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Abstract

Subspace Identification Methods (SIMs) are a class of new identification methods
that have drawn considerable interest in recent years. The key idea of these methods is to
estimate the process states or the extended observability matrix directly from the process

| input and output data. The best-known SIMs are Canonical Variate Analysis (CVA),
Numerical Subspace State-Space System Identification (N4SID) and Multivariable
Output Error State sPace (MOESP). This thesis focuses on both fundamental research
and application study of SIMs.

The first part of the fundamental research involves the analysis of SIM algorithms
from a statistical estimation viewpoint. For this purpose, a multi-step state-space model is
set up first to reveal the relationships between the process states and the process data sets.
Based on this model, SIM algorithms are analyzed to reveal their basic principles and
bias issues. Several new SIM algorithms are proposed and shown to have similar
performance as the existing algorithms.

Relationships between SIMs and Latent Variable Methods (LVMs) for
identification are then explored. It is shown that N4SID can be derived from Reduced-
Rank Analysis (RRA) just as CVA is developed based on Canonical Correlation Analysis
(CCA). Insights from this relationship lead to a variety of approaches to improve the
performance of N4SID. The similarities and differences between SIMs and LVMs are
investigated, with emphases on their causality, data collection and applications. For
estimating the states, CCA and RRA are shown to be more efficient than Principal
Component Analysis (PCA) and Partial Least Squares (PLS).

A general statistical framework is proposed to unify SIM algorithms. The
framework breaks all SIMs down into three common steps: 1) use of a linear regression
method to estimate the predictable subspace, 2) use of a latent variable method to
estimate a minimal set of the state variables, and 3) then fitting the estimated process

states to the state-space model. Combining the approaches in the first two steps leads to a

it



whole set of new SIM algorithms. Simulation studies show that these new SIM
algorithms have similar performance as the existing SIMs. This framework reveals the
nature of the computation steps in SIM algorithms and the fundamental ideas behind SIM
algorithms. It also discloses the relationships among different SIM algorithms.

The applicability of SIMs for closed-loop data is investigated. The original
N4SID algorithm and the CVA algorithm based on regressing out the effects of future
inputs are shown to give biased results. In general, whether a subspace identification
algorithm is applicable for closed-loop data depends on how the effects of future inputs
are treated in estimating the predictable subspace (step one of the proposed framework).
Based on this analysis, several new N4SID and CVA algorithms are proposed for closed-
loop data.

Practical issues arising from applications of SIMs are also discussed. SIMs are
shown to be able to handle the delays, common dynamics, non-stationary and co-
integrating disturbances in the process. The advantages, as well as solutions for possible
problems, are also presented. Some general guidelines are provided for applications of
SIMs.
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Nomenclature

A B,C, D System matrices in the state-space model

B Linear regression coefficient matrix

() Controller Transfer function

Dy, D, Future and past data matrix of ¢y

G(z) Dynamic Transfer function

H{(z) Disturbance model

H; Toeplitz matrix containing fsteps of impulse weights (refer to page 8)
H; . Estimated H; matrix

Hg Toeplitz matrix for the disturbance (refer to page 8)
Py Past input and output data matrix, i.e., [¥}; Up]
T Latent variable matrix

B Linear regression coefficient matrix

U, Past input data matrix (refer to page 7)

Us Future input data matrix (refer to page 7)

Vi Vo Future and past data matrix of v

W W, Future and past data matrix of wy

w Coefficient matrix in LVMs

X State sequence

XY Z General data matrices

Y, Past output data matrix (refer to page 7)

¥e Future output data matrix (refer to page 7)

I Extended observability matrix (f steps)

£ Extended controllability matrices (f steps)

di Dither signals to a closed-loop system
I Number of steps in future horizon

f Number of cutput variables (dimension of yy)
m Number of input variables (dimension of w)

n System order (dimension of x;)

N Number of collected data points

P Number of steps in past horizon

T, Switching time period of a PRBS (clock period)
U Inputs to a system

Vi Outputs from a system

Xk States of a system
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Wi

Vi

Subscript

p
f

S

)
Superscript
s
d
c

T
+

Noise on system states x,

Measurement noise on the outputs y,

Past time
Future time
Stochastic subsystem

Regression out (Uy)

of stochastic subsystem

of deterministic subsystem
of controller

Transpose of a matrix

pseudoinverse of a matrix

Operator (MATLAB convention)

l:a

/

1 72. 4
YX
X ]

1* to a-th row or column vectors of a matrix
Projection

Results of orthogonal projection of ¥ onto X
Results of oblique projection of ¥ along Z onto X
Data matrix X stack on data matrix ¥
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1 Imtroduction

This thesis will present fundamental and application research of subspace
identification methods (SIMs) for process dynamic models. The research focuses on the
basic principles, new algorithms, relationships among these methods and between other
methods, as well as the issues arising from practical applications. This chapter introduces

system identification and SIMs briefly, and presents the thesis objectives and outline.

1.1 Introduction to System Identification and SIMs

Process dynamic models are built to capture the transient behaviour of processes
and have an important role in a wide range of engineering applications, such as process
analysis, control system design, optimization and process monitoring. For the success of
these applications, it usually requires great efforts to identify a process dynamic model. In
practice with advanced control, system identification is the single most time-consuming
task, and 80-90% of the implementation is for an adequate dynamic model (Andersen, et
al., 1991).

There are two basic approaches for building the process dynamic model: the
fundamental principle method (mechanistic or white-box models) and the system
identification method (black-box models). The former approach needs a clear
understanding of the nature of the process, therefore limiting its potential for practical
applications. The system identification approach is to model dynamic systems from
experimental data (Soderstrdm and Stéica, 1989). The dynamic model employed in
system identification is usually expressed in the discrete form of the transfer function or
the state-space representation.

The typical system identification procedure is a set of iterative steps, including

obtaining prior knowledge, design of experiment, data collection, choice of model



structure, parameter estimation and model validation. Choice of model structure and
estimation of model parameters are the most mathematically involved steps in system
identification, and these two steps are the major research subjects of system identification
methods.

There are various methods to determine the model structure in traditional system
identification methods, such as AIC (Akaike Information Criterion), F-test, and rank of
the Hankel matrix. Prior knowledge of the process is often employed in model structure
determination. Several methods have been widely used for parameter estimation, such as
Prediction Error Method (PEM), Maximum Likelihood Method (ML), Instrumental
Variable Method (IVM) and Two-step Method (e.g., COR-LS) (Ljung, 1999; Séderstrém
and Stoéica, 1989; Box and Jenkins, 1970).

PEM and ML are the best-known methods for parameter estimation. PEM
determines the model parameters by minimizing the predicted error, while ML estimates
parameters based on maximizing the likelihood function. In general, both methods result
in a nonlinear optimization problem, which leads to iterative non-linear search procedures
and may turn out local minima. In some special cases, PEM or ML may retrograde to
simple Least Square (LS) regression, which guarantees the convergence and unique
solution. In the case of collinear variables or close to collinear, Latent Variable
Regression (LVR, refer to section 4.1) can be employed to overcome the ill-conditioning
problem encountered in LS regression. In IVM, instrumental variables are constructed to
be independent of the noise. This method allows one to avoid simultaneous identification
of a noise model. The process and noise models can be estimated sequentially and
iteratively. These traditional methods are useful for SISO systems; however, they become
very involved when applied to MIMO systems.

As a class of system identification methods, subspace identification methods
(SIMs) emerged in the 1990s and have drawn considerable interest. The key idea of SIMs
is to estimate the process states or the extended observability matrix directly from the
input and output data. The best-known methods are Canonical Variate Analysis (CVA,
Larimore, 1990), Numerical Subspace State-Space System IDentification (N4SID, Van



Overschee and De Moor, 1994) and Multivariable Output Error State sPace (MOESP,
Verhaegen and Dewilde, 1992). A brief overview of these methods will be presented in
the next chapter.

In SIMs, the state-space model is employed, and‘the model structure is therefore
determined by the system order, i.e. the number of states used in the model. The
parameters in the state-space model are generally estimated by LS regression. Though the
basic idea of SIMs is different from traditional system identification methods, many
computation steps in SIMs are based on traditional system identification methods. Yet,
SIMs show many advantages, especially for MIMO systems and in the aspect of

computation.

1.2 Research Objectives and Thesis Outline

This thesis focuses on providing a deep and comprehensive understand of SIMs
and solutions for application problems. The objectives of the thesis research mainly
concentrate on developing the fundamental theory, exploring the relationships among
SIMs and with other methods, proposing new algorithms as well as exploring issues
related to practical applications.

The next chapter will be an overview of SIMs. The basic concepts, notations and
developments of SIMs will be briefly introduced, and then a brief overview will be given
for each of the major methods for a basic understanding of SIMs. Finally, the general
characteristics of SIMs will be discussed in comparison with the traditional system
identification methods.

Chapter 3 will analyze the major SIMs, provide fundamental proofs on the
biasness issue, and propose some novel algorithms. In this chapter, a multi-step state-
space model will be proposed first. Based on this model, each method will be analyzed to

reveal its basic principles and nature of computational procedures. Several SIM



algorithms will be proposed. The fundamental analysis gains insights into SIMs, and
provides heuristic ideas for the next two chapters.

In Chapter 4, the relationships between SIMs and LVMs will be explored. These
two categories of methods have been studied separately in different fields; here their
connections are disclosed. The similarities among and the differences between the
resultant models from these methods will be explored to show their relationships clearly.

Chapter 5 will focus on the relationships among SIMs by unifying these methods
in a general framework. This framework will catch the common ideas behind the distinct
computation procedures and interpretations of SIMs and provide a comprehensive
understanding of the nature of SIMs. This framework will also show clearly the
connections and differences between SIMs and provide inspirations for new SIM
algorithms.

In Chapter 6, the apﬁlicability of SIMs for the closed-loop data will be
investigated in order to clarify disputes over this issue. The difference between closed-
loop data and open loop data will be discussed first, and then SIM algorithms will be
scrutinized for the closed-loop data with a focus on the bias issue. Several novel SIM
algorithms will be proposed, particularly for closed-loop identification.

Chapter 7 will address some practical issues and general guidelines for application
of SIMs. The applicability of SIMs will be analyzed for the presence of delays, common
dynamics, non-stationary and co-integral disturbances in the process. This chapter will
also explore for the possible solutions for these practical issues. The general guidelines
will show the situations and applications where SIMs can show their potential advantages
and avoid their limitations.

The last chapter will summarize the general conclusions of this research, and
provide some comments on open issues for future research.

In general, Chapters 3 to 5 of this thesis focus on the fundamental research of
. SIMs, and some research results have been published in journals or at conferences.
Chapters 6 and 7 focus on practical applications of SIMs and the results will be vpublished
in the near future.



2 Overview of Subspace Identification Methods

This chapter provides an overview of SIMs. The first section will cover the
background as well as a literature overview, including notations and basic concepts. The
subsequent three sections will provide a brief overview of CVA, N4SID and MOESP

respectively. The last section will summarize the characteristics of SIMs.

2.1 Background and Literature Overview

Assume a linear deterministic-stochastic combined system of order » has m input
variables and / output variables. The system can be represented in the following state-
space model] form:

Xy, = Ax, + Bu, +w, (2.1.1)
Y, =Cx, +Du, + Nw, +v, (2.1.2)

() o =0 Razo

where outputs ye 7™, inputs uce ™! and state variables x e #™'. The process state
noise wye % ™1 and measurement noise weR ™! are of corresponding dimensions and un-
correlated with each other. Coefficient matrix /V here shows the direct action of wy on the
outputs. The transfer function for the dynamic part of the system is C(Iz-A)'B+D. The
impulse response weight is D at time k=0, and C4A''B at k=i (i>0). These impulse
response weights are also called Markov parameters.

A dynamic process is different from a static process in that the past inputs affect
the future outputs, and there exists correlation between the past outputs and the future
outputs. The past inputs and outputs are the necessary information to predict the future
outputs. For an arbitrary time point deemed as current time %, all the past p steps of the

input variables form a past input vector u,e # ™P*!1 The current and all the future /-1 steps



of the input variables form a future input vector use % ™', Similar symbols can be used

to denote the lagged output variables (most SIM algorithms assume p=f=i for

convenience, but this is not necessary):

Past  Future
i (P ([ —P] g By >
t) bep  terte  toe tN
L ) Yia ( U ) Y )
LI Yi2 Yy Yia
8, = _y_p = : U, =1 Uy Xf ={ Vi | (2.1.3)
Uppn Yi-ps :
\ Yip Vi-p Uiy \Vk+s-1

These data vectors associate with one particular current time point 4. Considering the end

effect of past and future horizon for the collected data set, there are possible N.=N-f-p+1

current time points (i.e., k=p+1, pt+2, ..., N-f+1, N is the total number of data points

collected). The collections of all corresponding vectors form the past/future input/output

data matrices are: (e.g., Upe #
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Similarly, the state sequence Xy denotes the collection of all the possible “current” state
VeCtors Xi, i.€., Xk={Xpt1, Xp+2, +ovs Xiep «+- XN-41}- X% and X,® are for the deterministic and
stochastic state sequence respectively. Similar notation can be used for the stochastic
signals wy and w.

The state-space model (2.1.1) and (2.1.2) clearly shows the linear relationships
between the input variables and the output variables. The same model form can be used
for description of SISO (single input-single output) processes and MIMO (multiple input-
multiple output) processes. The extended observability matrix I; and extended
controllability matrix £2 (i>n) are defined as: (both I and £2 are of rank n)

C
cA
T, =| C4 Q=[B AB ... A”'B A"'B] (2.1.5)

C Ai»l
Hankel matrix of dimension m by z is defined by the system impulse response

weights (Markov parameters) as follows:

CB CAB CA’B -~ CA"'B
CAB CA’B CA*B -~ CA"B

H, =| CA’B CA’B CA’B -+ CA™B 2.1.6)
\CA™'B CA'B CA™B .- CA™"’B

It is easy to verify that this Hankel matrix is a production of the extended observability
matrix I, and extended controllability matrix £2,, i.e,,
Hpn=Tnl (2.1.7)
The so-called Trapezoid matrices for deterministic and stochastic subsystem are

defined respectively as



D 0 0 0 N 0 0 - 0)
CB D 0 0 C N 0 .0
H =| CAB  CB D 0| H,=| ¢4 C N - 0] (2.1.8)
: : : 0 : : : -0
\CA™?B CA™B CA™B D \CA™? cA” 4™ N,
or
w, O 0 0
w w, O 0
H=lw, w w, 0 (2.1.9)
: 0

\Wii Wia W

X

Here wy, wi, Wy, ... are the impulse response of the dynamic system. H; and H;; indicate
the effects of future inputs and future noise on the future outputs respectively. All the
above defined data matrices or special matrices are employed extensively in later analysis
of SIM algorithms.
The Least Squares (LS) regression is also frequently used in SIMs. When
variables in y depend linearly on a set of variables in x with independent noise ¢ as:
y=prte (2.1.10)
The coefficient S between y and x can be estimated by LS regression based on the
observations (recorded in columns of matrix ¥ and X respectively):
p=vx"(xx")' : 2.1.11)
The least square result is known as the best linear unbiased estimation (BLUE). The
covariance matrix XX' must be of full rank in LS. The LS procedure may face the ill-
conditioning problem if the variables in X are highly correlated or close to collinear

(matrix XX is close to singular). Under such a situation, the estimated parameters will

have high variances. The part of ¥ that can be explained by X (i.e., gx ) is also called the

projection of ¥ onto the X space, noted as simply as ¥/X. Besides the above approach of
matrix inverse, the computation can also be realized by QR decomposition or Singular

Value Decomposition (SVD).



If the above noise e is correlated with x, the estimated coefficient and the
projection result from LS are theoretically biased. If measurement errors occur with the
variables in x (called error-in-variable), the estimated coefficient and the projection result
by LS are also biased in theory.

Besides LS, other regression methods exist, e.g., PLS (partial Least Squares),
RRR (Reduced Rank Regression) and CCR (Canonical Correlation Regression). They
have different objectives from LS regression in building the relationship between ¥ and X
variables. See Section 4.1 for details.

AIC (Akaike Information Criterion) is another concept often used in system
identification. For single output case, AIC is defined as:

AIC(n)y=N log(c*)+2M, (2.1.12)
where o is the residual variance, N is the number of data points used, and M, is the
number of parameters used in n-th order model. For multiple output case,

AIC(n)=N log(det(2))+2M, (2.1.13)
where X is the residual covariance matrix. AIC is an optimal estimation of the Kullback
discrimination information for a large data set. It is a combined index showing a trade-off
between the model accuracy and the model complexity. Minimizing AIC can avoid
underfitting or overfitting, and can achieve optimal decision on model order
determination (Shibata, 1981). For small data sets, better order determination can be
achieved by a modified AIC (Hurvich and Tsai, 1989):

AIC(n)=N log(det(2))+2/M, S=NI(N-(My/n+(n+1)/2)) (2.1.14)

In general, SIMs can be classified into two major categories: realization-based
(basic) SIMs and direct SIMs (Viberg, 1995). Realization-based SIMs can be traced back
to the 1960s. Ho and Kalman (1966) constructed the Hankel matrix based on the
explicitly estimated impulse weights, then they performed an SVD on this Hankel matrix
to get the extended observability matrix 7, which can be used to estimate system

matrices. More research has been carried out in recent years to extend this approach
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(Ljung, 1991). Because of the difficulty in obtaining accurate impulse weights, this
approach is not very attractive to researchers and practitioners.

Direct SIMs estimate the state sequence or extended observability matrix directly
from the input-output data sets instead of impulse responses. The best-known methods in
this category are CVA, MOESP and N4SID (refer to later sections for details). Van
Overschee and De Moore (1995) proposed a unifying theorem of these three methods
from the viewpoint of projection approximation. Some other methods are available, such
as algorithms based on linear regression (Jasson and Wahlberg, 1992; Di Ruscio, 1995).

There are many different directions in the research of subspace identification.
Some ongoing topics are: survey of SIMs (Viberg 1995); exploring new SIMs (e.g., Li
and Qin, 2000); investing the relationship between the different algorithms; improving
the accuracy of the identified model, especially for the case with high noise level;
consistency properties of the methods (Deistler, et al., 1995. Bauer, et al., 1999);
improving the computational performance (Cho and Kailath, 1995, Ewerbring, et al.,
1990); comparative studies of algorithms (Favoreel, et al., 1999); extending the methods
to unstable systems, Linear Time Variant (LTV) systems, nonlinear systems (Larimore
and Baillieul, 1990) and systems with errors-in-variables (Chou and Verhaegen, 1997);
applying the methods to the closed-loop situation (Verhaegen, 1993; Jha and Georgakis,
1996; Ljung and McKelvey, 1996); and fault detection (Wang, et al., 1997; Basseville, et
al., 2000; Qin, 2000).

CVA (Larimore, 1990) performs a Canonical Correlation Analysis (CCA) on two
data sets: a matrix of past input and output data and a matrix of future output data. Based
on properties of a Markov process and the likelihood function, the dominant canonical
variates of those two data sets are proven to be approximates of state variables (called
“memory”’). The system matrices are estimated by fitting the estimated states to the state-
space model by LS regression. A brief overview of this method is available in the next

section.
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In N4SID (Van Overschee and De Moore, 1994), an oblique projection of future
outputs along future inputs onto the past data is performed first, and then Singular Value
Decomposition (SVD) on the projection result will give estimates of state variables. The
system matrices are estimated by LS regression. A simple N4SID algorithm will be
reviewed in section 2.3.

The original MOESP method (Verhaegen, 1992) is based on the extended
observability matrix for the system matrices. It performs a QR factorization of the input
and output data, then the extended observability matrix is estimated from a part of the
coefficient matrix R by SVD. System matrices 4 and C can be directly extracted from the
estimated observability matrix; B and D are obtained by another LS regression. Section

2.4 will give a brief overview of this method.

2.2 Overview of CVA Method

CVA (Canonical Variate Analysis) was proposed by Larimore (1990), and a
software package (Adaptix) based on this method is available for model identification.
The key point in CV A is to estimate the state variables by Canonical Correlation Analysis
(CCA). CCA was first developed by Hotelling (1936) as a statistical method to get the
most correlated linear combinations (canonical variates) from two sets of variables (for
more details, see Section 4.1).

A general deterministic-stochastic combination process can be described by the
state-space model in the following form:

Xpo = Ax, + Bu, +w, (2.2.1)
Ve =Cx, +Du, + Nw, +v, (2.2.2)
Here wy and w are uncorrelated stochastic signals. The term Nwy in the output equation

makes the model better to describe the colored noise.
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In the first stage of CVA, a series of ARX(p) models with different orders (p=1, 2,
..., L. L is the maximum lag steps) are obtained by fitting current outputs yi against the
past input and output data [¥;; Up]. p is the number of lag steps used in fitting the ARX
model. The number of lag steps corresponding to the minimum AIC value is called OML
(Optimal Memory length).

In the second stage, CCA is performed on two data sets: the OML steps of
modified future outputs Y=Y-Y/Uj, i.e., regressing Ur out of ¥;, and the OML steps of
past input and output data (X):

Y=Yror Y- ¥/ Us X=Pio={Y;; Up] (2.2.3)

The maximum possible number of canonical variates (CVs) from CCA is OMLx
[. For an n-th order system, the first n CVs are approximates of the system state variables
(Larimore, 1997). In system identification, the system order » must be determined from
the input and output data. Here AIC is employed again. Different numbers of CVs are
used to get the one-step-ahead prediction error. The number of CVs corresponding to the
minimum AIC is estimated as the system order (denoted as 7). So the state sequence is
estimated as a linear combination of the past input and output data (J is the coefficient

matrix for CVs from Pio, and J; is the first # rows of J):
Y=m=JPy=JY +J,U, (224

In the third stage, the input data, output data and estimated states are fitted to the
state-space model (2.2.1) and (2.2.2) to estimate system matrices 4, B, C and D by LS

FM]{A B][J‘ck}[ln 0}[@] (2.2.5)
Yy C Diju, N v

Matrix N and estimates of wy and w can be estimated based on the fitting residuals of the

regression:

above equations.
CVA was originally developed by Larimore (1990), and interpreted in the
maximum likelihood principle using conditional likelihood functions for a Markov

process (here p is the likelihood function):
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PYA(Us, Up, Yo))= p(YAUD(Up, X)) = p(¥r elPro) = p(¥ lXi)

and Y{U=Y; ~Y+-B\U;, Bi=YU(UU)!
maximizing the above likelihood function leads to that CVs from CCA are optimal
estimates of process states in the sense of maximum likelihood. These CVs are linear
combination of the past data Pio=[Y¥;; U], and have the minimum prediction error of ¥¢ ¢
based on a special weighting matrix (inverse of the ¥; . covariance matrix).

In fact, the above procedures are correct only if the process inputs are not auto-
correlated. If the inputs are auto-correlated or the data are collected under a closed-loop
situation, regressing Uz out of ¥¢ in (2.2.3) will cause problem. Refer to Section 3.3 and

Section 6.3 for a detailed discussion.

2.3 Overview of N4SID Method

Van Overschee and De Moore (1994) published N4SID method, and it has been
developed as a MATLAB function in the System Identification Toolbox (Ljung, 1997). It
employs oblique projection to get a special subspace, then uses SVD to determine the
model order and estimate the state variables, and then estimates the system matrices by
LS regression.

The model structure used in N4SID has the following form:

Xy = Ax,+ Bu, +w, (23.1)
¥, =Cx, +Du, +v, 23.2)

LA e

and N4SID is based on the following assumptions:
e DBoth the noises v; and wy, are of zero-mean, random Gaussian distributions

e Both noises are independent of the input ux



14

e The input is persistently exciting greater than order 2i (7 is the number of
lagging steps for past and future horizons, i.e., p=f=i)

¢ The number of data points (V) tends to infinity.

A simple N4SID algorithm (called approximation algorithm) includes the

following major procedures:

(1) Oblique projection
The first step of N4SID is to get the oblique projection of ¥; along Us onto [¥;;

U
U,], denoted as ¥ ”|. This can be realized by regressing ¥; onto [¥,; Uy; Uf] first
P s Y, p Up
Uy

U

P
Z,=Y,/\U, |=LY, +L,U, +LU, (23.4)
Y,

P

and then eliminating the effect of the future inputs Uy:
U, 4
Y, y =Z,-LU,=LY +LU,~TJX, (2.3.5)
Uy

The LS projection result Z; has the minimum total prediction error of ¥y based on
[¥p; Up; Us]. The oblique projection result, LY, +L,U ,» has the minimum total
prediction error of ¥r based on [¥,; Up] after considering the effects of Ur. This oblique
projection is shown to be an approximate of T, X ;> Where X, is interpreted as the result

i

of a series of non-steady state Kalman filter over the past i steps. The approximation

comes from assuming Li~H;.

(2) SVD on subspace LY, + L,U,
The relationship of (2.3.5) shows that the rank of LY, + L,U, should be the
system order. Because of the estimation error, all the singular values of LY, + L,U, are

non-zero in practice, therefore the system order is determined by the number of dominant

singular values (diagonal values of .S; below).
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S, oy’ -
LY, +LU, =USV" =[U, UZ{O‘ < }[VIT} ~USY:. ST =T, - X, (2.3.6)
2 2

where [ is estimated as (different ways to partition §; lead to similar results):
T, =U,S"
and the states are estimated as:
X, =8V =T/ (LY, +LU,)=L'Y, + iU, (2.3.7)

where I7 is the pseudo-inverse of I,

(3) Estimate 4, B, C, D and wy, v

The same LS regression and similar procedures are employed in N4SID as in
CVA to estimate the system matrices and noise covariance matrix.

These are the main steps of N4SID method. The above estimated state sequence is
based on the approximation of L3 ~ H, in (2.3.5), and this algorithm‘ is biased for general
case, An unbiased N4SID algorithm is available by using unknown H; instead of L; in
(2.3.5) to estimate X, . Similarly, X,,, is estimated by taking time point k+1 as the
current time point (i.e., past horizon of i+1 steps and future horizon of i-1 steps). Since
both estimated states involve the unknown B and D in H;, another LS regression is
required‘to estimate B and D (refer to Van Overschee and De Moore, 1994, 1996).

Ljung and McKelvey (1996) explained N4SID from the viewpoint of infinite

impulse response. It was pointed out that the subspace L,¥, + L,U ,is the multiple-step-

ahead predictions of the future outputs. Based on this viewpoint, Ljung (1999) gave a

more general explanation of the basic idea behind N4SID.

2.4 Overview of MOESP Method

MOESP (Multivariable OQutput-Error State Space) method was originally
proposed by Verhaegen and Dewilde (1992). It employs a QR decomposition to factorize
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the joint input and output data matrices into a triangular coefficient matrix R and an
orthonormal signal matrix Q. It is estimated from one part of R directly by SVD. System
matrices A and C are obtained from I, and B and D are obtained by another LS
regression.
The model structure used in MOESP is:
X1 = AX, +Bu, @41
Ve =Cx, +Du, +v,
Here noise v, can be a colored noise, which is assumed to be independent of the input.

Future input data Ur and output data ¥ can be factorized in the QR form:

Uf _ _ Rn 0 Ql
{Yf ] ) RQ B I:Rﬂ R22 :“:QZ:l (2.4.2)

Verhaegen and Dewilde (1992) showed that I is a factor matrix of Ry;. The number of
dominant singular values of R,; (dimension of §; in (2.4.3)) will determine the system
order, and the corresponding matrix U, (left singular vectors) is taken as /¢

R, =USV" =U, U, ﬁ)‘ ;}{Z} (2.4.3)

;=0 |
The system matrix C is taken directly from the first / rows of the estimated I3 (/ is the
number of outputs) and A4 is obtained based on the shift invariant property of matrix [
(using MATLAB notation)

C=I{1,:)

I, 4=, and 4=T; T, (244

Here ff is matrix /5 but without the first / rows. System matrices B and D are determined

by LS regression of equations involving Us, R and Ry, (for details, refer to Verhaegen
and Dewilde, 1992).

A more practical algorithm (PO-MOESP) is to perform QR decomposition on [Uy;
Us,; ¥, ¥i], and system matrices are extracted from the R matrix. In this algorithm, the
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past input and output data sets are used as instrumental variables to reduce the effects of

noise on the estimated parameters (Verhaegen, 1994).

2.5 Characteristics of SIMs

Compared with the traditional identification methods, SIMs show some
distinguishable characteristics in both the principle and the computation:

e Based on the state-space representation, only the system order is necessary to
be estimated in determination of the model structure. The system order is
determined by the rank of a estimated subspace (or the number of dominant
singular values) before parameter estimation; therefore no iteration is needed
for model structure determination.

e These SIM algorithms do not involve nonlinear optimization in parameter
estimation, thereby avoiding the problems associating with nonlinear
optimization, such as divergence, local minima and iterative search. The
computation in SIMs mainly includes LS regression and SVD, which are
numerically reliable and with predictable computation load.

e With only increase of matrix dimension, SIM algorithms can be applied for
MIMO systems as simple and elegant as for SISO system.

e The resultant models from SIMs are generally very close to the global optimal
result (such as result from PEM), but they are not identical in general. This is
due to the different objective functions and the reduction of the general
nonlinear search problem to a series of linear regressions.

These characteristics give SIMs many advantages in system identification,
especially for MIMO systems and on-line applications, such as model predictive control

and adaptive control.



3 Analysis of SIMs

In this chapter, a multi-step state-space model will be proposed first as a
systematic frame to reveal the relationships among the process data. Based on this model,
each SIM will be analyzed with emphases on revealing the basic principles and the nature
of computational procedures. Several new SIM algorithms will be proposed during the
analysis. The fundamental analysis in this chapter gains insights into SIMs and provides

heuristic ideas for the next two chapters.

3.1 Multi-step State-space Model

From the overview of SIMs in the last chapter, one may have noticed that each
SIM is developed and interpreted with different principles. This makes SIMs hard to
understand and cuts the links between these methods. In this section, a multi-step state-
space model is proposed to disclose the relationships between the states and the
past/future inputs and outputs. This model provides a systematic basis for the analysis of
SIMs in later sections.

Use of past and future process inputs and outputs is necessary to capture the
process dynamics. On one hand, as in a discrete transfer function, the process dynamics is
shown as an expression of the current outputs in terms of the past inputs and outputs.
Here the past inputs and outputs are the driving force of the process momentum (states).
On the other hand, the process momentum (states) will evolve over a future horizon, and
the effect will show in the future outputs. Therefore, the dynamic characteristics of the
process are also shown in the future outputs. It is natural to use the past data and the
future outputs in building the process dynamic model. Since the future outputs include the
effects of the future inputs, it is also necessary to include the future inputs. Furthermore,

the past inputs and outputs far away from current time point have little effect on the
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current states, and the current states have little effect on the outputs far away in the future.
From the signal-to-noise ratio (SNR) point of view, using a finite number of steps of
past/future input and output variables is efficient to capture the process dynamics. This is
the basis and motivation for the multi-step state-space model.
As we know, a process model can be expressed in the following state space
representation:
Xy =Ax, +Bu, +w, (3.1.1)
Vi =Cx, +Du, + Nw, +v, (3.1.2)

) 7 -2 Y

Here outputs yeR™, inputs weR™!, state variables x,eR™!. Process state noise

nx1

wieR™! and measurement noise v,e R™! are random noise signals (stochastic driving
signals). Coefficient matrix /V shows the direct action of wy on the outputs.

Take an arbitrary time point & as the “current” time point, and consider the past
horizon of p steps and the future horizon of f steps. For the past horizon, &-p is the initial
time point, and x,, is the initial state vector. If equation (3.1.1) is recursively used for the
time points in the past horizon, it is easy to get the state vectors in the past horizon:

Xppei =A%, +Qu, +Q w, (=1,2,..,p) (3.1.3)

~pHi

and the state vector for time point £ is represented in the multiple step of the past data as:
x, =A%, +Q u, +Q  w,

If N data points are collected, the maximum number of possible “current” time points will

be Ne=N-p-f+1. Using the data matrix notations defined in section 2.1, the multi-step

state-space model for current state sequence Xj is:

X, =A"X,_,+Q,U,+9, W, G.1.4)

k-p
If all the state vectors in past horizon (=1, 2, ..., p-1 in (3.1.3)) are used for the past
outputs based on (3.1.2), the multi-step state-space model for the past outputs is:

Y,=T,X, ,+H,U,+H, W, +V, (3.1.5)
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Equation (3.1.4) and (3.1.5) show how the current state sequence and past outputs
relate to the initial state vector and the past inputs. From equation (3.1.5), the initial state
sequence Xi., can be expressed in terms of past inputs and outputs (I}’ is the pseudo-
inverse of 1p):

Xiep =T, -T,H,U, -T H W, T}V,

Substituting this expression into (3.1.4), the result shows the relationship between
the current state sequence and the past input and output data:

X, =4°T,'Y +(Q, 47T, H U, +(Q,, - 4T, H, W, - 4°T,'7, (3.1.6)
That is, the current state sequence X is a linear combination of the past inputs, outputs,
and the stochastic signals. If these coefficient matrices in (3.1.6) are known or estimated,
the current state sequence can be estimated based on the past inputs and outputs.

Equations (3.1.4), (3.1.5) and (3.1.6) show the relationships among current states
and the past data. On the other hand, similar relationships exist in the future horizon.

From state-space model (3.1.1) and (3.1.2), the following relationship between the
current state sequence and the future outputs can be obtained (i.e., the multi-step state-
space model for the future outputs):

Y, =T X, +HU,+H W, +V, (3.1.7)
It clearly shows that the future outputs as a whole consist of three components: the effects
of the current states (1* term on right-hand side of the equation), the effects of the future
inputs (2"d term), and the effects of the future stochastic signals (3™ and 4™ term). The
first component is the free evolution of the process outputs (that is, the evolution that
would occur without any future inputs or noise to the process). It is a product of the
observability matrix and the process state sequence (key terms to be estimated in SIMs).
This component includes both the deterministic state effects X, and the stochastic state
effects I:X,'. Although the numerical values of both 17 and Xy depend on the choice of
state basis, the value of I¢Xy is independent of this choice and is an invariant nature of the

process. The second component of the future outputs comes from the action of future
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inputs, and it is determined by coefficient matrix H; and the known data Uy. The third
component comes from the future noise signals, and is un-correlated to the previous two

components.

t=k-p

Figure 3.1 Three components of the future outputs

Process states are generically defined as “the minimum amount of information
about the past history of a system which is required to predict the future motion”
(Astrdm, 1970), the linear combination on the right-hand side of equation (3.1.6)
summarizes the necessary information in the past history to predict the future outputs ¥r.
This linear combination of the past inputs and outputs gives the best estimation of the
current states in (3.1.7) in the sense of least squares or Kalman filter. If the future outputs
Y;in (3.1.7) is scrutinized from the viewpoint of prediction, the first component J¢Xy can
possibly be predicted based on the past data via the current states in (3.1.6). Equation
(3.1.6) extracts the information in past data [¥,; Uple #P™P™¢ and concentrates it into
the current state sequence Xi. In other words, the useful information in the data space of
dimension p(/+m) shrinks to a subspace of dimension », which is then used to predict the
subspace of IXy. Therefore, Xy is called the predictable subspace of ¥; thereafter. The
true predictable subspace is only of rank » (both I} and Xj are of rank n), though the
dimensions of the subspace may be much higher. In SIM algorithms, this subspace is the
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basis to estimate the state sequence X or the observability matrix /7. Based on (3.1.6), the
true predictable subspace is:
I,X, =T,4°0,"Y, +T,(Q, -4°T "H U, (318)
«1,(Q,, - 4T, H, W, -T, 47TV,
This indicates that the predictable subspace can be estimated as a linear combination of
the past input and output data if the coefficient matrices are known or estimated.
The second component H:Us in (3.1.7) is not predictable in the sense of causality.
This component may be estimated partially based on the correlation between the future
inputs Ur and the past inputs U, if the inputs are auto-correlated. However, it comes from
the correlation structure in the input signals, not a causal effect of the process inputs,
therefore not the goal of system identification (more discussion on causal models and
correlation models is available in the next chapter). Based on this reason, the second
component should be eliminated away from ¥; in system identification to avoid
confounding between the causal relationship and the correlation relationship. The third
component in (3.1.7) involves future stochastic terms. These terms are unpredictable
based on the past data. Note, these terms are only the unpredictable part of the future
disturbances; the predictable part /3X,° is included in the first component. The later two
components should be moved away from ¥;in estimation of the predictable subspace.
By substituting (3.1.6) into (3.1.7), a linear relationship between the future
outputs, the past data and the future inputs is obtained:
Y, =T,4°T,"Y, +T,(Q, - 4’T,"H U, + H U, (5.1.9)
+T(Q,, ~4"T, " H, W, T, 4T 'V, + H, W, +V,
All the past terms (term 1, 2, 4 and 5 on the right-hand sight) are for the predictable
subspace 7iXx. This relationship is very useful and gives the possibility of estimating the
coefficient matrices by linear regression or other techniques. It is worth noticing that the
true coefficient matrices for ¥, and U, in (3.1.9) are the same as those in (3.1.8), and their

estimated values can be used to estimate the predictable subspace.
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The predictable subspace showing in (3.1.8) or (3.1.9) is essentially the multi-step
ahead predictions based on the past inputs and outputs with no future inputs (in Ljung,
1999, the multi¥sfep ahead predictions, called k-step-ahead predictions, include the future
input effects). Multi-step ahead predictions have been widely used in prediction error
method (PEM) for future forecasting. Some algorithms in the family of PEM also use the
weighted multiple prediction errors for identification purposes (e.g., weighted k-step-
ahead PE parametric ID, Kozub, 1994). Normally in PEM, the prediction errors are
weighted by the inverse of their covariance matrix. In CV A methods, the prediction errors
of the future outputs are weighted with the inverse of the covariance matrix of future
outputs (Larimore, 1990). In N4ISD, only the total sum of the prediction errors is

considered, that is, the weighting matrix is an identity matrix.

3.2 Analysis of N4SID

The original N4SID algorithm was proposed by Van Overschee and De Moor
(1994) based on an analogy to a series of non-steady state Kalman filters. In that
approach, the algorithm was solely expressed in a mathematical manner that the nature
and the essential ideas behinds the computation could not be shown explicitly. Here,
based on the multi-step state-space model, the N4SID algorithm and some novel

variations are analyzed with emphases on the basic principles and the bias issues.

3.2.1 Analysis of N4SID

The first step of N4SID is to perform an oblique projection of ¥; along Uy onto
[Yy; U], i.e., the part corresponding to [Y;,; Up] in the projection of ¥; onto [¥;,; Uy; Usl.
In fact, the oblique projection result is an estimate of the predictable subspace /Xy, and

this point as well as the bias becomes clear in analysis of N4SID based on the multi-step
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state-space model. The future outputs are shown to be a linear combination of the past
data and the future input data as:

Y, =T, A°T,°Y, +T,(Q, - 4°C,"H U, +H,U, 6.19)

+T(Q, - 4’T, " H, W, ~T, 4TV, + H, W, +V,

Here the effects of past data (including not only terms of ¥ and U, but also terms of W,

and ¥}) as a whole represent the true value of the predictable subspace 1:Xy (see (3.1.8)).

All the past/future input and output data in (3.1.9) are known. The effects of stochastic

signals are unknown and act as noise term for the linear regression. Projection of ¥ onto
[¥p; Uy, Us] by LS regression is based on (3.1.9), which can be expressed briefly:

Y, =CY,+CU,+CU,+E 3.2.1)

where C;, C; and C; (C3=Hy) are coefficient matrices for ¥,, U, and Ur in (3.1.9)

respectively, and the stochastic effects E=E,+E; include the past stochastic effects
E,=T,(Q,,-A’TH, W, ~T ATV, and the future stochastic effects

E ;= Hs.pr +V pr This model is different from the standard LS regression showing in

(2.1.10). Here the stochastic effects E=FE,+FE; are correlated with the regressor [¥p,; Up;
Us] because of the correlation between Ej, and ¥, (both include the effects of W}, and ¥,
refer to (3.1.5)).

o L

G

LY, +LU,[~T,x,) [v,; U,]

T TP ——

Figure 3.2 Geometric explanation of the projection in N4SID
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The resultant coefficient matrices from LS regression in N4SID are:

2, 1, L]=vx"(xx’)" x=|r; v,; U, (3.2.2)
and the detailed value for each coefficient matrix is: (see Appendix A3.1)

L =C+EY) ¢

L,=C,-EY]¢"'R, (3.2.3)

L, =C,~EY]o™R,
Here vy -rullv, vt vy, [R, R|=vUL,UL)  and
¢=1,1, p UPfUpf Uy P ! I AN
U, =|U,; U,] Ingeneral, the correlation between ¥, and E,, leads to all the estimated

coefficients in (3.2.3) biased from the true values. The second terms in (3.2.3) are bias. In
the special case of a process with ARX model, future outputs can be expressed without
mvolving E,, therefore the estimated coefficients in (3.2.3) are unbiased (see Appendix
A3.1).

