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’ o ABSTRACT

The hyperfine splitting (hfs} of\deuterium shows a sixbstantial
deviutgon- from the prediction based on Fermi's formula . This reflects
the effect of the deuteron- structure which was not taken account of in
Fermi's formula. Following Bohr's original work"meuteron
structure effect.‘ several cn.lculations were ydone _prior to the 1960's,
using nucleon-nucleon (NN) potentials which are, from today's standard,
rather primitive. In this thesis we reexamine this problem by using
several! modern realistic.NN potentials which reproduce the deuteron
properties and the NN scattering dat‘a very well. In addition teo the
correction of the type which was examined by Bohr and Low, we examine a
number of other corrections. The Bohr-Low correction, which is the

AN

mast important on:a. tur'n-s out to be remarkably insensitive to the
choice of the potential, and thiﬁs ' correction significantly
over-estimates the experimentally observed anomaly. However., the
correction arising through the angular momentum dependent terms in the
NN potential is sensitive to the choice of the potential. When this
effect is included the theory and experiment can be reconciled for some

af the potentials. In this sense the long standing anomaly of the

deuteriue hfs can be explained.

‘v

iii



To my parents



n"‘ ’

" ACKNOWLEDGMENTS
.,' LY
It is a pleasure indeed to express my deepest gratitude to my

research supervisor, Professor Y. Nogami . for his advice, guidance;

and condtructive criticism throughout .this work. His help and
encouragement in every respect dpring my stay at McMaster is deeply
appreciated.

I am grateful to Professor D.W.L. Sprung for his stimulating

and helpful discussions. I am~also deeply indebted to him for allowing
me to use part™of his computer program. Thanks are also due to

L4 -

Profesgors A.B. Volkov and D.P. Santry for interesting discussiohs and
advice dqring the course of this work. . )

I thank Dr.M.V.N; Murthy for checking one of my computational
. rcsuits. Thanks are also due to *Or. Michiski Nishimura for his
fruitful discuﬁsions. Further, I would 1like to thank all my fellow
graduatc students who have alwgys been helpful. Particularly, I am
grateful to Mr. Michael Coombes, Mr. Walter Stephan, Hr; David Jeffery,
and Mr. Peter Williams for their invaluablé help and cooperation. 1
‘also wish to thank Mr. Avnash Banwait and Mt. Surat Sinéh for their
noralvsupport and encouragement.

The numerical work in this investigation was carried out on the
late CfBER 170/730 computer of thq McMaster Couputing-Centef. fhe

. cooperation and the courteous service of the Computing Center personnel

is highly appreciated.



v

N
hl

€
»

.I am grateful to McMaster University for support in the form of

.*g fellowship, and 1 also acknowledge the help and.the.fpoperution which

w

','”j‘rgceived from the Physics Department.

-

. . .
Finally.! would l4ke to thank Mrs. Helen Kennelly for her

.~ T e

excelleni_typing of this manuscript.

vi



. — hd )

~ .. TABLE OF CONTENTS ]
' | Page
CHAPTER [: xnraooucrrdx - I 1
CHAPTER 11: ‘_ms‘ BOMR CORRECTION TO .THE DEUTERIUM HFS ' 9
_ CHAPTER ITI: CONVENTIONAL DEUTERON AND HES OF DEUTERIUM a 21

CHAPTER IV:  EXOTIC COMPONENT OF DEUTERON WAVEFUNCTION
AND ITS EFFECT ON THE DEUTERIUM HFS | ' 66
CHAPTER V:  RESULTS AND DISCUSSION ' 81
CHAPTER VI:  SUMMARY AND CONCLUSION & 93
APPENDIX A:  PROTON STRUCTURE CORRECTION TO THE HYDROGEN HFS - 96
APPENDIX B:  CALCULATION OF cj’ o ) 99
APPENDIX C:  PROTON SPIN CONTRIBUTION TO THE DEUT@ HFS 101

APPENDIX D:. NEUTRON SPIN CONTRIBUTION TO THE DEUTERIUM HES

PRODUCED BY THE SD CROSSED. TERM . - \\\\\\\ 105

APPENDIX E:  CALCULATION OF « 111

+ APPENDIX F: CALCULATION OP‘Lz 114

APPENDIX G: THE DEUTERON MAGNETIC HOME?T PRODUCED BY THE

L- DEPENDENT FORCES IN THE NN INTERACTION 118
APPENDIX H: PHENOMENOLOGICAL TWO-NUCLEON POTENTIALS 122
REFERENCES ' 126

vii



- CHAPTER 1

s : INTRODUCT1ON . i ’

The interaction between the magnetic .moments of the electren

-

and the nucleus gives rise .to the hyperfine sblittihg or hyperfine
structure of the atomic spectrum. which we denote by “hfs" throughout
this thesis.- The hfs of " the two simplest‘ atoms, hydrogen and

deuterium, are of particular interest. For both atoms the hfs has been

measured with high precision (1.2). On the theoretical side, the hfs
can be calculated very accurately. Hence it serves as a test of the
theory: quantum electrodynamics together with some nuclear corrections.

The deuterium hfs is interesting because the deuterium nucleus, l.e.,

-

the deuteron, is a very loosely bound nucleus. and the hfs may reflect

the deuteron structure. -

The quantum mechanical treatment of the hfs of the hydfozen

; )

like atom was first developed by Ferm!{ in 1930 (3). He assumed that
- _ »

the nucleus s a fixed polnt; with charge e, spin I (= % for the proton

and'ill.for the deuteron) and magnetic moment u, and obtained N
) N
~
8¢ ,2I+1 2
hw = 3 (-T——)HOM *(0) . (1.1)

Here py iz the Bohr magneton., and *(0) is the value of the electron
wavefunction. at the origin, i.e., a2t the nucleus. The wavefunction *

is deterained by the nonrelativistic Schrodinger. equation together with

- -

of
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.. the Coulomd potentlal, #mnd hence *{0) = ll(ﬂag) mhere a  is the Bohr

radius. However{ there is an ¢bvious nonrelativistic. redoil correction

.

to Eq. (1.1) due to the finite mass of the nucleus: With this

correction Eq. (1.1) takes the form a2 - .
| -
" 8w 21«1 r 2 - )
hoe- 82 (3 ou [:—] P L T, L aa

where m and mr are the rest mass and the reduced mass .of the glectron.

—. respectively. By convention, the formula (1.2) is still referred.to as
~— r
Fermi's formula.

There are a number of ‘corrections to Fermi's formula (1.2).
These corrections can be classified into two types.-Jane is pure

quantum electrodynamic (QED) type which is common to hydrogen and

‘ *

'deUCeﬁiun. For example, the magnefic moment of the electron, which was
. B
taken ta be luo in Fermi's model. obtains an anomzlous magnetic moment

"due to radiative corrections. The corrections of the other type, which

we refer to as the nuclear type depend on the nucleus, and hence varies

between hydrogen and deuterium. For hydrogen, the nuclear corrections

\ are those due to the }inite size of the proton and to the relativistic

\ nucliear receil. '

/} When the correctioﬁs to Fermi's formula are taken into account,
-/, ) theory and experiment are "in excellent agreement for hydregen (4).

ra
When thnfdeuteriun hfs is calculated in the same manner, however, one
finds i\;ignificant difference between theory and experiment. Here by

"the same manner™ is meant that the effect of the finite size of the

’

P
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deuteron is estimated in the same way as for the proton.” i.e., by.

assuming ;hat the deuterofl consists “dof static. spherically symmetric

. N o ) e
distributions of chaepge and etization. This discrepancy between
theory "and experiment suggests t the electron is sensitive to some

details of the deuteron structure.
~

In comparing theory and experiment it is corfvenient to
. o TN . ,
concentrate on the ratio of the v's for deuterium and hydrogen. l.e.,

vD/vH. According to Fermi's formula (1.2). this ratio is given by

——

'3

v, .
(=2) e C—D] . (1.3)

(uH

PRI
T

fermi

where uD and By are respectively the electron reduced masses for the

a) B
deuterium and ¥ydrogen atoms. The experimental value for vD/vH differs
from that of Eq. {(1.3}. Hence we write
$
v v
2B (1-8) . < (1.4)
Y& Yn
: Ferml

The A defined in this way is usually called the‘aeuteriun hfs anomaly.
It is important to note that all QED corrections cancel in this ratio

so that A is entirely due to the nuclear corrections. The experimental
oo

value of A is (5)

\ A = (170.320.5)x10 ° . (1.5)
expt



Immediately aftef'the first measurement of vD/uH in 1347, Bohr

{6) pointed out that the bulk of Abxpt can be explained as due to the
loose structure of the deuteron. At small  electron-deuteron
separations the electron wavefunction ts centered on the proton rather

than the deuteron center of mass. This e(fect, horesafter called Bohr's.

mechanism, results in a reductlion 6f'lﬁe.electrdn wavefunction at the

position of the neutrdn.‘and hence the reduction of the effect of the

neutron magnetic moméht. Since the neutron ﬁagnetic moment is opposite
in sign to the proton magnetfb moment, the effective mégnetic moment of

pﬁé deuteron increases, and hence the hfs is enhanced. Subsequently,”

Low (7) reexamined Bohr's mechanism in detail ahd obgainéd

&ow ™ (183+22)x10°% . (1.6}

. .

which is consistent with the‘é%perimental value of Eq. (1.5). Here the

uhcertainty in a of Eq. (1.6} is mainly due to the spread of its

Low
values for diffeﬁpnt potentials. As for the notation ALow' it would be

more appropriate to denote it by ABohr—Low' However, we follow the

-

convention and write & o Low used very simple "models for the
nhcleon-nucleon (NN} interaction., i.e. the square well, the
exponential. and the Hulthén potentials. A few years later, with
improved knowledge of the deuteron wavefunction, Low and Sﬁlpeter (8{

recalculated ALow and obtained

S

. -6 . .
Alow = {198=10)x10 (1.7}

-
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Here again the uncertainty is malinly due to that in the choice of the

potentialz This:'ALOw exceeds Acwpt by about 20 ppm (parts per

million}. - — -

-
It was pointed out by Sessler and Mills {9) that there are
. '
other corrections which are not directly related to the NN interaction.

They are those due to the finite electromagnetic size of the nucieon

L
R 3

and those due to the relativistic nuclear* recoil. The'(aétor E;E] in
- " ) H

(1.3) is to account for the recoll of the nucleus and it gi;es the
entire recoil correction for a completely nonrelativistic problenm.
However, there is an additional recoil correction to i1.3) due to tire
relativistic treatment of the problen. We denote the part ﬁf the A

that is due to "the size of the nucleon and to the relativistic nuclear

.

recqil by. A when experimental wvalues for the electromagnetic

other’

sizes of the proton and neutron are used,. Ao turns out to be

ther

. : _ 6
- P
Aother {-2%25)x10 . (1.8}
The large uncertainty in Abther stems mainly from the nuclear recoil
correction. In view of this Aother' ALow of (1.7) is marginally

consistent with a of (1.5).
expt
In 1960 Greenberg and Foley (10) used a more realistic nuclear
potential! of Signell and Marshak (11}, which contains a spin-orbit
interaction. The spin-orbit force contributes to the magnetic moment

*

of the deuteron, and hence it also contributes to the hfs of deuteriua.

They estimated the correction due to the spin-orbit force, ALS' to be



6
T
(1.9) o

ALS = =0.004 HLS .

where uis {~ -0.024) is the part of the deuteron magnetic moment, in
_nuclear magnetons,produced by the spin-orbit force. The large value pf
ALS {- .96 ppm) makes the discrepancy between theory and experiment much
greutér. However, théir estimate of the spin-orbit 'effect is
'questionable. This is the situation iq_which the deuterium hfs problem

T -
has been left for the last two decades.

Since 1960, however, our understanding of nuclear forces has
considerably improved. A number of phenomenologiéal NN potentials have
been constructed which reproduce the properties of the deuteron and
scattering datz very well. One of the purposes of this thesis is fo
reexamine the deuterium hfs by using a number of modern realistic KN
potentials.

The potentizls that we use for this purpose are (12-17):
Glendenning aﬁd Kramer's {(GK9) potential . the Hamada and Johnston (HJ)
potential, the Reid soft core {(RSC) potential, the Reid soft core
alternative {RSCA) potential, the Reid hard core (RHC) potential, the
de Tourreil and Sprung (TS) potential, the de Tourreil, Rouben and
Sprung (T%%{ potential, and the Paris (PAR) potential. Fof the method
of calculation we closely follow Low. We estimate the Bohr-Low
coércctioF 4 . ¥ith these potentials. We find it remarkable that &
varies very little from one potential to the other: its value ranges
Setwecn 213 ppem and 222 ppm. The sep ‘ALow+AothpE\is signifiqanfly

larger than Aexpt‘
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In addition to the stﬁndard spin-orbit term. the modern NN
potentials, except Glgndcnnihg and Kramer's potential, contain terms
which are linear or quadratic in angular momentu? (L}. The-potenfluls
used by Low did not have such terms. We denote the contribution from

e

all these L-dependent terms by a . Unlike ALow' & turns out to be

very sensi€éive to the choice of the potential. When AL is included the

€it improves for some of the potentials. while it deteriorates for the

.

others.

In addi;jon to the corrections we have enumerated. the meson
exchange current (MEC) can also contribute to the deuterium hfs. This
gffect does rot seem to have been examined so faor. The écunurcd
deuteron magnetic moment is 2 littie higher than the calculateq values
for all £he potentials considered. Assuming thai the ditference is due
to the MEC we éxa ine its contribution to the h{s. We f(ind that the
MEC effect tends to improve the (it for zll potentials.

In the traditional picture, the deuteron consists o! two
nucleons which_are.in their ground states. When excited states of the
nucleon are taken into account the deuteron can alse exlst in some
unconventional configurations, the so called iscbaric configurations.
Since the deuteron iscbars contribute to the deuteron magnetic moment
they also contribute to thé hfs. lHowever, our cstimate shows that this
correction-is negligible.

Finally wec speculate on possible effects of the six quark
cluster in the deuteron. The deuteron in the conventional mode! Iz a
composite system of a proton and & neutron. Howcver, %n the quark

mode! the deuteron consists of two components; the. conventional

L4
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-

component and -the unconventional six quark cluster component (SQC}.

The probability. Py . for the SQC is probably small(18). (Pg < .05).

With some ad hoc assumptions we estimate the quark cluster effect on A,
and find this effect neg‘ligible.‘

The organization of this thesis is as follows. In Chapter II,.
we brl'efly review "the Bohr correction” to Fermi's formula of E‘.r::.~
(1.2). In Chapter III, following Low, we present the details of the
calculations fer the Bohr-Low correction {(the .Bo’hr correction studied
in detzil _by Low}) to the hfs" of deuteri‘rﬁs. ‘We &lso examine ;he
L-dependent force in the NN interagtion _a;xd its effect on the hfsw"™
Moreover, in the same chapter. we consider the ‘MEC correction to the

deuterivm hfs anomaly. Chapter IV deals with the calculations

regarding the exotic (unconventional) component effect on the hfs. The

- L}
S

results and discussion are given in Chapter Q‘ while a summary and

conclusion are presented in Chapter VI . For completeness ., some

-

details of the calculations are presented in-the appendices.



CHAPTER I1

THE BOHR CORRECTION TC THE DEUTERIUM HFS

As we summarized in Chapter I, the bulk of the deuterium hfs
anoﬁaly A is due to the Bohr cofrection which reflects the deuteron
structure. In this chapter we review Bobr's origingl calculation;
Before doing so.‘however. it wouid be 1n‘ora;r to review the hydrogen

hfs. ‘ -

II.1 THE HYDROGEN HFS - -

According to Fermi's treatment, the hfs of the hydrogen-like

atém is given by (1.2), or equxtiiii:}y by

3

) 4 2I+1, u r éﬂ
u s = { )(——)E;—] & ch . ) (2.1)
~ 3 I po . .

2 1

where « = £ = 137.03604

is the fine structure constant and ™~

2 .
mgg ) is the Rydberg for infinite mass nucleus in wave numbers.

R_{ =

=]

For the hydrogen atom which we consider in this section, .

mM

m =m@m = ———E——. where M 1s the proton mass. In the following we use
r H (n+Mp) p

units such that ¢ = B = 1.
There are a number of corrections to (2.1) that have been '

estimated. These corrections zltogether modify v of Eq. (2.1) as (19)
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3
=
o Ja 21+l o CH 2
v [5 (4 )(—-‘_10)(--'—-m )« Rw] x CQEDCnucl . (2.2)

where

2
CQED - [;;] {1+ E(z“) + §(Za)(- 2 Cn(Z))+;(ZG)
28i 8 -2 -
- (553 - Een(z)) ¢n(Zx) + 18.36_5]} .
and
F s C = 1+ & . (2-3)

1
nucl .. H ~
~
Here K, is the eleFtron magnetic moment including its anomalous part.
- < ‘
For hydrogen, Z = 1, but we retain the factor Z to indicate that the

terms with Z are related to the nuclear charge. The factor CQED is

purely of the QED origin. The factor Cnucl is the nuclear correction
ghich stems - from the structure of the nucleus and the relativistic

nuclear recoil.

Some of the terms in CQED are relatively easy to identify. The

factor (.ue/uo)2 is quite obvious. Por clarity let us mention that ue

in CQED is the electron magnetic moment calculated in QED. But in

practice we do not have to distinguish between the theoretical and

experimental values of H, because they are in excellent agreement with

each other. The second term in Ehe curly brackets, %(Za)z. is called
o i ” ‘

the Breit term. © This stems from the vector potential part of the

-,
relativistic Dirac Hamiltonian for the electron. H = a.(P-eA)+ Am+V.



