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ABSTRACT 

Goodness-of-fit.testing of simple hypotheses has a 

long, well known history, When the Nu11 Hypothesis speci

fies only the form of the Null Cunulative Distribution 

F~nction (CDF), with values for one or more parameters un-

specified, the problem is not so clear cut. This project 

examines several metho~s of testing fit in the presence of 

unknown.parameters, The methods, briefly described below, 

. are all based on the Empirical Distribution Function (EDF), 

(1) The unknown parameters are estimated from the 

sample. Modified EDF statistics using these sample esti-

mates, are computed, and compar~d to the significance points 

which have been obtained by computer simulation. 

(2) The unknown parameters are estimated from the 

samp~ Transformations are applied to the observations to 

obtaii,transformed varia~es which, under the Nu~l Hypothesis, --are distributed as dependent uniform variates. These trans" 

forms are tested for uniformity by the EDF statistics, 

(3) A series of transformations is applied to' the 

data to obtain transformed variates which under the Null 

Hypothesis follow a completely specified Distribution 

Function; the nuisance pa~ameters have been eliminated. 

This new, simple hypothesis is then tested by the EDF 

statistics. 
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(~) For various parameter valuc~ th~oughout the 

parameter apace, the EDF statistics are computod. A region In 

the parameter space for acceptanco of the corresponding 

simple hypotheses is determi7 
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CHAPTI.;H T 
\ \ 

THE '1'1:3'1' STAT I ~'1'I C,S BASED ON TtlI: EDr 

1. 0 IN'1'HODUC1'J UN 

Suppose the samplo x1 ,x 2 ' .. ,xn has bean obtainod 

on the r4ndom variablo X. We wish to test the Null Hypotho

sis: 

x '" F(X,~) 

" Differences between the sample COF and the EOf, dofinod 

beiow, form the basis of soveral goodness-of-fit statistics. . \ 

definition: Given a sample of size n on the random 

variable X, the EOF, S (x), n is defined as that 

proportion of the sample having a value less than or equal 

to x. ..... 

n 
Sn(x) = t s(x i ), where s(xi) = lin for 

i=l r 
Xi ~ x, o elsewhere. (",,(,"" ! 

( , 

For a true null hypothesis, the two functions, the' cor 

and the EOr should be quite close to each other. How this 

nearness is evaluated determines the differe.nt EOF statistics, 

For all the EOr statistics, tho following is assumed: 

To each observation Xi' on the random variable X, 

the prObabi~tY Integral Transformation i. applied to give 

a new observation zi on a random variable Z. The statis

tics which follow are d~fined in terms of ~, but could as 
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woll bo dpf iTlttd in tt'r'ffW of~. Tho computing fOrTrllllllfl 

aro givf?n in torms of thn 7. i , which rU'C hl1f1c{!fOT,th alwump~l 

to bo in C1scond i ng or'dor. for <lIlCP EDf n t (1 t i r. tie, a EJub-

9cf'ipt is ofl(,T1 includ~d to indicllto oamplo nizp.s: whorp 

little risk of confusion arisnn, thin han becn omittod. 

Tho Probability Integ~al Tranr.formlltion (PIT) may 

,be dofinod as: 

Z(x) • fX f(x)d', Wh.~e f(x) is Jhe probability 
_00 

density function of the random variable X. 

Sometimes the PIT will bo used with some parllmet~rs 

estimated from the data. In what follows, estimates of 

mean ~ and variance a of a population will be given by 

- 2 - 2 x : tXi/n and S : t(xi-x) I(n-l), unless otherwise stated. 
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1.1 Tno Kolmogorov-Smlrnov D Htatistic. 

Kolmogorov (1933) introducod tho f.ollowlng statin! ir' 
I...:; 

, tor tosting fit: 

D =! ~up 

Tho statistic D measures the greatest absoluto 

difference between the CDr and ~Dr, and has the followlng 

properties: 

(1) The probability distribution of D depends only 

'on !he. sample size n, and ncit on the distribution being 

tested. 

(2) ~he asymptotic distrlbution is Known 

I. 2 
Pr (D < C / ~) = 1- 2 r 

j=l 
( -1) j - Ie 2j c 

(3) The pre-aaymptotic signiticance pOints have 

been computed by, among others, Birnbaum (1~5Z). 

The signiflcance points may be uied to construct a 

contidence bound around the sample. CDF, ili F('X) "+ DnC,,) 

where ~) is the value of the statlstlc at level of 

significance a. If, for any value in the sample space, the 

EDF falls outside this bound t the NUll Hypothesis 1s re-

jeoted. 

h i i f 
J , 

T e stat at c may be computed rom the following 

form: 
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D = max (D+ , D- ) whece 

D+ = max (i/n-z.) 
i 1 

D- ( i-]) 
= max (z.- In) 

i 
). 
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1.2 Kuiper's V Statistic 

K~iper (1960) proposed a modification to the D 

statistic of Kolmogorov, defined as ~ollows: 

v = sup[S (x)-F(x)]-inf[S (x)-F(x) 
x n x n 

This statistic is found t~o be origin invariant wi th' respect 

to the value Xo at which cumulation begins, and may be used 
, 

not only for tests of fit on the line, but on the circle. 

The statistic is found to have the following properties: 

(1) I~ is dependent only on sample size and not on 

the Null Distribution being tested . 

( 2 ) 
.:;-. 

Its asymptotic distribution, and a reasonable 

approximation to the pre-asymptotic behavior is give~ by:, 

P (V /1) 1 ~ 2(4]·2 c 2_ l )e- 2]·2 c 2 r < c n = <-

j=l 

+ 8c 

3/n 

A table of percentage points for the statistic may be 

found in Stephens (1965), The statistic V may be described 

as the absolute sum of largest positive and smallest 

negative differences between the sample CDF and the EDF, and 

may be computed from: 

D+ - D+ - are defined V = + D , where and D as before. 

