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Abstract

. In a multi-user communication system such as the wireline or wireless communication sys-
tems, a commonly encountered problem is the extraction of the desired signal from Co-
Channel Interference (CCI) and Adjacent Channel Interference (ACI). To combat the CCI
and ACI, the conventional filtering techniques are unable to carry out the job. The opti-
mum FREquency-SHift (FRESH) filtering technique proposed by W. A. Gardner enables
us to suppress spectrally overlapped signals by using the cyclostationarity of the signals.
However, to design the optimum FRESH filter, we must have the statistical knowledge of
the desired signal or a training signal which, in practice, are not often available. This thesis
proposes a blind adaptive FRESH filtering algorithm which does not need a training sig-
nal to extract the desired signal from spectrally overlapping interference. We call this new
technique Blind Adaptive (BA)-FRESH filtering. Comparing the BA-FRESH filter with the
FRESH filter with a training signal which is called Trained Adaptive FRESH (TA-FRESH)
filter, it has been proved that BA-FRESH and TA-FRESH have same performances when
_ the data length is infinite. When the data length is finite, there are performance differences
between BA-FRESH and TA-FRESH. Convergence of the BA-FRESH and TA-FRESH fil-
ter coefficients, the finite sample output signal to interference plus noise ratio (SINR), and
the finite sample output mean square error (MSE) are analyzed and their convergence rates
are obtained. Moreover, the finite sample output probability error of BA-FRESH and TA-
FRESH are analyzed. Using the central limit theorem, the analytic formulae of finite sample
output probability error of BA-FRESH and TA-FRESH are obtained. Numerical results
are presented to examine these results. We found that the analytic results and simulation

results agree closely.
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On the other hand, various cyclic beamforming techniques such as the spectral Self-
COherence REstoral (SCORE), the Cyclic Adaptive Beamforming (CAB), the Constrained
" Cyclic Adaptive Beamforming (C-CAB) and the Robust Cyclic Adaptive Beamforming (R-
CAB) algorithms can be used to combat CCI and ACI efficiently. However, when the desired
signal and the interferences are very closely spaced in arrival directions, system performance
improvement using these cyclic beamforming alone is limited because the beamformers
are just spatial filters. By combining the spatial beamforming with the temporal FRESH
filtering, a large system performance improvement may be achieved due to the full utilization
of the signal information in both time and space domains. A Blind Adaptive Space-Time
(BLAST) algorithm is proposed in this thesis. The BLAST algorithm is a blind adaptive
time varying space-time filter. It does not require a training signal and it can generate the
reference signal from the corrupted signal. Because the algorithm exploits not only spatial
information but also temporal information of the signals, it has the advantages of both
spatial and temporal filters. The BLAST algorithm can be viewed as the expansion of the
BA-FRESH filtering algorithm to the space-time domain. Comparing the BLAST filter with
. the space-time filter with a training signal which is called Trained Adaptive Space-Time
(TAST) filter, it has been proved that BLAST and TAST have same performances when
the data length is infinite. When the data length is finite, there are performance differences
between BLAST and TAST. Convergence of the BLAST and TAST filter coefficients, the
finite sample output signal to interference plus noise ratio (SINR), and the finite sample
output mean square error (MSE) are analyzed. Their convergence rates are obtained.
Moreover, the finite sample output probability error of BLAST and TAST are also analyzed.
Using the central limit theorem, the analytic formulae of finite sample output probability
error of BLAST and TAST are obtained. Numerical results are presented. We found the
analytic results and simulation results agree closely. The analytic and simulation results
show that the use of the proposed algorithms to extract desired signals from the corrupted

signal is promising.
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Chapter 1

Introduction

- 1.1 Background

The field of wireless mobile communications is growing at an explosive rate, covering many
technical areas. This growth necessitates more efficient utilization of the electromagnetic
spectrum and high quality system performance. However, there are many practical diffi-
culties which must be overcome. These include Co-Channel Interference (CCI), Adjacent
Channel Interference (ACI), Inter-Symbol Interference (ISI) and multi-path fading prob-
lems, [1-3]. To solve these problems, many research efforts have been made [8, 10, 15, 16).
This thesis focuses on the interference rejection problem which is important for several rea-
sons. Firstly, frequency re-use techniques are employed in various mobile cellular phone
systems such as Advanced Mobile Phone System (AMPS), Pan-European Global System
for Mobile communications (GSM), American Digital Cellular (ADC), and Japanese Digital
Cellular (JDC) systems. The concept of frequency re-use refers to the use of radio channels
~ on the same carrier frequency to cover the different areas. The capacity of these cellular
systems is inherently interference limited [4], particularly by CCI and ACI. Although we can
split cells and decrease power to combat the CCI and ACI, cell splitting is expensive because
we have to increase the number of base stations. So we need efficient interference rejection

techniques to improve utilization of spectrum. Secondly, to further increase the utilization



CHAPTER 1. INTRODUCTION 2

of spectrum, as new technology supersedes old technology, we need to co-utilize old systems
with new systems such as the Interim Standard-95 (IS-95) based on CDMA overlay or co-
existence with Advanced Mobile Phone System (AMPS) on cellular telephone spectrum [4].
To implement these systems, the key issue is also how to combat mutual interferences which
come from the two kinds of systems. Moreover, for other mobile communications systems
- such Global Position Systems (GPS) and satellite-based mobile Communication Systems,
we also often meet interference problems. For example, commercial air-borne GPS system
are susceptible being jammed unintentionally [6]. Therefore, we see that developing efficient
receivers of mobile communication system which combat CCI and ACI has great commercial

values. This lays the main practical background for this thesis.

Spectral-correlation theory in cyclostationary signals is a branch of modern spectral
analysis. By developing and exploiting the spectral correlation properties of communication
signals, we can greatly improve the performance of conventional signal processors [34]. To
combat CCI and ACI which may overlap spectrally with the desired signal, the conventional
filtering techniques [7] are unable to carry out the job. The optimum FREquency-SHift
(FRESH) filtering technique, called the cyclic Wiener filter proposed by W. A. Gardner (13]
enables us to separate spectrally overlapped signals by using the cyclostationarity of the
signals. The initial idea of FRESH filtering for cyclostationary signals was proposed by
" W. A. Gardner in 1972. The general development of the frequency-domain theory of cyclic
Wiener filtering was presented in 1985 [20]. Both these pioneering treatments were based
on the probabilistic theory of stochastic process where performance is measured in term
of ensemble averaged squared error. In 1987, a dual frequency-domain theory based on
non-probabilistic theory of time series where performance is measured in terms of time-
averaged squared error, was introduced [24]. Cyclic Wiener filtering theory was summarized
and design equation of optimum FRESH filter was presented in 1993 [13]. However, to
design the cyclic Wiener filter, one must have statistical knowledge of the desired signal
or a training signal which, in practice, are often not available. Moreover, the idea of
retrieving cyclostationary signals in a multi-user environment has been studied and blind
channel identification and equalization methods using induced cyclostationarity have also

been proposed [10,12].
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In addition, various Blind Signal Separation (BSS) method have been developed in
recent years [69]. The basic form of the BSS problems is to consider a set a of unknown
source signal s1(t),s2(t),- - sm(t) that are mutually independent of each other. These sig-
nals are linearly mixed in an unknown environment to produce the m by 1 observation vector
z(t) = As(t), where 8(t) = [s1(t) s2(t)---sm(t)]T and z(t) = [z1(t) za(t) - zm(t)]7. A
is an unknown nonsingular mixing matrix of dimensions m-by-m. That is, the number of
sensors where x(t) is observed is equal to the number of sources that produce s(t). The
BSS method is to find a mixing matrix W defined ideally as y = Wz = WAs -+ DPs,
where y is the output signal vector produced by the demixer, D is a non-singular diagonal
matrix, and P is a permutation matrix. However, it is difficult to apply the BSS methods to
suppress CCI and ACI in some cases, especially in a mobile wireless system. For example,
" consider the received signal y(t) = s1(t) + s2(t) + n(t), where s(t) is desired signal, sa(t) is
the interference, and n(t) is white noise. In this case, A is a vector (A = [1 1 1}) instead of
a non-singular matrix. It is difficult to use the BSS methods to extract the desired signal
s1(t). However, one can extract the desired signal s,(t) provided that the desired signal
has different cyclic frequency from that of the interference. This is one of reasons why we

exploit signal cyclostionarity instead of the BSS methods to suppress the CCI and ACIL

In this thesis, we firstly propose an blind adaptive FRESH filtering algorithm which
doesn’t need a training signal to extract the desired signal from spectrally overlapping inter-
ference. We call this new technique Blind Adaptive (BA)-FRESH filtering. The structure of
this BA-FRESH filter [18] is proposed. The performance of BA-FRESH filter is compared
with that of the Trained Adaptive FRESH (TA-FRESH) filter. When the data length is
infinite, both filters have same performance. But when the data length is finite, there is
2 performance difference between the two filters. Hence, the filter coefficients convergence
performance, the output signal to interference plus noise ratio (SINR), and the output mean
square error (MSE) of BA-FRESH and TA-FRESH are analyzed. The finite sample out-
put probability errors of BA-FRESH and TA-FRESH are examined theoretically and by
simulations. The analytic and simulation results show that the use of such a blind adap-
tive filtering technique to extract desired signals from spectrally overlapping interference is

promising.
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To combat CCI and ACI, it is well known that applying digital beamforming tech-
niques can suppress interferences present in the communication channel. In the past, a lot
of researches has been done to spatially extract the desired signal by either forming a beam
towards the single user or by putting nulls in the directions where the interfering signals
impinge the antenna [82,83]. These conventional methods require the knowledge of the
direction of arrival (DOA) of the signal of interest (SOI) or require the use of a training
signal to train the systems which, in turn, require an extra amount of bandwidth and the
need of synchronization. To overcome these shortcomings, several blind cyclic beamforming
algorithms have been proposed such as the spectral Self-COherence REstoral (SCORE),
" the Cyclic Adaptive Beamforming (CAB), the Constrained Cyclic Adaptive Beamforming
(C-CAB) and the Robust Cyclic Adaptive Beamforming (R-CAB) algorithms. For these
cyclic blind adaptive beamforming algorithms, the weighting coefficients of the beamformer
are adjusted blindly by exploiting cyclostationarity to form a main beam toward the desired
signal such as the CAB algorithm or form the nulls toward interferences such as the SCORE
and the C-CAB algorithms [15,29], provided that the desired signal and interferences have
different cyclic frequencies and they come from different directions. However, in practical
wireless communication systems, we often meet cases in which the DOA difference between
the desired signal and interference is very small [1,4]. Moreover, because users are mo-
bile and multi-path propagation effects exist, the received signal may come from multiple
directions and it is possible that the desired signal and the interferences are very closely
spaced in arrival direction. Under such environments, system performance improvement
by using blind beamforming alone is obviously limited because the beamformers are just
" spatial filters and they just exploit the spatial information of the observed signals. How-
ever, by combining both spatial beamforming and temporal FRESH fiitering processing, a
large system performance improvement may be achieved due to full utilization of the signal
information in both temporal and spatial domains. To design a conventional space-time
filter [14], one needs to know a training signal or statistical knowledge of the desired sig-
nal which, in practice, are not often available. Moreover, a popular optimum criterion in
space-time processing is maximum likelihood, but its computation complexity is often pro-

hibitive [53]. To satisfy the practical demands for future mobile personal communication
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systems, a new BLind Adaptive Space-Time (BLAST) algorithm is proposed in this thesis.
By exploiting the spectral correlation of cyclostationary signals, the space-time filtering
" method requires no desired signals and generates the training signal from the corrupted
signal. The algorithm exploits both spatial and temporal information of the signals. Hence,
it has advantages over spatial filter or temporal filter alone. It can be viewed as extension
of the BA-FRESH filtering technique into the spatial-time domain. One of the advantages
of the BLAST filter over an array beamforming algorithm or a filtering algorithm is that
fewer antenna elements or shorter FIR filter are required to achieve a given performance
level, because the spectral diversity and the spatial diversity can complement each other.
The structure of this BLAST filter is proposed in this thesis. The performance of BLAST
filter is compared with that of the Trained Adaptive Space-Time (TAST) filter. When the
data length is infinite, both filters have same performance. But when the data length is
finite, there exist performance differences between the two filters. Hence, the filter coef-
ficient convergence performance, the output SINR, and the output MSE of BLAST and
TAST are analyzed. The finite sample output probability errors of BLAST and TAST are
* examined theoretically and by simulation. The theoretical and simulation results show that
the use of such a blind adaptive space-time filtering technique to extract desired signals

from spectrally or spatially overlapping interference is promising.

1.2 Contributions and Organization of Thesis

The motivation of this thesis is that exploiting the cyclostationarity of signals proposes
novel blind algorithms which can be used to combat CCI and ACI in mobile communication
systems. The major contributions of the thesis is that the two kinds of cyclic DSP algorithms

are proposed and their performances are analyzed.

e Using the cyclostationarity of communication signals, a Blind Adaptive FREquency
SHift (BA-FRESH) filtering algorithm is proposed. This algorithm has a unique opti-
mum solution which can be recursively implemented. The BA-FRESH filtering algo-

rithm does not require a training signal nor statistical knowledge of the desired signal.
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For the infinite sample case, BA-FRESH and TA-FRESH have same performance.

e Convergence performances of BA-FRESH and TA-FRESH are analyzed and com-
pared. For the finite sample case, the solutions of both BA-FRESH and TA-FRESH
asymptotically converge in the mean square sense to the same optimum solution with
convergence rates O(:‘V), where N is the data length. When the observed data length
is finite, the normalized output signal to interference plus noise ratio (SINR) of BA-
FRESH and TA-FRESH asymptotically converge in the mean square sense to the same
optimum value with the convergence rate 0(7{7). When the observed data length is
finite, the normalized output Mean Square Errors (MSE) of BA-FRESH and TA-
FRESH asymptotically converge in the mean square sense to the same optimum value

with the convergence rate O(%)‘

o The finite sample output probability errors of BA-FRESH and TA-FRESH are ana-
lyzed. Using the central limit theorem, approximate analytic expressions of the finite
sample output probability errors of BA-FRESH and TA-FRESH are obtained. Com-
pared the analytic results with simulation resuits, the theoretical curves and practical

curves match well.