Other terms are due to a variety ot radiative corrections in QED.
In the case. of the nuclear corrections, the most of the
contribution to GH comes from the electromagnetic size of the proton.

Zemach (20) estimated this correction to be -223n<r>p where <r>p-1s the

electromagnetic size of the proton. see Appendix A. There is another
AN '

correction to be included in GH. This is due to tbe relativistic

recoil correction of the nucleus. As mentioned in Chapter I, the
3 . ' '

factor E?j £ (1.2) accounts for the most of the recoil correction.

Howeﬁer. there is an additional recoil correction (19) Zan)Mp_if the

'problem is treated relativistically. Hence we obtain

- 1
bH = [2<r>p ip]Zam . (2.4

The experimental value of the hydrogen hfs is (1)

u - 1420.4057517667(9) MHz . (2.5)
expt . :

and the value prediq}ed in the way as summarized above is such that

{ v)/ - (4.6%4.0) ppm . . {2.86)

-u) /fu
Uexpt expt

Therefore theory is consistent with experiment.

I1.2 THE DEUTERIUM HFS

The hfs of deuterium is known very accurately. Its value is (2)

-



b

—_—

12
v = 327.3843525222(17) Muyz.

expt

On the theoretical side Eq.(2.2) was meant for any hydrogen-like atom.
}n applying it to the deuterium hfs, of course, the values of 1, u and
m have to be.gﬁjusted~to thé deuteron, that is, I ~ 1, u is the
deuteron magnetic moment.‘and m is the_electron-deuteron reduced mass

mD. The correction factor CéED is common between hydrogen and

deuterium, but Cn depends on the nucleus. "For deuterium we write

ucl

Cnucl = 1+6D. if cnucl is ignored. the ratio vD/vh is given by.

(UD/u } of (1.3). The anomaly A defined by (1.4) is due to
Fermi

nuclear corrections and is related to‘the‘qerrections 6H and & by

D
&= Opnby- . _

A naive way of estimating GD is to use the same formula as that
for GH wi?h the electromagnetic size and the proton mass replaced with

the corresponding quantities for the.deﬁteron._i.e..

6. = -2ma <r> . ‘ {2.7)
4 .

Here we have ignored the relativistic recoil correction to the

deuterium, which is much smaller. Equations {2.4) and (2.7) lead to

A = 2max(<r> -<r>_) . - (2.8)
\ p0
Since <r>D >> <r>p. this A& is negative in clear contradiction with
Aexpt of (1.5). This indicates that the effect of the structure of the

deuteron has to be examined in more detail. As shown by Bohr (6}, a
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more careful treatment of the effect of the deuteron structure yields A

with the correct sign and the right order of magnitude. In view-of the
importance of the Bohr correction in the hfs theory we review his

-

original calculation. -~

Before proceeding to Bohr's calculation, we note that the
hyperfine,interaction of the electron in the s state is of the form

E = A {(g.1). where A is a comstant and ¢ is the spin operator for the

electron: The'@fs. AE, 1is given by

AE

H

E(F=I+1/2)-E(F~I~-1/2)

2I+1
1

]E(F=I+1/2).

where F is the total spin of the atom. Hénce it is only necessary to
calculate the expectation value of E for F-I+1/2. . In the following
calculations we may .drop the factor (2I+1)/I since {t does ﬁo;

contribute to A .

4 .

I1.2.1 Bohr's Calculation

In the naive method which we discussed above, the deuteron is
considered as a rigid sphere, with spherically symmetric charge and
magnetization distributions. The electron moves in the static Coulomb
potential produced by the deuteron. The deuteron, however, consists of
the proton and thé neutron which are not at rest. The najive method
wouid be a good approximation if the speed of the proton _13 much
greater than that of the electron. In terms of the average speed this
is the case. But when the electron éones near the nucleus its speed
can be larger than that of- the proton. Thén the é;;g;e that electron

sees is that of the proton rather than the one smeared over the size of

-

*
-



14

“the deuteron. The electron wavefunction peaks at the position ‘of the
A

proton Eather than at the center of the deuteron.
According to Permi's ‘' formula, the hfs of deuterium is

proportional to the deuteron magnetic moment pD. Since the

- proton-neutron wavefunction consists almost entirely of an § state, we

\obtain ) . .
Hp T oMyt Hy (2.9)

where up (= 2.792782#0.000017) and én {= -1.913148*0.000066), in
nuclear magnetons, are the magne?ic moments of the proton and neutron,
respectively. The electron ﬁavefgnction peaks at the proton. however,
‘the "effective" magnetic moment of the deutercon that the electron feels
becomes difffrent from ub of (2.9)§ The effect of Ky is reduced as
compared with that of pb. Since H < 0, this'asymmetry between the
proton and neutron leads to an effective deuteron magnetic moment that

is greater than-un. This results in an enhancement of Vpe ﬁqd hence

the correct sign of a. This is the basic idea underlying the Bohr.

effect. ‘ *
-

? Following Bohr, let us now estimate A. The elgectron sees the

proton as a central magnetic dipole. Therefore, the electron-proton

.

spin interaction does not contribute Qg anomaly. Here we are treating

i
the proton and neutron as point particles. Por the anomaly it is

sufficient to examine the electron-neutron magnetic interaction.” The

electron-neutron interaction may be written as

-~



- Hipy = %A . (2.10)

Here, a is the Dirac matrix associated with the electron:

\ a- o 9 )
: - g 0 "

where

o =0 1) 4 .0 -1} L .+ o
x r o] " Ty i 0} " Tz |lo -1 :

-and A is the vector potential arising from the neutron magnetic moment

g - The vector potential A(r) is given by

Alr) =

H l ‘Ei) ' (2.11)

where r and R respectively denote the positions of the electron and the

neutron relative to the proton.

The expectatioh,value of H

int with respect to the-electron and

the deuteron wavefunctions gives the neutron contribution to the hfs of
deuterium. Denoting'the electron and the deuteron wavefunctions by

-.?e(g) and ¢{R) respectively. we obtain

n int -

1

(T==xr1

: ” d®cd®R ¥ (£)0 (R) (ea.p

A Ne(RIF (£) . (2.12)



/.

<
Bohr used a simple form for the deuteron wavefunction;
1
S(R) = X #(R) .
where
J
e—R/d ~ ‘
¢(R) = —— R . {2.13)
vand
and xi is the spin function of the deuteron. d (= 1 )} the size of the
: JMWO

deuteron, W_ the binding energy and M the nucleon mass. Substituting

1]
this ®(R) 4into Eq. (2.12} we get

e

- - a8 | @B (D) (r)(‘xv £(r)) (2.14)
“a T 2nd b ¥\ LI&-T L DI ' :

where f(r) is given by

-

The Erf(r} is

dR { + )

* _ 6(r-R) R
¢ £(r) - am v J -2R/d o(R-r)
—r . _r
0
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~ -2md [1 - e'gr/d] ) (2.15)

HMI (ke }

~

With Eqs. (2.15) and (2.14). we Bbtain

' 3 = L aa -2r/d, , 2
€ " epn J dr 76(5)5.?6(5)(535)(1-e Y/r . (2.16)

.

For a crude ostimate the electron wavefunction ?é(g)—nay be written as

N = el
(D) = Flmw 4 (2.17)
where ?b(r) and w are the radial and spin parts respectively. Using.
RIS V2SS
the nonrelativistic wavefunction, i.e.. ?o(r)‘ = [;—] e . we
0
obtain
¢
= an (w o). (3xE){1 - L (2.18)
€, ey c ). (zXr) = . . -

[f the deuteron were a point nucleus, that is, if d = 0. then e¢_ would

Thus Eq. (2.18) may be

be given by (1.2) with u replaced by PH'

written as
8z 2 d
€, E—ueun? (o)[2 ao] . (2.19)

where we have used H, instead of Hq and dropped the factor (lD/l)3

since it does not contribute to the hfs anomaly. The first terz {n the



A .18
. - . J

square brackets leads to Fermi's formula. while the second term gives'
; ahtieh -

the Bohr éorregﬁionvand its contributian to a becomes

pd _ .
a7 - B . ojgex10® . (2.20)
K2 .

4]
By Mng AB w:th'aexpt

does inaeed remove the bulk of the anomaly in the deuterium hfs.

we- find that the Bohr co;rection to the hfs

Ii.2.2 An Alternative Derivation

The Behr correction can also be estimated by means of Nambu's
method (21). which he used to-estimate the correction to the hfs of
hydrogen due to the proton structure. For the ‘deuteron in the § state,

the hyperfine interaction Hamiltonian is given by

2
8n . _ - ,
Bo=3-u, { Z_pla.g)6(zr)) . : i2.21)

3
i=1 s

where o is the Pauli spin matrix for the electron, 95 My and r.
denote, the spin matrix, the magnetic moment and the position vector of
the i'th nucleon, respectively. The indices 1 and 2 refer to the

proton and the neutron, respectively. The expectation value of H gives

fhe hfs of deuterium.

Following Nambu, we use the electron wavefunction given by

[

-{c-r_l/a
N » = Ne P 0 w o,

e T . . . (2.22)

N ""'\

\
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where N is an appropriate normalization factor and w the electron spin

function. Por N, the normalization factor wof the ususl hydrogenic

wavefungtlon ¢an be used with negligible correction, i.e. N = ®(0}.

The wavefunction (2.22) centers on the proton when the electron comes

. - - N -
close the deuteron, and reduces to a usual hydrogenic wavefunction for

r > r.
—p

-—

~ Thus, the proton spin hfs is

8o
<H > = — <g.c &(r-r )>
P 3 ”e"p - —=p (x -p)
- 8w 2 |
3 » (O)ueup . (2.23)

which does not contribute to the anomaly in the hfs of deuterium. The

neutron spin.hfs is given by

Y 8u
< = m— <ag.ag &(r- >
Hﬁa—‘xs HeHn S-S, (£ En)
Y

-2|r -r {/a

8n _2 -n —p'’ "0 -
T - > . 2.24
¥ (0)uegn<e ( )
\-
Since’ R = |r -r | << a, ,.we may write ’
-n —p 0

8w 2 2R
= — - (=)> . 2.25
<H D> == (0)p p <1 (ao) ( )

Using the deuteron wavefunction of Eq:.(é.ia),'we,obtain

L e
¥



) LR -
8w _2 d
<Hn> e * (O)ueunll - E_J . (2.26)
o .
—

This® agrees with Eg. (2.19). This method is somewhat simpler than that

-

adopted by Bbhr. [



CHAPTER 111

CONVENTIONAL DEUTERON AND HFS OF DEUTERIUM

" v

As discussed” in'_ the preceding chapter, the Bohr corrlection
explains the bul'k of the deuterium hfs anomaly. In Bohr's calculation,
however, there are a few rather drastic si-mplifying assuﬁptions. For
the deuteron wavefunction he wused that of Eq. (2.13) which is
-acceptable only when the proton—neutron distance is much greater.than
the range of the nucieon—nucleon interaction. Also he considered only
the }jsfate component of .the deuteron !wavefunction. Por the electron,
he used the nonrelativistic Coulomb wavefunction. However., since the
Bohr correction arises. when ‘the electron is.very near to the proton,
_such a nonrelativistic wavefunction may not be ‘a very good
approxiﬁ:ation. A few vyears later Low (7) reexaminc.d the Bohr
correction in detail and developed a method in which the .simplifying

assumptions mentioned above are removed. In the following, the Bohr

-
-

correction calculated by Low's method will be referred to as the

Bohr-Low correction. ' . -

When.Low developed his method in 1949 for the Bohr corre‘ction.

still very little was known about the proton-neutron interaction.
r

Therefore the potentials that Low used were very simple, primitive

ones. Since then a considerable amount of information regarding the.

nucleon-nucleon interaction has been accumulzated, and we now have

several realistic potentials. In this chapter we shall redo Low's

31



_terms which,are linear or quadrat$c in angular momentum L such as the
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calculations in shch 2 way that Fhe modern NN potentials could be used;
As already mentioned in Chapter 1. all realistic potentials contain
spin-orbit interaction. The E—debendent force does contribute fo the
hfs. 'fheréfbée. we shall formulate the correction to the hfs -due to
the é—depéndent force in the NN interaction. In addition, the MEC
effect on the hfs of deuterium will be considered. The Hamiltonian of

the system is presented in the following section.

IIT.1 HAMILTONIAN -

-

The Hamiltonisn for the hyperfine interaction of the deuterium

¥

atom consists of several terms, i.e.,

H = He * HC + HD + Hp + Hn + HL {(3.1.1)
Let us briefly explain each of these terms.
H =a.p+gm , {(3.1.2)

is the Hamiltonian for the free electron where « and S are the usual

.
a

Dirac.matrices.

Hc = - eallg + R/21 ., (3.1.3)

4

is the Coulomb potential between the electron and the ﬁroton. Here r

1s the position of the electron relative to the deuteron center, E the

j’ - .

\
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. h . ’
position of the neutron with respect to the proton. and

-

ir + B/21 the distance between the electron and the proton.

-

p .
HD."M—'FV . . . (3.1.4)
is the Hamiltonian for the deuteron. We discuss the interaction V
%elow. .
-
H = eq. ¥ (———2—) x (3.1.5)
P =" -rhir + R/21 Hy - : ) T

is the interaction betwken the electron current and the proton magnetic

moment Eg; In the literature, Hp is called the proton spin hyperfine

-

interéction.

) 1
Hn = eq. Yr(W) x En ' {3.1.6)
is the neutron counterpart of Hp
L2 [l ¢
H - - ¢ ¥ (3.1.7)
tr + R/21

is the interaction between the electron current and the veloclity of the

proton. In analogy with Hp and Hn' H. 1is called the orbitzl hyperfine

L

interction. Here p and P are the momenta conjugate to r and R,

Ll

respectively, and v = R/2.
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‘In Low's calculation the nuclear potential, V, was taken to be

v [(:T.#t)-ttPex]V(g) . (3.1.8)

X

whc}e Pex-is the position-exchange operator and t is the fraction of
the ' exchange force. In the realistic NN potentials V contains
_ . .

L-dependent terms as well. which will be discussed separately in
Section II1.8. Although these realistic potentials are not in the form
of‘ (3.1.8), they cén be reduced to this form by determining an
effective value of t; see Appendix B.' )

When the electron is close t§ the nucleué its motion ceﬁters
around the proton instead of the center of deuteron. Therefore, it is

convenient to adept the coordinate system in which the proton is at

rest. This is achieved by a unitary transformation U such that

: - = ¢(r+=.R) . (3.1.9)

and

5 .
= 0(r—5.R) . (3.1.10)



where

. U-e . ' (3.1.11)

Under this transformation the term Hé remains the same whereas all

other terms are affected. The transformed Hamiltonian takes the form

=+
1

= H +H’+H’+H’+H’+H’

c -D L
= H +H6+HD+H’ H“+H[')+HI’1+H£ . - . {3.1.12)
where
ea
o -
HC‘ - ‘ {3.1.13}
Hﬁ - HD+H'+H" ' (?-1-14)‘
with \ .
¥
HY = p.v (3.1.15)
2.
W p_ __l \2
} H' = 7% ~5 Ve (B-R) . (3.1.16)
A 1
4 = . - 3.1.17
Hp ex Er(r) * Ep ( i7)

) X u {3.1.18)

and
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IR
=

2

H£ S - (3.2.19)

|

\quc vex is the exchange potential contéined in V. Among the terms on
the right hand side of {3.1.12), He+HD+H6 are taken as the unperturbed
Hamiltonian, and tﬁémother terms can be handled in perturbafion theory.

Let us start with the contributions to the hfs of deuterium in
first order, .

ITI.'2 THE PROTON SPIN CONTRIBUTION

1

In the first order for the proton spin hyperfine interaction,
we obtain

1 )
- <H'> = <ea.T(=) x > ’
b < _(r) H, o
1 .
=< XU(=).u > , .2,
ca 1(r) H, . (s.2.1)

-

where the expectation value is with respect to the electron as well as
the deuteron wavefunctions. For the electronic part we have to

calculate

- L '
AT (P eaxT(D)T) (3.2.2)

Here ?e is the ground state electron wavefunction, which can be

approximated as (7)

&.p

®* = (1"+_.2m

ha(o)e (r) . - -

\
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PN -

ig.z . -
= (1 + >ma )u(O)?S(r) . (3.2.3)
0
: . —r/ao
?s(r) = P{0)e . (3.2.4)
and
1
uf(0) -= g for spin up electron
0)
01
= é for spin down electron . _ (3.2.5)
0]
It can be seen from Appendix Clthat
87 2 o
A - 3 +* (0)yog . {3.2.6)
and
8w 2 N
¢ -
<Hp> 3 '? (0)p0<g.£p>
8w 2 3 ., 2
3 * (O)pouptl -3 sin w) . (3.2.7)

‘where siﬁzé is the D state probability.

Equation (3.2.7) gives the proton spin contribution to the

deuterium hfs as proposed by Fermi's theory. Therefore.:it does not
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produce any correctioh to the hfs of deuterium. .
I11.3 THE NEUTRON SPIN CONTRIBUTION
The neutron spin contribution is given by
.y - 1 | "
<Hn> = <e5'2r(¢'({£-gl) x En¢)> . (3.3.1}

where @ is the ground state wavefunction of the deuteron. Because ¢
consists of S and I components. there are three terms in <H;>r the §
term. D term and SD cross term. The-coﬁt;ibutiohs of each term:will be
considered in the following lines.