Based on the LS regression result in (3.2.3), the projection of ¥; onto [¥p; Uy,; Ut
is: (noted as Zr in N4SID)

Y, =Z, =LY, +LU,+LU, (3.2.4)
In the above projection result, the contribution from the past data sets (first two terms) is

the result of oblique projection of ¥; along Ur onto [¥y; Up):

»

Y,, =LY, +LU, (3.2.5)

Incorporate the regression results in (3.2.3) into (3.2.5), and the result will be:

-

¥, =LY, +LU,

= (Cl +EYpT(p_1 )Yp +(C2 —-EYPT(p_]RPpr
=CY,+GU, +EY ¢ Y, ~EYT¢"R,U,
=T, X, -E,+EY7¢"'(¥, -RU,)

(3.2.6)

In general, this result is a close approximation of the predictable subspace /¢Xy. The first
terms of L; and L, in (3.2.3) are the true coefficient matrices for ¥, and U, which lead to

an accurate estimate of the predictable subspace from the past data. However, the second
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terms of L; and L, in (3.2.3) cause bias for the estimated predictable subspace. The

expectation of the bias is:

~

Exp{Yflp -IX, }: Exp{’ E,+EY ¢ (Yp -R,U, )}

= ExplE, Y] o™ (¥, - R,U, )}
If the true process is of ARX (or ARARX) model, the estimated coefficients in
(3.2.6) are unbiased, and the estimated predictable subspace is therefore unbiased (£, in

(3.2.7) is null). That is, the oblique projection L;Y,+L,U, in N4SID is an unbiased

(3.2.7)

estimate of the predictable subspace. For a general process of Box-Jenkins model form
(other than ARX model), the oblique projection L ¥p+L,U, in N4SID is a biased estimate
of the predictable subspace as shown in (3.2.7). Though the result is biased, the
estimation error of E,, is partially canceled by the biased terms from ¥, and U,,. This bias
in fact decreases the estimation error of the predictable subspace in the sense of variance.

The severity of the bias depends on correlation between ¥, and past stochastic
signals as well as the condition number of data set [¥,; Up; Us]. As is well known, a
general Box-Jenkins model can be well approximated with a high order ARX model (a
long past horizon), and the result is asymptotically unbiased if the number of steps in the
past horizon tends to infinity. However, if the past horizon is too long, the co-linearity
within [¥y; Up; Us] becomes more severe (the condition number becomes larger and close
to an ill-conditioning situation), and this will increase the variance of the results. The
choice of the past horizon length becomes a trade-off between the bias and the variance,
and AIC can be employed for determination of the optimal past horizon length. In most
practical cases, the noise does not dominate the process, and the correlation between the
past stochastic signals and the past outputs is small. Therefore, the oblique projection is a
close estimate of the true predictable subspace.

In general, the coefficient matrix Ls is a biased estimate of H; but it is a close
approximation of Hy. The resultant Lj is a full matrix and is not consistent to the futures
of Hy, such as block diagonal matrix, equal entries on the block diagonals as shown in

(2.1.8). ¥-L;Ur is a biased estimate but a close approximate of the predictable subspace.
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In the paper where N4SID was proposed (Van Overschee and De moor, 1994), the
relationship between LY, +L,U, and IXi was not revealed, and the bias issue was not
clearly addressed. In fact, Z-H;Us is a biased estimate of the predictable subspace because
of the biased terms in the estimated coefficient matrices in (3.2.3). The estimated state
sequence I7 (Ze-H:Uy) (analogous to results of a non-steady state Kalman filter over the
past horizon) is a biased estimate of true state sequence for a general process due to the
bias in the estimated initial states. The LS regression used to retrieve system matrices B
and D in the unbiased N4SID algorithm is to correct the bias effects in the estimated
states.

Another N4SID algorithm (called robust algorithm) was proposed by in Van
Overschee and De Moor (1996). In this algorithm, the oblique projection result (3.2.5) is
further projected onto the orthogonal space of Uy (regressing Ur out) before performing
SVD for the estimate of I;. Equation (3.2.6) indicates that regressing Ur out in fact
deteriorates the SNR (the predictable subspace vs. the estimation error). Process states are
still estimated by I7 (Z-HUy). System matrices B and D are parameterized in the state-
space model, and estimated by a different LS regression, which might improve the final
estimated model.

The true predictable subspace is a product of I7 and Xy, and its rank equals the
system order n. Therefore, in N4SID, SVD (PCA) is applied on the estimated predictable
subspace L1 Y,+LyU,. The number of the dominant singular values is taken as the system
order, and the left singular matrix and the right singular matrix are used to estimate J7 and

Xy respectively (refer to Section 5.3 for more discussion on state estimation).

3.2.2 New N4SID Algorithms

N4SID-ARX algorithm
In the analysis of N4SID for closed-loop data, Ljung (1996, refer to Chapter 6)

suggested a modified N4SID algorithm for closed-loop case in order to avoid the bias in
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the result. In fact, this modified N4SID algorithm is also applicable to the open loop case.
The major steps in this algorithm are as following (denoted as N4SID_ARX thereafter):

e Fit a high-order ARX model based on the current outputs yy and past input and
output data [¥,; U], and form a one-step-ahead prediction model in ARX
model form.

e Recursively use the one-step-ahead prediction model for the predictions of the
multiple step outputs in the future horizon with future inputs to be null.

e Then, as in N4SID, use SVD to estimate the system order and the state
sequence, and then fit the estimated states to the state-space model for system
matrices.

Fitting y« against [¥p; U] is a special case of the least square regression in (3.1.9)
with only yx considered, and the resultant ARX model is only related to the part of
coefficient matrices in (3.2.3) corresponding to yi. Since a long past horizon is usually
used, the result is a high-order ARX model (2 high-order vector ARX model for MIMO
case). This ARX model is an unbiased estimate of the true process model (ARX model
process) or a close approximation (Box-Jenkins model process) as discussed in Section
3.2.1. The one-step-ahead prediction by this ARX model gives a good prediction of the
current outputs. The same ARX model is then used to predict the multi-step-ahead future
outputs. Here in the prediction, the future input effects are eliminated by setting the future
inputs to null (refer to (3.1.9)). In predicting the outputs at k+i time point (=1, 2, f~1), the
outputs between k+i-1 and k£ used in ARX are substituted with the known predicted
values. In this way, all the future outputs within the future horizon are predicted based on
the same ARX model and the past data set (without any involvement of future data). The
result of the multi-step ahead predictions is essentially an estimate of the predictable
subspace.

This algorithm is also applicable for the process with instantaneous action (system
matrix D is not null) in the process for open loop case. In this case, yi should be fitted

against [Y,; U] and uy, and the coefficient for u is an estimate of D. In the estimation of
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the predictable subspace, the instantaneous action is also eliminated from the future

outputs with zero-set future inputs.

N4SID-Hf algorithm

There is another approach to estimating the predictable subspace based on the
fitted ARX model: the first f impulse weights Wo, W1, W, ..., W can be calculated from
the ARX model, and an estimated H; matrix can be constructed based on these estimated

impulse weights according to the form shown in (2.1.9) as:

(W, 0 0 - 0)
W W, 0o - 0
H, ,=|w, W W, - 0
X ) ) 0

Wiy Wrp Wy oo W )

remove the future input effects from the future outputs (¥; =Y;- H¢ Uy); then project the
remaining ¥; . onto the past data (Yr-H; Up)/[¥;; Up)) to obtain an estimated predictable
subspace. This algorithm is denoted as N4SID Hf thereafter.

This approach is easy to understand based on (3.1.7) and (3.1.9). Here H; Uris an
estimate of the future input effects on the future outputs. After removing the estimated
future input effects (2" component in (3.1.7)), the remaining (¥; =Yr-H; Uy is the
predictable subspace plus the effects of the stochastic signals, and it is also an estimate of
the predictable subspace. If the effects of future stochastic signals (H,W#rtVy) are
significant (e.g., a long future horizon used), projecting ¥t . to [¥}; U,] will remove the
effects of the future stochastic signals, which are uncorrelated with the past data, and a
better estimate of the predictable subspace is obtained.

In general, the estimated predictable subspace from this approach is a close
approximation of the true value, and is close to the result from N4SID_ARX algorithm.
However, The results from these two methods are different. In N4SID_Hf algorithm, Yy
involves the effects of future inputs HUs and the future disturbances, and the future input

effects H;Ur is removed in the procedure of ¥»-H¢ Ur. In N4SID_ARX algorithm, Uy is
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not involved. In addition, the effects of the regression error are different in these two
methods. Suppose the inputs are positive and the estimated impulse weights are greater
than the true values, then N4SID Hf algorithm will remove more than the true effects of
the future inputs, and the final estimated future outputs will be smaller than the true
values. However, N4SID_ARX algorithm will give larger estimated predictions of the
future outputs than the true values. In practice, the errors on the estimated impulse weighs
as well as the inputs are always positive and negative. For the estimated predictable
subspace, both methods experience the cancellation of these errors, and the final results
are very close to the true values. If the true ARX model is available, both methods will

result in the true predictable subspace.

N4SID algorithms based on fitted FIR model

The key idea of these N4SID algorithms is to eliminate the future input effects
based on a preliminary process model (estimated impulse weights). There are other
approaches to estimate the impulse weights than ARX fitting, such as using the FIR
model. The FIR model can be obtained by projecting the current outputs onto the past
inputs (long past horizon, only inputs are included in the past data set in (3.1.9)). Both
new N4SID algorithms are feasible based on the estimated impulse weights from the
fitted FIR model.

Based on the fitted FIR model, both algorithms (projecting the estimated future
outputs onto the past inputs in N4SID_Hf algorithm) can only extract the deterministic
states and the dynamic model (disturbance model can be estimated thereafter based on the
residuals). SVD (PCA) on the predicted future outputs is to reduce the model order, and
this is analogous to Box-Jenkins methodology by fitting the data to a lower-order

parsimonious model based on the general trend of FIR weights.
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3.2.3 Simulation Studies for N4SID Algorithms

In this section, different algorithms are applied to simulation examples to show
the principles and the bias issue of the N4SID method. For easier understanding, simple
single-input single-output (SISO) processes with ARX and Output-Error (OE) models are
chosen for simulation in this subsection. More complicated and practical examples are

available in Section 3.5.

N4SID algorithms for an ARARX process

The first simulation example is an ARARX model process to show the basic ideas
and the unbiasness of N4SID for ARX process (ARARX is a special ARX model with a

disturbance denominator that includes the dynamic denominator):

0.2z 1
)= gl (-08"Ji- 0.95z—*)e(k) G.28)

In time domain, the following equation holds for the process:

¥, =L75y,,-076y, , +0.2u,_, -0.1%, , +e, (3.2.9)
The process has the following state-space representation in the innovation form:

08 0 0.2 -4.2667
P =[ 0 0.95]"" { 0 ]"" ”{ 6.0167 }e“
ve=[ 1, +e, (3.2.10)
The process is a 2™ order system with poles at 0.8 and 0.95 respectively. In the

simulation, the input u is a pseudorandom binary signal (PRBS) signal with magnitude
of +1 and switching time period of 5 (7¢=5). The variance of white noise e is adjusted to
let the signal-to-noise ratio (SNR, in the sense of variance at the output) to be 1.0, and
1500 simulation data points are collected. The true values of the states and the predictable
subspace (/¢Xy) in the simulation are also collected for comparison.

The original N4SID is applied for the simulation data. Both the past and future

horizons are of 3 steps, and there are totally 1495 effective data points after considering
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the edge effects of these time horizons. The coefficient matrices of LS regression of ¥¢
against [¥p; Up; Ur] are shown as L, L, and L; respectively (the true Hy matrix is also

shown to compare with L. See equation (3.2.3) for notation):

(17016 ~0.6771 -0.0381 0.1983 -0.1792 -0.0073

L =|22508 -12524 -0.0354| L, =(0.1583 -0.3190 -0.0049
25824 -1.5716 ~0.0781 0.1274 -0.4086 -0.0160
[-0.0022 0.0027 -0.0006 0 0 0

Ly =| 0.1945 00026 0.0014 H,={02 0 0 (3.2.11)
| 01535 0.2008  0.0023 0.16 02 0

The three rows of above matrices correspond to predictions of yx, Yk+1, Yx+2 based on past
data respectively.

¥« can be predicted based on the following ARX model (from fitting yy to three
steps of past inputs and outputs):

y, =1.7011y, , -0.6762y, , ~0.0385y, , +0.1981u, , —0.1791x,_, —0.0076u,_, (3.2.12)
The true prediction model of yy can be obtained as (using (3.2.9) for yi.; while keeping
the coefficient for yi.; in the right-hand side the same as that in (3.2.12)):

7. =1.6993y, , —0.6713y, , ~0.0385y, , +0.24,_, —0.1799x,_, — 0.0096u, (3.2.13)
The regression result is very close to true model with minuscule estimation errors. In the
original N4SID algorithm, the predictable subspace is estimated as L; ¥,+L, U,

In the N4SID_ARX algorithm, ARX model (3.2.12) is the prediction of yi based
on past data. When ARX model (3.2.12) is used for the next step, the result is:

Vi =1.7011y, - 0.6762y, , - 0.0385y,_, +0.1981u, ~0.1791x,_, - 0.0076u, _,
When yx in the above equation is substituted with its estimate in (3.2.12) and uy is set as 0
to remove the effect of the future input, the prediction of yy4; based on past data is:

Fre, = 22175y, ~1.1888y, , ~0.0655y, , +0.1579%, , —0.3122u, , —0.0129, (3.2.14)
Similarly, using (3.2.12) recursively, the prediction of yy+» based the past data is:

Prnp = 2.58355,.,~1.5650y,_, - 0.0854y, , +0.1270u,_, ~0.4101u,_, —0.016%,_,  (3.2.15)
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Equation (3.2.12) and the above two equations are the predictions of future outputs based
on the past data, and these consist of the predictable subspace estimated by recursively
using the one-step-ahead ARX model. Note, the coefficients in (3.2.14) and (3.2.15) are
close to but do not equal those in the 2™ and 3™ row of L; and L, in (3.2.11) respectively.

The impulse weights of the ARX model shown in (3.2.12) can be easily
calculated. The first 7 impulse weights are 0, 0.1981, 0.1579, 0.1270, 0.1017, 0.0811 and
0.0642 respectively. Based on these estimated impulse weights, the Hy matrix can be
constructed as (refer to Section 2.1):

0 0 0
={01981 0 0 (3.2.16)
0.1579 0.1981 0

H,,
It is very close to the true value of Hy shown in (3.2.11). Based on this estimated Hy, the
predictable subspace is calculated as ¥r-Hy (Ur. It is the estimated predictable subspace by
the N4SID_Hf algorithm.

In N4SID, SVD is performed on the estimated predictable subspace to determine
the system order and to estimate the process states. The singular values of the estimated
predictable subspace show the relative importance of the singular vectors (estimated
states) in explanation of the variance of this subspace. The number of the significant
singular values is an estimate of the system order. The singular values of the estimated
predictable subspace from different algorithms are listed in Table 3.1. These algorithms
all indicate that the process is of order 2, and first two singular vectors from the SVD are

estimates of the process states.

Table 3.1 Singular values from N4SID algorithms (ARARX process)

Algorithm 1¥ singular value 2™ singular value 3" singular value
Original N4SID 48.9291 4.6004 0.0515
N4SID_ARX 48.8985  4.6324 0.0245
N4SID_Hf 49.1927 47186 0.0210
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The estimated predictable subspaces from different N4SID algorithms are tested
for the biasness. Here Student’s z-test is employed to test the bias in each variable of the
estimated predictable subspace. The true predictable subspace is [ixy, which is known in
the simulation study. For each variable of the estimated predictable subspace, the paired
differences between the true values and the estimated values are in fact the estimation
errors. The Student’s ¢-statistic based on these paired differences can be used to test
whether there is bias in the estimates values. For all three N4SID algorithms, the ¢
statistic values for the three variables in the estimated predictable subspace are listed in
Table 3.2. All the absolute values of the z-statistic result are less than 1.96. This clearly
indicates that the estimated predictable subspaces are unbiased (with 95% confidence
level). Note, the estimated predictable subspace from N4SID_Hf algorithm includes the
effect of the future stochastic signals. Here the effect of the future stochastic signals is
removed for an accurate test.

Student’s z-statistic can also be used to test the biasness on the estimated states.
The estimated states and the true states are usually in different basis. The paired
differences can be obtained as the residuals of projecting the estimated states to the true
states. For the two estimated states from different N4SID algorithm, the Student’s #-
statistic values based on the paired differences are listed in the last two columns of Table
3.2. These values clearly indicate that the estimated states from these N4SID algorithms

are unbiased.

Table 3.2 ¢-statistic values from N4SID algorithms (ARARX process)

Algorithm Estimated yy, | Estimated yy.,y, | Estimated yy., | Estimated x,) | Estimated x,y
Original N4SID 0.7279 0.4722 0.4598 0.5161 -0.3265
N4SID_ARX 0.8704 0.6897 0.6799 0.5392 -0.3706

N4SID_Hf 0 -1.3193 -1.4129 -0.6517 0.7007
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N4SID algorithms for an OF process

The second simulation example is a process with Output-Error (OE) model. It is
used to show the bias in N4SID algorithms caused by using limited order ARX model to
approximate a general dynamic-stochastic process. The simulation example has the

following transfer function:

-1
Vo= 2l e, (G.2.17)
2

The input used in simulation is a PRBS with magnitude of +4 and 7=5. The variance of
noise ey is adjusted to have SNR to be 1.0 (similar conditions as in 1% example). 1500
data points are collected

Similar to the first example, both the past and the future horizon consist of 3

steps. Projecting of ¥y onto [¥;; Uy; Uy gives the coefficient matrices Ly, L; and Ls as:

[0.1164 0.1041 0.1628 02230 0.1081 0.1704

L, =|00853 0.1269 0.1053 L,={0.1309 0.1268 0.0933
00953 0.0561 0.0590 0.1402 0.0031 0.1835
[0.0259 —0.0921 -0.0595 0 0 0

L,=[02282 00170 -00257| H,=/02 0 0 (3.2.18)
01304 02177 0.0284 0.16 02 0

There are obvious differences between coefficient matrix L3 and the true value of Hy. The

ARX model fit from the data is:
$e =0.1175y,, +0.1068y, , +0.1651y, , +0.2145u, , +0.1082u,_, +0.1648u, , (3.2.19)
and the first 7 impulse weights from this ARX model are 0, 0.2145, 0.1334, 0.2034,
0.0736, 0.0524, and 0.0476. The constructed H; matrix based on the above estimated
impulse weights is :
0 0 0
H, ,={02145 0 0 (3.2.20)
0.1334 0.2145 O

Based on the above result, the predictable subspace and the process states can be

estimated by the original N4SID, N4SID_ARX and N4SID Hf algorithms. The results of
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the singular values from SVD of the estimated predictable subspaces are listed in Table
3.3. All these algorithms can give a clear cut-off after the first singular value on the
magnitude. The system is determined of order 1. The Student’s ¢-statistic values based on
the paired differences between the true and the estimated predictable subspace and states
are listed in Table 3.4. These results clearly show that all three N4SID algorithms give
biased estimates of the predictable subspace for this OE model process. Similar

conclusions can be drawn from the z-test for the estimated state in this example.

Table 3.3 Singular values from N4SID algorithms (OE process)

Algorithm 1* singular value 2™ singular value 3" singular value
Original N4SID | 34.5304 2.0064 1.1180
N4SID_ARX 33.5558 3.9037 3.1026
N4SID_Hf 35.3802 0.7080 0.1538

Table 3.4 #-statistic values from N4SID algorithms (OE process)

Algorithm Estimated yy, | Estimated yi4, | Estimated yigp | Estimated xx
Original N4SID -3.8038 -5.0553 -4.4511 -2.9308
N4SID_ARX -4.0494 -4.6861 -4.2675 -2.6091
N4SID_Hf -0.4656 -4.5558 3.1957 -2.5849
3.3 Analysis of CVA

CVA uses Canonical Correlation Analysis (CCA) to estimate the process states. In
statistics, CCA finds the most correlated linear combinations from two sets of variables
respectively, in other words: the most common variates between two data sets. From the
prediction point of view, CCA finds a linear combination of one data set to explain the
most percentage of variation in a direction of the other data set. Refer to Chapter 4 and

Appendix A4.3 for more details and the computation approaches of CCA.
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CVA was first proposed by Larimore (1990). It was illustrated and explained in
terms of the maximum likelihood principle, but the ideas were not straightforward, and
there was a minor mistreatment in the paper. Here, based on the multi-step state-space
model, the correct procedures of the existing algorithm are summarized, and a new
algorithm is proposed. Both algorithms will be analyzed with focuses on the principles
and the biasness of the estimated state space. The mistakes in publications will also be

discussed.

3.3.1 CVA Regression Out Algorithm

The primary feature of the CVA regression out algorithm is to perform CCA on
the past data set (¥, and U;) and the future outputs (¥y), both of which have been
projected onto the orthogonal space of the future outputs (i.e., regressing the future inputs
out of both the past data and future output data). The basic idea of this algorithm
appeared in different papers (Larimore, 1990; Van Overschee and De Moor, 1995;
Carrette, 2000). However, the correct and complete procedures of this algorithm have not
been summarized or proved in any published paper. Here, the procedures of the algorithm
are first summarized, and then a detailed analysis on the principles and a strict proof on
the biasness issue will be presented.

The CVA regression out algorithm (referred as CVA_RO hereafter) includes the
following procedures:

e Regress Ur out of the future outputs ¥; and the past input/output data
Po={Y,; Uy), te., ¥; o=YiPuo=Ye-Bro viUs, Pio 1=PioPute=Pio-Bro_pioUs.
Here Pu=I-Us"(U:U{") ' Uz is the projection matrix onto the orthogonal
space of Uy, B o y=Y:Us (UsUr")" and B 1 pio=PooUs (UU) .

e Perform CCA on ¥;, and Pio,, denote the coefficient matrix for
canonical variates from Pio 1o as Ji. The system order can be determined

by the number of the dominant canonical correlation coefficients (CCCs).
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e Take estimated process states from Xy = J1Pio (note, not J1Pio 1, the CVs
of above CCA).
e Fit the estimated X to the state-space model.
Here Py, is the projection matrix for projection onto the orthogonal space of Ur. In this
algorithm, CCA is performed on the modified past data and the modified future output
data, and the coefficient matrix from the CCA is used for the original past data to
estimate process states.

Based on the multi-step state-space model for ¥y in (3.1.7), it is clear that
regressing Ur out of ¥; removes not only the future input effects H;Us, but also removes
the projection of the predictable subspace I¢Xy on the future inputs Uy, i.e., IeXi/Us. This
projection generally is not a null space because of the correlation between Xy and Ur. The
correlation exists in two scenarios: Uy is determined by a feedback controller (state
feedback controller or output feedback controller, i.e., the data is collected under closed-
loop), and the inputs are auto-correlated signals (hence Uy is correlated to Uy, which make
a contribution to Xy). Chapter 6 will discuss the closed-loop case, and this section
considers only the open loop case.

Projecting both sides of (3.1.7) onto the orthogonal space of Ur (post multiplying
Pys,) gives the following relationship:

Y, = I‘ka_m +H W, +V, (3.3.1)

here Xi_=XiPuso is the result of regressing Ur out of Xi. The left-hand side is the result of
regressing Ur out of ¥ On the right-hand side, the effects of the future inputs HiUy are
totally removed, and J&Xi ,, is the result of regressing Uy out of the predictable subspace.
The stochastic term H,sWit¥; are kept intact in the regressing out because of its no
correlation with Uy. Equation (3.3.1) shows that ¥; ,, should lie in the space of X r, in the
sense of expectation. The subspace X , relates to the past data by projecting both sides

of (3.1.6) onto the orthogonal space of Us:
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x, . =lar a a7 e, o, - arrH W, - arm,
k_ro =~ P p Pt o T, T p sl o

U, PP (332)
= [A”l"; Q, AT, H, [Py ,,+ (Qs,p -4, H,, )’Vp — ATV,

Based on the above two equations, it is clear that Xj ., is the link between ¥; 1, and Pyo
and variables in X r, are the most common variates between the two data sets (stochastic
variables are independent of each other and other variables). Therefore, the dominant

CVs from CCA on Py ,, and ¥; , are estimates of Xj 1. They are not the estimates for
| the process states Xi. However, the coefficient matrix J; between Pio o and Xy  is the
same as between Pip and Xy (see (3.3.2) and (3.1.6)), and therefore the first few variables
of J1P are estimates of the process states Xi. The system order, i.e., the number of
variables should be taken from J,Pjg, can be determined by the number of dominant
canonical correlation coefficients (CCCs) of the above CCA, or by other criteria (such as
AIC). These are the basic ideas behind the CVA_RO algorithm. See Appendix A3.2 for
details and the conditions for biased or unbiased results. Note, if there is co-linearity
between Xy and U, information of one or more states is completely removed from ¥rand
Pyo; therefore, not all the states can be estimated by this algorithm. This corresponds to
the rank deficiency of D in Appendix A3.2.

As for the biasness issue, if the true process is of ARX (or ARARX) model,
CVA_RO gives an unbiased result for the process states and the process model. For other
general processes, CVA_RO gives biased estimates of the process states and the process
model.

CVA_RO algorithm is shown to use the same approach as the original N4SID
algorithm to eliminate the future input effects from the ¥ (see Chapter 5). In fact, the
CVA approaches described in Van Overschee and De Moor (1995) is a realization of the
CVA_RO (in the form of square-root-factor for CCA computation, see Appendix A4.3).
The analysis based on the multi-step state-space model shows the differences and the
connections between the CVs and the process states. The essence of each step in

CVA_RO algorithm becomes clearer and easier for understanding.
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3.3.2 CVA Algorithm Based on Estimated H;

A key issue in CVA is to remove the future input effects H;U; from ¥;. Here Uy is
a known data set, and only the coefficient matrix Hy is unknown. If H is estimated, then
future input effects can be estimated and removed from the future outputs. Based on this
idea, a new CVA algorithm becomes possible: eliminate the effects of Uy from Y, based
on an estimated H; and then use CCA to estimate the state variables. The detail
procedures in this algorithm are described below:

e Fit an ARX model by regressing the current output yi against the past
input and output data Pio=[Y,; U]

e Construct the estimated H; matrix based on the estimated impulse weights
from the above ARX model, denoted as Hy ., and estimate the predictable
subspace as ¥y ~Y¢- Hy Uy

e Perform CCA on Pjp and Y., the number of dominant canonical
correlation coefficients (CCCs) are taken as the estimated system order 7,
and the first 7 CVs from Py are taken as the estimated state sequence Xi

e Fit the estimated state sequence X to the state-space model

This algorithm is based on an estimated coefficient matrix Hj, it is referred as CVA_Hf
algorithm hereafter, or simply CVA algorithm if there is no confusion.

Matrix H; shows the effects vof the future inputs on the future outputs. From
Section 2.1, it is clear that H; is a lower triangle matrix with the first f step impulse
weights (or weight blocks) on its lower diagonals. Fitting an ARX model is a way to
obtain the estimated values of these impulse weights (fitting an FIR model is another
possible approach), and then Hy can be constructed by setting these estimated impulse
weights on the lower diagonals, denote this estimated Hr as H; .. The multi-step state-
space model for future outputs (3.1.7) indicates that data set ¥i-H; Ur is an estimate of

the predictable subspace X plus future stochastic terms. Considering (3.1.6), it is clear
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that data set ¥r-Hy Ur and the past data [¥,; U;] have the common variate of X,. This
implies that CCA on these two data sets provides an approach to estimation of the state
sequence. These are the fundamental ideas behind the new CVA algorithm. Refer to
Appendix A3.3 for the details and the biasness properties of the algorithm.

This CVA algorithm gives an unbiased estimate of state sequence if the true
process is of ARX (or ARARX) model form. For other general process models, CVA can
only give asymptotical unbiased results with an infinite number of past steps. With a
limited number of past steps, there is some bias on the estimated state sequence. This is
determined by the first step of fitting the ARX model. If the true process is an ARX
process, and the lag steps in the past horizon is long enough, the fitted ARX model is
unbiased and the impulse weights from the ARX model are also unbiased. If the true
process is a general Box-Jenkins model, the fitted ARX model with limited past steps
will be an approximation of the true model, and the impulse weight estimates will be
biased. When the number of past steps tends to infinity, the bias tends to disappear. With
unbiased impulse weights, H; . and the estimated predictable subspace Y¢-H; Us will be
unbiased.

In this algorithm, CCA is performed on Pi=[¥,; U,] and the estimated
predictable subspace ¥; =YiH; Us, which includes both the true predictable subspace
IiXi and the effects of future stochastic variables H, (W +Vr. From (3.1.8), it is clear that
the first term J¢Xy can be predicted by the past input and output data Pio. However, the
second term is uncorrelated with Pjo and cannot be predicted by Pjo. Since IgXy is of rank
n, there will be only » significant correlations between the two data sets. The first n
canonical variates from Pio are the best summarization of the past data Py for the
prediction of IzXy. CCA gives the best prediction of ¥; . in the sense of explaining the
relative percentage of variation, not in the sense of the absolute magnitude of the variance
as in N4SID. The resultant canonical variates are also independent of the scaling of the

input and output variables. This is an advantage when using this method without
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considering the variable unit or variable scaling; however, this also could be a
disadvantage that no variable can have more influence on the result.

In the case of auto-correlated inputs, the removal of the effects of the future inputs
is necessary prior to performing CCA between the future outputs and the past data.
Without removal of H{U;, the effects of the current states and the effects of the future
inputs on the future outputs will be confounded when performing CCA. The correlation
between Xy and Ur may lead to more components in ¥r explained by Pio than the
predictable subspace [iXy. However, this is due to the correlation between HiUs and P,

not due to the causal relationship in the process.

3.3.3 Discussion of CVA Algorithms

Though both CVA algorithms have the same bias properties, the CVA_Hf
algorithm has a better SNR than CVA_RO in the computation. The true state information
in ¥¢is IiXy. In the case of auto-correlated inputs, CVA_RO algorithm loses part of the
state information JiXi/Ur in regressing Ur out of ¥, and only JeXyPug 1s left in Y5
meanwhile, the effects of the future stochastic signals are kept intact in regressing Ur out
of ¥;. This loss of state information will reduce the signal-to-noise ratio (SNR) in the
Yt 1o, and therefore result in a larger variance for the estimated coefficient matrix and the
estimated states in the CVA_RO algorithm. The degradation in SNR is directly related to
the severity of the auto-correlation of the process inputs. CVA_Hf does not suffer such a
problem and has a better SNR in ¥; =Y-H; Us.

The estimated state sequences from the two CVA algorithms have different
orthogonality properties. Estimated states from CVA_Hf are CVs from a CCA, and they
are orthogonal to each other. The CVs from CVA_RO are J1Pio 1, and they are
orthogonal. However, the estimated states are J1Pjo, and they are not orthogonal to each
other. Orthogonal state variables are preferable in the LS fitting for system matrices since

they should lead to a better-conditioned set of normal equations.
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If the input signals are not auto-correlated (e.g., white noise or PRBS with 7=1),
regressing Ur out of ¥; only removes the future input effects from ¥;. CVA_RO will be
equivalent to CVA_Hf though there might be a small numerical difference for data sets
with finite length.

In some papers discussing the CV A method, there are still some mistakes in state
estimation by CCA. One of such mistakes is to take the CVs from CCA(Pyo, ¥y as
estimated states (e.g., Lakshminarayanan, 1997), without removing the future input
effects. This approach is analogous to estimating the predictable subspace and the states
by projection of ¥r onto Pyo. Only when the inputs are not auto-correlated (e.g., white
noise signals), will the CVs be unbiased estimates of the process states. Because of the
additional variations arising from U however, the state estimates will have larger
variance than those from the CVA_Hf algorithm.

Another misleading approach is to take CVs from CCA (Pio, ¥; o) as estimated
states (e.g., Larimore, 1990). Here the future input effects are eliminated by simply
regressing U out of ¥;. For general cases (auto-correlated inputs), as discussed above, this
approach will not only remove the future input effects, but will also eliminate the
projection of I'tXy onto Ur. CVs from this CCA are only estimates of X r, rather than Xi.
This approach is valid only when the inputs are white noise signals.

The third mistake is to use CVs from CCA (Pio 1o, ¥t ro) as the estimated states in
CVA_RO algorithm. In this case, the CVs are JiPio 1o, which is in fact an estimate of
Xi 1o as shown in Section 3.3.1. The difference between C'VS and Xi=J1Pyo is J1Byo pioUs
(where Bro_pio=PioUs (UUs')™).

3.3.4 Simulation Studies for CVA Algorithms

The simulation studies in this subsection focus on illustration of the biasness
issues of the CVA_RO and CVA Hf algorithms discussed above. The simulation
examples of the ARARX and OE process used previously in Section 3.2.3 (for the N4SID
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algorithms) are employed again to show the results of these CVA algorithms under
different conditions. Simulation examples will also demonstrate the errors in the

misleading approaches discussed in the last subsection.

CVA algorithms for an ARARX process
Both CVA_Hf and CVA_RO algorithms are applied to the simulation data from

the ARARX process showing in (3.2.8). The CVA_Hf algorithm is based on the same
estimated predictable subspace ¥; . = Yr-H (Us as in Section 3.2.3 (Hy . is the same as in
(3.2.16)). This estimated predictable subspace is already tested to be unbiased in Section
3.2.3. The estimated states come from the significant CVs from CCA(Pio, ¥r¢). In
CVA_RO algorithm, the LS regression coefficient matrix of ¥; against Uy is:

-0.0656 -0.0827 ~0.1042

B, y=| 0.1673 -0.0389 -0.0484 (33.3)

0.4440  0.5554 -0.4465
then the result of regressing U out of ¥ris ¥ o=¥B:o viUr. This result is obviously
different from ¥; . due to the large difference between this Hy . and the H; . in (3.2.8).
The result of Pio r, can be obtained similarly. In the CVA_RO algorithm, the coefficient
matrix for CVs from CCA(Pio ro, ¥t 10) 1s applied to Pyo for process state estimates. The
computation and test results by these two algorithms are listed in Table 3.5.

Table 3.5 Results from CVA algorithms (ARARX process)

CCA CCCs Estimated | t-statistic Variance of state
order | estimation error
CVA_Hf CCA(Pyo, Y; ) 0.9992,0.8399, 2 0.4682 7.2x10°®
0.0666 0.2930 1.1x10°
CVA RO CCA(Pio 1o 0.9990, 0.8269, 2 0.4577 8.4x107°
¥ 10) 0.0635 0.3142 1.6x10°

CCCs: Canonical Correlation Coefficients

It is clear that both CVA algorithms give clear cut-off on the magnitude of CCCs
after the 2™ CV; therefore both algorithms correctly determined the system order (the
same conclusion is drawn based on AIC). In the CVA_HTf algorithm, the first 2 CVs are
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taken as the estimated states (unit variance, orthogonal to each other). In CVA_RO
algorithm, the coefficients for the first 2 CVs are applied to Py, to estimate process states.
The variances of these two estimated states are 1.2544 and 1.1291 respectively, and their
correlation coefficient is -0.1516 (not orthogonal to each other). In Table 3.5, Student’s #-
statistic values for the paired difference between the estimated states and the true states
clearly indicate that both algorithms give unbiased estimates of process states for this
ARARX process (a=0.05, refer to Section 3.2.3). The estimation errors on the estimated
states are rather small, and the CVA_Hf algorithm gives a slightly better result than the
CVA_RO algorithm. This conclusion is confirmed by the resultant impulse responses
shown in Figure 3.3. Both CVA algorithms give better results than the ARX model.

Resuit from CVA algorithms
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(a) Impulse responses
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(b) Error on the impulse responses
Figure 3.3 Impulse responses of models from CVA algorithms (ARARX process)

This simulation example is also used to test the three incorrect CCA state
estimation approaches discussed at the last subsection: CVs from CCA(Py,, ¥;), CCA(Py,,
Y; ) and CCA(Pyg ., ;). The results of the canonical correlation coefficients (CCCs)
from these approaches are listed in Table 3.6. The latter two approaches give clear cut-
offs on the significance of the canonical correlations to determine the system of order 2.
CCA(Py, ;) cannot give such a clear cut-off since its CVs try to explain part of the
future input effects. Here the first two CVs in these approaches are taken as the estimated

process states.

Table 3.6 CCCs from different CCA approaches (ARARX process)

CCA approach 1 CCC 2" CCC 39 CCC
CCA(Py, 1)) 0.9987 0.7161 0.2050
CCA(Py, ¥; ) | 0.9580 0.8014 0.0618
CCAPyo 100 Y 1) 0.9990 0.8269 0.0635

CCC: Canonical Correlation Coefficient
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The errors on the estimated states are calculated by comparing them to the true
process states. The variances of the errors from the three approaches are listed in Table
3.7. As shown in Table 3.7, these errors are tremendously higher than those errors by
CVA_Hf and CVA_RO algorithms (variances in magnitude of 10°® and 107 respectively).
As discussed before, these errors include some effects of the future inputs. After
regressing Ur out of these errors, the variances of the residuals become significantly
smaller. It is clear that about 40% to 70% of the errors on the estimated states are directly
related to the future inputs. If these estimated states are used for fitting the state-space
model, the final model results are shown in Figure 3.4. Compared to those from CVA
algorithms showing in Figure 3.3(a), these impulse weights have much larger deviations

from the true values, and the bias on the final result becomes obvious.

Table 3.7 State estimation errors from different CCA approaches (ARARX process)

CCA approach 1™ Canonical Variate 2" Canonical Variate
Variance of | Variance of | Explained | Variance of | Variance of | Explained
state error residual by Uz state error residual by Uz
CCA(Pip, Yy 0.00018 0.00011 38.6% 0.9591 0.5747 40.1%
CCAPo, Yiro) 0.0723 0.0438 39.4% 0.1041 0.0640 38.5%
CCA(Pi5 ro) Y1 r0) 0.1831 0.0526 71.3% 0.1058 0.0312 70.5%

Note: residual = state ervor — projection of state error onto Uy
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Modeling result for states estimated as CVs from different CCA approaches
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Figure 3.4 Impulise weights of resultant models based on CCA approaches for states

CVA algorithms for an OF process

The OE simulation example (3.2.17) in Section 3.2.3 is also used to demonstrate
the CVA_Hf and CVA_RO algorithms. The fitted ARX model, the estimated H; matrix
and the estiméted predictable subspace Y; =Y-H; U; are the same as shown in Section
3.2.3. The CCCs from CCA(Py, Y; ) and CCA(Py ., Y;,,) are listed in Table 3.8. The
result indicates that the system can be determined of first order, though the cut-off for

significance is not as clear as in the ARARX simulation example.

Table 3.8 CCCs from CCA algorithms (OE process)
CVA algorithm 1 CCC 2" CCC 3 CCC
CVA_Hf 0.7944 0.0791 ' 0.0410
CVA_RO 0.7260 0.0830 0.0434
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For these two CVA algorithms, variances of the estimated states, variances of the

state estimation errors, and the r-test results on the estimated states are shown in Table

3.9. These two methods give similar accuracy for state estimation (relative error). Both

algorithms give biased state estimates for this OE process. The impulse responses of the

resultant models are shown in Figure 3.5, and they indicate the bias of the resultant

models. Nevertheless, these impulse responses are better than the ARX fitting result

(smoother and smaller error).

Table 3.9 State estimated by CVA algorithms (OE process)

CVA algorithm Variance of state | Variance of state error Paired r-statistic
CVA_Hf 1.0 0.0769 -2.8953
CVA RO 1.50 0.1176 -2.9292
Result from CVA algorithms
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Figure 3.5 Impulse responses from CVA algorithms (OE process)
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3.4 MOESP Based on Estimated States

The original MOESP method is based on QR decomposition and SVD for the
extended observability matrix It (see Section 2.4). The use of QR decomposition is in
fact an equivalent way of regressing Ur out of ¥;. For white noise inputs, the algorithm

(elementary scheme) takes the matrix R2,(; as an estimate of the predictable subspace.

3.4.1 MOESP Algorithm Based on Estimated States

For the case of white noise inputs, exploration of the MOESP method shows two
new algorithms: one based on estimating /7 but simpler than the original MOESP, and
another one based on estimating the state variables.

The multi-step state model for future outputs can be written in the following form:

Y, =I‘ka+Hfo+Hs’fo+Vf 3.4.1)
and the QR factorization of U and ¥ris:
U R 0
[ d } =RO =[ H ][Q'] (3.42)
Yf R2l Rzz Qz
. . Q] T T Imi O .
Here Ry and R, are lower triangular matrices, and 0 g o, ] =lo 1.1 Ry is
2 . I

of full rank (the input is persistently excited at a sufficiently high order). Based on (3.4.2),
the future outputs in (3.4.1) can be expressed as:

U X +HR,Q +H, W, +V, =R, 0 +R,0, (3.4.3)
In the case of white noise inputs, the current state variables are linear combinations of the
past input data (in sense of infinite lag steps), and are uncorrelated to the future input
data, therefore we have:

Eep{X,UT}= Exp{x, Q7 |RY =0 (3.4.4)
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Since @, is independent of the stochastic variables (W}, ¥;) and orthogonal to @, we can
get the following relationships if the above (3.4.3) is post multiplied with 0:" and 0,7
respectively:

H R, =R, (34.5)
Therefore, the coefficient matrix Hr can be estimated as:

H, = R, R} (3.4.6)
Equation (3.4.5) also indicates that the @ term in the left-hand side of (3.4.3) equals to
the @, term of the right-hand side. What is left in (3.4.3) is the following relationship:

DX, +H, W, +V,=R,0, (3.4.7)

This shows that R, is essentially an estimate of the predictable subspace 7¢X. In case
of noise free (i.e., W=V=0), the above equation gives:

X0, =R, (34.8)
For a general case, the above relationship approximately holds if the disturbance in the
process is not very severe. For precise models, one can project equation (3.4.7) onto the
past data in order to remove the effects of the future stochastic signals, and have the
following relationship:

T, X,/Py=Rp0,/ Py (3.4.9)

The left side is essentially the predictable subspace IiXx (ARX process) or its close
approximation (other general process).