¢ Exploiting the cyclostationarity of communication signals and extending BA-FRESH
algorithm into the space-time domain, a BLind Adaptive Space-Time (BLAST) al-
gorithm is proposed. The BLAST algorithm is a space-time filter which exploits not
only the spatial information but also the temporal information of the signals. It also
does not require training signal nor the statistics knowledge of the desired signal. The
algorithm has a unique optimum solution and the solution can be recursively arrived

at. For the infinite sample case, BLAST and TAST have same performance.

o Convergence performances of BLAST and TAST are analyzed and compared. For
the finite sample case, the solutions of both BLAST and TAST asymptotically con-
verge in the mean square sense to the same optimum solution with convergence rates
0(3‘7), where N is the data length. When the observed data length is finite, the nor-
malized output signal to interference plus noise ratio (SINR) of BLAST and TAST

asymptotically converge in the mean square sense to the same optimum value with
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the convergence rate O(ﬁ). When the observed data length is finite, the normalized
output Mean Square Errors (MSE) of BLAST and TAST asymptotically converge in

the mean square sense to the same optimum value with the convergence rate O(-,lv).

e The finite sample output probability errors of BLAST and TAST are analyzed. Using
the central limit theorem, approximate analytic expressions of the finite sample out-
put probability errors of BLAST and TAST are obtained. Numerical examples are
presented to examine these results. Compared the analytic results with simulation

results, the theoretical curves and practical curves match well.

Organization of the thesis The practical background and thesis contributions are given

in Chapter 1. Chapter 2 reviews cyclostationarity of signals. The characterization of cyclo-
stationary process is reviewed and the spectral correlations of some communication signals
are analyzed. Some advantages of utilizing spectral correlation of these man-made signals
on signal processing are discussed. In Chapter 3, we propose the BA-FRESH filtering algo-
rithm and examine its convergence performance. The existing FRESH filtering algorithm
is firstly reviewed. A blind adaptive method called the BA-FRESH filtering technique is
proposed and its recursive implementation formula is given. Comparing the BA-FRESH
filter with TA-FRESH filter, it is proved that two kinds of filters have the same optimum
solution when the observed data length is infinite. For the finite sample case, the conver-
gence performance of BA-FRESH and TA-FRESH are analyzed and compared. Chapter 4
" examines the finite sample probability errors of BA-FRESH and TA-FRESH. Theoretical
finite sample probability error formulae of BA-FRESH and TA-FRESH are obtained. Based
on the BA-FRESH algorithm, we propose the BLAST algorithm and analyzed its conver-
gence performances in Chapter 5. The existing cyclic adaptive beamforming algorithms are
firstly reviewed. A blind adaptive space-time filtering technique called the BLAST is pro-
posed and its recursive implementation formula is given. Comparing the BLAST filter with
the TAST filter, it is proved that two kinds of space-time filters have the same optimum
solution when the observed data length is infinite. For finite sample cases, the convergence
performance of BLAST and TAST are analyzed and compared. Chapter 6 examines the
finite sample probability errors of BLAST and TAST. Theoretical finite sample probability
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error formulae of BLAST and TAST are obtained. Finally, Chapter 7 concludes the the-
sis with a summary of the unique work performed, and future work which is suggested to
promote BA-FRESH and BLAST as practically competitive efficient interference canceling

techniques. Appendixes contain the proofs involved in the thesis.



Chapter 2

Cyclostationarity of

Communication Signals

In this chapter, we firstly review the concepts of cyclostationarity which is used in the thesis
and point out the relationship between them. Some important properties of cyclostationary
signals and computation formula which are used in the thesis are given. Using BPSK
signal as an typical example, cyclostationarity of some communication signals is examined.
Finally, some advantages of utilizing the cyclostationarity of man-made signals on filtering

tasks are discussed.

2.1 Characterization of Cyclostationary Process

At present, many conventional statistical signal processing methods treat random signals
~ as if they were statistically stationary. However, for most man-made signals encountered in
communication, telemetry, radar, and sonar systems, some statistical parameters do vary
periodically with time. Examples include sinusoidal carriers in amplitude, phase and fre-
quency modulation systems. Although in some cases these periodicities can be ignored by
signal processors, in many cases there can be much to gain in terms of improvements in the

performance of these signal processors by recognizing and exploiting the underlying period-
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icity. This typically requires that the random signals be modeled as cyclostationary signals,
in which case the statistical parameters vary in time with single or multiple periodicities.

The concept of cyclostationarity in signals was popularized by W. A. Gardner {20] [22].

Cyclostationary stochastic process A cyclostationary process is a non-stationary pro-

cess. A stochastic process, z(t), is said to be cyclostationary in the wide sense if its mean

and autocorrelation are periodic with a period, Ty, for all £; and t3, that is,
E[z(t)] = pz(t) = pz(t + To) (2.1.1)

Elz(t1)z"(t2)] = Rzz(t1,t2) = Rez(t1 + To, t2 + To) (2.1.2)

where E denotes the probabilistic expectation.

We can focus our attention on the autocorrelation function. Since ¢; and t; are

arbitrary, let ) =t +71/2, to =t — 7/2, then we have
R:z(tla t2) = R:z(t + 7'/2,t - 7'/2)» (2.1.3)

then Ryz(t+ 7/2,t —7/2) is a function of two independent variables t and 7. It is the time

dependent correlation function. For each value of 7, it is periodic in t with period To,
Rez(t+To+1/2,t + Ty —7/2) = Rez(t + 7/2,t — 7/2). (2.1.4)

It is assumed that the Fourier series representation for this periodic function converges, that

is, Dirichlet condition is satisfied. Rzz(t + 7/2,t — 7/2) can be expressed as

Reg(t+7/2,t —7/2) = i Re_(r)el?met (2.1.5)

n=-—oo

where R2_(7) denotes the Fourier coefficients. a = nfo. fo = 1/Tp. o is called a cycle

frequency. o ranges over all integer multiples of fundamental frequency 1/T;. RZ.(7) is
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referred to cyclic autocorrelation function.

T;
> T

Rz (t + - t— Z) e 7etqy, (2.1.6)

1
a [ J—
Rzz(1) = 1 A

2
g}
2

For communication signals, Ty is usually the period of the baud or half of the period
of the carrier. The set {R2,(7)} and the function Rrz(t + 7/2,t — 7/2) have one-to-one

correspondence. The finite time average cyclic autocorrelation function is defined as

Re.(T)r = <x (t + %) z* (t - -g-) e‘72"°‘>T (2.1.7)

where (-} denotes time average over T samples. * denotes complex conjugate.

A wide sense cyclostationary process is to be called cycloergodic in autocorrelation
- if, with probability 1,
Rg:(T)T e Rg:(r)a T — o0 (218)

m.s.

where — denotes convergence in the mean-square sense. From an engineering view, we
assume that the cyclostationary signals we discussed are cycloergodic in autocorrelation.
In this thesis, we can directly use the infinite time-average cyclic correlation to substitute
for the probabilistic cyclic correlation function. We also drop T from the time average

autocorrelation function.

The Fourier transform of autocorrelation Rz (t+7/2,t—7/2) is called time-dependent
spectral density function which is denoted as Szz(t, f)

o0 .
Sealts f) = [ Rux (t + - 1) e~/ gy, (2.1.9)
) 2 2

For each value of f, Szz(t, f) is periodic in t with period Tp. If it is assumed that the Fourier
* series representation for this periodic function converges, so that Szz(t, f) can be expressed

as

St f)= 3 SB(fET (2.1.10)

n=-00

where S2,(f) is the Fourier coefficients. a = nfo. fo = 1/Tp. a is cycle frequency. Sz (f)
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Fourier Transformation

Rt (—= st

Fourier Series Fourier Series

VV \JV

Re(e)) & (&b}

Fourier Transformation

Figure 2.1: Relationship of four functions

is called cyclic spectral density function. The set {S2.(f)} and the function S:z(t, f) are

one to one corresponding.

According to the above definitions, we can see that S, (f) is the Fourier transform

of cyclic autocorrelation RZ, (1), that is,
w .
Szz(f) = / RZ (t)e™7¥7dr. (2.1.11)
—0o0

The relationship of four functions are summarized in Fig. 2.1. Because of this relationship,
when we study cyclostationary process, we can just study cyclic correlation functions and
cyclic spectral correlation density functions. Given a, they are one dimensional functions.
- The time dependent correlation functions and time dependent spectral density function
are two dimensional functions. So treating the former is easier than treating the latter in

mathematics.

Let us analyze an important property of cyclic correlation function. Consider u(t)
and v(t) to be the frequency shifted versions of cyclostationary signal z(t), which are defined
by

u(t) = z(t)e 7™ and u(t) = z(t)ed™! (2.1.12)
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where a is cycle frequency of the signal z(t). Consider cross-correlation function between

u(t) and v(t)

o
&
i

(u(t + 7/2)v" (¢t — 7/2)) (2.1.13)

(z(t+7/2)e7Imaltt /D (¢ — 7/2)e7Imelt=T/)

<a:(t +7/2)z*(t — T/2)€_12mt> = R2 (7).

Therefore, the cyclic autocorrelation function of signal z(t) is simply the time-averaged
cross-correlation between frequency-shifted versions of z(t). This relationship reveals that
a signal z(t) ezhibits cyclostationarity if and only if there ezist correlation between some
frequency shifted version of the signals. The magnitude of correlation is measured by cyclic

correlation function RS (7).

Computation of cyclic correlation function In practical communication systems, we

often meet two kinds of signals; continuous signals and discrete signals. For analog signal

z(t), its cyclic autocorrelation function is defined as

Re(n) = (s (14 3) 2 (£ 5 ) ™). (2.1.14)
Its cyclic conjugate correlation function is defined as
R2..(T) = <:z: (t + %) T (t - %) e"j2"°‘> . (2.1.15)

For discrete-time cyclostationary signals z(n), its cyclic autocorrelation function is

defined as

N
RS (k) = <:r:(n + k)x‘(n)e"2”°"> = lim % Z z(n + k)z* (n)e~72", (2.1.16)

N—=oo
n=1

Similarly, its cyclic conjugate correlation function is defined as

N
RS..(k) = <:r(n+ k)z(n)e‘j2”°n> = L Z z(n + k)z(n)e 72" (2.1.17)

n 1
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where we have normalized the sampling period to one. In practice, the total number of data

samples N is finite, therefore an estimate of Rg:(k) can be obtained by

N
Re (k) = (z(n + k)x'(n)e‘ﬂ""") ~ Z z(n + k)z" (n)e 727, (2.1.18)

Similarly, an estimate of R2..(k) can be obtained by

—

N
RS..(k) = <1:(n + k)x(n)e'j2"°"> = Z z(n + k)z(n)e~727an, (2.1.19)
n=l

A signal z(n) is said to exhibit cyclostationarity if its cyclic autocorrelation or cyclic
conjugate autocorrelation are not equal to zero at some frequency shift a. Conventionally,
the cyclostationary properties of signals are studied by the locations of spectral line at
different frequency shift a. A spectral line is considered as a particular sharp impulse of
the cyclic autocorrelation or the cyclic conjugate correlation function. For convenience, a
signal that possesses a spectral line at a frequency shift which equals ¢, is referred to as the

signal exhibiting cyclostationarity at cycle frequency a.

These concepts are also easily expanded to signal vectors. For example, let (n) be
a complex signal vector. The finite sample cyclic autocorrelation matrix of £(n) and the

finite sample cyclic conjugate correlation matrix of £(n) are defined respectively as

N
ReL(7) = (z()zt(n+ 1)e ") = =3 a(n)al(n+ )i (2.1.20)

n:

—

. and

N
R).-(1) = <:r:(n):l:T(n + 'r)e—ﬂ""’">N = % 3 z(n)zT (n + r)eI%mn (2.1.21)

respectively, where 1 denotes the conjugate transpose and T denotes the transpose.
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2.2 Cyclostationarity of BPSK Signal

_ In this section, we examine the cyclostationarity of communication signals by analytic and
simulation methods. We choose the BPSK signal as a typical example. Based on the BPSK
signal model, we analyze the cyclostationarity of the signal and verify it by simulation

methods.

