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ABSTRACT

, algorithm leads to a significant ,reduction in computational req~re-

, \,
An algorithm is developed for discrete optimizati~n'of

, ' \, --, ' '

zero-one resour~e allocation problems.' A Sin2::lec nstraint problem

is first' formul~ted in dynam~c programming. s form~tion then

undergoes a number of modifications, to develo the algorithm. This

'.'
. ". "., .

menta as compared to the d;ynamic ,pt'ogramming methdd. Three theorems
, .

I'

,

"

I

and ,several lemmas are proved "hieh are central in making the algorithm

efficient. Different relevant features are inclUded' in the stu~ to

extend the algorithm to solve problems' vith more than one constraint .

.-
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CHAPTER I '

INTRODUCTION,

There ,are w.'J!y, real life situations in vhich a class 01: linear
-'

progrsmming 'problems' are restricted to' have integer 'Bolutions1:or the,
, ,

v~iabies as ';'ell as the objedive :rurictiOrls:, Thes, are called all~

integer problems. An ililports.rit type 61" this class 01: problems is ..
J

.
,j

/

r-- .->

the one in vhich the variables are restricted to

one only. Hat~atiCally, v: viite .

'\.n .'
maximize Zo'.:; Ic ,xi '

D ,. -1~
, \-,

the values zero or

n
subject to l 1. jXi :E bj j :; 1, ... , m (1)

i:;l,~

lei :; 0, 1 i :; 1, ... , n

. These· problems are knCilVIl as zero-one integer programming problems •

. They ari~e in real li1:e situations in vhich several ~ctivities are

competing 1:or limited resources. Typically they.are,capital budgeting

'problem, knapsack problem, t;ravelling saleSman' problem, etc.

~' • ,In viev,of the import,ance 01:. the problem dei'ined by'(l),

'" several, methods for its solution have been put fo~vard.in [2], [ 7),.,
[101, [131, [17], [19], [20}, .[ 22] , '[30] , ,and [311] by the researches

.,~_..
, "

in the field of optimization. These methods can be divided into tvo

classes: (i) those vhich are ·independent of the Lagrange multiplier

"technique; and (ii)·thos1!vhkh are based on the Lagrange multiplier

; technique. Each class of methods can be, divided "into tvo subclasses:

- 1.-
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, ,

(a) those applicable to the solution of'integer programmd,ns ~roblems
" ~

,Aincluding zero-one integer p~obl~sl in ge~~ralj,and (bl'those a:ppl;l.-., ,
cable to the solution of zero-one integer p~ograms only. The ~tter

known methods of class (i) (Taha,'1971),aregiven in ~Ory [19], [20],
Land and Doig f34L Dakin [7], and Balas [2]. or these; [19], [20], [34].

r 7] belong to SUbClass

2
(a), and [ 2] belongs to subclass (b). The

\ methods"in class (ii) are en in [10] and [30] of'which [10] belongs

to ~ubclass (a) and [3 to subclass (bl.

, \

The Cutting Plane Algorithm of GomOry

,I,,

Dantzig [ 8] ,s~siested'the cutting plane approach for solving

integer programs. Gomory ([19] and [20] 1 deVlelop~d' Dantzig's :approach

into a systematic algorithm for the solution of both in~ger and

)

... ~

.~

mixed problems. In order to apply tbisalgorithm to zero-one, integer

problems, one has to add a constraint Xi ~ 1 for'each x~ (i = 1,

The algorithm makes use of the dual s1IDpl,eX method. Th" im
,dJ

p~rtant aspect of the algorithm is that it constructs secondary cons
w

_ traints cal:j.ed the Gomory Constraints. These constraints, wb.en
c, '

added to th~al non-integersolution, vill effectively cut the

solution sp~ce (oward'the requ:l.red result. A basic' requir~~nt for

this algorithm is that all the coefficients and the right hand side

constant of ,each constraint must be in integer form.

The ,algorithm is carried out in the fol1ovin~ way.' First the

n).

