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ABSTRACT

‘This research investigates the development of a methodology for designing
self-tuning feedback linearizing control laws. If the conventional architecture for
linear plant self-tuning systems is applied to the feedback linearization case, it is
shown that the estimation algorithm gradient vanishes as the parameter estimates
approach the true parameter values. Vanishing of the gradient causes the
covariance matrix to increase without bound and consequently system failure.

A new architecture is presented that eliminates the covariance problem but
does not yield a direct estimation of the nonlinear plant parameters. The
parameters estimated in the new architecture are composites of the true parameter
values of the nonlinear plant and their estimated values. An adaptiﬁe law is
designed to interpret an error equation formed from the composite parameters and
asymptotically converge to the true nonlinear plant parameter values. A stability
proof and convergence properties for the adaptive law are given. Sufficient
conditions for a nonlinear plant to be capable of self-tuning in the new architecture
are specified.

The new method is demonstrated with simulations of an arbitrarily chosen
nonlinear plant and two plants of practical interest. One plant is a chemical

reactor running an exothermic process where reactor temperature is the controlled
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variable. The other plant is a bioreactor where control of the substrate
concentration in an anaerobic digestion process is the objective. In both cases the
method developed in this thesis offers performance improvements as compared

with previously published results on control of these processes by other methods.
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CHAPTER 1

Introduction

1.1 Background

The decade of the 60’s was a period of intense research in the control
of linear systeins. Among other things, there was a shift in emphasis from the
standard input / output plant representation in the frequency domain to internal or
state-space representation in the time domain. Numerous control techniques were
developed and much insight into system behavior was gained using time domain
methods (Rosenbrock (1970), Kalman (1963), Kailath (1980), Chen (1970)).
Similar progress was made in system identification theory with many new
algorithms proposed. The rapid development and increasing availability of digital
computers was a very significant contributing factor not only aiding in the
development of thé theory but also in the practical implementation on real systems.

Research in linear systems has matured to the point where it no longer
represents the leading edge of systems technology. The major emphasis ndw in
linear systems is on applications and robustness (Grimble (1994), Zhou and Doyle

(1998)). The new challenge is in developing controlier design methodologies for
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Section 1.1 Background 2

nonlinear plants.

Interest in all aspects of control and analysis of nonlinear plants remains
high as indicated by the number of recent journal articles. A representative
number of these are (Jain et al. (1994), Boskovic (1995), Annaswamy et al.
(1998), Jiang and Hill (1999), Meleiro and Filho (2000), Ferrara and Giacomini
(2001), Kojic and Annaswamy (2002)). Control of uncertain nonlinear systems
continues to be an area of active research. Nearly all of the literature addresses
control of nonlinear plants with unknown parameters. Proposals for control of
these types of systems are being pursued mostly by development of robust and
adaptive techniques. The adaptive methods utilize both Lyapunov (Zhang et al.
(2000)) and certainty equivalence (Meleiro and Filho (2000)) approaches.

In many practical cases the parameters of a plant model are not
accurately known or may change with plant operating conditions or the grade of
the product being made. However in model based controller design techniques,
accurate knowledge of the plant parameters is necessary in order to achieve the
design objective. In view of parameter uncertainty and since there are well known
on-line parameter estimation methods available, control systems have been
synthesized by combining an estimator with a ineans for translating the estimated
parameters into controller settings. Systems having the above three elements, that

- is, a parameter estimator, a design criterion utilizing the estimated parameters, and
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a controller tuned by the output from the design function were designated as self-
tuning or adaptive controllers. Controllers of this type are theoretically capable
of tuning themselves to optimal performance and maintaining optimal settings
should the plant dynamics change.

The interest in systems with self-tuning properties dates back to the
1950s (Kalman (1958), Gregory (1959)). However neither an adequate theory nor
computing capability were available at the time to support successful applications.
Major developments in system identification and control theory during the 1960s
helped to suStain the interest in adaptive control. Development of adaptive control
theory was continued throughout the 1970s and resulted in a methodology for the
design of adaptive controllers. Advances in computing hardware and software .
were made during this same time period and when combined with the advanced
theory, led to succéssful adaptive control applications (Harris and Billings (1981),
Narendra and Monopoli (1980), Narendra ‘et al. (1991)).

Self-tuning - controllers were developed vprimarily for linear plants
although the theory was extended to a certain class of nonlinear plant. For
nonlinear plants, feedback linearization has evolved into one of the main methods
of control. Development of this technique has attracted a great deal of research
effort over the past decade. Feedback linearization is amodel based method which

can be used to obtain a linear input/output response from a nonlinear plant. Once
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linearized, the large body of well established linear controller design methods are
available for application to the control of the nonlinear plant.

For the class of nonlinear systems that are feedback linearizable, it is
well known that given precise knowledge of system parameters and states that a
nonlinear state feedback and a set of coordinates can be chosen which will result
in linear dynamic behavior.

There are two components comprising the feedback linearization design.

The first is a control law which cancels the nonlinear plant terms that appear in

y® where y represents the plant output and r is the number of differentiations

needed to get an equation in which the plant input appears. For linear systems r

is equal to the relative order of the plant. The second component is a nonlinear
coordinate transformation which yields the states of the linearized plant model.
Both the control law and the coordinate transformation are functions of the
nonlinear plant parameters and states. It is necessary to have accurate parametér
and state data m order to implement and realize the benefits of a linearizing
controller. The problem now becomes one of accurately obtaining the .'parameters
and states in practice in order to implement the above procedure. Assuming that
accurate model parameters can be asymptotically obtained, one may consider a

self-tuning scheme to optimize the linearizing control law.
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1.2 An Overview Of The Problem

To build a self-tuning system for a nonlinear plant it would seem logical
to try to adapt the linear plant self-tuning regulator configuration. The parameter
estimator in this configuration is connected in parallel with the plant and
consequently is driven by the same input signal. In this case the plant and
estimator input signal is the output from the feedback linearizing control law. The
plant states could be measurable or estimated if a bootstrap estimator is used. For
example, the Recursive Prediction Error Method (RPEM) is designed to generate
both state and parameter estimates.

Prediction error in the RPEM algorithm is defined as the difference
between the plant output and the predicted plant output that is generated by the
estimation algorithm., The negative gradient of this error with respect to the
estimated parameters provides a direction in which the parameter estimates should
be adjusted in order to bring them closer to the true values. In the usual case of
parameter estimation, when the plant is driven by an arbitrary input, the gradient
depends only on the estimated plant output. When a linearizing control law is
used the real plant output also becomes a function of the estimated parameters.
Therefore the gradient will now be a function of both the feal plant output and the
predicted plant output. As the estimated parameters converge to the true values,

the gradieht of the plant output and the predicted plant output become equal. Since
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these gradients appear in the prediction error gradient calculation with opposite
signs, the prediction error gradient reduces to zero.
Inspection of the covariance matrix update equation shows that if the

prediction error gradient vanishes then the update of this matrix is inversely

proportional to the forgetting factor, A. The forgetting factor has a value in the

range of 0 <A <1. Consequently the covariance will increase without bound

causing the system to fail.

1.3 The Research Objective

Several researchers have proposed design techniques for adaptive
control of nonlinear plants. Meleiro and Filho (2000) use an artificial neural
network to estimate plant parameters. The estimated parameters are used in a
certainty equivalence mode to tune a controller. Boskovic (1998) modifies an
adaptive algorithm designed for linear plants described by a linear in the
parameters quel. His modification results in an adaptive algorithm designed to
handle a certain class of nonlinear plants héving nonlinear parameterization. In
general these and cher similar proposed techniques are complex. The complexity
of these schemes has ramifications in practical implementation.

The objective of this research is to develop a self-tuning feedback

linearizing controller of minimum complexity for SISO n’th order relative order
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r=n plants. (Relative order r for a linear plant is defined as the difference

between the order of the denominator and numerator polynomials of the plant
transfer function. For a nonlinear plant it is defined as the number of
differentiations of the output expression before the plant inpqt term appears in the
equation.) The complete state vector of the nonlinear plant will be assumed to be
measurable but parameters are assumed to be unknown. It is a further objective
to use one of the well known recursive parameter estimation routines to supply
estimates of the parameters. The RPEM will be used to handle this aspect.

The discussion in the last section indicates that a new system
architecture will be needed. Although not evident at this point, in addition to a
new architecture, an adaptive law for obtaining the nonlinear plant parameters
from RPEM estimates of the parameters of a reparameterized model is also
needed. The adaptive law will be designed to estimate the nonlinear plant
parameters that are needed in the linearizing control law and in the coordinate
transformation equations. The new adaptation procedure will avoid the
observability problem with parameter estimation in self-tuning feedback linearizing
systems. This research addresses these main issues and others which are
encountered during the course of developing a complete self-tuning feedback

linearization system.
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1.4 Thesis 0rgani¢tion

Chapter 2 presents a brief survey of the most useful methods of classical
nonlinear control theory. An introduction to feedback linearization control theory
and the mathematics and notation used with this method are given. The main
theorem (Su (1982)) for determining whether or not a particular plant can be
linearized by the feedback linearization method is presented. References where
mathematical proofs can be found are cited.

Several approaches to implementation of non-adaptive feedback
linearizing controllers have been reported in the journals. Some of these are
reviewed and tested on a simulation of a bilinear plant. Adaptive methods for
control of nonlinear plants are reviewed and the chapter is concluded with a
discussion of adaptive control methods for linear plants.

Chapter 3 evaluates the self-tuning system configuration used for linear
plants for use in the self-tuning feedback linearization application and establishes
the motivation for a new design. The problem of observability and hence
identifiability of the model parameters by conventional estimation approaches when
working with linearizing controllers, as discussed in séction 1.2, is illustrated by
simulations. Several alternatives are tried in an attempt to avoid the difficulty.
A new architecturé is proposed that solves the problem encountered with the

standard configuration.
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Chapter 4 continues the development of the self-tuning feedback
linearization system. The basic configuration proposéd in Chapter 3 does not
allow direct estimation of the nonlinear plant parameters. Instead it is convenient
to estimate the parameters of a reparameterized model of the feedback linearized
plant. A parameter error equation is formulated in such a way that the relative

agnitude of the true nonlinear plant parameter and its estimated value can be
determined from the sign of the error. An adaptive law is then designed to utilize
the sign information to further reduce the eﬁor in the parameter estimate.
Convergence properties of the adaptive law are investigated and stability is proven.

The complete system consisting of the new architecture and adaptive
law is demonstrated on a simulation of an arbitrarily chosen plant. The ability of
this system to track an input signal is also demonstrated.

Chapter 5 presents the results for the new method when applied to
simulations of two real industrial processes. Further refinements of the method
which are peculiar to the particular processes chosen are discussed. The systems
investigated in this chapter are also used to demonstrate, with nonlinear plants, the
problem with conventional architecture first shown in Chapter 3.

Chapter 6 summarizes the results obtained from this investigation and
concludes that the research was successful in providing a new approach to self-

 tuning feedback linearizing design. Topics for further research are suggested.
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1.5 Contributions

This research has resulted in a new method of design for self-tuning
feedback linearized systems. The special problems associated with parameter
estimation when linearizing control laws are used have been addressed and solved.

The effect that parameter errors in the control law has on the linearized
plant model is analyzed. It is shown that these errors can result in a nonlinear
parameterization of the linearized model. A parameter error equation has been
derived based on the various forms taken by the combinations of true nonlinear
plant parameters and the estimated values. An adaptive law has been designed to
estimate the nonlinear plant parameters from information contained in the
parameter error equation. The adaptive law is proven to be asymptotically stable
and shown to be capable of one step convergence under ideal conditions. In order
- for the adaptive law to apply, the plant must meet certain sufficiency conditions.
These conditions are given in section 4.2.2.

The new self-tuning method for feedback linearizing control was applied
to simulations of two real industrial processés.’ These two processes, reactbr
temperature control for an exothermic process and bioreactor control, are used
literally hundreds of times in industry. Controller design for these two processes
has been investigated by many researchers, (Dochain (1986), Cott and Macchietto

(1989), Annaswamy et al. (1998), Boscovic (1998), Viel et al. (1997)). Control
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and parameter estimation using the self-tuning method developed in this thesis is
compared with results reported in the literature by Dochain (1986) and Cott and
Macchietto (1989). For both the exothermic reactor temperature control and the

bioreactor control the new method shows improved performance.



CHAPTER 2
A Survey of Classical and Modern

Nonlinear Control Techniques

2.1 Introduction

System analysis and design is extremely difficult when the principle of
superposition is not valid. The normal mathematical tools and procedures used for
working with linear systems cannot be applied in these cases. However
nonlinearities exist in many systems of practical interest making it essential that
some form of analysis be undertaken.» For example couiomb friction, stiction,
binding, backlash, saturation, hysteresis, etc. are commonly found in components
and systems. Early attempts at analyzing nonlinear systems were made during the
1940’s and 50’s. Those which proved to be the most useful were the phase plane,
describing functions, linear approximation, and analog computer simulation
studies. These techniques were used primarily on static type nonlinearities such
as those mentioned above (Thaler and Pastel (1962), Truxal (1955), Leigh (1983)).
More recently the focus has been on dynamic nonlinearities. The major techniques
emerging in this area are feedback linearization and a method known as

backstepping (Kristic et.al. (1995)).

12
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2.2 A Review Of Some Classical Techniques

Over the years a number of methods have been developed for the analysis
and design of nonlinear systems. Those developed prior to 1970 are arbitrarily
referred to in this thesis as the classical techniques. The following sections give

a brief review of some of these methods.

2.2.1 The Pﬁase Plane

One of the most useful of the various classical methods is the phase
pl@e (Graham and McRuer (1961), Slotine and Li (1991)). It is a graphical
technique which in theory is applicable to n’th order systems but for all practical
purposes can only be applied to first and second order systems. The phase
tréjectory is a plot of x versus x. It is constructed by first carrying out a series
of slope calculations at several points in the phase plane and plotting short line
segments having the calculated slope. This is a very tedious process if done by
hand but with the widespread availability of computers today this is no longer a
drawback. A curve tangent to each of the slope segments is then sketched yielding
the phase tr‘ajeétory. This curve depicts the transient response for one set of initial
conditions. The process has to be repeated for each set of initial conditions of
interest. A plot of several phase trajectories is called a phase portrait.

The system can be driven only by initial conditions, steps, or ramps for
all of the various methods which can be used to construct the phase plane with one

)

exception. The delta method can be used with forcing functions that are functions
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of time (Cunningham (1958)). Unlike other methods of construction, this method
does not place restrictions on the plant input. The second order differential
equation describing the plant is manipulated into the equation for a circle in the
x,% plane. The center of the circle is at (5,0) where 8 =f(x,x,) lies on the x axis
and changes position as small incremental changes in the delta arguments are
made. Starting from initial conditions; short arc segments of a circle with center
at (5,0) are pieced together to form the phase trajectory.

The major advantage offered by the phase plane is that the system
response can be seen without requiring an analytical solution of the nonlinear
equations. The phase plane method can be applied to systems having nonlinearities
of any magnitude and they may be either continuous or discontinﬁous. The phase
plane is useful for studying system transient response, stability, overshoot,
existence of limit cycles, static accuracy and designing compensators for these
properties. The main disadvantage is the limitation on system order.

Although we are only interested in nonlinear systems in this
investigation, it should be noted that the phase plane is also applicable to linear
systems. For example it is 'very useful for designing bang-bang predictive type

controllers for linear plants.

2.2.2 Describing Functions
A describing function is a frequency domain description of a

nonlinearity (Slotine and Li (1991)). The objective is to extend some of the



Section 2.2 A Review Of Some Classical Techniques 15

frequency response concepts used with linear systems to the analysis of nonlinear
systems. The method can be applied to systems which can be put into the

configuration shown in Figure 2.1.

r=0 ¥ nonlinear linear y |
> element > elements >

Figure 2.1 System configuration for describing function analysis.

The basic version of the describing function applies when there is only
a single time invariant nonlinear element, only the fundamental component of the
output from the nonlinearity need be considered, and the nonlinearity is an odd
function.

The‘describing vfunction is calculated by assuming that the input to the
nonlinear device is a pure sinusoid! (i.e.Rsin(w?) ) and expanding the output in
a Fourier series. All terms in the output series except the fundamental frequency
term, say C(R,w)sin(wt +@(R,w)), are discarded. The describing function is defined

as the ratio of the output to the input, i.e.

! A sinusoidal input is the general assumption although describing functions for
Gaussian random signals and systems with d.c. bias can also be derived.
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N(R,0) = |ﬂ%-‘l’l |£¢(R,m) 2.2.1)

for all permissible amplitudes and frequencies of the input. This in effect provides
a linearization in the frequency domain. The justification for dropping higher
frequency output terms is twofold. The first is that the magnitudes of harmonics
are usually smaller than the fundamental and therefore have less effect. Secdndly
the linear part of the plant is assumed to act as a low pass filter which will
attenuate higher frequency components thus reducing their significance even more.
Describing functions for the most commonly found nonlinearities such as
saturation, hysteresis, etc. are functions of the input amplitude only and ndt of .
An example of a frequency dependent describing function is given in (Truxal
(1955)). The plant is a D.C. motor operating in the velocity saturation mode.

Describing functions may be calculated by numerical integration if the
input-output relationship is given graphically or as a table. (i.e. a numerical
evaluation of the Fourier series integrals) Still another technique is to excite the
nonlinear element with a sinusoid of known amplitude and frequency and evaluate
the output with a harmonic analyzer.

After obtaining the describing function, all of the usual frequency
response metho’ds can be applied to the analysis and design of the» control systém.
The predominant use of describing function analysis is for the prediction of limit

cycles via the Nyquist criterion.
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Many refinements and extensions have been made to the basic
describing function approach. See Gelb and Vander Velde (1968) for a

comprehensive treatment.

2.2.3 Linear Approximation

Linear approximation is in general only valid in a small neighborhood about
an operating point. ‘The approximation is usually obtained by retaining the first
two terms of a Taylor series expansion of a nonlinearity for which an analytical

expression is available. For example, given f, a function of a single variable,

fla+h) = f(a) + hghf (2.2.2)

where a is the fixed point about which the expansion is made and 4 is a small
perturbation from a. The obvious disadvantage is the limited range over which the
approximation is accurate enough to yield useful results. Linearization is useful

for investigating the stability of a nonlinear system around an equilibrium point.

2.2.4 Computer Simulation

Computer simulation offers the advantage of including more of the
nonlinearities than could be taken into account using any of the other methods.
The effect of component tolerance on system performance is easily evaluated and

it is possible to include actual pieces of hardware in the simulation. Hybrid
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systems using combinations of analog and digital computers have also been used
to take advantage of the best characteristics of both machines. Of the classical
techniques, simulation provides the most accurate means of investigating nonlinear
systems. It offers the additional advantage of easily changing from one set of
conditions to another making it practical to evaluate system performance for
several different situations (Bekey and Karplus (1968)).

In the past computer simulations required large amounts of
programming labor, hardware interfacing, etc. Nowadays computer systems and
soﬁware intended specifically for control system design and evaluation are
commercially available. Two of the most popular software packages are
MATLAB with SIMULINK and VISSIM. Once a controller design has been
proven to be satisfactory by simulation, the designer can then have the simulation
system automatically generate the cod¢ necessary to implement the controller. The
source code can be generated in ADA, C, or FORTRAN (from one particular
vendor) and downloaded toa prototype computer control system for evaluation
with the real proéess. The prototyping system has all the necessary drivers and

I/0 hardware for communicating with the process.

2.2.5 Lyapunov Theory
The Lyapunov function is the workhorse used to check the stability of
’non'linear plants (LaSalle and Lefschetz (1961), Khalil (2002)). The definition of

stability that is referred to in thé following is asymptotic stability which means that
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for some r >0 such that x©] <r, x(t)—>x, as t->o0 where x, is a stable

equilibrium (Narendra and Annaswamy (1989)). Given the plant represented by
i=f@), fO=0 (2.2.3)

where x € R™ and f(x) is a nonlinear function, stability can be investigated with
the following theorem.
Theorem 2.2.1 Lyapunov stability theorem

If there exists a scalar function W(x), with continuous first partial
derivatives with respect to x such that:

1. V(x) =0, X=X,

2. (x) >0, X#X,

3. Vo) <0,  x#x,

4. V(x)-> o0, x| =
then (2.2.3) is globally asymptotically stable.

That is, it is stable for any set of initial conditions.

The Lyapunov function is defined as V(x). Theorem 2.2.1 is an
embodiment of Lyapunov’s second method. The advantage of the second method
is that the solution of (2.2.3) is not needed to determine stability. The difficulty
in application is that there is no general method for finding Lyapunov functions
except in certain special cases. The theorem gives a sufficient condition for

stability. If a Lyapunov function candidate does not satisfy the conditions of the

theorem, instability cannot be concluded. The only recourse is to choose a new
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candidate function and recheck the theorem conditions.

While Lyapunov theory was intended primarily to determine system
stability, it also plays a large role in system design. The conditions for stability
generated by Lyapunov functions can frequently be interpreted as algorithms for
controller parameter adjustment in adaptive systems. An example of this is given

in section 2.8.

2.2.6 Comments On Classical Methods

| All of the above methods constitute the major techniques of the classical -
approach of nonlinear system analysis and design. In addition to the graphical
methods, Lyapunov functions provided an additional means for evaluating system
stability directly from the system equations. For the linear parts of the System, the
primary mathematical tools are the Laplace and Z transforms. A large body of
literature exists-on the theory and application of these techniques.

The objective of the classical approach was to manipulate the nonlinear
problem into a form which could be handled by the extension of existing linear
theory. With the exception of simulation, which could actually model
nonlinearities, and possibly the phase plane, the existing well developed theory of
linear systems was applied to linear approximations of nonlinear systems.

Classical techniques yielded approximate but useful results and are still
in use. For example Luh et.al. (1983) uses a describing function to analyze the

effects of backlash on the stability of an industrial robot and then to design a
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stabilizing compensator for it. However for many important nonlinear plants, the
classical theory was only marginally adequate. Nonlinear plants of practical
interest can be found in many different fields including aerospace, robotics,
chemical and biochemical processes, mechanical systems, electric motor drives, .
electronic circuits, and many others. The importance of these many areas of
application has provided the motivation for research into new and improved

nonlinear control techniques.

2.3l A Review Of Some Modern Techniques

Research on new approaches for design and analysis of nonlinear
systems began}in the early 1970’s. Some of the earliest published accounts are
due to Brockett (1976,1978), Su (1982,1986), and Hunt et.al.(1983). One of the
main feature of the modern approach is again linearization. However there are .
several important differences from the classical approach. For a large class of
plants the linearization is exact and global rather than approximate and local. Also
there are no limitatidns on plant order as there is, for example, for practical
application of the phase plane. Plant inputs are arbitrary and of much less concern
than they v&ere with the classical techniques. The modern technique applies to
dynamic nonlinearities in contrast to many of the classical techniques which
primarily handled static type nonlinearities. This is a great advantage since
nonlinear differential equations arise naturally from the physical laws governing

the behavior of many processes. Even though there is some calculation involved
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in the classical approaches, it is mainly for the purpose of generating either time
or frequency domain plots and the analysis or design is then carried out as a
graphical procedure from these plots. The modern approach is entirely analytic. |
The major advantage is that once linearized, a substantial simplification in analysis
and in design of controllers is realized since the full range of linear theory cén be
applied. However the modern approach is not without cost. Incumbent with these
new powerful techniques is an increase in the level of mathematical abstraction
(Brockett (1976), Banks (1988)). The main mathematical tool in the modern
apbroach to nonlinear systems is differential geometry. The most complete
references at this time that are devoted to control system application are Isidori
(1995) and Nijmeijer and van der Schaft (1990). A brief accessible discussion of
some of the fundamentals can be found in Spong and Vidyasagar (1989). There
are nuMerous papers- applying the theory to various control problems: DeLﬁca and
Ulivi (1987), Ilic’-Spong et.al. (1987), Soroush and Kravaris (1991), Marino et.
al. (1993), Ma and Tao (2000).'

2.3.1 Feedback Linearization

Given a nonlinear plant, the basic idea of feedback linearization is to
find a control law and a nonlinear coordinate transformation such that the
equivalent system in the new coordinates is linear. This method can be applied to
plants having more than one nonlinearity and the nonlinear terms can appear in

any of the state equations of the plant model although not all plants can be
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linearized by the above method. The next section describes a method which
applies to a more restricted class of plants. The generalization of this method to

arbitrary plants leads to the feedback linearization technique mentioned above.

2.3.2 Inverse Dynamics

In some cases the nonlinear terms appear only in the state equations
where components of the input signal are also present. If this is true then it is
possible to eliminate the nonlinear terms without the coordinate change. The
mefhod of linearizing this class of plant is known as inverse dynamics in the
robotics liferature. The objective of inverse dynamics is to find a nonlinear
feedback control law that, when substituted into the original system equations, will
result in a linear closed loop system. A svimple illustration the of inverse dynamics

principle can be given by considering the first order bilinear plant

X = -ax-xu+bu 2.3.1)

y=x
where x is the state, u is the input, and y is the output. For this plant it is easily

seen that by choosing the control law as either

=_Y_ (2.3.2)
“ b-x
or
u = v+ax, ~ (2.3.3)
b-x

where » denotes an arbitrary input, the nonlinear term will be cancelled and the

2
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resulting model will be linear in ». According to the theory to be developed
later, input (2.3.3) would be chosen. The input/output response would then be
that of a pure integral plant. Generally feedback is added to a plant of this type
to change the response to first order. If the first order response due to time
constant j1= 1/a is acceptable then input (2.3.2) can be chosen.
Another example is the nonlinear second order plant

é+bé+bé® = u. (2.3.4)
Choosing the plant input as

u=be-ke+v (2.3.5)
where v is an arbitrary input converts (2.3.4) into the linear plant

E+bé+ke = v. (2.3.6)

2.3.3 Generalized Inverse Dynamics

The generalization of the inverse dynamics concept is known as
feedback linearization. A much broader class of plants can be linearized by this
technique as compared with the inverse 'dynamics approach. The major difference
is that nonlinearities can be present in more .than one plant state equation even
though a component of the input does not appear in that equation.