The BPSK signal model: The BPSK (Binary Phase Shift Keying) signal can be modeled
as [43]

z(t) = i drg(t — kT}) cos(2m fct) (2.2.1)

k=-—00
where T}, is the baud duration, f. is the carrier frequency. g(t) is the impulse response of
the pulse shaping filter. A common pulse shaping function is the Nyquist-shaping pulse
which can be modeled in the time domain as

cos(2npBt)

g(t) = smc(2Bt) Wm

(2.2.2)

" where B = 71; and p is the roll-off factor which is equal to 1 for 100% roll-off. di is a
zero mean white binary sequence. It can be viewed as a sampled sequerce of a continuous
stationary white process d(t), that is, the cyclic autocorrelation function of d(t) is

6(r) a=0

R, () = <d(t + )d‘( 2) —J2mt> — . 0 . (2.2.3)
a

The cyclostationarity of BPSK signal: Using Eqgs. (2.1.14) and (2.2.1), we obtain the

cyclic autocorrelation function of z(t) as
a 1 1 a+2fc 1 a—2fc
RZ. (1) = §R;’a('r) cos(2nm foT) + ZR“ () + ZR‘“’ (r) (2.2.4)
where RS, (7) is the cyclic autocorrelation function of a(t). a(t) is defined as

alt) = Z deg(t — KTy) = Z dk/ ot — 1)d(r — KTy)dr  (2.2.5)

k=-o00 k=-—00
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/ ot - 7) Z deb(r — kTy)dr = g(t) % q(t)
k=-o0

where g(t) = Y5% _oo dk6(T — kT}). This equation shows that a(t) is the output of a time
invariant filter g(t) when input is g(t). Using the Fourier transform on Eq. (2.2.4), we

obtain the cyclic spectral density function of z(t) as

[Seulf + fo) + S2ulf = fo) + SeP (N + ST(N] (226

=

ng(f) =

where S2 (f) is the cyclic spectral density function of a(t).

Using the input output cyclic spectral density relationship for filtering (20} to Eq.
(2.2.5), we obtain
S2(f) = G(f + a/2)S%(f)G"(f - a/2) (2.2.7)

where G(f) is the Fourier transformation of g(t). Sg,(f) is the cyclic spectral density

function of g(t). Moreover, expanding 3" f=_, d(t — kT}) as Fourier series, we have

f: did(t — kT}) = Z 6t—kT¢,)_—d(t) i e/ 2mkt/Ts (2.2.8)

k=-00 Ic——oo k=-00

Using Eq. (2.1.14), the cyclic autocorrelation function of g(t) is

qu(‘r) = <d(t + T/2)d‘(t _ T/2 Z Z e;21m;(t+1'/2)/Tbe—121rn2(t 1'/2)/T,,e—_721rat>

n;=-o00 nz_—oo

o0 00 .
- 1% Z Z ejrnlr/T,,ejrnz'r/T,,Rz;(ﬂz—nl)/'rb)(,r) (2_2.9)
b ny=-oc0cny=—o00

where R§,(7) is the cyclic autocorrelation function of d(t). Letting m =np —n,, n =ny,

we have

1 .
R&(7) = i Y ei2mn/Togrmme/To gEtm/To (7). (2.2.10)

The Fourier transformation of Ry (7) is

Sqlf) = T2 Z Sa ™M (f = m/2T, - n/Ty). (2.2.11)

bnm
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Cyciic autocormeiation function af the real BPSK signal
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Figure 2.2: Cyclic autocorrelation function of BPSK signal when the Nyquist-shaped filter
has a 100% roll-off factor

Because d(t) is a stationary process, we obtain

7{! YnmSda(f —m/2Ty —n/Ty) a=m/Th
0 a#m/Ty

Sq(f) = = Sgo(f)6(a — m/T}) (2.2.12)

where §(.) denotes Kronecker delta function. Sgq(f) = 7x Tnm Sdalf + m/2Ty + n/Ty),
b

S4a(f) is the power spectrum density of d(t). After normalizing Sgo(f) to be one and

. substituting Eq. (2.2.12) into Eq. (2.2.7), we have

5% (f) = Gl +a/2G™(f ~af2) a=m/T (2.2.13)
0

a #m/Ty

Substituting Eq. (2.2.13) into Eq. (2.2.6), we obtain

[ G(f+ fe+2)G(f + fo - 9)
_ i‘ +G(f — fe+3)G(f—fe— ) a=m/Ty | -
G(f +a/2)G'(f — a/2) a==22f +m/T,

0 otherwise

\
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Cycic autocorrelation function of the real BPSK sgnat
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Figure 2.3: Cyclic autocorrelation function of BPSK signal when the Nyquist-shaped filter
has a 300% roll-off factor
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Figure 2.4: Cyclic autocorrelation function of white noise
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From Eq. (2.2.14), we see that the cycle frequencies of the BPSK signal appear at a =
+2f. + m/T and a = m/T,, where m € {0,+1...} and T} is the baud period, f. is the
carrier frequency of the BPSK signal.

Now, we use simulation to verify the result. In our simulation, the message signal
is a binary Nyquist-shaped pulse sequence with amplitude at {—1,1}. The baud rate and
carrier frequency is normalized with the sampling rate. The normalized baud rate is 0.02.
The normalized frequency f. of the BPSK signal is chosen to be 0.15. 7 is equal to zero.
' When the Nyquist-shaped filter has a 100% roll-off factor, the cyclic autocorrelation function
of the BPSK signal is plotted against the frequency shift a in Fig. 2.2. We can see that a
strong spectral line is locating at a = £0.3 and pairs of weaker spectral lines are locating
at @ = £0.02,0.3 £ 0.02 and —0.3 £ 0.02 respectively. This result matches the analytic
result. For same scenario, when the Nyquist-shaped filter has a 300% roll-off factor, the
cyclic autocorrelation function of the BPSK signal is plotted against the frequency shift
a in Fig. 2.3. Comparing Fig. 2.2 with Fig. 2.3, we find that the cyclostationarity of
the BPSK signal is increased when the roll-off factor is increased. We also plot the cyclic
autocorrelation function of white noise in Fig. 2.4. It is shown that there is no spectral line

at non-zero frequency shift a.
2.3 Examples of the Cyclostationarity of Other Communica-
tion Signals

In this section, we continue to study the cyclostationarity of some communication signals.

The DSB-AM Signal The signal model for a DSB-AM (Double Side Band - Amplitude

Modulation) signal is
z(t) = m(t) cos(2n fct + 6), (2.3.1)

where f. is the carrier frequency, 8 is the initial phase and m(t) is the band limited real
message signal. In addition, the sampled message m(n) is assumed to be highly correlated

with itself but less correlated with the frequency shifted version of itself. Its autocorrelation
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Cychic autocorreiation function of the 0DSB-AM signal
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Figure 2.5: The Cyclic autocorrelation function of DSB-AM signal

function R(t,7) is
R(t+ T1/2,t—7/2) = %Rm(r)(cos(21rfcr) + cos(2mw2f.t + 26)). (2.3.2)

Obviously, this is periodic function in t. The period is 1/2f.. So the cyclic frequency
a = 2f.. we would expect that there are sharp spectral lines located at frequency shift
a = 2f.. In our simulation, the normalized carrier frequency f. is chosen to be 0.1. In Figure
2.5, the cyclic autocorrelation function of the signal s(t) is plotted against the frequency
shift . As expected, we can see that a strong spectral line is located at o = £0.2. We

further study this signal. By taking the cyclic autocorrelation of the signal z(t), we obtain

RI(T) = <:c(t + %)z‘(t - %)e'ﬂm‘> (2.3.3)

1 2«/7< LY T, —j2 ¢> 1 _i2 < T\ T\ -j2 >
I « ¢t L 4 1 J2ra Zo-infer i _ j27at
4e~7 m(t + 2)m (t 2)e + 4e m(t + 2)m (¢ 2)e

1 29 Ty, . T\ —jom(a—2f)t\ , 1 —j28 Ty a T\ _j2m(a+2fo)t
+ZeJ <m(t+5)m (t—§)e7"° >+ZCJ <m(t+—2—)m (t—i)e]"" >
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because m(t) is stationary signal, when § = 0, we obtain

%Rm(f)(eﬂ"f” +e7I27feT) =0
RZ(t) =4 iRn(7) a=+2f. (2.3.4)
0 otherwise.

By taking Fourier transform, we get the cyclic spectrum density of z(t) as follow:

‘LSm(f + fe) + %Sm(f —fd) a=0
Sz (f) =19 iSm(f) o= +2f. (2.3.5)

0 otherwise.

The QPSK Signal The QPSK (Qudriphase-Shift Keying) signal can be modeled as

z(t) = my(t) cos(2m f.t) — ma(t) sin(27 fct), (2.3.6)
where - -
mi(t) = Y wp(t—kTp), ma(t) = Y wp(t—kTh). (2.3.7)
k=-00 k=-—00

Here T, is the baud duration, f. is the carrier frequency. ux and vy are a stationary white
binary sequence respectively. They are assumed to be independent. p(t) is the impulse
response of a Nyquist-shaped filter with a roll-off factor. By using definition of cyclic

correlation function, we obtain

Rz(r) = %[Rm (1) + Ry, (1)) cos(2m fer) + % (RS, my (T) = Ry, (7)] sin(27 fc7)
1 Q+<Nfe a+2nfc nfe a+2n fc
32 {[Ra¥™mte(7) - Rz2Ie(r)] ~ nj [Ress2nd<(r) + R Zfe(m)] }

(2.3.8)

By using the Fourier transform, we obtain

2D = 3 X AISRU 00 + 55,0 +nfol] = 13 [Sum, (f + 7o) = Shuyma (f + 70}

n——ll
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Cychic conjugate autocomelaton funchon of the real QPSK signal
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Figure 2.6: Cyclic autocorrelation function of QPSK signal when the Nyquist-shaped filter
has a 100% roll-off factor

o2 X {[ssrnn() - s )] - ng [SmEE) + SHEFG]) @39)

n=-1,1

For balanced QPSK signal, we have
Sm (f) = Sm,(f) (2.3.10)

Because m;(t) and my(t) are uncorrelated, we obtain

2N =1 X S8, +nfd =5 (S5 + £+ 55,(f - fo) (23.11)

n=-1,1
Calculating Sg, (f). we obtain
Y[P(f + fe+ /P (f + fc— a/2)

S2(f)=< +P(f—fe+a/2)P"(f - fc—a[2)] a=m/T, (2.3.12)
0 a#m/T,

where P(f) is the Fourier transform of p(t). From Eq. (2.3.12), we see that the cycle

frequencies of the balanced QPSK signal appear at @ = m/T}, where m is an integer. Now,
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Cyciic autocormelation tunction of the real GPSK signal
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Figure 2.7: Cyclic autocorrelation function of QPSK signal when the Nyquist-shaped filter
has a 300% roll-off factor

we use simulation to verify the result. In our simulation, the message signal is a binary
Nyquist-shaped pulse sequence with amplitude at {—1,1}. The normalized baud rate is
0.02 and the normalized frequency f. of the QPSK signal is chosen to be 0.15. When the
Nyquist-shaped filter has a 100% roll-off factor, the cyclic autocorrelation function of the
QPSK signal is plotted against the frequency shift a in Fig. 2.6. We can see that a pair
of the spectral line are locating at a = +0.02. The balanced QPSK signal has no spectral
_ line at +2f,. This result matches the analytic result. When the Nyquist-shaped filter has
a 300% roll-off factor, the cyclic autocorrelation function of the QPSK signal is plotted
against the frequency shift « in Fig. 2.7. Comparing Fig. 2.6 with Fig. 2.7, we observed
that the cyclostationarity of the QPSP signal is increased when the roll-off factor of the

Nyquist-shaped filter is increased.

2.4 Exploitation of Cyclostationarity for Signal Extraction

In a multi-user communication system such as the mobile wireless conmunication system,

a commonly encountered problems is the extraction of the desired signal from co-channel
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interference (CCI) and adjacent channel interference (ACI) which may overlap spectrally
or spatially with the desired signal. We know that most man-made signals exhibit cyclo-
stationarity. In practice, the cycle frequencies of these co-channel and adjacent channel
interfering signal and those of the desired signal are usually distinct and only dependent on
their relative baud rate and their unique carrier frequency. This distinctive characteristic of
spectral redundancy allows the possibility of signal extraction. As a result, signals can be
extracted by using the knowledge of their own cycle frequency a, even when all the signals

are occupying the same spectral band. For example, by considering a received signal

L

z(n) = z si(n) + v(n) (2.4.1)

=1

where si(n) for ! € {1,--- L} represent both the desired signal and the interfering signals,
all of which are assumed to be statistically independent to each other, and v(n) is the

additive white noise. The cyclic autocorrelation of the received signal can be expressed as

L]

L
R(0) = 3" R, (0) + RS, (0)- (2.4.2)
=1

If there is only the desired signal si(n) which exhibit cyclostationarity at ay, then we

have

R2%(0) = RSX (0). (2.4.3)

Therefore, the cyclic autocorrelation of sg(n) is selected regardless of the temporal or
spatial overlap among the interference and noise. In fact, this property also can be used
in other signal processing tasks to improve the performances of those signal processors. In

this thesis, we mainly use this property for signal extraction.

It is worthy to point out that the cyclostationarity of a signal (the spectral redun-
dancy of the signal) is usually related to the bandwidth requirement of the signal. Generally
speaking, the greater the excess bandwidth of a digital signal (bandwidth is excess of the
' Nyquist bandwidth of ﬁ, where T, is the band rate of the signal) is, the more the cyclic
frequencies with nonzero cyclic spectrum density (or cyclic conjugate spectrum density) ex-

ist (37). The spectral redundancy inherent in the excess bandwidth can be used effectively
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to improve system performance, but the price is that high bandwidth-efficiency is reduced.

In practice, we have to make tradeoffs between the spectral redundancy and the spectral

efficiency in a system design.



Chapter 3

The BA-FRESH Algorithm and Its

Convergence

In a multi-user communication system, a commonly encountered problem is the extraction
of the desired signal from co-channel interference which may overlap spectrally with the de-
sired signal. In such cases, conventional filtering techniques (7] are unable to carry out the
job. The optimum frequency-shift (FRESH) filtering technique, proposed by W. A. Gard-
ner {13] enables us to separate spectrally overlapped signals by using the cyclostationarity of
the signals. To design the cyclic Wiener filter, however, we must have the statistical knowl-
edge of the desired signal or a training signal which, in practice, are not often available.
In this Chapter, we propose an alternative blind adaptive FRESH filtering technique using
the knowledge of signal cyclostationarity to extract the desired signal from the spectrally
overlapping interference. We call this new technique blind adaptive (BA)-FRESH filtering.
The structure of this BA-FRESH filter [16] is proposed. We proved that the BA-FRESH
algorithm is equivalent to the trained adaptive FRESH (TA-FRESH) algorithm when ob-
» served data length is infinite. Recursive implementation formula of the BA-FRESH filter is
given. For the BA-FRESH and TA-FRESH algorithms, the convergence of the filter coeffi-
cients, the output SINR, and the output MSE are analyzed. Finally, Numerical results are

presented to examine these results theoretically and by simulations.

