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Abstract

Numerical simulations are used to investigate the behaviour of a system, based on
a set of initial conditions and assumptions about the processes involved. The complexity
of a model’s structure influences its output, which in turn affects predictive performance.
The confidence accorded to a model’s results is directly associated with the input
uncertainties propagated and transformed through the model’s structure. Understanding
the relationship between modelling uncertainty and model complexity is important when
using numerical simulation for decision-making purposes such as environmental risk
assessment.

Components of uncertainty are defined by modelling error and modelling
sensitivity. Modelling error is defined as the difference between a model’s predictions and
actual observations from the system. Modelling sensitivity is defined as the change in
model output, given a change in model input.

Error and sensitivity are related to complexity in different ways. More complex
models have more detailed mathematical descriptions cfthe system being simulated. They
also have less error, but greater sensitivity, due to larger numbers of inputs (degrees of
freedom) and interactions within the model’s structure. Therefore, error decreases and
sensitivity increases, with increasing model complexity.

Model utility, U, is used to select among models of different complexities. U is
defined by combining evaluations of error and sensitivity into a single, quantitative
characteristic, Utility is weighted by the modelier to reflect the relative importance of

error and sensitivity.
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The uncertainty/complexity relationship is determined for two systems (a simple
sorption system, and a more complex 3-dimensional groundwater tracer transport system).
Moderately complex models are the most utile of those studied. For the more complex
groundwater system however, all models performed equally well (no difference in error),
indicating that sensitivity was the only significant contributor to utility measurements. The
uncertainty/complexity relationship derived for this system indicates that all the models
studied might be more complex than the system warrants, and that simpler models should
be investigated.

While the uncertainty/complexity relationship exists for all models, inter-
disciplinary models that combine two or more discrete systems (such as environmental-
economic models) are of particular interest, due to the presence of discontinuities and
incompatibilities between the different model types. An inter-disciplinary model is
developed, involving the integration of an input-output economic model (which describes
the flow of money to and from various sectors of an economy) with a physical model that
describes the environmental impact of economic activity. Simple, linear input-output
models, both with and without environmental extensions, are evaluated and compared for
modelling uncertainty. The effect of adding an environmental extension (and therefore
changing overall model complexity) is an increase in uncertainty of model output.
Uncertainty is largest at low levels of economic activity.

The uncertainty/complexity relationship is a useful diagnostic tool for the purposes
of selecting among models of differing complexity. The trends of error and sensitivity can

define the optimal threshold of complexity, where the improvement in fit of moving to
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more complex models is not worth the increased sensitivity. If the optimal complexity
threshold is not within the set of models studied, the results can be used to determine
whether to move to more or less complicated models before repeating the process. This

way, the methods can be used iteratively to arrive at the “best” model for the job.
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1.0 Introduction

Modelling is the use of representative constructs to simulate the behaviour of a
given system. Models may be of a physical or theoretical nature, and are commonly used
to investigate a system’s behaviour under various conditions. Mathematical models of
environmental systems can be used to evaluate different options with regard to
environmental management and protection.

Using a model in a decision-making process, such as risk analysis, often involves
simulating the system in question under various scenarios to determine the consequences
of different courses of action. This process requires not only suitable definition of the
given problem (along with appropriate methods of system evaluation), but also proper
data acquisition and the selection of a suitable model. Selecting an appropriate model is
not always an easy task, as the choice can directly influence the amount of data needed,
and therefore, the amount of resources required to complete the risk assessment.

The use of models requires an assessment of the credibility of results just as with
any scientific study. An important part of this assessment is uncertainty analysis. The
uncertainty associated with a model’s results is introduced by elements of input parameter
variability, and is then propagated through the structure of the model. Uncertainty needs
to be evaluated to have a frame of reference for the evaluation of output credibility.

Selecting one model over another can vary the amount of uncertainty encountered
in 2 modelling exercise. How is uncertainty related to the structure of a model? This
thesis investigates the relationship between model uncertainty and the complexity of a

model’s structure, with the goal of using uncertainty evaluation as a method for model



selection.
Before proceeding further, it is important to define terms that are frequently used
throughout this text.

A model is a representative construct that is used to simulate the behaviour of a
system. While models can vary in nature from physical to hypothetical, typically the term
here refers to a series of mathematical equations that describe the flow of matter and
energy to and from various states in a system.

Modeliing uncertainty describes the degree to which a model’s output is “known”,
or to what extent confidence can be attached to simulation results. It describes the
propagation of variability in inputs through the model’s structure, as reflected in model
output. Modelling uncertainty is defined here as a combination of how close the model’s
predictions are to reality (goodness-of-fit), as well as the variability in the results.

Model complexity describes the level of detail in the relationships describing the
processes in a system. Model complexity is higher in models with greater numbers of state
variables, parameters and processes, and fewer simplifying assumptions.

Model sensitivity is defined as the amount of change in model output resulting
from a change in model input. The sensitivity of a model to changes in its individual
parameters is dependent on several factors, including the number and value of other
parameters, the mathematical nature of the equation in which the parameter is
incorporated, and the range over which the change is made.

Model error is defined as the quality of the output. It is a “goodness-of-fit”

measurement of how well a model can simulate a given system. Error may be measured in



different ways, depending on the way a particular problem or system is defined. An
example, however, would be to consider the sum of absolute differences between model

predictions and observed data.

Model structure is defined as the series of vanables, equations, and assumptions

used to describe a system.

2.0 Thesis Objectives and Summary

The objective of this thesis is to characterize the relationship between modelling
uncertainty and model complexity, with the purpose of using this information as a tool for
model selection. Understanding the relationship between the complexity of a model’s
structure and its predictive performance is useful in determining how complex a structure
is required for a given simulation task. A method is proposed for evaluating and selecting
the “best” model structure among models of varying complexity.

Knowing the consequences of choosing a more complex model over a simpler one
gives a modeller valuable information for the selection process. It can aid the modeller in
answering the question, “Is it worth going to a more complex model, when a simpler (and
less costly) one might adequately define the system?”

Investigation of the nature of the relationship between complexity and uncertainty
requires their proper characterization. Quantitative methods to evaluate these two model
attributes in 2 meaningful way are essential.

Inter-disciplinary models are models that involve the integration of two or more

models of different disciplines. Incompatibilities and discontinuities in the different model



structures can have significant impacts on modelling uncertainty, given that overall model

structure can be substantially altered by the integration of discrete modelling concepts.

The specific goals to be achieved in this research are outlined below:

1

2)

3)

Development of a method for measuring model complexity.

Model complexity must be defined in a useful and rigorous manner to evaluate the
relationship between model uncertainty and the complexity of a model’s structure.
An index of model complexity is proposed, and used in the characterization of the
uncertainty/complexity relationship.

Development of a method for evaluating uncertainty based on the complexity of
model structure.

To investigate the relationship between uncertainty and model complexity, the
method of uncertainty evaluation has to isolate only the uncertainty associated with
structure. This can be done by minimizing contributions from elements such as
input data varniability and solution method effects. A method to rigorously
differentiate models of varied structural complexity, based on modelling
uncertainty, is proposed and used for the characterization of the
uncertainty/complexity relationship.

Assessment of uncertainty with real environmental systems and dynamic models.
A series of simple sorption models and more complex groundwater transport
models (of varying complexities) are evaluated against real systems to determine

the relationship between uncertainty and model complexity for each system. The



uncertainty evaluation methods cited above in objective 2 are used.

Environmental-economic inter-disciplinary models are a specific subset of the
overall scope of models in general. The study of the relationship between modelling
uncertainty and the complexity of model structure also focuses on these models in order to
highlight the relationship where two or more models of different disciplines are combined.

In particular, the objective related specifically to inter-disciplinary models is:

4) Characterization of the effects on modelling uncertainty of integrating
environmental models into economic models, using the Leontief input-output
model as a case study.

Environmental issues relating to economic impact are studied through the use of
Leontief input-output (1/0) models which describe the flow of money to and from
various sectors of the economy. Adding an extension to this model, which
describes environmental processes both in terms of physical and economic units,
relates environmental and economic impact. The Monte Carlo Method is used to
evaluate the uncertainty of regular input-output models, and to evaluate how
uncertainty changes when this type of environmental extension is added to a

traditional Leontief input-output model.

2.1 Structure of Thesis

The above topics are addressed by drawing on results and conclusions of four



papers included as appendices I-IV. These papers are referred to by their roman numerals
in the thesis text, and are listed below along with a statement of the major contribution of

each paper. The papers consider:

I creating an index of model complexity
1L characterizing the relationship between modelling uncertainty and model
complexity

HI.  integrating an environmental model into an economic model, and
IV.  evaluating the effects on uncertainty of integrating environmental models into
economic models.

These four papers address the objectives outlined earlier. Paper I describes the
methods used to characterize complexity that are employed in the study in Paper II. The
input-output model developed in Paper III uses the environmental extensions that are
investigated in Paper IV, and the model itself is evaluated in this thesis using the methods
outlined in Paper IV. Lastly, the results obtained from Papers Ii and IV show how
changing model structure alters the way uncertainty is generated in model resuits.
Knowledge of the relationship between model structure and modelling uncertainty can be

used as a tool to aid in selecting a model of appropriate complexity for a given task.

L Index of Model Complexity

This paper develops a new method for quantifying model complexity. Model

complexity considers model structure and the level of detail in the mathematics describing



each process. I, the index of model complexity, is calculated from the equation,

I.= jflipiq where N = number of state variables in the model, n; = number of processes
associated with state variable j, p, = number of parameters used to describe process i, and
r; = number of mathematical operations used to describe processi. Several biological
wastewater models of varying complexity are used to illustrate and to evaluate I, The
index of model complexity effectively differentiates between models of different structures

(e.g. carbon-nitrogen models have lower I, values than carbon-nitrogen-phosphorus

models), and is well correlated with computational requirements for performing computer

simulations.

II. Evaluating Modelling Uncertainty for Model Selection

This paper investigates the relationship between modelling uncertainty and model
complexity (as defined in Paper I). Methodology developed for isolating and measuring
the uncertainty associated with model structure is used to assess models of varying
complexity for two environmental systems: the sorption of metals in a sediment solution,
and a 3-dimensional tracer transport in a homogeneous sand aquifer. An index of model
utility is proposed to quantify the uncertainty information for the purposes of model
selection. In both case studies, moderately complex models were shown to have the

highest utility of those tested.

I1.  Input-Output Modelling and Groundwater Remediation

This paper expands the use of a model feedback effect for use in the agricultural



sector, through an environmental extension to a standard input-output model. Pollution
cost (from pesticide use) is incorporated back into the economy by evaluating the
production associated with remediation of agricultural pollutants. When the model is
applied to a Southern Ontario agricultural region, up to a 5% increase in production of the
services sector is predicted when remediation is included. While this paper does not
directly deal with uncertainty, it develops the basis for the environmental feedback

extensions used in the uncertainty study in Paper IV.

IV.  Uncertainty Analysis in Input-Qutput Modelling: Effects of Internal

Feedbacks

By adding a feedback effect to a standard input-output model (such as the model
in paper III), uncertainty is increased, depending on the level of exogenous (external to the
model) demand. In this paper, the Monte Carlo method is used to investigate changes in
uncertainty with the integration of environmental extensions into a hypothetical Leontief
input-output model. Modelling uncertainty is highest at low levels of demand, where

remediation production is equal to or greater than exogenous demand.

3.0 Background

Modelling uncertainty can be defined in many different ways, but simply put, it
describes how well the solution to a model is “known”. Uncertainty is a property of
several factors, including model structure, variability of input data, and solution methods.

It can be measured in different ways, such as simple statistical measures of variance,



analytical calculation of propagation of error, or the Monte Carlo method (Kalos and
Whitlock, 1986).

Modelling uncertainty directly affects the ability to use a mode! for purposes such
as environmental risk assessment. It is important to take into account the uncertainty of

results when using model output to draw conclusions about the behaviour of a system.

3.1 Importance of Modelling Uncertainty Evaluation

Evaluating modelling uncertainty can be useful in three ways; for interpretation of
model output, as a tool to determine which model inputs are most important (enabling
resource allocation for data acquisition to be optimized), and for assessment of model
structure for model evaluation or selection. Each of the uses of uncertainty information
differs in purpose and methodology, and is described in the following sections.
3.1.1 Interpretation of Model Cutput

Using models in risk assessment necessitates the evaluation of uncertainty in order
to quantify the variability of the model output. Dakins, et al. (1994) outlined a decision
framework for risk-based environmental remedation where the evaluation of uncertainty
plays a key role. The authors noted that full uncertainty analyses are not commonly
performed in the decision making process. Incorporation of an uncertainty analysis into
risk assessment can have a substantial economic value, as shown with an on-going case
study.

Reckhow (1994) expanded upon this idea by discussing the role of uncertainty in

management decisions, and evaluated several water quality models with respect to their



predictive abilities and the difficulties encountered in uncertainty analyses. He considered
the notion that models must be complicated in order to achieve accurate simulations. This
idea 1s in contrast to Beck’s (1987) comment that “Most of the evidence suggests that
current models of water quality, in particular, the larger models, are easily capable of
generating predictions to which little confidence would be attached”. In addition,
Reckhow stated that the presence of a quantified uncertainty measurement enhances the
quality of model output. He also noted that uncertainty evaluation is most useful in
directing modelling efforts when both the modellers and decision-makers use it to
structure analysis, and as a context in which to present results.

Decision-makers, however, need to be careful in their interpretation of “validated”
model results. Several methods exist for the validation of model output, although the
outcome of the use of such methods has been questioned. Oreskes et al. (1994) described
the difference between model validation, verification and calibration. They noted that
these terms are often used synonymously, which is incorrect. Verification usually refers to
the confirmation of numerical solutions to models, whereas validation and calibration are
methods used to compare simulated results to observed data. The use of these terms to
imply that models are in some way true representations of reality was also questioned.

Konikow and Bredehoeft (1992) noted that the terms “verified” and “validated”
are often incorrectly construed by users to mean that models are “true”. Harremoés and
Madsen (1999) supported this idea by warning that current calibration/verification

methods can give an exaggerated sense of certainty regarding model resuits.
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3.1.2 Ranking of the Importance of Model Inputs

Dakins, et al. (1994) identified modelling uncertainty analysis as a suitable method
to identify which parameters are most important in a risk assessment. A case study from
New Bedford Harbour, Massachusetts illustrated that incorporation of an uncertainty
analysis in risk assessment could be used to estimate the amount of resources that should
be allocated to reduce the study’s uncertainty. This assessment also showed how the
resources right be best spent.
3.1.3 Evaluation of Model Structure

The structure of a mode! plays a role in the evaluation of its associated uncertainty.
Beck (1987) provided an excellent review of uncertainty analysis in water quality
modelling. The author reviewed methods for uncertainty analysis, but more importantly,
investigated the role of model identifiability in uncertainty. Model identifiability refers to
the ability of a model to uniquely define the behaviour of a system. Beck concluded that
meaningful calibration or parameter estimation is difficult for models that lack model
identifiability. The inability to explicitly falsify constituent model hypotheses makes
validation of increasing complex models difficult.

Therefore, following the principle of Ockham’s Razor, simpler models are often
chosen in favour of more complex ones, partly because they are easier to validate (Pearl,
1978). Morgan and Henrion (1990) argued however, that the development of large,

complex models can aid in identifying and directing research in areas where knowledge is

lacking.
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3.2 Importance of Choosing the Best Model Structure

Beck, Reckhow and Dakins all pointed out the need for proper evaluation of
modelling uncertainty when simulation is used as a decision-making tool in environmental
risk assessment. The amount of uncertainty propagated through a model is a property of
its structure. Given that sometimes there are many models of varying structures for a
system, modellers are often faced with the task of selecting among models that describe
the behaviour of a system to varying levels of complexity. This choice may not be a
simple one. The choice of model structure influences not only the amount of uncertainty
encountered in the simulation exercise, but also the amount of data required to properly
calibrate the model to the system being simulated.

3.2.1 Modelling Uncertainty and Model Structure

The uncertainty associated with model structure can influence the quality of model
results. If a model is far more complex than the system it is simulating, the variability of
the output can be significantly large compared to the answer it provides. For example,
highly sensitive models which produce output with a variability of £100% have only
limited application.

Beck (1987) noted in his review of several extant water quality models that there is
the capability for larger, more complicated models to generate output which is accorded
little confidence. He stated that simpler, well-identified models reflect only observed past
behaviour, and therefore can be accredited with some amount of confidence. Conversely,
complex models, which may possess excellent predictive abilities on a case-by-case basis,

can rely on “apparently redundant or ambiguous hypotheses”, and therefore cannot be
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accorded much confidence. The resulting hypothetical paradox is that simple models can
confidently provide a “wrong” answer (or “right” answer for the wrong system), whereas
complex models can provide a “right” answer with very little confidence. To be able to
select an appropriate model from the middle ground is the goal of the model selection
process (Smith et al., 1999).

3.2.2 Simulation Cost and Model Structure

The cost of data acquisition is directly proportional to the amount of input
parameters and state variable initial conditions. A more complex model has more
parameters and state variables, and more processes to calibrate. The most costly aspect
of modelling is the collection and analysis of field data which is used as input or to
calibrate the model. The CPU requirements of a model have been considered a cost in the
past, but due to the cheap computing power currently available (relative to the costs of
manual or automated field data gathering), CPU time is generally no longer considered a
significant cost.

Usually data gathering is governed by the complexity of a model’s structure, in
that the model will only be as complex as the data used to calibrate it. For example,
kinetic data as well as steady-state data is required to calibrate a kinetic model.
Calibrating only at steady-state would limit the effective use of the model, because kinetic
behaviour would not be observed, and kinetic parameters would be essentially arbitrary.

In summary, choosing a simpler model can effectively mean a decrease in the cost
of collecting and analyzing data needed to prepare the model to capture the behaviour of

the system.
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3.3 Model Selection for Inter-Disciplinary Models

It is hypothesized that the relationships between modelling uncertainty, complexity
and cost are also valid for the subset of interdisciplinary models. Adding environmental
extensions to economic models alters the structure of the overall model, thereby changing
the way uncertainty is generated, as well as increasing the amount of data required for a
simulation. For this study, an environmental model is incorporated into the Leontief
input-output (1/0) model (Milter and Blair (1985)).

A standard input-output model describes the relationships between sectors in an
economy, and can be used to predict the amount of overall production associated with a
given level of exogenous demand for each sector’s product. Miller and Blair (1985)
presented a concise review of input-output modelling, including the development of
extensions for environmental analysis. Linear relationships between production and
various other economic factors are used to estimate total levels of employment, resource
use, and pollution generation.

Leontief (1970) developed the use of environmental feedback extensions to regular
/O models. Leontief’s proposed environmental extension determines the amount of
pollution generated from production in the economy, and then compares it to an
“acceptable” level of pollution. The amount of pollution in excess of the acceptable level
is removed from the environment by an environmental remediation sector. The production
from that sector is then added back into the economy. This new production then
generates further production in other sectors, and the result is more pollution. This

pollution is then remediated, and the cycle is repeated unti] the system reaches equilibrium.
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Feedbacks were further expanded by Chen (1973), who developed a block diagram system
of illustrating input-output models. Chen also developed methods for internalizing the
costs of pollution control, whereby the cost of pollution control methods are passed on to
the customer.

Xu, et al. (1994) extended Chen’s ideas for use in urban stormwater quality
planning. The production associated with the remediation of pollution generated by
various types of land use was incorporated into the economy. This same type of approach
is used in Paper 111, where the poliution generated from the agricultural sector is
remediated, and the production associated with the remediation is then incorporated into
the economy. Xu et al. (1994) and Paper 111 both incorporate Chen’s box diagram
illustration method.

Adding an environmental feedback effect necessitates the acquisition of data
describing remediation production (in addition to data on the amount of pollution
generated at various levels of production). The addition of the feedback effect changes
the overall model complexity, and therefore, also affects the uncertainty of the new,
coupled model.

In summary, the relationship between model structure and modelling uncentainty is
important for model selection. Both the amount of uncertainty in a model’s results and
the cost of providing input data are a property of the complexity of a model’s structure.
When choosing among several models of different complexities, selecting one structure

over another has an impact both on predictive performance as well as simulation cost.
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4.0 The Uncertainty/Complexity Relationship

The predictive performance of a model is influenced by many factors, including;
complexity of model structure, input data variability, calibration data variability and
numerical solution methods. Following the ideas of Beck and Reckhow, uncertainty and
complexity are used to evaluate predictive performance.
4.1 Modelling Uncertainty as a Function of Model Complexity

It is important to properly describe uncertainty to identify and characterize the
relationship between modelling uncertainty and model complexity. In this study,

uncertainty is characterized by two properties of a simulation: sensitivity and error.

Sensitivity
tey
g
«
T
S
=)
-
Error
Complexity

Figure 1. Hypthetical Uncertainty-Complexity Relationship.
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Methods used to quantify these characteristics are described in section 4.3.

Figure 1 schematically summarizes the hypothesized relationship between
uncertanty and complexity, by illustrating the trends of sensitivity and error with
increasing model complexity. As model complexity increases, models have more
parameters, state variables and more complex mathematics. They also have more degrees
of freedom, and therefore should be more sensitive. More complex models are
hypothesized to simulate reality better since more mechanisms are considered, and ina
more sophisticated manner. Therefore, error (the difference between simulation and
ubservation) should decrease with increasing complexity. In summary, the hypothesized
relationship proposes that simpler models give a less realistic simulation, but with a smaller
envelope of sensitivity, whereas more complex models can give a more realistic
simulation, but with a greater envelope of sensitivity. The trends shown in Figure 1 are a
general hypothesis only. The trends may have different slopes (including zero), and may
also be non-linear.

The optimally complex model for any given system is defined by the relationships
shown in Figure 1. Minimizing both model error and sensitivity improves simulation
(reduces uncertainty), so therefore the optimal model will lie somewhere in the middle of
the ranges of complexity shown in Figure 1. Methods of using sensitivity and error

information to determine the optimally complex model are included in section 4.2.4,

4.2 Characterization Methods

Methods for the quantitative characterization of uncertainty and complexity are

17



developed as tools for model evaluation and selection. Quantification of model
complexity, model error and model sensitivity is carried out through the methods
described in sections 4.2.1 to 4.2.3. In each case, the objective is to differentiate between
models for model selection. Therefore, the methods are designed to produce relative
measurements, rather than absolute measurements.
4.2.1 Characterization of Model Complexity

Smith and Vaughan (1980), Halfon (1983) and Kohter, et al. (1996) performed
simple assessments of models to address the issue of an appropriate model complexity. In
these studies however, the complexity of the models was not explicitly characterized. Few
methods exist in the literature to characterize the complexity of a dynamic model, and no
one method has been accepted as a standard. Bosserman’s index of connectivity, ¢
(Bosserman, 1980), was used by Halfon (1983) to measure the complexity of ecosystem
models. It is calculated by determining the number of direct and indirect links between
states in an ecosystem. It does not, however, take into account the complexity of the
mathematics involved in the model.

Paper 1 outlines a method to characterize complexity for any type of dynamic
model. The index of complexity, I, quantifies both the structure of the model, as well as

the mathematical complexity. I is shown in Eq.1 below:

N 1L
Ic =2 2 pif; )
i=li=1

18



where N = number of state variables

n = number of processes flowing to or from state variable j

o = number of parameters used to describe process i.

T = number of mathematical operations used to describe process i.

By summing across each state variable, processes that are reversible between two
state variables are counted twice, to emphasize the complexity of such processes. The
most straightforward method of calculating 1_ is through the use of the Petersen matrix
(Petersen, 1965, Henze, 1987), which uses a simple matrix notation to illustrate the
relationships between model flows and processes.

1. is calculated for a series of wastewater models of varying complexity (specific
details of the models and calculations can be found in Paper I). Models of similar type are
grouped together when evaluating log(l,). Wastewater models consisting only of carbon
components had a log(},) value of approximately 1.7. The addition of nitrogen
components increases log(1.) to the 3.0 to 3.6 range. Addition of phosphorus components
to the carbon-nitrogen models increases log{l.) values to the 3.9 - 4.0 range.

Computational requirements (in the form of CPU usage) for model solutions are
well correlated with 1. A linear relationship between log(1.) and CPU time required (for a
standard dynamic simulation) was shown for the models used in the study (* = 0.97). The
use of this index as a measurement of complexity allows for appropriate characterization
of models, as well as a rough estimate of computational effort required to solve the model.
4.2.Z Characterization of Model Error

1t is necessary to isolate model structure as an independent variable to evaluate the

uncertainty that is specifically associated with structural complexity. Several models of
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different structural complexities are used to simulate the same system in the case studies in
Paper I1. The only difference among the models is their structural complexity. All other
model properties are held the same (such as boundary conditions, spatial resolution, and
integration methods). Differences in error evaluation among the different models are then
a property of structural complexity only.

The Jackknife method (Miller, 1974) is used to evaluate the error aspect of
modelling uncertainty. The method is useful for situations where there is minimal data for
a system. In typical calibrations, one set of data is used for calibration of the model, and a
second, independent set of data (from the same system) is used for model evaluation. The
time series from the Borden Data Set (Roberts and McKay, 1990), used in case study Il in
Paper 11, are highly spatially resolved, but there are data for only one event, so the
Jackknife method is used. For each of the five temporally coincident data sets
(representing the concentration at five different points in the system over time), the model
is calibrated with the other four data sets, and then evaluated against the fifth. This is
repeated four times, switching the sites used for calibration and evaluation, so that all the
data have been used for both calibration and evaluation. The overall error measurement is
equal to the average value of the objective function (which describes the difference
between the observed value and the model prediction) during the five evaluations.

There is only a single time series of data for case study I. Error evaluation is equal
to the value of the objective function used in the optimization with observed data. The
objective function is equal to the squared differences between prediction and observation,

summed across all data points in the time series.
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4.2,3 Characterization of Model Sensitivity

Several models of different structural complexities are used to simulate the same
system during the sensitivity characterization (similarly to error characterization). The
only difference among the models is their structural complexity. All other model
properties are held the same (such as boundary conditions, spatial resolution, and
integration methods). Differences in sensitivity evaluation among the different models is
then a property of structural complexity only.

Recalling that sensitivity is the amount of variability in model output caused by a
change in model input, sensitivity characterization is based on quantifying this output
variability. The Monte Carlo method estimates model sensitivity through the use of
repeated simulations to observe the behaviour of a model. For each model input
parameter, a distribution of values is assumed (arbitrarily, from empirical data, literature,
or otherwise). A series of values is independently sampled from each of the distributions.
The model is then solved using each of the sets of values. The output from each
simulation is collected, and the combined data are evaluated in order to determine the
spread across all the runs. A typical evaluation of spread might involve calculating the
mean and standard deviation for each time step in the model’s output (similar methods are
described in Kalos and Whitlock, 1986, Dakins et al., 1994).

As described above, the results of a Monte Carlo analysis depend on the parameter
distributions used. As stated earlier, the purpose of sensitivity characterization in this
study is to quantify changes in sensitivity in models of different complexities. The choice

of parameter distributions should serve to distinguish models from each other, based on
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structural complexity. Arbitrarily chosen parameter distributions may only describe model
behaviour in specific ranges that are limited by the distributions. These limited ranges of
behaviour may or may not cover the optimal behaviour of the calibrated model as seen in
the error characterization. A much better method to determine apprepriate parameter
distributions is the “reverse” Monte Carlo method.

The reverse Monte Carlo method exchanges the positions of input and output in
the analysis. Instead of starting with a distribution of input parameter values and then
determining a series of resultant output, the reverse method starts with many sets of
output data and determines input. Often these sets of output are created by adding
randomly gencrated noise to a single data set many times, to create a series of noisy
output data sets. The model is then fit to each one of the sets of output data by varying
the input parameters being studied. The result is a set of parameter values for each of the
noisy output data sets. The values for each of the parameters are collected, and a
distnibution is calculated.

The sensitivity characterization performed in the case studies in Paper II uses the
reverse Monte Carlo method to determine parameter distributions. The noisy output data
sets are created by adding randomly generated noise to the “clean” time series data as
taken from the Borden Data Set. The noise added to the original data set incorporates
both independent random noise (added to each point), as well as a random, noisy bias
across multiple data points.

