
DEVELOPING: SGIENffl&Pifli|ii^Mp|
CURRENT PROCESSES"WMWiiiiia

Title
351748680.pdf

Creator
Tang, Jin. - Smith, Spencer B.,1927- - McMaster University.Dept. of Computing and Software.

Type
manuscripttext

Publisher

Date
2008.

Language
eng

Description
Thesis (M.A.Sc.) -- McMaster University, 2008. - Includes bibliographical references.

Subject
software engineering - unified software development - numerical integration

DEVELOPING SCIENTIFIC COMPUTING

SOFTWARE

MASTER OF APPLIED SCIENCE(2008) McMaster University

COMPUTING AND SOFTWARE Hamilton, Ontario

TITLE: Developing Scientific Computing Software: Current Processes and

Future Directions

AUTHOR: Jin Tang, M.M. (Nanjing University)

SUPERVISOR: Dr. Spencer Smith

NUMBER OF PAGERS: xxii, 216

n

Abstract

Considerable emphasis in scientific computing (SC) software development has

been placed on the software qualities of performance and correctness. How

ever, other software qualities have received less attention, such as the qualities

of usability, maintainability, testability and reusability.

Presented in this work is a survey titled "Survey on Developing Scien

tific Computing Software, which is apparently the first conducted to explore

the current approaches to SC software development and to determine which

qualities of SC software are in most need of improvement. From the survey.

we found that systematic development process is frequently not adopted in

the SC software community, since 58% of respondents mentioned that their

entire development process potentially consists only of coding and debugging.

Moreover, semi-formal and formal specification is rarely used when developing

SC software, which is suggested by the fact that 70% of respondents indicate

that they only use informal specification.

In terms of the problems in SC software development, which are dis

covered by analyzing the survey results, a solution is proposed to improve

the quality of SC software by using SE methodologies, concretely, using a

modified Parnas' Rational Design Process (PRDP) and the Unified Software

Development Process (USDP). A comparison of the two candidate processes

is provided to help SC software practitioners determine which of the two pro

cesses fits their particular situation. To clarify the discussion of PRDP and

USDP for SC software and to help SC software practitioners better under-

iii

stand how to use PRDP and USDP in SC software, a completely documented

one-dimensional numerical integration solver (ONIS) example is presented for

both PRDP and USDP.

IV

Acknowledgements

It is a pleasure to thank the many people who made this thesis possible.

First of all, I would like to express my sincere thanks and deep appre

ciation to Dr. Spencer Smith, my supervisor, for his constant support and

encouragement. With his enthusiasm, his inspiration, and his efforts to ex

plain things clea-rly a,nd simply, he helped to make scientific computing fun for

me. Throughout my thesis-writing period, he provided encouragement, good

teaching and lots of great ideas. This thesis would not be what it is without

his great help.

I also would like to thank Dr. Wassyng and Dr.Down for reviewing of

this thesis and giving me valuable feedbacks and suggestions.

I wish to thank my student colleagues and friends (alphabetically)

ZhaoChuan Gao, Herman Guo, Dai Tri Man Le, Shu Wang, Wen Yu and

Viola Zhou and many others for their help and friendship.

Lastly, and most importantly, I wish to thank my parents and grand

parents for their support, encouragement and endless love. Also, I am grateful

to my sister, Min Tang. Her coming to Canada makes my life more colorful in

Canada. I hope that she has a successful career in Canada as she did in China.

Hamilton, Ontario, Canada Jin Tang

May, 2008

v

vi

Contents

Abstract iii

Acknowledgements v

List of Figures xv

List of Tables xxi

1 Introduction 1

1.1 Improving the Quality of SC Software . . 3

1.2 Overview of SC Software 6

1.2.1 Definition of SC 7

1.2.2 SC Software Categories 7

1.2.3 Development Process for SC Software . . 9

1.2.4 Characteristics of SC Software . 11

1.3 Research Purpose and Scope ... 13

1.4 Research Methods . 13

2 Software Engineering Methodologies 17

vn

2.1 Software Development Process Model 19

2.1.1 The Waterfall Model 20

2.1.2 Evolutionary Development 22

2.2 Modified Parnas' Rational Design Process (PRDP) . . 24

2.2.1 Commonality Analysis (CA) 25

2.2.2 Software Requirement Specification . . 26

2.2.3 Module Guide (MG) . .
27

2.2.4 Module Interface Specification (MIS) 28

2.3 Unified Software Development Process (USDP) 28

2.3.1 Characteristics of USDP . 29

2.3.2 The Unified Modeling Language (UML) . 31

2.3.3 The Object Constraint Language (OCL) ... 33

2.4 Software Reuse33

2.4.1 Component-based Software Engineering (CBSE) 34

2.4.2 Mathematical Software Libraries 36

2.4.3 Design Patterns 37

2.5 Software Tools 38

3 Survey on Developing Scientific Computing Software 43

3.1 Goal of the Survey 46

3.2 Questionnaire Design 51

3.2.1 Question Design 51

3.2.2 Question Types 52

3.3 Survey Process55

3.3.1 Pilot Test 56

viii

3.3.2 Online Survey 57

4 Survey Data Analysis 59

4.1 Sampling Design .
. 60

4.1.1 Sampling Strategies 61

4.1.2 Error Analysis 63

4.2 Data Preparation . . 66

4.3 Target Population and Characteristics of Respondents 68

4.4 Survey Results
... 70

4.4.1 Software Development Process . . 75

4.4.2 Requirements 81

4.4.3 Design 84

4.4.4 Coding 89

4.4.5 Testing 92

4.4.6 Maintenance 95

4.4.7 Documentation 96

5 Proposed Methodologies for Developing ONIS 101

5.1 ONIS Introduction . . 104

5.2 USDP vs. PRDP105

5.2.1 Common Characteristics of USDP and PRDP . 105

5.2.2 Differences Between USDP and PRDP 106

5.3 Software Requirements Specification (SRS) . Ill

5.3.1 Approach Used in ONIS . 112

5.3.2 PRDP vs. USDP for SRS ... 112

ix

5.4 Software Design
113

5.4.1 Problems in Software Design 114

5.4.2 Approaches Used in ONIS 115

5.4.3 USDP vs. PRDP 121

5.5 Recommendation .

125

6 Conclusions 127

6.1 Concluding Remarks 128

6.2 Future Work .135

References 136

A Survey on Developing Scientific Computing Software 145

A.l Survey Questionnaire 145

A. 1.1 Survey Invitation Email . . 145

A. 1.2 Survey Questions . . 146

A. 2 Pilot Test Guidelines 157

A. 2.1 Introduction 157

A. 2. 2 Process . 157

A. 2.3 Email Invitation .
. 158

A.2.4 Feedback Questions . . 159

A.3 Pilot Test Report 160

A.3.1 Introduction .
. . . . 160

A. 3. 2 Methodology .160

A.3. 3 Analysis and Recommendation .160

A.3.4 Fill-in Questions . . . 163

x

A.4 Conclusion .
....

Modified Parnas' Rational Design Process

B.l SRS for ONIS .

B.l.l Introduction

B.l. 2 General System Description

B.l. 3 Specific System Description

B.l.4 Data Constraints . .

B.l. 5 Non-functional Requirements

B.l. 6 Solution Validation Strategies .

B.l. 7 Other System Issues

B.1.8 Traceability Matrix

B.l. 9 Values of Auxiliary Constants

B.2 Module Guide for ONIS

B.2.1 Introduction

B.2. 2 Connection Between Requirements and Desi

B.2. 3 Anticipated Changes . . .

B.2.4 Unlikely Changes

B.2. 5 Module Decomposition

B.2. 6 Traceability Matrix

B.2. 7 Use Hierarchy between Modules

B.3 MIS for ONIS

B.3.1 Introduction

B.3.2 Template Used in MIS

B.3. 3 Module Hierarchy . .

xi

B.3.4 MIS of Master Control Module 195

B.3. 5 MIS of Input Data Module 197

B.3.6 MIS of Output Show Module 201

B.3.7 MIS of Parser Module 203

B.3.8 MIS of Algorithm Module 207

B.4 Testing Report for ONIS
211

B.4.1 Introduction .

....
211

B.4.2 Unit Testing
212

B.4.3 System Testing 214

B.4.4 Traceability Matrix 220

B.4. 5 Results and Analysis 221

C Unified Software Development Process 223

C.l SRS for ONIS 224

C.l.l Introduction .
224

C.1.2 General System Description 225

C.1.3 Specific System Description 226

C.1.4 Non-functional Requirements 227

C.1.5 Functional Requirements . . . 227

C.1.6 Solution Validation Strategies 232

C.1.7 Other System Issues . 233

C.l.8 Traceability Matrix 234

C.1.9 Values of Auxiliary Constants 234

C.2 SDS for ONIS 235

C.2.1 Introduction 235

xii

C.2. 2 Anticipated Changes

C.2.3 Unlikely Changes

C.2.4 Terminology Definition

C.2. 5 Connection Between Requirement and Desi

C.2. 6 Analysis Model

C.2.7 Design Model

C.2.8 Class Description

C.2. 9 Dynamic Modeling of Behaviour . .

C.2. 10 Sequence Diagram of ONIS . . .

C.2. 11 Exception Handling

xm

xiv

List of Figures

1.1 Work Flow for the Development of Physical Model Simulation

Software 10

1.2 Work Flow for the Development of Scientific Multipurpose Tools 11

2.1 The Software Life Cycle 21

2.2 Component-based Software Engineering . 35

4.1 Sample Population . . 70

4.2 Education Background (Based on 166 Respondents) 72

4.3 Working Experience in SC field (Based on 165 Respondents) . 73

4.4 Working Experience in Programming (Based on 165 Respondents) 73

4.5 The Relationship between People's Working Experience and

Software Size (Based on 165 Respondents) 74

4.6 Group Size (Based on 165 Respondents) 75

4.7 Difference in Group Size between Industry and Academia (Based

on 165 Respondents) 75

4.8 Software Sizes (Based on 141 Respondents) 76

4.9 Project Plan (Based on 130 Respondents) . . . 77

xv

4.10 Project Plan with Group Size (Based on 130 Respondents) . 77

4.11 Process Models (Based on 132 Respondents) 78

4.12 Time Distribution with Confidence Interval (Based on 132 Re

spondents)
80

4.13 Time Distribution in Academia and Industry (Based on 132

Respondents) 80

4.14 Time Distribution between Different Size Groups (Based on 132

Respondents) . .
81

4.15 Type of Specifications (Based on 128 Respondents) . 83

4.16 Type of Documentation (Based on 116 Respondents) 83

4.17 Semi-formal Specifications (Based on 121 Respondents) . 84

4.18 Formal Specifications (Based on 114 Respondents) 84

4.19 Non-functional Requirements (Based on 143 Respondents) . . 85

4.20 Non-function Requirements in Industry and Academia (Based

on 143 Respondents) 85

4.21 Software Reuse (Based on 128 Respondents) 86

4.22 Software Reuse in Industry and Academia (Based on 128 Re

spondents)
. 87

4.23 Mathematical Libraries used in Developing SC Software (Based

on 142 Respondents) . 88

4.24 Tools (Based on 131 Respondents) 89

4.25 Tools in Industry and Academia (Based on 131 Respondents) . 89

4.26 Coding Standards (Based on 130 Respondents) 90

xvi

4.27 Coding Standards in Industry and Academia (Based on 130

Respondents) 91

4.28 Source Code Languages (Based on 144 Respondents) 92

4.29 Operating Systems (Based on 144 Respondents) 92

4.30 Test Cases (Based on 124 Respondents) . . 93

4.31 Validation and Verification Methods (Based on 125 Respondents) 94

4.32 Who is in Charge of the Testing Phase (Based on 125 Respon

dents) . . 94

4.33 Software Lifetime (Based on 143 Respondents) 95

4.34 Software Lifetime in Industry and Academia (Based on 143 Re

spondents) 96

4.35 Software Lifetime (Based on 143 Respondents) 97

4.36 Speed with which Documentation is Updated (Based on 114

Respondents) 98

4.37 Factors of Good Documentation (Based on 109 Respondents) 98

4.38 Factors Causing Documentation to be out of Sync with the

System it Describes (Based on 110 Respondents) 99

5.1 Use Case Diagram 113

5.2 Domain Model Diagram . 114

5.3 Use Hierarchy Between Modules 117

5.4 Use Case Realizations in the Analysis and Design Models . 118

5.5 Analysis Classes that Participate in a Realization of the Calcu

late Integration Use Case . . .119

xvii

5.6 Design Classes in the Design Model Tracing to Analysis Classes

in the Analysis Model 120

5.7 Main Sequence of ONIS 123

B.l System Context Diagram 167

B.2 Use Hierarchy Between Modules 193

B.3 Parse Tree of Test Case 1 212

B.4 Parse Tree of Test Case 2 213

C.l Use Case Diagram 228

C.2 Domain Model . 231

C.3 Use-Case Realizations in the Analysis and Design Models 238

C.4 Analysis Classes that Participate in a Realization of the Calcu

late Integration Use Case 240

C.5 A Collaboration Diagram for a Realization of the Calculate In

tegration Use Case 241

C.6 Design Classes in the Design Model Tracing to Analysis Classes

in the Analysis Model . 243

C.7 A Brief Class Diagram of ONIS 245

C.8 Enumeration Type - Ctype . . 247

C.9 Enumeration Type -

Ecodetype 257

C.10TFLAG and SYMBOL 263

C.ll Parse Tree for x + sin(cos(x+3)) 269

C. 12 Parse Tree for x + sin(cos(x+3)) using Expression Class . . . 270

C.13 Main Sequence of ONIS . . . 278

xviii

C.14 Statecharts of Expression 279

xix

XX

List of Tables

2.1 UML's Diagram Types 32

3.1 Questions in the Questionnaire 1 51

3.2 Questions in the Questionnaire 2 52

3.3 Rating Question Sample 55

4.1 Survey Sample Size and Margin of Error Percent . 64

4.2 Respondent Distribution for Question 10 (based on 144 respon

dents) . . 71

4.3 Time Distribution Table (Based on 153 Respondents) 79

5.1 Module Hierarchy 117

6.1 Research Issues and Survey Questions 1 129

6.2 Research Issues and Survey Questions 2 130

6.3 Commonalities and Differences between USDP and PRDP 133

B.l Input and Output Data . . 172

B.2 Variabilities for Input Assumptions 173

B.3 Variabilities for Calculation . . . 174

xxi

B.4 Variabilities for Output 174

B.5 Data Constraints 175

B.6 Input Variable Behaviour . .
175

B.7 Output Variable Behaviour 176

B.8 Traceability Matrix ...
182

B.9 Module Hierarchy 187

B.10 Traceability Matrix for Requirement 191

B.ll Traceability Matrix for Anticipated Changes 192

B.12 Traceability Matrix for SRS . 221

B.13 Traceability Matrix for MG . . 222

C.l Table of Symbols 233

C.2 Brief Comparison of the Use-Case Model and the Analysis Model239

C.3 Brief Comparison of the Analysis Model and the Design Model 242

C.4 Attributes of Input Data Class 250

C.5 Attributes of Algorithm Class 256

C.6 Attributes of Expression Class 264

C.7 Attributes of Parser Class
. . 269

xxn

Chapter 1

Introduction

Scientific computing (SC) software is central to our computerized society. It is

used, for example, to design airplanes and bridges, to operate manufacturing

lines, to control power plants and refineries, to analyze financial derivatives, to

determine genomes, and to provide the understanding necessary for the treat

ment of cancer. Because of the high stakes involved, the quality of SC software

is very important. It is essential that this kind of software has the qualities of

correctness, reliability and robustness. Moreover, the complexity and size of

SC problems makes the quality of performance critical. To continue to make

progress in SC, and to keep the cost of software development low, SC code

must also have the following qualities: usability, maintainability, portability

and reusability.

To improve the quality of SC software, software engineering (SE) method

ologies may be adopted. Since the late 1960s, many SE methodologies have

been developed to improve software quality. These methodologies form the

1

Master Thesis - Jin Tang
- McMaster -

Computing and Software

framework that tells us how we should develop software systems. For ex

ample, methodologies define the different phases of the development process,

such as planning, requirements analysis, design, testing and maintenance. It

is known that often the quality of a software system is highly influenced by

the quality of the process used to acquire, develop, and maintain it; therefore,

to improve the quality of software, multiple efforts have been made to improve

the software development process. For instance, in the early 1980s, Watts S.

Humphrey, founder of the Software Process Program of the Software Engi

neering Institute (SEI) at Carnegie Mellon University, created the Personal

Software Process (PSP) and the Team Software Process (TSP). The goal of

these processes is to improve quality and productivity in software develop

ment and to ease what was then called the "Software Crisis." His work later

generated the Capability Maturity Model (CMM) and CMMI, which enables

the assessment of software development processes to help improve the quality

of software. Now these SE methodologies are widely accepted for developing

high-quality software Wikipedia (2008).

At this time, it is unclear which of the currently available SE method

ologies are most appropriate for adaptation to SC. To answer this question, it

is necessary to answer other questions, such as the following:

What SE methodologies are currently used in SC?

What technologies are currently used by the SC community?

What qualities of SC software are in most need of improvement?

How receptive will the SC community be to new ideas from SE?

2

Master Thesis - Jin Tang
~ McMaster -

Computing and Software

The goal of this thesis is to provide insights and answers to these questions.

This chapter provides introductory information about this thesis. Sec

tion 1.1 addresses the current issues in the quality of SC software and discusses

the question of why SE methodologies, widely used in business applications

to improve the qualities of software, are not commonly used in SC software.

Section 1.2 continues the discussion by explaining why SC softwaie is diffcient

from other types of software. Section 1.3 clarifies the research purpose and

scope. After this, the research methods that are used in the thesis are listed

in Section 1.4. The contributions of this work are summarized in Section 1.5.

The final section presents the organization of the supporting information and

analysis found in the remainder of the thesis.

1.1 Improving the Quality of SC Software

The quality of SC applications is very important, but the current development

of SC software shows room for improvement. The field of SC has developed an

impressive variety of fast and accurate algorithms and libraries. However, soft

ware qualities other than speed and accuracy have sometimes been neglected

in SC code. For instance, software qualities such as usability, maintainability,

portability and reusability have not always been emphasized when developing

SC applications. As Dubois (2002) observes, component reuse is poor in SC,

even when good mathematical libraries are available, because programmers

often refuse to believe that the implementation needs to be as complicated as

it is in the existing code. He also points out that not using the reliable com-

3

Master Thesis - Jin Tang
- McMaster -

Computing and Software

ponents reduces the reliability of the software. Kreyman and Parnas (2002)

argue that incomplete and imprecise documentation can potentially lead to

incorrect SC software. Moreover, Wilson (2006) observes the problem that

software development tools, for example symbolic debuggers, version-control

systems, and systematic testers, are seldom used in developing SC software.

The lack of tool use can cause problems in the development process and in the

quality of the SC software.

SE has evolved steadily from its founding days until today. Now there

are several systematic approaches that have been successful applied to im

prove software qualities. SE methodologies are now often employed in devel

oping business applications, information systems and real-time safety critical

systems.

The success of SE methodologies in other domains motivates promoting

their use to improve the quality of SC. Some research has been conducted

to use SE methodologies in SC software development. For instance, Dubois

(2002) discusses how precisely documenting the requirements can improve the

qualities of usability and maintainability of SC software. Smith (2006) defines

a requirement template applied to general purpose SC software to improve

its reliability, usability, verifiability, maintainability and reusability. Parker

(2007) introduces developing component-based SC software and Blilie (2002)

presents using patterns in scientific software to improve the reusability of the

software. Unfortunately, there are only a limited number of such studies and

the above methodologies have only recently been proposed and have not gained

wide-spread acceptance. Moreover, it is unclear at this time which of the

4

Master Thesis - Jin Tang
- McMaster -

Computing and Software

proposed approaches is best suited to improving the quality' of SC software. A

successful methodology must not only meet the technical challenges, it must

also meet the social challenge of being accepted by the members of the SC

community.

The question then is why is it that SE methodologies are not commonly

employed in SC? and why do developers of SC software tend not to borrow

ideas from SE?

One reason might be that scientists do not want to spend time on soft

ware issues that do not directly and visibly contribute to their doing science.

For instance, Kelly and Sanders (2008) mentions that many SC software prac

titioners actually are academic scientists who develop SC software for their

research purpose and scientists are primarily interested in doing science, not

software. They might think that without SE methodologies, they can still

develop successful SC software. Segal (2008) provides an example of a li

brary of components for instruments embedded on a satellite. The software

is developed by informal specification, i.e. face to face communication by sci

entists instead of formal specification that software engineers might suggest.

This software was delivered on time. However, it is not yet known whether

the software will perform as expected, since the instrument will not reach its

destination for at least another 5 years.

Another reason that SE methodologies are not commonly employed

in SC might be that given the science and engineering background of SC

software practitioners, they may not know or they may not be aware of SE

methodologies; therefore, they may have no sense about how SE methodologies

5

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

may help them. Wilson (2006) mentions that some SC developers have simply

never been shown how to program efficiently. They still use ancient text editors

like Vi and Notepad to develop software and have no ideas about modern

software development tools. He also mentions that, in 1998, Brent Gorda

(now at Lawrence Livermore National Laboratory) started trying to address

this issue by teaching a short course on software-development skills
to scientists

at Los Alamos National Laboratory to show them "the 10 percent of modern

SE that would handle 90 percent of their needs"

Besides the above two reasons, another reason for hesitance in adapt

ing SE methodologies might be that most SE methods and techniques do not

directly map to SC applications, since the characteristics of SC software differ

from those of the business and real-time systems that SE research have ten

dered to focus on (Smith et al., 2005). This question will be addressed further

in the next section.

1.2 Overview of SC Software

If the advantages of SE methodologies were to convince SC practitioners to

use the methodologies, there is still a challenge to face, since, as mentioned in

previous section, SC software has characteristics that are distinct from other

kinds of software. In this section, we will present an overview of SC software.

First the definitions of the categories of SC software are provided, then the

development process for SC software is summarized.

6

Master Thesis - Jin Tang
- McMaster -

Computing and Software

1.2.1 Definition of SC

For the current work, SC is defined as "the use of computer tools to analyze or

simulate continuous mathematical models of real world systems of engineering

or scientific importance so that we can better understand and predict the

system's behavior." (Smith, 2006)

1.2.2 SC Software Categories

SC software can often be categorized as one of the following: physical model

simulation software, multipurpose tools or SC environments.

Physical model simulation is the representation and emulation of a

physical system or process using a computer. It can help to handle the

situations that may be difficult or impossible to investigate by theoretical,

observational, or experimental means. Moreover, in a wider variety of "nor

mal" scenarios, using physical model simulation software instead of traditional

"build-and-test" methods in engineering design could save time and money

and decrease danger. Sometimes, physical model simulation is termed virtual

prototyping (Heath, 2003, page 2).

SC software can consist of multipurpose tools, for example mathemat

ical libraries such as NAG, SLATEC, NETLIB and IMSL. These libraries

contain subroutines that are meant to be called by user-written programs. Li

braries are usually written in a conventional programming language such as

FORTRAN or C. These libraries provide tools such as ODE solvers, linear

solvers and mesh generators. These multipurpose tools are used by the previ

ously mentioned physical model simulations as part of the numerical solution

7

Master Thesis - Jin Tang
- McMaster -

Computing and Software

process. The design and analysis of the mathematical algorithms on which the

multipurpose tools are based are often called numerical analysis.

"An increasingly popular alternative for scientific computing is inter

active environments that provide powerful, conveniently accessible, built-in

mathematical capabilities, often combined with sophisticated graphics and a

very high-level programming language designed for rapid prototyping of new

algorithms" (Heath, 2003, page 35). Interactive environments like MATLAB

and Maple have succeeded by integrating graphical, numerical and symbolic

subsystems with a high-level problem specification language to provide rich en

vironments for routine mathematical problem solving. These ideas have lead

to a new concept in software reuse, the Problem Solving Environment (PSE).

A PSE is a computer system that provides all the computational facilities

necessary, such as advanced solution methods, automatic or semi-automatic

selection of solution methods, and ways to easily incorporate novel solution

methods, to solve a target class of problems efficiently. PSEs also include

facilities to check the formulation of the problem posed, to automatically se

lect computing devices, to view or assess the correctness of solutions, and

to manage the overall computational process. Using PSEs, users can solve

their problems without specialized knowledge of underlying computer hard

ware, software or algorithms (Rice and Boisvert, 1996). There are many PSE

examples that are designed for solving SC problems. Catlin (2008) lists many

such examples.

In this thesis, we focus on the first two categories of SC software men

tioned above; that is, our focus is on physical model simulation software and

8

Master Thesis - Jin Tang
- McMaster -

Computing and Software

multipurpose tools. Interactive environments are outside the research scope of

this thesis.

1.2.3 Development Process for SC Software

The development processes are presented in this section for physical model

simulation software and multipurpose tools. Figure 1.1 (Lai, 2004, page 3)

illustrates the typical work flow for the development of physical model simu

lation software. The overall problem solving process in physical model simu

lation usually includes the following steps (Einarsson, 2005, page 13 15):

From real world to mathematical model

A mathematical model of a physical phenomenon or system is developed

through doing the basic theoretical research and using assumptions to

simplify the real world. It requires specific knowledge of the particular

scientific or engineering disciplines involved and knowledge of applied

mathematics as well. This work usually is done by domain scientists.

The correctness of the mathematical model should be validated against

the original problem.

From mathematical model to computational model

The computational model (numerical algorithm) is developed according

to the mathematical model. This work is usually done by computational

scientists. The algorithms are tested against the mathematical models.

From computational model to computer implementation

The computational model is implemented in computer software. After

9

Master Thesis - Jin Tang
- McMaster -

Computing and Software

this, the software is run to simulate the physical process numerically.

This work may be done by computer scientists. The code should be

validated against the mathematical model to ensure that the implemen

tation is a correct reflection of the model. Experiments should also be

conducted to validate whether the model adequately captures the real

world phenomenon.

Mathematical

Model

7\ T;

t> Derivation

< Validation

<] Experimental Validation

Computational
Model

Figure 1.1: Work Flow for the Development of Physical Model Simulation

Software

For multipurpose tools, the above work flow is only slightly modified,

as represented by the similar work flow shown in Figure 1.2. It starts from the

mathematical model instead of the real world problem.

10

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Mathematical

Model

t> Derivation

< Validation

Computational
Model

Computer

Implementation

Figure 1.2: Work Flow for the Development of Scientific Multipurpose Tools

1.2.4 Characteristics of SC Software

The distinguishing characteristics of SC software, as compared to other types

of software, are as follows:

Continuous Quantities

SC deals with quantities that are continuous, as opposed to discrete.

SC is concerned with functions and equations whose underlying vari

ables time, distance, velocity, temperature, pressure, and the like -

are

continuous in nature (Heath, 2003, page 1).

Finite Precision

Precision refers to the number of digits used for arithmetic, input and

output. One type of approximation that is very frequently made in SC is

the representation of real numbers on a computer. In a digital computer,

the real number system IR of mathematics is represented by a floatmg-

11

Master Thesis - Jin Tang
- McMaster -

Computing and Software

point number system F. The IEEE standard single-precision (SP) and

double-precision (DP) binary floating-point systems are by far the most

commonly used today.

Approximation

There are many sources of approximation or inexactness in SC. For in

stance, some physical features of the problem or system under study may

be simplified or omitted, like friction or air resistance. Other sources of

errors are properties measured by finite precision laboratory instruments

and inexact input data produced by any previous computation. For the

above situations, the approximations are usually beyond our control. In

SC, approximation will usually be focused on truncation and rounding

errors. Truncation means some features of a mathematical model are

omitted or simplified. Rounding occurs when the representation of real

numbers and arithmetic operations upon them is limited to some finite

amount of precision, thus the solution is generally inexact. The accuracy

of the final results of a computation may reflect a combination of any or

all of these approximations (Heath, 2003, page 4).

Unknown Solution

The solutions for most SC problems are unknown. Most SC software is

built to solve problems that are difficult or impossible to solve without

the software. Therefore, the software is the only way that a solution to

the problem can be achieved. This makes judging the correctness of SC

software more difficult than for many other kinds of software.

12

Master Thesis - Jin Tang
- McMaster -

Computing and Software

1.3 Research Purpose and Scope

According to quality issues that exist in SC software, and inspired by the suc

cess that SE methodologies have found for other kinds of software, we decided

to determine what SE methodologies can be adapted for use in developing SC

software, so as to improve its quality. As discussed previously, Wilson (2006)

claims that only 10 percent of modern SE can be used to handle 90 percent of

the needs of SC software practitioners. Although the fact is intuitively appeal

ing and pragmatic, it would be nice to back it up with some empirical data.

Our hope is that an incremental approach can be proposed for successfully in

troducing and promoting SE methodologies with SC practitioners. To adopt

SE methodologies to SC software, the four questions listed at the beginning of

this chapter should -be answered. Using the answers to the above questions, we

will explore what SE methodologies can be used in SC software development

and how to use them to improve the quality of SC software.

1.4 Research Methods

This section describes the research methods that were applied to solve the

questions that have been previously mentioned. Concretely, the methods as

sociated with their corresponding questions are as follows:

1. What SE methodologies have been specifically proposed for SC?

A literature search was used to obtain information about the currently

available SE methodologies that might be used in SC software. The overview

of SE methodologies is presented in Chapter 2.

13

Master Thesis - Jin Tang
- McMaster -

Computing and Software

2. What SE methodologies are currently used in SC? What technologies are

currently used in SC communities? What qualities of SC software are in most

need of improvement? How receptive will the SC community be to new ideas

from SE?

To solve the above questions, a survey titled "Survey on Developing

Scientific Computing Software" was conducted. This survey used a literature

search and qualitative and quantitative research methods. An open source

software package called Surveypro (eSurveysPro, 2008) was used to conduct

this online survey. There are four phases in this survey, which are question

naire design, survey pilot testing, an online survey and survey data analysis.

This survey was approved by the McMaster University Research Ethics Board.

Details of the above four phases is presented in Chapter 3 and 4, respectively.

3. How to use SE methodologies to improve the quality of SE software?

As mentioned in Section 1.1, the disconnect between SE research and

SC applications is widened by the fact that there are so few examples avail

able in the literature that illustrate how the two can be combined. This thesis

attempts to address this problem by showing how SE methodologies can be

adapted to SC applications using a one-dimensional Numerical Integration

Solver (ONIS) as an example. ONIS is developed following two different soft

ware developing processes: i) Modified Parnas' Rational Design Process, and

ii) Unified Software Development Process. The advantages and disadvantages

of these two processes are compared in Chapter 5, to help convince industry

and academia to use SE methodologies to develop SC software. Moreover, the

comparison provides insight into a strategy for incremental adaptation of SE

14

Master Thesis - Jin Tang
- McMaster -

Computing and Software

methodologies.

15

Master Thesis - Jin Tang
- McMaster -

Computing and Software

16

Chapter 2

Software Engineering

Methodologies

The goal of this research is to improve the quality of SC software through the

use of SE methodologies. To understand the current SE options available, this

chapter reviews the literature on SE methodologies. In addition, a discussion

is included on the few SC specific SE methodologies that have been proposed.

The discussion focuses on how well these proposed methodologies might fit

with the special characteristics of SC software, as presented in the previous

chapter.

As mentioned in Chapter 1, a good development process will often help

to improve the quality of the software. However, a systematic software de

velopment process is rarely used in SC software development. Guatelli et al.

(2005) mentions SC software development teams that did not follow any soft

ware process explicitly, which left the achievement of the project goals entirely

17

Master Thesis - Jin Tang
- McMaster -

Computing and Software

to the personal efforts of the individual developers. Further, the project suf

fered from repeated failure to match the release schedule, and the released

versions were often unstable when used in analysis applications. One reason

for a lack of a systematic process may be that many SC programs are devel

oped as in-house software. Developers tend to create software for their own

usage, or for use in the experiments they are involved in, rather than soft

ware products to be deployed to customer companies or to the general public.

Given the limited audience, and potentially limited lifetime of the software, a

systematic process including documentation may not be proposed or adhered

to. Another more important reason for a lack of a systematic process might

be, as addressed in Chapter 1, that the SC software developers are usually not

software professionals, so they do not have a formal education on the software

development process.

The process models currently popular in SE are summarized at the

beginning of this chapter. Unfortunately, these options do not seem to be

popular in SC, as in most cases, when a systematic software process is adopted,

it does not follow any of the widely known models (Guatelli et al., 2005). The

reason for this might be that the existing software process models were not

designed especially for SC problems. If a software process is provided according

to the characteristics of SC problem, this might help the SC community adopt

it.

There are five sections in this chapter. Section 2.1 presents the de

velopment process models of the waterfall model and the evolutionary de

velopment. Section 2.2 analyzes Modified Parnas; Rational Design Process

18

Master Thesis - Jin Tang
- McMaster -

Computing and Software

(PRDP) and Section 2.3 discusses the Unified Software Development Process

(USDP). Section 2.4 illustrates some common SE methods for software reuse,

such as component-based SE, mathematical software libraries and design pat

tern. Finally, Section 2.5 provides software tools that might be helpful when

developing SC software.

2.1 Software Development Process Model

Software development is a creative and a step-by-step process, often involv

ing many people producing many different kind of products. The software

development process is sometimes called the software life cycle, which usually

involves the following stages (Pfleeger and Atlee, 2006): requirements analysis

and definition, system design, program design, program implementation, unit

testing, integration testing, system delivery, and maintenance.

A software process model is an abstract representation of a software

process that presents one view of that process. Each process model represents

a process from a particular perspective, and thus provides only part of the

information about that process (Sommerville, 2004, page 65). Process models

may include activities that are part of the software process, software products

and the roles of people involved in software engineering. Building process mod

els and discussing the associated subprocesses helps the team to understand

the gap between what it should be and what it is. Most software development

process models start with system requirements as input and all processes end

with delivered products as output.

19

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Here, we only present a number of very general process models from

an architectural perspective. That means we provide the framework of the

process, but not the details of specific activities. The process models intro

duced here are as follows: theWaterfall Model, Evolutionary Development and

Component-Base Software Engineering. This section focuses on the first two

models, especially the Waterfall Model, since PRDP and USDP, which will be

introduced in Sections 2.2 and 2.3, are based on this model. Component-Based

Software Engineering will be introduced later in Section 2.4 on Software Reuse.

These three generic process models are widely used in current software engi

neering practice. They are not mutually exclusive and are often used together,

especially for the development of large systems.

2.1.1 The Waterfall Model

The waterfall model was proposed by Royce (1970). Figure 2.1 illustrates this

model. The principal stages of the model map onto five fundamental devel

opment activities: requirements analysis and definition, system and software

design, implementation and unit testing, integration and system testing and

operation and maintenance.

In principle, the result of each phase is one or more documents that need to

be approved. The following phase should not start until the previous phase

has finished. In practice, these stages overlap and provide information to each

other. For example, during design, problems with requirements are identified;

during coding, design problems are found and so on. Therefore, the software

process is not a simple linear model but involves a sequence of iterations of

20

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Requirements
definition

/ \
V

System and

software design

/ \
V

Implementation
and unit testing

A
V

Integration and

system testing

A
V

Operation and

rnaintenance

Figure 2.1: The Software Life Cycle

the development activities.

The advantages of the waterfall model are that documentation is pro

duced at each phase. Its major problem is its inflexible partitions, which divide

the project into distinct stages. Commitments must be made at an early stage

in the process, which makes it difficult to respond to changing customer re

quirements. Therefore, the waterfall model should only be used when the

requirements are well understood and are unlikely to change radically during

system development (Sommerville, 2004, page 67).

The waterfall model turns out to be well suited to SC problems. The

reasons are as follows:

As mention above, the waterfall model works well when the requirements

are stable, which is certainly the case for the SC problems, since scientific

theories are slow to change and numerical analysis methods are mostly

21

Master Thesis - Jin Tang
- McMaster

-

Computing and Software

well established.

From Figure 1.1 and 1.2, we find that the typical work flows for develop

ment of physical model simulation software and multipurpose tools also

follow a waterfall process.

As presented above, documentation plays an important role in the wa

terfall model and this characteristics makes it fit SC problems well.

Kreyman and Parnas (2002) mention that because of the complexity

of mathematical models that are usually used in engineering and scien

tific simulations, good documentation, which is easy to be understood

and used during software development, could dramatically reduce the

number of errors in the software.

Using the waterfall model can improve the quality of software, because

traceability is included between the stages of the waterfall model and traceabil

ity helps to improve the verifiability of completeness and consistency, which

in turn improves the reliability of the software. Moreover, traceability helps

to manage proper changes in the software, since the connection between de

sign and the anticipated changes is also provided in the documentation. Not

surprisingly, traceability can improve the maintainability of SC software.

2.1.2 Evolutionary Development

Evolutionary development is based on the idea of developing an initial im

plementation, exposing this to user comment and refining it through many

22

Master Thesis - Jin Tang
- McMaster -

Computing and Software

versions until an adequate system has been developed. There are two funda

mental types of evolutionary development (Sommerville, 2004, page 68):

1. Exploratory development

The development of the software starts with the parts of the system that

are understood. The system evolves by adding new features proposed

by the customer.

2. Throwaway prototyping

The purpose of the evolutionary development process is to understand

the customer's requirements and hence to develop a better requirements

definition for the system. The prototype focuses on the experiments

where the customer's requirements are poorly understood.

Compared with the waterfall approach, the evolutionary approach is

more effective in meeting the immediate needs of the customers. Also, it fa

cilitates developing specifications incrementally. However, the evolutionary

approach has two problems. One is that it causes the potential problem of

missing documentation. If consecutive versions of a system are developed

quickly, it is not cost-effective to produce documents that reflect every version

of the system. The other problem is that sometimes the evolutionary ap

proach leads to a systems with poor structure, because continual change tends

to corrupt the software structure. Moreover, incorporating software changes

increases the difficulties and cost of the software development.

The evolutionary approach can also be used to develop SC software,

especially for small and medium-sized system. Actually the evolutionary ap-

23

Master Thesis - Jin Tang
- McMaster -

Computing and Software

proach is the way that many SC programs are developed (Morris, 2008). For

example, when people develop a two or three dimension partial differential

equation solver, they might start from the most understandable part to create

a one dimensional (ID) model first. After the ID model, new features are

added to make the software use a 2D or 3D model. For large systems, a mixed

process, incorporating the best features of the waterfall and the evolutionary

development model would be a better choice. Developers may develop a throw-

away prototype using an evolutionary approach to resolve uncertainties in the

requirement specification. After the requirement is well specified, the waterfall

based process can be used, so that the software can grow in a predictable and

manageable manner.

2.2 Modified Parnas' Rational Design Process

(PRDP)

In 1986, Dr. Parnas developed a rational design process (Parnas and Clements,

1986), which divided the software development process into seven steps: 1) es

tablish and document requirements; 2) design and document the module struc

ture; 3) design and document the module interfaces, 4) design and document

the uses hierarchy, 5) design and document the module internal structures,

6) write programs and 7) maintain. PRDP focuses on the documents in each

stage. In particular, it uses formal specification to document the require

ments to avoid ambiguous requirements. A relational requirements model and

program document model based on this rational design process has been suc-

24

Master Thesis - Jin Tang
- McMaster -

Computing and Software

cessfully applied to the safety shutdown systems of the Darlington Nuclear

Power Generating Station in Ontario (Parnas et al., 1991).

Some efforts have been made to improve PRDP for better use in SC

software development. For example, in PRDP, although Dr. Parnas addresses

the requirement specification and also provides ideas about how to write a

requirement specification, he did not provide a template that developers can

follow to create their own requirements document for SC. To address this

omission, Smith et al. (2005) develop a new requirements template for scien

tific computing software and Smith (2006) modifies the previous template to

provide a new template for multi-purpose tools for SC software. Moreover, Yu

(2007) provides an example of using a modified PRDP to develop a paral

lel mesh generation toolbox. The modified PRDP includes six stages, which

are 1) commonality analysis; 2) software requirement specification; 3) module

guide; 4) module interface specification; 5) implementation and 6) testing. We

will refer to this modified PRDP as simply PRDP throughout the rest of this

thesis.

