AN ALGORITHM
* FOR THE SOLUTIOR OF

ZERO-ONE RESOURCE ALLOCATION PROBLEMS

GOLAM MOWLA, M. Se.

. EJ'

A Thesisn

‘Sutmitted to the School of Graduate Studies

in Partinl Fulfilnment of the Requirements
| . for the Degree ‘
Master of Science
‘. NcMaat;r-Uhiveraity

--Septémber. 1975

3

| i © GozAM MoWA /1976

. { ’
Q ' 1
.f l. -

" -

AN ALGORI'I‘HM FOR RESOURCE ALLOCATIGN PROBLEMS

g
!
o
.

.
B N

MASTER OF SCIENCE (1975) : ©+ McMASTER UNIVERSITY!

(Computation) o o . Hamilton, Ontarie
. |

TITLE An Algorithm for the Solution of Zero-One Resource Alloca—
tion Problems . .

AUTHOR: Golam Mowla, M,Sc. (Karachi University)}

SUPERVISOR: Professor P. C. Chakravarti

NUMBER OF PAGES: v, 85 ‘*///////ﬁff\\\.

<"—J

)

L

a——

. ." _\.‘ _. ‘I_‘ | . ‘ . y . . . - | - -] »
“An algorithm is developed for discrete optimization'of‘ o B '

3

zero-one resource allocetiOn;praiieme; A Bingle constraint problem .

is first formulated in dynaﬁic programming B formq&etion then

undergoesg a number_of modifications.to develo _the algorithm, This
.algorithmwleeds to‘aflignificent‘reduetion‘in computatiopallrequiie—
ments as compared to. the dvnamic programming method Thfee theereme-
'and .several lemmas are proved which are central in meking the algorithm_
efficient Different relevent featuree are included’ in the study to

[extend the algorithm to solve problems with more than one conetraint.

+

A : 11f

R4

B e T S

- this thesis.

ACKNOWLEDGEMENT: - * _

"1 would like to_thank my supervisor, Dr. P. C. Chakravarti,

for his proper gﬁidahce and'superi&sion during the ¢ourée‘bf this“

work and in the preparation of this tHesis.

T would also like to'thank Ken Chapmen for his excellent
typing, and Hﬁipn Murshed for his invaluable aid in proofreading

! i

N

»

Bl

TABLE OF cONTENTsf"”

VOV

- 1. INTRODUCTION , '
A The. Cutting Plane Algorithm of Gomory -
. The Land-Doig A.'lsorithm .
- Dakin's Algorithm U S
.- The Zexro-One Algorithm of Balas R 2.
. Generelized Lagrange Multiplier (GI.M) Methoq of E\rerett a8
Ka.pla.n 8 extension of Everett 8 ‘GLM me‘bhod T - 19 .
T 2 A REVIEW OF DYNAMIC PROGRAMMING ‘I‘HEORY SN U 22
S . . 2.1 Multistage analysis . . } -7 23
: 2.2 Multistage decision system : 26
2.3 Development of the Recursive Equations 29
" 2.4 Characteristics of* the Dynamic Recursive Process and .
}) the Principle oi‘ Optimality BRI . _ _ 32
' 3. THE SOLUTION OF THE ZERO~ONE SINGLE CONSTRAINT IN’.I."EGER PRO--
- __— GRAMMING PRO'BLEM BY USING DYNAMIC PROGRAMMING =~ - 31I_ '
. " . 3.1 Basic Dynamic. Programming Formulation : 35
. . 3.2 Computational Scheme in Dynamic Programming 36
3.3 Step by Step Procedure for Computation Uslng Dynamic
- Programming ' : o _ 38
h A REFINED ALGORITHM FOR THE SOLUTION OF THE ZERO2ONE SINGLE L.
l CONSTRAINT INTEGER PROGRAMMING PROBLEM . - B ' 1
4.1 Lemma 1° _ L - 43
4.2 Lemme 2 = o .. bl
=y L LT T
Lemma : S T : '
N : L.5 Theorem 1, o . b7
: .. * 4.6 Definition of Ui ; : o ko
} 4,7 Theorem 2 . t :
) A "_hBTheorem3 C Lo _A52j/
S . - k4.9 Discussion. of Lemme.s and Theorems : SRR 53
: ' .. 4,10 The Refiped Algorithm, N R 55
‘...”‘\ l . 5 }.11 Step by Step Procedure for the Solutlon of Pro‘blem)
R - 5 (4.1) by using the Refined Algorithm 5T
o B lt 12 Numerical example o ‘ . -
‘ "/ q S A!I APPLICATION OF THE REFINED AI.GOBITHM T F.?\OLVE LOHIE—SAVAGE _
b . TYPE PROBLEMS.WITH EQUALITY. coué 66
- ' . ' ‘5.1 Reduction in number of veriables L 69
5. 2 Solut:l.on .of the Lorie-Savage Problem . 69
6. THE.RI_T‘INED ALGORIT}M AND THE TAG GE MULTIPLIER TECHNIQUE
. . FOR REDUCING DIMENSIONAIL _f‘, T3
. 6.1 The solution scheme for a constra.int'problem - Th
-~ . . 6.2 A numerical example - . L 76
7. CONCLUSIONS 80
BIBLIOGRAPRY N -}
v

CHAPTER I . - -

. “INTRODUGTION .

o s .;l‘i_= “; o l“ d ; :h]‘
‘There are’ many real 1ife situations in which adclass ofigznear
o prcgramming problems are restrictcd to have integer soiuﬁions for the j;
":lVariables as well as . the obJective functions. Thes{ are called allh‘
"1nteger problems An important type 6f this class of problems is o

the one in which the variables are restricted to the values zero or’

one only. Maégéi?tically, ve write’ . o el
e : - ™. n Tz o . o
' maximize. Zo = Zc Xy - L _ '
2 =t ' R .
subject to z 1, iy Xy £ bJ _ j =1, ;._’ m"wuL (1)
xizo’_ll‘ i=1, s 1

-These:proclems are known as ze;ofone integer progcamming probiems.
‘fhey.arige in rcal life situations in which acveral pct}vitiés are
competing for iimited regources. Typically they .are capital budgeting
'problem; knapsack problem, travelling ccleéman.probdcm, ete. \
. In view of the impof?&nce of_the‘éroblém defined by (1),
<—V several methods for its solution have beel_l.put.i“c‘i;,ya.rd,in 21, 1 .T].’,
[10] s [[17 [19] 20] s [27], [30], and [3‘1]_ by the resea:-x.r_ches;3
in the f;eld of optimization.‘ Thesc-methods can be divided into tco
'classcs- (1) those which arc-indcpendedt of the Lagrange multiplier
technlque, and (i1)- those- which are. based on the Lagrange multiplier

(5 technique. Each class) of methods can be divided into two subclasses:

-1.-

(a) those applicable to the solution of integer programming problems_
,(including zero-one integer problems) in general ‘and (b) those appli—
4

cable to the solution of zero—one integer programs only. The bétter

known methods of class (1) (Teha, 1971) are given.in Gomory [19], [20],

Land end Doig [34]; Dakin [7), and Balas [2]. of these, [19], [20], [3h]

[TIEbelong to subclass (a); and [2] belongs to subclass {b). The

méthods'in.class (11) are g¥¥en in [;O] and [30]‘of'whi¢h [10] beidngs:

to subclass (a) and [§ fto_subclasé (b).

£, _ o . =N

The Cutting Plane Algorithm of Gomory
’ ' ' '.J.

‘ Dant;ig'[B}_apggested‘the'cuttiﬁg plane‘approaéh for solving

integer pr_ograms.. Gomory (_[19] and [20]) deweloped Dantzig's 'approach

 into ﬁ systematic algorithm for the solution of both inﬁpger and

mixed problems. In order to apply this.algorithm.to zeronone-integer

problems, one has to add a constraint x; € 1 for each x (i =1, SRRy n}.

The algorithm makes use of the dual sifiplex method. The 1m5'
& A
portant aspect of the algorithm is that it constructs secondary cons-

traints cal%ed the‘Gomdry_Constfaints. Thése-constraints,izhph
added to the optimal nqn;integer.sdlutién, will effectively cut the
sblution space oward.the rgquired resﬁlt. A basic.requirémént for
this algorithm'is that all the'coeff;cients and the right hand side
copﬁtant of each constraint must be ih integer f;rm.- ' 4

The algorithm is cerried out in the following way. First the

. : . N . v - . ?
problem is solved as.a regular linear programming problem disregarding

“ 4

the integrality conditionsi If the optimum solution happens to be

‘all integers, the goal is achieved. Otherwise Gomory constraints which

v

o will force the solution toward the integer point ere developed as’

' follows.

Let“xi‘(z = 1, v.ey n} be the basic'variableg,.and\sj'be the -

nonbasic variables in the'optimEl simplex tablead. Let the value

i,

: of X, as obtained from the optimal simplex tableau for the noninteger
solution be given by

. . ?'J A) . .
X, =4, -~ ess, - . o - - (2)
i i J=1;i J - o ‘ :
- ﬁhere di are non-integer, and ei are the coefficients of the nonbasic
variables for the jth constraint.
. . Let d, = Ldi] + Iy |)
& ‘ 3= d ;. .
_ ei [ei] f* fij _. |

khere [di] and [ei] sre the largest integers contadded in di and ei

i

tuting for d; andveg in (2), we have

respectlvely. It follows that 0 < £, < 1 and 0 ¢ fii'<‘lﬁ jédbsti—

) . ’ .Am .
_ J
= [qi] + £, - jzl([ei] + rij) eq

or . ' »

. m ‘ _ m J)
f- Doy e - lad v 1 ledley (3)

Now, for all the varisbles x; and s, to be integer valued, the right

J
hand side of_(3) must be an integer. This suggests fhat the left hand

side of (3) must also be an integer. Since 0 <.fi < 1, and

\

‘% -

S
z fiJ J > 0, it follows that a negessary condition is
£ <o by
ziaa o (h)
S . ' . ‘ me
This is t?ue_sincerfi JE fij J < 1. But since fi.—.dzl:fiJsihis:

an integer,Ait can‘either be ;efo or a negative integér. The relatian_

(4) represents the so-called Gomdry Constraint.

L

The new constraint, (h),- is put at the bottom of the tableau

in the form : .,

Zf —i-" o (5)

A

‘where vi is'a'nOn-negative slhck variable which must b? en integer

by definition. This constraint equation defines the so-called

- Gomory cutting plane. The new constraint, when added 40 the previous’

tebleau, makes the solution infeasible due to negativity of its

right hand side. Then the dual simplex method is applied to remove
this infeasibility. If the new solution, after applying the dual -
Bimplex method, is all—%nteger, the process ends, Otherwise a

new Gomory const{aint is constructéd from fhe‘résultipg tabiéan'and
thé dual simpléx method ;ppliéd again to remove thé infeasibility.

The procedure is repeated until an all—integer,soluti&n is achieved.

-

" The Landfpoigfglgorithm 1 _‘ ‘ : -

: Lend and Doig [Bh] developed an algorithm for 501V1ng integer
'programming problems The Land-Doig algorithm is carried out by
successively meking parallel shifts in the objective hyperplane
toward the interior of the sol_ution Bpege such_fhat each new shii_‘t
will generate an integer value of et least_pne-variable. These
shifts are made in an ordeely manner by successively applying an
explore7iebel-and—augment‘procedur Bo'thaF.e sdperior‘integerl
point‘in the solution space is neve ~passed. Thus, let Zl, Z

.- Zk represegt the values of Zg cprresponding toiphe.first, second,

. 1 L
v.. and XD shifts in the objective hyperplane. The optfmm solution

ie reached at the kth shift if, for the first time, all the varisbles
assume integer values. * B . . o

'The procedure advanced by Land and Doig is essentially enum-
erati;; snd starts By finding ehe solution to the problem‘neglecting
the integrality condition. If an mll-integer solution is achieved,
the process ends. Otherwise, let 70 ve the corresponding value of
the objective function. A verisble, x_, is selacted for integrality
eonsideratien and let x; be its optimel non-integér velue_corres—
ponding to-2° |

Let Z' specify the first shift in the objective hyperplane,
and?[x*] be the largest integer‘value included in x;. Let Z, and.
Zp, denote the optimal valpes of Zo corresponding‘to he linear pro-

gramming problem subJect to the additional constraints xp = [x;] and

- _ | |
[x* s respectively _ L L o e

»

" The determination of 21 can be achieved bf using the concept

"

0

of a decision’tree. The firsﬁ node in the tree is reprgsented by

2%, Two.pranches corresponding to x, = [x;] and x_ = [x;] + 1 emanate
_ 1 : - o : -

P.
from this node (see figure 1).- + . . : .

a

The generstion of theée two branches from a node is termed exploration.