" 
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1.3 
') 

The Cramer-von Mises Statlstlc W'" 

The Cramer-Von Mlses test is based on the statistic 

W
2 def lned by: 

0> 

,W 2 = n J [S l;d - F(x»)2 df(x) 
n 

-co 

2 The IlmitiAg distrlbution of the W statlstlc is 

given by: 

lim Pr[w 2 
< t] = 

n 
II 

i=l 
sin [ ( 2 it) 11 2 ] 

1/2 

This asymptotic distr1bution has been tabulated by Anderson 

and Darl1ng (1952). The pre-asymptotic signif1cance points 
\ 

have been found by Pearson an9 Stephens t19b2) using Monte-

Carlo methods for n = 10, and by curve f1ttlng for 

n = 5,10. 

~r calculation) the simpler computing form ot 
n r; = E (z. -

i=l 1 

may be obtained. 

2' 2 1-1) + 1/0-2n) 
2n 

This may be demonstrated by div1ding 

the interval into the n+1 subintervals defined oy-tne:sample 

9bservations. The 1ntegration is then performed, and the 

results are summed to obtain the value of the 1ntegral 

through the entlre sample space. 
. , 
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1.4 2 S . . The Watson U tatlstlc 

Watson (1961) suggests the following statistic, a 
• 

modification of the w2 statistic, for a test of fit: 
co 

-co -co 

Watson shows the statistic to be identical to 

the Cramer-Von Mises statistic 

Xo which minimizes W
2

, ie U
2 = 

with respect to that origin 

Win W
2

(Xo)' where cumulation 
o 

i~ initiated at xO' Beyond the origin invariance of tnis 

statistic, which enables it to test for uniformity of 

direction on the circle, has the favorable property of its 

distributions rapid convergence to its asymptote, given by 

computing 

Pr(U2 '1 2,2 2 
> c) = r (-U)- 2e- ) 1T c 

j=l 
A table of significance points for both the ~ymptote, and for 

some pre-asymptotic sample sizes, may be found in Stephens 

(1963). 

By a method of analogous to that of W2, the following 

computing form may be obtained: 

2 n 
U = E (z. -

n 
where z = r 

i=l 

. 1 ~ 1= 

z./n. 
1 

2i-1 _ Z + 1/2)2 + 1/(12n) 
2n 
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1.5 The Anderson-DarlIng Statistic A-D 

~ Anderson and Darl1rg(195~) suggested another means 

of measuring distance between the EDf and sample CDf, 

namely: 

A-D = n 

-co 

where ~tt), o<t<l, lS a preass1gned weighting function. 

The stat1st1c is seen to be a modif1cation to the Cramer-

2 Von Mises statistic, reduclng to W when ~lt) :1, O<t<l, 

The authors obtain a computing form as: 

n '?2i-l A-D = 2 r {~2(z.) - 2I1 IjIl(zi)} + n 
i=l 1 

t 

where IjIl. (t) = f 1jIlS)dS 

o 

t 

()~2(t) = f s·1jI(s)ds. 

o 

1 

f O-tJ 2$l t)dt 
0 

Throughout tnis paper, when reterence is made to the A-D 

statist1c, 1t may be assumed that ~(t) =·l/[t(l-t»). 

This welghting funct10n has been chosen so as to provi1e 

a heavier welghting to the difterencesbetween the CDF and 

EDF which occur in the tails ot the sample space. We note 
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that the measure of difference 1S based on y(z) = 

In [~ (x)-z] where 
n 

1. 1S the value of the sample CDr at 

x = x. The'var1ance of Y(z) is z(l-z), and thus this 

weight1ng function scales the weights accordlng to the 

variability of the difterence on which it is based. When 

th1S weighting function is used, the computing form reduces 

to: 

A-D = 
1 n 

E 
n i=l 

Ui-1) {In z. + InO-z '+1)} - n. 
1 n-1 

... 
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CHAPTER II 

UNIFORMITY AND SUPER-UNIFORMITY: SOME COMPARISONS 

2.0 The probab1lity Integral Transtormatl0n,when 

Parameters are Estimated, 

When the Null HypothEisis iS,slmple, the PIT trans-

forms the original observations x. to new observations z. 
1 1 

which are, before ordering, lndependently and unlformly 

dlstributed Unlform (U,l). Let us now consider the 

situatlon in which parameters are replaced by the~r sample 

estimates. If the PIT is applied, the transformed observa-

tions no longer have these distrlbutional properties under 

the Null Hypothesis. David and JOhnson (1947) have shown 

that tor a Distribution Function specifled by an es~imated 

scale p~rameter D(x) and/or an estlmated lopation parameter, 

m(x) the density of a single transtormed observation is of 

the torm: 

x.-m{x) = 1 

D(x) 

f (x*) 1S the value of the density of the random varlable 
1 

X at this particular standardlzed variate, and p(x*) is 
1 

the denslty function ot the functlon of the observations 

x~. Note that in general the values ot f \x~) and p~x*) 
1 1 1 

wlll differ, and thus the distribution of a transformed 
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observation will be other than unlform. In order to obtain 

the density as given, the estimators must tu)fi1l the 

following requirements: 