The model s fitted to each of the noisy sets, and the parameter distributions are

determined. These parameter distributions are then independently sampled to create a
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series of input parameter values. The parameter values are used in the normal “forward”
Monte Carlo test, where the mean and standard deviation are calculated for each timestep
of the muitiple series of output data. An output variability “envelope” can be plotted as
plus/minus one standard deviation around the mean, at each timestep in the series. The
overall sensitivity measurement is proportional to the area of the envelope.

Performing a reverse Monte Carlo test followed by a regular Monte Carlo test
‘ughlights the differences in sensitivity between models with different structures. A simple
example illustrates this concept. If a deterministic model is fitted to a time series of data
by adjusting a single parameter, and that resultant parameter value is then used as input,
the output that is generated will be exactly the same as the original time series. If a series
of values for the parameter are generated using the reverse Monte Carlo method as
described earlier, and those values are then used as input (for repeated simulations), the
model will produce a series of output data sets that exactly match the original series.

If however, the input values are not exactly those that were recorded in the reverse
Monte Carlo method, but rather sampled from a distribution determined from the recorded
values, the output from the model will be similar to the original noisy output data. The
variability in the results is a property of the structure of the model. Comparing the output
results from different models highlights the differences in sensitivity that are caused by the
differences in model structure. This concept is then extended to a deterministic model
with more than one input parameter.

The mode! sensitivity measured with this method is relative (for comparing models

of different structural complexities), and reflects the sensitivity of a model calibrated to
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reflect the system used in the study. This method is used in both of the case studies in
Paper 11.
4.2.4 Characterization of Model Utility

An index of model utility is proposed to combine the error and sensitivity
evaluations into a single, quantitative measurement. Model utility, U, is calculated for
each of the models in the two case studies, to provide a tool for selecting the “best”
model. U is calculated as the weighted and normalized combination of error (E), and

sensitivity (S), as shown in Eq. (2):

i (2)
where U; = utility index for model i
S = sensitivity value for model i (relative to maximum sensitivity)
E; = error value for model i (relative to maximum error)

k, k. = weighting constants for sensitivity, error

k, and k, are chosen to weigh sensitivity and error relative to each other. Ifk,isa
larger value than k, sensitivity will be given a greater weighting in the utility
measurement. For all studies in this thesis, sensitivity and error are weighted equaily. A
higher value of U, indicates a model with low error and sensitivity, compared to others in
the same study. Therefore, the “best” model (based on the proposed uncertainty

evaluation) has the highest U, value.
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5.0 Results

The studies carried out in Papers II and IV quantify the relationship between
model complexity and uncertainty by analyzing models of different complexities. The case
studies in Paper I1 consider the uncertainty/complexity relationship in dynamic
environmental models, while the study in Paper IV assesses environmental-economic
models. Paper II is somewhat similar to the works by Smith and Vaughan (1980), Halfon
(1983) and Kohler et al. (1996) and the water quality model comparisons of Reckhow
(1994). Paper II however, isolates and evaluates the differences in uncertainty that are
associated specifically with the changes in complexity, by employing the characterization
methods described earlier.

Paper 111 illustrates the use of an environmental feedback effect, which expands
upon the traditional Leontief input-output model, and assesses the effects of increasing the
complexity of a standard input-output model. Paper IV extends the methods presented by
Bullard and Sebald (1988) and West (1986) for use in comparisons between models of
different complexities. Such comparisons were done with dynamic models by Smith and
Vaughan (1980), Halfon (1983), Kohler et al. (1996) and in Paper II.

In summary, Papers I and III present methods and techniques that were used
(along with other methods described in this thesis) in the studies carried out in Papers I1
and IV. Papers I and 1V address the objectives of the study on the relationship between

modelling uncertainty and complexity. This section presents the results of those studies.
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5.1 Case Study I - Sorption of Metals onto Sediments

Case study I uses three different models to evaluate the uncertainty/complexity
relationship for a system of metals in solution sorbing onto sediments. The data are taken
from experiments performed by LeBeouf (1992). The three models differ in the
complexity of the sorption mechanism only. The simplest model is a 2-state (sorbed and
solute) equilibrium model, in which the only parameter employed in the Monte Carlo tests
is the distribution coefficient. The moderately complex model (of the 3 models) is a 2-
state model that describes the sorption of the metals with a kinetic, reversible relationship.

Two parameters are used in the Monte Carlo tests; the distribution coefficient, and the
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Figure 2. Uncertainty vs. Complexity - Case Study L
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kinetic constant that describes the rate at which the sorption reaction goes to completion.
The most complex of the three models uses a 3 state system, which has one solute phase,
and two sorbed phases. Both equilibrium and kinetic reversible rate equations are
employed, and three parameters are used in the Monte Carlo analysis; the equilibrium
distribution coefficient, the forward kinetic rate constant, and the reverse kinetic rate

constant. Please see Appendix V for more details on the models, including the parameter

distributions and the calculation of the complexity index, I.

3Box

2-Box Kinetic

2-Box Equil.
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Model Utility (U)

Figure 3. Model Utility - Case Study L
Figure 2 shows the uncertainty/complexity relationship obtained for case study 1.
Similar to the hypothesized relationship, the most complex model had the least error,
while also being the most sensitive. Figure 3 presents the utility evaluation for the three
models (increasing complexity on the y-axis), and shows that the moderately complex

model is the most utile.

27



5.2 Case Study 1I - Transpert of a Tracer in a Homogenous Sand Aquifer

Case study 11 uses a series of seven 3-dimensional models which describe the
transport of an organic tracer (carbon tetrachloride) in a homogeneous sand aquifer. The
data are taken from the Borden Data Set, a highly spatially resolved set of data that
describes the movement of several tracers in an aquifer over a period of three years at the
Canadian Forces Base in Borden, Ontario.

The seven models used in the study vary in complexity through differences in the
simulation of sorption (adherence to soil particles which causes retardation of transport)
and degradation (transformation of the tracer into a different product, essentially removing
it from the system being modelled). The transport model simulates the movement and
dilution of the tracer with simple convective and dispersive flow algorithms.

The simplest model! consists only of solute transport, with the assumption of no
sorption and degradation. In the other models, (in addition to the solute transport)
degradation was modelled as either no reaction, or as a first-order kinetic reaction.
Sorption is described by either equilibrium reactions (progressing to completion at an
infinitely fast rate), or at a rate described by a rate constant. In addition, the liquid-soil
sorption function varied in complexity, from a linear relationship to a non-linear
relationship to a Monod-type equation. Details on the models, the parameter
distributions, and the calculation of I_ for each model can be found in Appendix VI,

whereas Table 1 summarizes the nature of the seven models in case study II.
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“ Model Number Sorption Submodel Degradation Model
Submodel Complexity, L
1 None None 16
2 Linear Isotherm None 22
Equilibrium Sorption
3 Linear Isotherm None 28
Kinetic Sorption
4 Linear Isotherm 1% Order 24
Equilibrium Sorption Reaction
5 Linear Isotherm 1* Order 29
Kinetic Sorption Reaction
6 Non-Linear Isotherm 1* Order 41
Kinetic Sorption Reaction
7 Monod-type Isotherm 1* Order 47
Kinetic Sorption Reaction

Table 1. Models used in Case Study IL

Unlike case study I, the models used in case study II have spatial resolution. The

resolution is chosen as a balance between the quality of the output (too coarse a resolution

can lead to difficulties with numerical dispersion) and computational effort. The spatial

resolution is held constant for all models in the study. Values for several parameters in the

tracer transport models are either taken from the literature (from the Borden Data report),

or are estimated from fitting the raw data without noise. These and other model

parameters relating to the simulation (such as the integration method and time step) are

held constant across all seven models. This is done to isolate the differences in structural

complexity as the distinguishing factor among models.
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Figure 4. Sensitivity vs. Complesity - Case Study IL Two trends are shown, both indicating
increasing sensitivity with increasing complexity.

The results for the sensitivity and error evaluations for case study I are shown in
Figures 4 and 5. Trends are evident, although they are not as simple those shown in case
study 1. Figure 4 shows two trends of increasing sensitivity with increasing complexity;
one for models with degradation processes, and one for models without degradation
processes. Increasingly complex sorption isotherms (Trend #1 - no sorption/equilibrium
sorption/kinetic sorption) and increasingly complex models with degradation (Trend #2 -
linear/non-knear/Monod sorption) follow the hypothesis. Error however, appears to be
independent of complexity (Figure 5). Significance testing (T-test) indicates that the slope
of a regression of the points is indistinguishable from zero at p = 0.005. Thus, with

respect to error, more complex models do not fit the data better than the simpler models.
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Figure 5. Error vs. Complexity - Case Study IL

Utility for the various models in case study Il is summarized in Figure 6. Two of
the moderately complex models have relatively low utility values, while the most utile
model is the second-least complex. In this case, variations in utility reflect mostly
sensitivity rather than both sensitivity and error (even though they are evenly weighted in
utility calculations) , because error is relatively similar across all models.

In this case, where all models had relatively similar error evaluations, the
conclusion that all models are adequately complex can be useful information. This is an
indication that one or more of the processes in the model may dominate the system, and
that the further processes included in the model do not improve error.

In general, the trends show that the most complex models are not always the best
choice. Depending on the definition of utility (sensitivity and error can be weighted

according to the user’s preference), the increases in sensitivity can outweigh any gains in
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Figure 6. Model Utility - Case Study IL. Model #2 has the greatest utility of those studied.
fit achieved through use of more complex models,
5.3 lnter—disciplinary Models - Uncertainty in Environmental/Economic Modelling
The relationship between modelling uncertainty and model structure is investigated
further by studying the specific subset of environmental models that are interdisciplinary in
nature. This study attempts to quantify the effects on uncertainty of adding an
environmental feedback extension. This is similar to the goals of the study in Paper II
An environmental-economic model is developed for the purpose of investigating
how uncertainty changes when an economic extension is added to a traditional Leontief
input-output model. Environmental impacts from agricultural activities were chosen as
the system to be simulated in this study. This expands upon the work of Chen (1973) and

Xu et al. (1994), who developed extensions for other environmental systems.
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Figure 7. Monte Carlo analyses of /O models with and without environmental
feedback extensions. Note that the model with feedback has higher relative
uncertainty.

The Leontief input-output model is a system of linear equations that can be used to
evaluate the inter-relationships between different sectors of an economy. Environmental
extensions to the basic economic model can be used to investigate the environmental

impact associated with various levels of economic production. The use of a feedback
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effect as proposed by Leontief (1970) incorporates the cost of remediating pollution back
into an economy.

A feedback effect can be added to a standard input-output model to study the
relationship between agricultural pesticide regulation and economic impact. The costs of
remediating agricultural pesticide pollution are first estimated, and then put back into the
economy. Paper III outlines the development of the Pesticide Impact Input-Output
Model.

Incorporating an environmental extension into a standard *nput-output model
changes the way uncertainty is generated, because the overall structure of the model is
altered. The environmental feedback effect used in the model in Paper I significantly
changes the structure of the model by including more equations and processes to describe
environmental impact.

In the past, Monte Carlo analysis (as described in section 4.2) has been
incorporated to analyze input-output models (West, 1977, Bullard and Sebald, 1988). A
standard Monte Carlo analysis is performed on a hypothetical input-output model that
contains four economic sectors. Random noise is added to each of the 16 coefficients
describing flow to and from each sector. Monte Carlo analysis results for the hypothetical
input-output model, both with and without a feedback effect, are shown in Figure 7
{details of the hypothetical model are shown in paper IV). The relative size of the error
bars, compared to the magnitude of the production, is significantly greater for the model
with feedback effect. The average size of the bars (relative to the magnitude of

production), increases approximately 80% when the feedback is added.
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devation, at several different levels of demand. Note that uncertainty is largest when demand is
equal to or less than remediation production,

Another way to assess uncertainty is to analyze Monte Carlo results at different
levels of exogenous demand. Figure 8 illustrates the total production level (sum of
production across all four sectors} at different levels of demand, for models with the
feedback effect. Demand level (x-axis) is a scalar factor by which the initial sectoral
demand is multiplied. The total output is shown as a thick solid line, and the uncertainty
envelope (£ one standard devia;ion) 1s shown with dashed lines. Also shown are the total

amounts of demand and remediation production. When the remediation production is

significantly less than the total amount of demand, the uncertainty associated with total
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production is constant. When remediation production is equal to or greater than the total
amount of demand, the uncertainty is significantly increased. At low levels of demand, the
new production from pollution remedation (which then causes more pollution, and more

remediation, and so on) causes the model solution to converge slowly. At higher demand,

the amount of new remediation production is very small compared to the original
(demand-based) production, and the model solution converges quickly.

The studies carried out in Paper IV show an example of how a changing model
structure (by adding an extension onto a simple, well-understood model) changes the
amount of uncertainty of the results. While the studies related to a very specific example
(Leontief models), the results show that not only did the new model have higher levels of
uncertainty, but also that the uncertainty changed with different levels of output.

A modelier using Leontief-style models may be faced with choosing between a
standard input-output model and one with extensions that relate environmental {or other)
issues to economic impact. Simple input-output models have smaller uncertainty
compared to more complex (but possibly more realistic) input-output models with
environmental extensions. The modeller should take into account the balance between

realistic simulation and output uncertainty when choosing between the models.

6.0 Discussion and Conclusions
Selecting the correct model for a given simulation effort is important. Too
complex a structure can lead to overly-sensitive models that are difficult to properly

calibrate and very dependent on data quality. If the model structure is too simple, the
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effectiveness of the simulation may be limited to only those situation where the model’s
simplifying assumptions are valid. Finding the “middle ground” of suitably complex
models can be difficult. The following discussion considers this “middle ground” to

determine the most suitably complex model.

6.1 The Uncertainty/Complexity Relationship
Case studies I and II in Paper II characterize the uncertainty/complexity

relationship for two real systems. The results of case study I follow the hypothesis (Figure

1) closely, showing that the more complex models are more sensitive, but also fit the data

better. The results of case study II, however, show that all models produced

approximately the same error. In addition, a discontinuity in the sensitivity trend was
observed when degradation was introduced.

The results of the two case studies highlight three significant elements of the
uncertainty/complexity relationship, and the series of models used in the case studies:

1) Importance of Model Structure in Sensitivity Evaluation: The trend of
increasing sensitivity with increasing sorption complexity holds in both case
studies, but there is a break when degradation complexity is added in case
study I1. For each of the two trends shown in the graph of sensitivity vs.
complexity (Figure 4), the relationship between sensitivity and complexity
is similar. Both Trend #1 and Trend #2 show increasing sensitivity with
increasing complexity, while error is essentially the same across all

complexities.
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This pattern of increasing sensitivity is related to the increasingly
complex algorithms used to describe processes (such as sorption) in the
model. The discontinuity is due to adding a new process to the model (in
this case, degradation). Each of these two elements - using more complex
algorithms and adding more processes - results in an increase in overall
model complexity, however they affect uncertainty in different ways.
Changing the complexity of the algorithms produces a trend that follows
the original hypothesis, as proposed in Figure 1. Increasing the complexity
of the algorithm alone increases sensitivity in a continuous manner.
Changing the structure of the model, by adding a new process, introduces a
discontinuity into the sensitivity trend, as shown in case study II.

An analogy can be drawn with regards to the relationship of
sensitivity and complexity, as hypothesized by the upwards-sloping line in
Figure 1. The complexity of the algorithms used to describe processes in
the model defines the slope (and/or curvature) of the line, and the
complexity of the structure of the model (number of processes) defines the
intercept. A set of models of a given structure (all having the same state
variables and processes) will produce a continuous trend of increasing
sensitivity with increasing algorithm complexity. If the structure of the set
of models is changed (by adding a new process), a new continucusly
increasing sensitivity/complexity trend will be found, at a level higher or

lower than the onginal trend.
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2)

3)

The sensitivity/complexity trend can be summarized as a series of
upward-sloping lines. Changing algorithm complexity slides the model up
and down a continuous sensitivity/complexity slope, and changing

structural complexity jumps to another, different slope.

Error Trend Becomes Flat at Higher Ranges of Complexities: The
models used in each of the two case studies varied in complexity to
determine error at different points across a spectrum of complexities (i.e.
across a range of | values). The models used in the two case studies,
however, do not capture the same range of complexities. With respect to
error, the models in case study 1 covered the range from simple (low I,
values) to complex (high I values) well. The models in case study II
however, mostly fell toward the complex end of the spectrum, as shown by
the flat trend of error vs. complexity. All the models were equally good at
simulating the system, indicating that there were no models that could be

improved upon by being more complex (i.e. there were no models that

were “too simple”).

Relative Importance of Sensitivity and Error in Determining
Uncertainty: The results of the two case studies are different, but both
indicate that sensitivity and error (and therefore uncertainty) are a function

of model complexity. For a given set of models, as complexity increases,
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the trend of error will eventually become flat, since there is a point at which
moving to a more complex model will not reduce error (i.e. they are all
sufficiently complex). Beyond this point, uncertainty is a function of

sensitivity only. Sensitivity behaves as described above, where it is a

property of both algorithm complexity and the structure of the model.

Therefore, uncertainty is a property of algorithm complexity and
structural complexity, and is dependent on error and sensitivity in differing
amounts across the complexity spectrum.

Given the results of the two case studies in Paper 11, and the results of Paper IV,
the original hypothesis, as proposed in Figure 1, can be revised. The clearest way to do
this is to deal with each trend — error and sensitivity — separately.

The original hypothesis regarding error and complexity stated that error decreased
with increasing complexity. Results indicate that this is true only up to a certain threshold,

beyond which the error trend becomes flat. At I, values above this threshold, more

Uncertainty

Error

Complexity

Figure 9. Revised Error/Complexity Relationship.
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complex models do not do a better job of simulation (i.¢. do not have less error) than
simpler ones. Therefore, the revised hypothesis can be shown as in Figure 9.

The sensitivity/complexity relationship can be revised from that shown in Figure 1
to include the effects shown in the case studies. For a given model structure (number of
processes and state variables held constant), there is an increasing continuous trend in
sensitivity with increasing algorithm complexity. This relationship may be of a linear or
exponential nature. In addition, there is a discontinuity observed when structural

complexity is increased (such as by adding a new process). Figure 10 shows a revised

hypothesis for sensitivity and complexity.

Change in Structural

COH’IplEXi[)‘ SGIISIUVIB
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Uncertainty
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i‘ngure 10. Revised Sensitivity/Complexity Relationship,
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6.2 Uncertainty/Complexity in Inter-disciplinary Modelling

The study on Leontief models is a very specific example of the effects of changing
structural complexity. Altering even the most simple, linear models can have a very
significant effect (under certain circumstances) on the uncertainty of the results. In this
particular case, the results show a significant increase in uncertainty with the addition of a
feedback effect.

This change is due to the fact that a feedback changes the way the Leontief model
solution is determined. Without the feedback, the Leonteif model is a "black box" that can
be solved explicitly. However, adding the feedback effect changes the “black box”
solution into an iterative process, which is much more sensitive to parameter input.

While the inter-disciplinary study carried out in this thesis is a very specific
example (in that there are many other types of inter-disciplinary models), the results can be
used similarly to those of Paper II to determine whether it is better to use a more complex
model (in this case, one with an environmental extension), or a simpler one. The results
from Paper IV indicate that the Leontief model with an environmental extension is more
sensitive than the standard (non-extended) model, for the ranges of output shown.
Therefore, the utility of the more complex model might be less than that of the simpler
model, depending on the purpose of the modelling exercise. This trend agrees with the
sensitivity trend discussed earlier. Altering the structural complexity of the model (by

adding a feedback process) significantly changes sensitivity.
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6.3 Model Utility and the Optimal Complexity Threshold

The methods presented in this thesis identify the threshold point where moving to
more complex models is not worth the increase in sensitivity for the improvement in error
gained. Given data limitations, this threshold defines a point of optimum model
complexity. The calculation of utility gives the modeller a method to weigh the gains and
costs of error and sensitivity against one another, This balancing of sensitivity and error
can be used to determine the optimum model complexity threshold.

The optimum complexity threshold was determined for each case study through
evaluation of model utility, where error and sensitivity are weighted equally. Case study I
defines the threshold point well, because the models suitably spanned this point (from too
simple to too complex), whereas they did not span it well in case study IL

For the models in case study II, improvements in error would probably be best
achieved through changes in spatial resolution or other methods. Increasingly complex
algonithms may not be the best choice for improvement, since the existing models are all
sufficiently complex for the system. Models of lower complexity could be included as part
of the test in order to better define the simpler (lower I_ values) end of the trend. These

new models could include simpler algorithms, or be structurally simpler models with fewer

state variables or processes.

6.4 Using Model Utility to Select the Best Model
Model utility evaluation (as presented in this thesis) can be used to select among

models of varying complexity. If however, as in case study II, the models are all
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sufficiently complex for the system being simulated, it is possible that error will not
contribute to the equation (i.e. all error evaluations are the same since all models do an
equally good job of simulation). Evaluation of utility then simplifies to an evaluation of
sensitivity. If this happens, utility evaluation could indicate that the simplest model is the
best one. The modeller however, should conclude from this evaluation that there might be
simpler models that weren't included in the study that might have higher utility. These

models should be investigated.

Scenario 1 Scenario 2 Scenario 3
N Seasitiv
Error Esror
Sensitivity equal, Sensivitiy increasing, Sensitivity increasing,
error decreasing error decreasing error equal
Models all too simple Optimal model Models all too complex
complexity defined

Figure 11. Different scenaries of uncertainty/complexity relationship.

A more general conclusion can be drawn about the uncertainty/complexity
relationship by looking at different possible outcomes of model evaluations. Generally,
different possible uncertainty/complexity relationships (determined from the methods
described in this thesis) can be grouped into three distinct scenarios, as shown in Figure

11. Each scenario provides the user with information that can be used for model selection.
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Scenario 2 in Figure 11 shows results where the models span the optimal
complexity threshold, and the relationship appears as originally hypothesized (as shown in
Figure 1). Case study I falls into this category.

Scenario 3 shows the instance where all the models in the study are sufficiently
complex (in error evaluation) for the system being simulated. They can all be fitted to the
data equally well for error (as shown by the flat error trend). The user can determine from
this that simpler models should be investigated, in order to fully determine the optimal
complexity threshold. Case study II falls into this category.

Scenario 1 shows the instance where all the models in the study are much simpler
than the system being simulated. This case could be illustrated by fitting a series of simple
linear models to data from a complex system (including the simplest model of all, x(t) =
constant). In this case, the results indicate that the models are all too simple, and that
there may be more complex models that could better simulate the system. These models
should be investigated to fully determine the optimal complexity threshold, by determining
the point where moving to more complex models is not worth the associated gain in
sensitivity.

In the most general sense, performing this type of study on any series of models
and systems can help the user determine which of the models is closest to the optimal
complexity. It will also show if the models chosen do not fully define this point. In the
latter case, the results can be used to help choose a new set of models, and in an iterative

process, achieve the goal of selecting the optimally complex modei for the job.
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6.4 Conclusions

Uncertainty evaluation is important when using a model as a decision-making tool.
It provides a context within which to evaluate the confidence of output or help to allocate
resources for efficient data gathering. It can also be used to help select a model of optimal
complexity, through the analyses presented in this thesis.

Evaluation of model error and sensitivity can be used to determine the optimal
complexity threshold, beyond which it is not better to move to a more complex model.
The uncertainty/ complexity relationship does not follow that proposed in Figure 1 for
each and every possible set of models and systems. The relationship however, once
determined, can provide very useful information to a modeller faced with choosing among
models of different complexities. The relationship may show flat trends for either
sensitivity or error, which tells the modeller that the optimal level of complexity does not
lie within the set of models studied.

The uncertainty/complexity relationship for two real systems indicated that
moderately complex models can be the most utile. Case study I illustrated the instance
where the modeller should choose a two-state model over a three-state model, because
even though the three-state model can simulate the system more closely, the two-box
model does almost as good a job with far less sensitivity. Case study II showed that the
two simplest models simulated the system as well as the more complex ones, but with less
sensitivity. In this case however, it might be possible to find even simpler models (lower I,
values) with even less sensitivity, since the results do not define the optimal complexity

point very well. None of the models in case study Il are so simple as to have greater error
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than any of the other models, and therefore do not bound the optimal complexity threshold
from the lower [, side. In this case, the modeller should choose to repeat the study with

some simpler models included in the evaluation.

7.0 Future Work

The use of uncertainty evaluation for model selection can be expanded beyond the
examples presented in this thesis. Specifically, the development of methods to analyze the
effect of spatial resolution (and/or complexity) of models on uncertainty could be
addressed.

Analyzing the relationship between spatial resolution and uncertainty would first
necessitate the development of methods to include spatial resolution in the index of
complexity (1.} calculations presented in Paper I. If a 3-dimensional model with 1,000
spatially distinct cells is considered to be more complex than a 1-cell reactor with
equivalent kinetic complexity, the I_ value should reflect this.

Because sensitivity is dependent on both algorithm complexity and structural
complexity, studying these two elements separately would be beneficial. Currently, I,
combines these two types of complexity together into one value. Therefore, development
of independent algorithm and structural complexity measurements is needed. Then, the
relationship between sensitivity and each of algorithm and structural complexity could be
further characterized.

The uncertainty/complexity relationship determined for the case studies in Paper 11

could also be determined for other kinds of models. The method is not model specific,
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and could be applied to any series of models that can be described adequately by a

Petersen chart.
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Abstract

An index of model complexity, 1, is proposed to obtain a unified measure of model
complexity. I, = g} ipiri' where p; is the number of parameters, and 1, is the number of
g
mathematical operations, collectively used to describe a process in the model. These values
are then summed across all processes and state variables in the model. The index is easily
calculated from a Petersen Matrix. I_is calculated for seven wastewater models, to
determine their relative complexity. The index can be used for categorization of mode!

structures as well as complexity characterization in studies relating structure to model

performance.

Keywords: complexity, index, model, wastewater, Petersen matrix.

Nomenclature
1. = index of mode! complexity
N = number of state variables in the model
I = number of processes associated with state variable j
o = number of parameters used to describe process i
T, = number of mathematical operations used to describe
process i.
Introduction

When comparing models for an evaluation such as fit, efficiency, speed or
predictive ability, there is 2 need to be able to differentiate models based on their
compositional properties and internal characteristics. The concept of a model’s complexity

is nebulously defined, but is generaily conceived to be a useful general description of model
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structure. How can model complexity be rigorously defined and quantified as a tool for
model characterization? This paper proposes the index of model complexity, I, for that
specific purpose.

Model developers and model users have estimated the "complexity" of a particular
model based on the number of state variables, processes, and the number of stoichiometric
and kinetic parameters. This information on model complexity has practical importance
when choosing which model to use, and when considering the effort involved in model
coding, data collection, and usage.

The index of complexity was developed for ordinal comparisons among models, to
complement the above characteristics and in an effort to provide a unified measure of
"model complexity”. I, is representative of both the complexity of the structure of the
model, as well as the complexity of the mathematical relationships used to describe the
processes. However, the use of 1, does not supercede any issues related to the applicability
of a model based on its development. The value is readily obtained by working with a

Petersen matrix of the model (Petersen, 1965; Henze, 1987).

Quantifying Complexity

The complexity of a model is a characteristic that could be quantified by assessing
various aspects of the model, including calculation time, number of variables, etc. There is
no accepted standard method for complexity characterization in the modelling literature,
although some methods have been suggested. For example, Halfon (1983) used the

Bosserman index of connectivity, ¢, to measure the complexity of ecosystem models.
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Bosserman’s index is calculated by determining the number of direct and indirect links
between states in an ecosystem. It does not, however, take into account any complexity
characteristics of the mathematics involved in the model.

The technique presented here combines the number of mathematical operations and
number of parameters to obtain a characteristic complexity measurement. Eq. (1) describes
the index, I, by summing the complexity values for each model process equation. For each
process in the model, the number of parameters is multiplied by the number of
mathematical operations in the equations describing the process. This calculation reflects
both the complexity of the mathematics, as well as the number of degrees of freedom for

that particular process. This number is then summed across all processes for each of the

state variables.

n;

Pifi Q)]
1i=1

I
Mz

i

Several simple equations are presented in Table 1 to illustrate how the number of

mathematical operations defines complexity.

