | | | 123 vw | | | | | 076 vw | | | | | 035 m | 1038 (<0.5) | (v ₇ (E)) | $(v_7(E))$ | | 955 sh | 955 (12)
951 (1 0) | $v(CC) (v_4(A_1))$ | $v(CC) (v_4(A_1))$ | | 44 vs | 944 (28)sh | v(OsO ₃) | | | 37 sh | 940 (42) | v(OsO ₃) | | | | 934 (40) | v(OsO ₃) | | | | 923 (34) | ` 31 | v(OsO ₃) | | | · · | | *(0303) | Table 7.6 continued... | Free | luency* [cm ⁻¹] | Assignment | s | |-----------|-----------------------------|---|--| | IR, 25 °C | Raman. ^b -165 °C | fac -OsO ₂ F ₃ (CH ₃ CN) (C_3) | mer-OsO ₂ F ₃ (CH ₃ CN) (C ₁) | | 918 vs | 917 (100) | | v,(OsO ₃) | | 910 vs | 909 (29) | | v(OsO ₃) | | 867 m | | | | | 826 w | | $(2v_g)$ | (2v _s) | | 667 vw | | (- 2) | (200 | | 620 sh | | | | | 599 sh | 599 (2) | v(OsF ₂) | v(OsF ₂) | | 589 vs | 587 (4) | (<i>y</i> | v(cary | | | 575 (5) | | | | 532 vs | 530 (6) | | | | 419 m | | δ(CCN) (v _s (E)) | $\delta(CCN) (v_s(E))$ | | 413 m | 411 (1) | (/ () (- // | ((OS.1) (1) (E)) | | | 395 (12) | δ(OsO ₃) | δ(OsO ₃) | | | 392 (18) | | c(cooy) | | | 389 (13) | | | | | 380 (38) | | | | | 377 (42) | | | | | 374 (31) | | | | | 323 (1) | bending modes | | | | 292 (8) | J | | | | 288 (6)sh | | | | | 228 (2) | | | | | 216 (2) | | | | | 204 (1) | | | | | 120 (5) | | | | | 84 (92); laser line | | | | | 71 (7) | | | ^a Abbrevations denote: shoulder (sh), very strong band (vs), strong (s), medium (m), weak (w), very weak (vw). ^b Spectrum recorded on microcrystalline solid in a Pyrex glass melting point capillary using the 1064-nm excitation. Values in parentheses denote relative Raman intensities. ^c Assignments in parentheses refer to the free CH₃CN ligand (C_{3i}) (see ref. (200)). Raman spectrum (low-frequency region) of solid OsO3F2(CH3CN) in the presence of residual CH3CN recorded Figure 7.6 in a 1/4-in. FEP sample tube at -145 °C using 647.1-nm excitation. Table 7.7 Raman Frequencies and Their Assignments for fac-OsO₂F₃(CH₃CN) and mer-OsO₂F₃(CH₃CN) in the Presence of Small Amounts of CH₃CN Solvent | Frequency [cm-1] | | Assignment | | |--|--|--|--| | Raman, -145 °C | fac-OsO ₂ F ₃ (CH ₃ CN) | (C_s) mer-OsO ₂ F ₃ (CH ₃ CN) (C_s) | CH ₃ CN (C ₃) | | 3008 (1) | $v_{s}(CH_3) (v_5(E))$ | $v_{as}(CH_3) (v_s(E))$ | | | 3001 (1) | - (CII) ((A)) | | $v_5(E)$, $v_{as}(CH_3)$ | | 2943 (6)
2937 (2)sh | $V_{i}(CH_{3}) (V_{i}(A_{1}))$ | $v_s(CH_3) (v_l(A_l))$ | $v_1(A_1), v_s(CH_3)$ | | 2304 (1) | $v(CN) (v_2(A_1))$ | MCND (11/A)) | | | 2293 (<0.5) | ((()) (()(())) | $v(CN) (v_2(A_1))$ | | | 2286 (<0.5) | | | V ₃ +V ₄ | | 2252 (10) | | | v (A) v (CN) | | 2249 (2) | | | $v_2(A_1)$, $v(CN)$ | | 1456 (<0.5) | | | $v_{\epsilon}(E)$, $\delta_{\epsilon\epsilon}(CH_3)$ | | 1423 (<0.5) | $\delta_{\mathbf{z}}(CH_3) (v_6(E))$ | $\delta_{ss}(CH_3)$ ($v_6(E)$) | V ₆ (∠), O ₂ (CII ₃) | | 13 69 (2) | 2. 2.00 | -2(3) (-6(-)) | $v_3(A_1)$, $\delta_i(CH_3)$ | | 1356 (4) | $\delta_s(CH_3) (v_3(A_1))$ | $\delta_s(CH_3)$ ($v_3(A_1)$) | v3(11), 0,(C113) | | 955 (3) | $V(CC) (V_4(A_1))$ | v(CC) (v ₄ (A ₁)) | | | 939 (9) | v(OsO ₃) | | | | 936 (71) | $V(OsO_3)$ | | | | 923 (31) | | v(OsO ₃) | | | 920 (22) | | v(OsO ₃) | | | 217 (100) | | v(OsO ₃) | $V_4(A_1)$, $V(CC)$ | | 702 (1) | | | , | | 67 (8) | $v(OsF_2)$ | v(OsF ₂) | | | (29 (11) | | | | | 17 (1) | $\delta(CCN) (v_i(E))$ | $\delta(CCN) (v_s(E))$ | | | 08 (1) | 540.0 | | | | 96 (1)
88 (30) | $\delta(OsO_3)$ | δ(OsO ₃) | | | 88 (39)
85 (7) | | | | | 85 (7) ^d
82 (7) ^d | | | | | 76 (39) | | | | | 73 (21) | | | | | 17 (21)
17 (2) | | | | | 91 (6)sh ^d | | | | | 87 (10) | | | | | 83 (6) | | | | | 58 (1) | | | | | 27 (2) | | | | | 17 (1) | | | | | 99 (1) | | | | | 22 (1) | | | | Table 7.7 continued... | Frequency ^a [cm ⁻¹] | Assignment | | |--|--|---------------------------------------| | Raman, b -145 °C | fac-OsO ₂ F ₃ (CH ₃ CN) ^c (C ₁) mer -OsO ₂ F ₃ (CH ₃ CN) ^c (C ₁) | CH ₃ CN (C _{3v}) | | 106 (1) | | | 99 (1) 93 (5); laser line 87 (5) 72 (3) - ^a Abbreviation (sh) denotes shoulder. - ^b Spectrum recorded on microcrystalline solid in a 1/2-in. FEP sample tube using the 647.1-nm excitation. Values in parentheses denote relative Raman intensities. Bands arising from the FEP sample tube were observed at 576 (2), 733 (11), 749 (1), 1307 (1), and 1384 (2) $\rm cm^{-1}$. - ^c Assignments in parentheses refer to the free CH₃CN ligand (C_{3s}). - ⁴ This band overlaps with a band arising from the FEP sample tube. comparable to those found for $TcO_2F_3(CH_3CN)^{92}$ and $ReO_2F_3(CH_3CN)^{94}$ indicating a similar Lewis acid strengths for monomeric OsO_3F_2 , TcO_2F_3 and ReO_2F_3 , which all have polymeric structures in the solid state. The bands assigned to v_5 (3004 cm⁻¹), v_1 (2945 cm⁻¹), v_2 (2254 cm⁻¹), v_6 (1447 cm⁻¹), v_3 (1375 cm⁻¹), v_4 (918 cm⁻¹), and v_3 (379 cm⁻¹) of free CH₃CN are shifted to 3015/2990 [3015], 2943/2930 [2942/2935/2978], 2330/2300 [2334/2304], 1409 [1414], 1357 [1360], 955/951 [955], and [419/413] cm⁻¹, respectively, in the Raman [infrared] spectrum of fac-OsO₃F₂(CH₃CN) and mer-OsO₃F₂(CH₃CN). Some CH₃CN bands are split which is in agreement with the presence of two OsO₃F₂(CH₃CN) isomers. The Os-O and Os-F stretching bands of the OsO₃F₂(CH₃CN) adducts appear at lower frequencies than those of polymeric, fluorine-bridged $(OsO_3F_2)_{\infty}$, which is a result of the stronger Lewis basicity for CH₃CN than that of the fluorine of a OsO₃F₂ moiety forming a bridge. Compared to the Os-O and Os-F stretching frequencies of the *fac*-OsO₃F₃ anion, the stretches in the OsO₃F₂(CH₃CN) adducts occur at similar but somewhat higher frequencies which correlates with the greater base strength of the free fluoride ion. The Raman spectrum of OsO₃F₂(CH₃CN) in the presence of residual CH₃CN shows essentially the same Raman bands in the low-frequency region. The bands, however, have somewhat different intensities and slightly different frequencies. In addition to uncomplexed CH₃CN, the CH₃CN ligand Raman bands in the high-frequency region of OsO₃F₂(CH₃CN) in the presence of residual CH₃CN appear at significantly different frequencies than those of OsO₃F₂(CH₃CN) after complete removal of CH₃CN. The differences in the Raman spectra of OsO₃F₂(CH₃CN) in the presence and absence of CH₃CN are attributed to packing effects and increased vibrational coupling in the solid state after complete solvent removal. ## 7.3. Conclusion The single crystal X-ray structure of $[N(CH_3)_4][OsO_3F_3]$ represents only the second X-ray structure containing an isolated $MO_3F_3^*$ anion $(M = d^0 \text{ transition metal})$ besides that of $WO_3F_3^{3-117}$ and unambiguously confirms the facial geometry of the $OsO_3F_3^-$ anion which has also been established in solution by ^{19}F NMR spectroscopy. The $OsO_3F_2(CH_3CN)$ adduct was shown to exist as both *mer*- and *fac*-isomers based on NMR and Raman spectroscopy. Other than the $ReO_3F_3^{2-216}$ $MoO_3F_3^{3-217}$ and $WO_3F_3^{3-217}$ anions whose assignments of their *mer*-trioxo-arrangements were based solely on vibrational spectroscopy, the *mer*-OsO_3F_2(CH_3CN) isomer is one of the very few examples of transition metal d^0 species with a *mer*-trioxo arrangement. ## **CHAPTER 8** # FLUORIDE ION DONOR PROPERTIES OF OsO3F2 ### 8.1. Introduction The cation chemistry of osmium(VIII) has thus far been restricted to cations derived from cis-OsO₂F₄. ⁹¹ The latter are formed by reaction of cis-OsO₂F₄ with the Lewis acids, AsF₅ and SbF₅. The dimeric fluorine-bridged Os₂O₄F₇⁺ cation exhibits a pseudo-octahedral cis-dioxo arrangement about osmium in the crystal structure of [Os₂O₄F₇][Sb₂F₁₁]. Failure to obtain a crystal structure containing the trigonal bipyramidal OsO₂F₃⁺ cation indicates the reluctance of osmium dioxo species to lower its coordination number below six. Rather, [Os₂O₄F₇][Sb₂F₁₁] crystallized from SbF₅/HF mixtures instead of a OsO₂F₃⁺ salt. The OsO₂F₃⁺ cation has only been observed by ¹⁹F NMR spectroscopy with the weakly nucleophilic, polymeric Sb₈F_{5n+1} anion as the counteranion in SbF₅ solvent. The Lewis acid properties of OsO_3F_2 have been well established by the formation of the fac- OsO_3F_3 anion in the salts, $[K][OsO_3F_3]$, $^{72.85}$ $[Rb][OsO_3F_3]$, 72 $[Cs][OsO_3F_3]$, $^{72.85}$ $[Ag][OsO_3F_3]$, $^{72.85}$ $[NO][OsO_3F_3]$, and $[N(CH_3)_4][OsO_3F_3]$ (see Chapter 7). The preferred coordination number of osmium(VIII) trioxo species appears to be six, which has been found in the fac- OsO_3F_3 (see Chapter 7) anion as well as the low-temperature phase of the neutral parent compound, $(OsO_3F_2)_{\infty}$, which exists as a fluorine bridged polymeric chain in the solid
state. The Lewis base properties of OsO₃F₂ have not been investigated prior to this study, although ReO₃F, which is isoelectronic with the OsO₃F⁺ cation, has been prepared²²⁰ and characterized by vibrational, ²²¹⁻²²³ mircowave, ²²⁴ and UV spectroscopy. ²²³ ### 8.2. Results and Discussion # 8.2.1. Syntheses of the OsO₃F⁺ and Os₂O₄F₃⁺ Cations and Solution Characterization of the OsO₃F⁺ Cation by ¹⁹F NMR Spectroscopy Osmium trioxide difluoride, which is insoluble in HF, reacts with excess AsF₅ according to eq. (8.1), yielded a yellow-orange solution of solvated [OsO₃F][AsF₆]. Stoichiometric amounts of AsF₅ did not result in complete dissolution of OsO₃F₂, presumably because of the competing reaction with HF solvent (eq. (8.2)). Slow removal $$OsO_3F_2 + PnF_5 \xrightarrow{HF, RT} > [OsO_3F][PnF_6]_{(HF)}$$; $Pn = As, Sb$ (8.1) $$2HF + AsF_5 \rightleftharpoons [H_2F][AsF_6]$$ (8.2) of the HF solvent at -78 °C under certain conditions that are not entirely understood, initially yielded orange crystals having the composition [OsO₃F][HF]₂[AsF₆] (see 8.2.2.2. X-ray Crystallography; Structure of [OsO₃F][HF]₂[AsF₆]). Further pumping at -78 °C resulted in the loss of the two HF solvent molecules and straw yellow [OsO₃F][AsF₆] which was unstable at ambient temperatures. With excess AsF₅, crystals of solvent-free [OsO₃F][AsF₆] were grown from HF solvent at -78 °C. Attempts to redissolve $[OsO_3F][AsF_6]$ in fresh HF solvent resulted in loss of AsF_5 and precipitation of orange $[Os_2O_6F_3][AsF_6]$ according to eq. (8.3). Subsequent removal of HF solvent gave a mixture of solid $[OsO_3F][AsF_6]$, OsO_3F_2 , and small amounts of $[Os_2O_6F_3][AsF_6]$, which was identified by Raman spectroscopy and resulted from dissociation according to eq. (8.4). The formation of the dinuclear $Os_2O_6F_3^+$ cation from $[OsO_3F][AsF_6]$ can be reversed by addition of excess AsF_5 to the HF solution (eq. (8.5)). $$2[OsO_3F][AsF_6] \xrightarrow{HF} > [Os_2O_6F_3][AsF_6] + AsF_5$$ (8.3) $$[Os_2O_6F_3][AsF_6] \xrightarrow{HF, RT} > [OsO_3F][AsF_6] + OsO_3F_2$$ (8.4) $$[Os_2O_4F_3][AsF_6] + AsF_5 \xrightarrow{HF} > 2[OsO_3F][AsF_6]$$ (8.5) The very low solubility of $[Os_2O_6F_3][AsF_6]$ in HF solvent prevented crystal growth. Solutions of $[OsO_3F][AsF_6]$ in HF solvent are unstable towards dissociation to OsO_3F_2 and AsF_5 at room temperature. The ¹⁹F NMR spectrum of OsO_3F_2 in the presence of a 13-fold molar excess of AsF_5 in HF sovlent at -80 °C showed a broad singlet at -132.2 ppm ($\Delta v_{\chi} = 500 \text{ Hz}$) which is attributed to fast fluorine exchange among the OsO_3F^+ cation, AsF_5 and HF solvent. At room temperature, OsO₃F₂ is highly soluble in HF solutions containing stoichiometric amounts of SbF₅ and yields [OsO₃F][SbF₆] as a yellow solution (eq. (8.1)) and at -78 °C, yellow [OsO₃F][HF][SbF₆] slowly crystallizes (see 8.2.2.3. X-Ray Crystallography, Structure of [OsO₃F][HF][SbF₆]). Removal of HF solvent at -78 °C yielded yellow [OsO₃F][HF][SbF₆], which melts at approximately 45 °C. Pumping at room temperature resulted in the removal of only small amounts of HF giving [OsO₃F][SbF₆]. Complete conversion to [OsO₃F][SbF₆] was not successful, presumably because the dissociation pressure of coordinated HF is very low at room temperature and the competing decomposition of [OsO₃F][SbF₆] occurs at temperatures close to and higher than room temperature. Pumping at 45 °C led to a decrease in the relative Raman intensities of the symmetric Os-O stretching band assigned to [OsO₃F][SbF₆] compared to that of [OsO₃F][HF][SbF₆]. No evidence for the Os₂O₆F₃* cation was found using the Lewis acid SbF₅. Upon slow removal of HF solvent, orange [OsO₃F][HF]₂[SbF₆] crystallizes at high concentration. One solvent molecule is readily lost under dynamic vacuum at -78 °C, yielding [OsO₃F][HF][SbF₆]. At 55 °C, OsO₃F₂ dissolved in neat SbF₅ giving a yellow solution according to eq. (8.6). Below 55 °C, the solubility of [OsO₃F][Sb_xF_{5x+1}] decreased dramatically and straw- $$OsO_3F_2 + nSbF_5 \xrightarrow{SbF_5.55 \, ^{\circ}C} > [OsO_3F][Sb_nF_{5n+1}]$$ (8.6) yellow $[OsO_3F][Sb_3F_{16}]$ crystallized from SbF_5 solvent. The empirical formula was established by mass balance $(OsO_3F_2:SbF_5=1:3.1)$ after removal of excess SbF_5 at room temperature and was confirmed by the X-ray crystallography (see 8.2.2.4. X-Ray Crystallography; Structure of [OsO₃F][Sb₃F₁₆]). The weakly fluoro-basic Sb₃F₁₆ anion is required to stabilize the unsolvated OsO₃F⁺ cation and is indicative of the weak fluoride ion donor properties of OsO₃F₂ and the high electrophilicity of the OsO₃F⁺ cation. Dissolution of [OsO₃F][Sb₃F₁₆] in HF solvent resulted in precipitation of [OsO₃F][HF][SbF₆] at -78 °C, which was identified by Raman spectroscopy. Although [OsO₃F][AsF₆] was isolated from HF solutions in the presence of excess AsF₅, solvent free [OsO₃F][SbF₆] does not form from an HF solution containing a 2-fold molar excess of SbF₅. This is likely a consequence of the lower nucleophilicity of SbF₆ compared to that of AsF₆ leaving the OsO₃F⁺ cation coordinatively less saturated in the solvent free SbF₆ salt, so that the vacant coordination site is occupied by an HF solvent molecule. The ¹⁹F NMR spectrum of OsO₃F₂ dissolved in neat SbF₅ at 55 °C gives rise to a broad singlet for the OsO₃F⁺ cation at 70.9 ppm ($\Delta v_{\kappa} = 360 \text{ Hz}$) and to broad Sb_xF_{5x+1}. /(SbF₅)_n resonances at -91.5 (shoulder), -105.7 ppm ($\Delta v_{\kappa} \approx 5400 \text{ Hz}$), and -128.1 ($\Delta v_{\kappa} \approx 5800 \text{ Hz}$). The ¹⁹F resonance of the OsO₃F⁺ cation is significantly more shielded than those of the OsO₂F₃⁺ cation (122.4 and 129.5 ppm), which is consistent with the decrease in the number of strongly electron withdrawing fluorine ligands. This trend, however, is opposite to that observed for xenon oxide fluorides. ¹⁴⁸ The ¹⁹F NMR spectrum of [OsO₃F][Sb₃F₁₆] dissolved in SO₂ClF solvent at -100 °C showed a singlet at 77.1 ppm ($\Delta v_{\kappa} = 140 \text{ Hz}$) corresponding to the OsO₃F⁺ cation. Resonances for the *cis*-fluorine-bridged Sb₃F₁₆ and Sb₂F₁₁ anions and for SO₂ClF·SbF₅ were observed in the F-on-Sb region (Table 8.1). The NMR parameters of the anions and the SO₂ClF adduct are in good agreement with the previously reported values. ²²⁵ Approximately 70% of the Sb₃F₁₆ Table 8.1 ¹⁹F NMR parameters of SO₂ClF·SbF₅, Sb₂F₁₁, and Sb₃F₁₆ at 100 °C in SO₂ClF solvent | SO ₂ CIF·SbF ₅ * | chemical shift [ppm]b | ² J(¹⁹ F- ¹⁹ F) [Hz] | |--|-----------------------------------|--| | F-on-S (1) | 94.40 (s) | | | F _{trans} (1) | -143.08 (q) | 96 | | F _{cs} (4) | -105.63 (d) | 95 | | | | | | Sb ₂ F ₁₁ -a | chemical shift [ppm] ^b | ² J(¹⁹ F- ¹⁹ F) [Hz] | | $F_b(1)$ | -90.99 (m) | 60 | | F_{trans} (2) | -136.04 (q) | 104 | | F_{cis} (8) | -113.79 (dd) | 102, 62 | | Sb ₃ F ₁₆ a | chemical shift [ppm] ^b | ² J(¹⁹ F- ¹⁹ F) [Hz] | | F _{trans} (2) | -140.32 (q) | 60 | | F_{cis} (8) | -112.18 (dd) | 99, 53 | | $F_b(2)$ | -89.66 (s,br) | , - | | $F_{trans'}(2)$ | -128.19 (dt) | 134, 37 | | $F_{cis'}(2)$ | -108.23 (m) | | ^a Values in parentheses denote relative intensies. Symbols denote: bridging fluorine (F_b), fluorines trans/cis to F_b in a terminal SbF₅ moiety (F_{trans}/F_{cis}), fluorine trans/cis to F_b in a bridging SbF₄ moiety (F_{trans}/F_{cis}). ^b Abbreviations denote: singlet (s), doublet (d), quintet (q), multiplet (m), doublet of doublets (dd), doublet of triplets (dt), and broad (br). anions were dissociated in SO₂ClF solution according to eq. (8.7). In view of the small $$Sb_{3}F_{16} + SO_{2}CIF \xrightarrow{SO_{2}CIF_{1}-100 \text{ °C}} > Sb_{2}F_{11} + SO_{2}CIF_{1}-SbF_{5}$$ (8.7) magnitudes of the one-bond ¹⁸⁷Os-¹⁹F coupling constants found for *cis*-OsO₂F₄ (35.1 and 59.4 Hz)⁶ and *fac*-OsO₃F₃. (32 Hz) (see Chapter 7) and the low abundance of ¹⁸⁷Os (1.64%), the ¹⁸⁷Os satellites are expected to be hidden by the breath of the central ¹⁹F signal. ## 8.2.2. X-ray Crystallography Details of the data collection parameters and other crystallographic information for [OsO₃F][AsF₆], [OsO₃F][HF]₂[AsF₆], [OsO₃F][HF][SbF₆], and [OsO₃F][Sb₃F₁₆] are given in Table 8.2. Important bond lengths, angles and contacts are listed in Table 8.3. **8.2.2.1.** Structure of [OsO₃F][AsF₆]. The crystal structure of [OsO₃F][AsF₆] consists of OsO₃F⁺ cations and AsF₆ anions which are bridged through a fluorine of the AsF₆ anion. Two cation-anion pairs are connected to each other by two additional Os...F-As bridges forming a cyclic dimer. The dimers are, in turn, stacked in columns parallel to the *a*-axis (Figure 8.1). The OsO₃F⁺ cation is distorted form the expected $C_{3\nu}$ point symmetry with one OsO bond being significantly longer (171.1(8) pm) than the other two (167.4(9) and 167.9(9) Summary of Crystal Data and Refinement Results for [OsO₃F][AsF₆], [OsO₃F][HF]₂[AsF₆], [OsO₃F][HF][SbF₆], and [OsO₃F][Sb₃F₁₆] Table 8.2 | | [OsO,F][AsF,] | [OsO,F][HF],[AsF,] | [OsO,F][HF][SbF ₆] | [OsO,F][Sb,F ₁₄] | |---------------------------------|----------------|--------------------|--------------------------------|------------------------------| | formula | AsF,O,Os | H,AsF,O,Os | HF,O,OsSb | F.O.O.Sb. | | space group | P2,/n (No. 14) | P2,/n (No. 14) | Pc (No. 7) | P72,m (No. 113) | | a [pm] | 700.01(11) | 514.91(9) | 524.4(4) | 1007.6(6) | | b [pm] | 1106.20(11) | 812.9(2) | 964.6(6) | 1007.6(6) | | c [bm] | 886.29(13) | 1963.6(7) | 1526.9(10) | 758.5(8) | | a [deg] | 06 | 06 | 06 | 06 | | β [deg] | 92.270(7) | 95.099(7) | 97.154(13) | 06 | | y [deg] | 06 | 06 | 06 | 06 | | V [10° pm³] | 685.8(2) | 818.7(4) | 766.4(10) | 770.1(10) | | Z [molecules/unit cell] | 4 | 4 | 4 | 2 | | mol. wt. [g mol ⁻¹] | 446.12 | 486.14 | 512.96 | 926.45 | | colour | yellow | orange | yellow | straw-yellow | Table 8.2 continued... | | [OsO,F][AsF,] | [OsO,F][HF],[AsF ₄] |
[OsO,F][HF][SbF,] | [OsO,F][Sb,F _{i6}] | |--|------------------------|---------------------------------|-------------------|------------------------------| | size {mm³} | 0.12×0.10×0.10 | 0.25×0.20×0.05 | 0.08×0.04×0.03 | 0.14×0.10×0.005 | | caled density [g cm ⁻³] | 4.321 | 3.944 | 4.446 | 3.995 | | ار (mm ⁻¹) | 23.494 | 19.730 | 20.215 | 13.617 | | data/restraints/parameters | 1535/0/110 | 1887/0/130 | 3278/2/127 | 620/0/49 | | final agreement factors | $R^{\bullet} = 0.0401$ | R' = 0.0348 | R* = 0.0558 | R* = 0.0858 | | | $R_w^b = 0.0797$ | R. = 0.0864 | $R_w^b = 0.1198$ | $R_{\nu}^{b} = 0.1871$ | | G00F | 1.075 | 1.030 | 1.046 | 1.038 | | Extinction coefficient | 0.0013(3) | 0.0057(4) | 0.0012(2) | 0.0001(7) | | Δδ _{nav} /Δδ _{mm} [c 10 th pm ⁻¹] | 1.636/-1.397 | 1.446/-1.280 | 2.598/-2.327 | 2.209/-2.610 | * R = $\Sigma |F_o| - |F_c| V \Sigma |F_o|$. ^b R_w = $\sum |(|F_o| - |F_c|)w^{16}|/\sum (|F_o|w)$ where w = $1/[\sigma^2(F) + (0.0344)^2 + 4.94]$. **Table 8.3** Bond Lengths, Selected Bond Angles, and Contacts in $[OsO_3F][AsF_6]$, $[OsO_3F][HF]_2[AsF_6]$, $[OsO_3F][HF][SbF_6]$, and $[OsO_3F][Sb_3F_{16}]$. | $[OsO_3F]$ | [AsF _c] | |------------|---------------------| | | | | [OSO3r][ASr ₆] | | | | |----------------------------|------------------------|-------------------------------------|----------| | | Bond Lengths a | nd Contacts [pm] | | | Os(1)-O(1) | 171.2(8) | Os(1)-O(2) | 167.3(9) | | Os(1)-O(3) | 167.8(9) | Os(1)-F(1) | 178.2(7) | | Os(1)-F(2) | 245.1(7) | As(1)-F(2) | 177.6(7) | | As(1)-F(3) | 167.7(7) | As(1)-F(4) | 174.6(7) | | As(1)-F(5) | 169.5(8) | As(1)-F(6) | 168.5(8) | | As(1)-F(7) | 169.3(7) | Os(1)F(4) | 266.6(7) | | Os(1)F(5) | 307.2(8) | | | | | Bond Angl | les [deg.] | | | O(1)-Os(1)-O(2) | 105.1(4) | O(1)-Os(1)-O(3) 108 | | | O(2)-Os(1)-O(3) | 104.6(4) | O(1)-Os(1)-F(1) 120. | | | O(1)-Os(1)-F(2) | 75.6(3) | O(2)-Os(1)-F(1) 105.6(| | | O(3)-Os(1)-F(1) | 111.4(4) | O(2)-Os(1)-F(2) | 179.0(4) | | O(3)-Os(1)-F(2) | 75.8(3) | F(1)-Os(1)-F(2) | 73.5(3) | | As(1)-F(2)-Os(1) | 138.4(4) | F(2)-As(1)-F(3) | 89.9(4) | | F(2)-As(1)-F(4) | 87.3(3) | F(2)-As(1)-F(5) | 88.3(4) | | F(2)-As(1)-F(6) | 89.7(4) | F(2)-As(1)-F(7) | 177.0(4) | | | [OsO ₃ F][H | F] ₂ [AsF ₆] | | | | Bond Lengths an | d Contacts [pm] | | | Os(1)-O(1) | 169.4(6) | Os(1)-O(2) | 166.6(6) | | Os(1)-O(3) | 172.0(6) | Os(1)-F(1) | 180.4(5) | | | | | | Table 8.3 continued... | Os(1)-F(2) | 228.2(5) | Os(1)-F(3) | 223.1(4) | |-----------------|----------|------------------|----------| | As(1)-F(3) | 182.3(4) | As(1)-F(4) | 173.5(5) | | As(1)-F(5) | 170.3(5) | As(1)-F(6) | 169.5(5) | | As(1)-F(7) | 170.5(5) | As(1)-F(8) | 168.9(4) | | F(2)F(9) | 242.9(8) | F(9)F(4A) | 251.2(8) | | | Bond Ang | gles [deg.] | | | O(1)-Os(1)-O(2) | 102.9(3) | O(1)-Os(1)-O(3) | 102.4(3) | | O(2)-Os(1)-O(3) | 103.5(3) | O(1)-Os(1)-F(1) | 100.0(3) | | O(2)-Os(1)-F(1) | 101.3(3) | O(3)-Os(1)-F(1) | 141.6(3) | | O(2)-Os(1)-F(3) | 87.5(2) | O(1)-Os(1)-F(3) | 169.0(2) | | O(3)-Os(1)-F(3) | 78.2(2) | F(1)-Os(1)-F(3) | 74.1(2) | | O(2)-Os(1)-F(2) | 169.1(2) | O(1)-Os(1)-F(2) | 87.1(3) | | O(3)-Os(1)-F(2) | 78.0(2) | F(1)-Os(1)-F(2) | 72.4(2) | | F(3)-Os(1)-F(2) | 82.3(2) | As(1)-F(3)-Os(1) | 138.8(2) | | F(3)-As(1)-F(4) | 86.1(2) | F(3)-As(1)-F(5) | 86.5(2) | | F(3)-As(1)-F(6) | 88.2(2) | F(3)-As(1)-F(7) | 87.0(2) | | F(3)-As(1)-F(8) | 178.5(2) | | | # [OsO₃F][HF][SbF₆] | | Bond Lengths an | d Contacts [pm] | | |-------------|-----------------|-----------------|-----------| | Os(1)-O(12) | 166(2) | Os(1)-O(13) | 168(2) | | Os(1)-O(11) | 170(2) | Os(1)-F(11) | 184.7(13) | | Os(1)-F(13) | 223(2) | Os(1)-F(12) | 223.6(14) | | Os(2)-O(21) | 168(2) | Os(2)-O(23) | 170(2) | | Os(2)-O(22) | 176(2) | Os(2)-F(21) | 182(2) | | Os(2)-F(23) | 224.0(14) | Os(2)-F(22) | 227(2) | Table 8.3 continued... | Sb(1)-F(13) | 