( 'L ) m (a, a , ... ,a) :: a 

(4) D(a,a, ..• ,a) :: 0 

{ 5 ) V ( kx 1 ' kx 2 ' . . . , k~~) :: I kiD ( xl' x 2 ' . . . , x n ) 
( 

In figure lea), a comparison of the densities of a 

transformed observation from the Normal Distribution,parameters 

lJ and a 
_ 2 

estimated by x and S, respectively, is presented 

for sample Slze n = 7,16 and 25. While for the smaller 

si~ed samples there is great difference in shape between 

this density and a unitorm one, tnese differencpslessen 

as sample size increases. Even for samples as small as 

n = 25, the density of a z is simllar to Uniform through-
1 

out the central 95t of the [0,1] interval. The marke? 

differencesin shape occur only at the extreme tails ot 

the interval. In figure l(b), the density of a single 

transformed observation, from the Exponentla1 Distributlon, 

for sample size n = 7,16, and J5 has been presented. It 

may be seen that 'there are quali tive slmilarl ties between 

these "two density functions (Figures lea) and l(b». In 

both instances, the estimatlon of parameters leads to a 

~ 
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figure la 
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The Density functiofl of a Single Transformed Observation frorr! the· 

Normal Distribution, Parameters Estimated by x and ',. 
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Figure l,b 

The Density Function of a Single Transformed Observat ion from t hr· 

Exponential Distribution, Population Mean Estimated by 
~ 

Sample Mean 
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lessening of the probabIlity for the occurrence of a 

transformed observatlon well into the tails of the [U,l) 

interval. 1 have called the general behavior of samples 

for WhlCh the PIT IS applied, with estimated parameters, 

"super-uniformity". Th18 is meant to indicate the tact 

that in spIte of not being themselves dIstrIbuted uni-

llj 

formly, the observations tend toward a degree of regularity, 

of lack ot clustering, and of lack of extremes whlch make 

samples appear uniformly distrIbuted. 

In the notation of Stephens (1914), three situa-

tions nave been dlstingulshed: 

Case 0: The transformed observations are truly 

independently and ldentically dlstribut~d as Uniform (0,1). 

Case 3: The transformed observations are obtained 

by applying the PIT to observations from the Normal 
2 

Distribution, the parameters estimated by x and S , respec-

tively. 
• 

Case 4: The transformed observatIons are obtained 

by applying the PIT to obser~at1ons from the Exponential 

Distribution, tne population mean estimated by the sample 

-mean x. 

I will first examine some characteristics of super-

uniform samples, and then methods of performing EDF tests 

in situations or super-unIformity. 

J 
I , 
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2.1 Differences g~tween ~lmples of Cas~ 0 and 

Case 3 

As a means of illustrating the dlfferences in the 

transformed observations arlsing as a result of estimation 

ot parameters when applying the PIT, several Case 0 and 

Case 3 samples have been presented in figure 2. The 

samples shown wereobt~in~d,in Case 0, by applying the 

PIT using the known parameters, to observations from the 

Normal Distribution. In Case 3, these same observations 

were transformed using the PIT with parameters estimated. 

The samples depicted have all been chosen for the "non-

uniform" appearance of the Case 0 samples. 

From Figure 2, .it appears that the Case 3 samples 
• 

appear much mo~e uniform than the truly Uniform samples. 

The observations, in Case 3, tend to disperse more fully 

throughout the [O,lJ interval, with the observations not 

clustered together to the same extent as in Case O. In 

Case 3, because of the estimation of parameters, the 

occurrence ot observations distant into the ta~ls or the 

[0,1] interval 1S lessened. Because 1n true situations of 

uniformity, especially tor samples of small size, the 

variations or sampling may produce samples which do not 

appear as regular as expected, it is striking that 

super-uniform samples apper.lr so "typicallyll uniform, They 

\ -, 

J , 
J, 
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are as samples trom the Uniform Distribution, stripped 

of the seeming departures from uniformity WhlCh ordinarily 

might occur. 
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Figure 7 . 
A Comparison of Cus e 0 SampJes dnd Their Associated 
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! ' Case 3 Sam[.lles 
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i ~ 2. 2 The "Covariance" 3etwee!1 the rJrdered Transfor'm-?.J , 

Observations and Their [xpected Values Casps 0, < 

and 4. 

Because super-uniform observations appeaI\':o 

regularly space themselves throughout the [O,lJ interval, 

without t:'e large ga?s, o,r clusters between observations, 
I \ 

the super-uniform order~d ob~:ati~~cu: much closer ~c 
I '- ~ V 

their expectations than is usual for uniform ordered observa-

tions. To demonstrate this tendency, let us examine the 

"covariance" of the ordered transforms of Cases 0,3, and r 

and their expected values. We define this covariance by: 

n _ 
Cov = r (z,-z) • (i/(n+l) -1/2) 

. I 1 1= 

n 
= L z.c(i/(n+l)-1/2). 

i=l 1. 

In Case 0 situations the first four moments were 

calculated by theoretical considerations. In order to obtain 

the significance points for various sample sizes we represent 

each zi as the sum of spacings between uniform observations. 



/ 

If 

then 

ul = zl 

u j = Zj-Zj_l (j = 2,3 •.•. ,n) 

1. 

Z. = L u., for all i = 1,2, ... ,n. 
1 j=l J 

The covariance is then represented as a linear combination 

of these u.,j=I,2, ... ,n. By a result of Stephens Cl972a) 
) 

we have that the first four moments of the covariance are 

g1.ven by: 

n 
l.I = r 

i=l 
a./n+l 

1. 

2 n - 2 
a = E (a.-a) /{n+l) (n+2)} 

. 1 1. 1.= 
n _ 3 

l.I3= 2 E (a.-a) I{(n+l) (n+2) (n+3)} 
i=l 1. 

19 

n - 4 - 2 2] E (ai-a) +3(I(a i -a i » /{(n+l) (n+2) (n+3) (n+4)} 

i=l 
n 

where a.= I ( 
1. 

'\ j = i 
i - 1/2), 

n+l 

.. 