There are two different schemes for the system matrices: based estimated /7 and
based on estimated states. For the first choice, Equation (3.4.8) or (3.4.9) indicates that
the rank of R5; is only of system order, and its left factor coincides with I7. The result of
SVD on Ry, is:

R, =U, U, ﬁ)‘ 2}[(2;} ~U,S VT (3.4.10)
The number of the dominant singular values (in diagonal of §;) is an estimate of the

system order, denoted as i (or use AIC to determine the system order). Matrix U, can be
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taken as an estimate of I (i.e., /7=U;), which is a basis for estimation of system matrices
A and C (the original MOESP, refer to (2.4.4)). System matrices B and D can be obtained
from the estimated H; matrix in (3.4.6): D is the average of block elements on the
estimated Hy, and B can be obtained by LS method based on the estimated 77 and lower
diagonal part of the estimated Hy. Here the computation for system matrices B and D is
simpler than that of the original MOESP. Matrices B and D can also be obtained by pre-
multiplying (3.4.1) with U," then solving a LS regression (U,' is orthogonal to the
estimated 77 (refer to Verhaegen, 1992).

The second scheme is based on the estimated states. Based on (3.4.7) to (3.4.10),
the process states can be estimated as:

X, =8V'Q, or X, =8V'Q,!P, (34.11)
Since this estimated state sequence is a linear combination of @, (the first n row vectors),
they satisfy the requirement shown in (3.4.4) (i.e., the orthogonality between Xy and Q).
Then this estimated state sequence can be used to fit the state-space model for system
matrices as in N4SID and CVA. The variance matrices of stochastic variables can be
estimated by the fitting residuals.

In the two MOESP algorithms shown above, both 77 and states Xy are estimated
from the same estimated predictable subspace. In [i-based algorithm, there are /(f~1)
fitting data points in LS regression fitting for system matrices A and C (/ is the number of
outputs). In state-based algorithm, the number of fitting data points in LS regression for
system matrices is essentially the effective data length, which is usually much longer than
I(f~1). Therefore, in estimating system matrices, this may result in smaller estimation
errors than the /+-based algorithm.

For general auto-correlated input signals, R, is no longer an estimate of the
predictable subspace. In fact, it is ¥ 0, an estimate of JeXy  (refer to (3.3.1). Now
estimates of 77 and Xi , (not Xy) can be obtained based on SVD of Ry,. Coefficient
matrix Hr and state Xy can be estimated with some other techmiques, such as the

coefficient matrix for Py 5, is used for Py (refer to CVA_RO in Section 3.3.1; Van
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Overschee and De Moor, 1995), pre-multiplying (3.4.1) by U, (Verhaegen, 1992, 1994)

or using Pyo as instrumental variables for (3.4.9) (see also Li and Qin, 2000).

3.4.2 Simulation Studies for MOESP Algorithms

MOESP algorithms for an ARARX process
The first simulation example is the ARARX model (3.2.8) in section 3.2.3 but

with a white noise input. 100 simulations are done for each of 5 different noise levels.
The average SNRs are 105.5, 33.15, 10.0, 3.28 and 1.03 respectively. In each simulation,
500 data points are collected.

The It-based MOESP algorithm and the state-based MOESP algorithm discussed
above are applied for this simulation example. Both the past and the future horizons are
of 8 lag steps. The system order is determined to be 2. In order to compare the modeling
results, the first 50 steps of impulse weights of the final model are compared with the true
values, and the sum of the absolute errors (SAE) is used as an index for model accuracy.
The results of SAE for different SNR cases are summarized in Table 3.10. For this
simulation example, the state-based MOESP algorithm is better than the It-based
MOESP algorithm at high noise level (i.e., small SNR, say SNR<10); at low level of
noise, the Ir-based MOESP algorithm gives a better SAE. Student’s #-test of these results

confirms the conclusion.

Table 3.10 Results of MOESP algorithms from Monte Carlo simulations (ARARX process)

SNR level 105.5 33.15 10.0 3.28 1.03
Average SAE for state-based algorithm 0:1113 0.1515 0.2735 0.6148 1.2970
Average SAE for original algorithm 0.0682 0.1428 0.3163 0.9327 2.3673
Difference of the average SAE (rowl ~row2) 0.0432 0.0086 -0.0428 -0.3178 | -1.0704
STD of the SAE difference 0.0063 0.0142 0.0206 0.0404 | 0.0600
t-statistic for the difference 6.86 0.61 -2.08 -7.87 -17.84

SAE: sum of the absolute errors of the first 50 impulse weights
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MOESP algorithms for an OF process
The OE model (3.2.17) in Section 3.2.3 is also employed in Monte Carlo

simulations to compare the two MOESP algorithms. Similar simulation conditions as for
the ARARX process are used in the study, and the average SNRs are 117.2, 36.79, 11.29,
3.61 and 1.13 respectively for different noise levels. The results are listed in Table 3.11
and confirm the conclusion that state-based MOESP gives a better result at high noise
level (e.g., say SNR<1.0).

Table 3.11 Results of MOESP algorithms from Monte Carlo simulations (OF process)

SNR level 117.2 36.79 11.29 3.61 1.13
Average SAE for state-based algorithm 0.0619 0.0598 0.0750 0.0829 | 0.1177
Average SAE for original algorithm 0.0117 0.0208 0.0404 0.0737 0.1397
Difference of the average SAE (towl ~row2) 0.0502 0.0390 0.0346 0.0093 { -0.0220
STD of the SAE difference 0.0047 0.0042 0.0062 0.0071 0.0086
t-statistic for the difference 10.68 9.29 5.58 1.31 -2.56

3.5 Application of SIMs to Industrial Data

A practical data set from a plant test of a packed-bed reactor (from Derrick
Kozub) is employed to test the SIM algorithms and compare with other system
identification methods. The data (uofhid1.dat) is from an SISO process and there are 251
data points in total. The input and output signals (mean-centered) are shown in Figure
3.6. Here the input signal is close to a PRBS, and the output is corrupted with a large
disturbance. The input-output data plot indicates that the process has an inverse response
with a positive steady state gain of about 1.0, relatively fast response with short (or no)

delay.
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Input and Output sequences of uofhidl.dat

Input/Output amplitude

2

0 50 100 150 200 250 300
Sampling Time

Figure 3.6 Input and cutput data of a plant test data (uofhidl.dat)

The original N4SID algorithm (M file in System Identification Toolbox for
MATLAB) is applied for this data set. The past and future horizons are of 15 lag steps.
The singular values (in logarithm) of the estimated predictable subspace are shown in
Figure 3.7, and the system order is determined to be 3 (first 3 singular values are

considered significant). The resultant state space model is (in the innovation form):

0.9456  0.2854  0.0960 0.2707 0.8704
Xy =|—0.1348 07669 —0.4422 |x, +| 0.8653 ju, +| 0.0187 [e,
~0.0397 -0.0825 0.8127 0.2944 ~0.4170

v, =[0.2903 0.8653 0.2944)x, +e¢,

The corresponding transfer functions for the input and the noise are:

_ —0.5714z7' +1.2290z* - 0.6551z° .,
1-2.5252z7" +2.122727% - 0.5951z*

Yi k

_1-2.0905z7' +1.379222 - 0.26782" .
1-2.5252z7" +2.122727% -0.5951z*  * var(ex)=0.0422

yn,k
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Select model order in command window.

Red: Defauit Choice

Log of Singular values
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I
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Figure 3.7 Singular values in the N4SID algorithm (uofhid.dat)

The CVA method (Adaptix software) is also applied for this data set. The optimal
lag step is determined to be 9. The first 6 canonical correlation coefficients are 1.0,
0.9379, 0.5120, 0.4519, 0.3719 and 0.3540 respectively, and the system order is
determined to be 3 based on AIC. The final identified model is (in transfer function
form):

_ =0703727" +1.32237 - 0.5850z>
1-2.205927" +1.6231z7 - 0.3961z *

Vi

_ 1-1.6653z"" +0.8522:7 ~0.0906z
1-2.205927" +1.6231z72 -0.3961z> * var(e,)=0.0500

Y n.k

These results from SIM algorithms are compared with those from PEM and AIDA
(weighted k-step ahead prediction error parametric identification, by Derrick Kozub). The
steps responses are shown in Figure 3.8. All these methods show the inverse response
clearly, and the steady-state gain is around 1.5. It appears that the results from SIMs are

similar to those from the traditional prediction error methods.
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Result model for data set uofhid1.dat

—— PEM (set order=2)
— - N4SID (order=3)
,,,,,, CVA (order=3)

- .- AlDA(set order=2) .

Step Response
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Figure 3.8 Step responses from different methods (uofhid.dat)

3.6 Conclusions

This chapter focuses on the analysis of the fundamental aspects of different SIM
algorithms and on the development of the new algorithms. The essential conclusions and
the key contributions of this chapter are as follows:

A multi-step state space-model is proposed in this chapter as a basis for
comparing and analyzing SIMs. It clearly depicts the relationships among the current
state sequence, the past data and the future data: the current state sequence is a linear
combination of multiple steps of the past input and output data; the future outputs consist
of the predictable subspace, the future input effects and the future stochastic signal
effects; the future output data has a linear relationship with the past inputs, past outputs,
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and the future inputs. This multi-step state-space model provides a uniform analytic basis
for analysis of the SIM algorithms.

Based on the multi-step state-space model, the basic principles and the bias of the
original N4SID algorithm are analyzed. The first step in N4SID is the oblique projection
of the future outputs along the future inputs onto the past data. This result is in fact an
estimate of the predictable subspace. SVD on this subspace gives the estimates of the
extended observability matrix /7 and process states Xj. If the true process is an ARX
process, the estimated predictable subspace and the estimated states are unbiased. For a
general process with Box-Jenkins model (ARMAX model other than ARX), the bias on
the estimated predictable subspace and states comes from the approximation error of the
process with a high (but limited) order ARX model. The resultant model is asymptotically
unbiased with infinite number of steps for the past horizon. Two new N4SID algorithms
are also studied: the recursive one-step-ahead ARX prediction algorithm (proposed by
Ljung for closed-loop case; here it is extended to the open loop case), and a proposed new
algorithm based on using an estimated H; matrix.

The basic principles are also analyzed based on the multi-step state-space model.
The correct procedures for the CVA regressing Uy out algorithm (CVA_RO) are
summarized. A new CVA algorithm (CVA_Hf) is proposed to remove the effects of
future inputs based on an estimated Hy matrix. Both CVA algorithms are shown to give
unbiased state estimates for an ARX process and biased state estimates for a general
process (other than ARX process). The CVA_Hf algorithm is shown to have a better
signal-to-noise ratio (SNR) than the CVA_RO algorithm.

New MOESP algorithms based on estimated J7 and process states Xy respectively
are proposed in this chapter. The simulations indicate that the state-based MOESP
algorithm gives a better result at low SNRs, which are more likely in process industries.

All these conclusions are demonstrated by simulation examples. SIMs are shown
to give similar modeling results to those from the traditional system identification

methods.
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Appendix A3.1 Regression of Y; against [Y,; U, Uil
The relationship between ¥;and [¥p; Uy,; U] is clearly described by (3.1.9) as

Y, =T, A°T,'Y, +T,(Q, ~A°T,"H YU, +H,U,

(3.1.9)
+I,(Q,,-AT,"H W, -T ATV, +H W, +V,
It can be written in the following brief form:
Y, =CY,+CGU, +CU, +E
=[c, C3]Upf +CY, +E (A3.1.1)
=4X +4,X,+E
=AX+E

Here Ci, C; and Gi: the true coefficient matrix in (3.1.9) for ¥, U, and ¥rrespectively
E=E,+E¢ sum of the past stochastic effects E, (terms of W, and V,)} and the
future stochastic effects (terms of Wrand V5) in (3.1.9)
A=[4; A2] A=[C G A=C,
X=[X1; X2] Xi=Uy=[U,; Ui Xo=Y,
Different from normal linear model for ordinary LS, here the noise term E is correlated to
regressor ¥, since it includes the effects of W, and ¥V, (See (3.1.5)), ie,
Exp{E YpT}=Exp{ EprT }#0 (Expectation). LS regression of ¥r onto [¥;; Up; Uyl gives
the following result:
Y, =LU,+LU,+LY, (A3.1.2)
Here Ly, L, and L; are estimates of Cy, C; and C5 from LS regression respectively as:
2, I, L]=v,x"(xx7)" (A3.1.3)

With the result for inverse of block matrix, the above equation can be written as:
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R A {XZXF X, X7

<[4 X, XT + 4,X,XT + EXT A XXT+ A4, X, X7 +EXT]
-1 ~1 " -1 -1 =
l:(XIXlT) +(X1X1T) XlXZT(p IXZXIT (XleT) —.(XleT) XIXZT(P '
= 1 -
"(PleX]T(XleT) (Pl
=[Ax ”EXzT(P‘leXlT(XIXlT)_I A2+EX2T(P_1]

XXT  X.XxT }"

o=YY -y U (U, ULT'U, ¥ (A3.1.4)

In open loop case, Exp{EX 1T3=0 for there is no correlation between inputs and the

noise. However, Exp{EX,"}= Exp{E Y,,T}¢O, this leads to all the estimated coefficients
becoming biased for a general case. Here ¢ is actually the covariance matrix of the

residual from regressing out Uys of ¥,,. Using the original variables, the detail regression

coefficient matrices are:

Li=GrEL o7 (A3.1.5)
[Lz Ly ] = [Cz‘ G, ]‘ EYpT(P-IYpU:f (Upr;f )ﬁl
For the special case of an ARX model, i.e, yk=gTyp+_lgT_zip+gk. Here yi does not include the
past stochastic signal e, explicitly (null coefficients). Therefore, ¥; can be expressed in
Y,, U, U and E; without including E,. Since Exp{EX,"}= Exp{E;Y,'}=0, there is no bias
on the estimated coefficients by LS regression (in sense of expectation):
L =C,
Z, L]=[c, ]
In closed-loop case, Exp{EX,"}=Exp{[EU," EU{}#0 for there is correlation

between inputs and the past noise. The correlation between an input and the past

(A3.1.6)

stochastic signals is built up via the feedback controller (refer to Chapter 6 for more

details). The final regression result for a closed-loop case is:

L,=C+EY o —EUL(U, UL J'U, ¥ o™

L, Ll=lc, ¢l-erie v, ul v, ut) +EUT (U, Ut V' 1+U, Yo Y UT (U, U V')
2 3 2 3 p @ TUp WUy ) + o\ oy UL, 0 I

e

(A3.1.7)
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These regression coefficients are biased even for an ARX process for the correlation

between inputs and the stochastic noise Exp {[E UpT EU}=0.

v

Geometric explanation of the projection in N4SID
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Appendix A3.2 CVA Regressing U; Out Algorithm

The CVA regressing Uy out algorithm estimates the process states based on the
canonical correlation analysis (CCA) of the past data set and the future outputs, both of
which projected to the orthogonal space of the future outputs. The detail procedures
include:

e Regress Ur out of the future outputs ¥; and the past input/output data
Po=[Y,, Uy, ie, Yt =YiPuo=YrByo viUs and Py ;o=PioPusc=Pio-
B, pioUs. Here Pyi=(I- UfT(UfoT)'1 Uy is the projection matrix onto the
orthogonal space of Uy, B 1o y=Y:Us (UiUf")" and B 1o pio=PioUs (UsUs"Y
1.

¢ Perform CCA on ¥, and Pio ., denote the canonical coefficient matrix
for Pig 1, as J;. The system order can be determined by the number of the
dominant canonical correlation coefficients (CCCs).

e Take estimated process states from Xy = JiPio (note, not JiPig 1o, the CVs
of above CCA)

e Fit the estimated Xj to the state-space model

In this algorithm, CCA is performed on the modified past data and future output
data, and the coefficient matrix is used to estimate process states. Proof on the biasness
issue of this algorithm is provided below.

The multi-step state space model gives the relationship between the past data and
the current state sequence (3.1.6) as:

X, = APT,Y, +(Q, - 4T H U, +(Q,, - 4PT " H, W, - ATV,
=LP,+LS,

here L=|4r,' Q -4 H,| L =|aT

P
and P, = L}]/”] S, =[V” } (A3.2.1)
14

T Q,,-ATH,,
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that is, the current state sequence is a linear combination of the past data.
The regressing Ur out procedures can be expressed in the following QR
decomposition:
U, R, 0 010
Pol=|Ry R, 0|0,
Yf R31 R32 ‘R33 Q3 (A3.22)
Substituting results from (A3.2.1) and (A3.2.2) for the mutli-step state-space model for
the future outputs (3.1.7), the result will be:
Y, =T, LP,+T' 'S, +H,U, +H W, +V,
=T L(R,,Q, + R,,Q,)+T 'S, + H H R, 0, + H, W, +V,
= (FfLRzl +H R, O + (PfRzz +B, )Qz + Ry, 0,

Here Pio includes U, and Y, (therefore including W, and ¥}, ie., §;). Since past

(A3.2.3)

stochastic variable S, is uncorrelated with future inputs Ur (.., @1), it is represented into
0, in QR decomposition. Denote B,’Q; as the projection of IL’S, onto 0,=TL°S,0,".
R330; includes the projection error and the effects of the future stochastic variables:
R33Qs=HfWr+ Vi + TS, - B,'Q,. (A3.2.4)
If comparing (A3.2.3) with (A3.2.2), there are the following relationships between
R matrix and the system matrices:
R, =T /LR, +H R,
R, =T Ry, +B,

(A3.2.5)
R, #0

The results of regressing U; out of ¥; and P are expressed in the QR

decomposition as:

PIO_m =R»0,
Y/_ra =R;,0, + R;;,0, = Ry Oy (A3.2.6)

The result of SVD on ¥;  is:

{RYIRIZ’.I = R32R3Tz + R33R3T3
Qn = R;llR:azQz + R;;R:;sQa (A3.2.7)
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The CCA algorithm based on QR decomposition (refer to Appendix A4.3) is used
to get the coefficient matrix J;: J1=V1TR22'], here ¥; comes from SVD of Qy1Q2T as

- . . - T - -1
0,,0f =R;IR,, =U,D\V] ,ie., eigenvector of (R,,‘Rn) (R“'R32 )= R, (R,,IR;,) Ry,
Therefore the following relationship holds:

-1
RaTz(RnR;{l) Ry V=V, Df (A3.2.8)

Transpose both sides of the above equation and obtain the expression of ¥;" as:

_ -1
er =Dy ZV',TR;(R,,]R}T]) R;, (A3.2.9)

Denote ¥V, for the first n vectors in V3, Dln'z for the first n row vectors in D{z

The coefficient for the first n CVs is:

- - ] -1 - -
Ty = VIR = DV RL (R, R: ) Ry R;! = BR,R;] (A3.2.10)

Therefore the estimated state sequence in the CVA regression out algorithm is:
%, =J, By =BR,R; P,
= B,R,R}(R,,0, + R,,0,)
= B,(R,, R} R,,0, + R, 0,)
Consider the relationship in (A3.2.5) and the future outputs in (A3.2.3):
X, =B,([[,LR,,0, + BRI R,,Q, +T,LR,,0, + B0, )
= B,(T,L(R,0, + R,,0,)+ B} (R, 0, + 0,))
= B,(T,LP, +T, 'S, T, 'S, + B (R, 0, + 0,)) (A3.2.11)
=B, (Fka +I,LS, (070, +0IRR, 0, ~ 1, )
In general, the second term in the above equation is not null, and CVA_RO algorithm
gives a biased estimation of the state vector. The biased term is usually very small
compared to the first term, and the estimated states are close approximation of the true
process states.
When the true process is an ARX (or ARARX) model, the future outputs can be

expressed without involving past stochastic variables (see also Appendix A3.1),
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therefore, $,=0 (refer to equation (A3.2.1)) and the process states can be estimated
unbiased.

The conclusion for the algorithm is that if the true process is of ARX (or
ARARX) model, CVA_RO gives an unbiased result. For other general process models,
CVA_RO gives biased estimates for process states.

If regressing Ur out of ¥ causes rank deficiency, the expectation value of Qy]QzT
has rank less than n, and the rank of D, is less than n. This rank deficiency causes the
inverse of D}’ meaningless (standing only for the noise), and the final estimated states

cannot represent all the true states in the process (rank deficiency in B; matrix).
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Appendix A3.3 CVA Algorithm based on Estimated H;

This CVA algorithm removes the future input effects from the future outputs (an
estimated predictable subspace) based on a estimated Hy, which may come from a fitting
ARX model, and then estimates the process states as the canonical variates from CCA on
the past data set and the modified future outputs. The detail procedures include:

e Fit ARX model with the current output yx and the past input and output
data Pio=[Y,; Up)

o Construct the estimated H; matrix based on the estimated impulse weights
from above ARX model, denoted as Hy ., and estimate the predictable
subspace as ¥; =¥;- H; Us

e Perform CCA on P and Y;. the number of dominant canonical
correlation coefficients (CCCs) are taken as the system order 7, and the
first i CVs from Py are taken as the estimated state sequence Xi=JPio

e Fit the estimated state sequence X to the state-space model

This algorithm gives unbiased process state estimates for ARX (ARARX) model
process, and unbiased state estimates for other general processes. Proof on the biasness
issue of this algorithm is provided below.

Fitting an ARX model with current outputs y, and past input and output data
Po={Y,; U,] will give an unbiased model if the true process is of ARX or ARARX form.
Otherwise, the resultant ARX model will be an approximation of the true process. With
longer past horizon, the approximation has less bias but may have larger variance if the
past horizon is too long. This small bias error leads to a small bias for the estimated states
in CVA.

Suppose the fitting ARX model is an unbiased estimation of the true process
model, the impulse weights based on this ARX model and the constructed Hy . will also
be unbiased. The estimated future predictable subspace form will also be unbiased:

Y, =Y, -H, U, =T X, +N, (A33.1)
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Here Nt is for the effects of the future stochastic driving signals (it also includes the bias
- effect of bias in the impulse weights for non ARX process).
Decompose the past data set Pio=[Y,; Up] (Xin CCA) in QR form as:

Pro =Ry Oy

with R, Ry =P,PL 0,05 =1 (A3.3.2)

The true state sequence can be expressed in QR decomposition form as:

Xy =RQ (A3.3.3)

The multi-step state-space model gives the relationship between the past data and
the current state sequence (3.1.6) as:
X, =A'T,'Y, +Q, - 4T H VU, +(Q,, - 47T, H, W, - 4T,*V,
=LP,+L,S,

here L=|4’T," Q, —aTH,| [=|-4T o -41H,,]

and P = [(};" } S, = [;‘" } (A3.3.4)

P
The above two equations give:
RR" =X, Xx]
00" =1, (A33.5)
Q=R"X, =R"LR,Q, +R'LS,
Denote the QR decomposition of the estimated predictable subspace of the future
outputs ¥r . (Yin CCA) as R,Q\:

Y e =Ry (A33.6)

here RYR; =Yf__erT_e QYQ}T =1

md @ =RV, =RT/ RO+ RN, =R'T LR, Q, +R,'T/ LS, +R,/'N,
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In CCA for Py and Y; ., the canonical variates from Py is calculated as JPyo,

T p-1
where coefficient matrix J=V Ry and V is the right singular vector matrix from SVD

of the covariance matrix:

0,0y =UDV" (A33.7)

Now, let’s look at the detail of the sample covariance matrix of Qy and Qx in left side of
the above equation:
0,0% = (R;’I‘ILRXQX +R;'T,LS,+R,'N, )Q; = R;‘FILRX + R;IFfLsSpQ,T{
(A3.3.8)
The expectation value of N;Qx" (third term in the above equation) is null for there is no
correlation between the future stochastic signals and the past input and output data. So the

result of matrix ¥ can be expressed as:

vT =D UTR'T, (LR, +L,5,07)

(A3.3.9)
Therefore the canonical variates from Pio can be expressed as:
J Py =V'RY -RyQy =D UTR;'T, (LR, Oy +L.5,070y)
=D URT,(LPy +L,S, - L,S, (- 050, )) (A33.10)

=D URT, (X, - 1,5, (1- 050, )

This CVA algorithm takes the first n canonical vaniates from Pjo as the estimated
states. The system order n is estimated by the number of dominant canonical correlation
coefficients or is determined by other methods, such as AIC.

When the true process is an ARX (or ARARX) model, the fitted ARX model is
unbiased, and so are the impulse weights and the ¥¢ .. The multiple future outputs and the
current states can be predicted in an unbiased way without involving past stochastic
variables, therefore LyS,=0 (refer to equation (A3.3.4)), and the first n canonical variates
are linear combinations of the true process states without bias. When the true process is of
ARX model, there is an approximation in the fitted ARX model with limited order, and
the impulse weights and the estimated states have small bias. The essential bias comes

from the correlation between the past stochastic signals and the past outputs.
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The conclusion for this CVA algorithm is that if the true process is of ARX (or
ARARX) model, CVA gives an unbiased result; for other general process models, CVA

gives a biased result for the estimated ARX model and the estimated states.



4 Relationships between SIMs and LVMs

As seen in Chapter 2 and Chapter 3, CVA method is based on CCA method. CVA
is one of the SIMs, and CCA is one of the Latent Variable Methods (LVMs, see Section
4.1). Their close relationship naturally incurs curiosity about the general relationship
between these two categories of modeling methods; however, SIMs and LVMs are
studied by different people and applied in different fields. LVMs are studied and used in
statistics and chemometrics, and SIMs are studied and applied in system identification.
Up until this time, there has been little exploration of the relationships between LVMs
and SIMs. There are many similarities among these methods, such as both methods are
used to build process models via a set of much lower dimensional variables as linear
combinations of the original variables. These similarities easily cause confusion between
these methods and in applications.

The objective of this chapter is to show the relationships between SIMs and
LVMs with emphasis on their connections, to find out in particular the connection
between N4SID and the LVMs. The differences between these methods will also be
studied in order to produce a clear picture of their relationships and to provide a guideline

for application of these methods.

4.1 LVMs for Dynamic Process Modeling

4.1.1 A General Introduction to LVMs

In general, Latent Variable Methods (LVMs) relate data sets X (ANxk) and Y
(Vxm). Each row of data set X usually consists of process measurements or operational
variables, and each row of Y includes the corresponding quality variables or process

outputs. The general latent variable regression model (Martens and Naes, 1991; Burnham
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et al., 1999) assumes that both data sets X and Y are linear functions of a smaller number
(A4, A«k) of underlying latent variables (LVs):

X=TP"+E (4.1.1)

Y=TC'+F (4.1.2)
Here each column of the 7 (NxA4) is a latent variable (LV), generally defined as a linear
combination of X variables

T=XW (4.1.3)
which, in some sense, contains an optimal amount of information for the defined
problem. The columns of P, C and W are loading vectors, which indicate independent
directions of variation in the process, and E and F are error matrices. This kind of data
structure is common in the real world where processes are driven by only a few events,
such as raw material variations, impurities, temperature fluctuation, etc., and the effects
of these few variables show up in all the process variables. In practice, there might be
several hundred variables in a process, but the plant will vary in only a few independent
directions since all the variables are driven by only a limited number of independent
disturbances (or events) and constrained by the process dynamic characteristics. The
space in which the process varies is defined, in some sense, by the lower dimensional
space of the latent variables.

Principal Component Analysis (PCA, and Principal Component Regression,

‘PCR), Partial Least Square or Projection to the Latent Structure (PLS), Canonical
Correlation Analysis (CCA) and Reduced Rank Analysis (RRA, also referred to as
Redundancy Analysis) can all be referred to as latent variable methods. They all define a
subspace of the system in terms of a reduced number of latent variables T=XW, but LVs
from different LVMs are to optimize different objective functions. The LV in PCA on X
is to have maximum variance. In PLS, the paired LVs from X and ¥ respectively are to
have the maximum covariance. RRA is to find a linear combination of X, which can
explain the maximum variance of ¥. The paired LVs from CCA have the maximum
correlation. A common objective function framework for all these latent variable methods
has been presented by Burnham et al. (1996), and summarized in Table 4.1. The
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definition of the latent variables and the loading vectors for the different methods are

given in this table. Perhaps PCR and PLS can be called true latent variable methods since

they provide estimates of latent variables (from X space) that span both the X and ¥

spaces, while CCA and RRA provide latent variables that attempt to span only the ¥

space (and not the X-space).

Table 4.1 Brief Summary of Latent Variable Methods

Method PCA/PCR PLS RRA CCA
Objective Max p,'X"Xp, Max w, X, Ye, Max w,"X"Ye, |Maxw,X"Yc,
(fora-thLV X=X
dimension a=1, 2, X=X tapa
e A) Pt X/t t,

Constraints pana=1 W, w,=1, ¢, ¢,=1 w,,TXTXwa=1, w,,TXTXwaf—l,
¢ c=1 ¢, Y'Ye,=1
LV meaning Maximize variance | Maximize the Maximize the Maximize the
of X covariance predictable correlation
variance in Y
Calculation of LVs | t,=Xp, t=Xw,* t=Xw, t=Xw,
w=W'(PpTwy!
Loading vector: P w,* W, W,
is eigenvector of
matrix: X'X XYYX x™)"XYY'X (XX XYY 'YX
Orthogonality (i%)) PiTpfO wiij—'-O
;=0 t'4=0 t;'t=0 t7t=0
Variance of LV generally not unit generally not unit unit variance unit variance
Regression P.(PIX"XP,) PTXTY W (WXTXW ] WIXTY w,w, X"y w,W,X'Y

coefficient matrix
(based on first a
LVs)

Note 1: t,, p,,W,, and w, are the a-th column vector of T, P, W and W* respectively

Note 2: T,, P,,W,,C, and Wa' are matrices consist of the first ¢ columns of T, P, W, C and W*
respectively

Once the Latent variable structure has been determined by PCA, PLS, RRA or

CCA, process outputs can be predicted by the model in latent variable form or by the

following regression model form:

V=1, = xw,CT

= XP,

(4.1.4)
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This regression procedure is referenced as PCR, PLS(R), RRA or CCR respectively.
With the same data set X and ¥, the regression coefficient matrix will be different if a
different number of LVs are used (i.e., different model result). Suppose there are only n
LVs in the true process (n<<k), the true process can be described by n LVs by a particular
LVM. On one hand, if a LVs are used (a<n), the process will be under-modeled and the
resultant model will be biased. On the other hand, if more LVs are used than necessary
(a>n), the extra LVs only describe the noise in the system and cause a large variance for
the resultant model. Furthermore, if all the LVs are employed, the resultant model will be
equivalent to the LS regression model.

In the application of LVMs to process modeling, the first issue is to decide which
LVM should be chosen for the problem, and this is determined by the objective of the
problem. The second important issue is to determine how many LVs should be used in
the latent model model, and several general criteria have been developed for this purpose,
such as significance of the eigenvalue, cross validation, etc. Other issues, such as how to
apply LVMs to dynamic processes, what kind of data to use, what kind of model can
obtained, and what kind of applications, will be discussed in the next subsection.

Discussion of these issues will make the relationship between LVMs and SIMs clearer.

4.1.2 LVMs for Dynamic Process Modeling

Different from a static process, the future outputs of a dynamic process are indeed
affected by the past outputs and inputs. In order to capture the dynamic relationship of the
process, it is necessary fo use the past input and output variables to predict the future
outputs. Using lagged process variables for X and ¥ data sets in LVMs becomes a natural
choice, that is,

X=[Y pT’ UpT]
Y=Y¢ (4.1.5)
Here Y,, U, and ¥; are the data matrices defined in Section 2.1. In LVMs, data matrices

are conventionally arranged with observations (time points) in rows, while data
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observations in columns are more convenient for SIMs. This notation difference does not
affect the essence of the date sets.

The lagged process inputs and outputs in the data sets X and Y includes the
process dynamics. The past information related to the future outputs dynamics is
extracted into the latent variables (LVs), and the process future outputs are predicted
based on these LVs by LS regression as in (4.1.4). The process dynamics is expressed by
the coefficient matrix in (4.1.4), or written in detail as Y=LY,+L,U,. In fact, this
provides a multi-step-ahead prediction model in ARX form. LVMs have been applied in
this approach to obtain dynamic models. Brillinger (1975) discussed the theory and
applications of PCA for time series in the frequency domain. A brief discussion of some
early publications on the use of lagged variables in PCA for dynamic modeling is
contained in Jackson (1991). This approach to dynamic PCA has been used in various
applications (Wise et al,, 1991; Ku et al., 1995; Hartnett et al., 1999). Use of lagged
variables in PLS for dynamic modeling was first suggested by Wold et al. (1983) and has
been used in various applications (MacGregor et al., 1991; Dayal et al., 1996; Ergon,
1998). It has been shown that the resulting dynamic models are generally better in the
sense of mean square etror, etc., than those obtained from least squares and prediction
error methods. Box and Tiao (1977) presented a CCA approach to multivariate time
series analysis, where the objective was to reduce the dimension of the problem by
finding sets of orthogonal latent variables that were highly predictable and others that
were unpredictable (white noise). This approach has been used in designing reduced-
dimension control by MacGregor and Wong (1980) and Jutan et al. (1984). Negiz and
Cinar (1997) used CCA in this approach to build a dynamic model for a milk
pasteurization process.

Another approach for incorporating dynamics into latent variable models involves
using dynamic models for the inner relationships between the latent vectors of the non-
lagged input and output space (Kaspar et al., 1993; Lakshminarayanan et al., 1997). This

approach is analogous to using a dynamic transfer function model in place of a
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polynomial or other nonlinear model in nonlinear PLS (Wold et al., 1989). This approach
is not as popular as the previous one of lagging the input and output variables.

The special objective of each LVM determines the information modeled by this
method when applied to X=[YPT, UpT] and ¥=¥;. As shown in Table 4.1, PLS tries to
explain both the variations in the past data and the future outputs as well as their
correlation. By also modeling the X-space, PLS easily handles missing data and tests for
outliers or abnormal observations in the X-space. This is an important feature in process
monitoring; however, by compromising to explain the variation in past data, PLS
becomes less effective in explaining the relationship between the past data (X) and the
future outputs (¥). Section 4.3 will provides more detailed discussion on this point. In
dynamic PCA, LVs only explain the past data set without intending to explain the future
outputs, and so the efficiency for building a dynamic model becomes even worse.

Both RRA and CCA focus on explaining the future behaviour based on the past
data. CCA on X=[Y,", U,"] and ¥=¥; focuses on maximizing the correlation between the
past data and the future outputs, and therefore the LVs form the past data set provide the
best predictability of the future outputs. RRA on X=[¥,’, U,'] and Y=Y;" aims to explain
as much as possible the variation in future outputs based on the LVs from the past data
set. Both RRA and CCA coincide with the goal of the dynamic modeling and provide
sound approaches to build dynamic models. The difference between RRA and CCA
exists in a different sense of the best predictability of the future outputs based on the past
data. RRA is in the sense of absolute variance, while CCA is the relative sense of
variance.

Basically two types of data are collected from a dynamic process for building a
dynamic model: well-designed experimental data and normal operation data. For the data
collected from well-designed experiments, inputs are persistently exciting of a
sufficiently high order and there is no correlation (orthogonal) or little cormrelation
between different inputs. These conditions are necessary for obtaining causal dynamic
models in system identification. However, in general, there are more data collected under

the normal operation condition. In practice, all measured variables (not only the
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manipulated variables and the controlled variables, but also many other monitoring
variables) may be recorded historically by the control system, and these historical data
are usually normal operation data. The variables in normal operation data are usually
highly correlated (strong feedback between outputs and inputs or strong correlation
between two measurements, e.g., temperatures at trays of a distillation tower). When the
process is operating under the normal condition, only a few sources of “common-cause”
variations present in the process and drive all the process variables moving up or down in
a correlated manner. The number of independent “common-cause” variations is much
less than the number of measurements, and the space spanned by the measured variables
is essentially never full rank. LVMs are therefore used to extract these common-cause
variations into the first few LVs from the highly correlated measurement variables.

The information nature in a data set primarily determines what kind of model can
be obtained from the data, causal model or correlation model. If two variables are perfect
(or highly) correlated, their causal effects will be completely (or highly) confounded no
matter what kind of modeling method is employed. For normal operation data, both SIMs
and LVMs can only give correlation models rather than causal models because of the
high correlation in the data set.

Causal or correlation model. Even for the well-designed experimental data, the
resultant LVM of (4.1.4), based on the dynamic process data of (4.1.5), in general is not a
causal model. This is due to the fact that the future outputs data ¥ in ¥ contains not only
the effects of X=Pyo (predictable subspace based on past data) but also the future input
effects HilUr as shown clearly in (3.1.7). The final model of (4.1.4) will include part of the
future input effects via the correlation between H;Ur and Pjo if the process inputs are
auto-correlated. Therefore, the resultant model will only give a correlation relationship
between inputs and outputs instead of a causal relationship. This is why the future input
effects are removed from ¥rin SIM algorithms for causal models (refer to Section 3.2 and
Section 3.3). In two special cases, the final result models from LVMs will be causal. The
first case is where the inputs are not auto-correlated (e.g., white noise signals), and

therefore the future input effects have no correlation with the past data. In this situation,
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the future input effects would lead to larger variance for the model parameters than if the
future input effects had been unaccounted from Y. The second case is where the Y data
set contains only outputs of current step (~1) and no instantaneous reaction is in the
process (system matrix D is null in state-space model), and therefore no future input
effects exist in ¥ data set. In fact, in this second case the result is exactly the ARX fitting
model if all LVs are used.

Dynamic models based on process data can be used for process control,
optimization and monitoring. However, the choice of models or modeling methods must
depend on the specific application objective. In the context of control system design, it is
necessary to have cause-effect dynamic models between manipulated variables (MVs)
and the controlled variables (CVs). The models will be used to predict the transient
response of the controlled variables to moves made in the manipulated variables, and the
models will also be inverted in the control equations to calculate the manipulated variable
changes required to make the controlled variables follow desired trajectories. Similarly,
in process optimization, the input variables are adjusted deliberately to achieve the
optimal values of the objective function, and the correlation pattern in the input space
will be broken deliberately. Therefore causal models (based on experimental data) are
required for process control and optimization. System identification methods, including
SIMs, are chosen to build the required models, where the causal relationship between the
process inputs and outputs is the only objective, without intention of modeling the
covariance structures in the inputs or the outputs.

In the case of process monitoring, causal models are usually neither required nor
even desirable; rather, a model of the correlation structure presented under normal or
“common-cause” operation of the process is required. This is an important but subtle
difference of model requirement between process monitoring and process
control/optimization. If the sampling intervals are short relative to the settling time of the
process, the model must be a dynamic one involving lagged process variables. Under
normal operation, there is a certain correlation structure among the variables in past data

X=[YpT; UPT] space (including both contemporaneous and temporal correlation). Any
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deviation from this normal correlation structure indicates a potentially abnormal
situation; therefore all the correlation structures in X space, in Y space and between the
two spaces should be modeled. Therefore, LVMs based on lagged variables are applied
for process monitoring, and PCA or PLS would be better choices than RRA and CCA.

Much of the literature on process monitoring of continuous processes assumes
that the sampling intervals are long and the process dynamics are not important. In this
case, the latent variable models are built using only data available at each individual time
interval, that is, the X and ¥ matrices do not include lagged values of the variables.
However, if under common-cause variation, the process data exhibit significant temporal
correlations, a dynamic model may be needed. In this situation, the basic philosophy and
approach to multivariable SPC (statistical process control) are unaltered. Lagged values
of the observations are simply used in the X matrix, and a latent variable model is built.
The latent variables defined in (4.1.3) will now be linear combinations of the process
variables at current time and at several past lags. The control charts based on the score
plots, or Hotelling’s T°, and the Squared Prediction Error (SPE) statistics will again be
constructed in the same manner as for steady-state data. LVMs in the approach for
process monitoring have become widely accepted (Kresta et al., 1991; Slama et al., 1992;
Kourti et al., 1995;). On the other hand, batch processes are invariably transient or
dynamic in nature, and so the multivariate analysis and monitoring approaches for batch
processes have always been based on dynamic PCA and PLS models using lagged
variables in the X data (Nomikos et al., 1994, 1995, Kourti et al., 1995).

4.2 Relationship between N4SID and RRA

~ As shown in Section 3.3, CVA is based on CCA, and this shows a connection
between SIM and LVM. As a natural extension to this connection, one might be curious

whether a LVM corresponds to N4SID or not, and how they are related to each other. The
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goal of this section is to answer to these questions, and the ultimate objective is to

explore the relationship between N4SID and LVM.

4.2.1 Equivalency between RRA and LS with PCA

In N4SID, SVD is applied on the oblique project result (part of the LS projection
of Yron [Yy; Up; Ui]) to get the estimated states. From Section 4.1, it is clear that SVD is
a procedure to perform PCA, which explains the largest possible variance of the oblique
projection with a given the number of latent variables. This is similar to the objective of
RRA as shown in Section 4.1. This naturally raises the question of whether a general
relationship exists between RRA and LS with PCA.

In fact, for general data matrices X and ¥, RRA(X, Y) is equivalent to PCA(¥Y/X)
where ¥/X is the projection of ¥ onto X. Both LVMs explain the same subspace in ¥, and
the latent variables from these two different LVMs are essentially the same. It can be
expressed as:

PCA(YIX)=RRA(X)Y) 42.1)
A strict proof of this general conclusion is included in Appendix 4.1. This was also
partially implied in Davies and Tso (1982) for a numerical computation method for RRA.

The conclusion is rational from the explained variance point of view. RRA(X, ¥)
solves sequentially for a number of orthogonal linear combinations of the X variables
with maximum explanation of the total variance in ¥. The LS projection of the data set ¥
onto X gives all the possible components in ¥ that can be modeled by X, i.e., the total
possible variance of ¥ can be explained by X, and then a PCA on the projection (i.e.,
PCA(Y/X)) gives the best approximation (maximum variance) of this projection that can
be obtained with a specific number of latent variables as linear combinations of ¥/X. As
one can see, the projection ¥/X is a linear combination of X variables, therefore the
principal components (PCs) from PCA(Y/X) are also linear combinations of X. In brief,
PCA(Y/X) finds the whole predictable space (full rank) of ¥ based on X, and then PCA
shrinks the rank of this predictable space while keeping the variance as large as possible.
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RRA(X,Y) does the same thing by sequentially increasing the number of latent variables
used until to that specific number (rank constrain). Both methods find out the same rank-
specific subspace of ¥ predictable by X and with the greatest variance, but PCA(Y/X)
goes from the full rank to the specific rank while RRA(X,Y) goes from rank one to the
specific rank.