Equation Number of Number of Ic
Operations, r; Parameters, p,
=C ) 0 1 0
y=kX 3) 1 1 I
y = kX" (4) 2 2 4
kX 3 2 6
y= R+X ®)

Table 1. Complezity of Several Equations,
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In moving from the least complex relationship, Eq.(2), to the most complex, Eq.(5),
note that the number of mathematical operations increases from zero to three, justifying the
use of operations as a measurement of complexity.

The number of parameters used to describe a mathematical relationship can be
viewed as the number of degrees of freedom of a model, and therefore also as an evaluation
of complexity. For example, eq.(3) has one degree of freedom, k, whereas the more
complex Freundlich-type equation, eq.(4), has two degrees of freedom, k and N. The
number of degrees of freedom increases with the increasing complexity of a relationship.
Both mathematical operations and degrees of freedom are incorporated into the overall
evaluation of model complexity, 1.

This characterization of complexity through evaluation of process equations defines
the “kinetic complexity” of the model. There are other types of model complexity that are
analogous concepts. For example, “spatial complexity” could be characterized as a
property of the dimensionality or spatial resolution of 2 model. However, for the purposes

of this paper, only the kinetic complexity of model is considered.

Calculation of I from a Petersen Matrix

A Petersen matrix offers a straightforward way to calculate I.. The values r; and p,
are calculated for each process rate equation listed on the Petersen matrix, as well as for
each entry in the stoichiometry table. The process rate equations can be calculated as a
stoichiomeiry term multiplied by the corresponding process rate, and then summed down

the column of the Petersen matrix. Therefore, to calculate I, the term pyr; is calculated for
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each element of the table (stoichiometry multiplied by process rate), and totalled for each

column. Each column total is then added up to calculate the total §.. This “double-
summing” is equivalent to totalling all the flows for each state variable (down the columns)

across all state variables (across the columns), as described in Eq.(1).

Calculating I, for a Hypothetical Example
To illustrate the method of calculation of I, a box-and-arrow diagram of a simple,

hypothetical model is shown in Figure 1, along with an accompanying Petersen matrix in

Table 2.

TProcess 1

X Process 2 > Y

Figure 1. Box-and-Arrow Diagram of Hypothetical Modei.

X Y Process Rate Equation
Process 1 | ky(X)
Process 2 -a (1-a) k(X-Y)
Stoichiometric Kinetic Parameters: k;, k,
Parameters: a

Table 2. Petersen Matrix of Hypothetical Model,
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According to the above Petersen matrix, the process rate equation for X and
Process 1 is assumed to be simply k;(X), which has 1 parameter (k,) and 1 mathematical
operation (1 multiplication). Therefore, p;r; =1x 1 =1. Fer X and Process 2, the process
rate equation is -ak,(X-Y), which has 2 parameters (a and k;) and 3 mathematical
operations (2 multiplications and 1 subtraction). Therefore, p,r,=2 x3 =6. Lastly, for Y
and Process 2, the process rate equation is (1-a)k,(X-Y). This equation has 2 parameters
(a and k,) and 4 mathematical operations (2 multiplications and 2 subtractions). Therefore,
p.r; =2 x 4= 8. Summing down the columns, the complexity value for X is equalto 1 + 6

= 7, and the complexity value for Y is equal to 8. Totalling across the rows, I, =7 + 8 =

15.

Calculating I for Real Models

Mathematical modelling of the activated sludge process has been the subject of
intensive research over the last ten years. The development of the ASM1 model (Henze, et
al., 1987) standardized nomenclature, model presentation and to a lesser extent, model
structure. The basic model structure has remained consistent in the large number of
variations of ASMI1 that have since been published in the literature. The publication of the
ASM2 model for phosphorus removal (Henze, et al., 1995) brought forth a new family of
more complex models. Since then, ASM3 (Gujer, et al., 1998) and ASM2d (Henze, et al.,
1998), as well as several other structurally different models (Jeppsson and Olsson, 1993),
have been published. Even though these models are more complex than their predecessors,

there has also been a tendency to develop simpler models. The main benefit of simpler
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models is easier and less costly parameter identification.
Table 3 summarizes results obtained for I_ for a series of often used wastewater

models. The models are described below.

Carbon Removal Models

Monod-Herbert: Simple model often used as as theoretical illustration, to
explain the Petersen matrix model documentation format.
The mode! only deals with organic carbon removal

{Herbert,1958).

Carbon and Nitrogen Removal Models

ASM1: The standard model for most of the last decade, which
introduced the death-regeneration hyphothesis for simulation
of endogenous conditions. The model was one of the first to
use the now standard influent fractionation of COD into
different biodegradable and non-biodegradable fractions

(Henze, ¢t al,, 1987).

Reduced Order Model: A simplified version of the ASM1 model, developed
primarily for control applications and easier identifiability.
The model is in fact two separate models in one: one model

structure deals with aerobic environment, while another one
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ASM3:

describes anoxic processes (Jeppsson and Olsson, 1993).

Reflects new knowledge gained since the release of ASMI1,
as well as an attempt to keep model structure simplified.
The major difference from ASM1 is more emphasis on
storage of organic substrate before oxidation, the simplified
description of the endogenous state, and simplified handling

of nitrogen fractions (Gujer, et al., 1998).

Biological Phosphorus Removal Models

BEPR+ASM1:

ASM2:

ASM2d:

The first model to describe biological P removal coupled to a
full carbon-nitrogen model (BEPR+ASMI1 contains a slightly

modified version of ASM1) (Dold, 1990).

Second generation model describing biological P removal
from the IAWQ Task Group (Henze, et al., 1995). In
addition to the biological reactions which affect P removal,
the model also includes spontaneous or induced chemical

precipitation of phosphorus.

Small modification of ASM2, including anoxic denitrification

by phosphate-accumulating heterotrophic organisms (Henze,
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et al, 1998).

Model Components | Processes | Parameters | Iog&_L_
MONOD-HERBERT 3 2 4 49 1.7
(1958)

REDUCED (1993) 5 4 7 82 19
ASM1 (1987) 13 8 19 1050 3.0
ASM3 (1998) 13 12 43 3515 3.6

BEPR+ASM1 (1990) 17 28 49 7724 39
ASM2d (1998) 19 21 55 9368 40
ASM2 (1995) 17 17 49 9402 4.0

Table 3. Index of Complexity Values for Several Wastewater Models.

Several conclusions are drawn from evaluating I, for each of the models. The
addition of new components to simpler models significantly increases model complexity.
For example, the MONOD-HERBERT model has only carbon components. The addition
of nitrogen components to these simpler models (resulting in the ASM1 and ASM3
models) increases log(l.) values from the 1.7 range up to the 3.0 - 3.6 range. The addition
of phosphorus components (ASM2, ASM2d, and BEPR+ASM1 models) increases log(l,)
values up to 3.9 - 4.0 range.

The REDUCED model has an overall 1, value of 82 for the entire model as a whole.
Calculating I_ separately for each of the two model structures results in a value of 37 for
the anoxic component, and 45 for the aerobic component. Using Monod terms in the
process rate equations causes a high penalty in terms of the complexity index. The
REDUCED model, with linear rates and two separate environments (instead of continuous

switching for DO), is significantly simpler than the source model it was derived from,

60



ASM]1, which incorporates Monod terms. Note that Monod terms become effectively less
complex at low and high concentrations, where (respectively) linear and constant behaviour
is dominant.

More complex models with greater numbers of processes require larger amounts of
CPU time to perform simulations. The CPU usage (for a standard simulation) for several
of these models was corvelated to 1, and a linear relationship was observed (T =0.97).

While there is a tendency for the complexity of mathematical models to increase
with their development over time (I, « 50 in the 1950's, I, ~10000 in the 1990's) a definite

trend to keep the models simple can be observed.

How to Use I, Effectively

I, can be best used as an independent variable for ordinal comparisons between
models. For example, I, would be an effective characterization of complexity in studies
correlating complexity and predictive ability, computational requirements, or modelling
efficiency. The index could also be used for categorization of model structures, as shown
with the wastewater models above. Models with similar structure types would group

together, and the addition of new components are shown by significant differences in I..
It is important to acknowledge that I, is not an evaluation in any way of model

performance. It only characterizes model mathematics and structure, and does not address

issues such as numerical integration, parameter distribution, or identifiability.
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Conclusion

The index of complexity, I, is a characteristic measurement of the composition of a
model, incorporating both the model structure and the mathematics involved. It can be

used for comparison or categorization of models and model structures.
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Abstract

Modelling uncertainty is evaluated with respect to model complexity, sensitivity
and error. The hypothesis that more complex model simulate reality better, but with more
sensitivity and less error, is tested. An Index of Complexity is proposed. Improvements in
fit of more complex models are weighed against the increase in model sensitivity. A
simple index of utility is then proposed for model selection. The index of utility evaluates
model sensitivity (response to changes in input) and model error (closeness of simulation
to measurement). Model utility is evaluated for several models in two case studies, a
simple system involving sorption of metals on sediments, and a more complex system,
involving groundwater transport of a hydrophobic contaminant. Moderately complex

models are found to be the more utile of those tested.

Keywords:  Modelling, uncertainty, complexity, utility, sensitivity.

Nomenclzture: I = index of model complexity

N = number of state variables

n = number of processes flowing to or from state variable j

D = number of parameters used to describe process i.

L = number of mathematical operations used to describe
process i.

U, = utility index for model 1

S = sensitivity value for model i (relative to maximum
sensitivity)

E, = error value for model i (relative to maximum error)

k, k. = weighting constants for sensitivity, error
ak;,k,,X,Y = hypothetical model components
(for example purposes only)
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Introduction

Modelling is a commonly-used tool in the research and management of
environmental systems. The ability to use a mathematical construct to simulate the
behaviour of a system has allowed environmental researchers and managers to predict how
different scenarios and stimuli will affect various environmental systems. However, there
are many different model structures available for any given problem, which begs the
question, “which structure is best?”

The usefulness of a model can ve assessed by looking at modelling uncertainty, a
measure of how well the output of the model is “known”. Uncertainty is inherent in the
modelling process, and is a property of a model’s structure. Therefore, in order to
determine which modelling structure is best for any given exercise, modelling uncertainty
needs to be quantified in a meaningful way.

When users are faced with the task of selecting among several different models of
varying complexity, uncertainty can be used to evaluate one model against another. Are
more complex models better? Does the development of ever-increasingly complex models
always benefit model users? Is there a point where the data cost and increased variability
of a more complex model outweigh the gains of more accurate calibrations and
predictions? These issues can be addressed by looking at the relationship between the
complexity of a model’s structure and the uncertainty associated with its output.

Modelling uncertainty can be defined in many ways, ranging from statistical
parameters (such as standard deviation) to analytical calculations of propagation of error,

to more complicated methods of sensitivity estimation such as Monte Carlo analysis. The
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evaluation of modelling uncertainty attempts to quantify the quality of output, and to give
the user a framework for its interpretation. The level of uncertainty associated with a
model’s output is dependent on the model input, the calibration data, and the complexity
of the model’s structure.

A user who wishes to use uncertainty evaluation as a tool for model selection,
needs a method to quantify the utility of a model. Utility involves predictive ability,
uncertainty and complexity ( or “cost”). The utility of a model increases as the uncertainty
of its output is reduced. By evaluating the utility of several models of different
complexities, the question of “which one is best” can be addressed.

The purpose of this paper is to identify and characterize modelling uncertainty as a
property of the complexity of a model’s structure, and to propose a method for the
evaluation of model utility. Given this knowledge, a user can make an informed choice of
one particular model structure over another, thereby influencing the amount of uncertainty

encountered in a modelling exercise. ¥

Background

In order to be able to evaluate modelling uncertainty, it is important to understand
how models are used, and how model output is comprehended. Each model is developed
in an unique way, and has properties that influence how its output should be interpreted.
Since models are a representation of reality, model output needs interpretation, and should
not necessarily always believed to be the truth. Oreskes et al (1994) distinguished

between verification, validation, and calibration of numerical models. Verification and
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validation are techniques that are used to provide a measure of credence or credibility to
the model results. The authors point out that often, terms such as verification (testing to
show that a model’s numerical solution is adequately close to the analytical solution) and
validation (testing to show that calibrated models produce output consistent with observed
data) are used synonymously, which is incorrect. These terms are often used, even more
incorrectly, to imply that a given model is an accurate representation of physical realty.
This belief that models will provide accurate simulations under all conditions can lead to
poor judgment when models are used as decision-making tools. Reckhow and Chapra
(1983) also noted that vertification or validation testing of model performance is at best
confirmation (or corroboration) with empirical evidence. Konikow and Bredehoeft (1992)
note that the terms “verified” and “validated” are often incorrectly construed by users to
mean that the models are “true”.

Beck (1987) identified the uncertainty of model structure as an important area of
study. Beck points out that models of different structﬁres serve different roles in the field
of environmental simulation, and that models of increasing complexity are increasingly
difficult to validate, due to the fact that it is often difficult to unambiguously falsify the
model. With large numbers of hypotheses involved in the development of complex
models, merely demonstrating a difference between model prediction and observations is
usually inadequate for distinguishing which of the many hypotheses have been falsified.
Supporting this idea, Pearl (1978) notes that the tendency to accept simpler models as
more trustworthy or credible is partly based in the idea that simpler models are more

falsifiable and more testable, and therefore more “confirmable”. Simple models are
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generally chosen, following the principle of Ockham’s Razor. Oreskes et al (1994),
however, argue that there is no evidence that simple models are more likely to produce
more accurate results than complex models.

There are also fundamental reasons for choosing as simple a model as possible for
a given endeavour. Data requirements increase with increasing model complexity.
Depending on the nature of the system being modelled, data acquisition can be very
expensive, and cost-prohibitive. Smith and Vaughan (1980) used three models of varying
complexity to investigate cleanup costs for steel industries using various firnace types.
The purpose of the study was to investigate the balance between using models of higher
complexity and the cost of the associated increases in data and computational
requirements. More simply put by the authors, “the issue amounts to judging whether the
improved quality of the information provided by a more detailed model is worth the added
costs of its development and use.” They concluded that it is not possible to answer this
question in a generalized way, but that it is possible to analyse the increased costs of
building and utilizing progressively more complex process analysis models. For the steel
industry models used in their study, there was an estimated tenfold increase in
development costs between the simplest and most complex models. They conclude by
saying that the increased cost of a more complex model may outweigh any benefits of
greater complexity.

Halfon (1983) also addressed the issue of modelling uncertainty, by evaluating the
performance of several different lake ecosystem models of varying complexity.

Various studies have been made to ascertain the "best” model in environmental
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chemistry. Smith et. al. (1999), in a comprehensive assessment of chemical speciation,
found increasing uncertainty with greater complexity in these relatively simple systems.
They concluded whereas simple one parameter systems gave an error of log "x" of about
0.02, 7 parameters systems generated a probable error of log "x" of 2+, They also found
that the mathematical techniques used and the assumptions for minimization affected the
outcome.

Usunoff et. al. (1992) produced a statistical approach to select among different
models, whereas Kohler et. al. (1992) used similar ideas to select a "best" model for

uranium sorption.

Model Complexity

Defining the nature of model complexity is prerequisite to relating uncertainty and
complexity. How can model complexity be usefully quantified, and how is it related to
other properties of the model?

Wagenet and Rao (1990) discussed different types of simulation models used for
various purposes, and categorized models into three basic groups, based on model
complexity: research models (more complex), management models (less complex), and
screening models (analytical solutions used only for relative comparisons - not part of this
study). Each of these these types of models was developed for a specific purpose, and had
inherent properties, assumptions and limitations based on its development.

The use of each of these types of models involves assumptions about model
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Model Complexity Spectrum

Less Data Intensive Data Requirements More Data Intensive
Rigid Flexibility Flexible
Less Sensitive Sensitivity More Sensitive
Trends Only Error Specific Analysis

Figure 1. Model Complexity Spectrum

performance. Users often accept the hypothesis that more complex models simulate
reality better than simple models, but the relative requirements (e.g. data “cost™) of them
are greater. In general, users of simpler models are interested in output information such
as relative trends (in time and space), and general magnitudes of the variables of interest.
Conversely, users of more complex models are willing to spend the extra cost, (in terms of
data, for instance) to get more realistic simulations.

Models of different complexity exhibit different properties based upon their
structure. Model sensitivity and data requirements are different depending on whether the
model is more or less complex. Using the concept of a spectrum of model complexity
(from simple models to complex models), the general trends of several model properties
can be investigated.

Figure 1 shows the properties of models across a theoretical complexity spectrum.
The arrow across the top of the diagram represents the range of possible model

complexities from the simplest on the left to the most complex on the right. Several

71



properties of the two end-member models of this spectrum are shown: data requirements,
flexibility, sensitivity, and error. Each property is described below, and a generalization

about the relationship between the model property and model complexity:

1. Data Requirements

- More complex models have more parameters and state variables, and
therefore require more data. For each parameter, an observed field value,
literature value or some empirical estimate is required. For each state
variable, an initial condition is required. Therefore, data requirements
increase with increasing complexity.

2. Flexibility

- Flexibility refers to the number of assumptions employed in the
development of the model. Less complex models usually use more
restricting assumptions, in order to reduce the number of state variables
and parameters, and therefore are less flexible. These assumptions restrict
the application of the model to only those situations for which the
assumptions are valid. More complex models usually have fewer
restrictions, and are therefore more flexible. They can be applied to a
wider range of situations. Thus, flexibility tends to increase with increasing
complexity.

3. Sensitivity

- Sensitivity refers to the amount of change in model output resulting from a
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4. Error

change in model input. The sensitivity of a model to changes in its
individual parameters is dependent on several factors including the number
and value of other parameters, the mathematical nature of the equation in
which the parameter is incorporated, and the range over which the change
is made. For each parameter, the sensitivity can be (but is not necessarily)
unique. However, for an overall measure of a model’s sensitivity, the most
significant factor is the number of parameters, since each individual
parameter affects sensitivity, and the overall result can be cumulative.
Given that each of the parameters in a2 model introduces sensitivity, and the
number of parameters in a model increases with increasing complexity,
sensitivity therefore generally increases with increasing complexity.
However, due to the fact that sensitivity is dependent on multiple factors,

the above trend should be considered only a generalization.

Error refers to the quality of the output, and the way that model results
should be interpreted. It is a measure of how well the model can simulate
given observations. Less complex models cannot simulate real systems as
well as more complex models, due to the fact that they use simplifying
assumptions and therefore employ an approximation of the processes that
make up the system being simulated. For this reason, the output for the

model should not be interpreted as being absolutely “true”. More complex
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models can simulate the system in question with greater detail and with
fewer simplifying assumptions, in order to investigate specific spatial or
temporal relationships. Conversely, simpler models can be used to evaluate
trends only. The way in which error is measured is subjective, and an
example would be to measure the sum of absolute errors on fitting a time
series of data. Given that modelling error is a measure of how closely the a
model can simulate observed data, error is expected to decrease with
increasing model complexity.

Defining modelling uncertainty as a function of the model properties above is
important to investigating the relationship between modelling uncertainty and model
complexity. Given that the overall goal of any simulation is to generate a representation
of a system under specific conditions, modeiling uncertainty should reflect the quality of
that representation.

Uncertainty is defined in terms of error (the difference between simulation and
observation), and sensitivity (a measurement of the response of the model). Through the
choice of model, a modeller will want to minimize both error and sensitivity, in order to
improve the quality of a simulation. At the same time, cost is also a significant factor,
which will also influence the choice of how complex a model to use. Having information
about the relationships between the sensitivity, error and complexity of a model will allow

the modeller to be able to make an informed decision.
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Proposing the Uncertainty/Complexity Relationship

The uncertainty/complexity relationship has been defined in terms of two of the
several model properties discussed above: model sensitivity and modelling error. A
general hypothesis states that more complex models can simulate reality better than

simpler models (i.e. less error), and with a greater sensitivity. Simpler models provide a

Sensitivity

Error

Complexity

Figure 2. Hypthetical Uncertainty-Complexity Relationship. Uncertainty
is defined in terms of both sensitivity and error.

more approximate simulation (i.e. more error), but with less sensitivity.

Figure 2 illustrates the hypothetical relationship between model sensitivity,
modelling error and model complexity. Model sensitivity increases with increasing model
complexity, due to the larger number of degrees of freedom, and the structure of the

interactions between parameters and state variables. Modelling error decreases with
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increasing model complexity, as the more complex models are able to better simulate
reality with more processes included and fewer simplifying assumptions.

For any given system, the consequences of choosing a model of a given complexity
can be illustrated on this diagram. If the model is too complex, the sensitivity will be large
(too far to the right), and if the model is not complex enough, the error will be large (too
far to the left). The ultimate decision of what is the best place on the complexity axis for

each modelling exercise is dependent upon the needs of the modeller, and the purpose of

the modelling effort.

Identifiability

Beck (1987) noted that model identifiability is an important issue with respect to
model and experimental design. Identifiability is a measure of how well the system is
defined by the model. Specificaily, it is a measure of whether the model “over-defines” the
system. If the number of degrees of freedom of the model is greater than the number of
degrees of freedom of the system, then the system is said to be not well identified.

A degree of freedom is an element of change in the model which is independent
from all others. For example, a model which is dependent on only two parameters has
two degrees of freedom. Either of the two parameters can be changed, which allows
independent, unique changes in the mode] output. However, if a system that is described
by a model can be equally well represented by more than one set of distinctly different set
of parameters, that means that the number of degrees of freedom in the model is greater

than the number of degrees of freedom in the system (as represented in the output).
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Changes in one parameter can be compensated by changes in another parameter to give
the same output. This is undesirable, since it means that the parameters are ambiguously
defined, and are not unique solutions to fitting the model to reality. Therefore the number
of parameters, state variables or the complexity of the process equations is too high. With
respect to this study, a model that does not identify its system well lies too far to the right
on the graph of sensitivity and error vs. complexity, because it is more complex than is
required.

Another issue of importance with respect to model identifiability is whether the
output used to evaluate the model fully captures the behaviour of the model. The choice of
state variable for model evaluation may not be obvious for complex models that have
many state variables, since each process may not directly influence each state variable.
Looking at the behaviour of one state variable instead of another may highlight a different
process in the model. When evaluating the identifiability of a model, the choice of state
variable may influence the results. Can the output being studied “see” the changes that are
happening in the model? It is important to recognize that the behaviour of a model can be

represented differently by looking at different state variables.

Investigating the Uncertainty/Complexity Relationship in a Real System

The hypothetical uncertainty/complexity relationship as shown in Figure 2 can be
determined for a given system and set of models. The model complexity spectrum is
covered through the use of a specific number of models of various complexities, each

evaluated for error and sensitivity during a simulation of the given system. In each case,
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the model’s error and sensitivity is plotted against its complexity, to determine the
uncertainty/complexity relationship.

Because the models are all evaluated against the same data set, it should be noted
that this is a “fixed” evaluation of model behaviour. Measuring each model against a
series of increasingly complex systems could theoretically better identify the relationship
between mocel complexity and error. This approach, however, was not possible due to the
lack of sets of equally high quality data from a series of different systems.

Twao case studies were used to evaluate the uncertainty/complexity relationship for
different systems. One study involved the relatively simple sorption of zinc onto a
sediment, whereas the second study considered a range of models to describe the more
complex groundwater transport and fate of a hydrophobic contaminant {Borden site).
Model complexity, sensitivity and error were characterized for all model choices in the
two case studies. This analysis emphasized the relative differences among models, rather
than creating an absolute measurement or detailed assessment of the models. In addition,
the models chosen are those commonly used in chemical speciation and groundwater fate

and transport studies.

Characterizing Complexity

The complexity of a model is determined by several factors that relate to its
structure and the level of detail in the processes that make up the model (where a process
is defined as a flow to or from a state variable). The number of parameters and state

variables, the sophistication of the mathematical relationships that describe each process,
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and the overall number of processes in the model are all properties of the model

complexity. For the purposes of this study, the Index of Model Complexity (1,) is given

as:

I;

N
Ie=2 2. piy M
J=li=l

Eq. (1) emphasizes the complexity of the relationships that make up the processes
in the model. For each process in the model, the number of parameters is multiplied by the
number of mathematical operations in the equations describing the process. This
calculation reflects both the complexity of the mathematics, as well as the number of
degrees of freedom for that particular algorithm. This number is then summed across all
processes for each state variable.

I, can be conveniently calculated from a Petersen matrix of a given model. The
Petersen matrix (Petersen, 1965; Henze, 1987) is a rigorous method of model
presentation, where model processes are listed in the rows of the matrix, and state
variables in the columns. A Petersen matrix for a hypothetical, two-state model with 2

processes is shown in Table 1.

X Y Process Rate Equation
Process 1 1 k(X)
Process 2 -a (1-a) k,(X-Y)
Stoichiometric Kinetic Parameters: k;, k,
Parameters: a

Table 1. Petersen Matrix of Hypothetical Model.
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In each element of the table, the stoichiometry of the process is used to describe
the rate of change of each of the state variables. This stoichiometry is represented by a
term which may contain one or more stoichiometric parameters. The kinetic rate of each
process is described by a process rate term in the far right column of the matrix. This
process rate term may contain kinetic parameters. The total rate of change for each state
variable is equal to the sum (down the column) of the products of the stoichiometric and
kinetic terms for each process.

A complexity term can be calculated for each element of the table. According to
the above Petersen matrix, the term for X and Process 1 is assumed to be k,;(X), which has
1 parameter (k,) and 1 mathematical operation (1 multiplication). Therefore, pyr; =1x1
= 1. For X and Process 2, the process rate equation is -ak,(X-Y), which has 2 parameters
(a2 and k,) and 3 mathematical operations (2 multiplications and 1 subtraction). Therefore,
p.f, =2 x 3 =6. Lastly, for Y and Process 2, the process rate equation is {1-a)k,(X-Y).
This equation has 2 parameters (a and k;) and 4 mathematical operations (2 multiplications
and 2 subtractions). Therefore, p,r, =2 x 4 =8. Summing down the columns, the
complexity value for X is equal to 1 + 6 = 7, and the complexity value for Y is equal to 8.

Totalling across the rows, the overall model’s index of complexity is1. =7 + 8 = 13.

Characterization of Modelling Error
The purpose of the characterization of modelling error is to evaluate the ability of
each model (of different complexity) to simulate a real system. In order to evalute the

model in useful way, the characterization of error should reflect the model’s ability to
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accurately predict a time-series under unique circumstances, not merely fif an existing time
series. ldeally, the best way to evaluate the predictive ability of a model is with two
independent time-series datasets from the same system. One dataset is used to calibrate
the model, which is then used to predict the other time-series. The fit against the second
time-series dataset evaluates the predictive ability of the model.

However, acquiring two high-quality, independent datasets from the same system
is seldom possible. In the event where only one dataset is available, other methods can be
incorporated. When the data set is spatially resolved, and multiple (temporaily coincident)
time-series are available, a modification of the jackknife method (Miller, 1974) can be
used. This method uses the evaluation of a separate fit for each time-series in the dataset.
For example, if the dataset contained a time-series for each of 3 different sites in a study
area, the model would be calibrated with the first 2 sites and then evaluated against the
third. Then the mode! would be calibrated with sites 1 and 3 and evaluated against
number 2, and then again calibrated with 2 and 3 and evaluated against number 1. The
total evaluation of the model is an average of the evaluation at each of the 3 sites.

Typical error evaluations employ the use of objective functions, which calculate
the difference between simulated results and actual observations. Typical objective
function types use the absolute sum of the differences, the sum of squares of the
differences, or the sum of relative differences.

The sum of the square of the differences was used for objective function values in
both case studies. Due to the presence of only 1 dataset, the error evaluation for Case

Study 1 simply was equal to the value of the objective function. Due to the presence of
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multiple, temporally co-incident datasets, the jackknife method was used for error

evaluation for Case Study II.

Characterization of Model Sensitivity

The purpose of the characterization of modelling sensitivity is to evaluate the
amount of change in model output caused by changes in input. It is a measurement of
how the output of a model is controlled by the input parameters and initial conditions. A
model which shows a large change in output relative to a small change in input parameters
is said to be sensitive. In order to characterize sensitivity in a manner that can be related
to model complexity, the method should capture the difference in modelling sensitivity
between models of different complexity.