These moments were used to fit Pearson curves to find 

significance points. 

These Case 0 significance points have been verified 

by Monte Carlo study for several sample sizes, and found 

to be in agreement to three decimal places. To obtain the 

significance points for the covariance in Cases 3 and 4 it 

was necessary to rely totally on Monte Carlo simulations. 
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In Table 1, signifIcance poi~ts of the covarIance, for 

a few sample sIzes, have been gIven. ~n examIning these 

signiticance points, the most strikIng difrerence noted 

was the grear lessening or spread between the sIgnIficance 

points at va.rious p?r :entage levels for the super-unIform 

samples. In Case 3, tor Instance, the spread between 

upper and lower l~ pOInts has dropped to less than one-h2ir 

of the Case 0 values. With respect to the value of 

covariance, the super-uniform samples tend to act much 

more like each other than do samples trom the unIform 

'distribution. There is a much smaller Incidence ot 

"atYPIcal" samples than with uniform observations. This 

fact is evidenced by the centralization of the Case 3 and 

• 
Case 4 covarlances. 
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~' TABLE 1 
oe, . , 
\". A comparison of significance points ., • 
~ -, for covariance: Cases 0,3 and 4 
" 

Case 0 

n .01 .05 .95 .99 

1 . 
10 .391 .481 .861 .918 

15 .791 .931 1. 317 1. 392 

20 1.09'4 1. 223 1. 788 1. 859 

30 1. 835 1. 991 2.661 2.777 

. 

? 

Case 3 ' .' 

d.... 
; 

n .01 .05 . 95 .99 

10 ,,'.587 .643 .786 .793 

15 .977 1. 032 1. 222 1. 2 37 

20 1. 340 1.416 ,1. 658 1.681 

30 2.144 2.222 2.534 2.557 

I Case 4 

I 
~ J, 

n .01 .05 .95 .99 t I 10 .429 .516 .865 .901 
\ 1 
1 

I 15 .763 .876 1. 323 1. 368 

"I " 20 1.133 1. 267 1.765 1. 833 

.! 30 1. 922 2.046 2.651 2.773 
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2.3 Behavior of Q S~atistics ~n Cases 0,3 and 4 

further evidence or whatffid~ be described as the 

"pathological uniformIty" displayed by super-uniform 

samples is demonstrated by the Q statIstIcs, first Intro-

duced by Fisher (l~32) as a means of Doth combIning inde-

pendent tests of signifIcance and t~ting goodness-of-fit. 

The Q statistics bear some sim~larity to the "[DF statistics 

in that all use the PIT to obtain the uniformly distributed 

transtorQed observations upon which tests are based. They 

are defined as fOllows: 
n 

DefInition Q = -2 In(IT 
i=l 

n 

z.) ""
I 

~ = -2 In(IT Ll-z.]), 
1 

i=l 

It may be readily shown that under a true Null Hypothesis 

both Q and Q' tollow a chI-squared distribution with 

degrees of freedom equal to 2n. A fuller description 
, I 

of these stat~stIcs may be found in Pearson (l~38). 

The Q statistics have received very lIttle use as 

goodness-of-fit tests when parameters are estimated from 

the sample. As mentioned earl~er, when parameters must 

be estimated from the sample the transformed observations 

are neither uniformly nor independently distrIbuted. Let 

us examine how th~s WIll affect the ~ statistics. 
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" 

~le 2 provides a comparison of the means and 

variances of the Q statistics for Cases O. 3 and 4, dnd 

several sample sizes, based on a Mohte Carlo study of 500 
t 

samples of each size. Notice that for Case 3, all sample 

sizes, there 1S a tremendous drop in the variance of the 

statistics. The mean values are very clo3e to their 

theoretical (Case 0) values, but the variability drops 

to about 1% of that for a true chi-sq~are variate. In 

Case 4 there is still a sizeable lowering of the variance, 

but this is of nowh~re near the same magnitude. S~me 
\ 

.insight into reasons for this may be gained by examining 

the Ca;e 3 and Case 4 density functions (figures ICa) and 

l(b». 

It has already been ncted (section 2,0) that for 

both these density functiornthere is a lessening of 

probability of the occurrence of an observation in the 

extremes of the [O,lJ interval. It is the nature of the Q 

statistics that it is a preponderance of either "large" 

or "small" transforms which accounts for extreme valu~:.j 

the statistic. With samples containing only observa-

tions more closely distribute~ about the midrange, the In 

product of these transforms will also att.:; ii1 less 

extreme values. While the Case 3'pensity function is 

symmetric, with a low probability of occurence to trans-

forms at both ends of the [0,1] interval, in Case 4 there 
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lS still sizeable probabllity of a ttansform~ occurence 

ln the lower tall. This opens up the possibIlity of 

a Case 4 tample'having transforms with small values, and 

thus more room for variability of the statistic Q. Notice 

that the form of the Q'statistic forces: in Case 4, the 

attainment of the exa~t theoretical mean for all samples*. 

n n 
*Q' = -L In IT O-zi) = -2 r In (l-z ) 

i=1 i=l 1 

n x. 
= -2 L 1n [ 1-(l-exp ( 1 )}J 

i=l x 

-nx. n l 

= -2 L = 2n -
1.=1 x 

\' 

\ 
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TABLE 2 

t , , Means and Variances of the Q Statistics: 

Cases 0, 3 and 4 

Q 

n Case 0 Case 3 Case '4 
m v m v m v 

10 20.2402 42.1088 19.4265 ,1089 19.1228 21,7~95 

15 29.8813 63.0159 29.4286 .2217 291320 32.6346 

20 39.9190 77.2628 39.4411 .3540 39.2020 48.7158 

Q I 

n Case a Case 3 Case 4 

m v m y m v 

10 20.0417 42.5339 19.4321 .1086 20.0 

15 29.8033 56.7333 29.4391 .2'190 30.0 

20' 39.6855 78.2921 39.4311 .3545 40,0 

, .. 

i, 

, , 
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2.4 An Illustrative Example of Super-Uniformity 

Super-uniform observations often arise as a direct 

result of parameter estimation, but may arise in other ways. 

