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ABSTRACT

Goodness-of-fit testing of simple hypotheses has a
long, weil known history, When the Null Hypothesis speci-
fies only the form of the Null Cunulative Distribution
Function (CDF), with values for one or more parameters un-
specified, the problem is not so clear cut, This\project
examines several methods of testing fit in the presence of
unknown .parameters, The methods, briefly described below,
. are all based on the Empirical Distribution Function (EDF),
(1) The unknown paramet;rs are estimated from the

sample., Modified EDF statistics using these sample esti-

mates, are computed, and compared to the significance points

which have been obtained by computer simulation.
(2) The unknown parameters are estimated from the

sample Transformations are applied to the observations to

obtai ‘tfanaformed variates which, under the Null Hypothesis,

S—
are distribyted as dependent uniform variates. These trans-

forms are tested for uniformity by the EDF statistics,

| (3) A series of transformations is applied to the
data to obtain transformed variates which under the Null
Hypothesis follow a coimpletely specified Distribution
Function; the nuisance parameters have Seen eliminated.

This new, simple hypothesis is then tested by the EDF

statistics, @
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(4) For various parameter values throughout the
parameter space, the EDF statistics are computed, A region in
the parameter space for acceptance of the corresponding

-

simple hypotheses is determined. 1
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CHAPTER T Y
\
THE TLST STATISTICS BASED ON THL EDF

1.0 INTKODUCTION

Suppose the sample XyaXosue X has beon obtained
on the random variable X. We wish to test the Null Hypothe-

sis:
X~ F(X,Q)

Differences between tge sample CDF and the EDF, defined
below, form the basis of sGVQFal goaness-of~fit statigtics.

definition: Given a sample of size n on the random
variable X, the EDF, Sn(x), is defined as that

proportion of the sample having a value less than or equal

to X. ~
n -
Sn(x) z 151 s(xi), where s(xi) = 1/n for

V-
Xy < %X, 0 elsewhere, | /

For a true null hypothesis, the two functions, the CDF

and the EDF should be quite close to each other. How this

nearness is evaluated determines the different EDF statistics.

For all the EDF statistics, the following is assumed:

To each observation Xgs ON the random variable X,
the Probabil)}ty Integral Transformation is applied to give
a new observation z; on a random variable Z. The statis~
ties which folléw are defined in terms of X, but could as

\
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well be defined in terms of 7. The computing formulas

are given in terms of the 24 which are henceforth asgumes
to be in ascending order. Ffor each EDF atatistic, a sub-

script is often included to indicate sample sizes: where

little risk of confusion arises, this has been omitted.

The Probability Integral Transformation (PIT) may
be daefined as:

——

x . = —
2(x) = J f(x)dx, where f(x) is the probability

%

-0
»

density function of the random variable X,

Sometimes the PIT will be used with some parameters
estimated from the data. In what follows, estimates of
mean u and variance ¢ of a population will be given by

X = 2xi/n and 52 s E(xi-i)z/(n-l), unless otherwise stated.
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1.1 The Kolmogorov-Smirnov D statistic,

Kolmogorov (1933) introduced the bolLow;gg statistie

"tor testing fit:

D = gup ISn(x)-F(x)l
The statistic D measures the greatest absolute
ditference between the CDF and LDF, and has the following

properties:

(1) The probability distribution of D depends only

“on the, sample size n, and nét on the distribution being

tested.

(2) “the asymptotic distribution is known
2.2
Pr(D < ¢//M= 1-2 § (-1ni-tgd’e
j=1

(3) ‘The pre-agymptotic signiticance points have
been computed by, among others, Birnbaum (1v52).

The significance points may be ufed to construct a
contidence bound around the sample CDF, viz F(X) 3 Dn(a) *
where 9;Tu) is the value of the statistic at level of
significance a. If, for any value in the sample space, the
EDF falls outgide this bound, the Null Hypothesis is re-

jected.

The statistic may be computed from the following

form:

e g
P
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D+

n

max (D+, D™) where

max (i/n—zi)
i

max (zi—(i-D/n)

1



ety 5 tn

1.2 Kuiper's V Statistic

Kyiper (1960) proposed a modification to the D

statistic of Kolmogorov, defined as Rollows:

vV = sgp[Sn(x)—F(x)]—igf[Sn(x)-F(x) )

v This statistic is found to be origin 1invarilant with respect

to the value xg at which cumulation begins, and may be used
mot only for tests of fit on the line, but on the‘circle.
The statistic is found to have the following properties:

(1) It is dependent only on sample size and not on
the Null Distribution béing tested.

ol . . . . .
(2) 1Its asymptotic distribution, and a reasonable

approximation to the pre-asymptotic behavior is given by:

@ 2 2 —Q'QCQ
Pr(V < c/V/n) = 1 -~ L 2(4j°c=1)e”*3
i=1
.2 2
+ 8¢ L j2(4j202—3)e—2] ¢
3/n j=1

A table of percentage points for the statistic may be

found in Stephens (1965). The statistic V may be described
as the absolute sum of largest positive and smallest
negative differences between the sample CDF and the EDF, and
may be computed from:

+ - - . .
V=D + D, where D+ and D are defined as bgfore.
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1.3 The Cramer-von Mises Statistic W2