The i-th PC from PCA(Y/X) only has a magnitude difference compared to the i-th
LV from RRA(X.Y). They are equivalent to each other in the sense of predictability.
Though these two methods give the same result in theory, this does not necessarily imply
they have the same performance numerically. When the X data set is ill-conditioned,
projection of ¥ onto X will be non-robust to measurement errors, and the projection will
have a large variance. In essence, N4SID performs an ill-conditioned projection first,
followed by a well-conditioned SVD (PCA) step. However, RRA avoids this ill-

conditioned LS regression step by directly selecting the high variance LV space.

4.2.2 Relationship between N4SID and RRA
The original N4SID algorithm performs a LS projection of ¥; onto [¥y; Up; Ul:

Y, =LY,+LU,+LU, (.2.1)
Then it takes the n largest PCs from PCA on L ¥,+L,U, (see (3.2.5)) as the estimated
state variables. Based on the property of LS regression, it is obvious that L ¥, +L,U, is
equal to the projection Y=¥; =Y¥L3Ur onto the past data X=Pio=[¥}; U,], i.e.,

YIX =Y; /Pio =L\ Yy +LUpy=[L, L,]Pro (4.2.2)
Based on the general conclusion about RRA and LS with PCA shown in the last
subsection, the following equivalency exists:

PCA(Y; /Pio) = RRA(Pio, Yt o) (4.2.3)
This equivalency between N4SID procedures and RRA clearly indicates that the states
estimated in N4SID are actually the latent variables from RRA on the past data and the
future outputs with the future input effects removed.
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As shown in Section 3.1, L3 is an estimate of Hy, and ¥ =YrL3Us is an estimate
of the predictable subspace /Xy with the future noise. Projection of ¥; . onto Py in
(4.2.2) is an estimate of IgXy. The first n PCs from the left side of (4.2.3) have the
maximum explanation of the total variance of the IiXi estimate for given rank restriction
of n, and these PCs are estimate of the state sequence Xj shown as linear combination of
Pio. The same state estimation is realized directly by n LVs from right side of (4.2.3) as n
linear combinations of Pp with the greatest explanation of total variance of ¥; . under the
rank constriction. It is clear that the rank restriction comes from the rank limitation of the
predictable subspace ItXy, and the system order can be determined by the number of

statistically significant PCs from PCA or LVs from RRA in practical dynamic modeling.

4.2.3 Alternative N4SID algorithms based on RRA

Equation (4.2.3) clearly indicates that N4SID is based on RRA just as CVA is
based on CCA. This relationship not only shows the basic idea of N4SID but also
provides more insight into the relationships between SIMs and LVMs. The first step in
the original N4SID algorithm is a LS regression of Yy onto [¥;,; U; Us), and this step may
suffer from an ill-conditioning problem due to the high correlation in [Yy; Up; Us]. The
relationship (4.2.3) between N4SID and RRA gives heuristic guidance on alternative
approaches to improve the performance of N4SID, such as forcing L; to follow the
structure of H or using other methods to estimate Hy. An improved estimate of Hy will

lead to a better estimate of the predictable subspace Y; ., and better state estimates can be
obtained by RRA.

N4SID-tri (lower triangle L; matrix).

As shown in Section 3.2, the coefficient matrix L3 in N4SID is an estimate of the
H: (see definition in Section 2.1). Hy is a block lower triangle matrix while its estimate L3
from N4SID is a full matrix (the upper triangular blocks are not zero due to regression

errors). What this lower triangle feature of Hy really means is that inputs at a specific time
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point has no effect on the outputs before that time point. This is apparent from the causal-
effect point of view. Matrix L; should be consistent with the feature. Following this
causal-effect feature, the upper triangle blocks of L; are set to null. Blocks on the
diagonal can also be set to null if there is a priori knowledge that no instantaneous
interaction exists in the process. The block entries on a lower diagonal of Hy are equal,
and correspond to impulse weights (see Section 2.1). Following this feature, a further step
in improving the accuracy of L; as an estimate of Hy is to set the element blocks on each
lower diagonal of L; to their mean values respectively. These mean values should be
better estimates of the first /' step impulse weight blocks. This new estimated H is used to
remove the effect of the future inputs on ¥; for ¥; ., and LVs from RRA(Pyo, ¥; ¢) will be

better estimates for the state variables.

N4SID-Hf (H; estimated based on ARX model)

Alternatively, as an estimate of Hjy, matrix L3 can be constructed based on the
impulse weights from fitted ARX model (refer to Section 2.1), and then ¥; .=¥;-L3U; can
be calculated. This procedure is similar to N4SID-ARX in Section 3.2, where ¥; . is
projected onto Pjp and states are obtained by SVD (PCA) on this projection result. Here,
based on the relationship between N4SID and RRA, the states estimated directly by
RRA(Pio, ¥t e).

N4SID-RO (regressing out Us)

Another method for estimating the predictable subspace is to regress Ur out of

both Pio and ¥r to yield Po , and ¥;,, respectively, and then LS regress ¥r , against
Pyo 1, for the regression coefficient matrix L .. This coefficient matrix L , can be proved
to be exactly the same as [L; L,] from N4SID (see Appendix 4.2). This result was also
implied in Van Overschee and De Moor (1995) but without a clear explanation. The
result of L Pio (not L xPio o) is an estimate of the predictable subspace, and the first n

PCs of this subspace are the estimated state variables.
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The above LS regression result L ., can also be obtained by RRR(Pig 1o, ¥t o)
when all LVs are used. As shown above, only » LVs out of all LVs from RRR(Pig ro,
Y; o) are related to process states, and the rest LVs are for the noiSe in the process.
Therefore, the coefficient matrix can be obtained by using only the necessary LVs, and

the result may be better than using all the LVs due to leaving out the LVs for noise.

N4SID-ROP (regressing Pjo out)

Another method for estimation of the L3 matrix is to regress Pio out of both Ut
and ¥ data sets (result denoted as U op and Yi rop respectively), and then regress ¥t rop
against Ur rop- The result can be shown to be exactly the same as L3 from N4SID apart
from numerical errors (see Appendix 4.2). When the variables in Pyp are highly
correlated, there is the ill-conditioning problem with the first step of regressing Pio out.
Ridge regression can be used for this step for a smaller variance with the expense of
introducing some bias. The final result of RRA(Pio, Y¢-L3Us) based on the estimated L

may give better results if an appropriate ridge parameter is used for the ridge regression.

N4SID-RL3 (L; estimated by RRR)

A general method in dealing with the ill-conditioning problem is to use a latent
variable regression method (LVR) instead of LS for the first step of N4SID. Reduced
rank regression RRR([Pio; Us], ¥y) is a good choice in the same sense of explaining the
greatest total variation but with the limitation of LVs used (rank restriction). The LVs
found by RRA are ranked in order of the amount of variance of ¥; explained using [Po;
Ur]. Determining the number of LVs to use for this RRR is a compromise between having
small bias and small variance. With more LVs used, the RRR regression coefficient has a
smaller bias but a larger variance. In practice, one can use AIC or the significance of a
LV in the explanation of the total variance of ¥; to determine the number of LVs to be
used. This RRR gives the regression coefficient matrix for Pio, which can be used

directly for the estimation of the predictable subspace and the process states (this method
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is denoted as N4SID-RLP), and it also gives the regression coefficient matrix for Uy,
which can be used for calculation of ¥~Hy Ur (this method is denoted as N4SID-RL3).

N4SID-Rf3 (L3 estimated by RRR with Uy augmented)
Based on (3.1.7), Yrincludes I'EXy and H;Uy, and therefore at least n+mf LVs from

RRR([Pio; Us], Yy) are necessary in order to account for all the effects of Xy and U;. Yet
only /f LVs are available to the maximum from this RRR due to the limited number of
variables in ¥; (there are usually equal number of inputs and outputs m=/ and If is less
than n+mf). In order to account for all the effects of Xy and U;, one can augment the ¥
data matrix with Ut to increase the limit of the possible number of LVs, i.e., performing
RRR([Pio; Usl, [ ¥, Us]). In theory, the first mf+n LVs will include both Xy and Uy so that
the predictable subspace in ¥r and the effect of Ur in ¥; as well as the augmented Uy can
be completely explained. All the remaining L'Vs are only to model the noise. In practice,
AIC or other criteria can be employed to determine the number of LVs to be used for the
RRR. The resultant coefficient matrix for Pio from this RRR can be used to estimate the
predictable subspace and the process states (this method is denoted as N4SID-Ruf), and
the resultant coefficient matrix for Ur can be used for computation of ¥; =¥r-H Us to be
used in RRA(Po, ;) for estimates of process states (this method is denoted as N4SID-
Rf3)

N4SID-RR (RRA based on new regression for L3)

Another way to deal with the ill-conditioning problem in the first step of N4SID
caused by the high correlation in Py is to replace Pip with estimated Xy. Equation (3.1.7)
gives the theoretical basis for this method. One can use the estimated state sequence Xj ¢
by the original N4SID algorithm or other methods discussed above. The regression
coefficient of ¥ against [Xy .; U] is an estimate of coefficient matrix [I7, Hy]. This result
might exhibit some bias because of the estimation error in X ¢, but the resultant estimate
of H; might be better than L in the original N4SID algorithm for much better regression

condition.
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All these methods discussed above try to improve the performance of N4SID
based on a better estimate of Hy matrix and the relationship between N4SID and RRA.
The key steps for estimation of the predictable subspace and the process states are
summarized in Table 4.2. Most of these methods avoid or lessen the severity of possible
ill-conditioning problems in the oblique projection of N4SID; therefore they are

promising for improving the performance of N4SID.

Table 4.2 Methods for improving N4SID by RRA

Metheds Estimation of the predictable subspace Estimation of the process states
N4SID LY, + LU, PCA(L\Y,+L,U,)

N4SID-L3 ¥~ LU RRA([Yy; Uy, Yi— LUy
N4SID-tri Ye— L3 wiUs L; o=lower triangle of Ls RRA([Y,; Up], ¥~ L3 Uy
N4SID-Hf Yy - H; U Hy . based on ARX RRA([Y,; Uy, Y~ H; Uy

N4SID-RR Y - Ly oUp [I7. Ly s)=regress Y; against | RRA([Y,; Up), Yr— L o U))
[Xk I Uf], Xy . is from N4SID

N4SID-R_L]) L slp ¥ p+L2_r|pU p; PCA(L Lrip Y p+L2_r|p Up)
[Ly qp Lz p] from RRR([ Y Up], ¥p)

N4SID-RUf L ]JufY p+L2*me P M PCA(L 1__me p+L2.mep)
(L1 L roe] from RRR([ Y Uy; Ugl, [¥g Uil)

N4SID-RO | Ly oY+ L U, PCA(L, o ¥;+L; oUp)

[Ly ro L3 o] from RRR(Pig 1o, Y7 1)
N4SID-ROP Y;— L; 1opUy, L o by regressing ¥; o, against | RRA([¥,; Uy, Y~ L 1pUp)
Us 1op, both matrices from regressing Py out

N4SID-RL3 | ¥y~ L; aUs RRA([Y; Upl, Yo~ Ls apUp)
L; 4, from RRR([Y,; U], ¥
N4SID-Uf3 | ¥;—L; Uy RRA([Y; Upl, ¥i— L3 nsUy)

L; ny from RRR([ Yy, Uy, Uy, [ Ur))

4.3 SIMs Based on Dynamic PLS and PCA

From the discussion in Chapter 3 and earlier sections of this chapter, it is clear
that CCA and RRA are the bases for CVA and N4SID respectively. These close
relationships between LVMs and SIMs naturally raise the question of whether or not
other LVMs, such as PLS and PCA, are applicable for SIMs. This section will explore the
possibility of applying dynamic PLS and PCA to extraction of the process states, and will

release more connections between LVMs and SIMs.
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4.3.1 SIM Based on Dynamic PLS

When CCA and RRA are applied for the past data Pio and the estimated
predictable subspace Yr ~¥r-Hr Uy, the LVs summarize the information from the past
data that best predict the process future behavior, and hence are estimates of the process
state variables. Analogous to CCA and RRA, PLS can be applied to these data sets to
obtain another set of latent variables. However, the relationships between these LVs from
PLS and the process states need to be investigated.

As shown in Table 4.1, PLS(X, Y) has the objective of maximizing the covariance
of the two data sets. The LVs from PLS(Pyo, ¥; ¢) focus on explaining both the variance
of past (Pio) and the estimated predictable subspace (¥t ) as well as their correlation. As
a result, the LVs from this PLS are a compromise between explaining the past data and
explaining the predictable subspace. This is different from the definition of the process
states, which only focus on providing the best explanation of the predictable subspace
without any intention of explaining the past data (just as CCA and RRA). The estimated
states are linear combinations of the past data and can explain part of the variation in the
past data; however, the LVs from PLS are twisted away from the process states by
partially compromising toward more explanation of the components of the past data,
which is not related to the process states. This turns out that the LVs from PLS include
components other than the process states, and therefore PLS are not as efficient as CCA
or RRA in extracting the minimum number of process states. As a result of this
inefficiency, more LVs from PLS than the system order n are required to describe the
process. This point has been discussed by Negiz and Cinar (1997) for time series
modeling. All this means that taking the LVs from PLS as the estimated states is feasible
for modeling a dynamic process, but it could not be expected to provide a minimal order
state-space model.

Since the LVs from PLS depend on the scaling of the data matrices, more
attention should be given to the data scaling. If the variances of some outputs or inputs

are far great than the others, the LVs from PLS will focus more on those variables with
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large variances. This is harmful to the model for the whole process unless there is a

justification that those variables with a larger variance are more important than the others.

4.3.2 SIM Based on Dynamic PCA

Dynamic PCA is to perform PCA([Y,; U,]) (lagging the process input and output
variables for p steps) or PCA([Yy U Yy, U,]) (lagging for p+f steps). Based on the
objective of PCA, the resultant PCs show the components (or say the directions) with the
maximum variances in the data set. The objective of PCA does not show any intent to
extract the process state variables. If one wishes that all the information of state variables
is included in PCs, many more PCs than the system order must be employed, and these
PCs include many components other than the state variables (large estimation errors to
the state variables). Therefore dynamic PCA in this approach is inefficient for extracting
the process state variables.

There is another way of applying dynamic PCA for the process dynamic based on
the least principle components (LPCs) (Ku et al., 1995; Negiz and Cinar, 1997). The
number of eigenvalues close to zero indicates the number of linear relationships in the
data set (the lagged input and output variables). Their corresponding eigenvectors show
the dynamic relationships between these variables. However, these relationships are the
repeats and combinations of the true process dynamic model, and these eigenvectors are
quite sensitive to the noise. Therefore the result is only acceptable at an extremely low
noise level (e.g., the SNR is great than 10000).

Here a SIM algorithm is proposed to estimate the state variables based on the
LPCs of dynamic PCA([Y; U: Y, U,]). Suppose the least / PCs associate with
eigenvalues close to zero, and the scores of these LPCs are expressed as:

T;= Ly ¥+ Ly Urt Ly, Yp+Ly Uy
Then the significant PCs from PCA(Ly, Y,+L.,U,) are taken as the estimated state
variables, and the final dynamic model can be obtained by fitting the estimated state

variables to the state-space model.
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The idea behind this method is that the scores of these LPCs are essentially zero
and this means that the linear combinations of the past data Ly, Yp+L, U, are essentially
cancelled with the linear combinations of the future data Lys ¥r+L,:Ur. Both these linear
combinations are essentially the linear combinations of the current states since only the
current process states are the connection between the past data and the future data for
well-designed experimental data (the cancellation might also happen between Uy and U,
if the inputs are highly correlated). Performing PCA on those state linear combinations
from the past data will determine the order of the system, and will improve the quality of
the estimated states (in the sense of SNR). The final dynamic model can be obtained by
fitting these estimated states to the state-space model.

If the inputs are highly correlated, these estimated states also include the states in
the input signal generator, and therefore bear large errors. It turns out that more PCs
become necessary to include process states or a less accurate modeling result. Compared
to the method directly obtaining the model from the coefficients for the LPCs, this
method gives a much better model, decides the system order much easier, and does not
have the problem of repeating dynamic relationships. However, the result from this
method is still poor compared to CVA or N4SID.

From all the above discussion, it is clear that LVMs are capable of extracting
process states from process data for SIM algorithms; however, PLS and PCA are not as
efficient as CCA and RRA in the estimation of the process states, though they give a
better model for the past data than CCA and RRA. This also indicates a close relationship
between LVMs and SIMs.

4.4 Similarities and Differences between SIMs and LVMs

Both LVMs and SIMs use lagged process variables to catch the dynamics in the
process, therefore both categories of modeling methods use similar concept of past/future

time horizon and similar past/future input and output data set as defined in Section 2.1.
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The data sets used in LVMs and SIMs are distinctive from the traditional system
identification methods, such as PEM, ML and IV, in which only the current outputs are
predicted without involvement of the future steps of the outputs or inputs. However, both
LVMs and SIMs use the multiple steps of future outputs (and inputs) where the latent
variables or the state variables can be well observed over the future horizon.

The basic ideas behind all these dynamic modeling methods are similar: to
predict the process future outputs based on the process past information (past inputs and
past outputs). Since long lagged steps of process data are used, these data sets have a high
dimension, and the variables in these data sets are highly correlated, utilization of LVM
techniques to reduce the dimensionality becomes a natural choice. Both LVMs and SIMs
algorithms extract the meaningful information in the time-dependent, high-dimensional,
highly correlated past data set down into a reduced dimensional subspace, and the future
outputs are then modeled in the terms of latent variables defining this subspace. Different
choices of the objective functions, normalizing constraints and rank constraints determine
different loading matrices (W in (4.1.3)), which define the latent variables or the
estimated state variables in LVMs or SIMs. In brief, both LVMs and SIMs share the
basic idea of modeling the process in a lower-dimensional space.

From the discussion in this chapter and the previous chapter, it is clear that SIM
algorithms are based on specific LVMs. CVA is based on the CCA result to get an
estimate of the process state sequence. N4SID is essentially based on RRA for the state
sequence. MOESP is based on PCA (SVD) for the estimate of the extended observability
matrix or the state sequence. Naturally, these connections closely link SIMs to LVMs.

Though LVMs and SIMs have strong connections, they have two major
differences: in SIMs, the future input effects are removed from the future outputs, and the
LVs (estimated states) are fit to the state-space model. The first point has been discussed
in Section 4.1. It is the fundamental reason that LVMSs and SIMs obtain different kinds of
model relationships: LVMs give correlation models while SIMs give causal models in

general.
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With LVMs the final model is left in the non-parsimonious form of equation
(4.1.4), which can always be written in the terms of a high-order ARX model. However,
SIM algorithms go one step further and express the final model in the parsimonious state-
space form. They are able to do this by defining the latent variables in such a way that
they provide a close approximation of the process states. Therefore, the process can
always be expressed in the more parsimonious linear state-space model form of equations
(3.1.1) and (3.1.2). Estimating the parameters (4, B, C, D) and then casting the model in
this form provides certain advantages. Much of the controller design literature is based on
state-space models and can thus be employed directly. The more parsimonious model
form from SIMs will give smoother predicted dynamic responses, potentially smaller
prediction errors with new data, and more robust control. This is entirely analogous to the
modeling philosophy of Box and Jenkins (1994) in the input/output space, where
preliminary impulse weights or step responses are used to identify and fit more
parsimonious transfer function ~ ARMA models capable of showing similar dynamic
behavior. An advantage with SIMs is that, even for MIMO systems, the only major
modeling choice is the number of latent variables to use (i.e., order of the state model).

In general, the availability of output (y) data in LVMs for process monitoring
situations is usually quite different from that in SIMs for process identification. In the
latter, data on y variables is essentially always available from on-line sensors at the same
sampling frequency as the manipulated process inputs (¥). In process monitoring, the y
variables are usually product quality or productivity variables for which observations are
available only infrequently from off-line analyses. Process monitoring is therefore often
based simply on a PCA model involving only lagged values of the process variables. If y-
data is to be used, then the models can only be built from lagged data matrices with rows
corresponding to instances at which y’s are measured, and the past data matrix X will not
contain lagged values of the y’s since these are generally unavailable. Dynamic modeling
with infrequent y data is also treated by Ergon and Halstensen (2000).

In brief, SIMs are different from LVMs for two distinct features: eliminating the
confounded future input effects from the future outputs, and fitting the L'Vs (estimated
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state variables) to the state-space model in a more parsimonious form. In general, LVMs
are based on the normal operation data, give the correlation relationship, and are usually
applied to process monitoring. SIMs are based on experimental data, give the causal

relationship, and are usually applied to system identification.

4.5 Simulation Studies

In this section, a continuous stirred-tank reactor (CSTR) process is used as a
simulation example to illustrate the relationship between LVMs and SIMs. There exists a
first order chemical reaction in the reactor, and the reaction heat is removed by cooling
water from the jacket. The two inputs are the feed flow rate and the coolant temperature,
and the two outputs are the product concentration and temperature (see Figure 4.1, for
detail parameters, refer to Lakshminarayanan, 1997). The process is linearized at the
steady state, and the system matrices of state-space model in the discrete form are shown
as below:

= 0.68654 —-5.046x107* | 1726 10™*  -10647x10°°
| 64.182 1.0177 T |-35311x10  4.0478x107*

c [L O D 0 0
101 jo o
It is a second order dynamic system with poles at 0.8521% 0.0705i. In the following
simulations, inputs to the process are independent PRBSs with magnitude of 5 and a

switch time period of Ti=5 sampling intervals. Because of the very different magnitudes

of the two outputs, the process variables will be scaled to unit variance in all the studies.
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Figure 4.1 Continuous stirred-tank reactor (CSTR)

4.5.1 Comparisons for Case of Noise Free

The purpose of this subsection is to investigate the relationships between the
latent variables from LVMs or estimated states from SIMs and the true state variables. To
do so in an unambiguous manner, simulation studies on CSTR are performed for the
noise free case (w=0, w=0) with parameters given above. 500 observation data points are
collected from this deterministic simulation, and the true state variables are recorded for
comparison. For simplicity in the dynamic modeling, both past and future horizons
include only 2 lag steps of the input and output variables (this lag structure should be
adequate since the true state model is of order 2). LVMs are based on the past data
X=[Y,; U,] and the future outputs ¥=¥;. PCA uses only the past data X for LVs, which
can be used to explain the ¥ data. SIMs are based on X=[Y,; U;] and Y=Y =¥;- H; Us.
In CVA, H; . is based on the fitted ARX model (In this noise-free case, it equals the true
Hy). The CVA_RO algorithm is also applied for this example. In N4SID, H;. is
coefficient matrix L3 in (3.2.3). The state-based MOESP algorithm is used in this
example.

To evaluate how closely the latent variables from these methods coincide with the
true state variables of the CSTR process, each latent variable is projected onto the true

state variables. The percentage of the variance explained (R%) by the true state variables is
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presented in Table 4.3 (only for the first 4 LVs). The first two LVs from PCA and PLS
contain a great amount of state information, but they also contain other components. The
later LVs also include some state information. The first two LVs from RRA are very
close to the true states but are twisted slightly to explain a little bit of the future input
effects in ¥; (if a longer future horizon is used, R? will decrease further). The first two
LVs from CCA are completely occident with the true states, and the later LVs are total
uncorrelated to the state variables. As expected, the first two LVs from SIMs coincide
100% with the true state variables. The later LVs from CVA_RO and state-based
MOESP (using regressing Ur out) also contain some state information since they are not

orthogonal to the first two estimated states.

Table 4.3 LVs explained by the true states (R?, PRBS inputs, noise free)

No.LV | PCA PLS RRA CCA CVA CVA_ro | N4SID | MOESP_s
1 99.05 58.80 | 99.28 100 100 100 100 100
2 69.42 80.60 | 99.26 100 100 100 [ 100 100
3 4.53 1.92 065 |0 0 12.4 0 80.83
4 17.74 13.85 050 {0 - 0 3.55 0 44.11

In MOESP, if H; . is taken as the regression coefficient matrix of ¥r against Uy,
the true states can explain the variance of LVs from SVD(Y; - H; .Us) 78.81%, 65.54%,
14.16% and 1.31% respectively. This poor result is due to the partial removal of the
predictable subspace in eliminating the effects of future inputs Ur from ¥; (QR
decomposition). If the input signals had not been serially correlated (i.e., PRBS with a
switch time period T=1 (uncorrelated) were used rather than autocorrelated PRBS with
T=5), the LVs from this method would have had the same 100% correlation with the true
states.

If the SIM algorithm based on PLS is applied to the example, the LVs from PLS
on past data and Y -H; Us (H; . is based on fitted ARX model as in CVA) are explained
by the true state variables, the R® values are 0.9886, 0.8244, 0.1131 and 0.0354

respectively. The first two LVs contain a great amount of information of the process
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states, but they are not coincident with the true states because the objective of PLS
includes the compromise of modeling the past data.

If the SIM algorithm based on dynamic PCA (section 4.3.2) is applied to this
example, there are 6 zero-eigenvalues in PCA([ ¥y U Yp; Upl), this means 6 LPCs or 6
linear relationships in the data sets. For these 6 LPCs, PCA on the contribution from the
past data will give 2 significant PCs (other PCs corresponds to zero-eigenvalues). This
indicates the system has 2 states (order of 2). These 2 PCs are the state estimates, and

they coincide 100% with the true process states.

4.5.2 Comparisons for Case with Noise

Here different identification methods are applied for the same CSTR simulation
example in the case of white noise added on each output (»=0). The signal-to-noise ratio
(SNR, variance of the true output over variance of the noise) is 10 for each output. 1000
data points were simulated and used for dynamic modeling. Again each process variable
is scaled to unit variance. Both past and future input/output data include 13 lag steps (this
corresponds to a minimum value of AIC in CVA). As shown before, LVMs are based on
the past data X=[¥,; U,] and the future ¥Y=¥;. SIMs are based on X=[Y,; U,] and
Y=Y; ~=Y:- H; ;Us, where H; . is based on the fitted ARX model in CVA or coefficient
matrix L3 in N4SID.

Depending on the individual method, LVs from LVMs display different
efficiency in modeling the past data (X) or the future data (¥). The total variance
percentages of the past data modeled (explained) by LVs (R*x, accumulative values) are
shown in Figure 4.2, and the total variance percentages of the future data modeled by
LVs (R*y, accumulative values) are shown in Figure 4.3. These figures clearly show that,
for modeling the past data, PCA is most efficient and RRA is least efficient; for modeling
the future outputs, PCA is least efficient and RRA is most efficient; PLS is always
between PCA and RRA; CCA is not most efficient in explanation of these variances (but

is most efficient in the relative sense in orthogonal directions). All this is due to their
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objectives in finding the LVs. This makes PCA and PLS useful in monitoring, and RRA

and CCA valuable in system identification.

Total variance of the past data explained by LVs
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Figure 4.2 Performance of LYMs for modeling the past data
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Figure 4.3 Performance of LVMs for modeling the future output data
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To show the relationships between LVs from LVMs and SIMs and the true state
variables, each LV is explained by the true state variables, and the R? value shows how
close this L'V is to the process states (see Table 4.4). In general, the state information in
LV decreases with the sequence. The results also clearly indicate that RRA and CCA are
more efficient in extracting out the state information than PCA and PLS. However, the
first two LVs from SIMs are much closer to the true states than those from LVMs. This
conclusion is also shown in the canonical correlation coefficients (CCCs) between
cumulative LVs (including 1 to 6 respectively), and the true states are shown in Figure
4.4 (only those from LVMs are shown, and those from SIMs are not shown for too close
to 1.0).

Table 4.4 LVs explained by the true states (R*, PRBS inputs, SNR=10)
Ne.LV PCR PLS RRA CCA CVA N4SID | MOESP

1 3342 | 90.58 84.64 98.26 99.65 99.63 99.65
2 5760 | 67.00 84.94 95.62 99.80 99.78 99.55
3 4553 2330 11.84 1.39 0.000 0.011 0.015
4 14.53 329 8.92 2.85 0.000 0.007 0.009
5 2922 9.42 7.51 0.10 0.000 0.001 0.012
6 9.64 5.39 0.24 0.05 0.000 0.003 0.049

Relationship between LVs and the true states
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(a) 1* Canonical Correlation Coefficient (CCC)



97

Relationship between LVs and the true states
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(b) 2™ Canonical Correlation Coefficient (CCC)
Figure 4.4 CCCs between the LVs and the true states

As discussed previously, both CVA and CCR use the dominant canonical variates
from a CCA to build the dynamic model, but CVA removes the future input effects and
fits these LVs to the state-space model resulting in a lower order parsimonious model.
These extra procedures eliminate the future input confounding and filter out the erratic
spurs or ripples in the responses. The impulse responses of the CCR and CVA models
using 2 canonical variates are shown in Figure 4.5. Both of them have the same general
trend as the true responses, but the responses from the CVA state-space model are clearly
closer to the true model (almost overlap) and are much smoother than those from the
CCR model. Fitting the latent variables to the state-space model constrains the impulse
and step responses to follow only that behaviour possible for a second-order process and
therefore eliminates the impulse-response flexibility (over-parameterization) of the

lagged CCR regression model.
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Figure 4.5 Impulse Responses of CCR and CVA (SNR=10)

All the results from different SIMs, CVA, N4SID and MOESP, are so close to the

true process model that they overlap on the impulse response plots. In Figure 4.6, their

errors on the impulse responses are compared to give an idea about their accuracy. In

general, CVA gives a relatively better result, and MOESP gives a relatively larger error

in this simulation example.
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Figure 4.6 Errors of the impulse responses from SIMs (SNR=10)

The SIM algorithm based on dynamic PCA is also applied to this simulation

example. PCA([Yy; Uz Y;; U,]) shows many small eigenvalues, and here the contribution

from the past data for the last 6 PCs are taken out as the linear combinations of the

process states. SVD (PCA) on these components gives singular values: 33.06, 16.10,

7.61, 5.73, 4.82 and 4.68. The R* for these components explained by the true states are
0.9898, 0.7091, 0.0496, 0.0189, 0.0041 and 0.0007 respectively. The two components are

significant (indicating the system to be order of 2), and they contain a great amount of

state information. The impulse response from this method is shown in Figure 4.7. In

general, the results are close to the true model; however, the method is apparently worse

than CV A, N4SID or MOESP algorithm shown before.
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Figure 4.7 Modeling result from SIM based on dynamic PCA

The efficiency of PLS for extracting out the state information is also investigated
for this example. 2, 4 and 6 LVs from PLS([¥}; Up), Yr-H; (Us) (where H . is constructed
based on fitted ARX model) are taken respectively as the estimated states for state-space
models, and the results are shown in Figure 4.8. Compared to the result of CVA (with 2
LVs from CCA), PLS is less efficient in extracting the state information. Using more LVs
from PLS, however, the resuits tend to be very close to the true model. In this example, 6
LVs are good enough for the dynamic model. (A similar simulation in
Lakshminarayanan, 1997, indicated that over 30 LVs were necessary. The difference

might come from no scaling and no elimination of the future input effects.)



101

x 10° Output 1 input 1 x 10° Output 1 Input 2
O, 2.
/7 T N
[12] w
o o
& &
B .
60 0 20 40 60
Time Point
Output 2 Input 2
0.02 0.06
— True
S E ’ — — SIM-PLS (ord=2)
o P o o N SIM-PLS (ord=4)
2 T @ =\ | —.~ SIM-PLS (ord=6)
S S 0.02 \
3 3 N
-0.02
20 40 60 0 20 40 60
Time Point Time Point

Figure 4.8 Results from SIM algorithm based on different number of LVs from PLS

4.5.3 Improving N4SID Performance with RRA

In this subsection, Monte Carlo simulations are done to demonstrate the
relationship between N4SID and RRA and the improvement of N4SID performance by
using RRA in various methods. The same CSTR example shown before is employed with
SNR=2.0. 500 data points are collected in each simulation, and a total of 200 simulations
are done in the Monte Carlo simulation.

As an example, Table 4.5 summarizes the result of the above methods for one
typical simulation. In this example, both past and future horizons are of 9 lag steps
(determined by CVA according to minimum AIC), and 2 LVs (estimated states) are used
for fitting the state-space model. Simulation for this example indicate that, in general, the

results from n4sid.m function (based on N4SID unbiased algorithm) in System
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Identification Toolbox (version 4.0.5) are numerically better than those from biased,
unbiased or robust algorithms in Van Overschee and De Moor (1996), therefore it is used
for the comparison study in this section. The results from various methods shown in
Section 4.2.3 are compared with that from N4SID in several aspects: ABE Hf for the
total absolute error of the estimated Hy, SSE_YT for the sum of squared error on the
predictable subspace (relative to the total sum squares of the true predictable subspace),
two CCCs between the estimated states and the true states, IAE and SSE for the Integral
Absolute Error (IAE) and Sum Squared Error (SSE) on the impulse responses (first 50
steps) respectively.

The simulation results shown in Table 4.5 clearly indicate that the subspace
modeling result (N4SID-L3) based on RRA(Pio, ¥r-LiUs) is the same as that from
N4SID. All the methods listed in Table 4.2 (except N4SID-Uf3) give better estimations
of H;. Estimated predictable subspaces based on coefficient matrices L; and L, from
different methods are closer to the true predictable subspace. Those methods based on ¥
H; Uy include all the future noise in the estimated predictable subspace, and therefore
indicate a large error on the estimated predictable subspace; however, after projecting to
the past data, the errors become rather small. The values of CCCs between the estimated
states and the true states are very close to 1.0, and this indicates that the estimated states
are very close to the true states. The final models from all these modified methods have
smaller errors for both IAE and SSE than the original N4SID.

Table 4.5 Comparison of results from different methods for one typical simulation

Methods #LVs | ABE Hf | SSE_Yf | 1I’''ccC [2¥ccCc |IAE SSE

N4SID 27 0.0704 0.1254 | 0.9906 | 0.9847 0.1807 | 0.0272
N4SID-L3 18 0.0704 1.0607 | 0.9906 | 0.9847 0.1807 | 0.0272
NA4SID-tri 2 0.0611 1.0605 | 1.0000 | 1.0000 0.0449 | 0.0020
N4SID-Hf | 2 0.0214 1.0707 | 0.9906 | 0.9848 0.1651 | 0.0224
N4SID-RR__ | 2 0.0592 1.0323 | 0.9906 | 0.9850 0.1752 ] 0.0257
N4SID-RLp | 16 / 0.1206 | 0.9907 | 0.9849 0.1767 | 0.0261
N4SID-RUf | 20 / 0.0348 | 0.9905 | 0.9852 0.1659 | 0.0234
N4SID-RO | 2 / 0.0266 | 0.9905 | 0.9853 0.1624 | 0.0226
N4SID-ROP | K=2 0.0669 1.0519 | 0.9908 | 0.9851 0.1709 | 0.0252
N4SID-RL3 | 16 0.0662 1.0608 | 0.9907 | 0.9849 0.1768 | 0.0261
N4SID-Uf3 | 20 0.0729 1.0372 | 0.9905 | 0.9851 0.1665 | 0.0235
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The distributions (histograms) of IAE from these algorithms are compared with
that from N4SID for the 200 simulations. The IAE results from N4SID and N4SID-L3
are shown in Figure 4.9. It shows clearly that these two methods give the same result.
The distribution of IAE from N4SID-tri is compared with that from N4SID in Figure
4.10. Tt is obvious that N4SID-tri gives a better result than N4SID. This conclusion
becomes much more apparent from the distribution of the IAE difference for each
simulation in Figure 4.11. The distributions of the IAE differences for other methods are
shown in Figure 4.12. These figures clearly show that all these methods of using RRA
improve the performance of N4SID.

The Distribution of IAE of impulse responses from N4SID and that from N4SID-L3
40 T T < T

T

IAE from N4SID (left)
IAE from N4SiD-L3 (right)

35

30
25
20

15

Frequency in 200 simulations

. 3.5 4 4.5 5
IAE of impulse responses of resuitant model

Figure 4.9 Distribution of IAE results from N4SID and N4SID-L3
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The Distribution of IAE of impulse responses from N4SiID and that from N4SID-tri
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Figure 4.10 Distribution of IAE results from N4SID and N4SID-tri

% The distribution of differences between IAE from N4SID and that from N4SID-tri
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Figure 4.11 Distribution of IAE differences between N4SID and N4SID-tri
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The disuibution of differences besween IAE from N4SID and that from N4SID-RR
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The equivalence and the improvement of the listed methods using RRA for
N4SID are quantitatively tested in Table 4.6 based on the paired differences of IAE (the
impulse weights). The first column lists the number of cases (percentage of the 200
simulations) in which the final IAE from one method is improved relative to that from
N4SID. The remaining columns provide statistics on the paired IAE difference (IAE from
the modified N4SID method — IAE from N4SID). For N4SID-L3, 53% of the cases are
improved (50% is the expected value if there are no numerical errors), and the Student’s
t-statistic shows that this algorithm is not statistically different from N4SID (critical value
of 1505s=1.96 for 199 degree of freedom at 0.05 level of significance). All other methods

show significant improvement over N4SID according to the Student’s ¢-statistic.

Table 4.6 Improvement of different methods (for 200 simulations)

Methods Cases improved (%) | Mean of IAE STD of IAE Student’s
| difference difference #-statistic

N4SID 0 0 0 0
N4SID-L3 53 0 0 0.31
N4SID-tri 99 -0.9157 0.0524 -17.46
N4SID-ARX 74 -0.3000 0.0304 -9.86
N4SID-RR 82 -0.0722 0.0067 -10.85
N4SID-RLp 76.5 -0.0148 0.0024 -6.10
N4SID-Ruf 83.5 -0.1928 0.0162 -11.91
N4SID-ro 82 -0.2094 0.0180 -11.66
N4SID-rop 86 -0.2028 0.0180 -11.25
N4SID-RL3 76.5 -0.0148 0.0024 -6.11
N4SID-Uf3 83.5 -0.1893 0.0157 -12.05

4.6 Conclusions

This chapter mainly focuses on the relationships between SIMs and LVMs for
dynamic process modeling. It is the first time to reveal the connection and the difference
between these two categories of methods, and show a clear picture of their relationships.

When the process input and output variables are properly lagged to form the past
data and the future output data, LVMs can be applied to these data sets for the dynamic

relation between the inputs and the outputs. The final latent variable models are in ARX
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model form. These models show the correlation relationship instead of the causal
relationship in general, even for experimental data due to the inclusion of the future input
effects in the future output data. They may predict the future outputs well if the
correlation structure in the inputs remains unchanged.

The N4SID method is proven to be based on RRA just as CVA is based on CCA.
The whole procedure of the oblique projection and the SVD in N4SID is equivalent to
performing RRA between past data and the estimated predictable subspace. This
relationship releases another important connection between SIMs and LVMs. The
insights from the relationship provide a variety of methods to improve the performance of
N4SID.

Both SIMs and LVMs build the dynamic models using a lower dimensional
subspace of the original data sets. Both LVs and estimated states are linear combinations
of the past data; however, in SIMs the effect of the future inputs is removed from the
future outputs. LVMs are employed for the modified data sets for the process state
estimates, and these estimated states (LVs) are further fit to the state-space model for the
system matrices. Here removal of the future input effect makes the final result a casual
relationship, and fitting to the state-space model makes the final model more
parsimonious and with smoother impulse responses.

In estimating the states by LVMs, though PCA and PLS are feasible, they are not
as efficient as CCA and RRA. PCA and PLS include more information about the past
data set and the correlation structure of the input variables in their LVs, therefore these
methods are more suitable for process monitoring. CCA and RRA focus on the prediction
of the future outputs based on the past data, and there is no intention to model the past
data, therefore LVs from these methods are more efficient in estimating the process

states.
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Appendix 4.1 Relationship between RRA and LS with PCA

Suppose general data set Xe R™* and YeR™, Denote SVD on X as:
X =U,S, Vi with UyU, =1, (A4.1.1)
Then the projection of ¥ onto X will be:
Z=Y/x=Xx(x"X)'X"Y =U,ULY (A4.12)
Denote the SVD of matrix Ux'Y as U L =US 14 (UITU1==Ik), then SVD of the
above projection result will be: (i.e., PCA result)
Z=Y/X=UUYY=UUSV =USV" =1P" (A4.1.3)
Here T=US and U=UyU; (U'U=U,"Ux UxU=I). Columns in P=V are the loading
vectors for PCA(Z), and columns in T are the scores for the PCs. Scores in T are columns
in U weighted by diagonal elements (singular values) of S respectively.
In PCA or SVD of Z, U is the eigenvector matrix of ZZ" ie., ZZ'U=US?, that is,
x(x*x)' x7y v x(x"x) XU = US> (A4.1.4)
Pre-multiply the above equation by (XTX)'IXT, and denote W=(X'X)'X"U, then the
above equation becomes:
(x"x)' xTY v xW = Ws? (A4.1.5)
This indicates that W is the eigenvector matrix of (X'X)'X V¥ X=Sxx'SxySvx.
However, this is the same matrix for the LVs of RRA are the eigenvectors (refer to Table
4.1). The latent variables from RRA are:
Up=XW=X-(X"X)' X"U =U,ULU,U, =U,U, =U (A4.1.6)
Therefore, PCA(¥/X) and RRA(X, Y) find the same latent variables with only a scaling

difference. Therefore, these two methods are theoretically equivalent to each other.