The Monte Carlo method is a common tool in evaluating model sensitivity, which
is widely used in many forms (Beck, 1987, Brattin, et al., 1996). This method uses
assumed distributions for each parameter in the study. Sets of parameter values are
created by sampling from each of the parameter distributions, and the model is run
repeatedly with each of the parameter sets. The multiple sets of time-series model output
are then evaluated to determine the spread or precision of the output.

To employ the Monte Carlo method as a sensitivity analysis for these case studies,
the parameter distributions are determined by fitting, rather than by assuming some
arbitrary probability density function. Because the objective of the sensitivity method is to
distinguish between sensitivities in different model structures, the distributions should be a

function of the model structure.
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This can be done through the use of the Reverse Monte Carlo Method, using the following

steps:

Add random noise to the (output) time-series data set repeatedly, to create
many sets

Fit the model to each data set, recording the parametér values of each fit
Calculate the distribution for each parameter from the multiple parameter

values,

The parameter distributions created through this method are a function of the

model structure. The rest of the sensitivity procedure follows the regular Monte Carlo

Method, using the following steps:

Independently sample many parameter values from each distribution to
create multiple parameter sets

Run the simulation using each parameter set, recording the time-series
model output

From all of the model output time-series, calculate a envelope of +/- one
standard deviation around the mean at each timestep in the series

Calculate the area in the envelope.

The overall sensitivity is a value proportional to the area of the envelope. This

method, where the forward Monte Carlo analysis attempts to recreate the original noise,

emphasizes the relative differences in sensitivity based on model structure. The result is a
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sensitivity measurement that is characteristic of a calibrated model, and not a property of

arbitrarily defined parameter distributions. This method was used to evaluate sensitivity in

both case studies.

CASE STUDY I: Sorption of a Radioactive Tracer on Sediment Surfaces
System

A simple sorption system was established for the purposes of studying the sorption
of radioactive zinc onto sediments in solution (LeBeuf, 1992). A sediment suspension was
prepared, and a known amount of radioactive zinc tracer was added at t,. The relative
amount of radioactivity in solution was measured over a period of 17 days.
Models

The relative radioactivity in solution was simulated using three simple sorption
models, with flow equations of differing complexities. The two simplest models are 2-box
models (where the 2 boxes are sorbed phase and solute phase metal concentrations), and
differ in that one is an equilibrium sorption model, and the other uses sorption kinetics.
The equilibrium model assumes that the sorption reaction happens instantaneously, and
that the sorption reaction goes to completion at an infinitely high rate. In the case of the
kinetic model, the sorption reaction goes to completion at a rate described by a rate
coefficient. The third and most complex model is a 3-box model which has one solute

phase and two sorbed phases, and both equilibrium and kinetic flows. The models are

described in Table 2:
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Model Name Sorption Process Model Complexity, lIc
2-Box Equil. Equilibrium 6
2-Box Kinetic Kinetic 12

3-Box Both Equilibrium and Kinetic 18

Table 2. Case Study ¥ Models.
For Case Study I, the objective function used for all fitting was the sum of the
square of difference between each data point and the simulated value, summed across all

points in the time series. The Simplex Method was used to minimize this objective

function.

Results

Figure 3 shows the results of the error and sensitivity analyses for Case Study 1.
Error decreases with increasing complexity, as hypothesized earlier. The more complex 3-
box model was able to simulate the observed relative radioactivity observations in the
solute phase better than the simpler 2-box models.

Sensitivity shows an increasing trend with increasing complexity. The two simpler
2-box models have approximately the same sensitivity, while the most complex 3-box
model has significantly more sensitivity. The 3-box model uses more parameters to define
the distribution and rate of sorption of zinc than the two simpler 2-box models, and
exhibits more sensitivity.

CASE STUDY II: Transport of a Groundwater Tracer Plume

System

A study was carried out to .‘mulate the transport of an organic tracer in a
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homogeneous sand aquifer. 7 models of varying complexity were used to model the flow

of the plume over a 1-'% year period. Time-series data sets for 5 locations within the

aquifer were used in the evaluation.
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Figure 3. Uncertainty vs. Complexity - Case Study L
The plume data used in the study are from the Borden Groundwater Data Set
(Roberts and McKay, 1990). This highly spatially resolved data set was created for the
purposes of groundwater transport research, and consists of lengthy time series data for
many sites in a homogeneous sand aquifer at the Canadian Forces Base in Borden,
Ontario. A group of 7 organic and inorganic tracers were injected into the aquifer in
August of 1982, and the plume was monitored for a period of over 3 years. For the

purposes of this study, only the transport of the non-conservative carbon tetrachloride

tracer is simulated.
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Models

The models used in the study are all built upon a basic transport model (of a
standard complexity) for flow in a 3-dimensional homogeneous media. To create models
of different complexities, additional sorption and degradation submodels were added to
the basic transport model. By adding sorption or degradation models of varying

complexities, the overall model complexity was adjusted. Table 3 summarizes these

models.
Model Number | Sorption Submodel Degradation Model Complexity
Submodel )
1 None None 16
2 Linear Isotherm None 22
Equilibrium Sorption
3 Linear Isotherm None 28
Kinetic Sorption
4 Linear Isotherm 1* Order 24
Equilibrium Sorption Reaction
5 Linear Isotherm 1* Order 29
Kinetic Sorption Reaction
6 Non-Linear Isotherm 1* Order 41
Kinetic Sorption Reaction
7 Monod-type Isotherm 1" Order 47
Kinetic Sorption Reaction

Table 3. Case Study Il Models.

Sorption Submodels

The sorption submodel describes the retardation of flow through the media, as the
solute-phase poliutant sorbs to the media particles. In order to create several sorption

submodelis of varying complexities, the sorption mechanism is simulated with different
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types of sorption relationships. The differences between various relationships are

summarized below:

Linear Isotherm Non-Linear Isotherm Monod Isotherm

8orbed Conc. (S)
Sorbed Conc. (S)
Sorbed Cone. (8)

Solute Conc. (L) Sotute Conc. (L) Solute Cone. (L)
S =KL S=KJIN¥ N<1 _ _ab
KL S= P+l

Figure 4. Linear vs. Non-Linear Isotherm Relationships.

1) Linear vs. Non-Linear vs. Monod Sorption Isotherm

The relationship between sorbed-phase concentration and solute-phase
concentration is described through the use of a sorption isotherm. This isotherm
represents the concentration of the sorbed-phase pollutant as a function of the
concentration of the solute-phase concentration. Three of the most commonly
used sorption isotherms are shown in Figure 4, along with the equations used to
describe them.

Note that the non-linear isotherm has one more parameter used to describe
it (K, and N versus just K;) and one more mathematical operation (multiplication
and exponent versus just multiphcation) than the linear isotherm. The Monod-type

isotherm has two parameters and three operations. These properties make the
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non-linear isotherm a more complex sorption submodel than the linear form, and
the Monod-type the most complex of the three.
2) Equilibrium vs. Kinetic Sorption
The speed at which the sorption mechanism takes place is described by
either an equilibrium or a kinetic relationship in the sorption submodel. The
equilibrium relationship simulates sorption as happening instantaneously, with the
sorption reaction going to completion at an infinitely high rate. In the case of the
kinetic model, the sorption reaction goes to completion at a rate described by a
rate coefficient. The difference in complexity between these two types of
submodels is the increase in the number of parameters (the additional rate
coefficient in the case of the kinetic model).
The above two elements of sorption submodels can be combined together in
different ways. For example, the simplest sorption submodel is the equilibrium linear

submodel, and the most complex is the kinetic Monod-type submodel.

Degradation Submodels

The degradation submodel describes the transformation of the pollutant to a
different state. In the case of this study, the degradation of the non-conservative tracer
removes it from the system. This process is modelled using reaction mechanisms of
different complexities.

The two different degradation submodels used are:

- No Degradation: there is no degradation mechanism
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- 1* Order Degradation: the rate of degradation is proportional to the

concentration

The 1* order degradation submodel is more complex than the “no degradation”
format, due to the use of a degradation rate constant.

For the purposes of Case Study Il, the fitting of the models to the real data was
done through the use of an objective function that described the difference between the
real data and the simulation run in the following manner:

. The objective function (for one site) is the sum of the square of the difference
between each data point and the simulated value, summed for all data points in the
time series.

. The above value is calculated for each site and summed across all sites, using
weighting functions to remove the bias of any difference in numbers of data points
at each site.

The model was then fit to the data using the Simplex Method to minimize the

objective function as described above.
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Results

The results of the sensitivity method for all 7 models are shown in Figure 5. There
is not a continuous linear relationship as hypothesized in Figure 2, however several
interesting features are shown. For example, two distinct trends are visible - one for
models without degradation (Trend #1), and one for models with degradation (Trend #2).
Note that Model #2 does not fit the trend of models with degradation. In progressing
from less complex to more complex models, both trends show increasing sensitivity. The
models shown in Trend #1 range from no sorption to equilibrium sorption to kinetic
sorption. As the complexity of the model increases, the sensitivity increases, as

hypothesized. The same is also true in Trend #2, where the increase in complexity of
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Figure 5. Sensitivity vs. Complexity - Case Study 1L
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kinetic sorption models with degradation goes from linear to non-linear to Monod-type
equations. In this case, the sensitivity also increases with increasing complexity.

There is not a clear trend present when comparing {otherwise similar) equilibrium
and kinetic models. The two linear sorption models with no degradation (Models #2 and
#3) differ only in the equilibrium/kinetic sense. The kinetic model has significantly higher
sensitivity, according to the results shown in Figure 5. However, the opposite is true for
these same models with degradation. The equilibrium model (Model #4) has a higher
sensitivity than the kinetic model (Model #5).

It can be concluded from these results that the hypothesized relationship of
increasing sensitivity with increasing model complexity holds true for certain types of
complexity increases. The sensitivity increases for increasingly complex sorption
isotherms (linear vs. non-linear vs. Monod - Trend #2), and also for increasingly complex
models without degradation (Trend #1). However, there is no consistent trend in
sensitivity when comparing equilibrium models to kinetic models, or comparing models
with no degradation to models with degradation, There is no overall trend when viewing
all 7 models as a group, due to the discontinuity present when switching from models
without degradation to those with degradation.

Figure 6 shows error vs. complexity for the seven groundwater models used in
Case Study 11. There is no clear trend regarding error as was shown in Case Study 1.
Several of the models show roughly the same error (in the range of 1000-1300 mg/L),
while one model (Model #4, 1, = 24) has considerably higher error. While there is no

general consistent trend, it can be noted that the more complex models do not provide
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Figure 6. Error vs. Complexity - Case Study IL

significantly better fits than simpler models, for the models used in this Case Study II.

Overall Model Utility

It is possible to use the information presented in Figures 3, 5 and 6 to draw
conclusions about the use of the models in the study. In order to make a decision about
which is the “best” model for any given modelling exercise, a combination error/sensitivity
statistic can be calculated. This statistic measures the “utility” of the model, with respect
to modelling uncertainty as defined in this study. A modeller wishes to minimize both
error and sensitivity, so a combined measure U is needed, which increases as error and

sensitivity decrease. The following equation proposes an index of utility by measuring a
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scaled “distance from origin” on a graph of sensitivity vs. error.

)

U varies between 0 and 1, where the larger the value of U, the greater the model
utility. The values of S and E for each mode! should be normalized to 1 by dividing all
values by the maximum sensitivity and error value, respectively. The use of a statistic like
the one calculated in Eq.(2) requires an assumption about how the modeller values error
and sensitivity, relatively to each other. If error and sensitivity are valued equally, then k,

and k. should both be sct to 1. Setting k, or k, to a value greater than one will emphasize

0 0.1 0.2 0.3 0.4 0.5
Madel Utility (U)

Figure 7. Model Utility - Case Study I.
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that particular characteristic. The values of U; are relative, and can only be used to
compare models within the same study.

For illustrative purposes, U has been calculated for the two case studies. Error
and sensitivity were valued equally, so k,_ and k, were set to 1. The results are for Case
Study I are shown in Figure 7. The 2-box kinetic sorption model is the “best™ model,
according to the definition of utility in Eq.(2). The medium complexity model in this case

has the best combination of error and sensitivity.

Model #7
Model #6
Model #5
Model #4
Mode! #3
Model #2
Model #1

0.4

Figure 8. Model Utility - Case Study 1L
The results from Case Study II are shown in Figure 8. Due to the fact that the
sensitivity of Model #3 and Model #4 are relatively high, without significantly less error

than the other models, they stand out as the 2 lowest utility models in the study.
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Amongst all 7 models, Model #2 has the best model utility.
Conclusions

The goal of this study was to identify and characterize modelling uncertainty as a
function of the complexity of a model’s structure. The methods presented can do thisin a
relative manner, and the case studies show that in some cases more complex models are
not necessarily better. It is not possible to relate uncertainty and complexity in a
completely general way, but empirical studies can be useful in selecting the appropriate
model for the job.

As a general observation about the utility of models in both of the case studies
presented, it appears that the increased sensitivity associated with more complex models
outweighs the benefits of the marginaily (if at all) better fits these models provide. The
utility ratings presented in Case Studies I and II are specific to the models and data sets
used, but the methods used for characterization of modelling uncertainty and complexity
can be extended to use with models and data sets of any kind. Interpretation of the results
is dependent on how the modeller chooses to define error, and the relative value or
importance assigned to error and sensitivity. However, the evaluation of a model, based
on it properties related to uncertainty, is a valuable task. By being able to use information
such as a measurement of model utility, the selection of an appropriate model can help to
reduce not only simulation issues such as sensitivity and error, but cost as well, by

reducing the tendency to employ overly-complex models.
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Abstract:

To study the relationship between agricultural pesticide regulation and economic
impact, a new input-cutput model structure is proposed which incorporates the production
associated with groundwater remediation as an economic sector. Pesticide use is related
to agricultural production through the use of non-linear relationships in order to estimate
the amount of economic production associated with pesticide contamination removal. The
relationships between economic impact and pesticide regulation can be investigated for
various types of agricultural and economic scenarios. A numerical example of the
application of the model to a Southern Ontario study area estimates a maximum 5.8%

increase in sectoral production with the inclusion of remediation production into the

economy.

Key Words: Input-output analysis, modelling, pesticide, groundwater, remediation.

Introduction

Synthetic pesticide use has become a major component in agricultural management
over the last fifty years (Madhun and Freed, 1990). Adverse impact on the natural
environment from the use of pesticides has been recorded since the early 1960's (Carson,
1962), and continues to the present day.

Groundwater is a very important resource in rural areas. It has been estimated to
be the sole drinking water source for 50% of the general population, and over 95% of the

rural population in the U.S. (Gladwell, 1989). Impacts on this resource by non-point
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source contaminants, such as agricultural pesticides, can be significant and have warranted
regulated control of pesticide use.

To study the relationship between pesticide regulation and economic impact, this
paper proposes the use of a Leontief-style input-output model linked with an
environmental model such as EPIC (Erosion/Productivity Impact Calculator, Sharpley and
Williams, 1990), to estimate the impacts of various levels of pesticide use control on
economic production. This model can be used to estimate the economic production of all
sectors of the economy, based on the allowable pesticide groundwater concentration and
economic information. Although feasible under certain assumptions, no attempt is made
in this paper to link production to employment impacts.

Relating economic impact and environmental impact through the use of input-
output models allows for investigation into the regional effects of environmental
management of pesticide use. While other studies have addressed this issue at a farm-level
scale (Johnson, et al, 1991), input-output models are most effective at illustrating
economy-wide trends.

The purpose of this paper is to introduce an input-output model structure which
expands upon previous economic-environmental /O models, and is specifically developed
for agricultural pesticide applications. The use of an environmental feedback effect is
included in the model, which adds to the traditional Leontief model structure, and a non-
linear relationship is included to more realistically simulate groundwater contaminant

behaviour under different levels of application.

The paper outlines the development of the new input-output model structure, and
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an example of model output (for a Southern Ontario agricultural area) is shown to
demonstrate the difference between the newly proposed model structure and that of the

traditional input-output model.

Review of Input-Output Models

The input-output model, as originally proposed by Wassily Leontief in the 1930's,
uses data on the amounts of goods and services exchanged betwzen various sectors in the
economy to relate economic production to exogenous final demand.

There are many examples in the literature of environmental input-output models.
Leontief (1970) and Chen (1973) relate environmental impact and input-output analysis in
a general, comprehensive manner. Lonergan and Cocklin (1985) summarize several
approaches to environmental planning with input-output models, and present a good
analysis of economic-ecologic models proposed by several authors. Heslin and Hobbs
(1990a) studied the impact of il and gas brine disposal regulations on the economy of
Ohio using Leontief models. Gay and Proops (1993) assessed carbon dioxide production
in the UK economy with input-output analysis, and Helsin and Hobbs (1990b) analysed
the economic impacts of SO, emission reduction strategies. Anaman (1994) studied the
secondary economic effects of a screwworm fly invasion of Australia. In each case, an
input-output model was used in conjunction with environmental models and/or field
observations to relate the environmental and economic impacts.

In order to investigate the use of input-output models, a review of their structure is

useful. Table 1 shows an example of a simple input-cutput transactions table.
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Table I: Simple Input-Output Transactions Table.

1 | 2 ... i ... n
ZI l zlz ----- ZIi ..... zln
Zy Zp | . Zy | e 2z,
Z, Zg | e P T z,
n zZ, -V B Z:, | ... Zon

An element of the transactions table, z;, represents the monetary value of goods or
services flowing from sector i (shown on the left side of the table) to sector j (shown
across the top of the table). Table 1 shows the economy for # sectors, and collectively the
elements of the table are referred to in matrix format as the transactions matrix, Z.

The total output produced by sector i, can be calculated from the following

relationship:

X, = z.+Yy. i=1,....,l'l
; i 1)

where x; = total output (of goods and services) of sector i
y, = total final demand for output of industry i.

This equation shows that a sector’s production is made up of two parts - the
indirect demand, which is the sale of goods and services to other sectors, and final
demand, which is the sale of goods and services to final consumption, investment, export,

or to the public sector.
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A fundamental assumption of input-output models is the linear relationship that is
assumed between the amount of goods produced by a given sector (output) and the
amount of goods used by that sector in its production process (input). This linear
relationship means that if the amount of output is doubled, then the amount of each of the
input products required is also doubled. Such an assumption assumes that the technology
and input mix is constant over time and over all levels of output, implying that economies

of scale are ignored.

To make use of this assumption, an # x # matrix A is calculated as follows:

z;
i @

The element a; is known as the rechnical coefficient (or direct input coefficient)

aij =

between sectors i and j, and represents the dollar value of input from sector i used in the

production of one dollar’s worth of output of sector j. Rearranging (2) and substituting

into (1) results in the following relationship:

€)

n
xi=Zaijxj+yi i=1,.,n
J=1

Letting # x / column vectors X and Y represent the production and demand values

for each of » sectors, (3) can be rewritten in matrix form as:
X=AX+Y (4)

To be able to solve for each sector’s production, X, (4) can be rearranged as:

X=(I-A)'Y (5)
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(1 - A)! is referred to as the Leontief Inverse, and is used to determine the
production of each sector from the demand for the products of all other sectors in the
economy. Elements of the n x n Leontief Inverse matrix are referred to as ;. Included in
the production calculation is the portion of the sector’s product going to final demand, as

well as the portion of the sector’s product becoming inputs to other sectors (Miller and

Blair, 1985).

Environmental Input-Output Analysis
The traditional input-output analysis method can be augmented with additional
information, to study the relationship between the economy and the environment. The
most straightforward way is to assume simple, linear relationships that relate resource use
and pollutant generation to sectoral output. For example:
v;; = amount of pollutant of type k, generated per dollar worth of cutput in
sector j.
V is an m x n matrix, where m is the number of pollutants under consideration.
Therefore, the m x 1 vector of total pollutant levels, V*, would be:
V*=VX )]
The elements of which, v*,, represent the total amount of pollutant k produced by
all sectors. Then, using the traditional Leontief model, the pollutant levels can be directly
calculated as a function of demand:
V*=[V(I-AY (8)

A more complex and detailed way of relating environmental and economic effects
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involves the use of “ecological commodities”, which become part of the input
commodities mix that are used in the production of each sector’s output. Victor (1972)

proposed a comprehensive approach to the use of ecological commodites, involving the

flow of such commodities both to and from the environment.

Pesticide Impact Input-Output Model

The analysis of economic and environmental impact in agricultural sectors is one
that has been approached by several methods (and different model structures) over the last
decade (Johnson, et al, 1991; Mapp, et al., 1994 for example). This paper however, deals
only with the use of input-output models for economic-environmental studies.

The traditional Leontief input-output model structure forms the basis of the
proposed Pesticide Impact Input-Output Model. The use of input-output models to study
pesticide regulation has been addressed before by Palmini (1982), who analysed the effects
of non-point source pollution controls on small, regional economies, Several different
scenarios were analysed, including switching to a environmentally safer, but more
expensive, alternative pesticide. The model showed that agricultural revenues (more
specifically, return over variable costs) were reduced only by 0.7%, whereas other
poilution controls such as nitrogen restriction, reduced revenues by 2.7%.

Rather than looking at switching to alternative pesticides, the Pesticide Impact
Input-Output Model proposed in this paper will relate back into the economy the
production generated by pesticide contamination removal. The amount of production

from the agricultural sector is used to determine the amount of pesticide present in the

106



groundwater. The amount of pesticide present in excess of the allowable amount is used
to determine the production associated with groundwater pollution abatement, which is
then linked back into the overall economy. This method was proposed by Leontief
(1970), expanded by Chen (1973) and used in Xu et al (1994) for stormwater quality
planmning. The model will then be able to estimate the production of all sectors of the
economy based on physical characteristics of the study region, as well as the allowable
amount of pesticide in the groundwater. The effect of changing the regulated amount on
the economy can be studied with different levels of regulation, environmental or
agricultural characteristics, or groundwater remediation costs. As such, these data
requirements are simpler than those of Victor (1972), which requires monetary valuation
of flows to, from, and within the environment. The data requirements of the proposed
model are straightforward input-output tables, and standard environmental data used in
models such as EPIC (Erosion/Productivity Impact Calculator), developed by the U.S.

Department of Agriculture (Sharpley and Williams, 1990).

The following shows a summary of the structures which relate pollution and production,

from the proposed model as well as previous models :

Leontief (1970): Production -> Pollution

Xu, et al (1994): Production > Land Use <> Pollution

Pesticide

Impact /O Model: Production (Agriculture) = Pesticide Use = Pollution
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The most significant difference between the methods used in models such as
Leontief (1970) and Xu et al (1994) and the model proposed in this paper is in the way
that pollutant generation is estimated. As noted earlier, sectoral output has been used to
estimate the amount of pollutant generated by various sectors of the economy through the
use of linear relationships such as those shown in eq (7). A variation on this idea is to
linearly relate pollution and production through one or more steps. Xu, et al (1994) do
this by relating production to land use, and then land use to pollution. In the proposed
Pesticide Impact Input-Output Model, production is used to estimate pollution through
two steps, including a non-linear relationship. Production (from the agricultural sector
only) is non-linearly related to pesticide use, which is in turn related to pesticide
concentration in groundwater.

While the ultimate goal of these relationships is the same - to estimate poilution
generation from sectoral production - the steps by which this is done are different. Each

model uses different assumptions and relationships to link each part of the chain.

Pesticide Impact Input-Output Model: General Structure

This section outlines in detail the development of the Pesticide Impact Input-
Output Model. There are two distinct types of relationships found in the model - the
economic relationships described by the traditional input-output model, and those used to
relate production and pollution. Application of the model requires some preliminary
analysis of the study area, to determine the non-linear relationship between agrnicultural

production and pesticide use. This relationship can be determined from empirical
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research, or can be estimated from an agricultural model.

To illustrate the structure of the economic input-output model, the block diagram
style proposed by Chen (1973) will be used. Chen’s block diagram style uses boxes and
arrows to represent different parts of the model structure. An arrow represents a vector
or matrix of information about the economy, and a box represents the multiplication (or
other transformation) of the matrix. For example, if an arrow representing a matrix B
entered a box labelled X, the resulting transformation is the matrix multiplication BX.

In the block diagram schematic, an open circle is a node which is used in forming
an equation in the model. Each arrow leaving the circle represents a term on the lefi-hand
side of the equation, and each arrow entering the circle is a term on the right hand side of
the equation. Each of the arrows is accompanied by a positive or negative sign to indicate
whether that term is added or subtracted from that side of the equation. If no signis
given, positive is assumed. A small, closed circle represents a point where the arrow splits

so that the matrix may be used in more than one calculation.

E® o

Figure 1. Simple Leontief Model.
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The development of the model starts with a standard, industry-by-industry Leontief
input-output model, with an economy of n sectors. Figure 1 illustrates the model in the
block diagram format.

By deriving the equation from the circle on the left-hand side of the diagram, the
Leontief equation as shown in (4), is achieved:

X=AX+Y )]

The production of the agricuitural sector is then used to estimate the amount of
pesticide applied to farms in the study region. EPIC is a model that can be used to
estimate the amount of crops grown under different agricultural practices. The
environmental characteristics of the study region are used along with several different
levels of pesticide application to estimate crop yield (in monetary units). The results are
then tabulated in a lookup table, which is labelled N in the schematic block diagram. For
each level of agricultural crop yield (in dollars), the model can use the lookup table to find
the corresponding level of pesticide application (in kg/ha).

In order to properly incorporate the lookup table into to matrix algebra used in this
model, a / x n row-vector N is used. The row vector contains all zeros, except for the
element corresponding to the agricultural sector. This corresponding element will contain
the appropriate value from the lookup table (according to the value of agricultural
production). For example, a 4 sector economy with the first sector being the agricultural

sector, would have a corresponding row-vector N as follows:

N=[n; 0 0 0] (19)
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The element n, is the appropriate value from the lockup table {(according to the
agricultural production, X,) in units of kg/ha-$. When the column-vector X is pre-
multiplied by the row-vector N, the result will be a scalar, which represents the amount of
pesticide application (in units of kg/ha).

The concentration of pesticide found in the groundwater in the study region is
assumed to be linearly related to the amount of pesticide applied to the fields. Let the

scalar M represent this relationship:

_ Groundwater pesticide concentration (mg / L)
Amount of pesticide applied (kg / ha)

M

(1)

Using the pesticide application determined from the look-up table calculation, the
concentration of pesticide in groundwater in the study area is estimated by multiplying by

the scalar M. The value of M (in units of mg-ha/L-kg) is a property of the hydrological

Figure 2, Amount of Pesticide,
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and geological characteristics of the study region. Again, EPIC is capable of estimating
this relationship given the various groundwater parameters, or the value of M could be
estimated empirically from field observations. Figure 2 illustrates the block schematic
diagram of the mode! with the N, and M structures in place.

The concentration of pesticide allowed in groundwater under water quality
regulations is represented by the scalar S (in units of mg/L). The difference between the
amount of pesticide present in the groundwater and the regulated allowable amount is the
amount that must be removed, which is labelied R in the schematic. Figure 3 shows the

block schematic with the calculation which determines R.

Figure 3. Amount of Pesticide to be Removed.

The production associated with the pesticide removal is a function of the amount
of excess pesticide. K is an»x / column vector, where each element, k;, is the amount of
production of that sector’s product associated with the removal of 1 concentration unit of

pesticide from all of the groundwater across the entire study region. The units of K are
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(concentration unit/$), such that multiplying K by R resuits in KR, an # x / column vector
of total remediation production in all sectors. This remediation production is then added
back into the economy by adding the arrow to the circle in the upper left-hand side of the
diagram. This method of including production associated with environmental remediation

is similar to Chen (1973) and Xu, et al. (1994). Figure 4 shows the complete model block

schematic.

+
(x =0

s

Figure 4. Complete Pesticide Impact Input-Output Model

The values of the elements of K can be estimated from observed economic
production associated with groundwater cleanup efforts. Environmental consulting
sectors which provide groundwater cleanup services would have the largest k; values,
however other sectors may also have non-zero values (such as the insurance or finance
services sectors associated with environmental cleanup liability).