To help the reader better understand PRDP, basic knowledge of the

main procedures are introduced in this section. In addition, an example of a

one dimension numeric integration solver (ONIS), is presented in this thesis.

Appendix B presents the documentation of ONIS using PRDP

2.2.1 Commonality Analysis (CA)

Commonality Analysis (CA) is a process to study shared features or attributes

among similar software products to find possibilities for development of the

25

Master Thesis - Jin Tang
- McMaster

-

Computing and Software

software as a program family. This analysis is performed before the software

requirements activities. Using CA can help to reuse the common aspects of

family members so as to rapidly develop new family members. The idea of

program families initially came from Dijkstra (1972). To apply CA in SC

software development, a CA template is provided in Smith (2006).

2.2.2 Software Requirement Specification

Software requirements activities usually include: i) software requirement anal

ysis, a process to understand what the software is supposed to do as well as to

refine and model the requirements: ii) software requirement documentation,

which involves writing a document containing a complete description of what

the software will do, without describing how it will do it (Davis, 1990); iii)

software requirement verification, a stage to check whether the requirements

are consistent and complete.

In PRDP for SC, the software requirement specification (SRS) follows

a template provided in Smith (2006), which is designed especially for SC prob

lems. There are 11 sections in this template, which are: 1) Reference Material;

2) Introduction; 3) General System Description; 4) Specific System Descrip

tion; 5) Non-functional Requirement; 6) Solution Validation Strategies; 7)

Other System Issues; 8) Traceability Matrix; 9) List of Possible Changes in

the Requirements; 10) Values of Auxiliary Constants; 11) References. The

characteristics and advantages of this template can be found in Smith (2006)

and Smith et al. (2005).

This template is designed for SC software. For example, some specific

26

Master Thesis - Jin Tang
- McMaster -

Computing and Software

sections in this template, such as the theoretical model, sensitivity of the model

and tolerance of the solution, can help present SC problems. This template

can be widely used to document different kinds of SC software. For example,

Lai (2004) uses it to document the SRS for the specific case of engineering me

chanics software and Yu (2007) applies this template to document a scientific

library for mesh generation. Moreover, an additional example, SRS for a one

dimension integration solver, is provided in this thesis in Appendix B.l.

2.2.3 Module Guide (MG)

In PRDP, in the design stage, the system is decomposed into modules ac

cording to the information hiding principle. The independence of modules

will improve the reusability of the software. Moreover, information hiding

helps designers and maintainers focus on their working parts and not worry

about the irrelevant parts, in this way, the maintainability and flexibility of

the software are improved.

This stage, which is named as MG in PRDP, belongs to software archi

tectural design, i.e. analyzing the overall structure of the software and the ways

in which that structure provides conceptual integrity for a system (Shaw and

Garlan, 1995, Page 307). The MG document can include the following sections:

1) Connection Between Requirements and Design; 2) Anticipated Changes; 3)

Unlikely Changes; 4) Module Hierarchy; 5) Module Decomposition; 6) Trace-

ability- Matrix: and 7) Use Hierarchy between Modules. Appendix B.2 presents

the MG for ONIS, as well as an introduction to this template.

27

Master Thesis - Jin Tang
- McMaster -

Computing and Software

2.2.4 Module Interface Specification (MIS)

Module interface design belongs to detailed design. In this stage, a document

named the MIS is produced. The MIS describes what the module will do,

but not how to do it. Hoffman and Strooper (1999) presents a template to

document MIS. Yu (2007) provides an example for a mesh generator that

makes some modifications to this template. In the MIS, each module can be

regarded as a finite state machine which has a set of state variables, inputs,

outputs, and transitions. There are four sections in this template, which are

Module name, Uses, Interface Syntax and Interface Semantics. Module Name

gives the name of the module. Uses lists constants, data types and access

program that are defined outside of this module. Interface Syntax defines the

syntax of the module interface. Interface Semantics introduces the semantics

associated with the above syntax. The above is a very brief introduction of

this template, detailed information can be found in (Yu, 2007, Page 50 60).

Appendix B.3 presents the MIS for ONIS.

2.3 Unified Software Development Process (USDP)

The USDP is one of the most widely adopted process frameworks in the in

dustrial environment. It is use-case driven, architecture-centric, iterative and

incremental. The USDP uses the Unified Modeling Language (UML) when

preparing all blueprints of the software system. A formal constraint language,

called the Object Constraint Language (OCL) is defined in UML to describe

28

Master Thesis - Jin Tang
- McMaster -

Computing and Software

expressions on UML models. The characteristics of USDP, UML and OCL are

presented later in this section.

Currently, USDP is increasingly used in SC software. The following

are some successful projects where USDP has been adopted: Geant4 Low En

ergy Electromagnetic Physics (Chauvie, 2004), which is a simulation software

project; Statistical Toolkit (Cirrone et al., 2004), which is a mathematical

library for data analysis; Brachytherapy Dosimetry System (Guatelli, 2004),

which is simulation for oncological radiotherapy; and, Bepi Colombo simula

tion (Mantero, 2004). However, from a literature search, it is hard to find a

complete example that people can follow to develop their own SC software

using USDP In this thesis, we provide an example that uses USDP to develop

and document ONIS. Appendix C provides the documents for this process.

Using USDP can help successful delivery of the software. Guatelli et al.

(2005) mentions that if we defined a successful project as one completed on

time, delivering all the planned features and functions, respecting the original

budget, the success rate measured on the physics research projects adopting

the USDP is 95%, comparing to the success rate of 23% reported by the

Standish Group. This may explain why USDP is becoming more and more

popular in current software development practice.

2.3.1 Characteristics of USDP

The real distinguishing aspects of the USDP are captured in the three key

words: use-case driven, architecture-centric, and iterative and incremental (Ja-

cobson et al., 1999, Page 3 8).

29

Master Thesis - Jin Tang
- McMaster

-

Computing and Software

The USDP is Use Case Driven

In USDP, the term user refers not only to human users but to other

systems. A use case is a piece of functionality in the system that gives

a user a result of value. Use cases capture functional requirements. All

the use cases together make up the use-case model, which describes the

complete functionality of the system and drives the system's design, im

plementation and testing, in other words, use cases drive the development

process.

The USDP is Architecture-Centric

Software architecture is "the set of significant decisions about the orga

nization of a software system, the selection of the structural elements

and their interfaces by which the system is composed, together with

their behavior, as specified in the collaborations among those elements.

The architecture also includes the composition of these structural and

behavioral elements into progressively larger subsystems, and the archi

tecture style that guides this organization, which includes these elements

and their interfaces, their collaborations, and their composition. Soft

ware architecture is concerned not only with structure and behavior but

with usage, functionality, performance, resilience, reuse, comprehensibil-

ity. economic and technology constraints and trade-offs, and aesthetic

concerns' (Jacobson et al., 1999, Page 443). Architecture-centric means

that in the software life cycle, the system's architecture is used for con

ceptualizing, constructing, managing and evolving the system under de

velopment.

30

Master Thesis - Jin Tang McMaster -

Computing and Software

The USDP is iterative and incremental

When developing large software systems, it is practical to divide the work

into smaller slices or mini-projects. Each mini-project is an iteration that

results in an increment. Iterations refer to steps in the workflow, and in

crements, to growth in the product. The iterations should be controlled;

that is, they should be selected and carried out in a planned way. In ev

ery iteration, the developers identify and specify the relevant use cases,

create a design using the chosen architecture as a guide, implement the

design in components, and verify the components to satisfy the use cases.

If an iteration meets its goals, development goes to the next iteration;

otherwise, the developers should revisit their previous decisions and try

a new approach.

In USDP, use-case driven, architecture-centric, and iterative and incre

mental development are equally important. Architecture provides the struc

ture that guides the work in the integration, and use cases define the goals

that drive the work of each iteration.

2.3.2 The Unified Modeling Language (UML)

UML is a standard modeling language for visualizing, specifying, construct

ing, and documenting software systems. UML is informed by a vision of the

structure of software systems known as the 5 view model. The 5 views are:

use case view, design view, implementation view, deployment view and process

view. The use case view defines the system's external behaviour. This view

defines the requirements of the system, and therefore constrains all the other

31

Master Thesis - Jin Tang
- McMaster -

Computing and Software

views. The design view describes the logical structures that support the func

tional requirements expressed in the use case view. The implementation view

presents the physical components out of which the system is to be constructed.

The process view deals with issues of concurrency within the system, and the

deployment view describes how physical components are distributed across the

physical environment (Priestley, 2003, Page 7 10).

In UML, the information relevant to each view is recorded in the vari

ous types of models. For example, a use case model presents the information

in the use case view. Models may also be produced at different level of ab

straction. A model is normally presented to a designer as a set of diagrams.

Diagrams are graphical representations of collections of model elements. UML

defines nine distinct diagram types, which are listed in the Table 2.1 (Priest

ley, 2003, Page 10) together with an indication of the views with which each

is characteristically associated.

Diagram View

Use case diagram Use case view

Object diagram Use case and design view

Sequence diagram Use case and design view

Collaboration diagram Use case and design view

Class diagram Design view

Statechart diagram Design and process view

Activity diagram Design and process view

Component diagram Implementation view

Deployment diagram Deployment view

Table 2.1: UML's Diagram Types

In the documents for ONIS using USDP, only some of the diagrams in

Table 2.1 are employed. The introduction and usage for those diagrams can

32

Master Thesis - Jin Tang
- McMaster -

Computing and Software

be found in Appendix C.l and C.2.

2.3.3 The Object Constraint Language (OCL)

A UML diagram is typically not refined enough to provide all of the relevant

aspects of a specification; therefore, additional constraints about the objects

are needed in the model. Such constraints are often described in natural lan

guage. However, practice has shown that this will always result in ambiguities.

To write unambiguous constraints, a formal language, called OCL, has been

developed to express constraints.

Unfortunately, it is very rare to find an example about using OCL

in UML to document USDP when developing SC software1. Appendix C.2

provides one example. In Appendix C.2, the system design specification (SDS)

for ONIS using USDP, most of the constraints are documented using OCL,

but there are still some constraints written using natural languages. The

introduction and usage of OCL expressions, which are used in the SDS, are

presented in Appendix C.2.

2.4 Software Reuse

Software reuse can help to lower software production and maintenance costs,

speed up delivery of systems and improve reliability. The software units that

are reused may be at different sizes and different levels. For example (Som-

merville, 2004, Page 416):

Application system reuse

33

Master Thesis - Jin Tang
- McMaster -

Computing and Software

The whole application system may be reused by incorporating it into

other systems by configuring the application for different customers or

by developing program families that have a common architecture, but

are tailored for specific customers.

Component reuse

Components are designed for the purpose of software reuse. The size of

components ranges from sub-systems to single objects.

Object and function reuse

A mathematical function or an object class may be reused in software

system.

2.4.1 Component-based Software Engineering (CBSE)

In Component-based software engineering (CBSE), units of software function

ality are encapsulated as components that interact with each other through

well-defined interfaces. The actual implementation is opaque to other compo

nents, and application composition is achieved through providing and using

these interfaces. Component-based environments typically offer a "plug and

play" approach to composition of component into applications, in which com

ponents offering the same interface are interchangeable, allowing easy swap

ping of components to test new algorithm, tune for performance, and other

reasons (Alexeev et al., 2005). Figure 2.2 illustrates the process of CBSE.

While components have been explored for many years in SE, their ap

plication for SC has only just begun to unfold. Alexeev et al. (2005) mentions,

34

Master Thesis - Jin Tang
- McMaster -

Computing a,nd Software

Requirements

specification
>

Component

analysis
>

Requirements

modification
->

System design

with reuse
->

Development

and integration
->

System

validation

Figure 2.2: Component-based Software Engineering

since 2001, that the SciDAC-funded Center for Component Technology for

Terascale Simulation Software has led a program of research and use of com

ponent technologies in high-performance SC. Decker and Johnson (1998) intro

duces using component to create problem-solving environment to solve linear

algebra problems. Kellner (2005) presents 3D simulation software, called OR-

CAN, that has developed based on component technology.

The advantage of using CBSE is that it helps improve productivity

and performance1. For example, the SciDAC Center for Reacting Flow Science

found that, using a component-based approach, their productivity and perfor

mance has increased greatly (Lefantzi et al., 2004). Similarly, the quantum

chemistry community has achieved order-of-magnitude performance improve

ments (Kenny et al., 2004). Moreover. CBSE can help reduce the amount of

software to be developed so as to reduce cost and risks. It usually leads to

faster delivery of the software. However, Figure 2.2 shows that requirements

compromises are inevitable and this might lead to a system that does not meet

the real needs of the users. The reason that CBSE inevitable leads to require

ments change is that in the requirements specification stage, the requirements

focus on the functionalities of the system instead of on reusing the system. In

the next stage, component analysis, emphasizes is on system reuse, which in

cludes searching existing components to match the given system and designing

new components when none currently exist: Therefore, the requirement modi-

35

Master Thesis - Jin Tang
- McMaster -

Computing and Software

fication stage shown in Figure 2.2 is necessary, because when components are

decided, requirements are updated using information about the components

that have been discovered or newly designed. To reuse available component,

requirements compromises are inevitable and this might lead to a new system

that diverges from the original needs.

2.4.2 Mathematical Software Libraries

Mathematical Software libraries were introduced in the 1960s to support the

reuse of high quality software. The increasing number, size and complexity of

mathematical software libraries made possible the development of complex SC

software with high efficiency. In ONIS, routines from the Quadpack library

are used for integration. The followings are libraries that are often used in SC

software development (NPL, 2008).

NAG: A large FORTRAN Library covering most of the computational

disciplines including quadrature, ordinary differential equations, partial

differential equations, integral equations, interpolation, curve and surface

fitting, optimization, linear algebra, correlation and regression analysis,

analysis of variance and non-parametric statistics.

IMSL: International Mathematical and Statistical Libraries which is sim

ilar to NAG.

LINPACK: A FORTRAN library for solving systems of linear equations,

including least-squares systems.

36

Master Thesis - Jin Tang
- McMaster -

Computing and Software

EISPACK: A companion library to LINPACK for solving eigenvalue

problems.

LAPACK: This is a replacement for, and further development of, LIN

PACK and EISPACK. LAPACK also appears as a sub-chapter of the

NAG library.

Harwell: Optimization routines including those for large and/or sparse

problems.

DASL: Data Approximation Subroutine Library, developed for data in

terpolation and approximation with polynomial and spline curves and

surfaces.

MINPACK: A FORTRAN Library developed for function minimization.

MINPACK contains software for solving nonlinear least-squares prob

lems.

2.4.3 Design Patterns

A "Design pattern describes a problem which occurs over and over again in

our environment, and then describes the core of the solution to that problem,

in such a way that you can use this solution a million times over, without ever

doing it the same way twice" (Alexander and Ishikawa, 1977). Gamma et al.

(1995) define the four essential elements of design patterns:

Pattern Name: the pattern name is a meaningful reference to the pattern.

37

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Problem: the problem is the description that describes when to apply

the pattern.

Solution: the solution is the parts of the design solution. It describes the

elements that make up the design, their relationships, responsibilities and

collaborations. The solution is not a concrete design or implementation;

it is at an abstract level, since a pattern is a template that can be applied

in many different situations.

Consequences: the consequences are statements about the results and

trade-offs when applying the pattern. The consequences of a pattern

include its impact on a system's flexibility, extensibility, or portability

Research about design patterns have been conducted in the SC com

munity. Fowler (1997) discusses several patterns directly applicable to scien

tific software, which include measurements, quantities with units, observation

processes and hypotheses. Cickovski et al. (2004) also presents a couple of

patterns, for example particle-mesh pattern, multiple space pattern, and so

on, which are used in a molecular dynamics software system. Blilie (2002)

mentions how to design and apply a grid or mesh pattern in dynamic systems.

2.5 Software Tools

In the whole software development process, software tools are very useful for

designing and coding the system, capturing requirements, organizing documen

tation, testing, keeping track of changes, and more. These tools are sometimes

38

Master Thesis - Jin Tang
- McMaster -

Computing and Software

called Computer-Aided Software Engineering (CASE) tools. CASE tools as

sist SE practitioners in every activity associated with the software process.

CASE can be as simple as a single tool that supports a specific SE activity, or

as complex as a complete "environment" that encompasses tools, a database,

people, hardware, a network, and an operating system. The followings are

major categories of CASE tools (Pressman, 2001):

1. Process modeling tools: The tools are used to represent key elements of

a process to help better understand the development process.

2. Project management tools: The tools help to track and monitor the

project schedule and project plan.

3. Requirements tracing tools: The objective of requirements tracing tools

is to help the final delivered system meet the requirements specification.

So, the tools provide a systematic approach to the isolation of require

ment. The typical requirements tracing tool combines human interac

tive text evaluation with a database management system that stores and

categorizes each system requirement that is "parsed" from the original

specification.

4. Documentation tools: The tools help to produce documentation of soft

ware system to improve the productivity.

5. Analysis and design tools: The tools enable people to create models of

the system to be built. By performing consistency and validity checking

on the models, analysis and design tools help to eliminate errors in those

models.

39

Master Thesis
- Jm Tang

- McMaster -

Computing and Software

6. Prototyping and simulation tools: The tools are used to predict the

behavior of a software system prior to the time that it is built. They also

help customers to gain insight into the function, operation and response

prior to actual implementation.

7. Interface design and development tools: The tools are actually a tool

kit of software components such as menus, buttons, window structures,

icons, scrolling mechanisms, and so forth.

8. Programming tools: The tools encompass the compilers, editors, and de

buggers that available to support most conventional programming lan

guages.

9. Test management tools: The tools are used to control and coordinate

software testing for each of the major testing steps.

10. Reengineering tools: The tools are used for reverse engineering, such as

taking source code as input and generating graphical structured analysis

and design models.

Many CASE tools, which are used in business applications, can also

be used to enhance the productivity of SC software design and development.

Kim et al. (2004) discusses how a couple of these tools, such as IBM Rational

Rose and Microsoft Visio, which support UML modeling, could be used for

SC software design. Warrier et al. (2008) lists several code development tools,

debugging tools and version control tools to help SC software development.

Sometimes, people will create tools by themselves. For example, Luksch et al.

(1996) addresses LRR-TUM, a tool to design and analyze parallel programs.

40

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Tools are also used in the development of ONIS. For example, an open

source software package, umlet8 (Umlet, 2008), is used in the design stage

to create UML models. Microsoft Visual Studio 2005 with build-in compile,

edit and debug tools helps to develop and debug ONIS. To trace the change

of documentation for ONIS, a version control tool, subversion is used to keep

track of the different documents.

41

Master Thesis - Jin Tang
- McMaster -

Computing and Software

42

Chapter 3

Survey on Developing Scientific

Computing Software

As mentioned in Chapter 1, given the important applications of SC software,

it is surprising that SE methodologies are often neglected when developing SC

software. The neglect of SE methodologies potentially causes problems with

the quality of SC software. To improve the quality of SC software, we first need

to know the current approach to developing SC software. Concretely, we need

to solve the following questions, which were already mentioned in Chapter 1:

1) What SE methodologies are current used in SC? 2) What technologies are

currently used in SC communities? 3) What qualities of SC software are in

most need of improvement? 4) How receptive will the SC community be to

new ideas from SE? To answer these questions, a survey titled "Developing

Scientific Computing Software" was conducted. The survey questions focus on

the SC software development process including methodologies and technologies

43

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

that pople are using to develop SC software; therefore, the answers of previous

two questions are explicit.

In this chapter, first, the goal of survey is presented. To clarify the goal,

31 research issues (RI) are designed. RIs are also a guide to design the survey

questions; in other words, the survey questions are designed and developed fol

lowing the RIs with the aim of finding answers to these RIs. RIs are presented

in Section 3.1. To clarify the relationships between the RIs and the survey

questions behind each RI the associated survey questions are listed in the

brackets. There are 37 questions in the online survey. Most survey questions

are actually the same as the RIs. but using a different wording to transform

the issue into a survey question. An example of this is how, "RI1: Before

development, do they set up a project schedule or project plan?" becomes

Question 15 "In your group, do you set up a project schedule or a project plan

before developing software? Yes, No" In some cases, from first appearances,

the survey question is different from its associated RI, but actually the answer

for the RI is implicit in the answer of the survey question. For instance, RI23:

"Do they use tools to test? what kind of tools do they use?" has the associated

survey question, Question 22, "A programming tool or software tool is a pro

gram or application that software developers use to create, debug, or maintain

other programs and applications. When you develop software, where do you

use tools? Select all that apply from: Never use tools, Design software, Code

generation, Debug code, Documentation generation, Unit testing, Integration

testing, Version control, Others." From analyzing Question 22, we can get the

answer for RI23.

44

Master Thesis - Jin Tang
- McMaster -

Computing and Software

After identifying RIs, the type and content for each survey question are

decided according to the RIs, and keeping in mind the four questions that were

posed at the beginning of this chapter. The survey questions emphasize the

SC software development process including SE methodologies and technologies

which are currently used in developing SC software; therefore, the answers for

the first two questions on page 43 are explicit. For the third question, about

the qualities in most need to improvement, the answer implicitly provided by

analyzing the survey results, as presented in Chapter 4. To learn how receptive

the SC community to be new ideas which addresses Question 4, we designed

two fill-in questions, Question 31 and 35. From the respondents' comments for

these two questions, we can get some sense of how willing they are to modify

their development process. In Section 3.2, survey questions are presented

by an index table which provides the topics that each question emphasizes.

Moreover, question types that are adopted in this survey are illustrated by

examples.

Section 3.3 discusses the entire survey process which consists of four

phases. They are questionnaire design, survey pilot testing, online surveying

and survey data analysis. Because questionnaire design was provided in Sec

tion 3.1 and survey data analysis will be presented in Chapter 4, Section 3.3

focuses on the other two phases: survey pilot testing and online surveying.

The survey questionnaire design and survey process were inspired by the

following sources: (Foreman, 1991), (Forward, 2002) and (Statistics Canada,

2005).

45

Master Thesis - Jin Tang
- McMaster -

Computing and Software

3.1 Goal of the Survey

The short term goal of this survey is to find the processes that industry and

academia follow when developing their SC software. The mid term objective is

to direct research on identifying potential shortcomings of current SC software

development approaches and adopting SE methodology to improve the quality

of SC software.

To solve the four questions mentioned in the introduction and to clarify

the goals of the survey, before the questionnaire was designed, 31 questions,

which are presented below, were posed. Many of these questions were moti

vated by the waterfall model. This means that we divided the whole software

development process into five stages, which are requirements, design, coding,

testing and maintenance. From the survey results, we can obtain an overall

picture about how SC software is currently developed. In addition to RIs on

the software development process, RIs were also posed on software documen

tation, as this is an integral part of many SE methodologies. Finally, RIs

were posed about the developer's education background and working experi

ence. An understanding of the background of practitioners is necessary when

proposing any changes to the current development process.

The following are the 31 RIs posed, divided into 8 sections, which we

intended to address through the survey.

Software Development Process

In a SC software development group:

RI1: Before development, do they set up a project schedule or a project plan?

46

Master Thesis - Jin Tang
- McMaster -

Computing and Software

(Associated with Question 15)

RI2: Do they use process models? What kind of models do they use? (Asso

ciated with Question 16)

RI3: What is the time distribution of the whole software development process?

(Associated with Question 23)

For different types of organizations, dillerent size groups and different size

software, what is the difference in the answers to the above questions?

Requirements

In a SC software development group,

RI4: Do they have requirements specifications? (Associated with Questions

17 and 27)

RI5: What kind of specification do they provide? (Associated with Question

17)

RI6: Do they use semi-formal specification? What kind of semi-formal speci

fication do they use? (Associated with Question 18)

RI7: Do they use formal specification? What kind of formal specification do

they use? (Associated with Question 19)

RI8: What kind of non- functional requirements are important for SC soft

ware? What is the order of importance of these non-functional requirements?

(Associated with Question 13)

For different types of organizations, different size groups and different size

software, what is the difference in the answers to the above questions?

47

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Design

In a SC software development group:

RI9: Do they have design documentation? What kind of design documenta

tion do they provide? (Associated with Question 27)

RI10: Do they consider software reuse in the design stage? What kind of

software reuse methods do they use? (Associated with Question 21)

Rill: For software reusability, what kinds of libraries do they use? (Asso

ciated with Question 12) For different software types and different software

application fields, what is the difference in the answers to this question? (As

sociated with Questions 7 and 8)

RI12: Do they use tools to help design software? What kind of tools do they

use? (Associated with Questions 22 and 33)

RI13: Do they consider a testing plan in the design stage? (Associated with

Question 25)

For different types of organizations, different size groups and different size

software, what is the difference in the answers to the above questions?

Coding

In a SC software development group:

RI14: Do they have coding standards that the whole group needs to follow?

(Associated with Question 20)

RI15: Do they use tools to generate code automatically? (Associated with

Questions 22 and 34)

RI16: Do they use tools to debug programs? What kind of debug tools do

48

Master Thesis - Jin Tang
- McMaster -

Computing and Software

they use? (Associated with Questions 22 and 34)

RI17: Do they use version control tools? What kind of version control tools

do they use? (Associated with Questions 22 and 34)

RI18: What kind of source code languages that people are using to develop

SC software (Associated with Question 9)

RI19: What kind of operating systems are people using to develop SC software

(Associated with Question 10)

For different types of organizations, different size groups and different size

software, what is the difference" in the answers to the above questions?

Testing

In a SC software development group:

RI20: How do they choose test cases? (Associated with Question 25)

RI21: What kind of validation and verification methods do they use? (Asso

ciated with Question 24)

RI22: Do they generate testing reports? (Associated with Question 27)

RI23: Do they use tools to test? What kind of tools do they use? (Associated

with Question 22 and Question 34)

RI24: Are there specific people in charge of testing? (Associated with Ques

tion 26)

For different types of organizations, different size groups and different size

software, what is the difference in the answers to the above questions?

Maintenance

49

Master Thesis - Jin Tang
- McMaster ~

Computing and Software

In a SC software development group:

RI25: What is the life time of typical SC software? (Associated with Question

14)

Documentation

In a SC software development group:

RI26: Do they use tools to generate documentation? What kind of tools do

they use? (Associated with Question 22 and Question 34)

RI27: How often do they update documentation? (Associated with Question

29)

RI28: How is good documentation built? (Associated with Question 30)

RI29: What are factors causing documentation to be out of sync with the

system it describes? (Associated with Question 30)

For different types of organizations, different size groups and different size

software, what is the difference in the answers to the above questions?

People

RI30: What kind of education background is needed when developing SC soft

ware? (Associated with Question 3)

RI31: What kind of working experiences is needed for people who develop SC

software? (Associated with Questions 5 and 6)

For different types of organizations and different size groups, what is the dif

ference in the answers to these questions?

50

Master Thesis - Jin Tang
- McMaster -

Computing and Software

3.2 Questionnaire Design

To achieve the research goals and solve the above RIs, a questionnaire was

designed. The questionnaire has 37 individual questions, as shown in Appendix

A.l. This section summarizes the design of the questions and their format.

3.2.1 Question Design

The 37 questions in the questionnaire are divided into six sections, which are

characterization of participant, characterization of the SC software that the

participant is typically involved with developing, methodology, testing, docu

mentation and feedback. Table 3.1 and Table 3.2 present the question topics

and their associated question numbers for each section in the questionnaire.

Section Question

No.

Content

Characterization

of Participant

1 Organization type

2 Group size

3 Education background
4 Job functions of a group

5 Working experience (working years)
6 Working experience in programming

Characterization

of the SC

software that

the participant

is typically
involved with

developing

7 Software application fields

8 Software type

9 Source code languages
10 Operation systems

11 Software sizes

12 Mathematical Libraries used in developing software

13 Non-function requirements

14 Software Lifetime

Table 3.1: Questions in the Questionnaire 1

51

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Section Question

No.

Content

Methodology

15 Project plan

16 Process model

17 Type of specifications

18 Semi-formal specification

19 Formal specification
20 Coding standard

21 Software reuse

22 Tools

23 Development process

Testing

24 Validation and verification methods

25 Test cases

26 Who is in charge of the testing phase

Documentation

27 Type of documentation

28 Speed with which documentation is updated

29 Factors of good documentation

30 Factors causing documentation to be out of sync

with the system it describes

Feedback

31 Interest in receiving this survey

32 Interest in receiving a phone interview

33 Personal contact information

34 Specifying tools

35 Addition comments on software qualities, software

documentation

36 Specifying process improvement

37 Remark

Table 3.2: Questions in the Questionnaire 2

3.2.2 Question Types

There are four types of questions in this survey, which are multiple choice

multiple answer question, multiple choice single answer questions, rating ques

tion and fill-in question. The first three types of questions are closed ques

tions (ChangingMinds, 2008), which means users can answer this kind of ques

tions with either a single word or a short phrase. A fill-in question is an open

52

Master Thesis - Jin Tang
- McMaster -

Computing and Software

question, which is used to receive a long answer to get information about re

spondents' opinions and feelings. Multiple choice multiple answer question and

multiple choice single answer questions are very similar. The distinction be

tween them is that the first one allows the participant to select more than one

answer. Rating question is intended to help scale the answers. The followings

are samples for each of the four questions types.

Multiple Choice Multiple Answer Question (more than one selection is

allowed)

What types of SC software are you involved in developing? Please select

all that apply.

? Fast Fourier Transform

? Interpolation

? Linear Solver

D Linear Least Squares

? Mesh Generation

? Numerical Integration

? Optimization

? Ordinary Differential Equations (ODE) Solver

D Random Number Generator

? Partial Differential Equations (PDE) Solver

D Stochastic Simulation

? Solving Eigenvalues

D Solving Nonlinear Equations

53

Master Thesis - Jin Tang
- McMaster -

Computing and Software

D Others (identify):

Multiple Choice Single Answer Question (one and only one selection is

allowed)

How many people in your current group are involved in developing SC

software?

Oi

02 5

O 6 15

O 16 50

O 51 100

O > 100

Rating Question

In your experience, how important is each of the following software qual

ities. Please rate the relative importance of the qualities, with one (1)

for the LEAST important items and five (5) for the MOST important.

If you feel that there are software qualities missing from this list, there

will be an opportunity for you to mention this in a written question at

the end of the survey.

Fill-in Question

Are you satisfied with the current process used for SC software develop

ment in your group? If not, what could be done to improve the process?

54

Master Thesis - Jin Tang
- McMaster -

Computing and Software

1 2 3 4 5

Ease of use

Maintainability

Memory use

Portability

Correctness / Reliability

Safety

Security

Speed

Vcrifiability

Table 3.3: Rating Question Sample

3.3 Survey Process

The survey process is divided into the following four phases.

Phase 1: Questionnaire design. 37 questions were designed to find the

processes that industry and academia follow when developing SC soft

ware.

Phase 2: Survey pilot testing. After finishing the questionnaire, a pilot

test was conducted to evaluate the trial survey questionnaire and the

procedures. An invitation email including feedback questions was sent

to pilot test participants. The questionnaire was updated according to

the feedback from the pilot test.

Phase 3: Online survey. Invitation emails were sent to participants in

cluding the link to the online questionnaire. The survey was intended to

take 20-30 minutes to complete.

Phase 4: Survey Data Analysis. Some basic statistics methods were used

55

Master Thesis - Jin Tang
- McMaster -

Computing and Software

to analyze the survey data. A survey report is also provided.

Except phase 4, survey data analysis, which will be introduced in Chapter 4

and phase 1, which is already discussed in the previous section, the other two

phases are presented in the following sections.

3.3.1 Pilot Test

Pilot tests are used to provide relevant insight, data, and experience as a basis

for decisions to accept, improve, or discard parts of all of the tested survey

questionnaires and procedures (Foreman, 1991, page 433). The goal of the

pilot test is to evaluate the trial survey questionnaire and the procedures and

to make any necessary changes.

In the pilot test, 12 candidates from SC fields were selected as samples.

Among these candidates, 6 were faculty members, 3 were graduate students

at universities, 2 were experts working in industry and 1 was self employed.

All candidates work for at least a portion of their time is SC. A standardized

questionnaire containing a series of open and closed questions accompanied by

a cover letter and feedback questions were distributed to these candidates via

email.

All candidates were provided with a deadline (2 weeks) to return com

pleted questionnaires, either by email or by phone. This deadline was met

by majority of candidates and in the case of those candidates who did not

meet the deadline, follow-up email request were made. A total of 10 of the 12

responses were eventually received.

After pilot testing, the questionnaire was modified according to the

56

Master Thesis - Jin Tang
- McMaster -

Computing and Software

feedback from the pilot testing. For example, additional options were added

to question 12 and 16; moreover, some definitions, such as software tools,

were added to the questions to make the questions more clear. Appendix A. 2

Pilot Test Guidelines provides detailed information of this pilot test, which

includes the invitation email and feedback questions. Appendix A. 3 Pilot Test

Report presents an analysis of feedback and recommendations for updating

the questions in the survey.

3.3.2 Online Survey

After the survey questions were updated according to the feedback from pi

lot test participants, the survey was sent to McMaster Research Ethics Board

(MREB), an organization at McMaster University that reviews research in

volving human participants. In response to the suggestions from MREB, the

survey invitation email and a few survey questions were modified. After the

survey was approved by MREB, the survey was posted online to the public by

an open source software package, eSurveysPro. The survey could be accessed

via the following link from December 2007 to February 2008:

http://www.eSurveysPro.com/Survey.aspx?id=b67celcl-84c2-4c2b-b66d-70db013d8038

Data Collection

Surveyspro provides functions to save all responses in Excel files. The data

collection period was from December 2007 to February 2008.

Participant Recruiting

57

Master Thesis
- Jm Tang

- McMaster -

Computing and Software

To involve more people in the survey, the following are ways that we used to

recruit participants.

1. Advertisements were posted on some SC relevant newsgroups to absorb

some people who might be interested in this survey. The invitation email,

presented in Appendix A.l, which was sent to participants, is also posted

on the newsgroups as an advertisement to recruit participants.

2. Direct emails were sent to companies and organizations. The contact

information, especially email address, of SC software practitioners in

industry and academia were found on the Internet. From the website

of SC companies and organizations, people's contact information was

found. An additional approach to finding participants is that the invi

tation email invites the respondent to forward the email to other people

who have experience in developing SC software and might be interested

in this study. In this survey, about 400 invitation emails were sent to SC

software practitioners.

3. To find personal interest groups, especially the members of the open

source community, we found SC open source software, then we found

their corresponding software developers.

4. We also encouraged our friends and colleagues that are involved in de

veloping SC software to participate in the survey.

58

Chapter 4

Survey Data Analysis

In Chapter 3. the goal of the survey was specified, and, to clarify the goal, 31 re

search issues (RI) were defined. In this chapter, with the RIs in mind, data col

lected from the survey is analyzed using Microsoft Excel and SurveysPro. The

survey data analysis techniques used in this chapter were inspired by several

sources, for example, Chromy and Abeyasekera (2003), E-Cology (2003), ORC

Macro International (2000), Gy (1998), Foreman (1991), Desu and Raghavarao

(1990), and SPSS (1990).

Sampling theory is very important for survey analysis, as it determines

the extent that samples represent the target population, also it affects the con

fidence with which conclusions can be drawn. Therefore, sampling design is

addressed first in this chapter. Section 4.1 discusses the sampling approaches

that were used in this survey. Moreover, margin of error (MOE), as a statistic

to measure a survey's uncertainty, is also summarized in this section. Sec

tion 4.2 introduces the data management strategies to deal with raw data

59

Master Thesis - Jin Tang
- McMaster -

Computing and Software

before the data analysis. Then, to help readers better understand our sur

vey results, information about target population and characteristics of the

respondents is presented in Section 4.3. After that, Section 4.4 provides the

survey results for each RI. For some RIs, the difference between industry and

academia, as well as distinctions between different size software and differ

ent size groups, are also provided. To clarify the results, bar graphs and line

graphs are used to present the results for each RI.

4.1 Sampling Design

The term sampling refers to strategies that enable us to pick a subgroup from

a larger group and then use this subgroup as a basis to make inferences about

the larger group, or to generalize about the population based on observations

of the sample. Sampling is a critical factor in any survey design, determining

to what extent the survey results allow reliable inferences to be made within

acceptable MOE to the population. A sample design should deal with both

the selection of individuals to be included in the sample and the process of esti

mating population values from the sample values. Selection and estimating are

interlinked, as selection rules affect the methods of estimating population val

ues and the precision required for population estimates influence the selection

rules. The precision needed depends on the general survey aims, and selection

depends on the possibility or feasibility of identifying and approaching the

members of the target population. In principle, therefore, survey design and

sampling design should go hand in hand (Quinx, 2002).

60

Master Thesis - Jin Tang
- McMaster -

Computing and Software

4.1.1 Sampling Strategies

The assessment of population estimates from sample data requires that the

sample is 'representative' of the total population. Careful selection can make

a sample more or less representative. This is best achieved by probabilistic

sampling, whereby each individual of the population has a known non-zero

probability of being selected, allowing inferences about the population values

by means of statistics computed from the sample data. The basic selection

method in probability sampling would be simple random sampling in the pop

ulation. "Simple random sampling'" is defined as the selection of units from a

population in such a manner that each of the different samples consisting of

the same number of units has the same known probability of being selected.

This also implies that each unit in the-population has the same probability of

selection" (Foreman, 1991, Page 19).

Letting each unit have the same probability of selection may not always

be possible or practical. For instance, simple random sampling surveys are

often conducted by starting out with a list (known as the "sampling frame") for

all units in the population and then a sample is selected based on a randomizing

device that gives each individual a chance of selection. In our survey, it is

impossible to create such a list that includes all people involved in developing

SC software. Our sampling approach involves searching the Internet, which

is not a random sampling, but the process was ad hoc and if repeated would

likely yield different results, so we assume that it is approximately random,

although, strictly speaking, our approach might cause biases and affect the

precision of the population estimates.

61

Master Thesis - Jin Tang
- McMaster -

Computing and Software

The sampling technique used in this project is called snowball sampling.

Snowball sampling is a technique for developing a research sample where ex

isting study subjects recruit future subjects from among their acquaintances.

Thus the sample group appears to grow like a rolling snowball. In our project,

as mentioned in Chapter 3, advertisements were posted on SC relevant news

groups to help recruit more participants, which can be regarded as snowball

sampling. When using snowball sampling, sample members are not selected

from a sampling frame, therefore, snowball samples may cause biases.

To improve the precision of estimates of target quantities, some strate

gies were tried in this project to improve the quality of the samples. ASA

(1998) mentions stratified sampling designs involve defining groups, or strata,

based on characteristics known for everyone in the population, and then tak

ing independent samples within each stratum. Such a design offers flexibility,

and, depending on the nature of the strata, they can improve the precision

of estimates of target quantities (or equivalently, reduce their MOE). In our

survey, we divided the target population into two large groups: industry and

academia. After that, we, further, divided these two groups into five sub

groups. Concretely, academia was divided into two subgroups: universities

and research and development institutes; industry was divided into three sub

groups: companies who develop in-house software, software vendors and open

source developers. Then, sample lists were created for each subgroup indepen

dently, which helps our samples better represent the target population.

To use statistics methods, for example confidence interval and MOE,

to analyze the survey data, we assume that the sampling that we did for this

62

Master Thesis - Jin Tang
- McMaster -

Computing and Software

survey satisfied simple random sampling.

4.1.2 Error Analysis

The margin of error is a statistic expressing the amount of random sampling

error in a survey's results. The larger the MOE, the less confidence one should

have that survey icsults are close to the "true" figures; that is, the figures for

the whole population. The MOE is usually defined as the radius of a confi

dence interval for a particular statistic from a survey. A confidence interval

gives an estimated range of values that is likely to include an unknown pop

ulation parameter, the estimated range being calculated from a given set of

sample data. Common choices for the confidence level are 90%, 95%. and 99%.

Because the sample size in our project is not large, we calculate MOE based

on a 90% confidence level.