What the first a PCs from PCA(¥/X) can explain in ¥ subspace is:
}‘}PCA = TaPaT = USaVaT = UaS,,aVaT (A4.1.7)
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where the subscript a stands for the matrix with only first a column vectors, and S,, is the
diagonal square matrix with first a singular values. The first a latent variables from

RRA(X, Y) can explain the following ¥ subspace:
Vort =UUTY=UUIUYY =U ULU, SV =U,[1, OFSV™ =U,S, V]

(A4.1.8)
That is, RRA(X, ¥) and PCA(¥/X) theoretically explain exactly the same components in

¥ data set.
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Appendix 4.2 Regression Out Method for N4SID

The regression model in N4SID is as following (3.2.1):
Y, =LY, +LU,+LU,+E
If Pio=[Y;; U,] denotes the past data and L, denotes the corresponding coefficient matrix

[L; L,}, the above model can be written as:

Y, =L,Pp+LU,+E (A42.1)
If regressing Ur out of both sides of the above equation, the result will be:
Y, o=L,Py +E (Ad4.2.2)

Where ¥r o is for the result from regressing Us out of ¥, and Pio 5 is for the result from
regressing Ur out of Pyp. Both these two matrices are known and the only unknown

coefficient matrix Ly can be obtained by regressing ¥t ,, against Pig 1o as:
LIZ = Yf_m‘Plg_ro (‘PIO-ra})Ig_ro )_1 (A42'3)

The predictable subspace is:
LY, +LU,=L,P,

p; Up]=PIO

PIO__ro

Geometric explanation of the N4SID regression out algorithm
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The above regression-out operation can also be performed for the past data Pyo. If
Pyo.is regressed out of both sides of (A4.2.1), the result will be:

Yf_mp = L3Uf_rop + E_f (A424)

Where ¥t rop is for the result from regressing Pio out of ¥y, and Us rp is for the result from
regressing Pio out of Ur Both these matrices are known, and the only unknown

coefficient matrix L3 can be obtained by regressing ¥; o, against U yop as:

—_ T
L,=Y, UT

12 f_rop

-1
_rop (Uf_rop U}_ rop ) (A4.25)
The results from (A4.2.3) and (A4.2.5) are equivalent to those from N4SID in the

sense of expectation value.



112

Appendix 4.3 Algorithms for CCA Computation

This appendix lists several algorithms often used in the computation of CCA. For
data sets X and ¥ (dimension: dim(X), dim(¥). d=min(dim(X),dim(Y))), CCA is to find d
canonical variates (CVs) U,=XJ and V=YL from X and ¥ respectively, so that UXTUX=Id,
VyTVy=Id, and UyTVy=D=diag(r,-, =1, 2, ..., d), i.e., to find the orthonormal variable sets
(CVs) by linear combinations of X and ¥ respectively, the corresponding paired CVs are
most correlated and with no correlation with other CVs. The key issue is to find the
coefficient matrix J and L. Here the covariance matrices of X and Y are denoted as Sy,

Sy, Sxy, and Syx respectively. Sy, =(S,,)", and Sxy and S,y are symmetric.

Eigenvector decomposition
[J, DI=eig(Sw ' SxySyy 'Syx) and [L, D]=eig(Syy SyxSrx ' Sxy)-

Note, the matrices for eigenvector decomposition (ED) are not symmetric, and numerical

errors may cause complex numbers in the result,

ED of Sy and Syy and SVD

[V, DiJ=eig(Sx), and let B=V,D, 2, so BSx B '=I
[V, Dy]=eig(S,y), and let C=V,D,'” so CS,,C"=I
[U, D, V]=svd(B"S,,C)

J=BU and L=CV

Square root factor and SVD
[Vso Dy J=eig(Sn, and S =S ar=ViDy 2V,
[V;, Dyl=eig(Syy), and Sy =S,y o=V, Dy 2V,
U, D, VI=svd(Syy *SnS")

=S, 2V and L= Syy-l/z U
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SVD method

[Us, S, Vi]=svd(X), and X o=V,
[Uy, 8y, Vy]=svd(¥), and ¥ 4=V, S,
[U, D, VI=svd(¥ st SypX )

J=X oV and L=Y U

OR decomposition and SVD
[Ox, R]=aqr(X), [Qy, Ry]=qr(Y)
[U, D, VI=svd(R,"S,R,")
J=R,'V and L=R,'U




5 A Framework for SIMs

5.1 Introduction

5.1.1 Objectives

N4SID, CVA and MOESP are quite different from each other in their development
and computational methods, but they also show some commonalities in their basic ideas, for
example, a set of lower dimensional linear combinations of the past data is taken as the
estimated states in all these methods. However, little research has been done on the
commonalities or the similarities among SIMs. The SIM algorithms are usually treated
individually, and the connections among these methods are not clear.

The objective of this chapter is to investigate the commonalities of SIMs in both their
philosophy and their computational approaches. A statistical framework will be proposed to
show these commonalities and reveal the essential nature behind the computation procedures
of SIM algorithms. By casting SIM algorithms into such a framework, these methods are
expected to become much easier for understanding, and their similarities as well as
differences should become clearer. This framework should also help the exploration for new
SIM algorithms.

After a brief review of literature in the next subsection, a general framework for SIMs
will be set up in Section 5.2. The following three sections provide the details of the
framework and show how SIM algorithms fit to this framework. A simulation study will
illustrate some key points of this framework. The last section includes a summary of this

framework.
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5.1.2 Literature Review

SIMs have been developed only over the past decade, and they are still immature in
many aspects; therefore not much research has been done to unify or to build a framework for
SIMs. An extensive search turned up only one published paper on this aspect (Van Overschee
and De Moor, 1995). In this paper, a unifying theorem was set up by casting CVA and
MOESP to the N4SID procedures, which act as a common computational framework. It was
shown that the different SIM methods could be obtained by using different specific values for
the left and right weighting matrices W, and W, in the reduction of the high-order oblique
projection result O=[(Y¢/UHM(Pio/U) [(Pio/U ) Po/UM) T'Po by a rank-limited

approximation R (using the matrix notations defined in Section 2.1):
A/{einllW](O— R, (5.1.1)

s.t. rank(R)=n
Here /Us" stands for projection onto the orthogonal space of future inputs, i.e., operation of
post-multiplying by Pyp=I- UfT( UfoT)'1 Ur. In fact, ¥y Uf‘L'—*Yf_m, P/ UfJ‘=P10_m and projection
O is the estimated predictable subspace L, Y, +LyU, by the regressing Ur out method shown in
Appendix A4.2. Different SIMs correspond to different values of weighting matrices ¥, and
W, as listed in Table 5.1. Apparently, in N4SID, the solution for the order-reduced projection
R in (5.1.1) is a PCA (taking » significant components of SVD). In MOESP and CVA, itis a
special weighted SVD involving the inverse of W, and W,. These weighting matrices ¥, and

W,, as well as their inverses, are obscure in their physical meanings.

Table 5.1 Weighting matrices #; and W, in different SIMs

CVA N4SID MOESP
W (YU (XU 1 1
W 2 P ufo I P ufo

Note: P, =I-Us (UsU ) U;

The above unifying theorem casts MOESP and CVA iato the frame of N4SID and

treats other SIMs as a special case of N4SID. For these methods, the similarities and
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differences are hidden in the specific right and left weighting matrices. The physical meaning
of these weighting matrices is not clear. By focusing on the detailed calculation procedures,
this unifying theorem provides insight into their mathematical computation but does not
reveal the common basic ideas behind these methods. Therefore, it does not provide a general
conceptual framework for SIMs, nor does it help people understand the nature of SIMs, nor

does it provide clear guidelines for developing new SIM algorithms.

5.2 A General Statistical Framework for SIMs

Each of the SIMs looks quite different from the other in the concepts, the computation
methods and the interpretations. As shown, MOESP (elementary algorithm) does a QR
decomposition on [Uy; Y] and then a SVD on R, (part of the R matrix). Part of the singular
vector matrix is taken as an estimate of /5. The 4 and C matrices of the state-space model are
then estimated from this estimate I;. The B and D are then estimated through another LS
fitting with estimated 4 and € matrices. N4SID performs a SVD on the oblique projection of
Y; along Ur onto [¥; U], and the right singular vectors are taken as estimates of the state
variables, which are then used to fit to the state-space model. The estimated states in N4SID
are interpreted as the results of a series of non-stationary Kalman filters. CVA uses CCA to
estimate the state variables and then fits them to the state-space model. It is interpreted in
terms of the maximum likelihood principle. As for the detailed algorithms, the difference
between these SIMs seems so large that it is hard to find the similarities between them.

These SIM algorithms show some commonalities in their basic ideas and computation
methods. In fact, the QR decomposition in MOESP is an alternative way to perform LS
regression of Yragainst Uy, and Ry R, ;! is an estimate of Hy (unbiased if the inputs are white
noise). R0 is an estimate of the future input effects on the future horizon, and R»,0- is an
estimate of the predictable subspace. PCA (SVD) on R»(; provides the estimated It and
estimated states. In N4SID, the coefficient matrix L3 from regressing ¥r against [¥y; Up; Us]
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is an estimate of Hy, and LiU; is an estimate of the effects of future inputs on the future
horizon. LY, +L,U, or Yi-L3Us is the estimated predictable subspace. Based on this, PCA or
RRA gives the estimated I; and estimated states. The estimated process states are then used
for fitting the state-space model. In CVA, the Hy matrix is estimated based on the fitted ARX
model, and YyHU; is the estimated predictable subspace. CCA on past data and this
estimated predictable subspace gives estimates of the process states, which are used to fit the
state-space model. From the above analysis, if the basic ideas and the computation methods
behind all these methods are scrutinized from the viewpoint of statistical regression, these
SIMs appear to be very similar, and follow a common framework. The framework consists of
three steps:

i) Estimate the predictable subspace 1Xi by a linear regression method based
on the past data or by removing the future input effects from the future
outputs

ii) Estimate the state variables based on the estimated subspace by one of the
latent variable methods (LVMs)

iii) Then fit the estimated states to the state-space model to obtain the system
matrices and noise covariance matrices

The first step in the framework is to estimate the predictable subspace 13Xy, which is
included in the future output space as shown in (3.1.7). This subspace can be predicted based
on the past data as shown in (3.1.8). Removing H;Ur from ¥r eliminates the confounding
between the past data effects (72Xi) and the future input effects (HiUs). The second step of
the framework is to estimate the process states based on the estimated predictable subspace.
Both the estimated predictable subspace and the past data space are of high dimension but are
highly correlated. LVMs on these two data spaces find out the linear combinations of the past
data with the best predictability of the estimated predictable subspace; that is, the past history
of a process is summarized into a few variables with the best information for the prediction of
the future behaviour of the process. These linear combinations can therefore be interpreted as

estimates of the process states. In the third step, the estimated process states are fitted to the
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state-space model by some form of LS regression to obtain the system matrices. The
regression residuals are the estimates of the stochastic noise variables, and their covariance
matrices can be easily estimated.

This framework points out the function of each step and general methodology in each
step; yet many different detailed approaches exist for each of these steps, especially for the
first two steps. The overall picture of the framework is shown in Figure 5.1, and detailed
discussions of these steps are provided in the next three sections. The major differences
between SIMs are found in the choices of specific approaches in each of these steps. The
original MOESP algorithm extracts I7 from the estimated predictable subspace. From the
same subspace, process states can be estimated (refer to Section 3.4, and Van Overschee and

De Moor, 1995). The state-based MOESP algorithms fit well to the framework.

Process data: U, ¥, U; ¥

Y[ Yo Ups Ul YiUr IV - =Linear Regression Method for IX)

v 4 ki v E

Estimated predictable subspace (/Xy): n
Yy =Y-H; Uy

RRA pCA | PLS = @ble Metho@

A 4 v h .

Estimated state variables: LVs +
Xk=W1 Yp+W2Up

lLS = Least Squares Method for s.s. mode

Fitting to the state-space model: H
Xier1 =Ax FBu +wy
We=Cxy+Du+Nwy vy

SIMs: N4SID MOESP - -

Figure 5.1 The framework for the SIM algorithms

The computational framework by Van Overschee and De Moor (1995) fits well into
this framework, but is more restrictive since it forces all SIMs into the N4SID format. The

oblique projection O in (5.1.1) is actually an estimate of the predictable subspace based on
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the past input and output data. The resultant R in (5.1.1) is an approximation of O obtained
by PCA, which is one of the many LVMs included in this framework. If looked at from this
framework, the rank restriction on R in (5.1.1) is naturally imposed by the rank limitation of
the true predictable subspace IiXy. This is not clear in the unifying theorem of Van
Overschee and De Moor (1995). Their unifying theorem was based on regressing Ur out,
which is only one of the many approaches summarized in this framework. This framework
shows clearly the purpose as well as the physical meaning of the computation procedures;
therefore, it reveals the fundamental ideas and the nature of SIM algorithms. The connections
and differences among SIMs become apparent under this framework. In the unifying theorem
of Van Overschee and De Moor (1995), the physical meaning of the weighting matrices as
well as their effects on the final result is not clear, and therefore little guidance for new
algorithms could be gained. This framework provides clear guidelines on the choice of SIM
algorithms and strong heuristic directions for developing new algorithms.

System matrices of the state-space model can be estimated based on the estimated
process states or the estimated observability matrix It (also refer to Viberg, 1995). The
framework proposed in this chapter is for the state-based methods, but the first two steps of

this framework are also helpful in understanding the I-based methods.

5.3 Estimation of the Predictable Subspace

5.3.1 Linear Regression for H; to Estimate I X

In SIMs, the predictable subspace JiXy should be estimated first in order to have a
basis for estimation of the state sequence Xi or the extended observability matrix I1. As
shown in (3.1.7), IiXx is a component of the future outputs ¥y, which also includes the future
input effects HyUr. If the input signals are auto-correlated, HrUrs is correlated with 12X, and

therefore causes difficulties in separating these two components. The key problem in



120

estimation of the predictable subspace Xy is to remove HiUr away from ¥;. Since the future
inputs Uy are known, only the coefficient matrix Hyis unknown and needs to be estimated.

H shows the effects of Uy on ¥; and consists of the first f'steps of impulse weights on
lower diagonals (for SISO) or block weights on block lower diagonals (for MIMO). The true
H: is a lower block triangular matrix as shown in Section 2.1. These features are informative;
however, most algorithms do not make full use of these features. Different algorithms use
different methods to estimate Hr from the input and output data sets. These methods for
estimating this coefficient matrix belong to the class of linear regression methods.

Once Hr is estimated, say H., then Yy H; .U is taken as an estimate of the
predictable subspace. This estimate includes the effects of the estimation errors in H; . and
the effects of future stochastic signals, which can be removed away by projection onto the
past data. This projection procedure may induce some error; however, in most cases the error
is much less than the effects of the future stochastic signals. Some subspace identification
methods, such as N4SID, do the estimation of H; (L;) and projection onto the past data sets in

one step.

5.3.2 Methods Used to Estimate H;

There are many different approaches for estimating the Hy matrix to remove the future
input effects from the future outputs in order to obtain the predictable subspace. The
discussion in this subsection will focus on the differences among these approaches in the
basic ideas, the choices of the data sets, the properties of the result, and the conditions for
application. Some of the approaches have been employed in the existing SIMs, and others are

novel approaches.

Regressing Yr acainst Us

Since Hr is the coefficient matrix relating Ur to ¥y, it is natural to estimate Hr by

directly performing LS regression of ¥y against Ur. The basis for this regression is (3.1.7):
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Y, =T, X, +H,U, +H, W, +V, 61
=H U, +{C, X, +H, W, +V,)

and the result is:
H, =Y, ulu,ut)’ (5.3.1)

A basic assumption for an unbiased result is that the future inputs are uncorrelated with the
regression error, which includes both the effect of state variables J¢Xy and the effects of
future stochastic signals. Once Hr is estimated, the predictable subspace is estimated as Y;—
H; Uz The original MOESP elementary algorithm (Verhaegen, 1992) uses this approach to
implicitly estimate H; and the predictable subspace via QR decomposition on [Uy; ¥¢]. In one
early CVA algorithm, the effects of future inputs were removed by this method (Larimore,
1990). This approach for estimation of Hj; is unbiased only for cases where the inputs are not
auto-correlated signals, such as independent white noise signals or PRBS with switching time
period of 1. If the input sequences are auto-correlated (making JzXi correlated with Uy), this
method regresses part of the state effect away and gives a biased result for the predictable
subspace. The estimated H; will have large variance in any case since the regression error

term (which includes 7£X) have a large variance.

Regressing of Y; against [Y,: U,; Ug]

Based on (3.1.6), we know the predictable subspace 7¢Xy in (3.1.7) can be expressed
as a linear combination of the past inputs U, and past outputs ¥, as shown in (3.1.9).
Therefore, it is a natural choice to regress Yy against [ ¥,,; U,; Ur] for estimates of I¢Xy and the
future input effects HyU;. The regression result is shown in (3.2.1). Here the regression
coefficient (L3) for Uris an estimate of Hr (H; .) and the part corresponding to the past data
(L1 Y,+L,Uy) is an estimate of the predictable subspace, which is equivalent to the projection
of ¥-H; (Ur onto the past data (refer to Section 4.2). This approach is employed in N4SID. In
practice, the regression can be realized by QR decomposition of [Us; Pio; ¥¢], which is also

employed in the PO-MOESP (Verhaegen and Dewilde, 1994, past output (PO-) MOESP).
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As shown in Section 3.2, the estimates of JXy and H . will have slight bias if the
true process does not follow an ARX model. In practice, the bias is very small if a long past
horizon is used (although this will lead to increase in the variance). However, the variance of
the estimation result is much smaller than that from regressing Yy against Uy since the

predictable subspace is not included in the error term in this regression.

Constructing H; from estimated impulse weights

As shown in Section 2.1, the trapezoid matrix H; consists of the first f impulse
weights wo=D, w=C4"'B. These impulse weights can be estimated from a fitted ARX model,
which is obtained by regressing yy against uy (if D=0), past inputs (U;) and past outputs (¥3).

These estimated impulse weights can therefore be employed to construct the estimated Hr as:

W, 0 0 0
wooW, 0 0

H, ,=| % W% W% 0 (5.3.2)
: 0
wf—l wf—Z 13’)’-—3 A 0

The predictable subspace then is estimated as ¥~ Hy (Uy. This estimate includes all the future
noise. N4SID_Hf and CVA_HTf algorithms proposed in Chapter 3 employ this approach to
estimate Hr and the predictable subspace.

It is worth mentioning that the first f impulse weights can also be estimated via a FIR

model by regressing yx against u, (if D=£0) and the long lag steps of the past inputs.

Regression out method

Ur can be regressed out of both sides of (3.1.9) by projecting all the terms onto the
orthogonal space of U, i.e., by post-multiplying both sides with Pyg= U (U:UFY' Us. This
procedure removes the Ur term from the equation, and the coefficient matrices for past data in

(3.1.9) can be obtained by regressing ¥t c=YtPus, against Pio_=PioPuso:
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L L)=Y, oPh o P ) =Y, Py W (PoPh ) (533)
The regression coefficient is equivalent to the coefficient for the past data from regressing ¥;
against [Yy; U,; Ui, ie., that in N4SID (refer to Appendix A4.2), and the predictable
subspace can be estimated by multiplying this coefficient matrix to the past data Plo (equal to
O in (5.1.1)). This approach was implied and employed in the unifying theorem (Van
Overschee and De Moor, 1995) and other places (Carrette, 2000). This approach is also used
in the CVA_RO algorithm.

Another similar approach is to regress past data Pip out of both sides of (3.1.9)
(projecting to the orthogonal space of Py, i.e., post-multiplied by Pp0=I-P10T(P;oP10T)'lP10).
This procedure removes the Py term from the equation, and the coefficient matrices for the

future inputs in (3.1.9) can then be obtained by regressing Y:Pp, against UPp, as:

-1 1
H, =Y, B PLUI(U, P LU ] =¥, P, Ul (U, PUT) (5.3.4)
The future input effects can be estimated as Hy .Uy, and the predictable subspace is estimated

as Yr-H; U

Instrumental variable method

If a set of variables are fully correlated with Us but are not correlated with Xy and the
future noise, these variables can be used as the instrumental variables (IVs) and an unbiased
H; can be estimated based on (3.1.7) by the Instrumental Variable Method (IVM). For auto-
correlated inputs, Ur correlates with X, through its correlation with the past input data, which
contribute to Xy. The part of Uy, which is in the orthogonal space of the past input data, has
no correlation with Xi. This part of Us can be calculated by regressing U, out of U and taken
as the IVs:

-1
w=u,-U,Uuu,ur'y, (5.3.5)

and then H is easily estimated by multiplying the transpose of the IVs on both sides of
(3.1.7). The result is:

H, =Y, -v'U, ") (5.3.6)
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The predictable subspace can then be easily estimated as Yr-Hr Ur.

Other regression methods

In Section 4.2, several approaches are listed to estimated Hr matrix based on
relationships between data sets and prior knowledge of H, such as LVMs, ridge regression,
forcing the L; matrix in N4SID to follow the features of Hy matrix (N4SID_tri). Many other
methods are available to estimate Hy matrix.

All the above methods for estimation of Hy matrix are variants of the linear regression
method: they differ only in their choice of the independent and dependent variables, and the
degree of utilization of prior knowledge about the features of Hr. The key problem is the
correlation between Us and X, which arises from auto-correlation of the input signals in the
open loop case and arises naturally as a result of feedback in the closed-loop case (see
Chapter 6). The estimation accuracy (bias and variance) in each method depends on the input

signal, the true model structure, and the signal-to-noise ratio (SNR).

5.4 Estimation of the State Variables

Estimation of the state variables is a key step in all SIM algorithms. Process states can
be estimated based on the estimated predictable subspace and the past data, and fit to the
state-space model to get the system matrices. The method used for state variable estimation is

generally one of the LVMs.

5.4.1 Latent Variable Methods for State Estimation

The predictable subspace estimated by the linear regression methods discussed in the
last section is a high-dimensional space (far larger than the system order n) consisting of
highly correlated variables. If there were no error terms, this subspace should be only of rank
n, and any n independent variables in the space or their linear combinations could be taken as

the state variables. However, the estimation error generally makes the estimated subspace full
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rank. Directly taking any arbitrary » variables as the process states will lose the useful state
information in other variables and introduce large estimation error. It is therefore desirable to
extract only » linear combinations from this highly correlated high-dimensional space and
keep as much state information as possible. This is exactly the ultimate goal of LVMs, and
the situation of high dimension and high correlation is what LVMs were developed to deal
with. Therefore SIMs employ LVMs to estimate the state variables from the estimated
predictable subspace and the past data.

Latent variables (LVs) are linear combinations of the original variables for
optimization of a specific objective function. There are a variety of latent variable methods
based on different optimization objectives. As shown in Section 4.1, PCA, PLS, CCA, and
RRA are LVMs that maximize variance, covariance, correlation, and predictable variance

respectively. Different LVMs are used in different SIMs to estimate the state variables.

5.4.2 Methods Used for State Estimation

Though the computation methods for state estimation in different SIMs and their
corresponding explanations seem quite different from each other, these methods are
essentially LVMs. All these LVMs can be used for state estimation, although each method

may have unique accuracy and efficiency in state estimation.

Principal Component Analysis (PCA)

The estimated predictable subspace ¥-H; (Ur consists of J¢Xi and the effects of the
future stochastic signals. JeXy is the major component in the subspace with high correlation.
PCA (a SVD procedure) on the estimated predictable subspace will pick up the state
information in the significant principal components (PCs) and these PCs are taken as the
estimated process sates. The high correlation in /Xy greatly increases the information
(variance) of the process states contained in these PCs, while the stochastic noise

information, if random in nature, is largely rejected by eliminating the PCs associated with



126

the small singular values. Therefore, the SNR in these dominant (n) PCs is much better than
that in the estimated predictable subspace (Yr-H; Uy).

On the other hand, the estimated predictable subspace is usually projected onto the
past data before performing the PCA (as in N4SID where LY, +L,U, is used as the
predictable subspace). Only IEXy in the estimated predictable subspace is correlated to the
past data and can be predicted based on the past data. This projection removes the effects of
the future stochastic signals, and the result is a better estimation of the true predictable
subspace JXi. PCA on this projection result gives better estimates of the process states, and
the estimated states are linear combinations of the past data.

In order to ensure the first » PCs are unbiased estimates of the process states, there are
three assumptions on the estimated predictable subspace:

e The estimation errors are insignificant compared to X

e The estimation errors are not correlated with 75Xy

e There is no severe correlation among the estimation errors.

These assumptions are to ensure that the first n PCs show the process states instead of
the noise, and these PCs are unbiased estimates of the process states (not twisted by the
estimation errors) in the SVD procedure. The first assumption is well satisfied if the signal-
to-noise ratio (SNR) of the process data is large enough. The second assumption holds
generally since the deterministic part is un-correlated to the stochastic part. The third
assumption is not satisfied if there exist high correlation among the effects of the future
stochastic signals. However, the projection of the estimated predictable subspace onto the
past data can satisfy this assumption approximately with only small projection error.

The elementary MOESP algorithm directly uses PCA (SVD) on the estimated
predictable subspace Y-Hy Ur and PCs are estimates of process states. These estimates bear
large estimation errors since this estimated predictable subspace includes the effects of the
future stochastic signals. The PO-MOESP applies PCA to the projection of estimated

predictable subspace onto the past data space, therefore the result is generally improved.
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N4SID applies PCA (SVD) on the oblique projection of ¥r along Uy onto [¥,;Up]. As
discussed in Section 4.2, this result can be deemed the predictable subspace projection of ¥~

H; Uy onto the past data. The significant PCs are better estimates of process states than those

directly from PCA on Yr-H; Us.
The first n PCs have the best predictability of the future outputs based on the past data

in the sense of total variance, i.e., min trace{(Y -7 XY -7 )T} (Y is the estimated predictable

subspace and Y is its prediction based on the first # PCs). This objective implies that the
final result of the PCA depends on the relative magnitudes of the outputs; therefore the

different outputs need to be scaled appropriately.

Reduced Rank Analysis (RRA)

As shown in Section 4.2, N4SID is equivalent to performing RRA on the past data
Pio=[Y,; U] and the estimated predictable subspace Yi-Hr U (Hy . is the coefficient matrix
L3 in (3.2.1)), and the significant LVs from this RRA are taken as the estimates of process
states. These LVs (estimated states) are linear combinations of the past data Py and have the
best predictability of ¥Y-Hr Uy, that is, these LVs summarize the process history and have the
best predictability of the process future behavior. This best predictability is in the sense of

total predictable variance, i.e., min trace{(Y -—f’XY —f’)r} where Y= Yr-H; Ur and Y is its
prediction based on the estimated states. This RRA directly picks up LVs with the most
significant predictability. Therefore, RRA is more efficient-in estimation of the process states
than the original N4SID, where all the predictable subspace is estimated by LS regression
(possible ill-conditioned) first, and then PCA is performed on this subspace to get the most
significant LVs.

From the discussion in the last section, it is clear that several methods are available
for estimation of matrix Hy other than that used by N4SID, and therefore several other
methods are available to estimate the predictable subspace as Y-H; Ur. The significant LVs
from RRA on past data P and this estimated predictable subspace Yr-H; U; also provide

estimates of the process states.
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Canonical Correlation Analysis (CCA)

In this approach, CCA is applied on the past data Pio=[¥,; U,] and the estimated
predictable subspace Y= ¥Yr-H; JUr. The canonical variables (CVs) are linear combinations of
the past data, and the canonical correlations are ranked from the highest correlation to the
lowest. The LVs corresponding to significant canonical correlations are taken as the

estimated process states. These estimated states maximize the variance percentages in
Ny . . . - - AT
orthogonal directions of Y explained the past data, that is, min trac%)’ ——YXY Y ) l(Y —Y) }

where Y= Yr-H; Us and Y is its prediction based on the estimated states. Here the weighting
matrix (Y¥")"! makes the LV explain maximum percentage of variance (relative to the total
variance in the direction) rather than the absolute value of the variance. In other words, LVs
from Pio are the best estimates of independent variates in ¥p-H; U Since this best
predictability is in the relative basis, the CCA result does not depend on the scaling of the
data sets. These CVs summarize the information in the past data having the best
predictability of the future outputs, and ﬁence they are consistent with the definition of
process states.

CCA can also be applied to the results of regressing Uy out both the past data and the
future outputs, i.e., t0 Pig 1 and ¥t ,o; however, the direct CVs J1Pyo 1 are estimates of Xy ro
instead of X. Here the coefficient matrix J; should be applied to the original past data to get
state estimates J,Pjo, and these estimates are no longer orthogonal (refer to Appendix A3.2
for detailed proof). However, since part of the state signal is removed by regressing Ur out

while the noise is kept intact, the data set ¥} ;, has a worse SNR than Y-H; Urin general.

Partial Least Squares (PLS)

PLS is another LVM and a possible choice for state estimation in SIMs. In this
approach, PLS is applied to the past data Pio=[Yp; U,] and the estimated predictable subspace
Y-H; Uy, and the significant LVs are taken as the estimated process states. However, since

the objective of PLS is to model the covariance of Pip and Yr-H;Uf, i.e., maximizing both the
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variance in Pio and Yr-H:Ur as well as their correlation, the LVs are partially twisted towards
the large variance directions in the past data. Therefore the LVs are a compromise between
modeling the past data P and modeling the relationship between the past data and the
predictable subspace. The past data includes the past inputs, which come from an
experimental design and are not a property of the process. Therefore, the LVs from PLS
include not only the process state information but also information on the structure of the
input signals. In order to get an adequate process model, PLS therefore needs more LVs than
the system order to include the state information, and will not provide a minimal order state-
space model in general (refer to Section 4.3 and simulation examples in Section 4.5). From
the objective of PLS, it is also clear that the PLS result is dependent on the data scaling. In
brief, PLS is a feasible way to estimate the process states, but it is not as efficient as RRA and

CCA at extracting only the system states.

Determination of the system order

The final system order is determined by how many LVs are taken as the estimated
states. Many criteria can be employed for the system order determination. One generic
criterion is to look at the significance of these L'Vs based on the corresponding eigenvalues,
singular values or the canonical correlations. Cross-validation is one such procedure for
assessing significance (Wold, 1978). Another method is to check the cross-correlation
between the residuals and the inputs to test whether the deterministic model is adequate. AIC
is a quantitative method for system order determination with consideration of both the model
adequacy and the model complexity. (See Section 2.1 for the definition of AIC. A correction
factor is added to the expression of AIC for a small sample case, refer to Hurvich and Tsai,
1989)

In the previous discussion of the framework for SIMs, there are several approaches
for estimation of the predictable subspace and for the extraction of the process states. Each
SIM algorithm corresponds to a special combination of the approaches used in the two steps.
For example, CVA_Hf algorithm uses a fitted ARX model to construct Hy for estimation of

the predictable subspace and then uses CCA for estimation of the process states. It is worthy
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to point out that by using various combinations of the approaches for the predictable
subspace estimation and the approaches for the state variable estimation, a whole variety of
new SIM algorithms can be formulated, such as SIM-IV-CCA, SIM-ARX-RRA, SIM-ARX-
PLS, and SIM-Y{/[Pio;Us}-CCA, etc. (each SIM algorithm is based on a pair of specific
approaches for the first and second steps respectively of the framework). Some of the new
algorithms give similar results to those from N4SID or CVA, and they will be evaluated in

the simulation study in Section 5.6.

5.5 Fitting to the State-space Model

After estimation of the predictable subspace and the process states, the last step of
SIMs is to fit the estimated process states to the state-space model. In this step, the system
matrices are estimated by LS regression, and the noise covariance is estimated based on the
regression residuals. This is a common step for SIM algorithms. For a clearer picture of the
SIM algorithms, several issues will be discussed in this section, such as the forms for state-

space model and the effects of the estimation errors in the state variables.

5.5.1 State-space Model Forms Employed

Before fitting the estimated state variables to the state-space model, the state-space
model form should be determined. There are several types of state-space model forms. The
state-space model shown by (2.1.1) and (2.1.2)

Xpo = Ax, + Bu, +w, (2.1.1)

Ve =Cx, +Du, + Nw, +v, (2.1.2)
has the process noise and the output measurement noise with parameters in system matrices.
This state-space model can also be presented in the innovation form as:

Xy = Ax, +Bu, + Ko, (5.5.1)
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v, =Cx, +Du, +, (5.5.2)

Echelon form is a special case of the above innovation form with the following

parameterization of matrix 4 and C:

a=| A0 L c=[1, 0] 5.5.3
’Az" A2 B ¥ ()

Here block matrix 4,e %" is fully parameterized. The echelon form is a rearrangement of
the observer canonical form (refer to Ljung, 1999) and has the minimum number of
parameters to be estimated.

Different state-space model forms associate with different state bases and with
different numbers of parameters. The form in (2.1.1) and (2.1.2) is based on an arbitrary state
basis, and all the elements in A4, B, C and D are assumed unknown before fitting to this model
structure. Therefore there are n*+n(m+ly+ml +n(n+1)/2+l(J+1)/2 parameters including the
noise covariance matrices (m is the number of inputs, / is the number of outputs). It is
referred to here as the full matrix form. However, not all the elements in the system matrices
are independent since different sets of system matrices are similar to each other with a full
rank transform matrix, which is also the transform matrix between different state bases. The
number of the independent parameters is less than the total number of the elements. In the
canonical (echelon) form, some of the elements in matrix A and C are set to be 0 and others
to be 1. In the canonical form, and there are only n(2/+m)+mi+n(n+1)/2 parameters to be
determined. However, the basis of the state variables in the canonical form is not an arbitrary
one. This state basis includes the independent current output variables and their independent
future predictions. The basis is not unique though the total number of states is set.

The canonical form has an attractive advantage over the full matrix form, namely that
fewer parameters need to be determined by the LS regression. This advantage will reduce the
confidence limits of the estimated parameters. However, the state basis is usually ill-
conditioned for variables in the basis (the independent current output variables and their
independent future predictions) are usually highly correlated. The condition number in the LS

regression will be very large, and the regression result will be very sensitive to the noise. This
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ill-conditioning problem will lead to large variances for the estimated parameters. In this
sense, the advantage of fewer parameters is cut back by the ill-conditioning problem more or
less. In addition to that, one needs to devote special efforts to determining this basis before
fitting to the canonical state-space form. The estimated states obtained from the LMVs are
usually orthogonal to each other, and this is a very attractive feature for the LS regression.
Considering all these advantages and disadvantages, the full matrix is generally employed by

SIM algorithms to the estimated state variables to the state-space model.

5.5.2 Fitting to the State-space Model

Fitting the estimated state variables to the state-space model (2.1.1) and (2.1.2) in the
full matrix form is a common step for SIM algorithms. It gives a parsimonious, lower-order
model with smoother impulse responses as shown in Section 4.4 and 4.5. The fundamental
reasons and advantages of this procedure will be discussed in this section, and several

computation issues related to this LS regression will also be discussed.

Estimation of X+

In fitting the estimated states to the state-space model in (2.1.1) and (2.1.2), system
matrices 4, B, C and D are obtained by LS regressing [Xi+1; yi] against [Xy; ). In SIM
algorithms, Xy is estimated by LVMs, but Xj.; needs to be determined before performing the
regression.

In practice, there are at least three different approaches to get the value of Xi+1. The
first approach is to shift the value of estimated Xy by one time point to form the estimate of
Xi+1- The total N-p-f+1 time points in Xy correspond to k=p+1, p+2, ..., N-f+1 (N, p and fare
the total data points, the past lag steps and the future lag steps respectively). The values for
k=p+2, p+3, ..., N-f+1 in X; are taken as the first N-p-f values of Xy+; (no value corresponds
to the last time point in Xy). The shifting leads to one effective data point lost for the LS
regression, and this has little effect on the final result for a long data set. In general, this

approach is simple and effective. The second approach is based on the coefficient matrix
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between the estimated states and the past data, such as the J matrix in CCA_Hf algorithm
(where Xi;=JPio) and the similar coefficient matrix from RRA in N4SID Hf algorithm. For
the estimate of X+, the current time point is extended for one data point in the past data,
e.g., in Xi=JPo, the current time points correspond to k=p+1, p+2, ..., N-f+1; if Py collects
the past data corresponding to k=p+2, p+3, ..., N-f+2, this relationship will give the result for
Xx+1. In fact, only the state vector for the last time point A=N-f+2 is to be estimated based on
the known Xi. The third approach for Xi+; is to increase the past horizon by one step and
decrease the future horizon by one step, i.e., p+1 steps in past horizon from k-p to k and /-1
step in future horizon from k+1 to k+/~1 (for Xy, the past horizon is from k-p to k-1 and the
future horizon is k to k+f-1). This usually leads to unequal past and future horizon lengths.
Similar procedures as those for Xy can be preformed to obtain the estimate of Xi+;. This
approach is employed in the original N4SID algorithm, and it is applicable for other SIM
algorithms. This approach increases the computation load significantly compared to the other
two approaches.

In fact, the second approach can extend to more data points in the past data (the last
data point corresponding to £=N), and therefore the effective data points for the LS regression
can extend to N-p from N-p-f as in the first approach. This increase of the total effective
regression data length will reduce the variances of the parameters. This improvement may not
be significant for long data sets, but it becomes more significant when the collected data is
short and a relatively long future horizon is used in a SIM algorithm. In the third approach

shown above, Xy and Xi; are estimated by two different LS regressions.

Effects of estimation errors in state variables

In the ordinary LS regression, only the regressed variable is assumed to be affected by
noise, and the regressor variables are assumed to be noise-free (refer to (2.1.9)). Here in the
LS regression of fitting the estimated process states to the state-space model, [Xy+1; ] 1S
regressed against [Xy; w]. It differs from the ordinary LS regression in that there are
estimation errors in the estimated state variables (Xi). This error-in-variable LS regression

theoretically gives biased results for the system matrices, and it is equivalent to ridge
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regression if the errors in the estimated states are uncorrelated white noise with equal
variance (Wang, 2000). In practice, this bias effect becomes noticeable only when the
estimation errors in the estimated states become very large and significant compared to the
magnitude of the true states. This happens only when the SNR is very low in the collected
_data set, and therefore there are large estimation errors on the estimated states by the LVMs.
When the SNR is reasonable large (such as 1.0), the bias is small and does not cause
noticeable problems on the final result.

The bias problem can be avoided if an IV method is used in the procedure for the
system matrices instead of the LS regression. The instrumental variables (IVs) should be
correlated to both [Xi; w] and [Xi+1; yi] but not correlated with the noise, that is, the IVs
should closely relate to Xy but with no noise. One simple way is to take only the contribution
of the past inputs (of p steps) in the LVs (estimated states) as IVs. These IVs can be far away
from the true states in the magnitude, and will increase the variances of the final parameters.
However, the IVs constructed in these approaches are only related to the deterministic states
without correlation with the stochastic states, and so the IV method may not be applicable to
the situations with stochastic states in the process.

It is worth mentioning that the error-in-variable problem also exists in the LS
regression for the 4 and C matrices based on the estimated extended observability matrix (It)
as in the original MOESP method. However, it is hard to construct IVs in the Jr-based
method to avoid the bias problem.

After the system matrices are obtained by this LS regression or IV method, the
residuals are estimates of the stochastic noise wy and v in (2.1.1) and (2.1.2). The covariance
matrices of the stochastic variables can be estimated based on these residuals. Variances of
the state-space model parameters can be estimated approximately based on these residuals as
in ordinary LS regression, or by numerical methodologies such as Jackknife and
Bootstrapping methods (refer to Efron and Tibshirani, 1993). The final state-space model in
the full form can be transformed to other state-space model forms, such as the innovation

form or the canonical form, or to other representations, such as transfer functions.
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Parsimonious model from fitting to the state-space model

If the latent variables (estimated states) from LVMs are fitted only to the output
equation (2.1.2), the result will be latent variable regression (LVR) models. Since the LVs
(estimated states) in LVR are expressed as linear combinations of the past inputs and outputs
over a long past horizon, the final LVM model will be a high-order ARX form (of order /p).
On one hand, so many parameters cause over-fitting and noisy impulse (step, frequency)
responses. On the other hand, these LVs (estimated states) usually have strong temporal
correlations, but they are treated independently without consideration of the temporal
correlations. Furthermore, any common dynamics (common poles) among the transfer
functions in MIMO system are treated independently as different dynamics (different poles).

Fitting the estimated state variables (LVs) to the state-space model in fact imposes a
lower order and more parsimonious structure on the model. These state variables do not
evolve in an arbitrarily free manner. Equation (2.1.1) shows that the states of two adjacent
time points are related to each other via matrix 4, and the dynamic characteristics of the
states is summarized in the system matrices 4 and B. Fitting the estimated process states to
the state equation (2.1.1) essentially is to compute the process states recursively, i.e., only
based on the states and input of the previous time point. This fitting procedure in fact is to
impose a parsimonious structure of order » onto the noisy estimated states. This procedure
trims down the over-fitting in the estimated states and results in a parsimonious model with
removal of the erratic noise away from the impulse (step and frequency) responses. It is
analogous to the Box-Jenkins methodology of imposing a lower order transfer-function
model structure on the noisy estimated FIR weights. Here in SIMs, this structure is naturally
decided by the estimated system order. This structure summarizes all the common dynamics
among the transfer functions in a MIMO process. This feature is particularly useful for
modeling a piece of equipment (such as a reactor, a distillation tower) or several pieces of
equipment with strong interactions. In these cases, the input/output dynamics generally have
some common dynamics (poles) since all the input-output transfer functions are closely

related to the same process.
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As for the accuracy aspect of the calculated state variables, on one hand, the erratic
errors caused by over-fitting in the estimated state variables are smoothed out (filtered out) by
this LS fitting procedure; on the other hand, the fitting errors on the states at one time point
will propagate to the future steps via matrix 4, however, these errors will soon die out for the

eigenvalues of A (system poles) are within a unit circle for a stable process.

5.6 Simulation Study

In this section, a simple simulation example is used to illustrate the various
approaches for each step of the SIM framework as well as their similarities and differences.