\

The Cramer-Von Mises test is based on the statistic

N w2 defined by:

W2 = n f[sn(x) ~ F(x) )% dF(x)

- €O

The limiting distribution of the w2 statistic 1is

given by:
n
lin e’ <t = T (2it)2 172
® 1= T
n= sin[(?it)l/z]

This asymptotic distribution has been tabulated by Anderson

and Darling (1952). The preJésymétotic significance points
\

have been found by Pearson and Stephens (1962) using Monte-

Carlo methods for n = 10, and by curve fitting for

n = 5,10-.
For calculation, the simpler computing form of
N ’
n
- - : 2
! 2n

may be obtained. This may be demonstrated by dividing

the interval into the n#l subintervals defined by the sample
observations. he integration is then performed, and the
results are summed to obtain the value of the integral

PN
through the entire sample space.
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1.4 The Watson U2 tatistic

Watson (1961) suggests the following statistic, a
L]

modification of the w2 statistic, for a test of fit:

U2 = n J{Sn(x) - F(x) - I Sn(y)-F(y) dF(y)}QdF(x)

Watson shows the statistic to be identical to
the Cramer-Von Mises statistic with respect to that origin
X which minimizes w2, ie vl = Qin wz(xo), where cumulation
is initiated at Xg Beyond the grigin invariance of this
statistic, which enables it to test for uniformity of
direction on the circle, has the favorable property of its
distributions rapid convergence to its asymptote, given by
computing

oy e 3-1, -27°n%c

r(U” > ¢c) = 1 (-1) 2e
A table of significa%;i points for both the symptote, and for
some pre-asymptotic sample sizes, may be found in Stephens
(1963).

By a method of analogous to that of w2, the following

computing form may be obtained:

n .
U2 2§ (2. - 221 5 4102 + 1/7(12n)
. i
1=1 2n
- n
where z = zi/n. .

i=1

o —
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1.5 The Anderson-~Darling Statistic A-D

\

{ Anderson and Darlirg (1952) suggested another means
of measuring distance between the EDI and sample CDFf,

namely:

-
-

A-D = n [ (8, (x)=F(x) 44 [F(x) )aF(x)

where ¢(t), o<t<l, 1s a preassigned weighting function,

The statistic is seen to be a modification to the Cramer-

.

Von Mises statistic, reducing to w? when ¢(t) =1, O<t<l,
The authors obtain acomputing form as:
n ‘} --
A-D = 2 I {4,(z,) =21 4 (z)) +n { (1-t) yt)at
.o 2771 2n 171
1=] 0
t
where ¢l.(t) = j yis)ds
0 1
t
(>¢2(t) - J s+y(s)ds.
0

Throughout this paper, when reterence is made to the A-D
statistic, 1t may be assumed that ¢(t) = 1/[t(l-t)].

This weighting function has been chosen so as to provide
a heavier weighting to the difterencesbetween the CDF and

EDF which occur in the tails ot the sample space, We note

Mot e g b MRk o AW - M bR e At & 5 e e <
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that the measure of difference 1s based on Y(z) =

/n [5  (x)-z] where z 1s the value of the sample CDF at
X = x. The variance of Y(z) is 2(l-z), and thus this
weighting function scales the weights according to the
variability of the difterence on which it is based. When
this weighting function is used, the computing form reduces

to:

n
£ (2i-1) {ln z. * 1ln(l-z } - n.

vt A e i A
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CHAPTER II
UNIFORMITY AND SUPER-UNIFORMITY: SOME COMPARISONS

2.0 ‘The Probability Integral Transtormation when

e

Parameters are Estimated,

When the Null Hypothdsis is simple, the PIT trans-
forms the original observations x; to new observations z;
which are, before ordering, independently and uniformly
. distributed Uniform (0,1). Let us now consider the
situation in which parameters are replaced by their sample
estimates. If the PIT is applied, the transformed observa-
tions no longer have these distributional properties under
the Null Hypothesis. David and Johnson (1947) have shown
that tor a Distribution Function specified by an estimated
scale parameter D(x) and/or an estimated location parameter,

m(x) the density of a single transtormed observation is of

the form:

% -1 . X.-m(x)
= % % = .
p(Z.) f (x*) p(X) where x 1

! D(x)
f (x:) 1s the value of the density of the random variable
X at this particular standardized variate, and p(xg) is
the density function ot the function of the observations
x¥. Note that in generali the values ot f \xg) and p(x¥)

w1ll differ, and thus the distribution of a transformed

10
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observation will be other than uniform, In order to obtain
the density as given, the estimators must tulfill the

following requirements:

(1) m{x, + a,%, + 8y eesXy + a) = m(xl,xz,...,xn) + a

(2) mia,a,...,a) = a

(3) D(xl ta,x, ¢+ CYRERS + a) = D(xl,x2,...,xn)