Let us consider an example by Pearson (1963), based on the 

years of ascension to the throne by En~lish monarchs 
"" between the years 1050 and 1950 A.D. The dates are 

standardized, and testing is for uniformity on the [O,lJ 

interval. It was not expected that this "time series" 

would behave as independently distributed variates from the 

. Uniform Distribution. As Pearson says: "If a King reigned 

for a long time, his son would be old when he in turn 

succeeded." Because proximate reigns are highly inter-

dependent, the observations violate the assumption of inde-

pendence. If we apply the goodness-of-fit tests using EDr 
2 statistics, the following levels of significance for D,V,W 

2 and U are recorded: .03, .025 •. 07, .034. For each 
i 

statistic the data yield a value wellthto the lower tail. 

For each statistic the nonrandomness of the model is picked 

out by subnormal variation. When the EDF has drifted in 

value from the CDr, the correlations between the observations 

cAuse a quick return to where 'it should be. Super-uniform 

samples may be described as too"g~od", and these dates 

have this appearance. 

f 
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CHAPTER III 

METHODS Of TESTING GOODNESS Of fIT IN THE PRESENCE 

OF UNKNOWN PARAMETERS. 

3.0 INTRODUCTION 

from the preceding discussions it is hoped clear 

that the samples that have been labelled super-uniform 

differ greatly from samples that truly come from the 

Uniform Distribution. Often we are confronted with the 

problem of testing goodness-of-fit when the Null Hypothesis 

specifies only the form of the Null CDf. Because parameters 

do not have known values we are faced with the situation in 

which we may actually be testing for super-uniformity. 

Several methods of circumventing this difficulW in 

goodness-of-fit testing are presented below. 

27 
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3.1 Application of Case 0 Statistics 1n Situations of 

Super-Uniformity 

While the EDr statistics were designed for use in 
I 

tests df simple hypotheses, they may be modified for use 

in situations of estimated parameters. To do this, the . 
PIT is applied to the sample observations using sample 

estimates for the parameters. The question natura,lly 

arises as to how this estimation of t'drameters is to be 

performed. Consider, for instdnce, the Kolmogorov-

Smirnov statistic D. It, has been modified by Lilliefors 

(1967) to obtain a statistic ~, for use in Case 3 situa-

tions. The parameters \.l and a are estimated using maxi-

mum likelihood estimates x and Sl' where x is defined as 

2 - 2 usual, and Sl = E(Xi-X) In. The statistic is calculated, 

as in Case 0, and is compared to significance points 

obtained by Monte Carlo methods. An alternative nodifica-

tion to the statistic D has been proposed by S~inivasun 

(1970), namely D which uses Minimum Variance Unbiased 

Estimation of the parameters in applying the PIT. Results 

originally published seemed to indicated that the statistic 

D has favorable power properties over~. It has more 

recently been shown by Schafer, Finkelstein and Collins 

(1972) that this was due to errors 1n the signifi~ance 
~ 

points used. Their results seemed to indicate that both 

.. 
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adaptations to 0 nave essentially the same power propertic::" 

wIth little reason tor preferring one method to the other. 

Similan modifIcations may be made for each of the EDr 
I 
\ 

statIstics. 

Table 3 provides a comparison of significdDce 

29 

pOInts, found by Monte Carlo simulation, for several sam~'le 
-4 

sizes 1n Cases 0, J and 4. The estimates used in applying 

the PIT were the unbIased estimate of population variance, 

2, and the usual estimator of the mean. tor each of the 

2 2 statistics examined, (ie. D, V, W, U ,AD) a substantial 

drop in the critIcal points needed for rejection of a 

Null Hypothesis was noted. 1he most drastIC drop occurred 

for the Anderson-DarlIng statistic In Case 3. To explain 

thIS substantial decline in crItical values, we remember 

that the A-D statistic gives heavy importance to ditferences 

between the [Dr and cur occuring in the tails of the sample 

space. When parameters are estimated from the sample, tne 

low probability to the occurrence of a transformed observa

tIon tar Into the tails of the [O,~ interval accounts tor 

extremal order statistics beIng mUCh closer to their ex-

pected values. Large ditferences between the EDr and CDr 

do not occur here, and hence the statistic seldom ac,hIeves 

values as large as it does in Case O. for all the 

statistics a much less pronounced difference between the 

EDr and CDr is enough to warrant reJection of the Null 

'1 .. ~ 

! . 

I 
1 
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Hypothesis. Goodness-of-fit testing is essentlally flnding 

a distrIbution functIon which flts,the sample. When we 

are able to estimate parameters, we are able to much m0re 

closely fIt the data to the dIstributional form wp arp 

testing. l'he closeness of flt shows ~p In the smaller 

values of the EDr statlstics. 