The end nodes of these two branches will be identified with Z end

Zp. respéctively. This yields 2l = max'{zp, ZP,}. It is now said

that the nodeé‘associated with 20 and 2! are labelléd. Figure 1
, illQé?rates the case where Zlh: ZP,. In_general; & node is labell;a
if 3t defines the next shift in the objective hyperpiane; ‘
It is to be noted that the highest node in the tree rep[?-
sents the largest value of the obJective function Zg. Every node

will bg'ansociated.with a varlable. The‘node ZO is rese:ved for the

varjiable xp. It is posgible, however, that more than one node may bé

> | *,<:/

.-

nssocinted with thé'snme vnrinble.- If, at the node. "‘. ﬁhe solution
iw all-integer, the process enda. '-Oﬁherwiae‘ an augme tution pr&— ,
ccdure is npplicd nfter 7! has been labelled, to gencrnte o new’

B

branch from the uodo Zo from which g} o1iginnted. Ir xp = [x‘] +1=v

5l hon nugmontntion i done vith Xg v+ (see figure 2)

© Qtherwice, if xp = [x;] ey gives Zl. then nugmentntion iz done with

Figure 2 illustrates the case vhere %! {s given by

v-l | v b oew

U : L -

2
P

Ty,
Figure 2

xl = [xp] + 1= v, In the. nugdentation pfoccdurc, the value of 24
due to the nugmentntion brnnch is noted ns n nodc

?hen, for the noxt.ahift nnother’vnrinble} aé& xq; is tékep
for integrality consideration. "The node 2! réprqagnta X Let
xa by the optimal non-iptegcr value qf xq correqponding to Zl. 'Two

- branches are then drawm from 2! with xq = lxa] and xq = li;] + 1, and

o

&

7 .'.\ R . j,
the corresponding values or Zo, namely Zq and Zq., are represented as

nodes. Then 1nbe11ing is done by selecting g2’ from amongst all
the unlabelled nodes s the one havidg\tﬁ’ﬁlargeat valuo of zo (aee
figure 3). If at 22 the solution is all-integer, the process cnda.

Otherwvise, the augmentation procedure'is perfonned to genernte a hew

brafich from fhe node from wvhich 72 originateda. .= . S T

o - "

JP%'

This is followed by an exploration for althird #aridble’for
integrality consideration, provided 2.2 originated Trom the node BSe-
soclated uith xq: Otherwiae, ifr 2.2 originuted from a node asaocinted with
xh, then, nfterréugmentation, xq is reconsidereg for the intcgrality condition.

The procedures of axplordtion, augmentation, pndkiabelling

AT ey

BRI Ui DT 2 A AT, o

& -

~ _ o R
o
are continued until an wll-integer solution is obtained.

. Tt must be noted that, in npplyiﬁg'either the augmentation

.or the exploration‘procedure.‘the new branches may give rise to

inféaéiblg‘aolutibnsQ In those cases, Buch‘brgnqhés must be dis-
éarde§; -Fufthermore, for future conqidef&tions,-aﬁy branch orig;.
jnating from the éama'no@e which corraépopdarto ény integer value
beyoﬁdathe ones proyéa ihfenaible.willnalsq yield on infeasible
solution. | | '

S

The main drawback of the algorithm is that, as one éoes down -

the trec, the number of unlabelled nodés,increases enormously. If

the problem has & large number of variables, even with-g Biné;e
constraint, the solution by thie meﬁhod beconesn cumhersome, Bome-

times even impossible.

1

Dakin's Algorithm

Dakin [T] introduced an algorithm to solve integer program-

‘ming problems which is a modified version of the Lond-Doig slgorithm.

“'he algorithm guarantees that st each node there will be exactly two

branches. In the Land-Doig algorithm, the varisbles are forced to

B ’ - r’ -
. take exact integral values. Dakin, on the other hand, suggested

that suitably chosen'bbunds can be used to cover the entire range
for CQSF‘OT the varisbles.
The algorithm may, in short, be described mas follows: at any

iteration %, there is an available lower bound, Zut. of the ob)ective.

>

10
- 4
function for an all—integer aolution. In. aadition to the lower
bound there is also & 1ist of linear programming problems. At
iteration 1 the 1iat contains only ‘hhe orig:lnal problen disren
garding integrality restrictions.‘ Let us call it problem Pg.-
If the oolution to Pg. is allninteger, the prooess ends.

Othbrwise, let Zo = 0.. A variable xp, having a uon—integer solu-*
tion x-IJ = x* is nrbitrarily ‘chosen for integrality conslderatlon
THE problem Pg is then replaced by two problems, each having one of

= . . nd

the constraints,
% < bxp!
. ‘
and xp 2 [x] + 1 -‘ L
added to problem Pp.. Let these two problems be called problem P
and problom Ps. By conoidering these two new problems, one is
_actually‘tnking into account all the possible integer values that
may be geoerated for the varisble X, If bobb of the problems give
all-integer solutions, the process ends with the best solution as
optimum Otherwise, furtﬂer problems are generated by consideriqur
a non-integer varisble for integrality. These problems are ‘pdded
" to the list and are considered éne at a time
In general at eny iteration t’, we take out a problem from
the current list of problems, and thise is then:oolved If it yhas
an infeasible solutionr then it is disoardod. If the problef yields

a solution such that 50 g Zot, then it is also discarded. In both

. "n . B
these cases, ve set Za % = Zo then we.do ‘the following.

11
. L0]
(1) If it is an all—integer Bolution, then ve keep a record
'of the solutlon and set Zo . Zg . : e .

(ii) ﬁtherwise, we arbitrarily choose a variable which has a

>non—integer value for integrality consideration This adds two

—_—
-

e) o
new ﬁroblems to the list of problems, eath conyelning an additional. Ejqu\—/
constraint, as described-above, gdded to the\;i;:Int'p}obleﬁ~_ |
The process continues until the 1ist of pfoblems is empty.
. s
At termination, if a feasible solution yieldihg Zot is r;corded,‘it *

i

‘is optimél; otherwise no feasible solution exists; . - «
The method is applicable t6 zero-one integer programmlng
ﬁroblems. In that case, the nev problems are generated with the con~
straiqts X, = 0 and xi = 1_£or all i. The eqpality restrictiOn-for
the variables resemblescthat in the Land—Doig'aléorithﬁ. _
One esdential differencg between this method and the Land-)
Dolg algorithg;is that it does not need the augmentation procedure
at every node. Also, the Land-Doig algorithm does not discard any
unlabelled riode, whereas the special leatures of tﬂis algori?hm
often make it possible to avoid furtﬂer‘branch geneéétion. .
The method works well in problems with a feg variables, but
if_tﬁe number of variables is large, or if ‘the solution to problem
Py is far from the_optimal integer solutio;, then the number of

problems generated may be too large for a practical application of

the algorithm.

- - for solving zero—one integer programming problems ' His algorithm is

-12

The Zero-One Algorithm of Balas

' Balas [2] has developed an additive algorithm specificelly'

enumerative in nature and starts by aetting all n variables equal°

to zexo’“ It then successively eesigns the. val one to certain

varidbles in such B W&y thet, after trying a part of ell'the 2? poOSS~
ible combinetions one obtains either an optimal solution or evidence
of the fact ng;% there existe no feesible solution. The echeme re~ -
mained cumbersome until Glover [171 introduced the idea of back-

tracking, which was later implemented by Geoffrion t13

To carry out the Balas method, the problem is conugrted into

the minimization type with all the coefficients in the return func-

f£ion as positive. The conversion is made by simply substituting

(1 - xi) for all those xi's which have negative coefficients in the
return functiOn. The starting solution for Balas' algorithm is the
game as that for the dual simplex method, yielding

0 = -0
SJ bj and Xy 0 for all i, J

where S,j0 are the initial values of the slack "variables.

The algoritim is curried out in three sé/\gj Before des-
cribing the steps, we introduce the following notations '
at any iteration t 1et
o

N = set of subscripts for all.ri variables

I = set of” subecripts of all the’ Xg varidbles assigned

th

‘!

=

- 13

/Qvfinhry value. Elements in it constitut gZpértial'Sqlu—'

tioﬁ?ei the tt iteration
s 7 N :
! Sjt = value of. the slack variable Sj of the 3 constraint

L‘ .

L et iterstion t. L \

. IQ = by definition

N - It_? set of subscripts of all free variables not in—-

TN

Ht = set of subscrip g of the *y variabies selected from

N -1 which are candidates for improving the solution

& Zmin minimum value of the'objective function out of sll

feasible solutions obtained so-far
Zmin = e, in¥tially.

Step 1: determination of. the entering variable

". Given N and I, the entering variable is determined from

N - It in two phases:

(i) determining the set Nt'of the subscripts of the x; vari-
ables supposed to improve the solution, and

)

ere

(11) possibility of obtaining & feasible solution (S

ir all the variables whose subscripts are in Ht W

assigned the value 1

This is carried out by performing two

At phase (i) we determine N, -

tests, (ia) end (ib).
(1a) For any free variable X, such that p € (N ~ I), if

‘). ";3.','0. for all § for which 8

if, by edding it (i.e., setting it equal to 1), the resuliing new

' value of tﬁe*return ctiomr is greater than or equal to Zm

'If N_ = ¢, then partial solution I

"

: o, : “
< 0, the new values of 8, will be .-
Jp J _ o J _ ;

giVen by

L Sy T8y -~ Ly 9‘ 55 ¢ 9 :.; o -

after xp bhas been set equel to one. This does not'foréé'any negativ

S, toward the feasible space. Then, denoting the correspond
: . , : . o

J . .
of indices for such,variables‘as G, any variable x such that p § G, -

should be éxcluﬂéd éa a non—promisiﬁg‘variabie.

(id) Given Z_, as defined above, let

. : min .
Z, = I TeLXx
t \ier, £4%4

be the current value Q;nfeasible) of the return function. A free

’

variable X0 such that i’ E’(N-—'It)'cénnot improve the solution

"\v/"’”;*jy
.. This ,
1ln :

means thet free varisbles x,,, f£or which the inequality

i

is satisfied, should not be considered for entering the solution.

Denoting by H£ the set of subscripts of such free variables, then

' ’ . i .
. the set N, of the subscripts of the variables improving the solution &\,

.t
is given by - .

Ne=N-I - (GtLJHt) : .

" bas no better fessible comple-

tion. I, is said to be fathomed in this case. Theh backtracking

is needéd. Otherwise we proqéed to phase (11).
Phase (11) is also carried out by performing two tests.

(iia) Let us consider any constraint }:

n ’ . . -
i_-{‘iljixi‘:f SJ_ = ba‘ : - ..

If for any th?e'o; the copdition
L s | .

S ¥ 1,.> 8, ,
PO

. B . <
- . lﬂi 0

‘1.

is satisfied,‘then Nt should be absmdoned because all sﬁdﬁ/;;;}elﬁﬁg;'

whosé subscripbs are in N, cénnof.bf;ng'feasibility to ‘the solqtion.

-~

This is sgein equivalent to having Nt = ¢ so.thaf It is‘fgthomedfénd

backtracking is needed. Otherwise, (1ib) is checked. -

_(1ib) Let us define

t

. . \fit =‘ Z nmin .(0, S'J .- 131)

all J

We compute vit for all i G'Nt‘ The quantity vit gives a measure of

. + B - ' . -
the total infeesibility in §Jt 1 after Xy is gset to 1. The entering °

“variable is then selectedi\as X such that

t

- L
vk = max{vi}

iENt .) | : R 2
The new partiasl solution'It_l_1 is now obtalned bj qugmeﬁting It by
{x} so that i

Tean ™ Tt U {+x}

= {It 5 +k}

o

L 16

' The next step at this point-is 40 branch to step 2 for the determina~
- . ’ .) ! ’ > '
tion of the ew. values for S je., 8 anaz - R - ‘
on 0 new s.‘ 4 1ee0s 5y : in _
Step 2: determination of new solution
Given It¥l as determined from step 1, then :
' o i
21 . b ;
s = 3 -1
J J Jk .
and Zt+l = Z'b + Sy .
Now . '__ S ’ o b
I o
{2a) if-SJt 1, o, for all j, then we set N
= - K
ezmin Zt+lg . o ‘ ol e E

This means I, .4 is fathomed and backtracking is needed.
(t+;]. . - N
(2v) if eny Sj ,< 0, return is made to step 1 for a new

augmentation 61';t+1'

Step 3: Backtracking and determination. of optimﬁl solution

Whenever a partial solution It is fathomed, backtracking is

required. The pfoce ure of backtracking will terminate only after
" ! 4 . oo - .- . - . . * !
g1l 2" solutions hav implicitly been enumerated. At any iteration %,

let "ﬁﬂk'

o

I, = {+1, +b, +5, +6)

Vhen I, is fathomed, we write, after backtracking

1T

s

" If I,,. cannot be fathomed, then a variable, say x

Then ettempts are made to fathom I

_until, at some later trial t',I

17

Losy = 12, #h, 45, -6}

" which meens that all elements1of It+i'are 1 éxceﬁt the one with the

S _ . , e -
negative sign. The conversion of a positive element'into a negative
element is always right Justified.’

In the general case, the right most positive elemént'o-f‘It

is made.negatiﬁé and a}l the negative elements to the right side‘of_

it are deleted. If I is fathomed further, then we write

4+l

"

V. ‘,It+2 = {+l! +1‘"a "5}

- 4

is included with-

t+1 9°

~

a value of 1 to augment it ahd wve get

! I.t+2. = {+1l +h’ +5’ "6’ +9}

£+2. This prqcess is repeated

£ is fathomed.

The proceduré of backtraéking is repeated as necessary.
Backtracking is complete when all the elements of a fathomed partial
solution are negative. At this point, a1l 2" solutions of the =

problem have heen effectively enumerated. Lo

“» The algorithm is different from the previous algorithms in the

‘sense that it requires only addition and Bubtractiop to compute the

result. However, at every iteration, one has to perform a number of
tests. As the number of varisbles in = problemlincreaags, the algor-
ithm needs a larger number of .iterations for' the solution to the

problem.