(4) D(a,a,...,a) = 0 /

(5)  D(kxXy,KXy,00e k¥ ) = |k]D(xl,x2,...,xn) *

In figure 1(a), a comparison of the densities of a
transformed observation from the Normal Distribution,parameters
; and ¢ estimated by x and Si respectively, is presented
for sample size n = 7,16 and 25. While for the smaller
sized samples there is great difference in shape between
this density and a unirérm one, these differenceslessen
as saﬁple size increases. Even for samples as small as
n = 25, the density of a 2, ig similar to Uniform through-
out the central 95% of the [0,1) interval. The marked
differencesin shape occur only at the extreme tails of
the interval. In figure 1(b), the density of a single
trangformed observation, from the Exponential Distribution,
for sample size‘n = 7,16, and 25 has been presented. It
may be seen that ‘'there are qualitive similarities between
these "two dengity functions (Figures 1(a) and 1(b)). 1In

both instances, the estimation of parameters leads to a

A S < N W gl
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The Density Function of a Single Transformed Observation from the

Normal Distribution, Parameters Estimated by x and ..
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Figure 1b

The Density Function of a Single Transformed Observation from the
Exponential Distribution, Population Mean Estimated by

Sample Mean
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lessening of the probabllity for the occurrence of a
transformed observation well into the tails of the [U,1]
interval. l\have called the general behavior of samples

for which the PIT 1s applied, with estimated parameters,
"super-uniformity". This is meant to indicate the tact

that in spite of not being themselves distributed uni-
formly, the observations tend toward a degree of regularity,
of ldck ot clustering, and of lack of extremes which make
gamples appear uniformly distraibuted.

In the notation of Stephens (1974), three situa-
tions have been distinguished:

Case 0: The transformed observations are truly
independently and i1dentically distributed as Uniform (0,1).

Case 3: 'I'he transformed observations are obtained
by applying the PIT to observations from the Normal
Distribution, the parameters estimated by X and82, respec-
tively.

Case 4: The transformed observations are obtained
by applying the PIT to observations from the Exponential
Distribution, tne population mean estimated by the sample
mean X.

I will first examine some characteristics of super-
uniform samples, and then methods of performing EDF tests

in situations of super-uniformity.

e O e i g, M AN A ot s BN, 7 ¥
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2.1 Difterences Bz2tween Uimples of Case 0 and

Case 3

As a means of illustrating the differences in the
transformed observations arising as a result of estimation
ot parameters when applying the PIT, several Case 0 and
Case 3 samples have been presented in Figure 2. The
samples shown were obtained,in Case 0, by applying the
PIT using the known parameters, to observations from the
Normal Distribution. 1In Case 3, these same observations
were transformed using the PIT with parameters estimated.
The samples depicted have all been chosen for the '"non-
uniform” appearance of the Case 0 samples,

From Figure 2, .it appears that the Case 3 samples
appear much more uniform than the truly Uniform samples.
The observations, in Case 3, tend to disperse more fully
throughout the [0,1] interval, with the observations not
clustered together to the same extent as in Case 0. In
Cas; 3, because of the estimation of parame?ers, the
occdrrence of observations distant into the tails ot the
(0,1] interval 1s lessened. Because 1in true situations of
uniformity, especially for samples of small size, the
variations o{’sampling may produce samples which do not

appear as regular as expected, it is striking that

super-uniform samples appear so "typically" uniform, They

15

B e

<

\,
S

NV



’

16

are as samples from the Uniform Distribution, stripped

of the seeming departures from uniformity which ordinarily

might occur.
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Figure ?

A Comparison of Case 0 Samples and Their Associated

Case 3 Samples

PR S N e
.

.
t Tt e b CRl s el



|
}

ey~

P

16

2.2 The "Covariance" Between the Ordered Transform-=4J

Observations and Their EIxpected Values <Cases 0,7

and 4.

Because super-uniform observations appearn :c
regularly space themselves throughout the [0,1] interval,
without the large gaps, or clusters between observations,

/ N\
the super-uniform ordeﬂéd oBéQFvatiOQ§~eQSSP much closer tc

e T i

their expectations than 1is usual for uniform ordered observa-
tions. To demonstrate this tendency, let us examine the
"covariance" of the ordered transforms of Cases 0,3, and r

and their expected values., We define this covariance by:

Cov =
1

T T

(z.-2) +» (i/(n+1) =-1/2)
;i

i

"n ™3

z.t(i/(n+1)-1/2).
;3

In Case 0 situations the first four moments were
calculated by theoretical considerations. In order to obtain
the significance points for various sample sizes we represent

each z; as the sum of spacings between uniform observations.
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If
u, = oz
uy = zj-—z]~l (3 = 2,3,...,n)
then
i
z. = L u., for all i1 = 1,2,...,n.
i 7.
j=1

The covariance is then represented as a linear combination
of these uj,j=1,2,...,n. By a result of Stephens (1%72a)
we have that the first four moments of the covariance are

given by:

n 2
u = I ai/n+1 o =

(a.-3)2/(n+1) (n+2)}
. 1
1 1

1

(1IN ae o]

n -
Mys 2 1 (ai-a)3/{(n+1> (n+2) (n+3)}

1i=1
n y = 12,24,
= [ (a.-a) +3(r(a.-a.) )" ]/{(n+1) (n+t2) (n+3) (n*+4)}
Byv z 1 1
1=1
- n 2
where ?i_-E- ¢ 3 -1/2).
J=1 n+l

These moments were used to fit Pearson curves to find
significance points.