26
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3.1 The FRESH Filtering Algorithm

Consider the situation where the input z(t) of the FRESH filter consists of the desired
signal s(t) corrupted by an interfering signal u(t) which may spectrally overlap with s(t)

together with white noise v(t), i.e.,
z(t) = s(t) + u(t) + v(t). (3.1.1)
Consider a FRESH filter whose input and output are related [13]

y(t) = /_ °:° h(t, 7)z(r)dr (3.1.2)

where z(t) is the filter’s input, y(t) is the filter’s output, and A(t, 7) is the impulse response
function of the time variant filter. Here we assume that the input signal is a real signal. The
impulse response h(t, T} is a function of two variable ¢ and 7. where t represents the output
time and T represents the input time. In practice, the filter can be used to do the better job
of receiving s(t) from the corrupted signal z(t) than the time invariant filter does. h(t,7)

is assumed to be a periodic function. h(t, ) can be expanded in following series form (37}

M
h(t,7) = 3 hm(t— r)e??mm7 (3.1.3)

m=1

where a;m (m = 1,2,--- M) is the cycle frequencies of a desired signals. M is the number
of branches in the FRESH filter. Obviously, when M =1 and oy = 0, h(t,7) = h(t — 7).
This is the time-invariant case. Substituting Eq. (3.1.3) into Eq. (3.1.2), we obtain the

output of the filter as

o M ‘ M
y(t) = / > bt — 1)e2 T z(r)dr = 3 hm(t) * [z(t)e??7| (3.1.4)
~®m=1 m=1

where » denotes convolution. The Fourier transform of y(t) is

M
Y(f) = Y Hn()X(f — am) (3.1.5)
m=1
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Figure 3.1: Structure of the FRESH filter

where H.,(f) is the Fourier transformation of hpm(t). hm(t) is the impulse response of the
mth FIR filter of the FRESH filter. X(f) is the Fourier transformation of the input z(t).
The formula show that the input is subjected to frequency shift operation, then followed by
Time-Invariant (T1) filtering operation. So it is called as FREquency SHift (FRESH) filter.
The structure of FRESH filter is shown in Fig. 3.1. When we know the cycle frequencies
of the desired signal am (m = 1,2,--- M), the frequency shift part is determined. Now the

problem is how to optimally determine transfer function Hy(f), m =1,2,--- M.

In order to optimally determine the transfer function Hp(f), the time averaged

Minimum Mean Square Error (MMSE) criteria is considered
. _ . _ 2
minJ = n;11n<(s(t) y(1)?) (3.1.6)

where (-) denotes the time average. s(t) is the desired signal. y(t) is the output of the
FRESH filter. h(t) is the impulse response vector of the time-invariant filters. It can be

expressed as

h(t) = [hi(t) ha(t) - hn (D). (3.1.7)
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From Eq. (3.1.4), we know
M o _
W)=Y [ hm(rjementnz(t — )dr (3.1.8)
m=1""%

It means that y(t) is linear combination of all variables z(t —- 7)eI?7am(t-7) Let these vari-

ables span a subspace Y. In non-probabilistic theory, an inner product in T is defined

" as

(z,y) = (zy°) (3.1.9)

where * denotes the conjugate. (.,.) denotes the inner product. (-) denotes the time average.
Using the projection theorem in Hilbert space, we can obtain the necessary and sufficient

orthogonal condition for minimum error in Eq. (3.1.6), that is,
(s(t) — y(t), =(t - r)er2rent=n) = ((s(t) - y(1))z" (¢ - r)e~izrem(t=")) = 0. (3.1.10)

It shows that the error s(t) — y(t) must be orthogonal (zero correlation) to all variables

z(t — r)ei?7ex(t=7)  SQybstituting Eq. (3.1.4) into Eq. (3.1.10), we obtain

M
<(s(t)r‘(t - r)e7IAmartmn) [Z hon(t) * x(t)e”’“’m‘] z(t - f)e‘12"°k('-f)> =0.
m=0
(3.1.11)
" Let t = t; + 7/2 and using the definition of the cyclic cross-correlation function, we can

obtain from the first term of Eq (3.1.11),
(st + 7/2)" (0 = /2)e 7o 7TID) = REx(r)el™™. (3.1.12)

Computing the second term of Eq. (3.2.11), we obtain

M M
<[Z R (t) *z(t)e_ﬂrcxmt} z°(t - T)e—j21rak(t-'r)> - Z hm(T) *Rg;_o"‘(T)ej’r(o“+°"')T.

m=1 m=1
(3.1.13)
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Therefore, we have
M »
REE(T)&™ — 3~ hm(r) » Rgs™0m (1)@t am)T = 0.
m=1

Taking the Fourier transformation of Eq. (3.3.14), we obtain

M

Y Hu(f)S3E™o(f — (ax + am)/2) = SSE(f — ax/2)
m=1
where k = 1,2,--- M. When we define following matrixes

Sgmo(f — (e +@1)/2) - SFTM(f — (a1 + am)/2)

s°(f) = Sg7(f - (a2 + 1)/2) SgameM(f — (a2 + aar)/2)

Sy~ (f ~ (am +a1)/2) --- S 7M(f - (am + am)/?)

() S/ -/
H 5%2(f — as/2
wp-| P =] EUTE
Hu(f) SeM(f —am/2)

we can write Eq. (3.1.15) into a matrix form

Sz(NH(f) = S5, (f)

30

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

where S2_(f) is the auto-spectral density matrix of the input z(t). S%.(f) is the cross-
I I

spectral density vector between the desired signal s(t) and the input z(t).

This is the

design equation of the optimum FRESH filter. From Eq. (3.1.18), we see that the design of

" an optimum FRESH filter to extract the desired signal necessitates knowledge of the auto-

spectral density matrix of the input as well as the cross-spectral density vector between the

input and the desired output. Alternatively, the standard LMS or RLS algorithms (7] can

be used to design the optimum FRESH filter, in which case, a training signal is needed. In

practice, it is not often available or it costs too much. To solve this problem, we propose a



CHAPTER 3. THE BA-FRESH ALGORITHM AND ITS CONVERGENCE 31

blind adaptive FRESH filter in next section.

3.2 Proposed BA-FRESH Filtering Algorithm

~ In this section, we consider the case where there is no training signal and we have no
knowledge of the statistics of the desired signal, i.e., we blindly adapt the FRESH filter
with prior knowledge of only its modulation type, its carrier frequency, and its baud rate.
Moreover, in order to implement our algorithms on computers, we use discrete time model

in the following sections.

The real input z(n) to the BA-FRESH filter consists of a desired signal s(n) which
is corrupted by an interfering signal u(n) spectrally overlapping with s(n) together with

ergodic white noise v(n), i.e.,
z(n) = s(n) + u(n) + v(n). (3.2.1)

Our purpose is to extract the desired signal s(n) by adjusting the FRESH filter coefficients
so that the output closely approximates s(n). Since there is no reference signal available,
a suitable reference is created by adding a secondary branch so that the BA-FRESH filter
' is, as shown in Fig. 3.2, comprised of a primary branch consisting of a FRESH filter and a
secondary branch. The output r(n) of this secondary branch is an a'-shifted version of the
input z(n) where o is a cycle frequency of s(n). The rationale is that if the output y(n) is
a close approximation of s(n) and is relatively free from containing u(n) and v(n), then it
must have high correlation with the o -shifted version of s(n) and must have low correlation
with the o -shifted versions of u(n) and v(n) respectively. Thus, the correlation of the two
signals may provide a measure of the suppression of the interference and the closeness of
the output to the desired signal. In using this measure, we must ensure that the FRESH

filter in the primary branch has no common frequency shift with the secondary branch.

Now, suppose the primary FRESH filter consists of M FIR filters each being of
length N,. Let the coefficients of the mth FIR filter be h,,(n), then the coefficient vector
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Figure 3.2: Structure of the BA-FRESH filter
of the filter is
Bm = [Am(0) Am(1) -+ Am(No—1)JT, m=1,2,---M. (3.2.2)

Furthermore, if we denote the modulated input signal vector by Zn,(n) such that

. . T
Em(n) = [I(n)e]Zxo,..n .. Z(TL - N, + 1)6121rom(n—No+l)] , (3-23)
then the output y(n) of the BA-FRESH filter can be written as
M
y(n) = 3 hl@m(n) = h'2(n) (3.2.4)
m=1

where 1 denoting the Hermitian conjugate of a vector or matrix. h and Z(n) are defined

' respectively

: i{,(n)]T. (3.2.5)

]
NN
)

h=[rT &I - K] and  &(n) = [T

Witha' # am, m =1,2,--- M, the BA-FRESH filter seeks to maximize the normalized cor-

relation between y(n) and r(n) by adjusting the coefficients of h where r(n) = z(n)eﬂ’"”",
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i.e..

_ | Ry 2
max J(h) = max R (3.2.6)
where
|Ryr|? = [(y(n)r* (n))|* = |hips,|? (3.2.7)
IRyl = |(y(n)y" (n))] = th! Rzzhl (3.2.8)
|Rer| = [{r(n)r*(n))] (3.2.9)

and R;; = (z(n)&(n)), p;, = (#(n)r*(n)). We know by Cauchy-Schwarz inequality,

- -1/2
sy < P RERS "ol MR IRz ol
Ih'R:zh||R~! ~  |h!'Razh||Re|

(3.2.10)

For equality, we have
her = R3;pz.. (3.2.11)

Since R;; is the correlation matrix of an ergodic process having no linear dependency be-
tween samples, then Rz; is almost positive definite and therefore non-singular {7]. Eq.
(3.2.11) is the Wiener-Hopf equation for the BA-FRESH filter. The solution necessitates
the knowledge of R;zz and p;,. If such knowledge is not available, then a recursive method
" for updating the tap-weights of the FRESH filter in the primary branch can be obtained
following the Widrow-Hoff least-mean-square (LMS) algorithm [7] by using the output r(n)
of the secondary branch as the reference and choosing an appropriate step-size. Alter-
natively, we may window the frequency shifted data vectors Z(n) to obtain finite-sample
time-averaged estimates of the data correlation matrix Rzz and the cross-correlation vector
p;,. Denote the N-sample estimated values of R;z, pz,, and hpr by R:z:(N), psr(N), and
hgr(N) respectively. Thus, from Eq. (3.2.11), we have

hpr(N) = Rz; (N)pz(N) = (E(n)E(n)) ' (Z(n)r* (n))N (3.2.12)

where

z(n)a'(n) (3.2.13)
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and

part) = (1- %) pirln—1) + ~&(n)r" () (3.2.19)

Using the matrix inversion lemma (7], we have

B-'cctB!
Al=B ' - — 3.2.15
1+C'B-'C ( )
if
A=B+cCC! (3.2.16)

where A and B are non-singular square matrices. Then, we can apply Eq. (3.2.15) to Eq.
(3.2.13) and obtain

. n . R (n—1)&(n)2(n)Ros (n —
Ri;(n)= ——Rz(n-1)- 2= n l)z.(?)lz W Bean D), (3.2.17)
-1 1+ 52 (n)Rzz (n — 1)Z(n)

Thus the desired filter response at the Nth step is given by

(3.2.18)

TRz (N - 1)&(N)ET (V) }

hpr(N) = {I— _— 1 .
1+ y& (M RZ (N — 1)E(N)

{hsp(N — 1) + g Rat (N = D&(V)r ()}

The Eq. (3.2.18) provides us with a means to utilize the previously calculated values and

up-date the new filter coefficients.

If a copy of the desired signal s(n) is available, we can use it as a reference instead of
using r(n). We call the optimum FRESH filter with a training signal as Trained Adaptive
(TA)-FRESH filter. The TA-FRESH filter [20] is shown in Fig. 3.3. It can then be designed

" to minimize the mean-square error of the output. Here, the error is given by
err(n) = s(n)e??™ ™ — y(n) = s(n)e??* " — hlz(n) (3.2.19)

and the cost function is Jrp = E[err(n)err(n)]. Using the gradient method shown in
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Figure 3.3: Structure of the TA-FRESH filter

Appendix A, we have this optimum solution of the TA-FRESH filter as

IT

where p_ is the cross-correlation vector between &(n) and § (n) with
§(n) = s(n)ef?™e ™, (3.2.21)

Denote the N-sample estimated values of Rzz, oy, and hrr by Rz:z(N), p.g(N), and

s

hrr(N) respectively. Thus, from Eq. (3.2.20), we have
hrr(N) = Rz; (N)pzs (N) = (Z(n)&(n)) ' (2(n)5 ™ (n)) v (3.2.22)

We note from Egs. (3.2.11) and (3.2.20) that the difference between hgr and hrf is in the
cross-correlation vector. Now, we show that hgr and Arr both have the same value under

infinite sample time average realization.