The example is a first order SISO process with AR(1) noise:

_ot 1 .
1-08z7 ¢ 1-09%" ¢

Wi

The input signal # is a PRBS signal with magnitude of 4.0 and switching time period
7¢=5. In the simulation, 1000 data points are collected with var(ex)=1.0, and SNR is about
0.93 (in sense of variance at the output). Both z and yx are scaled to unit variance in the

computation and 7 lag steps are used for both the past and future horizons in each method.

5.6.1 Estimation of the Predictable Subspace

As shown in Section 5.3, the predictable subspace can be obtained based on the
estimated Hy matrix. In this subsection, different approaches for Hy matrix estimation are
applied to the simulation example, and the results are compared to the true result. The first 7
true impulse weights are 0, 0.2, 0.16, 0.128, 0.1024, 0.0819, and 0.0655 respectively, and the
true Hy consists of these impulse weights in its lower diagonals in the Toeplitz matrix form

(see Section2.1):
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0 0 0 0 0 0 0
0.2 0 0 0 0 0 0
016 0.2 ¢ 0 0 0 0
0.128 0.16 0.2 0 0 0 0
0.1024 0.128 (.16 0.2 0 0 0
0.0819 0.1024 0.128 0.16 0.2 0 0
0.0655 0.0819 0.1024 0.128 0.16 0.2 0

The estimated Hr matrix by regressing ¥ directly against Uy (MOESP elementary
algorithm) has the following result (converted back to the original variable units to be

comparable to the true H; given above):

0.6357 -0.0284 -0.0260 -0.0258 -0.0645 0.1209 -0.0422
0.6847 -0.0188 -0.0174 -0.0260 -0.0258 0.1130 -0.0578
0.5360 0.1676 -0.0039 -0.0174 -0.0260 0.1132 -0.0499
04110 0.1380 0.1805 -0.0039 -0.0174 0.0806 -0.0173
0.3276 0.0986 0.1425 0.1805 -0.0039 0.0675 -0.0020
0.2605 0.0818 0.0992° 0.1425 0.1805 0.0637 0.0132
0.2135 0.0622 0.0784 0.0992 0.1425 0.2359 0.0333

This method gives very biased results because of the strong auto-correlation in the PRBS

signal.
Regressing ¥r against [ ¥y; Uy; Uy gives the following estimated Hr (L3 in the original

N4SID algorithm):

-0.0035 0.0048 -0.0126 0.0275 0.0246 -0.0380  0.0080
0.1866 0.0026 -0.0089 0.0091 0.0546 -0.0109 -0.0241
0.1558 0.1832 -0.0008 0.0078 0.0391 0.0211 -0.0295
0.1056 0.1514 0.1810 0.0180 0.0351 0.0056 -0.0016
0.0736 0.1092 0.1407 0.1949 0.0499 0.0023 0.0070
0.0640 0.0789 0.0963 0.1537 0.2283 0.0165 0.0118
0.0510 0.0696 0.0659 0.1029 0.1906 0.1969 0.0287
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This result is much closer to the true value. The elements on each lower diagonal are close to
each other, and they are estimates of the corresponding impulse weights. The upper triangle
part is close to null but still significant (some elements are as large as about 30% of the
largest impulse weight in the magnitude and similar to the smallest impulse weight). If the
elements on the upper triangle part are set 0, and the elements on each lower diagonal are set
to their mean value respectively, the result is the estimated Hy matrix used in N4SID_tri
algorithm in Section 4.2. The method based on regressing Pio out gives the same result as
above with differences due to very small numerical errors.

Fitting yx against [¥; U] gives the following ARX model:

$=0.9464y;. +0.00459,5+0.0332y,5+0.015 14 4+0.02293.5-0.0552y4.6-0.026 1y, 1+

0.1997uy.1-0.03440, 5-0.038614 3-0.023 844, 4-0.030184)5-0.0069y.6-0.01 1314 5

and the first 7 impulse weights from this model are 0, 0.1997, 0.1546, 0.1086, 0.0863,
0.0602, and 0.0610 respectively. These impulse weights are used to construct the following
estimated H matrix (used in algorithms such as CVA_Hf):

0 0 0 0 0 0 0
0.1997 0 0 0 0 0 0
0.1546 01997 0 0 0 0 0
0.1086 0.1546 0.1997 0 0 0 0
0.0863 0.1086 0.1546 0.1997 0 0 0
0.0602 0.0863 0.1086 0.1546 0.1997 0 0

0.0610 0.0602 0.0863 0.1086 0.1546 0.1997 0O

It is very close to the true H; and consistent with the features of the true Hy matrix: a lower
triangle matrix, the same value for the elements on each lower diagonal, and values on these
diagonals are the (estimated) impulse weights. In this approach, knowledge that the
instantaneous effect of uy on y is zeros (i.e., D=0) can be easily incorporated, but it is harder

for other approaches to use this knowledge.
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By regressing U, out of Uy and taking the remainder of Uy as instrumental variables
(IVs) as shown in (5.3.5), the IV approach gives the following estimated Hy matrix as the
result of (5.3.6):

-0.0014 0.0136 -0.0003 0.0415 -0.0096 -0.0397 0.0375
0.1923 0.0103 0.0031 0.0198 0.0221 -0.0096 0.0018
0.1636 0.1931 0.0107 0.0161 0.0075 0.0221 -0.0039
0.1129 0.1637 0.1943 0.0248 0.0027 0.0075 0.0224
0.0784 0.1195 0.1574 0.2004 0.0188 0.0027 0.0309
0.0707 0.0868 0.1112 0.1620 0.1959 0.0188 0.0338
0.0559 0.0792 0.0779 0.1112 0.1618 0.1959 0.0516

In general, this result has minuscule deviations from the true values, and it is close to the
result from regressing ¥t against [¥;,; Uy; Us).

The means of elements on lower diagonals of the estimated H; can be taken as the
estimated impulse weights. The total absolute error on these estimated impulse weights
shows roughly how close the estimated Hy is to the true Hy. The estimated impulse weights
and the total absolute error for each approach discussed are listed in Table 5.2. The results by
regressing Y; directly onto Uy are clearly the farthest from the true values because of the bias
due to the strong auto-correlation in the input PRBS signal. The results of the estimated Hy

from all other methods are similar to each other and very close to the true value.

Table 5.2 The impulse weights in estimated H;

Method True Y/U; Y/ [Pio; U ARX v
L) 0 0.1003 0.0159 0 0.0191
Wy 0.2 0.2716 0.1951 0.1997 0.1953
) 0.16 0.2203 0.1585 0.1546 0.1617
Wy 0.128 0.1770 0.1035 0.1086 | 0.1137
Wy 0.1024 0.1626 0.0728 0.0863 0.0811
Ws 0.0819 0.1613 0.0668 0.0602 0.0750
We 0.0655 0.2135 0.0510 0.0610 0.055%
Sum of Abs. Err. 0 0.5688 0.1061 0.0675 0.0778

Note: impulse weights w,, w, ..., we are the means of the lower diagonals of estimated H;



140

Based on the estimated H matrix, the predictable subspace can be estimated as the
result of Yp-H;  Ur This estimate includes the effects of the future stochastic signals.
Projecting this estimated predictable subspace onto the past data removes this part of the
future noise and usually leads to a better estimate of the predictable subspace. In some cases,
such as using PCA for state estimation, this projection is necessary for a better result. Yet
LVMs based on both X and Y spaces, such as RRA and CCA, do not need this projection

since the prediction and the state estimation are completed simultaneously in one step.

5.6.2 Estimation of State Variables

Based on the estimated predictable subspace, different approaches are available for
the estimation of the state variables as shown in Section 5.4. In this example, MOESP
(clementary algorithm), N4SID and CVA use PCA or CCA to estimate the states. CCA is
also used to estimate process states based on the estimated predictable subspace by the IV
method. PLS and RRA are also applied to estimate states based on the estimated predictable
subspace by the ARX method. Here all these methods give an obvious cut-off on the number
of large singular values, canonical correlation coefficients (CCCs) or the predictabilities after
the second latent variable. This indicates a clear determination of the system order to be 2, for
both the combined deterministic and stochastic states. AIC also indicates the system order to
be 2.

There are many different ways to show how close the estimated states are to the true
states (more accurately, how the estimated state space is to the true state space). One good
measure is to compute the CCCs between the estimated states and the true states. The results
are listed in Table 5.3. The closer the CCCs are to 1.0, the more the estimated states are
consistent with the true state space. MOESP using the direct regression Yy U clearly gives
poor results. The two estimated states by PLS are close to the true states, but are relatively
degraded compared to those from CCA or RRA based on the same estimated predictable
subspace by ARX method. The estimated states from N4SID, CVA, SIM-IV-CVA and SIM-

ARX-RRA are very close to the true states. Similar conclusions are also indicated by the
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squared multiple correlation R, which shows how much of the total sum squares of each true
state can be explained by the estimated states. R for both states (scaled to same variance) is

also listed in Table 5.3 for comparison of these SIM algorithms.

Table 5.3 Comparison of the estimated states and the true states

Method MOESP | N4SID CVA SIM- IV- | SIM-ARX- |SIM-ARX-
CCA PLS RRA
Predictable Subspace Esti. YU | Y [PiosUd ARX v ARX ARX
State Variable Estimation PCA PCA CCA CCA PLS RRA

1* Canonical Correlation 0.8680 0.9993 0.9997 0.9995 0.9500 0.9993
2 Canonical Correlation | 0.2599 0.9623 0.9613 0.9600 09122 0.9618

R’ for 1* state 0.1534 0.9625 0.9641 0.9631 0.8947 0.9616
R’ for 2™ state 0.6528 0.9599 0.9569 0.9550 0.8386 0.9596
R’ for both states 0.4031 0.9612 0.9605 0.9590 0.8667 0.9606

5.6.3 Final Identified Models

If the estimated states are used to fit to the state-space model by LS regression, each
SIM algorithm can obtain an identified model in the state-space model form. The impulse
responses calculated from some of these fitted models are shown in Figure 5.2, and their
errors are show in Figures 5.3 and 5.4. MOESP elementary algorithm gives a poor result for
this example. The result from SIM-ARX-PLS has a large error but can be improved to match
the others by using more LVs. The results from other SIMs are very close to the true model.
The impulse response from the fitted ARX model shows somewhat large erratic errors (refer
to Figure 5.4). All SIM algorithms give smooth responses by fitting the LVs to the state
equation.

This simulation example is also applied for another SIM algorithm based on the
regressing out method for the predictable subspace estimation (equivalent to ¥¢/{Pjo; Ut]) and
CCA for the state estimation, i.e., SIM-¥¢/[Pio; Ug]-CCA. 1t can be deemed a combination of
N4SID and CVA. The result is shown in Figure 5.5, and it indicates that this algorithm is
valid and gives similar results as those from CVA and N4SID.
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5.7 Conclusions

Although SIMs (MOESP, N4SID and CVA) are quite different in their concepts and
algorithms, they follow a statistical framework set up in this chapter: (1) use of a linear
regression method to estimate Hy and the predictable subspace; (2) use of a latent variable
method for estimation of a minimal set of the state variables; and (3) then fitting to the state-
space model. The major differences among these subspace identification methods lie in the
first two steps, and the third step is common for all the SIMs.

The predictable subspace is a key component and the starting point in SIMs. It can be
estimated by removing the future input effects from the future outputs based on estimated Hs
matrix. There are several approaches to estimate the Hy matrix, such as regressing ¥y against
U: (if no auto-correlation in the input signals), regressing ¥y against [¥,; Up; Uy, constructing
H; based on the impulse weights from fitted ARX model and regressing out Pip. A new
approach based on the IV method is proposed in this chapter. All these approaches are based
on linear regression and are easy to understand from the viewpoint of statistics.

Process state variables are estimated by LVMs based on the estimated predictable
subspace and the past data. It is the second step in the framework. PCA, RRA, and CCA can
be directly employed to estimate a minimum set of state variables. PLS is a feasible method
but not as effective as other LVMs for partially modeling the past data space. The significant
LVs are taken as the estimated process states. All these methods find out a lower dimensional
subspace (estimated state space) in the past data with the best predictability of the future
outputs (the best predictability may appear in different senses in different LVMs).

This framework reveals a whole variety of new SIM algorithms just by combinations
of the approaches in the first two steps. Simulation study shows that these new SIM
algorithms have the similar performance as the existing SIMs.

The third step in this framework is to fit the estimated states to the state-space model.

The state-space model parameterized in full matrix form is generally employed in this
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procedure. The resultant state-space model is much more parsimonious than the LVR model.
Several computational issues of this procedure are also discussed, such as obtaining the
estimated Xi+;, the number of effective data points and the effects of the estimation errors in
the states.

This chapter compares the existing methods by examining them in a common
framework involving linear regression and latent variable estimation. The framework reveals
clearly the nature and fundaméntal ideas of SIMs, and therefore SIM algorithms become
easier to understand. In this framework, the similarities and differences among SIMs become
apparent. SIM algorithms based on combinations of the approaches for the first two steps of

the framework are feasible and give similar results as CVA and N4SID.



6 SIMs for Closed-loop Data

6.1 Introduction and Motivations

The purpose of closed-loop system identification is to estimate dynamic models
based on data collected from processes with feedback controls. Figure 6.1 shows a
schematic diagram of a general closed-loop system, where G(z) is the model of the
dynamic process, Vi stands for unmeasured disturbances to the process, and C(z) is the
feedback controller to reduce the effect of disturbances on the outputs yx. In system
identification, well-designed independent external signals as dither dy or setpoint sy are
usually added to the process for persistent perturbation of the system in order to get
informative data (yx and uy) for identifying G(z). In some cases, the perturbation signals
are also available and can be used for system identification. Effects of perturbations sy are
equivalent to perturbations of C(z)sy at dy, therefore using only di in analysis does not

lose any generality.

Dithers dk Disturbances Nx
Setpoint sk g Inputs ux " Outputs
T ¥ o R > G(z) — puis X
Controller Process

Figure 6.1 A schematic diagram of a general closed-loop system

System identification based on closed-loop data is very important for practical
applications. Many systems require closed-loop identification. It is hard to perform open
loop experiments for unstable systems. For some systems with inherent feedbacks (e.g.,

social, economic, or biological systems), closed-loop experiments are the only choice. For
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some systems, open loop experiments will cause safety or environmental hazards, and
therefore closed-loop experiments become mandatory. In other situations, open loop
experiments are possible; however, this will cause products to be out of specifications
and result in a profit loss. In all these cases, closed-loop experimentation and closed-loop
identification is the preferred approach for estimating process dynamic modeling.

In model identification for controller design, it has been shown that the closed—
loop data gives a model more suitable for robust control than open loop data if the same
output variance is allowed for both cases (Esmaili et al., 2000). In the closed-loop case,
the input signal can have a larger perturbation than in the open loop case when the output
variance is constant. Data collected under feedback resemble the normal operation better
(in terms of frequency components). As a result, closed-loop data is more suitable for the
purpose of controller design. This has prompted studies on control relevant identification
in recent years (e.g., Hjalmarsson et al., 1996).

Although closed-loop system identification is important to practical applications
and may give better models for controller design, the presence of feedback in the system
makes the identification more complicated. In a closed-loop system (See Figure 6.1), the
feedback controller makes the process inputs correlate with the process outputs and the
disturbances. This is fundamentally different from the open loop case where the inputs
are well-designed signals independent of disturbances. The correlation raises the
identifiability problem and applicability problem of system identification methods to
closed-loop data.

Identifiability is an important issue for dynamic modeling with closed-loop data.
A system is identifiable if the corresponding parameter estimates are consistent. There is
considerable literature discussing this issue (e.g., Soderstrom, 1989). Identifiability for
closed-loop data is guaranteed under the following conditions: (i) an adequate model
structure is used that includes the true process, (ii) the system is persistently excited by
adding adequate dither signals or shifling between a sufficient number of controllers, and
(iii) there is at least one delay step in the closed-loop. In this chapter, all the discussion is

under these conditions, and therefore identifiability is not considered.
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Extensive research has resulted in clear conclusions on the traditional methods for
closed-loop data (e.g., a survey by Forssell and Ljung, 1999). However, SIMs for closed-
loop data have not been well studied, and some disputes still exist over the apphcability
of SIMs for closed-loop data. Jha and'Georgakis (1996) applied N4SID method for
closed-loop data. Ljung and McKelvey (1996) pointed out that N4SID gives biased
results for closed-loop data. They implied that other SIMs had the same problem if used
for closed-loop data. On the other hand, Larimore (1997) claimed that CVA could be
used for closed-loop data, but Van Overschee and De Moor (1996) disagreed with this
statement. Lakshminarayanan et al. applied CV A to an industrial process for closed-loop
identification (2001). Verhaegen (1993) indicated that MOESP only applied to open loop
identification problems, and he recast the closed-loop identification to an open loop
problem, and applied MOESP to this open loop problem.

The objectives of this chapter are to analyze subspace identification methods
(SIMs) for closed-loop identification, clarify their applicability for closed-loop data, and
explore possible new SIM algorithms for closed-loop data. N4SID and CVA algorithms
will be investigated respectively in the next two sections. Then some simulations will be
used to illustrate the main points.

In general, there are three different approaches to apply system identification
methods to closed-loop data: the direct, indirect and joint input-output approaches. The
direct approach treats the closed-loop data as open loop data and fits the input-output
model directly to the data. Indirect approaches get the model of the closed-loop system
first and then extract the process model out of the closed-loop model with the prior
knowledge of the controller model. The joint input-output method approach builds a joint
multivariable time series model for both the input and output variables, and then back
calculates both the process model and the controlier model. Only the direct approach uses
identification methods directly for the closed-loop data, and other approaches essentially
transform the closed-loop identification into an open loop identification problem and then
open loop identification methods are used. Under asymptotic conditions, all these

approaches have been shown to perform the same (Gevers, Ljung and Van den Hof,
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1996). However, for a finite data set, direct method has been shown to give results that
are better than or equal to the other approaches (Esmaili et al., 2000). Therefore, this
chapter will only focus on SIMs (N4SID and CVA) in the direct approach.

6.2 N4SID for Closed-loop Data

Due to their linear model structure and ease of computation, FIR and ARX models
are often used in open loop or closed-loop identification. They are also employed in SIM
algorithms. In this section, after a brief review of using FIR and ARX models for closed-
loop identification, the original N4SID algorithm is analyzed in terms of input-output
model and multi-step state-space model respectively, and then existing N4SID algorithms
for closed-loop data are discussed and three new N4SID algorithms for closed-loop

identification are proposed.

6.2.1 FIR and ARX Models for Closed-loop Data

In closed-loop case, the input and output variables have the following basic

relationships (refer to Figure 6.1):
v, =Gz, + N, 62.1)
u, =—Clz)y, +d, (6.2.2)
With notation S(z)=(I+C(2)G(z))" for the sensitivity function, the above relationships can
be rewritten as the following relationships in terms of the external signals (dithers and the
noise):
w=S(2)dy- S(2)C(z) Ny (6.2.3)
nw=G(2)S(@)d+(I-G(2)S(z)C(z)) Ny (6.2.4)
Equation (6.2.3) clearly shows that inputs are always correlated with the process

disturbances through feedback control, while in the open loop case, inputs are usually
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well-designed signals and are independent of process disturbances. This is a fundamental
difference between open loop data and closed-loop data, and this difference causes
potential problems in modeling the dynamic process model with closed-loop data.

If FIR model is used to represent the process model, it has the following form

(with prior knowledge of no instantaneous action):
P
v, =) gulk~i)+ N, (6.2.5)
i=1

Where g; is the i-th step impulse weight and p is assumed sufficiently large. If prediction
error methods (PEM) are used for closed-loop identification, it has been shown that the
noise must also be adequately modeled and identified simultaneously with the process
model; otherwise, the identified process model will be biased (MacGregor and Fogal,
1995).

ARX models are also used for dynamic modeling. An ARX model can be
represented in time domain as:

Ve = zpl:a,-yk_,- + ibjuk_j +e, (6.2.6)
pas =

The ARX model structure provides models for both the dynamic process and the noise,
and these models are identified simultaneously. If the true process can be adequately
represented by an ARX model and the process is excited by dither signals (dy), then
unbiased coefficients in the above model can be estimated by LS regression since the
stochastic signal ey in the above equation is un-correlated to the past inputs and outputs
(regessors). Here the correct prior knowledge of the process model structural is crucial for
this parametric model in low order ARX form. If the true process is a general process
with Box-Jenkins model (not an ARX model form) and an ARX model is used to fit the
closed-loop data, the resultant model is a biased approximation of the true process model
as in the open loop case (see Section 3.2). The fitted ARX model is asymptotically
unbiased if the model order is infinitely high. The correlation between the inputs and
outputs via feedback showing in (6.2.3) increases the correlation between the regressors

and thus increases the variance of the parameters given the same input excitation. In
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practice, a high-order ARX model is usually employed, and the resultant model is a close
approximation of the true process model.

If the dither signals dy are available, they can be used as instrumental variables
(past dither data D, i.e., past p steps of dithers), and unbiased results for FIR or ARX
models can be obtained by IVM with closed-loop data because the dither signals are
correlated with the input and output variables but are un-correlated with the process

disturbances.

6.2.2 Analysis of N4SID for Closed-loop data

Analysis of N4SID in terms of input/output model

From the viewpoint of Infinite Impulse Response (IIR), Ljung and McKelvey
(1996) summarized SIMs (focusing on N4SID) and investigated the applicability of these
methods for closed-loop identification. They pointed out that the correlation between
future inputs and the noise made N4SID biased when applied to closed-loop data. They
also suggested an algorithm to circumvent the correlation problem by recursively using a
fitted ARX model to predict the multiple-step future outputs (for detailed procedures,
refer to N4SID_ARX algorithm in Section 3.2). The analysis in that paper was originally
based on an IIR model and changed to an ARX model later. Here N4SID is analyzed
directly in ARX model form for easier understanding; however, the essential idea remains
unchanged.

The first step of the original N4SID algorithm (Van Overschee and De Moor,
1994) is to perform a LS regression of Yt onto [Yy; Up; Url:

Y

14

Z,=Y,NU,|=LY,+LU,+LU, (3.2.1)
U,

This projection is essential to build models for muitiple step ahead predictions. It consists

of a series of LS regressions of future outputs at k+j (0</<f) time points (yk+;) against [¥p;

Up; Uf] :
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2 P f-1
Ve = 2 Ly + DLty + D Listhyn + g 6.2.7)
n=0

i=l m=1

The value for the left-hand side of (6.2.7) has the following general relationship
with the past inputs, outputs, future inputs and the stochastic signals:
7 r J i q
Yirj = Zaﬁyk~i + ijmuk—m + chnuk+n + ZdjseIHs + Z.fﬂek—l (6.2.8)
i=] m=} n=0 3=0 i=1
As seen in (6.2.3), in the closed-loop case, inputs at one time point are correlated to the
stochastic signals before that time point, i.e., #y+y is correlated to exin, €x+n-1, €kn-2s ... (for
nsj), and sy is correlated to ey, €1, Eksj2, ... (for j<n<f). Therefore, the future inputs
Ur (3™ term of (6.2.7)) in the LS regression (3.2.1) are correlated to the noise term (4"
term in (6.2.8)), and therefore the LS regression results from (6.2.7) will be biased. As a

result, the estimated predictable subspace LY, + L,U ,in N4SID is a biased estimate, and

the estimated states from PCA on this estimated predictable subspace are also biased.
This bias comes from the correlation between the future inputs and the noise. It does not
vanish with the increase of the number of data points or the number of lag steps (p). In
fact, equation (6.2.8) indicates that the correlation becomes stronger if a longer future

horizon is used or the SNR decreases.

Analysis of N4SID in terms of multi-step state-space model

Similar to the open loop case, the multi-step state-space model can also be used to
show the relationships in closed-loop data, and therefore provides a basis for analyzing
SIM algorithms for closed-loop data. In the closed-loop case, the dynamic process has the
same relationships between future/past input and output variables as in the open loop
case, except that the inputs are determined by the feedback controller and the dither
signals. The controller has the following state-space model (superscript ¢ stands for the

controller):
X, =Ax + By, (6.2.9)

u, =Cx+ Dy, +d, (6.2.10)
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x’ is the controller state vector with dimension of n°. The process outputs are the inputs
to the controller, and the controller outputs are inputs to the process (dither di can be
deemed as measured or unmeasured disturbances).

Through a similar conduction as in Section 3.1, it is easy to express the current
states of the controller in the following multi-step state-space model (D, is the matrix for
the dither over the past horizon):

x;=(frsu, olog -(ayrom, ey,

=L'P,+L'D R

This relationship indicates that the controller states are also a linear combination of the
past data Po=[Y}; U,] and past dither D,. The future inputs (controller outputs) have the
following relationship with the current controller states, the future process outputs and the
future dither (Dyis for the dither in the future horizon):

U, =T X +H{Y +D, (6.2.12)
This shows that the future inputs are correlated to the future outputs, which includes the
future noise H, sW¢t Vs (as shown in (3.1.7)):

Y, =T X, +HU,+H W +V, 3.1.7)
that is, Uy is correlated to the future noise H (Wit V5.

Consider the basis for the first step of LS regression in N4SID method:

Y, = I,4°T,"Y, +I,(Q,-A’T"H,)U,+H U,

+T,(Q,,~A°T,"H, W, -T ATV, +H W, +V,

(3.1.9)

Because of the correlation between future inputs Uy and the future noise H,iW+V; as
shown in (6.2.12), LS results of regressing ¥y against [¥,; U,; Uil in the first step of
N4SID turn out to be biased. Refer to Appendix A3.1 for the detailed regression results.
This confirms the conclusion drawn from Ljung’s analysis of N4SID for closed-loop data

and the previous analysis in terms of the input/output model.
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6.2.3 NA4SID algorithms for Closed-loop Data

This section will summarize the existing N4SID-related algorithms for closed-
loop data and propose three new N4SID algorithms based on the above analysis and on
the framework for SIMs presented in Chapter 5.

Multiple-step future predictions based on fitted ARX model (N4SID-ARX)
Ljung and McKelvey (1996) proposed an algorithm to circumvent the correlation
problem for N4SID with closed-loop data: fit a high-order ARX model with the closed-

loop data, assuming no instantaneous action in the process, then recursively use this ARX
model to predict multiple steps of future outputs with setting the future inputs to null, and
then perform PCA on these predictions for estimated states.

This provides an unbiased N4SID algorithm for closed-loop data. As shown in
Section 6.2.1, the fitted high-order ARX model is asymptotically unbiased. In prediction
of the multi-step future outputs, setting the future inputs to null serves to eliminate the
effects of future inputs from the future outputs, and this multiple-step future output
prediction is essentially the estimated predictable subspace. As shown in Section 3.2, this
algorithm is also applicable to open loop data.

A similar N4SID algorithm is also available by estimating the multi-step future
output predictions based on a valid FIR model, which can be obtained from closed-loop
data by an IVM as mentioned in Section 6.2.1. Different from the algorithm based on
ARX model, this algorithm can only estimate the deterministic states. Therefore, it can
only give the process dynamic model, and the noise model needs to be estimated

separately thereafter.

Modification of the future inputs based on controller model

Van Overschee and De Moor (1996) admitted the analysis of N4SID for closed-

loop data by Ljung and McKelvey and pointed out that the conclusion was also applicable
to MOESP and CVA. They proposed another algorithm via modification of the future
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inputs based on the prior knowledge of the controller model. The impulse weights of the
controller were used to construct the Hy matrix; then the future inputs were modified as
M=UrHy Y; (see (6.2.14)), that is, removing away the component in Us that correlated to
¥: (i.e., correlated with the future noise signals), then performed oblique regression of ¥
onto [¥p; Up] along M:. The rest of the steps were similar to those in original N4SID
procedures.

By modifying future input data, this algorithm avoids the correlation between the
future inputs and the future noise signals. This algorithm does not require the dither
signals but requires prior knowledge of the controller model, and can be deemed as
applying N4SID in an indirect approach without identifying the closed-loop model. The
prior knowledge of the controller model is a very strong requirement, one that is not
available in many practical applications. Even if the controller equation is known, this
algorithm assumes the controller is implemented perfectly and does not allow for input

saturation, valve sticking, measurement errors on uy, etc.

N4SID in a joint input-output approach

Jha and Georgakis (1996) used N4SID for closed-loop data in a joint input-output
modeling approach. The dy is treated as the inputs to the joint system (see (6.2.3) and
(6.2.4)), and both uy and yy are treated as the outputs of the joint system. N4SID was
applied to the joint system. The states estimated by N4SID include both the process states
and the controller states, and the system from dy to u, was inverted to get the process
model and the controller model (corresponding to the inversion of transfer function in
SISO case). This approach involves the inversion of MIMO system, which is realized in
the state-space model.

This algorithm does not conflict with Ljung’s analysis or the analysis in Section
6.2.2. In this approach, N4SID is applied to the system from dither signals (inputs) to the
process input and output variables (outputs), which is an open loop identification
problem. The direct resultant model from N4SID is only the closed-loop system model,

not the process model itself. In this approach, N4SID guarantees the same denominator
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for both transfer functions from dy to yy and from dy to uy. This leads to denominator-
numerator cancellations in extracting the process model, and therefore a relatively lower
order model for the final result. This is an advantage of SIMs (including N4SID) for
MIMO system compared to traditional methods (e.g., PEM) in joint input-output
identification approach, where a series of MISO identifications usually leads to different
denominators for systems from dj to y and from dj to uy, and gives an unnecessary high-

order model for the dynamic process.

N4SID-RRA based on FIR or ARX model (N4SID-RRA)
Based on the analysis in Section 6.2.1 and the framework for SIMs in Chapter 5, a

generic N4SID algorithm for closed-loop data is proposed (an extension of the N4SID_Hf
algorithm in Section 3.2): fit a high-order ARX model by LS regression or IVM (or fit an
FIR model by IVM); obtain the estimated impulse weights from the fitted ARX or FIR
model and construct the estimated coefficient matrix Hy, then estimate the predictable
subspace by removing the future input effects HilUr away from the future outputs ¥; take
the dominant LVs from RRA on Pio=[¥;; U,] and Y~H;U; as estimated estates and fit to
the state-space model for the process model. Here Ur is no longer a regressor, and the
correlation problem with the original N4SID algorithm is avoided.

In fact, this same algorithm is applicable for both open loop data and closed-loop
data. For closed-loop identification, the only precaution is to use an ARX model of

sufficiently high order to ensure unbiased estimation of the predictable subspace.

N4SID algorithm based on IV method (N4SID-1V)
As shown in Section 6.2.2, the problem with N4SID for closed-loop data

originates from the bias result in the first step of LS regression (the oblique projection
step). This bias results from the correlation between the future inputs and the future noise
signals. Using an IV method instead of LS regression is a promising way to avoid the

correlation problem.
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The key issue in any IVM is to choose desirable instrumental variables (IVs).
There are two basic requirements for the instrumental variables (e.g., Ljung, 1999): no
correlation with the noise and the covariance matrix with regressors is nonsingular. The
choice of IVs depends on the regressors. Looking at the basis for the first step of N4ISD:
Y, = I“fA”I“p+Yp +I(Q, ~ A”FPJ'HP JU,+H,U,
+0,(Q,, - A”F;H,,p W, = I’fA”Fp"VP +H W +V,

(3.1.9)

If the purpose is to estimate the Hy matrix (e.g., to be used in constructing ¥+-H;Uy), Ur is
the regressor and the noise includes terms of ¥, U, and stochastic signals. If the purpose
is to estimate all the coefficient matrices, [¥p; Up; Us] is the regressor and the noise only
includes the stochastic terms.

In a well-designed experiment for closed-loop identification, the dither signals are
independent external variables added to the system, and Dy is un-correlated to the
stochastic terms. Furthermore, if the dither signals are not auto-correlated, such as white
noise or a RBS (Random Binary Sequence), then Dy is not correlated to the ¥, and U,
terms in (3.1.9). Since Dr is a part of Uy, then their covariance matrix is also nonsingular
(dither signals are persistently exciting of high order). Therefore, Dr can be applied to
(3.1.9) as IVs to estimate Hy by IVM:

A,=v,0l{U,Dr) (6.2.13)
This estimated Hr can be used to estimate the predictable subspace, and RRA can be
employed to estimate the process states. If the dither signals are auto-correlated, such as a
PRBS with switching time period 7g>1, Dy is correlated to D,, which has significant
correlation with ¥, and U, and therefore (6.2.13) cannot be used directly for this
situation.

For auto-correlated dither signals, a component of the future dither signals can be
used as IVs: this component can be obtained by projecting Dr onto the orthogonal space
of D, i.e., D; n=D¢Di/D,. As long as the number of past lag steps is greater than the
switching period (7s) of the PRBS (or the significant auto-correlation period for other



158

types of signals), this IV variable D¢, will be orthogonal to D,, and therefore un-

correlated with the past inputs and outputs. Using D¢ r, as the IVs, Hr can be estimated as:
d,=v,0; 07 ,J' (6.2.14)

For estimation of all the coefficient matrices in (3.1.9), [¥;; Up; U] is the
regressor, and the noise for this regression comes only from the terms of stochastic
signals. Both [¥,; Uy,; Dy} and [Yp; U, D ] are uncorrelated to the future stochastic
noise terms H{Wi+V;. Either of these two data sets can be used as IVs to estimate the

coefficient matrices by IVM. This avoids the correlation between Uy and H,s#W¢+¥; in \
closed-loop data. Using IVs=[Y;; Uy; Dy] or IVs={¥,; Up; Ds n], the result by IVM is:
2, L, )=y, - sy, U, U, ]D5"} O (6.2.15)

Here L1, L, and L3 are coefficient matrices for ¥,, U, and Us respectively, as in (3.2.1).
The resultant L3 is an estimate of Hy, and it can be used to estimate the predictable
subspace as Yp-L3U;. Altematively, L Y,+L,U, is another estimate of the predictable
subspace as in the original N4SID algorithm, but without the future stochastic
components.

Compared to using an IVM for the estimation of Hr only, the IVM for estimation
of all the coefficient matrices gives a better result in the sense of a smaller variance of the

estimated predictable subspace. This is due to a much smaller magnitude of noise in the

latter method.

N4SID algorithm based on estimated joint states (N4SID-Joint)

Based on the conclusion that the bias of N4SID comes from the correlation
between future inputs and future noise, the basic idea for a modified N4SID closed-loop
algorithm is to usé the future dither data Dy instead of the future input data U; to show the
effects of Us.

Based on the multi-step state-space model for the controller, the future inputs Us
have the following relationship with the current controller states, the future outputs and

the future dither signals:
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U, =T X;+H}Y, +D, (6.2.14)
Substitute the above relationship into the multi-step state-space model for the future
outputs:
Y, =T X, +H, U, +H W, +V, (3.1.7)
and the result is:
Y, =0, X, +HT;X{+H H;Y,+H D, +H, W, +V, (6.2.15)
The first two terms on the right-hand side of the above equation show the predictable
subspace of the process and the predictable subspace of the controller, respectively.
Linear combination of these two predictable subspaces is a joint predictable subspace,
which has as a basis the joint process-controller states [Xi; Xi°], with a rank of n+n° (total
system order of process and controller). Moving the ¥;term on the right-hand side to the
left-hand side, the result is:
(r-H,H: )Y, =T, X, +HT:X; +H,D, +H, W, +V, (62.17)
Matrix (I-HgHy) is invertible (lower triangle matrix with identity matrix on the diagonal),
and ¥; can be expressed as:
Y, =(-H,B8)'T, X, +(1-H, B H Tex: +(1-H,H:)'H, D,
+(i-H,H =, W, 47,)
(6.2.18)

Considering that both the process states and the controller states are linear combinations

of the past data, i.e., (3.1.6) and (6.2.11), the above relationship can be written as:
(1 H,H) (0,470, + H,T:Q0 — H T AT HE Y,

(@, -1, 47T, H, + B T 47T

1

;)
(1 H H“) H,.T:4"T,*D,
wr1-H,H'H,
w{1-H, HE) ‘(r (Q L~ APT,CH, W, —T, ATV, + H, W, +V,)
(6.2.19)
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The first three terms on the right-hand side of the above equation coincide with the joint
predictable subspace. Equation (6.2.19) indicates that ¥; can be predicted by [Y,; Us; Dy,
Dy). If ¥; is projected onto [¥p; Up; Dp; D], the sum of the first three terms will give an
unbiased estimate of the joint predictable subspace; performing an SVD on this part can
give the estimates of the joint states. This new N4SID algorithm for closed-loop data
gives both the process model and the controller model. To some degree, it resembles
N4SID in the joint input-output approach. However, they are completely different in both
the fundamental idea and the computation.

By directly fitting the joint states to a state-space model, both the resultant models
for the process and the controller are of order n+n° (not a minimum realization of the
process of order #, or the controller of order n%). A lower order model for the process or
the controller is available through model-order reduction techniques or state separation

techniques, such as zero-pole cancellation and balanced truncation.

6.3 CVA for Closed-loop Data

There ‘are two basic CVA algorithms for open loop data, i.e., CVA_RO and
CVA_Hf (refer to Section 3.3). When applied directly to closed-loop identification, these
algorithms need to be investigated first due to the presence of correlation between inputs
and disturbances in closed-loop data. In this section, these CVA algorithms will be
analyzed in the multi-step state-space model with emphasis on the model bias and

possible new algorithms.

6.3.1 CVA_RO Algorithm for Closed-loop data

The applicability of CVA algorithms for closed-loop identification will be

analyzed based on the basic relationships between process states, inputs and outputs. In
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the multi-step state-space model, the future outputs have the following relationship with
the current states and the future inputs:

Y, =T, X, +HU, +H, W, +V, (3.1.7)

In this relationship, the current state sequence Xy is independent of the effects of future
stochastic signals HWi+V:. In the open loop case, with well-designed external
independent signals, Uy is un-correlated with the effects of future stochastic signals
H,WiV;. However, in the closed-loop case, the future input data Ur is correlated to
H, (Wit Vr (refer to (6.2.14) and discussions). Denote the projection of H, ¢Wr+ Vs on Uy as
ByneUs and the residual as H (W +Vi-BnsUs (Bnr is the regression coefficient matrix), then
regressing Ur out of both sides of the equation (3.1.7) gives:

Y, ,=T,X, ,+H W, +V,-B,U, (6.3.1)

k_ro
where Xi 1o is the result of projecting X onto the orthogonal space of Uy, i.e., regressing
Ur out of X\

The current state sequence Xy is a linear combination of the past inputs and

outputs as shown in Section 3.1:

X, =AT,Y, +(Q,-A'T, H, U, +(Q, , - AT, "H_, )W, ~ A’T,"V, (3-1.6)
This relationship can be simply rewritten as (S, stands for the past stochastic signals [W;;
Vol

Y 74
x, =[L, Lz{UP ]+[Li L;{V”] =LP,+LS, (6.3.2)

P P
The above coefficient matrix L shows the relationships between current states and the
past input/output data Pjo, and is the ultimate goal of CCA in CVA for state estimation.

Regressing Uy out of both sides of above equation gives:

X =L'P10_ro +L3Sp_ro (6'3'3)

k_ro
Where Pio o=Pio-BrioUs, and Bpyo is the coefficient matrix of regressing Pio against Uy,

Sp 10=Sp-BspUs, and B, is the coefficient matrix of regressing .S}, against Uy
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In the CVA_RO algorithm, the coefficient matrix J comes from CCA on ¥; , and
Py 1o, and J is an estimate of the above L matrix and used to estimate states Xi=JPig
(refer to Section 3.3.1). If Xi ,, is the only common variation between ¥; -, and Pig 1, the
coefficient matrix J will be an unbiased estimate of L. For closed-loop data, however, the
common variation between ¥; ,, and Pyo r, includes not only Xy ,, but also the common
variation between HW+Vr-BynUr and Pio o Consider the following: BniUr is
uncorrelated to Pig r, (which is in the orthogonal space of Uyp); however, HiWitVs is
correlated with Pio =Pio-BrioUr because of the correlation between future noise
HWe+Ve and Us (H {WitVr is un-correlated to Pio). Therefore, the coefficient matrix J
from CCA will be affected by the common variation between H, {W+V-BniUs and Pio o,
thus the estimated state sequence based on J will be a biased estimate of L.

This bias of CVA_RO for closed-loop data is due to the correlation between
future inputs Ur and the future noise HW+V;, and does not vanish if the number of data
points tends to infinity. The correlation between HyW+V; and Ur becomes stronger if the
noise in the closed-loop data becomes larger, or if a longer future horizon is used in the
algorithm. Therefore, the bias from CVA_RO is expected to increase if the number of

future lag steps increases or the SNR of the closed-loop data becomes poorer.

6.3.2 CVA_Hf Algorithm for Closed-loop Data

In this method, an ARX model is fitted with the closed-loop data and the
impulse weights from this ARX model are used to construct an estimated Hr matrix, say
Hi .. The predictable subspace is estimated as Y-Hy Uy, and then CCA is applied on this
subspace and the past data to estimate the process states. The key issue in this algorithm
is to have an unbiased estimation of the coefficient matrix Hy from the closed-loop data.

As shown in Section 6.2, the fitted ARX model based on closed-loop data is
asymptotically unbiased for an infinite long past horizon. In practice, a high-order ARX is
usually a close approximation of the true process, and the estimated impulse weights

based on the fitted ARX model are adequately close to the true ones. As discussed in



163

Section 3.3, however, a longer past horizon also results in higher variances for the
estimated parameters in the ARX model. These variances decrease as the number of data
points increases (or if we use other estimation techniques than least squares to reduce the
variances, such as PCR, ridge regression, etc., at the expense of a small increase in bias).
The impulse weights from this ARX model are used to estimate the future input effects
H:Uy; on the future outputs. The estimated predictable subspace by this method, Y¢-H; Uy,
is an estimate of TeX\+H, (WrtVs, and it is valid for use in the next step for estimation of
the process states.