The deuteron wavefunction is written as

¢ = P+ S . =T (3.3.2)
where ¢S and ¢D are }he S and D components of the wavefunction. We
cansider first the S term. =~

In this case we have

w» (3.3.3)

‘where xl

1 is the spin function and the normalization of the wavefunction

-

is such that

J 0%dR =~ 1 . (3.3.4)
S '



let us write

To calculate <H’>_,
] n S

st 1
C = (04,9 (7m=r) * 4 9]

—r|z-R|
2 * dn, o
_ Cos w [ 2 )
= gr( J QR¢S J TE:ET) x Hoooo (3.3.5)
0]
i
where for $ state
dQR = 23 R <r
c-RI ¢ )
(3.3.86)
= %‘E R>r
and we get
2 x©
Cos W 2 4w in Ca
- C == y_r[ J dRoo {= 6(r-R) - g= @(R-r}}| x uy.
5 :
r. .
2 1 . 2
= = . .3.7
cos o(gr(r)){ J ostJ x Hy . (3.3 .)
o _
* -

where 8(R-r) is such that

6(R-r) - 1 R>r
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. N
a —_—
=0 R<r /ﬂo (3.3.8)
. o=
From Eqs. (3.3.7) and (3.3.1}. we get

r

<H’>_ = coszé'(? ex (v(l) oz dR) X p ¥ ) . {3.3.9)
ns e’ ="'="r ) “n'e .
0

Y

Adopting a procedure similar to that used in the preceding subfsection,

- Eq. (3.3.9) can be simplified to

S em 2 2 |2 -2r/a, rz' )
<Hn>S - T u0<(un)z> +“(0)cos w E; e ‘ dr OSdR .., (3.3.10)‘
. J
0 (o]
. o
Since
T o 0 o
—arlao -erao f > 2
e dr ¢ dR - dr e J ¢ _dR - ¢ dR
J ) s S
] - 0 0 ’ 0 r
o
a
0 2
) 2— JROSdR . (3.3.11)
o .

< Hé > = = U pn?a(O}cosq;[l - %— J Re dR} . (3.3.12)



The second term in the square brackets correspondss to the. Bohr

N L
correction. T

In the case of the D term we have

. . ) _
’ - —— > S I
< Hn >D <°5‘3r(°n;:5-§1 x Enén)\ . {3.3 {3)
where
¢D(R)
¢y T osine (— ‘;\D(g)
with -
" - 1/') A, 110 -
: 1/2 /2 /2
c Ry L (L e ify o (3 O, (ay . (& 1 3
YoR) - (35 x(¥aolR) - () X(¥,, (B) - (Tg) X V,,(R)
{(3.3.14)

and the normalization of the wavefunction is given by

hcd
{ 2
J 6%drR - 1 . (3.3.15)
D
Q
Using the formula
R
! - R P
= X P (cosT) R<r
|£—5| 2=0 ‘ef-l 4
«© ¢ .
- I - P (cosv) R*> = . (3.3.16)
e-0 Re 1 ¢
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where R?Lnbs#) is the Legendre polynomial of ordeé‘e. the D term can he_

o

written as . - o .

¢=0 ex2 '
’ - s ’ .
; <Hn>D = <HI>p 0+ <Hn>D S T X0

Here ¢ refers to the ¢ appearihg' in Eq. (3.3.167. For & = "0 the

calculation is simi.ar to that for the S term and we obtain

z .
h . '
. ) "’ . w :
80  Bm 2 2 -_ 2 2
<Hn> 3 yo<(pn)z> * (Q)sin w|l - RODdR

b] 0

. - 0
., M ) oo

_i8x; 2, . 2 1 _ .2 2.,.: -
; '3 Opn? {G)sin"w ( 2)[1 ao J RéDdR] . (3.3.18)

M . {3.3.19)

[+ ] RSy
=

Here agéin. the second term in square brackets corresponds to the Bohr

correction. After a lengthy but straightforward calculation., the

sccond term with ¢=2 is obtained to be (7)

-

o

. . . .
, 072 _ 8w 2 veinZe | (i BRmyaZan
<Hn>D T uoun¥ (0)51n_o (4a0i¢QdR *. (3.3.20)

v

As shown in ;ii;;lix D the cross term is given by

x

¢

¥



o0
- 8n 2 V2R
’ - — —_—
.fH > 3 uoun? (O)Sinmcosg J (43 }e

o dk . (3.3.21)
s o DS

D

’

. 0

We sum all the cd:rections'to Fermi's formula from Eq. (3.3.11) through

(3.3.21). The corregtions, 4 ., to & due to the neutron spin hyperfine

1

interaction is thus obtained to be’

nnd
A, = - (‘HNSI) . (3.3.22)
1 a .
.0
where ;
_ HNSI = HN1 - % HN2 —"/—i HN3 |, * (3.3.23)
- with
w -
i : 2 2
HN1l = cos @ (2goR)ost . {(3.3.24)
0
. - - ;
2 2
HN2 = sin @ J (aOR)oDdR_'. {3.3.25)
0
o0 -
HN3 = sinwcosw J (aOR)OSoDdR . | (3.3.286)
0

2

where &y = 1/d . a 5

III.4 ORBITAL CONTRIBUTION . ’
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The orbital hyperfine }nteraction is given by H£ and its

contribution to hfs in first order is zero because <v> = 0. With this-
we end the calculation of first order contributions .to the hfs of
deuterium. . -

Let ﬁs pro;eed to the second order part. In this q%#e we have
the term; H;. Hé. Hi. H"and H" to be combine¢ with one another.

~

IFL.5 COMBINATION QOF H' WITH H;

The term Y’ has non zero matrix element between nuclear statés
of opposite parity, whereas Hé is non zero between states of the same
parity. Hence this combination gives zero contribution to the” hfs of

deuterium.

I11.6 COMBINATION OF H’ WITH H;

. The hfs.'EN. arising frgm this combination is given by
’ . 4 s ’

E - -27% |z ((Hn)OE.om(H )eo.mo) - r (~(Hn)eo.om(H )oe.mo)

N E-E +W - W E -E_ +W —-W oL
m o {&+ ¢ om 0 €- o ¢ m o 1
. (3.6.1)
k 4
N

where Ee* refer to.- the electron energies and wn to the nuclear

energies. : _—
he!

Let us consider the first term. EN¥’ of Eq. (3.6.1).
i

(Hn)oe.om(ﬂ )eo.mo

Eye " 2% —fFx ww
¢ o m o©

N+ PR

y . {3.6.2}
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i . M . .
re H' - . X E: ‘- p.v. G 2. is 3
where H! ex. 7 ( [E_E;) g, and H p.v Bec@ E, is a small

S correction. the continuum states of the electron in the Coulomb field

can safely be replaced by plane waves and alse the deuteron can be

R taken in the § state.

Let us write

| - e(p) - (u(pie'2' T > (1)) . (3.6.3)
. .
Using the approximation (7) . -
e2 !
) i ¢(p) - f(O}(;—)pofu(g).u(O))/(hp—EO) . : (3.6.4)
we obtain
CH ) = e e 2R wiovdy (ug
(H'n)oe = ie e‘ : ?(0)(r)po(u(Q{.gxg.ynu(g)) . (3.6.5)
(q')eo.mo T Imo® é(&,
82 \ y
- g.gmo?(oltlr—)po(u(p_).11(0))/(&,p—u0) . (3.6.6}
1 an .
where (;)po iy We get
P
4
2 3 1. 1% -ip.R
-EN+ - (-2¥ (0)}e Y £ [(;)po] e "~ -
pf’
5 P-Yoo (U(O).c_:XQ-;_JHU(g))(U(g}.u(O))] ,
(E -E ) (hp-Eo* Hn- WO)

ta

T



A

% 3, - (1. f
- (~2¥ {0)ie") Z l(;)poJ e

& p
{5 .

\

X

R-Y_ (u(O).ng R jg)uto,)l

(Ep-EO ) - (Ep_Eo+wm_wo)

where . -

T AT - (aeprs melE /2IE ! - 3
. P . P = 0 for

N
We obtain

4

C(u(0).@xb.u 4" (p)ulo))
Pl

- v R

- (U(O).{gxg.gntg.g)U(O))/2!Epl

2
v o st
' ip unz'sbp

where

A
’ - : N *;'"?\ -
Using Eg. (3.6.9) in £q.%¢#.6.7), we obtain

b3

v

i < : - 2
£, - ated z [ib | eriz-RE o) P Fn'nz
N+ ‘ t' po E “E_] 3E_(E_-E +W_<W)
p+ p o’ Tp p o m o

{(p.v_ ) 20
E'—mo P n#

2 3.2 3 2 -ip.R
"3 H.e *{0} J dp [ 2 ] ]

E (E -E )J(E_-E +W _-W )
wp PP O p o m o

36

(3.6.7)

(u(O).gXE.Eh(g.g+ﬂm*lEp!)u(O))/zsspi

(3.6.9)
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- A 1,2 a3
i (Sn)? (O)e'unonz J

os(pR)-sin(pR} (3.6.10) .

163, 8.2, ., . (pRc
= ( 3 lJe ¥ (O)uncn' g.v J pdp {

Q

i

where O - (E -E )J(E -E +W -W )ﬂand E - IE
¥ p o p o = o o) p

Similérly the second term, EV-

Rz

1
1

of Eq. (3.6.1) is obtained to

be
' ’

E - 2-y (Hn)eo:om(H )oe.mo
N- E -E +W —W \

- .0 € m oo

(IGL)QS?EkO)H o  B.v | pdptgﬁcos(pR)—sin(pR)) _ (3.6.11)
3 n nz - —mo J . 2
E D {pR)
0 P

where D = (E +E }(E +E +W -W }. Combinin
- p © P o m o

o

161
3

It

3.2

e (O)phcz li‘E'Emo E_
- P
0

where summation over m is understood.

greater than the electron rest mass

pdp (l_ . l_y (pR)cos(pR)-sin(pR)
D_ D_

o B and EN-' we get

N+

2
Q (PR)
(3.6.12)

The contributibn of momenta

is more significant in Eq.

s



(3.6.12). ' Therefore, it is appropriate to'neglect Ec as compared to

Ep. Then Eq. (3.6.12) takes ~the-form

- .. [

: 32 ., 3 2., : 1 4

I:N = (- ' i)e pn? (0) = [cnz{En (m) + 5} R ] c Vo

. » . m Sm ol om -
(3.6.13)

H

-

where ¥ = 1.78 is Euler's constant. Equation (3.6.13)'can be put in an

appropriate form which is more convenient for further calculations.

F N

that is
; "
o e
g&‘?’- = espn?z(O)[ en(T;E%;)<§.g; + <(en(2a;R)R.v>
w;- W ,
- : EO!?'ENOCR(TTT)] . {3.6.14}) |

The terms in the square brackets can be calculated by using thé

reéults: -
) R.v> = 3 (14qt) : (3.6.15)
- 2M 14 .. L _
<(en(2a R)IR.v> = 2% (L + A + BY) (3.6.16)
oM E-¥> = 55 (3 : -0
_ LY
o .
M e
o= - %— J #:{RZV(R))dR . (3.6.17)
0

where



. a9
1 - *
2 . . " . '

A - ¢ _¢n(2ax R)}dR , (3.6.18)

0

o
B - - 221 e2(en(2a.R)IRPV(RIAR . (3.6.19)

3| s 0
0
Let _
o WM‘HO

€« = -1 igom . Emoen(_m)- . ) . (3.6.20)

As shown in Appendix E, & can be written as

id o« .
LN WerlW [ W I 5 .2
K= —2= J {k ( W1 )eén( W1 ){J dR(R jl(ka)os)} . (3.6.21)

0 ' 0

-

-In deriving Eq. (3.6.21), we took the nuclear intermediate state as a

free state where its kinetic energy W,_ = KZ/M. The. correction, &,, to

k 2’

& due to EN is obtained to be

4omut 2x : .
: n Q .4 1 ZM
A2 = ”“D [(1+nt)(8ﬁ(1|w l —) - (5 + A+ Btr) - 3 KI {3.6.22)

II1.7 COMBINATION OF H’ WITH HY

The orbital hfs, E . is given by .

[(H )on om £ no, mo] [(H’)no.mo( i)on no]]
z Iz

EL"22[ (E_-E +W_—W_) (E_-E +%_~W ).
m n+ n o m o n= ¢ n » 0

. ' _ {3.7.1)
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On the other hand, the normgd’orbital hfs {5 found to be (7)
’ - / . ’ . rs
—_ E_ - -2 % iz (H )on.om(HL)no.mo -z (E )no.om(HL)on.mo (3.7:2)
! F (w -W ) {w -W } - « .
] m{n+ m o n- m o ]
From Eqs. (3.7.1) and (3.7.2) the correction to the hfs .E, . can be
written as
Fi = EL_E?
= ’ ’ / F]
- 25 Iz (H )on.om(HL)no.mo _ (% )on.om(HL)no,mo 1
(E_-E_+W_-W_} (W_-W_) [
m |ne n o om o m o
r s s 4
- (H )no.om(HL)on.mo _ (& )no.om(HL)on.mo (3.7.3)
(E -E +W _-W } (W -W ) T
n- o n m o m o
Let us consider the first part of Eqg. (3.7.3) and call it Ei*f
’ ’ [ [T
£/ s-2rlr (H )on.om(HL)no.mo_ ~ “on.onttL no.mo$ (3.7.4)
L+ (E ~E +W _-W } . (W -W_} I T
min+ no.m o m 0
a.v .
where HL - -e — and U’ - p.v
. s &Y
’ 317} - - —
z (H ,on;om‘HL}no.mo z (E'E)on.om (-e ) r ’no.mo
n+ n+
4 p.v
e 2 - —om - 1
= - Z (=) ¥ (0) (u(0),z—F ul{p))luip}. ('E) a.v__u(0})

Yro
p po “p 7o op

.
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»

' p.v__ (x.p+pm+E- ) 2
o 4,2 ' ='—om '='= p 1
- - etz {3 = = a.v 0 [(h } )
P P - op
p.v (x.ptla.v_ ) 2.
- 4.2 ='—om ‘== '="—mo 1
= - e ¥ (0) 2 {(u(ol.E = 5E — u{0}) [(F) ] }
P p o P ap
‘ 2 p.v
R e L {1 P i I +
e.? (0) Z {2E [(r) ] (<x|(E ) (E'Emo ig.gxzmo)|x>)}
op p ©
- - e%%%(0) = b——-) < '
= - e ¥(0) { [r ,Ji(x!u (1cpxt_m)n<>}
P op
2 2 .
S S e - o [t 2 v -
"z e (0)(wm WO)E[E [(r) ] (E'lomxgmo)/(sp Eo)l . (3.7.5)
: pLp op : '

where we have used the identities \ -2 (W ~W )R, ax> - (I), and
—mo 2 m o' —mo 0
A:( >, ! > R L] . R r . =9 e i
z X191l X Moreover we dropped thg term (p Eom)(g Emo) since it
does not contribute to the Hfs.
Equation {(3.7.4) can be written as
r4 2 W -W
P 2 e 2{.1 m 0 1 1
’ = b —] - 4 -
El. = 20} g [(r) ] z 1omx3mo{5 E ){E E *W W W_-W }]
6 m,pl p op p o m o m o/
4 ® 2 2 2 T T
e - p dp p 167 ~ . -1
-z [s ¥ (0) J 35 ") J A2, 2.V 2 Roe F°E W _w ’J
m {2m) p P
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R

4.2 A
- = : x
e ¥ (0) i ﬁiv o R o J

dp ' '
E (E -E +W -W_} - (3.7.8)
PP om0

Y

h

Similar!y the second part, EE_. of E! is found to be

Lt
+ o,
4 4.2 P dp '
- = Z.v_ Xt ) 3.7.7
ge v (0 Zz.y xR J E (E <E +W W) ( )
m - pp o m o
0
EL 7 OE[LELL

dp 1 ) :
E (E -E +W -W ) _(E +E +W -W )}
P P o m @ D o m o0

Be4

3

where we have

2
= ¥ (0) Z

used

|y

P

19 ¢n . ’ (3.7.8)

X v 18t and & = (W -W )/m. Eere m, the
m m o

m
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denominator in the expressions of x and 6m. denotes the electron

rest mass and should be distinguished from the summation index of

the nuclear intermediate states . - ' .

The quantity E’/ produces a correction, 4,. to A which is given

L 3
_ by
[-1- 4 L 3
&, = [ {(=H—=)(=—=—=)}|L : (3.7.9)
3 . [ 1 FD |w°] ] 2._
L . .
with u = S_. Here -
: L 2M"
wm+lwol
AT s
L. = X 2.{Mv ) o
2 ~ Y '—om —mo (W W 1)
m m o
LA '
2 ’ N
=-Llsin w ., (3.7.10)
with - _
- ILRLE W+ lW_| * 2
+
o] 2 k o 2
= — —_— ¢
L1 Tom [ J dik{k én( l“of ){[ [ R dRJl(kR) D]
o ~ 0
o -
. 2 2
|| RRemigameg }) : (3.7.11)
0.
Some detail for L2 is presented in Appendix F . There are other

combinations of the terms of Eq. (3.1.12), but their net contribution

to the hfs is negligible (7). For & it is sufficient to calculate
™
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A=A+ A <+ 8, . (3.7.12}

111.8 CONTRIBUTION OF L-DEPENDENT FORCE TO THE HFS OF DEUTERIUM

“in Low's célculaé;on G;F§_§Tﬁble models for the NN interaction
were used which Aid not include ;ﬁy E—dependent terms. On. the other’
h;nd all realistic potentials. contain terms which are linear or
qéadratic in L suech as L.§S and Ez. All of these terms contribute éo
the magnetic moment of the deuteron; . see Appandix G . ;ence these
terms also contribute to the anomaly in the deuterium hts.