Also, note that this model structure is valid for evaluation of more than one
groundwater contaminant. N (as well as M, S and K) can be modified to include

information for a series of pesticides or fertilizers, or any other pollutant that resuits from
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agricultural production. However, for the purposes of clarity of explanation, only one

pesticide will be shown in the calculations in this paper.

Pesticide Impact Input-Output Model Equations
Equations for the model can be derived from the diagram as discussed earlier.
Starting with the circle on the upper left-hand side of the diagram, the following equation
is derived:
X=AX+Y+KR (12)
Deriving the equation from the lower righi-hand corner of the diagram in Figure 4:
R=MNX-8§ (13)
where N represents the lookup table, and all other variables are as shown earlier.
Substituting (13) into (12) gives:
X=AX+Y+KMNX-KS (14)
which can be rearranged to give:
X=1{I-A-KMNJ(Y -KS) (15)
Equation (15) shows the model equation solved for the production, X. The total
amount of remediation production (in dollars) can be calculated for each sector as the
column vector KR.
A set of example calculations for this model, using assumed and real data from

Southern Ontario, can be found in the Sample Calculations appendix below.
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Interpretation of Model Results

Each model has a number of assumptions inherent in its development that affect
the way the model behaves. Therefore, these assumptions need to be considered when
interpreting the results. This section outlines issues relating to Pesticide Impact Input-
Output Model resuits.

The Pesticide Impact Input-Cutput model incorporates back into the economy the
production associated with removing pesticide contamination from groundwater. The
additional secioral production associated with groundwater remediation requires the
additional input of products from other sectors, which in turn require additional inputs
from other sectors, and so on. The additional clean-up production is incorporated not
only into the sectors directly related to groundwater remediation, but also those sectors
that provide inputs to remediation as well. Therefore, both the direct and indirect
remediation production is estimated.

The interpretation of the model results should consider the cost of the cleanup as
not being borne by any specific sector of the economy. Rather, the cleanup revenue can
be considered to be the result of “exogenous cleanup demand”™ by an institution outside
the market economy, such as government. The incorporation of the cost of cleanup into
the “input recipe” for each sector’s product (to reflect remediation costs borne by the

pollution-generating sector) is an extension of this model that could be considered for

future research.
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Conclusions

The Pesticide Impact Input-Output Model can be used to investigate the
relationship between economic production in various sectors of the economy and
agricultural pesticide regulation. The additiona! sectoral production associated with
groundwater remediation is incorporated into the economy, to reflect the removal of
pesticide concentrations in excess of regulated limits. The use of environmental models or
empirical observation to relate the amount of pesticide contamination to the amount of
production allows the model to reflect the local environmental characteristics of the study

region.
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Appendix: Sample Calculations

For the purposes of illustrating the use of the Pesticide Impact Input-Output
Model, a study area in southwestern Ontario is selected. The area is illustrated in Figure
5, and encompasses parts of Wellington, Perth, Oxford, Elgin, Middlesex and Huron
Counties, Waterloo Regional Municipality, and the City of London. The study region

encompasses areas mostly used for agricultural production.

o J

42°30'N - 81°30'W

Figure 5. Southern Ontario Study Area

Table 2 shows the technical coefficients (A) table for the study area, which is
determined from a StatsCanada Ontario Technical Coefficients Table from 1986, scaled
down to the study area using location quotients (LQ) generated from employment data

(see Miller and Blair (1985) for this method).
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Table 2: Technical Coel'ﬁclents Table (A).

--n 3

0.218

0.000

5

0.003]

0. 001

0.032

0.003

7
0.000

8 9 10
0.000] 0.001 § 0.008

0.000

12
0.002

13
0.017

0.000

0.008

0.000

0.000

0.000

0.000

0.000

0.000 | 0.0001 0.000

0.000

0.000

0.001

0.000

0.000

0.119

0.000

0.006

0.000

0.000

0.000§ 0.001 ] 0.000

0.000

0.000

0.000

0.002

0.004

0.001

0.033

0.066

0.008

0.008

0.082]1 0.001 } 0.003

0.002

0.001

0.004

0.238

0.239

0.066

0.098

0.417

0.337

0.097

0.029]0.073§0.048

0.009

0.234

0.224

.01

0.000

0.014

0.016

0.004

0.001

0.021

0.0210.002]0.006

0.041

0.002

0.005

0.014

@‘IO'IUI-FQN

0.011

0.079

0.026

0.022

0.020

0.385

0.01410.028]0.012

0.002

0.040

0.011

0.016

0.000

0.005

0.035

0.018

0.004

0.020

0.025]0.042] 0.045

0.033

0.038

0.033

3 || 0.020

0.013

0.009

0.018

0.018

0.044

0.008

0.003}§0.013]0.003

0.001

0.029

0.018

10 || 0.005

0.006

0.005

0.002

0.002

0.009

0.004

0.00310.002 }0.001

0.001

0.020

0.008

11 0.028

0.002

0.057

0.041

0.015

0.015

0.018

0.021 10,066 ] 0.087

0.065

0.031

0.037

12 0.021

0.001

0.118

0.074

0.060

0.066

0.048

0.043]0.112]0.081

0.074

0.110

0.041

13 0.002

0.001

0.013

0.004

0.003

0.006

0.009

0.006 ] 0.004 §0.002

0.003

0.018

0.005

Sectors 1 to 13 in the above table are described below:

Sector #

Description

1 Agriculture and Related Service

Industries

N

Industrics

90 ~3 O

Industries

Manufacturing Industrics
Construction Industries
Transportation and Storage Industries
Communications and Utilities

Fishing and Trapping Industrics
Logging and Forestry Industries
Mining, Quarrying and Oil Well

Sector #

9

10
n
12

13

Description

Wholesale Trade Industries

Retail Trade Industries

Finance, Insurance and Real

Estate Industrics

Community, Business and Personal

Services

Accommodation, Food and Beverage

Industries

Note that the agricultural sector in this economic table is defined as sector #1. The

following crop yield lookup table was determined by using EPIC and an assumption

regarding the shape of the hypothetical crop yield relationship, which is also shown in

Figure 6.
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Crop Yield {1,000's of $) Pesticide Application (kg/ha)

10,000 0.0
17,000 1.0
22,000 2.0
26,000 3.0
30,000 4.0
34,500 5.0
37,000 6.0
38,000 7.0
39,000 8.0
39,500 9.0
40,000 10.0
Hypothetical Crop Yield Relationship
4000 -
. 3500
w
‘s 3000
& 2500
=]
< 2000
S 1500 -
. 1000
9
o 500
0 | | I T I
0 2 4 6 8 10
Pesticide applied (kg/ha)

Figure 6. Hypothetical Crop Yield Relationship.

M relates the amount of pesticide applied to the amount of pesticide found in the
groundwater, and is assumed to be equal to 0.001 mg/L per kg/ha, or converted to 0.001
mg-ha/i-kg (seeeq. 11).

S (the allowable limit of pesticide) is set at 0.005 mg/L (Ontario Drinking Water
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Objective for the pesticide Atrazine, Ontario Ministry of Environment and Energy, 1994),
and the K (remediation production, units of thousands of dolars) vector is assumed as
shown below. The K vector represents the amount of production from each of the 13
sectors required to remove one 0.001 mg/L of pesticide from the groundwater of all the
farms in the study region. Note that the business services sector (#12) is the sector which
contains the primary remediation industry. The assumed final demand Y for each sector (in

units of thousands of dollars) is also shown below:

[ 100 (25,0007
0 800
0 1,500
100 2,500
500 2,000
250 10,000
K=| 100 Y =| 3,000
0 15,000
100 20,000
0 2,0000
100 25,000
5,000 30,000
| 500 | 18,000

Using the information above, eq. (15) can be solved for the level of sectoral
production, X, and the dollar value of the remediation, KR. X and KR are shown below

(in units of thousands of dollars):
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(35,7207 [ 49 7
850 0
2,220 0
9,900 49
68,020 245
13,700 123
X =/ 15,860 KR=| 49
24170 0
25,460 49
21,990 0
37,070 49
55,120 2450

20,290 | 245 ]

In order to illustrate the impact of including groundwater remediation cost into the
economy, the production that is calculated from eq. (4) that does not include remediation
production (Xyoreazp) is compared to the above production with remediation (Xgeagn)-

Below, the difference between the two production vectors is shown:

[35,560] (35,720 0.46]
840 850 0.12
22,00 2,220 0.69
97.00 9.900 2.25
65,950 68,020 3.14
13,530 13,700 1.23
Xno rEMED =/ 15,460 XReMED =| 15,860 % Increase =|2.59
23970 24170 0.86
25,260 25,460 0.80
21,920 21,990 0.33
36820 37,070 0.68
52050 55,120 5.81
[19.380] 20,290 158
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Note that with the inclusion of remediation preduction, the business services sector

(#12) showed the largest increase at 5.81%, and the fishing/trapping (#2) sector showed

the smallest increase at 0.12%.

References

Anaman, K.A. (1994). Input-cutput analysis of the secondary impact of a screwworm fly

invasion of Australia on the economy of Queensland. Preventative Veteninary
Medicine, 21, 1-18.

Carson, R. (1962). "Silent Spring", Cambridge: Riverside Press.

Chen, K. (1973). Input-Output Economic Analysis of Environmental Impact, IEEE
Transactions on Systems, Man, and Cybernetics SMC-3, 539-547,

Gay, P.W. and Proops, L.R. (1993). Carbon-dioxide Production by the UK Economy: An
Input-Output Assessment, Applied Energy 44, 113-130.

Gladwell, J.S. (1989). Groundwater Quality Management: A Multi-Dimensional Problem.
In Proceedings of the International Conference on Groundwater Contamination:

Use of Models in Decision Making, (G. Jousma, ed.), Boston: Kluwer Academic
Publishers.

Heslin, J.S. and Hobbs, B.F. (1990a). Economic Analysis of Oil and Gas Brine
Regulations, Journal of Energy Engineering, 116, No. 1. 51-70.

Heslin, 1.S. and Hobbs, B.F, (1990b). Application of a Multiobjective Electric Power

Production Costing Model to the U.S. Acid Rain Problem, Engineering Costs and
Production Economics 20, 241-251,

Johnson, S.L., Adams, R.M., and Perry, G.M. (1991). The On-Farm Costs of Reducing

Groundwater Pollution, American Journal of Agricuitural Economics, 73, 1063-
1073,

Leontief, W. (1970). Environmental Repercussions and the Economic Structure: An Input-
Output Approach, The Review of Economics and Statistics 57, 262-271.

Lonergan, S.C. and Cocklin, C. (1985). The Use of Input-Output Analysis in

122



Environmental Planning, Journal of Environmental Management 20, 129-147.

Madhun, Y.A. and Freed, V.H. (1990). Impact of Pesticides on the Environment. In
Pesticides in the Soil Environment: Processes, Impacts and Modeling, S.5.S.A.
Book Series No.2 (H.H. Cheng, ed.), pp. 429-458. Wisconson: Soil Science
Society of America.

Miiler, R.E. and Blair, P.D. (1985). Input-Output Analysis: Foundations and Extensions,
New Jersey: Prentice-Hall,

Ontario Ministry of Environment and Energy, (1994). Ontario Drinking Water Objectives,
p. 32. Toronto: Queen’s Printer for Ontario.

Palmini, D.J. (1982). The Secondary Impact of Nonpoint-Pollution Controls: A Linear-
Programming-Input/Qutput Analysis, Journal of Environmental Economics and
Management 9, 263-278.

Sharpley, A.N. and Williams, J.R. (1990). EPIC -- Erosion/Productivity Impact Calculator:
1. Model Documentation, U.S. Department of Agriculture Technical Bulletin No.
1768, Agricultural Research Service, Temple, Texas.

Victor, P. A. (1972). “Pollution: Economy and Environment”, London: Allen and Unwin.

Xu, P., Tsanis, 1.K., Anderson, W.P. and Kanaroglou, P. (1994). An Economic Input-

Output Analysis for Urban Stormwater Quality Planning, Water Resources
Management 8, 155-170.

123



Appendix I1I: Input-Output Modelling and Groundwater Remedation

124



Abstract

Use of models in a decision-making context requires the interpretation of results with
respect to model uncertainty. Monte Carlo methods have been used to assess model uncertainty
with standard Leontief input-output models. Input-output models have also been extended for
use in environmental management by incorporating pollution cleanup costs back into the
economy. The effect on uncertainty of adding environmental feedback extensions to standard
input-output models is investigated. Monte Carlo analysis of a hypothetical mode! indicates that
uncertainty can be increased by as much as 80% by adding a feedback effect. Results also
indicate that while the amount of uncertainty is constant for different levels of demand for models
without feedback, models with feedback have significantly increased uncertainty at lower levels of
demand. Specifically, uncertainty is greatly increased when the total amount of remediation

production is equal to or less than the total amount of exogenous demand.

Key Words: input-output models, uncertainty, Monte Carlo, feedback, environment.

Introduction

In the 1930's, Wassily Leontief proposed the input-output model, which uses information
about the amount of goods and services exchanged between different economic sectors to
determine an economy’s behaviour under different product demand levels. Simple, linear
relationships describe the relative amount of any sectors’s product being used in the creation of
any other secter’s product. These relationships can then be used to determine the overall

production in each economic sector, based on a given level of exogenous final demand. Leontief
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input-output models have been extended for use in many areas, including employment, natural
resource and environmental analyses (Miller and Blair, 1985).

The use of any model (economic or otherwise) requires the consideration of uncertainty
when interpreting model results. The predictive ability of the model is dependent on several
factors, including the structure of the model and the quality of the input data (Beck, 1987). The
basic Leontief input-output model has a standard structure, the uncertainty of which has been
analyzed in the past by various authors (Bullard and Sebald, 1977, West, 1986; Bullard and
Sebald, 1988). However, extensions of the basic input-output model have been proposed which
change the way uncertainty propagates through the model. One such extension is the inclusion of
a feedback effect, where a “cost” related to the level of production in one or more sectors is then
added back into the economy. Making this type of structural change to an input-output model
can alter the amount of uncertainty.

The purpose of this paper is to investigate how changing the structure of an input-output
model (specifically through the addition of a feedback effect) changes the uncertainty of its
output. How does adding an environmental extension affect the way this type of model should be
used?

The concepts of uncertainty analysis developed in this paper will be illustrated with a
simple numerical example, but the methods and conclusions can be applied universally to any

input-output model with feedback effects.

Uncertainty in Input-Output Medelling

When evaluating the output from input-output models, determining a measure of
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uncertainty in the results provides a framework for interpretation. Uncertainty can be defined in
many different ways, but for the purposes of this paper, it is defined as a measurement of the
variability in the output. It is a measure of how well the output of the model is “known”. In the
studies included in this project, uncertainty is measured by the standard deviation associated with
the output of the model.

Various kinds of uncertainty analyses can be used to determine the amount of change in
model output that comes from a change in model input. Bullard and Sebald {(1977) used matrix
analysis to define error bounds on input-output calculations. The authors note that parameters of
input-output models are subject to two major types of uncertainty: statistical errors in compiling
empirical data, and the fact that input-output coefficients do not remain constant over time.
Bullard and Sebald quantified the error bounds by using matrix norm analysis and creating
perturbed technical coefficients matrices.

A more complex method of calculating confidence intervals for input-output multipliers
was proposed by West (1986). Assumed independent, normal distributions of input coefficients
were used to anaiytically calculate distributions of output multipliers in an input-output model of
the Queensland, Australia economy. West concluded that the results of the analysis are dependent
on the assumptions made regarding the distributions of input coefficients, but that the method can
be employed to analyze the uncertainty of such models.

Bullard and Sebald (1988) updated their earlier work by using the Monte Carlo method to
better define the error bounds on input-output analysis. They concluded that the Monte Carlo
method provides a tighter and more reasonable error estimate than the analytical methods

proposed earlier. Analysis of the 1967 U.S. input-output tables showed that analytical error
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tolerances are overestimated due to the fact that input data uncertainties combine or cancel one

another in a manner that reduces error magnification.

Applying the Monte Carlo Methed to Input-Output Models

A comprehensive method to study the sensitivity of a model is the Monte Carlo method.
It has been commonly used to study the behaviour of many different kinds of models (Beck, 1987,
Brattin, et al, 1996), and employed with input-output models by Bullard and Seward (1988). The
basis of the Monte Carlo method is the use of assumed distributions of input parameters. Many
sets of values are independently sampled from the distributions, and then the model is solved with
each of the input value sets. The multiple sets of output are then analyzed to determine the
vanability.

The Monte Carlo Method is applied to the following hypothetical input-output model.

The transactions matrix Z and exogenous demand vector Y are shown below:

3 7 1 2] 107
4 9 3 1 13
Z=114 3 11 2 Y=
11 1 2 2 |

In order to create a distribution of values for each element in the 4 x 4 Z matrix, 100 new
Z matrices are generated by adding normally distributed noise to the existing Z element values,
Normally distributed noise is used to represent a typical distribution of coefficients. West (1986)
noted that real coefficient distributions are not well defined, but that Monte Carlo I/O analyses

have shown to be insensitive to distribution type. In his analysis, normally distributed coefficients
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were assumed.

In this study, the noise is created such that the standard deviation is equal to 30% of the

maximum original Z matrix value. The Z matrix is then corrected to make sure all elements are

greater than zero. For this example, Y is not altered.

For each new Z matrix, the corresponding technical coefficients matrix A is then
calculated. 100 new vectors of X are then determined using the basic Leontief equation X = (I-

AY'Y. The mean and standard deviation of the new X values can be determined for each sector’s

production.

Xyean i the mean value of sectoral production, and E is the standard deviation of the X

25.97
31.6
36.7

117,
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71
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Figure 1. Monte Carlo Analysis - 'O Model Without Feedback
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element values across all 100 X vectors calculated,

Figure 1 illustrates the results of the Monte Carlo test, where the bars represent the mean
value of sectoral production, and the error bars represent +/- 1 standard deviation of production
values. The uncertainty of the input-output model output is represented by the size of the error
bars. Note that all error bars are of similar magnitude, and that the magnitude of uncertainty does

not necessarily correspond to the value of production.

Environmental Extensions of Input-Output Models

Environmental extensions of input-output modelling have been described by Miller and
Blair (1985). They include the use of environmental coefficients that relate items such as
resource use and demand, and also the use of “ecological commodities” which describe the flow
of products to and from the natural environment,

Environmental input-output models have been developed by several authors. Leontief
(1970) and Chen (1973) developed simple extensions of the basic input-output model to relate
economic production and environmental impact. Input-cutput analysis has been applied to
various types of environmental-economic studies, including waste disposal regulations (Heslin and
Hobbes, 1990), pesticide regulations (Palmini, 1982), and insect vector invasions (Anaman,
1994).

The structure of the extended environmental-economic model allows the user to simulate
economic production at various demand levels, while at the same time evaluating economic
impact. The structure of the model also influences the uncertainty associated with the results. In

order to be able to properly evaluate the output from these kinds of models, the uncertainty of
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input-output models with environmental extensions must be investigated.

Internal Feedback Effects

In a standard input-output model, exogenous final demand is used to determine sectoral
output through information on the transactions of money and goods between economic sectors.
The basis for the Leontief input-output model is an assumption that the ratio of goods (or
services) from any one sector used in the production of goods (or services) in another sector is
constant, regardless of the level of that sector’s production. In other words, there is a linear
relationship between the amounts of input goods used and the amount of output goods produced.
If a sector’s production is doubled, then the amount of input goods required will also double.
This linear relationship assumes that the technology and input “recipe” for a good is constant over
time and over all levels of output, implying that economies of scale are ignored.

Extensions of the basic input-output model can be used to determine the behaviour of
factors related to an economy, such as employment, input resource use, and pollution generation.
Linear assumptions are made to relate each of these elements to production. For example, the
vector V describes the amount of poliution generated per dollar of sectoral output, where:

v,;= amount of pollutant of type k, generated per
dollar worth of output of sector j

V is an m x » matrix, where m is the number of pollutants under consideration, and # is the
number of sectors in the economy. Therefore, the vector of total pollutant levels V*, would be:
V¥ =VvX eq.(1)

The elements of the total pollutants vector, v*,, represent the total amount of pollutant k

131



generated by all sectors. The pollutant levels can be directly calculated as a function of demand

through the use of the Leontief equation (Miller and Blair, 1985):

V*=V[(1-A)']Y €q.(2)

Leontief (1970) proposed comparing the amount of pollution generated by various sectors
to some accepted standard. If the amount of pollution is greater than the standard, then there is
an amount of pollution that needs to be removed, treated or otherwise remediated. The
production associated with the removal of the pollution can then be related back into the
economy. This approach has been expanded by Chen (1973) and Xu, et al. (1994).

When a vector of pollutant levels is calculated and compared to a regulated “accepted”
level, S, the difference R (where R = V*-8) is the amount of pollutant that has to be removed (for
this example, it is assumed only one pollutant is generated). The production associated with this
removal can be described by K, an n x / column vector where each element, k;, is the amount of
sector i’s product associated with the removal of 1 physical unit of pollutant. The total
remediation production, KR, can then be added to the economy, creating a feedback effect.

Given that the production of an economy is defined by the equation:

X=AX+Y eq.(3)
the amount of additional production from pollution remediation, KR, can be added to
form the equation:
X=AX+Y+KR, eq.(4)
and the amount of pollution to be removed, R, is:

R=VX-8. eq.(3)
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These two equations can be combined and rearranged to explicitly express production X

as a function of several elements, including demand Y, pollution generation V, cleanup cost K,

and allowable level ot pollutant, S:
X=(1-A-KV)Y(Y-KS) eq.(6)
This extension causes a repeating, iterative effect. First the pollution generated from
economic production is calculated, and excess pollution (above the acceptable level) is
remediated. The amount of economic output generated from the remediation is added back into
the economy, causing further production, and therefore further pollution. This new pollution is
then remediated, causing more production and pollution, etc., and the cycle is repeated. In each

iteration of the cycle, the amount of new production added is smaller, until the solution to the

model converges.

Monte Carlo Analysis

To analyze the uncertainty associated with the cutput of a mode! with an environmental
feedback effect such as the one described above, a Monte Carlo analysis can be used. Figure 2
shows the results of a Monte Carlo analysis performed on the hypothetical input-output model
used earlier, both with and without feedback. The feedback effect uses the pollution vector V, and

acceptable level of pollutant S, as shown below:
v=[2 2 3 1 s=[0]

Note that the inclusion of a feedback element not only increases the production levels, but

also increases the variability of the results. The uncertainty of the two models can be compared
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by looking at the size of the standard deviation as a percentage of the mean. The average
percentage uncertainty (across the 4 sectors) for the input-output model without feedback is

26.4%, compared to 47.9% for the model with feedback.

S_ec’(oral Production - Mode! Without Feedback
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Figure 2, Comparing Uncertainty of Models With and Without
Feedback.

The inclusion of a feedback effect creates an iterative loop where the uncertainty
associated with sectoral production is then incorporated back into the economy through the

inclusion of remediation production. Each new step brings more uncertainty. However, due to
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the fact that the production (and uncertainty) added in each new iteration is smaller than the one
in the previous step, the system converges. The repeated iteration of adding production back into
the economy introduces more uncertainty each step,

Another way to analyze the difference between models with and without feedback effects
is to compare the uncertainty associated with sectoral output over several different ranges of

demand. Figure 3 shows the output and associated uncertainty (error bars equal + one standard
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Figure 3. Comparing Models With and Without Feedback - Increasing Levels of Demand.

deviation around the mean) at several different levels of demand. The dark line represents the

total production, and the thin dashed lines represent the uncertainty “envelope” associated with
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Figure 4. 1/0 Model with Feedback - Uncertainty at Increasing Levels of Demand.

produces more pollution, which is then remediated, which creates more pollution, etc. Ifthe
amount of new production created in each step is small with respect to the overall demand, the
iterations will converge to a solution for the model. However, when the new production created
each step is not significantly smaller each step, the solution does not converge quickly, and the
uncertainty can be large. When the new production is larger in each step, the model cannot be
solved, either iteratively, or through the use of eq.6. Therefore, the relative magnitude of the

remediation production is important to defining the uncertainty in a model with feedback.
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Conclusion

Input-output modelling is a commonly used tool for the evaluation of economic-~
environmental relationships. However, for a tool such an input-output model to be useful to an
decision-maker, the amount of uncertainty associated with the model’s output must be evaluated.

Input-output models have a characteristic uncertainty based upon their structure.
Extensions to this basic structure affect the amount of uncertainty. Results from Monte Carlo
analyses show that adding feedback effects (in order to incorporate a remediation cost borne from
pollution production) significantly increases uncertainty. In addition, the uncertainty encountered
in models with feedback is not constant over different levels of demand, and is generally greater

when demand is equal to or less than remediation production.
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Appendix V: Models Used in Case Study I - Sorption of Metals onto Lake
Sediments

This appendix contains data regarding the three models used in the
uncertainty/complexity study found in the paper “Evaluating Modelling Uncertainty for
Model Selection” in Appendix 1I. For each model, a box-and-arrow diagram is shown,
which schematically represents the flow of matter between various states in the model.
Each state and flow is labelled, and the processes are briefly described. The calculation of
the index of model complexity, as introduced in Appendix 1, is explicitly shown for each
model.

Computer code for each model is found following each box-and-arrow diagram
page. This code was implemented with the modelling software GPS-X (General Purpose
Simulator) by Hydromantis, Inc. Only the .usr file is shown, which contains all the
relevant rate equations to describe all flows in the model.

The computer code is followed by a series of histograms, representing the
parameter distributions for each parameter used in the sensitivity studies described in
Appendix 1. Following this, a graphical representation of the output “envelope™ is
shown. The thick, black line represents the mean value of the multiple output runs
generated during the Monte Carlo analysis, and the thin lines represent + one standard
deviation at each timestep. Information is presented for the following three models:

EQUILRAD - Equilibrum sorption algorithm

KINRAD - Kinetic sorption algorithm

3BOX - Both equilibrium and Kinetic sorption algorithms
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Uncertainty/Complexity Study - Sensitivity Analysis
MODEL NUMBER: 1

Model Name: EQUILRAD

Solute Phase Sorbed Phase

Flow Equations for State Variable 1:
F, = equilibrium sorption
= flkd)
Number of parameters = 1
Number of operations = 3

Flow Equations for State Variable 2:

F, = equilibrium sorption
= fikd)

Number of parameters = |

Number of operations = 3

COMPLEXITY: I =(1*3)+(1*3)=6

FIT: =0.7617
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EQUILRAD.USR

!iiiiiiibi*titiiotii*itiibt*tﬁi‘aﬁiiotoiﬁiiiittt*ooo&.*aoiittt*tﬁiwto*..
'PUT HERE USER DEFINED MACROS

!This section is for definitions, it will be executed

tenly during loading of the program

:macro rvardata

procedural (dliquid=kd)

dimension kd (300}

open {unit=1, file='equilrad.sam’', status='o0ld')
read (1,*) (kd(j), j=1,300)

close{unit=1}

! print *,'parameter data entered®

!macre end

- e aa pem g

!iitbb**i*****iiiiiiv‘riibitiiiii***iiiib*biiiititi*ii*tibh***i*iiiiii*ifi
macro userinitialsection
!INITIAL SECTION

!Macros called here will be executed in the initial section
!Don't put macro definitions here

'rvardata

nacro end
!**iiiii**ii*it***iﬂii***iit**i*t*t*i***ii*i‘tti*iii*iiiii**ii&iii**iiiiii
macro userderivativesection

!DERIVATIVE SECTION

!Macros called here will be executed in the derivative section

'bon't put macro definitions here
dliquid
dsorbed

[}

{sorbed - liquid*kd;*S50
=dliquid

Juid = integ(dliquid,initliquid)
sorbed integ(dsorbed, initsorbed)

1

liquid2 = liquid

macro end
!***iil&i*ii*iii&&*i*iiﬁ*ibiiit*it*iti‘#iﬁt***ibii}***ii&oiﬂtttii*i*itﬁi
macro userdynamicsection

!DYNAMIC AND DISCRETE SECTIONS

!Macros called here will be executed in the dynamic section.