CCA on the estimated predictable subspace Yp-H; Ur and the past data [¥; Up]
picks up the process states. This procedure does not suffer any problem from the
correlation between U and the future noise H; ¢Wr+V; since the effects of Ur have been
removed from Yr. ¥Yr-H; Ur is an estimate of IiXy+H, (Wt V5, which has only the current
states Xy as the common variation with the past data [¥,; U,] (the effects of future
stochastic signals H, ¢{Wr+¥; have no correlation with the past data).

In summary, providing a reasonably unbiased ARX, the CCA_Hf approach can

be applied directly to closed-loop data to obtain an unbiased state-space model.

6.3.3 CVA Algorithms for the Joint States

To avoid the correlation between the future inputs Ur and the future noise in
closed-loop data, one possible way is to use only the future dither signals Dy instead of Ur.
As shown in Section 6.2.3, the future output data ¥y has the following relationship with

the process states Xy, the controller states X% and Dy

(1~ H, =T, X, +H X +H, D, +H, W, +V, (6.2.17)
The first two terms on the right-hand side of the above equation are the effects of the joint
process-controller state sequence Xi'=[Xi; Xi°] with rank of n+n°. Xj is a linear

combination of the past data Pyo as shown in (6.3.2), and X;° is a linear combination of

the past data Pio and past dither D, as shown in (6.2.11). Therefore, joint state sequence
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X is a linear combination of Pjo and D,. Equation (6.2.17) is analogous to equation
(3.1.7) with the joint states corresponding to the process states and Dy corresponding to
Us. Following the same idea of regressing Uy out as in the CVA_RO algorithm, regressing
Dy out and performing CCA should give a way to estimate the joint states X’x.

Denote ¥t rops, Pio_ropss Xk _ronr and X.“k_me as the result of regressing Dy out of ¥,

Py, Xy and X'k respectively. Regressing Dy out of equation (6.2.17) gives:
(T=HHW, oy =T, X, oy +H DXL o +H, W, +7,) (6.3.5)
Here the past and future stochastic signals are un-correlated to the Dy. Equation (6.3.5)

indicates that ¥t ropr is only related to Xi ropr and X°k_me, which are related to the past

data in (6.3.2) and (6.2.11) by regressing Dy out respectively:
Xy _rory =LPio_yopy + LS, (6.3.6)

X5 ropy =L P ooy +L'D (6.3.7)

p_roDf
Equations (6.3.5), (6.3.6) and (6.3.7) indicate that X ,opr and Xckjom are the only
common variation between [Pio rop; Dp ropt] and ¥t opr. Therefore the dominant CVs
(computed as J[Pio_ropf; Dy rone]) from CCA on these two data sets will coincide with
XJk_,oDF[Xk_me; Xck.mpf], and therefore J[Pio; Dp] is an unbiased estimate of the joint
states XJk.
The above analysis can be summarized into the following procedures for a new
CVA algorithm based on estimating the joint process states and controller states
(CVA_Joint):
e Regress Ds out of ¥r and [Y,; Up; Dpl=[Pio; Dy), to get Yt ope=YiPpso and
[Pro_ront; Dp_ron]=[Pio; Dy)Poso, Where Pos=(I- Df (DDs')"' Dy)
e Perform CCA on [Pio ropr; Dp ropf] and Yr rops, and take the number of
dominant CVs as the estimated order of the joint system. J is the
coefficient matrix for [Pio rons; Dyp_ronr] for dominant CVs.

e Estimate the joint process-controller states as X' = J1Pio; Dy
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o Fit the estimated X’ to the state-space model for process dynamic model
and controller model; for controller model, u are the output variables and
Jx are the input variables.

As in N4SID-Joint algorithm, both the resultant models for the dynamic process
and the controller will be order of n+n°. To obtain a minimum order model for the
dynamic process (order n), one could perform pole-zero cancellation in the transfer
function form or other model order reduction techniques. Another possible way is to
extract an n-dimensional basis just for the process states from the above estimated joint
states (n+n° dimensions), and then fit to the state-space model form.

In the multi-step state-space model, the controller can be expressed in the
following relationship:

(-HSH, U, =T:X; + HT, X, +D, + HLH, W, + HSV, (6.3.8)
This relationship is a counterpart of (6.3.5) for the controller. Regressing Dy out of both
Ur and [Pio; Dy] and performing CCA on the resultant data sets also provide a feasible
CVA algorithm to estimate the joint states. The computation procedure is the same as for
the above CVA-Joint algorithm except using Uy instead of ¥; for the future data.

Considering that both ¥; and U; data sets contain the joint state information,
another CVA algorithm is to join these two future data sets together, that is, regressing Dy
out of both [¥g U] and [Pio; D,], performing CCA on these modified data sets. The
detailed computation procedures are similar to the above CVA-Joint algorithm except
using [ ¥y; Us] instead of ¥; for the future data

The joint-state CVA algorithm based on U data set gives a better estimation of
the controller states since U contains more information of the controller states than the
process states. Therefore, the joint-state CVA algorithm based on ¥; should be adopted if
the main purpose of the closed-loop identification is to get the process dynamic model.
The joint-state CVA algorithm based on [¥g Uf] essentially is equivalent to using
CVA_RO algorithm in the joint input-output approach, where yr and ur are the output

variables of the joint system, and df is the inputs to the joint system.
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In summary, these algorithms estimate the joint process-controller states from the
future and past data sets using the same idea as the CCA_RO algorithm (here regressing
out the future dither data), and fit to the state-space model form for both the process

model and the controller model.

6.4 Simulation Studies

The simulation study in this section is to illustrate the analysis of SIM algorithms
for closed-loop data and to demonstrate the theoretical conclusions in the previous
sections. For ease of illustration, simple examples are used in simulations. The first
simulation example is an ARARX process with model:

027 027 1 .
)’() _1 () ( )(k)

1-0.82 1-0.9527 J1-0.82

The steady state gain of the process is 1.0 and the dynamic time constant is about 5
sampling time periods. The noise is an AR(2) process, which has a common pole with the
dynamic process. The controller used in the feedback loop is a tight PI controller with

transfer function:
ul)=-41227 0y age)

The dither signal added to the output of controller is a PRBS with magnitude of 4 and
switching time period 73=5. The variance of noise signal is adjusted to have different
SNR levels at the output, such as SNR of 10, 3.1 and 1.0 (ratio of the variance resulting
from the dither to that resulting from the noise at output). 100 simulations are done for
each SNR level, and 10,000 data points are collected in each simulation.

Another simulation example used in this section is a simple general process with
the following Box-Jenkins (BJ) model:

W)= -2 i)+

1-0.8z7"

e(k)

I S
1-0.95z"
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The controller, dither signal and SNR are the same as in the first example. These
simulation examples have been used in Chapter 3 and Chapter 5 for open loop cases and
now are used again for easy comparison.

With the above simulation conditions for the BJ model, the cross-correlation
between the current input and the past disturbance is investigated. Figure 6.2 shows the
mean correlations at different lag steps and their 95% confidence limits from 100 Monte
Carlo simulation data sets for SNR=10.6, 3.37 and 1.06 (average value) respectively. The
severe correlation between the current input and past disturbance can last for 30 to 50
steps, about 5 to 10 times of the process time constant. It clearly shows that the
correlation increases with the decrease of SNR, i.e., the poorer the SNR is, the stronger

the correlation is. This correlation has a significant effect on the identification result.

Cross correlation between input uk and past noise
0.05 T T N H T T T T T T

-0.05

(B

o e T T TN

- SNR=10.6 T e T TR
SNR=3.37 el T
- SNR=1.06

ion

-0.15

T

o
N
T
7
I

Cross correlat

0.25 R

©
w
T
(-

0.35}

_O. 45 L L I 1 1 i 1 i i
-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

Lag Time

Figure 6.2 Correlation between the input and disturbance in closed loop data
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In order to illustrate conclusions on applications of N4SID and CVA algorithms
for closed-loop data, the above ARARX process and the controller are used for closed-
loop Monte Carlo simulations. To show the relationship between the bias and the SNR,
three different levels of SNR are selected by setting different values for the variance of
noise signal ey. The mean values of SNRs over 100 simulations are 10.4, 3.3 and 1.03 at
the output, and 4.5, 1.4 and 0.45 at the input respectively. Each data set is used to build
the dynamic model by various N4SID and CVA algorithms discussed in the last two
sections. Table 6.1 gives a brief summary of the algorithms used. In order to show the
relationship between the bias and the length of the future horizon, each algorithm uses 2,
6 and 12 lag steps for both the past and future horizon. For fair comparison, 9970
effective data points are used for all the cases. The system order is chosen to be 3 for
joint-state-based algorithms, and order of 2 for all other algorithms. In all the SIM
algorithms listed in Table 6.1, only the original N4SID and CVA_RO algorithms use Us
directly in LS regression involving the correlation between future inputs and the noise.
These two algorithms are expected to give biased results based on previous analysis. All

other algorithms are expected to give unbiased results.

Table 6.1 N4SID and CVA algorithms used in Mote Carlo simulations

Algorithm 1st Step 2" Step | Order |Notes

N4SID Y/[Y,; Uy U} PCA 2 | M file in Matlab Identification toolbox
N4SID_1V IV Method PCA 2 Section 6.2, IVM for 1% step of N4SID
N4SID_ARX | Recursive ARX PCA 2 Ljung: k-step predictions by recursive ARX
N4SID_RRA | ARX RRA 2 Section 4.2.2, H; from ARX model

N4SID _Joint | ¥/[¥Y,; Uy; Dyy; Dyl PCA 3 Section 6.2, Joint process-controller states
CVA_RO RO (Uyp) CCA 2 Section 3.3.1, Regress Uy out of ¥rand Pyp
CVA_Hf  |ARX CCA | 2 |Section3.3.2, H;from ARX model
CVA_Joint RO (Dy CCA 3 Section 6.3, Joint process-controller states

1% step: Method for estimation of the predictable subspace

2™ step: Method for estimation of the states
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For the Monte Carlo simulation for the case of SNR=10.4, the frequency
responses and their 95% confidence regions from these SIM algorithms with 2 lag steps
are shown in Figure 6.3. The impulse response curves are so close to the true that it is
hard to distinguish them, so they are not shown here. Joint state N4SID and CVA
algorithms are not applicable for this situation since at least 3 lag steps are required. For
the results from the original N4SID algorithm and CVA_RO algorithm, the 95%
confidence regions do not include the true process response. This clearly shows that these
two algorithms give biased results for closed-loop data. The results from all other
algorithms do not show any bias.

For the same simulation data sets, the results from SIM algorithms with 6 and 12
lag steps are shown in Figures 6.4 and 6.5 respectively. Compared to those results with 2
lag steps shown in Figure 6.3, the biases from the original N4SID and CVA RO
algorithms increases as the number of lag steps increases. This verifies the conclusion in
previous analysis that the bias increases with the number of lag steps used. The results
from all other algorithms do not show any statistically significant bias in these figures.

In order to illustrate the effects of SNR on the identified results, these N4SID and
CVA algorithms are also applied to simulations with SNR=3.3. Figures 6.6 and 6.7 show
the frequency responses and impulse responses as well as their 95% confidence regions
respectively for the case of 6 lag steps used in these algorithms. The original N4SID and
CVA_RO algorithms show clear bias on these results, and all other algorithms show
unbiased results (some upper 95% confidence limits are marginally close to the true
response, and the reason is explained below). Compared to those results for the case of
SNR=10.4 (with 6 lag steps, showing in Figure 6.4), the biases from the original N4SID
and CVA RO algorithms become worse. This verifies the conclusion in previous
analysis, that is, larger disturbance causes larger bias due to the stronger correlation
between the future inputs and the effects of the future stochastic signals in the original
N4SID and CVA_RO algorithms.
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For the case of SNR=1.03, the results of frequency responses and impulse
responses are shown in Figure 6.8 and Figure 6.9 respectively. The results from N4SID
and CVA_RO show a larger bias; however, all other algorithms also show some bias
(though not as large as from those two algorithms). This is due to the large estimation
errors in the estimated states caused by the enormous noise, and these estimation errors
introduce bias in fitting the estimated states to the state-space model (the third step of the
framework for SIMs, refer to Section 5.5.2). Even if the significant LVs provide an
unbiased estimate of the true state space, they still have estimation errors. Large errors in
regressor variables (estimated states) in LS regression usually lead to slower dynamics
and smaller steady state gains for the identified model (Wang, 2000; Hoskuldsson, 1996).
The noise in this simulation case is so large that the bias introduced in the third step of LS
regression shows significantly in all the SIM algorithms. This is the reason that the upper
95% confidence limits in the results for SNR=3.3 and 1.03 become close to the true
responses or even below the true response (showing bias). Nevertheless, the biases from
the original N4SID algorithm and CVA_RO algorithm are still much larger than the
results from other algorithms. In fact, the results from N4SID-Joint and CVA-Joint
algorithms show larger variance than other algorithms and tend to show larger bias (for
higher SNR cases). It is also due to the larger errors in the estimated states — the
estimated controller state is also deemed estimation error for the process states in the LS
regression procedure.

In these Monte Carlo simulations, the identified models from the original N4SID
algorithm and CVA_RO algorithm show bias, and the results from other algorithms
included in Section 6.2.3 and 6.3.3 do not show bias. These Monte Carlo simulations
illustrate the analysis in the last two sections and verify conclusions about the
relationships between bias and future lag steps as well as the SNR when SIM algorithms
are applied to closed-loop data. The simulation results for cases with very low SNRs also
show the effects of state estimation errors in fitting the estimated states to the state-space

model.
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Figure 6.3 Frequency response results from N4SID and CVA algorithms (SNR=10.4, lags=2)
Solid line: true response, dashed lines: identified result (mean response and 95% confidence limits)
(No result for algorithms based on joint states for only 2 lag steps used)

N4SID algorithms: left column and top plot in right column

CVA algorithms: lower three plots in right column
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Figure 6.5 Frequency response results from N4SID and CVA algorithms (SNR=10.4, lags=12)
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Figure 6.6 Frequency response results from N4SID and CVA algorithms (SNR=3.3, lags=6)

Solid line: true response, dashed lines: identified result (mean response and 95% confidence limits)
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Figure 6.8 Freguency response results from N4SID and CVA algorithms (SNR=1.03, lags=6)
Solid line: true response, dashed lines: identified result (mean response and 95% confidence limits)
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CVA algorithms: lower three plots in right column
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6.5 Conclusions

This chapter investigated the applicability of existing SIM algorithms for closed-
loop data, clarified the disputes on this issue among researchers, and proposed several
new SIM algorithms for closed-loop data.

The fundamental difference between open loop data and closed-loop data is the
correlation between the inputs and the disturbance in closed-loop data. This raises the
bias issue when SIM algorithms are applied to closed-loop identification.

For closed-loop data, the original N4SID algorithm was analyzed in both time
domain and multi-step state-space model. The correlation between future inputs and the
future noise causes bias in the first step of N4SID, where future inputs are directly used in
the LS regression. This analysis not only confirmed the analysis in the viewpoint of
infinite impulse weights in literature but also provided basis for new SIM algorithms for
closed loop data.

Several new N4SID algorithms were proposed for closed-loop data. N4SID-RRA,
proposed for open loop data, is also applicable for closed-loop data with correctly fitted
FIR or high-order ARX model. N4SID-IV avoids the correlation problem by using
instrumental variable method (IVM) instead of LS regression in the first step of N4SID.
N4SID joint state algorithm is to perform oblique projection of the future outputs onto the
past input, output and dither data along the future dither data, and get estimates of both
the process states and the controller states. This algorithm is able to give both the process
model and the controller model in a high order.

For closed-loop data, CVA_RO algorithm was analyzed in the multi-step state-
space model. This algorithm gives biased results due to the correlation between the future
inputs and the future noise. The CVA_Hf algorithm was shown to give asymptotically
unbiased results for general closed-loop systems. With availability of dither signals, new

CVA algorithms based on estimation of the joint process-controller states were proposed
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for closed-loop data. Both the process model and the controller model can be identified
by these CV A algorithms.

In general, whether a subspace identification method is applicable for closed-loop
data depends on the specific algorithm, in fact, applicability depends on how the future
inputs are used in the detailed computation procedure. One SIM algorithm is applicable
for closed-loop data only when the correlation between future inputs and the future noise

is avoided.



7 Practical Issues and Application Guidelines

7.1 Introduction

While the fundamental research on SIMs is progressing and making advances,
SIMs have been employed for many applications, such as modeling of a distillation
column (Schaper 1990), identification and control of unstable aircraft flutter (Peloubet et
al., 1990). SIMs have shown great potential for practical applications in control design
and process monitoring. Yet in many applications, SIMs need to deal with special issues,
such as process delays, common model structures in MIMO systems, and non-stationary
and co-integrating disturbance problems (see Sections 7.4 and 7.5). Such practical
problems are common in chemical processes. These practical problems have a great
impact on the successful application of SIMs, and they also critically affect the applicable
scope of SIMs. Solving these problems may not involve as deep fundamental research as
in previous chapters, but the solutions are often not trivial. In this chapter, these practical
issues will be discussed and analyzed, and their effects or suggested solutions are
demonstrated by simulation examples.

As shown in Section 2.5, SIMs have their strengths and limitations when
compared to traditional system identification methods. Therefore, SIMs should be applied
to the situations or processes where their strengths can be used and their shortcomings
can be avoided. This chapter will discuss some general guidelines for applying SIMs
based on the conclusions in the previous chapters and on research experience gained
during this study of SIMs. These general guidelines are not rigorous proofs or
conclusions, and they should only be considered as suggestions for the application of
SIMs.
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7.2 SIMs for Processes with Delays

7.2.1 Effects of Process Delays on SIMs

Pure delays from process inputs to process outputs are common in practical
applications, especially for the chemical processes, where delays are much more common
than in electrical or mechanical systems. For example, flowing materials may need some
time to travel from the measurement points to reactors (distance velocity delay). Delays
have significant impact on many practical applications, such as on the design of
controllers (e.g., minimum variance controller, Smith predictors, Dahlin’s controller) and
on controller performance monitoring. Therefore information on process delay is vital for
many practical applications.

In some applications, one may have the prior knowledge of the process delays or
a rough estimation of the process delays. In such cases, one can remove the effect of
delays by shifting the inputs sequence for the corresponding delays before performing
system identification. The known delays can be incorporated directly into the final
identified model.

In many applications, however, delays in a process are not clear and need to be
determined from the experimental data. In traditional system identification methods, such
as fitting FIR models, delays can be estimated from the estimated impulse weights or step
responses of the final identified model based on the number of near zero weights in the
initial period of step response.

Consider a SISO process with unknown b steps of pure delays. The process can
be represented in the following state-space model (for simplicity, only the deterministic
part is shown):

Xy = Ax, +Bu,_,
Ve =Cx,
The current states xy are effects of the past inputs up to uxb-1, and the delayed inputs (ux.p
to ux.;) will show their effects on the future horizon. The future outputs are shown in the

following relationships:
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Y = Cx

Yir1 =CAxy+ CBuyp

Virz =CA’xy+CABuy.y, +CBugpss

Virs = CA 4+ CAY Bupp+ ... +CABuy;+CBuy

Virpe1=CA" '+ CAPBuyy+ ...+ CA*Buy y+ CABuy  +CBuy

Va1 =CA i+ CA?Bupy+ +CA™ Bup j+CA ™ Buy+ CAP Buyy+.+ CBuja g2
(7.2.1)

From the above equations, it is clear that the effects of the delayed inputs (terms related

with u.p, to uy1) are included in the future outputs. Removing the effects of the future
inputs HUr (underlined terms in equation (7.2.1)) does not eliminate the effects of
delayed inputs in the future outputs. Therefore the data matrix Y; ~=Y¥r-Hg oUs (the
estimated predictable subspace as in CVA_Hf algorithm) contains not only the
predictable subspace Xy (the effects of current states) but also the effects of delayed
inputs (and the future noise if there is disturbance to the process). In the method of
projecting ¥r against [¥}; U,; Us] (as in the original N4SID algorithm), the delayed inputs
are included in the past inputs U, therefore the effects of the delayed inputs are included
in the oblique projection results L, Y, +L, U,

In SIMs, estimated states are taken as the significant LVs from a LVM (e.g., CCA
or RRA) on data matrix ¥t =Y¥rHy .U and [¥;; U,]. As a result of including the effects
of the pure delays in ¥; ., the LVs from the above LVM are linear combinations of [¥};
U] (the delayed inputs are included in U}), and will not only predict the effects of the
current states but will also predict the effects of the delayed inputs. Therefore, the
significant Vs (estimated states) include essentially the true process states and the pure
delayed inputs. In other words, the estimated states from SIM algorithms contain both the

process true states and the delayed inputs.
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For a SISO process, with adequate lag steps in the past data set, the number of
significant LVs (estimated states) from SIM algorithms will include both the true process

order and the number of pure delays:
# of significant LVs = true system order + # of pure delays (7.2.2)

For a SIMO system, the delays to different outputs are usually different. The LVs
only need to memorize the maximum number of delayed inputs, therefore the number of
significant LVs will be:

# of significant LVs = true system order + max(delays for outputs) (7.2.3)

For a MISO system, the numbers of delays from different inputs to the output are
usually different. The overall effect of the delays on a future output is a linear
combination of the delayed inputs. For each step within the maximum number of delays,
a new linear combination of these delayed inputs shows in the future output by involving
new delayed input signals (refer to (7.2.1)). Beyond the maximum number of delays, no
more linear combinations are independent of previous linear combinations (no more new
delayed input signal; see also the simulation example for MISO case in Section 7.2.3).
Therefore, the maximum number of delays of different inputs determines the number of
linear combinations required to show the effects of delays. The delayed inputs are
memorized in the estimated states in the form of linear combinations, not the individual

delayed inputs of each input variable. The number of significant LVs is:
# of significant LVs = true system order + max(pure delays of inputs) (7.2.4)

For a MIMO system, SIM algorithms join all the outputs together. Therefore a
MIMO system can be deemed as the combination of a series of MISO systems, and in

general the number of significant LVs is:

Max(# of significant LVs) = true system order

+ sum (maximum of delays over all inputs for one output)over an outpus (7.2.5)
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When a series of MISO systems are put together, the linear combinations of delayed
inputs for different outputs might become collinear, therefore the estimated order of a
MIMO system might be lower than the maximum from (7.2.5).

By increasing the number of estimated states, SIM algorithms are able to deal
with the process with unknown delays. However, the effect of pure delays decreases the
accuracy of the estimated final model. First, the increased model order leads to a larger
number of parameters to be fit in LS estimation for the system matrices and therefore the
variance of the estimated parameters will increase. For example, the number of
parameters in the A matrix increases with the square of system order. Secondly, the
delayed inputs memorized in the estimated states lead to extra state estimation errors, and
thus an increase in the variance of the estimated model parameters and introduces extra
bias in the fitted state-space model by error in the regressor variables (xx) in the LS

regression for system matrices.

7.2.2 Detection of Process Delays and Solutions for SIMs

The delayed inputs memorized in the estimated states are combined with the
estimates of the true process states and cannot be recognized or separated out directly. If
an ARX or FIR model is fitted during estimation of the predictable subspace (as in
CVA_Hf algorithm), the delays can be estimated based on the calculated impulse
responses. The same method can be used to detect the delays based on the impulse
responses of the high-order state-space model obtained from SIM algorithms.

Here an approach is proposed to detect and diagnose the delayed inputs
memorized in the estimated states: perform a CCA between the estimated states and past
inputs over a sufficient horizon, the number of CCCs (canonical correlation coefficients)
significantly close to 1.0 indicates the number of state variables used to model the delays
in the system. In practice, these CCCs will be slightly below 1.0 due to the noise in the
system. If the horizon of past inputs is beyond the delays, these CCCs indicate both the
delayed inputs memorized in the estimated states, and the contribution of far past inputs

(beyond delays) on the process states. In fact, the true states are the result of a long
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history of past inputs (a period of 3 to 4 times of the system time constant) beyond the
delay period. The immediate past inputs beyond the delayed inputs usually do not have a
large contribution to the true states (unless the time constant is very short). The large
CCCs (close to 1.0) are mainly due to the delayed inputs memorized in the estimated
states, and thus the number of CCCs close to 1.0 should be a good indication of the
maximum number of delays in the system, and the corresponding coefficient vectors of
the past input data (vectors in J matrix in CCA) show the delay structure in the inputs.
The past inputs corresponding to non-zero elements (noise-free case) or major elements
(case with noise) of these loading vectors are the delayed inputs memorized in the
estimated states. The CCC’s closeness to 1.0 and the significance of the elements in
loading vectors depend on the system structure, SNR and the number of the collected
data points. The criteria are somewhat subjective; nevertheless this CCA is a simple and
effective approach to detect and diagnose the delay structure.

After detecting the delay structure in the system, the delayed inputs can be
eliminated from the past data U, and the LVMs on Y¢+H;Ur and modified past data will
not catch the effects of delayed inputs in their LVs. This approach works well for SISO
and MISO cases. In SIMO and MIMO cases, one input variable may have a different
number of delays to different outputs. The number of delays common to all input
variables can be eliminated from the U, data set. The estimated states will contain no (for
SISO and MISO) or fewer delayed inputs (for SIMO and MIMO), and will reduce the
estimated system order; therefore the number of parameters in system matrices to be

estimated is reduced effectively.

7.2.3 Simulation Examples

In this subsection, various simulations for simple and complex cases are used to
illustrate the effects of delayed inputs on SIMs, and to illustrate how to use CCA to detect
and diagnose the delay structure in a process.



186

Delays in a deterministic SISO system

To illustrate the effects of delays clearly, a simple deterministic process is used as

the simulated example:

_ 0.2z y
1-0.8z7" *

The process is a first-order system with 2 delays. In simulation, the input is a PRBS with

Y (7.2.6)

switching time period of 5 and magnitude of 4, and 1000 data points are collected.

The CVA_Hf algorithm is used for the simulation data with 6 lag steps for the
past and future horizons respectively. The impulse weights from a fitted ARX model are
estimated correctly in this noise-free case. The rank of ¥; =¥r-H exUs is 3 though there
are 6 lagged variables. CCA between the past data and ¥r . gives 3 perfect CCCs (1.0),
and the system is determined to be of order 3. Take the first 3 CVs as the estimated states

Xx_est and the resultant state-space model is:

0.2599 -0.1385 0.6012 0.0069
X, =| 1.7765 —0.4487 -1.0308 [x, +|~0.0161 ju, 727
-0.1697 —-0.0434 0.9888 0.0001 o
v, =|-2.8287 -1.5567 —98.5368]x,
This state-space model can be transformed into the following form:
10.8 —-0.0029 0 0
Z,=| 0 0 iz, +{Oju, (72.8)
0 0 0 1

¥, =[-69.0855 0 0,
through a transform of z,=Txy with matrix T as:

0.6470 0.2938 0.0069
T={03702 09514 -0.0161
0.6665 0.0921 0.0001

In (7.2.8), it is clear that the past two inputs are memorized in the last two states. If the

two delays are shifted to the input, the model can be simplified as (first order system):
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2,0 =0.82,, —0.0029%, ,

(7.2.9)
¥, =—69.0855z,,

To detect the delays memorized in the estimated states, CCA is performed
between the estimated states and the past inputs. The CCCs between past inputs [uy.1, #x.
2, i3] and the estimated states xi ¢ are 1.0, 1.0 and 0.6023. The number of CCCs equal
to 1.0 clearly indicates that the two delayed inputs are included in the estimated states
Xk est- The coefficient matrix for the past inputs is (columns are for different CVs, and

rows 1, 2 and 3 correspond to variable u.;, 2., and ux.3 respectively):

-0.0138 -0.0108 -0.0010
0.0172 0.0034 0.0165
0.0000 0.0000 -0.0175

It is clear that the first 2 CVs (corresponding to perfect CCCs) come solely from uy.; and
k.2, and the past input w3 has no contribution to these two CVs. This indicates that two
of the three estimated states are to memorize the two delayed past inputs uy.; and w2,

The original N4SID algorithm is also applied to the simulation data. The first
three singular values from SVD (PCA) on L, Y, +L,U, are 202.6741, 27.8965 and 5.2661,
and the remaining three are zeros. The system is determined clearly to be of order 3. The

state-space model from N4SID is:

0.8960 0.1746 —0.0244 0.0157
X, =|-02648 03734  0.3279 |x, +|0.0356 lu, (72.10)
~0.2156 —0.6718 —0.4694 0.0371 -

v, =[6.7601 —4.0283 1.0077}x,
This model can have similar forms as (7.2.8) and (7.2.9) through transforms. CCCs

between the past inputs and the estimated states indicate two delay steps in the process.

Delays in a SISO system with noise

The second example is a combined deterministic-stochastic process. The
deterministic part is the same as (7.2.3), and a white noise (unit variance) is added on the

output as the measurement noise. The SNR is about 10.
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The CVA_Hf algorithm is applied for this example with 6 lag steps for the past
and future horizons respectively. The fitted ARX model is:

¥, =.0506y, , +.0327y, , +.1256y, , +.1108y,_, +.1095y, , +.0005y, , —

(7.2.11)
0139, , —-.0370u,_, +.2323u, , +.1602u,_, +.1249u, ; +.0844u, . + ¢,

The first 8 estimated impulse weights are 0, -0.0139, -0.0377, 0.2299, 0.1689, 0.1346,
0.1201 and 0.0531. The two small impulse weights at the initial period (lags 1 and 2)
indicate 2 delay steps in the process. The 6 CCCs from CCA on past data and ¥; . are
0.9873, 0.7090, 0.2487, 0.1434, 0.1346 and 0.1049 respectively. There are three
dominant CVs and the system are determined to be order of 3 by AIC. The identified
model by CVA has the following transfer function for the deterministic part (with one

real pole at 0.8036 and a pair of insignificant complex poles):

_ -0.0320z" +0.0080z +0.2365z" u
€ 1-0.7528z7" +0.0156272 - 0.0453z7 *

Its impulse response is shown in Figure 7.1.

(7.2.12)

To detect the delays in the process, CCA is performed between the estimated
states and the past inputs [sy.1, U2, #x.3]. The CCCs are 0.9977, 0.9052 and 0.6461. This
indicates that essentially 2 delayed inputs are memorized in the estimated states. The
corresponding coefficient matrix is (columns are for different CVs, and rows 1, 2, and 3

corresponds to variables uy.;, uy.> and uy.; respectively):

0.0047 0.0168 0.0016
0.0039 -0.0167 -0.0168
-0.0005 -0.0004 0.0175

The large elements in the first two loading vectors indicate that the delayed inputs uy.
and uy., are memorized in the estimated states.

After detection of the 2 delay steps, one can shift the input for 2 time steps: take
uy.» as current input, and ., and wuy., are taken into the future input data set (¥, and Y7
remain unchanged). The CCCs from the CCA in CVA_Hf algorithm are 0.9790, 0.1584,
0.1441, 0.1283, 0.1076 and 0.0997 respectively. It clearly indicates the model to be order
1. The CCC between the estimated state and the true state is 0.9980, and this indicates an
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excellent estimation of the process state. The identified model has the following transfer

function for the dynamic part (impulse response is shown in Figure 7.1):

-1
02075z (72.13)

T 1079481
Based on the same treatment on the input, the CVA_RO algorithm gives the following

transfer function for the dynamic part (impulse response is shown in Figure 7.1):

0.2139z"
T (7.2.14)
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Figure 7.1 CVA algorithms for process with delays (impulse response and the errors)

The original N4SID algorithm is also applied for the simulation data with 6 lag
steps for the past and future horizons. The singular values from PCA are 204.1816,
32.0449, 7.7955, 4.6428, 4.2914 and 3.3504 respectively. The first three are dominant,
but the cut-off is not so obvious. The order is estimated to be 3 by AIC. The identified
model has the following transfer function for the dynamic part (one real pole is at 0.8067,
and a pair of insignificant complex poles):

-1 - -3
s

If the delayed inputs are taken into the future input data set, N4SID give the following

result for the dynamic part:
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_ 02142
T = 1207885, 3

Impulse responses based on the identified models from N4SID method are shown in

(7.2.16)

Figure 7.2. The CCCs between the three estimated states and past inputs [ux.1, 42, tx.3],
the CCCs are 0.9975, 0.8826 and 0.6093. This indicates 2 delay steps in the estimated

states.
N4SID for data with delays N4SID for data with delays
0.3 . : r T y : 0.03 : : - r v : -
e True e True
e N4SID {order=3) ~ N4SID (order=3)
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0.2} $ 0011 l ] *
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0.05) E o0zl |
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0.05 \ . - s . .04l " N . — .
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Time lag . Time lag

Figure 7.2 N4SID for data with delays (impulse response and the errors)

All the above results show that both CVA and N4SID can deal with the process
delays; the delayed inputs are memorized in the estimated states. CCA can be used as an
approach to detect the delays in the estimated states, and a lower-order model with better

accuracy can be obtained by appropriate modification of the SIM algorithms.

Delays in MIMO systems
Simulation studies for SIMO, MISO and MIMO systems in this part are to
illustrate the effects of delays on SIM algorithms, and the approach to detect the delays.

The simulation example has 2 inputs and 3 outputs:

08z 0.4z72
Tk =087 T 10,05, ek T
0.2z7* 0.6z
P2 T 118 10077 Mk T g.00 e T 2 (7.2.17)
_ 127 . 04z7-02z7 v +a
T R T P By T et
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All the transfer functions have different poles. The transfer function from u x to y2x has
poles at 0.940.34, and the transfer function from u,x to y3x has poles at 0.85+£0.3571i. The
transfer function from u; to y; has a pole at —0.5 (ringing response). The disturbance for
each output is independent white noise.

The two inputs signals are independent PRBS sequences with magnitude of 4 and
switch time period 7=5. In each simulation, 5000 points are collected. Simulations are
performed for different SNR cases (including a noise-free case). For fair comparison, 15
lag steps are used for both past and future horizons in all case studies. Table 7.1
summarizes the results of the CVA_Hf algorithm for SIMO, MISO and MIMO systems

at SNR of 10. Some of the results are shown briefly as demonstration below.

Table 7.1 CVA results for delays in MIMO systems (SNR=10)

Inputs | Outputs | Estimated | CCA between past inputs and estimated states
Order # of past | # of CCCs | Delays determined by
Cases input steps | close to 1.0 | coefficient matrix
SIMO u) Y, X2, )3 8 .6 4 Upk-1, Urka, Yiks, Uika
SIMO | » YLV, ¥s 7 6 3 Usjer, Uzk2, Uiks
MISO |[wu,us |0 4 5 2 Uik, Uik, Y2k
MISO {u,uz |2 5 3 2 Uikl Urk2, ok, Yok
MISO |u,ux |y 7 5 4 Uyt WOU g Uz 1O UK
MIMO |uj v |V, 9 3 4 Uik, Uik2, Yokt Uska
MIMO |u,um [n» 10 5 5* Uikt tO Uy g Up 1 1OU2K
MIMO |u, 42 | Y2, 12 5 6* U1 10U g Uy 1 1O Uz 3
MIMO | u, uy | y1,)2. 14 5 6* Uy 1 1O Uy g, Uo gy 10 U 30

Note:  Column 5: the number of past steps of input(s) used for the CCA
Column 6: the number of significant CCCs (close to 1.0).
Column 7: past inputs determined to be pure delay based on the coefficient matrix
*: not a clear cut-off for the CCC significance, or delayed input not clearly determined.

For the SIMO system for #; to all the three outputs, the CCCs from CCA are
0.996, 0.991, 0.984, 0.977, 0.967, 0.950, 0.925, 0.707, 0.370, 0.358, 0.339 and 0.335.
There is a clear cut-off after the eighth CCC on the significance, and the first 8 CVs are

taken as the estimated states. To detect how many delays exist in the system, CCA is
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performed on the past inputs (6 lag steps) and the estimated states, and CCCs are 0.9983,
0.9982, 0.9968, 0.9965, 0.9665 and 0.7781. The significance of these CCCs and the
coefficient matrix for past inputs indicates that 4 delayed inputs are memorized in the
estimated states.

For MISO systems, the results from the CVA_Hf algorithm for the system from
w) and wu, to output y; are shown as an example. The CCCs for the CCA are 0.9852,
0.8986, 0.8425, 0.6764, 0.2251, 0.2103, 0.2006 and 0.1933. Based on the significance of
these CCCs, the system is estimated of order 4. To detect the delays in the system, CCA
is performed between the past inputs (3 lag steps of the two inputs) and the estimated
states (4 variables). The CCCs are 0.9951, 0.9817, 0.6476 and 0.4600. The first two
CCCs are very close to 1.0, and this indicates that two estimated states mainly come from
these past inputs. The coefficient matrix for past inputs is (6 rows correspond to u; .1,

U2 x-15 Uy x-25 U2 k-2, U1 k-3 and Uz k-3 respectively):

-0.0223 -0.0232 -0.0030 -0.0027
-0.0075 0.0098 -0.0154 0.0107
-0.0187 0.0230 0.0047 -0.0082
-0.0003 -0.0002 -0.0053 0.0193
-0.0013 -0.0006 0.0265 0.0135
-0.0002 0.0006 -0.0047 0.0182

The first two CVs are essentially only contributions from #1x.1, #2x1 and u; 2. This
indicates that u; x has 2 delays and u,x has one delay for the output. The delay structure is
correctly detected by CCA between past inputs and the estimated states.

For MIMO systems, the estimated system order is the sum of the true order and
the maximum number of delays of all inputs, not the sum of all delay numbers of
different inputs. The estimated states memorize the linear combinations of the delayed
inputs, instead of the individual delayed inputs (see (7.2.4)). This can be seen more
clearly in this example (for simplicity, using deterministic part only). The 5 steps of
future outputs have the following relationships with the past data:

Y1k =1.7591 x-1-0.76y1 x.2+0.8u1 13-0.761) x4+0.413x2-0.32u3 4 3
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Yixa=1 '75-21;\5' 0.76y, K-110.8u x.2-0.76u) 310.417 x.1-0.32u2 k2
Yix+2=1 .75&&-0.76& +0.8u1 x-1-0.7611 x-27+0.4u7 -0.3 203 1
Y1 x+3=1.75 V1 k+2 1+2-0.76 Vi 5+1+0.8u1 k~0.76u1,k-1+0.4uLkﬂ-0.32u2 Kk

V1= 175V 5063-0.76Y) 149 +0.82) 11-0.761) 30,415 12-0.3 217 41

The double-underlined output terms are the previous outputs, and underlined input terms
are eliminated by removing the effects of future inputs (e.g., in CVA_Hf algorithm). It is
clear that both y;x and y;x. are completely explained by the past data. With the
additional linear combination 0.8u) x.1-0.76u x.2-0.32u; .1, output y; x+2 can be completely
explained. With the additional variable u x.;, output y; x+3 can be completely explained.
Outputs beyond yix+3 can be completely explained. It is clear that 4 LVs (linear
combinations of the past data) are adequate to explain all the variables in ¥-HUy. 2 LVs
are necessary for the process states and the 2 extra LVs are for the delays in the MISO
system. The delayed inputs show in terms of linear combinations, not individually.

The CVA_HTf algorithm is also applicable for MIMO processes with delays. For
example, consider the system from u; and u; to y; and y,. The order of the system is
estimated to be 9, which is just the sum of the estimated orders for output y; and y;. The
estimated states include the true system states (5) and 4 linear combinations of past two
steps of inputs. The CCCs between past inputs (3 lag steps) and the estimated states are
0.9949, 0.9866, 0.9770, 0.9261, 0.7242 and 0.5213. The corresponding coefficient matrix
for past inputs indicates that the delays are from u; k.1, 2.1, 412 and us k.. Some of the
listed MIMO systems face difficulties in determining the number of significant CCCs or
the major elements in the coefficient matrix. This is partially due to output y; having long
delays and a fast decaying pole (-0.5). If SNR becomes higher or longer data is used,
conclusions become clearer.

As mentioned in Section 7.2.1, the combinations of the delayed inputs in the
estimated states for one output may be collinear with those for the other outputs. This
happens for the 2 input-3 output MIMO system. This system is estimated to be order of
14, which is less than the sum of estimated orders of the individual outputs (4 for y;, 5 for

y, and 7 for y3). This is confirmed by the simulation for the purely deterministic situation.
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7.3 Effects of Model Structure on SIMs

The model structure of a system directly affects the result from SIMs. This section
is to analyze the effects of model structure, especially the common dynamics, on the
system order and the number of model parameters from SIMs. Simulations are used to

show the effects of common dynamics on SIMs.

7.3.1 Analysis of Effect of Model Structure on SIMs
For a SISO process, the order of the identified model by a SIM algorithm, in

general, is the sum of the orders for the deterministic part and the stochastic part. The
estimated process states (L'Vs) include both the deterministic states and the stochastic
states. If the deterministic and the stochastic parts have common dynamics (poles), these
two parts can share the same dynamics represented by the common states variable.
Therefore, the system order may be reduced to a lower order rather than the sum of the
orders for the two parts individually, and the number of parameters required to represent
the system can be reduced automatically in SIM algorithms.

In practice, the situation that deterministic and stochastic parts share common
dynamics is not rare since the input signal and the disturbance can easily have common
paths through the process. For traditional system identification methods, such as PEM or
ML, common dynamics cannot be detected easily in the identification procedure. These
methods either employ prior knowledge of common dynamics (poles) to parameterize a
simpler model structure, or perform model-order reduction after obtaining the identified
model. However, it is a natural process for SIM algorithms to catch the common states in
the state estimation by LVMs. In N4SID, RRA tries to catch as much variation of the
estimated predictable subspace as possible by as few LVs (states) as possible. In CVA,
CCA tries to have as much predictability of the estimated predictable subspace as
possible by as few CVs (states) as possible. As a result of the optimality of the LVMs

used in state estimation, common variations in the deterministic part and the stochastic
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part are automatically represented by one latent variable (estimated state). This leads to
more parsimonious models and a smaller variance for the estimated parameter.