I 
~ 

I 
1 , 



31 

• I 

\. ,. 
TABLE 3 

A Comparison of the 3ignificance 

Points for the EDF 

Statistics· Cases 0,3 and 4 

().. = .05 

n Case 0 Case 3 Case 4 

10 ,4094 .2616 .3265 

D 20 .2941 ,1924 . 2'3 5~ "-

30 .2418 .1592 .1944 

10 .5149 ,4289 .4911 

V 20 • 3732 .3164 ,3555 

30 ,2078 ,2623 .2929 

10 ,4531 .1200 ,2205 

'" W2 20 ,4575 .1229 .2222 

30 .4588 .1259 .2228 

10 .1821 ,1105 .1585 

U2 20 .1846 .132 .1597 

30 .1854 ,1141 .1601 

10 2.492 .7843 1. 2651 

-: 
A-D 20 2.492 ,6919 1. 3019 

30 2.492 .7119 1, 3147 
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~:! TABLE 3 (cant.) \> 

·1 .' 
\ d... =: ,10 t 
1 n Case 0 Case 3 Case 4 
~ -.' 
.' 10 .380 .2394 .2965 

t D 20 .2651 .1760 .2144 
, 
~ 30 .2179 .1457 .1765 • 
i .. I . 
; 

10 ! .4794 .3992 .4547 

V 20 .3461 .2945 .3288 . , 
-; 

30 .2854 .2441 .2708 i 
j 

10 .3495 .0990 .1742 ! 
W2 20 .3490 .1015 .1756 t 

" 

30 .3485 ,1023 .1761 
~ 

1 
i 

10 .1497 .0914 ,.1280 ! 
l .. 

U
2 

20 .1509 ,0937 .1290 

30 .1513 .0944 .1293 

10 1. 933 .5701l 1. 0170 

A-D. 20 1. 933 .5767 1. 0466 

30 1. 933 .5934 1. 0569 . I 
! , 

.../\ I 
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3.2 Tests Based on Correlated Uniform Observations 

It has already been stated that when the PIT is 

applied to an observation, using the sample estimates 

for parameters, the transformed observation follows a 

known, non-uniform density function (section 2.0). 

Cons'ider a Case 3 test of normality. In this si~uation, 

the density of a single w. 1S glven by: 
1 

p(w.) = 
1 

2 nw. 

12 irn 1 

n-l 

[1 1 ] 

(n-l)2 

B(1/2,l/{2(n-2)}) 
: 2 

(n-4)/2 -~ .... /2 
e 1 

where w. = 
1 

-x.-x 
1 

s 
The proof of this lies in first finding 

th. joint density of xi,i,S, ie.f(xi,i,S) and then the 

conditional density f(x.lx,S). Because the density of a 
1 . 

transformed observation may b~ readily determined, an 

approach to testing goodness-of-fit in the presence of un-

kno~ parameters may be developed baSed on a furth~r trans-

formation to achieve uniformity. It is not expected that 

such ~ transformation would be capable of eliminating the 

dependencies petween transformed observations: thus the 

testing proced~res would still be based on va~iates not 

satisfying the conditions required for EDF testing. 

33 
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Let us examine how such transforoations could be performed. 
\ 

Let ~ = ~~ define a new set of variables 

(Yl'Y2" .. ,y ) where R is an orthogonal matrix 
1\ n . '" . ~ 
cO-lin) ,-c/n, ... ,-c/n 

with c 

1 
01 -

= {n/(n-1)}2. \., , 

"-
lIm,lIrn, ... ,lIrn I -

Representing both sides of the above expression as a sum 

of algebraic terms, we have: 

2 2 222 2 
el} Y1 . + Y2 +"'+Yn = xl + X 2 +"'+~n 

From the definition of the Y variates, it follows that 

2 2 Yl and Yn can be represented as: 

-2 2 ex. +x + ••• +x ) 
), 2 n = nx n = 

n-1 

2 substracting Yn or its equivalent from both sides of 

(1) we have: 

(2) 2+ 2+ ..• + 2 
Yl Y2' Y n-l 

= 2+ 2+ •.• + 2 -2 xl x 2 xn -nx 

= (n-l)S 
2 

," , .. 
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if we subTract 'l. 
Y

1 
from both sides of (2), and then dlvide 

2 by Yl we oDtaln: 

"L 2 2 
Y2 +Y 3 +. "+Yn - 1 

- 2 n(x -x) 
1 

It we divlde Doth sides of the above expression by n-2 

we obtain: 

= = 

and note the ratio of 

by its degrees of :freedom and a 

1 

varlable divided n-2 
2 

varlable; 41 has 

a di~tribution WhlCh is F
n

_ 2 l' A similar procedure may , 
be performed for each oDservation of our sample, to obtain 

(ja sformed observations wfiich are each'distributed as 

F l' From each of these tran~formed observations,we may 
n- "'" • 

obtain variates which are uniformly distrlbuted by 

applying the PIT. These uniform variates will not be 

distributed independently, but it is felt that as sample 

size increases the correlations among them will decrease, 

and that for large size samples, tests may be made by 

Case 0 EDF statistics. For small sample Slzes (up to 

30), the effect of correlations among transformed observa-

3S 

tions is quite importa:nt .. In able 4 a chart of percentages 

or samples from the Normal Distributlon found significant 

by the EDF stati"stics is presented. The tests were 

1 
I 

I 
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performed uS1ng the critical points of Case 0, with level 

of significance ~ = .05 and .10. There are wide disparities 

between the proportions of samples found significant and 

the proportlons whlch would be found signiflcant in true 

Case 0 situations. Without a recomputing of critical 

points for EDt statistics under these transformations,~ 
\ 

1S impossiDle to gauge the effectiveness of these trans- '\ 

format1ons. To perform tests uS1ng t~e given per~tage 
points would be an extremely conservative testing procedure. 
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3.3 Exact Tests in the Presence of Unknown Parameters 

Another method of testing goodness-of-fit for 

composite hypotheses ,has been proposed by Csorgo, Seshadri, 
~ 

and Yalovsky (1973). The method, based on characterizations 

of distributions, involves the use of transformations to 
/ 

the data so as to produce transforms which follow a COffi-

pletely specified distribution function if and only if the 

observations themselves come from the Null CDr. This 

method avoids the problem~f unknown parameters by replacing 

the test of a composite hYRothesis with that of a simple 

one. This method does) however, have several undesirable 

properties which should become apparent in discussion of 

the method with respect to a test of normality. References 

to proofs of theorems underlying the method may be found 

in the paper by Csorgo et ale I 
Suppose a sample of size n has been obtained on a 