!(discretes plus code to be executed every communication interval)
!'Don't put macro definitions here

macro end
!Otiibi**iitii‘ttbitﬁtiiiiii*‘tiiitﬁiitﬁiiiﬁd‘it.tdﬁd*ttib‘io.titobii*ii
macro userterminalsection

!'TERMINAL SECTION

'Macros called here will be executed in the terminal section
!Don't put macro definitions here

'open (unit=1,file='sens.dat',scatus='old')
'write (1,*) kd
'close {unit=1)

'write {*,*) 'sens.dat written.'
fwrite [*,*) 'kd = ', kd{rnum},’ tnum = ', rnum
Tro end

.Qﬁbbﬁﬁoottooﬁoto.tot.-c&.ﬁnoiﬁttooooootcouotaonaoo.o..o-..oi..ntiio.
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MODEL NUMBER: 2

Model Name: KINRAD

Solute Phase

Sorbed Phase

Flow Equations for State Variable 1:

F, = Kinetic sorption

= f{kd, sorbrate)

Number of parameters = 2
Number of operations = 3

Flow Equations for State Variable 2:

F, = kinetic sorption

= flkd, sorbrate)

Number of parameters = 2
Number of operations = 3

COMPLEXITY:

FIT:=0.236

L= (2*3) + (2*3) =12
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KINRAD.USR

!Gtttiiﬁ*"‘*“i*ﬁ*iﬁii'*****‘i*ﬁtt&*ﬁitﬁﬁii‘&.tﬁi&iitt.ttiiii.tﬁt’p.-*‘
!PUT HERE USER DEFINED MACROS

!'This section is for definitions, it will be executed

'~nly during loading of the program

macro rvardata
procedural (dliquid=kd}
dimension kd{300), 3 (300)
open (unit=1, file='kinrad.sam', status='old'}
read (1,*) (kd(j), rateconst(j), 3j=1,300)
close(unit=1)
print *,'parameter data entered®
end

]
)
!
t
!
4
H
'macro end

!ﬁ****ﬁ*ii*itii&‘O*O*tttii***t*tib**iitt.t&*iifiii****ﬁibb**#ﬁiiiit*i***
macro userinitialsection
'INITIAL SECTION

!Macros called here will be executed in the initial section
Don*t put macro definitions here

macro end
!i*ti*ii*i*****ii*i*i***#iii*iiiiibﬁﬁ**ttiiit*i*iit*ti*itiiti*iiiitttiii
macro userderivativesection

!DERIVATIVE SECTION

'Macros called here will be executed in the derivative section
!Don't put macro definitions here

dliquid = (sorbed - liquid*kd)*rateconst
dsorbed = -dliquid

Tuid = integ(dliquid,initliquid}
rhed integ{dsorbed, initsorbed}

]

ligquid2 = liquid

macre end
l{iiiiib&&ii****bi44‘-ttiiitittttto--o*tttiibtﬁiﬁ*tiﬁttiit*tttbibﬁb**ﬁii

macro userdynamicsection
!DYNAMIC AND DISCRETE SECTIONS
!Macros called here will be executed in the dynamic section.

'{discretes plus code to be executed every communication interval)
!Don't put macro definitions here

macro end
1*****‘***********“**li-ﬁiiitiiiiiiﬁi&ib.it&iii04i‘i*iﬁtott&ii***ﬁtttiti

macro userterminalsection
'TERMINAL SECTION

'Macros called here will be executed in the terminal section
!Don't put macro definitions here

'open {unit=],file='sens.dat',status='ocld')
'write (1,*) kd, rateconst

‘cloese {unit=1}

'wrpite (*,*) 'sens.dat writren.'

‘print *,‘'kd = ‘L kdirnum), ' rateconst = ',6rateconst{rcnum)

macro end

4&‘*&***‘*“0‘*tibiﬁi“oﬁ&i‘.‘l*b.oo-c.bit‘ii..ii.‘tbﬁ‘io.ib‘hi&idt&.i
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MODEL NUMBER: 3

Model Name: 3BOX

Solute Phase

2
Sorbed Phase 1

Sorbed Phase 2

Flow Equations for State Variable 1:

F; = equilibrium sorption
= ftkd)

Number of parameters = 1

Number of operations = 3

F, = kinetic sorption

= fkf, kr)
Number of parameters =2
Number of operations = 3

Flow Equations for State Variable 2:

F, = equilibrium sorption
= fkd)

Number of parameters = |
Number of operations = 3

COMPLEXITY:
FIT: = 0.0749

Flow Equations for State Variable 2:

F, =kinetic sorption
=ik, kr)

Number of parameters = 2

Number of operations = 3

Lo = (1*3 +293) + (1*3) + (2*3) = 18
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3BOX.USR

li.i'tt*.t‘i***ﬁ‘**ﬁt.“..‘*"*ﬁiﬁt‘t*g’itﬁ*..diﬁg’g**-gt*&iﬁ*ti‘ﬁi‘ﬁ*..

{PUT HERE USER DEFINED MACROS

!This section is for definitions, it will be executed
fonly during loading of the proqram

.macro rvardata

! procedural (dliquid=kd)

! dimensior. kd{300}, kf{(300), kr(300)

! open {unit=1, file='3box.sam', status='old'}
! read {1,*) (kd(3), k£{3), kr(j), j=1,300)

! close{unit=1)

! print *,'parameter data entered'

! end

'!macro end

!it**ii**iiiiii**iii*ii*iiiiii*iitiii&tt*iiiti*ii*i**tiiiiiiti*tii.i*iiﬁ
nacro userinitialsection
!INITIAL SECTION

'Macros called here will be executed in the initial section
!Don't put macro definitions here

'rvardata

macro end
!iiiit*iil**titti**'tttbtii.ittitttt*t‘bt**ﬁtiiidiii*‘ti&ti&'i&ttitﬁ&iﬁt
macro userderivativesection

'DERIVATIVE SECTION

!Macros called here will be executed in the derivative section
!Don’'t put macro definitions here

equilsorb = 50* (sorbedl-liquid*kd)

kinsorb = -kf*liquid + kr*sorbed?

"“iquid = equilsorb + kinsorb
srbedl = -equilsorb

dsorbed2 = -kinsorb

liquid = integ(dliquid,initliquid)

sorbedl = integ(dsorbadl, initsorbedl)
sorbed2 = integ(dsorbed2, initsorbed?2)
liquid2 = liquid

macro end
!iiiiiiiii*****i*t*iﬁi&i*iﬁliiii***i&iiooi&o‘iti.idi**itiiiiitt..‘tt.tt.
macro userdynamicsectiocon

!DYNAMIC AND DISCRETE SECTIONS

'Macros called here will be executed in the dynamic section.

!(discretes plus code to be executed every communication interval)
'Don't put macro definitions here

nacro end

|Q...tiﬁ‘ﬁ.’*f’.ﬁﬁ‘...t‘.t-.t‘t.iﬁi.t'..0“..‘.““‘iiib‘ti'ﬁ.‘.il‘ii&iﬁ

nacro userterminalsection
'TERMINAL SECTION

'Macros called here will be executed in the terminal section
!Don't put macro definitions here

‘open (unit=1, file='sens.dat',status="old")
lwrite {1,*) kd,kf,kr

!close {unit=1})

" rite {*,*) 'sens.dat written.'

'write (*,*) 'kd = ', kdlrnum), kf = ', kE(rnum}, ' kr = ', kr{rnum)

nacro end

lit‘oi&iiiiiiiiiiit&lgoooﬁii&otiotdtb-ottiﬁﬁooogoaﬁtiioost.o.a.o.‘.ttniﬁ
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Appendix VI: Models Used in Case Study II - Transport of a Non-Conservative
Tracer in a Homogeneous Aquifer

This appendix contains data regarding the seven models used in case study II of
the uncertainty/complexity study found in the paper “Evaluating Modelling Uncertainty for
Model Selection” in Appendix II. For each model, a box-and-arrow diagram is shown,
which schematically represents the flow of matter between various states in the model.
Each state and flow is labelled, and the processes are briefly described. The calculation of
the index of model complexity, as introduced in Appendix I, is explicitly shown for each
model.

Computer code for each model is found following each box-and-arrow diagram
page. This code was implemented with the modelling software GPS-X (General Purpose
Simulator) by Hydromantis, Inc. Only the .usr file is shown, which contains all the
relevant rate equations to describe all flows in the model.

The computer code is followed by a series of histograms, representing the
parameter distributions for each parameter used in the sensitivity studies described in
Appendix 11. Following this, a graphical representation of the output “envelope” is
shown. The thick, black line represents the mean value of the multiple output runs
generated dunng the Monte Carlo analysis, and the thin lines represent = one standard
deviation at each timestep.

Information is presented for the following seven models:

NOSORB-NODEG - no sorption or degradation
EQLINEAR-NODEG - equilibrium sorption with linear isotherm, no degradation

KNLINEAR-NODEG -~ kinetic sorption with linear isotherm, no degradation
EQLINEAR-1STORDER - equilibrium sorption w/ linear isotherm, 1st-order degradation
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KNLINEAR-1STORDER - kinetic sorption w/ linear isotherm, 1st-order degradation
KNNON-LINEAR-1STORDER - kinetic sorption w/ non-linear isotherm, 1st-order
degradaton
KNMONOD-1STORDER - kinetic sorption w/ Monod-type isotherm, 1st-order
degradation
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Uncertainty/Complexity Study - Sensitivity Analysis
MODEL NUMBER: 1

Model Name: NOSORB/NODEG Model Location: cispencer3dmodel\models\nosorbnodep\speedd usr

F,

Solute Phase

Flow Equations for State Variable 1:

F, =convective flow + dispersive flow

= flporosity, velocity)
Number of parameters =2

Number of operations = 2 (convective) + 2 (dispersive) = 4

F, =convective flow + dispersive flow
= flporosity, velocity)
Number of parameters = 2

Number of operations = 2 (convective) + 2 (dispersive) = 4

COMPLEXITY: 1. =2*4+2%=16

Dates: Start: March 24/98 End: _Mar. 30/98
Sens data located: c:\spencer\3dmodel\noiseresults\nosorbnodee

Crunched parameter values located: _c:\spencer\3dmodel\noiseresults\nosorbnodeg\nsndsens.dat
Parameter Distribution located: _JRK 1 :/snowling/sensprogram/nosorbnodes/nsnd.ps

Output Parameters:  porosity, xvel yvel,zvel, optdif{1)
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!****#i****ﬁ*t****i*ii*i***i*it*ﬁ*i***i**i**i****itiﬁﬁiﬁt*tit*tibiiﬁitti
'PUT HERE USER DEFINED MACROS

!This section is for definitions, it will be executed

'only during loading of the program

.....................................

macro difmacro

macro relabel 1888

procedural (dif=dif,iiter,site,dat)

dif = 0

do 1888 g=1,5

if (dat({({q+l),iiter).qgt.0.0) then

dif=dif+((abs(dat((q+1),iiter)-site(q)))**2.0)*w(q)
end if
1888..continue
end
macro end

!*****i*i*i*******iit*********************i************

! this macro prints out the parameters when the optimizer
! is terminated
!*****iii*ii*******irdrir*************i***********iﬁ****i*

!macro optprint

! macre relabel aaa,baa,caa,daa,eaa
! if (optwarnings) then

! open (unit=1,file='sens.dat', status='cld',access="'append')
! write (1,*)}

porosity, kd, xvelocity, yvelocity, zvelocity, iiter,optdif (1}

! close (unit=1)

! write (*,*} 'sens.dat written.'!

! if (termflag.eq. 'delta-p') print baa
! baa..format(/,' Termination due to small change in parameters')
! if (termflag.eq. 'delta-f') print caa
! caa..format(/,' Termination due to small change in objective')
! if (termflag.eq. 'looplimit’'} print daa
! daa..format (/,' Termination caused by reaching maximum
iterations')
! if (termflag.eq. 'OK'}) print eaa
! eaa..format{/,' Termination due to reaching specified
objective')
! 1f (termflag.eq.'break’'.or.termflag.eq.'brunbreak'} print faa
! faa..format |/,' Termination caused by interrupt’)
t if(termflag.ne. 'break'.and.termflag.ne.'brunbreak'} then
! do 101 optii=1,ndimm
! print aaa,optii,optp{ilo,optii}
! aaa..format({/,' Parameter 'il,' is ', £f15.7)
! 101..continue
! endif
! endif
'macro end
macro soilprop
watervolume=cellvolume*porosity ‘mL
soilvolume=celivolume* (1.0-porosity) 'mL
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soilmass=soilvolume*gamma/1000

'g
macro end
macro flowprop
xflow=cellsidearea*xvelocity/1000 'mL/hr
yflow=cellsidearea*yvelocity/1000 'mL/hr
zflow=cellsidearea*zvelocity/1000 ‘mL/hr
dimension site(7} 'g
! dimension showxz (maxz,maxx) !'g
' dimension showyz (maxz,maxy) g
dimension sorbedamt(maxx,maxy,maxz) 'g

! print*,'iitex,t,dif’

This section is used to weight the sites equally for the
calculation of the objective function.

— -

dimension w(5)

w(l)= 1.0
w(2)= 0.92%
w(3)= 1.0
w(d)= 2.76
wi(S)= 2.6

macro end

macro preinitialization
logical preinitial

preinitial=.true. 'to mark that we are in the preinitial section
tlast = maxpar !initialize saved time
goto preinitloc !do one run through initial

backfrominitial..continue
reset ("eval")

block{save) !backup initial values in osvar
procedural;preinitial=. false.;end
displaylib

macro end

macro clearcells
tot = 0
do 10 i=1,maxx
do 20 j=1,maxy
do 30 k=1,maxz

icellmassi{i, j,k)=0.0 'g
isorbmass(i,3,k}=0.0 'g
30.. continue
20.. continue
10.. continue
icellmass(3,1,1)=0.367 'g

macro end

macro calculatetransport

t

procedural {(mflow,dcellmass,dsorbmass=cellmass, kd, sorbmass, sorbrate, &

watervolume, ratecon, xflow, yflow, zflow)
]

mflow=0
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! nosorh/nodeg
do xend x=1,maxx
do yend y=1,maxy
do zend z=1,maxz

sorbedamt (x,y,z)=0.0
dcellmass (x,y,z)=0.0

zend. .continue
yend..continue
Xend..continue

do 50
do 60
do 70

if (x.
'g/hr

else

endif

if (z.

'g/hr
else

endif

X=1,maxx
y=l,maxy
2=1,maxz

Convective Flow - trans is equal to the amount leaving the cell

Xtrans=cellmass(x,y,2z) /watervolume*xflow 'g/hx
ytrans=cellmass (x,y, z) /watervolume*abs {yflow) tg/hr
Ztrans=cellmass (%,y,z) /watervolume*zflow 'g/hr

Dispersive Flow

eg.maxx) then

xtrans=xtrans+(cellmass(x,y,z}—O)*ratecon 'g/hr
mflow=mflow+xtrans

xtrans=xtrans+(cellmass(x,y,z)—cellmass((x+1),y,z))*ratecon

'g/hr
dcellmass{(x+1),y,z)=dce11mass((x+1),y,z)+xtrans!g/hr

eq.maxz) then
ztrans=ztrans+(cellmass(x,y,z)~0)*ratecon 'g/hr
mflow=mflow+ztrans

ztrans=ztrans+(cellmass(x,y,z)-cellmass(x,y,(z+1)))*ratecon

'g/hr
dcellmass(x,y,(z+1))=dcellmass(x,y,(z+1l)+ztrans!g/hr

if (yflow.gt.0) then

'g/hr

cellmass(x, |

if {y.eq.maxy) then

ytrans=ytrans+(cellmass{x,y,z)-0)*ratecon 'g/hr
mflow=mflow+ytrans

else

ytrans=ytrans+{cellmass(x,y, 2z}~
y+l),z2) ) ratecon

'g/hr
dcellmass(x,{y+1),z)=dcellma55(x,(y+1),z]+ytrans

'g/hr
endif
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else
if (y.eq.l) then

ytrans=ytrans+(cellmass(x,y,z)-
cellmass (%, (y+1),2)) *ratecon

'g/hr
mflow=mflow+ytrans
'g/hr
else

ytrans=ytrans+(cellmass(x,y, z}-cellmass (x, (y~
1),z})*ratecon

'g/hr
dcellmass(x,(y—l),z)=dce11mass(x,(y—l),z)+ytzans

'g/hr
endif
endif

! This section calculates the derivatives for the liquid
! and sorbed masses.

dcellmass(x,Y,Z)=dcellmass(x,y,z)—xtrans—ytrans—ztrans

'g/hr
dsorbmass(x,y,z)=sorbedamt(x,y,z)

'g/hr

70. .continue
60. .continue
50. .continue

end
macro end

macro integration
limintvvv(cellmass,dcellmass,icellmass,maxx,maxy,maxz,0.0,1e6)

limintvvv(sorbmass,dsorbmass,isorbmass,maxx,maxy,maxz,O.U,1e6)
macro end

macro massbalance
balance=integ(mflow, 0.0)
balance2=balance

macro end

macro mapviews

site(l)={cellmass(5,1,2)/watervolume)*lef 'ug/L
site(2)={cellmass{5,2,3) /watervolume)*led tug/L
site(3)=(cellmass({6,1,2)/watervolume) *1ed tug/L
site{4}=(cellmass(17,9,3)/watervolume}*1le9 'ug/L
site{5)=(cellmass{17,9,4)/watervolume)}*le9 'ug/L
' site{6)=(cellmass(20,9,4)/watervolume)*le9 ‘ug/L
! site{7)=(cellmass (20,9, 3)/watervolume}*le9 ‘ug/L

macro end
l“’*.’*i‘ﬁii‘ttiitii“ﬁi'ttt‘i‘i‘i“‘.iiiii*ibi*itti*ii*ti'i*i*iiiiii.i

macro userinitialsection
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'INITIAL SECTION
'!Macros called here will be executed in the initial section
!Don't put macro definitions here

soilprop
flowprop
clearcells

macro end
!****ii*********iiiiii****tiii*iﬁ**i***ii*i***ii*******iiii*iitiﬁi****ti
macro userderivativesection

!PERIVATIVE SECTION

IMacros called here will be executed in the derivative section

IDon't put macro definitions here

calculatetransport
integration
massbalance

macro end
!*******i*********i****i****i*********i*******************i*i**i****i*ii
macro userdynamicsection

!DYNAMIC AND DISCRETE SECTIONS

!Macros called here will be executed in the dynamic section.

!(discretes plus code to be executed every communication interval)
!Don't put macro definitions here

mapviews

macro end
!ﬁ***itti*i******itiiii**i*tt****iii&ii****ti****i*****t**i******iiiiiit
macro userterminalsection

I'TERMINAL SECTION

!Macros called here will be executed in the terminal section

!Don't put macro definitions here

open {unit=1,file='sens.dat',status='old'}

write (1,*) porosity,xvelocity, yvelocity, zvelocity, optdif (1)
close (unit=1l)

write (*,*) 'sens.dat written.'’

macro end
|O*D*itiiiiiwtth*ﬁ*ﬁiiii*iiiii&iiiiitt‘iiGii*ii*iiii*i*ﬁi***ii*ii&*iﬁ.**
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Uncertnin;ijomplexitx Study - Sensitivity Analysis

MODEL NUMBER 2:
Modecl Name: EQLINEAR/NODEG  Model Location: c:/spencer/3dmodel/models/eqlinear-nodeg/speedd. usr

F,
1 2
.<__F3_>
Solute Phase Sorbed Phase
F,

Flow Equations for State Variable 1: Flow Equations for State Variable 2:
F; = convective flow + dispersive flow F; = sorption/desorption (linear equilibrium)

= fporosity, velocity) = flkd)
Number of parameters = 2 Number of parameters = |
Number of operations = 2 (convective) + 2 Number of operations = 3

(dispersive) = 4
F, = convective flow + dispersive flow

= fporosity, velocity) Dates: Start: Aup.18/98 End: Aug.24/98
Number of parameters = 2 Sens data located: c\spencer\3model\noiseresults\linear-

. - . nodes

Number of O'pcr ations = 2 {conv. ective) + 2 Parameler values located: c\spencer... \eqlnd.dat

(dispersive) = 4 Parameter Distribution located:

F; = sorption/desorption (linear equilibrium)
= flkd)

Number of parameters = i

Number of operations = 3

COMPLEXITY: I, = (2%4 + 2%4 + 1*3) + (1*3) = 22

Output Parameters:  porosity, xvel, yvel, zvel, optdif(1), kd
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!.i.ttii&*‘iit‘i*bi’ﬁ‘ﬁbi*i**“"‘ttiiattiittb&biiiitittﬁii&&itt..itiitﬁi
'PUT HERE USER DEFINED MACROS

!This section is for definitions, it will be executed

‘only during loading of the program

macro difmacroe

macro relabel 1888

procedural (dif=dif,iiter,site,dat)

dif = 0

do 1888 g=1,5

if (dat{(q+l),iiter).gt.0.0) then

dif=dif+{(abs(dat({g+l),iiter)-site(q}))**2.0) *w(g)
end if
1888..continue
end
macro end

A AR AL LS A LR R R AR LR RS R R R X R R R R o A S A PR PR

! this macro prints out the parameters when the optimizer
! is terminated
!'li'ibi*****ti*iii***i*tii*iﬁiti*t**ﬁ***tii*ti**itiftiii

!macro optprint

! macro relabel aaa,baa,caa,daa,eaa
§ if (optwarnings) then

' open (unit=], file='sens.dat',6status='old',access="append')
! write (1,*)

porosity, kd, xvelocity, yvelocity, zvelocity, iiter, optdif (1)

H close {unit=1}

! write (*,*) ‘sens.dat written.'®

! if {termflag.eq. 'delta-p') print baa
! baa..format(/,' Termination due to small change in parameters')
! if {termflag.eq. 'delta-f'} print caa
! caa..format(/,' Termination due to small change in objective’)
! if (termflag.ecq. 'looplimit') print daa
! daa..format(/,' Termination caused by reaching maximum
iterations')
! if (termflag.eq. 'OK') print eaa
! eaa..format{/,' Termination due to reaching specified
objective')
! if (termflag.eq.'break'.or.termflag.eq. 'brunbreak') print faa
! faa..format{/,' Termination caused by interrupt')
! iff{rtermflag.ne.'break’'.and.termflag.ne. 'brunbreak’'} then
! do 101 optii=1, ndimm
! print aaa,optii,optpl(ilo,optii)
! aaa..format{/,' Parameter 'il,' is ', f15.7)
! 101..continue
! endif
! endif
'macro end
macro soilprop
watervolume=cellvolume‘porosity 'mL
soilvolume=cellvolume* (1.0-poreosity) 'mL
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scilmass=soilvolume*gamma/1000

'qg
macro end
macro flowprop
xflow=cellsidearea*xvelocity/1000 'mL/hr
yflow=cellsidearea*yvelocity/1000 ‘mL/he
zflow=cellsidearea*zvelocity/1000 'mL/hr
dimension site(7) 'qg
! dimension showxz(maxz,maxx) 'g
! dimension showyz{maxz,maxy) g

dimension sorbedamt {maxx,maxy,maxz} !'g
! print*, 'iiter,t,dif?

This section is used to weight the sites equally for the
calculation of the objective function.

dimension w{5)

will= 1.0
wi(2)= 0.929
Ww(3)= 1.0
wid)= 2.76
Wwis)= 2.6

macro end

macre preinitialization
logical preinitial

preinitial=.true. 'to mark that we are in the preinitial section
tlast = maxpar tinitialize saved time
goto preinitloc !do one run through initial

backfrominitial..continue
reset ("eval")

block {save} 'backup initial values in o&var
procedural;preinitial=.false.;end
displaylib

macro end

macro clearcells

tot = 0

do 10 i=1,maxx

do 20 j=1,maxy
do 30 k=1,maxz

icellmass(i,j,k)=0.0 tg
isorbmassii,j,k}=0.0 ‘g
30.. continue
20.. continue
10.. continue

icellmass(3,1,1)=0.367
macro end

macro calculatetransport

proceduzal(mflow,dcellmaSS,dsorbmass=cellmass,kd,sorbmass,sorbrate.&

watervolume,ratecon,xflow,yflow,zflow)
1]

mflow=0
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! eqlinear/nodeg
do xend x=1,maxx
do yend y=1,maxy
do zend z=1,maxz

!sorption

sorbedamt(x,y,z)=50*(kd*cellmass(x,y,z)—sorbmass(x,y,z))

!degradation

dcellmass{x,y,z)=0.0-sorbedamt(x,y,z)
zend. .continue

Yend. .continue

Xend..continue

do 50 x=1,maxx
do 60 y=1,maxy
do 70 z=1,maxz

%trans=cellmass{x,y,z) /watervolume*xflow 'g/hr
ytrans=cellmass(x,y,z)/watervolume*abs(yflow} 'g/hr
ztrans=cellmass {x,y, z} /watervolume*zflow 'g/hr

Pispersive Flow

if (x.eq.maxx) then
xtrans=xtrans+icellmass{x,y,z)-0) *ratecon 'g/hr
mflow=mflow+xtrans

'g/hr

else
xtrans=xtrans+(cellmass[x,y,z)-cellmass((x+1),Y.2))‘ratecon
'g/hr
dcellmassl(x+1),y,z):dcellmass({x+1),y,z)+xtrans!g/hr

endif

if {z.eqg.maxz) then

Ztrans=ztrans+{cellmass(x,y,z)-0}*ratecon 'g/hr
mflow=mflow+ztrans

'g/hr

else

Convective Flow =~ trans is equal to the amount leaving the cell

Ztrans=ztrans+{cellmass(x,y, z)-cellmass{x,y, {z+1)}) *ratecon

tg/hr

dcellmass(x,y,(z+1))=dcellmass(x,y,(z+1))+ztrans!g/hr
endif

if (yflow.gt.0) then
if (y.eqg.maxy) then
ytrans=ytrans+(cellmass(x,y, z)-0)*ratecon ‘'g/hr
mflow=mflow+ytrans
'g/hr
else

ytrans=ytrans+(cellmass(x,y,z)-
cellmass{x, {y+1),z)) *ratecon

‘g/hr
dcellmass(x,(y+1),z)=dcellmass(x,(y*l),zl+ytrans
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'g/hr
endif
else
if {y.eq.1) then
ytrans=ytrans+(cellmass{x,y,z)-

cellmass (x, (y+1),z)) *ratecon

tg/hr
mflow=mflowt+ytrans
'g/hr
else
ytrans=ytrans+(cellmass(x,y,z)-cellmasslx,(y—

1},z))*racecon

'g/hr
dcellmass(x,(y-l),z)=dcellmass{x,(y—l),z}+ytrans

'g/hr

endif
endif

This section calculates the derivatives for the liquid
and sorbed masses.

dcellmass(x,y,z)=dcellmass(x,y,z}-xtrans—ytrans-ztrans

'g/hr
dsorbmass{x,y,z)=sorbedamt{x,y,z)

'g/hr

70..continue
60..continue
50..continue

end
macro

macro

macro

macro

macxo

macro

macre

end

integration
limintvvv(cellmass,dcellmaSS,icellmass,maxx,maxy,maxz,0.0,1e6)

limintvvv(sorbmass,dsorbmass,isorbmass,maxx,maxy,maxz,0.0,1e6)
end

massbalance
balance=integ{mflow, 0.0)
balance2=balance

end

mapviews

site(l)={cellmass(5,1,2)/watervolume] *1e9 'ug/L
site(2)={cellmass (5,2, 3)/watervolume)*leg 'ug/L
site(3)=(cellmass(6,1,2)/watervolume) *1e9d ‘ug/L
site(4)={cellmass{17,9,3)/watervolume}*1e9 'ug/L
site(3)=(cellmass{17,9,4}/watervolume)*led 'ug/L
site(6)={cellmass(20,9,4}/watervolume)*1le9 'ug/L
site(7)=(cellmass (20,9, 3)/watervolume) *leQ 'ug/L
end
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!.i.*i..‘.“‘.iﬁ‘ttttdﬁtbai‘.“".-t..6&.“ﬁﬁ‘i’.f*i.iﬁ&t.ti..‘ttﬁ‘.“..
macro userinitialsection

'INITIAL SECTION

'Macros called here will be executed in the initial section

!Don't put macro definitions here

soilprop
flowprop
clearcells

macro end
!tti‘*ii*t*ﬁﬁti*ii*t'&iﬁi\ii**i**tiiii**tﬁttiiﬁi#i*iiiiQ**iiiiiiiiii**tiﬁ’
macro userderivativesection

'DERIVATIVE SECTION

'Macros called here will be executed in the derivative section

!Don't put macro definitions here

calculatetransport
integration
massbalance

macro end
!*i*ii*i*****i*iiii**ii*it&*i*‘-***ii—ito*i**i*&*ﬁ****itttti*******ttiiiii
macro userdynamicsection

!DYNAMIC AND DISCRETE SECTIONS

!Macros called here will be executed in the dynamic section.