The laws of probability make it possible for us to calculate intervals of

the form: estimate +/- margin of error. Such intervals are sometimes called 90

percent confidence intervals and would be expected to contain the true value

of the target quantity at least 90 percent of the time. The formula for the

90% confidence interval using the t-statistic is p 1.645-\/p(l p)/n, where

p is the proportion, n is the sample size, 1.645 is a t-value obtained from a

t-table according to the confidence interval (McDonald, 2008). The derivation

of the above formula and t-table can be found in many statistics textbooks, so

we do not address these in detail here. An example of calculating confidence

intervals comes from the data in the survey where 80 of 165 respondents answer

that their group size is 2 to 5 people. In this case, the sample proportion for

63

Master Thesis - Jin Tang
- McMaster -

Computing and Software

group size (2 5 people) would be 48%. However, according to the above

formula, there is an MOE of 6%. Therefore, we can draw a conclusion with

90% confidence that the proportion in the whole population having the same

intention on the survey data might be from 42% to 54%.

Three things that might affect the MOE are sample size, the type; of

sampling done and the size of the population (ASA, 1998).

sample size

The size of a sample is a crucial actor affecting the MOE. Table 4.1

presents the relationship between survey sample size and MOE in a 90%

level of confidence; a MOE calculator, provided by (Steward, 2008), was

used to calculate MOE in the table based on different sample sizes.

Survey Sample Size Margin of Error

Percent

2,000 1.3

1,000 1.9

500 2.6

200 4.2

100 5.9

50 8.3

Table 4.1: Survey Sample Size and Margin of Error Percent

In our survey, the number of respondents is from 110 to 168. In terms

of the above table, generally speaking, the MOE for our survey overall

should be between 4% and 6% based on 90% confidence interval. This ta

ble provides a sense of how our samples represent the whole population.

To provide more precise analysis, in the following survey, the MOE will

be calculated, where appropriate, for each individual question. Please

64

Master Thesis - Jin Tang
- McMaster -

Computing and Software

note that, MOE values are typically calculated for surveys overall but

they also should be calculated again when a subgroup of the sample is

considered. For example, when we compared the difference in group size

between academia and industry the MOE should be calculated again ac

cording to subgroups. In this case, 72 for industry and 78 for academia

instead of previous 165 that was used as the overall sample size. There

fore, MOE value (10% and 9%), which are larger than the previous MOE

(6%), are obtained. So, the MOE for a subgroup is usually larger than

the value for the whole group because the number of respondents in a

subgroup is smaller than the overall survey sample size.

sampling type

Sampling type also affects the MOE. If probability sampling, for example

simple random sampling, is used in sampling, it will be easy to find

MOEs in the survey. Our survey, as mentioned earlier, is not strictly

simple random sampling, but we still assume we analyze the data as if

we had used simple random sampling. The real sample errors might be

greater than the MOE that we obtained, but the numbers still give a

sense of how our samples represent the whole population.

population size

ASA (1998) mentions that although it is perhaps surprising to some, the

size of the population is a factor that generally has little influence on the

margin of error. As an example, a sample size of 100 in a population of

10,000 will have almost the same margin of error as a sample size of 100

65

Master Thesis - Jin Tang
- McMaster -

Computing and Software

in a population of 10 million. Therefore, although the target population

of our survey is very large, the relatively small sample size should not

affect the MOE.

4.2 Data Preparation

SurveysPro stores all raw data in Excel files; therefore, before proceeding with

the data analysis, all raw data was downloaded from the SurveysPro website.

The following are the steps that were followed to prepare the data for analysis.

Step 1: Delete all empty records from the Excel files.

Empty records are deleted, but all other responses are kept, even if a respon

dent did not answer all survey questions. All responses are regarded as valid,

because the survey allows people to skip questions that they do not feel com

fortable answering.

Step 2: Move all the open-ended answers out of the files.

In the survey, most single choice questions and multiple choice questions pro

vide "Other" option to help respondents fill in additional information. The

"Other" option was maintained as a possible value for the variables, but the

associated text describing "Other" was moved. The text of the answers was

kept in another file for later analysis. In addition, the answers to question 32

to 36, which are fill-in questions, were moved to another file.

Step 3: Identify important variables.

In applied statistics, a variable is a measurable factor, characteristic, or at

tribute of an individual or a system (Statistics Canada, 2008). Variables are

66

Master Thesis - Jin Tang
- McMaster -

Computing and Software

critical in any survey studies. The variables that are relevant to the prob

lem under study must be chosen from the vast array of information available.

If important variables are excluded from the data file, the results will be of

limited value. In this survey, all information obtained is valuable for our re

search. For single choice questions, each question can be analyzed using one

variable. For instance, Question 2 ("How many people in your current group

are involved in developing scientific computing software?") helps us to gain

information about the size of SC groups. It is a very important variable and

we named it group size. For multiple choice questions, for each option of the

question, we can regard it as a independent variable. For instance, for question

10, "Which of the following Operating System do you use?," there are seven

options for this question, which are Linux/Variants, MacOSX, MS-DOS, IBM

OS/2 Warp, Unix/Variants, Windows and Others, therefore, seven variables

were defined according to the options. The names of the variables are almost

the same as the options of the questions.

When we analyze survey data, we not only need to consider variables

by themselves, we sometimes also need to consider the relationships between

variables. For example, in this survey, organization type, group size and soft

ware size are three significant variables. In many cases, we need to combine

these three variables individually with other variables to get more information.

Coding the data for each variable is also very important. To analyze

the survey data easily, the data is presented in numbers instead of texts in

data files. This is known as coding the data. For example, instead of using

"Yes" or "No" as the values for the project plan variable, the codes 1 and 0

67

Master Thesis - Jin Tang
- McMaster -

Computing and Software

were used.

4.3 Target Population and Characteristics of

Respondents

To help readers better understand our survey results, information about target

population and characteristics of respondents are provided in this section.

The target population of this survey was individuals who have expe

riences in developing SC software in academia or industry and who speak

English. Concretely, the sampling frame, or list of individuals, was derived

from the people who are working in the following organizations:

Companies who developed in-house SC software

Software vendors who produce custom SC software systems or off-the-

shelf SC software

Research and development institutes

Universities

Personal interest group, that is people who are interested in developing

SC software but not for commercial purpose, for example the open source

community

By March 10, 2008, 307 people visited our online survey, but only 168

people participated in this survey. Among the 168 participants, not including

the fill-in questions, 110 respondents completed all questions. Two reasons

68

Master Thesis- Jin Tang
- McMaster -

Computing and Software

might cause only half of the visitors to participate in the survey. One reason

might be the open source package, Surveyspro, which we selected for our sur

vey Surveyspro is not very stable, as evidenced by several complaints that

were received from participants who informed us that the survey crashed while

they were completing it. Once the survey program crashes, the participants

are lost, because usually people will not do it again. The other reason might

be the number of questions. To get enough information for developing SC

software, as mentioned in Chapter 3, 36 questions were design for this survey.

According to our pilot test result, usually it takes 20 to 25 minutes to finish the

survey. From the survey data, we found that the participant number decreased

as the question number increased. So, people might not feel very comfortable

to reply to so many questions or spend that much time participating in the

survey.

The distribution of respondents is illustrated in Figure 4.1. The largest

number of respondents were from universities, with 32% of respondents, then,

23% from companies who develop in-house software, 15% from research and

development institutes, 14% from software vendor who produce custom soft

ware system or off-the-shelf software, 8% from personal interest group, such as

open source community, and 8% from other groups, which are not specified in

the survey, such as government and other organizations. Our target popula

tion, as mentioned in Chapter 3, is people involved in developing SC software

in industry and academia. If we regard research and development institutes

and universities as academia, and the rest as industry, then, from the above

responses distribution, 47% of respondents came from academia, 45% were

69

Master Thesis - Jin Tang
- McMaster -

Computing and Software

from industry and 8% from other groups.

Others

PerionallnterestGroup ie g. open source communrtil

University

Research and development institute

Software vendor (producing custom software systems or

off-the-shelf software)

Company (developed In-House)

Figure 4.1: Sample Population

4.4 Survey Results

As mentioned in Chapter 1, one of our research goals is to find the current

SC software development processes, which we clarified by 31 research issues

(RI) in Chapter 3. In this section, four important variables are introduced:

people 's education background, people 's working experiences, group size and

software size. Through the first two variables, the reader can not only obtain

the information about SC software practitioners but also better understand

the background information about our survey respondents, as discussed in the

previous section. The last two variables, group size and software size, can be

combined with many RIs to gain greater insight into the survey data; therefore,

they are discussed before presenting the survey results.

The survey results are provided in term of each RI. To simplify the

presentation, in the following discussion, only topics for each RI are provided,

for detailed information on the RIs please refer to Chapter 3. As mentioned

above, organization type, software size and group size are three important

variables in our research; therefore, for some RIs, figures are also provided

70

W 15*

14H

Master Thesis - Jin Tang
- McMaster -

Computing and Software

to present the difference between industry and academia. and software size

and group size. The meanings of industry and academia were discussed in

Section 4.1.

To clarify the survey results, in most cases, bar graphs are used. The

number of respondents for each question is also provided as a part of the title

for the corresponding graph. Please note that, for multiple choices questions

in the survey, the percentage for each option is presented by number of respon

dents instead of the number of respondences, hence, the total percentage for

all options is usually greater than 100 percent. For example, in Question 10

about operating systems, Table 4.2 presents the number of respondents and

the percentage of respondents for each option. From the table, we notice that

the total percentage of all options is greater than 100 percent. For single choice

questions, the total percentage of all options will be equal to 100 percent.

Options Number of Respon

dents that use this

OS

Percentage of Re

spondent

IBM OS/2 Warp 3 2%

Linux / Variants 104 72%

MacOSX 33 23%

MS-DOS 11 8%

Unix / Variants 53 37%

Windows 87 60%

Others 4 3%

Table 4.2: Respondent Distribution for Question 10 (based on 144 respon

dents)

RI30: Education Background

Figure 4.2 summarizes the responses on the education background of the peo

ple who are involved in developing SC software. Overall, people's education

71

Master Thesis - Jin Tang
- McMaster -

Computing and Software

backgrounds are very wide, covering many different areas, but, from our survey

data, the dominant education background is mathematics, computer science

and physics, which are 39%, 30% and 30% respectively.

Figure 4.2: Education Background (Based on 166 Respondents)

RI31: Working Experiences

Figure 4.3 and Figure 4.4 demonstrate the working experiences of the respon

dents. The first figure presents how long each respondent has been working

in the SC field and the second one shows how long the respondents have been

involved in programming. From these two figures, we see that more than half

the respondents have working experiences in SC field of more than 10 years;

in addition, more than half the respondents have programming experience of

more than 10 years. Moreover, we found that the percentage of people with

more than 20 experiences is very high. There may be a potential bias here.

Our samples came from an online survey. Maybe people with more experiences

are more likely to support our research, so we received more feedback from this

72

Master Thesis - Jin Tang
- McMaster -

Computing and Software

type of person.

i
... !

45%

40%

1

! 35%

30'-i

25%

I 20%

i
i 15ri

i

i 10%

I

5%

0%

-5%

< 1 year 1-5 year:

v%i

5 lOyears ll-15years 16-20year: >20\ears

Figure 4.3: Working Experience in SC field (Based on 165 Respondents)

10% |

lyear l-Syesrs 6-10years ll-15years lb-20years >20ycar:

Figure 4.4: Working Experience in Programming (Based on 165 Respondents)

Figure 4.5 summarizes the relationship between software size and peo

ple's working experience in the SC field. From the figure, we found that more

experienced people seem more likely to be a significant percentage of the de

velopers of large scale software.

73

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

; lyear

1-5 years

S- 10 years

11-15 years

16-20 yean

> 20 years

Figure 4.5: The Relationship between People's Working Experience and Soft

ware Size (Based on 165 Respondents)

Group Size

Figure 4.6 indicates the group size of SC software development groups. We

found that SC development groups are usually small groups. From the figure,

42% to 55% of the respondents are in groups of only 2 to 5 people. Also, some

times (20% to 30% of cases), people might develop SC software by themselves.

In this case the software might be for their own usage or for experimental

purposes.

Figure 4.7 presents the difference in group size between industry and

academia. From the figure, we find that compared with industry, the respon

dents in academia, have smaller group sizes, with most of their groups being

less than 15 people.

Software Sizes

Figure 4.8 demonstrates the software size of SC software. More than 50 percent

(56%) of software is less than 20 KLOCS (KLOC = 1000 lines of code). We

also notice that large scale SC software (>100 KLOCS) also occupies a high

percentage 21%.

74

Master Thesis - Jin Tang
- McMaster -

Computing and Software

60% T"

6-15 16-50 51-100 >100

Figure 4.6: Group Size (Based on 165 Respondents)

80% r-

70%

60% i

i

L

50%

40% / X \

/

30% r
1 \

i \

20% ---
'

H-- 4
1096

0% -

1 l-b b-15 16-50 51-100 i

10% -

-Industry

Academia

Figure 4.7: Difference in Group Size between Industry and Academia (Based
on 165 Respondents)

4.4.1 Software Development Process

Three questions in the survey Question 15, 16 and 18, are designed to find

information about current SC software development processes. In this section,

the associated research issues RI1 to RI3, are discussed.

RI1: Project Plan

In Figure 4.9, 51% of respondents indicate that they will set up a project

75

Master Thesis - Jin Tang
- McMaster -

Computing and Software

<1KL0C 1-5KL0CS 6-20KLOCS 21-50

KLOCS

51-100 > 100 KLOCS

KLOCS

Figure 4.8: Software Sizes (Based on 141 Respondents)

schedule or a project plan before developing software, and 49% responses indi

cate the contrary situation. Error bars- in the graph present the MOE, which

indicates that the survey data cannot distinguish whether a project plan is

more likely than no project plan.

Figure 4.10 shows that larger groups are more likely to set a project

schedule or a project plan. Because the sample size of the large groups is very

small in our survey, we obtained large MOEs for the largest group size. Even

given the large MOEs, the trend seems to follow one's intuition that a larger

group will be more likely to have a project plan.

RI2: Process Models

Figure 4.11 illustrates the process models which are currently used in SC

development groups. A process that consists of coding and debugging, which

occupies 58%, is the most frequently used process in SC software development.

Starting from a previous code and modifying it and the prototyping model

76

Master Thesis - Jin Tang
- McMaster -

Computing and Software

70%

60%

50%

40%

30%

20%

10%

0%

I

51%

No

Figure 4.9: Project Plan (Based on 130 Respondents)

-

''*
,

a Yes

No

. .' -.;

>516-50

_

Figure 4.10: Project Plan with Group Size (Based on 130 Respondents)

are also popular approaches, with percentages of 42% and 41%, respectively.

Besides the options which we provided in the survey, respondents also listed

some other process models that they are using, such as Extreme Programming,

Agile Process, a mix of all the "models" which we provided, or UQDS (ticket

77

Master Thesis - Jin Tang
- McMaster -

Computing and Software

and branch-based development) which is described at www.divmod.org.

^ y ./ j> y j y *?

/ / / / / / / / /
!*"
'
/ / / / /

*

/

Jr 4-

Figure 4.11: Process Models (Based on 132 Respondents)

In industry and academia, we found that there is not much difference in

the results. Coding and debugging is the most popular approach within both

groups, with 45% for both groups. The coding and debugging option is also

the most popular for all the different sub-population based on group size, with

47% for 1 5, 48% for 6 - 50 and 22% for greater than 50.

Moreover, 24% of respondents only choose the options No defined pro

cess, Code and debug and Start from a previous code and modify it. This

means their groups do not adopt a systematic development process and miss

the necessary stages, such as requirements specification, during their software

development. This may cause significant problems in the software quality,

since each stage is essential to software quality. For example, requirements

specification guides the entire development process, since, design, coding and

testing all depend on it. Missing requirements specification may cause the en-

78

Master Thesis - Jin Tang
- McMaster -

Computing and Software

tire development process to be out of control and thus not meeting the users'

needs.

RI3: Time Distribution

Time distribution shows how respondents divide their time during the entire

development process. In the survey, we invited participants to provide a time

table for a simplified development process, which consists of four stages: re

quirements specification, design, development and testing. Table 4.3 lists the

time distribution for each type of organization. The numbers in the table

present the proportion of each stage versus the whole development process.

From the table, it is easy to see that the development stage occupies around

half the development time in each type of organization. Figure 4.12 presents

the time distribution for each type of organization with confidence interval.

The trend is also the same when the data is classified by whether the respon

dent is in academia or industry, as shown in Figure 4.13.

Organization

type

Requirements

%

Design % Development % Testing %

Company 11 16 48 25

Software ven

dor

13 19 47 20

Research and

development

institute

14 13 51 22

University 12 16 53 19

Personal Inter

est Group

13 24 45 18

other 6 23 39 33

All organiza

tion

12 17 49 22

Table 4.3: Time Distribution Table (Based on 153 Respondents)

79

Master Thesis - Jm Tang
- McMaster -

Computing and Software

Company

Software vendor

m Research and development institute

Univerity

* Personal InterestGroup

other

Allorganization

Testing%

Figure 4.12: Time Distribution with Confidence Interval (Based on 132 Re

spondents)

mm

Re qui re roents

definition^

Jffr

Design %

*

' A. Industry

ra * Academia

&B

**i *i mm

Developments* Testing %

Figure 4.13: Time Distribution in Academia and Industry (Based on 132 Re

spondents)

Large groups may put more effort into maintainability, since they spend

more time on testing instead of coding, which is presented in Figure 4.14. A

bias may exist in the data here though because we do not have enough samples

from large groups.

80

Master Thesis - Jin Tang
- McMaster -

Computing and Software

| 60 -,
- - - - ---

H Requirements definition^

H Design ai

(S Development %

Testing %

Figure 4.14: Time Distribution between Different Size Groups (Based on 132

Respondents)

4.4.2 Requirements

Requirements specifications are significant to software. Pfleeger and Atlee

(2006) mention a survey in their book about the failure of software. The survey

analyzes the factors which cause the failure of software projects. Among the

factors, the top one is incomplete requirements (13%). Other factors such as

unrealistic expectations (10%), changing requirements and specifications (9%)

and lack of planning (8%) are also related to requirements; therefore, without

good requirements specifications, it is hard to complete software, not to men

tion, to deliver high quality software. Although the above survey is not specific

for SC software, it suggests that requirements are important for all kinds of

software. Requirements specifications guide the entire development process,

that means, designing, coding, testing and maintaining all depend on require

ments specifications. Underemphasis on the requirements will reduce the soft

ware reliability, reusability, testability and maintainability. Moreover, the final

software product needs to meet requirements; therefore, without requirements

81

Master Thesis - Jin Tang
- McMaster -

Computing and Software

specification, it is hard to judge the quality of the software. Because of the

importance of requirements specifications, five questions were designed in the

survey to find whether people use requirements specifications or not and what

kind of requirements specifications they are using. In this section, RI4 to RI8,

which are relevant to requirements specification, are discussed.

RI4 - RI7: Specifications

Figure 4.15 summarizes the types of specifications currently used in SC devel

opment groups. From the figure, only 21% of respondents indicate that there

are no specifications in their groups. It seems that some kind of specification is

widely used in SC software development. 70% of respondents are using infor

mal specifications. Figure 4.16 further presents the detailed information about

specifications. From the figure, 53% and 45% of respondents confirm that they

have requirements specifications and design specifications, respectively.

Figure 4.17 shows that semi-formal specification are not often used in

SC software development. When comparing the semi-formal specifications

approaches, UML is most commonly used. Formal specification is very rarely

used, which is illustrated in Figure 4.18. For specification, there is not much

difference between industry and academia. Also, distinctions between different

size groups and different size software are also not apparent from the data.

RI8: Non-Functional Requirements

Figure 4.19 illustrates how important the following software qualities are to SC

practitioners: ease of use, maintainability, memory use, portability, correct

ness, safety, security, speed and verifiability. From the figure, correctness or

reliability, ease of use, speed, verifiability and portability are the most impor-

82

Master Thesis - Jin Tang
- McMaster -

Computing and Software

No Specification Informal Semi-tormal rorrrst Others

Specification Specification Specification

Figure 4.15: Type of Specifications (Based on 128 Respondents)

None User System Detailed Code Testing Plan Tt 'irg Li'sra'-e OH er

Requirement Design Design Comments Report Programming

Specification Specification Specification

Figure 4.16: Type of Documentation (Based on 116 Respondents)

tant factors to the quality of SC software, especially correctness or reliability.

Most respondents, both in industry and academia (shown in Figure 4.20), be

lieve that correctness or reliability is the most significant factor that affects the

quality of software. This result verifies what we discussed in previous chap

ters; that is, SC software practitioners care more about correctness than other

software qualities. Figure 4.20 shows that industry respondents seem to care

more about software's usability, maintainability and safety than the academic

respondents.

83

Master Thesis - Jin Tang
- McMaster -

Computing and Software

No semi-

formal

specifications

Other

Figure 4.17: Semi-formal Specifications (Based on 121 Respondents)

No formal B-Method

specification

Z notation Others

Figure 4.18: Formal Specifications (Based on 114 Respondents)

4.4.3 Design

RI9 to RI13, which are related to software design, are discussed in this section.

RI9: Design Specifications

Figure 4.16 provides information about design specifications. 45% and 27% of

respondents indicate that they have system design specification and detailed

design specifications, respectively.

84

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Figure 4.19: Non-functional Requirements (Based on 143 Respondents)

cademia

Figure 4.20: Non-function Requirements in Industry and Academia (Based on

143 Respondents)

RI10: Software Reuse

Figure 4.21 shows that only 2% to 9% of SC software development groups do

not reuse software based on 90% confidence interval; therefore, it seems soft

ware reuse is already very popular in SC software development. This result

is quite different from what we obtained from our literature research, which

shows software reuse is poor in SC software development. There might be some

bias here that explains the apparent contradiction. One is that a respondent

85

Master Thesis - Jin Tang
- McMaster -

Computing and Software

might select one of the reuse options even when the respondent has only used

it once or twice. This option may not really be popular in the respondent's

group. Another potential source of bias is that respondents might only use a

portion of a reuse method but they still select it, which means the respondent

did not really use this method during SC software development. For example,

a respondent might choose the option sub-system reuse, but, in fact, the re

spondent only reused the part of the sub-system. However, from the survey

results, it is hard to tell these kinds of situations and these situations may

cause the percentage that we obtained for software reuse to be higher than it

should be. Another reason our survey results differ from Dubios conclusion

that reuse is intended poor in SC Dubois (2002), may be that the respondents

of our survey are more like to reuse the software than users in Dubois' lab. All

above reasons might cause our survey result to provide a different result than

our literature research.

From Figure 4.21, we found that most software reuse exists in the stage

of function reuse and module or object reuse. Sub-system reuse and system

reuse are not common.

Do not reuse Function reuw Module / object Sub-system reuse Appfrcation system Others

software reuse reuse

Figure 4.21: Software Reuse (Based on 128 Respondents)

86

Master Thesis - Jin Tang
- McMaster -

Computing and Software

We also tried to find the differences in software reuse between industry

and academia, however, in Figure 4.22, after calculating MOEs based on 90%

confidence interval, there is no discernible difference between them.

50%
|

45% j
-

40% j
- -

35% |-
30%

25%

20%

15%

10%

5%

0%

.5%

:

Don

soft

Figure 4.22: Software Reuse in Industry and Academia (Based on 128 Respon

dents)

Rill: Mathematical Libraries used in Developing SC Software

In Figure 4.23, 75% of respondents indicate that mathematical libraries are

used in developing SC software. BLAS, Netlib (including LAPACK) and GSL

are the three most popular libraries. 49% of respondents mention that they use

other libraries that are outside the list provided by our survey. Moreover, from

the comments from respondents, we found that people also develop in-house

mathematical libraries.

RI12: Software Tools

Figure 4.24 summarizes tool usage in SC software development. Tools for de

bugging codes (66%) are very popular in SC develop groups, which is quite

reasonable, because from previous survey results, we know that coding and de

bugging is the main approach people are using when developing SC software.

87

*t use Function

ware reuse

jse

\

\ \

\

//

. Module/ Sub-system Application

object reuse reuse system reuse

Industry

- -Academia

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Figure 4.23: Mathematical Libraries used in Developing SC Software (Based

on 142 Respondents)

Tools for version control (69%) is also very popular in SC groups. Moreover,

tools for code generation and documentation generation are also popular with

31% and 37%, respectively. These two percentages are much higher than our

expectation, because code generation and documentation generation are very

new approaches which we did not expect would be widely used in software

development. A likely explanation for the high numbers is that many of the

survey participants may have misunderstood our intended meaning of the word

generation. Evidence for this exploration can be seen in the responses to Ques

tion 34, an open-ended question, where respondents can provide the names of

tools that they are using. The answers to Question 34 included Microsoft

Word, Latex, and Emacs which suggest that some of the respondents may

have confused document and code generation with writing and editing these

documents. None of the Question 34 responses included generation tools in

the original sense we intended.

Figure 4.25 illustrates the difference in academia and industry for tool

88

Master Thesis - Jin Tang
- McMaster -

Computing and Software

use. From this figure, we found that, after calculating margin of error based

on 90% confidence interval, 34% to 53% of industry practitioners will use tools

for unit testing, whereas only 16% to 32% of academia practitioners use unit

testing. In other respects, the results do not show any statistically significant

difference.

Never use tools Oesign

software

Code Oebujcode Documentation Unit testing

ene ration generation

[^ration Version control Others

Figure 4.24: Tools (Based on 131 Respondents)

80S

70%

60%

50%

40%

30%

20M

^
^
/
4\ 4\ ,/A\

Industry

Academia

Figure 4.25: Tools in Industry and Academia (Based on 131 Respondents)

4.4.4 Coding

RI14 to RI17 are relative to coding, for example coding standards and tools

used in coding.

Master Thesis - Jin Tang
- McMaster -

Computing and Software

RI14: Coding Standards

Figure 4.26 presents whether there is coding standards in the respondent's

group. For this question, based on 90% confidence interval, 42% to 56% of SC

groups have code standard, whereas, 38% to 52% shows the opposite situa

tion. Given the difference between industry and academia, Figure 4.27 shows

industry has a greater emphasis on code standard than academia.

Do not know Yes No

Figure 4.26: Coding Standards (Based on 130 Respondents)

RI15 - RI 17: Tools to Generate Codes, Tools to Debug Programs

and Tools for Version Control

These three RIs are related to RI12. From Figure 4.24, tools used in code

generating, program debugging and version control are 31%, 66% and 69%

respectively. According to the comments from respondents, the followings are

tools which are commonly used in SC community

Tools to Generate Codes: Eclipse and Emacs. (Please note that Eclipse and

Emacs are editors for editing code not for generating codes.)

Tools to Debug Programs: gdb, ddd, Eclipse and MS Visual Studio built-in

90

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Industry

Academia

Figure 4.27: Coding Standards in Industry and Academia (Based on 130 Re

spondents)

debugging tools

Tools for Version Control: SVN and CVS

RI18: Source Code Languages

Figure 4.28 presents the programming languages used for SC software. It is

not surprising that C and Fortran are still the most popular programming

languages that are used in SC community. We also found that C++, an

object oriented programming language, is also often used. Moreover, from the

respondents' comments to "Other" option in Question 9, it can be found that

some popular programming languages, such as C#, VB.net, which are widely

used in developing business applications, are also used by the SC community.

RI19: Operating Systems

Figure 4.29 summarizes the operating systems that are currently used in de

veloping SC software From the figure, we see that the dominant operating

systems in SC software development are Linux (72%), Windows (60%) and

91

Master Thesis - Jin Tang
- McMaster -

Computing and Software

52%

sox
-

42a-i

AQ% -

1
zo% 1

I

10%
-

I 1 .1 lliiillll..=T
C C .!-'? ^ <? i? J? jr y y

Figure 4.28: Source Code Languages (Based on 144 Respondents)

Unix (37%).

60S

7054 +

rsrn

IBM OS/2

Warp Variants

:OS* MS-DOS Unix / variants Windows Others

Figure 4.29: Operating Systems (Based on 144 Respondents)

4.4.5 Testing

Testing is very important to develop high-quality software. To obtain infor

mation related to testing, such as how to choose test cases, and what kind

of validation and verification methods are used in testing, four questions were

92

Master Thesis - Jin Tang
- McMaster -

Computing and Software

designed for the survey. These questions address RI20 to RI22.

RI20: Test Cases

Figure 4.30 demonstrates the methods to choose test cases. Requirement spec

ification (68%), boundary value (49%) and logical conditions (43%) are the

most important factors when people consider test cases.

j S0% T
- - - -

70K -j
^S"'

Donotknow Requirement boundary fakie State 'r*rc t or ^ogica) conditions Others

specification

Figure 4.30: Test Cases (Based on 124 Respondents)

RI21: Validation and Verification Methods

Figure 4.31 illustrates the methods which are used in software validation and

verification. From the figure, in most cases, the solutions of SC software are

verified by: comparing with real world experimental data (75%), comparing

with other computational models and simulations (74%) and comparing with

closed-form (analytical) solutions (62%).

RI23: Who is in Charge of the Testing Phase

Figure 4.32 shows that usually, in one SC software development group, devel

opers will be in charge of testing, which might cause the problems in the qual

ity' of software, since developers are too familiar with the implemenatation s

93

Master Thesis - Jm Tang
- McMaster -

Computing and Software

M ..M m

Figure 4.31: Validation and Verification Methods (Based on 125 Respondents)

structure and intention. Moreover, developers may have difficulties recognizing

the differences between implementation and the required functions or perfor

mance. Thus, if, in the development groups, there are professional testers who

are independent of the implementation staff and who focus on designing test

plans and test cases as well as testing requirements, design components and

code, this would be very helpful to improve the quality of the software.

Nobody Developer Projectmanager Quality controller Others

orteam leader

Figure 4.32: Who is in Charge of the Testing Phase (Based on 125 Respon

dents)

94

Master Thesis - Jin Tang
- McMaster -

Computing and Software

4.4.6 Maintenance

There is only one RI related to maintenance, which is the question related to

the lifetime of SC software.

RI25: Software Lifetime

Figure 4.33 indicates the lifetime of SC software. From the figure, we see that

the lifetime of this kind of software is very long. Only 4% of the software has

a lifetime less than 1 year. More than 70% of SC software will be used for

more than 6 year. Moreover, 22% of SC software has a lifetime of more than

20 years. From this, we know that maintainability is very important for SC

software.

<lyear l-5years 6-lOyears Il-15ye3rs 16-20yeors >20years

Figure 4.33: Software Lifetime (Based on 143 Respondents)

When comparing the difference between industry and academia about

software lifetime, we found from Figure 4.34 that software in academia with

a lifetime of 1 to 5 years occupies the highest percentage (31%). We guess

the reasons might be that normally in universities, software is developed by

students and after the student graduates, the life of software will be over. This

95

Master Thesis - Jm Tang
- McMaster -

Computing and Software

theory matches with the fact that graduate students usually are in university

less than 5 years. Moreover, software in industry has longer lifetime than

academia software. For those software whose lifetime is more than 20 years,

industry occupied a much higher percentage than that shown in academia.

45s.

K'%

35*.

3054

15%

20%

15'-;

10%

5=4

0%

industry

I Academia

; lyear l-5years 6- 10 years 11 - 15 years 16 - 20 years > 20 years

Figure 4.34: Software Lifetime in Industry and Academia (Based on 143 Re

spondents)

In addition, we found large scale software tends to have a longer life.

When taking look at the software whose size is larger than 50 KLOC in Fig

ure 4.35, normally the lifetime of this kind of software is very long.

4.4.7 Documentation

In this section, questions associated with documentation are considered, such

as time for documentation updates and the factors that influence good docu

mentation.

RI26: Tools to Generate Documentation

96

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Figure 4.35: Software Lifetime (Based on 143 Respondents)

This RI has been discussed in previous RI12 and RI15 to RI 17, therefore, we

do not address it again here.

RI27: Speed with which Documentation is Updated

Figure 4.36 shows the time taken to update documentation. From the figure,

we are surprised to find that documentation is changed very often in SC soft

ware, especially, based on the 90% confidence interval; 30% to 45% of respon

dents indicate that the documentation is updated on a daily basis. However,

in Figure 4.11 about Process Model, 58% respondents claim that the whole

SC software developing process is code and debug, which means they do not

have documentation during their development process. These two numbers

seem inconsistent. We hypothesize that respondents regard code comments as

a type of the documentation, thus the frequent updating.

RI28: Factors of Good Documentation

Figure 4.37 indicates the factors for good documentation. 65% of respondents

consider content, i.e. the information that a document contains, as most im

portant. Availability, i.e. ability to retrieve the most current version, and

97

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Never Rarely Months Weeks Days

Figure 4.36: Speed with which Documentation is Updated (Based on 114

Respondents)

organization, i.e. table of contents, categorized, sub-categorized, etc. are also

important.

Figure 4.37: Factors of Good Documentation (Based on 109 Respondents)

RI29: Factors Causing Documentation to be out of Sync with the

System it Describes

Figure 4.38 presents the factors that cause the documentation to become out

dated. From the figure, time constraints on developers (44%) is the major

reason.

98

Master Thesis - Jin Tang
- McMaster -

Computing and Software

50% i
-

J5S \ 44.

Tirre constraint Buoet mg'i costs o? "Vr d ha ->f In Rapid s'an turr Team members Team members

on developers constraints on the maintaining requirements over are unmotivated see little benefit

project documentation is to document their in maintaining

not vorth the code supporting

effort documents

Figure 4.38: Factors Causing Documentation to be out of Sync with the Sys

tem it Describes (Based on 110 Respondents)

99

Master Thesis - Jin Tang
- McMaster -

Computing and Software

100

Chapter 5

Proposed Methodologies for

Developing ONIS

In Chapter 4, survey results were analyzed to find what SE methodologies

are currently used for developing SC software. According to the survey data,

potential problems with SC software development were found as follows:

Systematic development approaches are underemphasized in the SC com

munity, even in large groups. 24% of respondents in our survey men

tioned that they do not adopt a systematic development process, for

example coding and debugging is their entire development process. This

code-based approach makes it easy to leave the software undocumented,

which may cause severe problems when the system is expanded, or when

the original developers are no longer working on the project.

Although there are requirements specifications in many SC development

groups, it seems this stage does not occupy enough of their time. The

101

Master Thesis - Jin Tang
- McMaster -

Computing and Software

survey data shows that the average time that a group uses to create

requirements specification is about 12% of the total development time.

Semi-formal and formal specifications are rarely used in SC software

development. 72% of respondents indicate that there are no semi-formal

specifications in their groups. Furthermore, most respondents (90%)

confirmed that they do not use formal specifications. Instead. 70%i of

respondents admitted that they only use informal specifications, i.e.,

they use natural language to write their specifications. It is known that

nature language is inherently ambiguous, which makes the requirements

difficult to validate.

To address the above problems and to show how SE methodologies can

be adapted to SC applications, a one-dimensional numerical integration solver

(ONIS) is presented as an example. We developed ONIS following two different

processes, which could potentially be used by the SC community: i) Parnas'

Rational Design Process (PRDP), and ii) Unified Software Development Pro

cess (USDP). The reason why we choose PRDP and USDP are: i) Our version

of PRDP is modified specifically for SC problems. Although PRDP is still in

the research stage, some efforts, as mentioned before, have been put to make

this process fit SC problems. For example, requirements specifications tem

plates for SC problems are already available. Moreover, a couple of examples

which use PRDP to develop SC software are also available. This provides some

help when SC practitioners would like to use PRDP in their real practice; ii)

USDP was chosen because it is a very popular development process and widely

used in business applications. The big advantage of USDP is that many re-

102

Master Thesis - Jin Tang
- McMaster -

Computing and Software

sources, such as tools, are available and many of them are open source. We

hope to bring this advantage to SC software development. Actually USDP

has begun to be used in SC applications as shown by our survey, where 17%

of respondents mention that UML, a unified modeling language particularly

defined for USDP, is used in their groups. If we use USDP to develop SC soft

ware, we can use many existed resources, iii) PRDP and USDP are systematic

development process, which can help SC software practitioners to develop SC

software using systematic methods. From our survey results, we found that

systematic development approach is missing sometimes, PRDP or USDP can

help to iix this problem, iv) Both PRDP and USDP use; formal methods,

which can help SC software practitioners to document precise requirements

and design specifications so as to improve* the quality of the software.

As mentioned before, ONIS is developed using both PRDP and USDP

In practice, we first used PRDP to design and develop OXIS. After ONIS was

finished by PRDP, we redesigned the ONIS using USDP Using two different

processes to develop the same SC software helps us better compare these two

processes. In this chapter, the advantages and disadvantages of these two

processes are provided. The comparison also can help SC practitioners de

termine which of the two candidate processes fits their particular situation.

Please note that the comparison is based on the experiences during our design

and develop ONIS; therefore, there might exist some biases in the conclusion,

because the conclusion is based on one case study implemented by one devel

oper. However, the key here is to introduce these two candidate processes and

help SC practitioners to more deeply understand these two approaches and

103

Master Thesis - Jin Tang
- McMaster -

Computing and Software

possibly convince them to adopt more formal documentation and systematic

development approaches to their software. To help SC practitioners better

understand these two processes, the complete documents for each of the two

processes are provided in Appendices B and C.

There are five sections in this chapter. Section 5.1 briefly introduces

ONIS, an SC program that is developed using PRDP and USDP Section 5.2

summarizes the characteristics of PRDP and USDP and generally compares

the advantages and disadvantages of these two processes. In ONIS, require

ments specification and design stages of PRDP and USDP are different; there

fore, distinctions between PRDP and USDP for these two stages are compared

and presented in Section 5.3 and Section 5.4, respectively. According to the

advantages and disadvantages of PRDP and USDP, Section 5.5 gives some rec

ommendations to SC practitioners to assist them on making a decision should

they want to use one of PRDP or USDP.

5.1 ONIS Introduction

ONIS is a one-dimensional numerical integration solver. The input to ONIS is

a function, characteristics of the given function, an interval, and a requested

absolute or relative accuracy. ONIS computes the value of numerical inte

gration according to the characteristics of the input function and the given

interval. The output is the approximation of the integral, an estimate of the

absolute error, the total number of function evaluations that were executed

and an error code.

104

Master Thesis - Jin Tang
- McMaster -

Computing and Software

From our survey, we know that mathematical libraries are widely used

in SC software development, since 75% of respondents indicate that mathemat

ical libraries are adopted in their software. Using mathematical libraries will

benefit the reliability of the developed software, because the popular math

ematical libraries have been in use for a long time and their reliability is

supported by practice. In ONIS, routines from a FORTRAN library, Quad-

pack, are used to compute the integration based on the characteristics of an

input function. From practice, we found that adopting mathematical libraries

in developing SC software not only saves development time, but also improves

the reliability of the software.

5.2 USDP vs. PRDP

In Chapter 2, the content and template for USDP and PRDP were discussed.

In this section, we present a general comparison of the differences between the

two processes with an emphasis on the advantages and disadvantages of each

of them.

5.2.1 Common Characteristics of USDP and PRDP

Although USDP and PRDP are different, they do have characteristics in com

mon, as follows:

High level design

They both advocate high level design, which means that, in the design

stage, they only discuss what the system should do instead of how to do

105

Master Thesis - Jin Tang
- McMaster -

Computing and Software

it.

Platform Independent Design

Neither USDP or PRDP are specific for one operating system, program

ming language, or hardware platform. This removes distractions, thus

facilitating focusing on the problems at hand. Also platform independent

design can have a long life because it can be applied to future technolo

gies as they arrive. Moreover, platform independent design is not tied

to anything implementation-specific; it is generic enough to lend itself

to reuse. Please note that USDP can also be used for platform specific

design, but in ONIS, platform independent design is used.

Formal methods

Formal methods are used in both of these processes to avoid ambiguities

in specifications; however, informal methods, such as plain English, are

also used for specifications. In PRDP, mathematical notation is used

to make the process formal; in USDP, the UML constraint language,

OCL (Object Constraint Language) based on first-order logic, provides

a formal notation for defining complex sets of constraints to define the

class invariants, preconditions, postconditions and exceptions.

5.2.2 Differences Between USDP and PRDP

Although there are commonalities between the two processes, there are also

many distinctions between them. In particular USDP is fundamentally tied

to Object Oriented concepts, such as class; therefore, USDP is a natural fit

106

Master Thesis - Jin Tang
- McMaster -

Computing and Software

for object-oriented languages and environments such as C++ and Java, but

it also can be used to model non-00 applications, for example, FORTRAN

applications (OMG, 2008b).