196(2) | Sb(1)-F(14) | 187(2) | |-------------------|----------------|-------------------|-----------| | Sb(1)-F(15) | 186(2) | Sb(1)-F(16) | 191.3(14) | | Sb(1)-F(17) | 185(2) | Sb(1)-F(18) | 184.6(14) | | Sb(2)-F(23) | 197.7(14) | Sb(2)-F(24) | 186(2) | | Sb(2)-F(25) | 185.0(14) | Sb(2)-F(26) | 193(2) | | Sb(2)-F(27) | 187(2) | Sb(2)-F(28) | 184(2) | | F(12)F(26) | 238(2) | | | | | Bond Angles [c | leg.] | | | O(11)-Os(1)-O(12) | 103.1(9) | O(11)-Os(1)-O(13) | 102.9(8) | | O(11)-Os(1)-F(11) | 101.2(8) | O(11)-Os(1)-F(12) | 168.7(7) | | O(11)-Os(1)-F(13) | 87.1(8) | O(12)-Os(1)-O(13) | 103.8(8) | | O(12)-Os(1)-F(11) | 98.0(7) | O(12)-Os(1)-F(12) | 87.4(7) | | O(12)-Os(1)-F(13) | 167.8(7) | O(13)-Os(1)-F(11) | 142.7(7) | | O(13)-Os(1)-F(12) | 78.2(7) | O(13)-Os(1)-F(13) | 80.1(7) | | F(11)-Os(1)-F(12) | 72.9(5) | F(11)-Os(1)-F(13) | 73.1(5) | | F(12)-Os(1)-F(13) | 82.0(5) | O(21)-Os(2)-O(22) | 101.4(9) | | O(21)-Os(2)-O(23) | 102.7(9) | O(21)-Os(2)-F(21) | 100.0(8) | | O(21)-Os(2)-F(22) | 87.5(7) | O(21)-Os(2)-F(23) | 170.1(7) | | O(22)-Os(2)-O(23) | 102.4(9) | O(22)-Os(2)-F(21) | 143.4(8) | | O(22)-Os(2)-F(22) | 77.9(7) | O(22)-Os(2)-F(23) | 79.8(7) | | O(23)-Os(2)-F(21) | 101.3(8) | O(23)-Os(2)-F(22) | 169.5(7) | | O(23)-Os(2)-F(23) | 86.5(7) | F(21)-Os(2)-F(22) | 73.8(7) | | F(21)-Os(2)-F(23) | 74.3(6) | F(23)-Os(2)-F(22) | 83.2(5) | | Sb(1)-F(13)-Os(1) | 151.8(7) | Sb(2)-F(23)-Os(2) | 137.7(7) | | F(13)-Sb(1)-F(18) | 179.2(6) | F(13)-Sb(1)-F(17) | 86.5(6) | | F(13)-Sb(1)-F(15) | 89.1(6) | F(13)-Sb(1)-F(14) | 87.8(7) | | F(13)-Sb(1)-F(16) | 87.1(6) | F(23)-Sb(2)-F(28) | 175.1(6) | | | | | | Table 8.3 continued... | F(23)-Sb(2)-F(25) | 86.4(6) | F(23)-Sb(2)-F(24) | 88.1(6) | |-------------------|---------|-------------------|---------| | F(23)-Sb(2)-F(27) | 85.3(6) | F(23)-Sb(2)-F(26) | 84.6(6) | # $[OsO_3F][Sb_3F_{16}]$ | | Bond Lengths and C | ontacts [pm] | | |--------------------|--------------------|--------------------|-----------| | Os(1)-FOA | 168(3) | Sb(1)-F(2) | 184(4) | | Sb(1)-F(1) | 187(3) | Sb(1)-F(3) | 188(4) | | F(1)-Sb(2) | 219(3) | Sb(2)-F(10A) | 177(6) | | Sb(2)-F(12) | 178(4) | Sb(2)-F(11B) | 180(5) | | Sb(2)-F(10B) | 187(6) | Sb(2)-F(11A) | 191(5) | | Os(1)F(10A) | 285(6) | Os(1)F(10B) | 283(6) | | | Bond Angles [d | eg.] | | | FOA#1-Os(1)-OFA | 104(2) | OFA-Os(1)-FOA#2 | 112.5(10) | | F(1)-Sb(1)-F(2) | 85(2) | F(1)-Sb(1)-F(3) | 90.8(14) | | F(2)-Sb(1)-F(3) | 78(2) | Sb(1)-F(1)-Sb(2) | 146(2) | | F(1)-Sb(2)-F(10B) | 81(2) | F(1)-Sb(2)-F(11A) | 83(2) | | F(1)-Sb(2)-F(12) | 173.8(14) | F(1C)-Sb(2)-F(10A) | 87(2) | | F(1C)-Sb(2)-F(11B) | 91(2) | | | Figure 8.1 Views of (a) the OsO₃F⁺ cation and its contacts to AsF₆ anions in the [OsO₃F][AsF₆] structure and (b) the ([OsO₃F][AsF₆])₂ dimer (thermal ellipsoids are shown at the 50% probability level). pm). Each cation forms two strong (245.0(7) and 266.6(7) pm) Os...F contacts and one weak (307.2(8) pm) Os...F contact to the fluorines of AsF₆ anions. The fluorine contacts are directed through three trigonal faces of the OsO₃F⁺ pseudo-tetrahedron, such that they are located on the side opposite to the Os=O bonds. Extension of the coordination sphere by inclusion of the Os...F contacts results in a monocapped trigonal prismatic geometry about Os with the three oxygen atoms cis to each other (Figure 8.1). The longer Os-O(1) bond is opposite to the weakest Os...F contact and is likely a consequence of the steric crowding caused by the two close Os...F contacts in the vinicity of O(1). Two fluorines of the AsF₆ anion that are cis to each other form two strong contacts to the cation resulting in elongation of the two As-F bonds (177.6(7) and 174.6(7) pm) compared to the remaining four As-F bonds (169.5(8) to 167.7(7) pm) and in lowering of the anion symmetry of C_{2r} point symmetry or lower. 8.2.2.2. Structure of [OsO₃F][HF]₂[AsF₆]. The crystal structure of [OsO₃F][HF]₂[AsF₆] consists of cyclic dimers of AsF₆ anions fluorine bridged to the OsO₃F⁺ cations, both bridged through two (HF)₂ moieties to a second anion-cation pair (Figure 8.2). These cyclic dimers are alligned parallel to the (10½) plane and are stacked in columns parallel to the *a*-axis (Figure 8.2). The OsO_3F^+ cation deviates significantly from the ideal $C_{3\nu}$ structure with one short (166.6(6) pm) and two long (169.4(6) and 170.4(6) pm) Os-O bonds. The Os-F bond length in the cation (180.4(5) pm) is similar to that in $[OsO_3F][AsF_6]$ (178.2(7) pm), however, unlike the latter structure the O-Os-F bond angles in $[OsO_3F][HF]_2[AsF_6]$ a b Figure 8.2 Views of (a) the [OsO₃F][HF]₂[AsF₆] unit cell showing the packing along the a-axis and (b) the ([OsO₃F][HF]₂[AsF₆])₂ dimer (thermal ellipsoids are shown at the 50% probability level). (100.0(3), 102.4(3), and 141.6(3)°) are significantly distorted from C_{3x} symmetry as a result of the coordination of one fluorine from an AsF, anion and one fluorine from an HF solvent molecule. The resulting OsO₃F₃ moiety exhibits a facial arrangement of the oxygen and fluorine atoms as found for the fac-OsO₃F₃ anion in [N(CH₃)₄][OsO₃F₃] (see 7.2.1.4. X-ray Crystal Structure of [N(CH₃)₄][OsO₃F₃]). The Os-F contacts with 223.0(4) and 227.9(5) pm are much stronger than those found in [OsO₃F][AsF₆] (245.0(7) pm). This structure, together with that of [OsO₃F][HF][SbF₆] (vide infra), represents a rare example of an HF molecule coordinated to a metal centre. The only other reported examples are $[La][HF]_2[AsF_6]_3^{226}$ and $[(\eta^5-C_5Me_5)NbF_4(HF)AsF_3]_2^{227}$ In the latter structure, HF also bridges two metal centers. The F(2)-F(9) and F(9)-F(4A) distances in [OsO₃F][HF]₂[AsF₆] of 242.9(8) and 251.2(8) pm, respectively, are shorter than the F.-F distance in [(η^5 -C₅Me₅)NbF₄(HF)AsF₃]₂ (268.6 pm),²²⁷ indicating stronger hydrogenbonding in the [OsO₃F][HF]₂[AsF₆] structure. The F.-F distances in [OsO₃F][HF]₂[AsF₆] are, however, much larger than that found for bifluoride in [N(CH₃)₄][HF₂] (221.3(4) pm)²²⁸ and are also significantly larger than the F.-F distances in NiF(HF)($C_4N_2F_2H$
)(PEt₃)₂ $(240.0(6) \text{ pm})^{229}_{1} \text{ trans-}[\text{Ru}(\text{dmpe})_{2}(\text{H})(\text{FHF})] (227.6(8) \text{ pm})^{230}_{1} \text{ Mo}(\text{PMe}_{3})_{4}(\text{H})_{2}\text{F}(\text{FHF})$ $(235.1(8) \text{ pm})^{331}$ and in WF(H)₂(FHF)(PMe₃)₄ $(238.9(6) \text{ pm})^{232}$ where one HF molecule is hydrogen-bridged to a fluorine ligand of the metal centre. Similarly, one HF molecule is bridged to the fluorine on As in [OsO₃F][HF]₂[AsF₆]. The previously reported structures, however, contain a terminal HF molecule and can, alternatively, be described as an HF2 ligand coordinated to the metal. The symmetry of the AsF_6 anion is lowered to $C_{2\nu}$ point symmetry or lower by formation of As-F...Os and As-F...HF bridges, which are *cis* to each other, producing significantly elongated As-F bonds of 182.3(4) and 173.5(5) pm, respectively, compared to the remaining four As-F bonds (168.9(4) to 170.5(5) pm). 8.2.2.3. Structure of [OsO₃F][HF][SbF₆]. The [OsO₃F][HF][SbF₆] salt crystallizes in the non-centrosymmetric *Pc* space group as a 2:1 twin preventing a proper absorption correction. As a consequence it was not possible to refine the fluorine and oxygen atoms anisotropically. The relatively large errors in the bond lengths and bond angles prevents a detailed structural comparison with related structures. Two fluorine-bridged OsO₃F*/SbF₆ ion pairs defined in the asymmetric unit (Figure 8.3). One HF molecule bridges the osmium centre and a fluorine of the SbF₆ anion of another OsO₃F*/SbF₆ ion pair resulting in a helical arrangement comprising alternating OsO₃F* and SbF₆ ions running parallel to the *a*-axis (Figure 8.3). The bond lengths and angles in both crystallographically independent anion-cation pairs are the same within 3σ. As in the crystal structure of $[OsO_3F][HF]_2[AsF_6]$, the coordination sphere of the OsO_3F^+ cation is expanded by fluorine bridge formation with an SbF_6^- and an HF molecule, resulting in fac- OsO_3F_3 coordination. One F-Os-O bond angle of the OsO_3F^+ cation is also significantly larger $(142.7(7)/143.4(8)^\circ)$ than the other two $(98.0(7)/100.0(8)^\circ$ and $101.2/101.3(8)^\circ)$. All the bond lengths and bond angles in $[OsO_3F][HF]_2[AsF_6]$. 8.2.2.4. Structure of $[OsO_3F][Sb_3F_{16}]$. The crystal structure of $[OsO_3F][Sb_3F_{16}]$ consists a Figure 8.3 Views of (a) the asymmetric unit of $[OsO_3F][HF][SbF_6]$ and (b) the $([OsO_3F][HF][SbF_6])_n$ helix along the a-axis (thermal ellipsoids are shown at the 50% probability level). of separate OsO₃F⁺ and *cis*-fluorine-bridged Sb₃F₁₆ ions. The OsO₃F⁺ cation is located on a special position ($\overline{4}$..) resulting in a positional disorder of the symmetry-related oxygen and fluorine atoms. A disorder between two different orientations could be resolved for the Sb₃F₁₆ anion. The disorder in the cation and anion prevented the anisotropic refinement of all the fluorine and oxygen atoms giving rise to a relatively large R-factor. The *cis*-fluorine-bridged Sb₃F₁₆ anions pack in the (110) and (-110) planes in such a way that they form square-based channels parallel to the *c*-axis which are filled with rows of OsO₃F⁺ cations (Figure 8.4). The first coordination sphere around osmium is essentially tetrahedral with an average Os-O/F bond length of 168(3) pm which is the same as the average of the Os-O and Os-F bond lengths in [OsO₃F][AsF₆], [OsO₃F][HF]₂[AsF₆], and [OsO₃F][HF][SbF₆]. The osmium atom also has long contacts to a fluorine of each of the four Sb₃F₁₆ anions (Os...F(10B/10A); 283(6)/285(6) pm) with the trajectory through the centre of each trigonal face of the tetrahedral cation, forming a second tetrahedral coordination sphere. The Sb₃F₁₆ anion adopts a *cis*-fluorine-bridged geometry as found for the Sb₃F₁₆ and Sb₄F₂₁ anions in the crystal structures of [XeN(SO₂F)₂][Sb₃F₁₆], ²³³ and [Xe₂][Sb₄F₂₁], ²³⁴ respectively. This geometry was also found in SO₂CIF solutions of [OsO₃F][Sb₃F₁₆] by ¹⁹F NMR spectroscopy and contrasts with the structure of [Br₂][Sb₃F₁₆] in which Sb₃F₁₆ was found to contain a *trans*-fluorine-bridged Sb₃F₁₆ anion. ²³⁵ The high standard deviations in the bond lengths and bond angles of [OsO₃F][Sb₃F₁₆] prevent a detailed comparison to related anion structures. Figure 8.4 Views of (a) the $[OsO_3F][Sb_3F_{16}]$ unit cell showing the packing along the c-axis and (b) the OsO_3F^+ and $Sb_3F_{16}^-$ ions (thermal ellipsoids are shown at the 50% probability level). ### 8.2.3. Raman Spectroscopy The $[OsO_3F][Sb_3F_{16}]$, $[OsO_3F][PnF_6]$ (Pn = As, Sb), $[OsO_3F][HF][SbF_6]$, $[OsO_3F][HF]_2[PnF_6]$ (Pn = As, Sb), and $[Os_2O_6F_3][AsF_6]$ salts were characterized by low temperature Raman spectroscopy (Figures 8.5 to 8.8) and the observed Raman frequencies and their assignments are given in Tables 8.4 to 8.8. The free OsO_3F^+ cation is expected to have $C_{3\nu}$ point symmetry and the vibrational modes span the irreducible representations $3A_1 + 3E$ where all modes are infrared and Raman active. **8.2.3.1.** [OsO₃F][Sb₃F₁₆]. The low-temperature Raman spectrum of [OsO₃F][Sb₃F₁₆] contains at least five bands attributed to the OsO₃F⁺ cation and anion bands in the Sb-F stretching and F-Sb-F bending regions. The frequencies and intensities of the Raman bands for the Sb₃F₁₆ anion reported in the literature vary significantly depending on the nature of the countercation. Among the three known Sb₃F₁₆ salts that have been characterized by Raman spectroscopy, *i.e.*, [PF₄][Sb₃F₁₆], ²³⁶ [XeN(SO₂F)₂][Sb₃F₁₆], ²³³ and [ReF₆][Sb₃F₁₆], ²³⁷ the Raman frequencies and intensities attributed to the Sb₃F₁₆ anion in [PF₄][Sb₃F₁₆] show the best agreement with those of [OsO₃F][Sb₃F₁₆]. The presence of only two Os-O stretching bands ($v_1(A_1)$ and $v_4(E)$) is consistent with the C_{3v} point symmetry of the OsO₃F⁺ cation and is confirmed by the high symmetry of the disordered cation in the crystal structure of [OsO₃F][Sb₃F₁₆] (see 8.2.2.4. X-ray Crystallography; Structure of [OsO₃F][Sb₃F₁₆]). The Os-O stretches of the OsO₃F⁺ cation (1002 and 992 cm⁻¹) appear at significantly higher frequencies than those of the neutral parent compound, monomeric OsO₃F₂ (946.5 and 929.0 cm⁻¹), ⁸⁶ which is in accord with Figure 8.5 Raman spectra of (a) microcrystalline [OsO₃F][Sb₃F₁₆] recorded in a Pyrex glass capillary at -165 °C using the 1064-nm excitation and (b) microscrystalline [OsO₃F][AsF₆] recorded in a ¼-in. FEP sample tube at -150 °C using the 647.1-nm excitation. Asterisks (*) denote FEP sample tube lines. a Figure 8.6 Raman spectra of (a) microcrystalline [OsO₃F][HF][SbF₆] at -165 °C and (b) microcrystalline [OsO₃F][HF][SbF₆] containing [OsO₃F][SbF₆] at -150 °C recorded in ¼-in. FEP sample tubes using the 647.1-nm excitation. Asterisks (*) denote FEP sample tube lines. Daggers (†) denote bands arising from [OsO₃F][SbF₆]. Figure 8.7 Raman spectra of (a) microcrystalline [OsO₃F][HF]₂[AsF₆] recorded in a ¼-in. FEP sample tube at -140 °C using the 647.1-nm excitation and (b) microcrystalline [OsO₃F][HF]₂[SbF₆] under HF solvent recorded in a ¼-in. FEP sample tube at -80 °C using the 647.1-nm excitation. Asterisks (*) denote FEP sample tube lines. Raman spectra of microcrystalline [µ-F(OsO₃F)₂][AsF₆] under HF solvent recorded in a ¼-in. FEP sample tube at -80 °C using the 647.1-nm excitation. Asterisks (*) denote FEP sample tube lines. Figure 8.8 Table 8.4 Raman Frequencies and Their Assignments for [OsO₃F][Sb₃F₁₆] | Frequency, cm ⁻¹ | Assignment | | | |-----------------------------|----------------------------|---------------------------------|--| | | $OsO_3F^+(C_{3v})$ | Sb ₃ F ₁₆ | | | 1002 (100) | $v_1(A_1); v_s(OsO_3)$ | | | | 992 (53) | $v_4(E)$; $v_{as}(OsO_3)$ | | | | 745 (9) | $v_2(A_1); v_s(OsF)$ | | | | 731 (3) | | v(SbF) | | | 707 (25) | | , | | | 701 (87) | | | | | 696 sh(10) | | | | | 666 (7) | | | | | 656 (92) | | | | | 652 (56) | | | | | 588 (18) | | | | | 372 (36) | $v_3(A_1); \delta(OsO_3)$ | | | | 333 (4) | v ₅ (E) | | | | 298 (7) | | δ(SbF) | | | 271 (9) | | 3(332) | | | 248 (13) | | | | | 242 (16) | | | | | 238(21) | | | | | 218 (9) | | | | | 212 (3) | | | | | 25 (6) | | | | | 4 (86) | | | | | 1 (7) | | | | | 0 (6) | | | | ^a Spectrum recorded on microcrystalline solid in a Pyrex glass capillary at -165 °C using the 1064-nm excitation. Values in parentheses denote relative intensities. Abbreviation (sh) denotes a shoulder. Table 8.5 Raman Frequencies and Their Assignments for [OsO₃F][PnF₆], Pn = As, Sb | Frequency,* cm ⁻¹ | | Assignment | l . | | |--|--|---------------------------------|--------------------|------------------------------| | [OsO ₃ F][AsF ₆] ^b | [OsO ₃ F][SbF ₆] ^e | OsO ₃ F ⁺ | $AsF_6(C_4)$ | SbF_{6} (C_{4v}) | | 996 (100) | 995 (100) | $v_s(OsO_3)$ | | | | 990 (27) | | $v_{as}(OsO_3)$ | | | | 986 (50) | 986 (32) | $v_{as}(OsO_3)$ | | | | 984 (14)sh | | | | | | 725 (8)sh | | | $v_g(E)$ | | | 721 (11) | | | • • • | | | | 692 (65) | | | $v_{\mathbf{g}}(\mathbf{E})$ | | 666 (21) | 656 sh | | $v_i(A_i)$ | $v_i(A_i)$ | | | 642 (28) | | | $v_2(A_1)$ | | 576 (5)° | | | $v_5(B_1)$ | | | 529 (2) | | | $v_4(A_1)$ | | | ¥10 (1) | | | $v_3(A_1)$ | | | 397 (10) | | δ(OsO ₃) | | | | 387 (16) | 386 sh | (3) | | | | 374 (13)sh | | | ν ₉ (Ε) | | | 372 (17) | | | , , | | | 58 (8) | | | $v_7(B_2)$ | | | 341 (8) | | | | | | 276 (3) | | | $v_{11}(E)$ | | | 59 (2) | | | | | | 44 (3) | | | | | | 25 (5) | | | | | | 21 (8) | | | | | | 67 (1) | | | | | | 52 (3) | | | | | - ^a Values in parentheses denote relative intensities. Abbreviation (sh) denotes a shoulder. - b Spectrum recorded on microcrystalline solid in a ¼-in. FEP sample tube at -150 °C using the 647.1-nm excitation. Bands arising from FEP sample tube were observed at 293 (2), 733 (9), and 746 (2) cm⁻¹. - ^c Spectrum recorded on solid in admixture with [OsO₃F][HF][SbF₆] in a ¼-in. FEP sample
tube at -165 °C using the 1064-nm excitation. - ^d This band overlaps with a band arising from the FEP sample tube. Table 8.6 Raman Frequencies and Their Assignments for [OsO₃F][HF][SbF₆] | Frequency,* cm ⁻¹ | Assignment | | | |------------------------------|-------------------------|--------------------|--| | | $OsO_3F^*(C_{3\nu})$ | $SbF_6^-(C_n)$ | | | 981 (33) | v,(OsO ₃) | | | | 977 (100) | | | | | 972 (21) | $v_{\mathbf{z}}(OsO_3)$ | | | | 970 (17) | | | | | 965 (16) | $V_{aa}(OsO_3)$ | | | | 960 (3) | | | | | 685 (3) | | v _g (E) | | | 668 (29) | | $v_i(A_i)$ | | | 652 (13) | v _s (Os-F) | | | | 645 (3) | | $V_2(A_1)$ | | | 613 (3) | | $v_s(B_1)$ | | | 609 (3) | | 3(-1) | | | 537 (1) | | | | | 520 (3) | | | | | 515 (2)sh | | | | | 187 (<0.5) | | $V_4(A_1)$ | | | 397 (3) | | | | | i90 (17) | | | | | 384 (25) | $\delta_{s}(OsO_{s})$ | | | | 880 (16) | | | | | 75 (3) | | | | | 45 (<0.5) | | | | | 12 (2) | | | | | 97 (6) ^b | | v₀(E) | | | 75 (1) | | | | | 54 (2) | | | | | 39 (1) | | | | | 26 (4) | | | | | 87 (3) | | | | | 65 (1)
55 (-0.5) | | | | | 55 (<0.5)
35 (<0.5) | | | | | 35 (<0.5)
20 (1) | | | | | 20 (1)
06 (1) | | | | | 4 (12) | lassa ti | | | | · (• •) | laser line | | | ^a Spectrum recorded on microcrystalline solid in a ¼-in. FEP sample tube at -150 °C using the 1064-nm excitation. Values in parentheses denote relative intensities. Abbreviation (sh) denotes a shoulder. Bands arising from FEP sample tube were observed at 297 (6), 579 (1), 734 (8), and 751 (1) cm⁻¹. ^b This band overlaps with a band arising from the FEP sample tube. Table 8.7 Raman Frequencies and Their Assignments for [OsO₃F][HF]₂[PnF₆] (Pn=As, Sb) | Frequency, cm-1 | | | Assignment | | |--|--|------------------------------------|----------------------------------|---------------------| | [OsO ₃ F][HF] ₂ [AsF ₆] ^b | [OsO ₃ F][HF] ₂ [SbF ₆]* | $OsO_3F^*(C_{j_v})$ | $AsF_{\bullet}^{-}(C_{\bullet})$ | SbF_{6} (C_{A}) | | 981 (100) | 979 (65) | v _s (OsO ₃) | | | | 971 (97) | 973 (100) | . ,, | | | | 959 (26)sh | 963 (25) | $V_{as}(OsO_3)$ | | | | 957 (33) | 960 (24) | 4 (1-13) | | | | | 954 (4) | | | | | | 945 (3) | | | | | 728 (26)sh ^a | 688 (5) | | v _s (E) | v _s (E) | | 716 (9) | 675 (8) | | - 8() | · g(2) | | 710 (5) | | | | | | 674 (22) | 658 (22) | | $v_i(A_i)$ | $v_{t}(A_{t})$ | | 659 (11) | 646 (8) | | $v_2(A_1)$ | $v_2(A_1)$ | | 651 (9) | ., | | 'A'-D | *2(**1) | | 596 (1) | | | | | | 576 (6) ^d | 572 (3) | | $v_s(B_t)$ | $v_s(B_i)$ | | | 555 (2) | | -3(-1) | ·3(2) | | 491 (6) | 501 (2) | | $V_4(A_1)$ | $V_4(A_1)$ | | 417 (3) | • • | | $v_3(A_1)$ | -4(1) | | | 391 (31)sh | | ·)(- •() | $v_7(B_2)$ | | 398 (11)sh | 388 (51) ⁴ | | | | | 393 (42) | 378 (24) ⁴ | δ(OsO ₃) | | | | 371 (10) | | | ν ₉ (Ε) | | | 364 (10) | | | · y (-) | | | 358 (10) | | | $v_7(B_2)$ | | | 54 (7)sh | 348 (2) | | | | | | 340 (2) | | | | | | 330 (3) | | | | | | 311 (6) | | | | | 89 (10)sh ^d | 306 (5) | | | | | 82 (5)sh | • • | | | | | | 292 (12) | | | v ₉ (E) | | | 281 (8) | | | $V_3(A_1)$ | | 61 (3)
45 (3) | 260 (3) | | | | Table 8.7 continued... | Frequency.* cm-1 | | | Assignment | | |---|--|---------------------|--------------------------------------|----------------------| | [OsO,F][HF] ₂ [AsF ₆] ^b | [OsO ₃ F][HF] ₂ [SbF ₆] ^e | $OsO_3F^*(C_{j_0})$ | $AsF_{\bullet}^{\cdot}(C_{\bullet})$ | $SbF_{6}^{-}(C_{4})$ | | 240 (3) | | | | - | | | 240 (6) | | | ν ₁₁ (Ε) | | 234 (6) | | | | 11(2) | | 227 (6) | 225 (3) | | | | | 221 (3) | 218 (3) | | | | | 215 (3) | | | | | | 210 (3) | 204 (2) | | | | | | 188 (1) | | | | | 179 (2) | 180 (1) | | | | | 167 (2) | (-) | | | | | 144 (1) | 145 (1) | | | | | 123 (1) | | | | | | • • | 101 (2) | | | | | | 93 (2) | | | | ^a Values in parentheses denote relative intensities. Abbreviation (sh) denotes a shoulder. Spectrum recorded on microcrystalline solid in a 1/4-in. FEP sample tube at -140 °C using the 647.1-nm excitation. Bands arising from FEP sample tube were observed at 293 (14), 381 (30), 389 (30), 576 (6), 596 (1), 733 (43), and 750 (5) cm⁻¹. ^c Spectrum recorded on solid under HF solvent in a ¼-in. FEP sample tube at -80 °C using the 647.1-nm excitation. Bands arising from FEP sample tube were observed at 292 (12), 576 (3), 596 (1), 732 (31), and 749 (3) cm⁻¹. ^d This band overlaps with a band arising from the FEP sample tube. Table 8.8. Raman Frequencies and Their Assignments for [Os₂O₆F₃][AsF₆] | Frequency, cm ⁻¹ a [Os ₂ O ₆ F ₃][AsF ₆] | Assignment | | | |--|--|----------------------|--| | | Os ₂ O ₆ F ₃ ⁺ | $AsF_{6}^{-}(O_{k})$ | | | 967 (100) | v _s (OsO ₃) in-phase | | | | 963 (91) | v _s (OsO ₃) out-of-phase | | | | 956 (45) | v _{ss} (OsO ₃) in-phase | | | | 953 (44) | V _{ss} (OsO ₃) out-of-phase | | | | 949 (29)sh | $v_{as}(OsO_3)$ in-phase | | | | 944 (10)sh | v _{ss} (OsO ₃) out-of-phase | | | | 744 (2) | | | | | 708 (8) | | $v_3(T_{1u})$ | | | 675 (6) | | $v_1(A_{1g})$ | | | 651 (5) | v,(Os-F) | | | | 641 (5) | • | | | | 603 (2) | | | | | 545 (1) | | | | | 493 (<1) | | | | | 478 (1) | | | | | 148 (1) | | | | | 108 (3)sh | | | | | 102 (10) | | | | | 397 (10) | | | | | 384 (36) | $\delta(OsO_3)$ | | | | 381 (32)sh | | | | | 665 (4) | | $v_5(T_{2g})$ | | | 356 (3) | | - 5(* 2g) | | | 20 (2) | | | | | 50 (2) | | | | | 40 (4) | | | | | 35 (4) | | | | | 82 (2) | | | | | 76 (1) | | | | | 67 (1) | | | | Table 8.8. continued... | Frequency, cm ⁻¹ | Assignment | | |-----------------------------|--|--------------------------| | [Os2O6F3][AsF6] | Os ₂ O ₆ F ₃ ⁺ | $AsF_{b}^{\cdot}(O_{b})$ | 159 (1) 152 (1) 139 (2) 117 (1) 81 (2) ^a Spectrum recorded on the solid under liquid HF solvent in a ¼-in. FEP sample tube at -80 °C using the 647.1-nm excitation. Values in parentheses denote relative intensities. Abbreviation (sh) denotes a shoulder. Bands arising from FEP sample tube were observed at 292 (8), 576 (2), 732 (18), and 751 (2) cm⁻¹. stronger and less polar Os-O bonds. The Re-O stretching frequencies of isoelectronic ReO₃F agree well with those of the cationic Os analogue and differ by less than 15 cm⁻¹. The Raman band at 745 cm⁻¹ is tentatively assigned to the Os-F stretch which is at significantly higher frequency than those of matrix-isolated monomeric OsO₃F₂ (646.0, 619.0 cm⁻¹)⁸⁶ and ReO₃F (666 cm⁻¹)²²¹ and is in accord with the positive charge of OsO₃F⁺ and a correspondingly less polar Os-F bond. The symmetric OsO₃ bend appears at 370 cm⁻¹ which is between the ReO₃ bending frequencies in ReO₃F obtained from an HF solution²²¹ and a N₂ matrix.²²³ The unambiguous assignment of the Os-F stretching mode and the v₆(E) cation bending mode was not possible because of the large number of anion modes in that region of the spectrum. The $[OsO_3F][Sb_3F_{16}]$ salt represents the best approximation to a free OsO_3F^+ cation as evidenced by the absence of splitting for the degenerate modes and the fact that the stretches appear at the highest frequencies when compared to those of other OsO_3F^+ salts (vide infra). **8.2.3.2.** [OsO₃F][AsF₆] and [OsO₃F][SbF₆]. The Raman spectrum of [OsO₃F][AsF₆] is far more complex than suggested by its simple ionic formulation. The observation of 13 cation bands and 10 anion bands indicates a significant reduction of symmetry from the ideal $C_{3\nu}$ point symmetry of the OsO₃F⁺ cation and O_{k} symmetry of the AsF₆ anion, and is corroborated by the crystallographic findings. The Raman frequencies of only the most intense bands of [OsO₃F][SbF₆] have been observed, since it could only be obtained as a minor component in admixture with [OsO₃F][HF][SbF₆] (vide supra) but the cation bands correspond to those of [OsO₃F][AsF₆]. The Os-O stretching frequencies in [OsO₃F][AsF₆] are approximately 6 cm⁻¹ lower than those in [OsO₃F][Sb₃F₁₆], resulting from the higher nucleophilicity of the AsF₆ anion, which forms stronger contacts to the OsO₃F* cation in the solid state to five the (OsO₃F···FAsF₅)₂ dimer (see 8.2.2.1. X-Ray Crystallography; Structure of [OsO₃F][AsF₆]). These contacts distort the OsO₃F* cation, resulting in splitting of the degenerate v₄(E) mode and the observation of three Os-O stretching bands. A shoulder at 984 cm⁻¹ may arise from vibrational coupling of the OsO₃ modes in the dimer. The Os-F stretching frequency could not be assigned, because the intense anion modes in that region of the spectrum obscure the weak Os-F stretching band which is expected to occur at significantly lower frequency than that of [OsO₃F][Sb₃F₁₆] (745 cm⁻¹). Detailed assignments of the bending modes were not possible because of the high degree of vibrational coupling between the two bridged OsO₃F···FAsF₅ units. 8.2.3.3. [OsO₃F][HF]₂[PnF₆] (Pn = As, Sb) and [OsO₃F][HF][SbF₆]. As in the case of [OsO₃F][AsF₆], the Raman spectra of [OsO₃F][HF]₂[PnF₆] and [OsO₃F][HF][SbF₆] indicate lowering of the symmetry of the cation and anion from their ideal $C_{3\nu}$ and O_{k} point symmetries, respectively. The AsF₆ and SbF₆ anion bands were assigned under $C_{4\nu}$ point symmetry based on previous assignements, however, the crystal structure shows that the anion symmetries are $C_{2\nu}$ or lower. The Raman spectra of $[OsO_3F][HF]_2[PnF_6]$ (Pn = As, Sb) are very similar suggesting that the two compounds are isostructural. Three Os-O stretching modes appear 16 to 20 cm⁻¹ lower in the Raman spectrum of [OsO₃F][HF]₂[AsF₆] than those of [OsO₃F][AsF₆]. The band splittings are consistent with the distorted OsO₃F⁺ cation found in the crystal structure of
