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ABSTRACT

The theory of optimum economic growth has centred around the
1928 paper of Ramsey and extensively developed by subsequent authors,
Samuelson and Solow extended Ramsey's analysis to a world invélving
multiple capital goods. Following Ramsey's formulation of his problem
~in terms of constrained maximization of an integral over infinite
time, Tinbergen, Koopmans, Cass, Weizacker and Mirrlees worked in an
infinite time horizon, allowing for certain modifications. Chakravarty
pointed out that the integral need not converge even if the pélicy
proposed by Ramsey (as being optimal)-were adopted.. Since there is
considerable difficulty in demonstrating convergence in an infinite
time horizon, Chakravarty and Goodwin tackled this problem in a finite

time horizon.

In our thesis, we are concerned with the problem of investigating
the existence of an optimum. savings programme in a finite time horizon.
We provide a rigorous proof of the existence of such an optimum savings
programme. We also demonstrate the uniqueness of the optimal programme.
Furthermore, we have given a rigorous charapterization of an optimal
savings programme as being efficient.-Rigorous proof of uniquenéss of
an optimal sévings programme and the property that it is efficient, have
nowhere appeared in the literature either in the context of an infinite

or in that of a finite time horizon model.
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INTRODUCTION

Recent years have seen a great deal of activity in the construction
of planning models designed to aid responsible political authorities to
eradicate permanent poverty which is widely prevalent among the majority
of the people of almost all underdeveloped countries. It is well to
recognize that economic growth is a brutal, sordid process. There are no
short-cuts leading to a change in the sub-human level of living of the
masses. The essence of it lies in making the labourer produce more than
he is allowed to consume for his immediate needs, and to invest and re-
invest the savings thus obtained. In the course of practical planning in
underdeveloped countries, there arises, at some point, the question of
what the rate of saving should be. There are several possible approaches
to answering this guestion, and we will consider the answer following
Ramsey's classic paper of 1928, Although this paper created the subject
of optimum economic growth, it has only recently been developed to indi-
cate the insight.,into the problem of planning capital investment decisionms,

especially for economies where the basic bottleneck relates to capital.

1
F. P. Ramsey, "A Mathematical Theory of Saving,' Economic Journal
- (1928), Vol. 38, pp. 543-559. .



The main conflict involved in the choice of the rate of saving is
one between present consumption and future consumption, and naturally it
cannot be solved without some intertemporal value judgements. Easily the
most w;dely:used method of solution of the intertemporal allocation problem
is to employ a wutility function, in the theory of optimum growth, The
main éteength of the utility maximization approach 1lies in the acceptabi-,

lity of the concept of diminishing marginal utility of increasing consump-

tion. It is a widely observed phenomenon that we seem to care less for a marginal

unit of consumption when we - -are rich than when we are poor, and this
provides a good common-sense ground against having too high or too low a
rate of saving, leading to an enormous inequality between the present and

the future.

If consumption at any single instant of time is assumed to be a diff-
erent commodity from consumption at any other instant. then the intertempo-
ral utility function becomes a functional, where time is treated as a
continuous variable, A functional defines a real number for any given
function defined over a domain. The optimum savings programme may have eith-
er a finite or an infinite time horizon and, given the utility functional,
our problem in optimum economic growth is to find the path foxr-which
gTUdt is a maximum, where T may be a fixed end-point or a variable end-

point (i.e.,T»x).

One of the most crucial variables in the theory of planning over time
is the length of the planning period. On the national plane, unless

extinction is a very likely pdssibility, all planning models should be



constructed on the basis of an infinite time horizon, because one cannot

assume that the world comes to an end at a finite time period T. When the

planning horizon is extended to infinity, several conceptual difficulties
1

arise. This can be seen./very simply. Let U(Cl), .........o.a,U(Cn), be

the sequence of utility levels, corresponding to the consumption stream

Clﬁ...e......,Cn. Making the (classic) assumption of additive separability, -

the integral {mﬂ dt may be an unbounded number since every periods cons-
umption will confribute positively to aggregate welfare over the entire
period. In this situation there is no possibilify of introducing any order
on the policy space through each mapping from the policy to the utility
space. Hence, except in the sense of point-wise dominance, no functionai

is defined that can help us to compare alternative programmes. Point-wise

dominance is a special case, and cannot be assumed on an a-priori basis.

Tbe moment we introduce a finite time horizon, we are at once relie.-
ved of the problem of convergence; but simultaneously, we face the choice
problem. Suppose that we plan only for period T but do not assume that the
world comes to an end after T. Then, clearly, if some consumption is to
" take place beyond T, we must leave some capital at T for the sake of the
future. Thus any such finite horizon model must postulate some terminal
capital stock as it is the only way in which the well-being of the
generations living beyond the horizon T can be taken into account. ThUg
our concern is essentially one that transcends the requirement of a

single specific horizon T. The same argument would apply if, instead of

1
S.Chakravarty, "The Existence of an Optimum Savings Programme"
Econometrica. 30, (1962).



T, any other horizan T*>T were used. Hence the argument for using an

‘ 1
infinite horizon is logically very compelling . A planning model that uses
a planning horizon of a finite number of years but makes provision for

terminal capital stock isa surrogate for an infinite horizon model.

The finite horizon model raises important problem of defining an order
over course of actions, Even when the issue of defining an order is settled, there
are also important questions connected with determining whether an optimal
mode of action exists. The finite horizon modelhapproach,involving a

terminal capital stock,is both conceptually and computationally simpler

J
than working with an infinite horizon model. But the choice of a set of .
terminal conditions is very far from being a trivial problem. In other words

the appropriate choice of a terminal stock of capital and the length of the time
horizon are crucial in making the finite time horizon model a surrogate

for an infinite horizon model, which is logically compelling in the theory
of‘national planning. In this connection it is to be noted that according

to Arrow? any ch®ice of a time horizon and of the terminal capital stock

is bound to be arbitrary because of the impossibility of deriving a

complete social ordering based on -an aggregation of individual orderings.

It is a fact that,in actuality, people discriminate between earlier

and later occurrences of consumption. The concept of a psychological

1
S.Chakravarty, Capital and Development Planning,The M.I.T. Press,
Cambridge, Massachusetts,1969, pp 20.

2.

-KJ.Arrow, "Application of Control Theory to Economic Growth% in
Mathematics of the decision Sciences,Part 2 , edited by _ .G.B.Dantizig,
and others, American Mathematical Society, 1968.



discontent of the future is of respectable antiquity. A distant object
"looks" smaller, and we tend to value , it is claimed, a unit of consumption
in the future less than we value the same now. If this difference occurs
because of the distance in time, then the position is symmetrical. A
future object looks less important now and, similarly, g present object will

look less important in the future,

L
i

Time preference can‘be defined in a variety of ways. One of the ways
is in terms of the asymmetry of the indifference curves between consumption
in successive time periods, along the 45O line througﬁ the origin. This -
means that even in the absence of uncertainty and on the assumption that
éommodities are the same in the present and in the future, there may be
an implied systematic bias against future consumption. While it is true
that the: decision has' to be taken now there is no necessary reason why

today's discount of tommorow should be used, and not tommorow's discount

of-today;, This time bias may be called an expression of time preference .

The element of time discount might be significant for social choice?
"one of the reasons for prefering a unit of present consumption to the
same in the future is the uncertainty associated with the future. This
might arise for resons other than the possibility of death of the present
consumers. Now to & certain extent this uncertainty (say about production)
is present even for the society, and if an individual discounts the fufure
yields because he does not know whether these yields will be obtained
the same argument may apply in the case of the¥society as well. It should,
however , be added that : (a) the uncertainty facing an individual is

not the same as that facing the society as a whole, and (b) the individual



assessment of the uncertainty might be wrong because he does not know
how other individuals are acting. Thus, this partial justification of a
time discounf is not the same as justifying the use of the individﬁal's
"pure' time discount in the social optimization problems" (Sen)1

The problem of aggregating time-preference maps of individuals for
collective decisions into a single social time-preference map is a . Special
case of the general problem of aggregating individual utility functions’
into a social welfare function. The more general problem has Eeenrinves;
tigated by Kenneth Arrow2 and others, and Arrow's negative conclusion
that "democratic' aggregation is impossible unless we restrict the
allowable class of individual preference functions or abandon one or more
intuitively appealing axioms about preferences is too familiar - to
require elaboration. And it does not help to recognize that in a modern
state, no matter how democratic, éollective decisions are taken by a
relatively small number of policy-makers exercising proxies granted

directly or indirectly by the community. For the broxy preference

orderings of different policy-makers must nevertheless be aggregated.