In ONIS, the implementation and testing stages of USDP and PRDP

are similar; therefore, in the appendices, only one testing report is provided

(Appendix B.4). However, for the requirements specification and the design

stage, differences exist, as described in Section 5.3 and 5.4. The following

subsections summarize the differences between USDP and PRDP

5.2.2.1 USDP

In this section, several advantages and disadvantages of USDP are presented,

as follow:

USDP uses a graphical language, which provides advantages over PRDP's

text and mathematics based approach. Although PRDP uses a few dia

grams, like a graph of the use relation, USDP has a much greater focus

on diagrams. UML is the graphical language that is used for USDP The

Object Management Group (OMG) is the body responsible for creating

and maintaining the language specifications. They define UML as "a

graphical language for visualizing, specifying, constructing, and docu

menting the artifacts of a software intensive system" (Graham, 2004).

UML consists of a large number of different modeling notations, such as

use case diagrams, class diagrams, object diagrams, statecharts, collabo

ration diagrams, sequence diagrams, activity diagrams, and deployment

diagrams. These notations express the different aspects of the system and

107

Master Thesis - Jin Tang
- McMaster -

Computing and Software

make the system easier to understand. The big advantage of a graphical

language is its intuitive way of expressing ideas; therefore, even those

with very little knowledge of programming can participate in the devel

opment stages, such as the requirements gathering stage.

However, diagrams also have some disadvantages. For instance, for large

systems, too many diagrams might be necessary for expressing all of the

different aspects of the system. The large number of diagrams can take

a considerable amount of time to build for the entire application. In this

case, Graham (2004) suggests that there is no need to tackle the entire

UML specification at once. UML has been designed to allow one to use

only the sections they need, and to later add the rest incrementally. It

is not necessary to use all diagrams defined by UML. In ONIS, only use

case diagrams, class diagrams, statecharts, and sequence diagrams were

adopted.

USDP's Model Driven Architecture (MDA) facilitates code and doc

umentation generation. UML forms the foundation of OMG's MDA.

A UML model can be either platform-independent or platform-specific.

A Platform-Independent Model (PIM) represents the system's business

functionality and behavior precisely, but does not include technical as

pects. From the PIM, MDA-enabled development tools follow OMG-

standardized mappings to produce one or more Platform-Specific Models

(PSM), also in UML. One PSM can be generated for each target plat

form that the developer chooses. This conversion step can be highly

automated. The PSM contains the same information as an implemen-

108

- Master Thesis - Jin Tang
- McMaster -

Computing and Software

tation, but in the form of a UML model instead of running code. In

the next step, the tool generates the running code from the PSM, along

with other necessary files, for example, configuration files and make

files (OMG, 2008b). Moreover, tools are also available for generating

documentation automatically. For example, UMLdoc (Gentleware, 2008)

is software to generate documentation directly from models. In ONIS,

we only create PIM instead of PSM, so resource code and documenta

tion are not automatically generated, but the potential exists for future

development in this direction.

Large resources can be found for USDP With the popularity of 00

concepts, many resources related to USDP are available on the web.

For example, a large 710-page PDF file defining UML diagrams is free

to download from the OMG website (OMG, 2008a). Moreover, many

open source CASE tools, which are used to create diagrams and check

diagrams, are also easily found on the web. For ONIS, an open source

software, Umlet (Umlet, 2008), was used to create the diagrams.

OCL helps people without mathematical background write formal spec

ifications. The disadvantage of traditional formal languages is that they

are usable to persons with a strong mathematical background, but diffi

cult for the average modeler or developer to use. OCL has been developed

to fill this gap. It is a formal language that remains easy to read and

write (OMG, 2003, Page 1).

109

Master Thesis - Jin Tang
- McMaster -

Computing and Software

5.2.2.2 PRDP

Compared with USDP, PRDP has some obvious advantages, as follows:

PRDP fits SC problems better. Our version of PRDP is designed specif

ically for SC problems; therefore, the templates used in PRDP fits SC

problems better than the USDP equivalent. For example, in SC, valida

tion is usually hard, because true answers are difficult to find; hence, we

may have to validate the solution via comparison with other programs.

In the SRS template, there is a section titled Solution Validation Strate

gies, which can help SC practitioners to validate their SC applications.

Templates exist to document the stages of the development process.

Templates, especially SRS templates, to document general purpose SC

software and specific physical problems, are available. Using template

not only helps SC practitioners to document the process better, but it

also helps people improve the development process, since good templates

can remind people what they should do in SC software developments. In

some sense, a good template provides a guide for the development team.

Templates also exist for USDP. However, most of them are for business

applications. No templates exist in USDP specific to SC problems.

Compared with USDP, PRDP is more abstract. It is easy to find non-

abstract sentence like click the button in the descriptions for use cases

in the examples provided by USDP textbooks. On the other hand, in

PRDP, a specification is more abstract because it does not explicitly

specify the user interaction. Being abstract, PRDP can better help de-

110

Master Thesis - Jin Tang
- McMaster -

Computing and. Software

signers and developers focus on what the system should do and postpone

specific design decision later.

Mathematical notation makes the specification for PRDP more concise

than USDP. In USDP, diagrams are used to model different aspects of the

system; hence, many diagrams are necessary in the specifications, which

make the specifications very long. PRDP uses a mathematical notation.

It is known that one of the advantages of mathematics is that it can

express ideas more precisely and concisely. Therefore, specifications for

PRDP are shorter than those for USDP

The disadvantage of PRDP is that currently its use is limited; hence, resources

relevant to this process are also limited. In fact, this provided one of the

reasons for using PRDP for ONIS, since this exercise provides an additional

example of the use of PRDP for SC.

5.3 Software Requirements Specification (SRS)

An SRS is significant for the quality of software. Concretely speaking, it can

improve the following software qualities for SC software: correctness, usabil

ity, maintainability, testability and reusability. For instance, our survey data

shows that many SC software has a long lifetime; 70% of SC software will be

used for more than 6 year. This makes maintainability of this kind of software

very important. Requirements specifications can help maintainers discover and

locate errors by comparing the requirements with what the software actually

does. In addition, in the survey, when participants were asked which of the

111

Master Thesis - Jin Tang
- McMaster -

Computing and Software

factors they consider when they choose test cases, 68% of respondents indicate

requirements specification. This shows requirements specification is significant

to testing; therefore, unambiguous and validatable software requirements are

very helpful for testing the software to improve the testability of the software.

5.3.1 Approach Used in ONIS

To avoid ambiguity and make the SRS as precise as possible, as mentioned

previously, a combination of formal methods and informal methods were used

in ONIS. Appendix B.l and C.l provide the complete SRS for PRDP and

USDP, respectively. A good SRS template is very helpful to document the

SRS; therefore, a template is chosen for PRDP The content and history of this

template has been discussed in Chapter 2; hence, we do not address it again

here. For USDP, no templates existed to document the SRS for SC software;

hence, a template which is modified from the SRS of PRDP is provided to

document the SRS for USDP.

5.3.2 PRDP vs. USDP for SRS

From appearances, the SRS of PRDP and USDP are very similar, because

the template of the SRS for USDP was borrowed from the SRS for PRDP

The difference between these two specifications is that in the SRS for USDP,

a use case model, illustrated in Figure 5.1, is employed to express the func

tionality of the system. In addition, USDP adds a domain model, presented

in Figure 5.2, which is a simple class diagram, which presents the important

business concepts to establish the terminologies that are used for writing the

112

Master Thesis - Jin Tang
- McMaster -

Computing and Software

descriptions of the use cases. An advantage of using the use case model is that

the use case model graphically represents an overview of the functionality of

a given system; therefore, it is easy for users to understand the system. The

detailed introduction about these two models are provided in Appendix C.l.

The disadvantage of this approach is that documenting use case models and

domain models need to be supported by tools, like IBM Rational Rose. How

ever, there are now many tools, even open source tools, available to support

this process.

Calculate Integration

User

Figure 5.1: Use Case Diagram

5.4 Software Design

The SRS tells us the problem that the system is intended to solve. In the

design stage, the system is shaped and its form (including its architecture)

is designed so that it satisfies all requirements including all nonfunctional

requirements and other constraints.

113

t

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Master Control Calculation

1 1

1 1

1 Output Show

1 res

abserr

neval
Input Data

a

b

esp

esp

strF

fnty

abs

rel

unction

pe

Figure 5.2: Domain Model Diagram

5.4.1 Problems in Software Design

Software reuse is very important, so, in the design stage, we should consider

software reusability: that is, the creation and reuse of software building blocks.

Such building blocks, often called components or modules, must be cataloged

for easy reference, standardized for easy application, and validated for easy

integration (Pressman, 2001, Page 121). Therefore, on the one hand, follow

ing the principle of information hiding, we need to create some modules or

components for future usage; on the other hand, we should use existing com

ponents (specifications, design, code, and test data) developed for similar past

projects. In SC, many mathematical libraries are available. Reusing these

libraries not only improves the correctness of the software, but also increases

the efficiency of the development process. According to our survey data, we

114

Master Thesis - Jin Tang
- McMaster -

Computing and Software

found that 95% of respondents confirm that they reuse software, but with em

phasize on function and module reuse. Sub-system and application reuse are

rare, with only 14% and 9%, respectively.

Using tools will benefit software design. For example, analysis and

design tools help to create models of the system to be built. By performing

consistency and validity checking on the models, design tools provide designers

or developers with some degree of insight into the analysis representation and

help to eliminate errors before they propagate into the design, or worse, into

the implementation itself. However, tools use is rare in software design. In

the survey, 80%) of respondents mention that they do not use tools during

design stage. Some respondents said that they only use pen and paper or

white boards for design.

Good design specification will help developers better understand the

design ideas and decrease mistakes in the implementation. However, according

to our survey, more than half of the respondents (55%) indicate that they do

not have system design specifications; meanwhile, 73% of respondents state

that they do not have detailed design specifications.

5.4.2 Approaches Used in ONIS

In this section, approaches used in ONIS are separately discussed for PRDP

and USDP.

115

Master Thesis - Jin Tang
- McMaster -

Computing and Software

5.4.2.1 PRDP

In PRDP, the general idea for software design is: 1) decompose the software

into modules, and 2) describe what each module is intended to do and spec

ifying the relationship among the modules. Decomposing the software into

modules is actually architecture design, which gives the users the opportunity

to view the solution as whole, hiding details that might otherwise distract us;

we use a Module Guide (MG) to document it. In ONIS, the whole system is

decomposed into 5 modules, which are Master Control module, Input Data

module, Output Show module, Parser module and Algorithm module. The

modules are organized into a hierarchy, as the result of decomposition or ab

straction, so that we can investigate the system one level at a time. In the

design decomposition, the modules at one level refine those in the level above.

As we move to a lower level, we find more detail about each module. Table 5.1

presents the module hierarchy of ONIS. The detail explanation for Table 5.1

is provided in Appendix B.2. Software design also includes the relationship

among modules; therefore, the use relation between modules is also provided in

the MG. Figure 5.3 shows the uses hierarchy among modules for ONIS. Parnas

(1978) said of two program A and B that A uses B if correct execution of B

may be necessary for A to complete the task described in its specification. In

other words, A uses B if there exist situation in which the correct functioning

of A depends on the availability of a correct implementation of B.

116

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Level 1 Level 2

Hardware-Hiding Module Keyboard Input Module

Mouse Module

Screen Display Module

Behavior-Hiding Module Master Control Module

Input Data Module

Output Show Module

Parser Module

Software Decision Module Algorithm Module

Table 5.1: Module Hierarchy

Figure 5.3: Use Hierarchy Between Modules

Detailed software design describes modules and specifying the relation

ship among the modules. A specification titled Module Interface Specification

(MIS) is provided to document the design specification at this stage. The

MIS clearly defines the inputs and outputs of each module. A complete MIS

is provided in appendix B.3. The history and introduction for the templates

for MG and the MIS were discussed in Chapter 2.

117

Master Thesis - Jin Tang
- McMaster -

Computing and Software

5.4.2.2 USDP

In the design stage of USDP, an analysis model and a design model are pro

vided according to the use case model in the SRS. The analysis model and

the design model can help decompose the whole system into different classes.

Figure 5.4 represents the traceability between models.

Use-Case Model Analysis Model

<<<[ace_>>/ Calculate

\ Integration

Design Model

trace Calcuiate
*

Integration /

Figure 5.4: Use Case Realizations in the Analysis and Design Models

The analysis model provides a detailed understanding of the require

ments. The analysis model provides an overview of the system that may be

harder to obtain by studying the results of design or implementation, since too

many details are introduced in those stages. The difference between the use

case model and the analysis model is provided in Appendix C.2. Figure 5.5

illustrates how the Calculate Integration use case is realized by a collaboration

with a -Ctrace^> dependency between them, and that four classes participate

and play roles in this analysis model. In this analysis model, the Solver Inter

face is a boundary classes, the Calculation is a control class, and the Algorithm

and Parser are entity classes.

In the next step, the analysis model is realized by a design model.

Within the design model, use cases are realized by design classes and their

objects. In Figure 5.6, four analysis classes participate in realizing the Calcu-

118

Master Thesis - Jin Tang McMaster -

Computing and Software

trace Calcuiate

inlegratJon

"' r v x

/ / \ \
I ' i \ \

;
' < l v

i '

/

k5 6 6 q
SoVer hterface Calcuat on Algorithm Parse?

Figure 5.5: Analysis Classes that Participate in a Realization of the Calculate

Integration Use Case

late Integration use case: Solver Interface, Calculation, Algorithm and Parser.

Also, in the design model, six design classes are refined from analysis classes to

adopt to the implementation environment: Input Data, Output Show, Master

Control, Algorithm, Parser and Expression are refined from analysis classes.

Input Data and Output Show come from the boundary class Solver Inter

face, which controls the interaction between ONIS and the user, i.e., Input

Data helps the user input data to system and Output Show helps the system

show the final calculated results. MasterControl comes from the control class,

Calculation, if controls the sequence of the system. Algorithm and Parser

come from the entity classes with the same names in the analysis model. The

functionality of Algorithm is choosing a suitable routine to calculate the inte

gration. Meanwhile, Parser and Expression help to parse the input function

and conduct function evaluations.

119

Caiculate \,

Integration

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Solver Interlace Calculation Algorithm Parser

Analysis Model (\

Design Model

Figure 5.6: Design Classes in the Design Model Tracing to Analysis Classes in

the Analysis Model

In USDP, OCL was used to define the class invariants and operations

for each class. The OCL expression presented below can be part of a pre

condition or postcondition that is associated with a particular operation. The

context declaration in OCL uses the context keyword, followed by the type and

operation declaration. The constraint is shown by putting the labels 'pre:' and

'post:' before the actual preconditions and postconditions. The following ex

ample presents the description for an operation setUpperboundQ in InputData

class using OCL. The complete design specification is provided in Appendix

C.2.

context InputData :: setUpperboundQ

pre: true

post: if 61 > MINJB and 61 < MAX_B and 61 >= self.a

then b = 61

else ExceptionID = UpperBoundJnputJnvalid

120

Master Thesis - Jin Tang
- McMaster -

Computing and Software

endif

Assumptions: setUpperboundQ is invoked after setLowerboundQ, because af

ter the user inputs an upper bound 6, the program needs to compare the value

of 6 and a to satisfy the condition b > a.

Description: setUpperboundQ receives a real type upper bound value 61 from

the keyboard and stores this value in the attribute 6.

[Note:] In OCL, the contextual instance self is of the type which owns the

operation as a feature (IBM, 1997, Page 4). The value of a property on an

object that is specified by a dot followed by the name of the property. For

instance, self, a is the value of the property a on self.

A template that combines system design and detail design together for

USDP is implicitly presented through the documentation m Appendix C.2.

The template for this software design specification is inspired by the follow

ing resources: (Lano, 2005), (Jacobson et al., 1999), (Priestley, 2003) and

(OMG, 2003).

5.4.3 USDP vs. PRDP

This section will compare the advantages and disadvantages of USDP and

PRDP for the design stage.

5.4.3.1 USDP

The advantages of USDP for design are as follows:

Dynamic diagrams easily describe the behaviour of the system

121

Master Thesis - Jin Tang
- McMaster -

Computing and Software

A sequence diagram is used in ONIS to document the main sequence as

well as interactions between the objects of ONIS, which is presented by

Figure 5.7. Sequence diagrams represent the sequence of the system, and

help to understand the application. Moreover, sequence diagrams can

easily present the lifetime of object and interactions between objects.

In Figure 5.7, the vertical dimension represents time and the messages

in an interaction are drawn from top to bottom of the diagram, in the

order that they are sent. The dashed line, known as the lifeline, indicates

the period of time during which objects playing that role actually exist.

Messages are shown as arrows leading from the lifeline of the sender of the

message to that of the receiver. When the application is not complicated,

it is very useful to use a sequence diagram to present the whole system.

Compared with PRDP, sequence diagrams really help developers get the

whole pictures of the system.

OCL

OCL is used in the design stage to define the class invariants, precondi

tions, postconditions and exceptions. Compared with the conventional

mathematical notation used in PRDP, OCL is also a formal language, but

it remains easy to read and write especially for people without a mathe

matical background. Another advantage of using OCL is that tools are

available to support the OCL language; for example, OCL compilers can

help validate the constraints that are defined by OCL, which improves

the correctness of the design, especially when constraints get longer and

more complicated. It is hard to avoid mistakes in OCL expressions with-

122

Master Thesis - Jin Tang
- McMaster -

Computing and Software

IQl InpulDaia Algorithm Parsnr ;QutputShow

^
selLowerboundO

,

selUppertooundll
(

o-

a-
IcM input Omega and ml^ i

0

O input b

and verify b

and verify

epsabs

and verify

and verity function type

ipul alpha, beta and ir^feqrl

1?31 dcpnvc

'parsefsirFunction)

4 - ^M"LRS'3!fBe_

se IValuel x)

value
-

evaluated
(

J 'parselree =expresfion()

0

KJj&i
elfeesll

qeifxfcvaK)

Figure 5.7: Main Sequence of ONIS

out tools support.

Tools help to improve the maintainability of the specifications and the

applications. Although building complete models for a given application

takes considerable time, they are good for future maintenance, especially

with the support of tools. If we use tools to generate code and design

specifications, we can modify the models and new code and documenta

tion will be automatically generated.

123

Master Thesis - Jm Tang
- McMaster -

Computing and Software

In the design stage, the disadvantage of USDP is that it takes more

time to get familiar with USDP. Compared with PRDP, the process of USDP

is relatively complicated. Also, USDP needs more knowledge. For instance,

designers and developers need knowledge of modeling, UML and OCL. In

addition, given that tools are important in software design in USDP, designers

and developers also need to spend time searching and creating relevant tools

and becoming familiar with those tools.

5.4.3.2 PRDP

The advantage of PRDP in the design stage is that PRDP is relatively easy to

follow. The design process of PRDP is very clear; one is the module decompo

sition, i.e. decomposing the whole system into modules; the other is module

interface specifications, i.e. defining each module in the system. Therefore,

Compared with USDP, PRDP is more clearer. Moreover, as mentioned before,

in USDP, the number of diagrams are generated in design stage; however, in

PRDP, only one diagram is generated, the use hierarchy (Figure 5.3). Obvi

ously, it cannot provide information as detailed as diagrams in USDP; however,

it presents the most important relationship between modules, which is the uses

relationship. The use relationship helps to save time to building unnecessary

diagrams, it is also easy to understand. Last but not the least, mathemati

cal notation is an advantage of PRDP, although people with an inadequate

background of first order logic might also find it a barrier for use.

124

Master Thesis - Jin Tang
- McMaster -

Computing and Software

5.5 Recommendation

As discussed above, either USDP and PRDP has its advantages and disadvan

tages. The big advantage of USDP is that USDP is supported by tools. If the

users would like to use tools to generate code and documentation automati

cally, using USDP should be a wise choice, since tools are relative easy to find

for USDP. However, comparing with PRDP, USDP is more complicated and it

takes more time to learn. Also, it takes more time to build the specifications,

since many models and diagrams are needed to express the application using

USDP Moreover, as mentioned in Chapter 2, USDP is a use case driven pro

cess, which means the use case is central in this process and all other models

have to be built based on the use case model. However, for many SC problems,

the-use case is very simple. For instance, in ONIS, only one use case is created

for this application, which is illustrated in Figure 5.1; therefore, the use case

model is not very helpful to express the behaviour of the system. But, without

the use case model, USDP cannot proceed, which means the use case model is

necessary; therefore, USDP creates some unnecessary diagrams and make the

specification loner.

PRDP is designed particular for SC problems, and has templates to fol

low and its mathematical approach make the specifications more concise; there

fore, if the whole develop team has good mathematical background, PRDP

might be a better choice.

125

Master Thesis - Jin Tang
- McMaster -

Computing and Software

126

Chapter 6

Conclusions

Significant quality has been achieved for SC software, but the development of

SC software still shows room for improvement. Hence, the goal of our work

is to find what qualities of SC software are in most need of improvement,

and what kind of SE methodologies can be used to improve the quality of SC

software. To achieve our research goal, a survey, which was presented in Chap

ter 3, including 37 questions, titled Survey on "Developing Scientific Comput

ing Software"', was conducted to obtain the information about the current

approaches using in SC software development and how about SC community

may respond to new ideas from SE. In terms of the problems in developing

SC software, which we obtained through analyzing the survey data, two can

didate software development processes were chosen to develop an SC software,

ONIS. The goal is to provide an example of how to use SE methodologies to

develop an SC software. Through our work, we hope to convince SC prac

titioners to adopt SE methodologies to develop SC software and to provide

127

Master Thesis - Jin Tang
- McMaster -

Computing and Software

useful assistance when they are put into practice.

In this chapter, Section 6.1 provides concluding remarks for this thesis.

Section 6.2 consists of recommendations for future work.

6.1 Concluding Remarks

In this research we designed an SC software survey questionnaire. As men

tioned in Chapter 3, a questionnaire with 37 questions were designed specifi

cally for obtaining information about: 1) the current approaches to developing

SC software, 2) the software qualities that are in most need of improvement,

and 3) the attitudes of the SC community to new ideas from SE. To clarify the

goal of the survey, 31 research issues (RI) were defined before designing the

survey. After that, to obtain the whole picture of the SC software development

process, 37 survey questions were created. These questions covered the whole

SC software development process from requirement specification, design, cod

ing, testing and maintenance, using multiple choice multiple answer questions,

multiple choice single answer questions, rating questions and fill-in questions.

The first three types of questions are suitable for quantitative research. Fill-in

questions are intended to get qualitative comments from the respondents.

The following Table 6.1 and Table 6.2 illustrate the relationships be

tween the 31 RIs and the survey questions.

128

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Section NO.

of RI

Topic of RI Associated

Questions

in Survey

Software Devel

opment Process

1 Project Plan 15

2 Process models 16

3 Time distribution 23

Requirement 4 Requirement specification 17 and 27

5 Type of specification 17

6 Semi-formal specification 18

7 Formal specification 19

8 Non-functional Requirement 13

Design 9 Design documentation 27

10 Software reuse 21

11 Library used in developing soft

ware

12

12 Tools for software design 22 and 33

13 Testing plan 25

Coding 14 Coding standard 20

15 Tools for code generation 22 and 34

16 Debug tools 22 and 34

17 Version control tools 22 and 34

18 Source code and operating sys

tem

9

19 Source code and operating sys

tem

10

Testing 20 Test cases 25

21 Validation and verification

methods

24

22 Testing report 27

23 Tools for testing 22 and 34

24 People in charge of testing 26

Table 6.1: Research Issues and Survey Questions 1

129

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Section NO.

of RI

Topic of RI Associated

Questions

in Survey

Maintenance 25 Life time of software 14

Documentation 26 Tools to generate documentation 22 and 34

27 How quickly is documentation

updated

28

28 Factors of good documentation 29

29 Factors causing documentation

to be out of sync with the sys

tem it describes

30

People 30 Education background 3

31 Working experience 5 and 6

Table 6.2: Research Issues and Survey Questions 2

After the survey, we analyzed the survey data. The survey data were

collected using an open source software package, Surveyspro, and Microsoft

Excel was used to analyze the survey data. An advertisement for the survey

was posted on 20 newsgroups to recruit participants; meanwhile, about 400

invitation emails were sent to invite SC practitioners to participate in our sur

vey. Finally, 168 respondences were received. The following summarizes part

of our survey findings. The detail survey results were provided in Chapter 4.

Development Process

Coding and debugging is the primary process model which is used in SC

community, since 58% respondents indicated the entire process of their

group is only coding and debugging.

Requirements Specification (RS)

RS is adopted in SC software development, however, it does not occupy

130

Master Thesis Jin Tang
- McMaster -

Computing and Software

enough time, i.e. 12% of the total development process. Semi-formal

and formal methods are rarely used in current SC community. RS, basi

cally, is documented by natural language. Tools are seldom adopted to

generate the requirements document automatically, since, according to

the comments from respondents, most of them use Word and Latex to

generate RS.

Design

SC software practitioners do consider software reuse in the design stage,

as shown by more than 90% of respondents confirming that they use some

kind of reuse in their software development. As expected, mathematical

libraries, as a way of software reuse, are widely used in SC software

development.

Coding

The time for coding occupies around 50% of the whole development

process. C and FORTRAN are still most widely used programming

languages in the SC community. Moreover, tools have been adopted

in the coding stage, especially for debugging and version control, as

shown by the percentages of 66% and 69%, respectively. In terms of the

respondents comments, automatic code generation is rarely adopted in

SC software development.

Testing

The special characteristics of SC problems, as mentioned in Chapter 2,

the solutions of the SC problems are sometimes unknown; therefore, the

131

Master Thesis - Jin Tang
- McMaster -

Computing and Software

solutions of SC software are usually verified by comparing the real world

experimental data (75%), comparing with other computation models and

simulations (74%) and comparing with closed form (analytical) solutions

(62%). Moreover, in testing stage, usually, developers themselves are the

people who are responsible for testing.

Maintenance

For SC software, usually their lifetime is very long. More than 70% of

SC software will be used for more than 6 years, and 20% of SC software

has a lifetime of more than 20 years. A long lifetime makes maintenance

of this kind of software very important.

In our research, for every RI, differences between industry and academia

were compared. In most cases, they are quite similar, but there are still some

differences, which are presented as follows:

Industrial people put more effort on unit testing and are more likely to

have a coding standard than academic people

The group size of academia is smaller than industry. Typically, the group

size of academia is less than 15 people.

Our work compared the advantages and disadvantages of PRDP and

USDP. To present how to adopt SE methodologies to develop SC software, an

example, ONIS was created with complete documentation using two different

development processes, PRDP and USDP. The comparison of the two processes

were presented in Chapter 5. Table 6.3 briefly summarizes the key points

between the difference between these two processes.

132

Master Thesis - Jin Tang
- McMaster -

Computing and Software

PRDP USDP

Commonalities

High level design

Platform independent design

Using formal methods

Differences Process: SRS - MG - MIS

> Implement > Test

Process: Use case model >

Analysis model > Design

model ? Implement > Test

Do not have tools to support The whole process needs

tools to support

Formal methods using

mathematical notation

Formal methods using OCL

language

Specifications based on tex

tual and mathematical ap

proaches

Specifications based on

graphical language UML

Table 6.3: Commonalities and Differences between USDP and PRDP

To provide the recommendation for SC software practitioners to help

them determine which of the two candidate processes fit their particular situa

tion, the advantages and disadvantages for USDP and PRDP are summarized

as follows:

1) USDP

Advantages:

UML provides a large number of different modeling notations, such as

use case diagrams and class diagrams, which can make the system easier

to understand.

Dynamic diagrams such as sequence diagrams can describe the behaviour

of the system easily.

133

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Tools are available to support the whole development process.

Large resources, such as UML documentation and tools, are available on

the web

Disadvantages:

Too many diagrams inevitably lead to lengthy specifications.

Considerable knowledge is needed for designers and developers, such as

how to use UML, OCL and tools.

2) PRDP

Advantages:

PRDP was specifically modified for SC problems.

The whole development process is clear and easy to follow

Templates, especially templates for requirements specification, are avail

able

The specifications for PRDP are more concise than that of PRDP, since

PRDP use mathematical and textual notation.

Disadvantages:

The use of PRDP is limited; therefore, the resource of PRDP are also

limited.

People cannot use PRDP without mathematical background especially

knowledge of first order logic since mathematical notation is used in

PRDP

134

Master Thesis - Jin Tang
- McMaster -

Computing and Software

6.2 Future Work

The results of our work encourage further research in the field of using SE

methodologies to improve the quality of SC software. Some work can be done

in the future to promote our research to realize our research goal better, which

presents as follows:

Conduct an improved survey in the future to see the changes in the

development of SC software.

Add more questions to the survey to obtain more information about

developing SC software.

Conduct personal interviews to obtain deeper information that cannot

be obtained from a questionnaire.

Use more reliable survey software to increase the responses of the survey.

Use more tools in the USDP process, for example to generate documen

tation and code automatically

Develop a tools to help maintain consistency between the documents in

PRDP

135

Master Thesis - Jin Tang
- McMaster -

Computing and Software

136

Bibliography

C. Alexander and S. Ishikawa. A pattern language. In Oxford: Oxford Uni

versity Press, 1977.

Yuri Alexeev, Benjamin A. Allan, and Robert C. Armstrong. Component-

based software for high-performance scientific computing. In Journal of

Physics: Comference Series 16, SciDAC 2005, 2005.

American Statistical Association ASA. What is a margin of error. In ASA

Series: What Is a Survey?, 1998.

Charles Blilie. Patterns in scientific software: An introduction. In Computing
in Science and Engineering, 2002.

Ann Christine Catlin. Problem solving environ

ments projects, products, applications and tools. In

http:/'/www. cs.purdue. edu/research/cse/pses/research. html(accessed Jan

uary, 2008), 2008.

Org ChangingMinds. Open and closed questions. In

http://changingminds.org/techniques/questioning/open-closed.questions.htm

(accessed April, 2008), 2008.

S. Chauvie. Geant4 low energy electromagnetic physics. In IEEE NSS 2004

Conference, Roma Italy, 2004.

James R. Chromy and Savitri Abeyasekera. In household surveys in developing
and transition countries: Design, implementation and analysis. In Statistical

analysis of survey data, 2003.

Trevor Cickovski, Thierry Matthey, and Jesus A. Izaguirre. Design patterns for

generic object-oriented scientific software. In Notre Dame Technical Report

2004-29, 2004.

137

Master Thesis - Jin Tang
- McMaster -

Computing and Software

G. A. P. Cirrone, S. Donadio, S. Guatelli, A. Mantero, B. Mascialino, S. Par-

lati, A. Pfeiffer, M. G. Pia, A. Ribon, and P. Viarengo. A goodness-of-fit
statistical tookit. In Transactions on Nuclear Science, 2004.

Alan M. Davis. Software requirements: Analysis and specification. In Prentice

Hall Inc., 1990.

Karsten M. Decker and Mark J. Johnson. Application specification and soft

ware reuse in parallel scientific computing. In IEEE Concurrency, 1998.

M.M. Desu and D. Raghavarao. Sample size methodology. Academic Press,

Boston, 1990.

E. W. Dijkstra. Chapter notes on structured programming, academic press,

london. In Structured Programming, 1972.

Paul F Dubois. Designing scientific components. In Scientific Programming,
2002.

Corporation E-Cology. Open source business opportunities
for Canada's information and communications technology sec

tor: a collaborative fact finding study. In http://www.e-
cology.ca/canftoss/report/CANfioss-Report.pdf(accessed March, 2008),
2003.

Bo Einarsson. Scientific computing. In Accuracy and Reliability in Scientific

Computing, 2005.

eSurveysPro. Premium survey services. In

http:/'/www. esurveyspro. com/Default. aspx(accessed May, 2008), 2008.

E.K. Foreman. Survey sampling principles. M. Dekker, New York, 1991.

Andrew Forward. Software documentation -

building and maintaining artefacts
of communication. In Master Thesis, 2002.

M. Fowler. Analysis patterns. In Analysis Patterns: Reusable Object Models,
1997.

FSU. Routines for a finite region. In http://people. scs.fsu.edu(accessed Jan

uary, 2008), 2008.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pattern. In Design
Patterns: Elements of Reusable Object-Oriented Sotware, 1995.

138

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Gentleware. Poseidon for uml 6.0. In http://www.gentleware.com/(accessed

April, 2008), 2008.

Elizabeth Graham. Introduction to uml. In Gentleware Model to Business,

2004.

GSL. Gsl. In http://www.gnu.org/software/gsl/(accessed April, 2007), 2007.

S. Guatelli. Technology transfer from hep computing to the medical field:

Overview and application to dosimetry. In 9th Topical Seminar on Innova

tive Particle and Radiation Detectors Conference, 2004.

S. Guatelli, B. Mascialino, M. G. Pia, and M. Piergentili. Experience with

software process in physics projects. In American Nuclear Society, 2005.

Pierre Gy. Sampling for analytical purposes. John Wiley, New York, 1998.

Robert R.Korfhage Harley Flanders. Other improper integrals. In A Second

Course in Calculus, 1974.

Michael T. Heath. Scienfic computing. In Scientific Computing: An Introduc

tory Survey, 2003.

Daniel Hoffman and Paul Strooper. Software design, automated testing, and

maintenance a practical approach. In International Thomson Computer

Press, 1999.

IBM. Ocl. In Object Constraint Language Specification \ersion 1.1, 1997.

Ivar Jacobson. Grady Booch, and James Rumbaugh. The unified process. In

The unified Software Development Process, 1999.

M. Kellner. Introduction to orcan. In ORCAN Workshop, 2005.

Diane Kelly and Rebecca Sanders. Assessing the quality of scientific software.

In First International Workshop on Software Engineering for Computational
Science and Engineering, 2008.

J. P. Kenny, S. J. Benson, Y. Alexeev, and J. Sarich. Component-based integra
tion of chemistry and optimization software. In Computational Chemistry,
2004.

Jincheol B. Kim, In Soo Ko, and Hyyong Sul. Reengineering and refactoring

large-scale scientific programs with the unified process: A case study with

osiris pic program. In Proceedings of EPAC 2004, 2004.

139

Master Thesis - Jm Tang
- McMaster -

Computing and Software

Konstantin Kreyman and David Lorge Parnas. On documenting the require

ments for computer programs based on models of physical phenomena. In

Models 3 August, 2002.

Lei Lai. Requirements documentation for engineering mechanics software:

Guidelines, template and a case study. In Lei Lai Master Thesis, 2004.

Kevin Lano. Uml and mda. In Advanced Systems Design with Java UML and

MDA, 2005.

Kevin Lano, Jose Luiz Fiadeiro, and Luis Andrade. Software design. In Soft

ware Design Using Java2, 2002.

S. Lefantzi, J. Ray, C. Kennedy, and H. Najm. A component-base toolkit for

reacting flow with high order spatial discretizations on structured adaptively

refined mesh. In Comutational Fluid Dynamics: An International Journal,

2004.

P. Luksch, U. Maier, S. Rathmayer, and M. Weidmann. Sempa: Software engi

neering methods for parallel scientific applications. In Software Engineering

for Parallel and Distributed Systems, 1996.

Ruth Malan and Dana Bredemeyer. Functional requirements and use cases.

In Architecture Resources for Enterprise Adventage, 1999.

A. Mantero. A library for simulated x-ray emission from planetary surfaces.

In IEEE NSS 2004 Conference, Roma Italy, 2004.

Mathworks. The mathworks accelerating the pace of engineering and science.

In http:/'/www.mathworks. com(accessed February, 2007), 2007.

John H. McDonald. Confidence limits. In Handbook of Biological Statistics,
2008.

Sullivan Mizrahi. Definite integral. In Calculus and Analytic Geometry, 1990.

Chris Morris. Some lessons learned reviewing scientific code. In First Inter

national Workshop on Software Engineering for Computational Science and

Engineering, 2008.

NAG. Nag numerical algorithms group. In http://www. nag. co.uk(accessed

February, 2007), 2007.

140

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Netlib. Qag. In http://www.netlib.org/quadpack/qag.f(accessed January. 2008),
2008a.

Netlib. Qags. In http://www.netlib.Org/quadpack/qags.f(accessed Jan

uary, 2008), 2008b.

Netlib. Qawc. In http://www.netlib.org/quadpack/qawcf(accessed Jan

uary, 2008), 2008c.

Netlib. Qawo. In http://www. netlib. org/quadpack/qawo.f(accessed Jan

uary, 2008), 2008d.

Netlib. Qaws. In http://www.netlib.org/quadpack/qaws.f(accessed Jan

uary, 2008), 2008e.

Netlib. Qng. In http://www.netlib. org/quadpack/qng.f(accessed Jan

uary, 2008), 2008f.

Netlib. Slatec. In http:/'/www. netlib. org/
'

slatec(accessed February, 2007), 2007

National Physical Laboratory NPL. Repositories of software. In

http://www.npl. co. uk/server.php?shoiv=ConWebDoc. 197(accessed Febu-

rary,2008), 2008.

Object Management Group OMG. Ocl specification. In UML 2.0 OCL Spec

ification, 2003.

Object Management Group OMG. Uml resource page. In

http:/'/www. uml. org/'(accessed April,2008), 2008a.

Object Management Group OMG. Intoduction

to omg's unified modeling language(uml). In

http://www. omg. org/gettingstarted/what_is_uml. htm(accessed April, 2008),
2008b.

Inc. ORC Macro International. Evaluation of state-based integrated health

information systems. 2000.

Steven Parker. Enabling advanced scientific computing software. In Software

Enabling Technologies for Petascale Science, 2007.

D. L. Parnas. Designing software for ease of extension and contraction. In

Proceedings of the 3rd Internatinal Conference on Software Engineering,

1978.

141

Master Thesis - Jin Tang
- McMaster -

Computing and Software

D. L. Parnas and P. C. Clements. A rational design process: How and why to

fake it. In IEEE Transactions on Software Engineering, 1986.

D. L. Parnas, G.J.K Asmis, and J. Madey. Assessment of safety critical soft

ware in nuclear power plants. In Nuclear Safety, 1991.

D.L. Parnas, P.C. Clements, and D. M. Weiss. Proceedings of the 7th inter

national conference on software engineering. In The modular structure of

complex system, 1984.

Shari Lawrence Pfleeger and Joanne M. Atlee. Software engineering. In Soft

ware Engineering Theory and Practice, 2006.

Roger S. Pressman. Software engineering. In Software Engineering A Practi

tioner's Approach (Fifth Edition), 2001.

Mark Priestley. Uml. In Practical Object-Oriented Design With UML, 2003.

Quadpack. Quadpack numerical integration. In

http://www. csit.fsu. edu/ burkardt/fsrc/quadpack/quadpack. html(accessed

February, 2007), 2007.

Research Quinx. Final report. In Handbook for surveys on drug use among

the generation population, 2002.

Klaus Renzel. Exceptions handling. In Error Handling for Business Informa
tion System, 2008.

John R. Rice and Ronald F Boisvert. From scientific software libraries to

problem solving environment. In Computing in Science and Engineering,
1996.

W W Royce. Managing the development of large software system: concepts
and techniques. In IEEE WESTCON, Los Angeles CA: IEEE Computer

Society Press, 1970.

Judith Segal. Models of scientific software development. In First Interna

tional Workshop on Software Engineering for Computational Science and

Engineering, 2008.

Emil Sekerinski. Compiler. In Computer Science 4TB3 Courseware, 2006.

Mary Shaw and David Garlan. Computer science today: Recent trends and

developments. In Formulations and formalisms in software architecture,
1995.

142

Master Thesis - Jin Tang
- McMaster -

Computing and Software

W. Spencer Smith. Systematic development of requirements documen

tation for general purpose scientific computing software. In Proceed

ings of the 14th IEEE International Requirements Engineering Con

ference, RE 2006, Minneapolis / St. Paul, Minnesota, 2006. URL

http: //www. if i .unizh. ch/req/events/RE06/.