[OsO₃F][HF]₂[AsF₆]. A shoulder at 959 cm⁻¹ and the observed splittings of the Os-O stretching bands in the Raman spectra of [OsO₃F][HF]₂[AsF₆] and [OsO₃F][HF]₂[SbF₆], respectively, are likely a result of vibrational coupling between two OsO₃F...FPnF₅ moieties which are found to be bridged by two HF molecules in the structure of [OsO₃F][HF]₂[AsF₆]. The Os-O stretches of [OsO₃F][HF][SbF₆] have frequencies similar to those of [OsO₃F][HF]₂[PnF₆]. However, all three Os-O stretches are split by ca. 3 cm⁻¹ which can be explained by the stronger vibrational coupling that results from the shorter HF bridge in the helical solid state structure of [OsO₃F][HF][SbF₆] (see 8.2.2.3. X-Ray Crystallography; Structure of [OsO₃F][HF][SbF₆]). The Os-F stretches and the bending modes in the Raman spectra could not be unambiguously assigned due to strong vibrational coupling and overlap with the anion bands. 8.2.3.4. $[Os_2O_6F_3][AsF_6]$. The Raman spectrum of $[Os_2O_6F_3][AsF_6]$ contains six Os-O stretching bands consistent with a fluorine-bridged μ -F(OsO₃F)₂⁺ cation in which the two OsO₃F moieties are vibrationally coupled to each other. The splittings of the Os-O stretching bands range from 5 to 3 cm⁻¹ and agree very well with the degree of coupling observed for μ -F(cis-OsO₂F₃)⁺ cation. The bands at 651 and 641 cm⁻¹ are tentatively assigned to the two Os-F stretching bands and appear at much lower frequencies than that in $[OsO_3F][Sb_3F_{16}]$ (745 cm⁻¹), which is consistent with a lower charge density in the dinuclear cation and a correspondingly lower Os-F polarity. Contacts between the cation and the AsF_6 anion are likely, because the pentacoordinate osmium in μ -F(OsO₃F)₂* is coordinatively unsaturated and because formally Raman inactive anion modes are observed in the Raman spectrum. #### 8.3. Conclusion The fluoride ion donor properties of OsO₃F₂ were studied and the new compounds, [OsO₃F][PnF₆], [OsO₃F][HF][SbF₆], [OsO₃F][HF]₂[PnF₆], and [Os₂O₆F₃][AsF₆] have been prepared from HF solutions of OsO₃F₂ and the Lewis acids, AsF₅ or SbF₅, and have been characterized by Raman spectroscopy. The OsO₃F⁺ cations in the crystal structures of [OsO₃F][AsF₆], [OsO₃F][HF][SbF₆], and [OsO₃F][HF]₂[AsF₆] extend their coordination spheres by fluorine bridging with the PnF₆⁻ anions and HF molecules to the Os centre and therefore deviate significantly from the ideal point symmetry of an isolated OsO₃F⁺ cation. The closest approximation to a free OsO₃F⁺ cation was found in the crystal structure of [OsO₃F][Sb₃F₁₆] which was isolated from neat SbF₅ solvent. ### **CHAPTER 9** ## LEWIS-ACID PROPERTIES OF OsO,F. ### 9.1. Introduction The highest, and most common, coordination number for osmium in the +8 oxidation state that has been reported to date is six. In the presence of four oxygen double-bond domains, coordination numbers of four (OsO₄)²¹⁴ and five (OsO₄F) (see Chapter 6) are well established. Monomeric, pentacoordinate OsO₃F₂ has only been isolated in a matrix³⁶ and polymerizes to form a fluorine-bridged chain structure in which Os(VIII) exhibits hexacoordination.⁷ Only the strong Lewis acid, neat SbF₅, can stabilize the pentacoordinate OsO₂F₃⁺ 91 and tetracoordinate OsO₃F⁺ cations (see Chapter 8). Their coordinatively unsaturated nature is documented by failed attempts to obtain crystals containing the OsO₂F₃⁺ cation,⁹¹ isolation of the fluorine-bridged Os₂O₄F₇⁺ cation in the solid state, and by the strong anion-cation contacts in crystal structures containing the OsO₃F⁺ cation (see Chapter 8). The present work investigates the Lewis acidity of *cis*-OsO₂F₄ yielding Lewis acid-base adducts having an Os(VIII) coordination number of seven. #### 9.2. Results and Discussion # 9.2.1. Fluoride Ion Acceptor Properties of cis-OsO₂F₄ 9.2.1.1. Synthesis of OsO₂F₅. Purple cis-OsO₂F₄ reacts with CsF at 150 °C according to equation (9.1) yielding light brown [Cs][OsO₂F₅], which was characterized by Raman $$CsF + OsO_2F_4 \xrightarrow{150 \, ^{\circ}C} > [Cs][OsO_2F_5]$$ (9.1) spectroscopy. Osmium dioxide tetrafluoride is moderately soluble in liquid NOF at -78 °C yielding a deep red solution and exists in equilibrium (9.2) with [NO][OsO₂F₅] in the $$NOF + OsO2F4 \stackrel{NOF}{\leftarrow} [NO][OsO2F5]$$ (9.2) precipitate and in solution based on the Raman and ¹⁹F NMR spectra. Removal of the NOF solvent at -78 °C results in dissociation of [NO][OsO₂F₅] to OsO₂F₄ and NOF. Tetramethylammonium fluoride reacts vigorously and exothermally with OsO₂F₄ in liquid NOF solvent according to equation (9.3), in which [N(CH₃)₄][F] was found to be very $$[N(CH_3)_4][F] + OsO_2F_4 \xrightarrow{NOF} > [N(CH_3)_4][OsO_2F_5]$$ (9.3) soluble at -78 °C. Vigorous boiling of NOF at -59.9 °C provides a means to absorb the heat of reaction. The $[N(CH_3)_4][OsO_2F_5]$ salt exhibits a low solubility in NOF and is moderately soluble in CH_3CN and HF solvents. When the reaction of $[N(CH_3)_4][F]$ with OsO₂F₄ was carried out in HF solvent at -78 °C, immediate decomposition ensued, and is attributed to the exothermic nature of the reaction and the lack of a means sufficient dissipate the heat of reaction. An attempt to react OsO₂F₄ and [N(CH₃)₄][F] in CHF₃ at -100 °C was unsuccessful based on Raman and ¹⁹F NMR spectroscopy which showed only the starting materials and solvent signals. Failure to react is attributed to the low solubility of OsO₂F₄ in CHF₃. No reaction was observed between OsO₂F₄ and NO₂F at -78 °C in liquid NO₂F, in which OsO₂F₄ was insoluble, and at 55 °C under *ca.* 6 atms NO₂F gas. The difference in reactivity between NOF and NO₂F towards OsO₂F₄ is consistent with a more ionic N-F bond in NOF than that in NO₂F and was also observed with OsO₄ (see 6.2.2. Reaction of OsO₄ with NOF and NO₂F). ^{210,211} 9.2.1.2. NMR Spectroscopic Characterization of the OsO_2F_5 Anion. The ¹⁹F NMR spectrum of OsO_2F_4 dissolved in NOF at -65 °C comprised a doublet at 37.06 ppm and a quintet at 79.29 ppm, ${}^2J({}^{19}F_-{}^{19}F) = 96$ Hz, with a doublet:quintet intensity ration of approximately 4:1. An increase in the intensity of the ¹⁹F resonance of NO_2F (395.30 ppm, ${}^1J({}^{19}F_-{}^{14}F) = 114$ Hz) relative to that of the NOF₃ impurity indicated that some oxidation of NOF had occurred; the reduction product, however, was not identified. The absence of ¹⁹F NMR signals associated with OsO_2F_4 despite its observation by Raman spectroscopy (see 9.2.1.3. Raman Spectroscopic Characterization of the OsO_2F_5 Anion) is presumably the result of fast exchange on the NMR time scale between the fluorine environments in OsO_2F_4 and that in NOF solvent (${}^{19}F$: 487.91 ppm). The ${}^{19}F$ NMR spectrum of $[N(CH_3)_4][OsO_2F_5]$ dissolved in CH_3CN at -30 °C also shows a doublet at 46.70 ppm and a quintet at 93.20 ppm, ${}^2J({}^{19}F^{-19}F) = 93$ Hz (Figure 9.1). In HF solvent at -78 °C, the quintet and doublet in the ${}^{19}F$ NMR spectrum of $[N(CH_3)_4][OsO_2F_5]$ were shifted to -6.49 and -36.58 ppm, respectively, with ${}^2J({}^{19}F^{-19}F) = 97$ Hz (Figure 9.2). This extreme solvent dependence of the chemical shift indicates significant interactions between solvent and the OsO_2F_5 anion. A similar dependence has also been found for the ReO_2F_4 anion, whose low-frequency ${}^{19}F$ resonance shifted by ca. 70 ppm to lower frequency upon changing the solvent from CH_3CN ($N(CH_3)_4$ salt) to HF (Cs^+ salt); 94 the nature of the countercation is unlikely to have such a large influence. The heptacoordinate OsO_2F_5 anion can potentially exhibit structures based on three geometries, namely, the pentagonal bipyramid, the monocapped octahedron, and the monocapped trigonal prism, which are shown in Figures 9.3 and 9.4 together with their expected splittings in the ¹⁹F NMR spectrum. Only one structure gives rise to the observed doublet and quintet splittings, *i.e.*, the monocapped trigonal prismatic structure with a *cis*-arrangement of the two oxygen atoms and four fluorine atoms forming the square face, which is capped by a unique fluorine atom (structure I). The OsO_2F_5 anion retains the cis-dioxo arrangement from its neutral precursor cis-OsO₂F₄ and provides the first example of an $AO_2F_5^m$ system that, unlike $IO_2F_5^{2}$ (see Chapter 10) and $UO_2F_5^{3}$, ^{136,137} is not based on a pentagonal bipyramid. The capping fluorine in OsO₂F₅ is significantly Figure 9.1 ¹⁹F NMR spectrum (470.592 MHz) of [N(CH₃)₄][OsO₂F₅] in CH₃CN solvent at -30 °C; (a) multiplets corresponding to the OsO₂F₅ and (b) low-frequency region. Figure 9.2 ¹⁹F NMR spectra (470.592 MHz) of $[N(CH_3)_4][OsO_2F_5]$ in HF solvent at -80 °C. Figure 9.3 Possible structures for the OsO₂F₅ anion based on (a) a pentagonal bipyramid and (b) a monocapped octahedron together with their expected ¹⁹F NMR multiplicities and relative intensities. Abbreviations d and t denote doublet and triplet. Figure 9.4 Possible structures for the OsO₂F₅ anion based on a monocapped trigonal prism, together with their expected ¹⁹F NMR multiplicities and relative intensities. Abbreviations d and t denote doublet and triplet. less shielded than the four fluorine atoms which form the equatorial square face, suggesting a strong, relatively covalent Os-F_{cap} bond and four, more ionic Os-F_{face} bonds in the sterically crowded plane. Structure I can be rationalized in terms of charge concentrations in the outer electron core opposite the doubly bonded oxygens, as was found in *cis*-CrO₄F₂² by Bader and Gillespie (see 1.5. The *Trans*-Influence).¹¹⁹ In the monocapped trigonal prismatic structure I, the repulsion between the fluorine ligands and the two expected charge concentrations is minimized with the latter located in the two trigonal faces which comprise the capping fluorine and two equatorial fluorine atoms. In addition to the doublet and quintet for $[N(CH_3)_4][OsO_2F_5]$ dissolved in CH_3CN , a number of weaker, multiplets were observed in CH_3CN solvent at lower
frequency (Figure 9.1 and Table 9.1). A ¹⁹F-COSY spectrum identified three major groups of signals (Figure 9.5). The approximate relative intensities of the signals within at least two groups suggests the coupling of four, or multiples of four, fluorine atoms to each other. The magnitudes of the couplings are consistent with a two-bond coupling through osmium. The nature of these species could not be determined. The species likely arise from a reaction between $[N(CH_3)_4][OsO_2F_5]$ and CH_3CN and not from the preparation of $[N(CH_3)_4][OsO_2F_5]$ in NOF, since solid $[N(CH_3)_4][OsO_2F_5]$ did not show any significant amounts of impurities in its Raman spectrum. The ¹H NMR spectrum of $[N(CH_3)_4][OsO_2F_5]$ dissolved in CH_3CN at -30 °C contained signals at 2.41 and 3.55 ppm for CH_3CN solvent and $N(CH_3)_4$, respectively, and only weak singlets at 4.16, 4.91 (broad), and 11.21 ppm, showing that the bulk of the CH_3CN solvent and the cation remained intact. A possible reaction is provided by the replacement of a fluoride ion with Figure 9.5 ¹⁹F COSY-45 (470.592 MHz) of [N(CH₃)₄][OsO₂F₅] in CH₃CN solvent at -30 °C. CH₃CN yielding different isomers of the OsO₂F₄(CH₃CN) adduct. Such an adduct should, however, coincide with the observation of the same isomer by NMR spectroscopy in a solution of OsO₂F₄ in CH₃CN solvent (see 9.2.2.2. NMR Spectroscopic Characterization of OsO₂F₄(CH₃CN)). The ¹⁹F NMR spectrum of [N(CH₃)₄][OsO₂F₅] dissolved in HF also contained several additional weak multiplets that could not be assigned (Table 9.1) The ¹⁹F NMR spectrum of the orange-brown supernatant that occurred above the large amounts of precipitate that resulted from the reaction of OsO₂F₄ and [N(CH₃)₄][F] in liquid NOF contained a number of weak, very broad signals: doublet (-92.65 ppm, J = 123 Hz); singlets (-72.20, -70.81, 67.91, 63.94, 48.38 ppm); doublet (-40.06 ppm, J =104 Hz); multiplet (-35.4 ppm); doublet (-28.22 ppm, J = 102 Hz); triplet (-24.8 ppm, J= 102 Hz); multiplets (between -5 to -14 ppm); doublet (4.8 ppm, J = 102 Hz); doublet (10.6 ppm, J = 105 Hz); multiplets (16.3, 21.5, 35 ppm); doublets (39.5 ppm, J = 86 Hz; 40.2 ppm, J = 80 Hz); multiplet (85.0 ppm). The origins of these lines is presently not well understood; they are, however, believed to be associated with volatile compounds or have a low concentration since the Raman spectrum of solid [N(CH₃)₄][OsO₂F₅] did not contain major impurities. The unambiguous identification of the doublet and quintet corresponding to the OsO₂F₅ anion was not possible, because of the broadness and the possible overlap with a large number of multiplets present in the spectrum. The strong solvent dependence of the chemical shift associated with the OsO₂F₅ also complicates the assignment. In spite of the side reactions, the assignment of the doublet and quintet to the Os(VIII)O₂F₅ anion is unambiguous. The reversability of eq. (9.2) in NOF solvent clearly Table 9.1 Chemical Shifts and Spin-Spin Coupling Constants Observed in the ¹⁰F NMR Spectra of [N(CH₃)₄][OsO₂F₅] in CH₃CN and HF Solvents | Species* | δ(¹⁹ F) [ppm] | multiplicity | J(19F-19F) [Hz] | rel. intensity | |-----------------------------------|---------------------------|------------------------|-----------------|----------------| | | | CH ₃ CN Sol | vent | | | OsO ₂ F ₅ . | 93.20 | quintet | 93 | I | | | 46.69 | doublet | 93 | 4 | | A | 49.39 | doublet | 77 | 1 | | | 41.13 | quartet | 93 | i | | | 11.00 | doublet | 101 | 3 | | В | 27.58 | quartett | 103 | | | | ca. 21.5 | doublet | 100 | | | | 1.49 | doublet of doublets | 112, 193 | | | | -0.93 | doublet | 100 | | | С | ca. 20.9 | multiplet | | 1 | | | -1.95 | doublet | 107 | 2 | | | -4.80 | doublet | 89 | ī | | | 36.11 | broad singlet | | | | | 12.49 | broad singlet | | | | | -6.85 | broad singlet | | | | | | HF Solven | ı | | | SO ₂ F, | -6.49 | | 0.5 | | | љ о "г, | -0.49
-36.58 | quintet
doublet | 97 | 1 | | | -30.30 | COUDICT | 97 | 4 | | | -45.76 | quartet | 112 | | | | -63.04 | quartet | 117 | | | | -67.54 | doublet | 88 | | | | -69.65 | doublet | 105 | | | | -72.89 | overlapping multiplet | | | | | -88.58 | triplet | 134 | | | | -96.21 | triplet | 141 | | | | -123.02 | doublet | 118 | | ^a Three groups of signals, A, B, and C, were identified by ¹⁹F-COSY. shows the absence of a possible redox reaction that generates a species associated with the doublet and quintet, such as the OsOF₅ anion and OsOF₅. The latter species is paramagnetic and has been shown to give rise to no observable ¹⁹F NMR signals.²³⁹ The possibility of the OsOF₅ anion or OsOF₅ is also eliminated by the observation of two distinct Os-O stretching bands in the Raman spectrum (vide infra). ## 9.2.1.3. Raman Spectroscopic Characterization of the OsO₂F₅ Anion. The $[Cs][OsO_2F_5]$ and $[N(CH_3)_4][OsO_2F_5]$ salts were characterized by low-temperature Raman spectroscopy. The latter salt is a poor scatterer and readily decomposes in the YAG laser beam at power levels of 90 mW at -165 °C. The Raman spectra of $[Cs][OsO_2F_5]$ and $[N(CH_3)_4][OsO_2F_5]$ are shown in Figure 9.6. The major bands for the OsO_2F_5 anion in $[NO][OsO_2F_5]$ were observed in the Raman spectra of the precipitate under NOF solvent (Figure 9.7) and in that of the NOF solution in admixture with OsO_2F_4 . The Raman frequencies for the OsO_2F_5 anion are listed in Table 9.2. A total of 18 vibrational modes is expected for monocapped trigonal prismatic OsO_2F_5 (C_{2v}) belonging to the irreducible representations $6A_1 + 3A_2 + 4B_1 + 5B_2$. All modes are Raman active, while A_1 , B_1 , and B_2 are infrared active. Two Os-O stretches $(A_1 + B_2)$ and five Os-F stretches $(2A_1 + A_2 + B_1 + B_2)$ are expected for the OsO_2F_5 anion. The spectrum of $[Cs][OsO_2F_5]$ ($[N(CH_3)_4][OsO_2F_5]$) contains two Os-O stretching frequencies at 959 (977) and 921 (921) cm⁻¹, which is consistent with a *cis*-OsO₂ arrangement, since the symmetric and asymmetric *trans*-OsO₂ stretching modes would be mutually exclusive in the Raman and infrared spectra. The average of the symmetric and Figure 9.6 Raman spectra of (a) [Cs][OsO₂F₅] and (b) [N(CH₃)₄][OsO₂F₅] recorded in a 4-mm FEP tube at -145 °C using the 671.4-nm excitation. Asterisks (*) denote FEP bands. Daggers (†) denote bands arising from the N(CH₃)₄* cation. Raman spectrum of a [NO][OsO₂F₃]/OsO₂F₄ mixture under frozen NOF recorded in a 4-mm FEP tube at -150 °C using the 671.4-nm excitation. Asterisks (*) and daggers (†) denote FEP bands and signals arising from the OsO₂F₅ anion, respectively. Table 9.2 Vibrational Frequencies and Assignments for [M][OsO₂F₅], $M = Cs^*$. $N(CH_3)_4^+$, and NO^+ | | Frequeny,* [cm-1] | Assignment | | |---|------------------------------------|---|---------------------------------------| | [Cs][OsO ₂ F ₅] ^b | $[N(CH_3)_4][OsO_2F_5]^c$ | [NO][OsO ₂ F ₅] ^d | OsO_2F_5 (C_2) | | 959 (4) | 977 (4) | 967 (7) | $v_{14}(B_2), v_{as}(OsO_2)$ | | 921 (100) | 921 (100) | 929 (100)
926 (53)sh | $v_1(A_1), v_s(OsO_2)$ | | 829 (7)sh | 826 (15) | 841 (10)
832 (20) | | | 819 (16) | 795 (2) | | $v_2(A_1), v_s(OsF_{cap})$ | | 684 (21)
670 (2) | | | $v_s(OsF_4)$ | | 645 (2) | 645 (7) | | $v_{ss}(OsF_4)$ | | 609 (14)
595 (4) | 617 (16) | | $v_{as}(OsF_4)$ | | 545 (4) | 552 (7) | | $v_{ss}(OsF_4)$ | | 485 (6) | 496 (5) | 494 (7) | $\delta_{\text{sciss}}(\text{OsO}_2)$ | | 365 (40)
311 (40)
307 (26)sh
260 (6)sh | 364 (33)
310 (27)sh
304 (46) | 366 sh | bending modes | | 255 (10)
246 (5) | 254 (12) | | | | 236 (4)
207 (4) | 232 (3) | | | | 202 (6)
83 (4) | 201 (10) | | | | 77 (2) | 177 (5) | | | - ^a Relative Raman intensities are given in parentheses. The abbreviation (sh) denotes a shoulder. - b Spectrum recorded on microcrystalline solid in a 4-mm FEP sample tube at -145 °C using the 647.1-nm excitation. Bands arising from FEP sample tube were observed at 292 (10), 380 (8), 386 (12), 576 (3), 732 (38), and 750 (5) cm⁻¹. - ^c Spectrum recorded on microcrystalline solid in a 4-mm FEP sample tube at -145 °C using the 647.1-nm excitation. Bands arising from FEP sample tube were observed at 293 (46), 381 (34), 387 (39), 579 (12), 733 (152), and 751 (30) cm⁻¹. - ^d Spectrum recorded on the solid under frozen NOF in a 4-mm FEP sample tube at -150 °C using the 647.1-nm excitation. Bands arising from *cis*-OsO₂F₄ were observed at 264 (17), 310 (40), 321 (13), 342 (97), 347 (77), 350 (127), 402 (213), 571 (45), 573 (20)sh, 578 (47), 584 (20)sh, 673 (137), 683 (18), 934 (97), and 943 (330) cm⁻¹; bands arising from NOF solvent were observed at 111 (27), 131 (47), 141 (60), 377 (1920), 408 (747), 628 (390), 638 (33)sh, 647 (50) cm⁻¹; bands arising from FEP sample tube were observed at 293 (30), 734 (97), and 751 (13) cm⁻¹. asymmetric stretching frequency of 940 (949) cm⁻¹ is slightly higher than that for OsO₂F₄ (938 cm⁻¹)⁶ indicating somewhat weaker Os-O bonds in the anion. In the Raman spectrum of [Cs][OsO₂F₅], the band at 822 cm⁻¹ is assigned to the strong symmetric OsF₅ stretch, $v_2(A_1)$, while the bands at 684, 645, 609, and 545 cm⁻¹ correspond to the other four Os-F stretches, which appear in the same Os-F stretching region as those of OsO₂F₄.⁶ The signal at 485 cm⁻¹ is tentatively assigned to the scissoring motion of the OsO₂ unit, which is at much higher frequency than $\delta_{scns}(OsO_2)$ in OsO₂F₄ (402 cm⁻¹)⁶ reflecting the higher degree of ligand crowding in the OsO₂F₅ anion. A more complete assignment of the Os-F stretching and the bending modes awaits DFT calculations of vibrational frequencies. ## 9.2.2. Lewis Acid Behaviour of cis-OsO₂F₄ Towards CH₃CN 9.2.2.1. Synthesis of OsO₂F₄(CH₃CN). Osmium dioxide tetrafluoride readily dissolves in CH₃CN solvent according to equation (9.4) yielding an intense red-brown solution. $$OsO_2F_4 + CH_3CN \xrightarrow{CH_3CN} >