In the literature of optimum growth, the extent of time preference

is denoted by a single number such as a percentage rate of discount to be

applied to the utility of future consumption. Assuming time preference at the

1

A.K.Sen, " On Optimizing the Rate of Saving ". Economic Jo 1
71, (1961). ¢ e
2

'K.J.Arrow, Social Choice and Individual Values, Second Edition,
John Wiley and Sons, New York, 1964.
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rate p, the total utility for the period [0,T] is {' Ue-pt

dt. This,. of
course, implies an additively separable functional form. Assuming an addi-
tively separable form, the fundamental question here is whether there is
any valid ground for assuming a positive discount rate while fdrmulating

an intertemporal utility function for the society as whole. The opinions

so far advanced in the literature have been classified by Chakravarty1 into
three groups. The Pigou-Ramsey2 point of view against the assumption of a
positive discount rate is that it is ethically inappropriate to discount
future satisfaction just because it : takes place in the future. The subse-
quentb writers contested this .view and argued that a government functioning
democratically should take into account the wishes of the people it repre-
sents. This represents a much more intricate problem of knowing hoﬁ high
this discount rate ought to be. It is to be noted that, in both cases, the
nature and extent of time preference is introduced by way of an explicit
postulate of behavioural patterns. In recent investigations starting with
a set of postulates about utility functions, which have no explicit reference
to time preference, Koopmans, Diamond, and Williamson have shown that the

complete preference orderings do exibit what we have earlier defined as

4 : . . . Lo
time preference. Their basic assumption is that 'a continuous utility

1

S.Chakravarty, Ibid., p. 35

2

A.C.Pigou,Economics of Welfare , London, Macmillan, 1952; F.P.Ramsey,
Ibid.

3

S.A.Marglin. "The Social Rate of Discount and the Optimal Rate of
Investment"s Quaterly Journal of Economics, 77, (1965).

4
S.Chakravarty, Ibid., p. 37



: : 1
function exists on the space of consumptions streams extending to infinity!

Koopmans has shown that if we™ postulate the existance of a continuous
functional displaying sensitivity with respect to changes in first period
consumption, and if we also assume limited noncomplementarity and station-
arity, we cannot reject time preference without involving ourselves in a
logical contradiction. In the opinion of Chakravarty,'depending on the -
circumstances pertaining to technology, preferences or the nature of primary
factor availabilities, even an incomplete ordering may do the job of

2
isolating the optimal mode of action'.

After.intrpducing a positive rate of discount, the problem of optimum
growth becomes one of maximizing an integrai of discounted utilities of
instantaneous consumption e&ther for the period [0,T] or [o,®]. The
solution to this problem in the context of an infinite time horizon is
well established in the literature. For an infinite time horizon model,
Chakravarty has made an attempt to show the existence of a solution
to the problem. But a formal and rigorous proof of existence does not
appear in the literature. In this study we have investigated the problem
of establishing the existence of a solution to the problem of optimum
growth in a rigorous manner. Subsequently, we have shown that the - optimum

growth path is unique and efficent. The notion of efficiency, in the

context of optimum growth is completely new in the literature.

1
P.A.Diamond, T.C.Koopmans, and B.R.Willamson, ''Stationarity, Utility
and Time Perspective", Econometrica, 32, I1964%.



The first part of the study reviews the literature which has
appeared since 1928 on the problem in the context of a one-commodity
model with no uncertainty. The second part. is devoted‘to demonstrating
the existence, uniqueness, and efficiency of an optimum programme of

accumulation of capital in a finite horizon planning model.



PART 1

SURVEY OF LITEKATURE

The discussion of thé problem providing a theory of optimum economic
growth centred around the 1928 paper of Ramsey. The problem is one of
determining the propertion in which net capitalrformation 'should be
divided between capital goods and consumer goods in the ' economy.

#hat does the word '"should'” mean? For what térget ""should"
a programme be defined ? The usual answer to this question is to relate
welfare to consumption (aggregate or percapita) so that optimal develop-
ment is defined as maximizing an increasing function of consumption;
by doing so, one can determine the optimal policy. At the behest of
Keynes, F.P.Ramsey devoted himself to investigating the problem of optimal
savings and taxation, and the present day problem of the theory of
optimum growth appeared in the literature as the theory of optimum
savings. It is to b& noted that the theory of optimum savings, capital-
accumulation and growth investigated the same class of problem

2

Until 1950 (prior to Tinbergen's contribution); there is no other
literature in this area. Perhaps interest in the topic lapsed because

of the Great Depression and the War. Although their approaches differed,

F.P.Ramsey, "A Mathematical Theory of Saving!". Economic Journal, 1928.

J.Tinbergen,"The Optimum Rate of Saving'". Economic Journal, 66, 1956.

10
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both Ramsey and Tinbergen investigated the problem in an infinite time
horizon with a single homogeneous capital good. Since the real world

involves a great variety of heterogeneous capital goods, Samuelson and
1
Solow, almost at the same time, generalized the Ramsey model to any

number of capital goods. Because of the paradoxes of infinity; Tinbergen
' 2

reformulated his earlier model in 1960. Since there is considerable

difficulty in demonstrating convergence in an infinite time horizon
3
Chakravarty .and Goodwin tackled the problem in a:finite time horizon.
5
At the same time Srinivasan investigated the problem in a two sector

)

economy.

Although there is a problem of convergence in an infinite time
horizon, this approach is 1logical because it is not possible, on the
national plane, to choose a particular cut-off point and ;t the same
time avoid being arbitrary, without explicitly introducing uncertainty,

6

Koopmans discovered that the infinite horizon formulation, contrary to

some people’s expectation, may really describe the immidiate future more

1
P.A.Samuelson, and R.M.Solow, "A Complete Capital Model Involving
Heterogeneous Capital Goods'". Quaterly Journal of Economics, 70, 1956.

2

J.Tinbergen, "Optimum Savings and Utility Maximization over Time'".
Econometrica, 28, 1960.

3
S.Chakravarty, "Optimal Savings with a Finite Planning Horizon'".
International Economic Review, 3, 1962.

4

R.M.Goodwin, "The Optimal Growth Path for an Underdeveloped Economy".
Economic Journal, 71,1961.

5 .

T.N.Srinivasan, "Optimal Savings in a Two Sector Model'., Econometrica.
32, 1962. : :

6 ' .

T.C.Koopmans, "On the Concept of Optimal Economic Growth'. In The
Econometric Approach to Development, Skokie, I11l., Rand McNally & Co. 1966
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than it does the infinite future. This finding can be expressed as follows:
"One is guiding a ship on a long journey by keeping it lined up with a point
on the horizon even though one knows that long before-that point is
reached the weather will change (but in an unpredictable way) and it will

be necessary to pick up a new course with a new reference point, again on

1
the horizon rather than just a short distance ahead".

Thus,there was an enthusiastic revival of the problem in an infinite
time horizon and it was solved by Koopmaﬁs? Cass? Weizsackerf and'Mirrleess
in the 1960s. In this part, we shall attempt to point out important results
obfained in the literature. First}we'shall consider the problem posed by
Ramsey and Tinbergen6in infinite time horizon in some detail. Next,
following the historical sequence of the literature, we shall discuss the
problem in a finite time horizon considering the work of Goodwin and

7
Chakravarty. Finally, the cardinal aspect of the enquiry resulting from the

revival of the problem in an infinite time horizon will be discussed.

1

D.Gale, '"On Optimal Development in a Multisector Economy'. Review
of Economic Studies, 34, 1967.

2 7

T.C.Koopmans, Ibid.

3

D.Cass, "Optimum Growth in an Aggregate Model of Capital
Accumulation'. Review of Economic Studies, 32, 1965.

4

C.C.von. Weizsacker, "Existence of Optimal Program of Accumulation
for an Infinite Time Horizon'. Review of Economic Studies, 32, 1965.

g _

J.A.Mirrlees, "Optimum Growth When Technology is Changing".

Review of Economic Studies, 34, 1967.

6
F.P.Ramsey, Ibid. ; and J.Tinbergen, Ibid.
7

R.M.Goodwin, - Ibid. ; and S. Chakravarty, Ibid.,
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An Infinite Time Horizon: (a) Ramsey Model

Frank Ramsey considered the problem of optimum savings systematically
by maximizing an integral of instantaneous utility functions for an infinite
time period in an economy which produces only one commodity with homogene-
ous capital and labour; and where population is stationary. That is, his

- .
problem was to maximize { U(Ct) dt, where Ct is consumption at time t,
assumed to increase monotonically with time. Ramsey avoided the problem
of convergence by assuming that the instantaneous utility functions are
all bounded from above. He used the term !'Bliss', which he defined as
the maximgm obtainable rate of enjoyment or utility. Assuming diminishing
marginal utility, he argued that as consumption increases over time, the

utility associated with the level of consumption jincreases to a maximum

point; he represented bliss by B. So he seeks to maximize

®
L_[U(Ct) - B} dt.
Here we must distinguish between twb cases: (i) B is achieved for a
finite level of consumption (as a result of production limitations,
because of resourse constraints); or(ii) B is reached only when C is
infinitely large (because of the'assumption of the law of diminishing
marginal utility).
P
Now consider wheiher {[ U{Ct) - z] dt can define a functional at
all. Note that both { u(C;). dt and { 3 dt are unbounded . Does the
integral of the difference between the twd,définﬂﬂéﬂmépRing, discriminating

among alternative consumption programmes? Considering case (i), we

assume that there exist: a finite consumption level C that can be reached
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by following a policy that is permitted by technology and initial
co
conditions for any length of time t*, Then f£ U(C)-B] dt = 0 and the
*
integral {t[ U(C)-B] dt will be a finiteiﬁumber. Thus for the consumption
programmes which reach'a for some finite value of t, {m[ U(C)-B] dt
defines a finite functional. For case (ii), we must make some assumption

" regarding the speed of convergence to the bliss level. Assuming bliss, to

get an optimum rate of saving, Ramsey's problem becomes one of minmimizing

[ [B-UC] at .