S

7 .o . ‘. \-"\lA . '/::] . .)
'Generalized Lagrange Multiplier-(GEE’ Method of Everett R

Everett [10] made an interesting study in the fieldtof
_integer linear optimization. He established the fact that, in fav-

orable gituations, the Lagrange multiplier technique can be applied

to solve integer linear programming problems

-

‘He observed that if the solution eet {x*}cx where Y 18 the

get containing gll possible solution aeta {xi},;maxim1zes the un-
‘constrained Lagrangian function

n- o

I-Cixg - ExH“ 18

: i=1 =1 i=1

where tne m constants 13 are non—negative multipliers and Ci and

1., are integers, then'{xg} is a solution to the constrained problam'

maximize E C. xi : 1
. i=1
such that | s | ‘~.(T)
n . '
* = ‘
{ 1Ji g € izlljixi J=1l, ceesm

.In general dlfferent combinations of Aj'a in (6) will
lead to dlfferent solutions and it is neceasary—to adjust them b&
trisl and error to determine if a glven se t of constraints is adequate—
1y satisfled |
The 1dea put . forward by Everett does not say anything
bout the menner in which one .can obtain. the maxima of the unconSH

‘trained Leagrangian functions. All it says is that if one can find
'1‘_) :

;;;) |

the maximm of the modified function (6), then it is in fact a

.
sdlution to the modified constrainéd problem given by (7). The
method does not guarantee that & solutinn to the original problem can
alw&ys be fqund; Because of the slmplicity of the method, it is

widely used.in'practice. It has also been~asserted that the method

sucdéer in obtaining'a gatisfactory solution to & given problem in

-

a surprising frection of cases.
.] b

Kaplan's extension of Everett's GLM method

Kaplan_[Bb],has extendgd E@erett's method.for solving the
ZE;O—pne integer progremming problem defined by (1). He makes use
of the procedure originally outlined by Lorie andeavagé [35],which
calls for tﬁe iﬁdépehdently maximizing éach of thé n fﬁnctions
| m

Y= Cxy - 12 33354

i=1, ..., n
J=1 '

"where each’'A, > 0 represents a‘mult;plier}

J

:Since the only possible solutions are Xy = 0 or x; = 1, each

of the Yy is maxiQized by choosing x, as follows:

x; =1 if B, X AJ 41> .l

x; =0 if 8, = Z AJ e

The solution obtained by using this'procedure is indeed

20

‘jdentical to the generalized Lagrange multiplier {GLM) solyTion which
maxinizes the Lagrangian function given by (6).
For actusl calculations he uses the following fact which

is an extension of & theorem due to Everett

If for eny xi = 0 {or xi 1) in e GIM optimal solution,

the correaponding Bi is less than unity in absolute value, a new

optimal solution will be créated by 1etting x = 1 (or xi(1 0) and

.keeping all other variables as they were. More generally, variables
from an original GLM solution can be\dropped or added to form other

optjmel solutions, so long as ‘I |Bi| < 1 where I is the set of ‘the
' . i€l - il

'Ltdlbscripts’ of a.11 those \;aria‘bit"es x; which are dr.opped:; added. ALl
other variables not in the set I are'kept at the‘GLM solution levels.
By using&this procedure, meny optimal solutions to
problem (1) having different constralnt values can be generated One
can then choose the solution wﬁ@ffl::nstralnts lie closest to the
origlnally Sp&leied constraints ' may be noted that the above
procedure 1s not’ guaranteed to produce an optimal solutlon £o the

(gxiglnal problem.

L In this thesls}'we deVelop an algorlthm to solve single
constraint, zero—one intéger programming problems The specific
problem‘is formulaped in dynamlc.programming. Several lemmas and
theorems . are presented'in this tbesia whicn modify the dynamic pro-

gramming formulation of the problem, These modifications enable us

to develop the npew algorithm. |) -

- -

problemo having more than one constraint

S -
The apeciui fentureerof'the algorithm make it{poeeible to -

nchieve'n‘substanti&l reduetion in computnbionel and storage require-.

ments’ as compared to the dynemic programming method The most import—-

-

ant feature of the algorithm is that it achieves a eubstnntiel re-

duction in the number of entries for the state values.
We then consider the solution of multi constraint zero-cne

integer. progremming probleme. It is well known thut' in dynamic

progremming, as the number of constraints increases, the computa—

‘tional difficulty increases exponentielly This problem can be

avoided Dby applying available: methode to either (1) reduce a multi

conetrnint problem to & eingle oé;struint one with a large range for

e

_the state values, or {i1) replace the multi constraint problem by.a

large mumber of eingle conetraint:problema. :
In both cases, the refined -algorithm is found to be very

effective in reducing the total amount of computation and storege .

‘space required to achieve the optimal solution.

In chapter 2 we add & review of basic dynamic programming
theory. In chapter 3 we rormulato the.problem in dynamic programming
and diecuse the computotional scheme in dynamic progrumming. In

chnpter } we first etate and prove three. theoreme and four lemmue

which are employed then to deVelOp tre refined opithm. Chapters
5 and 6 deal wibh the epplication of the re ined-algorithm to solve

Chnpter T ends the

thesis with concluding remarke. -,

18

—————— e . . -

CHAPTER 2

:A REVIEW OF DYNAMIC.PROGRAMMING THEORY
"~ The most important factor in secientific decision making is to

build up a mathematical model. Once the model is buflt up, an - -

' appropriﬁte optimization technique 1s applied to solve the ﬁodel.

Dynamic programmiﬁg is suéh an optimization technique used to solve
complex optimization problems. Basically, dynamic programming is
a multistage decision-making tool. It éonvertg a multistege decision
problem into a Beriesuof single stage decision problems.
"Dynamic programming starts with a small portion
of the problem and finds the optimal solution for this
smaller problem. It then gradually enlarges the
problem, finding the corraect optimal solution from °
the previous one, until the original problem is
solved in its entirety." ([25] p.2k1) :
The bééic principle of dynamic prqgrnmming_lies'in two
f
processes: decomposition and composition. The process of converting
Al ’ .
a problem intoc a numﬁer of suhprgblems is called decomposition.
Then -each subproblem is solved, and later their results are combined
to compute the resﬁlt of the original problem. This is called
composition.

For a complex problem, if the decomposition-composition

principle -is followed, the resulting comﬁutntional scheme may

turn "olitto be more efficient than bY”solviné'thé ﬁrohlém in o
t : o s
single stage. The dynamic programming theory is based on developing

"recursive equations which are in turn based on a number of véfi“

- ee -

23

ables. Before developing the recursive eqﬂetioes,_we discuss the
concept of multistage analysis, multistage deciSien sy;tem, and B

- pumber of definitions useful in the development of the recursive
.equations' For a more detailed analyais of these topics, reference
can be made to [3],], [6l [11] {a2], [aa], [ah] [26], [38]
‘and {1

"2.1 Multistage analysis

~

The solution of & complex problem with the aid of the multi-
N ‘

stege approach lie in‘fipding out a suitable decomposition into

[y =] .
subproblems. The decomposition cen be carried out through an

appropriate transformation. The transformation may be made in for-

‘ward of 5nckward directions .

r

2;1.1 Forward‘traneforhation-

Leé a problem censiat of n stages and let the system be
1nitially defined by the state Upg; then there exists gome trans—
forme.tion which can change. the{ eyatem characteristic so tha.t the re-

sulting system can be described by the state Un' Iet there.be &

transformation t'n which transformd Ug to Un' We write

1 .]
u, = &', (Vo) . {e.1)

2

',Let us assumé that there is a cértain transformation tn which, vwhen
. applied to a system in the state Unnl’ would change the system to

Un, i.e., ' ‘ o v

o Un =‘tn(Unn1)

- " This is shown\in figure 2.

r

*

To solve the original problem, we now only need to find a

trensformation that will change the system from Ug to Un—l"\&?t

tﬁ-l be such & transformation. Figure 3 jllustrates the trans-

-~

formations that change Up to U .

Ug Un-—(].t U’

'
——| n=l|——r n|—"+

Figure 3 -
Proceeding in this way, we cen show that there are transformatiohé
o o . .
t1y B2y oy tn dhch that they transform the state of the system from

Up to U es 111ustrated by Tigure 4.)

Vg U1

ﬁ_—I‘_ .ﬁ_. _ n_... il ————— e

-

. | . . . ‘ . | ‘ . . . \25
21 : ' ' '

Thus, to arrive at a solution, it may be necessary’to break

up the problem (2 1.1) into n Bubproblems, vhich are as follows:
j> 1. = t,1Up)

2. U2 o tz(U])

1 U, = ti(U

1)

i-1

2.1.2 Backward- transformation

if we have reached a state Un of the system from the state
Ug, then it is~possible to construct an inverse transformation ta‘
arrive at Uy from Un' Furthermore, g%:en a system atista$e Un’ it
is possible to arrive at the éystem defined st the state Ug through
- a series of transformations. This is_qalled backward multigtage

problgm solving. Thus, we méy obtain the following scheme:

U_ | 1\ U, M U = Up
n .tnl n-1 |th-l e i,1%5 i1, ... _Uita .
Figure 5 ©
The corresponding subproblenms are:
1 U, 5 = t)
_ n"‘i. Ui = ti““l(Ui"'l)
-

26
n—1+.1 Ui-ﬁ. = ¥1(U1) - .
] A - ;
"l N
- . n Ug = :El ‘-Ul)

Definition 2.1: Each subproblem i (i =1, ..., n), into

which the problem is decomposed is called a stage.

Definition 2.2: The decision making at each stage.involvgs'

the selection of one 'of the alternatives of the stage. This is

referred to as stage decision.

~

Definition 2.3: The stages in a problem are deﬁendent. But

it is necessary to treat_theﬁ éeparately. That is, wé néed to sépar—
ate the stages. This is done by the concept of state whicﬁ summerizes
the status of the system at every siage (with regard to the limita-
tiﬁns that bind ali the stages) which will permit making a feasible

decision for the current stage.

2.2 Multigtage decision system

In the previous section we have discussed the multisisage

problem solving approqch} In-this section, we further develop the

approach to fif into our study. We achieve this by introducing .the

concept of decision meking into the multistage problem solving

.S’_~

techciqpc. -

For ac n stagc dccision system, fhc systcm at any scage i
is characterized by the foliowing factors |

(1) A state, Uj, that gives the status of the system at
any stage 1.

(2) A dec151on variable, iQ.that controls the opcration_of
the sfstem at any stage i,

(3) A stage return, r; +hat measures the utility of the
system at stage i, 1.e., T is a single-valued function of the

decision ‘variable xi'and the state Uj.

2

r; * ri(Ui, xi)

(4) A state transfbrmatzon, ti, which is s single-~valued
_transformation at stage i. The trepsformation ti is sometimes cailed
the stage- coupling function (or stage jnversion} such that, given
the state U, st stage i and its optimal stage decision X, one can

deter?ine ﬁ;zl. We write

U, - = ti(ui, x

i1) o | o | (2.2.1)

i
" Phus e serial multistage system consists of & set of stages
which are joined together by equation (2.2.1),such that, in general;

the state Ui summarizes the status of the system atlftagcs i, i1 \\‘ﬂﬁ

- L

otumnanded —_

P

From (2 2,1) it also follows that the state Ui at stage i

depends on all the decisions made prior to stage i. Typically the

decision &t the first atage in a dynamic programming formulation .

. | .‘_O_ : ;- B - .

5 S L. /. 28
eters tO‘the last deci51on whicﬁ must he made in'd series'of.‘
sequential decisions. Mn general the decision at the current stage

. i refers to the (n—i+1) decision nade in an n—stage problem.

Thus, for state Ui we have Bt stage i+l

Uy = ti+1(Ui+.1’ X443)

‘where %1+1 i{s the state trensformation

T (Crae Upap> *au2)s *141)

’ . =tﬂl(uﬁ2’xﬂ€’xﬁi)

3

= T (gag U %1430 Xpa2> Xyaa)
)

*
1
(ad]
[

1 (Ugpgr X530 Xya22 X141

Ry k & l
U, = 4 (U Xp» X¥pp oo X4 41) (2.2.2)
The return from stage i is given by

ry =1y (Ups x) | i - (2.2.3)

By substituting for U, from (2.2.2) in (2.2.3), we have

(U ? xl 3 *tr > xi+l),xi)

X)) (2.2.)

1t
.H
| %8
5
F3
=

From (2.2.4) it is evident that the return from stage i depends only

'on the decisions (xi, Xgppr o xn).

The totaloreturn R from stages 1 through n i5 some function’

g of the individual stage returns. We write

25
R (Un’ *n? xﬁ—l? "f"xl)'

n-1

(Un—l’ xn“l), cies rl_(Ul. xl)] R

=g _[I‘n (Ung xn), r

' ﬁgnoting‘the maximum n-stage:rgturn by‘f;(Un),‘we_write, usihg {2.2.5)

* = : : .)
_ | fn(Un) ma X 7{5 [rn (Un, xn), ro1 (Un—l’ xn_l),
- _ Xgs +v0o Xy o
o Uy, %))}
where U, 4 = b4 (Ui, xi) i=?, vewy B

This equation for f*(U) will be used in the next section to develop

the recursive equations of dynamic programming theory.