The architecture of a control system for a feedback linearized plant is
shown in Figure 2.2. The function of the inner loop is to supply the plant states

needed for linearization to the control law and the nonlinear coordinate
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+ e linear v, control u nonlinear
r— ? > controller law plant >

T inner loop

outer loop nonlinear ‘
mm-dm‘ ﬂtB B .@_—__,
transformation

Figure 2.2 Feedback linearized control system.

transformation. It should be noted that plant parameters are also needed for
linearization. The arbitrary input v is converted by the control law to the plant
input # which is needed to produce a linear I/0 relationship in the transformed
coordinates.

The outer loop contains the nonlinearAcoordinate transformation which
converts the nonlinear plant states and parameters into the state values of the
linearized system. The transformed coordinates are fed back and compared with
a reference signal, r, to generate an error, e, which is fed into a linear controller

to complete the loop.

2.3.4 Backstepping
Backstepping is a recursive design procedure introduced by
Kanellakopoulos (1991). It has aS a goal the design of a control law forx =f(x,u)

to meet a control objective and at the same time establish the equilibrium point,
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x =0, of the closed loop system to be globally asymptotically stable. The
emphasis in backstepping controller design is on system stabilization and tracking
rather than plant linearization. As such, useful nonlinearities in the plant need not
be cancelled as in feedback linearization designs.

Adaptive backstepping can be used to design controllers for nonlinear
plants with unknown parameters (Krstic et. al. (1995)). The parameter update law
is obtained from the system Lyapunov function. In order to guarantee stability,
the parameter update law is chosen from terms in the Lyapunov function which
ha\}e to be cancelled in order to make V negative definite.

The backstepping method has removed -a major obstacle in the
Lyapunov based design of adaptive controllers. This was the relative order <2
limitation present with this design' method. For relative order 1 plants %_g.
appearing in the control law can be substituted for from the update law. The
control law for relative order 2 plants involves %_zt_g Since there is no expression
from which this second derivative can be evaluated, the design of a stabalizing

controller for these plants could not be carried out using Lyapunov methods prior

to the introduction of backstepping.

2.4 Mathematical Preliminaries And Notation
In this section we will review the notation and some of the mathematical
tools that are in common usage in the feedback linearization literature and will be

used throughout the rest of this thesis. The SISO nonlinear plants that we will be
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concerned with in this section can be represented by

X = flx)+gx)u |

y = h@) (2.4.1)
where x€R", uER and f(x), gx) are C*= vector fields on R". The output
expression, h(x), is a C> scalar field on R*. (C* designates a function having

continuous partial derivatives of any order, R” signifies an n dimensional space)

Taking the time derivative of y yields -
. _ Oh oh
= — ) 2.4.2
V= = f@) + - gu 2.4.2)
The Lie derivatives of & wrt f and g are defined as

L) = S5 = {dn,f> (2.4.3)

and
La() = O vy = <dh, 2> (2.4.4)
0x

where (-, -) denotes the inner product. The gradient 6f h wrt the vector x is defined
as

oh 0h
dh = | o—, = | . 2.4.5
[('}Jcl 0x ] ( )

n

Using (2.4.3) and (2.4.4) y can be written as
y = Lh(x) + Lhx)u . (2.4.6)

Higher order Lie derivatives are defined inductively as follows:

L@ = L [LFhe), k=2, 3 2.4.7)
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The Lie bracket [f,g], where f and g are C* vector fields on R”, is

defined by
/.8l = %f— %g (2.4.8)

where %‘g and .g% are n x n Jacobian matrices. Successive Lie brackets are
X )

defined as [f.[f.g1), [f.If.[f.g]]], etc. The standard shorthand notation for Lie

brackets is
adfo(g) =g
ad/(g) =1f.8]

“adX(g) = If,[f.8]] 2.4.9)

ad}(g) =f,ad;"(g)] -

Relative order is a concept that will arise frequently in what follows.
It is applicable to both linear and nonlinear plants. For a linear plant if is
numerically equal to the difference between the order of the denominator and
numerator polynomials of the transfer function. In the linear caser it is easy to
vshow that the relative order of a plant is also equal to the number of times the
output expression has to be differentiated before the plant input appears explicitly.
Relative order for a nonlinear plant is defined similarly with regard to output
differentiation.
Definition 2.4.1

Relative order, r, is the smallest integer vy such that
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Lgh(x) = Lgth(x) = . LgLfT‘zh(x) =0
and

LgLf"'lh(x) # 0, VXER".

2.4.1 Test For Linearizability

Not all systems can be linearized by nonlinear state feedback and a
coordinate transformation. An existence theorem due to Su (1982) can be used to
test a nonlinear system for feedback linearizability. We will need the following
definition.
Definition 2.4.2

A linearly independent set of vector fields {XI, X, .. ,Xm} is said to be
involutive if and only if there are scalar functions o, :R"->R such that

[X,X,] = Zaiijkv Y i.j.k. 2.4.11)

=1

v

Theorem 2.4.1 (Su (1982))
The nonlinear system
% = flx) + gooyu (2.4.10)
with f(x), g(x) smooth vector fields, and f{0) = 0 is feedback linearizable if and

only if there exists a region U containing the origin in R* in which the following
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conditions hbld:

1. The vector fields {g, ad(g), - ,adf""‘(g)} are linearly independent

in U.

2. The set {g,adf(g), ,adf""z(g)} is involutive in U.
Theorem 2.4.1 guarantees that a plant is input-state linearizable. That is, with a
coordinate transformation, a control law can be found such that the state space
representation in the new coordinates contains no nonlinear terms. We are
interested in input-output linearization but for the classification of plants we are
coﬁsidering, where the relative order is equal to the plant order, the input-output
linearization procedure results in an input-state linearized plant as well. Therefore
the theorem also guarantees input-output linearizability when r=n. In the next
sectioh it will be shown that conditions 1 and 2 of the theorem are both necessary

and sufficient.

2.4.2 Coordinate Transformation And Control Law Calculation
The feedback linearization of a nonlinear system involves finding the
linearizing control law and a nonlinear coordinate transformation that results in a
linear I/O relationship. To develop this procedure, consider the nonlinear system
given by (2.4.1). The control law will have the form
u = o) +pxE)yv (2.4.12)
where v is a new arbitrarily chosen input. Equation (2.4.12) is called a static

control law since neither o nor 8 are functions of the states of another dynamic
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system such as a reference model (Isidori (1995)).
The state space representation of the output linearized system is given
by
y = Ay +bv. (2.4.13)

Equation (2.4.13) is in Brunovsky canonical form, i.e.

fo10...0

0
0010. .0 0
. 001 0
A= b=10 2.4.14)
. 0
00 . . 1 0
0000000 | 1]
y=T(x). (2.4.15)

Definition 2.4.3

A diffeomorphism is a differentiable function that has a differentiable
~ inverse.
The first task is to find the diffeomorphism, T(x), which defines the new state

coordinates. 7(x) and y are column vectors. The time derivative of (2.4.15) is

y =91, (2.4.16)
ox ‘

where %Z.C: is the Jacobian of T(x). Using (2.4.10) and (2.4.13) in (2.4.16) yields

%%[f(x) +g@)u] = ATR) + by 2.4.17)
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Equation (2.4.17) is a system of partial differential equations the first of which is

oT, 0T, . oT, .
R R R LR (2.4.18)
This can be compactly written as
-<dT1 Nit) +g(x)u> = <dT1,f> +<dT1,g>u =T,. (2.4.19)

Similarly for the other components of T(x),

T

3

H

(@T21) + {aTs ) : (2.4.20)

<dT,, , f> + <dT . g>u

The choice of the Brunovsky form fof the linearized system dictates that

V.

transformation T(x) must result in a system of relative order n. Therefore
(dT,- ,g> =0, i=1,2, .. ,n-1 2.4.21)

and the first n-1 equations in (2.4.20) reduce to

(@r.f) =T,  i=12, . ,n-1. (24.22)
If T, can be found then evidently from (2.4.22) the complete T vector can be
determined. The following lemma is useful in finding T.
' Lemma2.4.1 |
If h:R* >R .is a scalar function and f and g are vector fields on R”,

then the following is an identity.

{an,1f.81) = (d(dh, g, f> - (d(dh, ), g>; (2.4.23)

By imposing the conditions due to equations (2.4.21) and (2.4.22) in this identity

and substituting for dh the equivalent dT;, it can be shown that
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(aT,.ad}g) = 0. (2.4.24)

By induction it can be shown that

<dT padfk(g)> =0, k=0,1, .. ,n-2 (2.4.25)

(dT,adr 1)) = 0. (2.4.26)
The existence of a solution for the system of partial differential equations (2.4.25)
can be guaranteed by Frobenius’ theorem.
Theorem 2.4.2 (Frobenius)

Given a set of vector fields {X,, X, . ,Xm} that are linearly independent
at each point, the set is completely integrable if and only if it is involutive.

In this case the vector fields are the Lie brackets in (2.4.25). The
reasons for conditions 7 and 2 in Theorem 2.4.1 can be seen from the foregoing
discussion. Referring to condition I, if ad/-'(g) could be expressed as a linear
combination of the remaining Lie brackets then (2.4.26) would be zero by virtue
of (2.4.25). Therefore T, could not be found and consequently none of the other
coniponents of 7. Condition 2 is necessary to meet the requirements of Theorem
2.4.2 and insure the existence of a solution for 7.

The preceding discussion has outlined the method for linearizing a
system. First of all, use of Theorem 2.4.1 determines whether or not the system

- is linearizable. If the theorem conditions are satisfied, then expansion of (2.4.25)

yields a system of partial differential equations in 7, which is guaranteed to have
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a solution. With T; known, T,,T,, .. ,T, can be found from (2.4.22). The

remaining problem is to find the control law u. From (2.4.20)

u=_—L1_(v-(ar,5)). (2.4.27)
(at,,g

2.4.3 MIMO System Linearization

‘Multi-input multi-output systems can be linearized in a straight forward

manner using the above techniques. Consider the square system

x = f(x) +k’2 g, (Xu, , (2.4.28a)

y; = h(x), i=1,2, ..,p (2.4.28b)

where x€ER", u€RP, yER? and f, g,, h; are smooth functions. For each y; in
(2.4.28b) time derivatives can be calculated until at least one of theL, h,(x)

coefficients of a system input is different from zero. For example, the derivative

of the j’th output is

P
Gy _ g Y .
y?= LWk, + ZM L&(Lfv, h,-)ui (2.4.29)

where 1; is the relative order. Define the matrix
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A=

Using (2.4.30), the output derivatives can be written as

= N
LLO DR . . . LL(Dh,

-1 ] -1
LLO DR, Lg’Lf(Vr )h,

y, ™ Lf(“)h1

_yp(’r)_ LLf(%)th

35

(2.4.30)

2.4.31)

Assuming that A(x) is nonsingular, choosing the state feedback control law as

u= -4A71x)

results in the linear system

yl(”)

—yp (‘Y’)—

Lf(’h) hl

+ A7)V

| L{"h, |

(2.4.32)

(2.4.33)

A nice feature that results from linearizing (2.4.28a,b) is ﬂlat the system (2.4.33)

is also decoupled. Individual controllers can now be applied to each I/O pair.

The case that has just been considered is analogous to the SISO inverse
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dynamics case. That is a coordinate transformation is not needed because at least
one component of the input appears in each state equation. However multi-
variable plants that do not meet a matching condition can still be linearized. These
plants will require a coordinate transformation. For an example see Spong and

Vidyasagar (1989), pgs 274-276, or Isidori (1995).

2.5 Feedback Linearization Implementation Considerations

Feedback linearization is an important advancement in the control of
noﬁlinear systems. Linearized systems can be made to track an input signal in a
straight forward manner, dynamic response is easily controlled by feedback of the
weighted transformed state variables, etc. In the MIMO case, the plant is
decoupled as a by-product of linearization. However these desirable propérties
depend on exact cancellation of nonlinear terms.

The control law needed for cancellation is a function of both the states
and parameters of the nonlinear plant. In terms of controller design there is a
similarity at this point with linear plants in that the same information is needed.
For example, a pole placement controller for a linear plant requires knowledge of
the plant states and parameters (indirect design). But states are not always
measurable and parameters may not be accurately known. In linear systems these
conditions are handled by an appropriate type of estimator.

Similarly in the nonlinear case, if parameters needed in the control law

and nonlinear coordinate transformation are unknown, then on-line estimation of
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these parameters is necessary in self-tuning or adaptive systems. However the
linearizing control law has the effect of rendering some of the states and
parameters of the nonlinear plant unobservable. As will be shown in Chapter 3,
this can result in problems in the parameter estimation algorithm.

When linearized, the plant can be represented by a string of cascaded
integrators. This is a flexible structure to work with but it is necessary to have the
transformed state variables available for control purposes. If the nonlinear plant
states and parameters are known then the linear plant states can be calculated from
.the‘trans'formation equations. In the following chapters it will be assumed that the
nonlinear plant states are measurable but some of the plant parameters are
unknown. The inyestigation then focuses on establishing an accurate means for
estimating these parameters since they are crucial for producing complete

linearization.

2.6 A Survey Of Some Current Nonlinear Control Strategies

In recent years a number of strategies for nonlinear systems control
have been proposed. The underlying principle in the more recent of these
proposals is feedback linearization. This technique depends on the availability of
accurate plant models. Cdnsequently the better performing controllers incorporate
a means for coping with uncertain plants.

In th1s section we will review some of these methods. We will also

review some aspects of adaptive control of linear systems. Of particular interest
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is the self-tuning regulator since it is the starting point for investigation of a new
technique of self-tuning feedback linearization which will be developed in the

following chapters.

2.6.1 Non-adaptive Methods

Several non-adaptive control systems for nonlinear plants have appeared
recently in the litérature. A review of three of these systems is given in the
following subsections. All three systems are variations of the feedback
linéarization method. Before discussing the specific details of each system a
summary of the feedback linearization technique is presented in the next section.
This review will help to make the similarities between the systems and the
relationship of each one to the underlying feedback linearization theory more

transparent.

2.6.2 A Summary Of The Feedback Linearization Method
The linearizing control law is always of the form
_ V-L/ h(x)

L,L/" h(x)
where V is an arbitrary input signal and L L/"'h(x) #0. Applying (2.6.1) to the

(2.6.1)

nonlinear plant and specifying a coordinate transformation
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y = T(x) (2.6.2)
such that the equivalent linear system is in Brunovsky canomical form, the
linearized plant responds as a cascaded string of integrators. The block diagram

is shown in Figure 2.3 where r indicates the relative order of the plant.

V_yf)_.)f__if)j‘y@z)_ ......... )J'_Y_>

Figure 2.3 Equivalent feedback linearized plant.

This configuration is particularly well suited to pole placement control. The output
from each integrator is simply fed back to the input through a gain block as shown
in Figure 2.4. The arbitrary input V can be chosen to make the system output
respond in some desired way. If the objective is to have the system output track

a reference input, y,, then the input to each integrator must be the appropriate

v 2O [ [ [
Y Y
Ben Pe-s
+ + ;+
outer loop 5‘ g)(____ 6« B, [
+ + +

Figure 2.4 Feedback linearized plant with a pole placement controller.
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derivative of the desired output. Therefore

(r-1)

V = yé") + 6,.1yd

= Z 6}:}’;“ .

k=0

+ By,

Referring to Figure 2.4 and with V given by (2.6.3)

r r-1
y(r) = Z 6ky¢§r) - Z Bky(k)
k=0

k=0
which can be written as

Y Byi7 - Y By® = 0.

k=0 k=0
If we define the error as e =y, -y then (2.6.5) reduces to

Y B,e® =0.

k=0

40

(2.6.3)

(2.6.4)

(2.6.5)

(2.6.6)

Thus the error response of the feedback linearized system is readily controlled by

choosing the feedback gains, 8, .

Figure 2.4 depicts the basic feedback linearized system with a pole

placement controller. The pole placement loop is called the outer loop. The inner

loop, which does not show in this diagram, transmits the plant states to the control

law and coordinate transformation. (see Figure 2.2) The system of Figure 2.4 can

be imbedded in still another feedback loop as shown in Figure 2.5. When this

external loop is used and y,, is set equal to y,, the error response (2.6.6) is

modified by f(e), the output from the controller, such that the error equation

becomes
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+
Yo ;e controfier | 1& ¥ 5 [ Y"‘”»I ¥R . [ T

Y

Beny Be-
+

outer loop 5<

+ + +

3

external loop

Figure 2.5 System of Figure 2.4 imbedded in an external control loop.

r

Eﬁke(k) +fle) =0 (2.6.7)
where f(e) depends on the res;x:nse modes of the selected controller.
McLellan et.al. (1990). has observed that the GMC (Generic Modél
Control), RSS (Reference System Synthesis), and GLC (Global Linearizing
Control) systems, that will be reviewed in the next three subsections, are all
derived from the configuration shown in Figure 2.5. These three systems are
variations of the architecture of Figure 2.5 resulting from the designers choice of
V, B,, and f(e).
Frequently f(e) is chosen as the output from a PI or PID controller.
The effect of the external loop with these controllers is to introduce redundant

adjustments in the coefficients of error equation (2.6.6) and to increase the order

to r+1. For example if a PI controller is used with a plant having relative order
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r, (2.6.7) is
t
e + 6r_1e(r—l) F oo + ﬂoe + kle + kzvj’ edz = 0. (2.6.8)
0

where k, and k, are the proportional and integral gain constants respectively.

Differentiating to remove the integral and combining terms yields

eV 1B e®+ .. +(B,+k)e+ke = 0. (2.6.9)

For a PID controller the result is

eV + B ,e?+ . +(B,+k,)E +(Byrk)é +ke = 0. (2.6.10)
where k, is the derivative gain constant.
The purpose of the external controller is to increase robustness to

parameter variations and to aid in the rejection of process disturbances.

2.6.3 Generic Model Control
Generic model control (GMC) is a method which was proposed by Lee
and Sullivan (1988). The basis for their procedure is to design the control law so
that a 'particular closed loop response is realized. The plant, which can be
multivariable, is described by the following equations:
X =f(x) + g(x)u
y = h(x)

(2.6.11)

where x is an n dimensional state vector, u is the input vector, y is the output

vector and f, g; and h are smooth functions. The functions f, g, and A can Be
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nonlinear.
To derive a control law Lee and Sullivan choose as the desired output

a second order response for the closed loop plant;

9+ X5+ 2y = a0,0) 2612

where « is a function of the desired output, y,. The o function is chosen such that
when (2.6.12) is integrated once then y will be a function of the tracking error,

e=y,-y. Integrating (2.6.12) yields

. 2(’ 1 ¢¢ ¢
22y 4+ dy = ; 2.6.13
y+ Ty+12j%y y Loadﬂ (2.6.13)
If o is chosen as
& 2 ® ]
(YY) = —Tfydn:;yd (2.6.14)

and (2.6.14) is substituted in the RHS of (2.6.13) the result is

= Ky-n+ L[ o,- 2.6.15
| ¥ = 209+ [ Oamy)dp. 2.6.15)
For relative order one plants the time derivative of the plant output in (2.6.11)

written in terms of the Lie derivative yields
y = La(x) + L h(x)u . (2.6.16)

Setting (2.6.16) equal to (2.6.15) and solving for u the control law is

00+ 5 [ G - Lo
LG

(2.6.17)
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The first two terms in the numerator of (2.6.17) can be recognized as a PI
controller operating on the trajectory error. Output response can be altered by
adjustment of tuning parameters ¢ and 7.

Note that GMC is derived from Figure 2.5 when r=1 by choosing
V=0, B,=0, and f(e) as the output from a PI controller. Some of the desirable
features claimed for GMC are the inherent incorporation of the process model in
the control law, disturbance compensation for measurable disturbances when they
are included in the plant model (2.6.11), and the presence of integration in the
coﬁtrol law. It should be noted that the first two chgracteristics are the result of
the feedback linearization design procedure and are not unique to GMC. The last
factor is due to the choice of a second order output response which has to be
integrated once vin order to obtain the control law. The simplicity of this method
depends on having a plant model in control affine form and on the relative order
of the plant. Affine form means that the control # appears linearly in the equation
even though the coefficient multiplying it may be nonlinear (e.g. g(x, .x,)u whereg(x,.x,)
is a nonlinear function of x). Implicit in (2.6.16) is the éssumption that the plant
has relative order one. This insures that L h(x) # 0 so that the first derivative of
the output results in an equation involving u. For plants having relative order
greater than one, higher order derivatives of (2.6.16) are needed to find the control
law. Then selection of the o function is not obvious and the simplicity of the
method is lost.

Since the class of plants for which this technique is viable are of relative
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order one, the I/O relationship for any arbitrary input V is
‘ y=V (2.6.18)
when the control law is derived from (2.6.16). Thus the plant could be easily
controlled by a pole placement controller which in this case involves choosing only
one § parameter.
| Figure 2.6 shows the GMC system. GMC cannot track a time-varying

~ setpoint with asymptotically zero tracking error because the input to the control

Controller Linearized Plant

Ya

Figure 2.6 GMC block diagram.

law does not contain the derivative of the desired output. The derivative can be

included by defining the o function as

a(yd’yd,yd) =Yg g;{yd + —ﬁyd (2.6.19)

This o produces the control law
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Yo B0 5 [ 00D -Lhx)
L h(x)

y = (2.6.20)

that contains the y, needed for signal tracking. In contrast with GMC, signal
tracking in a feedback linearized system with the configuration shown in Figure
2.4 can be achieved simply by proper specification of the arbitrary input signal,
V.

2.6.4 Reference System Synthesis

Reference system synthesis (RSS) is a state space model based method
for designing feedforward/feedback controllers proposed by Bartusiak et al.
(1989). The control objective is to produce a desired closed loop behavior.
Either linear or nonlinear controllers can be designed and the method is applicable
to both linear and nonlinear plants.

Assuming that the plaht model is known, controller design is a two step
procedure. First the desired closed loop servo response is chosen. This amounts
to selecting the type of control action since the control law will cancel the plant
dynamics. For relative order one plants the controller output is equal to the first
derivative of the plant output. The controller time response is defined to be the
time derivative of the so called reference system trajectory. The controller
response is set equal to the derivative of the plant output and the resulting equation

is solved for the plant input. Note that this procedure assumes a plant of relative
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order one. Incorporating disturbance rejection capability into the controller design
is possible if the disturbance is measurable. A simple example will illustrate the
“basic design procedure for a first order linear SISO plant represented by
X, = -ax,+ bu +cd (2.6.21)
where u is the plant input and d is a disturbance. If the closed loop response is
chosen to be a first order lag with adjustable time constant 7 and unity gaﬁ
then

x, = 8(V-x,) (2.6.22)
whére x, denotes the derivative of the reference trajectory, g = 1/7, Vis the system
input, and x, is the plant output. The control law is found by solving |

X,-%=0 (2.6.23)

for u and is given by

| |
u = _b_[axp +g(V-x,) - cd] . (2.6.24)

Using this control law in (2.6.21) the closed loop response is

X = 2w (2.6.25)
s+g
as desired.
Proportional, integral, and derivative action can be included in the
closed loop response by specifying these terms in the reference system. For

example, choose
¢

% = k(x,-x)+k, [(xsp—xp)dt k2 (x,-x). 2620
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RSS is also depicted by Figure 2.5 for r =1 by choosing V=0, 8,=0,
and f(e) as the output from a particular controller type. The same procedure as
given above can be used to design controllers for nonlinear plants. Also the
reference system may be chosen to be nonlinear. For example it could involve
coefficients that are functions of the absolute vaiue of the trajéctory error. This
will result in a control law that responds with strong corrective action for large
trajectory errors and more moderately for small errors.

The key step in this technique is the designers choice of reference
trajectory. Solving fof the control law is straight forward for plants of relative
order one. RSS can be applied to higher relative order plants but with
considerably more tedious calculation. In common with GMC design, RSS will
lead to a control law that incorporates the plant model. It also has the same signal

tracking problem as GMC.

2.6.5 Global Linearizing Control

Global linearizing control (GLC) was proposed by Kravaris and Chung
(1987). Their stated purpose ‘is to design a feedback controller for trajectory
tracking for single input/single output nonlinear systems. The class of plants

considered can be represented by

% =f(x)+ g(x)u

2.6.27
y = h(x). ( )
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The steps in development of the method consist of:
1. deriving the I/0 linearizing plant input
2. adding feedback from the output of each integrator in the
linearized plant (i.e. close the outer loop)
3. choosing the driving function for the feedback linearized plantas the
output from a PI controller
4 closing the external loop through the PI controller with the
setpoint equal to the desired output signal.
Fof the general case, assuming a relative order r plant, the control law is found
as follows,
¥ = L/h(x) + L L h(x)u (2.6.28)
where y is the r’th derivative of the linearized plant output. This derivative is
also equal to some arbitrary input signal plus the negative feedback from the

output of each integrator.
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v®

+ y Cascaded
V— )——> e Y
A Integrators

r-1 '
x B, I5 h(x)e

Figure 2.7 GLC equivalent outer loop block diagram.
Referring to Figure 2.7, |
yO = V- 21: 8L n(x) . (2.6.29)
From (2.6.28) and (2.6.29), -
V= 21: B L h(x) + L h(x) + LL{ " h(x)u. (2.6.30)
Combining terms in (2.;(2)30) yields
V= k);ﬂka"h(x) + LL7 h(x)u (2.6.31)

where 8 =1. From (2.6.31) the control law is

V- ; BLs h(x) (2.6.32)

L L h(x)

U =

The input V can be chosen to be the output from any controller type. In the GLC
method it is chosen to be the output from a PI controller. With the external

feedback loop closed through a PI controller the control law is
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t

k(y-y) + k, ! Ou=y)dz = 32 B, Ly hx) (2.6.33)
k 6.