W Spencer Smith, Lei Lai, and Ridha Khedri. A new requirements template

for scientific computing. In Proceedings of the First International Workshop

on Situational Requirements Engineering Process Methods, Techniques and

Tools to Support Situation Specific Requirements Engineering Processes,

2005.

Ian Sommerville. Software engineering. In Software Engineering Seventh Edi

tion, 2004.

Inc. SPSS. SPSS/PC + Statistics 4.0. SPSS Inc., 1990.

Canada's National Statistical Agency Statistics Canada. Annual survey of

software development and computer services. In The Daily, 2005.

Canada's National Statistical Agency Statistics Canada. Variable. In

http://www.statcan.ca/english/edu/power/ch8/variable.htm(accessed

May, 2008), 2008.

Associates Steward. Calculate the margin of er

ror based on sample size and other factors. In

http://www.stewardandassociates.net/survey/margin/index. asp (accessed

May, 2008), 2008.

Inc Sun Microsystems. Exceptions. In

http:/'/java. sun. com/'docs/books/tutorial/'essential/'exceptions/
'

definition.html(accessed

January, 2008), 2008.

Umlet. New: Umlet 8, free uml tool for fast uml diagrams. In

http://www. umlet.com/(accessed April, 2008), 2008.

Inc. Visual Numerics. Visual numerics. In

http://www. vni. com/products/imsl(accessed February,2007), 2007.

Manoj Warrier, Shishir Deshpande. and V S. Ashoka. Scientific comput

ing with free software on gnu / linux howto (accessed january,2008). In

http://tldp. org/HOWTO/Scientific- Computing-with-GNU-Linux/, 2008.

143

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Wikipedia. Smoothfunction. In http://en.wikipedia.org/wiki/Smooth_function(access

April, 2007), 2007.

Wikipedia. Watts humphrey. In http://en.wikipedia.org/wiki/WattsJiumphrey(acces

May, 2008), 2008.

Gregory V Wilson. Scientists would do well to pick up some tools widely
used in the software industry. In Where's the real bottleneck in scientific

computing, 2006.

Wen Yu. Thesis. In Improving the Quality of a Parallel Mesh Generation

Toolbox by Using Software Engineering Methodologies, 2007.

144

Appendix A

Survey on Developing Scientific

Computing Software

A.l Survey Questionnaire

In this section, a survey invitation email and survey questionnaire with 37

questions are provided.

A. 1.1 Survey Invitation Email

Dear Participant:

If you are involved in the development of scientific computing software,

you are invited to participate in a survey on developing this kind of software.

If you have already received this request, I apologize for the cross-posting, but

I am attempting to advertise to as many developers as possible.

I would appreciate it if you could take 20-30 minutes to complete this

questionnaire. If you know others involved in the development of scientific

computing software, could you please forward this survey to them. Your as

sistance is highly appreciated.

There are 37 questions in the survey, which can be accessed via the

following link: http://www.eSurveysPro.com/Survey.aspx?id=b67celcl-84c2-
4c2b-b66d-70db013d8038

The survey is for a research experiment conducted by myself, Jin Tang,

a master student at the Department of Computing and Software, McMaster

University, Canada, under the supervision of Dr. Spencer Smith. The result

of this survey will help me with my research on the processes used to develop

scientific computing software, where scientific computing is defined as the use

of computer tools to analyze or simulate mathematical models of continuous

145

Master Thesis - Jin Tang
- McMaster -

Computing and Software

real world system of engineering or scientific importance so that we can better

understand and potentially predict the system's behavior.

The short term goal of this survey is to find the processes that industry

and academia follow to develop their scientific computing software. The mid

term objective is to direct research on adapting software engineering method

ologies to improve the quality of scientific computing software.

All questions are voluntary and you need only answer those questions

that you wish to. If you agree to participate in the survey, you can change your

mind and discontinue the survey at any time. This research will pose risks no

greater than what you would experience in the course of your day-to-day work

life.

All your answers to the survey questions, kept in Excel files, will be

completely confidential and only be available to myself and Dr. Spencer

Smith. If you have any questions, please contact Jin Tang at 905-525-9140

ext. 27029, email: tangj29@mcmaster.ca or Dr. Spencer Smith at 905-525-

9140 ext. 27929, email: smiths@mcmaster.ca. If you are interested in this

study, we are very happy to share our survey report with you. Please provide

your email address in the survey, the survey report will be sent to you.

This study has been reviewed and approved by the McMaster Research

Ethics Board: If you have concerns or questions about your right as a partic

ipant or about the way the study is conducted, you may contact McMaster

Research Ethics Board Secretariat at 905-525-9140 ext. 23142, email: ethic-

soffice'&mcmaster.ca. Thank you.

A. 1.2 Survey Questions

The followings are questions designed for this survey.

1. Characterization of yourself

Question 1 of 37 (Multiple Choice Single Answer Question)
What is the type of organization where you are currently involved in the de

velopment of scientific computing software?

Select one the following:

Company (developed in-house), Software vendor (producing custom software

systems or off-the-shelf software), Research and development institute, Univer

sity, Personal Interest Group (e.g. open source community), Others (identify)

146

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Question 2 of 37 (Multiple Choice Single Answer Question)
How many people in your current group are involved in developing scientific

computing software?

Select one the following:

1, 2 5, 6 15, 16 50, 51 100, > 100

Question 3 of 37 (Multiple Choice Multiple Answer Question)
What is your education background?

Select all that apply from:

Architecture, Business, Chemistry, Computer Science, Civil Engineering, Com

munications and Computers and Components Engineering Electromagnetics

and Electrical System Engineering, Mathematics, Mechanical Engineering,

Health Science, Industrial Engineering, Physics, Software Engineering, Others

(identify)

Question 4 of 37 (Multi-Choice Multiple Answer Question))
What is your education background?

Select all that apply from:

Faculty Member, Manager, Project Leader, Researcher, Software Designer,

Software Developer, Software Support, Student Technical Writer, Quality As

surance, Other (identify)

Question 5 of 37 (Multi-Choice Single Answer Question)
How long have you been working in the scientific computing field?

Select one the following:

< 1 year, 1 5 years, 6 10 years, 11 15 years, 16 20 years, > 20 years

Question 6 of 33 (Multi-Choice Single Answer Question)
How long have you been programming?

Select one the following:

147

Master Thesis - Jin Tang
- McMaster -

Computing and Software

< 1 year, 1 5 years, 6
- 10 years, 11 15 years, 16 20 years, > 20 years

2. Characterization of the scientific computing software that your

group is typically involved with developing

Question 7 of 37 (Multi-Choice Multiple Answer Question)
Which of the following fields is your software used in?

Select all that apply from:

Cell Biology, Evolution and Ecology, Molecular and Developmental Genet

ics, Analytical Physical Chemistry, Environmental Earth Sciences, General

Physics, Inorganic-Organic Chemistry, Solid Earth Sciences, Space and As

tronomy, Subatomic Physics, Computing and Information Science, Pure and

Applied Mathematics, Statistical Science, Chemical and Metallurgical Engi

neering, Civil Engineering, Communications, Computers and Components En

gineering, Electromagnetics and Electrical System Engineering, Industrial En

gineering, Mechanical Engineering, Others (identify)

Question 8 of 37 (Multi-Choice Multiple Answer Question)
What types of scientific computing software are you involved in developing?

Select all that apply from:

Fast Fourier Transform, Interpolation, Linear Solver, Linear Least Squares,
Mesh Generation, Numerical Integration, Optimization, Ordinary Differen

tial Equations (ODE) Solver, Random Number Generator, Partial Differential

Equations (PDE) Solver, Stochastic Simulation, Solving Eigenvalues, Solving
Nonlinear Equations, Others (identify)

Question 9 of 37 (Multi-Choice Multiple Answer Question)
What source code language(s) do you use?

Select all that apply from:

Basic, C, C++, Csh (C Shell Programming), FORTRAN, Ksh (Korn Shell

Programming), Matlab, Mathematica, Maple, Pascal, Python, Perl, Tel, Java,
Slang, Sh (Bourne shell Programming), Others (identify)

Question 10 of 37 (Multi-Choice Multiple Answer Question)

148

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Which of the following Operating Systems do you use?

Select all that apply from:

IBM OS/2 Warp, Linux / Variants, MacOSX, MS-DOS, Unix / Variants, Win

dows, Others (identify)

Question 11 of 37 (Multi-Choice Single Answer Question)
Please approximate the size of typical software you develop in KLOCS (KLOC
= 1000 lines of code).

Select one of the following:

< 1 KLOC, 1- 5 KLOCS, 6 20 KLOCS, 21 50 KLOCS, 51 100 KLOCS,

> 100 KLOCS

Question 12 of 37 (Multi-Choice Multiple Answer Question)
Which of the following libraries do you use to develop scientific computing

software?

Select all that apply from:

No Libraries, ATLAS (Automatically Tuned Linear Algebra Software), BLAS,
Deal II, Eiffel Numerical/Scientific Library, GSL (GNU Scientific Library),
IMSL, JAMA, Java Numerical/Scientific Libraries (JNL), Lisp Numerical/Scientific

Libraries, Lucent Libraries, MUMPS Parallel Solver, NAG, Netlib including

LAPACK, PLAPACK (Parallel Linear Algebra), PetSc, SLATEC, Statlib,

Trilinos Parallel Solver, Others (identify)

Question 13 of 37 (Rating Question)
In your experience, how important is each of the following software qualities

to you. Please rate the relative importance of the qualities, with one (1) for

the LEAST important items and five (5) for the MOST important. If you

feel that there are software qualities missing from this list, there will be an op

portunity for you to mention this in a written question at the end of the survey.

Rate for each of the following:

Ease of use, Maintainability, Memory use, Portability, Correctness / Reliabil

ity, Safety, Security, Speed, Verifiability

149

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Question 14 of 37 (Multi-Choice Multiple Answer Question)

What is the lifetime of the typical software that your group develops?

Select all that apply from:

< 1 year, 1 5 years, 6 10 years, 11 15 years, 16 20 years, > 20 years

3. Methodology Question 15 of 37 (Multi-Choice Single Answer

Question)
In your group, do you set up a project schedule or a project plan before de

veloping software?

Select one of the following:

Yes, No

Question 16 of 37 (Multi-Choice Multiple Answer Question) What

kind of process model do you use in developing software?

Select all that apply from:

No defined process, Code and Debug, Biological / Evolutionary Program

ming (The fittest solution survives), The Formal Methods Model (Specify, de

velop and verify using rigorous mathematical methods), The Linear Sequen

tial Model / Classic Life Cycle / Waterfall Model (sequentially through re

quirement, design, coding, testing, and maintenance), The Prototyping Model

(start with a "quick design" and a prototype), The Rapid Application Devel

opment Model (incremental with a short development cycle), The Spiral Model

(identify the sub problem with the highest risk, find a solution, repeat), Start

from a previous code and modify it, Others (identify)

Question 17 of 37 (Multi-Choice Multiple Answer Question)
What kind of specifications do you currently use to design and document sci

entific computing software?

Select all that apply from:

No Specification, Informal Specification (in natural language), Semi-formal

Specification, Formal Specification, Others (identify)

150

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Question 18 of 37 (Multi-Choice Multiple Answer Question)
Which of the following semi-formal specification approaches do you use?

Select all that apply from:

No semi-formal specifications, HOOD, SADT, SART, UML, Others (identify)

Question 19 of 37 (Multi-Choice Multiple Answer Question)
Which of the following formal specification approaches do you use? A formal

specification uses mathematical methods to document at least portions of the

requirements and / or the design.

Select all that apply from:

No formal specification, B-Method, VDM, Z notation, Others (identify)

Question 20 of 37 (Multi-Choice Single Answer Question)
In your current group, is there coding standards that whole group needs to

follow?

Select one of the following:

Do not know, Yes, No

Question 21 of 37 (Multi-Choice Single Answer Question) In your

current group, when you consider software reuse, what level of software reuse

do you reach?

Select one of the following:

Do not use software reuse, Function reuse, Module / object reuse, Sub-system

reuse, Application system reuse, Others (identify)

Question 22 of 37 (Multi-Choice Multiple Answer Question)
A programming tool or software tool is a program or application that software

developers use to create, debug, or maintain other programs and applications.

When you develop software, where do you use tools?

151

Master Thesis - Jm Tang
- McMaster -

Computing and Software

Select all that apply from:

Never use tools, Design software, Code generation, Debug code, Documen

tation generation, Unit testing, Integration testing, Version control, Others

(identify)

Question 23 of 37 (Fill-in Question)
Please estimate the respective ratio of time spent in the following phases, in

your software development process: (Please ensure that the numbers sum to

100%)

Requirements definition %

Design (Preliminary and detailed) %

Development (detailed design, coding, debugging) %

Testing (unitary, integration, system, acceptance) %

4. Testing

Question 24 of 37 (Multi-Choice Multiple Answer Question)
What method(s) do you use for software validation and verification?

Select all that apply from:

No validation and verification, Code analysis (using techniques and tools to

expose bugs), Comparing with real world experimental data, Comparison

with other computational models and simulations, Comparison with closed-

form (analytical) solutions, Testing numerical convergence (Verify that the

error decreases as the discretization size decreases), Deductive proof or model-

checking, Interval arithmetic (Using intervals to track the uncertainty in in

put quantities to an uncertainty in the result), Making the code self-adaptive

(Given a target error tolerance from the user, the software can solve the prob
lem on a sequence of grids until the error estimate is small enough) ,

Benchmark

tests, Using statistical techniques (for example Bayesian inference techniques),
Others (identify)

Question 25 of 37 (Multi-Choice Multiple Answer Question)
When you choose test cases, which of the factors do you consider?

Select all that apply from:

Do not know, Requirement specification, Boundary value (maximum and min-

152

Master Thesis - Jin Tang
- McMaster -

Computing and Software

imum number limit), State-transition, Logical conditions, Others (identify)

Question 26 of 37 (Multi-Choice Multiple Answer Question) In your

group, who is in charge of the testing phase?

Select all that apply from:

Nobody, Developer, Project manager or team leader, Quality controller. Oth

ers (identify)

5. Documentation

Question 27 of 37 (Multi-Choice Multiple Answer Question)
What kind of documentation do you use in developing scientific computing

software?

Select all that apply from:

None. User Requirement Specification, System Design Specification, Detailed

Design Specification, Code Comments. Testing Plan, Testing Report, Literate

Programming (a combination of a programming language, with the main idea

of treating a program as a piece of literature.), Others (identify)

Question 28 of 37 (Rating Question)
In your experience, when changes are made to a software system, how long does

it take for the supporting documentation to be updated to reflect the changes?

Rate for each of the following:

Never, Rarely, Months, Weeks, Days

Question 29 of 37 (Rating Question)
In your experience, how important is each of the following items in helping to

create effective software documentation. Please rate the relative importance

of the following items, with one (1) for the LEAST important items and five

(5) for the MOST important. If you feel that there are items missing from this

list, there will be an opportunity for you to mention this in a written question

at the end of the survey.

153

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Rate for each of the following:

Length (not too short, not too long), Availability (ability to retrieve the most

current version), Organization (table of contents, categorized, sub-categorized,

etc), Navigation (internal / external links, references), Document structure

(arrangement of text, tables, figures and diagrams), Document's format (i.e.
Microsoft Word, Note Pad, Visio, Html, Pdf), Content (the information that

a document contains), Influence from management / project leaders / other

developers to use it, Spelling and grammar, Writing Style (choice of words,

sentence and paragraph structure), Extent to which it is up-to-date, Use of

modeling diagrams (UML, SDL, etc), Use of examples (how to extend or cus

tomize a feature)

Question 30 of 37 (Rating Question)
How relevant are the following factors in causing software documentation to be

out of sync with the system it describes. Please rate the relative importance
of the following items, with one (1) for the LEAST important items and five

(5) for the MOST important. If you feel that there are items missing from this

list, there will be an opportunity for you to mention this in a written question
at the end of the survey.

Rate for each of the following:

Time constraints on developers, Budget constraints on the project, High costs

of maintaining documentation is not worth the effort, Rapid changes in re

quirements, Rapid staff turn over, Team members are unmotivated to docu

ment their code, Team members see little benefit in maintaining supporting
documents

6. Feedback

Question 31 of 37 (Multi-Choice Single Answer Question) Do you

wish to receive a synthesis of this survey?

Select one of the following:

Yes, No

Question 32 of 37 (Multi-Choice Single Answer Question)
We would like to contact some of the survey participants for a follow-up phone

154

Master Thesis - Jin Tang
- McMaster -

Computing and Software

interview. Would you potentially be interested in being contacted? If you

agree, and are selected, you will receive full details of the follow-up interview

in your invitation to participate.

Select one of the following:

Yes, No

Question 33 of 37 (Fill-in Question)
If you said yes to question 31 or question 32, or if you do not mind revealing

your identity, please fill in the following contact information.

Name:

Position:

Organization:
Email:

Phone:

Question 34 of 37 (Fill-in Question)
If you use tools, please specify which tools you use

For software design:

For code generation:

For debugging:

For testing:

For version control:

For document generation:

Question 35 of 37 (Fill-in Question)
Please provide any additional comments you may have about the following

topics:

What are the important software qualities for scientific computing?
What makes effective software documentation?

What factors causes documentation to be out of sync with the software it de

scribes?

Question 36 of 37 (Fill-in Question)
Are you satisfied with the current process used for scientific computing soft

ware development in your group? If not, what could be done to improve the

process'.''

Question 37 of 37 (Fill-in Question)

155

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Please provide any remarks you may have in connection with this question
naire.

156

Master Thesis - Jin Tang
- McMaster -

Computing and Software

A.2 Pilot Test Guidelines

This section provides the information about the pilot test, which includes the

introduction about the pilot test process, a pilot testing invitation email and

feedback questions.

A.2.1 Introduction

The goal of the pilot test on "Developing Scientific Computing Software'' sur

vey is to evaluate the trail survey questionnaire and the procedures and to

make any necessary changes. Pilot tests are used to provide relevant insight,

data, and experience as a basis for decisions to accept, improve, or discard

parts of all of the tested survey questionnaires and procedures. "Pilot tests

can also afford opportunities to gauge likely reaction to the planned survey

operations" (Foreman, 1991, page 433).

According to (Foreman, 1991, page 436), the pilot test should be conducted

in circumstances simulating operational conditions as far as practical. The

number of sample units selected for pilot survey purposes should be sufficient

to yield the intended inferences, comparisons, and estimated reliability. Where

comparisons are to be made, the pilot test sample selection should constitute

a suitable statistical experimental design.

In the pilot test on "Developing Scientific Computing Software' survey, 12

candidates were selected from academia and industry

A.2. 2 Process

An invitation email was sent to candidates. The pilot test was planned to

be finished in two weeks, including sending email and getting feedback. After

the pilot test, analysis was performed and a pilot test report was prepared

to provide the results of the pilot test. Then, the questionnaire was modified

according to the feedback of the pilot test.

157

Master Thesis - Jin Tang
- McMaster -

Computing and Software

A.2. 3 Email Invitation

Subject: Survey on Developing Scientific Computing Software, an Invitation

to be Involved in a Pilot Test

Dear Participant:

Please accept this invitation to participate in a pilot test for a survey

titled "Developing Scientific Computing Software." The survey is for a research

experiment conducted by myself, Jin Tang, at the Department of Computing

and Software, McMaster University, under the supervision of Dr. Spencer

Smith. The result of this survey will help me with my research on the processes

used to develop scientific computing software.

This pilot test invitation is completely voluntary. All questions are also

voluntary and you need only answer those questions that you wish to. If you

are busy and have no time to join our pilot test, we would understand. If you

agree to participate in the survey, you can change your mind and discontinue

the survey at any time. This research will pose risks no greater than what you

would experience in the course of your day-to-day work life.

The short term goal of this survey is to find the processes that industry

and academia follow when developing scientific computing software. The mid

term objective is to direct research on adapting software engineering method

ologies to improve the quality of scientific computing software.

There are 37 questions in the survey, which can be accessed via the

following link: http://www.eSurveysPro.com/Surveyaspx?id=b67celcl-84c2-
4c2b-b66d-70db013d8038

I would appreciate it if you could complete this survey and provide us

with feedback within two weeks. Your feedback is highly valuable for us to

evaluate the trail survey questionnaire. To assist you in providing feedback, I

have listed several questions at the end of this e-mail. You can provide your

feedback either by replying to this message and editing in your responses, or if

you prefer you may provide your feedback over the phone. You can call either

myself or Dr. Smith, or you can provide your phone number and a suggested

time, and we will contact you at your convenience.

All your answers to the survey questions and your feedback will be

completely confidential. If you have any questions, please contact Jin Tang

(email: tangj29@mcmaster.ca, phone: 905-525-9140 X27029) or Dr. Spencer
Smith (email: smiths@mcmaster.ca, phone: 905-525-9140 X27929).

This study has been reviewed and approved by the McMaster Research

Ethics Board. If you have concerns or questions about your right as a partic

ipant or about the way the study is conducted, you may contact McMaster

158

Master Thesis - Jin Tang
- McMaster -

.Computing and Software

Research Ethics Board Secretariat at 905-525-9140 ext. 23142, email: ethic-

soffice'Q'mcmaster.ca.

Thank you so much for your time and assistance.

A.2. 4 Feedback Questions

The following is the questions that help us obtain feedback from pilot test

participants.

1. How long did it take you to finish this survey?

2. How do you feel about the number of questions? Is there too many or

too few? What number could be right for you?

3. Which questions, if any, do you feel could be removed from this survey?

Why?

4. Which questions, if any, do you feel could be added to this survey?

5. What are your general thoughts about the survey?

6. Do you have any suggestions for this survey?

159

Master Thesis - Jin Tang
- McMaster -

Computing and Software

A.3 Pilot Test Report

A.3.1 Introduction

This report provides the feedback which were received from 12 pilot test candi

dates coming from academia and industry. It also presents recommendations

for updating the questionnaire.

The main aim of the pilot test on "Developing Scientific Computing

Software" survey is to evaluate the trail survey questionnaire and the proce

dures and to make any necessary changes. Among 12 candidates, 6 are faculty

members, 3 are graduate students at universities, 2 are experts working in

industry and 1 is self employed.

A.3. 2 Methodology

A standardized questionnaire containing a series of open and closed questions

accompanied by a cover letter and feedback questions were distributed to these

candidates via an email invitation.

All candidates were provided with a deadline (2 weeks) to return com

pleted questionnaires, either by email or by phone. This deadline was met by

majority of candidates and in the case of those candidates who did not meet

the deadline, follow-up emails were made. Finally, 10 of the 12 responses were

received.

A.3. 3 Analysis and Recommendation

This section provides the analysis of the feedback. Moreover, recommenda

tions for updating the questionnaire are also presented.

1. Length of The survey

Feedback

75 percent of respondents spent about 20 to 30 minutes finishing the survey

and feel the length of the survey is good for them. The longest time to finish

the survey is 40 minutes and the shortest time is 10 minutes. 2 of 10 respon

dents feel the length of questions is a little bit too long.
Recommendation

The above responses indicate that the length of survey is good. In the length

point of view, no more questions need to be added to or removed from the

survey. However, the cover letter in the first web page of the survey should

be modified. The estimate time for finishing survey in the cover letter was

160

Master Thesis - Jin Tang
- McMaster -

Computing and Software

modified from the original 10 15 minutes to 20 30 minutes.

2. The definition of Scientific Computing

Feedback

One respondent disagreed with the definition of Scientific Computing which

was used in the survey. He represented the differences between Scientific Com

puting and Numerical Analysis in his feedback.

Recommendation

The solution for this question is that taking out the sentence "Scientific com

puting is also termed numerical analysis' from the Scientific Computing defini

tion in the invitation email of the survey. Therefore, the updated definition of

Scientific Computing is "scientific computing is defined as the use of computer

tools to analyze or simulate mathematical models of continuous real world sys

tem of engineering or scientific importance so that we can better understand

and potentially predict the system's behavior."

3. Development Process

Feedback

One respondent mentioned Extreme Programming and Evolutionary Program

ming, especially Evolutionary Programming is widely used in open source de

veloper community.

Recommendation

For the Evolutionary Programming, because it is widely used in open source

developer community, an optional item was added to the question 16 in the

survey, moreover, a short description "The fitness solutions survive" was pro

vided to briefly introduce the Evolutionary Programming. The question 16

will be updated as follows:

Question 16 of 37 (Multi-Choice Multiple Answer Question)
What kind of process model do you use in developing software? Please select

all that apply.

No defined process

Code and Debug

Biological / Evolutionary Programming (The fitness solutions sur

vive)
The Formal Methods Model (Specify, develop and verify using rigorous math

ematical methods)
The Linear Sequential Model / Classic Life Cycle / Waterfall Model (sequen

tially through requirement, design, coding, testing, and maintenance)
The Prototyping Model (start with a "quick design" and a prototype) The

161

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Rapid Application Development Model (incremental with a short development

cycle)"
The Spiral Model (identify the sub problem with the highest risk, find a solu

tion, repeat)
Start from a previous code and modify it

Others (identify):

4. Library Missing
Feedback

One respondent mentioned Library deal II in his feedback. He said that Deal

II is a C++ program library targeted at the computational solution of partial
differential equations using adaptive finite elements, so it could be used in

developing scientific computing software.

Recommendation Deal II was added to question 12 as follows:

Question 12 of 37 (Multi-Choice Multiple Answer Question)
Which of the following libraries do you use to develop scientific computing
software? Please select all that apply.

ATLAS (Automatically Tuned Linear Algebra Software)
BLAS

Deal II

Eiffel Numerical/Scientific Library
GSL (GNU Scientific Library)
IMSL

JAMA

Java Numerical/Scientific Libraries (JXL)
Lisp Numerical/Scientific Libraries

Lucent Libraries

MUMPS Parallel Solver

NAG

Netlib, including LAPACK

PLAPACK (Parallel Linear Algebra)
PetSc

SLATEC

Statlib

Trilinos Parallel Solver

Others (identify):

5. Short-forms

Feedback

162

Master Thesis - Jin Tang
- McMaster -

Computing and Software

One respondent addressed in his feedback that he is not familiar with some

short-forms used in the questions of the survey.

Recommendation

For the issue of short-forms, it is hard and unnecessary to add short descrip

tions for all short-forms occurred in the survey and it is normal that respon

dents did not know some of short-forms in the questions. If they do not know

these short-forms that probably means they did not use them in their daily

developing scientific computing software activities.

6. Tools

Feedback

One respondent mentioned in his feedback that he did not use tools in devel

oping software actually he did. This feedback shows the term tools which was

used in the survey may cause the confusion of respondents.

Recommendation

According to this feedback, an introduction of tools was added to the question

23 in the survey. The question was updated as follows:

Question 22 of 37 (Multi-Choice Multiple Answer Question)
A programming tool or software tool is a program or application

that software developers use to create, debug, or maintain other

programs and applications. When you develop software, where do you use

tools? Please select all that apply.

Never use tools

Design software

Code generation

Debug code

Documentation generation

Unit testing

Integration testing

Version control

Others (identify):

A.3. 4 Fill-in Questions

From the answers of all respondents, we found that respondents seldom replied

the fill-in questions (Question 31 37). Therefore, more detailed information

might be very difficult to be expected from the fill-in questions in the survey.

Same problems also occurred in the optional item "Others (identify), even if

163

Master Thesis - Jin Tang
- McMaster -

Computing and Software

people select the option "Other"
, they might not put detailed information in

the text box of item "Others" .

A.4 Conclusion

Feedback from the pilot testing indicate that, generally speaking, the survey

is good except some minor changes which were addressed above.

164

Appendix B

Modified Parnas' Rational

Design Process

165

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.l SRS for ONIS

This section provides the software requirement specification (SRS) for a one-

dimensional numerical integration solver (ONIS) using Modified Parnas' Ra

tional Design Process (PRDP).

B.l.l Introduction

This section gives an overview of the Software Requirements Specification

(SRS) for a One-dimensional Numerical Integration Solver (ONIS). First, the

purpose of the document is provided. Second, the scope of an ONIS is identi

fied. The final part of this section summarizes the organization of the docu

ment.

B.l. 1.1 Purpose of the Document

This SRS provides a "black-box" description of a one-dimensional numerical

integration solver. The intended audience of the SRS is the development team
and OXIS users whose characteristics are specified in section B.l. 2. 2.

B.l. 1.2 Scope of the Software Product

An ONIS can be used as a single application. It also can be a general pur
pose tool used by other applications. The ONIS documented here is an alone

software. The input of the ONIS is a function, characteristics of the given
function, an interval, and absolute accuracy requested or relative accuracy re

quested. The ONIS computes the value of numerical integration according to
the characteristics of the input function and the given interval. The output is
the approximation to the integral, an estimate of the absolute error, the total

number of function evaluations that were executed and an error code.

B.l. 1.3 Organization of the Document

This SRS follows the template given by (Smith, 2006). The rest of the doc

ument is organized as follows. Section B.l.2 provides the overall description
of the system to make the requirements easier to understand. Section B.l. 3

contains all the details of system requirements. Section B.1.4 introduces the

non-functional requirements. Section B.1.5 lists the solution validation strate

gies for this software. Other system issues, traceability matrix, a list of possible
changes in the requirements, and values of auxiliary constants are provided in

Section B.1.6.

166

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.1.2 General System Description

This section describes the general information about the system. The system

context is presented first. Then the characteristics of the potential users are

discussed. At the end of this section, some system constraints are described.

B.l. 2.1 System Context

Input

ONIS

,'^^-.;W..|>W',W^^'tfJ-

Output

-+4 USER

Figure B.l: System Context Diagram

Figure B.l shows the context for ONIS. A circle represents an external

entity outside the system, a user in this case. The rectangle is the system itself.

Arrows represent the data flows between them. The "input" is a function,

characteristics of the given function, an interval, absolute accuracy requested

or relative accuracy requested. The "output" is the approximated value of

numerical integration of the given function, an estimate of absolute error, the

number of function evaluations and an error code. The function of the ONIS

is generating "Output" from "Input."

B.l.2. 2 User Characteristics

The target user groups of ONIS are those who are involving in the numerical

integration. Anyone who has the following characteristics should be qualified

to use this system:

1. Possess an education level that is equivalent to a first or second year

university students in science or engineering.

2. Complete university or college first-level calculus course.

3. Complete high school computer related courses.

167

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.l.2.3 System Constraints

This system will be implemented on Windows or Mac OS environment.

B.l.3 Specific System Description

This section describes the system requirements in detail. After the problem is

clearly stated, some solution characteristics are specified. Subsection "Back

ground Overview" provides some background information of the system, and

subsection "Terminology Definition" illustrates a list of related concepts. Fol

lowing this, subsection "Theoretical Models" presents the mathematic model

of numerical integration. Then, subsection "Goal Statements" defines the ob

jective. Finally, subsections "Assumptions" ,
"Data Constraint" and "System

behavior" form the major parts of this section.

B.l.3.1 Background Overview

The numerical evaluation of integrals is one of the oldest problems in math

ematics. The task is to compute the value of the definite integral of a given

function. Much effort has been devoted to techniques for the analytic evalu

ation of the integrals and several libraries have already existed, for example

QUADPACK, NAG, IMSL and SLATEC, to calculate the integral.

B.l.3. 2 Terminology Definition

The following definitions are sorted by its occurring orders in this document.

fb
/: true value of / f(x) dx whose definition is in B.l. 3. 4.

J a

Continuous and discontinuous function (Mizrahi, 1990, page 97): let y
= f(x) be a function defined on an open interval. The function is said

to be continuous at c, if

1. f(c) is defined and

168

Master Thesis - Jin Tang
- McMaster -

Computing and Software

2. lim/(x) exists and
x>c

3. hmf(x)=f(c)

If any one of these three conditions is not satisfied, then the function is

said to be discontinuous at c.

Smooth (Wikipedia, 2007): If the derivative of f(x) is continuous, then

f(x) is said to be C1 If the kth derivative of f(x) is continuous, then

f{x) is said to be Ck By convention, if f(x) is only continuous but does

not have a continuous derivative, then f(x) is said to be C. And if the

kth derivative of f(x) is continuous for all k, then fix) is said to be C.

In other words C is the intersection C = HfcLo Ck Differentiable

functions are often referred to as smooth. If f(x) is Ck
,
then /(;r) is

said to be fc_smooth. Most often a function is called smooth (without

qualifiers) if f(x) isC or Cl
, depending on the context.

fb
Singularity (Harley Flanders, 1974, page 35): a definite integral / f{x)dx,

J a

a and b finite, is called singular if f(x) "blow up" at one or more points

in the interval [a, b}. Examples are:
3

1 f5 1 fw 1

dx, I dx, I dx
x Jj r-4 J6 m x 5

The first integrand "blows up" at x = 0, the second at x = 2, the third

at x = 6. Such bad points are called singularities of the integrand.

,6

End point singularity: an integral / f(x) dx where f(x) has singular-
J a

ities which occur either at x a or at x = b. These singularities are

called end point singularities.

CT_QAWS: Integrand can be factored as f(x)=w(x) x g(x), where g(x)
is smooth and w(x) shows a singular behavior at the end points, i.e.

w(x) has the following format:

1. (x-a)a x (b-x)P

169

Master Thesis
- Jm Tang

- McMaster -

Computing and Software

2. (x
-

a)a x (6
- xf x log(x

-

a)

3. (x
-

a)a x (6
- xf x log(6

-

x)

4. (x
- a)a x (b

- x)13 x log(x
-

a) x log(6
-

x)

where a, (3 are real, and a, (3 > -1.

Oscillatory function: A function that exhibits oscillation (i.e., slope

changes) is said to be oscillating, or sometimes oscillatory.

CT_QAWC: f(x) can be expressed as w(x) x g(x), where g(x) is smooth

on [a, b] and w(x) = 1 / (x
- c) for some constant c.

CT_QAWO: f(x) can be expressed as w(x) x g{x), where y(x) is smooth

on [a,b] and -w(x)=cos(wx) or sin(u;x).

CT_QNG: f(x) is smooth.

CT_QAGS: f(x) has end point singularities.

CT_QAG: f(x) has an oscillatory behavior or nonspecific type, and no

singularities.

B.l.3.3 Goal Statements

Given function f(x), characteristics C of the given function, an interval x G

[a, b] (a < b), absolute accuracy requested epsabs or relative accuracy re

quested epsrel, return an approximate value y, where y
~ I / f(x)dx,

J a

an estimate of the absolute error ea, the number of function evaluations neval

and an error code errorcode.

170

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.l.3.4 Theoretical Models

Let / be a real valued function defined on the closed interval [a, b}. If the

function limit exists, then the number 7" is called the definite integral of /

fb
from a to b and it is denoted by / f(x) dx. That is,

J a

r-b n

/ fix) dx = lim >^ fiuAAxi
Ja I^IH7Zf

n

I = lim > f(u,)Ax, means that for any given e > 0, there is a positive

<=i

number 5 so that if P is a partition of [a, b] for which ||P|| < 5, then

^2f{ui)/l\Xi-I\ < e

z=i

for any choice of numbers Ui in the subintervials [xj_i, x;] of P (Mizrahi, 1990,

p.349).

B.l.3. 5 Data Definition

In this section, some specific data using for solving the problem and data

returned by the system will be defined.

Characteristics of Input Function (Ctype):

Ctype = {CT.QAWO, CT_QAWS, CT.QAWC, CT_QNG, CT_QAGS,

CT_QAG}

Error Code Type (Ecodetype):

Ecodetype = {NORMAL, MAXJEVALXIMIT, RNDOFF.ERR, LOCJDIFF,

NOT_CONVG, DIVGJNGR, INVALIDJNPUT}

171

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Symbol Type Meaning Use

a F lower limit of integration Input

b F upper limit of integration Input

m R^R input function Input

C Ctype characteristics of the input function Input

epsabs F absolute accuracy requested Input

epsrel F relative accuracy requested Input

y F approximation to the integral Output

a F estimate of the absolute error Output
neval Integer number of function evaluations Output
errcode Ecodetype error information Output

Table B.l: Input and Output Data

B.l.3. 6 Assumptions

Input Assumptions (Table B.2)

Calculation (Table B.3)

Output Assumptions (Table B.4)

B.l.4 Data Constraints

B.l.4.1 System Behaviour

Input Variable Behaviour(IV) (Table B.6):

Output Variable Behaviour (OV) (Table B.7):
n = number of function evaluations.

172

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Variability Value of Parameter of Variation

VI (CT.QAWO) True

V2 (CT.QAWS) True

V3 (CT_QAWC) True

V4 (CT.QNG) True

V5 (CT.QAGS) True

V6 (CT.QAG) True

V7 (Entries for a) { x : R | x G F: MIN.A < a < MAX_A}
V8 (Entries for b) { x : R | x G F: MINJB < b < MAX_B}
V9 (Entries for epsabs) {x: R|xGF: 0 < epsabs <

MAX.EPSABS}
V10 (Entries for epsrel) {x: R|xGF: 0 < epsrel <

MAX_EPSREL}
Source of input Through the user interface

Encoding of input Text

Format of input f(x) f(x) represented symbolically using ex

pressions in C libraries

Format of input a the significant digits of input data which

should be no more than MAXJN.DIG

Format of input b the significant digits of input data which

should be no more than MAXJN_DIG

Format of input epsabs the significant digits of input data which

should be no more than MAX_ERR_DIG

Format of input epsrel the significant digits of input data which

should be no more than MAX_ERR_DIG

Table B.2: Variabilities for Input Assumptions

173

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Variability Value OF Parameter of Variation

Check input a and bl True (check a < b and a, b are always numbers)

Check input epsabs? True (check epsabs > 0 and epsabs are always

numbers)
Check input epsrel? True (check epsrel > 0 and epsrel are always

numbers)
Check characteristics

C of the input func

tion?

False (assume users input characteristics of f(x)
are the same as the actual characteristics of f(x))

Check the input

function f(x)7

True (check string of input f(x) is not empty)

Exceptions gener

ated?

True

Table B.3: Variabilities for Calculation

Variability Value Parameter of Variation

Destination for out

put y

To screen

Possible value of out

put y

F U { oo, oo, undef}

Format of output y the significant digits of the result which should be

no more than MAX_OUT_DIG.

Destination for out

put ea

To screen

Possible value of out

put ea

F U {undef}

Format of output ea the significant digits of the result.

Destination for out

put neval

To screen

Possible value of out

put neval

Integer

Format of output

neval

the significant digits of the result.

Table B.4: Variabilities for Output

174

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Variable Type System Constraints

a F MIN_A < a < MAXJl

b F MIN_B < b < MAX_B

epsabs F 0 < epsabs < MAX.EPSABS

epsrel F 0 < epsrel < MAXJEPSREL

er F 0 < er < MAXJIELERR

a F 0 < ea < MAX.ABSERR

funcount Integer 0 < funcount < MAX.FUN.COUNT

Table B.5: Data Constraints

Input Variable a Output(ErrorMsg+=) Output (Abort=)

a<MIN_A||a>MAX_A INVALID.INPUT True

Otherwise NORMAL False

Input Variable b Output (ErrorMsg+=) Output(Abort=)

b<MIN_B||6>MAXJB INVALIDJNPUT True

Otherwise NORMAL False

Input Variable epsabs Output (ErrorMsg+=) Output(Abort=)

epsabs <0

||epsa6s>MAXJEPSABS

INVALIDJNPUT True

Otherwise NORMAL False

Input Variable epsrel Output(ErrorMsg+=) Output(Abort=)

epsrel <0

|| epsrel >MAX_EPSREL

INVALIDJNPUT True

Otherwise NORMAL False

Input Variable f{x) Output(ErrorMsg+=) Output(Abort=)

String of input f(x) is empty INVALIDJNPUT True

Otherwise NORMAL False

Input Variable C Output (ErrorMsg+=) Output(Abort=)
C G CType NORMAL False

Otherwise INVALIDJNPUT Ture

Table B.6: Input Variable Behaviour

175

Master Thesis - Jm Tang
- McMaster -

Computing and Software

<L

ro

^i

o

c-t-

1-!

P'
cr

CD

o

0
i-i

3
the

algorithm
does

not

converge
f(x)
is

divergent
inte

gral local

difficulty
in

inte

grand

behavior
round
off

error
oc

curred
in

f(x)

(n

>
MAX_FUN_COUNT) Behaviour

of

Algo

rithm

a.
CD

CD

G.

g
>3

a.
CD

CD

G.