In obder to'seg how the L-dependent forces get irnvolved in the

clectromagnetic (e.m.} interaction, let us consider the L.s term which

is of the form
V=V .
(s(RIL-S
P _ |
75 \LS(R)(EXE)-(EI 22) . {3.8.1}

Here R and R are the positions of the  proton and neutron,

-1 -2
respectively, and E = 31—52: 21 and 22 are the momenta conjugate to El
and 52.-rcspectively. Since the proton is charged we replace 21 with

P1 - €A, where ﬁ_is the vector potential at the position-of the proton.

This substitution leads to the e.m. interaction
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o . e | R '
: Bom 2 Vi g{RH(SxR).A . (3.8.2)

In order to estimate the eftfect of this Hem on the deuteron

o

magnetic moment. assume that A - - é (Elxi_!). which corresponds to a
. . . . . o .
uniform magnetic field H. Then Hem is reduced to I!e ;_{LS.I_: with
’ = £ v _(R) Rx(SxR) (3.8.3)
g T8 Trs't TR . e

The expectation value of fhe z-component of Hr g
r —

deuteron wavefunction gives the magnetic . moment g arising from the

with respect Lo the

“force V in the NN ineraction. -
1

‘Let us now examine the effect of the spin-orit force on the
deuterium'hfls.' Th-is is due to the Hem with A which is created by the
electrc;n current. Although we need A only_ at the position of the
proton, we evaluate it at an arbitrary point x inside the deuteron

since this will be useful ir our Jlater discussions. The vector

’ ES
potential at a point X due to the electron current is given by

a

L

> . (3.8.4)

where r refers to the electron~ coordinate with respect to the deuteron
center of mass and the expectati-on valuer is with respect to the
electron wavefum‘:tion. Since the electron is far outside 'thc d;:uteron
for most of the i:ime we can assume that r >> x and make the.cxpansjon

~
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<L | (3.8.5)

-

If we assume that the deuteron is a point, we can use the hydrogenic

wavelfunction of {3.2.2} for the electron. This wavefunction together

| with (3.8.5). (3.8.4) can be evaluated easily with the result:

Alx) = - (%E)yo?z(O)g X X/2. (3.8.86)
{ -
When the structure of the deuteron- and -the.nucleen motion are’

taken into account. the vector potential of ({3.8.6) is modified.

According to Adams ., II (22). the modified vector potential can be

written as

AX)T A, (x)% AN Adx) . T (3.8.7)
; - , ‘ -
- - ﬁ._n \b2 : Tl - 2
s A (30 (O g x .»_\/2.}(. ao)
. . X-R
8m, . 2 -1 2D
A, (x) (37)Hy¥ (0) e x (—3 )](aol
[ 3|x-R_! (x-R. :
N - =% ==
A (x) (FT)H? (0) L.( 23, o x —3 J . (3.8.8)

- o . N
-

where D, in a crude sense, is the radius of the "adiabatic region”;

within this region the electroJ centers ¢on the proton, and ocutside the

region the electron centers on the center of the deuteron. As we shall

7 f
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“a7
. 2D . . '
see, the term with the factor 3 i A, is of crucial impurtance
) 0 o

regarding the correction to the hfs arising from the L-dependent
forces. We will discuss the choice of the value of D later. The term

&S in {3.8.7) is included for completéness but we do not need it.

Before proceeding further let us see whether we can reproduce,

-

by ‘means of the A of (3.8.7), some of our previous results pertaining

“‘to the hfs. The magnetic ficld due to A(x). j.e.. H(x) = ¥xA(x) is
[ . - - -

H(x) = H (x)+ Hy(x)s Ho(x) . (3.8.9)
.where
’ . 8n 2
. 8, (x) ERISALIE
2|x-R, |
2 S
By(x) =~ 5 0) (- ———g
. ‘ ~ O
. |x-R_| 3c. (x-R_}Y{x-R ) ]
gr, .2 =y A ol
Ho(x) - - (2T $%(0) { . -} e
“ 3 3 o [ 4ao |x-R |2 }‘

1

Here the division of H into three terams does. not cofrespund to that of

A. Xote that the factor %2 does not appear in'gti). It we assume thit

£ 0

the deuteron consists of the S state only, the deuterium hts UD“}S

‘given by

UD - <£p_§(51)> - <En_§(§2)> . (3.8.11)

where angular bruackets denote the expectation value with respect to the

-

-



deuteron with the $ state alone the thifd.term with H
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* -

deuteron wavefunction. I we substitute Hl for H in (3.8.11) we obtair

Fermi's formula. - When we_put.ﬂa"for #., the term with\gatga)‘leads to

the Bohr correction while Eé(ﬁil - 0. Since we are considering the

3 of H does not

conptribute to the hfs. Thus the results obtained with the help of

4

{3.8.7) arc in agreement with our previous results.

So far we have considered the dguteron with the S state alone.

-

wWhen the D state is taken .into account. the orbital motion of the

proton contributes to the deuteron magnetic moment, and also to the

deuterium hfs. This effect had already been estimated by Low. see Eq.

{3.7.9). As shown by Adams, II Low's result can be reproduced by means

of’-(i.&1>.'whurc J is the nuclear charge current operator due to the

. 4a

orbitél motion of the proﬁon and ﬁl is the &1 of {3.8.7). In.fact.
wéat Adams, Il d;d is to derive the expansion in a heur;stic ﬁanner.
and determined the value of D such that Low's result tor thg
proton-orbital contribution to the deuterium hfs éan be reproduced. He
then went on to examine the hfs of tritium but did not consider
I.-dependent forécs in the NN intcraction.

Later, in their stu&y of ﬁhe hfs of He3+. Sessler and Foley
(23) reexamined the expansion of &AAEA--detail. They arrived at
essentially the same expaﬂéion of A as that 6f Adanms, but- ;hey
calculated D ab initio téking account of excita£ions of fhe electron as

well as that of the nucleus. They found that, for the .L-dependent

forces. D has to be much larger than that used by Adams. The value of

-~ D depends on the range of the force c¢oncerned. For a2 short range

force, like.the spin-orbit force. they estimated it to be



whsqi « is the fine structure constant. This D is approximuately twenty
times as large as d., the .size of the deuteror.
Let us now turn to the contribution of the spin-orbit force to

the hfs using A(x) of (3.8.7).In this case only the proton contributes:

hence we take X at the position of the proton i.e. X - 31. -Then A and
-&3 vanish. The contribution of fhe spin-orbit f{orce to the deuterium
hfs is obtained from (3.8.2) znd (3.8.7): i.c..
B > - <~ SV _(RI(SXR}.A(R.)>
em 2 'Ls = ="T="=1
. 8w 2 ‘ 2D '
- U, = — el
(3 )uouLS? () (1. 3 } . _(3.8.1-)
4}
The correction, ALS' to A arising from V is .
$
.-
. . LS - .
i A - - =S 20, _ (3.8.13)

" where yLS is the deuteron magnetic moment agp to the spin—orbit force

V.

~ ~

. 5 .
. The L-dependent forces of other types, l.e. le and L can be

handled in a similar manner. We arrive at
e

v
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[N

M, ' :
= - = (= | (3.8.14)

for all E-dependent forces. ;Héfe the suSscript,i refers to the type of
the force and pi_is the deuteron magnetic moment dué1to th§s force. As
we mentioned earlier. the value of D depends on Fhe rénge of the force
involved.  However. the G;riatipnlof the range among ;he-&-depen@ent
forces is actually quite small. Hence we use the same D for ail of
?hem' It He o is the‘total magnetic momént arising from 211 L-dependent

forces, in the NN interaction, then the correction, 4,. to 4 due to Heo

is
. A w - —= (;_) . (3.8.15)

IIT.9 THE MESON EXCHANGE CONTéIBUTION TO THE HFS OF DEUTERIUM

- -

111.9.1. Introduction

wWe know that mesons are being exchanzeé between the nucleons.

”

The exchanpe of charged mesons contributes to the deuteron magnetic

moment and to the hfs of deuterium. The experimental value of the

deuteron magnetic moment is known very accurately: 1its value is found
L1

to be (24)

Hy = 0.857406+0.000001 .

in nuclear magnetons.

In the potential model, the deuteron magnetic moment,



-

3. T : '
Hy = (upwn) 3 PD lup*-un - -5)*- Hee oo _ {3.9.1)

where the first two terns.of {3.9.1) _give the usual expressidﬁ—ror the
magnetic moment while the last term is the correction to it due to the
IE—depeﬁdent force in' the NN interaction. We estimated QD with a fen‘
poteptials: its value changes for qifferent potentialé. Por all.the-
.potentials we.considered the calculated value of H is a lityle smaller
Athén'the measuped value. In view of this discrepancy iﬁ is interesting
to examine the mesonic contribution. By the meson exchange currents we
mean those processes in which a photon ;nteracps'with.the Qfoton'and
the neutroi of the deuteron., via mesons, in such a way that at least
one meson lands on each nucleon.. A brief revien’of this effect will be
presented in the following lines. - /

The deuteron is an isoscalar, and therefore must interact with
an isoscalar system tb remain isoscalar afzer the 1ntéra§fioﬁ.l The

G-parity and the C-parity of a nuclear system are related with each

other by the relation

<t

G=e c . , (3.9.2)

whefe T2 is the second component of the isospin of the systenm.
However, for an isoscalar system one gets G = C. The C-parity of a-

photon is odd, f.e., C = -1, end for a photon which gives rise to an

L4 . -

isoscalar system of n pions, one obtains G =~ C;

-
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(-1)." = -1 o (3.9.3)
Equation (3.9.37—restriéts n to odd integers. However;'a single pion
is forbidden bf the angular’momentﬁm conservation rulei Therptoqf. the
lightest pionic system that contributes to pb is the three-pion systenm.
Sonme §ysten§ uith.a larger number of pions, uhi;h satisfy (3.9.3), and
a few other heavier mesons, algo contribute to the magnetic moment of
the deuteron. Hdwever. their contribution is expected to be smaller
due to their large masses. Therefore, we shall restrict ourselyes to
the . lightest acceptable three-pion system in our calculations.
Moreover, to facilitate our calculations we replace the two-pion
system, landing on one nucleon, by the p meson. This would be a good
approximation because the correlatiop between two pions is 'known to be

strong. In this review we mainly follow Adler's calculations given in

. reference (25)

111.9.2. THE pm EXCHANGE CURRENT

" To esfinate the-contribution of the pm exchange current to the
deuteron magnetic moment, we consider the electron-deutron {e-D)
scattering diagram given in Fig.a on the following page, where q is the
4-momentum of the photon, e its polarization, ¢ and X are the
counterparts of q and e for the p meson., p is the 4-momentum of thg
pion, u(k) the electron spinor, ¢ th; deuteron wavefunction while k and
Q are the 4-momenta of the electron and”deuteron. respectively. Since
we are interested in the magnetic moment due to the pm exchange current

we need to consider only small momentum transfers. In this calculation °
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]

the pm-D vertex is assumed to‘be a product of 7N and oN vertices. For

the N vertex we take (26)

P L N
-(Eﬁ)xf(g-g)xi .

-

.

where p is the three momentum transfer to‘the nucleon and xi and xf are .
the nucleon Pauli spinors. The pN vertex is represented by a 4-vector

current»!‘p such that ({25}

0
X ITIx> = a<xe x> .

i PEO i
axgIrtix = xplla G - bidgle

ijkejck]}xi> . (3.9.4)

-
‘ .

where Pi is "the sum of the nucleon 3-momenta 'before‘ and after the

A

summation over repeated indices is understood.” The constants a aqg,h—'

interaction, and ¢ is the 3-momentum transfer to the uucleon. The

in (3.9.4)-are related to the static valules of the nucleon isovector

M=

' (26) - - = - = (=P8 .-
form factors (26); a GEVSO) 0.5 and b GMV(O) { 5 ) 2.353 .

The pmy vertex is given by (27)

g

forind aB o
(=—)e Fip —
2mp asts ¥ ay5

where p and @« are the rhb and pion fields. F«ﬂ and eﬁnv&

electronagngtic field tensor of rank 2 and the' antisymmetric

are the

pseudo-tensor of rank 4, respectively. For the coupling constant g ,

<
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—

although its sign is yvet to be determined. its stfength has been well
established (28). thap is, gpﬂq = =0.38. The value of gpnm usqd in

reference (25) is larger than the more recent value quoted above. In

momentum space this.vertex becomes

"

»

ﬁk7pb

(g"“’n
mp afvE

a
€ q

To calculate the e-D scattefing amplitude'fo? the prucess of

Fig. a . the following assumptions are made: )

1) The electromagnetic form factors of the bound nuclecons are
the same as those of the free nucleons.

2) To iake account‘of the nucleon binding in the deuteron, the
deuteron wavefunction is used for the initial and final
neutron-proton systems.

3) The structure of the deuteron is described by a non-

relativistic wavefunction.

The $-matrix element for the pm exchange diagram of Fig. a is

given by (25)

o q 2

s s . 4 -ip.(x_-y)
S = ie d4x d4x ¢+(x LX) 16 pJ(cl:rJ}k d p £ o x
P nf p’n|2M . L (21) p2- m2

I

. -it. (x_-v) \ “ig.{y-y ) |
4! e gpnw eanvae N q déq e € } %
4 2 2 m < Apv L) 4 2
(2m) ¢ -mp = (2m) q



) & ' . b
_ m MD .1/ —i(k-k’).ye S ‘ 4 a
{u(k')cu7 u(k)}{( —_) - e } ¢ (x ,x )dvdy
v K k‘Q i"p’n e
‘Lo o0

- @\

.. .
R

+ {(diajrram wiih pro::;-:;;—;zhtro%”reversed) . . (3.9.5) "

+

where the symbol (aj:r“) indicates that o’ acts on the neutron spinor

N

and r* on thé'proton spinor. In this notation

. -
¢ m £ m - e__ _ ..m
cno‘-J (o :¢0) .. 0O (o :1) , ¢ = (l:¢) w
e st It B st R et S S T a S TY 2 T (3.9.6)
np . n p
ﬂ ) , .
where 1 iqé?he identity matrix. For the polarization Vectors the
following relafions are used {25)
»
e.e, * "B, and k“kﬁ - _guﬁ {(3.9.7)
where
J
— -1 —-—
guv = -1 . a.ﬂiu.u = 0,1.2.3
-1

To calculate Son we apply the following coordinate transformation:

. »
{x_+x )
X = ——EE—E— . X = X -x
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x = X + 3 X . X =X -=x. - {3.9.8)
F . |
We assume that the deuteron as a whole can be described by a plane wuave

N t 0 .
while its structure is given by a triplet wavefunction ¢(x):

- SX 3" '
¢ " £{x) (3.9.9)

s~

" Putting Egqs. (3.9.9) and (3.9.5} in Eq. (3.9.5) and integrating over vy,

L

y . X and x_, we obtain
e 0 . N

: ip.x/2
- 3 4.4 F - 3 + .j.'E Jj. e__
Spﬂ =~ 2ie(2n) ' & (Q‘ Q- q) J_d xﬁf(il[{anp (o -rﬁ)}{pa > } x

=m
k1

22( (
€ -m fa) q oo

. . 2 '
t=.-1e"‘</2 -gpwv)eaﬁva ?1q63a m MD )1/2
m
fe)

2n60(p0—80)d49 : : .
x 3 + (diagram with proton and neutron reversed}
(2m)

{3.9.10)

The appearance of 6°(p°—e°) in (3.8.10) is clearly due to the use of a
nonrelativistic wavefunction 6(53 of (5.9.9) for the deuteron
structure. This 6&-function merely means that relative energy of the

nucleons does not change due to the scattering process of Fig. (a2). To
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p - & e - ST (3.9.11)

With this substitution and performing dro integration, we obtain

4.4 .3 ;:137' - J ir.x
Spﬂ = zé(zx) 6 (Q’'- 9- q) J d x g;;;;g [ ¢f(£)(c—:rﬁ)¢i(§10 - —} x

- 2
. ) : W
(iGpJ) ' 1 (gpnv)eaﬂva(p7q63a)( " “p §/2 o
2M 2 2 2 2 m 2 . k k’Q’ B
{p ~m_)}{&€ -m_) e q 000
+ (diarram with proton and neutron reversed)”, (3.9.12)

To extract the prn exchange current from (3.9.12}, wé compare
Spﬂ with the well known S-matrix element of the impulse approximation

{28). §S. .In the i&pulse approximation. for the e-D elastic scattering.

12

the nhoton interacts with one of the nucleons of the deuteron directly

whereas in our case the photon interacts with proton and neutron via w
and p mesons. As given in Ref. (25), the'sia can be written ag

. . 1
Si, G mzr‘i‘agu(-q—z)

O]

Y
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2. 12 _
: T P M 4.4 - ' '
D - e (/) {2) & (Q’'+k’-Q-k} . (3.9.13)
- kokoqb : .

-

- where Ay is the deuteron 4-vector elgctromagnetic curcrent.  The Au is

-

given by - | : ‘ _ , <

i

i +l, i, imn mn . : ]
A - Kf[(iﬁg)e qga (s)GMD]xi . £3.9.14)

- -

ﬁhere'GED. GQD'and GMD are the clectric, quadrupole and the magnetic

form factors of the deﬁferon. respectively, 512 is the usual tensor

n . . . . . n n
operator, and o {s) is the isoscualar Paulil spin matrix, on+cp
' -

»

In complete analogy with S, 0f-{3.9.13), we wriie

o
£

s iew®5 (4
] . . . Yo - Ja(gg) .