Ramséy worked with two factors, homogeneous capital and labour, Since
the growth rate of labour is assumed to be zero , labour is excluded
from the mainstream of the analysis. He considered the production relation
which is néoclagsical- in nature, denoted by,

Y = F(K, L),
where K and'L are the capital stock and labour respectively. In the absence
of labour, the savings-investment equality for all time will ensure

ordinary equilibrium in the one commodity model., Using the savings-invest-

ment equality, our problem can be written as,

min. [{B - U¢ £(X, L)-K )} dt, © K=dK/dt

where B=LimU(Ct). This can be solved with the help of the calculus of .
£t

variations. Using Euler!'s equation, we get,

du!
of ~dt
( 5% }t.= - T

which states that the rate of interest is equal to the rate 2%t which
marginal utility is diminishing. Samuelson holds the opinion that perhaps

this is the most correct theory of the rate of interest in a WOFld of



I5

1 T e
homogeneous capital., This is Ramsey rule l.

Now to get Ramsey rule 2, we will employ the second Euler: equation.
Since U is dependent on t, we know that the Euler equation is always

integrable in the form:

U - Kllk= u,

where | is any arbitrary constant. Furthermore, the necessary boundary

condition at infinity is that:

as too, U-KUK+O.
Since M is an arbitrary constant, the boundary condition at' infinity
implies that u = 0, From the above equation, we obtain the basic

relationship:
K= "¢ for all t .

This is the priﬁciple of optimum savings due to Ramsey. "The rate of
saving multiplied by the marginal utility of money should always be
equal to the amount by which the net rate of enjoyment falls shaort of
the maximum possible rate of enjoyment% The optimum amount of savings

is given by the excess of the level of utility enjoyed at bliss over the

utility of current consumption, divided by the marginal utility of

consumption.. The assumption of diminishing marginal utility satisfies

L
P.A.Samuelson, and R.M.Solow, Ibid.
2

] S,Chakravarty, Capital and Development Planning, M.I.T. Press.
Cambridge,. Mass., 1969, p. 8l.
3

F.P.Ramsey, Ibid.
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the second order condition which is known as Legendre's.condition.

The Ramsey model holds good if we accept the notion of bliss. The
relevant question is whether the level B is attainable for a finite level
of consumption or whether there is merely an asymptotic approach towards

©
B. In the first case, the functional { [ B-U(C] dt defines a
meaningful order and we may work out thehoptimal savings programme in
the 1light of the order. But in the second situation, where bliss is
approached asymptotically, we may still r;n into difficulties because the
functional may ﬁot define a non—disériminating mapping from the policy

1
to the utility space. On the whole, the assumption of bliss, although

mathematically helpful, is not economically meaningful, because non.avai-
lability of resources and non-appearence of new commodities, which are the
underlying ‘assumptions of production bliss and utility bliss respectively
cannot be .accepted.
Considering Ramsey's problem as a variable end-point problem in the
2

(t, K) plane. Samuelson and Solow proved.Ramsey principle in a different

~ way. Suppose §§‘:> 0 for all t; then the integral:

o

[ul R, D) - K] dt,

can be replaced by the equivalent integral:

1

S. Chakravarty, "The Existence of an Optimum Savings Programme'',
Econometrica, 30, 1962.

5 -

P.A.Samuelson, and R.M.Solow, Ibid.
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K* . .
[ U F(K T) - K] dK .
K(0) .

Hefe, the upper limit of integration is now fixed at K*, where K = 0, It.
is to be noted that , due to the choice of units, we now have B = 0,
Defining F(X, L) = £(k), we have the equivalent integral:
K* .
[ u© dK .
K(0)\ £7k)-C

Using the Euler equation, we obtain,

a;y____>=0

Eﬁf(f(k)-c ,

Thi;.would giﬁe ﬁs thevRamsey rule again. In this connection we can make a
note of the following important implication of their analysis: "Even though
there is no such thing as a single abstract capital substance that trans-
mutes itself from one machine form to another like a restless reincarnating
soul, the rigorous investigation of a heterogeneous capital-goods model
shows that over extended periods of time an economic society can in a -
perfectly straightf;rward way reconstruct the composition of the diverse
capital-goods so that there may remain great heuristic value in the simpler

i 1
J. B. Clark - Ramsey models of abstract capital substance'.

1

P.A.Samuelson, and R.M.Solow, "A Complete Capital Model Involving
Heterogeneous Capital Goods''. Quaterly Journal of Economics, 70, 1956.
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AN INFINITE TIME HORIZON: (b) TINBERGEN -~ I

Tinbergen [MO] does not adopt the specific Ramsey

assumption of "finite bliss", defined as a maximum conceivable state
of satisfaction, but is esséntially concérned with discovering the
policy implications of a oné-commodity capital model by using écon—
omically tested utility and production functions. His first paper
[hO] was somewhat restricted in scope. He was concerned with finding
a savings ratio whiéh would be optimal for all future years, given the
utility and production functions, and the initial endowment of capital.
He also assumed a subjective rate of time préférénce, indepéndent of
diminishing utility or uncertainty. In his second paper [hl], his prob-
lém was one of maximising thé intégral of discounted utility ovér
time with respéct to the savings ratio. This is a very restricted
problem as it considers only programs with fixed savings ratios.
But, what is optimal among this class of programs Wéuld not be optimal
in thé sénse of maximising an integral of discountéd utilities over
timé. Propérly formulatéd, this proﬁlém is oné in the wvariational
calculus. This 1s what Tinbérgén doés in his second articlé.

In thé sécond article, he starts with the marginal ﬁtility
function of the form
)—v

| - -0
UJG (cJG C

H

where U't is the marginal utility in period t, Ct is the consumption

in t, C is the subsistence consumption, and v is the elasticity of

marginal utility with respect to surplus con'sum.p'l:ion'(C.,G =~ C). This



can be shown as follows:

au'
—_—t —y =l
d(Ct—C) ) -v(Ct - C) o
1 - s — el 7t
Ut (C--C)\)l

t
(ct-ci
From statistical estimation, Tinbergen observed that v < 1, which is

of crucial importance in Tinbergen's model. From this marginal util-

ity function, we can find the total utility function:

(c, - O
U, = ——"

t 1=
An important point to be noted here is that Ramsey did not introduce
a precise mathematical utility function. Tinbergen assumes a pro-

duction function of the Harrod-Domar type:

=

= -
Yt =5
This implies either that factors other than capital are freely

available or that their influence is already reflected in the coeffi-

cient a. Because savings equals investment, we have:

I, = st,
or
¥ = b
e =3~ Cy»
or K
S T

With these in mind, our problem is to find:

BN LY
w(ct.-Ac)_

o T =% at,

max [
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- subject to the constraint,

=~

+ .
Ct = - Kt.

Using Buler's first order condition, we obtain:

ac _ 1 1~
Tt - avlt " aue’

and the solution of this non~homogeneous first order differential

equation is:

This is the optimum consumptign path. Sincé there is a one-~to-one
correspondence bétweén savings and consumption programs corresponding
to this optimum consumption path, wé havé an optimum savings program.
Thé optimum path of capital accﬁmulation can Be obtained by putting the

value of consumption in

K
= -t
Kt T a Ct >
and we get:
. K% 'iv:
K, =—~=A4Ace -~ T .
t o

The solution of this first order non-homogeneous differential equa~

tion is:



21

and Bl ?pgABg‘afe arbitrary constants. With this relation, our cons-

umption path is:

From the capital path we can easily find the optimum savings path

since St = Kt'

Tinbergen introduces some boundary conditions for economic

meaningfulness: (a) capital stock must be non~negative in any period,

i.e., KJG 2> 0; and (b) consumption in any périod must be greater than

or equal to the subsistence consumption, i.e., G, % C. In the complete

t
solution of the capital path, of is constant and the other two parts

aré éxponéntiélly incréaéing. So,'&ﬁ‘is négliéiblé. Thé qﬁéstion now
is which one of thé éxponéntial parts is gréatér or which one will
dominate? Since the first exponent involves t/o and the second one
involves t/ov, the second one will dominate the capital path. Thus,

for non-negative Kt’

B220

et/av

as is non-negative.