2.3 Development of the Recursive Equations

The formulation of the problem iﬂ dynamic ﬁrogbamming theory
is based on & class of equations called recursive equations. In this
section, we,shall develop the recursive equations by decomposing
the problem

AR W

: 3 = ’
£ (Un) xﬁ,? x’xlg[rn (Un’ xn), Y (Un—l’ X 4
¢
L, malty, x)] : (2.3.1)

SR (U %) 1= ™
vhere U, . ti(qi’ xi)_ i. 2, «.o5n ¥

into n equivalent‘subprobiems, each characterized by only'one

e ————————

state and conteining & decision variable Each of the subproblems :

will be eqpivalent to & oneﬂstage optimization problem.

30

We shall apply the'multistage problem solving technique to
decompose (2.3.1} into n subprohlems. To achleve the decompositlon, -

€

we make a highly: restrictlve assumption about the function g. Here

we BUPPOSe that g is additive Let = . - o ///,ﬂ___) “if

e _ [r (U » Xy) : (Un P ﬁ—l)"""’ rx(Ul,xl)]
M .= rn(Un, ‘) + r 1(Un-1’ n«l) + ...t rliul, xi)

_Thus we have) ' 1\v.

f*(U) =
n(Un). xi,?.%, llr (U » *n)+ Tn 1(Un—l’ nal) e

.+ (U ' : '
rl(1 xl)] ‘ . . (2.3.2)
where U =_€_ (U, x) 3=2 w0 ®
Since thglnth.s;age return r, (ﬁ » X,) does not depend on X 1, > X1,

(see 2.2:4), therefore we cBn write (2 3. 21 as

(U) = max [r (U, x)+ me X fr (U4, X) +
n'n X, nl n* 'n xn-l’i"?xl n-1 n—ll, n—J1

-

.+ Uy, %))
where U, 5 = ti(Ui, xi) i = 2, ..0s I

Hence, writing

fgélﬁunrl) = xn:i,?.¥,xl[rn—i(un~1“’xn—l) * e
R TI(U;- xljj
we- heve
TR) mgxn‘tt';(:ﬂi—,—xn} + f‘;ﬂl(uﬁ:l)l (2.3.3)

where Unéli: En(Un, xn)

27

s

31 e

), is then simply

The determlnation of f*(U) and X given T# -l(U a1

;a bné—stage optimizatlon problem with state U and dec151on vari—‘

able x_.
=T

We can‘proceed'further by treating f*_ (U _1) end ‘then

% (U,) aees r*(U)-in'the-seme vay, and’ decompose the original

n-2' A-2,

problen into n one—stage optimization problems as’ follows

1) = m§§[r1(U;p x)]
2 ry(up) = mgg[fz(Uz, xz)‘+ ff(ﬂ;)] ’
1) =m0, %)+ L (0 Rl
)
® £2(u) = maﬁ[r (U, x,) + £2 (U)
;' _ vhere U;_; = Ei(ui, xi) L i= é, vees D

The solution of the gbove problems is equivalen% to solving

the following equations reoursively:

1]

f{(Ul) mgilrliul, x1)] | . | w

]

* -
ang £3(uy) m§§[ri(ui’.xi) * fi—l(ui—l)]

H2.3.4)

where U; 4 = { (U , Xy Y i=2, ...y D

.

\-—-

‘ The equaticons in (2/3) represent the usual recursive equa~

kY|
tions in dynamic programming. These recursive equetions are then

28

Nt

.G

s

return function is obtained by,determining the'mEXimum or;T;(Un).

'

32

"solved for gll the stages The dptimaf'returns obtained in the »

present stage are used additively to compute the optimal returns

at the next stage - Thus, in the 1ast stage the optimal velue of

-

Definition 2.4: A strategy, or-a seqnence of allowable de~-

<

’

ciefgﬁp (al, cees X)y, will be called = policy, specifically an
i

e

n—étage po 'cy.' Very typically ‘the decision X, will be the choice of

)

a non—negative integer value of a'single real variable.

f

Definition 2.5: An n-stege policy which yieids the meximum

" value of.some return function will be called an optimei policy. Ity -

will be denoted by xloﬁt, xQOPt, seny X, .
)

2

2.4 Characteristics of the Dynamic Recursive Process and the Principle

. of Optimality

The process of determining the optimal solution to an

optimization problem with the help of dynamic progremming is es- ¢ -

'sentially recursive in pature. The recursive-class of processes

arislng in dynamic programming has the property that after any num-~
B

ber, say k, of the stage deciSions have been mede, the effect upon

the total return due ththe remalnlng nnk stages of the process

depends only upon (a) the state of the system at the end of the’ kﬁh

decismon, and'(b) the'decisions.at the subsequent stages. “To
achieve the total optimal return, we need to conéider only the
optimal return at every stage and the associated decisions. .In

other words, it is unnecessary to consider returns that are not "

optimal st each_stage. After all 1f we are to.obtain an optimal

solution for a syStem,.any portion of the Bystem must yield 8 solu—
tion which is optimal for that portion of the system This is known
as Bellman 8 Principle of Optimality To quote Bellman.

"an optimal policy has the property that whatever

the initial stage and’ the decisibns are, the remaining
decisions must constitute an optimal policy with re-
gard to the state resulting ‘from the first decision.”

[3] p. 83).

s

30°

8

e
1
1

CHAPTER 3

'\

. THE SOLUTTON ‘OF THE ZERO oqE SINGLE CONSTRAINT INTEGER PROGRAMMING |

PROBLEM BY USING DYNAMIC PROGRAMMING

From this oﬁapteroonward, we shall consider a special case
of the problem deéfined in chapter 1. The problem to be considered
heénceforth for numerical sclution will have only one constraint.

This however," does not rule out the possibility of solving a multi~

: L) ,
constraint problem with the algorithm -developed in this thesis.

In some later chopters, different availsble techniques will be appliied

to transform a multiconstraint probleﬁ into & single coastraint one
80 that the solution to the original problem is the same as that

obtained by solving the transformed problem It.sppears that the

solution of the transformed problem with tge help of the reflned

elgorithm developed in this thesis has{fo:k advantag®s over the

Y

direct solution of the multiconstraintlprob;em.'

~

The single-constraint problem may be written as

n . °

maximizé Zg =)) Cyx; Co _ < ' 4

1=1 »(3.1)

J

where'it is assumed, without any loss of generality that

Ci and 1 are positive 1ntegers [17]

Throughout the remalnipg atudy of‘the thesis this problem will he

- 3h -

discussed from different points of‘view

o

35

- In this chepter we. formulete the problem in baeic dynamic

EFEFN A o ..J“__,__...;...a-a--i—’

.

2T

progremming. The resulting computetional scheme is then discussed and

transformed into a step by step algorithm fof‘the solution of

problem {3.1) through dgnamic progremming. <> S

-

/oo
-3.1 ﬁesic Dynamic Programming Formulation

o7
In dynamic programming terminology, the problem defined by

(3 1) may be vieved as an n stage problem ~In our formulation, the

9

state of the aystem et any stage i {1=12, 2, Y is defined by

:the limited resource Uy allocated so far such that 0 < Uy $ b1,

integer Ui The decision variable Xy is restricted to }he values
[#]

. " \\/.
X = 0 or 1, and satisfies the constraint U - li i ? 0.

Let us denote the cumuletive ‘return at stege i from allocated

resqurce Ui by £y (U . Ve denote the optimal values of fi(ui) by

-

f;(Ui). It is convenidht ‘to assume that £8(Ug) = g, for 0 € U € by.

Applying the principle of optimality and using the forward induction,
we nay define the recursive equations for'oUr problem by (3.1.1) and
, (3:1.2);
= ® -{u: .
£,(0g) 2 (0% * S IEUFREL l

vhere U, , = Ui - 1x, i=1,...,0, r(3}1.1)

Ui

’o U € :

© 36

. “ - = ' ‘l)
and fi(Ui) m§: ?i(Ui)'

0V, ¢b), 1=1,...,n -

Successively solving (3.1.1) and (3.1.2) for i = 1, 2, ..., n, we
shall arrive at ‘the optimal solution.

It is ugeful to note that each f;(ﬁi) generated by the rece

£

urgive equations given by (3.1.1) and (3.1.2) represents an optimal
solution to & subproblem of the problem {3.1). Thua for i = J, and

Ui'= k, f;(Ui) gives an optimal solution to the problem

maximize g C.x . .
: 121 i.i‘. . ‘_ \

LY

subject to % lyx, €k L p(3..3)
: i=]))

= Py

The problem (3.1.3) is obtained by putting n = J, and by = k
in (3.1). '

3.2000mputational Scheme in Dynamic Programming

b

In order to carry out the computation of é discrete optl-
mization problem through dynamic programming, we have to build up

tebles of £,(U,), U = 0,1, 2, ..., by for each stage i with

i= 1; 2, ++vay 1 in succession. First Initialization is made by

- setting f;(Ui) =0fori=08and 0 $-Ui < b1. " Then table forumlation

/_/ : -.37

for i =1 thirough nlstarfs. Each table contains values of Ui in the

firet column. Values of £,{U;) for x; = 0 end 1 are calculated for

each row and then a compagﬁson is made row-wise to choose f;(Ui). At

every stege i, the f*(U) cotumn is stored. At the same time, we

also store the value of Xy corresponding to each £} (U NemﬁeuEer
[38] suggests that it is c0nvenient to store xi's as x; = xi(Ui).

The advantage of recordling Xy 's in this way lies in the fact that we

‘do not have to keep & separate column for Ui and also that the corres-

ponding velue of Xy is readily located.

Tt is evident from the recursive equetion that fI_l(Ui_l)'is

Eal

neededAin calculating f;(Ui), {=1, ..., n. The scheme thus needs
"to reserve spaces for two optimsl return tables f;—l(Ui—l) and
f:(Ui) at & time so that as soon as fg(Ui) has been calculated for

* -
all values of/U,, the fi_l(Ui_lkfgqlumn can be replaced by the

column containing %alues of f;(Ui). However, for the storage of

. - . w -
optimm degcision varlables xi(Ui), we must also reserve space for

-

additional n columns. - We continue proceeding in this way until we

compute f;(un = by). We then choose

N

’ f;(ugpt) = mﬁﬁ'f;(pn) | _ o (;.2.1)

- and find out ngt = U_ giving (3.2.1). We also determine the

corresponding xn(U;Pt) = xzpt as the optimal policy for the nth stage.

A

frd

LR el ey

P T

I

38

-

We then follow a. traceback procedure to calculate ng; from rela~

ﬁio¥6 (3.2.2) and (3.2.3):

Uoptql Uopt 1% opt

1.1 A i1 ' (3.2.2)
opt _ w°rPt o
AP = x0T | -&(3'2'3)
for i = n, n-1, ey 2
and succeséivelj'coﬁpute xOPt opt .o oﬁt Thué ﬁe get the
' , n-1* *n-2° °°°° 7 -
. opt -opt !
optimum decision policy X" s e X .

n

3.3 Step by Step Procedure for Computation Using Dynamic Programming

Here we transform the scheme discussed in gection 3.2 into

a step by step algorithm for computation. We ¢ it algorithm 1.

.

Step 1: Initielization

Set 1+ C

Set f;(ui) +—= O.for Uy = 05 1y «vvs by’

. v
Step 2: Tnecrement stage index i and initialize Ui

Set 1 *—'i + 1, U +— 0

Step 3: Calculate (U) = max f (Ui) and store the corres—
‘ i

pondlnﬂalue of x (U _)_

=" » -
Calculate fy (U) {c;x, + £ (Ug 1 xi)}

x4=0.. : x3=0.

v

" . C 39

S {1y —— '
If ui__1 Uy 1, < 0, then set fi,_(Ui) - fi(ui)\x o
o . | =

"and xi(Ui) +— 0.
. . =' ’] PSR & - \ ‘ .
Otherwise calculate fi(ui)\ _ {cyxy +' 13§ (uy 1ixi)}\ _
: ‘ x,=1 ‘ : - x3=1

~

:nd: se@ f;(.ui) Wm;x' {:i(Ui)‘_xf . fi(ui)\;fl}_

* = '
and 1if fi(Ui)' fi(Ui)\x°=0 then set xi(Ui) +— 0, otherwise
i . N .

set xi(Ui) — 1

Step h: Loop on U

If Ui = by, then g0 to sf_ep 5%

" otherwise set Uy -e—U:1 + 1 snd go to step 3.

Step 5: ILoop on i

If i < n, BO to step 23

otherwise go to step 6.

rl

. - op1i opt
Step 6: Find ;ntun) and U

*

. Calculate f;(Uzpt) T mﬁ‘:- f;(Un), save Unopt

~ *
Initialize 1+~ 1 for backtratking.

Step 7: Find x‘;"t by backtracking

opt opt
Bet X3 ‘;-Prxi(Ui)

A
3

f()

36

\

)
‘ ' opt _ OPY _ opt
and ca;culate'Ui_l Ui 1ixi ,

Step 8: Loop on i for backtrabking

If 4 > 1, set i+ 1-1 and go to step T;

othervise go to exit.

%0

e a5

- CHAPTER 4

A REFINED ALGORITHM FOR THE SOLUTION OF ‘THE ZERO-ONE SIKGLE CONSTRAINT.'

INTEGER PROGRAMMING PROBLEM

In chapter 3 we observed that, for the solution of the zero-
one single constraint problem by using dynanic progrsmming, at any

stage 1, we : need to calculate T (U)| ana f (u)|
i*71 _o it =1
. . xg

them to determipe f'(U) and to store x4 (U) for all integer values

i

of U in the range 0 sV § b]u. This requires a large anmount of

-

computation as well as a large amount of stoiage spsce.' To echieve

a substantial amount of reduotion'in these requirements, in this

chapter we prove some theorems and lemmas vhich are then utilized

‘to develop a refined algorithm. The refined algorithm does the

following:

o

(1) It helps to avoid the calculation of values for

fi(Ui) " and thus the mumber of columns required for storege is

xi=0

—
!

reduced by one.
(11) It reduces the number of entries for Ui's at stage 1.
This enables us to achieve a reduction in the number of computations

and ‘also in the smouht of overall storage requirement for xi(Ui).