&
where . L s

2 -

_ oy /2 1.4 0, Al .
E (64Mmp )[k k’Q’l {2r}y & (Q'-Q-q) " .
and
3 d3r + j
w* - 43 J a4 x {f (x)(e?:r )6.(X)} x
3 f - B 1=
- (2'3)
—-'-/
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ir.x/2
et X

. caﬁv& i ) ‘
: {( 22y (2ml) p"-qa}‘ " -
p a =] - .

+ (diagram with proton and neutron reversed}.

. ' {3.9.15)

" The comparison between (3.9.13) and (3.9215) leads to the o ekchange

current

A& = - EwE | A (3.9.16)

Gg

; E =%
where 5 (64Mm - )
Since we are interested 1in 'aGMD(g%). i.e., the change in

G“D(qz) due to the prr exchange current in the deuteron we need only to

-

calculate Hl. as can be seen from (3.9.14). . To examine the dependence
of Wl on rﬁ. we write Wl in terms of indexed quantities éppearing in

(3.9.13), i.e.,

W~ BT

rﬁp1q6-

) - igvéd
€ rprng {(3.9.17)

The last line follows from the definition p = (g+7r)/2 and the

. ipy8
antisymmetry of ¢ s

in v and §&. Since we require small momentum
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transfers we neglect the terms higher than second order in q in

{3.9.17). 'We know that T ® 0: this czn be seen from (3.5.11) and the |

d-function of (3.9.10). Therefore. v must be a space indeﬁ.for nONZero

. q 2 . -
W'. Si T — d I, is of order g, the I, i : ;
e ince qo 2”3 an [ i T g e Jq0 is of th(_order of
53 which is negligible. Thus & should aisg be a space index.. This’

- '

. -

Therefore, wé have -

b ioxd
~ L
W .Or’qb
iré T -
o~ e T T gy o | {3.9.18)

iovd 1v8 .
where ¢ - T -6 .

-

leaves only 8 to be the time index. Thus I alone contributes to AGHD._'

‘ A . i . . .
Let us now go back to Wa of {3.9.15) and rewrite W by putting

I - &2l, We obtain

ir.x/2 iké . j k ¢
- = € p D

q }}

. L PN [ . ; ~e
Wh - —dia J o [{%(x”c :Iwi}{ (p2-n2) (e2-m?)
. p a ] .p

~

+ (diagram with proton and neutron reversed).

ir.x/2 iké i k ¢
-~ € p P g

éa-ma) }l
fa)

3 o

- -4ia J adx 47 {%‘(x)(cJ:1¢1:oJ)¢.(x)}{e -

3 f i 2 2
(2m) {p -mn)( 1



62
. -3 RISZCILN RN
- dia |ax ST (x)cj(sw (x), £ _PPRA .
‘ 3 ! 2 2 2
(27) -m_)(¢ m )
- . ) n _‘ - )
. - (2.9.19)
where oj(s) - od:1+1:07 - 6:+c;. With the deuteron wavefunction
POy ‘ . ‘
- - w S‘
o 2 [———1 > _lz]x (3.9.20)
VaTm (v8ix
where u = cosw ¢S(x) and w - sinw ¢_{x§
We obtain
= = 3 2
wi - -iaelke e( c (s)x,) ‘ T('x)
) R L PRy Py
. p-m_ 7 nE
. .
. 2 L2y (IX a0
X {J {u > w ),0(2 jdx
.0
- J v2 wi{u - —)32(2 )da} ‘ (3.9.21)
V2

where -joirx/2) and ja(rxlz) are the spherical Bessel functions of

zeroth and second order,respectively. Using the relation Al = - (%)Wl.

and Eqs. {3.9.14) and (3.9.21), we obtain

[--]
d r{r ) 2
2 a X [ 2 w .., .TX
aG,  (q7) - (Gg ) J [ dx{u - —1j (=)
M
D fors i) lsmpe (2#)3(p2—m2)(82—m2) lJ 2 o2 "
ped P 0
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- J dx v2 ,w(u+_‘:.)j2(§5)} .- . (3.9.22Y
— . 1"‘\
V2 . . ) LY
o - . . . \

r

Before proceeding further it is important to point out that
2 in"(3.9.22) should be multiplied by -3. This is due to the effect

of the isospins of m and p mesons which interact with an isoscalar

system, the deuteron.

-

The p and = mesons have T-=1 and are exchanged betwecen nucleons
in an isospin sinzlet state. T=0. If the pry vertex ls assumed to be

an isospin invariant, the sum over the possible isospin states gives

——
-~

(25) a factor of -3.  Now we substitute p and-¢ from (3.9.11) into ™

. (3.9.22) and set g=0. The AGMD(O) thus obtained gives the cdrregtion

%

to the deuteron magnetic moment due to the pm exchange current. After

integrating over r, we obtain

-Gz a/2m _e) = -mpx _mr‘ -
, . - 2 e o 2e “Y.2 1 02
AGHD(O) 5 J-e d‘<| [mp - m " j{;’u 5 ¥ )
wT{m —mv) L
’ 0
-m X -mrx
. P T
2 3 3 (o] | 3 3 le
" [m {1 Tax 2 2} X mnll Yax " T2 2] x ]
X m_x
Pay
x VZ wiu + — )] . ‘ (3.9.23)
J2 : '
- e
Adler and Drell - estimated AG by uQing 4 = *0.48.

MD ¢ farind
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However. the more reécent value of Zomy 1S (28)

~ =038 , : ' 3.9.24
) % : ) ( ‘)
Thus we obtain RN
- ,- . - . _3 . :
: 4G, (0) = 27.9x10 . (3.9.25)
MD : i

in nuclear magnetons. Here we have used 2 - 0.5. ' There is an
.ambiguity in the sign of AGHD' Howcvef; its positive sign is favored

because it reduces the discrepancy bctwgen the measured and calculated
values of the deuteron magnetic.mﬁment. It is to be noted that this
AGMD is of © the same order of magﬁitude as the discrepancy in the
deuﬁcron mégnetic moment. Morecover, there are some remaining effects
due to the. heavier mesons and fhe higher number of_pibns exchanges-
which have not been considered. Although thesc-etffects zre expected to .
be small, they might still be important. In view of the right order of
maknitudé of AGMD(O) and the aTbiguity in the mesonic correc;ion due .to
the remain%ng effects we assume that the magnetic moment au which
arises frém the MEC produces an agreement between the measured and the
calculated values of the deuteron magnetic moment.

Since the MEC contributes to'the deuteron magnetic moment it
also.contributes to the hf;. _But at present we have no reliable theory
to calculate this correction. However, we.know that corrections to &,
due to the stricture of deuteron, are of two types: The first.type of

.

correction is referred to, in the literature, as the Bohr correction:
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I X .t . )

which stems from the intrinsic. spin. part of the deuteron magnetic

ﬁoment: This correction was first studied by Bohr (6} that we reviewed

~in Chapter I{I. The second type of correction is prthed by the
‘L;effect. This éorrection arises from the L-dependent forces like the
spin-orbit force in the NN interaction. Another cdrbection that arises

only by virtue of the proton being in the D state is of sécond t&pe but

AN - . . ~

somehow its effect is anomalously reduced (23). This correction lies

between the two and is closer to the Bohr correction.

L.

lthouph the Bohr correction and the L effcct correction are

due to Bohr's mechanlsm they differ from ecach other quite substantlally
in their effects. The Bohr correction ‘and the L-effect qorréction are
. 2R, __, 2D . , ) L
proportlonal.to.<5—> and <_—>. respectively. Since D &s:]arger'than
0 "-40 . ) . . “. ‘.
<R> approximately by a factor-of "twenty, the correction produced by the
[
E—effeci is about twenty times larger thzn that produced by the Bohr
' Loe
etffect. Since these corrections are the two extreme, cases the

correction produced by the L-effect is makimum. To'get an upper limit
of the mesonic correction let us assume that mesonic current produces
the L-effect in the hfs. The mesonic correction, Ar' produced by aAu is

-

then given by _ _

A - (28, o © (3.9.26)
a .



CHAPTER IV - .

EXOTIC COMPONENT OF DEUTERON WAVE FUNCTION -
AND ITS EFFECT ON THE DEUTERIUM HFS -

IV.1 ISOBAR (Aa} IN THE DEUTERON AND ITS EFFECT QN THE HFS

u"’In the traditional picture the - deuteron consists of a proton

and a neutron with T=0, I=$=1. However, when the internal degrees of

freedom of the nucleon are taken into account the deuteron can also
exist in some exotic configurations containing excited nucleons, the
so-called isobar configurations. Thé effeét of the isobars on -the
deuteron ﬁagnetic moment has aiready been studied b;ﬁ‘mgny authors
(31,32). Althopgh there argtmany isobar configurations that can occur
indthe deuteron'the most'important one is due to two A(1236)'s. Here
we note that althoﬁgh we dse the same symbol for 4a(1236) and the
deuteron hfs anomaly, i.e. & of (1.4), the distinction should be clear
rfrom the contexf.__Therupper.limft of the aAA admixture in the deuteron
has been estiméfed to be 0.8% (32). Since the aA component contributes
to the déuteron magnetic moment it also contributes to the deuterium
hfs. The correction to A due to the isobaric component, however, has
not been considered so far. Let us try to estimaﬁe this correction.
The deuteron wavefunction ¢ can be written as

v

A S N ) {4.1)

66
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where D is the nucleonic component -
- & = I = u (R)INZ(LS)I-i.T0> (4.2)
] - . - - & -
N L-G.2 R LS ‘
. $=1 i
& -
and ¢A the iscbaric component
e ¢ = X l u (R]IAz(LS)Ifl T=0> {(4.3)
A LS R ,JE% b |

{
where Uirg denotes the radial component of the deuteron wavefunction

when the aa isobar is in the LS state. Due to the zngular momentum

selection rules only four isobar channels are permissible, namely, 38
3

1 [

7 7
Dl' D1 and Gl'

The deuteron wavefunction is normalized to unity as.

w

2 2 2 2 2 2 .
J dREEey i rlupy e luggq v lugpplrluypg ety qt 7l = 10 8 4]
. .

Haapakoski and Saarela (30) -estimated the AA component effect
on the deuteron magnetic moment. For the NN poténtial. they used the
Reid sbft core pofential. They modified the potential such that, with
the added aA component, the deuteron‘binding energy, is feproduced.
Similar modifications have azlso been employed by other authors (30}).

Haapakoski and Saarela modified the central part of the potential by

intreoducing a parameter A, i.e.
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o o X ‘ -2x e-4x ' : e—6x
V_ - -10.463 S— + 105.468 £

(4.5)

Iin the absence of the isobaric component, A is 3187.8 MeV. With the
isobar aA in the deuteron. the potential of the system comprises three
parts, a nucleonic part, an iscbaric part and a transition interaction

{ ). The m+p exchange transition potential has been used with the

VNN*AA
niNA and pNA coupling constants taken from the gquark model and thoge
estimated from the decay width of a. However, we will consider the
results they obtained with the coupliné coﬁstant;.of the quark model
since these resulfs aré‘given with desired details. ‘Their trans;tion

potentigl has a I/R3 singularity which is removed by inserting a hard

core in the potenﬁial. The magnetic moment due to the AA component has

" been estimated with the hard core radii 0.4 fm, 0.3 fm and 0.2 fm. In

this way they found the AA admixture probability between ¢.3% and 0.5%.
In the magnetic moment calculation, the magnetic moéent of A(1236)

predicted by the SU(6) group has been used (32), i.e.

M = (T, +3) u_ . (4.8)

where T. is the value of the third component of the isospin opertor T

/d3

for the & particle.. The deuteron magnetic moment can be written as

bhelow. )
NN component:

\j

N 3 3
Ky = (up+un) + tz -3 (yp+un)}PD
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AA component -
& 1 : 3
Hy = B (Pigy 2 Piay * %P505 ~ 2 Pygg) *
-
- " P
N 3 1 - .5 : -
?-?: (5 Pi21 2 P2z * 7 Piga) - (4.7)

where PiLS denotes the probability of the LS iéobar?c state in the
deuteron, mN-aﬂd mA’are thé nucléon and A(1236) mésses. respectively.
The values of ug for the three hard core radii with the probabilities
of NN and four sa chanﬁels are tabélated ;h the above reference.

In the deuteron, A+Q9 and a""a” oceur with equal probability
{31). . Since the contnibutioq to the deuteron magnetic moment arising
from the orbital motion of the charged .aA's, given by the second term of
pg in (4.7). is smalllits correction'to the hfs is negligible. It is
.sufficient to consider the contribution to pg éiGen by its first term
in (4.7). As discusse&‘in Chapter fI.-the‘maJor contribution to A
comes from the Bohr correction. In the case of A A° tsobar, the
electron is bound éo the charge of A+ and moves about this particle
when it-apprpachés the deuteron. Thﬁs‘a+ plays the same role as the
proton in the Eonventional deuté?én while the neutron role is played by
AO. Since the magnetic moment of Ao is zero ghe Bohr correction to

the hfs due to this isobar is also‘!ero. In the case of A++A- nucleus

the motion of electron is centered about A*+ and moreover the electron,

is repelled by N resulting ih an enhanced Bohr's effect. The reduced

interaction of the electron with produces the correction to the hfs.



70
ol . _ _ .
. v
The jisobaric correction, Aic' to_the hfs may be written-as
! ) ﬁ‘-ﬂ -
M. : |
AL <2R> -
Aic = - (;—) x . (4.8} .
D 0 .
) <
where Hy is the deuteron hagnetic moment due to A& . For a 0.5%

isobaric admixture in the deuteron, pA is - 9.83x10—3 nuclear magnetons
and Aicz { ppm which‘is negligible. In other cases where'the isobaric
admixture, is smaller than 0.5% this effect is of course insignificant.
Finally, it would be pfoper to mention that we have not
Testimated the correction to the hfs due to possible L-dependent forces
in the aA interaction. However, we believe this qorredtion will be
also negligibi;i In the conventional configurtion of the deuteron the
major contribution to A is due to the'Bohr correction which is much
greater than the L-dependent correction. Since in the 44 configuration

the Bohr correction is small thus the L-dependent correction would be

even smaller.

iV.2 SIX QUARK CLUSTER AND ITS EFFECT ON THE DEUTERIUM HFS

In conventional nuclear physics, the nucleon is considered as a2
fundamental particle. However, high ene;gy‘electron scattering from
protons has revealed the structure of the proton. It is now firmly
believed that the prfion and all- other hadrons are composed of more
fundamental particles, called gquarks. The quarks come in six flavors.
The quarks are fermions which carry fractional charges. The baryon

number of each quark is 1/3. A baryvon is made up of three qﬁarks while
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2 meson is compbsed_&f a quark-antiquark pair. It is poétulated'that
each guark comes in three colors. The color is de;cr;bed in terms of
‘the SU(3) group.- It is belfeﬁ?d that tﬁé color SU(3) is an exact
symmetry and all directly observable states are color singlets.

Ever sipée the quark idea was proposed,. the physicists have
“been searching forfthe mechanism‘tolbind the quarks together to torm
the known hadrons. Since no quark has been observed in the free state,
every proposed gquark model is.required to devi;e some mechgnism to

o

confine the quarks inside the hadron. The quark dynamics is believed
- .

-

to be governed by QCL, accor&ing‘to which the quaéks interact with one
anofher via exchange of colored gluons. The gluon is a massless vector
boson like the photon of QED. QCD is a complex theoryland moreover it
is not yet fully develﬁped. Therefore., one has to use the quark models
to study the properties ot- the hadrqns. So far many quark models have
been proposed. However. two of these models, namely the bagz model and
the naive quark model, are the most successful in reproducing the
properties of the known particles in the ground state. and also tpe low
lying excited states. |

According to the bag model, the quarks are contained in the
region of space called a ‘'bag’. The bag c¢an be a dynamiczi object.
However. in its simplest form the bag is taken as a spheriéal static
cavity, its radius being about one Fermi.- The qugrks exert pressure on
the inqer surface of the bag which is balanced by a2 postulated
universal pressure from oﬁtside. Withir the bag., the quarks are almost

free and are treated as relativistic particles. The quark-quark

interaction, mediated by the gluon field. is included in a perturbative



72

manner. : _ . L : .

o« .

‘~i> -in the naive gquark model. ‘the quarks are treated as non

- relativistic particles which sa;isfy,the'Schrodjnger Ehuation. At short .

distances the interquark force arises. from- the gluen exchanée..?.

However, as the distance increases the force between the dﬁarks grows

.

very rapidly to guarantee the. quark confinement. ]
’ . ] : F) -
In the quark picture, the deuteron consists of six gquarks and

~exists in two forms, namely the conventional and the uncénventional
forms.  In the conventional form, the deuteron consists of a proton and

a neutron which are the color. singlet clusters of three quarks each.

<5 .
The deuteron in the unconventional., exotic form consists of a six guark

[
cluster. The deuteron wavefunction ¢ . is a superposition of its two

-

components, the conventional component ¢pn of a proton and a neutron,

and an unconventional SQC ésq:

¢ - @ cosé + ¢_ sine (4.9)
pn 6q )

where 6 is the mix;ﬁg angle between them The effect of° the
unconventional component of the deuteron on the deuterium hfs has not
been considered so far. We shall calculate this cofrectiOn in the
following section. To take account of the SQC.‘ we chop off the

deuteron wavefunction at-Rc such th%t

{(4.10)

‘1
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.
[

épn and’ ¢6q are orthogonal to each other. The probablility of the

, is

conventional component, Ppn

. . ' + 2 w . ) .
p = | R%R | ano_ 1o |2 (4
pn QE pn' : )
R . “

‘ .C . .