U =

L L; h(x)

The external loop setpoint is y,. The system is tuned by first specifying thef,,,
and then tuning the PI controller. GLC as originally presented by Kravaris and
Chung (1987) has the same signal tracking problem as GMC and RSS. This
difficulty was corrected in a later revision of the GLC method (Soroush and |
Kravaris (1992)). The modification, which was called a bias, is actually the input ¥
shown in Figure 2.4. This signal contains y{” which is needed for tracking.

| The original version of GLC is shown by Figure 2.5 if ¥ is chosen to
be zero. The later modified version is identical to Figure 2.5. As indicated in the
figure, it can be used with relative order r plants.
2.6.6 GMC, YRSS, and GLC Control Of A Bilinear Plant

The three methods reviewed above produce,idenﬁcal control systems

since for relative order one plants they are just different statements of the same
objective. Considef the first order bilinear plant represented by

X=-ax +(b-x)u
(2.6.34)
y=x.

Assume that the control objective is to track a sinusoidal input signal, y, = sin(w?).
| Designing the control system for this plant by any of the methods with a PI

controller in the external loop leads to the control law
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1 ' |
w= Llax s ke + k| oe(z)dz] (2.6.35)

where e =y,~y. The GLC method normally has the outer loop closed. Control
law (2.6.35) assumes §,=0 for the GLC methbd. However there is no loss in
generality since closing the outer loop for GLC will not improve the tracking
response. |
Applying simple feedback linearizaﬁon to this 'plant yields the control
law ,
u = 79_{;[1@@]. (2.6.36)
For tracking in this system the input is set equal to the desired output plus its

derivative
V = B,sin(wr) + wcos(wr). (2.6.37)

Figures 2.8, 2.9, and 2.10 show the tracking capabilities of the GM(;/RSS/GLC
method versus the simpler feedback linearization scheme with a pole placement
controller with §,=1. Plant parameters were set at @ = 0.5 and
b = 1.34. The tracking signal frequency was chosen as w = /4 and the initial
plant output was set at y(0) = -0.25. Con;roller tuning was set at k; = 5.0, and
k, = 0.5.

Response for the feedback linearized system, shown in Figure 2.8,
shows excellent tracking after an initial transient error. Figure 2.9 shows the
constant tracking error which is characteristic of the GMC/RSS method and the -

GLC method as originally proposed.
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Figure 2.8 Tracking response for feedback linearized plant:

curve 1, setpoint; curve 2, plant output.
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Figure 2.10 Tracking error comparison: curve 1, feedback linearized plant,
curve 2, GMC, RSS or GLC controller.
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Figure 2.10 is a comparison of the tracking errors in Figures 2.8 and 2.9.

2.7 Adaptive Control Of Nonlinear Plants
Many of the recent proposals for control of nonlinear plants are based
on the feedback linearization technique. For this method to be effective the plant
parameters have to be accurately known and hence the motivation for an adaptive
design. |
| When plant parameters vary in a predictable way then adaptation ’of a
different type can be effective. An example of this is the gain scheduling

controller. In this section several different types of adaptive schemes are reviewed.
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2.7.1 Self-Tuning Nonlinear System Controller

The nonlinear controller designs discussed so far have been based on
state space plant models. Agarwal and Seborg (1987) have proposed a self-tuning
controller based on a modified ARMAX model. The modification is replacement
of the input term g “B(q "u(?) on the RHS of the standard ARMAX model with
a summation which can involve products of powers of the input and output with
many types of nonlinearities.

The nonlinear discrete time plant is modeled as

A(g™(@) = f:biu"<t-k>1c(t—1> vdrc@hpn @D
where ¢ is the sampling inSt:lilt, k is a known time delay including the sampler
delay, y(t) is the measured output, u(t) is the manipulated variable, d is an
unknown disturbance, and £(t) is zero mean random noise. A(g™") andc(g?)
represent polynomials in the backward shift operator ¢! (i.e. g 'y(®)=y(-1)).
The term Y;(t-1) represents nonlinearities involving single valued time invariant
functions with known parameters. Powers of the input are handled through the
choice of the r; parameters.

The control law is derived By minimizing the performance index

1 = B{[P(g™)y(t +k) - RigHW()]?
2.7.2)

+[0'(g- Du®)]?}

where E is the expectation operator, W(#) is the setpoint, and P(q”), R(q”), and



Section 2.7 Adaptive Control Of Nonlinear Plants 56

Q’(g’) are rational transfer functions. Minimization of (2.7.2) leads to a

polynomial in u(t) of order

Y = 2[max(r)]-1. (2.7.3)

The plant input has to be chosen from the -y roots of this polynomial. Real roots
that do not violate input constraints are feasible inputs. If more than one root
remains as a feasible input the value closest to the last input can be chosen. If
r<1, i=1,2,.... N in (2.7.1) then u(t) can be found explicitly.

This method requires converting the natural and convenient differential
equation description of a plant into a discrete transfer function form for which a
self-tuning controller is then designed. The justification is the inclusion of the
plant nonlinearities in the control law. However this can be done when working
directly with the plant differential equation so that the conversion process seems
to be unjustified. . On the other hand, this method does not require the plant to be

in control affine form.

- 2.7.2 Gain Scheduling

| One of the first adaptive schemes introduced was gain scheduling
(Ioannou and Sun (1996)). The name derives from the fact that it was originally
used to compensate only changes in plant gain. In this approach auxiliary
variables are found which are related to plant dynamics in a known way. As

conditions in the plant change beyond prespecified limits, as indicated by the
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auxiliary variables, the controller parameters are set to new predetermined values
which are optimal over the current range of plant dynamics.

Gain scheduling is an effective method for controlling plants with
known nonlinearities. It also has the advantage that controller parameters can be
changed quickly in response to plant conditions. One practical drawback is the
determination of the large number of schedules that are needed for some plants.
For example the flight control system for the CH-47 helicopter was implemented
using ninety schedules (i.e. different controller settings) (Sastry and Bodson
(19.89)). It is also an open loop system in the sense that plant output does not
influence schedule selection. If for some reason the plant dynamics originally
. associated with an auxiliary variable in a certain operating range should change,

the controller settings are not automatically updated;

2.7.3 High Gain Adaptation

This scheme uses an adjustable high gaiﬁ in cascade with the controlled
plant (Sastry and Bodson (1989)). The idea here is to keep the open loop gain as
high as possible under all operating conditions so that the closed loop gain from
‘input to output is equal to one and perfect tracking of the input signal is achieved.
The input signal is generated by the output from a reference model.

The controller gain is automatically adjusted by detecting the existence
of a limit cycle and reducing or increasing the gain to keep the amplitude of the

limit cycle within specified bounds. The constant presence of oscillation, even
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though it may be of low amplitude, is obviously an undesirable feature of this

system.

2.7.4 Adaptive Tracking

An adaptive tracking scheme has been developed by Han (1992) for a
class of pure feedback nonlinear systems (Su and Hunt (1986)). In this method the
siate variables of the nonlinear plant are assumed to be measurable. The plant
parameters are assumed unknown and are estimated on-line. For a SISO system

the plant model is

X = fx,p) + gx,p)u @.7.4)

y =X
where p indicates the parameter vector.

The design methodology is derived by first defining the differences in
the vector fields fix,p) and fix,p), g(x,p) and g(x,p), where p represent the .
estimated parameter vector. The difference equations are defined as
Af(x,p.p) = f(x,p) - f(x.p) = ¥x)p
Aglx,p.p) = gx.p) - g(x,p) = V()P 2.7.5)

p=p-p.
Applying the control u(x,p) to the plant (2.7.4) results in the closed loop linear

system where the transformed states are § = a(x,p). Therefore

y _0,, 0 2.7.6)
@ o Bpdi
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Expanding equation (2.7.6) yields

%‘_ = (A+bKT)) + br + Y. + 1;1(’;17’_ @17

where

ay(x,p

Y = Y(gxp) (‘I’(x) +g,0(x))

and

, 09(x, )

Y, = - .

p ap

The feedback gain vector is denoted by k. The first two terms on the RHS of
(2.7.7) are the vector matrix representation of the linear closed loop system with
input r. The last two terms are due to parameter estimate errors. Setting r equal

to the tracking signal

r=y®+dyrV+ .. +dy, (2.7.8)

and substituting into (2.7.7) yields the error equation

. . dp
é=Ae+Yp+ Yp__a.t_ 2.7.9)

This is the key equation in adaptive strategies because it relates measureable
system errors to errors in parameter estimates. From it a parameter updating law
can be deduced and, with the use of Lyapunov theory, the overall stability of the
adaptive system can be established.

The advantages claimed for the method are a smaller computational

load, and neither overparameterization nor matching conditions are required as



Section 2.8 Adaptive Control Of Linear Plants 60

they are with some other methods. However preliminary setup for applying this

method is a fairly complex process.

2.8 Adaptive Control Of Linear Plants
Adaptive control for linear plants was motivated by the desire to
improve on the performance of fixed parameter controllers when process dynamics
are uncertain or varying. Historically flight control systems for aircraft were
among the first applications of adaptive control. Due to many technical advances
over the years, in both theory and computing hardware, adaptive control of linear
plants is used in a broad spectrum of applications today. This research is
concerned with the control of nonlinear plants but since linear plant adaptive
control systems have many of the features that are needed in adaptive or self-
tuning control of nonlinear systems, we look .at them first. For example, when
parameters are unknown and estimation is done on-line then the feedback
linearization problem is very similar to that of standard adaptive control methods.
In general, adaptive controllers consist of:
1. a control law having adjustable parameters
2.a performance index or control strategy
(e.g. output from a reference model or a design criteria)
3. an on-line parameter updating mechanism.
A considerable amount of research effort has gone into developing strategies for

- implementing the above steps and many variations have been reported in the
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literature.

Two different approaches have emerged for implementing adaptive
control strategies. The indirect approach is shown in Figure 2.11. The controller
is designed such that the controller i)arameters 9c are functions of the plant
parameters, 5p. The scheme is made adaptive by replacing the plant parameters
5p in the controller design by their current estimates at time 7. (i.e. certainty
equivalence principle) The updated plant parameter estimates are supplied by a
recursive estimator.

| Several different combinations of controller types and pérameter
estimators can be considered. Although there is no guarantee that all combinations
will produce equally good results. The inner loop consisting of the controller and
plant is a standard feedback loop.

The direct approach does not identify plant parameters. An example
of the direct approach is shown in Figure 2.12. The controller function in this
schéme is to modify the plant transfer function so that the response of the
combination of cOntrolier and plant to the reference signal matches that of the
reference model. The logical way to adjust controller parameters in this case is
to make them a function of the output error. As with the indirect scheme, the
inner loop is a conventional feedback control loop.hr

There are two basic types of adaptive control systems, model reference
adaptlve control (MRAC) and self-tuning regulators (STR). Either of these can

be implemented in the direct or indirect mode but the most common embodiments
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are indirect for STR’s and direct for MRAC. The block diagrams are shown in
Figures 2.11 and 2.12 respectively.

The perfonhance criteria in MRAC is to asymptotically redﬁce the
output tracking error to zero. The design method seeks to accomplish this
objective by first ensuring stable dynamics for the error response. This
perspective was first proposed by Grayson (1963) and is the cardinal rule in the
design methods he presents. A simple demonstration of how first ensuring system
stability leads to stable adaptive laws is the following.

| Assume that the plant with unknown parameters is given by
X, = ax, + kpu 2.8.1)
and the reference model is represented by

X, =ax +kr (2.8.2)

m

where r is the reference input. From (2.8.1) if we were to apply a control input

N T (2.8.3) -
kP&

the plant output would indeed match the reference model output. Therefore we
may express (2.8.3) as
U = 9xp + kr 2.8.4)
where 8 and £ are defined as the controller parameters to be adapted. We now
define the output error and the parameter errors as
e =x,-x, a=0-0", p=k-k° (2.8.5)

where §* and k* denote the optimum values. Substituting the plant input (2.8.4)
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into (2.8.1) and using the above definitions we derive the output error differential
equation

¢ = -a,e+kox +kpr (2.8.6)

where the fact that coefficient a,, in the reference model is negative has been
utilized.

 To get stable adaptive laws and at the same time ensure system stability

we choose the Lyapunov function candidate

Vie,0.0) = = [e? + || (o2 + 02)]. 2.8.7)

B

This leads to

V= -a,e’+kaex,+kper+ |k|ad+ |k|pp. (2.8.8)
To ensure that V is negative definite all the RHS terms of (2.8.8) except the first
have to be eliminated. In so doing the global stability of the system is assured and
adaptive laws for the controller parameters will automatically be defined.

Therefore let

lk |oa = -k oex
g Pt (2.8.9)
& = -sgn(k,)ex,
and
|k, |pp = -k,per
(2.8.10)

p = -sgn(k,)er.

Note that the adaptive laws are expressed in terms of measurable system signals.
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However it is necessary to know the sign of the plant gain.

Parameter estimates may not converge to their theoretical optimum
values. Recall that the performance criterion only requires that the tracking error
be reduced to zero. Exact convergence depends on the plant input signal being
persistently exciting.

While this simple example demonstrates the concept of designing a.
stable adaptive system, unfortunately it can only be directly applied to relative
order one plants. For higher relative order plants different techniques are used
(Slétine and Li (1991), Narendra and Annaswamy (1989), Sastry and Bodson
(1989), Krstic et. al.(1995). |

Self-tuning regulators generally fall under the classification of indirect
adaptive controllers. The self-tuning strategy can be stated as follows: combine
an on-line parameter estimator with a control system design technique to produce
a control law which is capable of self-optimization.‘ Parameter estimation can be
done by amy of the standard recursive algorithms such as least squares,
instrumental variables, recursive maximum likelihood, etc. In contrast with
MRAC, in order for the controller design to be realized, accurate parameter
estimates are needed in STR systems. For example pole-placement is often used
in the design of STR’s. One drawback with STR systems is the difficulty of
proving stability. In these systems the parameter estimatién algoriﬂ@ is simply

chosén and does not guarantee a stable system as the adaptive laws did in MRAC.
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2.9 Summary

Since there has been no general method for designing controllers for
nonlinear plants, with the possible exception of the recently developed
backstepping method, what has evolved over a period of time is a number of
complimentary techniques. Several of these have been reviewed in this chapter.
The classical techniques such as the phase plane, describing function, etc; are used
to guide a controller design which is later evaluated by simulations.

The modern technique of feedback linearization allows the designer to
ﬁrét of all determine the linearizability of the given plant. If linearizable, then a
control law and coordinate transformation can be found which results in, for
example, a linear input/output response in the new coordinate system. The basic
mathematical tools needed to test for linearizability and carrying out a feedback
linearizing design have been reviewed in section 2.4.

Feedback linearization per se results in an equivalent system which is
represented by a cascaded string of integrators. The next step is the design of a
controller for the linearized plant. This can be done in a straight forward manner
by using a pole placement controller. If the conditions require it, then an
additional control loop (i.e. the external loop) to improve robustness to parameter
errors and disturbances can be added. (c.f. section 2.6.2)

System designs which closely follow the ébove design procédure are
reviewed in sections 2.6.3, 2.6.4, and 2.6.5. These systems are known as Generic

Model Control, Reference System Synthesis, and Global Linearizing Control.
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These three techniques are nearly identical for relative order one plants. However
GLC is slightly different from the other two methods since it makes use of an
outer feedback loop. (c.f. Figure 2.5) The basic procedure is to first linearize the
plant. Then a particular type of control action is chosen to drive the linearized
plant and an external feedback loop is closed through this controller. The
controller setpoint becomes the desired tracking signal. These methods have
poorer tracking capability than a feedback linearized system with an outer loop
pole placement controller and properly specified input signal. However if plant
‘par‘ameters are uncertain they are more robust than a feedback linearized system
with regard to eliminating steady state error. The tracking error problem in these
strategies can be remedied by adding y, to the control law. This addition was
incorporated in later versions of GLC. The most versatile of the three methods
is GLC since it is not limited for practical purposes to just relative order one
plants.

Han (1992) has presented one of the better schemes for adaptive
control. His method parallels that of MRAC for linear plants. Han presents a
Lyapunov based stability proof for his method. |

Agarwal and Seborg (1987) have developed a complex adaptive scheme
around a modified ARMAX model. For most cases it seems that the relative
simplicity of methods based on state-space models are to be preferred over this
approach.

This chapter is concluded with a short discussion of MRAC and STR’s
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for linear plants since the STR will be the starting point for development of a self-

tuning feedback linearizing controller in subsequent chapters.



CHAPTER 3
Adaptive Feedback Linearization

System Configuration

3.1 Introduction
Chapter 2 déscribes the techniques which can be used to design a
nonlinear feedback law and how a nonlinear éoordinate change can be made to
produce a linear input-output response from a nonlinear system. Several honlinear
control schemes which are representative of the research in nonlinear control
theory were also reviewed. The majority of these schemes attacked the nonlinear
control problem via feedback linearization in some form. In order to implement
feedback linearization it‘ is necessary to have the parameters and states of the
nonlinear plant available. Uncertainties in the model parameters result in
incomplete cancellation of nonlinear terms and the desired linear input-output
response is not achieved. This is the main drawback in practical implementation

of linearizing control laws.

In some important applications the plant parameters are either time-
varying or a nonlinear term in the plant model can be treated as a time-varying
parameter. An example of the latter is given in Chapter 5 where a batch reactor

with a nonlinear term is modeled as a plant with a time-varying parameter. To

69
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effectively deal with these cases some authors have suggested adaptive control
strategies for feedback linearizable systems (Sastry and Isidori (1989), Nam and
Arapostathis (1988)). These strategies closely parallel those developed for
adaptive control of linear systems. In both the linear and nonlinear cases the
design is based on an outputv error model. An adaptive law for updating.
parameters is derived from the system output error equation.

In this chapter it is shown that the classical adaptive scheme may not
work well with feedback linearizing controllers. However a new technique to
remedy the difficulties with estimating feedback linearizing parameters will be
devéloped. The new method does not require an error equation like those
mentioned above. Instead use is made of the g-priori knowledge of the linearized
plant structure and how it is modified when errors exist m the nonlinear plant
- parameter estimates used in the control law. For example, when parameter
estimates are in error, the partially linearized model may contain coefficients such
as g, -d, where a, Tepresents the true parameter value and a, is the estimated
parameter value. In order to find the true value of g, the model is
reparameterized in terms of the parameter difference. The new parameter is

defined as

0,=a,-4,. ‘ 3.1.1)
A recursive estimation routine is then used to estimate 8, The ideal value for 6,
in (3.1.1) is zero. Therefore, deviation from the ideal value of 0, provides

information about the error in the parameter estimate, é,-
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Other combinations of the true and estimated parameters may be.
present. These combinations are treated in a manner similar to the above. That
is, they are manipulated into a form where the value of 8, is known when 4, =g, .

Of course 8, is not the variable needed in the control law but it
represents the error in the estimate of the variable, a,, which is needed. In some
.cases 6, is a direct representation of the error between q; and 4, as shown by
(3.1.1). In other cases it is only an indirect measure of the error. For either case,
given the error estimate, an adaptive law can be devised which uses the error
information contained in 8, to provide an improved estimate of g;,. This results
in a simplern scheme than those proposed in the references cited above for
estimation of the control law parameters. Only a standard algorithm is needed to
do the parameter estimation. -

In section 3.3 the classical adaptive control system architecture is
evaluated for use in feedback linearization applications. The results of this
evaluation indicate that under certain conditions the classical architecture can have
some serious drawbacks when used with linearizing control laws. Section 3.4
suggests a modified architecture which eliminates the shortcomings of the classical

configuration for feedback linearizing applications.

3.2 Parameter Estimation For Adaptive Feedback Linearized Systems
An adaptive system has been defined as one that monitors its own

performance and adjusts its parameters to achieve better performance (Drenick and
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Shawbender (1957)). Feedback linearized systems achieve better performance by
neutralizing the effects of unwanted nonlinear response terms in the piant. As
mentioned in Chapter 1, the control law which linearizes a plant is a function of
both plant parameters and states. In many cases parameters are unknown or may
be changing with time or plant operating conditions. The next sections review
parameter estimation in a closed loop and a well known algorithm for combined

parameter and state estimation.

3.2.1 Closed Loop Parameter Estimation

Estimation of plant parameters in an open loop mode for linear plants
is fairly straight forward. Parameter estimation in closed loops presehts some
unusual difficulties. It is well known that unless certain necessary and sufficient
conditions are met it is impossible to estimate the open loop plant parameters in
a closed loop (Isermann (1981)). In adaptive systems, parameter estimation is
done under closed loop conditions.

A problem arising in closed loop parameter estimation can be easily
demonstrated with the aid of an ARX (Auto Regressive with eXogeneous variable)
model (Gustavsson et.al. (1977)). Consider the discrete time system

y(@©) +ay(t-1) = bu(t-1) + e(t) - (320

controlled by a known proportional regulator
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u(t) = gy(o). | 3.2.2)

Substituting (3.2.2) into (3.2.1) yields
Y@ + (@-bg)y(t-1) = e(). (3.2.3)
If a and b are unknown parameters it is obvious from (3.2.3) that neither can be
uniquely determined. Only the composite quaﬁtity, (a-bg), can be estimated.

Furthermore any estimates of a and b satisfying
d=a+vyg
b=b+vy

where v is arbitrary will yield the same value for (a-bg). Replacing a andb

(3.2.4)

in (a-bg) 'by @ and b from (3.2.4) yields the same result as the true values, e.g.
a-bg=a+yg - (b+y)g =a-bg. B.2.5)
The basic problem is that the regulator (3.2.2) may convert some of the
moving average terms of the plant model into terms identical to those in the
autoregressive part of the plant model. This results in parameter combinations
such as illustrated above and makes identification of individual parainete’rs
impossible. |
Necessary and sufficient conditions for which the open loop plant model
parameters can be identified from closed loop data have been developed by
Soderstrom and Stoica (1989) and many others. Consider the general ARMAX
(Auto Regressive Moving Average with eXogeneous variable) plant represented

by
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Al@™y® = q™*Blg™Hu® + C(g™)e® (3.2.6)

and controlled by the proportional regulator

Rg™u@® = -S(g™)y@). - G227
In this model the moving average term is the white noise contribution represented
by C(g")e(t) and u(z) is the exogeneous variabie. Polynomials A(¢g ™), C(g™),
and R(g™') are monic and of order na, nc, and nr respectively. Polynomials
B(g™) and S(g~') are not monic and have order nb and ns. The structure of the
estimated model is chosen to be similar tb that of the plant, i.e.

Alg™y®) = a*Bg™)u@ + Cq)e® (3.2.8)
where €(¢) represents the innovation (i.e. the prediction error y(¥)-3()). If
(3.2.8) identically represents (3.2.6) then

€)= e(®. (3.2.9)
For the ARMAX plant (3.2.6) and the model given by (3.2.8) the necessary and
sufficient identifiability condition in terms of the poiynomial orders is
max(nr -nb, k+ns-na) -1 = nh (3.2.10)
where nh is the order of any common factors in the polynomials C(g~") and
A@HR@™ - ¢*B@™)S(q™).
In closed loop systems, three basic approaches to parameter estimation
have been suggested. They are direct identification, iﬁdirect identification, and
joint identification. Direct identification prediction error methods ignores the

closed loop and fits the model (3.2.8) to the plant I/O data. Indirect identification
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fits a model to the data y(f) versus d(f) where d(¢) is an auxiliary input to the
plant. The open loop plant z transfer function is then calculated by using the
known controller transfer function and solving the closed loop equation for the

unknown plant transfer function, e.g.

Y@ . ; G,(2)
oM G.(2) 1+ Gp(z) G(2)

where G,(z) is the closed loop transfer function from D(z) to Y(@), G (z) is the

(3.2.11)

controller transfer function, and G,(z) is the unknown plant transfer function.

From (3.2.11)
| G(2)
1-G(2)G.(2)
The third method, joint identification, fits a canonical multivariate time series

(3.2.12)

G, =

model to the output y(¢) and the input u(f) jointly. The open loop model is then
computed by rearrangement of the canonical time series model.

Inspection of the identifiability condition (3.2.10) shows that one way
to insure identifiability is to use a sufficiently high order regulator. (i.e. to obtain
a large nr and ns ) Even though (3.2.10) guarantees identifiability, the estimates
obtained from pufe feedback data are quite poor (Box and MacGregor 1974).

Condition (3.2.10) applies when other special experimental conditions
such as additional system inputé and use of more than one regulator during the
course of the experiment are not present. By proper choice of experimental
conditions it is still possible to estimate the open loop parameters of a closed loop
system without satisfying condition (3.2.10). For example if two or more

different regulators are used to control the plant during an experiment then the
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open loop plant can be identified even though condition (3.2.10) is not met. An

explanation of why use of multiple regulators makes closed loop parameter

estimation possible is given in Soderstrom and Stoica (1989), pg. 390.
According to Ljung (1987), the recursive prediction error method is the

best method to use in closed loop cases. If it fails, so will all other methods.