It can be noted that the smaller the number of entries for Ui’ 'he

less will be the amount of the associated requirements'to determine

f‘(U) and’ to store Xy (U).

- 431 ~

and compare N

A

42

Lemma 2 ie used in achieving (i) above. Theorem 1 and Theorem
2 together establish (ii) Theorem 3, on the:other hand,kgyereomes the
disadvantage due to the nonavailability of certain f (U }, in the immedi—
ately preceding stage, which are required for the calenlation of

{u

i+1

i+1) 1= 1,‘.,., n-l..

™

For the convenience of developing the refined algorithm we
reformulate problem {3.1) so thet the variables Xy appear in an
appropriate order such that

i i+l

1= 1, «.., n-1.

We write the problem as

maximize Zp = Z Cixi

n .
subject to [1;%, € By

=10 % | - N
. xi = 0, 1_ i= :!., aeny n“‘ P(h.l)
where Ci and li‘are posltive integers satisfying the
A g e | N
i 141
condition T 2T .= 1, ...y -1
i 44T

. and 1i 3 b for all i.

L,

It will soon be seen that the symbol U; plays an important role

throughout the remaining discuesione in thia chapter. We introduce.

the following definition for U: -

RSV L - . - [R

:-u3

; ﬁefinition L.1: Given i and f;(Ui), we dgfiné the ith.

" optimum (resource) allocation U; as the least velue of U, such that
»* % = *

.fi(qi) ‘mﬁi £2(u,).

4,1 Lemma 1

For e multistage single constraint problem of zero-one

integer programming, the optimal‘febulté at the first stage are glven

.b‘:{ . .’] i

U

\ .* . = |
(1) ‘fl(Ul) 0, . xl(ul) 0 %f Up <1y

W - ‘ = 3
(11) fltul) Cyo xl(Ul) 14f'U) 3 1,

. -*= # * -
end (iit) Uy =1 fl(Ul); Cy

l’
Proof: The optimel returns at the first'gt_age are glven by
the recursive equation
‘* = . -+ * — '
fl(UI) m §1x {Clxl fO(U1 11x1)}

. 0sU,sby

If U, <1 then U, ~ 1

L 10 N 1 < 0 and therefore xi(Ul) = 0 1is the

AT

only admigsible value. In that case

= {#* =
fi(Ul) fO(UO) : 0, by assumption.

This prives (i).

T

" If, on the other hand, U; 2 1,, then for xl(Ul) =1 we

| get Uy = 1; = Uy % O yielaing the optimel value

L Wb

¥ =
U,)= ¢,

which proves (ii). . . ’ - - . ,
From (ii) ‘end definition (4.1) we obtain uiﬂ= 1, and f{(u;) = ¢

15

which proves (iii).
4.2 Lemma 2 .

| . _
Given stage 1 ang £#(U,), the velue of fi+1(ui+1)

. Ikt 0
at the subsequent stage is given by g
. ‘ ' = f#(y.- = -
£03(Uspq) o £#(U;) for Uy = Uy
X441
Proof: We have, from (3.1.1)
b (U Y (O + SR, - 1, %0
1421 Vi1 1+1%541 F 11V T et

vwhere Ui = Ui+l-— li+lxi+1
For X141 ='0, we get
: = £#
fi+1wi+1) =0 fi(Ui) \
: i+l :

o

where Ui =AU1+1

This proves lemme 2.

h.3 Leémme 3. ‘ f" - _ e
o . . ,‘“ ¢ _ .
B f;(Ui) is a non—degreag?ng function Qf.béth i =nd U,. .)
gggggz‘ In o;dgr to profe that f;(Ui) is nonfdecregsing in i,
we -observe that by aefin;tion

Bgt

i-1 i)

£.(U,) _ e (U
1\ \xi=0'

.. Hence
“' i‘ . .
£2(0,) > 1-1()
Do prove that f*(U) is non—decreasing in Uy, we note that

.for i = 1, lemma 1 implies that f*(U } is indeed &- non—decr3351ng

N ’

function of Ui')
' Let us assume that fqr-éome value k of 1, f;(Uk) is a non-
. - . 3 * 0y
decreasing function.of U, - Consider fk+1(Uk+1). Let Jq and J, be

two values such that 32 > Jl'

' F;om‘definition wéjhave

and 5
£2,,(35) = mex (55(3p)5 Oy ¥ Hla - 1,0} (4.3.2)

Since 3, < Jp ve also have

k:

£8(3;). < 1 (3) L

and

o ewe
G TR Kk+1

Teen! S

Combining (h'3'ij’ {4.3.2), ﬁh,3.3), hnd.(h.j.h), ve hgwe
k+1(J) > k+1(1)

‘This proves the emma.

’

_h.n Lemma b

- If fj(Uj - }) # fS(UJ), then
fg(UJ) is given Py
H f*(U) = % %y
ii—J. - . !

subject tohthe equality consﬁraint‘ _ ' ‘ (%.4.2)

Proof: From (3.1.3) we have

* — =" . %
fJ(UJ 1)' mﬁ? £ Cyxy .
| % | b (uan.2)
such thét 1.x. €U, -1 1
1o 11 J

g

If, in (b0 % # g e E
, in (4.1.1) i=11ix1 # Uj, then L 1% € Uj = 1 since UJ is

gn integer. Then (b.4.1) becomes identical to (4.1.2). Therefore,

they muét yield the same solutiocn, which contradicts our assumption.

YgsC + T* (32 1#+i)t (h.3.ﬁ) _

P

i - b7
i L
_ Hence the lemma.
Tt may be noted that because of lemmd 4 ‘and the defini- .
- tion h.l.of UY, it follows that fstug) is given by
Lo
£#(U%) = max % C,x, - “
33 Xggmp 1
- . ' .) - [
such that the equality % 1,X, = U* holds.
i=1 .
‘ ' . ~
4.5 Theorem 1
' ?f\\\ Given i, if U; is the ith optimum allocation as defined by b
Vg ' \/ ' _ . C :
inition 4.1, then for all i K .) R

3 #(™) *
(1) £H{u,) < £23(u¥) for Uy < ut

f = r*{y* - :,
£3(u,) = ry(u) for Uy 2 U3

for 1 = 1,2, +oes n

* % . KN
and (11) Ut 2 v} _ | .

for 1 =1, 2, ..., n-1.

* Proof: Since U € {o, 1, «ees bl}’ 1% ?f/sts._ Thisfazid///',—wfﬁ-“\

combined with lemma 3 estsblishes (i).
To prove (ii) we first observe that

, f.{u*
x,=0, i3

¥ (U%) = max. 1 U
v(‘) { _.,' (i)
i

x.=1}
i

AV

N

ey
“’J‘-—‘

Let .
#(U*) = L DIR = - w) ' _.." {4.5.1).
se(up) = £ (00 =g, (0g) O 1_(.
x,=0 ‘ ‘ .
v . . i~
But we have

w3 (03) 2 1y, (0] | - (8.5.2)

o » Y . B
and £¥(U) > 23 5 (U} 4) (4.5.3)
Inequalities (4.5.2) snd {4.5.3) give
(U > %Y
£H(ud) > o3 ,(uf) > fi_l(ui) I
anqrhenbé using (h.S.l),'ve'pbtaih‘

¥ # = #* * = * . * '
£x(uy) = £% , (U}) fiﬂ;(Uinl)'

%
Therefore ,

Ut = UE .

| i i-1° _

If on the other hand

Pl = *®

fi(Ui) fi(Ui) .

x.=1
a1
o= £ % - ‘ '

g - | c, + f¥_,(u¥ 1) - (L.5.4)

then either

i-X

(a) U; - li p3 U;;s\;

or

* . *
(») u} 1 < ut .

. . : .
It Ug -1, 20U then, since 1i-> 0

*
i i-1?

kg

. . - * 5= U . - » : }
- If Uy -1, < Ui , then let Ut (ui 11)? @d ve
obtain ‘ b
: TR = {y* - s e '
£y (up - 1) = 1f 4 {0g 5 - &) o ;
' * » ~ (u* . - ;
<y vy o) .(I‘Ji_‘1 Uy + 1y) T, |
by"using—iemma—l A S A S .)
Combining this with (h 5\n.)>we obtain - T
8
* » - * -
f(u) C+f1-a(1.¢) (u¥_, U+11)1.;L
* which yields, on using lemma 3
» oy G
- * i Yy 2T s pa(U) - g 3
| c, - Uy, -Uf+ 1) T oytuy) oy (uf 503 0
- h 1«1l
Consequently . _ -
. c, -
: i-1
(u* , - U*+1,)——%C,~
i1 T i 1T,)
or ‘ : \ ; - LT
- c ¢, C, .°
(vg o - O s [Ti" 1'1;1] 1
, i-1 i i

o

i e .
. vhere ['Ci Ci—l] £ 0

}_J

»
Hence U i 1

This proves (11). 7 ' o

w \

4.6 Definition of gi“?-

I+ will be seen that the quantity Uim‘glays an important role

in the remaining discussion in this chapter. We introduce ‘the fol-

. ' A .
lowirig definition for Uim- : : 4

50

Y

Definition L, 2: .'Given stage 1, we def'ine'uim as the minimum

value of Ui for which the inequality

m

i+1"<-g;(u;) ‘) (4.6.1) °

i+l

£p(uy) + (o - Uy

__/'-\

]

does not hqld. 6\,- T ‘

N
N

(4.6.1) is an upper bound on the return Zo which includes ¥ (U) as

an optimal partial return ‘at the it stage for a giyen Ui'

' 4,7 TheoFen 2
3

m
K If Ui

‘U -

the inequalities

is as defined above for stage i,_then‘Uim satigfies

(1) u U;

(11) uim < ukm for 1 < k € n~1

.Proof: To prove (1), we observe that

£4u,) = £#(u¥) for U > U% 7

and that

v;olated for Ui 2 U;.

To prove (1i), we need to show that for all Uk > U, where

"It is useful to note that the left hand side of the inequality :-

51

i <k ¢ n-1, the inequality
t C .
: okt . :
» - e, » » :
_fk(uk).+ (o) ="V)5 " £2(ug) (4.7.1)

: holds.
{+ 1. Let

Tet usa conpgider .X

§ » ; ‘ - = l V {l
#3422 IRl R

| xi+1 8]
Then, since N
Civp Cima
i+2 i+l
we obtain
(0g,4) + 0y = Uy)ci+2 ¢ tU,) * (B - U)E&Eﬂ
i+1 i+l 1 ;+l 1i+2 _ i+1° i i+l 1i+l
< fR{yn ' '
. < fitui)) (4.7.2)
- m) ”
rfor Ui+1 < Ui) .
If, on the other hand
e * - '
1+1(i+l ﬁ!‘l(Ui+1 1 Ciaq * 1805 1) (BT-3)
X541

. m

then, f?r Ui+1 - 1i+1 < Ui , We hgve .)
. ca(u, .. - 1,0+ (P U, +1)Eiﬁl-< r*(u*).
1174+l +1 T TS e €5 LA VP ’

e
‘ Combining the above with (4.7.3), ve obtain

c

i+l
* *
£2,, (U,) (B 1ﬂ)1 l<f o).

o

c C :
+
-;—g“s Tiﬂk, the sbove inequality reduces to

Since 1
' 142 i+1

'(')+ (b k2 £#(u%) R 1;)
i+l Ui i+1 1, 1740 T
| 1%2
Ccmbining (4.7.2) and (h T.4) and using the fact that f*(U*) i+l(U'i'ﬂ),
" we obtain B
Ci4p ~
» EL. »
31 Upag) * (b U1+1)1i+ <3, (0)
for Ui+1 < Uim
L4
ml
This implies that’ Ui+l 2 U
: -~
Recursion on i proves (ii). .
A V
_ 4.8 Theorem 3
If et any séage i+1l, thelinequality
, ’ s’
User = Ly4q < U
holds, then ‘
. Lt C .
5 Ry T
(1) f1+1(Ui+1) ~ Ui+1) 1 < fi(Uﬂ
x i+1
i+
hence also
C
!) ,at2 * 1%
1) 1y (0 ,) * (o) = U)oy < 130},
%4412 142

Proof: Since at any stage i for Uim £ U1 1m, we have for

¢
141

U,) + (b, = U,)= < £*({U¥)

i % 1 i liil _ i* i

53

' 3.3 of chapter. 3. The results for stage 1 can directly be com-

puted from 1emma 1.

From lemma 2 it follows that at any stage i+1, the calculation

of fi+l(Ui+1) can be avoilded since these values are-alreedy

xi+1=0

in the 1B stage as f;(Ui).