For a MIMO system, the states of the whole system in theory include the states
for each output. The system order becomes the sum of orders for each output if there are
no common states for different outputs. In this situation, the state-space model employed
by SIMs does not show any advantage with respect to the total number of parameters
required to represent the system.

In practice, it is highly possible for different outputs in a MIMO process to have
common dynamics (poles). For example, in the 2 input-2 output CSTR example used in
Section 4.5 the mixing dynamics are common to both outputs; and furthermore, the
temperature and the concentration in the reactor have mutual interaction. Any
perturbation in the temperature will lead to changes in the concentration, which in return
will affect the temperature; therefore both outputs have some common dynamics (poles).
This kind of situation is common in practical applications, especially for cases where the
inputs and outputs associate with the same operational unit, or several units but with
strong interactions.

With common dynamics in a MIMO system, SIMs can automatically recognize
the common dynamics in the system and combine the common parameters (poles). In
other words, SIMs naturally impose the most parsimonious structure for the final model.
As a result, SIMs potentially give a lower-order state-space model. The number of
parameters becomes less, and this leads to a higher accuracy for the parameters. This
result is consistent with the conclusion shown in Box and Draper (1965), that one can

better estimate common parameters from multiple outputs than from only one output.

7.3.2 Simulation Studies of Common Dynamics for SIMs

In this subsection, simulations are performed for a SISO and a MIMO process to
show that SIMs can summarize the common dynamics in a process and give a better

estimation of model parameters.
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Common dynamics in a SISO process

The first example is a simple SISO process with common dynamics in the
deterministic part and the stochastic part:
0.2z7" 1
T1-08 * T 1o08
The process has a common pole of 0.8 for both the deterministic and stochastic parts. The

SNR is about 10.0 in the Monte Carlo simulation. In each of the 100 simulations, 200

(7.2.18)

Vi

data points are collected.

PEM, CVA_Hf and N4SID algorithms are applied to the simulation data sets.
Based on AIC, both CVA_Hf and N4SID algorithms determine the system order to be 1.
PEM uses a Box-Jenkins model form (separately parameterized dynamic and noise
models), and both the dynamic model and the noise model are assumed to be a first order
transfer function. The dynamic poles (mean and standard deviation) from PEM, CVA and
N4SID are estimated as 0.7880+0.0374, 0.7889+0.0318 and 0.7914+0.0331 respectively.
SIMs give a slightly better estimation of the pole than PEM. Here the accuracy of
estimated models are measured by the Mean Squared Error (MSE) of their impulse
responses (first 50 steps). The distribution of the paired MSE differences between CVA
and PEM is shown in Figure 7.3(a), and that distribution related to N4SID and PEM is
shown in Figure 7.3(b). It is clear that both CVA and N4SID show smaller MSE than
PEM. The same conclusion can be drawn from Student’s z-test on these paired MSE
differences. The mean and standard deviation of the differences between CVA and PEM
are -1.5437x10™ and 4.3523x10° respectively (Student’s r-test is -3.55). The mean and
standard deviation of the differences between N4SID and PEM are -1.0325x10™ and
2.9305x10°¢ respectively (Student’s #-test is -3.52). The critical ¢ value is —1.96 for 95%
confidence.

This example illustrates that SIM algorithms can perform better than using PEM
with independently parameterized dynamics and noise models when, in fact, the models
have common dynamics. This results from the SIMs being able to recognize the common

pole.
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Figure 7.3 Distribution of paired MSE differences for a SISO process

Common dynamics in a MIMO case

The second simulation example is a S-input S-output process with ARMAX
structure and poles at 0.8 and/or 0.95 for all transfer functions, and some of the transfer

functions are null (no effects) or simple first-order systems:

2527 z™ z™! 1.2z7"
Y s T 108 T TS 080 v T 108z
0.5z z™ z 0.4z7"
Y T 095 T 10052 T 1095 T 1209570 o
_ 1.5z7-1.38757 z'-0.87527 0.5z 052" 08:7'-0737
P08 )i-0957) M T 08 J1-09577) * F 120957 o+ F 108 T (- 087 - 0.9577)
227197527 0.15z z™ z” 0.8z7' -0.82z7
Yo 08z 1-09527) -0z 1095 ) #1095 T 1-08z 0.8z fi-0.95:7) **
. 2227-20627 oo 122710827 04z 0.8z Lo L1227 -1.0477
Vo s 08z Ji-005z7) T (1-0.82 J1-09527) 2 T1-00527 2+ 108z ¢ 1-0.87 - 0952 >

(7.2.19)
In the simulation, the disturbance to each output has poles at 0.8 and 0.95. The 5 inputs
are independent PRBSs with magnitude of 1 and switching time period 7.=5. SNR is
around 20 for the process (20.7, 15.7, 23.6, 9.5 and 26.9 for the 5 outputs respectively).
In the Monte Carlo simulation, 500 data points are collected in each of the 200
simulations.
For the simulation example, the CVA_Hf algorithm is applied in 5 MISO

identifications and a MIMO identification to see the effects of combining common
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dynamics in SIMs. Compared to individual MISO identifications, CVA in the MIMO
identification can catch the common dynamics in different outputs collectively.

In MISO identification, CVA determines output y; and y; to be 1* order in all 200
simulations. For ys, 140 cases are determined to be order 2, the rest to be 1% order (effect
of noise and short data length). For y,, 139 cases are determined to be order 2, the rest to
be 1% order. For ys, 40 cases are determined to be order 2, and 160 cases to be 1% order. In
MIMO identification, CVA determines 197 cases to be order 2 (3 cases for order 3). In
the majority of cases, CVA gives the correct model order. If the common dynamics were
not combined, the system order would be 4 (for y; and y,) or 8 (for y3, y4 and ys), or even
higher (in the MIMO case).

The final identification results are compared in the MSE of the impulse responses
(first 50 steps). The Student-z tests on the paired MSE differences between MIMO
identification and MISO identifications are shown in Table 7.2 (the former is
significantly better than the latter with 95% confidence limit if the ¢ statistic is lower than
f0.025=-1.96). The majority of the transfer functions indicate that the results from MIMO
identification are significantly better than those from MISO identifications. The 2 adverse
cases are for output y; and y,, which in fact are of 1*! order rather than estimated order 2;
however, the results for y3, y4 and ys are greatly improved in MIMO identification than in

MISO identification.

Table 7.2 Paired Student-f test on paired impulse response of CVA results (MSEyvo-MSEwmso)

Uy Uy Uz Uy Us
» -5.1242 1.3682 3.9721 -6.1245 -4.5850
V2 4.0634 -2.6793 0.2840 -2.4603 -2.6361

s -12.7197 | -13.6049 -14.1649 | -14.0777 | -12.9112
Vs -10.4071 -10.3834 -9.5953 -11.8850 | -11.7861
Vs -22,5117 | -32.7109 -36.3997 | -23.6584 | -18.8407

The estimated poles and their standard deviations (STD) in MISO identifications
are also shown in Table 7.2 (only considering cases estimated of order 2 for y;, y, and ys).

The two poles are estimated to be 0.7983%0.0071 and 0.9494+0.0040 in MIMO
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identification, which are much better than those from y; ys and ys in MISO
identifications, and are similar to those from MISO identification for output y; or y,,
where only the information of one pole is provided. Based on the sampled covariance
matrix and assuming a normal distribution of the estimated poles, the 95% confidence
regions of these estimated poles from individual y’s in MISO and jointly in MIMO are
shown in Figure 7.4. It is clear that by joining the outputs with common dynamics, CVA
in MIMO identification brings a great advantage to the estimation: a more accurate

estimation of common parameters in both the mean and the variance.

Distribution of estimated poles by CVA in MISO and MIMO identifications
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Figure 7.4 Distribution of estimated poles by CVA in MISO and MIMO identifications

Note for lines: MISO: y! (dashed straight); y2 (dashdot straight); y3 (dashed); y4 (dashdot), y5 (dotted).
MIMO: ail y’s (solid)
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7.4 SIMs for Non-stationary Disturbances

Non-stationary disturbances are common in practical applications, and they have
special effects on the identified models from SIMs. This section is to investigate the
applicability of SIM algorithms for non-stationary disturbances, analyze the effects of
non-stationary disturbances on the modeling results, and propose approaches to deal with

the possible problems.

7.4.1 Introduction

A non-stationary disturbance has no fixed value for its mean or variance. A
common type of non-stationary disturbance is a random-walk time series (drifting
around) with no stationary level for the mean. Nearly non-stationary disturbances are
common in practice, especially in chemical processes. Another type of non-stationary
disturbance has non-stationary variance, i.e., the variance is a function of the mean level
of the disturbance or the variance changes with time. Box and Cox Transformation can be
used to stabilize the variance (refer to Taylor, 1993).

The random-walk type of non-stationary disturbance is considered in this section.
This kind of disturbance has unity poles in its model and infinitely large variance in
theory. In practice, the disturbance variance is extensive, and this leads to large
regression error if one is fitting the data to a FIR model. Differencing the data is a
traditional way to deal with non-stationary disturbances. Data differencing makes fitting
FIR models feasible. It is, in fact, a data pre-filtering procedure, and this procedure is
fully based on the prior knowledge of non-stationarity in the disturbance. This procedure
decreases the disturbance variance, but it usually decreases the variance of the input
signals as well (e.g., PRBS becomes a series of spikes after differencing).

A high-order ARX model can catch the dynamics in a non-stationary disturbance.
The unit pole of the stochastic part is also modeled into the ARX model. In order to get a

parsimonious and stable process model, the fitted ARX model usually has to perform
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pole-zero cancellation (near unity). Otherwise, the slight error in the unit pole may drive

the identified ARX model unstable.

7.4.2 SIMs for Non-stationary Disturbance

Before considering the combined deterministic-stochastic system, a relatively
simpler pure stochastic system with non-stationary disturbance will be analyzed. The
simplest non-stationary disturbance is a random walk process represented by the
following model with a unit pole:

1

1-z

y, = e, (7.4.1)

-1

where ey is a white noise signal. In the time domain, this process has the following

relationships for the future outputs:
YVe=Via 18

Yin =W te, e,

-1
Yisga =V fzoe/ﬂj (7.4.2)
=

This means that the immediate past output yx.; is the best prediction of the future outputs,
and is a state variable for current time. In both the CCA and N4SID procedures, the past
data (3x.1) can explain all the variation of the future outputs except the future stochastic
signals. Therefore y.; can be picked up easily as the estimated state, and the unit pole is
included in the final state-space model.

If a non-stationary disturbance is a combination of mean shifting/trend shifting
and other stationary noise (AR or ARMA model), the only difference from (7.4.2) is the
mvolvement of more steps of past data in the estimation of stochastic states. In general,
along with other states, the non-stationary states can be estimated naturally and

automatically in SIMs.
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For the combined deterministic-stochastic system, SIMs can easily pick up both
the deterministic states and the stochastic state by LVs from the past data [¥}; U] and the
estimated predictable subspace Y =YrH o Us. The effects of the future inputs Hy eqlUy
do not involve the stochastic part; therefore ¥; . includes the effects of the future outputs
of the non-stationary disturbance. Suppose the non-stationary disturbance is a random-
walk process, then the stochastic state is the stochastic part of y.;, which can be well
predicted by the linear combination of the past data up to time point k-2. Therefore, as
linear combinations of the past data [¥p; U], LVs from CCA or RRA will include both
deterministic states and the non-stationary stochastic state to have the best prediction of
¥; .. With other types of non-stationary disturbances, SIMs can also estimate the non-
stationary states together with other states naturally and automatically.

Since the deterministic states and the non-stationary stochastic state are estimated
simultaneously in SIM algorithms, the final identified state-space model will include both
the stable poles and the unit pole. Due to estimation errors, the unit pole may be slightly
different from 1.0. If the estimated pole is slightly smaller than 1.0, the identified model
is still stable. However, the transfer function for the dynamic process involves non-
perfect pole-zero cancellation. Since the estimated pole and corresponding zero are very
close to 1.0, this non-perfect zero-pole cancellation could greatly distort the response on
the very-low frequency region and the steady state gain (there is a long tail in the impulse
response, 1.e., not returning to zero until long lag steps). For example, if the unit pole and
corresponding zero are estimated as 0.9999 and 0.9990 respectively, the steady state gain
will be increased to 10 folds of the original values ((1-0.9990)/(1-
0.9999)=0.0010/0.0001=10)! If the zero is estimated as 1.0015, the estimated steady state
gain will be 15 folds of the value gain and with an opposite sign (the result always is of
opposite sign if the estimated zero and the estimated pole are in the opposite site of 1.0).
If this model is used for the design of the controller, the closed system will be unstable. If
the pole-zero cancellation were not close to 1.0, the error would usually be small enough
to ignore. If the pole were 0.8 as in the above example with the same magnitude of

estimation error (0.7999 and 0.7990 for the pole and zero respectively), the
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corresponding error on the steady state gain would be only 0.45% ((1-0.7990)/(1-
0.7999)=0.2010/0.2001 ~1.0045). Because of the presence of the unit pole in a process,
the identified model is greatly affected by the non-perfect zero-pole cancellation around
this pole. In addition, if the estimated pole is slightly larger than 1.0 due to the estimation
error, the identified model will be unstable.

Several methods can fix the above non-perfect pole-zero cancellation problem,
e.g., deliberately drop off those two terms in the transfer function in zero-pole form. For
the estimated unstable pole, a simple method is available to stabilize the identified state-
space model: perform eigenvalue decomposition of the fitted system matrix A4, the
eigenvalue closest to 1.0 is set to 1.0 and then back calculate 2 new matrix 4 by the
modified eigenvalues and the original eigenvectors. With the prior knowledge of the non-

stationary disturbance, SIMs can also be applied to the data after differencing.

7.4.3 Simulation Examples

In this subsection, CVA and N4SID methods are applied to simulation examples
with non-stationary disturbances, focusing on the effects of the non-stationary

disturbance and the non-perfect pole-zero cancellation problem.

SIMs for a non-stationary time series

A simple non-stationary time series process is simulated to illustrate the capability
of SIMs to catch the non-stationary states. The example is a random-walk process as
shown in (7.4.1). In the simulation, the variance of e, is 0.01 and 5000 data points are
collected. Both past and future horizons are of 3 lag steps, and future data and past data
only consist of the output variable.

In CVA, the three CCCs from CCA on ¥, and ¥; are 0.9997, 0.0140 and 0.0136
respectively. This gives a clear cut-off for determining the process to be of order 1. The

first CV from past data has almost 100% prediction of the first CV from the future data.
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The first CV is taken as the estimated state, and the pole of the resultant model from
CVA is 0.9999.

In N4SID, RRA is performed on the past outputs and the future outputs. The first
LV from the past data can explain (predict) 99.89% the variance of the future output, and
the remaining two LVs essentially predict nothing of the future outputs. This also gives a
clear determination of the process to be of order 1. The first LV is taken as the estimated

state, and the pole of the fitted model from N4SID is 0.9999.

N4SID for a process with a non-stationary disturbance

The simulation example for this case has the following state-space model form:
X =0.8x, +u, +m,
Ve =X H0, (7.4.3)
N =N T €
The pole for the deterministic part is 0.8 and the steady state gain is 5.0. Here e is white
noise and nk=ek/(1-z'1) is a non-stationary disturbance (random walk, or integrated white

noise). The process has the following transfer function model:

_Z 1402
1-0827 * " (1-0.827 J1-27) "

In the simulation, input uy is a random binary signal (RBS) with magnitude of 1.0,

Vi (7.4.4)

var(ex)=1.0 and 500 data points are collected. ,
Directly use N4SID (M file in System Identification Toolbox of MATLAB) for
the collected data with lag steps of 4 for both the future and past horizons. The order is

correctly determined to be 2, and the identified model has the following transfer function:

10262z -1.0222z7 , +1+0.1498z“+0.061lz‘26
1-1.811727"+0.8116z% * 1-1.8117z"+0.8116z% *

The zero for the deterministic part is 0.9961, and the two poles are 0.8114 and 1.0003

(7.4.5)

Vi

respectively. The direct result of the deterministic part is far from the true dynamic model
for including an unstable pole. Estimation errors cause the stochastic pole a slight

deviation from 1.0 to be unstable. The effects of the unstable pole are ignorable in the
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future horizon of 4 steps but are unacceptable in predicting a long future horizon. In fact,
N4SID catches both the deterministic and stochastic states. The impulse response of the
dynamic part is shown in Figure 7.5. The result is close to the true impulse response,
especially in the initial period. However, there is a long tail not returning to zero (making
the estimated steady state gain infinity). The problem is not due to the N4SID algorithm
itself, but is due to the non-perfect pole-zero cancellation near the unit pole (See Section
7.4.2). Once the real problem is recognized, the dynamic model can be approximated to
the following transfer function by simply dropping the pole and zero terms to be

cancelled:

102622~
Te T 08114z (7.4.6)

This model is stable with pole at 0.8114 and steady state gain of 5.441. The impulse
response of this model is shown in Figure 7.5, and it is closer to the true response and
returns to zero at the tail part. One may use other model order reduction techniques to get
a better approximate model.

If N4SID is used for the data after differencing, the model order is determined to

be 1, and the resultant model has the following dynamic transfer function:

1.0245z™

ez 7.4.7
1-0.8162z" * (7.47)

Yi

The impulse response of this model is also shown in Figure 7.5. The result is stable, but it
is slightly worse than the model (7.4.6) from directly applying N4SID to the original data
followed by a pole-zero cancellation (refer to Figure 7.5(b)).

The same simulation example was used in literature (Amirthalingam, et al., 1998,
2000) where SIMs were alleged to require the stochastic part of the system to be
stationary. In fact, SIMs do well in catching the non-stationary state (and the unit pole).
The only problem is the non-perfect zero-pole cancellation near the unit pole in the
process dynamic model. After paying attention to this problem, SIMs can give accurate

results for data with non-stationary disturbances.
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CVA for a process with a non-stationary disturbance

Since a CVA_HTf algorithm is based on using the impulse weights from a fitted
ARX model, an ARX model is applied to the simulation data first. Two lag steps are
used, and the resultant ARX model is:

¥y, =1.8657y, ,—0.8658y, , +1.0309,_, —1.0828u, , +¢, (7.4.8)

The poles for this model are 0.9989 and 0.8668 and zero is 1.0504. The steady state gain
is -341.5, far from the true value. However, the first 6 impulse weights are 0, 1.0309,
0.8406, 0.6757, 0.5328 and 0.4091 respectively, and they are close to those true impulse
weights 0, 1.0, 0.8, 0.64, 0.512 and 0.4096, though the fitted ARX model has a long tail
in the impulse response as shown in Figure 7.6. The long tail can be removed by just
dropping the zero and pole terms to be canceled, and the resultant model is:
v, =0.8668y, , +1.0309,_, +¢, (7.4.9)

Its impulse response is also shown in Figure 7.6, and it has a greater error in the fast
changing period due to the poor estimated pole. Other model-order reduction techniques
may lead to better results.

Fitting ARX mode! to data with non-stationary noise
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Figure 7.6 ARX model from fitting non-stationary disturbance data
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The CVA_HTf algorithm is then applied to the simulation data with 4 lag steps for
both the future and past horizons. The impulse weights used to construct Hy are based on
the fitted ARX model above (without model-order reduction). The CCCs from CCA are
1.0000, 0.7369, 0.1687 and 0.1037 respectively. The order is determined to be 2 by AIC.
The identified model has the following transfer function:

1.1175z7' -1.0605z 1+0.1498z7 +0.0611z7
T1-1814927 +0.814927 ¢ 1-1.814957 +0.814972
The two poles are 0.9998 and 0.8151 respectively (not 1.0 and 0.8149 from the presented

(7.4.10)

Vi

denominator due to the number of significant digitals), and the zero for the deterministic
part is 0.9489. The steady state gain is 1560.4 if calculated directly from the above model
(larger if compared to that from N4SID since the pole is closer to 1.0 and the zero is
farther from 1.0 in the non-perfect zero-pole cancellation). The impulse response is
shown in Figure 7.7, and it is far from the true response. The dynamic model has the

following transfer function by simply dropping the pole and zeros terms to be cancelled:

1117527
Yk T 108151 (7411

This model is stable with the pole at 0.8151 and a steady state gain of 6.044. Its impulse
response is shown in Figure 7.7, and it is much closer to the true than that from (7.4.10).
Other model-order reduction techniques may lead to better results.

If the CVA_Hf algorithm is used for the data after differencing, past horizon and
future horizons are determined to be 3 lag steps by the minimum AIC. The canonical
correlation coefficients from CCA are 0.9035, 0.1354 and 0.0977 respectively. The order
is determined to be 1 by AIC. The identified model has the following dynamic transfer

function (the impulse response is shown in Figure 7.7, worse than the model (7.4.11)):

1.0605z™
P —— 7.4.12
Ve 0834377 (7.4.12)
These simulations show that SIMs can be applied to processes with non-stationary
disturbances, and reasonably good dynamic transfer functions can be obtained after pole-

zero cancellations,
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7.5 SIMs for Processes with Co-integrating Disturbances

This section is to investigate the applicability of SIMs for co-integrating
disturbances and the effects on the identified models. Simulations are used to illustrate

the analysis in this section.

7.5.1 Analysis of Effects of Co-integrating Disturbances

Co-integrating disturbances occur when multiple outputs are affected by the same
non-stationary disturbance. This kind of disturbance is common in practice, especially in
chemical processes; for example, a non-stationary disturbance in raw material properties
or in the feed flow will affect many process outputs.

In MISO identification for each output, the disturbance is considered to be a non-
stationary one without considering the common source of these non-stationary
disturbances. From the viewpoint of SIM algorithms, the nature of co-integrating
disturbances is nothing else than having common non-stationary dynamics in the
stochastic parts of different outputs. Its effect on more than one output should enhance
the information of the stochastic state in both ¥, and ¥; (therefore ¥; ), and therefore
should improve the accuracy of the estimated non-stationary state. This is again
analogous to the idea shown in Box and Draper (1965) that common parameters are
better estimated from several outputs than from only one output.

SIM algorithms can also be used for the data with co-integrating disturbances
after differencing, and there will be no non-stationary state in the differenced data.
However, this presumes prior knowledge about the existence of non-stationary or co-
integrating disturbances. There is the possibility of over-differencing for several cases: i)
the noise part is a non-stationary disturbance plus other general noise, such as white
noise, which will have doubled variance after differencing; ii) differencing all outputs

where only some of the outputs are affected by the co-integrating disturbance; iii) the
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output looks like it is affected by the non-stationary disturbance while the true pole for
the noise is close but not equal to the unit, such as 0.97 or 0.98, and there will still be
some correlation in the data after differencing. In these cases, over-differencing the
outputs could lead to relatively poor estimates of their dynamic responses. By directly
applying to the original data, SIM algorithms do not need any prior knowledge and can

avoid the problem of over-differencing.

7.5.2 Simulation Studies

Process with only integrating disturbances

The first simulation example is a simple 1-input 2-output process with a random-
walk disturbance added onto both outputs. The process has the following transfer

function model:

_ 0.2z7! "y o+ 1 .
Tk 1-0.827" ¢ (l—z") k (7.5.1)
0.05z 1 o

Yok T 095 T (1-z“‘)e"

The input to the process is a PRBS with magnitude of 4 and switching time period 7,=5.
1000 data points are collected. The variance of ey is chosen to have about equal values of
mean squares between the dynamic part and the stochastic part over the collected time
period.
The CVA_Hf algorithm is used for the above simulation data with both outputs.
The past and future horizons are determined to be of 3 lag steps by AIC. The CCCs from
CCA are 1.0, 1.0, 0.9979, 0.8912, 0.0901 and 0.0483 respectively. The system order is
determined to be 3 by minimum AIC, although the 4™ CCC is also very large. The
transfer function in zero-pole form for the dynamic part is:
0.2068 z™'(1-0.9487 z' J1-z"')
(1-0.827J1-0.9527" {1 -0.9983 z "'

_0.0568 (1 -0.8094 z ™' Y1 ~1.0092 2 )
(1-0.95z"J1-0.82" f1-0.9983 z7)

Yk Uy

(7.5.2)

Yok Uy
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If zero-pole cancellation 1s performed for the above model, the result is close to the true
process model.

The canonical correlation between the three estimated states and the three true
states are essentially all 1.0, and the poles are 0.8000, 0.9500 and 0.9983. These results
are better than those from the CVA_Hf algorithm for individual outputs as shown in
Table 7.3, especially the estimated states and the estimated unit pole in co-integrating
case are improved compared to those estimated in case of individual output. All these
show the positive contribution from the common dynamics in the co-integrating
disturbance as analyzed in Section 7.5.1. This example demonstrates that CVA is
applicable for co-integration problems, and the result is improved by using all outputs for
better estimation of the common non-stationary stochastic model.

It is interesting to see that the residuals of the two outputs in fitting separate ARX
models are collinear in this simulation example. This is due to the disturbances in the two
outputs being driven by the same stochastic signal e,. This also leads to the large value
for the 4™ CCC in the above state estimation in applying CVA. This point is also verified
by adding additional white noise with variance of 0.01 onto y, In this situation, the first 3

CCCs are almost unchanged, but the other 3 CCCs are now between 0.40 and 0.36.

Table 7.3 CVA_HIT algorithm for co-integrating disturbances

Estimated CCCs between
Estimated poles
System order Xy_est and true x
u-yl 2 1.0, 0.9991 0.7992, 0.9979
u-y2 2 1.0, 0.9392 0.9261, 0.9935
u-yl,y2 3 1.0,1.0,1.0 0.8000, 0.9500, 0.9983

The N4SID algorithm is also applied for the simulation data with 3 lag steps. The
singular values for PCA in N4SID are 71.6210, 13.7007, 3.5342, 0.1070, 0.0598 and 0.0.
This indicates the process of order 3 with none of the ambiguity that existed in CVA.

This is because N4SID looks at the variance of the outputs as well as the correlations.
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The identified model has poles at 0.7825, 0.9585 and 0.9981 respectively, and the
transfer function for the dynamic part is:

02085z (1-0.947227 f1-27)
M = 20.782527 J1-0.95852- Ji1—0.9981z )
_0.055227"(1-0.79382 f1-1.0088z™!)
Y24 120782527 {1 - 0.95852" J1-0.9981z7 ) *

(1.5.3)

This model is very close to the true process model if zero-pole cancellation is performed
on the above form. The CCCs between the estimated states and the true states are 1.0, 1.0
and 0.9991 (slightly worse than those from the CVA method). This result is better than
the CCCs (0.9999 and 0.9989) for applying N4SID for only one output (y). All these
indicate that N4SID is also applicable for co-integrating disturbances, and the result is
improved by using all outputs to estimate the common dynamics in the co-integrating

noise.

Process with co-integrating and additional disturbances

The second simulation example is similar to the previous one, but a third output is
added with the co-integrating disturbance filtered by an AR(1) process, and all outputs
have additional independent white noise signals (variance of 0.01). The process has the

following model form:

0277 1
Yip = 1-0.87- u, +G_Z-1)ek Ta,
0.05z7" 1
Vox = =095, u, + —z'l)ek +a,, (7.5.4)
0.11z7"' -0.1z* 0.2

Y o082 =095 ) 4 T =z 072 ) * T4
The same PRBS is used for the input, and 1000 data points are collected.

The CVA_HY algorithm is applied to the simulation data, and the optimal lag
steps for past and future horizons are determined to be 10 by AIC. The first 9 CCCs are
0.9997, 0.9980, 0.9947, 0.5893, 0.3520, 0.3383, 0.2852, 0.2783 and 0.2610 respectively.
The first 4 CCCs are significantly larger than the others, and the process is determined
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correctly to be order of 4 by AIC. The CCCs between the estimated states and the true
states are 1.0, 0.9998, 0.9983 and 0.9442. This indicates accurate estimates of the process
states. The identified model has 4 poles at 0.8011, 0.9476, 0.9981 and 0.7300
respectively, and the dynamic part of the identified model has the following transfer

function in zero-pole from:

0.2054z'(1-0.94842™" J1-0.7264z" 1~ 2™')
e osouz")% 094762"§1 -0.73z7 J1- 099812"')
. __ 00561:"(1-08215:" J1-0.7204z N-zt) (715:5)
7 {1-0.801127" J1-0.9476z7 J1-0.73z7" J1-0.998127" ) * .
_0.111327(1-1.913827 +0.916927 {1 -0.71342™)
2 T = 0801127 J1-0.9476z" J1-0.737- i 0.9981z") *

It is close to the true dynamic model in (7.5.4) after a pole-zero cancellation. These
results show that CVA works well with co-integrating disturbances and other
disturbances.

NA4SID was also applied for the simulation data. The process is determined to be
order of 4, and the CCCs between estimated states and the true states are 1.0, 0.9993,
0.9983 and 0.7767 respectively. This indicates that 3 states are estimated accurately and
the other one is not so well estimated but is still acceptable. The identified model has
poles at 0.8116, 0.9451, 0.9977 and 0.6992, close to the true poles. The dynamic part of

the identified model has the following transfer function:

-

0.2027z"(1-0.9430z7" J1-0.7057z" Ji-z™')
i 081162"[1 ~09451” J1-0.69927- i - 0.9977z7) *
_0.0537z7(1-1.476727 +0.548127 J1-1.02612")
Y24 = 20,8162 J1-0.9451z- J1-0.69922 J1-0.9977z") *
_0.113827(1-0.860227 J1-0.73632" 1 -1.02382")
7+ T 1= 0811627 J1-0.94512" J1-0.69922" J1-0.99772") *

(7.5.6)

The above model is very close to the true dynamic model in (7.5.4) after a model-order
reduction. These results indicate that N4SID also works well with co-integrating

disturbances and other disturbances.
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7.6 Application Guidelines for SIMs

Based on the analysis in this chapter and the results from previous chapters, SIMs
clearly show great advantages for practical applications with the following features:

e No prior knowledge about delays in the process is available. SIMs can
incorporate the delayed inputs into the estimated process states automatically; therefore
the delays will be included in the final model with a higher order. Separation of the
delayed inputs from the estimated states is feasible if a lower order model is desirable.

e No prior knowledge about the system order is available. In SIMs, the
estimated states (LVs from LVMSs) are ranked in their importance, and the system order
can be easily determined by some criteria based on their predictabilities (e.g., AIC).

e There are common dynamics (common poles) in the process. SIMs are able to
catch these unknown common dynamics and give a better estimation of the common
poles.

e There is non-stationary or co-integration disturbance in the process. SIMs can
easily pick up the‘non-stationary state in the process.

e There are multiple outputs in the process. SIMs are particularly well suited for
MIMO systems. They can also deal with the collinear problem in the outputs.

e There is feedback in the process. With the proper choice of algorithms, SIMs
can be applied to closed-loop data,

In practice, if the process has one or more of the above features, SIMs will be a
good choice for dynamic process modeling. Considering the characteristics of SIMs
shown in Section 2.5, the following are some application directions where SIMs can
exhibit their advantages and avoid their shortcomings:

e A quick method with little input from the user is desirable. SIMs can be
applied to dynamic process modeling with little prior knowledge and can give a
reasonably good model quickly for application. If a more accurate model is required, one
can use the mode] structure and model parameters provided by SIMs as initial values for
other system identification methods, such as PEM, for a better parameter estimation with

the price of non-linear optimization (refer to Ljung, 1997).
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e A model identified for model-based controller design, especially for model
predictive control (MPC) is desired. The final model from SIMs is in state-space form; in
this model form it is easy to obtain the multiple-step-ahead predictions of the future
outputs, which is a key component for MPC. In fact, SIM and MPC are a dual problem.
They involve a prediction of the multi-step future outputs based on the multi-step past
data as well as the multi-step future inputs. In SIMs, the future inputs are known and the
model is to be determined; while in MPC, the model is known and the future inputs are to
be determined. Some software packages, such as SMOC (Shell Model-based Optimal
Controller) and ASPEN Target, use state-space models as a basis for MPC. The strengths
and weaknesses of MPC based on a state-space model have been discussed in literature
(e.g., Vogel and Downs, 2001).

e SIMs should be suitable for on-line application, such as adaptive control,
because SIMs are reliable and stable in numerical implementation with predictable
computation load and without involving a nonlinear search (Ljung, 1999; Viberg, 1995).
One such application has been reported for on-line adaptive control of unstable aircraft
wing flutters (Peloubet, et al., 1990).

e The models from SIMs can be used as soft sensors. SIMs can give the final
state-space model in Kalman filter form, and can be used to infer any unmeasured outputs
or properties (assuming they were available in the model-building phase), or to update the
future predictions based on past measurements.

e The model from SIMs can be used for process monitoring. The model from
SIMs provides information about the process states, though they may or may not
correspond to physical variables measured from the process; and these estimated states
can be used to monitor the status changes in a process. They are also suitable for
detecting changes in the process dynamics based on the causal model from experiments.
On the other hand, PCA and PLS are usually based on historical data and do not need
experiments, and they show more advantages in detecting the change in correlation
structure in the process inputs or disturbances. Combining SIMs with PCA/PLS will be a

promising approach for process monitoring.
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These are some general guidelines for practical applications of SIM, especially for
dynamic process modeling, control design and process monitoring. There might be many

other applications where SIMs can give satisfactory results.



8 Conclusions and Open Issues

The first part of this thesis (Chapters 3 through 5) focuses on fundamental
research on Subspace Identification Methods (SIMs), including the basic principles and
properties (such as bias) of the algorithms, their relationships to other methods and the
relationships among themselves. The second part of this thesis (Chapters 6 through 7)
concentrates on applications, including SIMs for closed-loop data and some issues arising
from practical applications.

This chapter will first recap the general conclusions drawn from the research
completed in this thesis, and will then point out some open issues to be explored in future
research.

In Chapter 3, a multi-step state-space model was set up first as a uniform
analytical basis for analyzing all SIM algorithms. This model shows that the current state
sequence is a linear combination of the past input and output data, and the future outputs
consist of the predictable subspace, the future input effects and the future stochastic
signal effects. The subspaces L,¥,+L,U, in N4SID and Yr-H oUr in CVA in fact are
estimates of the predictable subspace. For a general open-loop process, most SIM
algorithms give asymptotically unbiased estimates of the predictable subspace. For a truly
ARX process, these methods give unbiased results. PCA in N4SID and CCA in CVA are
to estimate the process states. Several new algorithms were proposed in this chapter, such
as N4SID algorithm based on recursive one-step-ahead predictions, N4SID and CVA
algorithms based on an estimated H; matrix from a fitted ARX model, and MOESP
algorithm based on estimated states.

The contributions of this chapter are as follows. First, a multi-step state-space
model 1s established as a systematic approach to analyze the SIM algorithms. Second, the
basic principles behind the computation steps of SIM algorithms are revealed. Third, the

conditions for the algorithms to be biased or unbiased are provided. Finally, several new
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algorithms are proposed in this chapter, and some mistakes with CVA regression-out
algorithm in literature are pointed out.

Chapter 4 mainly focused on the relationships between SIMs and LVMs. The
whole procedure of the oblique projection and the SVD in N4SID has been shown to be
equivalent to a RRA between the past data and the estimated predictable subspace. The
N4SID method was proven to be based on RRA, just as CVA is based on CCA. Insights
from this relationship led to a variety of approaches with improved performance. This
chapter discussed the similarities and differences between SIMs and LVMs. Both SIMs
and LVMs build process dynamic models using a lower dimensional subspace of the
original data sets, and SIMs use LVMs to estimate the process states. Both LVs and
estimated states are linear combinations of the past data. Different from LVMS, SIMs
remove the future input effects from the future outputs to get an estimate of the
predictable subspace, and fit the significant LVs (estimated states) to the state-space
model instead of to the outputs. Removal of the future input effect makes the final models
from SIMs give casual relationships, and fitting to the state space model makes the final
models from SIMs much more parsimonious and with smoother responses. For
estimation of the process states, CCA and RRA have been shown to be more efficient
than PCA and PLS.

This chapter serves to build a bridge between SIMs and LVMs, and links the
research in the isolated fields together. It revealed the theoretical basis of N4SID in
LVMs, and proposed a series of approaches to improve the performance of N4SID. This
chapter drew a clear picture on the connections and differences between SIMs and
LVMs, and gave a conclusion on the efficiency of LVMs for state estimation. The
research in this chapter should help people understand the nature of these methods and
provide guidance for the application of these methods.

In Chapter 5, a general statistical framework was proposed for SIMs. This
framework shows that SIMs can be broken down into three steps: (1) use of a linear
regression method to estimate the predictable subspace; (2) use of a latent variable

method to estimate of a minimal set of the state variables; and (3) then fitting the
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estimated process states to the state-space model. The major differences among SIMs lie
in the first two steps, and the third step is common for the SIMs. The predictable
subspace can be estimated by removing the future input effects from the future outputs
based on estimated H; matrix. Several approaches for estimation of matrix Hy were
discussed, and a new approach based on the IV method was suggested. Process state
variables can be estimated by LVMs based on the estimated predictable subspace and the
past data. PCA, RRA and CCA can be directly employed to estimate a minimum set of
state variables. PLS is a feasible method but not as efficient as other LVMs. The
significant LVs are taken as the estimated process states. By fitting the LVs (estimated
states) to the state-space model in the third step, the resultant state-space model becomes
much more parsimonious than the corresponding LVR model.

This chapter proposed a general framework for SIMs. This framework clearly
reveals the nature of the computation steps in SIM algorithms and the fundamental ideas
behind the SIM algorithms. It also clearly reveals the relationships among different SIM
algorithms. This chapter also points out the bias problem caused by the errors in the
estimated states as well as the possible solutions based on the IV method. Combining the
approaches in the first two steps leads to a whole variety of new SIM algorithms.
Simulation study shows that these new SIM algorithms perform similarly to existing
SIMs.

Chapter 6 investigated the applicability of SIM algorithms for closed-loop data.
The fundamental difference between open loop and closed-loop data is the correlation
between inputs and disturbances in closed-loop data. The original N4SID algorithm was
analyzed in both the input-output model and the multi-step state-space model, and the
correlation between future inputs and the future noise was shown to cause bias in the first
step of N4SID (oblique projection). For closed-loop data, the CVA_RO algorithm was
-analyzed in the multi-step state-space model, and was shown to give biased results due to
the correlation between the future inputs and the future noise. The CVA_Hf algorithm
was shown to give asymptotically unbiased results for general closed-loop systems. In

general, the applicability of SIMs for closed-loop data is algorithm-specific. Whether a
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SIM algorithm is applicable for closed-loop data depends on how the future inputs are
used in the detailed computation procedure. A SIM algorithm is applicable for closed-
loop data only when the correlation between future inputs and the future noise is avoided.
Several new N4SID and CVA algorithms were proposed for closed-loop data in this
chapter, such as N4SID-RRA, N4SID-IV and joint state algorithms in N4SID and CVA,
and these algorithms were shown to be applicable for closed-loop data.

Contributions from this chapter are as follows. First, this chapter provided a clear
answer to the applicability of SIMs for closed-loop data, which had been controversial
and totally unclear in the literature with disputes among researchers. Second, the existing
SIM algorithms have been carefully analyzed, and conclusions have been drawn on
which algorithms are applicable and which algorithms introduce bias. Third, new SIM
algorithms are proposed for closed-loop data.

Chapter 7 analyzed several practical issues arising in the application of SIMs. In
particular, SIMs were shown to be able to handle the delays in the process by increasing
the number of estimated states. This detailed effect of delays and possible solutions were
investigated for SISO, SIMO, MISO and MIMO cases. SIMs also were also shown to be
able to capture the common dynamics easily, resulting in a more parsimonious model
structure in the final state-space model. SIMS were also shown to handle the non-
stationary as long as one is careful to treat the non-perfect pole-zero cancellation in the
resulting dynamic model from SIMs. For co-integrating disturbances, SIMs are shown to
offer advantages on capturing the common non-stationary states by simultaneously using
multiple outputs as compared to using one output at a time. Some general guidelines for
the application of SIMs were discussed in this chapter, and situations where SIMs could
show their advantages were indicated.

This chapter provided clear conclusion about the ability of SIMs to handle several
practical issues such as delays, common dynamics, non-stationary and co-integrating
disturbances. It also provided some general guidelines for the application of SIMs.

This thesis covered many issues of SIMs; however, many other interesting issues

have not been explored. Parameter variance of the identified model from SIMs is
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discussed in Section 5.5, but not in detail. This is very important in practical application,
and more research should be conducted on this issue. In SISO, SIMO and MISO cases,
the effects of delays in the process can be eliminated effectively by shifting the input
variables; however, for MIMO cases, this approach is not very efficient and other
approaches need to be explored. In some applications, it might be desirable to separate
the estimated states into different components, such as the deterministic states and the
stochastic states, the process states and the controller states (joint state methods for
closed-loop data), and therefore more research should be conducted on this issue. The
resultant state-space model from SIMs is parsimonious; but for a specific input-output
transfer function, an even lower model order might be adequate. Efficient methods would
be required to reduce the model order. This would also improve lower frequency
responses for models from data with non-stationary disturbances.

Some new ideas for SIM algorithms are worth for future exploration. The
identified result from SIMs is expected to be improved based on the iterative estimate of
H;. The idea is that a new H; matrix can be constructed with the impulse from the
resultant state-space model, and that a new predictable subspace can be estimated based
on this new constructed H;. The Wilks statistic test can be used for the significance
detection of the canonical correlation coefficients (CCCs); therefore it should be able to
determine the system order in the CVA method. This is an issue for future research on
SIMs. SIM algorithms for pure feedback closed-loop data are expected to give the most
parsimonious models for the process and controller; however, this is still an open issue
for future research.

SIMs have not reached maturity yet, and many issues still remain for deep
exploration. With more researchers attracted to the field, SIMs will be well established

and become more prevail in the future.
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