Property 3.1: Assume that ¥, is the set of cycle frequencies of desired signal and ¥, ts

the set of cycle frequency of interference. When the parameter oy m = 1,2--- M and a
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satisfy
am: (am—a) € (¥, —U,) and am#Fa. Vm, (3.2.23)

the BA-FRESH filter and the TA-FRESH filter have same optimal filter coefficients hop:

under infinite sample time average realization where

hepe = Ridogy = Rk (3(m)s*(mpe™=2'™) (3:2:24)

with
3(m) = [T(n) {(n) - 3Gm)]" (3.2.25)

and
3m(n) = [s(m)e?™m" o s~ N, + )erzram(n=tosn] ", (3.2.26)

§'(n) is defined in Eq. (3.2.21).

Proof: The input z(n) consists of the desired signal s(n), the interference signal u(n), and

the noise v(n). Thus,

#(n) = 3(n) + @(n) + ¥(n) (3.2.27)

where 3(n) is defined in Eq. (3.2.25), #(n) and &(n) are similarly defined. The reference
training signal r(n) is,

r(n) = (s(n) + u(n) + v(n))ei2™ ™. (3.2.28)

Because s(n), u(n), and v(n) are independent, under the infinite sample time average

realization, we have
<§(n)u'(n)e—i2m'"> =0 <s(n)u'(n)e-12m'"> =0 (3.2.29)
<a(n)s'(n)e-1'2m'"> -0 <a(n)u°(n)e-ﬂ*°'"> -0 (3.2.30)

<o(n)s°(n)e—ﬂ"°'"> =0 <a(n)u'(n)e-ﬂ"°'"> =0. (3.2.31)
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So we obtain

hgr = RZ} (<§(n)s'(n)e-ﬂ”°'"> + <a(n)u'(n)e-ﬂ”°'"> + <D(n)u' (n)e—12“°'">) .
(3.2.32)

- We know

u(n)eﬂmxm

u(n _ l)ej21m1(n—l)

u(n _ No + l)ej21ra|(n—No+l)
u(n)eﬂmx;n
u(n _ 1)ej21rog(n—1)

u'(n)e-ﬂ"'">. (3.2.33)

i
N

<ﬁ(n)u'(n)e"j2"°‘,">
u(n = N, + 1)es2mantn=No+)

u(n)ej21raMn

u(n _ l)ej21raM(n—l)

K u(n _No + l)ej21raM(n—No+1)
Because we choose the parameters a,, and a satisfy Eq. (3.2.23), we obtain

<a(n)u'(n)e-ﬂ"°'n> =0 (3.2.34)

Similarly. we have

<9(n)u'(n)e-ﬂm'"> =0. (3.2.35)

Therefore, we obtain
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Using Eq. (3.2.20) and noting s(n), u(n), and v(n) are independent, we obtain

Property 3.1 shows that when data collection time is infinite, the optimum solution of the

BA-FRESH filter is same as that of the TA-FRESH filter, as if we have the training signal.

It is worthy to point out that separation signal capability of BA-FRESH and TA-
FRESH algorithm is related to not only the spectral overlapping percentage but also the
excess bandwidth of signals. The excess bandwidth is directly determined by the pulse
shaping roll-off coefficient. The greater excess bandwidth of a signal, the more spectrum
. redundancy, that is say, the increasing excess bandwidth is helpful to increasing the sepa-
ration signal capability. For example, if QPSK signal are used with 30% excess bandwidth
(roff-off factor = 0.3), overlapping of 40% will make them inseparable regardless of what

filter coefficients are selected.

3.3 Convergence Rate of the Filter Coefficients

For the optimum filter coefficients of the BA-FRESH and TA-FRESH algorithms, there
are differences between the finite sample time realization of the filter coefficients and the
infinite sample time realization of the filter coefficients. When the number of sample goes
to infinite, the differences will go to zero. In this section, we study the convergence of
this difference. We know that the finite sample filter coefficients of the BA-FRESH and
TA-FRESH filter are random variables. In this thesis, saying the convergence of random
- variables, we mean the convergence in mean square [85,86). A random sequence Xy, is said

to converge in mean square if there exists a random variable X such that
E [||xn - X||2] >0 as n - oo (3.3.1)

If Eq. (3.3.1) holds, then the random variable X is called the mean square limit of the

sequence X . This definition also holds for random vectors. Moreover, we define the time-
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averaged autocorrelation matrix and cross-correlation vector over N samples respectively

as

Rﬁ(N)=<5c(n)a':*(n))N and Py (N) = (&(n)v"(n))y - (3.3.2)

_ Thus, the finite-sample time-average realizations of hgr and hrr in Egs. (3.2.11) and

(3.2.20) are placed respectively by
- . 1 . - . 1 "
her(N) = Rz (N)pz,(N) and  Are(N) = Rz (N)psy (N). (333)
We further define the Lo-norms of a vector v and a matrix A respectively as
1
Y S A ) —
vl ={v'v and Al = max (||Av|]). 3.3.4
ol = (v'v) lAll = max (l4vl) (3:3.4)

We now have the following property:

Theorem 3.1: Let ¥, and ¥, respectively denote the set of cycle frequencies of the desired
signal s(n) and interference u(n). Let am, m = 1,2---M, and a be respectively the
frequency shift parameters in the primary and secondary branches of the BA-FRESH filter
such that

am, (am-— a') € (¥, —T,) and am# a, Vm, (3.3.5)

both hgr(N) and hrr(N) converge in the mean-square sense to
ot = RiL 035 (3.36)

where hop is defined in Eq. (3.2.24). Furthermore, the rates of convergence for both
hgr(N) and hrr(N) are at O(%), where O(-) denotes “order of™.

Proof: The input z(n) consists of the desired signal s(n), the interfering signal u(n), and
noise v(n). Thus,

z(n) = 3(n) + a(n) + v(n) (3.3.7)

where 3(n) is defined in Eqgs. (3.2.25) and @(n) and &(n) are similarly defined. For finite
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N, we have

5 |zt - &zt

E ["R;%(Rﬁ(N) - Rii)R;;(N)llz] (3.3.8)
2
|

where we have used the Schwarz inequality. Now, from Eq. (3.3.2) and the property of

IA

e [0 ] 2 5 [ty - s

matrix norms [70], we have

E “lRii(N) - Rﬁuz] < Etr [(R:E:E(N) - ':E) (Rz‘:i(N) - Rii)f}

= trE [Nz Z ( Rn) (:i:(n):z':f(n) - Rﬁ)f],
+trE % SN (i:(m):i'(m) - :'::E) (i:(n)i:f(n) - sz.:i)t
m¥En
Co
= 2 (3.3.9)

where C, is a constant. In the last step, we have used the fact that the desired signal s(n)
and the interference u(n) are independent from symbol to symbol and the noise v(n) is

white. Therefore, we have
. 2 1
E ["Rii(N) - Ru| ] =0 (N) (3.3.10)

Using the boundedness of ||R;
Eq. (3.3.9) in Eq. (3.3.8), we obtain

E["R;; RL( M () (3.3.11)

Following similar steps as in Eq. (3.3.9), noting that p;, = pz5 = p;», we also see that

E I8 () - pisl?] =0 () (3:3.12)

(N " with probability 1, together with
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and
E [l (N) - piz ] = O (—) (3.3.13)

Now, from Egs. (3.3.3), we have
E (|- () - ho| ] E [|Ra}oar) - pss) + (B2 (V) - RiD)ban ()| |

<28 [|Re|" (1oar (M) - pss?) | + 28 | (| B2z V) - 3

Vlow ] @3.14)

where we have used the inequality ja + b||2 < 2[la||? + 2||b]j?> followed by the Schwarz -

inequality. Similarly, we have

["hTF(N @‘N] < 2E [||R || (2 (V) P§§'”2)] (3.3.15)
+2E [(”RH(N) R;] ||) "p-_,(N)"z]_

Using the boundedness of "R;i:l

. (3.3.11) and (3.3.12) in Eq. (3.3.14)
and (3.3.15), we conclude that

E ["iwp(N) - ho,,t||2} =0 (%) (3.3.16)

and
E [“szp(N) - ho,,,“z] -0 (%) . (3.3.17)

From Eqgs. (3.3.16) and (3.3.17), using the triangular inequality, clearly we can see that

E [||5&(N)||2] —E [”ﬁgp(N) - ﬁTF(N)lﬂ =0 (%) . (3.3.18)

Thus, for N = oo, both hgr(N) and hrr(N) converge in the mean-square sense to hopt

with the rate of convergence O (-,%) a

Theorem 3.1 has important implications because it shows that the BA-FRESH filter
and the TA-FRESH filter are asymptotically equivalent in the sense that both converge to
hop: at the same order. However, the TA-FRESH filter necessitates a copy of the desired
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signal.

3.4 The Finite Sample Output SINR Analysis

Based on Theorem 3.1, we can further study the output signal to interference plus noise
ratio (SINR) of the BA-FRESH filter and the TA-FRESH filter with finite samples. We
denote the output SINR of the BA-FRESH filter with finite samples as SINRgr(N) and
the output SINR of the TA-FRESH filter with finite samples as SINRrr(N). They are

defined respectively as

-f - -
SINR g (N) = -thF(IY)Ria’hB{"(N) (3.4.1)
hgr(N)Ritsa+shsr(N)
-f - -
SINRrf(N) = .fh" (V) Rsshrr(NV) (3.4.2)
hre(N)Ri+sa+shrr(N)

where R;; = (3(n)3(n))n, and Rassa45 = ((&(n) + 8(n))(@(n) + 8(n)))n. hpr(N) and
hrr(N) are defined in Egs. (3.2.12) and (3.2.22) respectively. For the infinite data length
(N = o0), SINRgpt—F is defined as

R} Rsshopt
hlyRavsatohopt

SINRope—F = (3.4.3)

We want to evaluate the normalized mean square error between SINRgr(N), SINRTr(N)

and SINRep¢— F respectively, that is,

E

ISINR g (N) — SINRope—r ISINR7£(N) — SINRgpe_ £ 12
ISINRope_F 12 and B ISINRope_FI? - (344)

We have Corollary 3.1 as follows:

Corollary 3.1: For the same scenario as Theorem 3.1, SINRgg(N) and SINR7g(N) con-

verges in the mean square sense to SINRyp—r. Furthermore the convergence rate for



CHAPTER 3. THE BA-FRESH ALGORITHM AND ITS CONVERGENCE 43

SINRgr(N) and SINRrr(N) are O(4), that is

ISINRB£(N) — SINRope—F |2 ( 1 )
E =0 = 3.4.5
[ [SINR o112 N (3.49)

SINRTF(N) ~ SINRope—F |2 ( 1 >
E =0|—=]. 3.4.6
[ ISINRope_F I N (3.4.6)

Proof: Using Egs. (3.4.1) and (3.4.3), we have
~ f - ~
SINRBF(N) _ SINRom_F — —~ hBF(lY)R”hB{?(N) _ SINRopt—F (3.4.7)
hBF(N)Ru+v a+sher(N)
B hBF(N) [ 35 — SINRope—F Rats u+v] her(N
hbp(N)Rivs,a+5hBF(N)

We define

6her = hgr(N) — hope, ORs; = Rss — Rss, and 6Rg153+5 = Ravoa+s — Ratoato-
(3.4.8)

For the numerator of Eq. (3.4.7), we have

hipr(N) [Rss — SINRapep Rassass) RBr(N) = by [Rss = SINRope— F Rt s,is] hpt
+6hY ¢ [Rs; — SINRope— F Rass,545) Bopt
+h!, [Rss — SINRopi—F Rits.avil 6hBF
+h! ), [6Rs; — SINRope— FO Rivsa+d) Popt

+ [high order terms] (3.4.9)
where

[high order terms] = &hbp[Rss — SINRepe—F Riats,a+3] ShBF
+6hY - [6Rs5 — SINRope— FO Rt 5,45 Ropt
+h! opt [0R33 — SINRope— pORiv5,a+5) ShBF
+6hYp [6Rs5 — SINRope- pORivoa+3) hpr.  (3.4.10)
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For the first term of the right side of Eq. (3.4.9), we obtain by Eq. (3.4.3)

h‘f"" [Rss — SINRopt—F Riviavil hope = hlptRS'S'hopt - SINRopt-FthzRﬁw.awhom
= hlptRSShopt - thtRsshopt =0. (3.4.11)

Using the Schwarz inequality to the second term of the right side of Eq. (3.4.9), We obtain

E [|6hhe (R — SINRupe-p R sl oo | (3.4.12)

2
<E ["6"}3!“" ] - I{Rss — SINRope—F Ra+s,+3]ll° - 1hpell® -

. Noting that the boundednesses of ||[R3s — SINRgpe— FRia+o,a+5)ll and [|hopell and using Eq.
(3.3.18), we obtain

2 1
E [Hshgp [Rss = SINRope— R ,45) hopt ] -0 (ﬁ) . (3.4.13)
For the third term of the right side of Eq. (3.4.9), we similarly have
2 1
E ["hzm [Rs; — SINRopt—F Ra+,a+3] 5hBF|| ] =0 (N) - (3.4.14)

We also note that E [|6Rs]|2] = O (-,{7) and E [|6Ra+s.a+sl%] = O (ﬁ) Using the
Schwarz inequality to the fourth term of the right side of Eq. (3.4.9), we obtain

2 1
E [|Phyel6Rss - SINR-r6Rarsaril b | =0 () 3419)
For the fifth term of the right side of Eq. (3.4.9), using the similar steps, we obtain

E [ Ihigh order terms|?] = O (%) . (3.4.16)

Therefore, we obtain

E [HhLF(N) [Rss - SINRopt—FRi+ﬁ,i+i] hgr 2] =0 (%) . (3.4.17)
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‘iltBF(N)Rﬁ-{»ﬁ,ﬁ%»ﬁﬁBF(N)

min [

where C, is a positive constant, we obtain by using Eqgs. (3.4.17) and (3.4.18)