The properties established in legma 3 help ﬁa in proving

i

If in the_ab?ve_we put-Ui = Ui+1 - li+l,_we obtain for Ui+1 - 1141 < Ui—l
. ‘ . ' Civ1)
» - . - - * *
T30 - 1pg) + () -~y + 1+1)1i ™ < r3{uy)
The above combined with the fact thet
fi+1(Ui+1) x =1 = Cin * I (U:L+1 11+1ﬂ)’ ,
. . i+1 .
yields (i). N ‘ -
The inequelity (i1) follows from (i) since
®42 Cia,
L, %1,
i+2 i+1
,.é, ‘;:J - .
Ro h:Q-Diécuasion.of“Lemmas and Theorems
B . R ".u.f‘:_ ‘ N
' , In this section we shall discuss the lemmas end theorems in
the light of their possible contrlbution in the development of the
refined algorithm
From lemma 1it is evident that we can avoid the initialih
‘h" zatién step in the dynamic programming algorithm discussed in gsection

et At A o haa .

W

-~

theorem 1 which estsblished the fact that the optimum allocation &nd

reburn at stage 1+l cannot be less than those obtained in the TR T
stage
‘ :
g
i

Lemma 4 on the other hand establishes the fact that for the

optimum-resource allocation U; at the ith stage, the constraint is

-

satieried in the equaltty‘Hense*with—bi—replacedmby~U'

The quantity Uy T defined by definition L, 2 and detbrmined by

;o o 4
the in;qualitiea in theorem 2 ia-a powerful factor in achieving a8

redﬁction in the stéte values Ui+1' The test for determining Uim

‘ensures that the minimum value of Ui+1’ which is needed forrarriviﬁg '
- : Lo m ' m -m

at the optimal solution is Ui . The facts Ui S U* andUi £ Uk ’

for 1 < k £n -1, enable us to keep all the possible values of-

Ui+1 which will definitely contribute tq the optimal values at the

subsequent stages N
In theorem 3 the inequalf%ies (1) and (i) are satisfied

for Ui+l - 1141 = Ui < Ui 1 s where Ui is the first recorded

entry for Ui'at the i stage. This means that in such cases the
. Js!

.

values fi+1(1+1) cann?t contribute to the optimal results
i+1)

-

at the subsequent stages. Henée we do not need to consider the value

-,

X; 41" 1 for those velues of U, . satisfying (1) end (ii). Therefore,

4t is sufficient to consider the only other value X,,q = 0 for

those values of Ui+l and hence using lemma 2 wve set fi+lcutt11

i

55

fi41 (0541} SRR

X341

k.10 The Refined Algorithm

In this section we deacribe the refined'aléorithm in tae
light of the theorems and 1emmas established and discussed in the
preceding sectiona . This is followed by a deacription of the atep
by step procedure for the refined algorithm

One important dirference between the refined algorithm *and
the dynamic programmins algorithm described in chapter 3 1s that,

at every stage 4, it needs the calculation of £, (U) for Xy = 1 only.

.This ia a contribution of lemma 2 in-this algorithm. Furthermore,
unlike the previous algorithm here we do not have to make the
initialization.for i = 0. We start computation by epplying lemma 1

to calculate the values of fl(U). ‘We then determine Ui and fé(U;).

We test the results in the f;(Ui) column against the inequality
(4.6.1) to determine U for the'aecohd st&ge.

Given the return f*(U) eorresponding to the partial resource
(' .‘ ! 3
U allocated gso Tar at stege" i we determine the maximum posaible

return to be achleved from all the aubaequ’ﬁﬁ stages by allocating

/

the remainihg'reaource (hg - Ui) to these_stagea. The determination

of an upper bound for this 1ater return uses the ordered proparty _

Lo}

i 'ci+l '
T T,
i i+1

. S s6

The test (4.6.1) thus tests the sum of £3(U,) and the maximum

possible réturn from thé subsejuent stages against the maximum re-

turn f*(U*) vhich we have already achieved at this stage. The

test when satisfied for certain values of- U does not- therefore lead

to an imprqved ‘optimal solution gt_the subsequent stages.

We may therefore conclude that those velues of Ui; for

- which the test (4.6.1) is satisfied, cannot lead to an improved

optimal solution. Thus we go on applying the test (4.6.1) until
ve gef.a value U;n of Ui.which vioclates the test. At the next

. . _
stage i+1l, we then.have to dé%e?mine fi+1(ui+1) and xi+1(pi+l for

.
Up $Ugyy €00

After the calculation for fi+l(Ui+l)\ ~ has been per-
' . . N e

. - .“.
formed, we determine fi+1(Ui+l) from

*.' =
£4,1(Ugyq) = mex {f (U105 £44q(Ugsq)

-xi+1=1}
end store ?ge corresponding value of xi+1(Ui+1).._

The principle for. Btorage of T# (U) and xi = X, (U } at
every stage 1 used in this algorithm is the game as 1n the previous
slgorithm. However, the storgge propedure requires some attention
in this aléériﬁhm.

o]
?n this wlgorithm the determiha@ion qf.ii+l(Ui+1) for

n requires the

<Uia

those values of Ui+1‘for which Ui = Ui+1 ".li+}

"
1

JE P T S e

o . 5T
. ' "“ . .]) R
application of theotem 3 by vittqe of which we set fi+l(Ui+l] +—-f;(Ui+l)

) +— 0.

end xi+l(i+1

The determination of T, 0Pt{U) = mﬁx f'(U) is the same as

P

in the preVious algorithm The backtracking scheme for determining

the optimum values of the deciaion variables x OPt,-..., opt is also

" the Bameras‘in the previous algorithm. .

4.11 Step by Step Procedure-for the Solution of Problem (4.1) by using

the Refined Algorithm

In this section, we present a step by step procedure for

" . .
the refined algorithm discussed in the previous section.

/

Step 1: Calculate results for stage 1 from lemma 1.
Set 1 + 1.

" .
Bet ri(ui) +— 0, xi(Ui) +- 0, for U, <.1,

* .
and fi(Ui) +—Cp» xi(Ui) +=1 for U, » il

»* % »
Set UY +— 1, and fi(Ui) = C.

Step 2: Apply test (4.6.1) to determine Uim for the.ne;thstage.

Use the inequality
Citq

t*(u,) + ('b U,) < £#(U%)
i‘i 1 i litl i1

1

and determine Uim which is the lowest value'of°Ui for vhich the

IfU

' * » ;
Otﬁerwise set fi(Ui) = max {fi_l(Ui), fi(Ui)

58

_inequality'does not hpld.-z

t .

Step 3: 'Iﬂcrement'stage index i and set starting value of U,

© Bet 1 +—.1+41, -

' m
ﬁUi-Cl

i

then set U

- . ¥

Step b: Calculete fI(Ui) and store the corresponding xitUi).

' ta ‘=x » ,... ‘
Calculate £, {U,) o €y £y (U - 1y)
| i

'_ n . . ‘ s .
-1 = Y 14 < Uy o » then set £% 4 (U,) «— £3{v,) and "‘i(Ui) +—

} and if f;(UiL =
xi=1

(U, #heq set‘xi(Ui) +— 0; otherwise set x,(U,) 1.

Btep 5: Loop on.Uj.
Ir Uifn by, then go to step 6; otherwise set U, +—?U1+1 and

1Y

go to step b.

-

. ‘ . * {1
Step 6: Determine Ui and fi(Ui).

Use definition (4.1) to determine U% and r¥(u}).

Step 7: Loop on 1.

If 4 < n, go to step 2; othervise go to step 8.

(o]

- 9' . - Co .::‘ . 59

Step 8: Find f*(U °PY) gna U_ opt -
a " opt - » opt.
Calculate f (U) mﬁx £ (U), and save Un :

Initislize i +—u for backtracking.

step 5 m;;a;fpt"s&'baekwmg. -

opt opt o opt _ . opt _
Set X, Xy (u,) and c&lculate Ui—l Uy 1,x

Step 10: Loop on i for backtracking

If 1> 1, set 1 +— i-1 and go to step 93 otherwise go to exit.

" 4.12 Numerical example

In this section we solve & numerical examﬁle to show the

’ efféétiveness df the refined algorithm‘and a}s§ to demonstrate how
the reduction in the number of entries Tor the state values is

aéhievéd The example 13 taken from [h3]

Tt will be seen that the refined algorithm. achieves a Bub—

stantial reduction in the total number of the entries for the s
" values U; as compared to those needed in the dynamic progr

algorithm given in chapter 3.

Eiggple L,1:

maximize 79 = 60x3 + 60xz + hOX3 + 10xu + 20xg +10xg +3x7

sub:]ect to 3x; + 5Xp * bxy + x4 + hxg + 3xg + x7: ¢ 10

60

Solution: . We have the récursive equatibns

£,(0;) = { ¢px, + 3 (o0

o o vmere Uy 5 = Uy -1y o o
end £%(U.) = max £, (U,) . |
| \h> BRI T A . J
Stgge 1.

‘We spply lemma 1 -to achieve the results of stage 1. Thus,

we have the_:oliowing table:

= .

Uy | U | g 13

0 0

1 0

- 2 0 .
3 60 1)
) 4 60 1

5 60 T .
6 © 60 1

7 | 60 1 :
8 60 1

9 60 1.
10 | 60 1 ,

.We also have UI = 3 and fi(Ul) = 60. Now the values in TI(Ul) column

are tested against the inequality (4.6.1) and we get Ulm = 0. There~

fore, in stage 2 we have 0 g U, £ 10.

61

- = | 1
‘Stage 2. e |
O U fz(Uz)f\ £3(U,) ;
' o x=1.
v
.0 -- i
s . 1 - :j
- - 0 .
3 — 60 | ~—0
l R - 60 | 0
5! 60+ 0 . 60 0
6 60+ O 60 0 -
T 60 + O 60 0
8 - 60+ 60 120 1.
9| 6o+60 | 120 kR
10| 60+ 60 120, |- 1 '
(j § Here US = 8.and £4(Uf) = 120. ‘Test (4.6.1) give Uy" = 3.
fhus in stege 3, we have 3 ¢ Ug £ 10 .
T\ .
stgﬁe 3. .
' Us f3(U3)l 4(uy) | x3(U3)
X3=1
3 - 60 0
l 40 + O 60 0
5| u+ 0 | 60 0
. 6 50+ 0 60 0
, T 40 + 60 w00 | 1
8 Lo + 60 120 0
"9 40 + 60 120 0
" 10| 40+ 60 120 | © °

PR

62

o * = | ..*. *T: |] o m

. sHere U3 8 and.f3(U3) 120. Tegt (L.6.1) gives U3 = 3.
.o " : A ‘ -
Thus;_in:stage L, we have 3 ¢ U), s 10.

—

. Stage 1,
Uy | £,0U)]]eeruy) x(Uy)
' x,=1
- |
3 W+ 7 60 0,
L} 10+ 60 | 70 1
5 30 + 60 70 1
61 10+ 60 70 | ‘2
. T| 10+ 60 | 100 d-
© 8| 10+100 | 120 0
” 9 10 + 120'. | 130 _ 1'
' - 10 |- 10+ 120 | 130 1

)

-

" Here, for Uh = 3, we get Uh - 1& < U3m. Théfefore'we are

unable to compute fh(Uh = 3)}|. " since the associated value for
‘ xy,=1 . i
. F //‘

f%(UB_i 2) 1s not evailable in sfage 3: This fact is indicated in

table by using the sumbol "2". Hence we apply theorem 3 and Just
. X) ; . .) ’
= — ey = = ——
set £}{U) = 3) £4 (U 3) and x)(U) = 3) g 0.

Here Uf = 9 and ff(U}) = 130. Test ().6.1) gives U," = 8. Thus

* in stage 5 we have 8 £ U_ ¢ 10.

P

 Here:U2 =9 and tR{Un) = 130.

5*°5

Thus, fn stege 6, we have § § Ug < 10.

-~
w7

/ k <
s) St e) .
 Us, | 25(Us) r8{ug) | xs(us)
\xg= o .
B[W +70 | 120 o
| 9] 20+ 70, 130 |0
< 710 | 20+ 70 130 . 0

S‘ta.ge 6 . a
Ug | felUg)| - £2(Ug) | x5(Usg)
_ XG=1 -
9 10 + 7 130
10| 10+ /7 130
.

Here, for both U6 =9 and\lO, we get Us-r 16 < U5j;) Hence,‘

63

{ _ ‘ o
Test (L.6.1) gives-Usm = 9.

L 3

as in stage 4, we apply theorem 3 and set fg(U6.= 9) +—-f§(u5-=.9),

x¢(Ug =,?) < 0 and £3(Ug = 10) +— r¥ (v = 10}, xq(ué’é 10) 0.

] .) .
We have here Uf = 9 and fg(us) = 130. Test (4.6.1) gives

m

Stage T.

U6 = 9. Thus in stage 7 we have 9 g UT < 10.

LS

Uy | £7(U9) £5(uy) | x7(uz)
x7=1
o - 9 3+ 7 130 0
10, 34130} 133

N

A

\
#n.

- N , A
d

ﬁeréffbf-UT ='9, ve ge‘lt:‘.-u,r -

1, < Ugmt Hencg_yé;apply' *

theorem 3 and set r*(u = 9) +—;fg(u6 = 92; end x?(p% = 9) «— 0.

Since this is the. last stege -ve determine f§gUT°Pt = 10) =

opt

x,{'(UToPt =10)=1 respectiﬁely. Ve note that Zg =

and
"1

1

f*(U OPt) 133. Theh we ‘packtrack by using

1

opt opt opt _ opt _ 4§ 5opt'
Xy —x (U7F7), end Uy g Uy 1%

opt

starfing with UT = 10 and xTOPt = 1, The regulting values for

UiOpt and xiopt for 1 = 63 5> ... 1 are given in the following
- R . + J . -

- ’ opt opt
i \ Uy Xy

6
P
L
3
2
1

wmm\o\o\o
T ©

It is notea +that no reductibn in the number of state values

could be achieved for stege 5. For the third end the fourth stages

we get some rESuctlon which yields 3 £ 3 Uh < 10. TFor the subsequent .

stages, the amount of\feduction"obtained forms a nondecreasing

sequence.