These Case 0 significance points have been verified
by Monte Carlo study for several sample sizes, and found
to be in agreement to three decimal places. To obtain the
significance points for the covariance in Cases 3 and 4% it

was necessary to rely totally on Monte Carlo simulations.

—
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In Table 1, significance points of the covariance, for

a few sample sizes, have been given. In examining these

signiticance points, the most striking difference noted

was the great lessening of spread between the significance

points at various per centage levels for the super-tniform

samples. In Case 3, for instance, the spread between

upper and lower 1% points has dropped to less than one-halr

of the Case 0 values. With respect to the value of

covariance, the super-uniform samples tend to act much

more like each other than do samples trom the uniform

There is a much smaller incidence ot
"atypical” samples than with uniform observations. This
fact is evidenced by the centralization of the Case 3 and

Case 4 covariances,
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TABLE

1

A comparison of significance points

for covariance:

Cases 0,3 and 4

Case 0
.01
.391
.791
1.094

1.835

Case 3
.01
<+ 587
.977
1.340

2.144

Case 4
.01
L429
.763
1.133

1.922

.05
.48l
.931

1.223

1.991

.05
643
1.032
'1.416

2.222

.05
.516
.876

1.267

2.0u6

.95
.861
1,317
1.788

2.661

.95
.786

1.222

.1.658

2,534

.95
.865
1,323
1.765

2.651

.99
.918
1.392
1.859

2.777

.99
.793
1.237
1.681

2.557

.99
.901
1;368
1.833

2.773
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2.3 Behavior of Q Statistics in Cases 0,3 and 4

Further evidence of whatmay be described as the
"pathological uniformity" displayed by super-uniform
samples 1s demonstrated by the Q statistics, first intro-
duced by Fisher (1932) as a means of poth combining inde-
pendent tests of significance and testing goodness-of-fit,
The Q statistics bear some similarity to the EDF statistics
in that all use the PIT to obtain the uniformily distyibuted
transtormed observations upon which tests are based. They

are defined as follows:

n
Definition Q = -2 1ln(H Zi) ~
i=1
n
Q' = -2 1In(n ll—zi]).
i=1

It may be readily shown that under a true Null Hypothesis

both Q and Q' tollow a chi-squared distribution with

degrees of freedom equal to 2n. A fuller description
‘/of these statistics may be found in Pearson (1Y38),

The Q statistics have received very littie use as
goodness~-of-fit tests when parameters are estimated from
the sample. As mentioned earlier, when parameters must
be estimated from the sample the transformed observations

are neither uniformly nor independently distributed. Let

us examine how this will affect the Q statistics.
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Table 2 provides a comparison of the means and
variances of the Q statistics for Cases 0, 3 and 4, and
several sample sizes, based on a Monhte Carlo study of 500
samples of each size. Notice that for Case 3, ;ll sample
sizes, there is a tremendous drop in the variance of the
statistics. The mean values are very close to thelir
theoretical (Case 0) values, but the variability drops
to about 1% of that for a true chi-square variate, In

Case 4 there is still a sizeable lowering of the variance,

but thii is of nowhere near the ¢Same magnitude, Some

.insight intc reasons for this may be gained by examining

the Case 3 and Case 4 density fuﬁctions (figures 1(a) and
1(b)).

It has already been noted (section 2,0) that for
both these density functiors there is a lessening of
probability of the occurrence of an observation in the
extremes of the [0,1] interval, It is the nature of the Q
statistics that it is a preponderance of either~“large"
or "small" transforms which accounts for extreme valuei;ig
the statistic. With samples containing only observa-
tions more closely distributed about the midrange, the In
product of these transforms will alsoattsin less
extreme values. While the Case 3\ﬂénsity function 1is
symmetric, with a low probability of occurence to trans-

forms at both ends of the [0,1] interval, in Case 4 there

T e . A
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1s still sizeable probability of a transform's occurence

in the lower tail. This opens up the possibility of

a Case u gample'having transforms with small values, and
thus more room for variability of the statistic Q. Notice
that the form of the Q statistic forces, in Case 4, the

attainment of the exact theoretical mean for all samples*.

N n n
#Q' = -2 1n 1 (l~zi) = -2 I 1n (l*zl)
izl izl .
n xi
= -2 § 1n [1-(l-exp (—)] :
i=1 % ;
-nx ;
n 1 ‘
= -2 z ——— = 2n . !
1=1 X
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TABLE 2

Means and Variances of the Q Statistics:

Case 0
m \Y
20,2402 42,1088
29.8813 63.0159
39.9190 77.2628
Case 0
m \Y
20,0417 u42.5338
29.8033 56.7333
39,6855 78,2921

Cases 0, 3 and 4

Q

Case 3

m v
19.4265 .1089

29,4286 ,2217

39,4411 , 3540

Q!
Case 3

m \"2
19,4321 .1086

29,4391 ,Z7190

39,4311 (3545

Case 'u4
m v
19,1226 21,7195
291320 32.634¢€

39.2020 48,7158

Case 4
m v
20.0 St
30.0 -_—
4g.0 ———

S
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2.4 An Illustrative Example of Super-Uniformity