2
Because [ ] is bounded with probability one, that is,

. . . 2
Al r(N) Rassas5hsr(N) “ ] >Cp Nov oo (3.4.18)

1

E [ISINRg7(N) — SINRope_£[I?] = O (N) . (3.4.19)

Since ||SINRgpe— F||? is a constant, so we conclude that

ISINRgF(N) ~ SINRope—£lI* | _ ( 1 )
E [ ISINR £ 12 =0 N/ (3.4.20)
Using the similar steps, we obtain
ISINRTF(N) — SINRope—FiI? | _ ( 1 )
E [ ISINRope_rl2 =0 ~) o (3.4.21)

- 3.5 The Finite Sample Output MSE Analysis

In this section, we study the finite sample MSE (Mean Square Error) of the BA-FRESH
filter and that of the TA-FRESH filter. The finite sample MSE of the BA-FRESH filter
is denoted as Jgr(N) and the finite sample MSE of the TA-FRESH filter is denoted as
Jrr(N). They are defined respectively as

78r(N) = { (Rpr(W)2(m) =3 ()} (Rbr(N)2(n) - im)) @)

sre(N) = ((Rhr(N3(n) = 5 (m)) (BLp(N)(n) - im)) (682

where hgr(N) and hrr(N) are defined in Egs. (3.2.12) and (3.2.22) respectively. Z(n)
and §'(n) are defined in Eqs. (3.2.5) and (3.2.21). Let the infinite sample MSE of the BA-
FRESH filter which is equal to that of the TA-FRESH filter be denoted by Jopt—r. Jopt—F
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is defined as

Jope-£ = { (Alpe(n) = 3'(m)) (Rbped(n) =3 (m)") (3.5.3)

where h,p, is defined in Eq. (3.2.24). We like to evaluate the normalized mean square error

between Jpr(N), Jrr(N) and Jope—F respectively, that is,

E[MJBF(N)—Jm_Fuﬁ’] i E[IIJTF(N)-Jw—F"Q]_ (35.4)

| Jope—F 12 | Jope- £

We have Corollary 3.2 as following:

Corollary 3.2: For the same scenario as Theorem 3.1, Jpr(N) and Jrrp(N) converge

_ in the mean square sense to Jopt—F. Furthermore the convergence rates for Jpr(N ) and

Jre(N) are O (-,lv), that is

IJer(N) = Jope—Fl*| _ (1
z [ ope—r 2 ] =0 (N) (3:5:5)
| IrE(N) = Jope—rlI?| _ 1
E [ Vepe—r1I? ] =0 (N) ' (35-6)
Proof: Using Eq. (3.5.1), we have
Jer(N) = <(i1T3F(N)5(Tl) - 5'(n)) (szF(N)i:(n) - §I(n)>.> (3.5.7)

t
. : t : t : t :
= (s(n)s*(n)) —hgr(N)pzy — (hBF(N)pi:j') —hgp(N)Rzzhpr(N),
Substituting Eqs. (3.4.8) and (3.5.3) into (3.5.7), we obtain

Jgr(N) = Jopt—F — Rl p oz — WG ppl . +6RY p Razhope + bl Rezbhpr + Rl p Rz:6h pF-
(3.5.8)
Using the inequality |la + b||? < 2||a||? + 2||b}|?, we obtain
E 1785 (N) = Jop— ! Topl, + Ok} f ’
8F(N) — Jope—Fll ] < 2E ||—5hBFpﬁ, ~ 6hGppyy + 6hlp Razhop: + hop,RﬁJhBF“

+2F [lléhtBFRiiéhgp”z] . (3.5.9)
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Using the Schwarz inequality and the inequality [la + bfi? < 2lla||® + 2(|b||? to Eq. (3.5.9),

we obtain
1
E [”JBF(N) - Jopt—FIlz] =0 (N) : (3.5.10)
- Because || Jop:- rl|? is a constant, we conclude that
1/8F(N) = Jope-FII? ( 1 )
E =0(—=}. 3.5.11
[ ape—rI? N 3.511)
Using the similar steps, we obtain
|l JTF(N) = Jope—FI? ( 1 )
E =0(<=]). O 3.5.12
[ Hope—rl? N (3:512)

3.6 Numerical Results

In this section, we present numerical simulation results showing the performances of
the BA-FRESH filter in comparison to those of the TA-FRESH filter. In the examples, we
consider only one desired signal and one interfering signal and they are both BPSK signals.
_ Thus, the desired signal and the interfering signal are given respectively by

s(nTs) = i d(k)g(nTs — kT, ) cos(2m finTy) (3.6.1)
k=-o0c

u(nTy) = i dy(k)g(nTs — kT, ) cos(27 fanTy) (3.6.2)
k=-o00

where T;, and Tp, are the baud periods, f; and f; are the carrier frequencies offset of
s(nTs) and u(nT,) respectively and T, is the sampling period. {d(k)} and {du(k)} are
random binary sequences. For both the desired and interfering signals, we assume that
g(nTs) and gy (nTy) are the pulse obtained by the square root raised-cosine pulse shaping
filter with a 100% roll-off factor [31]. We choose that the length of g(n) which is equal to

the length of g,(n) is equal to 159. The noise is a real stationary white Gaussian noise.

Example 3.1: In this example, we examine the output signal to interference plus noise

. ratio (SINR) of the BA-FRESH filter and the TA-FRESH filter with finite symbols. We
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denote the output SINR of the BA-FRESH filter with finite symbols as SINRgr(N) and
the output SINR of the TA-FRESH filter with finite symbols as SINR7g(N). They are

defined respectively as

-T - a
SINRpr(N) = —ThBF(A_l)RsshB{-‘(N) (3.6.3)
hgp(N)Ra+sa+shsr(N)
.t ..
SINRpr(N) = e Rsshrr(V) (3.6.4)
hrp(N)Rz+5a+5hTr(N)

where Ry; = (3(n)3(n)) v, and Rassaes = ((#(n) + 8(n))(@(n) + 5(n))")n. hpr(N) and
hrr(N) are defined in Eqgs. (3.2.12) and (3.2.22) respectively. N denotes the number of
symbols. The desired and interfering signals are BPSK signals as given by Eqgs. (3.6.1)
" and (3.6.2) respectively. The baud rates of the two signals are equal, being 5kHz for
both the desired signal and the interference. The carrier frequency of the desired signal
is fi = 10kHz. The cycle frequencies used in the BA-FRESH filter and the TA-FRESH
filter are set at a; = 20kHz, az = —20kHz and the cycle frequency used in the reference
path of the BA-FRESH filter is set at a = 0kHz. Three scenarios are examined. In the
first case, we examine the effect of different spectral overlapping between the two signals
to SINRgr(N) and SINRrp(N). The bandwidths of the signal and interference depend
on their baud rates which are fixed at 5kHz making the approximate bandwidth of both
10kHz. We fix the carrier frequency offset for the desired signal at 10kHz while varying
that for the interference so that the percentage of spectral overlap are 40%, 30%, 20% and

10%. The percentage of spectral overlap is defined as

_Bi+Bi—1fi— fi

1 6.
2B, x 100% (3.6.5)

where B, and B, are the baud rates and f, and f; are the carrier frequencies of the signal
and interference respectively. We vary the carrier frequency offset of the interference so
that the spectral overlapping between the two signals can be varied as 40%, 30%, 20% and
10% respectively. The length of each FIR filter is 10. The input signal to noise ratio (SNR)
and the input signal to interference ratio (SIR) are fixed at 10dB and 0dB respectively. The
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output SINR of BA-FRESH and TA-FRESH with finite samples are plotted in Fig. 3.4(a)
to Fig. 3.4(d) respectively. It can be observed that the output SINR of BA-FRESH and
TA-FRESH converge to same value when the number of symbols is larger than 100. For
fixed number of branch of BA-FRESH and TA-FRESH, when the frequency overlapping is
reduced, the performance of BA-FRESH and TA-FRESH is increased. In the second case,
we examine the effect of different input SIR to the output SINRgpr(N) and the output
SINR7F(N). The scenario is similar to the first case except that input SIR is 5dB. The
output SINR of BA-FRESH and TA-FRESH with finite symbols are plotted in Fig. 3.5(a)
to Fig. 3.5(d) respectively. It can be observed that the output SINR of BA-FRESH and
- TA-FRESH is increased when we increase the input SIR. In the third case, we examine
the effect of different length of the FIR filter to the output SINRgs(N) and the output
SINRTfF(N). The scenario is similar to the first case except that the length of the FIR filter
is fixed at 6 and 16 respectively. When the length of the FIR filter is fixed at 6, the output
SINR of BA-FRESH and TA-FRESH against different spectral overlapping are plotted in
Fig. 3.6(a) to Fig. 3.6(d) respectively. When the length of the FIR filter is fixed at 16,
the output SINR of BA-FRESH and TA-FRESH against different spectral overlapping are
plotted in Fig. 3.7(a) to Fig. 3.7(d) respectively. Compared with Fig. 3.4 with Fig. 3.6 and
3.7, it can be observed that the output SINR of BA-FRESH and TA-FRESH is increased
when we increase the length of the FIR filter. In all the observations, the BA-FRESH and
TA-FRESH filters have very similar performances after the number of symbols is larger
than 100.

Example 3.2: In this example, we examine the output eye diagram of the BA-FRESH
" filter and the transfer functions of each FIR filter in the BA-FRESH filter compared with
those of the TA-FRESH filter. The scenario is similar to Example 3.1 except that the carrier
frequency offset of the interference is 17kHz, that is the spectral overlapping is 30%. The
input SNR is 20dB, and the length of FIR filter is 10. The filter coefficients of BA-FRESH
and TA-FRESH with number of symbol (N = 250) are calculated from Eqs. (3.2.12) and
(3.2.22) respectively. The input and output eye diagrams of BA-FRESH is shown in Fig.
3.8(a). It is observed that the input eye diagram is close and the output eye diagram is

open. In order to compare, the input and output eye diagrams of TA-FRESH is shown
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in Fig. 3.8(b). It is observed the output eye diagram of BA-FRESH is very similar to
that of TA-FRESH. Moreover, we also compare the transfer functions of the FIR filter
. in BA-FRESH with those of the FIR filter in TA-FRESH. The two transfer functions of
BA-FRESH and TA-FRESH are shown in Fig. 3.8(c) and 3.8(d) respectively. Again, it
is observed that the transfer function differences between BA-FRESH and TA-FRESH are

very small when number of symbols is large.

Example 3.3: In this example, we examine the filter coefficient convergence and the finite
sample mean square error (MSE) of the BA-FRESH and the TA-FRESH filters under the
condition that the spectral overlapping between the desired signal and the interference are
fixed at 40%, 30%, 20% and 10% respectively. The scenario is similar to that of Example
3.1, except that the length of FIR filter is 10, input SNR and SIR are fixed at 0dB and
0dB respectively. For the filter coefficients with finite symbols, hgr and hrr in this ex-
ample are calculated from Eqgs. (3.2.12) and (3.2.22). hgp in this example 1s calculated
from Eq. (3.2.24) using time-averages of 150 symbols. The normalized convergence of
E [“hopg - fzap(N)Hz] /Ihoptl|?> and E ["hopt - ilTF(N)Hz] /lhoptl|?, each being averaged
- over 10 realizations, are plotted in Fig. 3.9(a) to Fig. 3.9(d), in which the spectral over-
lapping between the desired and interfering signals are fixed at 40%, 30%, 20% and 10%
respectively. It is observed that both the BA-FRESH filter coefficients and the TA-FRESH
filter coefficients converge to the optimum filter coefficients when the number of symbols is
large, with the TA-FRESH filter being the faster in convergence. For the output MSE with
finite symbols, Jgr(N) and JTr(N) in this example are calculated from Eqgs. (3.5.1) and
(3.5.2). Jopt—sT in this example is calculated from Eq. (3.5.3) using time-averages of 150
symbols. The normalized MSE difference of E [|Jopt—s7 = J8r(N)II*] /Il opt-sTll* and
E [IIJ,,,,¢_ST - JTp(N)||2] /W opt—sT||%, each being averaged over 10 realizations, are plot-
ted in Fig. 3.10(a) to Fig. 3.10(d), in which the frequency overlapping between the desired
and interfering signals are fixed at 40%, 30%, 20% and 10% respectively. It is observed that
both the normalized output MSE of the BA-FRESH filter and that of the TA-FRESH filter
converge to zero when the number of symbols is large, with the TA-FRESH filter being the

. faster in convergence.
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Figure 3.4: Qutput SINR of BA-FRESH and TA-FRESH against the spectral overlapping

40%, 30%, 20% and 10% when N, is 10, input SIR is 0dB, and SNR is 10dB
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Figure 3.5: Output SINR of BA-FRESH and TA-FRESH against the spectral overlapping
40%, 30%, 20% and 10% when N, is 10, input SIR is 5dB, and SNR is 10dB
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Figure 3.6: Output SINR of BA-FRESH and TA-FRESH against the spectral overlapping
40%, 30%, 20% and 10% when N, is 6, input SIR is 0dB, and SNR is 10dB
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Figure 3.7: Output SINR of BA-FRESH and TA-FRESH against the spectral overlapping
40%. 30%, 20% and 10% when N, is 16, input SIR is 0dB, and SNR is 10dB
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Chapter 4

Probability Error Analysis of
BA-FRESH and TA-FRESH

The finite sample output probability error of the BA-FRESH and TA-FRESH algorithms
are studied theoretically and by simulation in this chapter. Let N be the length of input
- data. h(N) is the finite sample time realization of the BA-FRESH or TA-FRESH filter
coefficient vector. h(N) is a function of N and it is also a random vector for given N. We
do K experiments to obtain K realizations of h(N) as RO(N), RO(N), ---, R{K)(N). For
the kth experiment with given h¥)(N), we can obtain the simulation value of the finite
sample probability error P¥,. Defining the P, as Pe s = % K | Pk, P. is called the
simulation value of the finite sample probability error of h(N). We also hope to obtain
theoretical formulae to compute the finite sample probability error of BA-FRESH and TA-
FRESH theoretically. Because the analysis procedures to BA-FRESH and TA-FRESH are
similar, we use BA-FRESH as an example to do this analysis. Firstly, the input signals
and system model are given in this chapter. The input of threshold is analyzed. Statistical
analysis of the output noise, statistical analysis of the output component of the desired
signal, and statistical analysis of the output interference is given. The output probability
error theoretical formulae of BA-FRESH and TA-FRESH are obtained. At last, numerical
" examples are presented to examine the output probability error of BA-FRESH and TA-

58
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FRESH in different scenarios theoretically and by simulations.