,
problem is solved as, a re~ular linear programming problem disregarding



Let di = [di ] + fi!
\,\

ej [e~) "'l' r() = f iji J. ,

'where [dj;] and leV are the largest

3

the integrality conditions; If the optimum solution happens to be"
/

, all integers, 'the, goal is achieved. otheNise Gomory constraints which

'Will force the solution toward the integer point are developed ~

follows.

Let xi (1 ='l, ••• , n) be the basic variableS,' and,sj be the

nonbasic variables in the optimaJ. simplex tableau. ,Let the value

of xi as obtained from the optimal simplex tableau for the noninteger

soltttion be given'by,

m'
X - d \ ejs

i - i - j:l, i j

where di are non-integer, and er are the coefficients of the nonbasic

th 'variables for the j constraint.

. j
integers contailled in di and e

i

respectively. It follows that a < f~ < 1 an~ a " f ij'< L' )UbSti

~utingfor d~ and,e~ in (2); we have

I ([e~]
J.

Xi = [di ] +f. + f
ij

) s.jJ. j=l

or •
m m j

f
i - L fijs j = xi - [dil + , L hl s j (3)

j=l ' j=l

Nmi, for all the variables xi and Sj to bc integer ;ralued, the riGht

hand side of (3) must be an integer. This suggests that tbe left band

side o£ (3) must also be an integer. Since a < f i < l, and

',.,

j
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m
L fijS j., ~ 0, it follovs, that a ne~essary ~ondition is

j=l

(4)
\
,I
;
i
"

This is true,sincef~ ~

, m,
L1'ijs,j" ,1'~ < 1. But since f ij=l

•
, ,

,
an integer, it can either be zero or a ~egative integer. The relation

(4) represents the so-called Gomory Constraint.

The nev constraint, (4), is put at th~ bot~om of the tableau

in the form .,
I

m

''"\. = jt fijS j - f i ' (5),

vhere vi is a non-negative slack variable vhich must b, an integer

by definition. This constraint equation de1'ines the so-called

Gomory cutting plane. The nev constraint, vhen a.dde,d to the previous

tableau, makes the solution infeasible due'to negativity of its

right hand side. Then the dual simplex method is applied to remoVe

this' infea~ibility. If the nev solution, after applying the dual

simplex method, is all-integer, the process ends. Othervise a

nev Gomory constraint is constructed f'rom the resulting tableall'and. ' '

the dual simplex metbod applied again to remove the infeasibility.

The procedure is repeated until an all-integer ,solution is achieved •
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The Land-Doig Algorithm

Land and Doig [34} developed· an algorithm for solving integer

programming probl~s. The Land-Doig algorithm is carried out by

successively making parallel shifts in the objective hyperplane

toward the interior'~f the solution sp:~e suc~at each new shift. ,

will generate an integer v!U.ue of at least one variable. These. . . .

shifts are made in an order~ manner by successively applying an

eXPlore~label-and-aUgmentProcedur~':hat a superior integer

point in the solution'space is neve~-~a~sed. Thus, let Zl, Z2,

kZ represent the values of Zo corresponding to ~he first, second,
"

th . , , .
. and k shifts in the objective hyperplane•. The opti'mum solution

tilis reached at the k shift if, for the first time, al~ the variables'

assume integer values.

The procedure advanced by Land and Doig is essentially enUlll-
• ,

erative and starts by finding the solution to the problem neglecting

the integrality condition. If an all-integer solution is achieved,

the process ends. Otherwise, let ZO be the corresponding value of

the objective function. A variable, xp ' is selected for integrality

consideration and let x* be its optimal non-integer value corres-
p .

1Let Z specify the first s~ift in the objective hyperplane,

an~ [x;1 be the largest irteger,value included in x*. Let Z and

Z I denote the optimal valves ofZo corresPOnding't:'/he lin:ar pro-
p • fl

gramming probJ:em SUbject to the additional constraints x = [x*} and
p p

.,0
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p. [x;1 ,~ 1 respectively.

The determination of Zl can be achieved bi'using the concept

of a decision tree. The first node in the tree is represented by

zoo Two_~ranches corresponding to xp = [Xp*l. and x = [x*l + 1 emanate'p-, p

from this node (see figure 1)."