OsO_2F_4(CH_3CN)$$ (9.4) In addition to $OsO_2F_4(CH_3CN)$, significant concentrations of the OsO_2F_5 have been observed by ¹⁹F NMR spectroscopy (see 9.2.2.2. NMR Spectroscopic Characterization of $OsO_2F_4(CH_3CN)$). The formation of the anion cannot be conclusively explained, but may be generated by a CH_3CN -assisted dissociation of OsO_2F_4 (eq. (9.5)). No evidence for the $$2OsO_2F_4 + CH_3CN \Rightarrow OsO_2F_3(CH_3CN)^* + OsO_2F_5$$ (9.5) OsO₂F₃(CH₃CN)* cation was found by the ¹⁹F NMR spectroscopy which is consistent with a possible attack of the CH₃CN solvent by the highly electrophilic OsO₂F₃(CH₃CN)* cation, as a possible secondary reaction. Removal of the CH₃CN solvent at -30 °C initially produces a concentrated, nearly black solution, which changes into a black glassy solid upon complete solvent removal, that did not give rise to any Raman lines. In the presence of excess CH₃CN, OsO₂F₄ slowly reacts with CH₃CN in SO₂ClF solvent yielding a pale red solution of OsO₂F₄(CH₃CN). 9.2.2.2. Multi-NMR Spectroscopic Characterization of OsO₂F₄(CH₃CN). The ¹⁹F NMR spectrum of OsO₂F₄ dissolved in CH₃CN contains two major osmium oxide fluoride species, *i.e.*, OsO₂F₅ and OsO₂F₄(CH₃CN). The spectrum of OsO₂F₄(CH₃CN) at -40 °C consists of an AMX₂ spin system with $\delta(^{19}F_A) = 108.26$ ppm, $\delta(^{19}F_M) = 23.08$ ppm, $\delta(^{19}F_X) = 5.26$ ppm, $^2J(^{19}F_{A^{-19}}F_M) = 111$ Hz, $^2J(^{19}F_{A^{-19}}F_X) = 20$ Hz, $^2J(^{19}F_{M^{-19}}F_X) = 65$ Hz (Figure 9.8). A ¹⁹F COSY spectrum confirmed that these three signals are coupled to each. Since the monocapped trigonal prism was shown to be the preferred geometry of the heptacoordinate dioxo species, OsO₂F₅, OsO₂F₄(CH₃CN) is likely based on the same geometry. The AMX₂ spin system is consistent with structure II which is based on a ¹⁹F NMR spectrum (470.592 MHz) of OsO₂F₄(CH₃CN) in CH₃CN solvent at -40 °C. Insert shows resolution enhanced signal. Figure 9.8 monocapped trigonal prism with one fluorine in the square face replaced by a CH₃CN molecule. The high-frequency signal (108.26 ppm) corresponds to the capping fluorine and is even more deshielded than the capping fluorine in OsO₂F₅, which is consistent with the neutrality of the CH₃CN adduct. The three fluorine atoms in the equatorial squareface of the OsO₂F₄(CH₃CN) adduct are more shielded than the four fluorine atoms that form the square face in the OsO₂F₅ anion. The higher steric demand of the CH₃CN ligand compared to a fluorine apparently results in weaker, more ionic Os-F bonds causing an larger shielding of the equatorial fluorine environments. The preference of the CH₃CN ligand for the equatorial site, instead of the capping position, is a consequence of the strong Os-F_{cap} bond which is evidenced by its deshielded ¹⁹F resonance. Furthermore, the trajectory of CH₃CN attack likely points through the trigonal face in cis-OsO₂F₄ which involves the two oxygen atoms cis to each other as depicted in Figure 9.9. Fluorine ligand rearrangement yields structure II, while a non-dissociative isomerization to a OsO₂F₄(CH₃CN) geometry with a capping CH₃CN is kinetically unfavourable. Besides ¹⁹F NMR signals associated with OsO₂F₄(CH₃CN), OsO₂F₅, and HF (-178.29 ppm; ${}^{1}J({}^{19}F_{-}{}^{1}H) = 477 \text{ Hz}$), several weak signals were observed which have not been assigned thus far: singlets at 50.3, -59.36, -79.56, and -98.89 ppm; a quartet at 15.39 ppm (J = 101 Hz); and a doublet at 8.36 ppm (J = 88 Hz). The ${}^{1}H$ NMR spectrum at -40 ${}^{\circ}C$ of the CH₃CN solution is far more complex than expected for OsO₂F₄(CH₃CN) dissolved in CH₃CN. Besides the intense CH₃CN solvent signal at 2.75 ppm, small amounts of HF (8.37 ppm, ${}^{1}J({}^{19}F_{-}{}^{1}H) = 478 \text{ Hz}$), a singlet at 5.29 ppm and several weaker signals between 3 and 4 ppm were observed. The complexity of the ${}^{1}H$ NMR spectrum Figure 9.9 Proposed trajectory of CH₃CN attack at cis-OsO₂F₄. suggest that attack of the CH₃CN solvent has occurred. The ¹⁹F NMR spectrum of the reaction of OsO₂F₄ with CH₃CN in SO₂CIF solvent at -80 °C showed two triplets for OsO₂F₄ (48.66 and 33.38 ppm, ²J(¹⁹F-¹⁹F) = 137 Hz), which decreased in intensity over the course of the reaction, while signals for OsO₂F₄(CH₃CN) increased in intensity. The ¹⁹F NMR parameters for OsO₂F₄(CH₃CN) in SO₂CIF solvent δ (¹⁹F_A) = 108.26 ppm, δ (¹⁹F_M) = 23.91 ppm, δ (¹⁹F_X) = 6.65 ppm, ²J(¹⁹F_A-¹⁹F_A) = 108 Hz, ²J(¹⁹F_A-¹⁹F_X) = 19 Hz, ²J(¹⁹F_M-¹⁹F_X) = 62 Hz agree very well with those obtained in CH₃CN solvent. Additional signals indicate side reactions: sharp singlets at 175.6, 48.91, -61.07, -71.61, -81.51 ppm, broad signals at 39.4 and 13.3 ppm, and a doublet at 11.84 ppm (J = 94 Hz). The complex ¹H NMR spectrum with signals at 1.75 ppm (CH₃CN); doublet at 7.42 ppm, ¹J(¹⁹F-¹H) = 479 Hz (HF); singlets at 2.03, 2.39, 2.68, 3.57, and 4.26 ppm support the suggestion of CH₃CN attack by OsO₂F₄. ### 9.3. Conclusion The Os(VIII) oxide fluoride, cis-OsO₂F₄, was shown to behave as a Lewis acid towards F and CH₃CN yielding the OsO₂F₅ anion and OsO₂F₄(CH₃CN) adducts, respectively. Fluorine-19 NMR spectroscopy provides the conclusive structural characterization of OsO₂F₅ which has the unprecedented monocapped trigonal prismatic cis-dioxo structure with one fluorine capping the equatorial square face of four fluorine atoms. The AMX₂ spin system observed for OsO₂F₄(CH₃CN) is consistent with a structure derived from the OsO₂F₅ anion by replacement of one equatorial fluorine atom by a CH₃CN molecule. #### **CHAPTER 10** # FLUORIDE ION ACCEPTOR PROPERTIES OF 102F4 #### 10.1. Introduction lodine in the +7 oxidation state usually has the coordination number six, as in 10_2F_4 , 102_103 (10_2F_3)₂, % $10F_5$, 97 and $10F_5$ in the wake of recent successes in the synthesis of heptacoordinate oxide fluoride and fluoride main-group anions with doubly negative charges, e.g., $10F_5$ anion were investigated in order to obtain the first heptacoordinate main-group dioxide pentafluoride species. All four doubly charged anions have been prepared using anhydrous $10F_5$ anion were investigated to as called 'naked fluoride', as the fluoride ion source. Tetramethylammonium fluoride is very soluble in CH₃CN and CHF₃ solvents. However, the latter solvent has not been used as extensively because of its low boiling point (-82.1 °C). On the other hand, CH₃CN is not inert towards fluoride ions at room temperature (vide infra), but solutions are stable at low temperatures (<-30 °C). ### 10.2. Results and Discussion ### 10.2.1. Synthesis of $[N(CH_3)_4]_2[IO_2F_5]$ A mixture of $[N(CH_3)_4][trans-IO_2F_4]$ and $[N(CH_3)_4][cis-IO_2F_4]$ was allowed to react with one mole equivalent of $[N(CH_3)_4][F]$ in CH_3CN at -30 °C and in CHF_3 at 0 °C followed by removal of the solvent under dynamic vacuum. The white product mixture contained $[N(CH_3)_4]_2[IO_2F_5]$ and $[N(CH_3)_4][cis-IO_2F_4]$ based on Raman spectroscopy. In the case of CHF_3 solvent, small amounts of $[N(CH_3)_4][trans-IO_2F_4]$ were also present. It is apparent from the Raman spectrum of the novel $IO_2F_5^{2-}$ anion prepared in CH₃CN, where the most intense bands of cis- $IO_2F_4^-$ were observed and none were observed for the *trans*-isomer, that the *trans*- $IO_2F_4^-$ selectively acts as a Lewis base towards $[N(CH_3)_4][F]$ yielding the $IO_2F_5^{2-}$ anion, structure I (eq. (10.1)), while $[N(CH_3)_4]$ [cis-IO₂F₄] is inert towards F (eq. (10.2)). Even addition of excess [N(CH₃)₄][F] to $$[N(CH_3)_4][trans-IO_2F_4] + [N(CH_3)_4][F] \xrightarrow{CH_3CN/CHF_3} [N(CH_3)_4]_2[IO_2F_5]$$ (10.1) $$[N(CH_3)_4][cis-IO_2F_4] + [N(CH_3)_4][F] \xrightarrow{CH_3CN/CHF_3} > \text{no reaction}$$ (10.2) $[N(CH_3)_4]_2[IO_2F_5]/[N(CH_3)_4][cis-IO_2F_4]$ mixtures and prolonged reaction times do not result in reduction of the relative intensities of the Raman bands for $cis-IO_2F_4$. The reaction between [N(CH₃)₄][F] and trans-IO₂F₄⁻ proceeds via the proposed trajectory for fluoride attack though one of the eight equivalent trigonal faces of the pseudo-octahedron as depicted in Figure 10.1. In the case of the cis-IO₂F₄⁻ anion the trajectory of the attacking fluorine likely favours one of the two trigonal faces containing the O-O edge, since the O-I-O bond angle is expected to be larger than the other bond angles in the cis-IO₂F₄⁻ anion (Figure 10.1). The addition of fluoride ion to the plane of the IO₂F₄ anion, which is already highly crowded by the larger oxygen double bond domain and three fluorine bond domains, is not favourable. The formation of the IO₂F₅² anion (I) with a trans-IO₂ arrangement from cis-IO₂F₄⁻ would require a ligand rearrangement that is kinetically unfavourable, which is documented by the apparent absence of a rapid trans/cis-isomerization of the IO₂F₄⁻ anion. A reaction time of 2 h in CH₃CN at -30 °C resulted in complete reaction with respect to trans-IO₂F₄⁻, whereas a longer reaction time (12 h) in CHF₃ at 0 °C failed to result in complete conversion of cis-IO₂F₄⁻ to IO₂F₅²⁻, presumably because of the low solubility of trans-IO₂F₄⁻ in CHF₃. Most of the unreacted $[N(CH_3)_4][cis-IO_2F_4]$ salt was extracted from the product mixture with CH₃CN. However, not all of the $[N(CH_3)_4][cis-IO_2F_4]$ could be removed even after numerous washings. # 10.2.2. Raman Spectroscopic Characterization of [N(CH₃)₄]₂[IO₂F₅] Raman spectra of the [N(CH₃)₄]₂[1O₂F₅]/[N(CH₃)₄][cis-IO₂F₄] product mixtures obtained from CH₃CN and CHF₃ solvents are shown in Figures 10.2 and 10.3, respectively. The observed frequencies and their assignments for the product mixtures a b Figure 10.1 Proposed trajectories for fluoride attack on (a) cis-IO₂F₄⁻ and (b) trans-IO₂F₄⁻. Figure 10.2 The Raman spectrum of a [N(CH₃)₄]₂[1O₂F₅]/[N(CH₃)₄][1O₂F₄] mixture prepared from CH₃CN, recorded at -113 °C using 514.5-nm excitation. The IO₂F₃²⁻ and cis-IO₂F₄⁻ bands are indicated by ‡ and *, respectively. Figure 10.3 The Raman
spectrum of a [N(CH₃)₄]₂[1O₂F₃]/[N(CH₃)₄][cis-1O₂F₄] mixture prepared in CHF₃, recorded at room temperature using 514.5-nm excitation. The IO₂F₅², cis-IO₂F₄⁻, and trans-IO₂F₄⁻ bands are indicated by ‡, *, and t, respectively. prepared from CH₃CN and CHF₃ are summarized in Tables 10.1 and 10.2, respectively. In addition to bands assigned to the N(CH₃)₄⁺ cation, the *cis*- and *trans*- IO_2F_4 ⁻ anions, and CH₃CN, four new Raman bands at 789, 517, 395, and 368 cm⁻¹ were observed and are assigned to the novel pentagonal bipyramidal IO_2F_5 ²⁻ anion (D_{5h}) with the oxygen atoms in the axial position (structure I). A total of 18 vibrational modes are expected for the $IO_2F_5^{2-}$ anion (D_{5h}) which span the irreducible representations $\Gamma = 2A_1' + 3E_1' + 2E_2' + 2A_2'' + E_1'' + E_2''$. Of these, five bands corresponding to the A1', E2', and E1" modes are Raman active, five bands corresponding to the A2" and E1' modes are infrared active, and the E2" mode is inactive. Of the five Raman active bands, three were observed in the Raman spectrum of $[N(CH_3)_4]_2[IO_2F_5]$. The most intense band observed at 789 cm⁻¹ is assigned to $v_1(A_1)$, the symmetric stretching band for the axial IO2 unit. The IO2 stretching band for the trans-IO₂F₄ anion was observed at 813 cm⁻¹ in the Raman spectrum. The higher frequency observed for trans-IO₂F₄ compared to that of IO₂F₅²⁻ is consistent with the anticipated greater I-O bond polarity in the IO₂F₅²⁻ anion resulting from increased negative charge localization on the oxygen atom. The predicted trans-arrangement of the oxygen atoms in the $10_2F_5^{\ 2-}$ anion was confirmed by the absence of an intense frequency around 800 cm⁻¹, where the asymmetric stretching frequency of cis-IO₂F₄ occurs. For the monocapped octahedral and monocapped trigonal prismatic geometries, the symmetric as well as the asymmetric I-O stretches would be Raman active. A second intense Raman band observed at 517 cm⁻¹ is associated with the $IO_2F_5^{2-}$ anion and was assigned to $v_2(A_1')$. This band, which corresponds to the symmetric stretching mode of the five equatorial I-F bonds, is Table 10.1 Raman Frequencies and Assignments for a $[N(CH_3)_4]_2[IO_2F_5]/[N(CH_3)_4][cis-IO_2F_4]$ Mixture Prepared in CH₃CN | Frequency** [cm-1] | Assignment | | | |--|--|--|--| | IO ₂ F ₅ ²⁻ (D | $cis-IO_2F_4^-(C_{2v})$ | | | | 889 (2) | | | | | 871 (5) | ν ₁₂ (Β ₂), ν _m (ΙΟ ₂) | | | | 354 (31) | $v_1(A_1), v_3(IO_2)$ | | | | 334 (4) | | | | | 817 (4) | | | | | $v_{i}(A_{i}), v_{i}(B_{i})$ | O ₂) | | | | 520 (2)sh | | | | | 08 (26) | $v_2(A_1), v_s(IF_2)_{ex}$ | | | | 57 (7) | $v_3(A_1), v_s(IF_2)_{ax}$ | | | | 17 (57) v ₂ (A ₁ '), v ₃ (1 | IF ₄) | | | | 00 (4)sh | 2 | | | | 95 (26) $v_{10}(E_2'), v_{m}($ | $(IF_s) \qquad v_s(A_1), \ \delta_{mass}(IO_2)$ | | | | 68 (57) ν _s (E ₁ "), δ _{red} | ₂ (IO ₂) | | | | 56 (3)sh | bending modes | | | | 31 (14)
09 (1) | | | | ^a Spectrum recorded on microcrystalline solid in a Pyrex glass capillary at -113 °C using the 514.5-nm excitation. Values in parentheses denote relative intensities; sh: shoulder. ^b The N(CH₃)₄* cation modes were observed t 380 (11), $v_{18}(E)$; 457 (13), $v_{19}(T_2)$; 752 (35), $v_{3}(A_1)$; 953 (22), $v_{18}(T_2)$; 1187 (3), $v_{7}(E)$; 1294 (3), $v_{17}(T_2)$; 1418 (5), $v_{16}(T_2)$; 1465 sh, $v_{2}(A_1)$; 1476 (31), $v_{6}(E)$; 2818 (4), 2828 (5), 2836 (5), 2899 sh, 2934 (16), 2970 (25), 2995 (15), 3038 (33) cm⁻¹, v_{CH_3} and binary bands (see ref. (201,202)). Bands arising from residual CH₃CN were observed at 916 (7), $v_{4}(A_1)$; 1378 (1), $v_{3}(A_1)$; 2247 (14), $v_{2}(A_1)$; 2944 (16) cm⁻¹, $v_{1}(A_1)$ (see ref. (200)). Table 10.2 Raman Frequencies and Assignments for a $[N(CH_3)_4]_2[IO_2F_5]/[N(CH_3)_4][cis-IO_2F_4]$ Mixture Prepared in CHF₃ | Frequency** [cm-1] | | Assignment | | | |------------------------------------|--|--|---|--| | | IO ₂ F ₃ ²⁻ (D ₅₀) | $cis-1O_2F_4^-(C_{2v})$ | trans-IO ₂ F ₄ ⁻ (D ₄₆) | | | 870 (19)
849 (100) | | $v_{12}(B_2), v_{21}(IO_2)$
$v_1(A_1), v_1(IO_2)$ | | | | 839 (14)sh | | | | | | 815 (22) | | | $v_1(A_{1p}), v_s(1O_2)$ | | | 787 (43) | v ₁ (A ₁ '), v ₅ (IO ₂) | | | | | 754 (28) | | | | | | 629 (8)sh
611 (84)
599 (5)sh | | $v_2(A_1), v_1(IF_2)_{eq}$ | | | | 571 (25) | | | v ₂ (A _{1g}), v ₅ (IF ₄) | | | 563 (12)sh | | $v_{i}(A_{i}), v_{i}(IF_{2})_{ax}$ | | | | 517 (26) | $v_2(A_1')$, $v_s(IF_s)$ | | | | | 396 (25) | $v_{10}(E_2'), v_{10}(IF_5)$ | $V_4(A_1), \delta_{scan}(IO_2)$ | | | | 377 (13) | | | $v_{\mathbf{s}}(\mathbf{E}_{\mathbf{s}}), \delta(\mathbf{OIF}_{\mathbf{s}}\mathbf{O})$ | | | 668 (25) | $v_g(E_1''), \delta_{reck}(IO_2)$ | | - | | | 359 (3)
33 (32) | | bending modes | | | | 53 (1) | | | $v_6(B_{2g})$, $\delta_s(IF_4)$ in plane | | | 35 (1)
09 (2) | | bending modes | - , | | ^a Spectrum recorded on microcrystalline solid in a Pyrex glass capillary at room temperature using the 514.5-nm excitation. Values in parentheses denote relative intensities; sh: shoulder. ^b The N(CH₃)₄* cation modes were observed at 458 (15), $v_{19}(T_2)$; 765 (20), $v_3(A_1)$; 951 (32), 967 (11), 974 (8), $v_{18}(T_2)$; 1178 (5), 1193 (3), $v_7(E)$; 1208 (3), 1288 (3), $v_{17}(T_2)$; 1416 (6), $v_{16}(T_2)$; 1464 (19), $v_2(A_1)$; 1471 (26), 1480 (29), 1489 (6), $v_6(E)$; 1516 (1), 2816 (11), 2834 (10), 2885 (12), 2927 (20), 2940 (20), 2966 (43), 2978 (32), 3004 (24), 3040 (67) cm⁻¹, v_{CH_3} and binary bands (see ref. (201,202)). much lower in frequency than the corresponding band found at 571 cm⁻¹ for the four I-F bonds in *trans*-IO₂F₄⁻. The Raman active asymmetric IF₃ stretching mode, $v_9(E_2')$, overlaps with the IO₂ scissoring mode of *cis*-IO₂F₄⁻, $v_4(A_1)$, and was identified by the increase in relative intensity compared to a Raman spectrum of the *cis*-IO₂F₄⁻ (see 2.2.8. Preparation of [N(CH₃)₄][IO₄] and [N(CH₃)₄][IO₂F₄]). The band at 368 cm⁻¹ was assigned to the $v_8(E_1'')$ mode of the IO₂F₅⁻² anion, and corresponds to the rocking of the axial atoms. The assignment is based on the fact that for the known pentagonal bipyramidal molecules, TeOF₆⁻², ¹¹³ UO₂F₅⁻³, ²⁴⁰ and IOF₆⁻¹¹⁰ the rocking mode is the most intense band among the bending modes and is more intense than the $v_{10}(E_2')$ mode in species with axial oxygen atoms in the Raman spectrum. The absence of the remaining $v_9(E_2')$ mode corresponding to scissoring motion of the IF₅ unit is a consequence of its expected low intensity and its likely overlap with the *cis*-IO₂F₅⁻² and N(CH₃)₄ bands. The equatorial scissoring mode also has a low intensity in the Raman spectra of SbF₇⁻², ¹³⁵ BiF₇⁻², ¹³⁵ TeF₇, ¹⁴⁵ IF₇, ¹⁰⁶ IOF₆, ¹¹⁰ TeOF₆⁻², ¹¹³ and UO₂F₅⁻². ²⁴⁰ The pentagonal bipyramidal geometry for $IO_2F_5^{2-}$ cannot be unequivocally explained by VSEPR rules using the "repelling points on a sphere model". The geometry of the $IO_2F_5^{2-}$ anion is, however, consistent with the structures of other maingroup heptacoordinated species, such as $IOF_6^{-,110}$ $IF_7^{-,104-107}$ $SbF_7^{2-,135}$ $BiF_7^{2-,135}$ $TeF_7^{-,113}$ $TeOF_6^{2-,113}$ $ROTeF_6^{-,111}$ and $(RO)_2TeF_5^{-}$ (where R is an alkyl group). In particular, a close analogy can be made with the XeF_5^{-} anion. The XeF_5^{-} anion has a pentagonal planar structure with five equatorial fluorines and two axial free valence electron pairs. As with the XeF_5^{-} anion, which maintains the large lone pair electron domains as far apart as possible, the large doubly bonded oxygen domains of the $IO_2F_5^{2-}$ anion are expected to be comparatively far apart. The pentagonal bipyramidal structure is the only geometry that affords this. The observed frequencies of the modes for IO₂F₅²⁻ are consistent with the expected trend in the isoelectronic sequence: IO₂F₅²⁻, IOF₆, IF₇. ¹⁰⁶ The symmetric stretching frequency of the equatorial IF₅ bonds is much lower for $IO_2F_5^{2-}$ (517 cm⁻¹) than for IOF_6^{-1} (584 cm⁻¹)¹¹⁰ and IF₇ (635 cm⁻¹), ¹⁰⁶ but is very similar to the symmetric XeF₅ stretching frequency of XeF₅ (502 cm⁻¹).¹⁴¹ Similarly, the asymmetric IF₅ stretching frequency of 395 cm⁻¹ for $IO_2F_5^{2-}$ is much lower than those IOF_6^{-} (457 cm⁻¹), and IF_7 (510 cm⁻¹), 106 but occurs in the same range as $v_{10}(XeF_5)$ in XeF_5^- (423 cm⁻¹).¹⁴¹ The symmetric and asymmetric IF, stretching frequencies of these pentagonal bipyramidal species decrease in the order $IF_7 > IOF_6^- > IO_2F_5^{2-}$, consistent with substitution of the fluorine single bond domain by the larger oxygen double bond domain and with the increase of negative charge, resulting in weaker, more ionic IF bonds over this series. These factors are also responsible for the observed decrease in energy for the I-O stretching modes from IOF₆-(873 cm⁻¹)¹¹⁰ to IO₂F₅²⁻ (789 cm⁻¹). The rocking frequencies of the axial atoms in these isoelectronic species follow the reverse sequence IF_7 (319 cm⁻¹)¹⁰⁶ < IOF_6^- (341 cm⁻¹)¹¹⁰ < IO₂F₅²⁻ (368 cm⁻¹). This trend is expected since the I-O bond domains result in increased steric crowding and a decrease in the flexibility of the axial atoms. The similarity of the symmetric and asymmetric equatorial stretching frequencies of the IO₂F₅²⁻ and XeF₅ anions suggests a bonding description for IO₂F₅²⁻ which is closely related to that of the XeF5 which involves two sp-hybrid orbitals bonding to two axial oxygens/containing two lone pairs and two semiionic multicentre four-electron bonds involving two 5p orbitals of the central atom. ¹⁴¹ The analogy between the two anions, implies that one negative charge is delocalized over the four equatorial fluorines in