4.1 The System Model of BA-FRESH and TA-FRESH

The system model which we consider is shown in Fig. 4.1. Because the analysis procedures
to BA-FRESH and TA-FRESH are very similar, we use BA-FRESH as an example to do

this analysis.

v(n) P
? a¢m) ter
"'""% " }/’ 2n) 2N d(n)
FIR ifter
s(n) L\ x(n) > Y p(n) YN Re[.] thereshoid
SRS e g (o |, et (]
. s 4
% JUI - cos(2 TaAf n)
u(n)
ame |—
Adaptive ]

Algorithm ._]

Figure 4.1: System model of BA-FRESH and TA-FRESH

Input Signals: For the input signals, we assume that the desired signal s(n) and the

interference u(n) are real BPSK signals which have same baud rate. They are statistically
independent of each other. Let the sampling rate of these signal is 1/T. For given the baud

rate 1/T},., we choose the sampling rate such that
Ty = Ty /N, (4.1.1)

where N is an integer. In the following analysis, we normalize T as one in our expressions.

The desired signal s(n) can be modeled as

s(n) = i d(k)g(n — kN;) cos(2mA fcn) (4.1.2)

k=-00
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where Af, is the frequency offset of the desired signal. The message signal of the desired
signal is d(n) where d(n) = x1 is a random signal. The signal d(n) = +1 and d(n) = -1
occur independently with equal probability and therefore, the variance of d(n) is equal to
one. The function g(n) is a square root raised cosine pulse shaping filter with a roll-off

factor equal to one [31]. We normalize g(n) such that 3, g(n)g*(n) = 1.

The interference u(n) can be modeled as
o0
u(n) = Ay ) du(k)gu(n — kN,) cos(2rA fun) (4.1.3)
k=-00

where A, is the amplitude of the interference and Af, is the frequency offset of the interfer-
ence. The symbol dy(n) = +1 and d,(n) = —1 occur independently with equal probability
and the variance of dy(n) is one. The function gy(n) is the normalized square root raised

cosine pulse shaping filter with a roll-off factor equal to one.

The input noise v(n) is assumed to be a stationary white zero mean Gaussian noise
and have

Efp(n)] =0,  Efv(ni)v*(ng)] = 026(n — no) (4.1.4)
where o2 is the variance of v(n) and §(n) is the Kronecker delta function.

The input of the BA-FRESH filter is

z(n) = s(n) + u(n) + v(n). (4.1.5)

BA-FRESH algorithm: The frequency shift in the BA-FRESH filter app,(m = 1,2--- M)
can be chosen as +2Af. + p/T}, where M is the number of branches of FRESH filter. p is

an integer. Here, the frequency offset can be viewed as a design parameter and we choose

the frequency offset A f. to be a multiple of 1/T},. Therefore, we have
Afe=N./Ty, am=Nn/Ty, m=12,---M. (4.1.6)

. where N, and N, are integers, N, = +2N,. + p. We choose the low-pass filter p(n) as the
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normalized square root raised cosine pulse shaping filter g(—n).

The filter coefficient h,(n) (m = 1,2,--- M) denotes the impulse response of the
mth FIR filter in the BA-FRESH filter or in the TA-FRESH filter, where M is the number of
branches of the FRESH filter. These filter coefficients consist of the filter coefficient vector
of the BA-FRESH filter hgr which is defined in Eq. (3.2.11) or that of the TA-FRESH filter
hrr which is defined in Eq. (3.2.20). In the following analysis, the filter coefficients are
assumed to be the filter coefficient vector of the BA-FRESH filter. We will note that the our
analysis procedure is also suitable to analyze the output probability error of the TA-FRESH
filter. Moreover, for analysis simplicity, we will assume that the filter coefficient vector is
. uncorrelated with the input white noise v(n), the input desired binary signal d(n) and the
input interfering binary signals d, (n). We call this assumption as the uncorrelation assump-
tion. For the infinite sample time average realization, using the property 3.1, we note that
the filter coefficients vector of the BA-FRESH filter hgr is equal to the filter coefficients
vector of the TA-FRESH filter hrr. These filter coefficient vectors are constant vectors hope
which is defined in Eq. (3.2.24). Therefore, the uncorrelation assumption is valid in the
infinite sample case. For the finite sample time average realization, the filter coefficient vec-
tors hgr(N) and hrp(N) are defined in Egs. (3.2.12) and (3.2.22) respectively. They are
random vectors. It is difficult to examine the uncorrelation assumption theoretically in the
finite sample case. Here, we use an experimental method to examine the assumption. We
generate K random samples of the correlation g, (N) = ax(N)hi(N), where a;(N) denotes
input binary signal or the input white noise. hx(N) denotes the kth finite sample time aver-
age realization of the filter coefficients Apr(N) or hrp(N), where N is number of samples.
We calculate the normalized correlation value § = (||—}(— Sk gk(N)||2)/(-}(; Sk lge(N)I?). We
" found these correlation values are very small, that is, § < 1073, see Appendix B. Therefore,
we say the uncorrelation assumption is valid in the finite sample case. In the section 4.3,
comparing the theoretical results in which we use the uncorrelation assumption with the
simulation results, we will see that that the theoretical results and the simulation results
match well. This fact also shows that the uncorrelation assumption is valid in the finite

sample case.
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4.2 The Input of Threshold

When the input z(n) passes through the BA-FRESH filter, the output of the BA-FRESH

- filter is

M
y(n) =33 hy(n - k)2 k (k). (4.2.1)
k

=1

The output of the low-pass filter is

z(n) = Y _p(n—k)cos(2wA fck)y(k) (4.2.2)
k

. . 1 . .
= Z _2]_'_p(n _ k)e—JZﬁAfc(n—k)eﬂfocny(k) + Z _2_p(n — k)e]2tAfc(n—k)e—]2wAfcny(k).
k k

Substituting Eq. (4.2.1) into Eq. (4.2.2), we have

M

z(n) = Z z Z %p(n _ kl)e—j21rAf¢(n—-k1)e—j2wa‘(n—k1)hl(kl - ko) (4‘2.3)
=1 k2 k;
e—j21rm(k1 —kz)z(k2)ej21rAfcnej21ram

M
1 . .
+ Z Z Z 5p(n _ kl)8121|’Af¢(‘n—k1)e—JQ‘A’a[(‘n-—kl)hl(kl _ kQ)
=1 ko ki
e—j21ra[(k1 —kz)x(kz)e—j27rAfcnej21ra1n'

Using Eq. (4.1.6) and noting that Ty = N,, we have that e278fenN,s = | and e?2TanNs = |,

Hence, the output of the sampler z2(nNj) is

M
1 . ,
2nlNy) = X% SP(nN; = ky)e~I2mALc(nN k1) g=j2meu(nN,—k1) (4.2.4)
=1 ka2 Kk

hy(ky — kp)e2melki=k2) (k)

M
1 . . )
+ Z kz Z '2'P(nNs _ kl)6_721rAf=(n1\r.-kx)e—JZxaz(nN.—kl)hl(kl - k2)e—12xa,(k1—k2)$(k2)‘
=1 k2 Kk

Let nN; — k; = m, we obtain

M
2nNy) = OS5 hi(nN, — m ~ kp)emI2reu(nNemmka) (4.2.5)

=1 M k2
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1 . .
Sp(m)e 72RASeme I (k)

M
) 1 X
+ z z hy(nNs —m — k2)e—121m‘(nN,—m—k2)Ep(m)eﬂmﬁjcme—]21ralmz(k2).

=1t m ko
Let nN, — ko = k, we obtain

M

. 1 : )

2nNy) = S Y3 ik — m)em7Zrartkom) §p(m)e"z"Af"me"ﬂm‘m:r(nNs — k)
=1 m k

M
) 1 . .
+ Z z Z h[(k _ m)e—ﬂwa,(k—m) —p(m)e’2"Af°me'J2"°""a:(nNs — k)

=1 m k 2
= Y H(k)z(nN, - k) (4.2.6)
k
where we define H(n) as
M La-1 . .
H(n) = Z Z hi(n — m)e 32" (n"M)p(m)e~I2TUT cos 21 A f . (4.2.7)
=1 m=0

We note that the length of H(n) is N, + L2 — 1. N, is the length of the filter hi(n). Here,
we assume hy(n), (I =1,2,--- M) has same length. L, is the length of the filter p(n), that
is, the length of the filter g(n). Substituting Eq. (4.1.5) into Eq. (4.2.6), we may express

the output of the sampler as

No+La-1 No+La-1 No+La—1
2nN,) = Y H(k)s(nN,—k)+ Y H(ku(nN,—k)+ > H(k)v(nNs - k).
k=1 k=1 k=1
(4.2.8)
We divide H(n) into two parts
H(n) = Hg(n) + jH(n) (4.2.9)

where Hg(n) is the real part of H(n) and H(n) is the imaginary part of H(n). Moreover,
Hpg(n) is
M La—1

Hg(n) = D>_ D Re [hl(n-m)e‘jzm‘("'m)p(m)e'ﬂm‘m cos 2 A forn (4.2.10)

=1 m=0
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where Re [-] denotes taking the real part.

The input of the threshold is

T No+Lz-1 No+Lz—1 Not+Lz—1
dn)= Y. Hg(k)s(nN;—k)+ 3> Hg(k)u(nN,—k)+ D Hr(k)v(nNs ~k).
= = = (4.2.11)
Define
No+La-1
Yod(n) +&1sr(n) = Y Hr(k)s(nNs - k) (4.2.12)
k=1
No+La2—1
écri(n) = Y_  Hr(k)u(nN,; —k) (4.2.13)
k=1
No+L2—1
n(n)= > Hg(k)v(nN, — k). (4.2.14)
k=1
We have
d(n) = v,d(n) + &1s1(n) + €cTi(n) + n(n) (4.2.15)

where v,d(n) denotes the output component of the desired symbol. &;sr(n) denotes the
. output component of the Inter-Symbol Interference (ISI). £cTr(n) denotes the output com-
ponent of the Cross-Talk Interference (CTI). n(n) denotes the output component of the

noise. Defining

me(n) = n(n) + &1s1(n) + Ecrr(n), (4.2.16)

we have that the input of the threshold is

d(n) = Y,d(n) + ne(n) (4.2.17)

where 7, is the coefficient of the desired symbol. 7, is the combination of the output noise

component, the output ISI component and the output CTI component.
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4.3 Statistical Analysis of n(n)

The output noise component 7n(n) is

No+La2-1
n(n)= Y He(k)v(nNs — k). (4.3.1)

Because the system is a linear system, the output noise 7(n) has Gaussian probability
density function (PDF) when the input noise has Gaussian PDF. Using the uncorrelation
assumption, we note that Hg(k) is uncorrelated with v(nN;s — k). Using Eq. (4.3.1), the

mean of the output noise n(n) is
No+La~-1
Ef(n))= Y E[Hr(K)E[p(nN; — k)] =0. (4.3.2)
k=1

Using Eq. (4.3.1), the variance of the output noise n(n) is

oz = En(n)n’(n)] (4.3.3)
= S°5 E[Hg(ki)Hp(k2)]E[v(nNs — k1)v* (nN; — k2)]
ky k2
= 02 E[Hgr(k)Hy(k)]
k

where 02 is the variance of the input noise v(n). We note that Hg(k) is defined in Eq.

(4.2.10) and o2 is a constant. Substituting Eq. (4.2.10) into Eq. (4.3.3), we obtain

-1 M La-1 La~1

+
0127 = o? z Z Z E Z cos(2mA ferny ) cos(2nA fena) (4.3.4)

1 L1=1m1=013=1 ma=0

[ [ (k — my)e —j2may, (k- mx)p(ml)e—ﬂwa,lml]

e [h’Q(k mz)e ]21[(!(2(k m?)p( 2)e—j27ra,2m2]] .
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4.4 Statistical Analysis of the Output Component of the
Desired Signal

. When the input desired signal s(n) pass through the system, the input of the threshold is

No+La2-1

Yod(n) + &rsi(n) = Y. Hg(k)s(nNs - k) (4.4.1)
k=1

where s(n) and Hg(n) are defined in Egs. (4.1.2) and (4.2.10) respectively. Substituting
Eq. (4.1.2) into Eq. (4.4.1) and using Eq. (4.1.6), we obtain

o0 No+L2—1
Yod(n) + &rsr(n) = Y. d(m) Y. g(nN, - mN, —k) (4.4.2)
m=-00 k=1
cos(2n A fck)Hp(k)-
We define
No+La—1
n)= Y g(nN,—k)cos(2nAfck)Hr(k) (4.4.3)
k=1
where we note that the length of v(n) is K,
K = IITI,—(NO +2L, - 2)] (4.4.4)

s

where [.] denotes taking integer. Substituting Eq. (4.2.10) into Eq. (4.4.3), we obtain

No+ 1 M La—-1
S Y a(nN, - k) (4.4.5)
I=1m

1(n) = Z
k= =0

Ly—
Re [h,(k — m)e~7%raulk-mip(m )e"2"°‘"‘] cos(2mA fom) cos(2wA fok).