3.2.2 Recursive State And Parameter Estimation
Accurate on-line determination of model parameters is essential for

good performance in adaptive control systems. There are a great number of
estimation algorithms described in the literature (Ljung and Soderstrom (1983),

Sinha and KusZta (1983), Soderstrom and Stoica (1989)). One of the most
versatile is the recursive prediction error method (RPEM) for joint state and

parameter estimation. This algorithm was originally proposed by Ljung (1979)

and also by Moore and Weiss (1979). Using the RPEM, the effects of noise can
conveniently be accounted for when the plant is represented by a state space

innovations model. In this model the Kalman gain vector is explicitly

parameterized and can be estimated on-line with the other parameters. This avoids

the need to know noise variances necessary to calculate these gams in the standard
or extended Kalman filters (Goodwin and Sin (1984)). The RPEM can be applied
to any model for which the grédient of the prediction error can be computed. This

is an important feature because we are ultimately interested in estimating the

parameters for nonlinear plants.
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Before reviewing the calculations in this algorithm it is convenient to
choose a model for representing the plant. For illustration we will consider a

state-space innovations model in controller canonical form,
£, = A0)% + B(0)u, + K(0)e, (3.2.13a)

J.= C(6)%, + ¢ (3.2.13b)

where ¢, is the prediction error. The A(@) matrix and B(8) vector are given by

—_an— 1

-4, -4, |
- - - - - 0
A(B) = | 0 B = |0 (3.2.14a)
I, | :
i | 0], LO]

where I, is an (n-1) x (n-1) unit matrix. C(6) and K(0) are given by

C8) = [cs ¢ s 6] K@) = |k | . (3.2.14b)

Note that in this model the Kalman vector is directly parameterized for on-line

estimation.
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The RPEM is based on minimizing a function of the prediction error,

1

%E Nt £X(s, 0) (3.2.15)
s=1

where N is the forgetting factor, g, is the prediction error and s is an index

V) =

relating the powers of A\ to the corresponding prediction error. In (3.2.15), A is
chosen to be less than one. This diminishes the influence that previous values of
the prediction errors have on the performance index, V/(f). The prediction error
is defined as

g=y-7, . (3.2.16)

Equations (3.2.14a,b) contain a maximum of 3n parameters,

k. k] (3.2.17)

T _
0 =[a, . a, ¢ .. c, :

where a;, ¢;, and k; , are elements of A(6), C(0), and K(0) respectively. Define

d T A T
Y, =- [-(%] = [-(:-iyb-'] (a 3n vectqr) (3.2.18)
where V¥, is the negative gradient of the prediction error and hence provides a

descent direction for the recursive minimization of V,(8). In order to compute ¥,

the following quantities\are needed.

W, = i[ ﬁ,(ﬂ)] ) ( an nx3n matrix) (3.2.19)
do

-9 3.2.20

D, = ae[C(G)J?t] |ona, , (a 3n row vector) ( )

-'--—a- £, + +
M, = ae[A(e)x, B(®)u, K(e)et] |M‘ ,A 3221

(an nx3n matrix)
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Using the above, ¥, may be computed from
wt - mTcT(a) + DtT (3.2.22)

where the dynamics of W, are

W, = [4®) - K6)CO) |W,+ M,~ K@)D,. (3.2.23)
The parameter vector is given by (3.2.17) and the other two quantities needed by
the algorithm are
D=[00.0 %, .%,00. 0] (3.2.24)
and
- . -
xlt xn,t’ ’ 8: 0 0
M- 0 .. 0,0 0..0, 0¢ ..0 . (3-2.2‘5)
‘ : i, i . 5, 00 -~
0 0, 0 ..0, 0 ... g,

The RPE algorithm computations are the following:
1. Compute the prediction error
g =y,-9, (3.2.26a)

2. Compute the adaptation gain

L - Pt—lwt

L\ (3.2.26b)
T .
A+ Y Pt-lwt '

3. Update the parameter estimates

6=0_+Le (3.2.260)
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4. Update the covariance matrix

P= 5 |Pu %} (3.2.26d)
(RFEL ¢
5. Calculate the state predictions
%= AX +Bu, +Kg, (3.2.26€)
6. Predict the next output
Pu=Cx., (3.2.26f)
7. Compute the gradient of £,
W, = [At'K;CJW; +M -KD, (3.2.26g)
8. Compute the prediction error gradient
¥, = WhLCT + DI, (3.2.26h)

where 4,, B,, C,, and K, are all functions of the latest parameter estimates 8,
calculated in step 3. The gradient transition equation, (3.2.26g), in step 7
represents a dynamic system which can become unstable during the course of

parameter estimation. Accordingly the roots of

det [zl A+ K:Ct] (3.2.27)

have to be checked on each iteration. A simple subroutine for determining if roots
are strictly inside the unit circle is given in Ljung and Soderstrom (1983), pg. 486.
If any root is found to be outside the unit circle then a simple method to avoid

instability is to ignore the current estimates and let
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6=120

i -1°

(3.2.28)
A more sophisticated procedure is to successively halve the correction term Ly, in
(3.2.26¢) until 8§, produces stable roots as determined by equation (3.2.27).

The RPE algorithm will be used later in this chapter to implement
simulations. It will be applied to a Runge-Kutta solution of the state-space

representation of a continuous plant.!

3.3 Investigation of Standard System Architecture for Adaptive Feedback
Linearization

Figure 3.1 shows the classical architecture which is commonly used in
adaptive control of linear systems. The figure depicts the indirect adaptive case
where the plant parameters are first determined by the identifier and then the
controller design block calculates the controller parameters to achieve the
particular type of control desired. The controller generates the manipulated |
variable u based on the error signal and controller parameters. -

If the blocks in Figure 3;1 are rearranged and one new block is added,
the architecture shown in Figure 3.1 could be considered for implementing a self-
tuning feedback linearization scheme. The main difference is in the location and

function of the controller design block. This block would be connected in series

! Use of RPEM with a Runge-Kutta model has not been found in any of the |
references checked and appears to be a new application with this type of model. For
examples involving input-output models of bilinear plants see Faniech and Ljung (1987).
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plant
parms.
Controller [
. Identifier (<
Design .
controller
parameters
Controller > Plant >y
u
Inner Loop

Figure 3.1 Indirect adaptive control system architecture for a linear plant.

between the controller and plant. Its function is to synthesize the control law. It
would have as inputs the controller output and those plant states and estimated
plant parameters that are needed in the control law. The output signal from this

block is the feedback linearizing input which drives the plant and identifier.

The new additional block performs a nonlinear coordinate

transformation. The new coordinates are the states of the linearized system and
are fed back for control purposes. Figure 3.2 is the block diagram for the
rearranged system.

Before using the architecture in Figure 3.2 for a feedback linearization
scheme, we will investigate the performance characteristics in greater detail for

this application. One desireable feature is the use of well known parameter
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plant parameters
Identifier|
—> |
r ———> | Linearizing ]
Controller » Control > Plant y
- Law

Y
Nonlinear
Coardinate = 4
Transformation

Figure 3.2 Rearrangement of Figure 3.1 for use in a feedback
linearizing control system.

estimation algorithms. As pointed out in many references on adaptive control, any
of the standard estimation routines can be used in this scheme. This is a
simplification when compared with the majority of the techniques which have
recently been proposed in the literature and some of which were reviewed in
Chapter 2. Recall that most of them relied on an output or state error equation
which also in some way involved paranietr error terms. Adaptive laws for
parameter estimation were then derived baséd on Lyapunov function stability
considerations.

When feedback linearization is used, the ideal control law completely
cancels the effect of some terms in the plant response. The control law will have
a similar effect on the plant model imbedded in the parameter estimator. In view

of the cancellation properties of feedback linearization, it is questionable whether
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or not the unknown parameters can be accurately estimated using the standard

parallel connection of plant and identifier as shown in Figure 3.2.

In the interest of simplicity we will initially investigate this question

using a linear plant since there is no loss in generality of the result. The control

law will be calculated by the same method as used to determine a feedback

linearization control law.

Consider the linear SISO n’th order plant

X = Ax + bu

y=hx)=c%

which has relative order one. The control law is found from

y=cAx +cbu =V
by solving for u,
u = __1_..(-cTAx +V)
¢’

where it is assumed that ¢’b = 0.

Using (3.3.3) in (3.3.1a) results in the closed loop system
, bcT b

X= |1~ | Ax + -V

[ c™ ] c™h

y =cx.

(3.3.1a)

(3.3.1b)

(3.3.2)

(3.3.3)

(3.3.42)

(3.3.4b)

Since the control law (3.3.3) yields the transfer function for (3.3.4a,b) as (see

Chapter 2) )
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G(s) = _i_ | (3.3.5)

it follows that n-1 states of (3.3.1a) have become unobservable.
To better illustrate this point we will consider a specific example.

Suppose the plant is represented by

Gs) = 2 (3.3.6)

s*+as +a,

and that it is driven by a control law that is derived by the same method that was
used to find (3.3.3). There are a myriad of state space realizations possible for
representing (3.3.6). Kailath (1980) defines four different canonical forms.
However, only two of these, the controller and observer forms, have an A matrix
and b of ¢ vectors in which the transfer function numerator and denominator
coefficients appear explicitly. Obviously it is important to have these paranieters
appear explicitly from an estimation standpoint. Of these two representations, only
the observer form has a ¢ vector which defines the plant output in terms of a
single state variable. If the output is a function of more than one state variable E
thén it is not clear from the state space equations or block diagram that the plant
is equivalent to a string of integrators between input and output. However, this
can be shown to be the case by deriving the transfer funcﬁon from whatever state-
space representation was chosen. For the present purpose the observer form is the

most convenient. The observer form representation for G(s) in (3.3.6) is

[x,] =[—a11”:x1] +[1]u | (3.3.7a)
.\'tz —020 Xy b
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y = [ 1 O]x = h(x). (3"3'7b)
Following the same procedure as for calculating the linearizing input for a

nonlinear plant we find

y = %x = ’--al)c1 +X, +U. (3.3.8)

Choosing a new system input V and setting it equal to (3.3.8) the plant input is

u=V+ax -x,. (3.3.9

Substituting this # in (3.3.7a) the state-space representation is

[x:l] ) [ O O] {xl] ’ [I]V (3.3.10a)
X, | -(a,~ba)) -b X, b

y = [ 1 O]x. (3.3.10b)
Figure 3.3 is the block diagram representation of equations (3.3.10a,b). Equation
(3.3.6) represents a plant having relative order one and éonsequently control law |
(3.3.9) should make n-r=1 states unobservable where r is the relative order.
Inspection of Figure 3.3 shows that x, is the unobservable state and further that the
I/O relationship is a pure integration as expected. To verify the observability

condition we can check the rank of the observability matrix,

c 10
= = : 3.3.11)
MBI i

Since p (W,) =1 <2, the plant is not completely observable. The observable

states can be found from an equivalency transformation, X = PX (Chen (1984),
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Zhou et.al. (1996)). P isa nonsingular constant matrix. The first n-n, columns
of P are chosen from the first n-n, independent columns of the observability
matrix. (n, is the rank of the observability matrix) The last n, columns are
arbitrary. For this example, P can be taken to be the identity matrix.

Consequently the observable state is

y =CP—1)—(=§1=xl (3.3.12)

which agrees with Figure 3.3.

vV — > | >X1=y

++‘ + |
—()— b > — =

Figure 3.3 Block diagram representation of equations (3.3.10a,b) showing
unobservable state, x,.

The above discussion assumes that the true values of states and parameters are
available for use in the control law. In the next section we will investigate on-line

estimation of unknown control law parameters.
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3.4 Gradient Calculation for Feedback Linearized Plants

The gradient in the RPEM algorithm is defined by equation (3.2.18) for
other than linearizing control laws. When the plant is driven from a linearizing
control law, the plzint output becomes a function of the control law parameters (i.e.
estimated plant parameters) and therefore contributes to the gradient. To calculate
the gradient in this case

¢[d—6] [-‘1’3 --‘i’-y;]ra Vo ¥, . (3.4.1
do dé db :

Equation (3.4.1) illustrates the potential problem with the gradient. It may vanish
when the estimated parameters reach their true values. If this happens, the
covariance matrix will increase without bound and eventually cause a failure of the
estimation algorithm. “

If the gradient vanishes the covariance update from (3.2.26d) is

1
P=P, ( ‘X) | (3.4.2)
where \ is the forgetting factor. Recursively updating the covariance with (3.4.2)
generates a geometric progression with common ratio 1/\. Since A is typically

less than unity, the updated covariance increases with each succeeding iteration.

3.4.1 Parameter Estimation Using Standard System Architecture
- The control law for the plant represented by (3.3.7a) is given by
(3.3.9). Let us assume that parameter q, is unknown and attempt to estimate it

using the configuration shown in Figure 3.4. This architecture is basically the
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same as that shown in Figure 3.2. Since the plant is linear, and has relative order
one, the coordinate transformation is simply y, =x,. The loop has been closed
through a feedback gain, d, to insure stability if parameter &, converges and the
plant responds as a pure integrator (the time constant is 1/d for the linearized
system). The Kalman gains in a deterministic system have only a transient effect
since the prediction error vanishes if the parameter estimate converges. Therefore,
in the interest of simplicity, we do not use an innovations model m the estimation

‘algorithm in the following.

t Control
' >Q > oot > Plant —> ¥

ok Tx

—>|Identifier|q

d =<

Figure 3.4 Standard parameter estimation conﬁguratlon with a
linearizing control law.
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With reference to (3.3.7a), the plant parameters were chosen as
a,=4, a,=3, b =2 and initial conditions were set at zero. The feedback gain was
set at unity and the reference input to the system was a step of magnitude 5. The
parameter estimate é,(0) was chosen as 2.0.

As pointed out in section 3.2.1, it may not be possible to estimate
parameters in a closed loop. Before proceeding with a linearizing control, we will
try estimating the parameter with the control law replaced by a proportional only
controller with a gain of one. This will demonstrate for the case at hand that the
parameter can be estimated under closed loop conditions when the linearizing
control law is not present. Figure 3.5 shows that under these conditions the closed

loop does not affect the parameter estimate.

5
N
4
= 2
Esd
"
%2.‘
B
0 T T ¥ T T T T T T
0 20 40 60 80 100

SAMPIE  INTERVALS

Figure 3.5 Closed loop parameter estimate with proportional only
controller. Curve 1, parameter estimate, curve 2,
parameter true value.
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The following results were obtained with a linearizing control law in
place of the proportional only controller. (i.e. architecture as shown in Figure 3.4)

The feedback gain d was set at one.

5
g -
i3
L
éz-
D"l'

0‘ T T T T T T T T T

0 20 40 60 80" 100

SAMPLE  INTERVALS

Figure 3.6 Parameter estimate in a closed loop with a linearizing
control law. Curve 1, parameter estimate,
curve 2, parameter true value.

Figure 3.6 shows that the parameter estimate converges to the true
value. Figure 3.7 is a plot of the gradients. This plot shows that the plant
gradient, ¥, and plant model gradient, ¥,,, equalize after 4, converges to a,.
Consequently the algorithm gradient, ,, (cf. (3.4.1)) vanishes.

Figure 3.8 is a plot of the covariance update denominator repeated here

for reference, (cf. (3.2.26d))
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A+ Y/ Py,
The forgetting factor was set at 0.97. This plot shows that the covariance update
denominator reduces in value to just the forgetting factor. As stated above, this
causes the covariance to blow up. Figure 3.9 shows the increase in the
covariance. Figure 3.10 depicts the tracking befween the plant simulation states
and the plant model states. The parameter convergence is fast enough so that there

is no detectible difference between these curves.

0 100 200 300 400 500
SAMPLE  INTERVALS
Figure 3.7 Plant and model gradients using standard system architecture.

Curve 1, plant gradient, curve 2, plant model gradient,
curve 3, algorithm gradient.
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Figure 3.8 Curve 1, covariance update denominator.
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Figure 3.9 Plot of square root of covariance, P.
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PLANT & MODEL STATES

0 100 200 300 400 500
SAMPIE  INTERVALS

Figure 3.10 Plant and model state tracking. Curve 1, plant output,
curve 2, unobservable state.

Even though the plant output is a function of the estimated parameter,
we can choose to ignore this and try to estimate the parameter. The gradient in

this case is

v, = [_gd_y_] " v . (3.4.3)
db |

Since the algorithm gradient now depends only on the model gradient, the .
cancellation which was present m the above test will be eliminated.

All test conditions remain the same as previously stated. Figure 3.11
is a plot of the parameter estimate. The estimate converges even though the

gradient, ¥,, is theoretically in error.
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T T T T

0 20 40 60 80 100
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Figure 3.11 Parameter estimate using only model gradient.

Figure 3.12 compares the error in the parameter estimate when the true gradient
(3.4.1) and only the model gradient (3.4.3) is used in the estimation algoﬁthm.
This figure indicates that substantially better transient performance is obtained
when using the true gradient.

Figures 3.13 and 3.14 can be compared with Figures 3.8 and 3.9
respectively. In the present case, with model gradient (3.4.3), the covariance

update denominator converges to unity and the covariance remains bounded.
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Figure 3.12 Parameter estimate error comparison, curve 1, only
plant model gradient, curve 2, true gradient.
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Figure 3.13 Covariance update denominator, gradient dependent only

on plant model.
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Figure 3.14 Plot of square root of covariance when only plant
model gradient is used.

So far we have assumed that the states are measureable and considered
only the effects that the gradient has on the parameter estimate and algorimm
performance. To catagorize these tests we will refer to the test using the plant
| model gradient (3.4.3) as case I and the test using the true gradient (3.4.1) as case
II. -

The RPEM algorithm is a bpotstrap estimator. In cases where some
states may not be measureable, difficult to accurately measure or noisy, the
estimated state values generated by the algorithm could be used. Estimated states
in the control law will result in gradients which are different from those used in
case I and case II. Case IIl will parallel case I but with the gradient rederived

with estimated
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Figure 3.15 Parameter estimate with estimated states in the

control law.
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Figure 3.16 Gradient with estimated states in the control law.
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states in the control law. Case IV will utilize the true gradient derived as it was
in case II but again with estimated states.

Figures 3.15 and 3.16 are plots of the parameter estimate and gradient
respectively for case III. Investigation of the plant simulation and algorithm plant
model with estimated states in the control law shows why the performance has
deteriorated.

Using estimated parameters and states in the control law, the plant input
is ’

u=ax-%-di+V, (3.4.4)

and the state-space representation (3.3.7a) changes to

X ) —ax + (G,-d)x + (x,-%,) . 1 v (3.4.5)
%, —ax,+ b(d,~ )%, - b, b

Only the a, estimate appears m (3.4.5) since it is the only parameter in the confrol
law in this case.

The plant model in the estimation algorithm is the same as that of th'e
real plant which is given by (3.3.7a,b). However, in the plant model, some

parameters are estimates and all of the states are estimated values, i.e.
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daffq| _atp A 1 ; (3.4.62)
@t | %, a, 0 || %, b

y=[1 0]t (3.4.6b)
Parameters a, and b are assumed known. The same control law, containing
estimated parameters,is applied to both plant and. estimator. (Refer to Figure 3.2)
For the plant simulation the model is then given by (3.4.5). However, since the

estimator is determining the control law parameters, the estimator model becomes

from (3.4.6a)

e a1 ] [ %, 4-d -1 ][z 1]
- = R + . B + | 4
@ | %, 6,0 || 4 ba,-dy -b || % b

= - Ol * L 1% 3.4.7
" |pe-d-a1 -6 || 3, el 3.4.7)

Note that the parameter a, needed for the control law does not appear explicitly

in the estimator ﬁlodel because the term in which it originally appeared has been
cancelled by the control law. Therefore variations in this parameter are
unobservable in the estﬁnator model output, £,. Since the gradient for the case
we are investigatiﬁg is calculated based on £, only, it has no meaning. The
control law is by design intended to cancel or modify certain terms in the plant.
Therefore it follows that in general the gradient will not be valid for the conditions

we are presently considering.
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For a period of time in Figure 3.16, the gradient has the correct sign
but not the correct magnitude. Figure 3.17 is a plot of the parameter estimate
when the gradient is held at a constant negative value. This plot shows that as
long as the gradient has the correct sign and is small in magnitude the parameter
estimate converges but estimate quality is poorer under these conditions. As
would be expected, the estimate diverges if the sign of the gradient is reversed.
This test explains why the parameter converged for a time in Figure 3.15 with the

gradient shown in Figure 3.16.
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Figure\ 3.17 Parameter estimate with a constant gradient
of -0.005.
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Inspection of (3.4.7) shows that the 4, parameter influences £,. For
estimating purposes, x, can be considered as the plant output and the gradient

calculated accordingly from
dx,
da,

1

Y, = =y, . (3.4.8)
Of course the noisy or inaccurately measured. value for x, must be used in
calculating the prediction error. (cf. (3.2.26a))

Figure 3.18 is a plot of the 4, parameter estimate under deterministic
conditions and -an accurate measurement of x,. By comparison with Figure 3.6,
the time required to settle within 1% of the true value is approximately ten times

as long. Figure 3.19 compares the squared error in the parameter estimate

between Figures 3.6 and 3. 18.
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Figure 3.18 Parameter estimate when x, is taken as plant output.
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Figure 3.19 Parameter estimate error comparison, curve 1 when using
x, as output, curve 2 when using x, as output.

Aside from the larger error and longer settling time, the estimation
algorithm performs normally. The covariance reduces to a small value and the
covariance denominator converges to unity.

Case IV calculates the gradient according to (3.4.1) and uses estimated
states in the control law. The parameter estimate is nearly idenﬁcal to that in case
II. Compare Figure 3.20 with Figure 3.6.

As was mentioned previously, when estimated parameters are used, the
gradient calculated from the estimation model is nearly zero and has no meaning.
Therefore the algorithm gradient is equivalent to just the plant gradient. The plant
gradient in this case converges to zero and, as a result, the covariance denominator

reduces in value to just the forgetting factor. This causes the covariance to
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Figure 3.20 Parameter estimate for case IV.

increase identically as shown in Figure 3.9.

3.5 Modified System Architecture For Adaptive Feedback Linearization

In the last section it was shown that the system architecture which is
~ used for adaptive control of linear plants can malfunction when used for adaptive
linearization. The primary problem is with the gradient which can vanish under
certain conditions. This happens because the true gradient is the diﬂ'erenc¢
between the plant gradient and the estimation algorithm plant model gradient (cf. -
(3.4.1)). These two gradients become equal as parameters converge. This
difficulty can be avoided if instead of attempting to estimate the parameters of the

nonlinear plant, the parameters of the linearized system are estimated. In order
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Figure 3.21 Modified system architecture.

to do this the estimator is driven from the system input and plant output signals.
Between these points the system model will have a linear structure. Knowing this
we choose an appropriate linear model for the estimator. The structure for this
model will be described in detail in the next chapter. The modified system
architecture is shown in Figure 3.21.

The parameters that have to be estimated for linearization are still those
of the nonlinear plant. Therefore the nonlinear plant parameters have to be
estimated by some means from the linearized plant parameter estimates, §. We
can deduce a-priori from the linear plant model what the converged value of the
parameters 8 will be when perfect linearization of the nonlinear plant has been
achieved. This is the key observation. As outlined in the introduction to this

chapter, by using this a-priori knowledge it is possible to develop an adaptive law
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for estimating the nonlinear plant parameters from estimates of the linearized

model parameters. This technique will be developed in the next chapter.

3.6 Summary and Conclusions

When a linearizing control law is used, the estimation algorithm
gradient is the difference between the plant gradient and the plant model gradient
which is part of the estimation algorithm. (cf.(3.4.1)) As time evolves these two
gradients become equal causing the algorithm gradient to vanish and the covariance
to increase without bound.

Several different conditions were investigated using the classical system
architecture for parameter estimation in adaptive control loops. The tests can be
broadly catagorized as either using the true gradient or only the plant model
gradient in the estimation algorithm. Using only the plant model gradient is an
approximation and will be referred to in what follows as the approximate gradient.
The tests were further catagorized by the use of either measured plant states or
estimated states in thé control law with each of the gradients. The results obtained
are summarized as follows.

A. Measured plant states

1. Case I: approximate gradient.
The parameter estimate converges to the true value but with a

larger error and slower convergence rate than when the true
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gradient is used. The covariance remains bounded. See Figures
3.11, 3.12, and 3.14.
2. Case II: true gradient.
The parameter estimate converges to the true value but the
covariance blows up. See Figures 3.6 and 3.9.
B. Estimated plant states
3. Case III: approximate gradient.
In this case the unknown parameter is unobservable via the plant
output and the estimate never converges. See Figures 3.15 and
3.16.
4. Case IV: true gradient.
The parameter estimate converges but the covariance blows up.
See Figure 3.20 for a plot of the parameter estimate. The
covariance response is identical to that shown in Figure 3.9.
Case I is the only one of the four cases tested which produced
somewhat satisfactory but poorer results as compared with the parameter estimate
shown in Figure 3.6. However these results are based on an approximate
gradient.
The unknown parameter may influence a state which is unobservable.
However if this state is controllable and can be measured it can be used for
parameter estimating purposes. Figure 3.18 is a plot of the parameter estimate

when x, was used rather than x, since the unknown parameter did not affect x,
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in this test. Again the results are not as good as when x, is used. Refer to Figure
3.19 for a comparison of the errors when x, and x, are used in estimating the
parameter.

In section 3.5 an improved method for estimating parameters in
feedback linearized systems is suggested. The new method is based on a modified
system architecture which connects the estimator between the system input and
plant output. The true gradient between these points can be based solely on the
estimator plant model and therefore the cancellation which was present with the
true gradient in the classical architecture is eliminated.

The parameters which are estimated in this scheme are those of the
linear system model. It remains to obtain estimates of the nonlinear plant
parameters from estimates of the linearized system parameters since it is the
nonlinear plant parameters that are needed in the control law. A method for

obtaining these parameters with the new configuration is developed in Chapter 4.