Super-uniform observations often arise as a direct
result of parameter estimation, but may arise in other ways.
Let us consider an example by Pearson (1963), based on the

years of ascension to the throne by Eng;ish monarchs
LY

Abetween the years 1050 and 1950 A,D, The dates are

standardized, and testing is for uniformity on the (0,1]

.

interval. It was not expected that this "time series"

would behave as independently distributed variates from the

"Uniform Distribution. As Pearson says: "If a King reigned

for a long time, his son would be old when he in turn
succeeded." Because proximate reigns are highly inter-
dependent, the observations violate the assumption of inde-
pendence. If we apply the goodness-of-fit tests using EDF

statistics, the following levels of significance for D,V,w2

»

and U2 are recorded: .03, ,025, .07, .034. Tor each
statistic the dat; yield a value w;ll\%nfo the lower tail.
For each statistic the nonrandomness of the model is picked
out by subnormal variation. When the EDF has drifted in
value from the CDF, the correlations betwegn the observations
cduse a quick return to where ‘it should be. Super-uniform

samples may be described as too“gqod",'and these dates

have this appearance,
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CHAPTER III

METHODS CF TESTING GOODNESS OF FIT IN THE PRESENCE

OF UNKNOWN PARAMETERS,

3.0 INTRODUCTION
From the preceding discussions it is hoped clear
that the samples that have been labelled super-uniform

differ greatly from samples that truly come from the

Uniform Distribution. O0ften we are confronted with the

problem of testing goodness-of-fit when the Null Hypothesis
specifies only the form of the Null CDF. Because parameters
do not have known values we are faced with the situation in
which we may actually be testing for super~uniformity.
Several methods of circumventing this difficulty in

goodness-of~fit testing are presented below,

27
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3,1 Application of Case 0 Statistics in Situations of

Super-Uniformity

While the EDF statistics were designed for use in

tests of simple hypotheses, they may be modified for use

in situations of estimated parameters. To do this, the
PIT is applied to the sample observations using sample
estimates for the parameters. The question naturally

arises as to how this estimation of farameters is to be

performed. Consider, for instance, the Kolmogorov-

Smirnov statistic D. 1It-has been modified by Lilliefors
(1967) to obtain a statistic 6, for use in Case 3 situa-
tions. The pavameters;xand ¢ are estimated using maxi-
mum likelihood estimates X and S,» where X is defined as
usual, and Si = z(xi-i)z/n. The statistic is calculated,
as in Case 0, and is compared to significance points
obtained by Monte Carlo methods, An alternative nodifica-
tion to the statistic D has been proposed by Scinivasan
(1970), namely ﬁ which uses Minimum Variance Unbiased
Estimation of the parameters in applying the PIT. Results
originally published seemed to indicated that the statistic
5 has favorable power properties over ﬁ. It has more
recéntly been shown by Schafer, Finkelstein and Collins

(1972) that this was due to errors in the signifi@ance

points used, Their results seemed to indicate that both

28
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- .
adaptations to D nave essen?iaily the same power properties,

with little reason tor preferring one method to the other.
Similan‘modiflcations may be made for each of the EDF
statlstkcs.

Table 3 provides a comparison ot significance
points, found by Monte Carlo simulation, for several sample
sizes in Cases 0, 3 and 4. The estimates used 1in a;;lying
the PIT were the unbiased estimate of population variance,

, and the usual estimator ot the mean. tftor each of the

statistics examined, (ie, D, V, w2, U2

, AD) a substantial
drop in the critical points needed for rejection of a

Null Hypothesis was noted. 'lhe most drastic drop occurred
for the Anderson-Darling statistic in Case 3» To explain
this substantial decline in critical values, we remember
that the A-D statistic gives heavy importance to ditferences
between the EDF and CDF occuring in the taiis of the sample
space. When parameters are estimated from the sample, the
low probability to the occurrence of a transformed observa-
tion tar into the tails of the [0,1] interval accounts tor

extremal order statistics being much closer to their ex-

pected values. Large ditferences between the EDF and CDF

do not occur here, and hence the statistic seldom achieves

values as large as it does in Case O, For all the
statistics a much less pronounced difference between the -

EDF and CDF is enough to warrant rejection of the Null

i e b e
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Hypothesis. Goodness-of-~fit testing is essentially finding
a distribution function which fits the sample. When we

are able to estimate parameters, we are able to much more
closely fit the data to the distributional form we are
testing. The closeness of fit shows wp 1n the smaller

values of the EDF statistics.,
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TAEBLE 3

A Comparison of the Significance

Points for the EDF

Statistics+ Cases 0,3 and &

& = .05

Case 0 Case 3 Case U4
,403Y 2616 ,3265
.29u1 , 1924 2358
L2418 1592 .194Y
.5149 , 4289 L4911
.3732 . 3164 ,3555
,2078 2623 2929
4531 ,1200 ., 2205
L4575 ,1229 \2222
.u588 ,1259 2228
.1821 ,1105 ,1585
.1846 132 ,1597
.1854 ,11u1 .1601