Again, from the consumption path,

2 1, t/av -
= -— - — + .
C, =3 (1 v) e C
For non-negative Ct’ we must have
B S
21 Wy,
o v i

Since v < 1, and thus 1 - %—< 0, therefore
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B2 ’T< O' NEL T e

The two boundary conditions imply that B2 = 0. When B2 becomes zero,

the two expressions will be:

t/a =
= +
K% Ble oC ,
and Ct = C. .
Hence E;-ﬂ %u Savings and accumulation would come up only after making
t

the subsistence consumption, i.e., only éftér meeting the subsistence
consumption requirements thé rést of the output can be saved. TheOpfimal
policy ‘is to savé everything'greatér than that neédéd for subsis-

tence cohsumption in each period for ever.

Thé above paradox emerges in'Tinbergen's>model due to the
following three assumptions:

(i) Wé are trying to maximize some total of discounted utility
and havé no time preference at all. This zéro £imé preferencé givés
thé samé wéight to the présént as Wéll aé the future;

(ii) The constant returné to scalé; and -

(iii) v <1 or 1 - v > 0. Utility can be increased by increas-
ing consumption and, since futur; utility is thé samé as that of the
present, by postponing presént consumption, future utility can be

increased.

An Infinite Time Horizon: {c) Tinbergen - II

In drder to have a meaningful solution in the infinite. time
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horizon planning model, we must ensure a convergence condition. In _ .
Ramsey's case, it was ensured by the consumption of "bliss" and in
Tinbergen's [hO] model, convergence arises! when Ct = C. But, as we
have seen, there are certain valid obJections to both conditions; these
are unacceptable. What condition will give a non-trivial solution? A
way out has been provided by introducing a discount factor, i.e., by
introducihg time preférence in favour of présént consumption over the

'futuré. Our problém is to éxaminé thé casé of boundédnéss and
to solve Tinbérgen's casé by introducing a discount factor.

Ramsey solved his optimum problem assuming bliss. Such bliss
can be attained in two ways: (i) by putting a restriction on consump-
tion, or (ii) by putting a constraint on production (assuming diminish-
ing returns to scale due to a limitation of a primary factor; thus pro-
duction will fall). So, consumption cannot increase after a certain
point. Neither the assumption of bliss nor'diminishing returns are
méaningful in the contéxt of planning. In planning analysis, under-
devélopéd countries come into consideratién wheré the assumption of
a sub-additive scale or incréasing returns to scale aré moré important
and pragmatic. The abové typé of restraints, thérefore, aré dis-
carded.

Now we introducé new boundednéss conditions. Théré is no
réstriction on consumption and utility but theré is one on the

discount factor. Strotz [391 pointed out that we are to introduce

"1 « Later it will be shown that the boundary conditions
which are necessary for convergence lead to.a situnation, Ct =C,
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a discount factor which takes the form of an exponential function

e—pt. Thus, with the introduction of time preference, our problem

becomes:
o ~pt
max fo e U(Ct)dt, where p > 0, constant.

ot

The idea is that CJG grows over time but e will be so great

that it will pull down U(Ct)' This is illustrated diagrammatically:

Put another way, the upward pull in the consumption is caused by the
marginal productivity of capital and by the elasticity of utility, but
p will neutralise the upward movement. Like’the previous case, we

solve the problem of maximisation of a total of discounted utility:

mex [ e-th(Ct)dt .

o (Ct _ 6)1—v |

where U(C T

St
Using this specific form of a utility function, our problem can be

written as:
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- a)l'-\)

—dt .
1=V t

Again, considering the savings-investment equality and the production

condition, our constraint becomes:

K
C, = L K, ,

t o b
where the accumulation of capital (i.e., change of capital stock) is
the same as investment.
From Eulér's first ordér condition, we gét:

K~ dt

se Pty _ 4 5Pty
8K :

Solving this, we obtain:

ac _ 1 (1 i1 =
t v (a p}Ct - v(a - p]C ?

a first order non~homogeneous differential equation, and its solution

can be written as:

where A is any arbitrary constant. This is the optimum consumption

profile.

[

Now, to get the optimum capital path, let us start with

— 1(1 ]

== —-plt
At_Ae\)G, '-"C-,
o

=

&5

and the solution of this first order non-homogeneous differential

equation is
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with a restriction on A such that

B

L

where B1 and B2 are any arbitrary constants.

Now, for the sake of convergence, define
_ 6)1““
1 -9 :

(c

Z = e_pt b

and set the condition

az/at

7 < 0.

This is the convergence condition which will make the solution a
meaningful one; when this inequality holds, it is possible to show

that the consumption path is well behaved, since 1/a(l - v) < p im-

This convergence condition can be written as:

QiR

lies ERES <
Y vio P

11 1
v[a - p] < o

Thus, the first part of the capital path will dominaté whilé
in thé original casé thé second part was dominant. Théré was no way
to maké thé éxpréssion frée from damiﬁation of'thé sécona térm and
thé entire problém arosé from'thié. Using this conVergént condition,
it can Bé shown that cbnéumptibn'is ﬁét'eéﬁél to éuﬁsistéﬁcé cénéump-
tion. It will bé incréasing ovér timé; This is oné advantagé of
introducing a convérgénce condition., Another advantage is Whén B2 # 03
it makes the case for assuming that capital stock can be dividéd into
two parts, one for subsistencé consumption and the other for growing

consumption, Lastly, with the help of the convergence condition, we.
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get the well~behaved path for consumption and capital.
But this is not the end of the story. When the convergence

condition is introduced, the entire solution hinges on the condition

%(1 - V) < p, where v, o and p are givgn from outside. Here we face
the same Harrodian type long run problem of %-= n, where different
factors aré to be solved by different agénts. As there was no reason
why such équality should hold good, héré also there is no reason wh
thé inéquality Woﬁld hold, Théré is anothér fundaméntal oﬁjéction
which is ethical in naturé. Thé individual always préférs present

consumption to future consumption. Society also has to make a choice

but it nged not necessarily follow that social preferencé will bé
the algebraic summation of individual preferences. Again, society
can never die, so there is no reason to prefer present consumption.

To conclude, in the infinite time horizon planning model,
boundary conditions are essential to gét a meaningful solution. Tin- .z'bf}ﬁ?
bergép aims low, preferring to maintain constant utility for an in- ”
definité period. His model gives a trivial solution both mathe-
matically and economically.

In order to havé a meaningful solution in thé infinité timé
horizon planning modél, wé must énsure thé convergéncé condition. In
Ramséy's casé, it was énsuréd by the éssuﬁption of "bliss" and in
Tinbérgen's modél [hO] convérgencé is assﬁréd Whén CJG = C. But,
as we havé seén, both the conditions aré unaccéptablé; so; what con~
dition will givé a noﬁ—trivial solﬁtion? With thé_introduction of

time preference, Tinbergen, in his second paper‘[hl], provides a way

out,
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Problem in Finite Time Horizon: (a) Goodwin Model

If a nation's utility (whether discounted or not) at any
point of timé is solely a function of its instantaneous rate of
consumption, and if this nation is assuméd to live forever, thén ‘bhé
proper planning horizon for the optimization of its rate of saving is
infinity. This is thé horizon which is mostly found in thé litératuré
on optimum savings. The problem with an infinite time horizon is that
unless wé introduce some crucial boundédness assumption (explicitly
or implicitly) at some stage of the argument, infinite programs give
rise to concéptual difficultiés which may be briefly déscribed as
paradoxes of infinity [8].

Both Goodwin [15] and Chakravarty [9] propose to sidetrack the
difficulties of an infinite program by considering plans extending
ovér only a finite number of time périods. Chakravarty pointed out
that from a logical point of view, this is not a satisfactory approach
unless we can show that the program optimal for finité timé ténds in
thé limit to an optimal program on some rélevant definition of order.
Despité this logical shortcoming, arising from thé fact that such a
limit doés not exist, for practical purposes a finite horizon, sﬁf—
ficiéntly large, is déémed adequaté, providéd thé futﬁré is takén
caré of Ey leaving somé capital at thé end of thé périod undér con-
sideration [9]. If, in thé abséncé of uncértainty, thére is no
natural cut~off point in timé, thé correspondencé bétweén logic and

practice requires that we should be careful to pose the planning prob=

lem in such a way that we are, in fact, assured of the exigténce of



29

an optimal solution for an infinite future. Failing any or all of
these, in practical planning, we have to fall back on a finite horizon
model.

Goodwin [15] was concerned with the optimal growth path.
Optimal growth was defined as the maximum of welfare over a finite
period, welfare béing taken as per capita consumption valued in some
manner. Thé plannérs consider only consumption per héad, thus ig-
noring any inequalities as well as, by implication, holding growth in
numbers to be by itself, no gain. Thére isvno timé breference, i.e.,
all consumption is equally desirable régardléss of when it occurs.

Thus, his problem is to maximize the integral

fi u(xt)dt.