Zo

0,

[x*l
p .

\

z
p

FigUre 1

The generation of these tvo branches from a node"is termed exploration.

6

The

z ,
p

end nodes of these two branches vi1l be identified vith Z and
, -p

respectively. This yields Zl =max' {Z , z ,}. It is nov said, p p

, '.

that the nodes associated vith ZCT and Zl are labelled. Figure 1

illu,~~rates the case vhere Zl = zp" In general'; a node is labe11:d

if it defines the next shift in the objective hyperpiane.

It is to be noted that the highest node in the tree rep~

sents the largest value of the objective function ZOo EveI"Y, node
•

vill be associated, with a variable. The node ZO is rese~ved for the

variable ~. ,It is possible, hovever, that more than one node m~ be



brlUl~h fr<ml. the node ZO fNl1\ 'vhich Zl' originated,

:.,", "
'.

If. l\t .the n"de. 1'.1, the solution
. \.....-- -\.. '.

Othervise, N\ augmehtation Prb-

..,

If.l· dl'ne vith l), .. v '+ 1 (seo figure 2).

gives Zl, then al~entnti"n is done with

Fil:'ur<' ~ il1.l-is.t:ntl!s. thl! ense vhm'e ?,1 is given by

ZO

"

v - 1

-, ,,'

'lop

'-1 Figure 2

, "
"

\~ c [xpl- + 1· c v. In. the l\ul:'Ulentation ptoeeduro, the value "f Z1)

due to tho augmentation branch is noted ns a node.

-Then, for the noxt shift another'vnrinble, Bay XQ.'i is taken

for in'tegraUty consideration. "rhe node Zl represents x. Let
, . Q.

X~ by the optimal non-integer value of xQ. corresponding to 1'.1, 'rwo

branches are then drl\\l\\ from 1'. 1 vith XQ. C [X*J and x c lX*1 + 1, and
'r q. q q.



'. 8,

{
the. ·corresponding values' ,?f ZQ. nMlely Zq Md Zq" are represented as

nodc.s. Then labelling is done bY' selecting Z:I.· from ~OngS,t all

the unlabened nodes as the one haVi~argMt value o~ Zo (see, ,

figure 3). If at Z:l. the solution is all-integer, the process ends.

~,-,.....

to generate a nev

ZO

,

~ " .
~

Figure 3

This is follovcd by an exploration for a third variable for
. .

integrality consideratio~, provided z:l. originated from the node as-'
. , '. ." f'

sodated \lith ltq ;, other,,~se, if 7.:1. originated from a node associated \lith

~, then, after ,~~entation, xq is reconsidered for the integrality condition.
, .

The procetlures of exploration, ~ugmQntation, .and<'labelling

B ••..{ .'
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•

lU'e continued U\\tq an 'Rll-integor solution is obtained•

• It must be, noted that, in applying either the augmentation

, or the efploration procedure, the new branches may give rise to

infensible solutions. In those cases, such branches must be dis-

carded. Furthermore, for future considerations, ,any branch orig

inating from the same node which corresponds to any integer value

" beyond. the ,ones proved infeasible will also yield an infensible
, .

solution,' .
":-.

The main drawback of the algorithm is that, as one goes down

the tree, the number of U\\labclled nodes,increases enormously. If

the problem has a large number of variables, even with a single

constraint, the solution by this me~od becomes cumbersome, some-

times even impossible.

Dakin's Algorithm

Dllls;l.n ( 7} introduced an algorithm to solve integer program

ming problems which is a modified version of the Land-Doig algorithm.

'~he algorithm guarantees that at each node there will be exactly two

branches, In the Land-Doig algorithm, the variables are forced to
(

, take exact integral values. Dakin, on the other liand, suggested

that suitably chosen'boU\\ds can be used to COVer the entire rlU\Se

fm' c~l of the val'iablcs,

The a1&orithm may, in short, be described as follows; at any

titeration t, ~here is an available lower boU\\d, Za , of the obJective,




























































































































