$IO_2F_5^{2-}$, while the second charge is located on the two axial oxygen atoms. ## 10.2.3. Formation of $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ Crystals of $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ containing the IO_2F_2 anion were grown in the CH₃CN extract of the $[N(CH_3)_4]_2[IO_2F_5]/[N(CH_3)_4][cis-IO_2F_4]$ mixture, which contained $[N(CH_3)_4][F]$, $[N(CH_3)_4][cis-IO_2F_4]$, and presumably some $[N(CH_3)_4][trans-IO_2F_4]$ arising from the dissociation of the $IO_2F_5^{2-}$ anion (eq. (10.3)). Raman bands of $[N(CH_3)_4]_2[IO_2F_2]$ $$[N(CH_3)_4]_2[IO_2F_5] = [N(CH_3)_4][trans-IO_2F_4] + [N(CH_3)_4][F]$$ (10.3) [HF₂] were observed in the isolated white solid from a sample of a $[N(CH_3)_4]_2[IO_2F_5]/$ $[N(CH_3)_4][cis-IO_2F_4]$ mixture kept at room temperature for one week. Tetramethylammonium fluoride apparently plays a crucial role in the reduction of IO_2F_4 to IO_2F_2 since the autodecomposition of IO_2F_4 has never been reported. At room temperature, anhydrous $[N(CH_3)_4][F]$ readily abstracts a H⁺ from CH₃CN solvent (eq (10.4)) yielding the CH₂CN anion, which reacts with CH₃CN to form 3-amino-2-butenenitrile (eq (10.5)). The oxidation product resulting from the observed reduction $$2[N(CH_3)_4][F] + CH_3CN \xrightarrow{CH_3CN} > [N(CH_3)_4][HF_2] + [N(CH_3)_4][CH_2CN]$$ (10.4) $$CH_2CN^- + H^+ + CH_3CN \xrightarrow{CH_3CN} \rightarrow H_2N(CH_3)C=CHCN$$ (10.5) of I(VII)O₂F₄ to I(V)O₂F₂ has not been identified yet. However, the fluorination of the double bond in 3-amino-2-butenenitrile according to eq. (10.6) is a possible route, which $$IO_2F_4^- + H_2N(CH_3)C = CHCN \xrightarrow{CH_3CN} > IO_2F_2^- + H_2N(CH_3)FC - CF(H)CN$$ (10.6) has to be verified by NMR spectroscopy in the future. ## 10.2.4. X-ray Crystal Structure of [N(CH₃)₄]₂[IO₂F₂][HF₂] Details of the data collection parameters and other crystallographic information for $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ are given in Table 10.3. Important bond lengths, angles, and contacts for $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ are listed in Table 10.4. The crystal structure of $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ contains alternating layers of $N(CH_3)_4^+$ cations and $IO_2F_2^-$ and HF_2^- anions in the (10-1) plane (Figure 10.4). The two crystallographically independent $N(CH_3)_4^+$ cations are tetrahedral about the nitrogen within 3σ and have the expected bond lengths. The I-O (177.4(2) pm) and I-F (202.5(2), 202.7(2) pm) bond lengths for $IO_2F_2^-$ anion in $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ are in good agreement with those for the previously reported crystal structure of $[K][IO_2F_2]$ (I-O: 176.2(8), 177.5(13) pm; I-F: 201.5(8), 198.5(8) pm). As in the structure of the K+ salt, the two fluorine atoms in the $IO_2F_2^-$ are in the axial positions, while the two oxygens and Table 10.3 Summary of Crystal Data and Refinement Results for [N(CH₃)₄]₂[IO₂F₂][HF₂] #### $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ formula C₁H₂F₄IN₂O₂ space group C2/m (No. 12) a [pm] 1467.65(2) b [pm] 860.490(10) c [pm] 1395.72(2) α [deg] 90 β [deg] 120.2040(10) γ [deg] 90 V [10⁶ pm³] 1523.35(3) Z [molecules/unit cell] mol. wt 384.20 calcd density [g cm⁻³] 1.675 colour, morphology colouriess needles size [mm³] 0.8×0.08×0.02 μ [mm⁻¹] 2.139 data/restraints/parameters 1584/0/146 final agreement factors $R^* = 0.0192$ $R_{-}^{b} = 0.0455$ **GOOF** 1.099 **Extinction coefficient** 0.0013(2) $\Delta\delta_{\rm max}/\Delta\delta_{\rm max}$ [e 10⁻⁶ pm⁻³] 0.680/-0.561 $^{^{1}}R = \sum |F_{o}| - |F_{c}|/\sum |F_{o}|.$ ^b $R_w = \sum |(|F_o| - |F_c|)w^{5}|/\sum (|F_o|w)$ where $w = 1/[\sigma^2(F) + (0.0344)^2 + 4.94]$. Table 10.4ImportantBondLengths,Contacts,andBondAnglesin $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ | Bond Lengths and Contacts [pm] | | | | | | | |--------------------------------|------------|----------------|-----------|--|--|--| | I(1)-O(1) | 177.4(2) | I(1)-F(1) | 202.5(2) | | | | | I(1)–F(2) | 202.5(2) | N(1)-C(1) | 150.0(4) | | | | | N(1)-C(2) | 149.3(4) | N(1)-C(3) | 149.5(3) | | | | | N(2)-C(4) | 150.0(4) | N(2)-C(5) | 148.8(4) | | | | | N(2)-C(6) | 149.9(3) | F(3)F(3A) | 227.7(5) | | | | | I(1)F(3) | 280.6(2) | | | | | | | | | | | | | | | | Bond Ang | gles [deg.] | | | | | | O(1)–I(1)–O(1A) | 101.98(12) | O(1)-I(1)-F(1) | 91.01(7) | | | | | O(1)–I(1)–F(2) | 91.00(7) | F(1)-I(1)-F(2) | 176.73(8) | | | | | C(1)-N(1)-C(2) | 110.1(3) | C(1)-N(1)-C(3) | 109.3(2) | | | | | C(2)-N(1)-C(3) | 109.4(2) | C(4)-N(2)-C(5) | 110.0(3) | | | | | C(4)-N(2)-C(6) | 109.5(2) | C(5)-N(2)-C(6) | 109.6(2) | | | | | F(3)I(1)F(3A) | 84.63(8) | | | | | | Figure 10.4 View of (a) the $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ unit cell showing the packing along the b-axis and (b) the IO_2F_2 HF₂ arrangement (thermal ellipsoids are drawn at the 50% probability level). the lone pair are in the equatorial plane, which is predicted by VSEPR rules for an AX₂Y₂E structure. ¹²⁰ The axial F-I-F angle is slightly bent (176.73(8)°) towards the lone pair position, away from the two I=O double bond domains, and is in contrast to the essentially linear F-I-F arrangement (179.1(5)°) in the K* salt.241 The bending of the axial ligands in the pseudo-trigonal bipyramidal AX2Y2E structures towards the lone pair position has also been found in the crystal structures of XeO₂F₂ (174.7(4)°), 162 XeO_2F_2 ... TcO_2F_3 (175.7(6)°), 93 and $XeO_2(OTeF_5)_2$ (163.7(2)°), 242 and has been attributed to a non-spherical charge distribution of the lone pair, which is more extended in the equatorial plane and reduces the repulsion with the axial ligands.²⁴³ The axial angle in IO2F2, however, is significantly larger than that in the neutral xenon analogues, reflecting the decreased steric demand of O-I bonds, which are more ionic in an anionic species. The smaller I-O bond domain in IO₂F₂ is also evidenced by the smaller O-I-O bond angles in $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ (101.98(12)°) and $[K][IO_2F_2]$ (102.0(6)°)²⁴¹ when compared to those in XeO_2F_2 (105.7(3)°), ¹⁶² XeO_2F_2 ... TcO_2F_3 (105.6(6)°), ⁹³ and XeO₂(OTeF₅)₂ (106.5(2)°).²⁴² The two fluorine atoms of the HF_2^- anion are related through a crystallographic 2-fold axis and the hydrogen was refined on the special position (2). The F(3)—F(3A) distance (227.7(5) pm) is longer than that in the crystal structure of $[N(CH_3)_4][HF_2]$ (221.3 pm)²²⁸, because of the strong I(1)—F(3) contacts in the $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ structure (vide infra). The F—F distance in the present structure is the same as that in the HF_2^- in trans- $[Ru(dmpe)_2(H)(HF_2)]$ (227.6(8) pm);²³⁰ it is, however, significantly smaller than the F—F distances found in the transition metal complexes, $[Ni(FHF)(C_4N_2F_2H)(PEt_3)_2]$ (240.0(6) pm),²²⁹ Mo(PMe₃)₄(H)₂F(FHF) (235.1(8) pm),²³¹ W(PMe₃)₄(H)₂F(FHF) (238.9(6) pm),²³² and [(η⁵-C₅Me₅)NbF₄(HF)AsF₃]₂ (268.6 pm),²²⁷ indicating that the latter four structures can better be described as an HF molecule hydrogen-bonded to the metal-F group. The IO_2F_2 and HF_2 anions form strong contacts (280.6(2) pm; sum of van der Waals radii: 350 to 346 pm)^{212,213} with F(3) of two symmetry related bifluoride ions, which coordinate to I(1) and avoid the lone pair position, resulting in a pseudo-octahedral coordination sphere around iodine. Such an extension of the coordination sphere of iodine to a pseudo-octahedron has also been found in $[K][IO_2F_2]^{241}$ where two oxygen atoms from two adjacent IO_2F_2 anions form contacts with the iodine (287.6(8), 288.7(12) pm), which are, however, significantly weaker than the I--F contacts in the $[N(CH_3)_4]_2[IO_2F_2][HF_2]$. Such a pseudo-octahedral coordination environment for the Xe^{VI} atom has also been found in the crystal structure of XeO_2F_2 . 162 ## 10.2.5. Raman Spectroscopic Characterization of [N(CH₃)₄]₂[IO₂F₂][HF₂] A Raman spectrum of the single crystal of $[N(CH_3)_4]_2[IO_2F_2][HF_2]$ used for X-ray diffraction (vide supra) was recorded at room temperature (Figure 10.5). The frequencies and their assignments are listed in Table 10.5. The assignments for the Raman bands of IO_2F_2 are based on those given for $KIO_2F_2^{244}$ and those of isoelectronic $XeO_2F_2^{-163,164}$ The vibrations of the IO_2F_2 anion span the irreducible representations $\Gamma = 4A_1 + A_2 + 2B_1 + 2B_2$ under C_{2v} point symmetry (IO_2 in the xz-plane). While all modes are Raman active, $4A_1 + 2B_1 + 2B_2$ are infrared active. The band at 838 cm⁻¹ corresponds to Figure 10.5 Raman spectrum of a single crystal of [N(CH₃)₄]₂[1O₂F₂][HF₂] recorded in a glass Lindemann capillary at room temperature using the 514.5-nm excitation. Table 10.5 Vibrational Frequencies and Assignments for [N(CH₃)₄]₂[IO₂F₂][HF₂]. | Frequency* [cm-1] | Assignment | | | |-------------------|-----------------------------------|--|---------------------------------------| | | $N(CH_3)_4^+(T_d)$ | $IO_2F_2^-(C_2)$ | HF ₂ · (D _{zzk}) | | 3041 (12)sh | v _{CH3} and binary bands | | | | 3034 (14) | | | | | 3020 (19) | | | | | 2968 (16) | | | | | 2933 (13) | | | | | 2897 (7) | | | | | 2837 (11) | | | | | 1479 (24) | $v_6(E), v_2(A_1)$ | | | | 1473 (10)sh | | | | | 1420 (1) | $v_{16}(T_2)$ | | | | 1293 (1) | $v_{17}(T_2)$ | | | | 1189 (2) | $v_7(T_2)$ | | | | 960 (4) | $v_{18}(T_2)$ | | | | 955 (6) | | | | | 950 (2)sh | | | | | 847 (1) | | $v_6(B_1), v_{as}(IO_2)$ | | | 338 (10)sh | | | | | 332 (100) | | $v_1(A_1), v_s(IO_2)$ | | | 325 (9) | | V ₁ (121), V ₃ (102) | | | 311 (<0.5) | | | | | 785 (4) | | | | | 775 (1) | | | | | 758 (16) | $v_3(A_1)$ | | | | 741 (1)sh | J. 17 | | | | 81 (<0.5) | | | $v_{l}(\Sigma_{g}^{+}), v_{s}$ | | 87 (<0.5) | | $v_8(B_2), v_{as}(IF_2)$ | | | 58 (1) | $v_{19}(T_2)$ | | | | 30 (3) | | $v_2(A_1)$, $v_s(IF_2)$ | | Table 10.5 continued ... | Frequency ^a [cm ⁻¹] | Assignment | | | |--|--------------------|---|-----------------| | | $N(CH_3)_4^+(T_d)$ |
$IO_2F_2^-(C_{\lambda})$ | HF ₂ | | 413 (<0.5) | | | | | 378 (2) | v ₈ (E) | | | | 349 (10)
344 (1)sh
321 (1) | | $v_3(A_1)$, $\delta_s(IO_2)$
$v_7(B_1)$, $\delta(IF_2)$ | | | 308 (1)
296 (1)
288 (5)
197 (1) | | $v_9(B_2)$, $\delta_{rock}(IO_2)$
$v_4(A_1)$, $\delta(IF_2)$ | | ^a Spectrum recorded on a single crystal in a glass Lindemann capillary at room temperature using the 514.5-nm excitation. Values in parentheses denote relative Raman intensities; and sh a shoulder. the symmetric I-O stretch $v_1(A_1)$, which is shifted to slightly higher frequency with respect to $v_s(IO_2)$ in [K][IO₂F₂] (808 cm⁻¹).²⁴⁴ The symmetric and asymmetric IF₂ stretching modes were assigned to the bands at 430 and 487 cm⁻¹ based on their intensities. The ordering of $v_s(IF_2)$ and $v_{ss}(IF_2)$ modes is opposite to that for [K][IO₂F₂],²⁴⁴ but is in the same order as the $v_s(XeF_2)$ and $v_{ss}(XeF_2)$ modes in XeO_2F_2 .¹⁶⁴ The weak band at 581 cm⁻¹ can be assigned to the symmetric stretch of the bifluoride ion and is slightly lower in frequency than in [N(CH₃)₄][HF₂] (596 cm⁻¹),²²⁸ which is consistent with the strong I···F contacts in the crystal structure (see 10.2.4 X-ray Crystal Structure of [N(CH₃)₄]₂[IO₂F₂][HF₂]). ### 10.3. Conclusion The fluoride ion acceptor properties of cis-IO₂F₄ and trans-IO₂F₄ have been studied. Because of steric crowding in the intermediate derived from cis-IO₂F₄, only the trans-IO₂F₄ anion acts as a fluoride ion acceptor towards naked fluoride ion, while the addition of a fluoride ion to the cis-isomer is kinetically unfavourable. The novel IO₂F₅² anion that results from the addition of F to trans-IO₂F₄ has been prepared and is presently the only known main-group AO₂F₅^{2*} species. Based on Raman spectroscopy, the IO₂F₅^{2*} anion was found to have a pentagonal bipyramidal geometry, that is consistent with general preference of main-group fluorides and oxide fluorides for geometries based on a pentagonal bipyramid. A crystal structure of [N(CH₃)₄]₂[IO₂F₂][HF₂], a decomposition product in the preparation of [N(CH₃)₄]₂[IO₂F₅], provides a rare example of coordination of a bridging HF₂ ligand and more precise X-ray crystal structure for the IO₂F₂ anion. # CHAPTER 11 # XENON(II) OXIDE FLUORIDES # 11.1. Introduction Minkwitz and Nowicki^{1,245} reported that the protonated hypofluorous acid cation, H_2OF^+ results from the oxidative fluorination of H_2O by [XeF][MF₆] (M = As, Sb) in HF solvent at -60 °C according to eq. (11.1). The resulting pale red product was formulated $$[XeF][MF_6] + H_2O \xrightarrow{HF} \times Xe + [H_2OF][MF_6], M = As, Sb$$ (11.1) as [H₂OF][MF₆] and was characterized by infrared and ¹H and ¹⁹F NMR spectroscopy. Renewed interest in the preparative use of the protonated hypofluorous acid prompted the attempt to repeat the work of Minkwitz and Nowicki, but the observation that xenon is retained in HF solutions of XeF⁺ and H₂O as well as the failure to reproduce the reported NMR and vibrational spectra sparked a reinvestigation of the reaction between [XeF][AsF₆] and H₂O in HF solvent. Controlled hydrolysis of xenon fluorides is one possible preparative route to xenon oxide fluorides. Neutral xenon oxide fluorides with xenon in the +4 $(XeOF_2)^{147-150}$, +6 $(XeOF_4)^{156-160}$ $XeO_2F_2^{92,162-164}$), and +8 $(XeO_3F_2)^8$ $XeO_2F_4^{10}$) oxidation states are known and cationic xenon oxide fluorides have been prepared for xenon in the +6 oxidation state (XeOF₃⁺, ¹⁵¹⁻¹⁵⁵ XeO₂F⁺, ^{152,153,156,161} and Xe₂O₄F₃⁺ ^{156,161}). All the oxide fluorides of Xe(VI) and that of Xe(IV) have been prepared by hydrolysis of XeF₆ and XeF₄ in HF solvent. Prior to this work, no systematic study of the hydrolytic behaviour of a Xe(II) fluoride species had been reported and no examples of neutral or ionic xenon(II) oxide fluorides have been reported. # 11.2. Results and Discussion # 11.2.1. Reaction of [XeF][AsF₆] with H₂O in HF and BrF₅ Solvents and Multi-NMR Spectroscopic Characterization At -78 °C, [XeF][AsF₆] and H₂O slowly react in anhydrous HF to form XeF₂ and [H₃O][AsF₆] according to eq. (11.2). Xenon difluoride was identified at -75 °C by ¹⁹F and $$[XeF][AsF_6] + H_2O + HF \stackrel{HF}{=} XeF_2 + [H_3O][AsF_6]$$ (11.2) ¹²⁹Xe NMR spectroscopy (δ (¹²⁹Xe) = 1516.3 ppm, δ (¹⁹F) = -200.68 ppm, ¹J(¹²⁹Xe-¹⁹F) = 5670 Hz). In addition to the XeF₂ resonance and the HF solvent line (-193.66 ppm, Δv_{s_1} = 38 Hz), only a broad singlet at -68.5 ppm (Δv_{s_2} = 1560 Hz) corresponding to the AsF₆ anion was observed in the ¹⁹F NMR spectrum. The ¹⁷O NMR spectrum of a sample prepared from ¹⁷O-enriched H₂O (64.6% ¹⁶O, 21.9% ¹⁷O, and 42.7% ¹⁸O) showed a singlet at -0.47 ppm (Δv_{s_2} = 177 Hz) at -75 °C, which is assigned to H₃O⁺ and which presumably undergoes rapid proton exchange with HF and residual H_2O preventing the observation of ${}^1J({}^{17}O_{-}{}^{1}H)$ coupling.²⁴⁶ The reaction of XeF₂ with [H₃O][AsF₆] in HF solution successively yields three cationic xenon species according to eqs. (11.3) - (11.9). The reaction of XeF₂ with the $$[H_3O][AsF_6] + XeF_2 \xrightarrow{HF, -78 \, ^{\circ}C} > [H_2OXeF][AsF_6] + HF$$ (11.3) $$2[H_2OXeF][AsF_6]_{(HF)} \xrightarrow{HF_1 < -78 \text{ °C}} > [H_2OXeF]_2[F][AsF_6]_{(s)} + AsF_5$$ (11.4) strong protic acid H₃O⁺ yields the protonated fluorohypoxenous acid cation, H₂OXeF⁺, upon HF elimination according to (11.3) and is analogous to the reaction of XeF₂ with neutral and cationic, protic acids, such as HOTeF₅, ²⁴⁷ HSO₃F, ^{248,249} HClO₄, ^{248,249} HN(SO₂F)₂, ²⁵⁰ C₅F₅NH⁺, ²⁵¹ and CF₃C(OH)NH₂⁺ ²⁵² yielding neutral and cationic (adduct) species formulated as L-XeF⁺, where L is the deprotonated acid. The new species, [H₂OXeF][AsF₆], exhibits moderate solubility and precipitates from HF solution close to the freezing point of the solvent. Colorless to pale orange crystals of [H₂OXeF]₂[F][AsF₆] crystallize from HF solution between -78 °C and the freezing point of HF (-83 °C) (see 11.2.3.1. X-ray Crystal Structures, [H₂OXeF]₂[F][AsF₆]). The strong hydrogen-bonding interaction between the H₂OXeF⁺ cations and AsF₆ anions apparently results in dissociation of half of the AsF₆ anions into fluoride ions and AsF₅ upon crystallization/precipitation according to eq. (11.4). Failure to observe the H₂OXeF⁺ cation by NMR spectroscopy in HF solvent is presumably the result of rapid exchange between the fluorine environments of the H₂OXeF² cation and HF solvent. Free AsF₅ generated from reaction (11.4) reacts with dissolved XeF₂ to yield [XeF][AsF₆] (eq. (11.5)) which subsequently reacts with XeF₂ at low temperature to form the trigonal modification of [Xe₂F₃][AsF₆] (eq. (11.6)) which is soluble in HF solvent at $$XeF_2 + AsF_5 \xrightarrow{HF, -78 °C} > [XeF][AsF_6]$$ (11.5) $$[XeF][AsF_6] + XeF_2 \xrightarrow{HF, -78 \, ^{\circ}C} > [Xe_2F_3][AsF_6]$$ (11.6) -30 °C, and which crystallized from a very concentrated HF solution of [XeF][AsF₆] and H₂O (3:1 ratio; ca. 2.8 M with respect to XeF⁺) at ca. -30 °C (see 11.2.3.2. X-ray Crystal Structures, trigonal [Xe₂F₃][AsF₆]). When an excess of H₂O with respect to [XeF][AsF₆] is used (i.e., 2:1 and 4:1 H₂O:[XeF][AsF₆] molar ratios), the AsF₅ is consumed by formation of additional [H₃O][AsF₆] without formation of [Xe₂F₃][AsF₆]. However, insufficient mixing of the initial reaction mixture can result in [XeF][AsF₆] which reacts with XeF₂ according to eq. (11.6) even if an excess of H₂O is used. The reaction of an additional mole of XeF₂ with the protic acid, [H₂OXeF][AsF₆], presumably yields [FXe(OH)XeF][AsF₆] according to eq. (11.7). Elimination of HF according to eq. (11.8) gives rise to FXeOXe⁺ as an intermediate which subsequently reacts with XeF₂ to give the intense red [Xe₃OF₃][AsF₆] salt (eq. (11.9)) as the final $$[H_2OXeF][AsF_6] + XeF_2 \xrightarrow{HF, -78 °C} [FXe(OH)XeF][AsF_6] + HF$$ (11.7) $$[FXe(OH)XeF][AsF_6] \xrightarrow{HF, -78 \text{ °C}} > [FXeOXe][AsF_6] + HF$$ (11.8) $$[FXeOXe][AsF_6] + XeF_2 \xrightarrow{HF. -78 °C} [FXeOXeFXeF][AsF_6] + HF$$ (11.9) product in the reaction sequence for the XeF⁺/H₂O system. The [Xe₃OF₃][AsF₆] salt does not react further in HF solvent at -78 °C. However, the slow growth (several weeks) of intense red-magenta colored dendrimeric crystal clusters in the colorless HF solution above the red-orange precipitate at -78 °C suggests that equilibrium (11.10) is operative. $$[FXeOXe···FXeF][AsF_6]_{(s)} \rightleftharpoons FXeOXe^+_{(HF)} + AsF_6_{(HF)} + XeF_2_{(HF)}$$ (11.10) At H₂O concentrations of 0.26 M, [H₂OXeF][AsF₆] was formed within approximately one day, while [Xe₂F₃][AsF₆] was the major species in the solid precipitate after approximately two days. Upon standing for a further five days, [Xe₃OF₃][AsF₆] became the major species. Crystalline [Xe₃OF₃][AsF₆] has also been obtained by dissolution of a mixture of [XeF][AsF₆] and H₂O in HF at -30 °C (ca. 0.50 M with respect to XeF⁺), which had been maintained at -78 °C for ca. 48 h. Slow cooling of the clear colorless solution resulted in crystallization of red-orange needles between -46 and -54 °C which were shown to be [Xe₃OF₃][AsF₆] by a unit cell determination. The reaction rate is strongly dependent on the concentration, reaction temperature, and the degree of initial mixing. Without initial agitation, small amounts of [XeF][AsF₆] were detected in the Raman spectrum of the precipitate for at least a week. After thorough mixing at an initial concentration of 1.77 M H₂O, [H₂OXeF][AsF₆] and [Xe₂F₃][AsF₆] were formed after only 2 h with [XeF][AsF₆] being completely reacted, and significant amounts of [Xe₃OF₃][AsF₆] were present after 12 h. Small amounts of $[Xe_3OF_3][AsF_6]$ likely are the cause of the beige and flesh colorations of $[H_2OXeF]_2[F][AsF_6]$ and $[Xe_2F_3][AsF_6]$, respectively, because $[H_2OXeF]_2[F][AsF_6]$ has been identified by Raman spectroscopy as a colorless precipitate from HF solution and $[Xe_2F_3][AsF_6]$ has been obtained as
colorless single crystals below -30 °C. The reaction mixture (*ca.* 0.50 M with respect to XeF+) was found to be soluble and stable up to -30 °C, decomposing above -30 °C with gas evolution (Xe gas; $\delta(^{129}Xe)$ = -5308.3 ppm at -30 °C). The direct reaction of XeF₂ and $[H_3O][AsF_6]$ in HF yielded the same reaction products, $[H_2OXeF][AsF_6]$, $[Xe_2F_3][AsF_6]$, and $[Xe_3OF_3][AsF_6]$ according to eqs. (11.3) - (11.9). The products of the [XeF][AsF₆]/H₂O reaction are relatively insensitive to small deviations from 1:1 stoichiometry. The reaction of [XeF][AsF₆] with n moles of water H₂O (n = 2 and 4) initially yields XeF₂, [H₃O][AsF₆], and (n-1) moles of H₂O according to eq. (11.11). In subsequent reactions [H₂OXeF]₂[F][AsF₆] and [Xe₃OF₃][AsF₆] are formed. The reaction of H₂O with a three-fold molar excess of [XeF][AsF₆] (eq. (11.12)) yielded a white solid as the final product after ca. 7 months at -78 °C, which was identified by Raman spectroscopy and X-ray crystallography as the trigonal modification of [Xe₂F₃][AsF₆] (see 11.2.3.2. X-ray Crystal Structures, trigonal [Xe₂F₃][AsF₆]). The formation of [Xe₃OF₃][AsF₆] is prevented by the absence of XeF₂ in the reaction mixture, which is effectively removed by reaction with excess [XeF][AsF₆] (eq. (11.6)) and the precipitation of [Xe₂F₃][AsF₆]. In an attempt to characterize the H_2OXeF^+ , $HO(XeF)_2^+$, and $Xe_3OF_3^+$ cations by solution NMR spectroscopy and circumvent rapid chemical exchange with the solvent, XeF_2 was allowed to react with $[H_3O][AsF_6]$ in BrF_5 solvent at -55 °C and was monitored by ^{19}F NMR spectroscopy at that temperature. The initial ^{19}F NMR spectrum of a sample of XeF_2 and $[H_3O][AsF_6]$ in BrF_5 solvent consisted of several resonances corresponding to XeF_2 (-183.25 ppm; $^1J(^{129}Xe^{-19}F) = 5737$ Hz), AsF_6^- (-59.71 ppm), and BrF_5 (F_{ax} : 273.22 ppm; F_{eq} : 135.73 ppm; $^2J(^{19}F^{-19}F) = 76$ Hz) solvent. After several minutes at -55 °C, resonances corresponding to $Xe_2F_3^+$ (F_7^+ : -250.05 ppm, F_9^+ : -183.48 ppm; $^2J(^{19}F^{-19}F) = 299$ Hz, $^1J(^{129}Xe^{-19}F_7) = 6659$ Hz; ^{129}Xe satellites of F_9^- 0 overlapped with the resonances of XeF_2^- and HF), HF (-192.33 ppm; $^1J(^{19}F^{-1}H) = 519$ Hz) and BrO_2F (194.35 ppm, $\Delta v_{s_1} = 1950$ Hz) were also observed and increased with time relative to the $^{19}F^-$ 1 resonance for XeF_2^- . The formation of HF is consistent with eq. (11.13). In contrast to the analogous $$2XeF_2 + 2[H_3O][AsF_6] + BrF_5 \xrightarrow{BrF_5} > [Xe_2F_3][AsF_6] + BrO_2F + 6HF (11.13)$$ reaction in HF solvent, where excess HF shifts equilibrium (11.2) completely to the side of XeF₂ and H₃O⁺, XeF₂ and H₃O⁺ are partially converted to XeF⁺, H₂O, and HF in BrF₅ solvent. The interaction of XeF₂ and XeF⁺ subsequently yields the Xe₂F₃⁺ cation and H₂O reacts with BrF₅ solvent to form BrO₂F and HF. The ¹⁹F NMR signals for HF and Xe₂F₃⁺ become broader with time presumably because intermolecular exchange between HF and Xe₂F₃⁺ increases with increasing concentration. # 11.2.2. Raman Spectroscopy The Raman spectra of [H₂OXeF]₂[F][AsF₆], trigonal [Xe₂F₃][AsF₆], and [Xe₃OF₃][AsF₆] are shown in Figures 11.1, 11.2, and 11.3, respectively. The Raman frequencies and tentative assignments for [H₂OXeF]₂[F][AsF₆] and [Xe₃OF₃][AsF₆] are listed in Table 11.1. The frequencies and assignments for trigonal and monoclinic [Xe₂F₃][AsF₆] are given in Table 11.2. 