CHAPTER 4

Nonlinear Plant Parameter Estimation

4.1 Introduction

In the last chapter a new architecture for a self-tuning feedback
linearization system was proposed. While this configuration solves the
identifiability problem found with the standard configuration used for linear plant
self—tuning systems, the nonlinear plant parameters cannot be estimated directly
from it. What can be estimated directly are the parameters of the model that
represents the linear system between input ¥ and output y. These parameters are
a composite of the true value of the unknown nonlinear plant parameters and the
current estimate of the unknown parameters. The parameter estimator block
shown in Figure 3.21 provides these composite estimates.

If exact plant states and parameters were used in the control law then
the I/O model can be represented by a string of cascaded integrators. However
when control law parameters are inaccurate this model is modified.

This chapter has two objectives. One is td develop the structure for the
/O model when imperfect linearization exists due to parameter errors in the
control law. The other is to develop an adaptive law which will provide estimates
of the nonlinear plant parameters from the composite parameter estimates of the

109
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quasi-linearized plant. The estimated nonlinear plant par@eters supplied by the
adaptive law are used in a certainty equivalence (i.e. as if they are the true
parameter values) manner in the control law and nonlinear coordinate
transformation. The complete self-tuning system architecture is shown in Figure
4.1. |

The chapter concludes with simulations demonstrating the new self-
tuning feedback linearization strategy. The linear plant used for demonstration
purposes in Chapter 3 is revisited using the new architecture and control of a

nonlinear plant with the proposed self-tuning method is also demonstrated.

4.2 Adaptive Law Development

Assume for the moment that an adaptive law exists which provides
estimates of the nonlinear plant parameters from estimates of the linearized plant
parameters, éi, in Figure 3.21. Using the nonlinear plant parameter estimates in
the control law, linearization would then proceed asymptotically as the estimates
of the nonlinear plant parameters converge towards their true values. During this
period of time parameters estimated for the linear plant will be in error since the
I/O relationship of the ndnlinear plant is, to a varying degree, still nonlinear due
to incomplete cancellation of some nonlinear terms. The estimated parameters in
the partially linearized model actually represents the error between the true
nonlinear plant parameter and its estimated value. If it can be established a-priori

how the true parameter and its estimate combine to produce the linearized plant
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parameter, this information can be used to reduce the error in tﬁe nonlinearized
plant parameter estimate. Several different parameter combinations are possible.
One form is given in the introduction to Chapter 3 by equation (3.1.1) and
additional forms will be derived in the following sections. The adaptive law will
be designed to interpret the error information contained in the linearized plant
model parameter estimates and use this information to refine the estimates of the
nonlinear plant parameters.

In general the parameters appearing in the linear plant model will be
functions of the true nonlinear plant parameters and their estimates. To investigate
the nature of this relationship, consider the single input nonlinear plant |

X = f(,p)+ glx.p)u | @.2.1)

where p represents a vector of unknown parameters and the plant output is
y =X 4.2.2)
The linearized plant model is assumed to be in Brunovsky canonical form. States

in this model are defined by the nonlinear transformation vector
z = T(xp) = |T.(dT,, f&.p)), . (T, feep))|. 423

Taking the time derivative of (4.2.3) yields
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¢, = (dT,, f&p)) = z,

z, = (dT,, ftx,p)) = z,
4.2.4)

z, = (dT,, f(x,p)) + {dT,, gx.p) Ju(x,p) .
From equation (2.4.27) the certainty equivalence linearizing control law is

V-(dT,, f(x.p)) (4.2.5)

“wp) = (dT,, gx,p))

where p is the estimate of parameter vector p. Substituting control law u(x,p) foru(x,p)

in (4.2.4) yields

(dT,,8t.p))  {dT,,8(x.p)) v

(T, 860))  (dT,.86.8))
(4.2.6)

¢, = {dT,. fe.p)) - (dT,, fox. )

It is obvious from (4.2.6) that when p=p

=V @4.2.7)

n

as expected. The first two terms in (4.2.6) can be viewed as additional inputs to

the linear plant model until parameter estimates converge and these terms cancel.

4.2.1 Analysis of Equation (4.2.6)
Several variations of (4.2.6) are possible depending on the structure of

ftx.p), glx,p), and the location of unknown parameters in the elements of these
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vectors. Some of these variations will now be investigated by considering a
specific plant. The objective is to find an adaptive law, ideally the same for all
cases, which can be used to estimate the unknown control law parameters.

Given the SISO relative order 2 linearizable plant

[xlzl _ [asm(xz)] X [O:I ) 4.2.82)
X, -bx} c
y =, (4.2.8b)

it can be shown that the nonlinear coordinate transformation is

z, =% =T,
4.2.9)
z, = asinfx,) = T,
and that
2, =2 4
4.2.10)
z, = (acosx,))(-bx] + cu).

The plant (4.2.8a) has three parameters, a, b, and ¢, which could be unknown.
 We will calculate the control law and then assume that certain of these parameters
are unknown either individually or in combinations. These unknown parameters
will be replaced by estimates wherever they appear in the control law. This will
give some insight into how the theoretical linearized plant model is modified by
an approximate control law. It is this modified model that has to be used in the

parameter estimation algorithm. States of the nonlinear plant are assumed to be
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measurable.
Case I: a is the only unknown parameter (cf. (4.2.5))
asin(xz)]

—chl2

{dT,.f(x,p)> = [0, acos(x,] [

(4.2.11)

I}

-bx;(acos (xz))

<dT2,g(x,p)> = [0, acos(xz)] [(c)] = c(acos(xz)) (4.2.12)‘

Substituting (4.2.11) and (4.2.12) into (4.2.5) the control law is

V + bx{acos(x,)

u(x,p) = 4.2.13)
c(acos(x,))
Using this approximate control law in (4.2.10) yields

_ ) a. c(acos(x,))

Z, = -bx{(acos(x,)) + bx{(acos(x,)) | — 2=

c(acos(x,))

+.fﬂs_(fz_).v = fz:V.
cdcos(x a

(4.2.14)

Therefore the state space representation for the linearized plant with unknown

BRHIHE M

parameter @ is



Section 4.2 Adaptive Law Development 115

In this case error in the nonlinear plant parameter estimates modifies the
coefficient of thé arbitrary input, V. This coefficient in the Brunovsky canonical
form should always be unity.

Case II: c is the only unknown parameter.

Following the same steps as in Case I,

{dT,, f(x,p)) = -bxi{(acos(x,) (4.2.16)
{dT,,g(xp)) = c(acos(x,)) 4.2.17)
oy st
From equation (4.2.10) this control law yields
z, = bx{acos(x,)) [%-1] + _‘C;ZV, (4.2.19)

Replacing 2, in (4.2.10) with (4.2.19) the linearized plant model is

41 |0 1| 0 2 01, 4220
[Zz] ) [0 0} [zz] ! [(c/é—l)] abxicostiy) + [c/é] v

Equation (4.2.20) illustrates the earlier observation that the first two terms in
(4.2.6) can be viewed as generating additional inputs to the linear plant model until
parameter estimates converge. In this case the additional input derives from the

component
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0 .
[c 1] abx}cos(x,)

and obviously its effect vanishes when é=c. In more complex nonlinear plants
several inputs of this type may be present initially but all will eventually reduce
t0 zero assuming parameter convergence.

Case III: ¢ and b are unknown parameters

Again following the procedure in the previous cases,

<de,f(x,P)> = —bxf(acos(xz)) (4.2.21)

{dT,, g(x,p)) = cacos(x,) (4.2.22)

V + bx{(acos(x,))
cdcos(x,)

U (x,p") = (4.2.23)

Z, = (b -b)xl{acos(xy) + %V (4.2.24)
The linearized plant model in this case is

Gy _ (0 1ffa) |0 L .0y @225
[22] ) [0 O] [Zz] [”“5] st ["/é]V.

Note that the unknown parameter @ appears expliéitly in the first term of (4.2.24).

In order to implement the estimator model, (4.2.25), this parameter has to be
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replaced by its estimate.

The basic form for the estimator models for the three cases considered are
given by equations (4.2.15), (4.2.20), and (4.2.25). Inspection shows that these
models converge to the Brunovsky canonmical form as estimated parameters
approach their true values. These models will be reparameterized and state
feedback added before using them in the RPEM algorithm. This aspect will be
discussed in greater detail when caseé I and III are used to illustrate the
development of the adaptive law.

The characteristic of interest in all three cases is that errors in the
nonlinear plant parameter estimates produce termé in the linearized plant model
which involve both the true value of the unknown parameter and its estimate. The
appearance of the true values of the nonlinear plant parameters in the partially
linearized plant model offers the possibility of identifying these parameters from
this model. A key element in what follows in the next section is that the true
values, at convergence, of these plant parameter and estimated 'parameter

combinations can be deduced in advance.

4.2.2 Estimating the Nonlinear Plant Parameters

So far we have shown how parameters of the nonlinear plant enter into
the linearized plant model, via the control law, for three specific cases. In this
section we will deVelop a methodology for estimating these parametérs. ‘The state

space model (4.2.25) will be used to illustrate development of the adaptive law.
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The two terms in (4.2.25) containing the unknown parameter estimates
also involve the unknown parameters explicitly and so a direct estimation is
impossible. However, the linearized model can be reparameterized such that each
of the original combinations of unknown parameter and its estimate is represented
by a single new parameter. The estimation routine is then set up to estimate these
new parameters. Since the true values of the new parameters are known in
advance from knowledge of the linearized plant structure, an error equation can
be written and from it the adaptive law deduced.

To illustrate this procedure let 8 and § be the new parameters defined

as
B(k)= b-b(k-I) (4.2.26)
and
S(k) = oo 42.27
°® s (4.2.27)

To define a metric for the parameter error in the reparameterized model we will
adopt the convention that:

'parameter error = true value - estimated value
where true value is defined as the value of the linearized plant parameters after ihe

estimates of the nonlinear plant parameters have converged. Considering (4.2.26),

! In the subsequent generalization of the adaptive law given by equation
(4.2.36a), the expressions for the estimated quantities are manipulated into an
equivalent form such that the true value is always unity.
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the true value of 3g) js obviously zero. Therefore, according to the above

definition, the error in 3(k) is
ey(k) = 0 -B(k) = b(k-1)-b. (4.2.28)

Inspection of (4.2.28) shows that only the sign of ey(k) is needed to determine
whether the value of the previous estimate should be increased or decreased to
reduce the error. Table 4.1 tabulates the correction to be applied io the estimate
based on the sign of the error. |

Table 4.1 b(k-1) adjustment.

sgnleg(k)] *correction applied to
bk-1)
4 : decrease
- increase

This suggests a sign algorithm for adjustment of this parameter (Johnson
(1988)).
A typical recursive sign algorithm is:
new estimate = (old estimate) + (adaptation gain) x (change direction)
x (function of prediction error).

Implementing this yields the adéptation law,

) 2 This table assumes that b is known to be a positive number and that estimate
b(k) is constrained to be positive.
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b(k) = b(k-1) - p,sgnes(k))fles(k)). (4.2.29)

In the adaptation law there is a choice for the error function, f (eﬁ(k)).
Usually algorithms of this type use e%k) (e.g. LMS, (leaét mean squares)).
However, squaring the error eliminates the sign information so that it would be
necessary to keep the sgn(e,(k)) term in the algorithm and evaluate it on each

iteration. If instead the |e(k)| is chosen then

sgn(ey(k)) leR)| = eyk)

and so no special ‘tracking of the error sign is needed. In addition to this, the
le(k)| has a larger value than e?(k) for |e(k)| <1 and will tend to eliminate small
errors faster. Using |ey(k)| for the function of the prediction error, f (ex(K)), the
adaptation law becomes

b(k) = b(k-1) - pyes(k) . (4.2.30)

The sign of the correction term in (4.2.29) is determined from Table 4.1. For
example, if sgn(eé(k)) is positive then the sign of the correction term should be
negative in order to decrease the previous estimate. If the sgn{e,(k)) is negative
then a positive correction is needed so again the sign of the correction term has to
be negative.

In self-tuning applications the parameter error signal depends on other

estimated quantities that contain errors. Excessively large parameter errors
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generate large corrections that tend to be over-corrections and can lead to
instability. On the other hand, very small corrections can lead to long
convergence times. Therefore a modified adaptive gain term is used to hedge
against the effect of a large error that is not representative of the true error.
Analogous to the normalization technique of adaptive vcontrol we make the

adaptation gain an inverse function of the error magnitude. That is set

0)
”’b(k) = I"’b( )

= b 4.2.31
GIECE @230

When the adaptive gain is defined in this way, large errors will reduce the gain
and the likelihood of over correction while small errors will allow the gain to
increase with a positive effect on convergence time. Parameter o determines the
level at which the error magnitude begins to have increased or diminished
| inﬂilence in determining the gain. It is also needed to pre{/ent the denominator
from becoming zero if the error vanishes. Once « is chosen, p,(0) can be chosen
depending on the maximum desired gain. The effect these parameters have on
plémt performance is demonstrated in an application example given in Chapter 5.

For the other unknown parameter, 5(1(), the converged value is one.

Therefore following the error convention which we have established,
es(k) = 1-§(k-1). (4.2.32)

As before, it is sufficient to know only the sign of ey(k) in order to determine the

direction of the correction to be made in d(k—i). Table 4.2 is a tabulation for this
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parameter similar to Table 4.1.

Table 4.2 d(k-1) adjustment.

sgnfe;k)] 5(k-1) correction applied to
ak-1)
+ | <1 decrease
- >1 increase

Footnote 2 with b and (k) replaced by a and a(k) respectively applies to Table

4.2 also. Following the same procedure as above leads to the adaptive law

a(k) = a(k-1) - pe;(k) (4.2.33)
and
p, (0)
k) = 2 . (4.2.34)
ta (k) les(k)| +p

Along with a recursive estimation algorithm of the type discussed in Chapter 3,
section 3.2.2, adaptive laws (4.2.30) and (4.2.33) provide the means to implement
adaptive feedback linearization for plant (4.2.8a,b) utilizing the new system
architecture shown in Figure 3.21.

It is also interesting to note that the true nonlinear plant parameters can
be found even though the estimated values may appear in nonlinear combinations
with the true values. In this eiample we have the nonlinear combination

5= (4.2.35)

S
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where a is the parameter of interest.

Figure 4.1 shows the architecture for a self-tuning feedback linearizing
system. This system is derived from Figure 3.21 by adding the adaptive law.
~Referring to Figure 4.1 and the plant used in the above development of the
adaptive law, operation of the self-tuning feature is as follows. First the
parameters 8 and & appearing in the linearized model are estimated by the RPEM.
Then the nonlinear plant parameters a and b are estimated from 3 and & via the

adaptive law.

+ Linearizing u Nonlinear
\ , > x =
v ’Q ~ 7| Control Law | Plant moy
A
6, X
-—-—-—)Nonlmear
Gains € Transformation
Adaptive
Law
élL_ Parameter <
» Estimator

Figure 4.1 System architecture for self-tuning feedback linearization.

The adaptive law just developed was based on the plant model given by

(4.2.8a,b). However (4.2.6) is completely general and will be used to show that



Section 4.2 Adaptive Law Development 124

the adaptive law developed above applies in a more general case. The following
assumption will be made.

Assumption 4.2.1 Parameter estimates always have the same sign as the true
parameter.

Assumption 4.2.1 is needed in interpreting the parameter error equation
in the following analysis. If the estimate does not have the same sign as the true
parameter then the adaptive law will be unstable. It is not a very restrictive
requirement since logic to ensure this condition can always be included in the
estimation algorithm, The following conditions are sufficient for adaptive law
(4.2.36a) to be applicable for calculgting the nonlinear plant parameters.

Given an n’th order feedback linearizable plant

X = fle,p) + glx,p)u
-with the following conditions:
1. the relative order is n
2. elements gi(x,ﬁ)= 0, i=1,.. ,n—l, and g (x,p) is a monomial

3. the vector dT, does not contain unknowns whlch cannot be
estimated from other terms in 2,

4. unknown control law parameters appear in Z, only as coefficients
5. the parameter error is defined as
P;
ek) = 1-
pfk-1)

where p, is the true value of the unknown parameter

then the adaptive law,
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b,(k) = p,(k-1) - sgn(p)u,e; (k) , (4.2.36a)
where p(k) is the estimate of the i'th unknown nonlinear plant parameter andp,
. is a gain term, will provide estimates of the nonlinear plant parameters in the self-
tuning configuration of Figure 4.1.

The general form for the adaptive law -was developed in this section for
a specific case. It will now be shown that it applies to the broader class of plants
described by the above conditions.

In the Brunovsky canonical form the only state equation affected by the
control law and hence the unknown parameters is z,. (refer to (4.2.4,5,6))
Equation (4.2.6), repeated below, represents Z, after the approximate control law
has been substituted for . This equation therefore will contain coefficients which
are functions of both the true plant parameters and estimated plant parameters.
The starting point is the examination of the terms in (4.2.6) to establish the
relationship between the unknown parameters and their estimates;

(dT,.8(5p)) , (dT,.8(DP)) .,

(dT,.e0)) (dT,.8p))
(4.2.6)

Z.n = (dT,,,f(x:P)> - <dTn’f(x'p\)>

Case I. If g (x,p) contains the only unknown parameter, i.e.

0

2(up) = (4.2.36)

éx,

4
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then from (4.2.6)

s = |1-C| (dr | fex, c
Z, -z (dT,, fx.p)) + =V
(4.2.37)
= l—f olx, EV,
7 (xp) +

where o(x,p) is an arbitrary function of the plant states and known piant
parameters.

Case II: If fix,p) contains the only unknown parameters, then

Z, = {dT,, fx,p)) - {dT,, f(x.p)) + V
aT, ) aT, ' i
S G.p) - D] + -+ e [ﬂ(x,p) -fEp]+ V.

" 9T,
Y -fy v

i=1

(4.2.38)

According to condition 4, the f, and f, terms are identical except for the
coefficients. One is the true parameter value and the other is the estimated value.

Therefore the f- f‘i term in (4.2.38) can be factored as
f: "fi = (p,= D)o (X) +  + (pj—p"j)ia‘_j(x) . (4.2.39)

Within the constraint of condition 3, the vector d7, may contain unknown
parameters which will appear in the ¢, &) terms. We have seen an example of

this in the last section. Referring to (4.2.9),
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dr, = [0, acos(x,)]. (4.2.40)

From (4.2.25)

o, (x) = ax,*cos(x,) (4.2.41)
where g is an unknown parameter. However it can be replaced by 4 obtained
from the coefficient of V in this same equation (i.e. (4.2.25)) and so does not
present’ a problem. Also refer to the simulation results for (4.3.17) which
demonstrates this case (see Figure 4.10a).

Q_gég_l_ll_:_ If f(x,p) and g, (x,p) both contain unknown parameters, then
4, = (dT,. fe.p)) - §(dT,. Fw.p)) + SV
(4.2.42)
= (dT,. f.p) - Zf@P) + 5V

5i- 54 - (, - %ﬁl),.au(x) + e +(p, - < plex. ‘4243

The comments cqncerning the factorization of f,-f, and unknown parameters in
dT, for case II apply here as well to f,- _z_' f; and &, (k).

We noW show that the parameter error -equation given in condition 5
can be used for all three of the above cases. To simplify the notation the
following definitions will be used. In the reparameterized linear model, let 6

denote the estimated parameters arising from the first two terms in (4.2.6), i.e.
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\{dT,, g(x.p))
dT,, f(x,p)) - {dT,, f (%)) " . (4.2.44)
( ) - >(dT,,,g(x,ﬁ)>

Cases II and ITI above result from parameter estimate errors in these terms.

Let & denote the estimate arising from the last term in (4.2.6),

(4T, 8(,p)) (4.2.45)
(dT,, g (x.p))

Case I and Case III contain parameter errors in this term. Then, for example,

rewriting (4.2.38) in terms of these definitions we would have

z =B8a(x)+ - +8a(x) + 8V (4.2.46)
where
0;=p; - P,
and
5-C.
¢

The influence of the parameter error equation (see condition 5) on the
adaptive law is two-fold. First of all it affects the magnitude of the correction to
be made in the parameter estimate. Secondly it determines the direction in which
the correction is to be made. (i.e. should the previous estimate be increased or
decreased in value). This last effect depends on the sign of the error. However
the sign information has to be interpreted based on whether the unknown
parameter is positive or negative. For example if we were to compute the error

for a negative parameter whose estimate is larger in magnitude than the true value
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we would find that the sign of the error is positive. But so is the sign of the error
for a positive parameter whose estimate is larger than the true value. However the
sign of the correction term needed to decrease the estimated value is not the same
for both the positive and negative parameters. Obviously the correction must be
positive to decrease the value if a negative parameter is being estimated but
negative to decrease the value if a positive parameter is being estimated. This
error sign ambiguity is resolved by including sgn(p,) as a multiplying factor in the
correction term.

Consider the situation discussed above and the adaptive law given by
equation (4.2.36a).
For p, > 0 and pk-1) > p,,

ﬁ;(k) = ﬁ,(k_l) - sgn(P,-)P«ﬁ‘e,-(k)

(4.2.47)
- 1) - 1y 0
For p; < 0 and |I3.~(k‘1)| > |pl,
p,(k) = 'ﬁ,-(k;l) "Sg’l(P;)lele,-(k) ,
| (4.2.48)

= Pk-1) + pye k) .
Equations (4.2.47) and (4.2.48) demonstrate that the sgn(p) factor ensures the
correct sign for the correction term.
To complete the analysis we have to verify that the negative sign in
front of the correction term is correct for both positive and negative parameter

estimates which can be either larger or smaller than their true values. This has to



Section 4.2 Adaptive Law Development 130

~be done for the parameter combinations which occur in Cases I through III
discussed above. (cf. (4.2.37,39,43)). Also, to make the adaptive law universal,
error equations of the same form as given in condition 5 have to be derived for all
three cases of the parameter combinations.

In the following we define p and p to be the generic representation of
the true and estimated values respectively of the nonlinear plant parameters. Using
the error definition from condition 5 where the iteration index has been dropped

to simplify the equations we have:

For case I:
LN (4.2.49)
p

e~ 1-5 (4.2.50)
pi> 0: 9‘_ ~ pi.. ﬁi (4.2.51)
Pi_ .o (4.2.52)

p,’ P,-
e ~1- |14 o 0 (4.2.53)

P, P,

-7, (4.2.54)
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For Case III:

e = 1- 3—_0;
D,

131

(4.2.55)

(4.2.56)

4.2.57)

(4.2.58)

(4.2.59)

(4.2.60)

(4.2.61)

(4.2.62)

As pointed out earlier, the sign of the error conveys information about

the relative magnitude of the parameter estimate as compared with the true value.

To show this let )
D; = PD;

(4.2.63)
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where 0 < p <p,, and p . > 1. From (4.2.63)

1 (4.2.64)
p

S e

Substituting % for the parameter ratio in (4.2.49,52,55,58,61) shows that the error

equations are all equivalent to

e.=1- (4.2.65)

1
p
Using (4.2.65), Table 4.3 is a tabulation of the sign errors produced by
estimates which are either too large or too small for both positive and negative
parameters. The last column lists the sign of the correction term needed to reduce

the error in the estimate.

Table 4.3 correction term sign versus error sign

correction
parameter P sgn(e,) term sign
>1 + -
p,>0
<1 - +
>1 . +
p; <0
<1 - ‘ -

The table shows that for p, > 0 the sign of the correction term should be the
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negative of the sign of the error. For p, < 0 the correction term sign should be
the same as the sign of the error. Hence the adaptive law with a negative sign for
the correction term and sgn(p,) included as a factor to ensure compatibility with
negative parameter estimates is universal.

Equation (4.2.65) shows algebraically that the sign of the error is
determined only by .gi . However this is not obvious from (4.2.59,62) for Case

III. The dependence of ¢, on & obscures this fact. Figure 4.2 which is a plot of
(4.2.59) graphically demonstrates that the sgn(e; is independent of 5.

2

-

1.5 I

0

05

. 2

T 200 a0 e00 | 800 1000

SAMPIE INTERVALS (x2)

" Figure 4.2 Effect of 5 variation on sgn(e;). curve 1, 5; curve 2, sgn(e);
curve 3, p,; p; = 0.5.
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The estimate P, is initially set to a value greater than the true parameter. As long
as p, is held at its initial value, the sgn(e,) doesn’t change even though § is varying
through a range of values around its true value. Atk = 1000, p, is set to a value
which is less than p, and the sgn(e;) changes from plus to minus as expected.
Again§ is varied through the same range of values as before with no effect on the
sgn(e;). The sign independence of the error from 6 can also be shown analytically
by substituting for § in (4.2.59) and (4.2.62). |

Remark 1. Note that the error expressions are approximations rather than
eqtialities. The fact that the true parameter error is not accurately known on each
iteration is compensated for by making the adaptive gain an inverse function of the
error magnitude. This results in-an adaptive law that performs cautiously.
Remark 2. The adaptive law given by (4.2.36a) makes adjustments in the
parameter estimate by integral action. Integral action alone can produce a slow
response. By adding proportional gain, the estimate from the adaptive law will

respond faster. Proportional action can be added to this algorithm as follows.

L(k) = L(k-1) - sgn(p e (k)

k) = LK) - sgn(p,)p, e (k)

where I(k) is the original adaptive law and p(k) is the new adaptive law having
both integral and proportional response. The most expedient way to adjust the
integral and proportional gains is to run a simulation and determine a suitable

range of values for each. Final tuning is then done on the real process.
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4.2.3 Adaptive Law Stability and Convergence

In the last section it was shown that estimates of the nonlinear plant
parameter‘s can be calculated by using the adaptive law (4.2.36a) . In this section
the stability and convergence of the algorithm will be investigated.