G-
CD

yC
CD

13

G.
CD

tzV
E3
CD

G.

^

3

O

T>

>
r1

2!

O

1

O

O

<

O
11

<
O
1
1 1

O

f

0
0
1

0
1I

0

0

1

H

S3

>

1

1

t-1
1(

H

ex

s

d

i-s

0

X

1

s

G.
CD

CD

g.

G.
CD

135
S3
CD

G^

CD

13
CD

G-

S3

CD

CD

G.

0)
0

s !=:
!3

a,
CD

ten

CD

G-

C
13

G-
CD

tzh
E=s
CD

G.

S3
13

G-
CD

135

13
CD

a.

S3

13
G*
CD

!35

!3
CD

G.

[3
13

s
0

0

C4-

176

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.1.5 Non-functional Requirements

Requirement Number

Requirement Name

Nl

Input Accuracy

Description

Binding Time

History

The input data of the system are assumed

to be accurate, since the input data are

given directly by the user of the system.

Assuming no human error, there are no in

put data error.

Specification time

Created-Feb, 2007

Requirement Number

Requirement Name

N2

Performance

Description

Binding Time

History

speed (response time): for the func-
/999999

tion f(x) = x2 + 3dx, the

i-999999

response time of ONIS will compare

with other systems, for exampleMat-

lab.

precision: the significant digits
of the input data should be no

more than MAXJNJDIG and out

put data should be no more than

MAX_OUTJ)IG.

Specification time

Created-Feb, 2007

177

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Requirement Number

Requirement Name

N3

Tolerance

Description

Binding Time

History

True solution is not always known. If true

solution can be found, computed solution

and true solution can be relatively com

pared.

for the specific test case f(x) =

,999999

/ x2 -|- 3 dx,
J -999999
1 Vcalculated~ytrue \^ 4- ~1 +

TJtrue

Moreover, computed solution can be com

pared with third-party systems, for exam

ple Matlab.

I Vthxrdrart-Vcalculattd .< tollKirdpOH
Vcalculated

Specification time

Created-Feb, 2007

Requirement Number

Requirement Name

N4

Usability

Description

Binding Time

History

This system should be easy to learn and

use. Users have the characteristics indi

cated before should take no more than

REL_TIME to use this application to com

pute numerical integration for a test case
/999999

f(x) = x2 + 3dx.

7-999999

Specification time

Created-Feb, 2007

Requirement Number

Requirement Name

N5

Portability

Description

Binding Time

History

This system should be easily ported to

general personal computers with Windows

2000, Windows XP operating systems or

later.

Specification time

Created-Feb, 2007

178

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.l. 6 Solution Validation Strategies

Solution validation is very important for every system. The following is the

solution validation strategies that can be used in ONIS.

B.l.6.1 Relative Comparison between Computed Solution and True

Solution

True solutions of the system can not always be obtained, however, sometimes

the true solution of test cases can be obtained by some mathematic methods

directly, in this case, we can relatively compare the computed solutions and

true solution.

B. 1.6.2 Compare Solutions with a Third-party System

Computed solutions also can be compared with a third-party system, for ex

ample Matlab and Maple. If the solutions are similar, it shows the solution is

probably correct.

B.l.6. 3 Interval Arithmetic Method

Using interval arithmetic quadrature software for comparing the solutions. If

the solution is inside the interval, that means the solution might be correct.

If the solution is outside the interval, the solution could be wrong.

B.l.6.4 Using Specific Test Cases

Using some specific test cases, for example giving a very small or very large a

and b, for instance, MIN_A for a and MAXJ3 for b, to check the solutions.

B.l. 7 Other System Issues

This section includes some other supporting information that might contribute

to the success or failure of the system development. The following factors are

considered:

Open issues are statements of factors that are uncertain and might make

significant different to the system.

179

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Off-the-shell solutions are existing systems or components bought or bor

rowed. They could potentially satisfy the requirements.

Waiting rooms provide a blueprint for how the system will be extended.

B.l. 7.1 Open Issues

There is no open issues investigated at this stage.

B. 1.7.2 Off-the-Shelf Solutions

Existing system

- Matlab

Matlab is both a powerful computational environment and a pro

gramming language that handles complex arithmetic. It is a large

software package that has many advanced features built-in, and it

has become a standard tool for many working in science or engi

neering disciplines. MATLAB can find both an indefinite integral

(i.e., antiderivative) and a definite integral of a symbolic expression.
That assumes an elementary antiderivative exists. If not, MATLAB

can compute a very accurate* numerical approximation to the defi

nite integral (Mathworks, 2007).

Existing libraries

-

QUADPACK

QUADPACK is a library of FORTRAN90 routines, using double

precision arithmetic, for estimating integrals. The QUADPACK
estimate the integral of a function f(x). There are routines for

nonadaptive or adaptive integration, finite, semi-infinite or fully
infinite integration regions, integrands with singularities, and inte

grands that include a factor of sin(x) or cos(x) (Quadpack, 2007).

- NAG

The NAG (Numerical Algorithms Group) library is a comprehen
sive collection of functions or routines for the solution of numerical

and statistical problems (NAG, 2007).

180

Master Thesis - Jin Tang
- McMaster -

Computing and Software

IMSL

The IMSL Numerical Library provides advanced mathematical and

statistical functionality for programmers to embed in applications

that are written in one of the most widely used programming envi

ronments in use today (Visual Numerics, 2007).

SLATEC

The SLATEC Common Mathematical Subroutine Library is an ex

periment in resource sharing by the computing departments of sev

eral Department of Energy Laboratories. The objective is to coop

eratively assemble and install at each site a mathematical subrou

tine library characterized by portability, good numerical technol

ogy, good documentation, robustness, and quality assurance. The

result is a portable Fortran mathematical subroutine library of over

130,000 lines of code (Netlib, 2007).

GSL

The GNU Scientific Library (GSL) is a numerical library for C and

C++ programmers. It is free software under the GNU General

Public License. The library provides a wide range of mathematical

routines such as random number generators, special functions and

least-squares fitting. There are over 1000 functions in total with an

extensive test suite (GSL, 2007).

B.l. 7. 3 Waiting Room

Here, we list the possible changes that can affect the extension of the system.

Wl: The system can recognize features of the given functions automat

ically.

B.l. 8 Traceability Matrix

The traceability matrix defined in the table gives a big picture of the associ

ations among the goal, assumptions, and requirements. The goal is a general

problem. After assumptions are applied, the goal is restricted to the problems

that can be solved in this system. In the table, when the item on the top

header changes, we go through cells of the column of that item. If there is a

check mark (X) in a cell, the requirement on the left header should be changed.

181

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Goal Input

Assumption

Calculation Output

Assumption

IV X X X

ov X X

Nl X X X

N2 X

N3 X X X

N4 X

N5 X

Table B.8: Traceability Matrix

Tracking these relations is useful for developing and maintaining the software.

IV: Input Variables

OV: Output Variables

Nl: Input Accuracy
N2: Performance

N3: Tolerance

N4: Usability
N5: Portability

B.l. 9 Values of Auxiliary Constants

MAXJNJDIG: a parameter specifying the maximum number of input

significant digits, MAXJNJDIG = 10.

MAX_OUT_DIG: a parameter specifying the maximum number of out

put significant digits, MAX_OUT_DIG = 10.

REL_TIME: time for
usersgto finish the task of calculate the numerical

integration for f(x) = x2 + 3dx using ONIS and Matlab respec-
7-999999

tively. This constant is used for testing the usability for the system.

182

Master Thesis. - Jin Tang
- McMaster -

Computing and Software

MIN_A: a parameter specifying the minimum number of lower limit of

integration a, MIN_A = -999,999.

MAX_A: a parameter specifying the maximum number of lower limit of

integration a, MAX_A = 999,999.

MINJ3: a parameter specifying the minimum number of upper limit of

integration b, MIN_B = -999,999.

MAX_B: a parameter specifying the maximum number of upper limit of

integration b, MAXJB = 999,999.

MAXJCPSABS: a parameter specifying the maximum number of input

absolute accuracy requested epsabs, MAXJCPSABS = 1.

MAXJEPSREL: a parameter specifying the maximum number of input

relative accuracy requested epsrel, MAXJEPSREL = 1.

MAX_FUNCOUNTJDIG: a parameter specifying output significant dig
its of the maximum number of function evaluations neval, MAX_FUNCOUNTJDIG

= 5.

MAXJ^UN.COUNT: a parameter specifying the maximum number of

function evaluations neval, MAX_FUN_COUNT = 10,000.

toLct: a parameter specifying the relative error between computed solu-

/
999999

x2 + 3 dx

-999999

,
toLct should less than 0.1.

toLthirdpart: a parameter specifying the relative error between com

puted solution and third-party systems solution. For the specific test
/999999

case f(x) = x2 + 3dx, toLthirdpart = 0.1.
J- 999999

183

Master Thesis - Jin Tang
- McMaster -

Computing and Software

tol_rel: a parameter specifying the relative error between computed solu-

/
999999

x2 + 3 dx

999999

,
toLct should less than 0.1.

NORMAL: normal exit.

RNDOFFJCRR: occurrence of round off error (makes further improve
ments of the already reached accuracy impossible) .

MAXJEVALJJMIT: maximum number of function evaluations has been

achieved.

LOCJ3IFF: local difficulty in integrand behavior.

DIVGJNGR: divergent integral (or slowly convergent integral).

NOT_CONVG: the algorithm does not converge.

INVALIDJNPUT: invalid input parameters.

184

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.2 Module Guide for ONIS

This section provides Module Guide (MG) for ONIS.

B.2.1 Introduction

Having completed the Software Requirement Specification (SRS) in the ear

lier stages, a module structure for a One-dimensional Numerical Integration

Solver(ONIS) based on information hiding has been determined. This doc

ument specifies the module structure of ONIS will be used in the following

ways (Parnas et al., 1984):

As a guide for new project members This document can be a guide for

a new project member to easily understand the overall structure of the

modules and quickly find the relevant modules they are searching for.

As the support for maintainers
- This document will facilitate the process

of the maintainers' understanding when making changes in the system.

It is important for maintainers to update the relevant sections in the

document to reflect the current design after the changes.

As a verification check for reviewers Once a module guide has been

written, it can be used to check for various errors, for example inconsis

tency among modules, feasibility of the decomposition and flexibility of

the design.

The rest of the document is organized into four sections. Section B.2. 2 in

troduces the connection between requirements and design. Section B.2. 3 and

Section B.2. 4 lists the anticipated changes and unlikely changes of the software

requirements. Section B.2. 5 summarize the module decomposition. Section

B.2. 6 lays out the traceability matrix to check the completeness of the design

against the requirement. Section B.2. 7 illustrates the use hierarchy of all the

modules.

B.2. 2 Connection Between Requirements and Design

The design of the system should satisfy the SRS. In this stage, the system is

decomposed into modules.

185

Master Thesis - Jm Tang
- McMaster -

Computing and Software

B.2. 3 Anticipated Changes

This section lists anticipated changes of the system. These changes can make

system more mature in the future. The anticipated changes will also result in

the changes of the modules.

ACl: Algorithms for solving numerical integration.

AC2: Input Device. The input device can be keyboard, file or memory.

AC3: Methods to get input data and output data.

AC4: Format of input function, for example, the format of input function

can be a tabular data.

AC5: The sequence of programs being called.

AC6: The data structure of how to store input function.

AC7: Constraint of lower and upper limit of input function, for example,

a and b can be infinity.

AC8: Algorithms for parsing the input function.

AC9: The format of input data, that means the significant digits of the

input data can be changed.

AC10: Output Device. The output device can be screen, file or memory.

B.2.4 Unlikely Changes

The following list the potential changes that were not expected to be happened
in the system. Sometimes, changing some of these design decisions may lead

to big changes of the design.

UC1: The goal of the system.

UC2: Dimension of the integral.

UC3: The representation of the input function. f(x) is always repre

sented symbolically using expressions in C library.

186

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Level 1 Level 2

Hardware-Hiding Module Keyboard Input Module

Mouse Module

Screen Display Module

Behavior-Hiding Module Master Control Module

Input Data Module

Output Show Module

Software Decision Module Algorithm Module

Parser Module

Table B.9: Module Hierarchy

The following is the summarization of the leaf modules.

Ml: Keyboard Input Module

M2: Mouse Module

M3: Screen Display Module

M4: Master Control Module

M5: Input Data Module

M6: Output Show Module

M7: Parser Module

M8: Algorithm Module

B.2. 5 Module Decomposition

This section gives the secret, service of each module. For the leaf modules,

anticipated changes are provided. A module hides a change which called the

secret of a module. The module service is the functions that the module

provided. The anticipated change describes the possible change in the future.

This section is organized as follows: Section B.2. 5.1 provides the module

guide for the behavior hiding modules. Section B.2. 5. 2 shows the module guide

for the software decision hiding modules. Section B.2. 5. 3 gives the module

guide for the hardware hiding modules.

B.2.5.1 Behavior Hiding Module

This section focuses on the module guide for behavior hiding modules in the

ONIS system.

187

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Module name Behavior Hiding Module

Secrets The contents of the required behaviors

Services This module serves as communication layer between the

hardware-hiding module and the software decision mod

ule.

Master Control Module

Module name Master Control Module

Secrets The calling sequence of modules

Services This module controls the execution sequence of different

modules being called through the system.

Anticipated

changes

Since this module works as a mediator in the whole sys

tem, the sequence of programs being called might be

changed. The expected changes correspond to AC5 in

the list of anticipated changes.

Input Data Module

Module name Input Data Module

Secrets The algorithm on how to input data from screen, and

how to store input data into system.

Services Input data to system from the screen.

Anticipated

changes

Services of inputing data to the system might be changed
in the future. The expected changes correspond to AC2

and AC9 in the list of anticipated changes.

Output Show Module

Module name Output Show Module

Secrets Output format

Services Output the data on the screen.

Anticipated

changes

Output format might be changed and add. The antici

pated changes correspond to AC 10 in the list of antici

pated changes.

B.2. 5. 2 Software Decision Module

This section focuses on the module guide for software decision modules in the

ONIS system.

188

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Module name Software Decision Module

Secrets System decision that include data structure and algo

rithms used in the system.

Services This module includes data structure and algorithms used

in the system.

Parser Module

Module name Parser Module

Secrets Algorithm for parsing the input function and function

evaluation.

Services Parse and evaluate the input function.

Anticipated

changes

The algorithms for parsing the input might be changed in

the future. The anticipated changes correspond to AC8

in the list of anticipated changes.

Algorithm Module

Module name Algorithm Module

Secrets Algorithm for calculating the numerical integration

Services Calculate the numerical integration.

Anticipated

changes

The algorithms for calculating numerical integration

might be changed in the future. The anticipated changes

correspond to ACl in the list of anticipated changes.

B.2.5. 3 Hardware-Hiding Module

This section focuses on the module guide for hardware-hiding modules in the

ONIS system.

Module name Hardware-Hiding Module

Secrets The data structure and algorithm used to implement the

virtual hardware.

Services Serves as a virtual hardware used by the rest of the sys

tem. This module provides the interface between the

hardware and the software.

Keyboard Input Module

189

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Module name Keyboard Input Module

Secrets The data structure and algorithms for implementing the

interface between the keyboard and the system.

Services Work as a bridge between system software and user and

provide all keyboard events that system software needs

to respond.

Anticipated

changes

Other keyboard event might be added to the system.

Mouse Module

Module name Mouse Module

Secrets The data structure and algorithms for implementing the

interface between the mouse and the system.

Services Work as a bridge between system software and user and

provide all mouse events that system software needs to

respond.

Anticipated

changes

Other mouse event might be added to the system based

on the need.

Screen display Module

Module name Screen display Module

Secrets Screen Information

Services Provide screen display functions that system software

needs to respond.

Anticipated

changes

Other screen display functions might be added to the

system based on the need.

B.2. 6 Traceability Matrix

Traceability matrix can be used for checking the completeness of current de

sign. This section is organized as follows: Section B.2.6.1 provides the trace-

ability matrix for requirement. Section B.2.6. 2 shows the traceability matrix

for anticipated changes.

B.2.6.1 Traceability Matrix for Requirement

The traceability matrix in Table B.10 make a connection between modules and

requirements. Names and their corresponding numbers of input and output

190

Master Thesis - Jin Tang McMaster -

Computing and Software

Ml M2 M3 M4 M5 M6 M7 M8

IV X

ov X

Nl X

N2 X X X X

N3 X

N4 X X X X X

N5 X X X X X

Table B.10: Traceability Matrix for Requirement

variables of system behavior and non-functional requirement are listed below

for convenience.

IV: Input Variable Behavior

OV: Output Variable Behavior

Nl: Input Accuracy

N2: Performance

N3: Tolerance

N4: Usability

N5: Portability

B.2. 6. 2 Traceability Matrix for Anticipated Changes

The traceability matrix in Table B.ll illustrates the relationship between mod

ules and anticipated changes listed in Section B.2. 3.

B.2. 7 Use Hierarchy between Modules

In this section, use hierarchies between modules are provided. Figure B.2 illus

trates the use relation between modules. Squares represent the modules that

have developed by OS, and ellipse represent the modules that will implement

by the system.

191

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Ml M2 M3 M4 M5 M6 M7 M8

AC1 X

AC2 X X X

AC3 X X X

AC4 X

AC5 X

AC6 X

AC7 X

AC8 X

AC9 X

AC10 X

Table B.ll: Traceability Matrix for Anticipated Changes

B.3 MIS for ONIS

This section provides Module Interface Specification (MIS) for ONIS.

B.3.1 Introduction

This document presents a module interface specification(MIS) for a One-

dimensional Numerical Integration Solver (ONIS). It builds based on the Soft

ware Requirement Specification and the Module Guide for the ONIS. The rest

of the document is organized as follows. Section B.3.2 describes the template
used in this MIS document. Section B.3.3 copies the module hierarchy from

Module Guide. The rest of sections introduce the Input GUI Module, the

Input Data Module, Master Control Module, Output Show Module, Parser

Module and Algorithm Module, respectively.

B.3. 2 Template Used in MIS

The template used in this MIS is as follows:

Module Name

Uses

-

Imported Constants

-

Imported Data Types

192

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Keyboard Input

Screen Display

Figure B.2: Use Hierarchy Between Modules

-

Imported Access Programs

Interface Syntax

Exported constants

-

Exported Data Types

-

Exported Access Programs

Routine Name Input Output Exception

Interface Semantics

State Variables

Invariant

-

Assumptions

Access Program Semantics

- Local Functions

- Local Data Types

- Local Constants

- Considerations

193

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.3. 3 Module Hierarchy

Table B.9 in Appendix B.2 shows the module hierarchy. Master Control Mod

ule is the center of ONIS, which controls the sequence of the whole application.

Input Data Module provides the user interface to help users input all data,

including lower bound, upper bound, function type, function, expected ab

stract error and expected relative error. After users input all data into ONIS,

Input Data Module save all input data. Then, Master Control Module uses

Algorithm Module to calculate the value of numerical integration. Algorithm
Module picks up different routines according to the characteristics of the input
function to calculate numerical integration, meanwhile, it uses Parser Module

to parse the input function and do the function evaluation. After Algorithm
Module got the final solution, Master Control Module uses Output Show Mod

ule to show solutions to the screen.

194

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.3.4 MIS of Master Control Module

B.3.4.1 Module Name: Master Control Module

B.3.4.2 Uses

Imported Constants

None

Imported Data Types
None

Imported Access Programs
None

B.3.4. 3 Interface Syntax

Exported constants

None

Exported Data Types

None

Exported Access Programs

Routine Name Input Output Exception

main

B.3.4.4 Interface Semantics

State Variables

None

Invariant

None

Assumptions

Master Control Module is the access of this application, so main() is executed

before any other routines.

Access Program Semantics

main()

Description:

main() controls the sequence of ONIS application. The sequence is as

follows:

195

Master Thesis - Jin Tang
- McMaster -

Computing and Software

1. It uses Input Data Module to get users' input data.

2. After Input Data Module stored all users' input data, it uses Al

gorithm module to calculate the numerical integration of the input

function.

3. After Algorithm Module got the final solution, it uses Output Show

Module to show results to the screen.

transition: None

output: None

Local Constants

None

Considerations

None

196

Master Thesis - Jin Tang
- McMaster -

Computing .and Software

B.3. 5 MIS of Input Data Module

B.3. 5.1 Module Name: Input Data Module

B.3. 5. 2 Uses

Imported Constants

None

Imported Data Types

None

Imported Access Programs

None

B.3.5. 3 Interface Syntax

Exported constants

MIN_A : F

MAX_A : F

MIN.B : F

MAXJB : F

MAXJEPSABS : F

MAX_EPSREL : F

Exported Data Types

Ctype := tuple of {CT.QAWO, CT.QAWS, CT_QAWC. CT.QAGS, CT.QNG,

CT.QAG}

Exported Access Programs

Routine Name Input Output Exception

setLowerbound lowerBoundJnput jnvalid

setUpperbound upperBoundJnputJnvalid

setEpsabs absErrorJnputJnvalid

setEpsrel relErrorJnputJnvalid

setFunction functionJnputJnvalid

getLowerbound F

getUpperbound F

getEpsabs F

getEpsrel F

getFunction String

197

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.3.5.4 Interface Semantics

State Variables

a: F

b:

epsabs:

epsrel:

fntype: Ctype
strFunction: String

Invariant

None

Assumptions

setUpperbound() is invoked after setLowerboundQ

Access Program Semantics

1. setLowerboundQ

Description

setLowerboundQ receives a real type lower bound value al from the

keyboard and stores this value to the attribute a.

Transition

a := al

Exception

a < MIN_A V a > MAX_A => lowerBoundJnputJnvalid

2. setUpperboundQ

Description

setUpperbound() receives a real type upper bound value 61 from the

keyboard and stores this value to the attribute b.

Transition

b:=bl

198

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Exception

b < MIN_B V b > MAXJB => upperBoundJnputJnvalid

3. setEpsabsQ

Description

setEpsabsQ receives a real type absolute accuracy requested value epsabsl

from the keyboard and stores this value to the attribute epsabs

Transition

epsabs := epsabsl

Exception

epsabs < 0 V epsabs > MAXJ3PSABS => epsabsJnputJnvalid

4. setEpsrel ()

Description

setEpsrelQ receives a real type relative accuracy requested value epsrell

from the keyboard and stores this value to the attribute epsrel

Transition

epsrel := epsrell

Exception

epsrel < 0 V epsrel > MAXJEPSREL =4> epsrelJnputJnvalid

5. setFunction(sirFimcionl : String)

Description

setFunctionQ receives a function string strFunctionl from the keyboard
and stores this string to strFunction

199

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Transition

strFunction := strFunctionl

Exception

| strFunction | = 0 => functionJnputJnvalid

6. getLowerboundQ

Output
out := a

7. getLowerboundQ

Output
out := b

8. getEpsabsQ

Output
out := epsabs

9. getFunctionQ

Output
out := strFunction

Local Functions

None

Local Data Types
None

Local Constants

None

Considerations

None

200

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.3.6 MIS of Output Show Module

B.3.6.1 Module Name: Output Show Module

B.3.6.2 Uses

Imported Constants

None

Imported Data Types

Uses AlgorithmModule Imports Ecodetype

Imported Access Programs
None

B.3.6. 3 Interface Syntax

Exported constants

None

Exported Data Types

None

Exported Access Programs

Routine

Name

Input Output Exception

show F, F,

\,ErrCodeT

String, String, String,

String, String

B.3.6.4 Interface Semantics

Environment Variables

sen: the windows screen

State Variables

None

Invariant

None

Assumptions

None

Access Program Semantics

show(res: F, abserr: , neval: I, ier: Ecodetype)

201

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Transition:

1. Do the following conversion:

strjapproxY = toString(res)
sir_estAbsError = toString(afrserr)
str_functionCount = toStrmg(neval)
strjsrrorCode = toStringErr(zer)

2. Modify screen sen to show strjapproxY, strjsstAbsError, str_/'unctionC'c

and strjsrrorCode value on the screen, respectively.

Local Functions

toString: F > String

toString(x) return strjx where strjz E String and str_x is string of x

toStringErr: Ecodetype ? String

toStringErr(x) return y where y E String.

(x=NORMAL =>y= "normal exit" |
x=MAX_EVALJL,IMIT ==> y

= "maximum number of function evalua

tions has been achieved" |
x=RNDOFF_ERR =^ y

= "occurrence of roundoff error" |
x=LOC_DIFF =^> y

= "local difficulty in integrand behaviour" |
x=DIVGJNGR ==> y

= "divergent integral (or slowly convergent inte

gral)" |
x=INVALIDJNPUT => y

= "invalid input parameters")

Local Data Types
None

Local Constants

None

Considerations

None

202

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.3. 7 MIS of Parser Module

B.3.7.1 Module Name: Parser Module

B.3.7.2 Uses

Imported Constants

None

Imported Data Types

None

Imported Access Programs

None

B.3. 7. 3 Interface Syntax

Exported constants

None

Exported Data Types

Symbol := tuple of {ADD, SUB, MUL, DIV, LBRACK, RBRACK, COMMA.

NUM, VAR, SIN, COS, TAN, EXP, LOG, LOG10, POW, SQRT, NUM. EOF,

PI, INVALID}

Tflag := tuple of {EXP, VAR, CON}

Expression := tuple of (typ: Tflag, op: Symbol, opdl: Expression, opd2:

Expression, value :)

Exported Access Programs

Routine Name Input Output Exception

parse String Expression

setValue F

evaluate Expression F

B.3. 7.4 Interface Semantics

State Variables

e: set of Expression

Invariant

None

Assumptions

parseQ is executed first and then setValueQ. evaluateQ is the last one exe

cuted.

203

Master Thesis ~ Jin Tang
- McMaster -

Computing and Software

Access Program Semantics

1. parse (strFunction: String)

Description:

The EBNF grammar for input function is as follows:

expression = ["+" | "-"] term {("+" | "-") term}
term = factor {("*" | "/") factor}
factor = number | variable | funct | "(" expression ")"
funct = COS" | "SIN" | "TAN" | "EXP" | "LOG" | "LOG10" | "POW"

| "SQRT" "(" expression ")"

Transition:

It calls expressionQ to parse the input function and generate a parse

tree.

2. setValue(yo/: F)

Description: setValue () is used to set the value of each node of parser

tree.

Transition:

e.typ = VAR => e.value = val \

e.typ = CON => e.value = val |

e.typ = EXP => setValue(waZ) for e.opl || setValue(faZ) for e.op2 where

e.op2 =/ NULL

3. evaluate (function: Expression)

Transition output:

e.typ = VAR =^> out : e.value \

e.typ = CON => out := e.value \
e.typ = EXP ==? (

e.op PLUS =^> out := evaluate (e.opdl) + evaluate (e.opd2) ||
e.op

= MINUS ==> out := evaluate (e.opdl) evaluate (e.opd2) ||
e.op

= TIMES ==> out := evaluate (e.opdl) x evaluate (e.opd2) ||
e.op

= DIV => out := evaluate (e.opdl) + evaluate (e.opd2) ||
e.op

= SIN =^> out := sin(evaluate (e.opdl)) ||
e.op

= COS ==> out := cos(evaluate (e.opdl)) ||

204

Master Thesis - Jin Tang
- McMaster -

Computing and Software

e.op
= TAN => out := tan(evaluate (e.opdl)) ||

e.op =EXP => out := exp(evaluate (e.opdl)) ||
e.op

= LOG => out := log(evaluate (e.opdl)) ||
e.op

= LOG10 =^> out : loglO(evaluate (e.opdl)) ||
e.op

= SQRT =4> out := sqrt(evaluate (e.opdl)) ||
e.op

= POW => out := pow(evaluate (e.opdl), evaluate (e.opd2)))

Local functions

getSymbol: String > Symbol

getSymbol(s : String) returns sym E Symbol where

s = "+" =>. Sym
= ADD

s = "-" ==> sym
= SUB

s =
"*"

=> sym
= MUL

s = 7" => sym
= DIV

s = "sin" => sym
= SIN

s = "cos" => sym
= COS

s = "tan" => sym
= TAN

s = "exp" ==> sym
= EXP

s = "log" => sym
= LOG

s = "loglO" => sym
= LOG10

s = "pow" =^> sym
= POW

s = "sqrt" ==> sym
= SQRT

s E [1..9] => sym
= NUM

s = "," = sym
= COMM

s = "(" => sym
= LBRACK

s = ")" =*?
sym

= RBRACK

otherwise

sym
= INVALID

expression: String > set of Expression

expression^: String)

Tranisition:

1. Call getSymbol(s) to get sym E Symbol
2. sym

= PLUS V sym
= MINUS => call term{s)

3. expression(s)
=

{Ve: Expression | e.op = PLUS V e.op
= MINUS

Ve = term(s) : e}

205

Master Thesis - Jin Tang
- McMaster -

Computing and Software

term: String > set of Expression

term(s: String)

- Tranisition:

1. Call getSymbol(s) to get sym E Symbol

2. sym
= TIMES V sym

= DIV => call factor (s)
3. term(s) = {Ve: Expression | e.op = TIMES V e.op

= DIV V e

= factor(s) : e}

factor: String > set of Expression

factor(s: String)

- Tranisition:

1. Call getSymbol(s) to get sym E Symbol
2. sym E {SIN, COS, TAN, EXP, LOG, LOG10, POW, SQRT}
=> call funct (s)

3.factor(s) = {Ve: Expression | e = funct(s) : e}

funct: String > set of Expression

funct (s: String)

Tranisition:

funct(s)
=

{Ve: Expression | e.op E {SIN, COS, TAN, EXP, LOG,
LOG10, POW, SQRT} V expression(s) : e}

Local Data Types

None

Local Constants

None

Considerations

None

206

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.3. 8 MIS of Algorithm Module

B.3.8.1 Module Name: Algorithm Module

B.3. 8. 2 Uses

Imported Constants

None

Imported Data Types

Uses Input Data Module Imports CTvpe

Imported Access Programs

Uses Input Data Module Imports getLowerbound
Uses Input Data Module Imports getUpperbound

Uses Input Data Module Imports getEpsabs
Uses Input Data Module Imports getEpsrel

Uses Input Data Module Imports getFntype

Uses Input Data Module Imports getFunction

B.3.8. 3 Interface Syntax

Exported constants

Ecodetype = {NORMAL, MAXJEVALJJMIT, RNDOFF_ERR, LOCDIFF,

DIVGJNGR, INVALIDJNPUT}

Exported Data Types

None

Exported Access Programs

Routine Name Input Output Exception

dqng String, , F, F,F F, F, Ecodetype, I calculate.error

dqags String, F, F, F,F , F, Ecodetype, I calculate.error

dqags String, , ,, F, F, Ecodetype, I calculate_error

dqawc String, , ,, F, F, Ecodetype, I calculate_error

dqawo String, , , F,F F, F, Ecodetype, I calculate_error

dqaws String, , F, F,F F, F, Ecodetype, I calculate_error

207

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.3.8.4 Interface Semantics

State Variables

res:

abserr:

ier: Ecodetype

neval: I

Invariant

None

Assumptions

None

Access Program Semantics

1. dqng(slun:String, a:F, b:F, epsabs:F, epsrekF)

Description

When CType is CT_QNG, dqng will be executed, dqng use parse{) to

parse the function sfun; it uses evaluate () to execute function evaluation.

dqng calculates the integration and gets res, abserr, neval and ier.

Output

out :=

res E where res is approximate value of / f{x) dx
J a

abserr E where abserr = approx| res ytrUe I
neval E Integer where neval is approximate function evluation number

according to user's expected abstract or relative error.

2. dq&gs(sf\m:String, a:F, b:F, epsabs:F, epsrekF)

Description

When CType is CT_QAGS, dqags will be executed, dqags use parsei) to

parse the function sfun; it uses evaluateQ to execute function evaluation.

dqags calculates the integration and gets res, abserr, neval and ier.

Output
out :=

fb
res E where res is approximate value of / f(x) dx

208

Master Thesis - Jin Tang
- McMaster -

Computing and Software

abserr E where abserr = approx| res ytme I
neval E Integer where neval is approximate function evluation number

according to user's expected abstract or relative error.

3. dqag(sfun:>Sfri7U/, a:F, b:F, epsabs:F, epsrekF)

Description

When CType is CT_QAG, dqag will be executed, dqag use parse{) to

parse the function sfun; it uses evaluate{) to execute function evaluation.

dqag calculates the integration and gets res, abserr, neval and ier.

Output

out :=
,6

res E where res is approximate value of / f{x) dx
J a

abserr E where abserr = approx| res ytme \
neval E Integer where neval is approximate function evluation number

according to user's expected abstract or relative error.

4. dqawc(sfun:Sirmg, a:F, b:F, c:F, epsabs:F, epsrekF)

Description

When CType is CT_QAWC, dqawc will be executed, dqawc use parse{)
to parse the function sfun; it uses evaluatei) to execute function evalu

ation, dqawc calculates the integration and gets res, abserr, neval and

ier.

Output
out :=

fb
res E where res is approximate value of / f{x) dx

J a

abserr E where abserr = approx| res ytrue \
neval E Integer where neval is approximate function evluation number

according to user's expected abstract or relative error.

5. dqawo(sfun -.String, a:F, b:F, omega:F, integr:!, epsabs:F, epsrekF)

209

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Description

When CType is CT_QAWO, dqawo will be executed, dqawo use parseQ
to parse the function sfun; it uses evaluateQ to execute function evalu

ation, dqawo calculates the integration and gets res, abserr, neval and

ier.

Output

out :=

fb
res E where res is approximate value of / f(x) dx

J a

abserr E where abserr = approx| res ytme I
neval E Integer where neval is approximate function evluation number

according to user's expected abstract or relative error.

6. dq&ws{sfun:String, a:F, b:F, alfa:F, beta:F, integr:H, epsabs:F, epsrekF)

Description
When CType is CT_QAWS, dqaws will be executed, dqaws use parse()
to parse the function sfun; it uses evaluate{) to execute function evalu

ation, dqaws calculates the integration and gets res, abserr, neval and

ier.

Output
out :=

fb
res E where res is approximate value of / /(x) dx

Ja

abserr E where abserr = approx| res ytrue \
neval E Integer where neval is approximate function evluation number

according to user's expected abstract or relative error.

Local Functions

None

Local Data Types
None

Local Constants

None

Considerations

None

210

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.4 Testing Report for ONIS

This section provides the testing report for ONIS.

B.4.1 Introduction

This document gives an overview of the testing summary for a One-dimensional

Numerical Integration Solver (ONIS). First, the purpose of the document is

provided. Second, the scope of the testing is identified. Third, the organization

of the document is summarized.

B.4. 1.1 Purpose of the Document

This document represents validation tests for a ONIS. Tester can use it to test

the system and developers can use it to maintain the system.

B.4.1. 2 Scope of the Testing

The scope1 of testing of ONIS is restricted to test the correctness, usability,

tolerance and portability. Parser Module is the most important module in this

system, so unit testing for Parser Module is also provided in this document.

System testing verifies the correctness by comparing the solutions of OXIS

with those of Matlab and Maple. ONIS will be run on MacOX and Windows

operation system to test portability. Performance testing focuses on testing

the speed of ONIS.

B.4. 1.3 Organization of the Document

Section B.4.1 is an introduction to the report. Section B.4. 2 shows the unit

testing which focuses on the Parser Module. Two test cases are provided in

this section to verify the correctness of the parser. Section B.4. 3 lists test cases

that are categorized by function types to test the correctness of ONIS. Also in

this section, test cases, which test the tolerance, usability and performance of

the ONIS, are provided. Two traceability matrixes are given in Section B.4. 4

which shows the association between test cases and requirements, including

functional and nonfunctional requirement, that are specified in the SRS as

well as the relationship between test cases and leaf modules introduced in

MG. Section B.4. 5 presents the result and analysis.

211

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.4.2 Unit Testing

The unit testing shows the test cases for Parser Module which is used to parse

the input function f(x). The input of this module is the string of f(x) and

the output is the object of parse tree.

B.4.2. 1 Test Case 1: Test Case for Unit Testing

Test case 1 is used to test the operator +, ,*,/,(, and).

Input: (3*x + 4)/(x 2)

OS: Mac OS X and Windows

Expected Output:
The output should be a parser tree like Figure B.3.

Figure B.3: Parse Tree of Test Case 1

Test Result: PASSED

212

Master Thesis - Jin Tang McMaster -

Computing and Software

B.4.2. 2 Test Case 2: Test Case for Unit Testing

Test case 2 is used to test the syntax of some programming language C build-in

functions which are used in ONIS.

Input: sin(x + log(x + 3)) / exp(2
*
x) + pow(2, x)

OS: Mac OS X and Windows

Expected Output:

The expected output should be a parser tree like Figure B.3.

Figure B.4: Parse Tree of Test Case 2

Test Result: PASSED

213

Master Thesis - Jin Tang
- McMaster -

Computing and Software

B.4. 3 System Testing

Routines from a FORTRAN library, Quadpack, are used in ONIS to calcu

late integration according to different characteristics of the input function;

therefore, system testing focuses on testing those routines. System testing is

categorized by function types. The expected outputs are the solutions pro

vided by Matlab and Maple, which is used to validate the correctness of the

solution of ONIS. Moreover, test cases for testing non-functional requirement

such as performance, tolerance and usability are provided also.

The following is the table of function type.

FT1: f(x) is a normal function.

FT2: f(x) has end point singularities on [a,b].

FT3: f(x) has an oscillatory behavior of nonspecific type and and no

singularities.

B.4.3.1 Test Cases

Test Case 1: Test Case for FT1

Input:

-

f(x) = x2 + 3

-

Input string of f(x) = x*x+3

-

a = -999,999, b = 999,999, epsrel = 0.00001

OS: Unix and Windows

Expected Output:

- The solution of Matlab: 6.6666e+17

214

Master Thesis - Jin Tang
- McMaster -

Computing and Software

- The solution of Maple: 6.666646e+17

Test Result:

result: 6.66665e+17

absolute error: 0.00533636

number of function evaluations: 21

Conclusion: Test case 1 is used to test the normal function of f{x) with a

big interval [a, b]. The back end routine used in ONIS is QNG routine in

Quadpack library. The solutions of ONIS, Matlab and Maple are almost

the same, i.e., ONIS can handle this kind of problem.

Test Case 2: Test Case for FT2

Input:

"

/(x) = /rr^i iv/(l-x)- 1

-

Input string of f(x) = l/(sqrt(l-x)-l)

-

a = 0.75, b = 1, epsrel = 0.00001

OS: Unix and Windows

Expected Output:

- The solution of Matlab: -0.386294

- The solution of Maple: -0.386294

Test Result:

result: -0.386294

absolute error: 8.89672e-06

number of function evaluations: 189

215

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Conclusion: Test case 2 is used to test f(x) with end point singularities

on [a, b]. The back end routine used in ONIS is QAGS routine in Quad-

pack library. The solutions of ONIS, Matlab and Maple are almost the

same, i.e. ONIS can handle the problem FT2.

Test Case 3: Test Case for FT2

Input:

-

fix) = ^x*log(x)

-

Input string of f(x) = sqrt(x)
*

log(x)

-

a = 0, b = 999,999, epsabs = 0, epsrel = 0.00001

OS: Unix and Windows

Expected Output:

- The solution of Matlab: 8.7659e+09

- The solution of Maple: 8.76588e+09

Test Result:

result: 8.76588e+09

absolute error: 7194.97

number of function evaluations: 315

Conclusion: The solutions of ONIS, Matlab and Maple are almost the

same. Given a big interval [a, b], ONIS also can get the correct solution.

So, ONIS can handle the problem FT2.

Test Case 4: Test Case for FT3

216

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Input:

-

f\x) = cos(100sin(x))

-

Input string of f(x) = cos(100*sin(x))

-

a =0, b = 3.14, epsrel = 0.00001

OS: Unix and Windows

Expected Output:

- The solution of Matlab: 0.0612

- The solution of Maple: 0.0612015

Test Result:

result: 0.0612015

absolute error: 7.43153e-09

number of function evaluations: 427

Conclusion: Test case 4 is used to test the /(x) with an oscillatory be

havior of nonspecific type and and no singularities. The back end routine

used in ONIS is QAG routine with parameter KEY=6 in Quadpack li

brary. The solution of ONIS, Maple and Matlab are almost same, when

interval [a, b] is not too big.