'{discretes plus code to be executed every communication interval)
!Don't put macro definitions here

mapviews

macre end
!ii'bi******i*iii**i*iii*i*i**ittﬁ*ﬁi#fﬁiit!ttii*i*iiiti****tiiiiittit*it
macro userterminalsection

'TERMINAL SECTION

!Macros called here will be executed in the terminal section

!Don't put macro definitions here

open (unit=1, file="sens.dat',status='old')

write (1,*) porosity, xvelocity, yvelocity, zvelocity, optdif (1), kd
close {unit=1}

write (*,*) 'sens.dat written.'

macro end

I‘tﬁi‘it*tiitij.i.t"titiiiiiiiiiiii*iliiii*ii*i*’ii*ﬁ‘&tOtitiotitiiidtt
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Uncertainty/Complexity Study - Sensitivity Analysis
MODEL NUMBER: 3

Modecl Name:; KNLINEAR/NODEG Model Location: _c:\spenceri3dmodel\modelsiknl inear-nodep\specdd.usr

Fy
1 P 2
3 )
Solute Phase < Sorbed Phase
F,

Flow Equations for State Variable 1: Flow Equatjons for State Variahle 2:
F, = convective flow + dispersive flow F; = sorption/desorption (linear kinetic)

= f{porosity, velocity) = f{kd, sorption rate constant)
Number of parameters = 2 Number of parameters =2
Number of operations = 2 (convective) + 2 Number of operations = 3

(dispersive) = 4
F; = convective flow + dispersive flow Dﬂ'“éasmﬂ-' — End: = e

= f(pOI' osity, velo city) Sens data located: c\spencer\.. knlinear-nodep!

Crunched parameter values located: _...\knlin.dat

Number Ofpammaers =2 Parameter Distribution located:

Number of operations = 2 (convective) + 2
(dispersive) = 4

F; = sorption/desorption (linear kinetic)
= f(kd, sorption rate constant)

Number of parameters = 2
Number of operations = 3

COMPLEXITY: I, = (2*4 +2%4 +2*3) + (2*3) = 28

Output Paramelers: porosity, xvel, yvel, zvel, optdif{1), kd, sorbrate
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!tti“‘Otii“ﬁtﬁﬁiﬁittti**iiiiittiit‘gbtiﬁ*i'***i*0&0‘660&*.*“‘**‘6"’Q
!PUT HERE USER DEFINED MACROS

!This section is for definitions, it will be executed

tonly during loading of the program

! speed4.usr - !

macreo difmacro
macro relabel 1888
procedural (dif=dif,iiter,site,dat)
dif = 0
do 1888 g=1,5
if (dat{{g+l),iiter}.gt.0.0) then
dif=dif+((abs(dat((q+1},iiter)~site{q)))‘*2.0)*w(q)
end if
1888..continue
end
macro end

!ii&**iiiﬁii*#*****iG**i**iiiiii*iiiiﬁtt.ii\b&tii*ﬁiiit&
! this macro prints out the parameters when the optimizer

! is terminated
!ii*ﬁitt&ti*iti*iiiiiiii*iiiiiii-titttitoitiioii***i**i

!macro optprint

' macro relabel aaa,baa,caa,daa,ecaa
! if (optwarnings) then

' open (unit=1,file='sens.dat',status='old',access='append'}
! write (1,*}
porosity,kd,xvelocity,yvelocity,zvelocity,iiter,optdif(1)

! close {unit=1)

! write (*,*} 'sens.dat written.’

if (termflag.eq. 'delta-p'} print baa

baa..format(/,' Termination due to small change in parameters®)
if (termflag.eq. 'delta~-f') print caa

caa..format(/,' Termination due to small change in objective')
if {termflag.eq. 'looplimit') print daa

! daa..format{/,' Termination caused by reaching maximum
iterations')

! if {termflag.eq. 'OK'] print eaa

! eaa..format{/,' Termination due to reaching specified
objective!')

! if (termflag.eq.'break'.or.termflag.eq. 'brunbreak"’) print faa

! faa..format{/,' Termination caused by interrupt')

! if({termflag.ne.'break'.and.termflag.ne. 'brunbreak') then

L]

1

1

1

)

1

1
!
!
!
|
1

do 101 optii=1,ndimm
print aaa,optii,optptilo,optii}
aaa..format(/,' Parameter 'il,' is *,f15.7)
101. .continue
endif
endif
macro end

macro soilprop

Wwaterveolume=cellveolume*porosity 'mL
soilvolume=cellvolume* {1.0-porosity) 'mL
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soilmass=soilvolume*gamma/1000 'g

macro end

macro flowprop

xflow=cellsidearea*xvelocity/1000 'mL/hr
yflow=cellsidearea*yvelocity/1000 'mL/hr
zflow=cellsidearea*zvelocity/1000 'mL/hr
dimension site(7) ‘g
! dimension showxz{maxz,maxx) g
f dimension showyz {(maxz,maxy) 'g
dimension sorbedamt (maxx,maxy,maxz) 'g

' print*, 'iiter,t,dif"

This section is used to weight the sites equally for the
calculation of the objective function.

dimension w({5)

w(l)= 1.0
wi2)= 0.929
w{3l= 1.0
wid)= 2.76
w(Sl= 2.6

macro end

macro preinitialization
logical preinitial

preinitial=.true. 'to mark that we are in the preinitial section
tlast = maxpar !initialize saved time
goto preinitloc !do one run through initial

backfrominitial..continue
reset("eval™)

block(save} !backup initial wvalues in o&var
procedural;preinitial=.false.;end
displaylib

macre end

macro clearcells
tot = 0
do 10 i=1,maxx
do 20 j=1,maxy
do 30 k=1,maxz
icellmass(i,j, k}=0.0 'g
isorbmass(i,j,k}=0.0

‘g
30.. continue
20.. continue
10.. continue
icellmass{3,1,1)=0.367 ‘g

macro end

macro calculatetransport
]

p:oceduraltmflow,dcellmass,dsorbmass=cellmass,kd,sorbmass,sorbrate.&
watervolume, ratecon, xflow, yflow, zf1low)

mflow=0
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knlinear/nodeg

do xend x=1,maxx
do yend y=1,maxy
do zend z=1,maxz
!sorption

sorbedamt(x,y,z)=sorbrate*(kd*cellmass(x,y,z)-

sorbmass (x,y,z)}

!degradation

dcellmass(x,y,z)=0.0-sorbedamt(x,y,z)

zend. .continue
continue
continue

yend. .
xend..

de 50
do 60
do 70

x=1,maxx
y=1,maxy
z=1,maxz

Convective Flow - trans is equal to the amount leaving the cell

xtrans=cellmass (x,y, z) /watervolume*xflow tg/hr
yYtrans=cellmass (x,y, z) /watervolume*abs{y£flow) 'g/hr
Ztrans=cellmass (x,y, z) /watervolume*zflow tg/hr

Dispersive Flow

if (x.

'q/hr
else

endif

if (=z.

'g/hr
else

endi f

eq.maxx) then

xtrans=xtrans+(cellmass (x,y,z}-0)*ratecon ‘g/hr
mflow=mflow+xtrans

xtréns=xtrans+(cellmass(x,y,z)-cellmass((x+1),y,z}l*ratecon

'g/hr
dcellmass((x+1},y,z)=dcellmass((x+1),y,z)+xtrans!g/hr

eq.maxz) then
ztrans=ztrans+{cellmass{x,y, 2} -0} *ratecon 'gq/hr
mflow=mflow+ztrans

ztrans=ztrans+(cellmass[x,y,z)-cellmass(x,y,(z+1)l)‘ratecon

‘g/hr
dcellmass(x,y,(z+l))=dcellmass(x,y,(z+1)]+ztrans!g/hr

if (yflow.gt.0} then

'g/hr

if (y.eq.maxy) then
ytrans=ytrans+{cellmass(x,y,2)-0)*ratecon tg/hr
mflow=mflow+ytrans

else
ytrans=ytrans+(cellmass(x,y,z)~

cellmass (x, {y+1),z))*ratecon

'g/hr
dcellmass{x,(y+1),z)=dcellmass(x,(y+11,z)+ytrans
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'g/hr
endif
else
if (y.eq.1l) then
yYtrans=ytrans+(cellmass(x,y,z}-
cellmass (x, {y+l},z)})*ratecon

'g/hr
mflow=mflow+ytrans
'g/hr
else

ytrans=ytran5+(cellmasstx,y,z}-cellmass(x,(y-
1),z)}*ratecon

'g/hr
dcellmass(x,(y-l),z)=dcellmass{x,(y—l),z)+ytrans

'g/hr
endif
endif

This section calculates the derivatives for the liquid
! and sorbed masses.

dcellmass(x,y,z)=dcellmass(x,y,z)—xtrans—ytrans—ztrans

'g/hr
dsorbmass(x,y,z)=sorbedamt(x,y,z)

!g/hr

70..continue
60..continue
50..continue

end
macro end

macro integration
limintvvv(cellmass,dcellmass,icellmass,maxx,maxy,maxz,0.0,1e6)

limintvvv(sorbmass,dsorbmaSS,isorbmass,maxx,maxy,maxz,0.0,1e6)
macro end

macro massbalance
balance=integ (mflow, 0.0)
balance2=balance

macro end

macro mapviews

site(l)={cellmass{5,1,2)/watervolume)*1le9 lug/L
site{2)={cellmass{5,2,3)/watervolume)*led 'ug/L
site(3)={(cellmass(6,1,2)/watervolume)*1e9 'ug/L
site{4)=lcellmass (17,9, 3)/watervolume) *led ‘ug/L
site(S)={cellmass (17,9, 4)/watervolume}*led 'ug/L
! site{6)=(cellmass(20,9,4)/watervolume)*led 'ug/L
! site{7)=(cellmass (20,9, 3) /watervolume)*led lug/L

176



macro end
!iiii**iii*iiiiii‘titﬁiitii"titibii*ii‘iii&i*iiii*itlﬁ**ittiiﬁﬁbiﬁtttti
macro userinitialsection

'INITIAY, SECTION

!Macros called here will be executed in the initial section
!Don't put macro definitions here

soilprop
flowprop
clearcells

macro end
liﬁ&Giit.iii&i*iﬁiii&i**ittiiii***iiiiiii*i***tii*iitit*iittii&td*ﬁi*ti—i

macro userderivativesection
!DERIVATIVE SECTION

!Macros called here will be executed in the derivative section
!Don’t put macro definitions here

calculatetransport
integration
massbalance

macro end
lﬁiii**titibt*tQtt*ii&**ttiiitt**ﬁitiii‘bi**i'iitii&***ﬁt.ﬁbi‘iliﬁiitiii

macro userdynamicsection
!DYNAMIC AND DISCRETE SECTIONS

!Macros called here will be executed in the dynamic sectiocn.

!(discretes plus code to be executed every communication interval})
!Don’'t put macro definitions here

mapviews

macro end
!fiii&*iiitii****iibii**i*iiti**iﬁitttititii&*ii.tiiiii*it‘tiibﬁ&.b’tf**
macro userterminalsection

'TERMINAL SECTION

!Macros called here will be executed in the terminal section
'Don't put macro definitions here

open (unit=1,file='sens.dat’,status='old")

write (1,*) porosity,xvelocity, yvelocity, zvelocity, optdif (1), kd, sorbrate
close (unit=1)

write (*,*) 'sens.dat written.'

macro end

'|‘ii"**ii“iiiiti‘&&ﬁﬁiﬁiiiiiﬁﬁtttdﬁt&itiit.ttitiiitiii\boitﬁocot.ttitoot
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Uncertainty/Complexity Study - Sensitivity Analysis

MODEL NUMBER 4:

Model Name: EQLINEAR/1STORDER

Model Location: ¢;\spencer3dmodelimodels\ eqlinear-1st

in

Solute Phase

F,

Sorbed Phase

Flow Equations for State Variable 1:

¥, = convective flow + dispersive flow
= flporosity, velocity)

Number of parameters = 2

Number of operations = 2 (convective) + 2
(dispersive) = 4

F, = convective flow + dispersive flow
= f{porosity, velocity)

Number of parameters = 2

Number of operations = 2 (convective) + 2
(dispersive) = 4

F, = sorption/desorption {linear equilibrium)
= fikd)

Number of parameters = 1

Number of operations = 3

COMPLEXITY:

F, = degradation (1* order)

= fldegradation constant (sorbed))
Number of parameters = 1
Number of operations = 1

Flow Equations for State Variable 2:

Fy = sorption/desorption (linear equilibrium)
= flkd)

Number of parameters = 1

Number of operations = 3

Dates: Start:
Sens data located:
Parameter values located:

End:

Parameter Distribution located:

Le=(@®+2%+ 1*3 +1% 1) + (1*3 + i*1)=24

Output Parameters: porosity, xvel, yvel, zvel, optdif{1), kd, muliq1
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!i&tt*i***i*ﬁtii*ii*ii&ﬁtittb*.t*&itit*i*ititﬁiiiltt*itt**..tit“&**i*.i
'PUT HERE USER DEFINED MACROS

!This section is for definitions, it will be executed
‘only during loading of the program

macro difmacro
macro relabel 1888
procedural {dif=dif,iiter, site,dat)
dif = 0
do 1888 g=1,5
if {(dat((g+1l},iiter).gt.0.0) then

dif=dif+((abS(dat((q+1),iiter)—site(q))l“2.0)‘w(q)
end if
1888..continue

end

macro end

I't"“i*iiti‘ﬁ&fi.ii.*ﬁ*iti.‘.iii’...'ﬁti*‘*'iﬁ..iitii

! this macro prints out the parameters when the optimizer
! is terminated

Itiiii*i**iib&i***bttitt**l*tti&iii*itiittt****iiii*i*i

!macro optprint

! macro relabel aaa,baa,caa,daa,eaa
! if (optwarnings) then

! open (unit=1,file='sens.dat',status='old',access='append')
! write (1,*)
porosity,kd,xvelocity,yvelocity,zvelocity,iiter,optdif(l)

! close {unit=1)

! write (*,*) 'sens.dat written.'

! if (termflag.eq. 'delta-p'} print baa

! baa..format(/,' Termination due to small change in parameters'j
! if (termflag.eq. 'delta-f'} print caa

! caa..format(/,' Termination due to small change in objective'}
! if (termflag.eq. 'looplimit') print daa

! daa..format{/,’ Termination caused by reaching maximum
iterations')

! if (termflag.eq. 'OK'} print eaa

! eaa..format(/,' Termination due to reaching specified
objective')

! if (termflag.eq. ‘break’'.or.termflag.eq. 'brunbreak"') print faa
! faa..format{/,' Termination caused by interrupt')

! if(termflag.ne.'break'.and.termflag.ne. 'brunbreak'} then

! do 101 optii=1,ndimm

! print aaa,optii,optp{ilo,optii}

! aaa..format(/,' Parameter 'il,' is ',6£15.7)

! 101..continue

! endif

! endif

!macro end

macro soilprop

watervolume=cellvolume*porosity 'mL
soilvolume=cellvolume'(1.0—porosity) 'mL
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soilmass=soilvolume*gamma/1000

‘g
macro end
macro flowprop
xflow=cellsidearea*xvelocity/1000 'mL/hr
yflow=cellsidearea*yvelocity/1000 !mL/hr
zflow=cellsidearea*zvelocity/1000 !mL/hr
dimension site{7) 'g
! dimension shownz{maxz,maxx) 'g
! dimension showyz (maxz, maxy) 'g

dimension sorbedamt(maxx,maxy,maxz) 'g
! print*,‘'iiter,t,dif"

This section is used to weight the sites equally for the
calculation of the objective function.

dimension w{5)

w{l)= 1.0
wi(2)= 0.929
wi{3)= 1.0
wi{d)= 2.76
w(5)= 2.6

macro end

macro preinitialization
logical preinitial

preinitial=.true. ‘to mark that we are in the preinitial section
tlast = maxpar !initialize saved time
goto preinitloc 'do one run through initial

backfrominitial..continue
reset ("eval"™)

block (save) !backup initial values in o&var
procedural;preinitial=, false.;end
displaylib

macre end

macro clearcells

tot = @

do 10 i=1,maxx

do 20 j=1,maxy
do 30 k=1,maxz

icellmass(i,j,k)=0.0 'g
isorbmass(i,j, k)=0.0 'g
30.. continue
20.. continue
10.. continue

icellmass{3,1,1)=0.367
macro end

macro calculatetransport

procedural(mflow,dcellmass,dsorbmass=cellm355,kd,sorbmass,sorb:ate,&

watervolume, ratecon, xflow, yflow, zflow)
L}

mflow=0
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! eqlinear/lstorder
do xend x=1,maxx
do yend y=1,maxy
do zend z=1,maxz
!sorption
sorbedamt {x,y, z} =50* (kd*cellmass {x, ¥, Z)-sorbmass(x,vy,z))
!degradation
dcellmass {x,y,z}=muliql*cellmass (X, y, z) -sorbedamt (%, y, z)
zend. .continue
yend. .continue
%end..continue

do 50 x=1,maxx

do 60 y=1,maxy
do 70 z=1,maxz

Convective Flow - trans is equal to the amount leaving the cell

xtrans=cellmass{x,y,z)/watervolume*xflow 'g/hr
ytrans=cellmass (%, y,z} /watervolume*abs {yflow) !g/hr
ztrans=cellmass {x,y, 2) /watervolume*zflow 'g/hr

! Dispersive Flow

if ({x.eq.maxx) then

Xtrans=xtrans+(cellmass (x,y,2)-0)*ratecon tg/he
mflow=mflowtxtrans

tg/hr

else
Xtrans=xtrans+(cellmass(x,y,z)~cellmass ((x+1),y,z)) *ratecon
'g/hr
decellmass({x+l),y,z)=dcellmass{(x+1),y, z) +xtrans!g/hr

endif

if (z.eq.maxz) then

ztrans=ztranst(cellmass (x,y,z)-0) *ratecon tg/hrx
mflow=mflow+ztrans

tg/hr

else
ztrans=ztrans+(cellmass(x,y,z}-cellmass(x,y,(z+1)))‘ratecon
'g/hr
dcellmass({x,y, (z+1))=dcellmass(x,y, (z+1) ) +ztrans'g/hr

endif

if (yflow.gt.0) then
if (y.eqg.maxy! then
ytrans=ytrans+{celimass(x,y,z)-0)*ratecon 'g/hr
mflow=mflow+ytrans
'g/hr
else
ytranssytrans+(cellmass x,y,z}~
cellmass{x, (y+l},2))*ratecon

'g/hr
dcellmasstx,(y+l),z)=dcellmass(x,(y+1),z)+ytrans
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tg/hr
endif
else
if (y.eq.l) then
Ytrans=ytrans+(cellmass(x,y,z}~

cellmass (x, (y+1),z))*ratecon

lg/hr
mflow=mflow+ytrans
'g/hr
else
ytrans=ytrans+(cellmass(x,y,z)~cellmass (x, (y-

1),z}) *ratecon

lg/hr
dcellmass(x,(y—l),z)=dce11mass(x,(y-l),z}+ytrans

‘g/hr

endif
endif

This section calculates the derivatives for the Yiquid
and sorbed masses.

dcellmass(x,y,z)=dcellmass(x,y,z)-xtrans—ytrans—ztrans

ig/hr
dsorbmass(x,y,z)=sorbedamt{x,y,z)

'g/hr

70..continue
60..continue
50..continue

end
macro

macro

macro

macro

macro

macro

macro

end

integration
limintvvv(cellmass,dcellmass,icellmass,maxx,maxy,maxz,0.0,1e6)

limintvvvtsorbmass,dsorbmass,isorbmass,maxx,maxy,maxz,0.0,1e6)
end

massbalance
balance=integ{mflow, 0.0)
balance2=balance

end

mapviews

site(l}={cellmass{5,1,2)/watervolume) *1e9 'ug/L
site(2)={cellmass (5,2, 3)/watervolume}*1ed ‘ug/L
site(3)=({cellmass{6,1,2)/watervolume)*le9 'ug/L
site(4)=(cellmass (17,9, 3)/watervolume}*1le9 'ug/L
site(5)={cellmass(17,9,4)/watervolume}*le9 'uwg/L
site(6)={cellmass (20,9, 4)/watervolume}*le9 'ug/L
site(7)=(cellmass (20,9, 3)/watervolume}*lel ‘ug/L
end
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!‘..i"i.".ﬁ‘.i**‘ﬁ‘iii‘&‘bi.‘**ﬁi’ﬂiﬁﬁiidﬁ.t'i*ii‘ii*t*“O&itiiﬁtﬁiit.
macro userinitialsection

'INITIAL SECTION

'Macros called here will be executed in the jinitial section

!Don't put macro definitions here

soilprop
flowprop
clearcells

macro end
!iti*****iit***it*ititﬁittii****iiiiti‘vivﬁ**ititi'b*iii*ti**it@ib*i*ttt&t*
macke userderivativesection

'DERIVATIVE SECZTION

!Macros called here will be executed in the derivative section

'Don't put macro definitions here

calculatetransport
integration
massbalance

macro end
!*t*ii&***iii*bi*i*iiii*#**iiil**i**i*iii*ii**iiiiiiii**tiﬁitﬁi*iﬁttﬁi*t
macro userdynamicsection

!DYNAMIC AND DISCRETE SECTIONS

!Macros called here will be executed in the dynamic section.

!{discretes plus code to be executed every communication interval}
'Don't put macre definitions here

mapviews

macro end
!ﬁi'ﬁi*i**iitiﬁﬁ*‘bﬁ.iﬁi*tt#iitiﬁi*iiiti*i't&**'tiii&*iii‘b‘tﬁiﬁt.otﬁibi’.
macro userterminalsecticon

!TERMINAL SECTION

'Macros called here will be executed in the terminal section

!Don't put macro definitions here

open (unit=1,file='sens.dat',6 status='old'}

write {1,*) pOIOSity,xvelocity,yvelocity,zvelocity,optdif(l),kd,muliql
close (unit=1)

write (*,*) 'sens.dat written.'

macro end

l..i‘....dﬁ.tii."‘ﬁ'tbooﬁ‘t'ii..ﬁ.ii.'.'.Odit‘.tttbtﬁ‘itii‘ttbi.odoﬂt‘.
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Uncertainty/Complexity Study - Sensitivity Analysis

MODEL NUMBER 5:

Model Name: KNLINEAR/ISTORDER  Model Location: c\spencer\3dmodel\modelstknlinear-1st\specd4 usr

rx

Solute Phase

F, F,

<——>

Sorbed Phase

Flow Equations for State Variable 1:

F, =convective flow + dispersive flow
= f{porosity, velocity, dispersion
coefficient)

Number of parameters = 2

Number of operations = 2 {convective) + 2
(dispersive) = 4

F; = convective flow + dispersive flow
= flporosity, velocity, dispersion
coefficient)

Number of parameters = 2

Number of operations = 2 (convective) + 2
(dispersive) = 4

F, = sorption/desorption (linear kinetic)
= fikd, sorbrate)

Number of parameters = 2

Number of operations = 3

COMPLEXITY:

F, =degradation (1" order)

= fldegradation constant (liquid))
Number of parameters = 1
Number of operations = 1

Flow Equations for State Variable 2:

¥; = sorption/desorption (linear kinetic)
= flkd, sorbrate)

Number of parameters = 2

Number of operations = 3

Dates: Start: _____ End:
Sens data located:

Parameter values located:

Parameter Distribution located:

L= (2*4 + 2¥4 + 2*3 +1*1) + (2*3) = 29

Output Parameters: porosity, xvel, yvel, zvel, optdif{1), kd, mulig), sorbrate
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!iﬁiitiiii*t’tﬁiiﬁitititt&t*‘tiilﬁi*tttibtﬂii*ttii.iiﬁ*b‘*t*itiﬁiitt.ﬁt‘
!PUT HERE USER DEFINED MACROS

!This section is for definitions, it will be executed

!only during loading of the program

! speedq.usr -~ for testing to speed this model up
IIIIIIIIllll!l!!lllll!lllllllllIllllllll‘lllltllllll

macro difmacro
macro relabel 1888
procedural {dif=dif,iiter, site,dat)
dif = 0
do 1888 ¢=1,5
if (dat({(g+l),iiter).qt.0.0) then

dif=dif+{labs{dat((q+1),iitez)-site(q)))**2.0)*w(q)
end if
1888..continue

end

macro end

i*i*i**i***iti***iii*i*iiiii*****iii***ii*ti‘*i*fi*ii*

1
! this macro prints out the parameters when the optimizer
! is terminated

]

iiﬁﬁiitii***iitii**ii*t*****ii*tﬁ*ii&it****i*****ii***

!macro optprint
! macro relabel aaa,baa,caa,daa,eaa
! if (optwarnings} then

! open (unit=1,file='sens.dat',status='old',access='append')
! write (1,%*)
po:osicy,kd,xvelocity,yvelocity,zvelocity,iiter,optdif(l)

! close {unit=1)

! write (*,*} 'sens.dat written.'

! if (termflag.eq. 'delta-p') print baa
! baa..format(/,' Termination due to small change in parameters')
! if (termflag.eq. 'delta~f') print caa
! caa..format(/,' Termination due to small change in objective®)
! if (termflag.eq. 'looplimit®) print daa
! daa..format{/,' Termination caused by reaching maximum
iterations')
! if {termflag.eq. 'OK') print eaa
! eaa..format{/,"' Termination due to reaching specified
objective')
! if (termflag.eq.'break'.or.termflag.eq.'brunbreak') print faa
! faa..format{/,' Termination caused by interrupt')
! if(teszlag.ne.'break'.and.termflag.ne.'brunbreak') then
! do 101 optii=1,ndimm
! print aaa,optii,optp(ile,optii)
! aaa..format(/,' Parameter 'il,' is ', f£15.7)
! 101..continue
! endif
! endif
'macro end
macro soilprop
watervolume=cellvolume*porosity tmlL
soilvolume=cellvolume* (1.0-porosity) 'mL
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soilmass=soilvolume*gamma/1000

'g
macro end
macro flowprop
xflow=cellsidearea*xvelocity/1000 'mL/hr
yflow=cellsidearea*yvelocity/1000 'mL/hr
zflow=cellsidearea*zvelocity/1000 'mL/hr
dimension site(7) g
1 dimension showxz (maxz,maxx) tg
! dimension showyz (maxz,maxy) g
dimension soxbedamt (maxx, maxy, maxz) 'g

! print*, 'iiter, t,dif!