The adaptive law can be written as

(k) = plk-1) - -_P 4.2.66
P = pk-1) Sgn(P)u[I p(k_l)]. (4.2.66)

The equilibrium point at convergence is the value of the unknown parameter rather
than the origin. The unknown parameter value will be shifted to the origin and
stability investigated using Lyapunov theory. In the shifted coordinate system

a(k) = p(k) - p (4.2.67)
where o is the new coordinate, p is the true parameter value and p() is the
parameter estimate. From 4.2.67)

P =a(k)+p (4.2.68)
and -

plk-1) = a(k-1) +p. ‘ (4.2.69)

Substituting equation (4.2.68) and (4.2.69) into (4.2.66) and rearranging terms

yields

catk-D-pl1-__P 4.2.70
adk) = ak-1) ”[1 a(k_1)+p] ( )

for a positive unknown parameter, p..

From equation (4.2.70), a(k)=0 when a(k-1) is either 0 or p-p.
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Then equation (4.2.68) reduces to
p)=p.
From (4.2.69) and (4.2.66) it can be shown that

pk-1)=p.

Consequently if the origin is a stable equilibrium in the o(k) plane then the
adaptive law (4.2.66) is stable.

-We will choose o?(k) for the Lyapunov function candidate. Then

Via®k)] = o?k) 4.2.71)
and
Viak-1)] = c?(k-1). 4.2.72)
The incremental change can be shown to be
. - [_e@D |’ 1) +p] - 4.2.73)
av [a(k_1)+p] [20le®-1) +p1 -] .

A negative definite AV will insure stability of the origin in the a(k) plane. By
Assumption 4.2.1, pk-1) > 0 vk =1 because p>0. Therefore from (4.2.69),
pk-1) >0 = ak-1)+p > 0. 4.2.74)
In order to meet the stability requirement for AV
2ulalk-1)+pl-2 > 0. (4.2.75)
Therefore

p.. < 2min, [a(k-1)+p] = 2p. (4.2.76)
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A similar analysis for the case of a negative unknown parameter leads to the same
I"'max °
The adaptive law, equation (4.2.66), is capable of one step convergence

with the proper choice of u. Let p(1)=p. Then from equation (4.2.66)

p =50 - p [1_ P ] , 4.2.78)
P 50) |
Solving (4.2.78) for p yields

Hop = PO) (@279

for a positive parameter. For a negative parameter

Hrope = ~P(0) . 4.2.80)
Using u,, in (4.2.66)
5(1) = p(0) - p(0) [1-J_ =p. (4.2.81)
p p 4 50) | P
If the unknown, p, is negative,
p) = -p©) + p0) [1-3%’_) =-p. (4.2.82)

Figure 4.3 shows the parameter convergence for several values of the
adaptive gain including p_,. Figure 4.4 shows the parameter estimate for ap
value close to but less than the stability limit. Figure 4.5 depicts the estimate
when u is set to a value slightly‘ greater than g, . Figure 4.6 shows the response
for a positive parameter when p(0) is either greater than or less than the true
parameter. The lack of symmetry in the curves is due to the larger correction
made when p(0) has a smaller value. Figure 4.7 is similar to Figure 4.6 except

the unknown parameter is negative.
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Asymptotic stability means that a response trajectory, in this case a
parameter estimate, comes closer to the equilibrium value on each successive
iteration. The above analysis shows that the adaptive law is locally asymptotically
stable depending on the gain. However it is difficult to select the adaptive law
gain to insure stability unless a conservative a-priori estimate of the unknown
parameter is available. This is because the maximum gain depends on the
unknown parameter. A better approach, in an ideal setting, is to set the adaptive
'law gain according to equation (4.2.79) or (4.2.80). This would guarantee both
stability and one step convergence.
~ The stability and convergence characteristics shown above are present
if the adaptive law is operating closed loop on itself. When other dynamic
elements are included in the loop then the error signal deviates from the ideal case

and p has to be adjusted away from the ideal value to compensate.
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Figure 4.3 Adaptive law convergence. Curve 1, u=0.25; Curve 2,
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Figure 4.4 Adaptive law convergence for u close to y,,.
Poax=2.0, p=1.9.
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Figure 4.5 Adaptive law convergence for u > p,,.
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4.3 Simulation Evaluatioﬁ of Self-Tuning Feedback Linearization

In Section 4.2.2, Figure 4.1, a new architecture for an adaptive or self-
tuning feedback linearization system was proposed. In this section the viability of
this new scheme will be demonstrated using simulations of nonlinear plants. The

input signal tracking capability will also be demonstrated.

4.3.1 Plant Modelling For Simulation Studies

Simulation studies are commonly carried out before implementing a new
control strategy on a real plant. In self-tuning feedback linearization applications
the real plant may appear to change in structure asymptotically as the parameter

estimates converge toward their true values. This happens because the control law



Section 4.3 Simulation Evaluation of Self-Tuning Feedback Linearization 142

becomes more effective in neutralizing the effect of nonlinear terms in the real
plant as time progresses. Therefore the plant model chosen to represent the real
plant in a simulation must be capable of reproducing any apparent structural
changes that the real plant exhibits. In the following when structural change is
referred to it should be interpreted to mean an apparent structural change. In other
words it does not mean that the real physical plant changes in structure but only
appears to do so in response to the linearizing control law.

The Runge-Kutta method is a well known solution technique which is
applicable to both linear and nonlinear differential equations (Lastman & Sinha
(1989)). It can also be applied to systems of first order ordinary differential
equations. The method uses the exact differential equations which represent the
plant at all times and will therefore respond like the real plant for any input
including linearizing control laws. Runge-Kutta models therefore have the
necessary structural change capability needed to track the response of the real
plant.

A four stage Runge-Kutta method consists of the following for a system

of n first order differential equations given by

X fiGe,u,0)
= : (4.3.12)

x, f.(x,u,1)
where x is the state vector and u is the plant input. The functions f; may be

nonlinear. Each of the state equations in (4.3.12) can be approximated by
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K, = fi(x,, u(t,), t)h (4.3.13)

K, = f,.[(xk+MK1,.), u(t,+ Mh), (1, + Mh)h (4.3.14)
K, = Jg[(x;+MK2i),u(tk+Mh), (t,+ Mh)|h 4.3.15)
K, = f,.[(xk+K3l.),u(t,;+h), t,+m)h (4.3.16)
g =X, + (K, + 2K, + 2K, + K,))/ 6 (4.3.17)

where M=0.5 , h is the increment in the independent variable and x, , denotes the
approximate value of the i 'th component of the state vector at ¢=¢,. Evaluation of
(4.3.13) through (4.3.17) over a period of time yields the state trajectories. Error
in a four stage R-K solution is O®’).

The gradient WRT 8, for an R-K model can be calculated as

S VI TR i B S TS I CR R D)
v dd, 6| db, db, db,  db,
where
dx, ,
—= = Yy
dﬁi bk

The gradient equation involves four derivatives for each unknown parameter for
each of the n differential equations in the system.
Another solution method which has the needed structural change

property is the Euler representation,
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X o1 = X+ i U8 1) R (4.3.19)
having an accuracy O(h). This method is also applicable to a system of first order
equations. While less accurate than Runge-Kutta, calculation of the gradient is
much simplier than with R-K models. Both representations will be used for the

simulation studies in the following section.

4.3.2 Parameter Estimator Imbedded Model

In section 4.3.3 simulations will be carried out using the system
conﬁguration shown in Figure 4.1. For the estimation algorithm, the imbedded
plant modél is the discrete representation of the linearized state space equations.
Here the discrete representation can be used to model the linearized plant because
it is not required to undergo any structural changes. The only change is in the
number of inputs as time evolves. The number of inputs decrease as parameter

estimates converge to the true values.

4.3.3 Simulation Results

A number of simulations have been run to demonstrate the performance
of this new technique. The next section deals with adaptive feedback linearization
of plants whose states are ‘measurable. In section 4.3.5 adaptive tracking of a
feedback linearizable plant is demonstrated.

Before proceeding with the evaluation of the new system architecture
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and adaptive law with nonlinear plants, we will revisit the linear plant of Chapter
3, (cf.(3.3.7a,b)). This plant was used to demonstrate the problem with the
standard system when feedback linearization is used. In this chapter we use the
new system architecture and adaptive law to demonstrate that the problem
experienced with the standard system and this plant in Chapter 3 has been solved.
The system architecture is as shown in Figure 4.1. The linearizing
control law is given by (3.3.9) with ¢, an unknown parameter, i.e.
u=V+ax -de -x,.
The ~dx, term is contributed by the outer feedback loop. In this relative order
one case, the model for the linearized plant could be written down directly.
However, as a further illustration of the theory in this chapter, we will derive the

model from (4.2.6). For this plant z, =x,. Evaluating the terms in (4.2.6) we get

2 =(-ax,+x)) - (-4;x,+x,) + (V-dx)) @3:20)
= Gx, -dx +V
where & =4,-a,.

In Chapter 3 and again in this chapter we are still considering
deterministic systems. In Chapter 3 it was pointed out that the output error signal
vanishes if the estim-ated’ parametefs converge. Vanishing of the innovation will
make the Kalman gain unobservable and cause certain elemehts of the covariance

matrix to increase without bound. To demonstrate this we will initially use an

innovations model.
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The continuous linearized plant model will be discretized using a first

order Euler expansion,
2,k+1) = 2,(0) + [az,®) - dz, k) + V + Re(®)| h 4321
where
&(k) = y(k) - z,(k) .
The gradient is calculated as follows, (cf. section 3.2.2).

7 = [, R] (4.3.22)

Y(k) = Wi(k) CT(8) + DT(k) (4.3.23)
W(k+1) = W(k) + [@- d - EYW(K) +[z,(0) e(®)] ]~ 4-3.29)

Expanding (4.3.23) and substituting W, (k+1) and W (k+1) from (4.3.24) we

find the gradients for & and K to be

Vo(k+1) = W, (0) + [(&-d-BYW, () +2,(0) |0 4:3:29)

and
Uk +1) = W) + [(6-d-R)Wo(k) v e(i) [n.  4-320)
The adaptive law is given in Theorem 4.2.1. Inspection of the

linearized plant model equation (4.3.20) shows that the error term in the adaptive

law should be defined by (4.2.56) where
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B k) ak)
X = - _ 4.3.27)
k) =50 " am

The sign of 4, as used in the control law is positive. Using both integral and
proportional responses, the adaptive law is given by the equations in Remark 2,

page 134. Set up for the present case, these equations are

I(k) = I(k-1) - p,e (k) (4.3.28)
and

a, = I(k) - .05e(k) (4.3.29)
where

Ha, = |e(kﬁ7+ 75

Integral and proportional gain constants were empirically determined. The range
of values for these parameters is application dependent. In the present case
.04 =p(0)<.09 gave reasonable results with ¢ =0.75. Proportional gain shortens
the convergence time and can be adjusted as needed to get a desired response in
the parameter estimate. The Kalman gain estimate is obtained directly from the
RPEM.

Figure 4.8 is a plot of 4, and &. The initial parameter estimate was
0.5 and the true value of the parameter is 4.0. Since &=4,-a, in this example, &

is negative as would be expected. The & response is somewhat distorted from
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what might be expected due to the effect of the Kalman gain and innovations term
in the plant model. This is evident by comparing Figure 4.8 and Figure 4.17 for
the non-innovations model. However both & and &, converge to the expected
values. Figure 4.10 is a plot of the Kalman gain estimate and the innovatioﬁs.‘
The Kalman gain has been scaled down by a factor of fifty for plotting
compatibility with the much smaller innovations signal.

Figures 4.9 and 4.11 are plots of the & and K gradients respectively.

From (4.3.24),

Wu(k% 1) = [1+(&-d-R)R|W, (k) + z,(k)h (4.3.30)
W,(k+1) = [1+ (&-d - R)R|W, (k) + e(k)h. 4.3.31)
The solutions of (4.3.30) and (4.3.31) are
k-1
W, (k) = ¢ W,,(0) + B} ¢* D7z (i) (4.3.32)
' i=0
and
k-1
W, (k) = ¢*W,(0) + Y ¢*De(i) (4.3.33)
. i=0
respectively where
¢=1+(6-d-K)h. (4.3.34)

As we have seen, & converges to zero. If 0 <|d+K|h <2 the first terms on the
right of the equals sign in (4.3.32) and (4.3.33) will vanish. The sampling rate
is 0.025 so |d+K| would have to be an unreasonably large value (i.e. 80 or

greater) for the above condition not to be met. In this simulation the condition



Section 4.3 Simulation Evaluation of Self-Tuning Feedback Linearization 149

true value

"4 T T T i 7 T
0 50 100 150

SAMPLE  INTERVALS

T ¥ T T

200 250 300

Figure 4.8 Plant and model parameter estimates, innovations model.
Curve 1, plant parameter, 3, Curve 2, model parameter, &.
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Figure 4.9 & gradient, innovations model.
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is met, ¢ <1, and so these terms do vanish. The second term on the right in
(4.3.33) will vanish since e(k) converges to zero, (cf. Figure 4.10). The second
rightmost term in (4.3.32) will always have a value because in general the plant
output, x;, (z,=x,) is not zero and is unipolar. Figure 4.12 is a plot of the
covariance update denominator. Plots of the covariance matrix elements are
shown in Figure 4.13, 4.14 and 4.15. Figure 4.16 shows the tracking between the

plant output and the model output during the self-tuning linearization cycle.
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Figure 4.12 Plot of covariance denominator.



Section 4.3 Simulation Evaluation of Self-Tuning Feedback Linearization 152

P(1, 1)

COVARIANCE
e
S

0 T T T Y T T T T

0 25 | 50 75 100 | 125 150 | 175 200
SAMPLE  INTERVALS

¥

Figure 4.13 Plot of the square root of covariance element p(1,1).

30
204
a 4
:‘_ 10 4
& ,’g i
8 ; 0
é’ .
é ~10 -
8 ]
-20
~30

100 200 300 400 500 600 70D 800 900 1000
SAMPIE  INTERVALS

[

Figure 4.14 Plot of covariance element p(1,2).
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Figure 4.16 Plant and model output tracking during control
law tuning :
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For the deterministic case, an innovations model is not needed and
indeed cannot be used due to the unbounded response of elements in the covariance

matrix. Returning to (4.3.21) the plant model without the innovations term is

z,(k+1) = z,(k) + [bz,(k) - dz,(k) + V | . (4.3.35)

Following the same steps as for the innovations model, we arrive at

W, (k+1) = [1+(&- d)R] W, (k) + 2, (k)R (4.3.36)
Yk +1) = W, (k) +[(&-d)W, (k) +2,(K)] h
» 4.3.37)
=[1 +(a-d)n]W, (k) +2,(k)
and |
k-1
W (k) = ¢FW,,(0) + BY ¢%~D=iz (i) (4.3.38)
i=0
where
¢ =1+(a-d)h. (4.3.39)

A discussion of ¢ analogous to that following (4.3.34) also applies to (4.3.39).
The conclusion that the gra(iie'nt does not vanish can be reached by analyzing
(4.3.38) similar to the analysis given for (4.3.32).

Figure 4.17 is a plot of & and &, for the plant model (4.3.35).
Convergence of these two parameters is a little slower than it was for the
innovations model. (cf. Figure 4.8) The main feature is that the covariance

remains bounded as shown in Figure 4.20.
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Figures 4.18, 4.19 and 4.21 for the standard model are the counterparts

of Figures 4.9, 4.12 and 4.16 respectively for the innovations model.
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Figure 4.21 Plant and model output tracking during control
law tuning.
4.3.4 Nonlinear Plant Self-tuning Feedback Linearization

Again consider the feedback linearizable plant,

[le : [asm(xﬂ] ) [oJu (4.3.409)
% ~bx} c
_— ) (4.3.40b)

which was discussed in Section 4.2.1. The true values of the parameters are
a=0.785, b=5, and c=1. We will initially consider a to be the only unknown
parameter. Also recall from the discussion in Chapter 2, section 2.6.2 that étate
feedback is needed to stabilize and control the linearized plant. Following the

procedure developed in section 4.2.1, the linear model for the plant is
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R P R H
% -d, -d, Z, 0

where d; and d, are feedback gains. These gains are determined when pole
locations for the closed loop linearized plant are chosen. For this simulation the
poles were set at s, =-5 and s,=-10. With these poles the characteristic equation
is

§s2+155+50 =0
and therefore d4,=50 and d,=15. Equation (4.3.41) is the modified version of

(4.2.15) (i.e. feedback has been added). The linearizing control law for (4.3.40a,b)
with @ unknown is

A | 2, |4
u(na) = 1 [be m] . (4.3.42)

The complete architecture of the adaptive feedback linearizing system for this
example is shown in Figure 4.22. Figure 4.23 is a plot of § and 4. As can be
seeri, both parameters converge to their true values of, 5= l,and d = .785. The
filtering effect of integral action in thé adaptive law produces a smoother response
in the @ estimate. The sample interval is 0.025 timé units.

When more than one parameter estimate is needed the system
architecture is basically the same as shown in Figure 4.22 but adaptive laws for
the additional parameters are added to the system. Errors in the second parameter
estimate produce another input to the linearized plant model. éuppose a and b are

both unknown parameters in control law (4.3.42). Then the estimator model is
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(4.2.25) with feedback added,

Gl o a0 01 Eircose) @343
| [22] ) ["dl “JLJ + {SJ‘u [B:,a(ﬁ)xlcosw

where a() denotes the dependence of a on 6. The unknown parameter a in

(4.3.43) is replaced by an estimate calculated from 4, and §, |,

a, =a,,5 . (4.3.44)

Figures 4.24a and 4.24b are plots of the estimates for two unknown
parameters, a and b. The true values for § and 4 are the same as before. For the
other pair of parameters the true values are =0 and 5=5. Again all estimates
converge to their true values. The convergence rate for § and @ is slower in this
case than it was in the first example. Note the factor of four difference in the time
scales of Figures 4.23 and 4.24a. The slower convergence is probably due to the
interaction caused by the simultaneous adjustment of two parameters.

This is a case where performance was improved by adding proportional
response to the adaptive law for . (refer to Remark 2, pg 26). The proportional
term significantly reduced the convergence time for this parameter. Figure 4.25
is a plot of B and b without proportional response. Note that the time scale is five
times longer in Figure 4.25 than it is in Figure 4.24b. A slight additional
improvement in response time was realized by passing the 8 estimate through a low
pass filter to reduce the initial transient peaks and using the filtered value in the

calculations. However this result was not plotted.
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Figure 4.25 Same as Figure 4.24b but without proportional gain.
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4.3.5 Tracking of Self-tuning Feedback Linearizable Plants

In many applications the control objective is to track an input signal.
This can easily be done with a feedback linearizable system. The system input
signal is set equal to the desired plant output and its derivatives up to the relative
order of the plant. Each derivative is multiplied by the appropriate feedback gain.

For the plant given by (4.3.40a,b) assume that we want to track the signal

y = 0.25sin(wz). (4.3.45)

Therefore the system input is set to

V=y,+dy,+dy, (4.3.46)
where y, is the desired output. (i.e. equation (4.3.45)

The control law for this case is

1 [bxf . yd~d2(dsm(xz)—yd)-dl(xl_yd)
c

uxa) = < dcos(x,)
(4.3.47)

For the non-tracking case the closed loop poles may be chosen according to the
desired time response. In the signal tracking case, the poles determine the

tracking error response. With V given by (4.3.46),
y=y,+dy,+dy,-dy-dy (4.3.48)

Rewriting (4.3.48) as
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(V=) + d(¥,-¥) + d(y,-y) = 0 (4.3.49)
yields the tracking error
é+dg+de =0 (4.3.50)

where d, and d, are chosen to provide the desired tracking error response.
Figure 4.26 depicts the tracking errbr when parameter a is the only
unknown. It shows that the error quickly reduces to a negligible- value. Figure
4.27 shows the plant output compared with the desired output y, and Figure 4.28
shows the convergence of the parameter estimates to their true values. Figures
4.29, 4.30, 4.31a, and 4.31b are similar to the above set of tracking curves except
| that two unknown parameters, a and b, are being estimated. (i.e. b is replaced by b
in (4.3.47)).
Remark 3 In both tracking examples the parameters converge to their true values.
However this is not necessary if the only requirement is for the plant output to
track the input signal. This can sometimes occur when the parameters do not

converge to their true values.
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Figure 4.28 Parameter estimates 5 and 4 for input tracking case.
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Figure 4.31b Parameter estimates B and b for input tracking
case, two unknowns.

4.4 Summary and Conclusions

In this chapter an adaptive law was developed for use with the system
architecture proposed in Chapter 3. The complete system is shown in Figure 4.1.
In this conﬁgutaﬁon errors in those plant parameter estimates which are used in
the control law result in additional inputs to the linear model. These inputs
involve coefficients that are functions of the true plant parameters as well as the
estimates, possibly in nonlinear combinations. Since the true nonlinear plant
parameters appear in the partially linearized model, this provides an opportunity
‘to estimate these parameters from the linear model. However the unknown
-parameters cannot be estimated directly. In order to solve this problem the linear

model is reparameterized in terms of the parameter combinations which are then
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estimated by the RPEM. Since the final values (i.e. the values after perfect
estimation has been achieved) of the parameters in the reparameterized linear
model are known a-priori, an errbr equation for each can be written. The sign
and magnitude of the errors are used to devise an adaptive law for updating
estimates of the nonlinear plant parameters. Sufﬁcient conditions defining the
class of plants for which this method applies are given in section 4.2.2. The
adaptive law is given by (4.2.36a). In section 4.2.3 the stability and convergence
properties of the adaptive law were investigated. It is shown to be locally
asymptotically stable and capable of one step convergence under ideal conditions.

Some important modelling considerations in connection with simulation
studies of feedback linearizable systems are discussed. The | most important
requirement is to choose a plant modelling method that can track the‘ apparent
change in structure that the real plant exhibits as linearization is asymptotically
approached. Both Runge-Kutta and Buler models are suggested for linearization
studies because these solution methods utilize the real plant equations and will
respond to the control law in the same manner as the real plant.

Several simulations were run to demonstfate the performance of the
proposed architecture and adaptive law for both‘arbitrary inputs and signal tracking
applications. The first simulation was a revisitation of the linear plant from
Chapter 3 which had been used to point out problems with the combination of
feedback linearization and standard self-tuning system architecture. The simulation

demonstrated that the probléms encountered in Chapter 3 had been eliminated
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using the new method. Following this, additional simulations using a nonlinear
plant were carried out. The results from all simulation studies conducted confirm
the efficacy of the combination of the new architecture and adaptive law for

implementation of a self-tuning feedback linearization system.



CHAPTER 5

Self-tuning Feedback Linearization Applications

5.1 Introduction

It can be said with some justification that every process is nonlinear.
Some are inherently nonlinear while others are nonlinear due to imperfections in
components etc. From this hypothesis those which are considered to be linear are
thdse that exhibit only slight nonlinear behavior and therefore can be successfully
controlled using linear controllers. Controller design for these plants benefits from
a large body of well developed and well known design techniques. Feedback
linearization has attracted a great deal of research effort in recent years because it
offers the possibility of making linear controller design techniques applicable to
inherently nonlinear processes.

When complete knoWledge of the parameters of an accurate plant model
are available, design of the linearizing control law and nonlinear coordinate
transformation is straight forward. However this is generally not the case and the
designer is confronted with a structured uncertainty problem. In Chaﬁters 3 and
4 the theory and a methodology for dealing with this problem was developed. A
familiar technique for parameter estimation and the concept of self-tuning were
combined in a certainty equivalence manner and the problems unique to applying

172
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these methodologies in a feedback linearization setting were solved. With the
addition of a parameter adaptation law, a new method for designing self-tuning
feedbac‘k linearized systems was proposed. The method was demonstrated using
simulations of arbitrarily chosen linear and nonlinear plants. In this chapter self-

tuning feedback linearization will be applied to simulations of real nonlinear plants.

5.2 Process Control Applications

Nonlinear plants are very common in the chemical processing industry.
Fréquently encountered nonlinearities are the ubiquitous Arrenhius dependency of
reaction rates on temperature and the product of the plant input with the controlled
variable such as ﬂéw rate times concentration etc. (i.e. bilinear plant).

A typical controlled variable in chemical processes is temperature.
Temperature in a reactor is in general related to the manipulated variable through
nonlinear terms in energy balance equations (Aoufoussi, et.al. (1992)). In this
section we will study the temperature control of an exothermic batch reactor when

controlled by a self-tuning feedback linearizing algorithm.
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5.2.1 Self-tuning Feedback Linearization Control of An Exothermic Batch
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Figure 5.1 Batch reactor schematic diagram.

Figure 5.1 is a schematic diagram of a jacketed batch reactor.

Temperature in the reactor is controlled indirectly by controlling the temperature

of the fluid circulated through the jacket. Both the reactor and jacket temperatures

are measured and brought into the reactor temperature controller. Output from the

controller is directed to either a steam or chilled water valve. The steam or chilled

water is injected directly into the jacket supply line ahead of an in-line mixer.
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The reaction process used in this simulation is based on a dynamic
model developed by Pulley (1986). Two well mixed liquid phase reactions are

modelled:

4 v B0 (5.2.1)

A+ C-D
where component C is the desired product and D is an undesired by-product. The
process is assumed to be reaction rate limited and strongly exothermic. Optimal
conditions for reactor operation are an initial equimolar charge of reactants A and
B and a reaction temperaturev in the range of 90 to 100 degrees centigrade.
Physical limitations of the jacket system are assumed to restrict the jacket
temperature range to from 20 to 120 degrees centigrade. The initial charge is
assumed to be at 20 degrees C. The complete reactor model, process data, and
initial conditions are given in Appendix A.