. . h d' 2 random varlable X Wlt mean ~ an varlance cr • We define: 

Then the sample observations xix2"'t,Xn are distributed 

N(~.a) if and only if Yl'Y2""'Yn-2 are distributed 

according to student's t distribution with degrees,q£ 
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freedom equal to 1~2, ... ,n-2, respectively. Since we have, 
\ 

under the Null Hypothesis, ,variates from a completely 
I 

specified distribution, our test of fit may be based on 

these transformed variates. Any of the methods for testing 

simple hypotheses may be applied, sueh as the EDF test 

statistics. 
/ 

While from a theoretical stand point there 1S 

little that is objectionable to basing goodness-of-fit 

tests on the above transformations (the transformed observa-

tions are not identica~ly distributed) from the practical 

point of view, it is an extremely poor method. It is . 
found to be extremely insensiti~e at detecting departures 

from normality, and is found to be extremely sensitive 

39 

to the order in which the sample Observations have occu~red; 

different orderings of the same data yeilding markedly 
'. 

different results. An example may serve to demonstrate 

this. 

Consider the following 15 observation.s to be tested 

for normality, mean and variance unspecified: 1.3, 2.4, 3.4, 

4, 4.5, 5.5, 6.1, 7.2, 8.3, 9.4, 10.7, 11.8, 98.2, 98.9~ 99.9. 

This sample has been constructed to bear no resemblance 

to a sample truly obtained from the Normal Distribution: 

When this sample is ~ested for normality by the case 3 EDF 

statistics at an a level ,of 5% the value of each te~t 

statistic fell·in the extreme upper tail. Testing the 

, 
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sample, as it stands, for normality by'the Cporgo trans

formations, the Null HypothesIs was once agai~ rejected. 

Yet when these transformations were applIed to the data 

in dIfferent, random orderings of the sample, the following 

percentages of ~cceptance for the Null Hypothesis were 

recorded: D = 34%, V = 14%, W2 = 55%, U2 = 19%, A-D = 44'. 

L.O 

The advantage gained by the use of tests of simple hypotheses' 

seems small in contrast to the loss of reliability. Instead 

of sharpening the information contained by the data, the 

use of these transformations seeJ15 to dullit and"wash it out~'. 
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3.4 Goodness-of-fit testing without estimation of 

parameters 

While there are many goodness-of-flt methods, none 

IS totally effective at determining some large departures 

from the Null Hypothesis, Perhaps this stems from the 

fact that samples of small size from many different distri-

but ions may all appear alike. Goodness-of-fit tests are 

only able to tell us that it would have been improbable 

to obtain the sample actually obtained, under our Null CDF. 

The tests can not tell us'that the sample actually was 

drawn from the Null CDF. In real s~tuatlons, samples 

never are from a particular distribution, and so we are 
"-

more concerned with being able to act as if they were. In 

light of this, it may be wise to adopt an extremely 

pragmatic approach to goodness-of-f.i t testing. We shall 

41 

seek a Null Hypothesis which is in agreement with the sample 

data. Instead of accepting or rejecting the Null Hypothesis, 

when parameters are estimated~ based on a test criterion 

evaluated at these parameter values, let us seek whether, 

under the Null Distribution Function, there are parameter 

.values for which this agreement does exist. for these 

values, there is no basis for disbelieving the Null 

Hypothesis, and we may act as if the Null Hypothesis is 

" j 
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true. 

Since this method entails the determination of a 

reglon of acceptance for the Null Hypothesis, goodness~ 

ot-fit testing must be carried out throughout the sample 

I 

space. A single composite hypothesis 15 replaced by myrlad 

tests of simple hypothcse~ and the question arises as to 
\~ 

42 

which test criterion to use. Should the acceptance regionbe 

based on a single criterion, or should a joint acceptance 

region,~ based on several test statistics be computed? 

Stephens (1974) has shown that among the EDr statistics 

there are fairly high correlatlons; that 15, samples 

rejected by one EDr statistic are often rejected by the 

. others. This would seem to indicate that, overall, little 

difference would be made by requiring a joint acceptance 

region. 

Because our acceptance 'region will point out the 

parameter values at which our Null Hypothesis is tenable 

(or perhaps not untenable), the question of size of an , 
I 

acceptance region should not arise. Should our acceptance 

region consist of but a single point, there is no reason 

1 

to find our Null Hypothesis false at this particular point. 

It'is here that'the p~oblem of super-uniformity once again 

comes into play. Since the smallest values of EDF test 

statistics are as'sociated with pa!=,ameter values near the 

sample estimates, the acceptance region might consist only 
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~ 
of point~ associated with the situation of super-uniformi~y. 

Although in cases of super-u~iformity the acceptance of , .> 

, a~ull Hypothesis requires much smaller values of the EDF . , 
test statistics than in Case 0, it 15 felt that the test 

should be conducted as usual. We merely seek whe~her 

there is contradiction, for a set of postulated values 

of parameters', between the Null Hyp~1;.hesis and the sample 
,/:' 

data. 
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CHAPTER IV 

AN ILLUSTRATI'/E E:XN1PLE Of' THE :;OCD~lESS-'J! -fIT 

METHODS 

To indicate how the various goodness-of-fil metnods 

perform in an actual testing situation, I will use an 

example com~on to the literature, from Snedecor (1946). 