The importance of theorem 3 in achieving the reduction in

- the refined algorithm is exemplified by the situations encountered in

65

. staées;h, 6, and‘T for Uh = 3, U6 =9, and UT = g’respectivgly. (f
o ,

The following table gives a comparison.between the refined

algorithm ghd the dyﬁamic-programming‘algoritﬁm in. terms of the U

i
entries réqgired for their-application.
N . _ .
| Number of entries for LA o
Stage 1 -
The Dynamic . . . '
Programming Algorithm { The Refined Algorithm
1 1. . o1
T2 1 o1
. 3 1n 8
‘1, 11 = 8
5. n - 3 .
6 11 2
T 11 2
Total number A
of-entries for L) '
. 1 ' h
& all Ui 5 7 : -85
. -~ ‘r*lz
!
——

Yy

- ma Cwwt

HAPTER]

Ra

AN APPLICATION oF THF REFINED ALGORITHM TO SOLVE LORIE-SAVAGE TYPE

PROBLEMS WITH EQUALITY CONSTRAINTS
P,) ._ S) v

In this chapter, we shall show how the algorithm, developed
in chapter L, can be used to. solvo the zero—one integer programming
problems with more than one constraint In 1971 Bradley [5] haa
_ahown that it is possible to transform any bounded integer pro-
gfﬁmming problem to an equivalent integer problem with a single
constraint anﬁ'the game number of variables Thus, the single cons-
traint problem can be eolved inatead of the original problem. ﬁere

\o\iefly review Bradley's work.

In general, integer programming problems have m(z 1) cons-—
traints. Bradley combines two equality constraints ‘at a time to get
a single constraint.l Then this new constraint is combined with
another oonstraint and the process continues until all the constraints
are combined into one.r The idea of aolving an equivalent problem

instead of the original problem is one of the most powerful.r
| notions in integer programming theory Most of the algebraic al-
gorithms for solving integer programa may be viewed as a process of
transforming an integer program to an- equivalent integer program
that is, in-some well defined sense, eaaier to solve The other
methods given in, for example, [7, [19] [3h] and. discussed in
’ chapter 1 also transform the original problem into an equivalent

problem. But they-differ from Bradley?s ‘technique in the fact that,

- 66 -

BT

while they add more constraints to the origipal pro%lem, Bradley's
). ¥ '
method reduces the number of constraints into one.

To demonstrate Bradley B method of “combining constraints, let_.'

us consider the following problem with two constraints
maximize Zp = I C,x
121 171

a

subject to 12 14% = b .
b {5.1.1)
1..,%x, =D -
=1 2i i} 2 , ;
_xi=0,'1 i=1, » D J
where lli’ 2y ? bl and b2 are intggers.

Let SP1 = max Z 111 N
1=1

IF1l = min Z 1% = b

11 1

where X % 0 1.
+ l‘ - —
Defining 1,, = max {o, 111} and 1., = min {0, }11}, we obtain
n

s
SP1 =) 1..%X, — b
Rt)

o O -
and IFL =) 10.x =D
. . =1
+ ' . . .
where X4 is the upper bound of xi, i.e., 1 in our case.

Hence, for zero~cne integer programming problems, we have

P

SPL = -y 1., ~b. . . X
Togm \\“;*~f

and IFl

n

il ~183 |
1
1
o

Finally, we define,
SF = max {sP1, |1F1|}
Tt can be hoted that in our case

. 0 -
SF= mex | L 1;,X - D
x,={0,1}]1=1. wia ol

Let « be any integer such that o > SF. Then the “two cons-

\

traints in.(Sll;l) can be combihed in tﬁe form
n) ‘ L : ‘
| igg}li + ?1éi)xi.= b, t o | '- o (5.1.2)
to yield the reguired single‘constraint of the the equivalent problem
The resu}ts of Bradley's work go & long wey towards removing
Bé;lman'a "eurse of dimensionality” [3]5. Tt should be noted tﬁat,
sihée'the combination‘of twb'constrainta is ﬁuléiﬁlicati?e-in natﬁre,
‘the right hand side of the single constraint (5.1.2)) obtainéd from
Bradley's method, wiil_be e 1argé integér. |
| 'The solution'df-thé modified pféblém by using d&namic.pro-
gramming will théréforé néeé a proportidngtély lgrge amount of compu-

tations and storage space. In the case of such large problems, the

';savings scheived, both in the amount of computatidns and the storage

* . In dynamic programning, for. discrete optimization prob-
lems, &8s the number of constraints increases, the difficulty in
computation increases exponentially., Bellman, inventor of dynamic
programning called this the curse of dimensionality.

"required by the refined algorithm 18 very - substantial.

This is demonatrated by solving the well—known LorieJSavage

‘problem with the help of_the refined_algorithm.

T
-~

5.1 Reduction in number of variables - e
) . .
We ‘state the following lemma which, when applicable, gives
a reduction in the number of variables.
. :) th
Lemma 5: If in eny. of phe,constr&inte, gay the } qonatruint,
ve have 1., > D for scme 1, then the associsted variable x, can be

31 J o i
" eliminated from the problem.

Proof The lemma follows immediately from the fﬁct_that ‘

in auch cases the value xi=1 violnten the constraint.

5.2 Solution of the Lorie-Savage Problem

In 1955, Lorie and Savage |35| formulsted a problem dealing |
with the optimal investment allocation to projecta such that the
return from the inveatment is maximized. Knplan |30| solved the
Lorie-Savage problem by using the generalized Lagrange multiplier
technique.

The prdblem, with the equality constraints, can be stated as:

70
. mdxim%ggizo = 1hx;'+ 17x, + }7x3 + inh + hOxS + 7‘
12x67+ ;yxT i'loxs +,12x9 + 15%, 4
: subject to.12x, f.shan:cEié;L th + 3px5 > 6;6 +
thT + 36x8 + lgx\g + 6x10.-= 48 1 (5.2.1) -

‘and 3x1 + sz + 6x3,+ ;Bxh + _35::5 + 6x6-. +-

Lx +,3x8 + 3x9

7 + Txlo = 20

x, =0, 1, 1= 1, ..., 10 _
Applying lemma 5 to the above'problem, we obgerve that the

variables X, and 3\'.5 can be eliminated. Removing these two variables

and renumbering the remaining varie.bléa, we have the following prob-

lem:

© maximize Zo = 1hxy + 17x, + 15xy + 12%) + 1xg +]

19x6 + 12x%,., + 15x8

.
subject to 12x, + 6x, + bxy + thr; h8x51+ 36x6

+ lex,r + 6x8 = 188 +(5'2.2)
and 3xl + 6x2 + 2x3 +-6xh + hxs + 3x¢ +
xq * Txg = 20

X

iﬂo’l iﬂl,...,‘s - l’.n

Let ﬁs consider the second constraint. Wé have
gP1 = 34 -~ 20 = 1k
IFl = 0 - 20 = ~20

8F = max (8P1, |IF1]|} = 20

T1

‘Thus taking o 5'21 and using (5%112); we may'reduce-(ﬁ.Epz) to
“the following equivalent single ccnatraint “problem:

Maximize Zp = 1hx +1Tx, +- 15x3 + 12xh + 1hx5 +

F | N 10)(,6 + 12x + l5x8

Bubdect to 255x ;1132x + 123x3 + 132xh + 1012x5 +r(5-é-3)

759x6 + 381xT + 133x8 = 1028

i-"Lal .,‘. iﬂl,‘..'.', Ts we'oh—_
i “i+d '

Rearrqhginé the'varihblaa'ao that
faih: _ :
Méximize 20 = 1Txy + l5f2 + 12xg + lhkh + 5xg £ W.

| ;axs + 105c7 + ;hxa
subject to 132x, + 128x, + ;32x35+ 255xh‘4 133x5 *»(5;2.h5

| 38}x6 + Th9;7'+ 1012xg f 1028

;i = 0,1 i= 1,_...? B8

#

The problem (5.2.4) can nov be solved by using the retined

algorithm. The optimal solution is given by Zg = TO and

opt _ x

and
*5
‘Thio nolution is thc same as that obtained by Kuplun
A comparison between the rafined algorithm and the dynamic

p;ogramming_a;gorithm in terms of the Ui entrias required for thelr

Q-

‘epplication is given in the following table:

Number pf entrie§ for'Ui'
Stage 1 ThelDyﬁamic .The Refined
' Prog?amming Algorithm - Algorithm
‘ 1029 1029
1029 1029
3 : 1029 1029
! - 1029 1029
5 1029 900
6 1029 637
T 1029 382 -
8 1029 382
Total number of S
8232 6417

entries required

T2

117.

CHAPTER 6

THE REFINED ALGORlTHﬂ AND THE LAGRANGE MULTIPLIER TECHNIQUE FOR

" REDUCING DIMENSIONALITY

, ' , _
The'Lagrange multiplier and dynamic programming techniques

have an important common feature. In both, the original problem with.

‘n veriables and m constraints is embedded in a epace with m + n

Idimensione ‘ITn the Lagrange multiplier method, there is & multiplier

for each constraint while in dynsmic programming, each constraint

gives rise to a state variable When it is possible to achleve &

<dynamic programming formulation, there 1s the advantage that the

m+ n dimensional problem can be split up into n subproblems, each
having cne decision_verieble and m state varisblee On the other
hand in Lagrange multiplier technigque, m multipliers gre Tixed and
s peries of n—dimensionel subproblems are solved each with & dif—'
ferent set of values of the multiplier until the desgﬁed golution

is obtained. When the number of state variables is large, the dyn«

"amic programming epproach may not be computationally feasible. To

get rid of the difficulty csused by high stste variable dimensgionality,

and to preserve the advantage of_dynamic programing, Nemheuser [38]

introduced the idea that the Lagrsnge and the dynamic programming

‘approeches can bhe synthesised by treating some of the constraints

with Lagrange multipliers and the remuindcr with state variables.
ﬁemhauser uges Ever tt'as GIM generallzed Lagrange multi—_

plier technique o reduce the state varisble dimension in dynemic

—73—

-

nrogramming He combines some constraints with the obJective
functions by using a non-negative multiplier for each of these cons-
traints. He then applies dynamic programming to optimize the new
:objectlve fuhétlon‘subjecﬁ to- the remaining.censtraints. ,Different
comﬁinations'of A's are taken and the resulning.new problem is

solved for every set of A's by dynamic programming - The process con-:

opt
1 >

tinues and the optimal policy x .‘anPt for each problem is

tested against the absofbed conetraints to determine if the aolution
_is feasible. From amongst the set of all guch feaaible eolutions,
the one which yields the maximum return is accepted as the best~
eolution...The methpd ie_eaid to be less\rellaple'but conputationully
more feasible because 6; reduced state dimensionality.

In practice, this method is often put to use. It may be
emphaslzed that tne feeuction.of state varieble dimensionality
creates a lerée numhef of dynamic prognamming prebleme. This is
. again a situation in ;hich the réfined algorithm wlll lead to snb—
stantial savinge_in computation and storgge reQnirements.

i

6.1 The solution scheme for a two constraint problem .

In this section we shall transform a two-constraint problem
into & single congtraint one by absorbing one of the constraints
. with the objective function by using the Lagrnnge multiplier tech~ ‘g

-

nique. Let us coneider the problem vith two constraints:

75

101?1 N

i

maximize Z¢ =
. - . i
subject to izllli { € bl : _ N
. ¢ o _ ' (6.1:1)

n

T i,,x, ¢ D
T S

0
i t J
We absord the second constraint of (6 1.1) with the help
of a non—negative Lagrange multiplier 1. Then ve havg

maximize Zg = z (C - 11)x
: - 1=1-"

PR .) . n l N .
N o [. |,
. o - subject to izlllixi $ by | (6.1.2)

=0, 1

& *1) |
gfféjl 2) each value of A generates g new problem Ve can
spply the refined algorithm to solve each new problem thus generated
To apply the fefined algorithm, we srrange the varisbles such that

5
C, - A1, C;,q - M) .
S AR, L 244 521, ..., ud.
11 1,141 :

It is to be noted that the recuraive equation 1s mnow

= - A jd -
m G m gLyt £ (U -1
X, =1

1

fi(ui) i)

. | .
. ri_l(ui)} 1
xi—l, -

i

» = .
and ri(ui) Max { t

After achieving the optimal solutioﬁ for ecach prodlem, we
put the associated values of the decision variables in-the obﬂective ‘

L

\/

6

g .
, . oo . L
function and the sbsorbed constraint. Thus_we compute o
- .n “opt ' -
Zo = L CiX; P T L 1.3)
- i=l . ' '
and)
‘]f o opt . .) _ . .