The labour force is growing at a given and constant rate. TFor

realism, he assumed that it séems best to start with a considérable
éxcéss of labour, though this is not essential, sinéé initial unem-
ployment increasés in realistic conditions. Thus labour is includéd
as an element of pér capita income (consumption), 5ﬁt not és a
factor in the'prodﬁction function; conéeéﬁéntly, capital goods aré
the only scarce factor;

Assumipg a fixed coefficiént production function, in

equilibrium, we obtain

N )
K =3 -G oo

where the production function is

=~

Y =..l‘

t o
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In terms of per capita consumption, this equilibrium relation gives us

B g
X, = 0 t

t
Loent

where labour force at time period t is given by

nt
L‘t = Loe 5

so that

=n.

e

Assuming the lag between investment and capacity, Goodwin
adopted the technique of finite différence, treating time as a dis-
crefe variable in the first part of his article. In order to use the
classical technique of calculus of variations, Goodwin drops the
lag betwéen investment and capacity. Now the planners must seek,

amongst all possible x(t)'s, the one which will maximize

ff Ulx,)dt ,

subject to . -
L
a—— Lo K't .
%, = St = ¥ Ky Ky)
Ige

So, the problem reduces to

maxd = fg ulv(t, Kiy)s K(t))]dt .

Kiy) t€[0,T]
The necessary and sufficient condition for the stationarity of this

expression is given by Euler's equation;
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1 Sf _ 1 St
U (e ) = @l ()5

t t
which in this case reduces to:
T
au (xt)/dt _ [
TU'lx,) T
U xt
This gives us an optimum rule of savings, which is slightly differ-

ent from the one we have called Ramsey's Rule.

Problem In Finite Time Horizon: (b) Chakravarty's Case

Chakravarty [9] started with the assumptién of (i) a zero
rate of time preference, (ii)'a constant mérginal productivity of
capital, equal to average productivity, and (iii) a constant elastic-
ity marginal utility schedule like that used by Tinbergen [b1]. The
coefficient of elasticity can be any non-negative number. He thén
relaxed these initial assumptions to take into account non—zéro timé
preferencé and a variablé productivity of capital. Here we will
consider his model 2: optimal savings with discount factor. Wé con-
sidér modél 2 bécaﬁsé it can ﬁé shown that modél 1 is a Qpécial casé
of modél 2, by setting the discount factor p = 0. With nonlinéar
production functions, thé optimal path of capital accﬁmﬁlation is
no longer a linear combination of éxponéntial growth paths. Hé con-
sidered a spécific nonlinéar casé, sétting B of thé Cobb-Déuélas
production function equal to onénhalf; it tﬁrns out to have a parabola-
typé béhaviour.

Consider an éconcmy wheré terminal capital stock.is'growing

L
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at the rate g in the time interval O to T such that:

K(T) = KpeBT ,
where Kg is the initial stock of capital received from one's pre-

decessors. Our problem is to find out the optimum savings path which

o 1~y
_ (T 7% pt
max dJ fo T dat ,
. : K% .
subject to Ct =5 Kt 5
a 1=y
from the equilibrium condition, where U(Ct) = it_ 5 "

The problem is to:

maxdJd = fT 1 [%Kt - Kt]l—v e—ptdt .

ol -wv
K, I +€[0,T]

Note that for v = 0 and p = 0, the integrand is a linear expression
and, therefore, the problem may be solved by methods of dynamic
programming [hl].

Using Euler's first order condition, we get

a homogeneous first order differential equation; and its solution is:

;.'{:-:L.. —- p]'t
_ AL
C(t) =Ae

vhere A is any constant determined by the initial condition. Substi-

tuting this value of Ct in the eguilibrium condition, and solving this

non-homogeneous differential equation in X, we get:

t 11l
o ;{a - p]t
e
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where B1 and B, are arbitrary constants such that

2

venfe 3]

One constant is determined by the initial capital stock K(0), and the
other constant is to be determined by choosing a terminal condition.

We hévé for t = T, K(T) = KoegT, where thé términal condition is
expréssed with two parameters: g which indicatés the provision for

the fﬁturé (g < 1/a), and T which stands‘forithé périod over which

thé provision is made. From a sensitivity tést, Chakravarty finds

that (a) the best consumption profiles are, in general, insensitive

to changes in terminal capital stock within a wide range, and (D) these
profiles aré sénsitive to changes in the timé horizbn in all casés whére
time discount is not admitted. With the introduction of timé dis~
count, we may get an invariance with respect to T provided a certain
inequality is satisfied between time preference, productivity and

the coéfficiént of elasticity of marginal utility.

Manéschi [2&] independently made a sénsitivity test and ob~
servéd that "with appropriate initial and terminal conditions ... opti=-
mal consumption paths [aré obtained] which aré Tquite insen;itivé' to
changes in términa£ equipmént, for any fixéd choicé of horizon.”[2h]
This will bé valid only if we grant a rathér inappropriate términal
condition, namély that g éhoﬁld bé so low as to prodﬁcé a drastic
décumulation of capital towards thé énd of the plan. If g is rés~
trictéd to the valués for which invéstment at thé énd of thé plan is
nbn—négativé, the consumption‘profilé is no longér insénsitivé to changés

in g. Again, when 1/a < (L« V)& p, the problem is well posed hex
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cause "the result is independent of such 'irrelevant details', e.g.,
whether we put T = 20 or 30." [2&] With regard to this contention,
it was shown that 1/0(l - v) < p is a necessary condition for in-
variance of the consumption profilé with réspect to T. Thé nécéssary

and sufficient condition for this is that

= 1d
=353~ °| -

Maneschi furthér concludéd that both types of insénsitivity
with respéct to g and to T cannot occur at the same time. If g
can assume any value in the interval 0 £ g < l/d, g needs to be at
the lowe: énd of fhis range if insensitivity of the consumption profile
with respéct to g is to obtain. On the othér hand, if insénsitivity
with respect to T is to hold, g must be at the upper end of the
range since consumption, investment and income all grow at the rate
1i{1

;{E-- p] so that investment at time T is necessarily positive.

Maneschi concluded that because insensitivify of fhé consump-
tion profile with respect to T is indispénsable if inconsisténcy in
decision-making is to be avoidéd, and sincé such insénsitivity is in
general not found in finité horizon plans, thé optimization of thé raté
of saving is jﬁstifiablé only ovér a infiﬁite horizon.

This controversy betweén Proféssor ChakraVarty and Manéschi
produces many intérésting findings, but we cannot'commént on any ag
being correct or incorréct, becausé any statémént of sénsitivity
usually presupposés a cértain rangé of variations for’thé paramétérs

in question,
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Problem in Infinite Time Horizon; Revisited

Generalizations of Ramsey's study were made, independently
and more or less simultaneously, in sevéral papers by Cass [7],
Koopman [21], Malinvaud [23], and Weizsticker [42] (= cxaW) res-
péctively, with considerablé overlap in the résults. In the asmalgam

Pt is intro~-

of their models to be discussed here, a discount factor e
duced, without precluding the possibility that the discount rate p is
zero. In their model, a social intertemporal preference structure

is specified exogenously in the form of a social welfare functional,

and that takes the form:

7= [ e Phulx

) t)dt >

where x_ denotes per capita consumption at time %, u(xt) is a

strictly increasing and strictly-concave function giving the utility
flow arising from a consumption flow x. p is a non-negative continuous
time discount rate applied to utility, and é—pt thé corresponding
discount factor at timé t. In théir modéls, thé utility and pro-

duction functions are independent of time and satisfy the following

assumptions:
(a) u'(x) >0 ﬁ"(X) <0 for x > 0
(p) £'(k) >0 (k) <0 for all k % 03
(¢) £'(0) = = ft{e) = 0 and £(0) = 03

and Koopmans also assumed
(d) 1im u(x) > > as x>0 withx 2 0 .

He explained that '"this means a strong incentive.to.ayoid periocds of
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very low consumption as much as is feasible."|21| If x = 0 for
very a very small time interval, then by assumption (a) thé objéctive
integral divergés to ~=, 1In essénce, this assumption guarantees an
intérior solution.

The other departure from Ramsey consists in the introduction
of éxogénous exponéntial population growth,

L, = Loe?? | n>0

equating pqpulation with 1aBour forcé. This néw assumption immédi~
atély raisés a néw ethical éuéstion: whéthér oné should maximizé, as
in (i) an intégral over discoﬁntéd pér capita ﬁtility u(xt); or (ii)
an intégral over a discounted sum Ltu(xt) of individual utilitiés, as
in Mirrless' |26| and Phelps' |29| (=MP) models. While this is an
important question of principle, there are no essential mathématical
differences in the models as long as both population growth and the
discounting formula are exponential. The only difference then is one
of inferpretation of the parameters. If we write § = p - n, then §
is the discountéd rate applied to pér capita utilities in thé models
of (CKMW) and p is that applied to individual wtilities in model (MP).
Thé outcome of modél (CKMW) is the éxistencé of a unigue
optimal path for both consumption and thé capital stock, for any non-
negative §, régardless of whether or not thére can bé saturation
with consumption, or with capital; The réason is that now méré
mainténance of any givén lével of pér capita consﬁmption réqﬁirés
continual net invéstmént in ordér to maintain a conétant ratio of

the capital stock to fhe growving lahour force, As a consequence,
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cnnsumption per head cannot indefinitely remain at (or above) a
level exceeding a highest sustainablé level,

The golden rule path has been developed independently by
Phelps, Srinivasan and Weizdcker, and presupposes an initial per
worker capital stock kg = k that just allows the highést sustainable
level of consumption per héad to be attained at all times, With the
nonlinear spécifica‘tion of the prodﬁction function, f, Koopmans showéd
that there éxists a uniqué optimal attainablé path for the infinite
horizon problem, which approaches the modified golden rule path with
§ > 0.