This section is used to weight the sites equally for the
calculation of the objective function.

dimension w(5)

w{ll= 1.0
w{2)= 0.929
w{3d)= 1.0
w{d)= 2.76
w{S)= 2.6

macro end

macro preinitialization
logical preinitial

Preinitial=.true. 'to mark that we are in the preinitial section
tlast =  maxpar !initialize saved time
goto preinitloc !do one run through initial

backfrominitial..continue
reset{"eval"™)

block{save) 'backup initial values in o&var
procedural;preinitial=.false.;end
displaylib

macro end

macro clearcells
tot = Q
do 10 i=1,maxx
do 20 j=1,maxy
do 30 k=1,maxz
icellmass{i,j,k}=0.0 'g
isorbmass(i,j, k}=0.0 ‘g
30.. continue
20.. continue
10.. continue
icellmass(3,1,11=0.367
macro end

macro calculatetransport

procedural(mflow,dcellmass,dsorbmass=cellmass,kd,sorbmass,sorbrate.&

watervolume, ratecon, xflow, yflow, zflow)
]

mflow=0
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! knlinear/lstorder
do xend x=1,maxx
do yend y=1,maxy
do zend 2z=1,maxz
!sorption
sorbedamt(5,y,z)=sorbrate‘(kd*cellmass(x,y,z)—
sorbmass (x,y,z))
'degradation
dcellmass(x,y,z)=-mu1iq1*cellma55(x,y,z)—sorbedamt(x,y,z)
zend. .continue
yend. .continue
xend. .continue

do 30 x=1,maxx

do 60 y=1,maxy
do 70 z=1,maxz

Convective Flow -~ trams is equal to the amount leaving the cell

Xtrans=cellmass{x,y, z})/watervolume*xflow 'g/hr
ytrans=cellmass({x,y, z) /watervolume*abs (yflow} t!g/hrx
ztrans=cellmass (x,y, z} /watervolume*zflow !g/hr

! Pispersive Flow

if (x.eqg.maxx) then
xtrans=xtrans+{cellmass{x, vy, z)-0)*ratecon 'g/hr
mflow=mflowt+xtrans

'g/hr

else

xtrans=xtrans+(cellmass(x,y,z)*cellmass({x+1),y,z))‘ratecon

'g/hr

dcellmass(tx+1),y,z)=dcellmass((x+1),y,z)+xtrans!g/hr
endif

if (z.eg.maxz) then

ztrans=ztrans+(cellmass{x,y,z)-0}*ratecon tg/hr
mflow=mflowt+ztrans

'g/hr

else
ztrans=ztrans+(cellmass(x,y,z)-cellmass(x,y,(z+1)))‘ratecon
!g/hre
dcellmass(x,y,(z+1))=dcellmass(x,y,(z+1))+ztrans!g/hr

endif

if (yflow.gt.0) then
if {y.eq.maxy) then
ytrans=ytrans+(cellmass(x,y, z)-0)*ratecon 'g/hr
mflow=mflow+ytrans
‘g/hr
else
ytrans=ytrans+(cellmass{x,y, z)-
cellmass {x, {y+1},z))*ratecen

'g/hr
dcellmass{x, (y+1),2)=dcellmass{x, (y+1),z) +ytrans
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'g/hr
endif
else
if (y.eq.l) then
Ytrans=ytrans+{cellmass(x,y,z)~-

cellmass (%, (y+1),2) ) *ratecon

1),2) )} *ratecen

'g/hr
mflow=mflow+ytrans
'g/hr
else
ytrans=ytrans+(cellmass(x,y,z)—cellmass(x,(y—

'g/hr
dcellmass(x,(y-l).z)=dcellmass(x,(y-l),z}+ytrans

lg/hr

endif
endif

This section calculates the derivatives for the liquid
and sorbed masses.

dcellmass(x,y,z)=dcellmass(x,y,z)—xtrans—ytrans~ztrans

'g/hr
dsorbmass(x,y,z)=sorbedamt(x,y,z)

'g/hr

70..continue
60..continue
50..continue

end
macro

macro

macro

macro

macro

macro

end

integration
limintvvv(cellmass,dcellmass,icellmass,maxx,maxy,maxz,0.0,1e6}

limintvvv(so:bmass,dsorhmass,isorbmass,maxx,maxy,maxz,0.0,1e6)
end

massbalance
balance=integ(mflow, 0.0)
balance2=balance

end

mapviews

sitell)=(cellmass(5,1,2)/watervolume)*le9 ‘ug/L
site{2)=(cellmass (5,2, 3}/watervolume]*ie9 tug/L
site{3}=(cellmass(6,1,2}/watervolume)*ie9 'ug/L
site{4}=(cellmass({17,9, 3} /watervolume)*le9 'ug/L
site(3)=(cellmass{17,9,4}/watervolume)*le9 'ug/L
site(6}=(cellmass (20,9, 4)/watervolume}*le$ 'ug/L
site{7)=(cellmass (20,9, 3) /watervolume)*le9 'ug/L
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macro end
!i‘iﬁ.ﬁ*i*‘ﬁiﬁ**"iﬁ**'tb"iib*iid—*iﬁit’ttiﬁiﬁ**ii.‘ttﬁititt*ttitifiii*ﬁ
macro userinitialsection

1INITIAL SECTION

!Macros called here will be executed in the initial section
!Don't put macro definitions here

soilprop
flowprop
clearcells

macro end
!ttt*i*i****iiiii*****ttiii’tiﬁ**********ﬁ***ii**i*tiiiti****t*iﬁitii‘-***
macro userderivativesection

!DERIVATIVE SECTION

!Macros called here will he executed in the derivative section
!Don't put macro definitions here

calculatetransport
integration
massbalance

macro end
!iii***iii*iitit**i***iiit*ii******i**iiiiii*t****iiiii****ii*ti***iitﬁb
macro userdynamicsection

!DYNAMIC AND DISCRETE SECTIONS

'Macros called here will be executed in the dynamic section.

' (discretes plus code to be executed every communication interwval)
!Don't put macro definitions here

mapviews

macro end
lﬁiﬁ**iii*iiii**ii*t**ﬁii‘-it*ii***if***itiiiiQ&ﬁii*iiiitii*iti*ii**iiiit

macro userterminalsection
!TERMINAL SECTION

!Macros called here will be executed in the terminal section
!Don't put macro definitions here

open {unit=]l,file='sens.dat',status='old'}
write (1,*)

po:osity,xvelocity,yvelocity,zvelocity,optdif(l),kd,muliql,sorbrate
close (unit=1)

write (*,*) 'sens.dat written.'

macro end

|‘i‘titiiﬁiii*‘&.iiﬁtiiii**iiiiiiiiﬁiiiiid..i‘ititiiiii*.looﬁt.til‘tt‘tﬁ
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Uncertainty/Complexity Study - Sensitivity Analysis

MODEL NUMBER 6:
Modcl Name: KN-NONLIN/ISTORDER

Model Location: c\spenceri3model\modelsknn-linist

F,
1 2
<L>
Solute Phase Sorbed Phase
F, F,

Flow Equations for State Variable 1:

F, = convective flow + dispersive flow
= f{porosity, velocity)

Number of parameters = 2

Number of operations = 2 (convective) + 2
(dispersive) = 4

¥, = convective flow + dispersive flow
= f{porosity, velocity)

Number of parameters = 2

Number of operations = 2 (convective) + 2
(dispersive) = 4

F; = sorption/desorption (non-linear kinetic)
= flkd, nl, sorbrate)

Number of parameters = 3
Number of operations = 4

COMPLEXITY:

Output Parameters:

F, = degradation (1* order)

= f{degradation constant (liquid))
Number of parameters = 1
Number of operations = 1

Flow Equations for State Variable 2:

¥y = sorption/desorption (non-linear kinetic)
= f{kd, nl ,sorbrate)

Number of parameters = 3

Number of operations = 4

Dates: Start: End:
Sens data located:
Parameter values located:

Parameter Distribution located:

L, = (2%4 +2%4 + 3*4 +1*1) + (3*4) = 4]

porosity, xvel, yvel, zvel, optdif{1), kd, muliql, sorbrate, nl
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!iiiii‘&i*i*i*iiﬁ&&*ii*t*&iiii*ﬁt**ii&iitiiititib**i&iﬁi*b’iit*iiiiiit*i
{PUT HERE USER DEFINED MACROS

'This section is for definitions, it will be executed

lonly during loading of the program

!!!!!!!!!llllllllllIlllll'lFllliTlTllIll!!lll!!!!!!!!!l!

! speedd.usr - for testing to speed this model up !

macro difmacro
macro relabel 1888
procedural (dif=dif,iiter,site,dat)
dif = 0
do 1888 g=1,5
if (dat{{g+l),iiter).gt.0.0) then
dif=dif+((abs(dat((q+1},iiter}—sitetq)))**2.0)*w(q)
end if
1888..continue
end
macro end

It*tiii*i*tiitii*ﬁi*'I-i*b*ﬁ*'bii’**i*****ii**i**iiiﬁ*****i

! this macro prints out the parameters when the optimizer
! is terminated
!*i***'b*it***ﬁ**tii***iﬁ*i*i*****ii*ii****ii*i***iiit*i

macro optprint
! macro relabel aaa,baa,caa,daa,eaa
! if (optwarnings) then

open (unit=1,file='sens.dat',status='old',acces$='append')

write (1,*}
orosity,kd,xvelocity,yvelocity,zvelocity,iiter,optdif(l}

close (unit=1)

write (*,*) 'sens.dat written.'

R

if {termflag.eq. 'delta-p'} print baa

baa..format(/,' Termination due to small change in parameters')
if (termflag.eq. 'delta-~f') print caa

caa..format(/,' Termination due to small change in objective')
if (termflag.eq. 'looplimit') print daa

daa..format(/,"' Termination caused by reaching maximum

im i H cem v b e me ree

terations')

if (termflag.eq. 'OK') print eaa

eaa..format(/,' Termination due teo reaching specified
bjective')

o

! if (termflag.eq.'break'.or.termflag.eq.'brunbreak’) print faa

! faa..format(/,' Termination caused by interrupt'}

! ifttermflag.ne. 'break’'.and.termflag.ne. ‘brunbreak'] then

! do 101 optii=1, ndimm

' Print aaa,optii,optp({ilo,optii}

! aaa..format(/,’' Parameter 'il,' is ', f15.7)

! 101..continue

H endif

' endif

!macre end

macro soilprop
watervolume=cellvolume‘porosity 'mL
sotlvolume=cellvolume* (1. 0-poresity) 'mL
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soilmass=soilvolume*gamma/1000

'g
macro end
macro flowprop
xflow=cellsidearea*xvelocity/1000 ImL/hr
yflow=cellsidearea*yvelocity/1000 'mL/hr
zflow=cellsidearea*zvelocity/1000 'mL/hr
dimension site(7) 'g
! dimension showxz{maxz,maxx) g
! dimension showyz{maxz,maxy) g

dimension sorbedamt (maxx, maxy, maxz) 'g
! print*,*iiter,t,dif"®

This section is used to weight the sites equally for the
calculation of the objective function.

dimension w(5}

wi{l}= 1.0

w{2)= 0.929

w({3)= 1.0

wid)= 2,76

wiS)= 2.6
macro end

macro preinitialization
logical preinitial

preinitials=.true, !to mark that we are in the preinitial section
tlast = maxpar linitialize saved time
goto preinitloec !do one run through initial

backfrominitial..continue
reset ("eval"™)

block (save) !backup initial values in o&var
procedural;preinitial=. false.;end
displaylib

macro end

macro clearcells
tot = 0
do 10 i=1,maxx
do 20 j=1,maxy
do 30 k=1,maxz

icellmass{i,j,k}=0.0 'g
isorbmass{i,j,k)=0.0 'g
30.. continue
20.. continue
10.. continue
icellmass(3,1,1)=0.367 'g

macro end

macro calculatetransport

!
procedural(mflcw,dcellmass,dsorbmass=cellmass,kd,sorbmass,sorbzate.&
watervolume,ratecon,xflow,yflow,zflow)

]

mflow=0
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kn-nenlinear/lstorder
do xend x=1,maxx
do yend y=1,maxy
do zend 2z2=1,maxz
!sorption
so:bedamt(x,y,z)=sorbrate*(kd*cellmass{x,y,z)**nl-
sorbmass {x,y,z})
'degradation
dcellmass(x,y,z)=—muliq1*cellmass{x,y,z)-sorbedamt(x,y,z)
zend. .continue
vend. .continue
Xend. .continue

do 50 x=1,maxx

do 60 y=1,maxy
do 70 z=1,maxz

Convective Flow - trans is equal to the amount leaving the cell

xtrans=cellmass (x,y,z)/watervolume*xflow 'g/hr
ytrans=cellmass(x,y, z) /watervolume*abs {yflow} tg/hr
ztrans=cellmass (x,y,2) /watervolume*zflow tg/hr

H Dispersive Flow

if (x.eq.maxx) then

Xtrans=sxtrans+({cellmass(x,y,z2}-0)*ratecon 'g/hr
mflow=mflowtxtrans

'g/hr

else

xtrans=xtrans+(cellmass(x,y,z)-cellmass((x+1),y,zl)*ratecon

'g/hr

dcellmass((x+1),y,z)=dcellmass((x+1),y,z)+xt:ans!g/hr
endif

if (z.eq.maxz) then

Ztrans=ztranst{cellmass(x,y,z}-0)*ratecon '‘g/hr
mflow=mflow+ztrans

'g/hr

else
ztrans=ztrans+|cellmass(x,y, z)-cellmass (x,y, {z+1))) *ratecon
'g/hr
dcellmass(x,y,(z+1))=dcellmass(x,y,(z+1))+zcrans!g/hr

endif

if {yflow.gt.0) then
if (y.eq.maxy} then
ytrans=ytrans+{cellmassix,y,z})-0l*ratecon 'g/hr
mflow=mflowtytrans
'g/hr
else

ytrans=ytrans+i{cellmass(x,y,z)-
cellmass (x, (y+1),z}) *ratecon

'g/hr
dcellmass(x,(y+1),z)=dcellmass(x,(y+1),zl+ytrans
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'g/hr
endif
else
if (y.eq.l) then
ytrans=ytrans+(cellmass(x,y,z)-

cellmass {x, (y+1l),z)) *ratecon

tg/hx
mflow=mflow+ytrans
'g/hr
else
ytrans=ytrans+(cellmass(x,y,z)-cellmass(x,(y-

1),2}) *ratecon

'g/hr
dcellmass(x,(y—l),z)=dcellmass(x,(y—l),z)+ytrans

'g/hr

endif
endif

This section calculates the derivatives for the liquid
and sorbed masses.

dcellmass(x;y.2)=dc211mass(x,y,z)—xtrans-ytrans—ztrans

'g/hr
dsorbmass (x, y, z) =sorbedanmt (x, y, 2)

'g/hr

70..continue
60..continue
50..continue

end
macro

macro

macro

macro

macro

macro

end

integration
limintvvv(cellmass.dcellmaSS,icellmass,maxx,maxy,maxz,0.0,leG)

limintvvu(sorbmass,dsorbmass,isorbmass,maxx,maxy,maxz,0.0,1e6)
end

massbalance
balance=integi{mflow, 0.0Q)
balance2=balance

end

mapviews

site(l}={cellmass(%,1,2)/watervolume)*le9 ‘ug/L
site(2}={(cellmass (5,2, 3)/watervolume) *1e9 ‘ug/L
site(3)=(cellmass{6,1,2)/watervolume) *le9 'ug/L
site(4)=(cellmass (17,9, 3)/watervolume)*led tug/L
site{5)=(cellmass(17,9,4)/watervolume)*led tug/L
site{6)=icellmass(20,9,4}/watervolume) *le9 tug/L
site{7?)=l(cellmass{20,9,3)/watervolume)*led tug/L
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macro end
!*ttiitiitiiﬁiitttiﬁﬁititltii*iiiOiiit**&iﬁ***ﬁti*iiﬁ*i.tiiOﬁfiﬁi'bii’iii
macro userinitialsection

'!INITIAL SECTION

'Macros called here will be executed in the initial section

!'Don't put macro definitions here

soilprop
flowprop
clearcells

macro end
!*ﬁt*iii*i*iiiii*i*ii*iii*iiii*ttiiii****iit*****tﬁ*ﬁﬁﬁ’t*ttitii*ti*tttd
macro userderivativesection

'!DERIVATIVE SECTION

'Macros called here will be executed in the derivative section

!Don't put macro definitions here

calculatetransport
integration
massbalance

macro end
!**i*i***i**i*******i*iii*****iii**i******ii*i**iii*iiiii***i*itibiititt
macro userdynamicsection

!DYNAMIC AND DISCRETE SECTIONS

!Macros called here will be executed in the dynamic section.

!{discretes plus cocde to be executed every communication interval}
'Don't put macro definitions here

mapviews

macre end
!’ﬁ*tii'*i*ii**ii*'b***iiiitiiﬁi*iﬁ#*ii'iiii*iiii*ﬁi***&tiiiiiii&i‘itttt&ﬁ
macro userterminalsection

ITERMINAL SECTION

'Macros called here will be executed in the terminal section

!Don’t put macro definitions here

open (unit=]l,file='sens.dat',status='old"')

write (1,*) porosity,xvelocity,yvelocity,zvelocity,optdif(l),kd
write (1,*) muliql,sorbrate,nl

close {unit=1)

write {*,*) 'sens.dat written.'

macro end

I‘ﬁid‘&.t.ti.i‘&Oiitiﬁdl“““'t&ﬁli‘d‘iiﬁ‘i*i"t‘t*.ﬁti.b.i.““‘ii....

20]



Conc. vs. Time - Site 1
KNNONLINEAR-1STORDER

Conec. vs. Time - Site 4
KNNONLINEAR-1STORDER

70 70
60 60
250 2 50
40 1 40
530 r\\ S 30
§ 20 4} " § 20
12 (/\:\&— 13
o 100 200 300 400 0 100 200 300 400
Time (d) Time (d)
Conc. vs. Time - Site 2 Conc. vs. Time - Site 5
KNNONLINEAR-1STORDER KNNONLINEAR-1STORDER
70 - 70
60
%:g' £ 50
S40 240
530 ;gsg
gm-Lf\\ 82
10 —— 10
0 == 0
0 100 200 300 400 0 100 200 300 400
Time (d) Time (d}
Conc. vs. Time - Site 3
KNNONLINEAR-1STORDER
70 Rl T
_60 S -
£ 50 S [
240 S R
"0‘30 e d
10 SRS
0 J%;._-:;. i
0 100 200 300 400
Time (d)

202




Uncertainty/Complexity Study - Sensitivity Analvysis

MODEL NUMBER 7:
Model Name: KNMONOD/ISTORDER

Model Location;_c:\spencer\3model\models\knmonod- kst

fl

Solute Phase

F, F,

<——

Sorbed Phase

Flow Equations for State Variable 1:

F, = convective flow + dispersive flow
= flporosity, velocity)

Number of parameters = 2

Number of operations = 2 (convective) + 2
(dispersive) = 4

F, =convective flow + dispersive flow
= flporosity, velocity)

Number of parameters = 2

Number of operations = 2 (convective) + 2
(dispersive) = 4

F, = sorption/desorption {monod kinetic)
= flmonoda, monodb,sorbrate)

Number of parameters = 3
Number of operations = 5

COMPLEXITY:

Output Parameters:

F, = degradation (1" order)

= f{degradation constant (liquid))
Number of parameters = 1
Number of operations = 1

Flow Equations for State Variable 2:

F; = sorption/desorption (monod kinetic)
= flmonoda, monodb,sorbrate)

Number of parameters = 3

Number of operations = §

Dates: Start: ____
Sens data located:

End:

Parameter values located:

Parameter Distribution located:

L, = (2%4 +2*%4 + 3*5 +]*1) + (3*5) = 47

porosity, xvel, yvel, zvel, optdif(1), mulig], sorbrate, monoda, monodb
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!tiii*tti*iiittiiiittt*i#ﬁtiiit‘*iitiitﬁ*ttii‘i.itiiiittiitttt.itbiittt&
!PUT HERE USER DEFINED MACROS

!This section is for definitions, it will be executed
‘only during loading of the program

! speedd4.usr - for testing to speed this model up !
!liI||13Illllllllllllllllrlllllill|Ill|!ll|ll!1l'l|lllll

.....................................................

macro difmacro
macro relabel 1888
procedural (dif=dif,iiter,site,dat)
dif = 0
do 1888 gq=1,5
if (dat((q+l),iiter).gt.0.0} then
dif=dif+((abs(dat((q+1),iiter)—site(q)})**Z.O)*w(q)
end if
1888..continue
end
macre end

!*t**ﬁii*i*iiitﬁi*iiiﬁtiiitttiﬁ*i**i*ibi&itiii&**iii*i*

! this macro prints out the parameters when the optimizer
! is terminateq
!‘*t*t**iiiliiii**i.*iii'iiiii*iiii*i****itii‘tiiﬁii*ii

!macro cptprint
! macro relabel aaa,baa,caa,daa,eaa
! if {optwarnings) then

open (unit=1,file='sens.dat',status='old',access='append')
write (1,*)

orosity,kd,xvelocity,yvelocity,zvelocity,iiter,optdif(l)
close (unit=1}

write {*,*) ‘'sens.dat written.®

= = e

! if (termflag.eq. 'delta-p') print baa
! baa..format(/,' Termination due to small change in parameters')
! if (termflag.eq. ‘'delta-f') print caa
! caa..format{/,' Termination due to small change in objective'}
! if (termflag.eq. 'looplimit'} print daa
! daa..format{(/,*' Termination caused by reaching maximum
iterations')
! if (termflag.eq. 'OK') print eaa
! eaa..format(/,' Termination due to reaching specified
cbjective')
! if (termflag.eq.'break'.or.termflag.eq.'brunbreak') print faa
! faa..format(/,' Termination caused by interrupt')
! if(termflag.ne.‘break‘.and.termflag‘ne.'brunbreak') then
! do 101 optii=1, ndimm
! print aaa,optii,optpi{ilo,optii}
! aaa..format(/,* Parameter 'il,' is ', £15.7)
d 101. .continue
! endif
! endif
!macro end
macro scilprop
watervolume=cellvolume*porosity 'mL
soilvolume=cellvolume*(1.0-porosity) 'mL
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soilmass=soilvolume*gamma/1000

‘g
macro end
macro flowprop
xflow=cellsidearea*xvelocity/1000 'mL/hr
yflow=cellsidearea*yvelocity/1000 'mL/hr
zflow=cellsidearea*zvelocity/1000 !mL/hr
dimension site{7) 'g
! dimension showxz (maxz,maxx) 'g
! dimension showyz (maxz,maxy) g
dimension sorbedamt {maxx,maxy, maxz) lg

' print*,'iiter,t,dif’

This seetion is used to weight the sites equally for the
calculation of the objective function.

™

dimension w(5)

w(l)= 1.0
w(2)= 0.929
w({3)= 1.0
Wwidl= 2.76
w(5)= 2.6

macro end

macro preinitialization
logical preinitial

pPreinitial=.true. 'to mark that we are in the preinitial section
tlast = maxpar ‘initialize saved time
goto preinitloc !do one run through initial

backfrominitial..continue
reset {"eval")

block {save) 'backup initial values in cgvar
procedural;preinitial=. false.;end
displaylib

macro end

macro clearcells
tot = 0
do 10 i=1,maxx
do 20 j=1,maxy
do 30 k=1,maxz
icellmass(i,j,k)=0.0 g
isorbmass(i,j, k}=0.0

'g
30.. continue
20.. <coentinue
10.. continue
icellmass(3,1,1)=0.367 'g

macro end

macro calculatetransport

procedu:al(mflow,dcellmass,dsozbmass=cellmass,sorbmass.sorbrate,&

watervolume,ratecon,x£10w,yflow,zflow,monoda,monodbl
]

mflow=0

205



! kn-monod/lstorder
do xend x=1,maxx
do yend y=1,maxy
do zend z=1,maxz

!sorptien

!degradation

term=((cellmass(x,y,z)*monoda)/(monodb+cellmass{x,y,z))}
sorbedamt(x,y,z)=so:brate*(term—sorbmass{x,y,z))

dcellmass(x,y,z)=—muliq1*cellmass(x,y,z)-sorbedamt(x,y,z)

zend, .continue
yend..econtinue
¥end. .continue

do 50
do 60
do 70

x=1,maxx
y=1,maxy
z=1,maxz

Convective Flow - trans is equal to the amount leaving the cell

Xtrans=cellmass(x,y,z) /watervolume*xflow 'g/hr
ytrans=cellmass{x,y,z)/wate:volume*abs(yflow) lg/hr
ztrans=cellmass {x,y,z) /watervolume*zflow 'g/hr

! Dispersive Flow

if (x.eq.maxx) then

'g/hr
else

endif

if (z.

'g/hr
else

endif

xtrans=xtrans+(cellmass(x,y,z)—O)*ratecon ‘g/hr
mflow=mflow+xtrans

xtrans=xtrans+(cellmass(x,y,z)-cellmass((x+1),y,z))*zatecon

'g/hr
dcellmass({x+1),y,z)=dcellmass({x+1),y,z)+xtrans!g/hr

eg.maxz) then
zZtrans=ztrans+(cellmass{x,y,z) -0} *ratecon tg/hr
mflow=mflowtztrans

ztrans=ztrans+(cellmass(x,y,z)—cellmass(x,y,(z+1)))‘ratecon

t
tg/hr
dcellmass(x,y,lz+1))=dcellmass(x,y,(z+1))+ztrans!g/hz

if {(yflow.gt.0) then

'!g/hr

if (y.eq.maxy) then
ytrans=ytrans+{cellmass(x,y,z)~0)*ratecon !g/hr
mflow=mflow+ytrans

else
ytrans=ytrans+{cellmass(x,y,z)~

cellmass(x, (y+1),z))*ratecon

L]
ig/hr
dcellmasstx,ty+1),z)=dcellma35(x,(y+1).z)+ytrans
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!g/hr
endif
else
if {y.eq.l) then
ytrans=ytrans+(cellmass(x,y,z)~
cellmass (X, (y+1},2)) *ratecon

'g/hr
mflow=mflow+ytrans
'g/hr
else
ytrans=ytrans+(cellmass{x,y,z)-cellmass(x, (y-
1),z)}*ratecon

'g/hr
dcellmass(x,{y-l},z}=dcellmasslx,(y—l),z}+ytrans

lg/hr
endif
endif

! This section calculates the derivatives for the liquid
! and sorbed masses.

dcellmaSS(x,y,z}=dcellmass(x,y,z)-xtrans~ytrans-ztrans

ig/hr
dsorbmass (%, y, z)=sorbedamt (x, y, z)

'g/hr

70..continue
60..continue
50. .continue

end
macro end

macro integration
limintvvv(cellmass,dcellmass,icellmass,maxx,maxy,maxz,0.0,1e6)

limintvvv(sorbmass,dsorbmass,isorbmass,maxx,maxy,maxz,0.0,1&6)
macro end

macro massbalance
balance=integ(mflow, 0.0}
balanceZ=balance

macro end

macro mapviews

site(l)={cellmass(5,1,2)/watervolume)*1le9 'ug/L
site(2}=(cellmass (5,2, 3) /watervelume) *1e9 'ug/L
site(3t=(cellmass{6,1,2) /watervolume)*1e9 'ug/L
site(4}=(cellmass{17,9,3)/watervolume}*led tug/L
site(5}=(cellmass{17,9,4)/watervolume}*le9 'ug/L
! site(6)=(cellmass{20,9,4)/watervolume}*le9 'ug/L
! site{7)=(cellmass{20,9,3)/watervelume)*le9 'ug/L
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macro end
!iitiii*t*&ﬁi*****iiiiiiiiiii&ii*it*i*iiittitt**ii*iiiiiﬁ***ititﬁ***‘tii
macro userinitialsection

'INITIAL SECTION

!Macros called here will be executed in the initial section

'Don't put macro definitions here

soilprop
flowprop
clearcells

macro end
!*iiiii'bii*iﬁii‘ii**i**iitii*ii***itiiiii*ii*itiiti&it&&ti&iiﬁi*ﬁ*itiiii
macro userderivativesection

!DERIVATIVE SECTION

!Macros called here will be executed in the derivative section

'Don't put macro definitions here

Calculatetransport
integration
massbalance

macro end
!iiil&ii*iiiii***i*iﬁiii**i**i**iii*ii*ittiiibiiiiiﬁﬁ****ii*tiii**iiiiii
macro userdynamicsection

!DYNAMIC AND DISCRETE SECTIONS

!Macros called here will be executed in the dynamic section.

!{discretes plus code to be executed every communication intervall
!Don't put macro definitions here

mapviews

macro end
!i**iiii‘Gi‘*iitit*&&i***titiiﬁ*ii*t’titiiiiﬁ#tﬁ'#tiﬁiiii'tt*tititﬁiiitﬂ
macro userterminalsection

'TERMINAL SECTION

!Macros called here will be executed in the terminal section

'Don't put macrec definitions here

open (unit=l,file='sens.dat',status='old")

Wwrite {1,*) porosity,xvelocity, yvelocity, zvelocity, optdif (1)
write {1,*) muliql, sorbrate,monoda, monodb

clese {unit=1}

Wwrite {*,*) 'sens.dat written.®

macro end
!6ttt&i&t**ttiiiiiﬁtﬁi*iil&ii*iitiiiiOﬁibtiﬁdt&i‘bﬁiiiiﬁi‘ﬁiiﬁ*itiii.oti
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