>

whereas the probability of the uncenventional $QC, PGq‘ is .
- Rc ) ” .
? P. = deR d- & 12 o (4.12)
6q Rg 6q . o -12)
0! |
The normalization of the wavefunction is such thét
- P + P =1 . (4.13)

The chopping off Qf the deuteron wavefunction as in .Eq. (4A10)-requires

a readjustment of the potential parameters to reproduce the properties

It is understood that ¢ - = 0 for R < R_ and ¢ - 0 for R >'R : hence
pn P o] 6q ) c

-of the deuteron and to explain the NN scattebing data. However, as a

first approximation we use the deuteron wavefunction of’Eq..(d.!Oy in’

‘ -
our calculations. To estimate the $SQC effect on the deuterium hfs we

consider two cases which we introduce in the following seéiion.
In the first case, we vrepresent the SQC of the deuteron

wavefunction by a six quark bag. Further, we assume that the quarks in

.



.

with ﬁhe charge-current

74.
t

the bag move very fast as comparedﬂpdlihe electron. By virtue of the

quark specd, the six quark cluster appears to the'eledtron-gs a sEhere .

densities. distributed over its entire volume.
_ & _ '
We estimate the correction to the deuterium hfs due té the

,“"

electromagnetic-structure of this sphere

In the second case, we assume that the quarks, in the cluster,

‘are moviﬁg-slowly as compared to the speed of the electron. When the

electron is close te, or inside of, the cluster it witnesses the,
, .

individual quarks and Bohr's mechéﬁism'takes place;. We estimate the
gohr correction to the deutérium hf% following Nambu's technique (21).

The calculations regarding the SQC effect on the hfs are presented in
. .= . 7
the following lines.

CASE 1. . In-this case we assume that the six quark cluster is z sphere
with’ihe charge and chrrent densities distributed -over its entire

) - . ‘: - ”
volume. _The effect of this can be estimated in the samc way as the

LY
correction to the hydrogen hfs due to the eiectromagnetié’structure of

"

L ’
the proton which we ﬁiscussed in-Chapter Il1. The correction, 6p. to
i

the hydrogen hfs due'to the structure of the proton is given by (20)

.. P

S . . o,
This formula also appli;s ¥n our case except that we have to replace
. ; - . i

., the

the . electromagnetic radius of the proton <> with <r>6q
. - » . i3 B

. .\ .
- . - M » . r -
électromagne}ic radfhs of tpe six quark cluster. If we assume that the
: - - i o . 4 ,

/) S ‘ . a
. ’ -
. . - - .

e
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deuteron is entirely in its unconventional form then the correction,

qu. to the hfs due to the structure of the quark.clustér. in griven by
» a2<r>
5, = - i (1.15)
6q ao LN

»
-

However, when we take account of the fact that the mupnetic moment,

ueq. of the six gquark cluster’is different than ub. and the probability

{

of the SQE in the deuterongis_PSq. we .obtain
: M 2<r> . - e
6 6 . .
Bge = " (=P . (4.18)
b 0
»

where Asq is the correction to A arising from the structure of ,the six

quark cluster.
Since the electromagnetic radius of the proton is about one

Fermi ;t is .reasonable to take <r> equal to one Fermi. Moreaover, we

6q
take FSq as one third of the magnetic moment of‘;he proton (33}. With

these and Psq = 5%. we abtain

Y

L A - - . 'J . 4. 7
6q 2 ppm 7 . (4.17)
. — * .
CASE-II. In this case, we ussume that the quarks are moving slowly

ot
-

inside the cluster compared-tO'xhe'speed of the electron which moves

very fast when it approaches the mucleus. This quark_effcct-on the hfs

is estimated by applyidg Bohr‘s?mcchanismhi. The wavefunction oI the

»
electron-quark scluster system may be written as

8

. - o -

W : 2

(i
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® - °5q(53'§f}?c(5'§'3j‘ej) . (4.18)
where an and ?é are the nuclear #nd the electron wavefunctions,
respectively. Here T;r €. 8, {(: = 1,2.....6) refer-to coordinates,

charge and all “ internal gquantum numbers of each quark: r and s
represent the electron position and spin., respectively. where all
distances are measured from the deuteron center of mass. The electron

wavefunction is written as (21)

il

!E_E;l )
?e(g.gl.e‘) = N (exp(—f ei ao ))vc{a (4.19)

where' N and w have their usual meanings as in (2.22} and e. is the

charge of the ith quark in units of the proton charge: e, = 1, For
. i '

. . -~ .
small electron-nuclear separction, ?P can be expanded as

According to Fermi's theory., the hyperfine interaction of

deuterium can be written as

3 .
He 6 (E-;Gq

CO'O) .
H

Eﬁq' | I ‘ (4.21)

where Heq and M, are the magnetic moment operators for the six quark
. .
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iz the position of the

cluster and the electron, respectively, and Esq
center of mass of the six quark cluster. Taking Eﬁq - Z H; . where uj

1

is the magnetic-momeht of the ith gquark, we obtain

> - E2 s op ez 2 e 12 SilL
3Nt T HyH - € a
L J 0
. |e. -0 |
8n ,2[ -~ =i =}
-_ . > - .. . m——— > . .22
(3 IN |< Eeq H, 2<izj Hy Eeeg 3 (4.22)

Equation (4.22) indicates that u _Ean be represented by an etfective

=6q
magnetic moment Esq,eff: Jf
liluiii *
- i - < Z 8. m——D . .
Eﬁq.eff Eﬁq 2 .. E:ej a s (4.23)
-— 1.7 C
where the subscript s stands foér the spatizl average. Here we have

assumed 'that the SQC wavefunction is a product of spatial and spin
functiors. Let us now assume that the gquarks in the cluster are in the
S state. Then the nuclear wavefunction is symmetric with respect to

-

the quark coordinates, and <|£i_£jl> may be replaced by
R = <ip,-r. 1> . i#3 . (4.24)

Therefore, (4.23) can be written as



Furthermore we have

{4.28)

-~

and thus Eéq.eff takes the foqm
2R 2R,
u e T {1 - —} + Eou.e (—)
=8q.eff =5q ao i i'i aoA
2R, 2 2R
8 - - —_—
! Esq(l ao) + u Zz eigi(ab} - .(4.2?)

*

Here we have used Ei = peigi. where g is the quark magneton (21) which

is aléq equal to the'magnetic moment of the proton. Now we have to

—
At

calculate <X e?g;> where each quark is a member of an SU(3) triplet.
i i .

The charge of the ith quark ﬁs‘given by
N . !

Y., (a.28Y

-
L

where T3 and Y are third components of isospin and Hypercharger

reépectively. Standard isospin and hypercharge assignments are
assumed; .
: 11 11 2
(TS'Y) - (5'5)'(- E.g).(o.' §)
1
I1f we write—nf/ .



. - LYy 1 - _ 2
e, (T3 3 311 . Y (y 3) . - ](4.29)
then we obtain
&,
2 y 2 2 v 1; .
= = - = = = < >
T eg> = BTy 39> "3 <y 39> gty
i . i ;o
= <X (T +£)o>—3<z("r +!)o>+d[<d> v
- 3 27,41 3 i 3 2 1-; 9 =
j
.2 Ly _ 1 1 o
"3 Ty vz oglie rg i -
1 ‘2 . .*"
= = > - <a> . .30
3 €8 Ty | ! (4.30)
. a /
This leads to
. {
<z ebo. > =2 | C(4.31)
s iiz 9 .
where we. have used the values <g > = 2 and <Z e.o, > = ES for a six
. z g0 4 iz 3

79 7

quark clu?ter {33) with spin 1.‘:grom Egs. (4.27) and (4.31), we obtain

ueq.eff

-

= p. (1 -

6q 3a ) (4'32)

-

we have used the rnelation Heq ~ /3. Eguation (4.32) shows that

0
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hfs., lncreases due to the structure of the six quark cluster. Takiné

(21) R = V3 <r> where <r> is the charge'radius of the six quark

) 6q 6q
cluster, the correction, eeq. predicted by (4.32) is given by
— 2<r>_ .
_ ;2v3 ¢ :
“6q T (T (4.33)

'S0 far we considered the deuteron as a six quark cluster only.

But in fact the deutercon is an admixture of a conventionaz]l component of
. .

a proton ‘and a neutron, and an ﬁnconventional sQC. However, the

probability P

6¢q

of the SQC is small (18). The correction ASq to the

deuterium h{g\éue to the SQC is given by

-

o
A = (e p

4.34
6q Hp 6q 6q ( )

To estimate this correction let us take <r> equal to one Fermi. For

6q

P - 5%, we obtéin
6q

A, = 2 ppm . (4.35)



CHAPTER Vv ¥
RESULTS AND DISCUSSION
N In the +traditional picture of the deuteron. the nuclear

correction to the deuterium hfs is given by -

27 Bow T Pother T AL T 4 . (5.1 .
which is to be compared with -Aexpt of Eq. (1.5). Armong all the
corrections ALow is the most important. As discussed in chapter IIT,

ALow consists gf three terms; ' ALow = Al + A2 + 43; ,see Egs.
(3.3.22),(3.6.22).(3.7.9), and (3.7.12). _.The major contribution to
ALow comes from Al. This Al is what Bohr estimated under simplifving -

assumptions. In Table I we list the values of Al with some detalls as

estimated with the modern realistic potentials we used (12-17). The
i1 . . ’
potentials we considered differ from each other in a number of ways and

their D state probability changes from 5.45% to 7.42%. It is, however,

remarkable that A ranges only between 243 ppm and 254 ppm. The 4, is

2

the recoil correction. The A3 is the orbital correction which arises

1

]

y virtue of the proton being in the D state. We present A2 and AS in
\

T ‘1es "II and III, respectively. with related terms used in their

estimations. The values of Aa and Aa.are much smaller than that of Al.

The A is given in Table IV (34). .In all the cases considered, &
Low . . Low

[

exceeds A . . )
expt :

81
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Th is
€ Aothcr :

Aother ~ ®p-* “n-d* %recoit” %p-y - C o (5.2)

where AD-H iz the finite-size correction (includinz the recoil effects)

of the proton to the hfs of hydrogen The ‘corrections Ap—D and A -D

are the finite-size corrections due to the finite sizes of the proton

{(9) and the neutron (9}, respectively. and Arecoi‘ is the recoil

correction. The nucleen size c¢orrections have been estimated to be
- + = (- * m ar = *2 T,

&g ( -38+2) pRm. A 4 (-137£5) pp=m and AQ‘D (2122) pom. These

values are slightly different from old valués (9.10). because we have

used more recent data on the electromagnetic radii of the nucledn (35).

& - ., = (76x16) ppm. The corrections A . and &, are both recoil
recoil recoil 2 .
carrections: Low obtained '\Az " by treating the deuteron
nonrelativistically. - A ., in A is the additionzl correction
recoil other )
that arises when the deuteron is treated relaztivistically. reenbery

' |
and Foley (10} treated both the eJectron and 5he. deuteron

relativistically and calculated the recoil ‘correction which contzins a

2
as well. We ohtain a ., by subtractfng A (36) from the correc
- recoil g 2
estimated by’ Greenbeérg and Foley. Putting the values of diffe
terms in Eq. (5.2) together we obtain Eg. (1.8), i.e. Aothor = (-2x25)

. Th iy i V. PFor e enti
ppm ¢ sum ALow*Aother is given in Ta?}e I all the pot ials
used, AL +A overestimate the correction.

ow other

~

Greenberg and Foley (10) used the potential given by Signell

and Marshak (11) and cbtained ALow+Aotﬁe“- = (195241) ppm which is

v

substantially smaller than our corresponding wvalues. We therefore
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SM

repeated Greenberg and Foley's calculation. They obtained ¢1 (elow

their notatiofT = (224=5) ppm with 7% D state probability. We used the

same deuteron wavefunction as that they used and obtained Al - 2457ppm.

Our D state probability is‘ajlittle smaller than that given by them.

If our value of_Al is used instead of that used by Greenberg and Foley.

-

then A (216241) ppm which is compatible with our results

Low Aother N
given in Table IV. ‘ . .
. As -giscussed in chapter II1. the L-dependent force in the NN

interagtion contributes to the deuteron magnetic moment and to the hfs

of deuterium. Its contribution to the deuteron magnetic mgment is

L

shown in .Table V. The 4., the tHird term in Eq. (5.1), is its

b . .
correction to the hfs. As can be seen from Tableial. this correction
is quite significant. AL is negative for Glendenning and Kramer's
(GK9) potential, the Tourreil and Sprung (TS) potential, the Tourre§l.

Rouben and Sprung (TRS) potential and the Paris (PAR) potential; thus

& [

agreement between theory and experiment’is,attaiﬁed. The situation is,
however, worsened in the _case of the Hamada and Johnston (HJ} potential

and the Reid soft core {RSC) potential. The A for the HJ potential is

L
twice as large as that for the RSC potential. . For the potentials

considered by us, AL varies between -28 ppm and 29 ppm, and is much

smaller in magnitude than that obtained wimﬁ the Signell and Marshak

potential.

-

The Am is due to the meson exchanpge current (MEC). Since at

present we have no reliable theory ta calculate this correction we
!

estimated its upper limit, This has been done by assuming that the MEC

produces the E—effebt on the hfs.that is , it contributes to the hfs
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like the L- dependent forces. Table VII contains the results. If we
take these upper limits, theory can agree.whph experiment for most of

the potentials. However, we should reﬁgmber the crude nature of our

assumption.' The genuine correction may well be much smaller than our

. estimates.

3

So far, the corrections we have discussed were estimated for
the deuteron in the conventional form. But the deuteron can exist in a
few isobaric configurations as well. As noted in Chapter IV, the most

* . . -
important isobaric configuration is due to two A's, i.e. A& & . In

this configuration, & and A play a role similar to that of a proton

+

_and a neutron in the conventiona! deuteron. The motion of the electron
centers about A" rather than the center of mass of the deuteron when

it approaches the nucleus.  The magnetic interact{gn-of‘the'electron

- Gt
with A is therefore reduced  as compared to A . The reduced

interaction of the electron with A-_results in the Bdhr correction to

the hfs of deuterium. However, this correction is ifnsignificant since
“the deuteron magnetic moment due'to A is very'smail. . We have not
considered the L-effect correction to A which is,expected to be even
*sgaller thén the Bohr correcti;n. f

Prom the quark model point éf view the déuteron is composed of
six quarks. The .deuteron consists of two components; one is the

8
conventional component of a proton and a neutron while the other is the

unconventional six quark cluster component, SQC. We estimated the .

correction due to SQC on two extreme assumptions. In one case we

S

considered the quarks insidé the cluster moving with 2 very high speed

as compared to the speed of the electron. In the second case. we

Py
~ -
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assumed that'tge quarks are moving very slowly as compared to the speed
of the electron when” the l&tter approaches thé nucleus. Our. results
: -

show that the correcﬁion to A, in either case, i§ negligible. Since
the correcgién to A due tolthe‘SQC is negligible., examination of the
déuteriu; hfs does not seem to vield any ne& information abouﬁ-thé SQC

in the deuteron wavefunction. Our concluding remarks are given in the

following chapter. ' . =

()
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TABLE I. Correction &, of Eq. {3.3.22} and the related quantities

1

-

defined in page 33, calculated for various realistic NN potentials.

-

Potential HN1 HN2 HN3 a, (ppm)
Paris (PAR) 1.4559 0.0291 0.1328 250
Tourreil, Rouben - 1.4586 0.0298 0.1342" 250
and Sprung (TRS) .

Tourreil and , 1.4788 0.0280 0.1314 254

Sprung {TS) . : |

Reid soft core 0 1.4892 0.0314 0.1359 246

(RCS) ;

Reid gpTt core . 1.4411 0.0302 0.1338 247

altergative (RSCA) )

| .
Reid hard core 1.4419 0.0319 0.1348 247
(RHC) ‘ .
: ' )

Hamada and 1.4461 0.0328 _ 0.1383 247

-

Johnston (HJ) _ .

Glendenning and D 1.4249 0.0340 0.1390 243
~ Kramer {GK9)




TABLE II.

in Egs. (3.6.17} through (3.6.20).

Correction A

of Eq.(3.6.

87

22y and related quantities defined :

Potential

g A B x : ;.dé (ppml

PAR 0.0872 0.2418 0.0452 0.7541 -19

TRS o.zaeik 0.2455, -0.0442 0.7496 -23

TS 0.2610 0.2568 . -0.0390 0.7416 ~24 )
RSC - 0.1780 0.2417 -0.02%0 0.7725 -21

RSCA 0.2247 0.2393 -0.0723 0.7717 —23'

RHC 0.2793 0.2448. -0.1420 0.8507 -21

QJT 0.1976 0.2521 -0.0510 0.8018 -20

GK9 0.1511 0.2375 0.7853 -20

-0.0346

*® ' : .
In the case of the Paris potential the. centrzl potential consists of

two parts; Va.

\,’,

and V? multiplied biﬁ?z (17)." We used only Vi.
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TABLE [II. Correction A3 of Eq. (3.7.9). the D state probablility of

the deuteron and L1 of Eq. (3.7.11).