11.2.2.1. [H₂OXeF]₂[F][AsF₆]. Assuming C_r symmetry for the H₂OXeF⁺ cation, a maximum of nine Raman and infrared active bands ($\Gamma = 6A' + 3A''$) is expected for the vibrational spectrum of the cation, and include the symmetric and asymmetric H₂O stretches which are expected above 3000 cm⁻¹. The Raman spectrum of solid [H₂OXeF]₂[F][AsF₆] consists of nine vibrational bands between 760 and 70 cm⁻¹ that are assigned to the H₂OXeF⁺ cation and is dominated by the intense Xe-F stretching band at 552 cm⁻¹. The Xe-O stretch is assigned to a band at 470 cm⁻¹ and only very weak, broad bands in the O-H stretching region (3292, 3160, and 3077 cm⁻¹) were observed in the Figure 11.1 Raman spectrum of 2XeF₂·[H₃O][AsF₆] recorded under frozen HF in FEP at -145 °C using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines. Figure 11.2 Raman spectra of (a) trigonal [Xe₂F₃][AsF₆] under liquid HF at -85 °C and (b) monoclinic [Xe₂F₃][AsF₆] at -150 °C recorded in FEP using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines. Figure 11.3 Raman spectrum of [Xe,OF,][AsF,] recorded under frozen HF in FEP at -155 °C using 1064-nm excitation. Asterisks (*) denote FEP sample tube lines. Table 11.1 Raman Frequencies and Their Assignments for [H₂OXeF]₂[F][AsF₆] (-145 °C) and [Xe₃OF₃][AsF₆] (-155 °C) | Frequencies [cm ⁻¹] ^a | Assignments | Frequencies [cm ⁻¹] ^a | Assignments | | |--|----------------------|--|--|--------------------| | [H ₂ OXeF] ₂ [F][AsF ₆] ^b | H ₂ OXeF* | [Xe ₃ OF ₃][AsF ₆] ^e | Xe ₃ OF ₃ * ⁴ | $AsF_6^-(C_A)$ | | 3292 (<0.5) | v(O-H) | 598 (37) sh | $v_m(F_1-Xe_1-F_2)$ | | | 3160 (<0.5) | | 595 (48) | 2 (- | | | 3077 (<0.5) | | 555 (70) | $v(Xe_3-F_3)$ | | | 561 (20) sh | | 539 (74) | $v_{x}(Xe_2-O-Xe_3)$ | | | 552 (100) | v(Xe-F) | 511 (25) | - | | | 544 (41) sh | | 480 (100) | $v_{i}(F_{1}-Xe_{1}-F_{2})$ | | | 470 (11) | v(Xe-O) | 429 (55) | $v_{i}(Xe_{i}-O-Xe_{i})$ | | | 216 (1) | | 419 (83) | | | | 204 (2) | | 349 (3) | δ modes | | | 188 (4) | | 258 (7) | | | | 142 <i>(7</i>) | δ(OXeF) | 252 (9) | | | | 92 (2) | | 244 (2) | | | | | | 221 (1) | | | | | | 212 (2) | | | | | | 205 (3) | | | | | | 190 (15) sh | | | | | | 185 (30) | $\delta(F_1-Xe_1-F_2)$ | | | | | 156 (34) | $\delta(O-Xe_3-F_3)$ | | | | | 139 (23) | | | | | | 123 (26) | | | | | | 100 (26) | | | | 710 (5) | | 715 (3),710 (4) | | v _s (E) | | 582 (23) | | 681 (42) | | $V_1(A_1)$ | | 576 (11), 670 (4)sh | | | | $v_2(A_1)$ | | 594 (7), 587 (10) | | 584 (9), 576 (9), 573 (9) | | $v_s(B_i)$ | | 155 (11) | | | | $V_4(A_1)$ | | | | 419 (83), 401 (22) | | $V_3(A_1)$ | | 70 (10) | | 393 (23) | | v ₉ (E) | | 67 (11) | | | | | | 63 (5) | | 370 (10), 366 (10) | | $v_7(B_2)$ | | 41 (1) | | | | $v_{11}(E)$ | ^a Spectra recorded on solid under HF solvent in a $\frac{1}{4}$ -in. FEP sample tube using the 514.5-nm excitation. Values in paratheses denote relative Raman intensities. Abbreviations denote the following: shoulder (sh), broad (br). ^b Bands arising from FEP sample tube were observed at 293 (5), 380 (5), 386 (4), 578 (8) overlap, 733 (17), and 751 (2) cm⁻¹. ^c Bands arising from FEP sample tube were observed at 293 (2), 381 (5), 386 (6), 733 (11), and 751 (1) cm⁻¹. ^d The number of the atoms is the following: F_1 -Xe₁- F_2 ---Xe₂-O-Xe₃- F_3 . Table 11.2 Raman Frequencies and Their Assignments for Monoclinic and Trigonal [Xe₂F₃][AsF₆] | Frequencies [cm ⁻¹] ^a | | [cm ⁻¹] ^a | Assignments | | |--|-------------|----------------------------------|--|----------------------------------| | mono. [Xe ₂ F ₃][AsF ₆] | | trig. [Xe,F,][AsF6] | $Xe_2F_3^*(C_3)$ | $AsF_{\bullet}(O_{\bullet})$ | | RT | -150 °C* | -82 oCre | | | | 598 (95) | 604 (60) | 596 (86) | $v_i(A_i), v_i(F_i-Xe)$ | - | | | 600 (73) | 589 (100) | | | | 588 (100) | 588 (100) | 578 (55) | $v_6(B_1), v_m(F_t-Xe)$ | | | 417 (<1) | 418 (1) | | $v_7(B_1), v_{as}(F_b - Xe)$ | | | 401 (<1) | 402 (<0.5) | | ·/(-//, -8(-) | | | | 399 (1) | | | | | 255 (5) | 264 (6) | 275 (7) | $v_2(A_1)$, $v_1(F_1-X_2)$ +some | - hend | | | 257 (4) sh | - () | We also see and some | · ocia | | 163 (37) | 169 (11) | 164 (18) | $v_0(B_2)$, $\delta(F_1-Xe-F_0 o.p.)$ | | | | 165 (8) | () | - y(=)/ - (- - 10 - 1 0.p.) | | | | 160 (8) | | | | | | 155 (2) sh | | | | | | 726 (1) | 720 (1) | | v ₃ (T ₁ , | | | 706 (1) | • • | | - 3(- III) | | | 700 (1) | 695 (1) | | | | 78 (20) | 682 (17) | 681 (25) | | $v_i(A_{ig})$ | | 67 (4) | | | | 1414 | | 80 sh | 583 (20) | | | $v_2(E_p)$ | | | 582 (21) | | | - | | | 577 (22) | | | | | | 575 (12) sh | | | | | | 571 (12) | | | | | | 370 (4) | | | $v_s(T_{2g})$ | | 67 (7) | 369 (4) | 368 (5) | | J- 45' | | | 366 (2) sh | 365 sh | | | ^a Values in parentheses denote relative Raman intensities. ^b The Raman spectrum has been recorded under HF solvent. ^c Spectrum recorded on microcrystalline solid in a ½-in. FEP sample tube using the 514.5-nm excitation. Bands arising from FEP sample tube were observed at 204 (<0.5), 293 (2), 381 (1), 386 (1), 733 (3), and 750 (1) cm⁻¹. ^d Spectrum recorded on solid under HF solvent in a ½-in. FEP sample tube using the 514.5-nm excitation. Bands arising from FEP sample tube were observed at 293 (7), 380 (5), 386 (5), 574 sh, 733 (19), and 751 (2) cm⁻¹. ^c Abbreviation denote: out-of-plane (o.p.). Raman spectrum. The vibrational bands corresponding to the AsF₆ anion indicate severe distortion from O_h to C_h or lower symmetry arising from a strong fluorine bridge interaction between the cation and the anion. The distortion is similar to that found in the Raman spectra of [KrF][AsF₆] and [XeF][AsF₆]²³⁸ and is verified by the crystal structure of [H₂OXeF]₂[F][AsF₆] (see 11.2.3.1. X-ray Crystal Structures, [H₂OXeF]₂[F][AsF₆]). Consequently, the anion bands were assigned under C_h point symmetry. Oxygen isotope enrichment of H₂O (64.6% ¹⁶O, 21.9% ¹⁷O, and 42.7% ¹⁸O) failed to show isotopic shifts on any of the cation bands below 600 cm⁻¹ presumably because their line widths (10 to 18 cm⁻¹) prevented resolution and no significant differences in their line widths were discernable when compared to those of natural abundance [H₂OXeF]₂[F][AsF₆]. The Xe-F stretching frequency at 552 cm⁻¹ lies between the
symmetric stretch of XeF₂ (497 cm⁻¹)²⁵³ and that of XeF⁺ ([XeF][AsF₆], 609 cm⁻¹),¹⁷⁴ *i.e.*, between that for a three-center four-electron bond and that of a two-center two-electron bond, respectively, and is similar to that in the cationic LXeF⁺ adducts, [s-C₃F₃N₂NXeF][AsF₆] (553, 544 cm⁻¹),²⁵⁴ [FXeFBrOF₂][AsF₆] (561, 550, 546 cm⁻¹),²⁵⁵ [(CF₃)₂S=OXeF][AsF₆] (552 cm⁻¹),²⁵⁶ CF₃C(OXeF)NH₂⁺ (543, 530 cm⁻¹)²⁵² and [F₃SNXeF][AsF₆] (554 cm⁻¹)²⁵². The Xe-O stretching frequency at 470 cm⁻¹ is significantly higher in frequency than those of neutral FXeL species containing Xe-O linkages, *i.e.*, L = OTeF₅ (457 cm⁻¹),²⁵⁷ OIOF₄ (438 cm⁻¹),²⁵⁸ and OSO₂F (434 cm⁻¹),¹⁷⁴ and is consistent with a less polar xenon-ligand bond. The Xe-O stretches in the previously reported FXeL⁺ cations, CF₃C(OXeF)NH₂⁺ (508, 502 cm⁻¹),²⁵² (CF₃)₂SOXeF⁺ (494 cm⁻¹),²⁵⁶ also appear at higher frequencies and are somewhat higher than that of H₂OXeF⁺. The lower Xe-O stretching frequency in [H₂OXeF]₂[F][AsF₆] is likely a result of strong hydrogen-bonding between the H₂OXeF⁺ cations and the F anion, as found in the crystal structure of [H₂OXeF]₂[F][AsF₆], which lowers the effective charge of the cation rendering the Xe-O bond more polar than in the isolated cation. The Raman band at 142 cm⁻¹ is tentatively assigned to the δ(F-Xe-O) mode and is similar to that assigned to δ(FXeO) in CF₃(OXeF)NH₂⁺ (141 cm⁻¹).²⁵² The δ(FXeF) modes have been found at somewhat higher frequencies in Xe₂F₃⁺ (163 cm⁻¹),¹⁷⁴ XeF₂...MoOF₄ (152 cm⁻¹),²⁵⁹ and XeF₂...WOF₄ (153 cm⁻¹)²⁵⁹ and at significantly higher frequency (213 cm⁻¹) in XeF₂.²⁵³ 11.2.2.2. Trigonal [Xe₂F₃][AsF₆]. The Raman spectrum of trigonal [Xe₂F₃][AsF₆] resembles that of the monoclinic modification. However, differences in the frequencies and intensities indicate the presence of two distinct phases, which has been confirmed by X-ray crystallography (see 11.2.3.2. X-Ray Crystal Structures, trigonal [Xe₂F₃][AsF₆]). The exact conditions for the phase transition from monoclinic to trigonal [Xe₂F₃][AsF₆] are not, however, well understood, with HF solvent somehow assisting the phase transition. Suspending monoclinic [Xe₂F₃][AsF₆] in HF solvent at -78 °C resulted in a white precipitate with a Raman spectum characteristic of trigonal [Xe₂F₃][AsF₆]. The assignment of the Xe₂F₃⁺ cation modes in Table 11.2 are based on recent density functional theory calculations.²⁶⁰ The symmetric and asymmetric Xe-F_t stretching bands of the trigonal [Xe₂F₃][AsF₆] (596/589 and 578 cm⁻¹) appear at lower frequencies than those of the monoclinic modification (604/600 and 588 cm⁻¹). The symmetric Xe-F_b stretching mode is shifted in the opposite direction, from 264 cm⁻¹ in the monoclinic phase to 275 cm⁻¹ in the trigonal phase. The higher symmetric Xe···F_b stretching frequency of the trigonal modification indicates a more covalent Xe···F_b···Xe bridge interaction in the $Xe_2F_3^+$ cation with a smaller Xe···F_b···Xe bridge angle that is closer to the expected for an AX_2E_2 VSEPR geometry. A more covalent Xe···F_b bond weakens the Xe-F_t bond which, in turn, leads to the observed low-frequency shift of the Xe-F_t stretching modes. No signals associated with an asymmetric Xe···F_b stretch mode were observed in the Raman spectrum of the trigonal $[Xe_2F_3][AsF_6]$ under HF solvent. 11.2.2.3. [Xe₃OF₃][AsF₆]. The Raman spectrum of [Xe₃OF₃][AsF₆] is complex. Assuming C_r , symmetry for the free Xe₃OF₃* cation, a maximum of 15 Raman and infrared active bands ($\Gamma = 11A' + 4A''$) is expected for the cation. Eleven Raman bands associated with the distorted AsF₆* anion were observed and reflect the tetragonal anion distortion from the ideal O_6 point symmetry. The anion bands were assigned under C_{6r} point symmetry based on previous assignments. Eight cation bands were observed in the Xe-F and Xe-O stretching regions. The strongly coupled Xe-F stretches for the XeF₂ moiety in FXeOXe...FXeF* are expected to occur at frequencies similar to the symmetric (497 cm⁻¹) and asymmetric (555 cm⁻¹) stretches in XeF₂.²⁵³ The strongest Raman band at 480 cm⁻¹ is tentatively assigned to the symmetric stretch of the XeF₂ moiety, while the weaker band at 595 cm⁻¹ is assigned to the asymmetric XeF₂ stretch, which is Raman inactive in free, centrosymmetric XeF₂. The symmetric and asymmetric stretches of the strongly coupled Xe-O-Xe group are assigned to the 429 and 539 cm⁻¹ bands, respectively, and are in the range of Xe-O stretches in other cationic xenon(II) species (CF₃C(OXeF)NH₂*, 508, 502 cm⁻¹,²⁵² (CF₃)₂SOXeF⁺, 494 cm⁻¹).²⁵⁶ The band at 555 cm⁻¹ is tentatively assigned to the terminal Xe-F stretch of the FXeOXe moiety and is very similar to the frequency of the Xe-F stretch found for H₂OXeF⁺. The band associated with the Xe-F stretch is expected to occur at significantly lower frequency and could not be unambiguously assigned. The intense bending modes at 185 and 156 cm⁻¹ are assigned to the δ (FXeF) and δ (FXeO) modes, respectively. The contact with FXeOXe⁺ likely lowers the frequency of the δ (FXeF) mode from 213 cm⁻¹ in XeF₂ ²⁵³ to 185 cm⁻¹, while the δ (FXeO) mode appears at somewhat higher frequency than that in H₂OXeF⁺ reflecting the stronger Xe-O bond in the FXeOXe⁺ moiety. # 11.2.3. X-ray Crystal Structures Details of the data collection parameters and other crystallographic information for $[H_2OXeF]_2[F][AsF_6]$, trigonal $[Xe_2F_3][AsF_6]$, and $[Xe_3OF_3][AsF_6]$ are given in Table 11.3. Important bond lengths, angles, and contacts for $[H_2OXeF]_2[F][AsF_6]$, trigonal $[Xe_2F_3][AsF_6]$, and $[Xe_3OF_3][AsF_6]$ are listed in Table 11.4. 11.2.3.1. [H₂OXeF]₂[F][AsF₆]. The compound, [H₂OXeF]₂[F][AsF₆], crystallizes in the tetragonal space group I4/mcm and consists of two H₂OXeF⁺ cations and one F and one AsF₆ anion. The xenon of the H₂OXeF⁺ cation is located on a high-symmetry position (...2/m) resulting in a disorder between the fluorine and the oxygen ligands rendering it impossible to locate the two hydrogen atoms in the difference map. The AsF₆ anions are located on special positions (4/m) and pack in chains along the c-axis. The thermal Table 11.3. Summary of Crystal Data and Refinement Results for [H₂OXeF]₂[F][AsF₆]. Trigonal [Xe₂F₃][AsF₆] and [Xe₃OF₃][AsF₆] | | [H ₂ OXeF] ₂ [F][AsF ₆] | trigonal [Xe ₂ F ₃][AsF ₆] | [Xe;OF;][AsF ₆] | |--|--|---|--| | formula | H _e AsF ₉ O ₂ Xe ₂ | AsF _• Xe ₂ | As ₂ F ₁₈ O ₂ Xe ₆ | | space group | I4/mcm (No. 140) | P3,21 (No. 154) | P2/c (No. 14) | | a [pm] | 874.0(4) | 860.2(5) | 671.07(13) | | b [pm] | 874.0(4) | 860.2(5) | 911.5(2) | | c [pm] | 1307.8(9) | 1066.5(9) | 867.4(2) | | α [deg] | 90 | 90 | 90 | | β [deg] | 90 | 90 | 96.85(3) | | γ [deg] | 90 | 120 | 90 | | V [106 pm ³] | 999.1(9) | 683.4(8) | 526.8(2) | | Z [molecules/unit cell] | 4 | 3 | 2 | | mol. wt. [g mol ⁻¹] | 544.55 | 508.52 | 655.82 | | colour | pale orange | colouriess | red | | size [mm³] | 0.2×0.18×0.08 | 0.1×0.08×0.05 | 0.14×0.12×0.10 | | calcd density [g cm ⁻³] | 3.620 | 3.707 | 4.135 | | μ [mm ⁻¹] | 10.182 | 11.135 | 12.808 | | data/restraints/parameters | 327/0/26 | 800/12/58 | 1215/3/68 | | final agreement factors | $R^a = 0.0222$ | $R^a = 0.0385$ | $R^a = 0.0571$ | | | $R_w^b = 0.0633$ | $R_w^b = 0.1053$ | $R_w^b = 0.1388$ | | GOOF | 1.106 | 0.912 | 1.321 | | Extinction coefficient | 0.0032(3) | | 0.0061(9) | | $\Delta\delta_{\rm max}/\Delta\delta_{\rm min}$ [e 10 ⁻⁶ pm ⁻³] | 0.717/-0.811 | 1.446/-1.280 | 2.456/-1.942 | | | | | | ^{*} $R = \sum |F_o| - |F_c| / \sum |F_o|$. $^{^{}b}$ R_w = $\sum |(|F_o| - |F_c|)w^{3}|/\sum (|F_o|w)$ where w = $1/[\sigma^2(F) + (0.0344)^2 + 4.94]$. Table 11.4 Bond Lengths, Selected Bond Angles, and Contacts in $[H_2OXeF]_2[F][AsF_6]$, Trigonal $[Xe_2F_3][AsF_6]$, and $[Xe_3OF_3][AsF_6]$ | | Bond Lengths an | d Contacts [pm] | | |------------------|-----------------|-----------------|----------| | Xe(1)-F(1) | 198.6(4) | Xe(1)-O(1) | 198.6(4) | | As(1)-F(3) | 172.5(5) | As(1)-F(4) | 169.6(5) | | O(1)F(2) | 259.0(4) | | | | | Bond Ang | les [deg.] | | | O(1)-Xe(1)-F(1A) | 180 | F(3)-As(1)-F(4) | 90 | | F(3)-As(1)-F(3A) | 180 | | | | Bond Lengt | ths [pm] | | | | | |--------------------|--|---|--|--|--| | 209(2) | Xe(1)-F(1A) | 226(2) | | | | | 190.7(11) | As(1)-F(3) | 177(2) | | | | | 171(4) | As(1)-F(4) | 172(2) | | | | | 170(3) | As(1)-F(5) | 175(2) | | | | | 177(3) | As(1)-F(6) | 170(2) | | | | | Bond Angles [deg.] | | | | | | | 167.7(6) | F(4)-As(1)-F(6) | 91.6(6) | | | | | 139.8(8) | F(5)-As(1)-F(6) | 94.5(8) | | | | | 180.000(10) | F(7)-As(1)- $F(8)$ | 93(2) | | | | | 90.5(7) | F(7)-As(1)-F(9) | 89(2) | | | | | 88.4(6) | F(8)-As(1)-F(9) | 89.8(14) | | | | | 89.5(7) | | | | | | | | 209(2)
190.7(11)
171(4)
170(3)
177(3)
Bond Angle
167.7(6)
139.8(8)
180.000(10)
90.5(7)
88.4(6) | 190.7(11) As(1)-F(3) 171(4) As(1)-F(4) 170(3) As(1)-F(5) 177(3) As(1)-F(6) Bond Angles [deg.] 167.7(6) F(4)-As(1)-F(6) 139.8(8) F(5)-As(1)-F(6) 180.000(10) F(7)-As(1)-F(8) 90.5(7) F(7)-As(1)-F(9) 88.4(6) F(8)-As(1)-F(9) | | | | Table 11.4 continued... # [Xe₃OF₃][AsF₄] | | Bond Len | gths [pm] | | |-----------------|-----------|------------------|-----------| | Xe(1)-F(2) | 251.0(8) | Xe(1)-O(1) | 193.8(8) | | Xe(2)-F(1) | 198.4(8) | Xe(2)-O(1) | 210.0(8) | | Xe(2A)-F(1A) | 198.4(8) | Xe(2A)-F(2) | 210.0(8) | | As(1)-F(3) |
172.2(12) | As(1)-F(6) | 172.4(12) | | As(1)-F(4) | 176.4(11) | As(1)-F(7) | 176.2(11) | | As(1)-F(5) | 173.1(12) | As(1)-F(8) | 172.9(12) | | | Bond Ang | les [deg.] | | | F(1)-Xe(2)-O(1) | 177.6(4) | Xe(2)-O(1)-Xe(2) | 122.8(5) | | O(1)-Xe(1)-F(2) | 177.5(2) | F(3)-As-F(4) | 88.1(9) | | F(3)-As-F(5) | 90.2(10) | F(4)-As-F(5) | 92.0(9) | | F(6)-As-F(7) | 91.9(9) | F(6)-As-F(8) | 90.6(10) | | F(7)-As-F(8) | 90.9(9) | | | ellipsoids of F(4) in the AsF₆ anion are elongated in the *a,b*-plane indicating some residual rotational motion along the F(3)-As(1)-F(3A) axis which coincides with the *c*-axis. These anion chains fill square-based channels formed by a network of H₂OXeF⁺ cations hydrogen-bonded to F anions (see Fig. (11.4)). The fluoride ion F(2) exhibits short contacts to two oxygen atoms, O(1), in four crystallographically related H₂OXeF⁺ cations, (259.0(4) pm), which indicates the presence of hydrogen-bonding between H₂OXeF⁺ and F. The F(2)--O(1) distance agrees well with the F--O distances of 255.1(6) to 255.8(5) pm and 261.9 to 266.7 pm found for hydrogen-bonding in [H₃O][TiF₅]²⁶¹ and [H₃O][AsF₆],²⁶² respectively, and is significantly smaller than the sum of the van der Waals radii (275 to 300 pm)^{212,213} of oxygen and fluorine. The interatomic distances between the four symmetry-related F(4) atoms of AsF₆ anions to one F(2) atom (300.1(7) pm) are at the limit of the sum of the van der Waals radii (270 to 300 pm).^{212,213} The AsF₆ anion exhibits a tetragonal distortion from the octahedral symmetry with the As(1)-F(3) bond length (172.5(5) pm) longer than As(1)-F(4) (169.6(5) pm), which is paralleled by the Raman spectroscopic observation of the lowering of the anion symmetry from O_k to C_{4v} (see 11.2.2.1. Raman Spectroscopy, $[H_2OXeF]_2[F][AsF_6]$). The Xe(1)-F(1)/O(1) bond lengths (198.6(4) pm) are similar to that found in the crystal structure of XeF₂ (200(1) pm),²⁵³ but significantly shorter that those found for XeF₂ in XeF₂·IF₅ (201.8(9) pm),²⁶³ and in XeF₂·XeF₄ (201.0(6) pm).²⁶⁴ The shorter Xe-F/O bond lengths in H_2OXeF^+ are in agreement with its cationic nature and less polar XeF/O bonds. An alternative interpretation of the X-ray crystal data as $2XeF_2 \cdot [H_3O][AsF_6]$ was rejected primarily on the basis of the Raman spectroscopic characterization. In addition, Figure 11.4. Views of (a) the [H₂OXeF]₂[F][AsF₆] unit cell showing the packing along the c-axis and (b) the asymmetric unit of [H₂OXeF]₂[F][AsF₆] (thermal ellipsoids are at the 50 % probability level); the disordered hydrogens of the H₂OXeF⁺ cation are not shown. the short Xe-ligand bond length and the strong interaction between the xenon-containing species and the species located at position (m.mm), i.e., F or H_3O^* , is in better agreement with the presence of the H_2OXeF^+ cation. 11.2.3.2. Trigonal [Xe₂F₃][AsF₆]. The crystal structure of trigonal [Xe₂F₃][AsF₆], obtained by crystallization from HF between -30 and -40 °C, consists of isolated Xe₂F₃⁺ cations and AsF₆⁻ anions (Figure 11.5). The packing along the *b*-axis is very similar to that in monoclinic [Xe₂F₃][AsF₆]. Unlike monoclinic [Xe₂F₃][AsF₆], the Xe₂F₃⁺ cations and AsF₆⁻ anions of trigonal [Xe₂F₃][AsF₆] alternate along the *c*-axis with the bridging fluorine of the bent Xe₂F₃⁺ cations in three adjacent anion/cation columns pointing towards the center of a C_3 symmetric channel parallel to the *c*-axis (Figure 11.5). Contacts between the fluorine atoms of the anion and the xenon atoms of the Xe₂F₃⁺ cation range from 299(3) pm to the limit of the sum of their van der Waals radii (355 to 370 pm).^{212,213} The AsF₆ anion exhibits a disorder between mainly two orientations (70%/30%) with As-F bond lengths ranging from 169(3) to 178(2) pm. The $Xe_2F_3^+$ cation is also disordered. The xenon atoms are the pivot points for the two orientations where only the positions of the F_b atoms can be defined, allowing for an accurate determination of the $Xe...F_b...Xe$ angle. The terminal F atom positions, however, could not be split, giving rise to an underestimated F-Xe...F_b angle (Table 11.4). Unlike the bridge angle in monoclinic $[Xe_2F_3][AsF_b]$ (149.5(4)° and 148.6(4)°), the average bridge angle in the $Xe_2F_3^+$ cation of the trigonal modification is significantly more closed (139.8(8)°). The $Xe...F_b...Xe$ bridge in $Xe_2F_3^+$ is asymmetric with two different Xe(1)-F(1) bond lengths of 210(2) and 225(2) a Figure 11.5. Views of (a) the trigonal $[Xe_2F_3][AsF_6]$ unit cell showing the packing along the c-axis and (b) the $Xe_2F_3^+$ cation (thermal ellipsoids are at the 50 % probability level). pm and a positional disorder of the bridging fluorine. However, the average $Xe cdots F_1$ bridge bond length is similar to those in monoclinic $Xe_2F_3^+$. The terminal Xe(1)-F(1) bond lengths in $Xe_2F_3^+$ of the trigonal modification (191(1) pm) are the same, within 3σ , as those of the monoclinic phase. Similar to the monoclinic structure, terminal fluorines F(1) from two adjacent $Xe_2F_3^+$ cations approach the bridging fluorine of a third cation (281(2) pm) from opposite sides, bisecting the $Xe_{-}F_{b_{-}}$ -Xe angle and avoiding the fluorine lone pairs. The difference in conditions leading to the formation of the monoclinic and trigonal [Xe₂F₃][AsF₆] modifications is not well understood. Although the monoclinic modification has apparently been grown at somewhat higher temperatures than the trigonal phase, Bartlett *et al.* reported a trigonal high-temperature phase (>50 °C) of [Xe₂F₃][AsF₆] with essentially the same unit cell parameters found in this work, but no detailed structural information has since been reported.²⁶⁵ 11.2.3.2. [Xe₃OF₃][AsF₆]. The crystal structures of [Xe₃OF₃][AsF₆] consist of isolated Xe₃OF₃⁺ cations and AsF₆⁻ anions. The AsF₆⁻ anions are packed in chains along the *a*-axis and are located in channels which are formed by the Xe₃OF₃⁺ cations (Figure 11.6). The Xe₃OF₃⁺ cation contains two terminal fluorines, one bridging fluorine, and one bridging oxygen and is nearly planar with a mean deviation from the plane of 1.7 pm. The bond angles around the xenon atoms of 177.6(4) and 177.5(2)° deviate only slightly from the ideal 180° angle. The bridging oxygen and fluorine positions are disordered as a result of a crystallographic inversion centre that also causes the bridging Xe(1) position Figure 11.6. Views of (a) the [Xe₂OF₃][AsF₆] unit cell showing the packing along the a-axis and (b) the Xe₂OF₃⁺ cation (thermal ellipsoids are at the 50 % probability level). to be split between a long (Xe···F) and a short (Xe-O) bond. The two disorder models, i.e., (a) F-Xe-O-Xe··F-Xe··F-Xe··G-Xe-F-Xe···O-Xe-F, are not distinguishable based solely on diffraction data. Model (a), which can be rationalized as the addition of XeF₂ to an FXeOXe² fragment, was chosen, since model (b) would impose an unlikely charge separation having double positive and negative fragments, FXeFXe²⁺ and OXeF₃, respectively. The AsF₆ anions are disordered between two orientations and exhibit contacts as close as 308.6(19) and 316.7(13) pm to Xe(1) and Xe(2) of the Xe₃OF₃²⁺ cation, respectively, which are significantly smaller than the sum of the van-der-Waals radii (355 to 370 pm). The anion in both orientations was found to be tetragonally distorted from ideal O₄ symmetry with two symmetry-related As-F bonds (2x 176.4(11){176.2(11)} pm) slightly longer than the other four As-F bonds (2x 172.2(12){172.4(12)} and 2x 173.1(12){172.9(12)} pm), which is paralleled by the number of anion modes in the Raman spectrum (see 11.2.2.3. Raman Spectroscopy; [Xe₃OF₃][AsF₆]). The short contact between the FXeFXeO⁺ and the FXeF moieties of the $Xe_3OF_3^+$ cation (251.0(8) pm) is significantly larger than the Xe_2F_b bond in the $Xe_2F_3^+$ cation (214.2(7), 214.8(7), and 215.7(3) pm).²⁶⁰ The absence of a stronger bonding interaction between these two fragments supports the assumption of a labile contact and the presence of an equilibrium between the $Xe_3OF_3^+$ cation in the solid state and the FXeFXeO⁺ and FXeF fragments in solution (see Figure 11.6 and eq. (11.10)). The terminal Xe(2)-F(1) bond length of 198.4(8) pm is close to the Xe-F bond length in XeF_2 (vide supra) but is somewhat longer than the terminal Xe-F bonds in $Xe_2F_3^+$ (192.9(6) pm, 190.8(7), and 190.8(6) pm). The Xe(2a)-F(2a) bond length of 210.0(8) pm in the XeF₂ unit is elongated as the result of the strong Xe(1)...F(2a) contact. The O(1)-Xe(1) bond length (193.8(8) pm) represents one of the shortest and most covalent Xe(II)-O single bonds known and is similar to that found in HF-[HOTeF₄OXe][AsF₆] (196.2(9) pm).²⁶⁶ ### 11.3. Conclusion Contrary to an earlier report, no evidence was found for the formation of the H_2OF^+ cation^{1,245} when XeF⁺ is allowed to react with H_2O in HF. Instead of the previously proposed oxidative fluorination of H_2O by XeF⁺ (eq. (11.1)), XeF₂, [H₃O][AsF₆] and H_2OXeF^+ are formed. Condensation reactions between XeF₂ and strong protic hydroxy acids, H_3O^+ and H_2OXeF^+ , occur with HF elimination leading to Xe^{II}-O bond formation. The H_2OXeF^+ and Xe₃OF₃⁺ cations represent the first examples of Xe^{II} oxide fluoride species. As an intermediate product, the trigonal modification of [Xe₂F₃][AsF₆] was isolated, which contains Xe₂F₃⁺ cations with a significantly smaller Xe⁻⁻⁻F_b---Xe bridge angle than that in the monoclinic phase. # CHAPTER 12 # CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK # 12.1. Conclusions The chemistry of elements in the +8 oxidation state was significantly extended in the present work. The previously known Xe(VIII) species, XeO₄ and XeO₃F₂, were characterized by multi-NMR spectroscopy for the first time and four new Xe(VIII) species were synthesized and structurally characterized using NMR and Raman spectroscopy, XeO₄(CH₃CN), fac-XeO₃F₃, trans- and cis-XeO₄F₂². The study of the Lewis acid-base chemistry of the known neutral