2,492 .7843 1.2651
2.492 ,6919 1,3019

2,492 .7118 1,3147
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10
20

30

10
20

30

10
20

30

10

20

30

10

.20

30

TABLE 3 (cont.)
A = ,10
,Case 4] Case 3
.380 .2394
.2651 L1760
.2179 L1457
L4734 . 3992
.34861 .2945
. 2854 L2441
. 3485 . 09830
. 3490 .1015
. 3485 ,1023
.1497 .091u
©.1509 ,0937 -
.1513 . 09yl
1.933 .5704
1.933 .5767
1.933 .5934

Case 4

. 2965
.21u4y

.1765

,

L4547
.3288

. 2708

1742
.1756

©.1761

,1280
1290

.1293

1.0170
1,0u466

1.0569

IS
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3.2 Tests Based on Correlated Uniform Observations

It has already been stated that when the PIT is
applied to an observation, using the sample estimates :
for parameters, the transformed observaticon follows a
known, non-uniform density function (section 2.0).
Consider a Case 3 test of normality. In this situation,

the density of a single W is given by:

_ Y2un 1 . o
. p(wi) = ¢
n-1 B(1/2,1/{2(n-2)}) 3
‘ nw’ B i‘
[1 - —1 ] (n-k)/ze—-wi /2
(n-1)2
where w. = *i"® . The proof of this lies in first finding
S

i
!
i
§

the joint depsity of xi,i,S, ie.f(xi,§}S) and then the
conditional density f(xili,S). Because the density of a
transformed observation may be readily determined, an
approach to testing goodness-of-fit in the presence of un~-
known parameters may be developed based on a further trans-
formation to achieve uniformity. It is not expected that
such a transformation woﬁld be capable of eliminating the
dependéncies between transformed observations: thus the

testing procedures would still be based on variaﬁes not

satisfying the conditions required for EDF testing.
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_ Representing both sides of the above expression as a sum
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LeF us examine how such transformations could be performed.

Let X = 5% define a new set of variables

(yl,yz,...,yn) where 5 is an orthogonal matrix

> * -
c(1-1/n),-¢/n,...,-c/n 1

R = N . with ¢ = {n/(n—l)}z.
‘ AN
1/vn, 1//n,...,1//n

$—

X'y 7 RO RO = XRE 7KK

of algebraic terms, we have:

(1) ylz_ + y22 +--.+yn2 = X 2 + x 2 +°°'+x_ 2

B teti- Lty e =
.

From the definition of the y variates, it follows that

yl2 and yn2 can be represented as:

2 -2
(X.+x +eco4x ) = nx ]
y 2 = (% ;i)Z n Ly 2 - 1 72 n ;
1 1 n-1 n 2
. (/n)*

substracting yn2 or its equivalent from both sides of

(1) we have:

2 2,.00.,.2 2 2,... 2 =2 :
(2) Yy tyyt Uy T oXy txpt +x “-nx g ;
3

11

(n-1)52

[
O g PO, R A7y S b ok,
o, s




S

R

" and note that ql2 is the ratio of x2
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if we subtract ylz from both sides of (2), and then divide
by yl2 we obtain:

2.2 2 ,
Yo *¥3 *teeet¥y C(-1%s? -1

y12 n(xl—;()2

1t we divide both sides of the above expression by n-2

we obtain:

<q-1>232 .

n-2

2 n(n-2) (x,-%)2
Yy 1
-

variable divided
n-2

by its degrees of freedom and a Xi variable; qlz nas

a distribution which is F A similar procedure may

n-2,1°
be performed for each observation of our sample, to obtain
rarffsformed observations which are each'distributed as

Fn- i From each of these transformed observations, we may
b e ‘v

obtain variates which are uniformly distributed by

applying the PIT. These uniform variates will not bé
distributed independently, but it is felt that as sample
size increases the correlations among them will decrease,
and that for large size samples, tests may be made by

Case 0 EDF statistics. For small sample sizes (up to

30), the effect of correlations among transformed observa-
tions is quite important. - In able % a chart of percentages
of samples from the Normal Distribution found significant

by the EDF statistics is presented. The tests were
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performed using the critical points of Case 0, with level

of significance a = ,05 and .10, There are wide disparities

between the proportions of samples found significant and
the proportions which would be found significant in true

Case 0 situations. Without a recomputing of critical

points for EDr statistics under these transformations,/ﬁzj\\\\\\

N\
1s impossiple to gauge the effectiveness of these trans- °

\
formations. To perform tests using the given pe;bentage

points would be an extremely conservative testing procedure,
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TABLE 4

Percentages of N(0,1) Samples Found

Significant by the Methods of Correlated

Uniformly

Distributed Observations

n D

.10 .006

15 ., 009
)

_20 .010
30 .011
\

n D
10 .022
15 .025
20 .023
30 .034

.025
.028
,027

,030

.053
.056

.058

.012
. 015

.01l

.022
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3.3 Exact Tests in the Presence of Unknown Parameters

Another method of testing goodness-of-fit for
composite hypotheses has been proposed by Csorgo, Seshadri,
and Yalovsky (1973). The method, based on characterizations

14

of distributions, involves the use of transformations to
the data so as/eo produce transforms which follow a com-
pletely specified distribution function if and only if the
observations themselves come from the Null CDF. This
method avoids the problem of unknown parameters by réplacing
the test of a composite hypothesis with that of a simple
one. This method does, however, ﬁave several undesirable
properties which should become apparent in discussion of
the method with respeét to a test of normality. References
to proofs of theorems underlying the method may be found
in the paper by Csorgo et a}. /