Assume that output is at all time to be optimally divided
between consumption and net investment:; then for a positive labour
force., the production relation becomes:

Xt = f(k) - nk - k .

Buler's condition solves the problem of maximizing J subject to the
production relation, and gives us:

%, = - E—,',[f(k) ~ {n + 8)]

Ignoring the possibility of a corner solution (which may arise due
to the non~-negativity conditions kt > 0, Xt > O), then the feasible

Euler path is the one that satisfies the equations

£(k) - nk -~ k

el
1l

and X, = -%:T[f(k) - (n+ _p)]

simultaneously.
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Now define k*(p) as the value of k which satisfies the
equation
£f'(k) =n +p
such that 0 < (p) s k due to assumptions (b), (c), and (d); and also
define x*¥(p) as
x*(p) = £[k*(p)] - nk*(p)
This givésvus feasible Euler paths of threé different types: (i)

k, > k*(p) ¥+t > % (for some t > 0); (ii) ky > k*(p) and X, > x*(p)

as t ~ ®; and (i1i1i) k, < k*(p), for all t+ > £ (for some T > 0). It

%
is clear that the class of paths satisfiéd by (i) and (iii) are not
eligible for thé infinité horizon problém. For p 5 0, thé intégral

J is convérgent along the sécond type of that path, and this path
monotonically approaches [k*(p),(x*(b)] as time éxtends without limit.
Since the problem of divergencé arises when p = 0, wé rédefiné our

target function as:
{s] o
J¥ = fo [u(xt) - u(x*)]dt

Whéré x¥ = x*(0), and then along thé éécond typé of path J¥ is
convérgént. Thé u(x*) stands for the utility of consumption associ-
ated with thé goldén rule. This is a modifiéd Ramséyian dévicé. It
is to be noted that the goldén rulé path; dérivéd by Phélps, and
Joan Robinson can bé criticised on thé ground that it neglécts thé
historically given stock of capital and labour, and that its choicé
set is réstricted to the goldén agé paths. This méans that évén if
thé historically givén valué of the capital labour ratio happéns to

be on the golden rule path, it only maximizes per capita.consumption
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in the choice sét which is limited to the set of the golden age

paths. Koopmans-Cass derived that the path which maximizes J¥* converges
to the golden rule path regardless of the initial value of kg, as long
as it satisfies eligibility conditions. Hére the choicé sét is

not 1imitéd to the golden age paths. Koopmans discovéréd that all

the eligible paths in his formulation closely approach some fixed
balanced growth path; hencé they all look thé same for a sufficiently
large time horizon.

The model of Mirrless |[26] differs from the CKMW model only
in assuming that the exogenous exponential technological progress is
of thé labour augménting type; He adopts the interpretation of the
optimalify criterion as an integral over a sum of individual utili-
ties. Hé also finds that the consumption and capital stock, both
taken "per augmentéd worker", approach finite asymptotic levels
%, R, respéctively.

In all the optimality criteria considered, the discount raté,
whéther zéro pr positive, is always a constant. A critérion définéd
recursivély, and in which the discount factor ¢(c) itself dépénds on
thé prospéctivé consumption lévél C, was dévélopéd by Koopmans [21]
in a modél using a discréte time variable; Béals ana Koopmans éxpéri—
méntéd with thé maximization of this oﬁjéctive function in a constant
téchnology with constant réturns to capital alone. It was found that -
an optimal path approaching finité and positivé asymptotic lévels of
consumption and capital can exist only if the discount rate [1 - ¢le)]/a(e)

either increases with increasing consumption (¢'(c) <.0), or, if conse
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tant, just happens to equal the constant rate of return on capital.
Many economists feel, however, that if the discount rate is to be
at all variable, it is more plausible that it should decrease when

consumption levels increase.

Problem of Existence of Optimum Accumulation Path

Until now, we have attempted to point out the important re-
sults obtained to charactérizé an optimum accumulation of capital
path, both in a finite time horizon and in an infinité timé horizon.
But we aré still left with thé problém of thé existénce of such a
path. What Ramséy did was to maximizé an integral ovér thé whole
non-negative part of thé timé axis. Chakravarty has pointéd oﬁt [8]
that this intégral need not convérge évén if the Ramséy policy pro-
posed (as being optimal) is adopted. The question is whether thé
divérgencé of the integral indicates that there exiéts no optimal
policy. Thé divérgencé cértainly compéls us to find other methods
than just maximizing an intégral subject to certain constraintsI
Koopmans [21] and Weizséckér @2], in indepéndént attémpts, have
shown that the divergénce of thé utility integral doés not nécéssarily
mean that no optimal program of accumulation éxists.

Koopmans' paper, although mastérly and véry pénétrating, is
long, and his proofs aré sométimés difficﬁlt. This difficﬁlty is
partly thé résult of his thorough and important éxamination of the

conditions of the existence of an optimum growth path.in an infinite
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time horizon. Koopmans considers an economy where a single homogeneous
output is éroduced with the use of two homogeneous factors, labour

and capital, with the production function subject to constant réturn
to scale, and are diminishing returns to individual factors. His

problem is one of meximizing

fo u(xt)e_ptdt

xt being thé consumption of a répresentativé individual. He assumed
positivé and diminishing marginal ratés of substitution.

Weizsicker incorporates the growing labour force into his
study and généralizés Koopmans' problém. Hé définéd x(t) as total
consumption of an economy C(t) as a function of time. The amount of
"uti;ity" that is produced at time t is a function, U(C, t), of the
emount of consumption available at time 4 and of + itself. "The
dependéncé of U on t may havé different reasons. Thé two most
imporﬁant ones are: (i) the same amount of consumption producéd at
a more distant time may be enjoyéd less than if it were producéd to-
day or tomorrow, bécause of what is générally calléd time préférénce;
and (ii) thé samé amount of consumption today and tomorrow may
havé to méet thé neéds'of populations of différént sizés and‘héncé
imply differént dégréés of satisfaction." [MEJ Lét Q bé the class of
all feasiblé consumption programs c(t). Thén Weizséckér definéd
c*(t) € Q as optimal if for éach program C(t) € Q théré éxists a Tg

such that for T 2 Ty

[T uler et 5 [T ulcy)at |



42

This definition of optimality avoids the problem of divergence of

utility integrals of the form

[ ulc, t)at .
By this approach, known as partial ordering, one can say that the
utility stréam U*(+) represents a'dévélopment of the economy better
than that represénted by the utility stream U0(t) if, for all suf-

ficiently large T,
IZ U*(t)at > jf U0 (t)at .

Mirrlees simplified the proof provided by Weizsicker by saying that
"it is usually much éasiér to prové.that there éxists a policy that
cannot be bétfered than to prové that.it is better than any other."[261 |
With these considérations in mind, following Mirrlées E26], one can
rély on the théorem stated bélow to solvé thé problem of sélécting
C(t) which maximizes
[ nute,/n,) e Pt .
Theorem: The development of the economy is optimal if,

writing s = e—th(xt), if—+ sef'(k*¥) = 0% t > 0; sk* > B, < », as

t > «; and either (i) p = 0, or (i1) k*t’ x¥ are bounded, and bounded

t

away from zero, where C*t? K*t, X*t, k*t are the optimal values of

the respective variable.!
Now, this problem of existence in the context of an infinite

time horizon is well established in the literature. So far as the

o1 e“For'proof;.foliow<Mirrleés [26].
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existence of an optimum accumulation path in a finite time horizon is
concernéd, Chakravarty made an attempt to show thé required condition,
but did not provide anyt;igorous proof., In thé néxt part, we shall

provide a,%%gorous proof of the existence of such a path. We shall Y

also attempt to show that this path is unique and.efficient among all

other paths.



PART II

THE EXISTENCE OF OPTIMUM PATH IN A FINITE TIME HORIZON

This part of the study is to be devoted to the problem of
the existence of an optimum accumulation path in a finite time hori-
zon. This problem has been interesting since 1962, ﬁhen Chakravarty
pointe& out [8] that an integral over the whole non-negative part
of the time axis need not converge even if the optimal policy pro-
posed by Ramsey -- that of maximizing an integral -- is adopted.
The rigorous proof to the solution of the above problem has not yet
appeared in the literature. This study makes an attempt to pro-
vide a rigorous proof of the existence of the optimum accumulation
of capital in a finite time horizon. We have also shown that
this path is unique. In this study, we also introduce the notion
of 'efficiency' in optimum growth literature and have shown that
the optimum accumulation of capital path is uniquely efficient.