osmium(VIII) species, OsO₄, OsO₃F₂, and cis-OsO₂F₄ was completed with the preparation and characterization of the OsO₄F, cis-OsO₄F₂², fac-OsO₃F₃, mer- and fac-OsO₃F₂(CH₃CN), OsO₃F⁺, Os₂O₆F₃⁺, OsO₂F₅⁻, and OsO₂F₄(CH₃CN). The *trans*-influence of the doubly bonded oxygen in the osmium(VIII) (d^0) species is well documented in the present work. The OsO₄F₂²⁻ and OsO₃F₃⁻ oxide fluoride anions were shown to exist exclusively as their *cis*- and *fac*-isomers, respectively. The facial trioxo-arrangement was also found in the crystal structures of [OsO₃F][HF][SbF₆] and [OsO₃F][HF]₂[AsF₆], in which osmium in the OsO₃F⁺ cation is coordinated to one HF molecule and one fluorine of an adjacient PnF₆⁻ (Pn = As, Sb) anion. In this context, the finding that OsO₃F₂(CH₃CN) exists as its *mer*- and *fac*-isomers in both, solution and solid state is surprising and indicates that the *trans*-influence of oxygen is not the only factor that determines the structure of a d⁰ transition metal oxide fluoride. In main-group oxide fluorides, the *trans*-influence of the doubly bonded oxygen is not as strong as in d⁰ transition metal species, resulting in a mixture of *trans*- and *cis*-XeO₄F₂². However, only the *fac*-XeO₃F₃ isomer was observed in solution. The coordination number seven was attained in the OsO_2F_5 and $IO_2F_5^{2-}$ anions, which are the only main-group and transition metal examples of the AO_2F_5 type species. The $IO_2F_5^{2-}$ anion has a pentagonal bipyramidal geometry with a *trans*-dioxo arrangement and was obtained by the reaction of *trans*- $IO_2F_4^-$ with F, while the transition metal analogue, $OsO_2F_5^-$, retains the *cis*-dioxo arrangement of its precursor, *cis*- OsO_2F_4 , and exhibits a monocapped trigonal prismatic geometry, which is a consequence of the *trans*-influence of the oxygen ligands. The *cis*- $IO_2F_4^-$ anion does not react with fluoride ions showing the reluctance of I(VII) to form heptacoordinate compounds containing a *cis*-dioxo arrangement. The reduction of the $[N(CH_3)_4]_2[IO_2F_5]/[N(CH_3)_4][cis-IO_2F_4]$ mixture in CH_3CN solvent yielded the $IO_2F_2^-$ anion and may provide a means of a controlled fluorination of organic molecules. The extension of the oxide fluoride chemistry to xenon in the +2 oxidation state is a significant contribution in noble-gas chemistry, especially since the hydrolysis of XeF₂ leading to its decomposition has been known for many years, but not well understood. The present work has also served to correct two erroneous reports in the literature, which have now found their way into textbooks. Previous claims for the synthesis of cis- OsO₄F₂²⁻ were found to be erroneous and the species reported was found to be identical with the OsO₄F⁻ anion synthesized and characterized in the course of this work. Secondly, a report of the preparation of the H₂OF⁺ cation by the reaction of XeF⁺ and H₂O was proven to be wrong, instead, the novel Xe₃OF₃⁺ and H₂OXeF⁺ cations have been prepared and characterized. The latter cation is the protonated form of the presently unknown fluorohypoxenoneous acid, HOXeF. # 12.2. Directions for Future Work Vibrational frequencies for the XeO₄F₂², OsO₃F⁴, OsO₂F₅, and IO₂F₅ species should be calculated at the DFT level of theory to aid in making complete and unambiguous assignments of their vibrational spectra. Such a theoretical treatment has already been successfully performed on the OsO₄F, OsO₄F₂² and OsO₃F₃ anions. The generation of higher concentrations of XeO_3F_2 may be achieved by reacting XeO_4 and XeF_6 (eq. (5.1)) in the absence of a solvent, followed by dissolving and stabilizing XeO_3F_2 in the appropriate solvent medium. The dissolution of XeO_3F_2 in CH_3CN is likely to yield an XeO_3F_2 (CH_3CN) adduct according to eq. (12.1). As found for $$XeO_3F_2 + CH_3CN \xrightarrow{CH_3CN} \rightarrow XeO_3F_2(CH_3CN)$$ (12.1) OsO₃F₂(CH₃CN), the XeO₃F₂(CH₃CN) adduct is expected to exist as a mixture of its *fac*-and *mer*-isomers which can easily be identified by ¹⁹F, ¹²⁹Xe NMR spectroscopy. The reaction of XeO₃F₂ with CsF or [N(CH₃)₄][F] in CH₃CN will result in the formation of larger amounts of XeO₃F₃ (eq. (12.2)), which should also be characterized in the solid $$XeO_3F_2 + F - \frac{CH_3CN}{} > XeO_3F_3$$ (12.2) state in light of the possible coexistence of its fac- and mer-isomers. Crystal growth of $[N(CH_3)_4][XeO_3F_3]$ and $[N(CH_3)_4]_2[XeO_4F_2]$, which was found to be remarkably stable, should be attempted from CH_3CN solvent. The reaction between XeO_3F_2 with the strong Lewis acids, AsF_5 and SbF_5 , are expected to yield the XeO_3F^+ cation (eq. (12.3)), which $$XeO_3F_2 + AsF_5 \xrightarrow{HF} > [XeO_3F][AsF_6]$$ (12.3) is the main-group analogue to the OsO₃F⁺ cation that was studied in the present work. Attempts should also be made to obtain a crystal structure of the OsO₂F₅⁻ anion as its N(CH₃)₄⁺ and Cs⁺ salts from HF solvent at low temperature in order to confirm the anion geometry that was established in solution by NMR spectroscopy. A number of new, presently unknown species were observed in the ¹⁹F NMR spectra of [N(CH₃)₄][OsO₂F₅] in CH₃CN and HF solvents and of OsO₂F₄(CH₃CN) in SO₂ClF solvent. Their structure should be investigated further by NMR spectroscopy. The preparation of lower oxidation state oxide fluorides of osmium, *e.g.*, OsOF₅⁻, and their characterization by ¹⁹F NMR spectroscopy may lead to their recognition as reduction products of OsO₂F₅⁻ and $OsO_2F_4(CH_3CN)$. The reduction of IO_2F_4 to the IO_2F_2 anion is worth investigating further, since it possibly provides a means to a controlled fluorination of organic molecules. Attempts should be made to isolate and characterize FXeOXeF, the first neutral Xe(II) oxide fluoride, from the FXeFXe-FXeF⁺ cation by addition of a stoichiometric amount of fluoride ion, according to eq. (12.4), where NOF and CsF are the fluoride ion $$[Xe_3OF_3][AsF_6] + F \xrightarrow{HF} > O(XeF)_2 + XeF_2 + AsF_6$$ (12.4) sources. Crystal growth of FXeOXeF should be attempted in the event the fluoride ion displacement reaction is successful. ## REFERENCES - (a) Holleman, A.F.; Wiberg, N.; Wiberg, E. Lehrbuch der Anorganischen Chemie: 101. Auflage; de Gruyter: Berlin, Germany, 1995; (b) Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd Edition; Butterworth-Heinemann: Oxford, 1997. - 2 Wartenberg, H.V. Annalen 1924, 440, 97. - 3 Gmelins Handbuch der Anorganischen Chemie, 8. Aufl., Ergänzungsband, Ruthenium; Verlag Chemie: Weinheim, Germany, 1970; pp. 88. - (a) Gmelins Handbuch der Anorganischen Chemie, Ergänzungswerk zur 8. Aufl., Edelgasverbindungen, Bd. 1; Verlag Chemie: Weinheim, Germany, 1970; (b) Holloway, J.H.; Hope, E.G. Adv. Inorg. Chem. 1999, 46, 51; (c) Schrobilgen, G.J.; Whalen, J.M. In Kirk-Othmer Encyclopaedia of Chemical Technology, 4th ed.; Wiley and Sons, Inc.: New York, 1994; Chapter 13, pp. 38; (d) Selig, H.: Holloway, J.H. Top. Curr. Chem. 1984, 124, 33; (e) Bartlett, N.; Sladky, F.O. In Comprehensive Inorganic Chemistry; Trotman-Dickenson, A.F., Ed.; Pergamon: Oxford, 1973; pp. 213; (f) Malm, J.G.; Appelman, E.H. At. Energy Rev. 1969, 7, 3. - Selig, H.; Claassen, H.H.; Chernick, C.L.; Malm, J.G.; Huston, J.L. Science 1964, 143, 1322. - 6 Christe, K.O.; Dixon, D.A.; Mack, H.G.; Oberhammer, H.; Pagelot, A.; Sanders, J.C.P.; Schrobilgen, G.J. J. Am. Chem. Soc. 1993, 115, 11279. - 7 Bougon, R.; Buu, B.; Seppelt, K. Chem. Ber. 1993, 126, 1331. - 8 Claassen, H.H.; Huston, J.L. J. Chem. Phys. 1971, 55, 1505. - 9 Huston, J.L. Inorg. Chem. 1982, 21, 685. - 10 Huston, J.L. J. Am. Chem. Soc. 1971, 93, 5255. - 11 Chernick, C.L.; Malm, J.G. Inorg. Synth. 1966, 8, 259. - 12 Burns, R.C.; O'Donnell, T.A. J. Inorg. Nucl. Chem. 1980, 42, 1613. - 13 Glemser, O.; Roesky, H.W.; Hellberg, K.-H.; Werther, H.-U. *Chem. Ber.* **1966**, *99*, 2652. - (a) Slivnik, J.; Volavšek, B.; Marsel, J.; Vrščaj, V.; Šmalc, A.; Frlec, B.; Zemljič, Z. In Noble Gas Compounds; Hyman, H.H., Ed.; The University of Chicago Press, Chicago: 1963; pp 64; (b) Slivnik, J.; Volavšek, B.; Marsel, J. Vrščaj, V.; Šmalc, A.; Frlec, B.; Zemljič, Z. Croat. Chem. Acta 1963, 35, 81. - 15 Ruff, O.; Tschirch, F.W. Ber. 1913, 46, 929. - 16 Weinstock, B.; Weaver, E.E.; Knop, E.P. Inorg. Chem. 1966, 5, 2189. - 17 Weinstock, B.; Malm, J.G. J. Am. Chem. Soc. 1958, 80, 4466. - (a) Vossel, W. Ann. Phys. (Leipzig) Ser. 4 1916, 49, 229; (b) Antropoff, A.v. Z. Angew. Chem. 1924, 37, 217; (c) Pauling, L. J. Am. Chem. Soc. 1933, 55, 1895. - (a) Antropoff, A.v.; Weil, K.; Frauenhof, H. Naturwissenschaften 1932, 20, 688; (b) Yost, D.M.; Kaye, A.L. J. Am. Chem. Soc. 1933, 55, 3891. - 20 Bartell, N. Proc. Chem. Soc. 1962, 218. - 21 Hoppe, R.; Dähne, W.; Mattauch, H.; Rödder, K. Angew. Chem. 1962, 11, 599. - 22 Hamilton, W.C.; Ibers, J.A.; Mackenzie, D.R. Science 1963, 141, 532. - Peterson, J.L.; Claassen, H.H.; Appelman, E.H. Inorg. Chem. 1970, 9, 619. - Shustov, L.D.; Tolmacheva, N.S.; Nabiev, Sh.Sh.; Il'in, E.K.; Klimov, V.D.; Ushakov, V.P. Russ. J. Inorg. Chem. 1989, 34, 946; Zh. Neorg. Khim. 1989, 34, 1673. - 25 Marcus, Y.; Cohen, D. Inorg. Chem. 1966, 5, 1740. - Isupov, V.K.; Oleinik, A.V.; Aleinikov, N.N. Russ. J. Inorg. Chem. 1989, 34, 1183; Zh. Neorg. Khim. 1989, 34, 2080. - 27 Jørgensen, C.K.; Berthou, H. Chem. Phys. Lett. 1975, 36, 432. - Waard, H.D.; Bukshpan, S.; Schrobilgen, G.J.; Holloway, J.H.; Martin, D. J. Chem. Phys. 1979, 70, 3247. - 29 Ibers, J.A.; Hamilton, W.C.; Mackenzie, D.R. Inorg. Chem. 1964, 3, 1412. - Zalkin, A.; Forrester, J.D.; Templeton, D.H.; Williamson, S.M.; Koch, C.W. - Science 1963, 142, 501. - Zalkin, A.; Forrester, J.D.; Templeton, D.H. Inorg. Chem. 1964, 3, 1417. - 32 Zalkin, A.; Forrester, J.D.; Templeton, D.H.; Williamson, S.M.; Koch, C.W. J. Am. Chem. Soc. 1964, 86, 3569. - 33 Hauck, J. Z. Naturforsch. 1970, 25b, 226. - 34 Downey, G.D.; Claassen, H.H.; Appelman, E.H. Inorg. Chem. 1971, 10, 1817. - Schrobilgen, G.J; Holloway,
J.H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980. - 36 Appelman, E.H.; Malm, J.G. J. Am. Chem. Soc. 1964, 86, 2141. - 37 Kläning, U.K.; Appelman, E.H. Inorg. Chem. 1988, 27, 3760. - 38 Appelman, E.H.; Williamson, S.M. Inorg. Synth. 1968, 11, 205. - 39 Appelman, E.H.; Williamson, S.M. Inorg. Synth. 1968, 11, 210. - 40 Malm, J.G.; Appelman, E.H. Chem. Abstr. 1967, 66, 96989r. - 41 Foropoulos, Jr., J.; DesMarteau, D.D. Inorg. Chem. 1982, 21, 2503. - Gruen, D.M. In *Noble Gas Compounds*; Hyman, H.H., Ed.; Chicago University Press: Chicago, Ill., 1963; p. 174. - 43 Aleinikov, N.N.; Kashtanov, S.A.; Pomytkin, I.A.; Sipyagin, A.M. Russ. Chem. Bulletin 1995, 44, 180; Izv. Akad. Nauk. Ser. Khim. 1995, 44, 184. - 44 Huston, J.L.; Studier, M.H.; Sloth, E.N. Science 1964, 143, 1161. - Selig, H.; Claassen, Chernick, C.L.; Malm, J.G.; Huston, J.L. *Science* **1964**, *143*, 1322. - 46 Gunn, S.R. J. Am. Chem. Soc. 1965, 87, 2290. - 47 Gunderson, G.; Hedberg, K.; Huston, J.L. J. Chem. Phys. 1970, 52, 812. - 48 Huston, J.L.; Claassen, H.H. J. Chem. Phys. 1970, 52, 5646. - 49 Huston, J.L. Inorg. Nucl. Chem. Letters 1968, 4, 29. - Aoyama, S.; Watanabe, K. Nippon Kagaku Zasshi 1955, 76, 970; ref. (2) in Gmelin Handbuch der Anorganischen Chemie, 8th Ed., Supplement Vol. 1; Springer-Verlag: Berlin, 1980; p.82. - Handbook of Chemistry and Physics, 74th Ed.;1993-1994, p.6-69. - 52 Fritzmann, E. Z. Anorg. Chem. 1928, 172, 213. - Griffith, W.P.; Rossetti, R. J. Chem. Soc., Dalton Trans. 1972, 1449. - Cleare, M.J.; Hydes, P.C.; Griffith, W.P.; Wright, M.J. J. Chem. Soc., Dalton Trans. 1977, 941. - Weber, R.; Dehnicke, K.; Müller, U.; Fenske, D. Z. Anorg. Allg. Chem. 1984, 516, 214. - 56 Griffith, W.P.; Koh, T.Y.; White, A.J.P.; Williams, D.J. *Polyhedron* 1995, 14, 2019. - 57 Griffith, W.P.; Skapski, A.C.; Woode, K.A.; Wright, M.J. *Inorg. Chim. Acta* 1978, 31, L413. - 58 Svendsen, J.S.; Markó, I.; Jacobsen, E.N.; Rao, Ch.P.; Bott, S.; Sharpless, K.B. J. Org. Chem. 1989, 54, 2264. - 59 Corey, E.J.; Sepehar, S.; Azimioara, M.D.; Newbold, R.C.; Noe, M.C. J. Am. Chem. Soc. 1996, 118, 7851. - Nelson, D.W.; Gypser, A.; Ho, P.T.; Kolb, H.C.; Kondo, T.; Kwong, H.-L.; McGrath, D.V.; Rubin, A.E.; Norrby, P.-O.; Gable, K.P.; Sharpless, K.B. J. Am. Chem. Soc. 1997, 119, 1840. - Bailey, A.J.; Bhowon, M.G.; Griffith, W.P.; Shoir, A.G.F; White, A.J.P.; Williams, D.J. J. Chem. Soc., Dalton Trans. 1997, 3245. - 62 Nikol'skii, A.B.; D'yachenko, Yu.I. Russ. J. Inorg. Chem. 1974, 19, 1031; Zh. Neorg. Khim. 1974, 19, 1889. - 63 Krauss, F.; Wilken, D. Z. Anorg. Allg. Chem. 1925, 145, 151. - 64 Griffith, W.P. J. Chem. Soc. 1964, 245. - 65 Griffith, W.P. J. Chem. Soc. A 1969, 211. - 66 Nevskii, N.N.; Ivanov-Emin, B.N.; Nevskaya, N.A. Dokl. Akad. Nauk. SSSR 1982, 266, 628; Chem. Abstr. 1983, 98, 25832j. - 67 Nevskii, N.N.; Ivanov-Emin, B.N.; Nevskaya, N.A.; Belov, N.V. Dokl. Akad. Nauk. SSSR 1982, 266, 1138; Chem. Abstr. 1983, 98, 63603t. - 68 Nevskii, N.N.; Porai-Koshits, M.A. Dokl. Akad. Nauk. SSSR 1983, 270, 1392; - Chem. Abstr. 1983, 99, 185330t. - 69 Nevskii, N.N.; Porai-Koshits, M.A. Dokl. Akad. Nauk. SSSR 1983, 272, 1123; Chem. Abstr. 1984, 100, 43385e. - Ivanov-Emin, B.N.; Nevskaya, N.A.; Zaitsev, B.E.; Nevskii, N.N.; Izmailovich, A.S. Russ. J. Inorg. Chem. 1984, 29, 710; Zh. Neorg. Khim. 1984, 29, 1241. - Jewiss, H.C.; Levason, W.; Tajik, M.; Webster, M.; Walker, N.P.C. J. Chem. Soc.. Dalton Trans. 1985, 199. - 72 Jones, P.J.; Levason, W.; Tajik, M. J. Fluorine Chem. 1984, 25, 195. - 73 Ivanov-Emin, B.N.; Nevskaya, N.A.; Medvedev, Yu.N.; Zaitsev, B.E.; Lin'ko, I.V. Russ. J. Inorg. Chem. 1986, 31, 1088; Zh. Neorg. Khim. 1986, 31, 1889. - Brewer, S.A.; Brisdon, A.K.; Holloway, J.H.; Hope, E.G.; Levason, W.; Ogden, J.S.; Saad, A.K. J. Fluorine Chem. 1993, 60, 13. - 75 Clifford, A.F.; Kobajashi, C.S. *Inorg. Synth.* **1960**, *6*, 204. - 76 Nugent, W.A.; Harlow, R.L.; McKinney, R.J. J. Am. Chem. Soc. 1979, 101, 7265. - 77 Wigley, D.E. Prog. Inorg. Chem. 1994, 42, 239. - 78 Griffith, W.P.; McManus, N.T.; Skapski, A.C.; White, A.D. *Inorg. Chim. Acta* 1985, 105, L11. - 79 Leung, W.-H.; Chim. J.L.C.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1996, 3153. - 80 Leung, W.-H.; Chim. J.L.C.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1997, 3277. - 81 Chong, A.O.; Oshima, K.; Sharpless, K.B. J. Am. Chem. Soc. 1977, 99, 3420. - B2 Danopoulos, A.A.; Wilkinson, G. Polyhedron 1990, 9, 1009. - Rankin, D.W.H.; Robertson, H.E.; Danopoulos, A.A.; Lyne, P.D.; Mingos, D.M.P.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1944, 1563. - 84 Sunder, W.A.; Stevie, F.A. J. Fluorine Chem. 1975, 6, 449. - Hepworth, M.A.; Robinson, P.L. Inorg. Nucl. Chem. 1957, 4, 24. - Beattie, I.R.; Blayden, H.E.; Crocombe, R.A.; Jones, P.J.; Ogden, J.S. J. Raman Spectrosc. 1976, 4, 313. - Nguyen-Nghi, M.M.; Bartlett, N. C.R. Seances Acad. Sci. 1969, 269, 756. - Jeżowska-Trzebiatowska, B.; Hanuza, J.; Bałuka, M. Acta Phys. Pol. 1970, A38, 563. - 89 Bougon, R. J. Fluorine Chem. 1991, 53, 419. - 90 Christe, K.O.; Bougon, R. J. Chem. Soc., Chem. Commun. 1992, 1056. - 91 Casteel, W.J., Jr.; Dixon, D.A.; Mercier, H.P.; Schrobilgen, G.J. *Inorg. Chem.* 1996, 35, 4310. - 92 Casteel, W.J., Jr.; Dixon, D.A.; LeBlond, N.; Mercier, H.P.A.; Schrobilgen, G.J. Inorg. Chem. 1998, 37, 340. - 93 LeBlond, N.; Dixon, D.A.; Schrobilgen, G.J. Inorg. Chem. 2000, 39, in press. - Casteel, W.J., Jr.; Dixon, D.A.; LeBlond, N.; Lock, P.E.; Mercier, H.P.A.; Schrobilgen, G.J. Inorg. Chem. 1999, 38, 2340. - 95 Engelbrecht, A.; Peterfy, P. Angew. Chem. 1969, 81, 753; Angew. Chem., Int. Ed. Engl. 1969, 8, 768. - 96 Smart, L.E. J. Chem. Soc., Chem. Commun. 1977, 519. - 97 (a) Bartell, L.S.; Clippard, F.B.; Jean Jacob, E. *Inorg. Chem.* 1976, 15, 3009; (b) Christe, K.O.; Curtis, E.C.; Dixon, D.A. J. Am. Chem. Soc. 1993, 115, 9655. - 98 (a) Schmeisser, M.; Lang, K. Angew. Chem. 1955, 67, 156; (b) Kraznai, J.J. Ph.D. Thesis, McMaster University, Hamilton, Canada, 1975. - 99 Christe, K.O.; Schack, C.J. Adv. Inorg. Chem. Radiochem. 1976, 18, 319. - (a) Appelman, E.H.; Studier, M.H. J. Am. Chem. Soc. 1969, 91, 4561; (b) Gillespie, R.J.; Spekkens, P.H. Isr. J. Chem. 1978, 17, 11. - (a) Gillespie, R.J.; Krasznai, J.P. Inorg. Chem. 1976, 15, 1251; (b) Syvret, T.R.G.Ph.D. Thesis, McMaster University, Hamilton, Canada, 1987. - 102 Engelbrecht, A.; Peterfy, P.; Schandara, E. Z. Anorg. Allg. Chem. 1971, 384, 202. - 103 Christe, K.O.; Wilson, R.D.; Schack, C.J. Inorg. Chem. 1981, 20, 2104. - 104 Adams, W.J.; Bradford Thompson, H.; Bartell, L.S. J. Chem. Phys. 1970, 53, 4040. - 105 Vogt, T.; Fitch, A.N.; Cockcroft, J.K. J. Solid State Chem. 1993, 103, 275. - 106 Christe, K.O.; Curtis, E.C.; Dixon, D.A. J. Am. Chem. Soc. 1993, 115, 1520. - Marx, R.; Mahjoub, A.R.; Seppelt, K.; Ibberson, R.M. J. Chem. Phys. 1994, 101, 585. - 108 Christe, K.O.; Sanders, J.C.P.; Schrobilgen, G.J.; Wilson, W. J. Chem. Soc., Chem. Commun. 1991, 13, 837. - 109 Mahjoub, A.-R.; Seppelt, K. J. Chem. Soc., Chem. Commun. 1991, 13, 840. - 110 Christe, K.O.; Dixon, D.A.; Mahjoub, A.R.; Mercier, H.P.A.; Sanders, J.C.P.; Seppelt, K.; Schrobilgen, G.J.; Wilson, W.W. J. Am. Chem. Soc. 1993, 115, 2696. - Mahjoub, A.-R.; Drews, T.; Seppelt, K. Angew. Chem. 1992, 104, 1047; Angew. Chem., Int. Ed. Engl. 1992, 31, 1036. - 112 Zhang, X.; Seppelt, K. Z. Anorg. Allg. Chem. 1997, 623, 491. - 113 Christe, K.O.; Dixon, D.A.; Sanders, J.C.P.; Schrobilgen, G.J.; Wilson, W. *Inorg. Chem.* 1993, 32, 4089. - (a) Shustorovich, E.M.; Porai-Koshits, M.A.; Buslaev, Yu.A. Coord. Chem. Rev. 1975, 17, 1; (b) Shustorovich, E.M.; Buslaev, Yu.A. Inorg. Chem. 1976, 15, 1142. - 115 Leimkühler, M.; Mattes, R. J. Solid State Chem. 1986, 65, 260. - 116 Lis, T. Acta Crystallogr. 1983, C39, 961. - 117 Abrahams, S.C.; Marsh, P.; Ravez, J. J. Chem. Phys. 1987, 87, 6012. - (a) Tötsch, W.; Sladky, F. J. Chem. Soc., Chem. Commun. 1980, 927; (b) Tötsch, W.; Sladky, F. Chem. Ber. 1982, 115, 1019. - Gillespie, R.J.; Bytheway, I.; Tang, T.-H.; Bader, R.F.W. *Inorg. Chem.* 1996, 35, 3954. - Gillespie, R.J.; Hargittai, I. *The VSEPR Model of Molecular Geometry*, Allyn and Bacon: Boston, MA, 1991. - 121 Averdunk, F.; Hoppe, R. J. Fluorine Chem. 1989, 42, 413. - 122 Stomberg, R. Acta Chem. Scand. 1983, A37, 453. - 123 Crosnier-Lopez, M.P.; Fourquet, J.L. J. Solid State Chem. 1993, 103, 131. - 124 Crosnier-Lopez, M.P.; Fourquet, J.L. J. Solid State Chem. 1993, 105, 92. - 125 Crosnier-Lopez, M.P.; Duroy, H.; Fourquet, J.L. J. Solid State Chem. 1993, 107, - 211. - 126 Hurst, H.J.; Taylor, J.C. Acta Crystallogr. 1970, B26, 417. - 127 Granzin, J.; Saalfeld, H. Z. Kristallogr. 1988, 183, 71. - 128 Hampson, G.C.; Pauling, L. J. Am. Chem. Soc. 1938, 60, 2702. - 129 Hoard, J.L. J. Am. Chem. Soc. 1939, 61, 1252. - 130 Brown, G.M.; Walker, L.A. Acta Crystallogr. 1966, 20, 220. - Torardi, C.C.; Brixner, L.H.; Blasse, G. J. Solid State Chem. 1987, 67, 21. - Agulyanskii, A.I.; Zavodnik, V.E.; Kuznetsov, V. Ya.; Sidorov, N.V.; Stefanovich, S.Yu.; Tsikaeva, D.V.; Kalinnikov, V.T. Inorg. Mater. 1991, 27, 880; Izv. Akad. Nauk. SSSR, Neorg. Mat. 1991, 27, 1055. - 133 Giese, S.; Seppelt, K. Angew. Chem. 1994, 106, 473; Angew. Chem., Int. Ed. Engl. 1994, 33, 461. - 134 Vogt, T.; Fitch, A.N.; Cockcroft, J.K. Science 1994, 263, 1265. - 135 Drake, G.W.; Dixon, D.A.; Sheehy, J.A.; Boatz, J.A.; Christe, K.O. J. Am. Chem. Soc. 1998, 120, 8392. - Zachariasen, W.H. Acta Crystallogr. 1954, 7, 783. - Brusset, P.H.; Gillier-Pandraud, H.; Nguyen-Quy-Dao Acta Crystallogr. 1969, B25, 67. - 138 Crosnier-Lopez, M.P.; Laligand, Y.; Fourquet, J.L. Eur. J. Solid State Inorg. Chem. 1993, 30, 155. - (a) Gavin, R.M., Jr.; Bartell, L.S. J. Chem. Phys. 1968, 48, 2460; (b) Bartell, L.S.; Gavin, R.M., Jr. J. Chem. Phys. 1968, 48, 2466. - Christe, K.O.; Wilson, W.W.; Drake, G.W.; Dixon, D.A.; Boatz, J.A.; Gnann, R.Z. J. Am. Chem. Soc. 1998, 120, 4711. - 141 Christe, K.O.; Curtis, E.C.; Dixon, D.A.; Mercier, H.P.A.; Sanders, J.C.P.; Schrobilgen, G.J. J. Am. Chem. Soc.