Suppose a sample of size n has been obtained on a

. . . 2 .
random variable X with mean p and variance o ., We define:

v, = (x1+x2+33‘+xi—i.xi+l)//iti+l),,i=1,2,...fn—l
1
_ . 2, 2. ... 2.5
Vi T K V(v it IR )2 - 1,2,...,n-2

Then the sample observations XiXgaee0sX, are distributed
N ,0) if and only if Y12Yga++es¥, o arE distributed

according to student's t distribution with degrees, Qf
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freedom equal to 1,2;...,n~2, respectively, Since we have,
under the Null Hypothesis, variates from a completely
specified distribution, our test of fit may be based on
these transformed varidtes. Any of the methods for testing
simple hypotheses may be applied, such as the EDF test
statistics.

While from a theoretical stand point there is
little that is objectionable to basing goodness-of-fit
tests on the above transformations (the transformed observa-
tions are not identically distributed) from the practical
point of view, it is an extremely poof method. It is
found té be extremely insensitive at detecting departures
from normality, and is found to be extremely sensitive
to the order in which the sample observations have occurred,
different orderings of the same data yeilding markedly
different results. An exampié may'serve to demonstrate
“this.

Consider the following 15 observations to be tested
for normality, mean and variance unspecified: 1.3, 2.4, 3.4,
4, 4.5, 5.5, 6.1, 7.2, 8.3, 9.4, 10.7, 11.8, 98.2, 98.9, 99.9.
This sample has been constructed to bear no resemblance
to a sample truly obtained from the Normal Distribution.
When this sample is fested for normality by the case 3 EDF
statistics at an a level of 5% the value of each test

~ statistic fell in the extreme upper tail. Testing the

pagon e s =

© man -

. e s

Py

I VORI P

4)

do

YIS

CAARFY s L s



i~}
i

{
{

T A N W

I At en Bt g s % 3 B s WY @71

AR oy T ¢ e et wh 4 s e gra

L0

sample, as it stands, for normality by «the ngrgo trans-~
formations, the Null Hypothesis wés once agaig rejected.

Yet when these transformations were applied to the data

in different, random orderings of the sample, the following
percentages of acceptance for the Null Hypothesis were
recorded: D = 34%, V = 14%, W2 = 55%, U2 = 19%, A-D = unu%,
The advantage gaingd by the use of tests of simple hypotheses

seems small in contrast to the loss of reliability. Instead

of sharpening the information contained by the data, the

" use of these transformations seems to dull it and wash it out".
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3.4 Goodness-of-fit testing without estimation of

parameters

While there are many goodness-df-flt methods, none
is totally effective at determining some large departures
from the Null Hypothesis, Perhaps this étems from the
fact that samples of small size from many different distri-
butions may all appear alike. Goodness-of-fit tests'are:
only able td tell us that it would have been improbable .
to obtain the sample actually obtained, under our Null CDF.
The tests can not tell us'that the sample actually was
drawn from the Null CDF., In real situations, samples
never are from a particular disfribution, and so we are
more concernéz with being)able to act as if they were. In
light of this, it may be wise to adopt an extremely
pragmatic approach to goodness-of-fit testing. We shall
seek a Null Hypotbesis which is in agreement with the sample
data. Instead of accepting or rejecting the Null Hypothesis,
when parameters are estimated, based on a test criterion
evaluated at these parameter values, let us seek whether,

under the Null Distribution Function, there are parameter

.values for which this agreement does exist. For these

values, there is no basis for disbelieving the Null

Hypothesis, and we may act as if the Null Hypothesis is
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true.

Since this method entails the determination of a
region of acceptance for the Null Hypothesis, goodness-
oft-fit testing must be carried out throughout the sample
space. A single composite hypothesis 1is Peplaced.by myriad
tests of simple hypotheses ang the question arises as to
which test criterion to use, Q,Should the acceptance Pegiogbe
based on a single criterion, or should a joint acceptance
region,. based on seyéral test statistics be computed?
Stephens (1974) has shown that among the EDF statistics P
there are fairly high correlations; that is, samples
rejected by one EDF statistic are often rejected by the
-others. This would seem to indicate that, overall, little
difference would be made by requiring a joint acceptance
region. .

Because our acceptance region will point out the
parameter values at which our Null Hypothesis is tenable
(qr perhaps not untenable), the question of size of an
aéceptance region should not arise. Should our acceptance
region consist)of but a single point, there is no reason
to find our Null Hypothesis false at this particular point,
It is here that the problem of super-uniformity once again
comes into play. Since the smallest values of EDF test

statistics are associated with parameter values near the

sample estimates, the acceptance region might consist only
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of points associated with the situation of super-uniformirty.