, Lt | o

If the value given by (6.1.4) satisfles the second constraint of ~
(6.1. 1), we note the problem as giving e fe351ble solution The
of Zp 3btained from (6 1.3) gives the corresponding value
optimum return Zg-

6.2 A numericel example

To demonatrate the application of the refined glgorithm, we
consjher the following problem which is an extension of problem 4.1, °

with & second constraint added to it.

e -

-Examgie 6.1: -

maximize 60x, * %Ox + hOx + 10xh f20x5 + 10x6 * 3%,

<

ubject to 3x, + 5%, ¥ hx +x) o+ 3% F 3x6 * %, < 10

1 . :
| 3x, +bxy + hx3 +.2xh + st + hxs + 2xT £ 9
: r.‘f’ . s . -
Xi = 0: -y 3=l cees T.
-

The second’ constraint is 3beorbed with the object1Ve functlon with

_,N/) the help of the nonépegatiVe Lagrange multiplier'l. The following
teble gives a list of the solutions fox A = 0.0(.05)1.55 with'

F=]

C e

T7

ive =

- o= 1.55, giving rise to the optjmal solution.’

t
L] ..
- Y]
Hl
“4 8 . : . . .
Q o M@ mmmaa@mhmmo@aonooooo0nn o Mmoo Mnm@nomm mm B
Q MM mMmmmmm®ammem@ooaoom MMM mMeaoMo MmN om B f
.m‘wc - o A A~ - o~ 4 - .1 T S R O = e T T B - od A A A ’ 5.‘.“
' m .. ’ - S
= 9 5 .
. " * A
L
[I} .
. o :
253 . N
Puoa L .
o d .) o
BH & — . - - . B — - -
m._r..ulnunluuul.nlnlllnl.uunnu 44 4d
o8 P :] ‘- : ;
3 A .
.Mttn) o
B o A
Vidc } :)
. . !)
» . — -
. A H A H A A A A AR A A A A B I . a
Y - L LY - .S; - " L ‘i -~ » " L) [. "~ 3 "~ L] - - ’_-.-
' e oo o o0 o o o oo o0 oo o o 0o 0o o w 5 o o o o0 o T
4 O To. PO LI LY L3 ~ - 'S - - ” LS ~ S » - L) L3 o, o L) ’%
o o 0o o O o 6.0 0 © O o o o oo ¢ o O o o o © o o .
S.l..__ID_ - ’!/D " o A . L - R S n on)_!. - C P PP - .
Mﬂa A - 4 A A4 o .l_. 1 - A 1‘1.1 e I e I e = T T O e O
ddm 9 L) s "~ -~ o~ ﬂ.__..v ’.., L n L3 L ’..) re L) " " [" . |o
o 0o oo O O 0P O O O Q0 0 00 o o O o O O OO0 O .
va ..’ " [} [] » ’..’\ L] " L3 ’.,. L O .]) L L] ol L] " ’- ’. ,. [- 4
+ A~ - - A . T o T o L T B e B & - oA oH T A A L
- " " ’. ’.’ ’\, L] -’ L% L) ," .,-A,, mw) L] , wnn\d.a ’—,-hl L, —
A A~ & A ~ A A " A = A 4 & o B B = T O e T
* - \ -) ”
: O IO QNGO o N g IO D n.O 1IN O B 2 0 o wn o ¢
e) 0112_.233hh556.6,7788990 A= = R YU o
o : : . B . I N
. “w
. , .
. . ¥] .
h_/.\ s D . ! ‘ .
. ,. S
' N, N s »

1.35 1, 1, 0,1, 0, 0, 1 1
1.50 { 1,1,0,1,0,0,1 11
1.5 | 1,1,06,1,0,0,2 11
150 | 1,1, 0,1,0,0,2 11
1.5 | 1,1, 0, 1, 0, 0, 0 9

78

133

133

133
133

130

From the table we obseryg;that we need to solve 32»§rob1ems..

to arrive at the optimal solution to the problem. For A = 1.55, ve

N .
of the number of entries for U,'s required in the case

algorithm and for the dynamic programming algorithm.

obtain the optimal solution. .The"following table gives = ccmparison

of the }efinea

Nﬁmbgr of ent?ies of Ui
) Stage " ‘The dyﬂamic fThe refined
1 ‘programming - |. algorithm
algorithm ‘
o . ‘ :
.ll 11 11
2 11 11
3 11 8 -
} n 8
5 1 | 3
6 o 3
(11 3
Total 17 | 47

Pl

19

The 32 problems» whén'solved'by uSing dynamic programming,;
" need a totsl of 2h6h entriea for the Ui's, while in the case of

the refined algorithm. wé need only 1504 entries.

L
~ ./m‘...._‘

“‘

N~

- .) . .

CHAPTERaT'”

CONCLUSIONS

In this study, we have been mainly concerned with the prob—
lem of echieving the solution to zero-one integer progrmmning prob—
lems with a reduced amount of computational requirements. The
algorithm we have developed for this purpoae is essentially based
on dyncmic progremming.

From the atudy it is clear that the reduction in the number:
of entries for the state wvalues U is very erfective in echieving a
reduction.in computeational requirements. The quentities U; and Ui
as we have pointed_out, played very importent roles in developing
the algorithm |

of the three theorems developed in chapter 4, theorem 3
enables us to overcome the difficulty in calculating the recursive
equation for entries of the state values for which the assoclated
entries in the preceeding gtage ‘were out of the range Thus, the
main difficulty in constructing the algorithm is overcome by theorem 3.

Although the algorithm developed is suitable for. solving
single,constraint problems, we have shown that it is possible to
apply the algorithm to economically solve probleme‘with more than
one constraint. \ ‘ |

It should be noted that it is possible to convert a general

integer programming prqplem into a zero-one progremming problem by

appliing an eppropriate binary transformation. Thus it is worth

- 80 -

[S ——

81
' ’ . L .) '." . . . ‘
mentioning -that the refined algorithm is not limited to zero-cne
integer programmiug problems only; it cdn;also be applied to solve

.genefal integer programming prcblgmé.

_ :£"

BIBLIOGRAPHY -

1. ACKOFF, R. L., GUPTA, §.K., and MINAS, J.S., Scientific Method:

Optimizing Applied- ﬁesearch Decisions, (ch York: John
“VWiley and Sons, 1962)

2. BALAS, E., "An Additive Algorithm for Solvins Linear Programs
with Zero-One Variebles," Operations Research Vol. 13,
(1965), pp. 517- 5h6

3. BELIMAN, R., Dynamic Programming, (Princeton, N.J.: Princeton
University Press, 1957). o

4. BELLMAN R. and DREYFUS, 8., Appliad Dynamic Programming, (Prince-
ton, N.J:: Princeton University Press, 1962).

5. BRADLEY G.H. ‘“Transrormation of Integer Programs to Knapsack
Problemn," Discrote Hathematics, Vol. 1 {1971), pp. 29-h5.

6. CARR, C. R. and HOWE, W C., Quantitative Decision Proceduros

in Management ‘and Economics, (New York: MecGraw-HEill Book
Company. 196h) '

7. DAKIN, R. J., "A Tree-Search Algorithm for Mixed Integer Pro-

gramming Problems," The Computer Journal, (1966), pp. 250-255.

8. DANTZIG, G. B. , "Discrete Varieble Extremum Problems,"” Qpera—

. tions Research Vol.-5 {1957), pp. 266-277

9. DANTZIG, G B., Linear Programming. and Extengions, {Princeton,
N.J.: .Princeton University Press, 1963).

10. EVERETT, H., "Generalized Lagrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources,'" Operations
Research, Vol. 11 (1963}, pp. 3995h17

11. FAN 1. 7. and WANG, C. 8., The Discrete Maximum Principle: A

Study of Multistage Systems Optimization, (New York: John
Viley and Sons, 196h) .

12, GARFINKEL, R. S. and NEMHAUSER, G L., Integar Programming , i
: (Rew York: John Wiley and Bons, 1972).
13, GEQOFFRION, A. "Integcr Programming by Implicit Enumerufion and
) Buéus Method," The Rand Corporation, nm-h783-PR (February,
1966) :

1h. GILMORE, P. C. and GOMORY, R. E., A Linear Programming Approach
to the Cutting Stock Problem,“ 0perations Resaarch Vol, 9

(1961), pp. BU9-859.

15.

16.

7.

18.

29.

20,

21.

?2.

23.
2k,
25.

26,

?'T.

28,

83

GILMORE, P. C. end GOMORY, R. E., "A Lincar Programming Approach
to the Cutting Btock Problem -- Part II", operations Re-
search, Vol.-11 (1963), pp. 863-868.

GLOVER, F. and BIONTS, 5., "A Note on the Additive Algorithm:

- oi Bolas," Operations Research, Vol. 13, (1965), pp. Sh6-

GLOVER, F., "A Multiphase-Dual Algorithm for the Zero-One
Integer Programming Problem," Operations Research, Vol.
13 (1965), pp. 879-919. =

GOMORY, R.'E., '"Outline of an Algoritlm for Integer solutions
" to Linear Programs," Bulletin of the American Mathematic
Society, Vol. 4.41958), pp. 275—2?8._ o : K

‘GOMORY, R. E., "An All-Integer Pro?ramming Algorithm," in

J. R. Muth end G. L. Thompson {eds.), Industrial Scheduling,
(Englewood Cliffs, N.J.: Printice-Hall, Inc., 1963), ch. 13,

GOMORY, R. E., "An Algorithm for Integer Solutions.to Linear
Programs,” in R. L. Oraves and P. L. Wolfe (eds.), Racent
Advances in Mathematical Programming, (New York: McOraw-

. Hil1, 1963), pp. 269-302. . AT '

GLUBS , B,,'An Elementary Introduction to Dynamic Programming,
(Boston: Allyn and Bacon, Inc., 1972).

GREENBERG, M. and HEGERICH, R. L., "A Branch Bearch Algoritim
- for the Knapsack Problem," Managewment Sclence, Vol. 16,
(1970), pp. 327~332.

'GUE, R. L. and THOMAS, E. M., Mathematical Mothods in Opara-

tions Rescarch, (London: Collier-McMillan Limited, 1968).

HADLEY, G., Nonlinear and Dynamic Programming, (Rending, Mass.: -
Addison-Wesley, 196L4). ‘ _

HILLIER, F. and LIBERMAN, ., Introduction to Oparations Research,
(San Frencisco: Holden-Day, Inc., 1967).

HOWARD, R. A., 'Dynamic Programming,"'Managomént Sclenca, Vol. -
12 (1966), pp. 317-346. - _

HU, T.'C., "Som§ Problems in Discrete Optimization;” Mathe-
matical Programming, Vol. 1 (1971), pp. 102-113. }f§

INGARGIOLA, P. G, and KORBH, J. F., "Reducﬁion Algorithm for the
Zero-One Bingle Knapsack Problems," Management Science, Yol.

20‘(1973), pp.-u69~H63. C

29.

-30.

31,

32.
33,
“3h,
35.
- 36.
37.
38,

‘39.

%0,

llll

lhe.

 *3uf :

JACOBS,TO. L. R.\ An'Introduction to Dynamic Programming,
(London: Chapmad)and Hall Ltd., 1967). ‘ |

KAPLAN, B., "Bolut;ona,of the Lorie-Savage and Similar Integer
Programming.?roblema by the Generalized Lagrangquultiplier
Method," Oporations Resoarch, Vol. 1k, (1966), pg..113o-1136. _

KARP, M. R. and HELD, M., "Finite-Btate Procosen and Dynemic

Programming,” SIAM Journal of Appliad Mathematics, Vol. 15
(1967), pp. 693-718. . o . .

KOLEGAR, P. J., "A Branch and Borend Algoritim for the Knapsack
_Problem," Management Science, Vol. 13 (1967), pp. ‘723~735.

KNUTH,.ﬁ. E., The Art of Compﬂtar Programming,_folume 2,
(Reading, Mass.: Addlson-Wesley, 1971). ‘

LAND, A. H. snd DOIG, A. O., "An Autcmatic Method of Bolving
Discrete Programming Problems," Economotrica, 28 (1970},
pp. U497-520. 3 |

LORIE, J. and BAVAGE, L. J., "Three Problems in Capital Ration-
ing," Journal of Business, Vol. XXVII (October, 1955).)

MITTEN, L. G. and NEMHAUSER, O. L., "Multistoge Optimization,"

Chemical Engineering Progross, 59 (1963), pp. 52~60.

MITTEN, L. O., "Composition Principles for Bynthesnis of Optimal
Multistage Processes,” Operatlons Research, Vol. 12 (1964},
pp. 610-619. . -

NEMHAUSER, 6., Introduction to Dynahic Proéramming- {(New Yorik:
John Wiley and Sons, 1966).

NEMHAUSER, G. L. and ULLMAWN, Z., "A notﬁ on. the Generalized
Lagrange Multiplier Solution to an Inté%er‘Progrumming‘
Problem," Operations Resoarch, vol. .16 (196B), pp. 450-h53.

BAATY, T. L., Mathomatical Mothods of Operations Resoarch,
(New York: McOraw-Hill Book Compuny, Inc., 1959).

TAHK, K. A., Operations Research: An Introduction, (New York:
McMillan Publishing Co., Inc., 1971).

VAJDAS, 8., Mathematical Programming, (lieading, Mnos,: Addison-’
‘Wesley, 1961). ‘ :

85

‘43. WAGNER, H., Principlos pf Operations Research, (Englewood cliffs,
" N.J.: Préntice-Hall, Inc., 1963). o o

Wy, WEINGARTNEH;'H.‘M..:Mathematiaal Programminé,andAthe lysis
of Capital Budgeting Problems, (Englewocod Cliffu.}agJ,;
Prentice~Hall, Inc., 1963). - o

L5. WILDE, D. J. end BEIGHTLER, C. 6., Foundations of Optimization,
(Fnglewood Cliffs, N.J.: Prentice-Hall, Inc., 1967).

¢

»