1991, 113, 3351. - Holloway, J.H.; Kauĉiĉ, V.; Martin-Rouvet, D.; Russell, D.R.; Schrobilgen, G.J.; Selig, H. *Inorg. Chem.* 1985, 24, 678. - 143 Christe, K.O.; Dixon, D.A.; Sanders, J.C.P.; Schrobilgen, G.J.; Tsai, S.S.; Wilson, - W.W. Inorg. Chem. 1995, 34, 1868. - (a) Kepert, D.L. Inorganic Stereochemistry; Springer-Verlag: Berlin, 1982; (b) Kepert, D.L. In Comprehensive Coordination Chemistry; Wilkinson, G., Ed.; Pergamon: Oxford, 1987; Vol.1, Chapter 2, pp. 31. - 145 Christe, K.O.; Dixon, D.A.; Sanders, J.C.P.; Schrobilgen, G.J.; Wilson, W.W. J. Am. Chem. Soc. 1993, 115, 9461. - 146 Lin, Z.; Bytheway, I. Inorg. Chem. 1996, 35, 594. - 147 Gillespie, R.J.; Schrobligen, G.J. J. Chem. Soc., Chem. Commun. 1977, 595. - 148 Gerken, M.; Schrobilgen, G.J. Coord. Chem. Rev. 2000, 197, 335. - Jacob, E.; Opferkuch, R. Angew. Chem. 1976, 88, 190; Angew. Chem., Int. Ed. Engl. 1976, 15, 158. - 150 Ogden, J.S.; Turner, J.J. J. Chem. Soc., Chem. Commun. 1966, 693. - 151 Mercier, H.P.A.; Sanders, J.C.P.; Schrobilgen, G.J.; Tsai, S.S. *Inorg. Chem.* 1993, 32, 386. - Gillespie, R.J.; Landa, B.; Schrobilgen, G.J. J. Chem. Soc., Chem. Commun. 1972, 607. - 153 Gillespie, R.J.; Schrobilgen, G.J. Inorg. Chem. 1974, 13, 2370. - McKee, D.E.; Adams, C.J.; Zalkin, A.; Bartlett, N. J. Chem. Soc., Chem. Commun. 1973, 26. - 155 Gillespie, R.J.; Landa, B.; Schrobilgen, G.J. Inorg. Chem. 1976, 15, 1256. - 156 Pointner, B.E. personal communication - 157 Schumacher, G.A.; Schrobilgen, G.J. Inorg. Chem. 1984, 23, 2923. - 158 Tsao, P.; Cobb, C.C.; Claassen, H.H. J. Chem. Phys. 1971, 54, 5247. - Claassen, H.H.; Chernick, C.L.; Malm, J.G. In *Noble Gas Compounds*; Hyman, H.H., Ed.; The University of Chicago Press: Chicago, 1963; pp 287. - 160 Martins, J.F.; Wilson, E.B., Jr. J. Mol. Spectrosc. 1968, 26, 410. - 161 Christe, K.O.; Wilson, W.W. Inorg. Chem. 1988, 27, 2714. - 162 Peterson, S.W.; Willett, R.D.; Huston, J.L. J. Chem. Phys. 1973, 59, 453. - 163 Claassen, H.H.; Gasner, E.L.; Kim, H.; Huston, J.L. J. Chem. Phys. 1968, 49, 253. - 164 Christe, K.O.; Wilson, W.W. Inorg. Chem. 1988, 27, 3763. - 165 Hodgson, D.J.; Ibers, J.A. Inorg. Chem. 1969, 8, 326. - 166 LaBonville, P.; Ferraro, J.R.; Spittler, T.M. J. Chem. Phys. 1971, 55, 631. - 167 Emara, A.A.A.; Schrobilgen, G.J. Inorg. Chem. 1992, 31, 1323. - 168 Schrobilgen, G.J Ph.D. Thesis, McMaster University, Hamilton, Canada, 1973. - 169 Winfield, J.M. J. Fluorine Chem. 1984, 25, 91. - 170 Bez'melnitsyn, V.N.; Legasov, V.A; Chainvanov, B.B. Proc. Acad. Sci. USSR (Engl. Trans.) 1977, 235, 365; Dokl. Adad. Nauk. SSSR 1977, 235, 96. - 171 Kinhead, S.A.; Fitzpatrick, J.R.; Foropoulos, J., Jr.; Kissane, R.J.; Purson, J.D. In Inorganic Fluorine Chemistry, Towards the 21st Century, ACS Symposium Series 555; Thrasher, J.S., Strauss, S.H., Eds.; ACS: Washington, D.C., 1994; pp.40. - 172 Christe, K.O.; Wilson, W.W.; Wilson, R.D.; Bau, R.; Feng, J.-a. J. Am. Chem. Soc. 1990, 112, 7619. - 173 Christe, K.O.; Wilson, W.W. J. Fluorine Chem. 1990, 47, 117. - 174 Gillespie, R.J.; Landa, B. Inorg. Chem. 1973, 12, 1383. - 175 Christe, K.O.; Schack, C.J.; Wilson, R.D. Inorg. Chem. 1975, 14, 2224. - 176 Jaselskis, B; Spittler, T.M.; Huston, J.L J. Am. Chem. Soc. 1966, 88, 2149. - 177 SMART and SAINT, release 4.05; Siemens Energy and Automation Inc.; Madison, WI, 1996. - 178 Sheldrick, G.M. SADABS (Siemens Area Detector Absorption Corrections), personal communication, 1996. - 179 Sheldrick, G.M. SHELXTL-Plus, Release 5.03, Siemens Analytical X-ray Instruments, Inc.; Madison, WI, 1994. - 180 Gunn, S.R. In *Noble Gas Compounds*; Hyman, H.H., Ed.; The University of Chicago Press: Chicago, 1963; pp. 149. - (a) Templeton, D.H.; Zalkin, A.; Forrester, J.D.; Williamson, S.M. J. Am. Chem. Soc. 1963, 85, 817; (b) Templeton, D.H.; Zalkin, A.; Forrester, J.D.; Williamson, S.M. In Noble Gas Compounds; Hyman, H.H., Ed.; The University of Chicago Press: Chicago, 1963; pp. 229. - 182 Spittler, T.M.; Jaselskis, B. J. Am. Chem. Soc. 1965, 87, 3357. - 183 Jaselskis, B.; Spittler, T.M.; Huston, J.L. J. Am. Chem. Soc. 1966, 88, 2149. - 184 Ratcliffe, C.I. Annu. Rep. NMR Spec. 1998, 36, 123. - (a) Raftery, D.; Chmelka, B.F. NMR Basic Principles and Progress 1994, 30, 111; (b) Dybowski, C.; Banal, N.; Duncan, T.M. Annu. Rev. Phys. Chem. 1991, 42, 433. - 186 Luhmer, M.; Reisse, J. Prog. NMR Spectrosc. 1998, 33, 57. - 187 Seppelt, K.; Rupp, H.H. Z. Anorg. Allg. Chem. 1974, 409, 331. - 188 Jameson, C.J.; Gutowsky, H.S. J. Chem. Phys. 1964, 40, 1714. - 189 Dove, M.F.A.; Sanders, J.C.P.; Appelman, E.H. Magn. Res. Chem. 1995, 33, 44. - 190 Reuben, J.; Samuel, D.; Selig, H.; Shamir, J. Proc. Chem. Soc. 1963, 270. - 191 Figgis, B.N.; Kidd, R.G.; Nyholm, R.S. Proc. Roy. Soc., London 1962, 269A, 269. - Mason, J. Multinuclear NMR; Plenum Press: New York, 1987; pp. 625. - 193 Akitt, J.W.; Greenwood, N.N.; Storr, A. J. Chem. Soc. 1965, 4410. - 194 Morgan, K.; Sayer, B.G.; Schrobilgen, G.J. J. Magn. Res. 1983, 52, 139. - 195 Pyykkö, P.; Li, J. Report HUKI 1-92, ISSN 0784-0365, 1992. - 196 Wehrli, F. J. Magn. Res. 1978, 30, 193. - 197 Seppelt, K.; Rupp, H.H. Z. Anorg. Allg. Chem. 1974, 409, 338. - 198 Ingman, L.P.; Jokisaari, J.; Oikarinen, K.; Seydoux, R. J. Magn. Res., Ser. A 1994, 111, 155. - (a) Schrobilgen, G.J. In *The Encyclopadia of Nuclear Magnetic Resonance*; Grant, D.M., Harris, R.K., Eds.; Wiley: New York, 1996; pp. 3251; (b) Jameson, C.J. In *Multinuclear NMR*; Mason, J., Ed.; Plenum Press: New York, 1987; pp. 463; (c) Schrobilgen, G.J. In *NMR and the Periodic Table*; Harris, R.K., Mann, B.E., Eds.; Academic Press: London, 1979; pp. 439. - (a) Günthard, H.H.; Kováts, E. Helv. Chim. Acta 1952, 35, 1190; (b) Yamadera, R.; Kremm, S. Spectrochim. Acta 1968, 24A, 1677. - 201 Berg, R.W. Spectrochim. Acta 1978, 34A, 655. - 202 Kabisch, G. J. Raman Spectrosc. 1980, 9, 279. - 203. Huston, J.L. J. Phys. Chem. 1967, 71, 3339. - 204. Jameson, C.J.; Mason, J. In Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, 1987; pp. 51. - 205. Gillespie, R.J.; Schrobilgen, G.J. Inorg. Chem. 1974, 766, 765. - 206. Akitt, J.W.; McDonald, W.S. J. Magn. Res. 1984, 58, 401. - 207. Frame, H.D. Chem. Phys. Lett. 1969, 3, 182. - 208. Gillespie, R.J.; Netzer, A.; Schrobilgen, G.J. Inorg. Chem. 1974, 13, 1455. - 209. Appelman, E.H.; Anbar, M. Inorg. Chem. 1965, 4, 1066. - (a) Stephenson, C.V.; Jones, E.A. J. Chem. Phys. 1952, 20, 135; (b) Magnuson, D.W. J. Chem. Phys. 1951, 19, 1071. - 211. Smith, D.F.; Magnuson, D.W. Phys. Rev. 1952, 87, 226. - 212. Pauling, L. *The Nature of the Chemical Bond*, 3rd. ed.; Cornell University Press: Ithaca, NY, 1960; p. 260. - 213. Bondi, A. J. Phys. Chem. 1964, 68, 441. - 214. Krebs, B.; Hasse, K.-D. Acta Crystallogr. 1976, B32, 1334. - 215. Gerken, M.; Dixon, D.A.; Schrobilgen, G.J. Inorg. Chem. 2000, 39, in press. - 216. Kuhlmann, W.; Sawodny, W. J. Fluorine Chem. 1977, 9, 341. - 217. Dehnicke, K.; Pausewang, G.; Rüdorff, W Z. Anorg. Allg. Chem. 1969, 366, 64. - 218. Kaskel, S.; Strähle, J. Z. Anorg. Allg. Chem. 1997, 623, 456. - Fourquet, J.L.; Duroy, H.; Crosnier-Lopez, M.P. Z. Anorg. Allg. Chem. 1997, 623, 439. - 220. Aynsley, E.E.; Hair, M.L. J. Chem. Phys. 1958, 3747. - 221. Selig, H.; El-Gad, U. J. Inorg. Nucl. Chem. 1973, 35, 3517. - 222. Beattie, I.R.; Crocombe, R.A.; Ogden, J.S. J. Chem. Soc., Dalton Trans. 1977, 1481. - Brisdon, A.K.; Holloway, J.H.; Hope, E.G.; Townson, P.J.; Levason, W.; Ogden, J.S. J. Chem. Soc., Dalton Trans. 1991, 3127. - 224. Lotspeich, J.F.; Javan, A.; Engelbrecht, A. J. Chem. Phys. 1959, 31, 633. - 225. (a) Dean, P.A.W.; Gillespie, R.J. J. Am. Chem. Soc. 1969, 91, 7260; (b) Bacon, - J.; Dean, P.A.W.; Gillespie, R.J. Can. J. Chem. 1970, 48, 3413. - 226 Mazej, Z.; Borrmann, H.; Lutar, K.; Žemva, B. Inorg. Chem. 1998, 37, 5912. - 227 Roesky, H.W.; Sotoodeh, M.; Xu, Y.M.; Schrumpf, F.; Noltemeyer, M. Z. Anorg. Allg. Chem. 1990, 580, 131. - 228 Wilson, W.W.; Christe, K.O.; Feng, J.-a.; Bau, R. Can. J. Chem. 1989, 67, 1898. - 229 Braun, T.; Foxon, S.P.; Perutz, R.N.; Walton, P.H. Angew. Chem. 1999, 38, 3326; Angew. Chem., Int. Ed. Engl. 1999, 111, 3543. - Whittlesey, M.K.; Perutz, R.N.; Greener, B.; Moore, M.H. J. Chem. Soc., Chem. Commun. 1997, 187. - 231 Murphy, V.J.; Hascall, T.; Chen, J.Y.; Parkin, G. J. Am. Chem. Soc. 1996, 118, 7428. - Murphy, V.J.; Rabinovich, D.; Hascall, T.; Klooster, W.T.; Koetzle, T.F.; Parkin, G. J. Am. Chem. Soc. 1998, 120, 4372. - Faggiani, R.; Kennepohl, D.K.; Lock, C.J.L.; Schrobilgen, G.J. Inorg. Chem. 1986, 25, 563. - 234 Drews, T.; Seppelt, K. Angew. Chem. 1997, 109, 264; Angew. Chem., Int. Ed. Engl. 1997, 36, 273. - 235 Edwards, A.J.; Jones, G.R.; Sills, R.J. J. Chem. Soc., Chem. Commun. 1968, 1527. - 236 Chen, G.S.H.; Passmore, J. J. Chem. Soc., Dalton Trans. 1979, 1251. - Schrobilgen, G.J.; Holloway, J.H.; Russell, D.R. J. Chem. Soc., Dalton Trans. 1984, 1411. - 238 Gillespie, R.J.; Schrobilgen, G.J. Inorg. Chem. 1976, 15, 22. - Holloway, J.H.; Hope, E.G.; Raynor, J.B.; Townson, P.T. J. Chem. Soc., Dalton Trans. 1992, 1131. - 240 Brusset, H.; Dao, N.Q.; Knidiri, M. Spectrochim. Acta 1975, 21A, 1819. - 241 Abrahams, S.C.; Bernstein, J.L. J. Chem. Phys. 1976, 64, 3254. - 242 Turowsky, L.; Seppelt, K. Z. Anorg. Allg. Chem. 1992, 609, 153. - 243 Gillespie, R.J.; Robinson, E.A. Angew. Chem. 1996, 108, 539; Angew. Chem., Int. Ed. Engl. 1996, 35, 495. - (a) Carter, H.A.; Aubke, F. Inorg. Chem. 1971, 10, 2301; (b) Finch, A.; Gates, P.N.; Jenkinson, M.A. J. Fluorine Chem. 1972, 2, 111. - Minkwitz, R.; Nowicki, G. Angew. Chem. 1990, 102, 692; Angew. Chem., Int. Ed. Engl. 1990, 29, 688. - 246. The ¹⁷O NMR spectrum of enriched [H₃O][AsF₆] (21.9% ¹⁷O and 42.7% ¹⁸O) in the presence of XeF₄ in HF solvent at -10 °C shoed a quartet at -0.76 ppm, ¹J(¹⁹F-¹H) = 103 Hz. The previously reported ¹⁷O chemical shift for H₃O⁺ of 10.2 ppm was recorded in SO₂ solvent at -20 °C (Olah, G.A.; Berrier, A.L.; Surya Prakash, G.K. J. Am. Chem. Soc. 1982, 104, 2373.) - 247. Sladky, F. Monatsh.
Chem. 1970, 101, 1559. - 248. Bartlett, N.; Wechsberg, M.; Sladky, F.O.; Bulliner, P.A.; Jones, G.R.; Burbank, R.D. J. Chem. Soc., Chem. Commun. 1969, 703. - Wechsberg, M.; Bulliner, P.A.; Sladky, F.O.; Mews, R.; Bartlett, N. *Inorg. Chem.* 1972, 11, 3063. - 250. LeBlond, R.D.; DesMarteau, D.D. J. Chem. Soc., Chem. Commun. 1974, 555. - 251. Emara, A.A.A.; Schrobilgen, G.J. J. Chem. Soc., Chem. Commun. 1988, 257. - 252. Schrobilgen, G.J.; Whalen, M. Inorg. Chem. 1994, 33, 5207. - 253. Argon, P.A.; Begun, G.M.; Levy, H.A.; Mason, A.A.; Jones, C.G.; Smith, D.F. Science 1963, 139, 842. - 254. Schrobilgen, G.J. J. Chem. Soc., Chem. Commun. 1988, 1506. - 255. Keller, N.; Schrobilgen, G.J. Inorg. Chem. 1981, 20, 2118. - 256. Minkwitz, R.; Molsbeck, W. Z. Anorg. Allg. Chem. 1992, 612, 35. - 257. Sladky, F. Monatsh. Chem. 1970, 101, 1571. - 258. Syvret, R.G.; Schrobilgen, G.J. Inorg. Chem. 1989, 28, 1564. - 259. Holloway, J.H.; Schrobilgen, G.J. Inorg. Chem. 1981, 20, 3363. - 260. Fir, B.A.; Gerken, M.; Pointner, B.E.; Mercier, H.P.A.; Dixon, D.A.; Schrobilgen, G.J. J. Fluorine Chem. 2000, 105, 159. - 261. Cohen, S.; Selig, H.; Gut, R. J. Fluorine Chem. 1982, 20, 349. - 262. Mootz, D.; Wiebcke, M. Inorg. Chem. 1986, 25, 3095. - 263 Jones, G.R.; Burbank, R.D.; Bartlett, N. Inorg. Chem. 1970, 9, 1970. - 264 Burns, J.H.; Ellison, R.D.; Levy, H.A. Acta Crystallogr. 1965, 18, 11. - 265 Bartlett, N.; Wechsberg, M. Z. Anorg. Allg. Chem. 1971, 385, 5. - 266 Turowsky, L.; Seppelt, K. Inorg. Chem. 1990, 29, 3226. ## **APPENDIX** Table A. Atomic Coordinates (x 10^4) and Equivalent Isotropic Displacement Parameters (pm² x 10^{-1}) in [N(CH₃)₄][OsO₄F], [N(CH₃)₄][OsO₃F₃], [OsO₃F][AsF₆], [OsO₃F][HF]₂[AsF₆], [OsO₃F][HF][SbF₆], [OsO₃F][Sb₃F₁₆], [N(CH₃)₄]₂[HF₂][IO₂F₂], [H₂OXeF]₂[F][AsF₆], trigonal [Xe₂F₃][AsF₆], and [Xe₃OF₃][AsF₆] | _ | | | | | | | |---|-------|-----------|---------------------------------------|---------------------|--------|--| | _ | | <u> </u> | у | Z | U(eq)ª | | | | | | [N(CH ₃) ₄][C | OsO ₄ F] | | | | | Os(1) | 9456(1) | 2500 | 1887(1) | 17(1) | | | | F(1) | 6548(13) | 2500 | 2231(9) | 46(2) | | | | O(1) | 11840(13) | 2500 | 2232(7) | 26(2) | | | | O(2) | 9509(16) | 2500 | 356(11) | 46(3) | | | | O(3) | 8827(15) | 1233(8) | 2624(9) | 51(2) | | | | N(1) | 5000 | 0 | 4221(9) | 20(2) | | | | C(1) | 4060(16) | -891(8) | 5006(9) | 28(2) | | | | C(2) | 3589(18) | 601(10) | 3444(9) | 35(2) | | | | H(1C) | 3124(16) | -511(8) | 5525(9) | 42 | | | | H(1D) | 5010(16) | -1275(8) | 5513(9) | 42 | | | | H(1E) | 3434(16) | -1469(8) | 4494(9) | 42 | | | | H(2B) | 2662(18) | 995(10) | 3958(9) | 52 | | | | H(2C) | 2946(18) | 30(10) | 2932(9) | 52 | | | | | | | | | | Table A. continued... | | x | у | Z | U(eq)ª | |-------|----------|---------------------------------------|----------------------------------|--------| | H(2D) | 4230(18) | 1173(10) | 2932(9) | 52 | | | | | | | | | | [N(CH ₃) ₄][O | sO ₃ F ₃] | | | Os(1) | 2020(1) | 4656(1) | 2034(1) | 23(1) | | F(1) | 2086(9) | 3199(8) | 2116(14) | 44(3) | | O(2) | 764(12) | 4545(11) | 23(16) | 50(4) | | N(2) | 5000 | 2853(13) | 7500 | 16(4) | | O(3) | 2295(12) | 5913(8) | 2159(16) | 37(3) | | N(1) | 0 | 2187(16) | -2500 | 25(5) | | O(1) | 1585(13) | 4595(11) | 3020(19) | 51(4) | | F(2) | 3544(9) | 4475(8) | 4099(13) | 40(3) | | C(3) | 5650(15) | 2213(13) | 8989(19) | 30(4) | | C(1) | -522(16) | 1539(15) | -3950(22) | 36(5) | | C(2) | -891(15) | 2807(16) | -2827(24) | 36(5) | | C(4) | 5796(15) | 3502(14) | 7633(23) | 32(5) | | F(3) | 2784(10) | 4418(8) | 1312(14) | 40(3) | | H(3B) | 5117(15) | 1788(13) | 8888(19) | 44 | | H(3C) | 6066(15) | 2635(13) | 9955(19) | 44 | | H(3D) | 6192(15) | 1798(13) | 9096(19) | 44 | | | | | | | Table A. continued... | - | x | у | Z | U(eq)ª | | |-------|-----------|------------------------|-------------------|--------|--| | H(1C) | 73(16) | 1133(15) | -3721(22) | 54 | | | H(1D) | -883(16) | 1957(15) | -4904(22) | 54 | | | H(1E) | -1097(16) | 1105(15) | -4167(22) | 54 | | | H(2C) | -1465(15) | 2376(16) | -3038(24) | 54 | | | H(2D) | -1254(15) | 3226(16) | -3781(24) | 54 | | | H(2E) | -542(15) | 3226(16) | -1879(24) | 54 | | | H(4A) | 6332(15) | 3091(14) | 7723(23) | 48 | | | H(4B) | 6218(15) | 3922(14) | 8603(23) | 48 | | | H(4C) | 5362(15) | 3922(14) | 6662(23) | 48 | | | | | | | | | | | | [OsO ₃ F][A | sF ₆] | | | | Os(1) | 2278(1) | 8360(1) | 3743(1) | 22(1) | | | As(1) | -2337(2) | 9976(1) | 1982(1) | 19(1) | | | F(2) | -446(10) | 8905(7) | 2057(8) | 31(2) | | | F(1) | 2603(9) | 9904(7) | 3239(8) | 28(2) | | | O(2) | 4153(13) | 8010(8) | 4889(10) | 31(2) | | | F(7) | -4143(9) | 10992(7) | 2012(9) | 32(2) | | | F(3) | -751(10) | 11089(8) | 1741(11) | 45(2) | | | O(1) | 315(12) | 7925(8) | 4699(9) | 26(2) | | Table A. continued... | | | | | · | | |-------|-----------|--------------------------|----------------------------------|--------|--| | | x | у | Z | U(eq)ª | | | O(3) | 2479(12) | 7445(9) | 2246(10) | 28(2) | | | F(4) | -1991(11) | 10128(7) | 3935(8) | 38(2) | | | F(5) | -3870(12) | 8827(8) | 2304(11) | 48(2) | | | F(6) | -2624(10) | 9744(8) | 108(8) | 40(2) | | | | | | | | | | | | [OsO ₃ F][HF] | ₂ [AsF ₆] | | | | Os(1) | 9036(1) | 893(1) | 1474(1) | 17(1) | | | As(1) | 11825(2) | -3422(1) | 1400(1) | 16(1) | | | F(8) | 13009(11) | -5260(6) | 1682(3) | 30(1) | | | F(4) | 14363(10) | -3127(6) | 888(2) | 28(1) | | | F(7) | 13570(10) | -2347(6) | 2031(2) | 27(1) | | | F(3) | 10590(10) | -1445(5) | 1075(2) | 23(1) | | | F(1) | 6636(10) | 206(6) | 809(3) | 31(1) | | | O(3) | 12343(12) | 1155(6) | 1648(3) | 21(1) | | | F(5) | 10033(11) | -4282(5) | 721(3) | 27(1) | | | F(6) | 9237(10) | -3523(6) | 1874(3) | 28(1) | | | F(2) | 10216(11) | 1895(6) | 461(2) | 31(1) | | | O(2) | 8186(12) | -185(7) | 2141(3) | 27(1) | | | O(1) | 7864(12) | 2795(7) | 1621(3) | 29(1) | | Table A. continued... | | x | у | Z | U(eq)ª | | |-------|-----------|-------------------------|----------------------|----------|--| | F(9) | 14284(11) | 3284(6) | 305(3) | 31(1) | | | H(1) | 12249 | 2588 | 379 | 282(144) | | | H(2) | 14962 | 3203 | 0 | 38(33) | | | | | | | | | | | | [OsO ₃ F][HF |][SbF ₆] | | | | Sb(1) | 7110(3) | 9314(2) | 3574(1) | 13(1) | | | Os(1) | 13359(1) | 4340(1) | 3452(1) | 15(1) | | | Os(2) | 3179(2) | 9018(1) | 1213(1) | 16(1) | | | Sb(2) | 9054(3) | 4369(2) | 1046(1) | 14(1) | | | F(1) | 11152(31) | 4878(13) | 2152(10) | 19(3) | | | O(1) | 15793(36) | 5307(20) | 3142(13) | 22(4) | | | O(2) | 14663(33) | 3624(17) | 4390(12) | 18(4) | | | O(3) | 11353(32) | 5540(16) | 3776(11) | 15(4) | | | F(2) | 9841(26) | 3082(14) | 3579(9) | 19(3) | | | F(4) | 13474(25) | 2806(13) | 2733(9) | 15(3) | | | F(21) | 9035(29) | 8843(16) | 4622(10) | 26(3) | | | F(22) | 5540(31) | 10807(14) | 4076(11) | 21(4) | | | F(23) | 8571(28) | 7990(14) | 2915(10) | 20(3) | | | F(24) | 4343(30) | 8157(16) | 3695(10) | 28(4) | | | | | | | | | Table A. continued... | | | | | | | |-------------|-----------|--------------------------------------|-------------------|--------|--| | | x | у | z | U(eq)ª | | | F(25) | 5236(28) | 9960(14) | 2444(9) | 17(3) | | | F(26) | 9680(30) | 10647(13) | 3331(11) | 16(3) | | | F(10) | 6538(30) | 5577(14) | 1359(11) | 20(3) | | | F(11) | 10511(31) | 5832(14) | 491(11) | 21(4) | | | F(12) | 11864(27) | 3227(14) | 803(9) | 22(3) | | | F(13) | 7821(31) | 2924(16) | 1672(11) | 27(4) | | | F(14) | 7072(28) | 3866(15) | 11(10) | 20(3) | | | O(10) | 1584(36) | 8593(19) | 224(12) | 24(4) | | | O(11) | 6383(36) | 8773(19) | 1023(12) | 28(4) | | | F(31) | 954(30) | 10280(16) | 1582(10) | 25(3) | | | F(30) | 4116(31) | 11073(16) | 607(10) | 27(4) | | | O(14) | 2650(35) | 7625(18) | 1845(12) | 24(4) | | | | | | | | | | | | [OsO ₃ F][Sb ₃ | F ₁₆] | | | | Os(1) | 0 | 0 | 0 | 34(1) | | | OFA | 874(24) | 977(24) | -1370(37) | 47(7) | | | FOA | 874(24) | 977(24) | -1370(37) | 47(7) | | | Sb(1) | -5000 | 0 | -1158(7) | 39(1) | | | F(1) | -3990(44) | 703(44) | -3002(39) | 37(12) | | Table A. continued... | | | | | | | |--------|-----------|--|--|--------|--| | | x | у | Z | U(eq) | | | F(2) | -6032(40) | 1486(42) | -1443(57) | 60(6) | | | F(3) | -4217(43) | 1190(43) | 446(52) | 60(6) | | | Sb(2) | -2678(3) | 2322(3) | -3835(6) | 42(1) | | | F(10A) | -1615(64) | 1354(54) | -2498(78) | 60(6) | | | F(10B) | -1721(64) | 1708(57) | -1891(74) | 60(6) | | | F(11A) | -1803(47) | 929(48) | -5082(80) | 60(6) | | | F(11B) | -2370(51) | 1298(51) | -5733(62) | 60(6) | | | F(12) | -1466(25) | 3534(25) | -4421(48) | 59(10) | | | | | | | | | | | Į] | N(CH ₃) ₄] ₂ [HF, |][IO₂F ₂] | | | | I(1) | 2101(1) | 5000 | 7392(1) | 22(1) | | | O(1) | 2841(1) | 3398(2) | 8218(1) | 41(1) | | | F(2) | 1195(2) | 5000 | 8110(2) | 45(1) | | | F(1) | 2930(2) | 5000 | 6590(2) | 45(1) | | | N(1) | 1683(2) | 5000 | 3518(2) | 26(1) | | | C(2) | 1260(3) | 5000 | 2295(3) | 37(1) | | | C(3) | 1303(2) | 3582(3) | 3831(2) | 34(1) | | | F(3) | 709(1) | 7194(2) | 5874(1) | 44(1) | | | C(5) | 7168(3) | 5000 | 9148(3) | 41(1) | | | | | | | | | Table A. continued... | | x | у | Z | U(eq)ª | | |-------|----------|----------|----------|--------|--| | C(6) | 5651(2) | 6415(3) | 8975(2) | 39(1) | | | C(4) | 5505(3) | 5000 | 7381(3) | 37(1) | | | N(2) | 5999(2) | 5000 | 8619(2) | 27(1) | | | C(1) | 2865(3) | 5000 | 4124(4) | 41(1) | | | H(62) | 5854(20) | 7273(32) | 8702(22) | 32(7) | | | H(22) | 581(34) | 5000 | 1980(32) | 36(10) | | | H(21) | 1490(20) | 4159(28) | 2120(20) | 30(7) | | | H(33) | 1593(20) | 3616(29) | 4595(23) | 30(6) | | | H(52) | 7336(24) | 5841(35) | 8878(26) | 50(9) | | | H(42) | 5711(22) | 5897(31) | 7177(23) | 42(7) | | | H(32) | 556(22) | 3649(30) | 3433(21) | 34(7) | | | H(12) | 3059(25) | 4128(35) | 3893(27) | 56(9) | | | H(11) | 3084(31) | 5000 | 4928(36) | 43(11) | | | H(51) | 7488(33) | 5000 | 9955(37) | 43(11) | | | H(41) | 4754(31) | 5000 | 7045(31)
 29(9) | | | H(31) | 1572(19) | 2619(33) | 3604(21) | 32(6) | | | H(62) | 6003(20) | 6419(28) | 9764(22) | 29(6) | | | H(61) | 4896(26) | 6431(34) | 8619(26) | 48(8) | | | H(1) | 0 | 7175(66) | 5000 | 93(18) | | Table A. continued... | | x | у | z | U(eq)* | |-------|-----------|---------------------------------------|-----------------------|--------| | | | [H ₂ OXeF] ₂ [1 | F][AsF ₆] | | | Xe(1) | 2500 | 2500 | 2500 | 23(1) | | As(1) | 5000 | -5000 | 5000 | 25(1) | | F(1) | 3824(4) | 1176(4) | 3361(3) | 50(2) | | O(1) | 3824(4) | 1176(4) | 3361(3) | 50(2) | | F(4) | 4060(8) | -3302(7) | 5000 | 77(2) | | F(3) | 5000 | -5000 | 6319(4) | 40(1) | | F(2) | 5000 | 0 | 5000 | 60(3) | | | | | | | | | 1 | trigonal [Xe ₂ F | 3][AsF ₆] | | | Xe(1) | 3925(1) | 2188(1) | 7825(1) | 37(1) | | As(1) | 0 | 3630(2) | 8333 | 29(1) | | F(2) | 5471(17) | 4185(15) | 8854(10) | 71(3) | | F(1) | 2010(24) | -280(25) | 7063(14) | 50(5) | | F(5) | -2271(24) | 2476(26) | 7913(17) | 83(5) | | F(4) | 0 | 1631(21) | 8333 | 53(4) | | F(3) | 0 | 5689(20) | 8333 | 53(4) | | | | | | | | F(6) | 757(27) | 4062(25) | 6828(19) | 92(5) | Table A. continued... | | | | | | |-------|-------------|--------------------------------------|--------------------|--------| | | x | у | Z | U(eq)* | | F(8) | -518(45) | 4724(46) | 7233(30) | 62(8) | | F(9) | -2238(35) | 2561(35) | 8881(25) | 38(6) | | | | [Xe ₃ OF ₃][A | AsF ₆] | | | As(1) | 0 | 5000 | 5000 | 20(1) | | Xe(2) | -4664(1) | 7179(1) | -1477(1) | 20(1) | | F(1) | -6235(12) | 8451(10) | -3032(10) | 35(2) | | F(2) | -3031(11) | 5892(9) | 242(11) | 28(2) | | O(1) | -3031(11) | 5892(9) | 242(11) | 28(2) | | Xe(1) | -360(3) | 5158(3) | 55(3) | 21(1) | | F(7) | -2470(19) | 4559(20) | 4217(22) | 35(2) | | F(5) | 1649(23) | 4154(20) | 3893(21) | 35(2) | | F(8) | 956(26) | 3860(19) | 3675(20) | 35(2) | | F(3) | 339(30) | 6642(16) | 4086(22) | 35(2) | | F(4) | -2056(22) | 4661(20) | 3581(20) | 35(2) | | F(6) | -83(31) | 6439(17) | 3705(20) | 35(2) | $^{^{\}text{a}}$ U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.