Potential Pn (%) L1 ) As {ppm)
PAR 5.77 -0.0631 -9 -
TRS 5.92 -0.0628 -9
TS 5.45 -0.0648 -9
RSC 6.47 -0.0591 -10
'RSCA 6.22 -0 0595 -9

~~ RHC 6.50 -0.0577 -9
EJ 6.95 -0.0570 -10
GKe 7.42 -0.0545 -10
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TABLE IV. ‘rhe-Bohr‘-Low correction ALow .AI + A2 +_ As. and‘aothcr
discussed in this chapter and in Chapter I.
Correction %ow-(ppgz} ALow’ Aother(ppm)
Patential - z 10 ppm + 35 ppm

PAR 222 Y 220
TRS 218 216
TS 221 219
RsC 215 213
RSCA 216 214
REC ' 217 215
HJ 217 - 215

GK9 213 211
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~ TABLE V. Contribution to the deuteron magnetic moment from the
L-dependent terms and the total magnetic moment

uLL(-I pi) calculated for a few realistic NN potentials.
i

-

_ pi {in nuclear magnetons )

! Ls L Qa2 b2 P2 pe MLy
Potential x107° %1072 x107® x1073 x1073 xlOiS x10"3
PAR 6.05  -- -~ -6.19  --  7.40  7.26
TRS 9.87 © 3.13 --  -8.88  -- -~ a2
TS 7.65 ©2.86  -5.73 -- - e .26
RSC 2.14  2.71  -7.83 -- -- -~ -2.98
HJ 2.40 -- -- -~ -e.s2 -- -T2
GK® 6.78  -- -- -- - .- 6.78
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TABLE VI. Correction A’L of Eq. (3.8.15) and A defined in Eq. (1.4).
b &
Correction AL (ppa) *32‘32;:‘
___Potential -
PAR -25 192
TRS -16 200
TS -17 202
HSC 12 225
HJ 4 29 244
GK9 =26 185




TABLE VII. Correction Am of Eq. {(3.9.26) and A of Eq. (5.1).

Correction Am {ppm) A {(ppm)
Potential _ . ' = 35 ppm
. '4 =
PR . T v, 176
TRS ’ -31 169
TS . -20 ‘ 182
- RSC | . -71 : 154
HJ -99 145
GK9 -54 131
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CHAPTER VI
.SUMMARY AND .CONCLUSION b
The hfs of deu;erium has been measured very precisely. There

is a large discrepancy between the measured value of the hfs and that
predicted by Fermi's theory. In Fermi's theory the nucleus is treated
as a point particle. whereas tge deuteron in fact has a very loose
structure. Bohr pointed out that the bulk of this discrepancy between
;héory‘and experiment can be accounted for it the deuteron structure is
taken into acﬁount. Bohr's simple estimate gave a correction of the
right order of mpagnitude.

Subscquéntly Low.recxamined the problem in more detail. The

. e .

correction obtained by Low, which we denote by ALow' is consistent with
experiment. However, he used very simple iodels tor the
nuclcon—nuclcos (NN) interaction. A few vears later, with a Egtter
knowledge of the deuteron wavefunction, Low and Salpeter repeated Low's
calculation and obtained a correction which significantly exceeded
Aexpt of Eq. (1.5)}). In 1960 Greenberg and Foley reestimated the
correction to the deuterium hfs by using a more realistic nuclear
potential of Signell and Marshak bqt the overestimate remained. in
this situation one would naturally raise‘the following question: Is
the remaining discrepancy due to the inadequacy of the NN potential, or

is it due tc scome other effects?

Since 1960, a number of phenomenclogical NN potentials have

3
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been suppested, see Appendix H. All these botentials reproduce the

properties of the deutercon and NN scattering data very well. However,
can we somehow! distinpuish tl;ese potentials? Can the dcuteam his
- give some clue in this regard? Motivated bv these queslions_.. we
reexamined the deuterium hfs by uglng several realistic NN-p;;entials.

ahd found that ALow is remarkably insensitive to the Ehoicu of the’

potential among those we considered. It is somewhat larger than that

-

obtained by Low and Salpeter. [t is interesting that the value of Alow

went on increasing with the improvement of the deuteron wavefunction:

from Low. or Low and Salpeter. to the modern potentials we have
examined. But its value now has been stabilized. Therefore, as far as

ALow is concerned all the potentials considered are equivalent. - The

AL significantly over-estimates A . We should mention that there
ow expt

are other corrections, due to the finite size of the nucleon

Aother'

and to relativistic nuclear recoil effects. With Aother taken into

account, the overestimate remains.

The realistic NN potentials contain h—dependent forces which
contribute to the' deuteron magnetic moment and also (AL) to the
deuterium hfs. The results we obtained show that this corcection fis
. AL is

sensitive to the details of the potential. with ¢this correction

quite significant. I’It is interesting that, unlike a

¢

Low

included, theory becomes compatible with experiment for the GK@

potential, the TS potential. the TRS potential and the PAR potentlial.

In this sense these potentizals may be considered preferzble to the

others.

The meson exchange current (MEC) az2lso contributes to  the



—
-

deuterfum  hfs. Since at prqsent we have no reliable theory to

calculate this correttion we estimated its upper limit by assuming that
the MEC con;rébutes to the hfs in the same way as the E—depenQeq
forces do. With this correction added, theory can agree with experiment

for all except the GKY9 potential. We alse estimated the correction to

the hfs due to the isobaric component of the deute;on wavefunction.

-

This correction turned out to be negligible. -

In the quark picture. the deuteron coasists of a conventional

]

component of a prdton and a neutrqQg.ahd the unconventional six quark
“*

cluster, SQC. We estimated the co on to the hfs due to the SQC.

We were, in faci. partially motivated by the idea that the anomaly in

-

»

the deuterium -hfs might provide some clue about the SQC in the
deuteron. However, we found the SQC effect negligible. . Hence the
deuterium hfs does not seem to produce any new information about the

Y

SQC of the deuteron. £

In summary. ALow' which is the largest correction to the
deuterium hfs , has been stabilized with the modern realistic

potentials we considered and it significantly over-estimates the

anomaly. Among other corrections, AL is the most interesting. In

contrast to ALow . AL is sensitive to details of the potential. It

A
v

varies from one potential to the other in magnitude as well as in sign.
The potentials for which this correction is negative , theory can be
compatible with experiment. In this sense the long standing anomaly of

the deuterium hyperfine structure can be explained.
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APPENDIX A

-
- -

PROTON STRUCTURE CORREE:TI\ON TO THE HYDROGEN HFS

~

~

In this appendix we review the correction to the hydrogen hfs
due to the electromagnetic structure of the proton., following Zemach

(20).

— -

Consider the protern as =z rigid sphere with spherically

symmetric distributions of charge and magnetization. We  assume the
, -

proton at the origin, and write these distributions ag cl'e(r) and

upgpfm(y). respectively. where gp is the proton spin operator. They
are normalized as N
. .
[
. 3
f (r)dsr cob e (m)dTre 1 (A.1)
- e J m' =

The hyperfine splitting is due te the energy shift, af, of the
electron caused by the magnetic field H produced by the mupnetic momen?
of the proton. The aE is given by

s

Ak -y | sHo)<oE(z)e(nde | (A.2)

where ¥(r) is the Schredinpger wavefunction for the electron, Hy the
magnetic moment of electron, and ¢ the electron spin operator. The

symbol < > indicates the spin expectation value. For a smeared
[ -3

96
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' mapgncétic-distribution of the pfoton we write

»

.
Hir) - J ;"E‘E”fmlz')dar' . -

where U/ (r-r’) is the magnetic field at r due to a point

dipole g4 g at »*;
. p-p -

T

r ap - -—---—1
Hilo-r®) = oxX(Eymy) *e)

r-r. P
With the help of Egs. (A.3) and (A.4). we get
hY
Hir)> - o[- 2 >e7e<(a.T) (en.T) - & (0.0 )e0>)
o} r)> - - = £0.0_>TT+<{a. oy, - = (o.0 >
h P S - Tp - - -__:3\: 3 - -p
e

For the electron in the s state, (A.5) rcduécs to

87 L. -
<c.H(r)> = 3 H ‘m(=)<9'gp>

o)

Equations (A.2) and (A.6)} lecad to

8 ) v 2 3
£ - = g > ¥(r T
4 3 peup<g\9p J | (—}l fm(-)d v

4

For a smeared charge of the proton ?(E) may be written as (18)
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(A.3}

magnetic

o{ALd)

—

{(A.5}

(A.6)

(A.7)
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\ N
| *le) - v (00 (1-22) | £ (w)lu-cld®u) : (A.B
- ) Cc 0 .| "e - bl .t .8)

where ?b(Ol is the Coulomb.wavefunction of the electron evaluated at

the origin, and a. is thc‘Bohr radius. From Egs. (A.7) and (A.8) wo

N ]
" obtain -
2<r>
8 2 em
AE T peppi?c(o)l <g.gp>(1 30 ). {A.9)
——
where
. 3
<> ® J rf (r)dr . {A.10)
em ‘em -
with ' . -~
€ qr) = | £ (r-s)f (s)d%s (A.11)
em - e'- =" 'm'=- R ’

ny—



APPENDIX B v
CALCULATMON OF t _ ‘ '

. As *mentioned in Chapter [IIl., thge NN potential., V. in Low's

" model was taken to be

v f(1-t) + ¢ P“JV(R) . {B.1
~__.. r : -

where t is the fraction o{ the exchange force in the NN potential. To
put the realistic NN potential in the above form, we will develop an
. expression for t zlong the following lines.

Let us write the NN potential as follows
N,

T - ___ 1 ) L] -l - b -+ . 2

\ 1\w(}\) . \.M(l\)Px \BTR‘}‘PG \H(R)PCPXI . (B.2}
where P\_ and Pc are the space. exchange and spin exchange operators.,
respectively, and \.’k,. VM‘ \-'8 and V,, are the coefficients giving
relative contributions of the various potential terms. For a spin

triplet and isospin singlet system , which is the case of interest, Eq.

(B.2) is reduced to

V < —[(\’H+VB) + (V"+\'H)P‘} . (B.3)

By comparing Egqs. (B.1) and (B.3) we get
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A
™ = v
»
) - T 100 -
~ t S I T ‘ "
- . T v . (b.4)
. .- .\1\t VeV
. -
/
To evaluate t from Eq. (B.1) we use the following relations deduced
{rom Eq. (8%2): .
”, ) .
-~
3=
B ven ) - IV ev ). (v v .
\£ Even} H\H\BJI\H\H); . (1. 5)
ar - z“;
» 3 e LA - LS N
. ViTodd) 1(\_}!\5} “‘M\H” . (5.6
N " .
V(TEven)-V(T0dd) - -20V eV ]| (4.7 o
W R
Lo Vts”v‘u)—VtBOdd) - =2V .y 1.8}
. ‘ [AMY i <INV . (3.8
Thegphfore
\' 3'-;»] * 3 41]
'C“ i Even ‘\(ﬁOk‘L. o)
S even v Codd)
. £

-
3

Usinn  the values ol V{70dd} and V(T Bven) from the realistie NN

potentials, ¢ can easily be etimated from Eg. (R.9).

[£4]

o



APPENDIX C
PROTON SPIN CONTRIBUTION TO THE DEUTERIUM HFS

In Eg. (3.27) we used

2
<Hé> - %E‘?z(o)uopp(l - % sin w)

This result is derived below. We start with Eq. (3.2.1), i.e.
<H;> = <eq V(l—) X >
P == =p

. = <eaxv(o—). p > ' (C.1)
N .
where the expectation value is taken with respect to the electronic as
well as the deuteron wavefunction. For the electronic part we have to

evaluate

= 1
AE(PeT(DP) (c.2)

-
The electron wavefunction LA is taken as (7)

la.t
* - (1 +
e 2ma0

)u(O)?S(r) . - (C.3)
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-r/se
with ?élr) =0 oand ul0) 1s given by Eq. (3.2.5). Eq. (C.2)
can be written as e - )
N
R t- 2 S LS
A - E(?S(r)u (0Y{(1 ~ - ) (axBy(1 - 5 lu(O)?qlr)) el
N .
’
. ! ~ 2
where b’ - amao and 8 - E(;) - - r/r Let
r ig‘gw- [ ig‘i]
: - ~ + m—
Eﬁw‘ll b (Fe 5 —
-ig 2
r o1 = [ 0 oxglf 1 ie.
ez ] | o
171 T - !
| 5 1 ) loxe 0 }lie.r )
This leads to
WO IDIu(0)> = = I<x|(gx€)(c.F} (g.F)1iexe) x>
2 - -
T o <xlrox {exrilx> (.6
r°b

whiere Ix> is (5) and (

o

0 . . . . .
,J for the spin up ancd the spin down electron,

respectively. With the help of (C.6), A of {C.4) can be written as

Y

- £ - P TVl (- v e
A= <?S(.Jx}1“2JLX(gx;)..S(.)x> . (C.7)
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-
Consider -the angular intepsration over E tn {C.7)
[ i '
| da_fxtox?) - | de_to-(g.F)F) '
J s J L .
8=
< (C.8)
- Thus
> rm 2 / '
2w -2r/a
8= 2 :
A —= 1= ¥ (0)o | droe 9 L
e} z J |
8]
87T 2
= -:'\ ) . .
.3 (()pog (C.9)
where o <xlglx§. From Hgs. (C.1) and (C.9). we obtain
g 2 c 10
SHIOS 0 — w0 <¢. > . L1
vy 3 { }yo < = { ]

L}

where  the  expectation value is  with respect to the deuteron
wavelunction. As discussed in Chapter [I, it is sufficient to consider

the electron in the spin un state, which_leads to (6)

L-]
<C.p > - <y )z>
3 2
- up(l - 3 sin w) (C.11)



Thus .

£g.

(C.10) can be written as

8n 2
<H > = —=— ¥ T -
. 3 ¥ {O)HO:J?(.

[

YT

&

.2
sin"wl

(C.12)



APPENDIN D

NEUTRUN SPIN CORRECTION TQ THE DEUTERIUM HFS
_ PRODUCED RY THE SD CROSSED TERM : '

This correction is denoted by <“;>DS and Is miven by Eg.

(3.3.21). which is derived in this appendix. We have (7}

\
., 1 5
B> - Cqcx. (DT {———) > N D 13
”n ns ex. s _rtii'if} X H, D) " ( )

where ¢S and €, are miven in Egs. {3.3.3) and (3.3.14), resscctively.

o
Let ue write <H/> o :
n nNs . <
Hi> - 2<ex.A> D.z
n DS 2 e& é ( )
whoere )
A (@ { ! Yo @) (D.3)
= $'=c'Tc-R[ =D’ o
“has three com nty; . and .7 We tirst calculate A by
L= e po?“ ¢ Fax o Hoz c = -

takinr z-component of 4 and denote this A by A‘y. We obtain

w0
r

- b J R™dR J dQé(éSjR)Er(

2y TreRT =% R

0
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i @ T
unsxnucnsu - P2
- — T | dRUeA DT (= elr-R)
vin m J o
o]
. .-

\ —
% (t{_n))\ (r) JdﬂRyoq(S)(h [{-—-: \;qo{}{}\‘\o\f ;:-6 \g\"’l(ﬁ)\
R = = J10 ~ -
[ 5 ~
BT RS ERFYRLEES Bl .
. «© i
r } 2 2
- 3T 1 sinocoso dR ((o 0 )% L2 a(r-r) - & 8 (R-r))Y. (£) ] )
v 5 "n S o'=r*' 3 ) 3 200~ 7%
J bl R A
0
' (== | any. (R)v. (8))
A= it \9 i \o hy
\/ v10 J B0 =0
L2
r 2 2
S sinwcosw | dR{&_ & 1T [(E—‘str-”) - L G(R-"))Y‘ (F}]xz
v 125 HpBineces st el T3 R FHiYaet Tl X2

(0.3

We  put ﬁwy for A in (8.2) and denote the resulting correction by

.t

< H > o hus we air
nxy DS TPL we obt

o

—_— ~

R
< W = 3 <o ) < —_— -R
nxy DS v 1°5 uhSIPQCObQ el dRI S D)gx—rL( 3 9(r-8)

0
2

r -
3 8 (R- rnv o T



w© -

) 2 N
_ Bﬂ [ Q R
e, 135 p‘sinwcosw <J dR(¢S¢U){ax 3; [(r g{r-R}
: 0
2 . '
* 3 9(R-r)IY, D))
R ‘ .
*
3 2 rz ~
T % oy {(—— 8(r-R) ~+ 3 6 (R- r)}Y T
{D.5)

where  the expectation wvalue is  with respect to the electron
_ N
wavetunction. This equation consists of two parts; one with a, and the
. . -
other with ay. First we consider its second part with ay and denote it

v / .
by . Hm3 >DSay We get
o
) an [ a g2
: , - : < — r- -
< any >Dqu LJ 135 pn31nmcoso I dR(¢S¢D,(G3 Ix ‘(r3 8({r-R)
0
2
L e(RTHY. (P>
3 : 20°=""Tele
R
8 5 1 5.
B T . b ' 2, .
eJ 125 (v 4n)uhsznmcosm J dR(¢S¢D)<ay{3cos gsinscose! 2) x
0
R2 3 R2 T
— 8(r-R) + = — g{r-R)sinfcose¢ - — @{R-r)singcose]>
r4 2 r4 R3 ele

(D.6})
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It can be shown that

ia.? 1a ? 2u .
< > - e«< —_= .0
e layl e<{l + anao)u(olld [{1 + T 0)u(0)> a sinscose .