A test of normality is performed on the following sample 

of size 11 of the weight in pounds of men: 148, 15 4 , 169, 

161, 162, 166, 170, 182, 195, 236. The t~st is of the com

posite hypothesis of norm~lity.F As an indication cf the 

truth of the Hull HYro:r.esis, the Shapiro-Wilk statistic 

was computed, and found to have a value of 0.79, which is 

at just below the 1% level of significance. On the basis 

of this test, it is felt that the Null Hypothesis is false, 

the sample was not obtained from the Normal Distribution. 

If we calculate the sample estimates of the mean and 

variance, we may perform the EDF tests, Case 3. When this 

is done, the following values for the statistics are, obtained; 

D ::: 2 2 .259, V ::: .427, W ::: .164, U ::: .143, A-D ::: .974. 

These values correspond to roughly the followinga-values, 

respectively: .035,.035,.01,.035,.01. On the basis 

of the EDf tests, Case 3, once again the Null Hypothesis 

is found to be false. Notice too, the close 
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2 agreement between the level of significance of Wand 

45 

A-D to that of the Shapiro-Wilk statistic. This may be take~ 

as partial indication of their similar power properties. 

The procedure of t~nsforming observations to 

obtain correlated uniform transforms was also conducted .. The 

following valJes of the EDF statistics were recorded: 

D = .248, V =.369, W2 =.159, U2 = .112, A-D = 1.024. 

These correspond to a levels of approximately, .07, .12, .03, 

.OS, .01 using Case 3 critical points. Because in a sample 

of so small a size, the effects of correlations among the 

transformed observations are felt to be important, and 

~because there was no means of adequatel~ evaluating ~he 

significance points of the'test statistics when this pro-

cedure has been used, it is difficult to analyze what these 

values mean. It was noticed that the significance points for 

each-of the EDF statistics, under the method of transforma-. 

tions to correlated uniform observations, fell between those"of 

Cases 0 and 3, but closer to those of Case 3. vii th this 
e· 

.... as a guide, it is felt that the Null Hypothesis would be 
\ . 
rejected at the 10% level of significance, though 

possibly not at the 5% level. It is not felt that this 

method will be particularly good at detecting departur~s 
. 

from the Null Hypothesis. 
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When the data were analyzed using the trans!ormatlons 

suggested by Csorgo) et al, results 'were obtained whlch 

once again point out the tremendous effect that orderlng 

of the data plays. For a test based ~n the data in the 

order glven, all EDF ~tatisti~s occu~redin the extreme 

upper tall. While this might seem to be in accordance 

with the results of other methods, this is.misleadlng. 

Wha.t the method so readi,ly plcked out is 'the lack of' 

independence of the observations. When other, random 

orderings of)the observations were tested by this method 

The Null Hypothesis was most otten accepted tthe A-D 

statlstlc accepts the Null Hypothesis ot normality 17 out 

\ 
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of 20 times). 
'~ 

A calculation of an acceptance reglon for the 

hypot~esis of normality was conducted as follows: 
/ 

The data were standardized by the usual procedure. 

1h~ standa~zep observations were tested for normality 

with values of the parameters r~ng~ng from ~~l.S)l.s) 

• 

for ~ and.t.20)2.20) for 0
2 t~ acceptance region based on all 

S EDF statistics at the 5% level of significance (figure 3) 
- . 

A surprisingly large region of acceptance was noted. This 

points out one of two things. 

(l) For samples or small size) the' trad~tional 
I 

methods do not perform well. A small sample could have 

conceivably been drawn from-an extremely wide range of 

.. 
"{t 



Figure 3 

A Joint Acceptance Region of The Null Hypothesis of 

Normality 

-----~-. 

(·75 , 
\ :, 
:t 
; 

, 
i 

I-SO v·t 

I . ~ . 
j 

4 . 

. J 
-1 

1 
1 
I 

/-0 • 1 , 

-75 

·so ~ 

1 

.i,S I' 
I 

I . 
0.0· 

... /:0' ·------~-:s-o--..:--··--.. ·--~-·-O'O--·--t----.. --0:5 

:' ., , 



! 
i 

; 
) 

t 
l 
" , 

" , 

48 

distributional models. 

l2) For samples of small size, there is little 

justiflcation for any goodness-of-fit testing. Because 

of wide variability based on test criteria, there is little 

risk in assuming any'distributional assumptl0ns WhlCh are 

convenient. 

For completeness and a further emphasis of differ-

ences between uniformity and super-uniforIuty, I have 

calculated the "covariance" of the Case 3 transforms, 

and the Q and QI statlstlCS. 

The covariance of the sample had the value cov. = 

.664. When compared to the sign~ficance poi~ts of Case 0 . 
covariance, this is found' to be near the modal value of 

" the·statistlc. Lven in Case 3, the cov~riance is at level 

of signi!icance a = .07. The covariance could conceivably 

by used as a test of flt criterion .(in preliminary investi

gations, the covariance was found extremely ineffective as 

a test criterlon), but the main value lies in pointing out 

the tre~endous change wbich occurs when t~e PIT is 

applied using sample estimates • . 
Similarly, the Q 'and Q t statistics obtained values 

of la.lag and 22.400 respecfively. When compared to the 

tables of Chi-square, degrees of freedom equal to 22, these 

~orrespond to levels of ~ignificance betwe~n 
~ 25th percentages. ~ccording to this, by 

the 50th 

the misuse 
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of traditional methods) the Null ~ypothesis is readily 

accepted. In prelimin~ry studies, it was found that the 

Q and Q' statisti~s) using the proper Case 3 significance 

points which were obtained by M0nte Carlo methods were 

adequate test criteria. Because they are ~asily computed, 

they may ,deserve further consideration as a possible test 

of fit statistic . 
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