Test Case 5: Test Case for FT3

Input:

-

fix) =cos(100sin(x))

217

Master Thesis - Jin Tang
- McMaster -

Computing and Software

-

Input string of f(x) = cos(100*sin(x))

-

a =-999999, b = 999999, epsrel = 0.01

OS: Unix and Windows

Expected Output:

- The solution of Matlab: 6.8678e+05

- The solution of Maple: 686263

Test Result:

result: 40184.8

absolute error: 1.16516e+06

number of function evaluations: 121939

Note: maximum number of function evaluations has been achieved.

Conclusion: Test case 6 is also used to test the f(x) with an oscillatory

behavior of nonspecific type and and no singularities, which is almost

the same as test case 6, but with a big interval [a,b]. The solution of

ONIS is different, that means, ONIS cannot handle problem FT4 with

big interval.

Test Case 6: Test Cases for Usability Testing
Test case 6 is used to test usability of ONIS. i.e. according to SRS, to test

whether ONIS is easy to learn and use.

Input:

-/(x) = x2 + 3

-

a = -999,999, b = 999,999, epsabs = 0, epsrel = 0.00001

218

Master Thesis - Jin Tang
- McMaster -

Computing and Software

OS: Unix and Windows

Output: 6.66665e+17

Time: 1.5 minute

Conclusion: After getting a basic knowledge of ONIS, a user who didn't

use ONIS before spent about 1.5 minute finishing this simple test case

and got the final solution. Although this user got some basic introduc

tion before he uses ONIS, he still made some mistakes. So, if there is

some documents, for example help files or user manuals, that users can

follow, users will make less mistakes and it will be easy for users learn

new application quickly

Test Case 7: Test Cases for Tolerance Testing

Input:

-

f(x) = x2 + 3

-

Input string of f(x) = x*x+3

-

a = -999,999, b = 999,999, epsrel = 0.00001

OS: Unix and Windows

Expected Output:

- The solution of Matlab: 6.6666e+17

- The solution of ONIS: 6.66665e+17

tolei'HUCe = I ^lcalculat<:d~Vtru'' I = I 6.66665e+17 6.6666e+17 1/ yr
r

'
ytme i 6.6666e+17 '

219

Master Thesis
- Jm Tang

- McMaster -

Computing and Software

Conclusion: The tolerance reaches the demand for tolerance in SRS.

Test Case 8: Test Cases for Performance Testing

Input:

- /(x)=x2 + 3

-

Input string of f(x) = x*x+3

-

a = -999,999, b = 999,999, epsrel = 0.00001

OS: Unix and Windows

Expected Output:

- The solution of Matlab: 6.6666e+17

-

Response time of Matlab: 1.7300 second

- The solution of ONIS: 6.66665e+17

Response time of ONIS: 0

- Conclusion: For this test case, the response time of ONIS is 0, so

the speed of ONIS is much faster than Matlab.

B.4.4 Traceability Matrix

B.4.4.1 Traceability Matrix for SRS

The traceability matrix defined in Table B.12 illustrates the relationship be

tween requirements and test cases. The following is the functional and non

functional requirement table.

Nl: Input Accuracy
N2: Performance

N3: Tolerance

N4: Usability

220

Master Thesis - Jin Tang
- McMaster -

Computing and Software

1 2 3 4 5 6 7 8

IV X X X X X X X X

ov X X X X X X X X

Nl

N2 X

N3 X

N4 X

N5 X X X X X X X X

Table B.12: Traceability Matrix for SRS

N5: Portability

According to SRS, all input data of the system are assumed to be ac

curate, so no test cases are put to test Input Accuracy.

B.4.4. 2 Traceability Matrix for MG

Table B.13 is the traceability matrix shows the relationship between Module

Guide and test cases. Mouse module is not used in ONIS: therefore, module

M8 is not tested.

Ml

M2

M3

M4

M5

M6

M7

M8

Master Control Module

Input Data Module

Algorithm Module

Parser Module

Output Show Module

Keyboard Input Module

Screen Display Module

Mouse Module

B.4. 5 Results and Analysis

The testing results are showed in Section B.4.2 and B.4. 3. The unit testing

for Parser Module is tested. From the unit testing results, we know that the

221

Master Thesis - Jin Tang
- McMaster -

Computing and Software

1 2 3 4 5 6 7 8

Ml X X X X X X X X

M2 X X X X X X X X

M3 X X X X X X X X

M4 X X X X X X X X

M5 X X X X X X X X

M6 X X X X X X X X

M7 X X X X X X X X

M8

Table B.13: Traceability Matrix for MG

parser module works well. The routines of Quadpack library: QNG, QAGS

and QAG are tested. The solutions which get from these routines are almost

the same as those of Maple and Matlab.

The portability of ONIS is good, ONIS can be run on MacOX and

Windows operation system, but it needs two kinds of compiler, g++ and

gfortran, to support it. Response time of ONIS is usually shorter than that

of Maple and Matlab, so, in term of speed, the performance of ONIS is good.
One test case is put to test tolerance, which reaches the requirement of SRS.

222

Appendix C

Unified Software Development
Process

223

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C.l SRS for ONIS

This section provides the software requirement specification (SRS) for a one-

dimensional numerical integration solver (ONIS).

C.l.l Introduction

This section gives an overview of the Software1 Requirements Specification

(SRS) for a One-dimensional Numerical Integration Solver (ONIS) using the

Unified Software Development Process. The Unified Process uses the Unified

Modeling Language (UML) when preparing all blueprints of the software sys

tem. The Unified Process is a use-case driven process (Jacobson et al., 1999,

page 4).
A use case is a piece of functionality in the system that gives a user a

result of value. Use cases capture functional requirements. All the use cases

together make up the use-case model that describes the complete functionality
of the system (Jacobson et al., 1999, Page 5). The phrase use case-driven refers

to the fact that the project team uses the use cases to drive all development

work, from initial gathering and negotiation of requirements through code.

C.l. 1.1 Purpose of the Document

This SRS provides a description of a one-dimensional numerical integration of a

function over a given interval. Most sections, except for Section 5 Functional

Requirements, are taken from the SRS using the Parnas' Rational Design
Process (PRDP) in Appendix B.l. To avoid duplications, but still present
the complete version of this SRS, for sections with the same content, only
the headings are provided in this document. The text for the corresponding
section is not reproduced. The reader can refer to the corresponding parts in

Appendix B.l.

The most important part of this document is Section C.1.4 Functional

Requirement, as this section provides the use case model and a domain model

of ONIS. The use case model defines the system's external behaviour and the

requirements of the system, and therefore constrains the design and imple
mentation. Hence, the use case model has a central role and is often said to

drive the development process (Priestley, 2003, page 8). Based on the scope

of ONIS, which is introduced in Section 1.3, a use case model, is provided in

Section C.1.4. Normally, a use case model is supported by a domain model,
which is a simple class diagram documenting the important business concepts
and their relationships. The importance of the domain model is that it estab-

224

Master Thesis - Jin Tang
- McMaster -

Computing and Software

lishes the terminology that will be used for writing the descriptions of the use

cases and offers some hope of removing ambiguity and lack of clarity in these

descriptions. A domain model and use case descriptions are also provided in

Section C.1.4 of this document.

C.l. 1.2 Scope of the Software Product

Please see Appendix B.l. 1.2.

C.l. 1.3 Organization of the Document

This SRS follows the template given by (Smith, 2006). The rest of the doc

ument is organized as follows. Section C.l. 2 provides the overall description

of the system to make the requirements easier to understand. Section C.1.3

contains all the details of system requirements. Section C.1.4 introduces the

non- functional requirements. Compared with Appendix B.l.l, Section C.1.5

describes the functional requirements of ONIS. It is a new section and does not

exist in the SRS for PRDP. Section C.1.6 lists the solution validation strate

gies for this software. Other system issues, traceability matrix, list of possible

changes in the requirements, and values of auxiliary constants are provided in

the remainder of the sections.

C.l. 2 General System Description

This section is the same as Appendix B.1.2. The system context is presented

first. Then the characteristics of potential users are discussed. At the end of

this section, some system constraints are described.

C.l.2.1 System Context

Please see Appendix B. 1.2.1.

C.l.2. 2 User Characteristics

Please see Appendix B. 1.2.2.

C.l.2. 3 System Constraints

Please see Appendix B.l. 2.3.

225

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C.1.3 Specific System Description

This section is almost the same as Appendix B.1.3. The only distinction

is that the definitions of Use Case Model and Domain Model are added to

Appendix B.l. 3.2 Terminology Definition.

C. 1.3.1 Background Overview

Please see Appendix B.l. 3.1.

C.l.3. 2 Terminology Definition

Use Case Model: a use case model describes (1) the system to be con

structed, (2) the actors representing a role played by a person or other

entity that interacts with the system, and (3) the use cases families of

usage scenarios of the application, grouped into coherent cases of func

tionality (Lano, 2005, page 15).

Domain Model: domain model is a simple class diagram documenting the

important business concepts and their relationships. It will be refined

into a more comprehensive class diagram, which contains enough detail

to form a basis for implementation (Priestley, 2003, page 49 51).

Other terminology definitions, such as Smooth and Singularity, are included

in Appendix B.l.l.

C.l.3.3 Goal Statements

Please see Appendix B.l.3. 3.

C.l.3.4 Theoretical Models

Please see Appendix B.l.3.4.

C.l.3. 5 Data Definition

Please see Appendix B.l. 3.5.

C.l.3. 6 Assumption

Please see Appendix B. 1.3.6.

226

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C.l.3. 7 Data Constraints

Please see Appendix B.l. 3. 7.

C.l.3. 8 System Behaviour

Please see Appendix B.l. 3. 8.

C.1.4 Non-functional Requirements

Please see Appendix B.l.4.

C.l. 5 Functional Requirements

Functional requirements capture the intended behavior of the system. Use

cases have become a widespread practice for capturing functional requirements.

This is especially true in the object-oriented community where they originated,

but their applicability is not limited to object-oriented systems (Malan and

Bredemeyer, 1999).

C.l. 5.1 Use Case Model

The use case model presents a structured view of a system 's functionality. It

does this by defining a number of actors, which model the roles that users can

play when interacting with the system, and describing the use cases that those

actors can participate in. A use case describes a specific task that a user can

achieve with the system. The use case model contains a set of use cases, which

should define the complete functionality of the system. Actors and use cases

of ONIS will be introduced in detail in the rest of this section.

Use Case Diagrams

A use case diagram summarizes in graphical form the different actors and use

cases in a system, and shows which actors can participate in which use cases.

Figure C.l shows a use case diagram of ONIS. In ONIS, there is only one

actor, User, who inputs data into ONIS, and one use case, which is Calculate

Integration, showing scenarios of the use of ONIS.

Use Case Descriptions

In this section, a use case template will be introduced. As well, descriptions

for the use cases of ONIS will be provided.

1. Template of Descriptions

227

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

O

Calculate Integration

User

Figure C.l: Use Case Diagram

UML does not define a standard template for writing use case descrip

tions. The following template comes from (Priestley, 2003, page 348), which

presents a representative list of headings under which a use case can be defined.

Name: The name of a use case, which is expressed as a short verb phrase,

stating what task the user will accomplish with the use case.

Summary, or short description: It provides a one paragraph summary of

what the use case accomplishes.

Actors: Lists the actors that are involved in the use case and the primary

actor, who is responsible for initiating its execution.

Triggers: Triggers are the events that start the use case.

Preconditions: Preconditions summarize what must be true before the use

case can start. Often preconditions state which other use cases must

have run before the one being specified: a typical precondition might be

'the user has successfully logged on.'

Postconditions: Postconditions summarize what will be true when the use

case has finished.

Courses of events, or scenarios: The basic, or normal, course of events

should normally be presented as an unbroken sequence of interactions.

The interactions within a course of events are normally numbered, for

easy reference later on.

228

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Alternative and exceptional courses of events: Alternative and excep

tional courses of events can be written out in full. Often, however, it

is adequate simply to specify the points at which the alternative flow

diverges from the basic course of events. This can be done by giving
the number of the step where behaviour can vary and specifying what

condition causes the divergence.

Extension points: This section should list the points in the course of events

at which extensions can take place, and gives the condition or event that

determines whether or not this will happen. The extensions themselves

should be written as separate use cases; otherwise, an alternative course

of events can be specified.

Inclusions: This section simply summarizes the use cases that are included

into the use ease being defined. The points at which inclusion takes place

should be specified in the courses of events. This section is redundant if

a use case diagram showing the same information is readily available.

2. Descriptions

The followings are the descriptions for the use case Calculate Integration,

which is described using the template introduced in the previous section.

Name: Calculate Integration

Summary: The user enters into ONIS the following data: a lower bound,

an upper bound, a function type, a function, function parameters sometimes,

an expected absolute error and an expected relative error. ONIS checks the

validity of the data as it is entered. Then, ONIS calculates the integration ac

cording to the user's input data. Finally, ONIS shows the results to the user,

which includes an approximation to the integral, an estimate of the absolute

error and the total number of function evaluations needed, or ONIS returns

an error code.

Actors: User.

Triggers: The user runs ONIS.

Preconditions: The user has successfully started ONIS.

Postconditions: The system is succeeded in showing the results on the

screen.

Courses of events:

1. The user enters a lower bound.

2. The system verifies the input lower bound. If the input data is correct,

ONIS will go on and let the user input additional data. Otherwise, ONIS will

stop and show an error message until the user enter the correct data.

3. The user enters an upper bound.

229

Master Thesis - Jin Tang
- McMaster -

Computing and Software

4. The system verifies the input upper bound. If the input data is correct,

ONIS will go on and let the user input additional data. Otherwise, ONIS will

stop and show an error message until the user inputs correct data.

5. The user enters an expected absolute error.

6. The system verifies the input expected absolute error. If the input data is

correct, ONIS will go on and let the user input additional data. Otherwise,

ONIS will stop and show an error message until the user inputs correct data.

7. The user enters an expected relative error.

8. The system verifies the input expected relative error. If the input data is

correct, ONIS will go on and let the user input additional data. Otherwise,

ONIS will stop and show an error message until the user inputs correct data.

9. The user enters a function.

10. The system verifies the input function. If the input data is correct, OXIS

will go on and let the user input additional data. Otherwise, ONIS will stop

and show an error message until the user inputs correct data.

11. The user enters a function type.

12. The system verifies the input function type. If the input data is correct,

ONIS will go on and let the user input additional data. Otherwise, ONIS will

stop and show an error message until the user inputs correct data.

13. The user enters function parameters, if the function type is CT_QAWO,

CT_QAWS and CT_QAWC. The definition of the function type is in Section

3.5 Data Definition.

14. The system verifies the input function parameters. If the input data is

correct, ONIS will go on and let the user input additional data. Otherwise,

ONIS will stop and show an error message until the user input correct data.

15. The system returns the results.

16. The system shows an approximation to the integral, an estimate of the

absolute error, and the total number of function evaluations needed to the

User

Alternative and exceptional courses of events: The user stops inputting

data and exits ONIS, then, the system is terminated.

The user input correct data to the system. The system selects a suitable algo
rithm routine to calculate the integration, but can not get an approximation

to the integral and returns an error code.

Extension points: N/A
Inclusions: N/A

230

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C. 1.5.2 Domain Model

Use cases are intended to be comprehensible to both developers and users

of the system. They are therefore described using terminology taken from

the business domain rather than from implementation or computer-oriented
vocabularies. A domain model, a class diagram showing the most important

concepts in ONIS and the relationships between them, is carried out parallel

with use case modeling to describe the business concepts that are used in the

use case descriptions.

Diagram for Domain Model

Figure C.2 shows a domain model for ONIS. According to the user case model,

four classes are defined for this system, which are Master Control, Input Data,

Calculating and Output Show.

Master Control Calculation

1 1

l l

1 Output Show

1 res

abserr

neval

Input Data

a

b

esp

esp

strF

fnty

abs

rel

unction

pe

Figure C.2: Domain Model

Glossaries

The following glossaries are a core vocabulary used in the domain model, which

can help developers and users to talk about the system. Some vocabularies,

231

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

such as res and abserr, are already defined in Appendix B.3. 5 Data Definition

but with different names. In this case, names in Definition are put right be

hind the corresponding vocabularies with bracket. For example, res (y) and

abserr (ea)

MasterControl: A controller to control the sequences of the system.

InputData: Data which users input into ONIS.

Calculating: Calculating integration.

OutputShow: data which the system output to the user to show the calcu

lation results.

a: Lower limit of integration.

b: Upper limit of integration.

epsabs: Absolute accuracy requested.

epsrel: Relative accuracy requested.

strFunction(/(x)): Input function.

fntype(C): Characteristics of the input function.

res(y): Approximation to the integral.

abserr {ea): Estimate of the absolute error.

neval: Number of function evaluations.

Some vocabularies in the above glossaries are also in Appendix B.l

with the same meanings, but using the different names. Table C.l presents

the relationship between them.

C.l.6 Solution Validation Strategies

This section is same as Appendix B.1.5.

232

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Symbol in Data Con-

traints

Vocabulary in domain model

a Lowerbound

b Upperbound

m Function

C fntype

epsabs Epsabs

epsrel Epsrel

y result

er abserr

a abserr

funcount evalnum

Table C.l: Table of Symbols

C.l.6.1 Relative Comparison between Computed Solution and True

Solution

Please see Appendix B.l. 5.1.

C. 1.6.2 Compare Solution with a Third-party System

Please see Appendix B.l.5. 2.

C. 1.6.3 Interval Arithmetic Method

Please see Appendix B. 1.5.3.

C.l. 6.4 Using Specific Test Cases

Please see Appendix B. 1.5.4.

C.1.7 Other System Issues

This section is same as Appendix B.1.6.

C.l. 7.1 Open Issues

Please see Appendix B.l. 6.1.

233

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C.l. 7. 2 Off-the-Shelf Solutions

Please see Appendix B.l. 6. 2.

C.l.7.3 Waiting Room

Please see Appendix B.l. 6. 3.

C.1.8 Traceability Matrix

Please see Appendix B.1.7.

C.l.9 Values of Auxiliary Constants

Please see Appendix B.l.8.

234

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C.2 SDS for ONIS

This section provides the software design specification (SDS) for a one-dimensional

numerical integration solver (ONIS).

C.2.1 Introduction

This section gives an overview of the Software Design Specification (SDS)
for a One-dimensional Numerical Integration Solver (ONIS) using the unified

Process. In terms of (Lano et al., 2002, page 2), software design is the orga

nization of a software system into modules /subsystems /components/ classes

or other units; the definition of behaviour and data storage responsibilities

for these units, and the definition of interactions and collaborations between

them which together meet the required functionalities of the system. In this

document, first an analysis model and a design model will be introduced to

realize the use-case model from SRS. Then, classes of ONIS will be provided

to detail the information of ONIS. Also, to present the interactions and collab

orations between classes, sequence diagrams and collaboration diagrams will

be provided in this document.

There are 11 sections in this document. Section C.2. 2 and Section C.2. 3

provide anticipated changes and unlikely changes of ONIS. These two sections

are same as Section B.2. 3 and Section B.2.4 in Appendix B.2. Section C.2.4

contains the terminology definitions that will be used in this document. Sec

tion C.2. 5 introduces the connections between the requirement and design. In

Section C.2. 6 and Section C.2. 7, an analysis model and a design model are

provided to present how to realize the use cases in SRS and how to decompose
the system into classes. Section C.2. 8 presents all the detail information of

each class in ONIS. Section C.2.9 shows interaction diagrams that model the

behaviour of ONIS. Section C.2. 10 provides a traceability matrix to trace the

relationships between the requirement and design. The last section, Section

C.2.11, introduces the system architecture.

C.2. 2 Anticipated Changes

Please see Appendix B.2. 3.

235

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C.2.3 Unlikely Changes

Please see Appendix B.2.4.

C.2.4 Terminology Definition

Analysis Model: An object model with the following purpose (1) to describe

the requirements precisely; (2) to structure them in a way that facilitates

understanding them, preparing them, changing them, and, in general,

maintaining them; and (3) to work as an essential input for shaping the

system in design and implementation (Jacobson et al., 1999, page 436).

Design Model: An object model that describes the physical realization of

use cases and focuses on how functional and nonfunctional requirements

together with other constraints related to the implementation environ

ment impacts the system under consideration (Jacobson et al., 1999,

page 436).

Analysis Class: An analysis class represents an abstraction of one or several

classes and/or subsystems in the system's design. This abstraction has

the following characteristics: (1) An analysis class focuses on handling
functional requirements and postpones the handling of nonfunctional re

quirements. (2) An analysis class seldom defines or provides any interface

in terms of operations. Instead, its behavior is defined by responsibilities
on a higher, less formal level. (3) An analysis class defines attributes,

although those attributes are also on a fairly high level. (4) An analysis
class is involved in relationships, although those relationships are more

conceptual than their design and implementation counterparts. (5) Anal

ysis classes always fit one of three basic stereotypes: boundary, control,
or entity (Jacobson et al., 1999, page 181,182).

Boundary Classes: Boundary Classes are in general used to model inter

action between the system and its actors (i.e., users and external sys

tems) (Jacobson et al., 1999, page 44).

Control Classes: Control Classes in the Unified Process are concerned more

with controlling the interactions involved in a use case at the application

level; they do not handle input and output (Priestley, 2003, page 82).

Entity Classes: Entity Classes are responsible for maintaining data (Priest
ley, 2003, page 83).

236

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Design Class: A design class is a seamless abstraction of a class or similar

construct in the system's implementation. This abstraction is seam

less in the following sense: (1) The language used to specify a design

class is the same as the programming language. Consequently, opera

tions, parameters, attributes, types, and so on are specified using chosen

programming language syntax. (2) The visibility of attributes and oper

ations of a design class is often specified. (3) The relationships in which

a design class is involved with other classes often has a straightforward

meaning when the class is implemented. (4) The methods of a design

class have straightforward mappings to the corresponding methods in

the implementation of the class (Jacobson et al., 1999, page 217-219).

OCL: The Object Constraint Language (OCL) is a formal language to express
side effect-free constraints. Users of the Unified Modeling Language can

use OCL to specify constraints and other expressions attached to their

models (IBM, 1997, page 1).

Attributes: An attribute is a description of a data field that is maintained

by each instance of a class. Attributes must be named. In addition to

the name, other pieces of information can be supplied, such as the type

of the data described by the attribute or a default initial value for the

attribute (Priestley, 2003, page 146).

Operations: Operations define the behaviour of instances of the class (Priest

ley, 2003, page 17).

Class Invariant: A class invariant is a property of a class that is intended

to be true at all times for all instances of the class. However, the term

'invariant' is commonly used to refer only to constraints that restrict the

possible values of a class's attributes (Priestley, 2003, page 263). The

latter meaning of Class Invariant is used in this document.

Precondition and Postcondition: Defining an invariant for a class pro

vides no guarantee that the operations of the class will ensure that the

invariant is maintained. Preconditions and postconditions are special
constraints that can be written for operations. As the names suggest,

a precondition is something that must be true just before an operation

is called and a postcondition is something that must be true after the

operation has completed. These constraints should be written in such a

way that if they are both true at the appropriate time, the invariant of

the class will still be true when the operation has completed (Priestley,
2003, page 264).

237

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Exceptions: An exception is an event, which occurs during the execution

of a program, that disrupts the normal flow of the program's instruc

tions (Sun Microsystems, 2008, 2008).

C.2. 5 Connection Between Requirement and Design

The design of the system should satisfy the SRS. In this stage, an analysis

model and a design model will be provided separately according to the use-

case model in the SRS. As a use-case driven process, the unified process starts

from the use case design. After use cases are decided, use cases will be real

ized to use-case realizations which are presented by analysis models and design
models. Analysis Model and Design Model can also help decompose the whole

system into different classes. The following diagram, Figure C.3, shows the

traceability between models.

Use-Case Model Analysis Model

_<<tracej>> y Calculate

Integration

Design Model

trace
'

Calculate

Integration

Figure C.3: Use-Case Realizations in the Analysis and Design Models

Also, a traceability matrix in Section 10 shows the connection between

requirements and classes.

C.2.6 Analysis Model

Analysis model can help to achieve a more precise understanding of the re

quirements and it is described using the language of the developers, and can

thereby introduce more formalism and be used to reason about the internal

working of the system. Analysis model provides an overview of the system
that may be harder to get by studying the results of design or implementation
since too many details are introduced. Such an overview can be very valuable

to newcomers to the system or to developers who maintain the system in gen

eral (Jacobson et al., 1999, page 178).

238

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Use-Case Model Analysis Model

Described using the language of the

customer

Described using the language of the

developer

External view of the system Internal view of the system

Structured by use cases; gives struc

ture to the external view

Structured by stereotypical classes

and packages; gives structure to the

internal view

Used primarily as a contract be

tween the customer and the devel

opers on what the system should

and should not to

Used primarily by developers to un

derstand how the system should be

shaped, i.e., designed and imple

mented

May contain redundancies, incon

sistencies, etc. among requirements

Should not contain redundancies,

inconsistencies, etc., among re

quirements

Captures the functionality of the

system, including architecturally

significant functionality

Outlines how to realize the func

tionality within the system, includ

ing architecturally significant func

tionality; work as a first cut at de

sign

Defines use cases that are further

analyzed in the analysis model

Defines use-case realizations, each

one representing the analysis of a

use case from the use-case model

Table C.2: Brief Comparison of the Use-Case Model and the Analysis Model

In this section, an analysis model, which is transformed from Use-case

model in SRS, is provided. To clarify the relationships between the use-case

model and analysis model, Table C.2 (Jacobson et al., 1999, page 175), a brief

comparison of the use-case model and analysis model is provided as follows.

C.2.6.1 Analysis Model Diagram

Within the analysis model, use cases are realized by analysis classes and their

objects. This is represented by collaborations within the analysis model. Fig
ure C.4 below describes how the Calculate Integration use case is realized

by a collaboration with a Ctrace^> dependency between them, and that four

classes participate and play roles in this analysis model. In this analysis model,

239

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

the Solver Interface is a boundary classes, the Calculation is a control class,

and the Algorithm and Parser are entity classes.

trace
__

_
Calcuiate

integration

/

kd 6 q b
Solver Interlace Calculation Algorithnr) Parser

Figure C.4: Analysis Classes that Participate in a Realization of the Calculate

Integration Use Case

C.2.6. 2 Analysis Model Description Using a Collaboration Dia

gram

The sequence of actions in a use case begins when an actor invokes the use case

by sending some form ofmessage to the system. When considering the "inside"

of the system, a boundary object will receive this message from the actor, i.e.,

Solver Interface object receives the input data from the user. The boundary

object then sends a message to some other object, and so the involved ob

jects interact to realize the use case, i.e., Solver Interface sends a message to a

control object, Calculation, which controls the sequence of ONIS. Calculation

calls the Algorithm object to select a suitable routine to calculate the inte

gration. Figure is a collaboration diagram that describes how the Calculate

Integration use-case realization is performed by a society of analysis objects.
The diagram shows how the focus moves from object to object as the use case

is performed and messages that are sent between the objects.

The following shows the flow of events of the diagram.

240

Master Thesis - Jin Tang
- McMaster Computing and Software

Solver Interface Algorithm

User

Catenation Parser

1 : Input Data

2: Request Calculation

3: Validate and Calculate

4: Parse the Input Function and Do Function Evaluat ons

Figure C.5: A Collaboration Diagram for a Realization of the Calculate Inte

gration Use Case

1. The User inputs all data needed to Solver Interface object.

2. The Solver Interface object verifies the input data and asks a Calculation

controller object to perform the transition.

3. Calculation controller object asks Algorithm object to select a suitable

algorithm routine to calculate the integration.

4. Algorithm object calls Parser object to parse the input function and get

the values of function evaluations. Then Algorithm object gets the final

results.

C.2. 7 Design Model

The design model is an object that describes the physical realization of use

cases by focusing on how functional and nonfunctional requirements, together

with other constraints related to the implementation environment, impact the

system under consideration. In addition, the design model serves as an ab

straction of the system's implementation and is thereby used as an essential

input to activities in implementation. Within the design model, use cases are

realized by design classes and their objects. The following Table C.3 (Jacobson
et al., 1999, page 219) describes the relationships between the analysis model

and design model.

241

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Analysis Model Design Model

Conceptual model, because it is

an abstraction of the system and

avoids implementation issues

Physical model, because it is a

blueprint of the implementation

Design-generic (applicable to sev

eral designs)

Not generic, but specific for an im

plementation

Three (Conceptual) stereotypes on

classes: -Ccontrols, <Centity3>,

and -Cboundary^-

Any number of (physical) stereo

types on classes, depending on im

plementation language

Less formal More formal

Less expensive to develop More expensive to develop

Dynamic (but not much focus on se

quence)

Dynamic (much focus on sequence)

Outlines the design of the system,

including its architecture

Manifests the design of the system,

including its architecture (one of its

views)

Table C.3: Brief Comparison of the Analysis Model and the Design Model

In Figure C.6, four analysis classes Solver Interface, Calculation, Algo
rithm and Parser participate in realizing the Calculate Integration use case in

the analysis model. Also, in the design model, five design classes, Input Data,

Output Show, Master Control, Algorithm and Parser, are refined from analysis

classes, adapting to the implementation environment. Input Data and Output
Show come from the boundary class Solver Interface, which control the inter

action between ONIS and the user, i.e. Input Data helps the user input data
to system and Output Show helps the system show the final calculating results
to the user. MasterControl comes from the control class, Calculation, which
controls the sequence of the system. Algorithm and Parser come from the same

name the entity classes in the analysis model. The functionality of Algorithm
is choosing a suitable routine to calculate the integration. Meanwhile, Parser

helps to parse the input function and conduct function evaluations.

C.2.8 Class Description

In terms of the design model, classes that are defined in the design model are

introduced in this section. First, the UML constraint language, OCL (Object

242

Master Thesis - Jin Tang McMaster -

Computing and Software

Solver Interface Calculation Algorithm Parser

Analysis Model (J

Jl

Design Model

Input Data

Jrace uace

Output Show Master Control

trace trace

Algor tnrr'

WWV.WJ/&WM'*

Parser

Figure C.6: Design Classes in the Design Model Tracing to Analysis Classes

in the Analysis Model

Constraint Language1), which is used to define the class invariants, precondi

tions, postconditions and exceptions is described. Then, a brief system class

diagram is showed to outline the structure of the whole system. Then, Fortran

routines which are used in ONIS are introduced. Last, detailed information

on each class is presented.

C.2.8.1 OCL Introduction

OCL is a means to express more complex properties of diagram elements, and

interrelationships between elements. The grammars of OCL to introduce class

invariants and operations are provided in this section. In addition, OCL basic

data types and enumeration type are also presented in this section.

Class Invariant

As mentioned in Section 4 Terminology Definition, the term 'class in

variant' in this document refers to constraints that restrict the possible values

of a class's attributes. OCL expression to introduce class invariants is as fol

lows:

context TypeName inv: Boolean expression

The context keyword introduces the context for the expression. The keyword

inv denotes the stereotypes <<invariant>> of the constraint. The actual

OCL expression comes after the colon. The boldface has no formal meaning,

243

Master Thesis - Jin Tang
- McMaster -

Computing and Software

but is used to make the expressions more readable in this document. Note that

all OCL expressions that express invariants are of the type Boolean (OMG,

2003, page 6).

Pre- and Postconditions The OCL expression can be part of a precondition

or postcondition, corresponding to <<precondition>> and <<postcondition>>

stereotypes of constraint associated with an operation or other behaviour fea

ture. The context declaration in OCL uses the context keyword, followed by
the type and operation declaration. The stereotype of constraint is shown by

putting the labels 'pre:' and 'post:' before the actual preconditions and post

conditions.

context Typename::operationName(paraml : Typel, ...): Return Type

pre: parami > ...

post: result = ...

The reserved word result denotes the result of the operation, if there is one.

The names of the parameters iparaml) can also be used in the OCL expres

sion (OMG, 2003, page 8).

Reliability is a major characteristic of high-quality software. Software

should behave well in nearly every situation. During the development process,
errors as possible should be avoided, detected and removed; therefor, excep
tion handling is an important part of ONIS. In this document, exceptions are

described including in the postconditions using // Expressions in OCL. An

// Expression results in one of two alternative expressions depending on the

evaluated value of a condition (OMG, 2003, page 46). The detail information
of exception handling is provided in Section 10 Exception Handling.

Data Types

In OCL, a number of basic types are predefined and available to the modeler

at all time. These predefined value types are independent of any object model
and part of the definition of OCL. The most basic value in OCL is a value of

one of the basic type. There are four basic types in OCL which are Boolean,
Integer, Real and String (OMG, 2003, page 10).

Enumeration Types

Enumerations are data types in UML and have a name, just like any other

classifier. An enumeration defines a number of enumeration literals, that are

possible values of enumeration. Within OCL one can refer to the value of an

244

Master Thesis - Jin Tang
- McMaster -

Computing and Software

enumeration (OMG, 2003, page 11). For example, when we have data type

named Gender with values 'female' or 'male' they can be used as follows:

context Person inv: gender = Gender: :male

In ONIS, Ctype, Ecodetype, TFLAG and SYMBOL are defined as enumera

tion types. Figure 6, 7 and 8 below present their diagrams respectively.

C.2. 8. 2 System Class Diagram

Figure C.7 illustrates a brief class diagram of ONIS, showing the relationships

among classes. There are 6 classes in this system, which are MasterControl

Class, InputData Class, Algorithm Class, Parser Class, Expression Class and

OutputShow Class. The link between classes is named association. The ex

istence of an association between two classes indicates that instances of the

classes can be linked at run-time. The arrowheads on the associations means

the association can only be navigable in one direction. The symbol "1" and

"1..*" at the association ends are multiplicity which means "exactly one ob

ject/' and "at least one object", respectively. On this diagram, for example the

multiplicities at the InputData and MasterControl end are all "1M which speci

fies that a MasterControl object can only be linked to one InputData instance.

Input Data

A
/

1

Master Control Algorithm Parser Expression
v ? ? ?

/

1

Output Show

Figure C.7: A Brief Class Diagram of ONIS

245

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C.2.8. 3 Fortran Routines Introduction

Fortran Routines, QAWO, QAWS, QAWC, QNG, QAGS and QAG Quad-

pack library will be used in ONIS to calculate the integration according to

the characteristics of an input function. To specify the information of the

classes in ONIS clearly, as well as, let software developers better understand

the functionalities ofMasterControl and Algorithm class, the Fortran routines

are introduced first. These Fortran routines are encapsulated in the opera

tions in Algorithm class using the same name but with a prefix 'd' before the

corresponding routine name. For example, QAWO will be encapsulated in

dqawo () in Algorithm class. The meanings of these routines are provided as

follows (FSU, 2008):

If you can factor the integrand as f(x)=w(x) x g(x), where g is smooth

on [a, b] and w(x)=cosiu x x) or sin(cj x x) then use QAWO.

Otherwise, if you can factor fix)=w(x) x gix) where g is smooth and

wix)=(x -

a)a x ib- x)0 x (log(x
- a))1 x {log{b

- x))k with k, I = 0 or

1, and alpha, beta greater than -1, then use QAWS.

Otherwise, if you can factor f(x)=wix) x g(x) where g is smooth and

w(x) = l/(x c) for some constant c, use QAWC.

Otherwise, if the integrand is smooth, use QNG.

Otherwise, if the integrand has end point singularities, use QAGS.

Otherwise, if the integrand has an oscillatory behavior of nonspecific

type, and no singularities, use QAG with KEY=6.

C.2.8.4 MasterControl Class

MasterControl Class includes a main() function, controlling the execution se

quence of the ONIS. The sequence is as follows:

1. It calls the operations of InputData class, which are setLowerbound,
setUpperbound, setEpsabs, setEpsrel, setFunction and setFntype to get
users' input data, which are lower limit of integration, upper limit of inte

gration, a requested absolute accuracy, a requested relative accuracy, an

input function and characteristics of the input function respectively. The
above operations will be introduced in detail in Section 8.4 InputData
class.

246

Master Thesis - Jin Tang
- McMaster -

Computing and Software

After that, MasterControl call one Algorithm operation, dqawo, dqaws,

dqawc, dqng, dgags or dqag according to the characteristics of users'

input function fntype. The mapping between characteristics of the input

function and the Algorithm operation is described following:

if fntype = Ctype: :CT_QAWO then dqawo

Ctype

Ctype

Ctype

Ctype

Ctype

CT.QAWS then dqaws

CT.QAWC then dqawc

CT_QNG then dqng

CT_QAGS then dqags

CT_QAG then dqag

else if fntype
else if fntype
else if fntype
else if fntype
else if fntype

endif

[Note:] fntype : Ctype is an enumeration type. Figure C.8 shows the

diagram of Ctype with its literals. The literals of this type are defined

according to characteristics of input function which is in Section C. 1.3.5

Data Definition.

enumeration

Ctype

CT QAWO

CT QAWS

CT QAWC

CT QAGS

CT QNG

CT_ QAG

Figure C.8: Enumeration Type Ctype

When the fntype is Ctype: :CT_QAWO, Ctype: :CT_QAWS or Ctype ::CT_QAWC,

additional parameters are needed for the corresponding operations in Al

gorithm class, which are described in the following:

If fntype = Ctype: :CT_QAWO, before dqawo is invoked, operations

in InputData class, setOmega and setlntegr, are executed to set pa

rameters omega and integr which are input parameters of dqawo.

247

Master Thesis - Jm Tang
- McMaster -

Computing and Software

Note integr can only be set to 1 when w(x) = cos (a; * x) or 2 when

ty(x) = sin(a; * x).

li fntype = Ctype: :CT_QAWS, before dqaws is invoked, operations

in InputData class, setAlphaBeta and setlntegr, are executed to set

parameters alpha, beta and integr, which are input parameters of

dqaws. integr can only be set to 1, 2, 3 or 4. The detail information

is as follows:

1 when w(x) = (x a)01 x (6 x)0 or

2 when u>(x) = (x a)a x (6 x)^ x log(x a) or

3 when w(x) (x a)a x (6
- x)0 x Zog(r3

-

x) or

4 when u>(x) = (x a)a x (6 x)^ x log(x a) x /og(&
-

x).

If fntype = Ctype::CT_QAWC, before dqawc is invoked, an opera

tion in InputData class, setC, is executed to set the parameter c,

which is the input parameter of dqawc.

3. After Algorithm Class calculates the integration and has the final solu

tion, MasterControl calls OutputShow Class to show the results, which

are got from Algorithm class, on the screen.

Sequence diagram which is defined in UML is a good way to specify the inte

grations between objects as well as system behaviours. The above sequence is

illustrated using sequence diagram in Figure 11 in Section 9.2.

Attributes

None.

Class Invariant

None.

Operations

There is only one operation, main(), in MasterControl Class. The following is

the description of main(), which includes the pre- and postcondition of mainQ
presented by OCL expressions. In addition, descriptions and assumptions are

also provided using natural languages.

248

Master Thesis - Jin Tang
- McMaster -

Computing and Software

context MasterControl :: main()

pre: true

post: true

Assumptions: main() is executed before any other operations in ONIS.

Moreover, during the running time, the instances of InputData, Algorithm
and OutputShow class are linked only once with the instance of MasterCon

trol class.

Description: main() is the point where ONIS starts its execution. As well, it

controls the executive sequence of ONIS. The sequence of main is presented in

Figure 11 in Section 9.2.

C.2. 8.5 InputData Class

InputData Class is used to help the user input data, which includes a function,

characteristics of the input function, an upper bound, a lower bound, an abso

lute accuracy requested and a relative accuracy requested, to ONIS. In some

of input functions, for instance fntype equals to Ctype::QAWO, Ctype::QAWS

or Ctype::QAWC, as mentioned in MasterControl class, additional parameters

such as omega, alpha, beta and c are needed.

Attributes

Table C.4 shows the attributes of Input Data Class, which includes the

name, data type and descriptions of each attribute in this class.