In section I, we shall describe the model and in section
11, we shall show the existence, uniqueness and also efficiency of

an optimum accumulation path in a finite time horizon model.

44



We have an economy which produces one commodity as its 'mational
product" (Y). Some part of output is consumed; the remainder is saved
and, hence, invested, at every point of time. Output is produced with the
help of two homogeneous factors of production, capital (K) and labour (L).
These two inputs afe smoothly substitutablg for each other in the
pfoduction process. We are éssuming.a constant returns to scale production
function which displays diminishing returns to individual factors. In
thiS‘économy, our problem is to find out an optimum savings programme
which maximises a certain stipuléted functional in utilities, subject to
certain restrictions oh.the class of admissible utility and production
functions.

We consider a siﬁgle utility functional which is to be
maximised. This is best interpreted as the functional of the central
planning authority. Such a functional defines a mapping from the space
of functions defining alternative continuous consumption profiles to
the real line. We consider a functional because time is being treated
here as a continuous variable. Following Koopmansl, we assume that this
functional obeys the following postulates. (a) Consumption is sensitive
to the magnitude of the variable in the initial period in that it has an
important roie on optimum savings. (b) Intertemporal inter-generational
stationarity of preferences - this postulate demands that the preference

maps of future consumption programmes be unaffected by the passage of time.

1Koopmans, T.C., "Stationary Ordinal Utility and Impatience',
Econometrica, 28, April 1960.
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———There are two distinct components im this postulate: intertemporal  —
intrq-génerational stationarity requires that once the preference maps

ar
of individuals

e .
A drawn, they will not change during the lifetime of the

individuals concerned; intertemporal inter-generational stationarity
assum;s that the age structure of the society is unchanged, and the
preference maps of individuals in each age-group will remain unchanged
across generations. Stationarity is, of course, a rather unlikely
pfopertf. (c) Periodwise independence refefring toAthree periods - the
marginal rate of substitution between consumption in any two periods is
independent of consumption-in any third period. The‘implications of this
assumption have béen‘explored by Debreu. A He has shown-that it makes
utility measurable up to a linear transformation and, indeed,
expressible as a sum of functions, each of which depends only on the
assumption of a single period:

11 o

U(x

nee 3
o
Yo
z

cesX ) =

Xy .
2’ N i

1’ 171 Y1

The crosé—effects of consumption in one period on the marginal utility of
consumption in another are assumed away. This is an assumption sanctified
by tradition, viz, the work of Ramsey [33],Tinbergen [40, 41], Samuelson
and Solow [34 ], etc. Chakravarty [8, 9] asserts thaf, although

Debreu's theorem is applicable only if time is handled discretely, there is
no logical difficulty in using this theorem when time is continuous.

These assumptions, together with the basic theorem of Debreu, imply that
such a functional can be represented by an integral of instantaneous
utilities over the space of continuous real-valued functions. Thus, these

postulates jointly justify the use of a decision procedure such as

maximisingwfz U[c(t)]dt, where U refers to instantaneous utility.
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In our system, utility depends on per capita consumption. This

is the consumption of the '"representative' individual in the society.

(]

Define x, = — s as per capita consumption at period t; we assume that

t Lt
[Assumption 1] U'(x) > 0, U"(x) <0, for all x >0,

posiéive but diminishing marginal rate of substitution between any two

generations, as well as 1lim U'(x) = «. This is because of the necessity
' x-+)

of avoiding extremely low'levels of consumption per capita. This condition
ensures that an 6ptimum fath will never specify a zero level of

consumption per capita. Also we assume that

[Assumption 2] x, = x(t) is a non-decreasing function of time, t eV[O,T].
Hé introduces this assumption as a political constraint which is
relevant to the planner af the developing economy.

» | The labour force and population béth grow exogenously at the
positive (constant) rate n. Therefore, quantities measured in terms of
the labour force ére equivalent, but for a scale factor, vy, to quantities
per capita. As the planning body has the authority to réquire-all able-bodied -
persons to work, by the following assumption

[Assumption 3] L(t) = L(0) ent,

the whole labour force will always be productively employed. When labour
is growing, one part of capital formation would be of widening variety

and would have to be reckoned with in maximising indefinitely substainable
consumption per head. This is because any choice of the optimal capital
labour ratio must now reckon with the investment that will be needed to
equip a larger labour force with the same capital labour ratio.
Occasionally, the optimum capital labour ratio has been interpreted as
giving us the most preferred course of action out of a set of alternative

possibilities. This is incorrect since, as we shall see, the optimum
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refers to>the besf steady state situation defined in terms of intensive
magnitudes but does not indicate the immediate course of action, given
an arbitrary initial situation,

Given a rate of consumption c, and a rise of population L, the

. Y
total utility for the period [0,T] will be

_¢T L(t) -pt
J = fo ——Qf-U(x) e dt,
with the assumption of the possibility of time preference, i.e:,

discounting at a rate p;, This utility, U, is a continuously increasing,

strictly concave, twice differentiable function.

Let our production function be

Yt»= F(Kt, Lt)
and, FK.> 0, FKK <0,
FL >0, FLL~< 0.

It is to be noted that there is no time subscript in F, which indicates

that.thefe is no possibility of changing technology over time.~ More
clearly; we are assuming that technology is given during the planning
period. Since we have already assumed that what is saved is invested at
each and every point of time, future consumption will be given by the
relationship:

uk - k

= F(Kp, L) - uky t?

e
where 1 denotes the rate of depreciation and the subscript t denotes

the time period. We assume that the constraint on the capital stock is

1We discussed this problem with changing technology elsewhere..
Bandyopadhyay, T., Working Paper, 1975, Department of Economics,
McMaster University. '
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as follows:
K, > 0 and given, and KT > O1
Since we have assumed that the production function obeys constant returns

to scale, therefore,

F(Kt, Lt) = L, f(kt)’

Kt

where k, = —
t L

t

continuous, increasing, strictly concave, twice differentiable function

» the capital-labour ratio. We assume that f is a

such that
[Assumption 4] f(k) > 0, £'(k) > 0, £(k) < 0, for all k >0,

and lim £(kx) = 0, lim f(k) = «;
k-0 koo :

[Assumption 5] f'(k) > Sup (p+n) for t e [0,T] and k > 0.
Again we assume that
[Assumption 6] k = k(t) is a continuous real valued function.

We have

and thus, taking logarithm and differentiating with respect to t, we

obtain,

L4

=—I.<—_n
K °

= e

Substituting this relation in
c(t) = L. £f[k(t)] - uL(t) k(t) - K(t),
future consumption can be obtained by the alternative relationship:

x(t) = £[k(t)] - (u+n) k(t) - k(1)

1The results are unaffected with K > 0, but K, > 0 is more
meaningful in a finite planning model. For a discussion of this point, see
T. Bandyopadhyay, Working Paper 1975, Department of Economics, McMaster
University.
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Along with the growth of population, the planning authority
recognizes that, due to time preference, tomorrow's consumption is not ‘the
same as the consumption of today; also taking intergenerational equity into
account, they give some weightage to the consumption of future generations.
This view is implemented by discounting future welfare at a positive rate p
which is lower than the population growth rate n. Thus, defining
§ =n -p and assuming n ; p , social welfare associated with any
particular feasible path is given by the funcfioﬁal representing total
welfare

3=y [T 1 ux))e® ae.

The problem confronting the central planning authority is to choose
a particﬁlar feasible capital path (corresponding to which we get a savings
path) which

. Max J & _ 1
{k(t)lte[o,Tg} Y

ST oL ulx(0)]1e%t at,
5

subject to

x(t) = £[k()] - (un) k(t) - k(t),

k(t) > 0 for all t e [0,T] and k(0) given.

We have assumed that x(t) is a non-decreasing function in the
in the .interval [0,T].- Now, since LO is given n and u are constants we

can rewrite the problem as

Maximize J[k] = [T ¢[t, k(t), k(t)] dt
{k(t)|te[0,T]} 0

subject to k(t) > 0 for all t ¢ [0,T],
where k(0) is given and positive. Clearly, the value of the integral
depends on the function k(t). By changing the function k(t), we can get

different values of J. Suppose we havea certain class of functions @



(for example, the set of all differentiable functions defined on the
closed interval [O,f]). Then we can consider the problem of choosing a
function k(t) from the class of functions  so as to maximize the
integral J, subject to the condition that k(0) is given and positive

and that k(T) > 0. This is the type of problem which can be solved with

the calculus of variations.

II

In this section we will prove the existence and the uniqueness

of an optimum savings programme. To do so we need a few lemmas and theorems.

Theorem 7:1 If k = k*(t) € Q@ is an extremal for the functional

JIk] = é o[t, k(t), k(t)] dt,

and if at some point t = t, € [0, T]

- -~ * r ‘

SEENEHEE

then in some neighbourhood Ne(t) of the point t, e [0, T], the function

k*(t) € @ has a continuous second derivative.