Using this result in (D.6}. we obtain

L

r 2HgH, 2
0 15

J dR(£ 80

0

)<[- -—_— coq2931n29c032¢ E— g{r-R)
0 2 r4

I
(4]

any >DSay' Y

+
ST EA)

I;U
Y

9(r—R)sin29c032¢ - 55 9(R—r}sin290052¢]>sinocosu .
& ‘

o]

(D.7)

where the expectation value is.with respect to the radial and anpular’

parts of the wavefunction. We calculate it first for angular part. We

™~
obtain
- |
..\
o
— K u
8 o n i5
< nxy ~DSaxy v 25 ( a, ) J drR(e *D)<l TR J de(cos 9sin> @)
¢} O : ﬁ\\
\ )
/
2 \ Rz .
x deécos "¢ vy é(r-R) +
r
4]

s
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b - 2T b

2
3SR o(r-R) sinsede c092¢d¢ - 8(R-r)’ sin39d9
2 4 - 3
r R L
0 0 - 0
27
X coszod¢]> . ,Sinwcosw
“radial
0
‘\‘ -
~
= M u
8 [« T imT . r
VRS { ao }sinwcosw J dR(¢S¢D)< T (EEJO(R r)>radia1'
0
{Dh.8)

where the expectation value is with respect to the radial part of the

electron wavefunction. Finally calculating for the radiul part, we
obtain : -
— M P e O . =ar/e
4n 8 “o'm 2 3] 3 "o
1/ > - — = 3 sw ¥
any DSaxy 3 v 25 3 sinocosw ¥ (Q) J dR{( R3', J dr r'e
0 Q
V2Re _¢
_ 8w . . 2 $ D
15 Mot Sinwcose ?‘(0) J dR{ 4a0 | (D.9)
]
r
The same contribution comes from the first term of Eq. (D.5) which

contains a‘. Thus we obtain



*

. . Vv2Re _¢
167 © 2 SD
< 4 " — . ——
B any )DS 15 uounsxnwuosw * (0) J dR( 4“0 )

v 0

(D.10)

Similarly. it can be shown that < H;yz >DS' the correction produced by

“nx in (D.1), is

V2Re¢ ¢

. _am e o2 [ s°p,
Hnyz >bg T 5 HH,Sinwcose ¥7(0) | dR(——-4a0) ., (D.11)
- l 0 .
and the correction due to uﬁy.is
J2Ré _¢
P _A4x . w2 SDh, - .
S H « Ppg T 5 HyHpSinwcose ¥ (0) J dR(——jai;-) . - (D.12)
0

Adding the results of Egs. {D.10) through (D.12), we cobtain

J2Re ¢

, _ (8= 2 SD 13
< H >DS = {3 )popnsinocosu *{0) dR(——fzgg—) ; (D.13)

0

+



APPENDIX & -
CALCULATION OF «

The quantity « was introduced in Eq. (3.6.20) and was prescnted

in a c¢omputable form in Eg. (3.6.21). . Equation (3.6.21) i; derived

below. The deuteron is considered to be in the § state and its excited

state is assumed to be a free state. One can writg:

RJO> - A S —xt (E.1)
— R 1
‘ Jan
<R{n> - —é eni'E 13
vV
“47 4 * S
== i kRyy, Ry, (BixT . T (E.2)
YV é.m T

-

where <RI0> andy<R|n> denote the wavefunctions for the ground znd the
2 l! 2 : - . .

«

excited states of the deuteron, respectively. Using R = Z R ¢

q'q’
Rq " %E Rqu(g) and the wavefunctions given in Eqg. (E.1) aﬁd (E.2) we
obtain: .
¢ .
4m ¢ * fs 4w - ®s g 1
<nlR_J10> - == I <« je(kaem(g)YM(g)xl ', 3 RY, (R 157%>
d Woen - 4 var
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e \\ : R ‘12
- e -
16"!2' N 2 N
Wia Spe. 1! (FHIY () deH)és)} . (1.3)
0 N - -
With the help of Egq. (E.3) we can write -
-~ :
0
. 167 \Y 2 .
Z <0|Kk|n>.<n|R|0O> - v [—3 z J k7 dk J dﬂﬁ {bm 1 Z $q
n (2m) mg - s q
0
- - - ‘. . o . -
o ¢ . 2, . * . ¢
& -
X (1Y1q(_) dR(R jl(kR}éS”}-'{bms.l :"»q,( lqu,(_) )
0 - . ’ e
¢
© .
xJ dR(R%], (KR)o ) }] , 5
- T 7o
[ T ruo
2 2 * - | 2, 2
35 J k dk[(! dffg(i qu(g) qu(g)}{J dR{R JI(RRNS)} '
0 0
<0 - <0
2 i‘ 2 2 2
= ’—TJ k=dk{ dR(R JI(kR)¢S)} (E.4)
0 "o
over intermediate states by

where we have replaced the summation

iniegration in Egq. (E.4), by using the prescription



Next let us

where we have

I = szkodQﬁI, 8‘
. 3
n (2m) - mS
. 0 s. L
define ' ' )
\\ -
L
= -1 X [gon.gnofn('—{ﬁ:i-)j
W | WoslW ] WoelW |
=5 [Eon'Eno ( T yén( T B - {(E.5)
n ) o] o
used the relation
v <L <n|H_R-RH_|0>
—-no 2 D—- =D .
i
2 (wn_wo)gno
Substituting £q. (E.4) in Eg. (E.5) \we obtain:
‘\ 4 -
o« / o0
Wo+lW | /'((w |
L2 'k (o} 2. 2
J die (k" (=) e ){J dR(R®j, (kR) &)} ]
o 4]
0
. [(E.6}



. APPENDIX F

{CALCULATION OF L2

In this appendix we derive the expression for L, given in KEq.

{3.7.10). To begin with we have

W -W
n o]

.—"‘\ y ——
L = E'Mtonxﬁnolin( ]woj)

SR ] W oW
- s ——— ha -, Y r ——
( 2 )Tz Eonhgnozq( | W l)

n o

(————

(F. 1)

ﬁiking intermediate nuclear states as free states we can replace the

summation by integration as shown in Appendix E.

written as

MW | ”
-1
0 v A 2
L2 = 3 ) 3% - J kTdk
(21)
- 0
Wk+]wo]
x J dnﬁ b <0!5|n>x<n]§[0>en(——Tﬁ—T—)
-m Q
s

In L the S component of the deuteron

2°

contribute, and therefore we simply write

Equation (F.1) can be

wavefunction

(F.2)

does

not
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3
- L =
: ¢ - Ms ) N
- = 1-M )3 > .
<R10> - = Z 521(1 MM Y, (@)xl (F.3)
- Mo s
b L
4t 14 x ms .
<Rin> - — I i3 kR, (¥ (R)x.® (F.4)
- - [+ &m ~ {fm =" "1
VvV &.m

where ¢ - sinoe ¢D; and all other symbols stari_d for their usual

meanings., Using Eqs. (F.3) a_n'd (F.4) we write v

3 ) - m
64 L€ * s
'y - — 3 " s
<alR 10> - =5 II<iT i kR, (R)Y, (R)x,
eumM

M

® ' . ~ s
Fo(R)] 5 <21(1-M )M >Y y >
x lm_,lqlg)' R 11 s) s'n \E(I-MS](E)xl

3
64
g - 1 > — ~
<21¢(1 mslms.ll v/ av
L I . !
l -
N 4 15 L2 .
z =1 ) — - >
x .__l( i) \em(E)(an(aeq]) -:21(1\/li
é.m
T 4
w ~
]
x <21001e0>-J dR(R“je(kR)o)] (F.5)
0 . .

With the help of Eq. (F.S). we obtain:

<
3
<OIRIn>x<niRIO> - (64: y<21(i-m Im IL1>2
= =t 3v s' s
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x| £ = (-1 8¢
"e.m.q elmlql
» _ . A
2 trz .
5 1 - A
x {(52) }

an’ (2er1)(2€7+1)

o« Lo <
2. 2.
x {| dR R"j, (KR)®}{| dR R}, (kR)¢}
0 0 .
, X {<21(1—ms)qj€m><21(1-msjq'!e'm‘>
X <2100]€0><2100]€'0>}
0% xe gyt
x {{-1) (\q.w\_q)ve.m,cg)vem<g;};
240 2 ) F”
;2407 1 2. 2
Ity {J dR R™j, (KR)e)
e.m
0
Th————
' 2 ﬁ 2 ' 2
’ - b
X <21001|¢€0> |\em(_)1 <21(1: ms)ms,.l.
2 2 '
x {<21(1—ms)—1[8m> - <21(1—mslll€m> H . (F.6}

Summing over intermediate spin states and performing anpular

intepration over the directions of kK we get:

2432

= J dRe<0IR[n> x <nlRI0> = ig, (S5 ]
: % S

s
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—

o ’ ' &
x _HJ dR (R, (kR)0))? - {J ar (k% (kR)e) % (F.7)
0]

0

Substituting from Eq. (F.7) into Eq. (F.2) we'obtafh

o
. (srwogn g A RN
2 107
L

x {(J dr Rajlth)én)z
0

- ([ dr sza(kR)én)a}Jsinzm' : o (F.8)

0

which is the same as given in Eg. (3.7.10).

. -
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APPENDIX G :
THE DEUTERON MAGNETIC MOMENT PRODUCED 8Y THE : )
L-DEPENDENT FORCES IN THE NN INTERACTION e —

- o -

In this appendix'the correction to the deuteron magnetic mom;ﬁx/j
due to the I..2 and Pa terms in the NN intéraCtion is calculated. Faf'
other L-dependent forces that have been used in this thesis seek_
reference (37) where relevant formulas are given. The L3 tern is dealt“}3<
with first. | _{;

1) Consider = "
VIR) = V (R)La
2

VoIRILIR, =R %P, =P )1 L(R, RDIX(P P o)) o (G 1)

P 'Y

where 2]l these symbols have been defined already in Section VIII of

Chapter III. Since the proton is charged. P, is replaced with gl-eﬁ.

T

where A is the vector potential at the pesition of the proton. The
terms linear in A are kept and the relation A(R,) - - % (R,xH} is used.

The electromagnetic interaction, Her' due to the zbove substitution is

given by

H = - £l eV_(R)Rx(LxR).H . . (G.2)
en q 2" = ===
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He-comparg the relation Hem = = Ea‘ﬂ with {G.2), and obtain
’ < L v (R)Rx(LxR)
Hy = q AT
- 1y (R)[ézi-(a L)R] '
42 =Tr=e2is
1 2. :
~ 7 eYZ(R)R L . ) {(G.3)
where we have used the idertity (R.L) - 0. The expectation value of _

(pé)z with'respect to the deuteron wavefunction ¢ gives the.magnetic

moment, ua. arising from the L2 term in the NN interaction, i.e.

2
e<H|V, (RIRL &> ‘ (G.4)

| bt

Hz =

Since only the deuteron D state contributes, we obtain

v

o
3 .2 2 2
”2 il sin o J dR(MR V2(R)¢D} . {(G.5)
0

-

where M is the mass of the nucleon, and u2 is in units of nuclear

magnhetons.,
2) The P2 term may be written as \\
L
2 2
P . P
vp < W V(R) + V(R)} . (G.6})



By using the prescription

the electromaganetic interaction Hem

is obtained:

" OH,_ - - 5 IAPVIR) - V(R)A.P!

2 em
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{(G.7)

To simplify {6.7), consider its first term in the square brackets:

A.P(VIRIT(R)) = A 1-if & o 1 mep1(ve)
== L= =or 2Tt
R
. Vv a
- P —_— . L _— =
AR S5 - vi-if S
., oa dv
- ]_l&iﬁ - \’:_ El!
-
where the relation ¢ - R & oL RxL has been used.
' - — &R R2 ==
becomes
LI
2e ie d\
I = - =VAP-=— (A.R) —
Bem T VAR g AR F

The first term of this equation can be written

e
- =— V A.P -
o AP

.
oS

Egquation

(G.8)

(G.

7l

(G.9)

{(6.10)
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glxg and L - RxP have been

[ ] 30

In deriving Eq. (G.10) the relations A - -

used. The second -term in {(G.8) may be approximated as /

<
[ e dv
5 (AR == - : A.(ExR) =
e
le 1 dV
= - = 2 [(RxH 1
7 M F(RXHY. (LR} Iz =5
1 e‘ 1 dv . .
"7y ERLRg - | (6.11)
Thus. from Egs. (G.10) and (G.11). we obtain
-~ & gy -2 lav, .
Hcm Y LV: 3 (RX( XR)R dRJ.g (G.}2}

>
The magnetic moment operator due to the P~ term of (G.6) in the NN

interaction is

- -

L |

vL 1 R 1 gy
kb - EF [ s R X(LXR E Eﬁl . (G.13)
This leads to
o &

3 2 1 dv '

T .- i \F ——‘ .
ub 3 sin @ J (V(R) > dq)éndR . (G.14)

. . 0

L%

where yo is in units of nucle: magnetons.

\ .

\1



APPENDIX H
PHENOMENCé;GICAL TWO-NUCLEON POTENTIALS
§

According to meson theory, proposed by Yukawa in 1935, the
force between nucleohs is due.to the exéhange of mesons. The ranpe of
the force and the magg of the particle exchanged are inversely
proportional to each other. The pion is the lightest meson and the
long range part of tﬁe potential is therefore dominatea by the one pion
exchange potential (OPEP}. This prediction of meson theory has been
well confirmed by experiments. At mediumrand short distances two or
more pions and/or other mesons are involved. Therefore the calculation
of the medium and short range parts of the potential becomes, if not
impossible. verj difficult. In constructing a nucleon-nucleon (NN}
potential, the OPEP is alwuays taken for its tail, but the medium and
short range parts are usually constructed phenomenologically.

Wigner (38) examined the possible forms of the NN potential
" based on various invariance considerations. Later, Okubc and Marshak
(39) extended Wigner's analysis. They determined the form of the
potential requiring invariance with respect to tranélation. rotation,
Galilean transformation, space reflection and time reversal. In
ﬁddition. they assumed charg? independence, permutation symmetry and
hermiticity. In this way ;hey arrived at the éencral cxpression;

P . r \:,.“ v
MR TRE-IE- A PR PAPRSR S EA

122
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PO— - T T. H
5 !(gl.;)(ga.g} (g2:=}(91‘=11\4
- (31'2’(92'E)V% - hérmitizn conjugate . (H.1)
g ' A A . , . .2 2
where 312 - 3(0,.R)(52.5)-g1.g, and the V. 's zre functions of R™, P

and La. For the rneutron-proton system. the potentizl is the sum of

those for isospin T=1 and 0. each of which is of the form of Eg. (H.1).

All rezlistic potentials constructed later conform to this general
: .

form. However, it has been observed that the propérties of the
T . .

deuteron and the NN scattering data cen be well explainred without VS in

V. Hence in the phenomenclogica! potentials this term is usually

dropped. The necessity for VS could only be eséablis§ed by including
off-shell data.

In examining the effect ‘of the deuteron structure on the
© deuterium hfs, we have uscd'several crealistic potentialg. Let us make
& few remarks  about each of these potentizls. We begiﬁ with
Glendenning and ¥ramer's (GX9) pgtential {12). This potential :is of
the form of (H.1) with Vq = 0. It s z hard core. i.e. V{R) - o for
R < RC. where Rc is the hurd core radius. The hard core in the
potential is  introduced to take cure. of thc stroéz short range

-

repulsion in the NN interaction. Next, we turn .to the Hamada and

Johnston (HJ) potential (13) which can be rewritten in‘the form (H.1).

This.potential also has a hard core. The HJ and GX9 potentials are

- =

amonfl the best- potentials developed in early 1960's,. However, .hard
core potentials are -'not convenient for rary body calculations.

Furthermore, a hard core seems artificial. Y



. L 124

In late sixties, Reid (1&) proposed a sof% core potential.
Actually, he first constructe¢ a hard core potential. Sﬁbsequent]y. hé
developed his soft core potential in which the hard éore is replaced by
a2 Yukawa type repulsive potential. Reid specifices the potentials for
each partial wave separately. Hence his botentials are appérently not
in- the -form 6f (H.1), but they can be expressed in that form {37).
Reid gave two versions of his soft core potential which we refer to as
the Reid soft core and the Reid soft core a]t;rnative potentials.

At this stage. two questions arise. Can we make the core of
the potential softer than that of the Reid soft core potentials? If so
to what extent? These questions motivated Sprung and Srivastava (40)
to develop their super?soft core potential which has a core much‘softcr
than that of the Reid soft—coré potentials. Thé‘de Tourreil and Sprung
{TS) [(15) potential is an extension of S$prung and Srivastava's
potential. The de Tourreil. Rouben and Sprung (TRS) {(16) potential is
an improved version of the TS potentiai. In the medium range tﬁc TRS
potential incorporated‘the p and « mesons contributions as suégcsted by
meson - theory. These super soft core potentials were developed in‘thc
early 1970's. .

All the potentials considered above have £hé OPEP tail as
suggested by theory. Howeéer. their medium and short rangé parts are
more or less phenomenologically constructed. One naturally wonders:
caﬁ the wmedium range part of the potential be determined more
fheoretically? There 1is 5 long history of theoretical derivation of

the potential, but perhaps the most commonly quoted one is due to Vinh

Mau's group who develobed'the so called Paris potentizl (17) in the
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!
1970's. They derived the two pion exchange contribution‘by relating it
to pion-nucleon and pion-pion scattering. In'this way the p meson
contribution is automatically taken into account. The short Eange part
is construgtcd still phenomenoiogically. Unlik;‘thé gther models, tﬁe
Paris potential has an energy dependent part. In iés latér Qersion

_this energy-dependence is-replaced by P2 dependence. , .
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