Although in cases of super-uniformity the acceptance of

a NMull Hypothesis requires much smalier valueé of the EDF
test statistics than in Case 0, it 1s felt that the test
should be conducted as usual. We merely seek whether
there 1is contradiction, for a set of postulated values

rd

of papametérs; between the Null Hypothesis and the sample

&

data.
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CHAPTER IV

AN ILLUSTRATIVE EXAMPLE Of THE GOCLDNESS-0T-FI

METHODS

To indicate how the varijous goodness-of-fit metnods
perform in an actual testing situation, I will use an
example common to the‘literature, from Snedecor (1346),

A test of normality is performed on the following sample

of size 11 of the weight in pounds of men: 148, 154, 169,

161, 162, 166, 17C, 182, 195, 236. The test is of the com-

posite hypothesis of normelity.f As an indication cf the
truth of the Null Hypotnesis, the Shapiro-Wilk statistic
was computed, and found to have a value of 0.79, which is
at just below the 1% level of significance. On the basis
of this test, it is felt that the Null Hypo thesis is false,
the sample was not obtained from the Normal Distribution.

If we calculate the sample estimates of the mean and

variance, we may perform the EDF tests, Case 3. When this

is done, the following values for the statistics are obtained:

D= .259, V = .427, W2 = .164, U° = .143, A-D = .974.

These values correspond to roughly the followinga-values,
respectively: .035, .035, .01, .035, .01, On the basis
of the EDF tests, Case 3, once again the Null Hypothesis

is found to be false. Notice too, the close

44

e g erlay < M & awt T o

PR
a

oot s
LTI 3¢

FICL VAP

APREwe e s A AT

P ST S
NI b T I T T
e

e et e A W PRI VRSB LY



PO S E R RSP Pa

i wad VNP

45

agreement between the level of significance of W2 and
A-D to that of the Shapiro-Wilk statistic., This may be taken
as partial indication of their similar power properties.

The procedure of tqﬁnsforming observations to
obtain correlated uniform transforms was also conducted.: The
following valdes of the EDF statistics were recorded:

D= .248, V =.369, W2 =.159, UZ = ,112, A-D = 1.024.

These correspond to a levels of approximately, .07, .12, .03,
.05, .01 using Case 3 critical points. Because in a sample

of so small a size, the effects of correlations among the

" transformed observations are felt to be'important; and

« because there was no means of adequately evaluating the

~

\

‘rejected at the 10% level of significance, though

significahce points of the test statistics when this pro-
cedure has been uéed, it is difficult to analyze what these
values mean. It was noticed thathhe significance points for
each of the EDF statistics, under the method of transforma-.
tions to correlated uniform observations, fell between those'cf
Cases 0 and 3, but Sloser to those of Case 3. With this

*

as a guide, it is felt that the Null Hypothesis would be

possibly not at the 5% level. It is not felt that this
method will be particularly good at detecting departures

from the Null Hypothesis.
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When the data were apalyzed using the transtormations
suggested by Csorge, et al, results ‘were obtained which
once again point out the tremendous effect that ordering
of the data plays. For a test based on the data in the

order given, all EDF statistics occurredin the extreme

upper tail. While this might seem to be in accordance .

with the results of other methods, this is.misleading,
What the method so readily picked out is the lack of
independence of the observations. When other, random
orderings ofjthe observations were tested by this method
. The Null Hypothesis was most otten accepted (the A-D
statistac ;ccepts the Null Hypothesis ot normality 17 out
of 20 times). ' F\\\V
A calculation of an acceptance region for the
hypothesis of normality was conducted as follows:
‘ The data were standardizéd by the usual procedure,
The standan@gzeg observations were tested for normaliéy _'
~with values of the parameters ranging from 5T1‘5’1‘5)~ -
for p and.(.20,2.20) for 02, the acceptdnce regionbased on all
5 EDF.statistics at the 5% level of significaﬁce (figure 3)
A sufprisingly large region of acceptance was noted. This
points out one of two things. .
(1) TYor samples of small size, the' traditional ¢

methods do not perforﬁ well., A small sample could have

conceivably been drawn from an extremely wide range of
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distributional models.

(2) For samples of small size, there is little
jﬁstiflcation for any goodness-of-fit testing. Because
of wide variability based on test criteria, there is liittle
risk in assuming any distributional assumptions which are
convenient.

For completeness and a further emphasis of differ-
ences between uniformity‘and super-uniformity, I have
calculated the "covariance" of the Case 3 transforms,
and the Q and Q' statistics.

The covariance of the sample had the value cov. =
.664. When gompared to the significance points of Case 0
covariance, this is found'{b be near the modal value of
the'sta;istlc. bven in Case 3, the cov§riance is at level
of significance a = .07. The covariance could conceivably
by used as a test of fit criterion .(in preliminary investi-
gations, the covariance was found extremely ineffective as
a teét criterion), but the main value lies in pointing out
the tremendous change which occurs when the PIT is
applied using sample estimates,

Similarly, the Q-And Q' statistics obtained values
of 20.189 and 22.400 respectively. When compared to the
tables of chi-square, degrees of freeqom equai to 22, these

orrespond to levels of significance betweén the S0th .

and 25th percentages. According to this, by the misuse
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of traditional methods, the Null Hypothesis is readily
accepted. In preliminary studies, it was found that the
Q and Q' statistics, using the proper Case 3 significance
points which were obtained by Monte Carlo methods were
adequate test criteria. Because they are <asily computed,
they may deserve further consideration as a possible test

of fit statistic.
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