Proog: On the basis.of the integral equation

. t .
(2) ¢plt, k*(1), k*(t)] = é ¢ la, k*(a), k*(a)] da + ¢
the system |
: : t .
¢plt, k*(t), £] = [ ¢, [a, k*(a), k*(a)] da + ¢
0

can be solved for £ for every t. Condition (1) expresses the fact that

3 *
at t =t e [0,T], Sk is different from zero. According to a theorem

1This Theorem is a special case of Hilberts Theorem. Sagan, H.
Introduction to the Calculus of Variations, McGraw-Hill Book Co., (1963),

pp. 98.
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of implicit functions, this system and the condition £(to) = i*(to)

define the functions in some neighbourhood Ne(t) for the point t = t,

e [0, T] and provide that they are continuously differentiable in the
NE(t). Thus, £(t) = i*(t) and the derivative k*(t) exist and are
continuous in some neighbourhood Ne(t) of the point t = t, e [o, T1.

[Q.E.D.]

Theorem 2:1 If ¢ is continuous for the functional

T . .
J[k] = é olt, k(t), k(t)] dt,

then (a) there exists a smooth function k = k(t) that is defined in

{Ne(to)]t = to e[0, T]}, and which satisfies the equation

(3) dé;
dt

_d)k:();

and (b) this is unique.

. % ’
Proof: Let us assume that Sk # 0 holds at the point t = t, e [0, T].
. T. .
Differentiation of the equation, ¢k[t, k(t), k(t)] = f ¢k[a, k(a), k(a)]da+c
0

in {NE (to)l t e [0,T]} yields:

L4

déy : .
"H?"' ¢].(k k(t) * ¢].(1.( k(t) = q)k >

and thus
d .. -
- S

(4) K(t) = o

In some neighbourhood of [t, k(t), k(t)], the right hand side of

equation (4) is continuous; in this neighbourhood it satisfies a Cauchy-

1Bliss, G.C., Lectures on the Calculus of Variations, University
of Chicago Press, 1956. '
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Lipschutz condition with respect to the arguments k(t), i(t). By an
existence theorem for ordinary differential equations, system (4) will
have only one solution k = k(t) in {NE(to)lto e [0, T1}; this solution

will also satisfy equation (3).

. | [Q.E.D.]

This establishes the existence of a unique local extremal.

Theorem 3: If a unique local extremal exists then it is global.

Proof: From Theérem 1, évery smooth solution of the system (3) that
satisfies k = k(t) in {NE(to)Ito e [0, T]} has_a second derivative and,
therefore, satisfies the system (4) which has only one solution.
; : [Q.E.D.]
>Now we use the following lemmas to show that this extremal is

a maximum.

Lemma 7z ¢ is a monotonic increasing function with respect to all its

argumen ts.

L th U[x(t)];

Proog: Consider ¢ = o

i

differentiating with respect to t, we obtain:

dx 8t
L Sty t+l8L e U

¢t = fo} dt v

=< |+

By assumption (2} x,_ is a non-decreasing function, and since we assume § > 0,

t
therefore, for t ¢ [o, 13,

oy >0 .

Substituting the production relation,

x(t) = £Ik(t)] - (uwn) k(t) - k(t)
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Consider again

o ULEk()] - (u+n) k(1) - k(D)].

1
¢-'Y-L°

Differentiating with respect to k, k and remembering that

U' >.0 and f'(k) > Sup (p+n)
0<t<T

the proof is immediate.

[Q.E.D.]

Lemma 2: ¢ is a strictly concave function in its second and third

arguments.

Proog: For strict concavity, we have to show

Partial differentiation of second order with respect to k and

k; yields
5%y 1 8t 2
— = =L e “{u"[f' (k) - (u)]" + u'f" (K}
Y o
ok
“and
2
a.g ) l'Lo o5ty
k" Y

and the cross-partial derivative is:

ok ok

-Lirg T U g ) - (el
-

Now

z 2| sxok 0

| 2
2 2 2 |
¢ . 3 (2o} iy o8tynyie;
Bk 8k Y

Since U' > 0, U'" <0, f" < 0, this cempletes the proof.
' ‘ [Q.E.D.]
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Lemma 3: ¢ is a bounded function in the interval [0, T].

Proog: Since f'(0) = o and f'(») = 0, and, also, k(t) > 0 for all
t ¢ [0, T], therefore, for economic meaningfulness, we-can assume that

there.exist numbe;s m and M such that
0<m<k<M=<w

and also numbers p and P such that
0 ; P :_i <P <o,

Since k(t) is.tﬁice differentiable in the closea interval [0, T], k(0)
= q énd‘k(T) = B, Qhere a and B are fi%ed end points, we can say that ¢
is defined on a coﬁpact set. Again, since ¢ is continuous on a compact
set, therefore, it is bounded.

[Q.E.D.]
Theonemi4: Given assumptions (1) to (6), there exists a savings
programme for the economy which is optimal, i.e., there exists k(t)

which maximizes

T

[ L et uw dt,
0 0 t

J =

=< |

for t € [0, T], subject to:

x(t) = £[k(t)] - (um) k(1) - k(1)

k(t) > 0 for all t € [0, T] and k(0) given.
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Proof: From theorems (1) and (2) there exists an extremal, and from

lemmas (1), (2) and (3), the extremal is a maximum.

[Q.E.D.]

Theorem 5: 1If an optimal savings programme exists, then it is unique.

Proof: .The proof is inmediate from theorems (3) ‘and (4).
- [0.E.D.]

We would expect that an optimal savings programme would not

waste capital. We characterize this properi§ by the notion of 'efficiency'.

. ’ I - Y ’
Deginition: A savings programme, corresponding to a k(t), will be said .

to be efficient if and only if there does not exist another savings

)

programme, to which there corresponds a k(t) such that:

(a) k(t) = k(0) for t

k(T) fort=T

(b) x = £[k(t)] - (um) k() - k(t),
~k(t) > 0 for all t e [0, T],

k(0) > 0 and given 3

(¢) k(t) 2 k(t) for all t e [0, T]

and k(t) < k(t) for some t e [0, T]
1,7 5t

such that = [ L_ U[x(t)] e°" dt 2
Y 0 [0} — =

<X}

T
[ L, U[x(t)]eét dt.
0

So, we consider a savings programme to be efficient if and‘only
if there does not exist any other savings programme (a) which starts from
the same initial condition and has the same terminal capital stock, (b)
is feasible, and (c) has a lower capital-labour ratio in at least one
period in the planning horizon and does not have a higher capital-labour
ratio in any other period; and yet achieves at least as much social welfare

‘over the planniﬁg period.
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Theorem 6: An optimal savings programme is efficient.

Proog: Suppose not. Then k*(t), corresponding to the optimal savings

programme is inefficient. Let there exist a k**(t), corresponding to

another savings programme for which k**(t) £ k*(t) for all t € [0, T] and

k¥*(t) < k*(t) for some t e [0, T}, such that
T T
[ L oues)] Statz i L w1t at.
o ° Yo °

<[+

By theorem 4, there does not exist a k**(t) # k*(t) such that

T ' T
[ L U[x**(t)] et gr > L [ L U[x*(t)]est dt;
0 (o] . .Y 0 (o]

< [

and by theorem 5, there does not exist a k**(t) # k*(t) such that
T T
1 §t 1 8t
7 é L, Ulx**(t)]e"" dt = 7.{) L, Ulx*(t)]e"" dt.
So, for any k**(t) # k*(t),

T T

1 8t 1 8t
7 {) Ly Ulx**(t)]e”" dt < 7{) L, Ulx*(t)]e ~ dt,

which is a contradiction.

[Q.E.D.]

II1

In this paper, we have been concerned with the problem of
investigating the existence of an optimal savings programme for an
economy which is planning within a finite time horizon. As far as we
are aware, no formal proof of the existence of an optimum savings
programme for a finite time horizon model appears in the literature.

Here we provide a rigorous proof of existence of such a programme.
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We also demonstrate that it is unique. Furthermore, we have given a
rigorous characterization Af an optimal savings programme as being
efficient. Rigorous proofs of uniqueness of an'optimal savings progrémme
and the;pfoperty that it is efficient, have nowhere appeared in the
literature either in the context of an infinite or in that of a finite
time horizoh model.

Since our problem has been posed in the context of development
planning, we have two options with respect to justifying the signvof 4.

D. Cass [7] considers the situation of planners' pessimism where the rate
P P

of discount of future welfare is greatef in absolute value than the rate
of growth of the population, rendering § < O% His rationalization for
doing so is that the.planners would be more interested in getting an
optimal programme for the current and immediately succeeding generations
as he is more concerned with the present; in fact, this implies that a
very small weightage is given to generations beyond the immediate present,

raising severe problems of social justice. We adopt the alternative

approach of planners' optimism, i.e., § > 0, where planning is undertaken

with a view to making.ah attempt at ensuring inter-generational equity

as well.

lIn the unlikely, but mathematically possible, case of n = p, the
existence proof is unaffected; however, the problem becomes uninteresting.
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