The main control objective is to raise the reactor temperature to the
optimum value} for conversion of the reactants to the desired product C while
minimizing the production of by-product D. Obviously the optimum conditions
have to be reached while staying within the physical constraints imposed by the
processing equipment. Ideally the optimum reactor temperature is reached in a
fairly short time and maintained at this temperature until the reaction reaches

completion.
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Exothermic reactions are positive feedback processes which have the
potential for running away and possibly endangering personnel or damaging
equipment. Therefore it is highly desirable that the control scheme be one which
can estimate in real time the nonlinear heat of reaction being generated by the
process. This information can then be used to make the appropriate compeﬁsating
changes in the jacket temperature. Previous approaches to the control of this type
of process are given in Shinskey and Weinstein (1965) and Cott and Macchietto
(1989).

| Shinskey and Weinstein proposed a dual mode scheme for heat up and
maintenance of the temperature at the desired operating level. Heat up is done in
a béng-bang mode where maximum heat is applied until the reactor temperature
reaches a certain level below the operating setpoint. At this time a switch to
maximum cooling is made to slow down the temperature rise and hopefully
decrease the rate of rise to zero at the instant the temperature reaches the setpoint.
Jacket temperature is then set at an intermediate value for a short time followed by
a‘switch to linear control. PID control is then used to maintain the setpoint '
temperature. There are a total of seven tuning constants to be determined in this
scheme for the reactor temperature plus some additional ones for the jacket
temperature controller.

The drawback to this method is that the time durations of maximum
cooling and intermediate heating are determined a-priori and the process is

operating open loop until the final switch to PID is made. Any changes in process
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dynamics or disturbances entering the system will result in deviations from the
optimum temperature profile.’

Cott and Macchietto propose a control scheme based on the Generic
Model Control approach. (refer to Chapter 2). GMC eliminates the undesirable
open loop heat up mode of the dual mode scheme and also requires only a single
controller for heat up and control at the operating temperature. The GMC
controller requires the on-line estimation of the heat of reaction. The authors
derive this estimate by rearranging an energy balance equation written around the
reéctor contents. However this calculation involves the derivative of the reactor
temperature which must be obtained by a numerical procedure -from filtered
measurements of the jacket and reactor temperatures. |

The GMC method leads to a PI control structure and hence only two
tuning parameters. Thése are calculated from performance figures given by Lee
and Sullivan (1988). |

In the following sections we will study the performance of the batch
reactor with self-tuning feedback linearizing control applied. This method has none

of the undesirable features of either the dual mode or GMC controllers.

! A solution to this problem was proposed by Gebo (1983). The process was the heat
up of a polyethylene extruder barrel. Barrel temperature was periodically measured to
ascertain that it was still on the desired trajectory. If not, then switching times from
heating to cooling and vice-versa were recalculated on-line to insure that the temperature
error trajectory would pass through the origin of the phase plane.
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5.2.2 Control Law Development
Dynamic models for the reactor and jacket temperatures are derived
from energy balances around the reactor contents and between the jacket fluid and

reactor contents. These balances yield for the reactor temperature

a,  _UAp, UAp, & (5.2.2)
dt MC, MC, "’ MC,
and for the jacket temperature
ii_]_:’_' = —_F!;T. - 9 + ﬁu (5.2.3)
dt Vl ’ ‘,Jpl ij ‘,]

where u represents the jacket inlet temperature T,,. Q, is a nonlinear term in
equation (5.2.2). The compléte nomenclature is given in Appendix A. It is
assumed that the steam and chilled water valve positioning time constants are
negligible in comparison with the jacket temperature time constant. As a matter

of convenience, equations (5.2.2) and (5.2.3) will be rewritten as

X, = -ax; +ax, + ¢
(5.2.4)
X, = -bx, - n + bu.

The terms in (5.2.4) are defined as follows:

F,
x=T,, %=1, a= UA | c- < , b=, and n= < .
v M‘CPt M‘Cl’t I,j I,jprPj

In the following there is an economy of notation if (5.2.4) is expressed as
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% = f(x) + gu (5.2.5)

where

Definitions of the vector elements are obvious by comparison with (5.2.4). Also
the argument x will be dropped since the meaning will be clear in the sequel.
Application of theorem 2.4.1 indicates that the plant is feedback

linearizable. The new coordinates

z.=T,

(] i

i=1,2

are found by evaluating

(et adiz) = 0 (5.2.6)

(ar,, agig) = 0.

Carrying out the calculations indicated in (5.2.6) yields:

T, oT, | [0
— e =0
ax, ox, | |b]|

, o1,

dx,
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ox, Ox, b? ox, ox,
9.5 # 0. 5.2.7
dx,
To satisfy (5.2.7) we choose
T, =x =2 (5.2.8)

which defines z, as the plant output. The second coordinate is found by evaluating

aT, oT, | |1 | _ or,
T, =<dT1’f> = l:'ajc‘l- 3;2‘] [fz] = ggfu

S.z, = —ax, +ax, +C. (5.2.9)

Equation (5.2.8) and (5.2.9) represent the plant states in the new coordinate

system. The feedback control law is calculated from

_v-{dn.5)

U= — =

(de,g)

v _¢ 1 5.2.10

The unknown nonlinear heat of reaction term which has to be estimated on-line in

order to achieve accurate feedback linearization is contained in f, .
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Usually the control law does not contain derivatives of the unknown
parameters. In this case the unknown is the heat of reaction term which is a
function of time. Differentiating the output, y,, to obtain an equation involving the

plant input introduces ¢ into the linearizing control law.

5.2.3 Linearized Plant Model Development
From (5.2.8) and (5.2.9) the state-space model for the linearized plant
is

4 =%
(5.2.11)
i, = -af, + af,+C+abu.

Substituting the control law (5.2.10) into z,, (5.2.11) becomes

] Lo gl - o] e

Equation (5.2.12) represents the open loop linearized plant model with three inputs.
The first two are dué to error in the estimate of the unknown parameter ¢ and its
~ rate of change, é. As time evolves, the adaptive law would refine the estimates
of ¢ and ¢ until these inputs eventually reduce to zero. The third input, v, is
arbitrary and will be chosen to produce the desired closed loop response from the
linearized system.

Each unknown in the control law increases the dimension of the

parameter vector which in turn adds complexity to the RPE algorithm. Besides
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this, individual adaptive laws are needed for each estimated parameter. Therefore
unless an unknown parameter will have a significant effect on the control objective
it is desireable to leave it out of the control law.

Figure 5.2 is a plot showing the relative magnitude of ¢ and ¢. These
curves were obtained when the system was operating closed loop but neither ¢ noré
was included in the control law. The setpoint was tracing the desired reactor

temperature profile.
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Figure 5.2 Heat of reaction response when compensation is
not included in the control law.

The control objective is to track a temperature profile and it may be
possible to do this satisfactorily even though the control law is sub-optiinal. For

these reasons it was decided that ¢ would be ignored in the control law and
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linearized plant model. Subsequent testing and evaluation of the tracking error
shows that ignoring ¢ had substantially no effect on system performance.

The linearization procedure, by design, results in an open loop which
is a cascaded string of integrators. The loop is closed by feeding back the output

from each integrator. The closed loop system can be represented as

3 dz
Y e =Yy
dtl—l

i=1

where d, are the feedback gains. With feedback added the reference input needed

is

Vi = il d221d + dlzld (5.2.13)
where z; is the desired reactor temperature profile. In this example the objective
is to ramp the reactor temperature from an initial value of 20 degrees toa final
value of 95 degrees C in 25 minutes and hold at 95 degrees. Based on the above
conditions and (5.2.13), |

(5:2.14)
V,y = 0+3d, +3d,t+20d,, 0 <t <25 min ,

Vg = 95d;, 25=t<t, (5.2.15)
where 20d, is due to the initial temperature. The input signal to the control law

is
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<
1

= Vg~ dz, - 4z,

d(z'-z) + dfz' - 2,). (5.2.16)
The error equation for the closed loop system can be written as
é+dé+de =0 5.2.17)
where e =z -z,. The error equation provides a basis for choosing the feedback
gains. Parameters d, and d, determine the rate at which the tracking error
approaches zero. Of course the input due to error in the parameter estimate ¢ will
also have a transient effect on tracking error. The feedback gains were set at
d,=16 and d,=8. This produces a dominant decaying exponential factor with a
0.25 minute time constant in the tracking error response.
Updating the model given by (5.2.12) to include feedback,
rcparameteriiing such that § = ¢ - ¢, and converti_ng to discrete form yields for a

- sampling time of AT =.025 min.

z,(k+1) 99532 .02262| |z, (® .0000876 ;
: = - m
z2,(k+1) -.36193 .81435| |z,(k) .0067863

. |-000292| (5.2.18)
022621 ™

where parameter a=0.3 has been included in the coefficient matrix of 6. The
reason for the multiplying factor m will be discussed in the next section. Equation

(5.2.18) is the plant model used in the RPEM algorithm.
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5.2.4 Estimating the Time-varying Heat of Reaction Term

The input signal v, ., calculated from (5.2.14,15), has a minimum value
of 344 at r=0 and increases to 1520 when ¢ = 25 minutes. The true value of
parameter ¢ starts at zero and remains small never exceeding 12 in magnitude. It
is therefore reasonable to assume that the upper bound on g is also about 2. The
relative magnitude of v, , and 8, coupled with the fact that their coefficient matrices
are roughly in the ratio of 3.3 : 1 with the \':mf coefficient being the larger, means
that the § term in (5.2.18) has very little effect on the output of the linearized
model. Therefore insufficient information exists to track this rapidly changing
parameter.

This ill-conditioning can be corrected by choosing an arbitrary
multiplier, m, for the o coéﬁicient matrix. This approach can be justified on the
basis that as ¢ converges to ¢, g approaches zero thereby eliminating this term from
the plant model. If the multiplier chosen is too small ¢ estimates will still be poor
or impossible to obtain. On the other hand beyond a certain value no improvement
in the performance of the estimator is realized. A few trials allows one to quickly
zero in on a suitable multiplier value. In the present case a value of 300 gave
satisfactory results.

The situation just descfibed is probably not unusual. It comes about
because of the a parameter being small and because the true value of the unknown

parameter c is initially zero and remains small for a significant period of time.
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(see Figure 5.2) It is conceivable that in some cases the reverse situation could
occur. That is a plant parameter which multiplies the § coefficient matrix is large
and the unknown ¢ parameter, implicit in 4, is also large. This could cause thev, .
plant input term to be overpowered with unpredictable results. In this case
choosing a suitably small multiplier would correct the problem. |

The procedure for obtaining the gradient transition equation is given in
Chapter 3, equations (3.2.19) through (3.2.25). Applying this procedure to
(5.2.18), taking into account that (5.2.18) is not an innovations model, we obtain

the following:

M, = 6%[(}52 - amf +'eref] = -om (5.2.19
where ¢ is the discrete state transition matrix and a and y are coefficient vectors

in (5.2.18). From (3.2.23)

Wk+1) = ¢WK) + M, . (5.2.20)

Expanding (5.2.20) yields
W, (k+1) = .99532W, (k) + .02262W,, (k) - .02628 (5.2.21)

W, (k+1) =-.36193W,(k) + .81435W, (k) -2.0359.  (5.2.22)

Applying (3.2.22) the prediction error gradient is
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1
Ylk+1) = [Wy,(k+1), Wy (k+1)] [o] (5.2.23)

= W, (k+1).

The adaptive law for this example is

(k) = e(k-1) - e, (k) . (5.2.24)

5.2.5 Optional Modifications For Enhanced Performance

We will consider two modifications which provide slightly better control
of the reactor temperature.. Neither are necessary but if a small overshoot or some
low amplitude ringing around the switching point from ramp to hold is important,

then these modifications will help to eliminate those conditions.

5.2.5.1 Adaptive Law Proportional And Derivative Response

There are two types of estimation problems- which can occur when
applying feedback linearization. One is structured uncertainty in the plant which
leads to unknown but time invariant parameters in the control law. (e.g. see
(4.3.22)). For estimation of constant parameters the adaptive law initial gain and
denominator constant can be chosen so that the estimate converges asymptotically
to the true value. (see Figure 4.17).

The second case involves the estimation of nonlinear terms. In the batch

reactor control law we have the nonlinear heat of reaction in combination with two
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other process variables. This combination was lumped together in the model and
considered as a single parameter, c. However the difference in this case is that ¢
is time-varying. (see Figure 5.9). The rise is exponential until the hold
temperature is reached and then the slope reverses and the cufve descends but at
a much slower rate. In order for the estimate to track the high rate of change over
the first part of the curve a fast integration rate (i.e. high initial integrator gain) is
needed in the adaptive law. However this rate is too fast for the descending
portion of the curve and causes some oscillation in the estimated value which
shéws up, cons‘iderably damped, in the reactor temperature. Reducing the
integration rate prevents the oscillation but at the expense of accuracy over the
rising portion of the response. This is where the heat of reaction has the greatest
effect on reactor temperature and therefore where it is desirable to have the highest
accuracy in the estimate.

Adding derivative action to the adaptive law helps to alleviate this
situation and allows the use of a higher integfation rate. When c is rapidly
increasing the derivative action adds an incremental amount to the adaptive law.
More importantly it subtracts an incremental amount when the slope of the curve
reverses. In other words the response rate is in effect increased or reduced over
the portion of the curve where those two actions are beneficial. However the
accuracy of the estimate can be improved even more if a proportional response is

also added.
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Figure 5.3 is a plot of ¢ and ¢ without proportional and derivative
response in the adaptive law. The integrator gain was set to the highest value
possible which would not cause large overshoots and considerable ringing on
the decreasing portion of the curve. Comparing Figure 5.3 with Figure 5.9 shows
the improvement in estimation accuracy with proportional and derivative responses
added to the adaptive law.

The heat of reaction term is difficult to track because of the rapid slope
reversal near the hold temperature. An alternative representation of the Q, term

that might have been easier to track is investigated in Appendix B.
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Figure 5.3 Heat of reaction estimate. Integral only adaptive
law. curve 1, ¢; curve 2, C.
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Figure 5.4 is a plot of the temperature tracking error both with and
without derivative response in the adaptive law. Derivative action has the greatest
effect after the setpoint ramp has reached the hold temperature. Ringing around
this point is considerably damped as compared with no derivative action and there
is virtually no overshoot. The adaptive law with the two additional response terms
is

Ik) = Ik-1) - p,e,(k)
(5.2.25)

k) = I(k) - ppe, (k) - pple (k) - e,(k-1))

where the y;., represent the integral, proportional, and derivative gains respectively.

The sign of the derivative and proportional terms are determined by the same
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Figure 5.4 Reactor temperature error. curve 1, without derivative
action; curve 2, with derivative action.
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procedure that was used in Chapter 4 to determine the sign of the integral term.

5.2.5.1 Ramp Rate Reduction

If the reference signal is ramped at a constant rate until the 95 degree
hold level is reached the temperature in the reactor may overshoot by some small
amount. Since 'this could be undesirable in some applicétions, the ramp rate can
be reduced before reaching the hold temperature to prevent this from happening.

For the present application the ramp up time was held constant at 25
mfnutes. The famp rate was reduced by a factor of 2 in each of two steps starting
2.5 degrees below the hold temperature. The time duration of each of the steps
was chosen to be equal. Figure 5.5 is a sketch illustrating the modified reactor
temperature profile in the vicinity of the hold temperature. Since the ramp rate is
reduced over a portion of the ramp period, the initial ramp rate has to be increased

slightly in order to stay within the 25 minute ramp up period.
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Figure 5.5 Sketch of the modified reactor temperature profile.

Let: my= the initial ramp rate
T = ramp up time (i.e. 25 minutes)

m,

m
At= the elapsed time at rates _2_0 and 7

then

my(T -2At) = 72.5

my m,
A+ At = 2.50
707G

from which
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m,=3.1667 °C/min.

mo .
T0=1.5833 °C/min
i"f =7917 °C/min.

At=1.053 min.

Therefore the reference signal given in (5.2.14) is modified as follows:

v, =3.1667d, + 3.1667d,t +20d, 0 <t < 22.89 min
v, =1.5833d, + 1.58334d,t + 92.5d, 22,89 < 1 < 23.94 min
V,,=0.7917d, +0.7917d,t + 94.17d, 23.94 <t < 25 min

For ¢ = 25 minutes V, is given by (5.2.15).

5.2.6 Simulation Results

Figures 5.6 through 5.13 illustrate various aspects of the reactor
performance under self-tuning feedback linearizing control. A comparison is made
between the cases when the nonlinear heat of reaction term is ignored in the control
law and coordinate transformation and when it is estimated on-line and included
in both. It should be noted that the reactor is still under closed loop control even
when the heat of reaction term is not taken into account. To differentiate between

the two cases the self-tuning mode will be referred to as compensated meaning that
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the heat of reaction term was estimated on-line and included in the control law and
transformed state equations. Uncompensated will indicate that it has been set to
zero in both. The optional modifications described in section 5.2.5 were included
in the simulation.

Figures 5.6 and 5.7 shows the desired temperature profile, actual reactor
temperature, and jacket temperature for the uncompensated and compensated cases
respectively. Without compensating the heat of reaction term the reactor
temperature overshoots and remains above the setpoint for the entire length of the
ruh. In the compensated case shown in Figure 5.7 the desired profile is followed
with high fidelity throughout and the variation in the jacket temperature is
considerably reduced. |

Figure 5.8 is a plot of the reactor temperature tracking error.
(i.e. e=T, -T,). In the compensated case the rise in tracking error prior to the
transition from ramp to hold is due in part to error in the heat of reaction estimate
- and to a small degree in the reduction of the ramp rate just prior to the transition
from ramp to hold. The error is obviously much larger over the entire operating
range for the uncompensated case.

Figure 5.9 shows the comparison between the true and estimated heat
of reaction term. Since this term can never be negative, a lower bound of 0.001
was set on the estimate. Figure 5.10 depicts the heat of reactidn term for the

uncompensated case. -
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Figures 5.11 is a plot of the heat supplied by the jacket, the heat of
reaction, and the sum of the two for the compensated case. Since heat loss to the
surroundings has been assumed negligible, the sum of the heats is constant while
the reactor temperature is increasing at a constant rate. When the hold temperature
is reached the net heat supplied drops to zero consistent with the negligible loss
assumption. Figure 5.12 is a plot of the same quantities as shown in Figure 5.11
but for the uncompensated case.‘

Figures 5.13 is a plot of the reactant variations as the reaction evolves

for the compensated case.
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Figure 5.8 Reactor temperature error: 1=uncompensated,
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Figure 5.9 Heat of reaction term ¢ and estimate .
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5.2.7 Bioreactor Control

Ferﬁlentations are an important class of nonlinear processes (Bailey and
Ollis (1986)). They have numerous applications in food processing, waste Water
treatment, synthesis of products such as antibiotics and pesticides, etc. The
presence of living organisms in these processes makes the dynamics strongly
nonlinear and nonstationary (Bastin and Dochain (1990), Zhang et. al. (2000)). In
this section we will apply self-tuning feedback linearization to control the substrate

concentration in a bioreactor.

5.2.8 Fermentation Process Model

Therc are three basic methods of bioreactor operation, batch, fed-batch,
and continuous flow. The batch reactor is initially charged and no addition or
removal of material occurs until a predetermined quantity of substrate has been
consumed thereby signaling the end of the fermentation. In fed-batch mode the
reactor is initially charged with a small amount of biomass and substrate after
which substrate continues to be added until the reactor is filled. There is no
outflow from the reactor during this time. The third mode, and the one which we
will study, is continuous feed. In this mode the outflow equals thé inflow after the
reactor is filled and the process is ongoing.

Dochain (1986) gives a basic model for the continuous (CSTR) mode

of operation as follows.
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dx (5.2.26a)
S - x-D

a "

ds (5.2.26b)
v ~kypx + D(s,~5)

(5.2.26c)
Q = kux.

In this model:
x represents the biomass concentration in the reactor
p is the specific growth rate
D =F,/V is the dilution rate
F,, is the influent flow rate
V is the reactor volume
s represents the substrate concentration in the reactor
s;, represents the influent substrate concentration
Q represents a production rate per unit volume (e.g. methane gas)
k,, k, are yield coefficients.
There érc many different models in use for the specific growth rate.

One of the most common is the Monod model

*

= FS 5.2.27
# Km+s ( )

which shows the dependence of the growth rate on the substrate concentration. In

this model p* is the maximum growth rate and K, is the Michaelis-Menten

parameter. Specific growth rate is also influenced by biomass concentration and
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many other chemical and environmental factors in the reactor. In some cases the
substrate concentration has an inhibiting effect on the growth rate. This effect is

taken into account by the Haldane model

HoS

po= ;
2K (5.2.28)

i

where K, is the inhibition parameter and

%

l"‘o.= a

K (5.2.29)
1+21-2

K

Microorganism growth in the reactor may result in a product which is
soluble in the reactor contents or given off as a gas. Equation (5.2.26c) represents
product formation when it is assumed to be proportional to the biomass growth

rate.

5.2.9 Substrate Control In An Anaerobic Digestion Process

In this application the objective is to control the effluent substrate
concentration of a waste water treatment process. The anaerobic digestion
processing of organic waste produces methane gas. Equations (5.2.26b and c) can
be used to model this process. In this model s, and s represents the influent

substrate concentration and the effluent substrate concentration respectively while
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Q is the methane production rate. Variations in s,, are disturbances coming into
the process and the objective is to eliminate these disturbances in the effluent by
manipulating the dilution rate, D. The variables s,,, s, and Q are assumed to be
measurable. The yield coefficients k,;, and k, are unknown.

By taking advantage of the fact that Q. is a measured quantity the'model
can be reduced to a single nonlinear differential equation. Equation (5.2.26c¢) is

solved for pux and this is substituted into (5.2.26b) to yield

§ = -KQ + D(s, - 5) (5.2.30)

where K=k, /k,.

5.2.10 Control Law Development
The plant model (5.2.30) obvi_ouslyv represents a feedback linearizable

process. The control law is easily found from (5.2.30) to be

p=Y*+KQ (5.2.31)
Sip= §

where V is an arbitrary input. V is defined by choosing a first order closed loop
response for the plant having time constant 7 and setting the effluent substrate

concentration setpoint at some desired level, say s*. Then
V = s*~ ds (5.2.32)

where d=1/r. K will be estimated on-line.
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5.2.11 Linearized Plant Model, Parameter Estimation, .And Control
Configuration

As in the previous example, the control scheme developed in Chapters
3 and 4 will be applied to this plant. The system configuration is shown in Figure
5.14.

+5 ( ) V _| control D plant

8" — law > simulation > S
KT As
adapt.
law

i

\>RPEM<

Figure 5.14 Anaerobic digestion process substrate control.

The linearized plant model needed for the RPEM algorithm is derived by
substituting the control law (5.2.31) into (5.2.30) and replacing input V by
(5.2.32). This yields
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7 = —dz+9Q+s* (5.2.33)
where 8 = K - K.

The discrete solution of (5.2.33) is

20+1) = $a(s) + T QO + Ts* G238

where ¢ =e~%, h is the sampling interval, and

I‘=$(1—e“’").

The negative gradient of the prediction error is from (5.2.34)

Y+l) = oY@ + T'Q. (5.2.35)
Equations (5.2.34) and (5.2.35) are the two model related equations needed for the

RPEM algorithm. From (4.2.36a) the adaptive law is
R(2) = R(@t-1) - ppep(t) . (5.2.36)

Choice of the adaptive law gain parameters will be discussed later when simulation

results are reviewed.

5.2.12 Simulation Results
The real plant is assumed to be represented by (5.2.26a,b,c) and the
Haldane growth model given by (5.2.28). Following the simulation given in

Dochain (1986), the model parameters were taken as:
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k, = 2727, k,=75 K,=04 K =25 p" =04
The initial conditions are:

x(0) = 0.049, s(0) = 0.5, D) = 0.2, s5,(0) = 3.0

s,=166, K=02 D,=05
Feedback gain was set to one. (i.e. d = 1 in Figure 5.14).

For any real process there are finite limits on the manipulated variable.
In this case the manipulated variable is a flow and so the obvious lower bound is
zero. The upper bound is set at 0.5. The disturbance in influent substrate
coﬁcentration is varied from 3 to 5 in step fashion with a period of 48 hours.

Figure 5.15 shows that with the self-tuning nonlinear controller the
output concentration is well maintained at the setpoint value of 1.66 in spite of the
strong disturbances in the influent concentration. Control action stays well within
the desired limits of 0 <u <0.5 except for instantaneous spikes coinciding with

points of maximum change in the input disturbance Figure 5.16 shows the rapid

convergence of the estimated parameter, K, to the true value.
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Figure 5.16 Control law parameter estimate, K. g, = 0.0039,
o = 100.
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The adaptive gain expression for this example is

8o

l‘}e(k) S
60| + e

(5.2.37)

where g, and o are chosen by the designer. Refer to the discussion in Chapter 4
concerning the effect that each of these parameters has on performance. To
demonstrate this effect, tests were run using two different sets of values for g, and
o.

The initial transient in the linearized plant parameter estimate, 8, has a

peak value of approximately -J00. This is shown in Figure 5.17.

Estimate

Parameter

¥ T T T T T T T T T L

8 12 18 20 24 28 32
TIME (hours)

A

Figure 5.17 Linearized plant parameter estimate, 6.
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If o has a small value (e.g. 1) and g, is set to a value which provides good steady
state performance, then the initial gain is quite low due to the large &.
Consequently parameter convergence is slow. On the other hand if g, is chosen
large enough to provide a good initial convergence rate then the parameter estimate
is more sensitive to disturbances entering the system after the estimate has
converged. This condition is demonstrated in Figures 5.18 through 5.21. Curves

1 and 2 in these ﬁgures are plots for gains of

5x10
w) = 2= (5.2.38)
B+ 1
and
-3
wly = 22X107 (5.2.39)
18| + 100 |

respectively. By choosing o larger and approximately equal to |9(0)|, g, can be
chosen larger. With the values chosen the ratio of u,(0)/u,(0) is approximately
4.