Class Invariant

context InputData

inv: MIN_A < a < MAX_A

inv: MIN_B < b < MAX_B

Attributes Initialization

To satisfy the class invariants, initial values are set to some attributes in the

class using the following syntax in OCL to indicate the initial value of the

attributes (OMG, 2003, page 10).

249

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Name Data Type Descriptions

a Real Lower limit of integration

b Real Upper limit of integration

epsabs Real Absolute accuracy requested

epsrel Real Relative accuracy requested

fntype Ctype Characteristics of the input function

strFunction String Input function

c Real a constant in the weight function

w(x) = 1 j (x-c) when fntype

"Ctype: :CT_QAWC"

omega Real a parameter in the weight function when

fntype = "Ctype::CT_QAWO"

alpha Real a parameter in the weight function when

fntype = "Ctype: :CT_QAWS"

beta Real a parameter in the weight function when

fntype = "Ctype::CT_QAWS"

integr Integer a parameter to show the type

of the weight function when fn

type = "Ctype: :CT_QAWS" or

"Ctype: :CT_QAWO"

Table C.4: Attributes of Input Data Class

250

Master Thesis - Jin Tang
- McMaster -

Computing and Software

context Typename :: attributeName: Type
init: -

some expression resp renting the initial value

context InputData :: a : Real

init: a = MIN_A + 1

context InputData :: b : Real

init: b = MAXJ3 1

Operations

In this section, operations in InputData class are introduced. The values of

MIN_A, MAX_A, MIN JB, MAXJ3, MAX_EPSABS and MAX_EPSREL which

are existed in the following operations can be referred to Section C.1.9 Values

of Auxiliary Constants.

context InputData :: setLowerbound()

pre: true

post: if al >= MIN_A and al <= MAX^\

then a = al

else ExceptionID = LowerBoundJnputJnvalid

endif

Assumptions: setLowerboundQ is invoked before setUpperboundQ

Description: setLowerboundQ receives a real type lower bound value al from

the keyboard and stores this value to the attribute a. If al is not satisfied the

condition MIN_A< al <MAX_A, the system will jump to exception handler,

which will catch the ExceptionID and show the corresponding error message

on the screen.

[Note:] The exception handling methods of the other operations in Input-

Data class are all very similar as setLowerboundQ. The only differences are

their ExceptionID and corresponding error messages. To simplify the design

document, in the following descriptions of the operations, the specification of

exception handling is not included. In stead, Section 10 Exception Handling

will present the exception handling strategies of ONIS in detail.

context InputData :: setUpperboundQ

251

Master Thesis - Jin Tang
- McMaster -

Computing and Software

pre: true

post: if bl > MINJ3 and 61 < MAX_B and bl >= self.a

then b = bl

else ExceptionID = UpperBoundJnputJnvalid

endif

Assumptions: setUpperboundQ is invoked after setLowerboundQ, because af

ter the user inputs an upper bound 61, the program needs to compare the

value of 61 and a to satisfy the condition 61 > a.

Description: setUpperboundQ receives a real type upper bound value 61 from

the keyboard and stores this value to the attribute 6

[Note:] In OCL, the contextual instance self is of the type which owns the

operation as a feature (IBM, 1997, Page 4). the value of a property on an

object that is specified by a dot followed by the name of the property. For

instance, self, a is the value of the property a on self.

context InputData :: setEpsabsQ

pre: true

post: if 0 < epsabsl < MAX.EPSABS

then epsabs = epsabsl
else ExceptionID = EpsabsJnputJnvalid

endif

Assumptions: None

Description: setEpsabsQ receives a real type absolute accuracy requested value

epsabsl from the keyboard and stores this value to the attribute epsabs

context InputData :: setEpsrelQ

pre: true

post: if 0 < epsrell < MAX_EPSREL

then epsrel = epsrell

else ExceptionID = EpsrelJnputJnvalid

endif

Assumptions: None

Description: setEpsrelQ receives a real type relative accuracy requested value

epsrell from the keyboard and stores this value to the attribute epsrel

context InputData :: setFunctionQ

252

Master Thesis - Jin Tang
- McMaster -

Computing and Software

pre: true

post: if strFunction 1 . size <> 0

then strFunction = strFunctionl

else ExceptionID = FunctionJnputJnvalid

endif

Assumptions: None

Description: setFunctionQ receives a function string strFunctionl from the

keyboard and stores this string to strFunction

context InputData :: setCQ

pre: self.fntype = Ctype::CT_QAWC

post: if self.fntype = Ctype ::CT_QAWC

then if cl > self.a and cl < self.b

then c = cl

else ExceptionID = CJnputJnvalid

endif

else ExceptionID = FntypeJnputJnvalid

endif

Assumptions: setCQ should be executed after setLowerboundQ and setUp

perboundQ, because cl should satisfy the condition c > self .a and c < self.b

Description: setCQ receives a Real type value cl from the keyboard and stores

this value to c

context InputData :: setlntegrQ

pre: self.fntype = Ctype: :CT_QAWO or Ctype: :CT_QAWS

post: if selffntype = Ctype ::CT_QAWO or self.fntype = Ctype::CT_QAWS

then integr = integrl

else ExceptionID = IntegrJnputJnvalid

endif

noindent Assumptions: None

Description: setlntegrQ receives a Integer type value integrl from the key

board and stores this value to integr

context InputData :: setOmegaQ

pre: fntype
= Ctype: :CT_QAWO

post: if selffntype = Ctype::CT_QAWO
then omega

= omegal

253

Master Thesis - Jin Tang
- McMaster -

Computing and Software

else ExceptionID = FntypeJnputJnvalid

endif

Assumptions: None

Description: setOmegaQ receives a Real type value omegal from the keyboard

and stores this value to omega

context InputData :: setAlphaBetaQ

pre: fntype = Ctype: :CT_QAWS

post: if selffntype = Ctype: :CT_QAWS

then if alpha > 1 and beta > 1

then alpha = alphal ; beta = betal

else ExceptionID = OmegaJnputJnvalid

endif

else ExceptionID = FntypeJnvalid

endif

Assumptions: None

Description: setAlphaBetaQ receives Real type value alphal and betal from

the keyboard and stores them to alpha and beta respectively

context InputData :: getLowerboundQ : Real

pre: true

post: result = self. a

Assumptions: getLowerboundQ is executed after setLowerboundQ

Description: Get the value of the attribute a

context InputData :: getUpperboundQ : Real

pre: true

post: result = self.b

Assumptions: getUpperboundQ is executed after setUpperboundQ
Description: Get the value of the attribute 6

context InputData :: getEpsabsQ : Real

pre: true

post: result = self. epsabs

Assumptions: getEpsabsQ is executed after setEpsabsQ

Description: Get the value of the attribute epsabs

254

Master Thesis - Jin Tang
- McMaster -

Computing and Software

context InputData :: getEpsrelQ : Real

pre: true

post: result = self. epsrel

Assumptions: getEpsrelQ is executed after setEpsrelQ

Description: Get the value of the attribute epsrel

context InputData :: getFntypeQ : Real

pre: true

post: result = selffntype

Assumptions: getFntypeQ is executed after setFntypeQ

Description: Get the value of the attribute fntype

context InputData :: getFunctionQ : String

pre: true

post: result = self. strFunction

Assumptions: getFunctionQ is executed after setFunctionQ

Description: Get the value of the attribute strFunction

context InputData :: getCQ : Real

pre: true

post: result = self.c

Assumptions: getCQ is executed after setCQ

Description: Get the value of the attribute C

context InputData :: getOmegaQ : Real

pre: true

post: result = self. omega

Assumptions: getOmegaQ is executed after setOmegaQ

Description: Get the value of the attribute omega

context InputData :: getAlphaQ : Real

pre: true

post: result
= self. alpha

255

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Name Data Type Descriptions

res Real The estimated value of the integral

abserr Real The estimated of absolute error

neval Integer The number of times the integral was eval

uated

ier Ecodetype Error code.

Table C.5: Attributes of Algorithm Class

Assumptions: getAlphaQ is executed after setAlfaBetaQ
Description: Get the value of the attribute alpha

context InputData :: getBetaQ : Real

pre: true

post: result = self. beta

Assumptions: getBetaQ is executed after setAlfaBetaQ
Description: Get the value of the attribute beta

context InputData :: getlntegrQ : Integer

pre: true

post: result = self. integr

Assumptions: getlntegrQ is executed after setlntegrQ
Description: Get the value of the attribute Integer

C.2.8.6 Algorithm Class

Algorithm Class is in charge of calculating the integration. As mentioned be

fore, Fortran routines, QAWO, QAWS, QAWC, QNG, QAGS, QAG in Quad-
pack library will be encapsulated in this class to help calculate the integration
according to the characteristics of the input function.

Attributes

Table C.5 shows the attributes of Algorithm Class.

256

Master Thesis - Jin Tang
- McMaster -

Computing and Software

[Note:] ier: Ecodetype is an enumeration type. Figure 7 shows the

diagram of Ecodetype with its literals. The literals of this type are defined ac

cording to Error Code Type which is in Section 3.5 Data Definition in Section

C.l.

enumeration

Ecodetype

NORMAL

MAX EVAL LIMIT

RNDOFF ERR

LOC DIFF

NOT CONVG

DIVG INGR

INVALIDJNPUT

Figure C.9: Enumeration Type Ecodetype

Class Invariant

None.

Operations

context Algorithm :: dqawo(sfun: String, a: Real, b: Real, omega: Real,

integr: Integer, epsabs: Real, epsrel: Real)

pre: self. InputData.fntype = Ctype ::CT_QAWO

post: ii self. InputData.fntype = Ctype: :CT_QAWO

then if self. InputData. integr = 1 or self. InputData. integr
= 2

then result = Tuple {

fb
self, res = approximate value of y / f(x)dx,

J a

self. abserr = approx| y res \,

self neval = number of integrand evalua

tions,

{Ecodetype::NORMAL,Ecodetype::MAX_EVALJJ^/
Ecodetype: :RNDOFF_ERR, Ecodetype::LOCJ)IFF, Ecodetype: :NOT_CONVG,

Ecodetype::DIVGJNGR} -> includes selfier

}
else selfier = Ecodetype: JNVALIDJNPUT

257

Master Thesis - Jin Tang
- McMaster -

Computing and Software

endif

else ExceptionID = FntypeJnvalid

endif

Note: The meanings of literals of Ecodetype can be referred to Values of

Auxiliary Constants in Section C.l

Assumptions: None

Descriptions: dqawo () calculates the integration of the input function whose

Ctype is "CT.QAWO." dqawo uses a Fortran routine qawo.f (Netlib, 2008d,

2008) which is in Quadpack library to calculate the integration.

context Algorithm :: dqaws(s/im: String, a: Real, b: Real, alpha: Real, beta:

Real, integr: Integer, epsabs: Real, epsrel: Real)

pre: self. InputData.fntype = Ctype: :CT_QAWS

post: if self. InputData.fntype = Ctype::CT_QAWS
then if {1.-4} -> mc\udes(self.InputData. integr)

then result = Tuple {

fb
self, res = approximate value of y = / f(x)dx,

J a

self. abserr approx| y res \,
self. neval = number of integrand evalua

tions,

{Ecodetype: :NORMAL, Ecodetype: :MAXJEVAI

Ecodetype: :RNDOFF_ERR, Ecodetype: :LOCJDIFF} -> includes selfier

}
else selfier = Ecodetype: JNVALIDJNPUT

endif

else ExceptionID FntypeJnvalid
endif

Assumptions: None

Descriptions: dqaws () calculates the integration of the input function whose

Ctype is "CT.QAWS." dqawsQ uses a Fortran routine qaws.f (Netlib, 2008e,
2008) which is in Quadpack library to calculate the integration.

context Algorithm :: dqawc(sfun: String, a: Real, b: Real, c: Real, epsabs:
Real, epsrel: Real)
pre: self. InputData.fntype = Ctype::CT_QAWC
post: if self. InputData.fntype = Ctype::CT_QAWC

then if a < c and c < 6

258

Master Thesis - Jin Tang
- McMaster -

Computing and Software

then result = Tuple {

fb
self, res = approximate value of y = / fix) dx,

J a

self, abserr = approx| y res |,

self. neval = number of integrand evalua

tions,

{Ecodetype: :NORMAL, Ecodetype: :MAX_EVAL_LIM

Ecodetype: :RNDOFF_ERR, Ecodetype: :LOC_DIFF} -> includes selfier

}
else selfier = Ecodetype: JNVALIDJNPUT

endif

else ExceptionID = FntypeJnvalid
endif

Assumptions: None

Descriptions: dqawcQ calculates the integration of the input function whose

Ctype is "CT_QAWC." dqawcQ uses a Fortran routine qawc.f (Netlib, 2008c,

2008) which is in Quadpack library to calculate the integration.

context Algorithm :: dqng (sfun: String, a: Real, b: Real, epsabs: Real, ep

srel: Real)

pre: self. InputData.fntype = Ctype: :CT_QNG

post: if self. InputData.fntype = Ctype::CT_QNG
then result = Tuple {

fb
self. res = approximate value of y

= / f{x) dx,
J a

self. abserr = approx| y res \,

self. neval = number of integrand evaluations,

{Ecodetype: :NORMAL, Ecodetype: :MAX_EVAL JLIMIT}
-> includes self. ier

}
else ExceptionID = FntypeJnvalid

endif

Assumptions: None

Descriptions: dqngQ calculates the integration of the input function whose

Ctype is "CT_QNG." dqngQ uses a Fortran routine qng.f (Netlib, 2008f, 2008)
which is in Quadpack library to calculate the integration.

context Algorithm :: dqags (s/un: String, a: Real, b: Real, epsabs: Real, ep-

259

Master Thesis - Jin Tang -McMaster -

Computing and Software

srel: Real)

pre: self. InputData.fntype = Ctype::CTJDAGS

post: if self. InputData.fntype = Ctype::CT_QAGS
then result = Tuple {

fb
self. res approximate value of y = / f(x) dx,

J a

self abserr = approx| y res |,

self. neval = number of integrand evaluations,

{Ecodetype::NORMAL, Ecodetype: :MAX_EVALJJMF

Ecodetype::RNDOFF_ERR,Ecodetype::LOC_DIFF, Ecodetype: :NOT_CONVG,

Ecodetype::DIVGJNGR} -> includes selfier

}
else ExceptionID = FntypeJnvalid

endif

Assumptions: None

Descriptions: dqags () calculates the integration of the input function whose

Ctype is "CT.QAGS." dgagsQ uses a Fortran routine qng.f (Netlib, 2008b,

2008) which is in Quadpack library to calculate the integration.

context Algorithm :: dq&gisfun: String, a: Real, b: Real, epsabs: Real, ep

srel: Real, key: Integer)

pre: key = 6

post: if self. InputData.fntype = Ctype: :CT_QAG

then if key = 6

then result = Tuple {

fb
self. res = approximate value of y = / f(x) dx,

J a

self abserr = approx| y res \,

self.neval = number of integrand evalua

tions,

{Ecodetype::NORMAL, Ecodetype: :MAX_EVAI

Ecodetype: :RNDOFF_ERR, Ecodetype: :LOCJ3IFF} -> includes selfier

}
else ExceptionID = KeyJnvalid

endif

else ExceptionID = FntypeJnvalid
endif

Assumptions: None

Descriptions: dqagQ calculates the integration of the input function whose

260

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Ctype is "CT_QAG." dgagQ uses a Fortran routine qag.f (Netlib, 2008a, 2008)
which is in Quadpack library to calculate the integration. Notice according to

the descriptions of qag.f, the parameter key should be set to 6.

context Algorithm :: getResQ : Real

pre: true

post: result = self. res

Assumptions: getResQ should be invoked after dqngQ, dqagsQ, dqawcQ,

dqawoQ, dqawsQ and dqagQ

Description: get the estimated value of the integral res

context Algorithm :: getAbserrQ : Real

pre: true

post: result = self. abserr

Assumptions: getAbserrQ should be invoked after dqngQ, dqagsQ, dqawcQ,

dqawoQ, dqaws () and dqagQ

Description: get the estimated absolute error abserr

context Algorithm :: getNevalQ : Real

pre: true

post: result = selfneval

Assumptions: getNevalQ should be invoked after dqngQ, dqagsQ, dqawcQ,

dqawoQ, dqaws () and dqagQ

Description: get neval

context Algorithm :: getErrorCodeQ : Ecodetype

pre: true

post: result
= selfier

Assumptions: getErrorCodeQ should be invoked after dqngQ, dqagsQ, dqawcQ,

dqawoQ, dqawsQ and dqagQ

Description: get an error code ier

261

Master Thesis - Jin Tang
- McMaster -

Computing and Software

C.2.8. 7 OutputShow Class

OutputShow Class shows the estimated value of the integral, the estimated

absolute error, the number of times the integral was evaluated and an error

code on the screen.

Attributes

None.

Class Invariant

None.

Operations

context OutputShow: :show(res: Real, abserr: Real, neval: Integer, ier: Ecode

type)

pre: true

post: true

Assumptions: showQ is the last to execute in ONIS

Description: Show res, abserr, neval and ier on the Screen

C.2.8. 8 Expression Class

Expression Class is used to express the structure of a parse tree. There are

four constructors and two operations in this class. Four constructors are to

generate different kinds of nodes in a parser tree. Operation setvalue helps to

set the different x value to the expressions, evaluate is to obtain the values of

function evaluations.

Data Types

Two enumeration data types TFLAG and SYMBOL are used in Expression
class. TFLAG is a flag that indicates the data type of a node in a parse

tree. VAR, CON and EXP means a variable, a constant and an expression,

respectively. Notice only one kind of variable x is allowed in ONIS. SYMBOL

helps to check the symbols in the input function. Figure 8 illustrates the data

type of TFLAG and SYMBOL.

Attributes

Table C.6 shows the attributes of Expression Class.

262

Master Thesis - Jin Tang
- McMaster -

Computing and Software

enumeration

TFLAG

EXP

VAR

CON

enumeration"

SYMBOL

ADD

SUB

MUL

DIV

LBRACK

RBRACK

COMMA

NUM

VAR

SIN

cos

EXP

LOG

LOG 10

POW

SQRT

TAN

EOF

PI

INVALID

Figure CIO: TFLAG and SYMBOL

Class Invariant

None.

C.2.8. 9 Operations

There are four constructors in Expression Class to initialize the attributes so

as to generate different type nodes in a parse tree. In this parse tree, the leaf

node can only be a constant or a variable x.

context Expression :: ExpressionQ

263

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Name Data Type Descriptions

typ TFLAG data type of a node

op SYMBOL operator and symbol

opdl Expression a left child of a node

opd2 Expression a right child of a node

value Real value of a node

Table C.6: Attributes of Expression Class

context Expression :: typ : TFLAG

init: typ = TFLAG::CON

context Expression :: value : Real

init: value = 0

context Expression :: op : SYMBOL

init: op
= SYMBOL::INVALID

context Expression-,-: opdl : Expression

init: opdl = Empty
context Expression :: opd2 : Expression

init: opd2 = Empty

Assumptions: As a constructor, ExpressionQ should be executed before any
other operations in the Expression Class, except for other constructor Expres
sionQ

Descriptions: This is a default constructor to create initial values of a leaf

node. The initial data type of the node is set to CON, a number, with a value

of zero. The op, i.e. operator, is set INVALID, and left child opdl and right
child opd2 of this node are set to empty. In OCL, no standard way are found
to express that the value of an object is empty; therefore, here we use Empty
to express it. Developers can use different methods to implement Empty in

the implementation stage in terms of the programming language they choose.

context Expression :: Expression (number: Real)

264

Master Thesis - Jin Tang
- McMaster -

Computing and Software

context Expression :: typ : TFLAG

init: typ = TFLAG::CON

context Expression :: value : Real

init: value = number

context Expression :: op : SYMBOL

init: op
= SYMBOL::INVALID

context Expression :: opdl : Expression

init: opdl = Empty

context Expression :: opd2 : Expression

init: opd2 = Empty

Assumptions: As a constructor, Expression (number: Real) is executed before

any other operations in the Expression Class, except for other constructor

Expression ()

Descriptions: Expression (nwmfter.' Real) is also a constructor. Its difference

with previous ExpressionQ lies in it can help set a leaf node whose data type

is also CON but with a value which comes from the parameter of ExpressionQ
number.

context Expression :: Expression^: String)
context Expression :: typ : TFLAG

init: typ = TFLAG::VAR

context Expression :: value : Real

init: value = 0

context Expression :: op : SYMBOL

init: op
= SYMBOL: INVALID

context Expression :: opdl : Expression

init: opdl = Empty

context Expression :: opd2 : Expression

265

Master Thesis - Jm Tang
- McMaster -

Computing and Software

init: opd2 = Empty

Assumptions: As a constructor, Expression^: String) should be executed be

fore any other operations in the Expression Class, except for other constructor

ExpressionQ. In ONIS, only one kind of variable, x, is allowed.

Descriptions: Expression (s: String) is also a constructor. Its difference with

ExpressionQ lies in it can help set a leaf node whose data type is VAR, i.e. a

variable.

context Expression :: Expression (symbol: SYMBOL, objl: Expression, obj2:

Expression) : Expression

context Expression :: typ : TFLAG

init: typ = TFLAG::VAR

context Expression :: value : Real

init: value = 0

context Expression :: op : SYMBOL

init: op
= SYMBOL: JNVALID

context Expression :: opdl : Expression

init: opdl -> objl
context Expression :: opd2 : Expression

init: opd2 -> obj2

Assumptions: As a constructor, Expression (symbol: SYMBOL, objl : Expres

sion, obj2: Expression) should be executed before any other operations in the

Expression Class,except for other constructor ExpressionQ

Descriptions: This constructor is to create a node with left child and right
child. In this case, data type of the node will be set to EXP, i.e. an expres

sion, opdl and opd2 will point to left child and right child respectively, op

store the information of symbol, which could be a function such as SIN or

COS, or a operator such as "+" or "-".

266

Master Thesis - Jin Tang
- McMaster -

Computing and Software

context Expression :: setValue (ua/: Real)
pre: true

body: if self. typ = TFLAG::VAR then self.value = val

else if self typ = TFLAG::EXP

then self.opl.setValue(val);
if op2 ->notEmpty() then self.op2.setValue(val)

endif

endif

endif

Assumptions: setValueQ should be executed before evaluateQ

Description: set the value val for the points x at which the integrand is eval

uated to the entire parser tree

context Expression :: evaluateQ : Real

pre: true

post: if {TFLAG::VAR, TFLAG::CON} -> includes self.typ then result =

self.value

else if self op = TFLAG:ADD

then if selfopd2 -> isEmptyQ
then result = self. opl.evaluateQ

else result = self. opl.evaluateQ + se//.op2.evaluate()
endif

endif

else if self. op = TFLAG ::SUB

then if self.opd2 -> isEmptyQ
then result = self. opl.evaluateQ

else result = self. opl.evaluateQ - self.op2.evaluateQ
endif

endif

else if self. op = TFLAG: :MUL

then result = self. opl.evaluateQ
*

se//.op2.evaluate()
endif

else if self. op = TFLAG: :DIV

then if se//.opevaluate() = 0 then ZeroJnvalid

else result = self. opl.evaluateQ / se//.op^.evaluate()
endif

endif

else if self. op = TFLAG::SIN

then result = sin(selfopl.evaluateQ)

267

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

endif

else if self. op = TFLAG: :COS

then result = cos(se//.opi.evaluate())
endif

else if self op = TFLAG::EXP

then result = exp(selfiopl.evaluateQ)

endif

else if self, op = TFLAG: :LOG

then result = log(se(f.opi.evafuate())
endif

else if self. op = TFLAG::LOG10

then result = loglO(se//.opi.evaluate())
endif

else if selfop = TFLAG::SQRT

then result = sqvt(selfopl.evaluateQ)
endif

else if self. op = TFLAG: :TAN

then result = tan(seZf.opi.evaluateQ)
endif

else if self. op = TFLAG::POW

then result = pow(self.opl.evaluateQ, se//.op.evaluate(
endif

else InputJunctionJnvalid

endif

Assumptions: evaluateQ should be executed after setValueQ

Description: calculate the values of the integrand in the evaluated point x

Examples The following figures illustrate how to use Expression Class to

express the nodes of the parse tree. If the input function is x + sin(cos(x + 3)),

Figure C.ll shows the parse tree of this function and Figure C.12 presents a

parse tree using Expression Class to express this parse tree.

C.2.8.10 Parser Class

Parser Class is used to parse the input function and create a parse tree. The

following is the Extended Backus-Naur Form (EBNF) grammar for the input
function.

268

Master Thesis - Jin Tang
- McMaster -

Computing and Software

Figure C.ll: Parse Tree for x + sin(cos(x+3))

Name Data Type Descriptions

sym SYMBOL symbol of the node

size Integer length of the string of input function

post Integer a pointer to record the current node

pos2 Integer- a pointer to scan the-input function to find

the symbol of a node

sfunction String input function

strval String part of the input function

numval Real number in the input function

Table C.7: Attributes of Parser Class

expression = ["+" | "-"] term {("+" | "-") term}
term = factor {("*" | "/") factor}
factor = number | variable | funct | "(" expression ")"
funct = ("COS" | "SIN" | "TAN" | "EXP" | "LOG" | "LOG10" | "POW" |

"SQRT") "(" expression ")"

Attributes

Table C.7 shows the attributes of Parser Class. The following attributes are

public, so all the operations in Parser Class can share the value of the at

tributes.

269

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

e1

typ = EXP

op = ADD

opdl = e2

opd2 = e3

value = 0

e2

typ = VAR

op = NVALID

opdl = NULL

opd2 = NULL

value = 0

e3

typ = EXP

op = SIN

opdl = e4

opd2 = e5

value = 0

e4

typ = EXP

op = COS

opdl = e6

opd2 = e7

value = 0

e5

typ = CON

op = INVALID

opdl = NULL

opd2 = NULL

value = 0

e6 e7

typ = EXP typ = CON

op = ADD op = INVALID

opdl = e8 opdl = NULL

opd2 = e9 opd2 = NULL

value = 0 value = 0

e8

typ = VAR

op = NVALID

opdl = NULL

opd2 = NULL

value = 0

\
e9

typ = CON

op = INVALID

opdl = NULL

opd2 = NULL

value = 3

Figure C.12: Parse Tree for x + sin(cos(x+3)) using Expression Class

Attribute Initialization

context Parser :: posl : Integer

init: posl = 0

context Parser :: pos2 : Integer

init: pos2 = 0

Class Invariant

None.

Operations

context Parser :: p&rse(strFunction: String) : Expression

pre: true

270

Master Thesis - Jin Tang
- McMaster -

Computing and Software

post: result = self.expressionQ

Assumptions: parse () is the function that should be invoked before any other

operations in Parser Class.

Description: parseQ initializes the value of posl and pos2. Then, it calls

expression () to parse the input function and generate a parse tree.

context Parser :: getSymbolQ

pre: true

post: if sfunction -> substring(posl, posl) = "("
then posl = posl@pre + 1; pos2 = pos2'Q.pre +

1; sym = SYMBOL::LBRACK

else if sfunction -> substring(posl, posl) = ","

then posl = posl@pre + 1; pos2 = pos2'C'pre +

1; sym = SYMBOL::COMMA endif

else if sfunction -> substring(posl, posl) = ")"
then posl = posl@pre + 1; pos2 = pos2@pre +

1; sym = SYMBOL ::RBRACK endif

else if sfunction -> substring(posl, posl) = "+"

then posl = posl'U'pre + 1; pos2 = pos2''P.'pre +

1; sym = SYMBOL::ADD endif

else if sfunction -> substring(posl, posl) = "-"

then posl = posl@pre + 1; pos2 = pos2@pre +

1; sym = SYMBOL::SUB endif

else if sfunction > substring(posl, posl) =
"*"

then posl = posl@pre + 1; pos2 = pos2@pre +

1; sym = SYMBOL::MUL endif

else if sfunction -> substring(posl, posl) = "/"
then posl = posl@pre + 1; pos2 = pos2@pre +

1; sym = SYMBOL: :DIV endif

else if sfunction -> substring(posl, posl + 2) = "sin"

then posl = posl@pre 4- 3; pos2 = pos2@pre +

3; sym = SYMBOL: :SIN endif

else if sfunction -> substring(posl, posl + 2) = "cos"

then posl = posl@pre + 3; pos2 = pos2|Cjpre +

3; sym = SYMBOL::COS endif

else if sfunction -> substring(posl, posl + 2) = "exp"

then posl = posl@pre + 3; pos2 = pos2@pre +

3; sym
= SYMBOL ::EXP endif

else if sfunction -> substring(posl, posl + 2) = "log"

271

Master Thesis - Jin Tang
- McMaster -

Computing and Software

then posl = posl@pre + 3; pos2 = pos2@pre +

1; sym = SYMBOL: :LOG endif

else if sfunction -> substring(posl, posl + 4) = "loglO"

then posl = posl@pre + 5; pos2 = pos2@pre +

5; sym = SYMBOL::LOG10 endif

else if sfunction > substring(posl, posl + 2) = "pow"

then posl = posl@pre + 3; pos2 = pos2@pre +

3; sym = SYMBOL: :POW endif

else if sfunction -> substring(posl, posl + 3) = "sqrt"

then posl = posl@pre + 4; pos2 = pos2@pre +

4; sym = SYMBOL::SQRT endif

else if sfunction -> substring(posl, posl + 2) = "tan"

then posl = posl@pre + 3; pos2 = pos2@pre +

3; sym = SYMBOL::TAN endif

else if sfunction -> substring(posl, posl) = "x"

then posl = posl@pre + 1; pos2 = pos2@pre +

1; sym = SYMBOL::VAR endif

else if sfunction -> substring(posl, posl+1) = "pi"

then posl = posl@pre + 2; pos2 = pos2@pre +

2; sym = SYMBOL::PI endif

else ExceptionID = SymbolJnvalid

endif

Assumptions: None.

Description: getSymbolQ is to get the symbol of a node. The position of the

node will be obtained from the value of the attribute posl and pos2. When it

gets the symbol of the node, it will store the symbol to the attribute sym.

context Parser :: expressionQ : Expression

pre: true

post: if sym
= SYMBOL::ADD or sym

= SYMBOL::SUB

then result = self.term()
endif

Assumptions: expressionQ should be executed before termQ, factorQ and

funct ()

Description: generate expressions of the parser tree

context Parser :: termQ : Expression

pre: true

272

Master Thesis - Jin Tang
- McMaster -

Computing and Software

post: ifsym = SYMBOL::MULorsym = SYMBOL::DIV then

result = self.factorQ endif

Assumptions: termQ should be executed after expressionQ but before factor ()
and funct ()

Description: generate terms of the parser tree

context Parser :: factor () : Expression

pre: true

post: if sym
= SYMBOL::PI then result = Expression: :Expression(PI)

else if sym
= SYMBOL: :NUM then result = Expres

sion::Expression (numval)
else if sym = SYMBOL::VAR then result = Expression: :Expression(st
else if sym = SYMBOL::LBRACK then result = expres

sionQ
else if SYMBOL::SIN, SYMBOL::COS, SYMBOL::EXP,

SYMBOL::LOG, SYMBOL::LOG10, SYMBOL::POW, SYMBOL::SQRT, SYM-

BOL::TANthen result = funct ()
else InputJnvalid

endif

Assumptions: factor () should be executed after expressionQ and termQ but

before funct ()

Description: generate factor of the parser tree

context Parser :: funct () : Expression

pre: true

post: result = expressionQ

Assumptions: funct () should be executed after expressionQ, termQ and fac

tor ()

Description: generate function of the parser tree

C.2. 9 Dynamic Modeling of Behaviour

The previous class diagram describes the static aspects of ONIS. Static mod

els, such as class diagrams, describe the objects in a system, the data each

object contains and the links that exist between them, but they say very little

about the behaviour of these object. When a system is running, objects inter-

273

Master Thesis - Jin Tang
- McMaster -

Computing and Software

act by passing messages. The messages that are sent determine the system's

behaviour, but they are not shown on static diagrams such as class diagrams.

In this section, sequence diagrams and statecharts are introduced to present

the behaviour of ONIS.

C.2. 10 Sequence Diagram of ONIS

The sequence diagram is used in this document to show interactions between

objects. Figure 11 illustrates the main sequence of ONIS. The classifier roles

involved in the interaction are displayed at the top of the diagram. The ver

tical dimension in a sequence diagram represents time and the messages in an

interaction are drawn from top to bottom of the diagram, in the order that

they are sent. Each role has a dashed line, known as its lifeline extending be

low it. The lifeline indicates the period of time during which objects playing

that role actually exist.

Messages are shown as arrows leading from the lifeline of the sender of

the message to that of the receiver. When a message is sent, control passes

from the sender of the message to the receiver. The period of time during which

an object is processing a message is known as an activation and is shown on

a lifeline as a narrow rectangle whose top is connected to a message.

When an object finishes processing a message, control returns to the

sender of the message. This marks the end of the activation corresponding
to that message and is marked by a dashed arrow going from the bottom of

the activation rectangle back to the lifeline of the role that sent the message

giving rise to the activation.

The messages shown in Figure 11, with a solid arrowhead, denote syn
chronous message, such as normal procedure calls. These are characterized

by the fact that processing in the object that sends the message is suspended
until the called object finishes dealing with the message and returns control

to the caller. (Priestley, 2003, page 192,193)

It is optional whether or not to show activations return messages on

sequence diagrams. In Figure 11, to simplify the sequence diagram and make

the diagram clearer, some return messages are not included in the diagram.

Sequence diagrams also provide means for showing conditional message

274

Master Thesis - Jin Tang
- McMaster -

Computing and Software

passing or, in other words, messages that are only sent under certain circum

stance. In Figure 11, to show that message dqawoQ will only be sent under

certain circumstances, a condition, Cl, is attached to it. This consists of a

Boolean expression written in square bracket. If the condition evaluates to

true at the point in the activation when the message is reached, the message

will be sent. Otherwise, control will jump to the point following message cor

responding to the message bearing the condition (Priestley, 2003, page 200).
For example dqawoQ only be sent to Algorithm when function type equal to

CT.QAWO. The following is the meanings for condition Cl to C6.

Cl: fntype == Ctype: :CT_QAWO

C2: fntype == Ctype::CT_QAWS

C3: fntype == Ctype: :CT_QAWC

C4: fntype == Ctype: :CT_QAGS

C5: fntype == Ctype: :CT.QNG

C6: fntype =- Ctype: :CT_QAG

The are some messages in the Figure 11 with
'*'

beside the mes

sages, that means these messages will also be done after the message dqawsQ,

dqawcQ, dqagsQ, dqngQ and dqagQ. To simplify the sequence diagram, these

messages are only be drawn once in the diagram.

C.2. 10.1 Statechart of Expression

The Parser Class is to parse the input function and generate parse tree. The

parse tree is expressed using Expression Class. A parser can be regarded as a

finite state machine, which consists of a set of states and set of labeled tran

sitions between states. An input function can be treated as a sequence which

is recognized by starting in the initial state and from each state following the

transition which is labeled with the next input symbol (Sekerinski, 2006, page

45). In UML, state machines are normally documented in a type of diagram
known as statechart. Figure 12 is the statechart for Expression objects which

is used in ONIS.

Statecharts show the possible states of an object, the events it can

detect and its response to those events. In software terms, it is common to

275

Master Thesis - Jin Tang
- McMaster -

Computing and Software

assume that the events detected by an object are simply the message sent to

it. In general, detecting an event can cause an object to move from one state

to another. Such a move is called a transition. The basic information shown

on a statechart is the possible states of the entity and the transitions between

them, or in other words the way that detecting various events causes the sys

tem to move from one state to another. The states of the system are shown

are rounded rectangles, with the name of the state written inside them. State

transitions are shown by arrows linking two states. Each such arrow must be

labeled with the name of an event. The meaning of such an arrow is that if

the system receives the event when it is in the state at the tail of the arrow, it

will move into the state at the head of the arrow (Priestley, 2003, page 210).

An initial states are shown as small black disks. A transition leading
from an initial event shows the state that the object goes into when it is cre

ated or initialized. No event should be written on a transition from an initial

state.

According to EBNF grammar in Section 8.7, an expression could be

a term, a factor or a funct (i.e. a function). So, term, factor and funct are
states of expression but they are substates. In addition, term is a substate

of expression, factor is a substate of term and funct is a substate of factor.
In statecharts, we can use composite state consisting of one or many nested

substates to express this kind of relationship.

We can add guard conditions to the transitions, stating the circum

stances under which the transitions will fire. Guard conditions are part of the

specification of a transition and are written in square brackets after the event

name that labels the transition. Guard conditions are often written in infor

mal English, but if desired a more formal notation can be used, such as the

OCL language describe above (Priestley, 2003, page 212-214). For example, in
Figure 12, Expression is in the state funct and transition getsymbolQ occurs

and sym equals to LBRACK (a left bracket), the state of Expression moves

from funct to expression. We use getsymbolQ [sym = SYMBOL: :LBRACK] to
describe this transition.

History states are represented by a capital 'H' within a circle and can

only appear inside composite states. A transition to a history state causes

the substate that was most recently activate in the composite state to become
active again i.e. History state could 'remember' which substate was activate

last time the composite state was active and automatically return to that sub-

276

Master Thesis - Jin Tang
- McMaster -

Computing and Software

state. Another variant of a history state "deep history state', notated with an

additional
*
inside the history pseudostate. This means 'recursively enter the

most recently vacated substate of every non-concurrent composite substate of

the composite state enclosing myself (Lano, 2005, page 80), is used. In Figure

12, we use deep history state to remember the substates.

C.2. 11 Exception Handling

This section describes the exception handling strategies using in ONIS. Gen

erally, any occurrence of an abnormal condition that causes an interruption in

normal control flow is called an exception. It is said that an exception is raised

(thrown) when such a condition is signaled by a software unit. In response to

an exception, the control is immediately given to a designated handler for the

exception, which reacts to that situation (exception handler). The handler can

try to recover from that exception in order to continue at a predefined location

or it cleans up the environment and further escalates the exception (Renzel,

2008, page 9).

In ONIS, the exception handling in a region of code by surrounding it

with a try block. The exception handlers immediately after the try block, in

a series of catch clauses. An exception handler is much like a definition for a

function, named by the keyword catch. The statement, for example:

throw LowerBoundJnput_not_valid

causes the compiler to search the function calls for a handler that can catch

exception code LowerBoundJnput_not_valid, so control passes to that handler.

When executing a throw expression, the program will jump to a handler as

sociated with an active try block. In ONIS, exception handler will catch the

exception codes and responses with a message which describes the type of ex

ceptions on the screen.

277

Master Thesis
- Jin Tang

- McMaster -

Computing and Software

MaslBrControl Algorithm

[c H input Omega and int^ i

Pinpul
function type

arand verily function lype

rdiffiwon

Parser -OiiipijtShow

'parsefstrFunctionl
t

lreturn_p_arsetree_

'setValueixl

'value = evaluated

'return value

P *parsetree=expres$ion()

a
pwcH

Ic41 doaasO

Ic51 donal)

Ic61 dfraqO

^U.
oelResO

aelNevalCt

aetErrorCodeO

7) show on screen

Figure C.13: Main Sequence of ONIS

278

Master Thesis Jin Tang
- McMaster -

Computing and Software

^

->

getsyml

[sym=Sl

balO

getsymbolQ

[sym=S^

Expression

%

getsymbol()

[sym=SYMBOL::RBRACK]

3:

MBOL L3RAC<]

>

3RACq

Factor

[SYM->includes(sym)] [sym=SYMBOL:VAR] [sym=SYMBOL :NUM]

I Variable J I Number J

[sym=SYMBOL.SIN] (sym=SYMBOL::COS] [sym=SYMB<pl_:

I sin J I cos 1 I tan J

,[sym=SYMBOL:EXP] ,[sym=SYMBOL:LOG]

(exp J f log J f Ig J

,[sym=SYMBOL:LOC 1

[sym=SYMBOL:.POW] [sym=SYMBOL::SORT]

I power J I sqrt J

TAN |

Figure C.14: Statecharts of Expression

279

	Book title
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page
	Page