As Figures 5.20 and 5.21 show, the higher initial gain reduces the
convergence time. Curves 1 With lower‘go and o exhibit transients for every
change in influent concentration. The higher « value of u, completely
desensitizes the system to these disturbances. However the substrate concentration
control shown in Figure 5.19 is acceptable in both cases indicating that while the
perforrhance is better with p, versus p , the system is fairly robust with regard to

these two parameters.
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5.2.13 Standard System Configuration Performance

In Chapter 3, section 3.2.2, the problems encountered when using the
standard estimator/plant configuration were demonstrated using a linear plant for
simplicity. We will now attempt to control the nonlinear bioreactor using the
standard system configuration and show that a similar problem exists.

The bioreactor is operating under closed loop control. Since the
estimated parameter appears explicitly in the control law the plant output is an
explicit function of the estimated parameter. This in turn makes the input signal
to .the control law a function of the estimated parameter due to the closed loop
operation. The dependence of the plant output on the estimated parameter has a
considerable impact on the gradient calculation. |

Figure 5.22 is a sketch of the standard system configuration showing the
two possibilities for using either the measured plant output or the estimated plant
output in the control law and for closing the feedback loop.

In a standard configuration, with other than linearizing control laws, the
gradient is calculated based on the RPEM model alone. We will attempt to follow -
this same method with a linearizing control law. Next we will investigate the
system performance taking into accouht the effect the linearizing control law has
on the plant output and consequently on the gradient. The two cases mentioned
above will be investigated when the control law and feedback signal source is the
measured plant output and when it is the estimated plant output. Refer to

Appendix C for the details of the gradient calculation fdr each case.
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» + v control D plant
5 )Q > law > simulation > 8

> RPEM |«——|

5

B

T,
A

Figure 5.22 Standard configuration for plant and estimator.

A. For the switch in position A in Figure 5.22 . (measured plant output)
Case 1: The dependence of the plant responses (i.e. s and Q ) on K neglected.

Then (refer to C.1.8)

V(t+l) = Y (2+1)

(5.2.40)
= (- (r) + 29 g

s =8

in

where e(t)=s(t)-8(t). Since e(t) would vanish if the parameter estimate

converges, ¥ (z+1) would reduce to

Y(r+1) = (1-hu)y,(z) . (5.2.41)
Inspection of (5.2.41) shows that if 0 <hu <2 then the gradient vanishes. If

hu <0 or if hu >2 the gradient is unbounded. For this plant 0 <hu <.0125 so
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if the parameter converges to the true value, the gradient would vanish causing the
covariance to blow up. |

Figures 5.23 through 5.25 show the simulation results with the gradient
given by (5.2.40). The unknown parameter does not converge to the true value
and the system performance is obviously unaccéptable. Figures 5.23 and 5.25 can
be compared with Figures 5.16 and 5.15 which were generated from the approach

suggested in this thesis.
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Figure 5.23 Parameter estimate for Case 1.
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Case 2: The dependence of the plant responses on K taken into account. Then

(refer to C.1.11)

Y(t+1) = Y (t+1) = Y(2+1)

= Wt) + u-dyhy(t) [j‘": z] - huy(t) + hdy (1)
, 5.2.42
+ | €0 1%+(K-1€)]h_‘fg N
( Sin~ S dK
. [ —l]hQ.
;Sin_ s

A

The terms where ¥ (?) ,¥,(¢), K and %I% appear in (5.2.42) can not be fully
implemented because they contain another unknown in addition to K. If the

parameter estimate converges, then the gradient in this case would reduce to

Y@+1) = ¥(1) -hQ. (5.2.43)

Equation (5.2.43) represents an integrator with an input of -Q. |
A .simulation for this case was run using an approximate gradient
derived from (5.2.42) with the terms containing unknowns left out. Therefore "

from (5.2.42),

Y(+1) = ¥(1) + [ e(t) —l]hQ. (5.2.44)

in

Figure 5.26 and 5.27 show the parameter estimate and gradient respectively.
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The parameter estimate converges to the true value even though the
gradient is unrealistic. It was shown in Chapter 3 that the parameter will
converge even when the true gradient is replaced ’by a constant. This worked as
long as the sign of the constant was chosen correctly aﬁd the range of arbitrary
constant gradient values is sufficiently limited. There is a similarity between the
present case and the constant gradient case. In the present case the gradient has
the éorrect sign and so the parameter converges. Since the parameter converges, e(t)
vanishes and the gradient is given by (5.2.43). However a gradient which
resbonds as an integrator with a continuous input is not practical. If the estimation
routine is discontinued after the parameter converges, in order to limit ‘the
magnitude of the gradient, then future changes in the unknown parameter cannot

be followed. (i.e. the system cannot be adaptive)

B. For the switch in position B in Figure 5.22. (estimated plant output)
Case 3: The dependence of the plant responses (s and Q) on K neglected. Then

(refer to C.1.14)

Y, (1+1) = (1-dh) Y, (). (5.2.45)
No simulation results could be obtained using (5.2.45). This is not surprising since
this gradient is totally independent of the estimated parameter. It depends only on
¥,(0). The term dh, where A is the sampling rate, will generally be léss than

unity. If by chance the parameter should happen to converge for a particular
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¥(0), as time evolves this gradient will vanish and the covariance will blow up.
Case 4: The dependence of the plant responses on K taken into account. Then

(refer to C.1.17)

V(t+l) = ¥, (e+1) - Y (z+1)

= (1) - @-d)hyy(0) [j_ j] +huy, () - haly (1) 5 5 40
- [sf"'fk—K] n4e - [S""_i]hQ.
sin-. § dK Sin— $

This gradient is very similar to the gradient given by (5.2.42) in Case 2. When

terms which cannot be implemented are dropped it reduces to

o fhu] vy()
, =8

in

v(t+1) = ¥ () - [ D pg -

=S
(5.2.47)
s, -8 ‘

_ "in hQ

- 5;,- 5

Using this approximation, the parameter converges but the gradient is unbounded.
The simulation results are nearly identical to Figures 5.26 and 5.27 for Case 2.
In this section we have demonstrated with a nonlinear plant that self-
tuning of the control law using the standard configuration for plant and estimator
will fail. None of the four cases considered produced satisfactory results.
Neglecting the dependence of the plant effluent substrate concentration and methane

gas production on the unknown parameter is analogous to the way in which

parameter estimation in a system without a linearization control law is done. This
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was attempted in Case 1 and 3 utilizing the measured and the estimated piant
output respectively. This method fails because the gradient is strongly dependent
on the neglected terms.

Cases 2 and 4 includes in the gradient all variables that are functions of
‘K. Several of the terms in these gradients contain unknowns and therefore they
can only be approximately implemented. With these approximate gradients the
parameter converges to the true value. However, at convergence many of the
gradient terms vanish and the remaining terms represent the integral with respect
to time of the methane gas production. This of course leads to an unbounded

gradient for a continuous process.

5.3 Summary

In this chapter we have applied self-tuning feedback linearization to
simulations of two real plants of industrial interest. Both plants have appeared in
the literature where control schemes, different from the one proposed here, have
Been investigated (Cott and Macchietto (1989), Dochain (1986)). Unfortunately, |
due to lack of certain data and other details in the publications, it was not possible. |
to exactly reproduce the previous authors results and include a comparison in this
chapter. However self-tuning feedback linearization as developed in this thesis
equals or exceeds the published control performance of the other schemes for both

applications.
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Another feature of the new method was brought dut by the batch reactor
example. Due to the way in which the unknown parameters enter the linearized
model, a multiplying factor can be used to increase the influence of small
parameters on model performance. These parameters may not be identifiable
otherwise. Conversely, the effect of a very large unknown parameter could be
reduced by the same means to improve the overall conditioning of the estimation
problem. At convergence the terms containing these arbitrary multiplying factors
vanish and have no effect on the feedback linearized plant performance.

Generally the unknown coefficients in the nonlinear plant model are
constant. In the batch reactor application the unknown coefficient of the heat of
reaction term is time-varying. The estimation problem was formulated considering
the composite of vthe time-varying coefficient and nonlinear Arrhenius rélationship
as a single time-varying parameter. In Appendix B the problem was reformulated
such that the Arrhenius relationship was a calculable quantity and only the time-
varying coefficient was estimated. Comparison of results did not reveal any
significant relative advantage to either method.

The second application studied was the control of the effluent substrate.
concentration of a bioreactor subjected to strong substrate concentration
" disturbances in the feed stream. The parameter estimation and plant output control
was substantially improved in comparison to the method found in Dochain (1986).
Using the bioreactor as an example, failure of the standard estimator/plant

configuration for a self-tuning feedback linearized system was again demonstrated.



CHAPTER 6
Summary, Conclusions, And

Recommendations For Further Research

6.1 Summary

The objective of this research was to develop a simple self-tuning
feedback linearizing control system. Chapter 1 introduces this topic and previews
the subsequent chapters. An overview of the problem that is investigated is given
and the approach taken is outlined.

Chapter 2 reviews some classical methods of nonlinear system control
and more importantly discusses the feedback linearization concepts and
mathematics that are used in the development of the self-tuning system. Also in
this chapter there are brief reviews of seyeral of the more recent préposals for
control of nonlinear systems.

Chaptér 3 explores the possibility of using the well known linear plant
self-tuning system configuration for a self-tuning feedback linearizing application.
Because of its versatility, the recursive prediction error method was chosen for

parameter estimation. The performance of the standard system architecture was

222
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evaluated when a linearizing control law was used. Several different test
conditions were tried with both measured and estimated plant states. For each
method of obtaining the states either the true gradient or an approximate gradient
was used. When the true gradient was use;d the covariance always increased
without bound. When using an approximate gradient the parameter estimate did
not converge in one case or converged slowly with a large transient error as
compared with the true gradient case.

A new architecture is proposed to eliminate the problem of covariance
blow up when the true gradient is used. In the new architecture the estimator is
connected between the system input and plant output. (i.e. in parallel with the
linearized plant) The gradient between these two points is not dependent on both
the real plant and plant model gradients. Therefore the gradient cancellation that.
is present with the standard architecture is eliminated and the covariance remains
bounded.

The parameters that can be directly estimated from the new architecture
are not those of the nonlinear plant. These parameters are combinations of the-
true nonlinear plant parameters and their estimates. It was pointed out that
subsequently a method for obtaining the nonlinear plant parameters from the
composite estimates would be developed.

In Chapter 4 the problem of obtaining the nonlinear plant parameters
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from the feedback linearized plant parameters is studied. The various functional
relationships that can occur between these two sets of parameters is investigated.
An adaptive law is developed by first reparameterizing the linearized model and
then formulating a parameter error equation from which the relative magnitude of
the true parameters and their estimates can be made.

Interpretation of the linearized plant parameter error equation leads
directly to the adaptive law. That is, the sign of the error indicates whether the
magnitude of the previous estimate should be increased or decreased. This leads
naturally to a sign algorithm for the adaptive law. The adaptive law and the class
of plants for which this adaptive law is applicable are specified in section 4.2.2.
The adaptive law is shown to be asymptotically stable and capable of one step
convergence under ideal conditions.

Several simulations were run to évaluate the self—tuning system
developed in Chapters 3 and 4. Prior to running the simulations the need for using
a proper numerical solution routine for the plant model equations is pointed out.
For the #imulation to accurately represent the plant response the numerical routine
has to be capable of following the apparent structural changes which will occur in
the real plant. Both Runge-Kutta and Euler methods have this property and are
used for the simulations. The plots show excellent parameter convergence and .

therefore successful self-tuning. Adaptive signal tracking is also demonstrated.
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Chapter 5 applies the new method to simulations of two real industrial
processes. The first is temperature profile tracking control for an exothermic
batch reactor. The time-varying nonlinear heat of reaction term is the unknown
parameter which is estimated and used in the control law. This example also
demonstrates another aspect of estimating parameters which appear in the
linearized model. In this particular case the heat of reaction term is multiplied by
a small constant. Consequently it had very little influence on the output of the
linear model and it could not be accurately estimated. A multiplying factor was
added to this term which increased its effect on the output and made accurate
estimation possible.  This approach is justified since terms of this type
asymptotically reduce to zero and eventually have no effect on system
performance. Comparison of this technique with Generic Model Control applied
to this process (Cott and Macchietto (1989)) shows significant reduction in jacket
temperature swings needed to keep the reactor temperature tracking the profile.

The second application is substrate concentration control in an anagrobic 4
digestion process. This process has a bilinear nonlinearity and an unknown
parameter which is needed in the control law. As in the batch reactor case, tl;e
self-tuning feedback linearization scheme worked very well exhibiting both
accurate parameter estimation and good control of the sﬁbstrate concentration in

spite of strong concentration disturbances entering the system.
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This process was also used to demonstrate the failure of the classical
self-tuning configuration when utilized for self-tuning feedback linearization. This

problem was demonstrated previously in Chapter 3 but with a linear plant.

6.2 Suggested Future Research Directions

1. The linearizing control law is always a function of the nonlinear plant
states. Therefore, implementation of feedback linearization is restricted to
plants with measurable states.

The nonlinear coordinate transformation defines the states of the
linearized plant as a function of the nonlinear plant states. With the new
system configuration, estimates of the linearized plant states are available.
Possibly these estimates could be substituted into the nonlinear coordinate
transformations and these equations solved for estimates of the nonlinear plant

states. This would remove the state measurability restriction on the plant.

2. At present, the new system relies on computer simulations to establish

stability. Investigate the possibility of analytically proving stability.

3. Only the deterministic case was considered in this research. However, the

stochastic performance is of interest. The effect of noise on the linearized
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plant parameter estimates can readily be investigated by using the RPEM

algorithm with an innovations model for the linearized plant.

4. Throughout the development the plant structure was assumed to be known.
Since this is not always the case in practice, it would be worthwhile to

investigate the robustness of the system to structural uncertainty.

5. Three different nonlinear plants were involved in the development and
evaluations of the self-tuning feedback lineérization system. -The application
to simulations of real piants brought out some aspects of performance which
had not been anticipated. This suggests that investigation of the method
applied to simulations of a broader spectrum of real plants would be

advantageous in further refinement of the method.
6. In section 4.2.2 sufficient conditions on the plant are given for adaptive law
(4.2.36a) to apply. Conduct an investigation to find the necessary and

sufficient conditions.

7. Investigate applying this method to multivariable systems.
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6.3 Conclusions

Rapid progress is being made in both the theoretical and practical
application of feedback linearization technology. This powerful technique is the
first major departure from the myriad of methods which have been the only means
for designing controllers for nonlinear plants for many years.

Self-tuning systems for linear plants are well known. This research has
focused on solving the special problerﬁs associated with the design of a self-tuning
controller for a nonlinear plant based on feedback linearization theory. A new
method for designing a self-tuning controller for a nonlinear plant was successfully
developed. This system was demonstrated on simulatiéns of two real processes

and should prove to be useful in many other industrial applications.



APPENDIX A

A.1 Nomenclature
C, mass heat capacity of reactor contents, kj/(kg °C)
C,: molar heat capacity of compoﬁent i , kj/(kmol °C)
AH, heat of reaction for reaction I, kj/kmol
k; rate constant for reaction i, kmol g™
k;! rate constant 1 for reaction i
k? rate constant 2 for reaction i
M, number of moles of component i, kmol
MW, molecular weight of component i, kg/kmol
Q heat realeased in reactor, kW
p density of reactor contents, kg/m’
r radius of reactor, m
R; reaction rate of reaction i, kmol/s
T temperature, °C
U heat transfer coefficient of reactor, kW/(m? °C)
V volume, m?

W reactor weight, kg

229
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Subscripts

1 reaction1, (A + B—=»C)
2 reaction 2, (A + C—-D)
A component A

B component B

C conponent C

D component D

j jacket

r reactor

Superscript

sp setpoint

A.2 Batch reactor model equations

A = "Ry -R,
B = "Ry
M. = +R,-R,
Mp = +R,
Ry = klMAMB
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A.3 Physical properties and process data

MW, = 30 kg/kmol
MW, = 100 kg/kmol
MW, = 130 kg/kmol
MW, = 160 kg/kmol

Coa = 75.310 kJ/(kmol °C)
Cp = 167.36 kJ/(kmol °C)
CPC = 217.57 kXJ/(kmol °C)
C,p = 334.73 kJ/(kmol °C)

k! = 20.9057

k? = 10,000

k,! = 38.9057

k? = 17,000

AH, = -41840 kJ/kmol
AH, = -25105 kJ/kmol
p = 1000 kg/m’
r=05m

u = 0.6807 kW/(m? °C)
p; = 1000 kg/m?

C, = 1.8828 kJ/(kg °C)
F, = .348 m’/min.

V, = 0.6912 m,

A.4 Initial conditions

M, = 12 kmol T, = 20 °C
M = 12 kmol T, =20 °C

) MD=O kmol
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' B.1 Evaluation of an alternate representation of Q, with regard to ease of
| estimation |

The heat of reaction term can be factored into two components. The
objective is to separate, as much as possible, the highly nonlinear terms which are
known functions of the reactor temperature from the remaining unknown terms.
If this can be done then the curve representing the unknown terms should not
contain the sharp peak and slope reversal (e.g. Figure 5.2) which are difficult for
the estimator to track.

The heat of reaction term can be factored as

*i-K) R
Q = - I:AHIMAMB + AH,M M e%™ ¢ T :' ete T B

= o F

where a represents the bracketed term and

k2
k! '7l'
E =¢e'e ¢

where T is in degrees Kelvin. The heat of reaction appears in the plant model

B.1.2)

divided by another unknown varying quantity, M,CP‘. The complete term is
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therefore

¢ = 2r=E 2 F. B.1.3)

+p,
All of the unknowns are contained in ¢,. (i.e. M,, My, M., M,, and Cp‘ )

Figures B1, B2, and B3 are plots of c,, E, and c respectively. Figure B3 was
obtéined from the product of the data plotted in Figures B1 and B2.

Factoring Q, as given by (B.1.1) produces a smooth unknown term, ¢,
for estimation. Figure B4 compares &, with ¢, The initial error when  is less than
approximately 20 minutes is due to the start up transient in the estimation
algorithm. Output from the algorithm during this period of time is in general
incorrect in magnitude and sign. This in turn causes the adaptive law to respond
incorrectly.! After the transient has died out and the output from the algorithm
is more accurate, the rate of change of ¢, is too fast for the system to track.
Increasing the adaptive law gain improves the tracking accuracy but accentuates
the initial error and the ringing present on the lower portion of the curve.

From Figure B1, ¢, has a dynamic range of approximately 6800.

Equation (B.1.3) can be written as

c = %(AE) = c E' (B.1.4)

where A is some arbitrary constant. The dynamic range and hence the rate of

! The magnitude of the initial response from the estimation algorithm is usually large.
However by making the adaptive law gain an inverse function of the absolute value of
the algorithm output, the magnitude of the incorrect response from the adaptive law is

limited. See chapter 4, equation (4.2.31).
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change of ¢, is reduced by a factor of A. Figure B5 compares &, with ¢, for
A =100. The plot shows substantial improvement in tracking when compared with
Figure B4. The initial error which is due to the estimation algorithm transient is
still present as would be expected. Choosing a A > 100 did make any significant
improvement in the tracking error.

Figure B6 compares the heat of reaction term estimate

é=2¢E (B.1.5)
with the true value. Figure B7 compares the error in the heat of reaction estimates
when the whole term is estimated as was done in chapter 5 and when only the
unknown coefficient is estimated as in (B.1.5). Figure B8 compares the error in
reactor temperature, T,, under the same conditions as for Figure B7.

Figure B7 shows similar errors for both methods of estimating the heat
of reaction term. However in this case the overshoot in the estimate shown in
Figure B6 occurs at a time which has a beneficial effect on reactor temperature
error. But this is not a controllable or predictable characteristic of the estimation
process and therefore cannot be relied upon.

For the batch reactor considered in chapter 5 there does not appear to
be any relative advantage to either method of estimating the heat of reaction term.
However the method outlined in this appendix would probably perform best for

even more highly nonlinear cases.
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Figure B1 Plot of ¢, factor from Eq. (B.1.3).
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Figure B2 Plot of E factor from Eq. (B.1.3)
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Figure B3 Plot of Eq. (B.1.3), ¢ = ¢,E.
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Figure B4 Comparison of coefficient estimate ¢, with true value.
Curve 1: estimate, Curve 2: true value.
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Figure B5 Comparison of coefficient estimate &,’ with true value
for A = 100. Curve 1: &', curve 2: ¢,’.
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Figure B6 Comparison of heat of reaction estimate with
the true value.
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Figure B7 Error in heat of reaction estimate. Curve 1: single term
representation, Curve 2: composite representation.
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Figure B8 Error in reactor temperature. Curve 1: single
term representation of Q,, Curve 2: composite term representation.



APPENDIX C

C.1 Bioreactor plant gradients

The linearizing control law for the bioreactor is

s*-do+KQ | (C.1.1)
5, - O

-
where o is either s, the measured plant output, or § the estimated plant output.

(refer to Figure 5.22) The Euler representation for the plant and RPEM plant

model is

sit+1) = s(t) + [(Sin—s)u - KQ] h (C.1.2)
and

S+ 1) = 8(1) + [(s,.,,- fyu -zeQ]h 13
respectively.

Consider the case where a=s and u is applied to (C.1.2) and (C.1.3).

The plant response is

s@+1) = s(2) + [s*-ds +(I€'—K)Q]h. (C.1.4)

For the RPEM plant model the response is
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A

8@+ = 8(r) + | 2" (5%~ ds + RQ)-RQ | . (C.L.5)

in

In Chapter 5, Case 1, a gradient was used which ignored the fact that

both s and Q are functions of K. The negative of the true gradient for the system

- architecture shown in Figure 5.22 is

Y(+1) = Y (2+1) - Y (2+1) (C.1.6)

but since the functional relationship between s, Q, and K is not being considered,

Y(t+1) = Y (2+1). . (C.1.7)

Therefore from (C.1.5)

S~ 8§

] 4 (s*-ds + RQ)
s.-s) df

in

¢5(t+1) = %(t)'* [ [

e C.1.8
+(s*—ds+I€'Q)_fi7[sm S]—Q]h (€18
dK U S,~S

(8,-58)

whei'e e(t)=s()-8(). The system gradient can also be derived taking into

= (1=l () + 29 _no.

account the functional dependence of s and Q on K. For the plant model from

(C.1.5),
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V(2+1) = ¢, (1) + [[Si"_s] dﬂ ~ds + RQ)
S.=5) dK
+ (5% ds+KQ>—[ 'S]—‘Q-Q}h |
S-S dk (C.1.9)
- 1- . e
(1- hu)y(2) (S:n‘s)hQ
s (u-d)hy, (1) [si"' ] «t) pg 92
) Sin_s sin_s dK
For the plant from (C.1.4),
Y, (1+1) = (1- hd)y,(2) + [ @0 Q]h k%2 . (C.1.10)
dk dk

The system gradient is calculated by combining (C.1.9) and (C.1.10) according to

(C.1.6).

v(+1)

(1) + - d)hy,(8) [j‘"

in

s ~S

.

D g k- K)] ZIQ(

L@ ]hQ

:z] - huy,(t) + hdy,(8)

(C.1.11)

This gradient contains unknowns and could not be fully implemented. Consider

the ZIQ{ term. The methane gas produced is given by

Q:

(C.1.12)

where k, is a yield coefficient, p is the specific growth rate, and x is the biomass
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concentration in the reactor. Q@ is a measured variable and does not pfesent a
problem. However the expression for %I% depends on the unknown k,. Only
portions of the ¥,(z) and ¥ (¢) terms in (C.1.11) could be implemented since they
also involve Z—I% . (refer to (C.1.9) and (C.1.10)) The gradient given by (C.1.11)
is used in studying Case 2 in Chapter 5.

So far the gradients have been derived using the measured plant output
in the control law and as the feedback signal. An alternative is to use the
estimated plant output in place of the measured plant output. We will now
redeﬁve the gradients using § in place of s. Therefore a=§ in (C.1.1).

- Case 3 in Chapter 5 is similar to Case 1 in that neither s nor Q are

considered to be functions of K. Consequently the system gradient depends only

on the RPEM plant model, ((C.1.3) driven by (C.1.1))

§(1+1) = §() +[s*-ds]n. (C.1.13)
The gradient calculated from (C.1.13) is

Y (1+1) = (1-hd)y (1) . (C.1.14)
For Case 4 the dependence of s and Q on K is taken into account.
This does not change the gradient for the RPEM plant model when a=$§. This

gradient is the same as for Case 3. (i.e. (C.1.14)) For the plant,

in

s@+1) = s()+ | S0 (5% ds + RQ) - KQ] h. (C.L15)

The plant gradient is from (C.1.15)
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V(t+1) = Y (1) + [ [j f] _d%(s*—df+I§’Q)

in

+(s*-d§+1€'Q)_d;[s""'f]- @ 1y,
dK \ 5y~ 8 dk | (c.1.16)

in

=y +(u—d)[sf":;

in

] by, (1) - huy ()

Cn

+ [s""—ff(—K} h_d_g + S""_{hQ
S S dk  S5,-8
Combining (C.1.14) and (C.1.16) the system gradient is

s

Y(e+1) = w(t>—(u-d>h¢g(t)[ i] + hug, (1) - hdy,(2)

§

in

(C.1.17)

S,~ 8§ dk §,~§

- [ N S ¢ ] n9e - [S"ﬂ's ] hQ.
This is similar to the gradient derived for Case 2, (C.1.11). While it cannot be
implemented exactly as given due to unknowns, more terms in (C.1.17) can be
implemented than for (C.1.11). The main difference is that y,(¢) from (C.1.14)

does not depend on unknowns whereas in Case 2, (C.1.9), it did.

Further analysis of each of these gradients is given in Chapter 5.
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