Using Eqgs. (4.4.2) and (4.4.3), we obtain

> dim)y(n—m Z d(n — m)y(m) (4.4.6)

m=-00 m=-00

= 7(0)d(n) + Y_ d(n — m)y(m).

m#n

Yod(n) + Ersr(n)
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Here, we define

Yo =7(0), &r1si(n)= Z d(n — m)y(m) = Zd(n — m)y;(m) (4.4.7)

m#En
where v,d(n) is the desired symbol component. £;s;(n) is the ISI component.

No+La—1 M L2-1

Yo = 2 33 g(-k)Re[h(k - m)eT2reukmp(m)e=2mem|  (4.4.8)

k=1 =1 m=0
cos(27A fom) cos(2wA f.k).

The mean of v, is
No+La—~1 M La-1

pr, = Ele] = 2 Z Y 9(=k) (4.4.9)

=1 m=0
Re [E hy(k - m)]e—ﬂmf(k—'")p(m)e-ﬂ"mm] cos(2mA fom) cos(2n A fek).

The variance of v, is

a3, = El(Yo = Hro) (Yo = #x)°]- (4.4.10)
For the ISI term,
v(n) n#0
Nn(n) =
n=20

Netla=t oM, k-] (nN, ~ k)Re [u(k — m)e=72eu(k=m)p(m)e=s2mam|

cos(2wA fom) cos(2wA fck) n#0
0 n=20
(4.4.11)

. where the length of v;(n) is K. Using the uncorrelation assumption, we note that y(m) is
uncorrelated with d(n — m). Using Eq. (4.4.7), we also note that the mean of of £/51(n) is

zero. The variance of £;57(n) is

Cist = E[&1s1(n)isi(n)] (4.4.12)
K K,

K,
= 3> 3 Eld(n - m)d(n - m)]EMn(mi)yi(ma)] = Y Eln(k)ri (k).

m;=1ma=1 k=1
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We also note that (;gs is a constant. Substituting Eq. (4.4.11) into (4.4.12), we obtain

Ky No+La—-1 L2—-1 No+La—1 La-1
Gst = 3 Y 2 > Xy ¥ Zg(st“kl (KN, — k) (4.4.13)
k=1 ki=1 L=1m=0 k=1 m2=01{=1

[Re [hlx(kl —my)p(m;)e” J2"°‘l(k"m‘)e“12”°‘1ml]
Re [hlz(k2 - mz)p(mz)e—ﬂxa;z(kz-mz)e—j27ro;2mg]]

cos(2mA fomy) cos(2nA foma) cos(2mA fcky) cos(2m A fokz).

4.5 Statistical Analysis of £crr(n)

When the input interference u(n) passes through the system, the input of threshold which

is called the cross-talk interference is
No+La—1

cri(n)= Y. Hg(k)u(nN; — k) (45.1)
k=1

where u(n) and Hg(n) are defined in Eqs. (4.1.3) and (4.2.10) respectively. crs denotes
. the CTI component which is defined as

No+La2—-1

écri(n) = Y. Hg(k)u(nN, - k) (4.5.2)
k=
loo No+Lz-1
= Ay Y duln—m) Y gu(mN, - k)cos(2rAf,(nNs — k))Hr(k).
m=-00 k=1
When we define
No+L2~1
Bm,n)=Ay D  gu(mN, — k)Hg(k) cos(2rA fu(nN;s — k)), (4.5.3)
k=1
we have
fcri(n) = Y du(n—m)B(m,n). (4.5.4)

m=—00
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Using the uncorrelation assumption, we note that dy(n —m) is uncorrelated with G(m, n).

We note that the mean of écrr(n) is zero and the variance of £crr(n) is

(cri(n) = Elécri(n)écri(n)] (4.5.5)
= 33 Eldu(n — m)du(n — mp)|E[B(m1, n)B" (M2, n)]

ZE’ m,n)B*(m,n)).
Here, the length of §(m,n) is Ko,
1
Ky = rF(Na + Lo+ Ly - 2)], (4.5.6)

Lj is the length of g,(n). Using Eqgs. (4.2.10), (4.5.3) and (4.5.5), we obtain

Ko No+La—1 La—1 No+La-1L2-1 M
Ceri(n) = A:S. Y Z >y £ (4.5.7)
k=1 k=1 U4L=1m=0 k2=1 m2=0[=1

9u(kNs — ky)E [Re [hlx (ky — ml)p(ml)e-j%rml(kx—ml)e—j%razlml]
gu(kNs — ko) Re [hlz(k2 —- m2)p(m2)e"j27ra(,(k2—mz)e—j2arax,m2]]

cos(2n A forny ) cos(2mA fema) cos(2nA fy (RN — k1)) cos(27A fu(nNs — k2)).

From Eq. (4.5.7), we note that (crs(n) is a periodic function. The minimum integer value
of n which make A funN, be an integer is the period of the function {crr(n). Let Q denote

the period of {cTr(n). Q may be determined as
Q = min {n : AfynN; = integer} (4.5.8)

where N; is defined in Eq. (4.1.1). For example, when Af, = 0.17, and N, = 20, we have
Q = 5, because 5k can make Af,nN; be an integer, where k is an integer. The average

value of {cr1(n) is

(CTiave = — {:Z Z Z 3 (4.5.9)

m=0 k=1 m=01{3=1

gu(kNs — k1)E [Re [hlx ky —m )P(m1)e_12"°‘1(k1 —mx)e—j21rahmx]



CHAPTER 4. PROBABILITY ERROR ANALYSIS OF BA-FRESH AND TA-FRESH 70

9u(kN, — k2) Re [hlz(kQ - mz)P(mz)e‘ﬂ""‘z(""’"’)e"ﬂ""'z'"’]]

cos(2mA fermy ) cos(2mA feng) cos(2mA fu(nNs — ky)) cos(2mA fu(nNs — k2)).

4.6  Analysis of the Output Probability Error
Using Eq. (4.2.17), the input of the threshold is
d(n) = Yod(n) + 1¢e(n) (4.6.1)

where d(n) is the desired symbol, 7, is the random coefficient of the desired symbol which
is defined as in Eq. (4.4.8). 7(n) is the sum of the output noise component, the output
ISI interference, and the output CTI interference and it is also a random variable which
is defined in Eq. (4.2.16). We know v, and 7, are results of a large amount of random
variables acting together. <, and 7, can be approximated as having Gaussian distributions

respectively, that is,
e 7, is approximated as having Gaussian distribution
Yo ~ N(l"yua-zy‘,) (4.6.2)

where yu,, and o2 are the mean and variance of v, respectively. p,, and o2 are

Yo

defined in Eqs. (4.4.9) and (4.4.10) respectively. The approximation accuracy is
shown in Appendix C.

e 7. is approximated having Gaussian distribution
e ~ N(0,02,) (4.6.3)
where cr,zk is the variance of n.. Using Eq. (4.2.16), We know

E[ne(n)] = E[n(n)] + El&1s1(n)] + Elécti(n)] = 0. (4.6.4)
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Using the uncorrelation assumption and noting that the input noise, input desired

signal, and input interference are uncorrelated, we have that the variance of n.(n) is

2

o2, = Elne(n)ni(n)] = o5 + Cis1 + (err (4.6.5)

0,2,, C1s1 and (crr are the variance of 1, rs1 and £cr; respectively. They are defined
in Eqs. (4.3.4), (4.4.13) and (4.5.7). Because {cr/ is periodic function, we take
average value to (crs. The average variance is {cTrave Which is defined in Eq. (4.5.9).

Therefore, the variance of . should be modified as
0127¢ = 0121 + Crs1 + CcTIave- (4.6.6)
The approximation accuracy is shown in Appendix D.

From the uncorrelation assumption, we also note that

Elvon®] =0, Elve€is;] =0, and E[v.&tri] = 0. (4.6.7)

Therefore, we have

Elyon:) = 0. (4.6.8)

Because v, and 7, have Gaussian distributions and they are uncorrelated each other, we

conclude that v, and 7, are independent each other.

Let P, denote the probability error of d(n), then

P. = Prob {[d‘(n) > 0nd(n) = -1juld(n) < 0Nd(n) = 1]} (4.6.9)

1 1
= iProb(—-'yo +ne.>0)+ §Prob('ya + 7. < 0).

Using the distribution approximations, we obtain

-n2

2
1 roo oo 1 _:_'ér_ 1 o= -Yo 1 —F
P, = —/ p('y)/ exp e d d'y+—/ / exp e dn.d
e 2 PN . r——2ﬂo?)¢ p Ne@Yo 2 _oop('Yo) o 27|-a,2’e p Ne@Yo
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2
* © 1 =
= / p(7o) / exp?*7e dnedy, (4.6.10)
—oc Yo /2703,

where p(7,) is the probability density functions of 7,.

Let z = we have

e
2!
26’1:

= LS R 1 [ Yo
Pe= / (7o) / e % dzdvy, = —/ p(7,)erfc d,, (4.6.11)
V2o,

Ne

where erfc(z) = ﬁ e e~* dz. Because 7, also has Gaussian distribution, we obtain

o0 1 ~(r0-n7p)?
P, = -;- / exp % erfc ( To ) d%o- (4.6.12)
—o0

Nz =

After some computations shown in Appendix E, we obtain

1 (By0)? 1 (v, )?
P, = serfc | | [so25— | = Serf o : 4.6.13
‘ Qer ‘ ( 202«» + 20727: 2e ¢ 2(0'-2y° + 012; +Crsr + (CTlavc) ( )

Here, p., and a?,o are the mean and the variance of 7, and they are defined in Eqgs. (4.4.9),

2

5 is the output noise power of the system. (rs; is the output ISI

(4.4.10) respectively. o
interference power of the system. {cTIave is the average output cross talk interference power

of the system. They are defined in Eqs. (4.3.4), (4.4.13) and (4.5.9) respectively.

In the above analysis, the filter coefficients are assumed to be the filter coefficients
of the BA-FRESH filter. We note that the above analytic steps are also suitable for the
output probability error analysis of the TA-FRESH filter when the filter coefficients are
the filter coeficients of the TA-FRESH filter. For the finite sample case, there is difference
between output probability error of BA-FRESH and that of TA-FRESH because there
is filter coefficient difference between BA-FRESH and TA-FRESH. When the number of
sample is increased, the probability error difference between BA-FRESH and TA-FRESH
will be reduced because the filter coefficient difference between BA-FRESH and TA-FRESH

is reduced. Moreover, using the property 3.1, we note that the filter coefficients of the BA-
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FRESH filter with infinite sample time average realization is equal to the filter coefficients
of the TA-FRESH filter with infinite sample time average realization. Therefore, for the
infinite sample time average realization of the filter coefficients, the output probability error
of the BA-FRESH filter should be same as the output probability error of the TA-FRESH

filter.

4.7 Numerical Results

In this section, we present numerical simulation results showing the performances of the
BA-FRESH filter in comparison to those of the TA-FRESH filter. In the examples, we use
BPSK signals for both the desired and the interfering signals. Thus, the desired signal and

the interfering signal are given respectively by

s(nTy) = i d(k)g(nT; — kT, ) cos(2x f1nTy) (4.7.1)
k=-—oc

u(nTy) = i dy(k)g(nTs — kT, ) cos(2x fonTy) (4.7.2)
k=—o00

where Ty, and T}, are the baud periods, fi and f; are the carrier frequencies of s(nTs) and
u(nTs) respectively and Ty is the sampling period. {d(k)} and {d4(k)} are random binary
sequences. For both the desired and interfering signals, we assume that g(nTy) and gy(nTs)
are the pulse obtained by the square root raised-cosine pulse shaping filter with a 100%
roll-off factor [31]. We choose that the length of g(n) which is equal to the length of gu(n)

is equal to 159. The noise is real stationary white Gaussian noise.

Example 4.1: In this example, we examine the output probability error of the BA-FRESH
filter and the TA-FRESH filter against the different number of finite symbols while we fix
the input SIR and the spectral overlapping between the desired signal and the interfering
signal. The spectral overlapping is defined in Chapter 3. The output probability errors
of BA-FRESH and TA-FRESH are evaluated both theoretically and by simulation. The
theoretical probability errors of BA-FRESH and TA-FRESH are evaluated by using Eq.
(4.6.13). The desired and interfering signals are BPSK signals as given by Eqs. (4.7.1)
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and (4.7.2) respectively. The baud rates of the two signals are equal, being 5kHz for
both the desired signal and the interference. The carrier frequency offset of the desired
signal is fi = 10kHz and the carrier frequency offset of the interference is 17kHz. The
. spectral overlapping between the desired signal and the interference is 3kHz which is equal
to 30% spectral overlapping. The cycle frequencies used in the BA-FRESH filter and the
TA-FRESH filter are set at a; = 20kHz, a; = —20kHz and the cycle frequency used in
the reference path of the BA-FRESH filter is set at a = OkHz. The length of the FIR
filter is 10. The input SIR is fixed at 0dB. The number of symbols is chosen as 15, 25,
50, and 150. The output probability error of BA-FRESH and TA-FRESH are shown in
Fig. 4.2(a) to 4.2(d). It can be observed that the theoretical results match the simulation
results well. When the number of symbols is increased, the output probability errors of
BA-FRESH and TA-FRESH are reduced. When the number of symbols is increased from
15 to 50, the output probability error is reduced fast, but when the number of samples
is increased from 50 to 150, the output probability error is reduced slowly. For the same
finite symbols, the output probability error of the TA-FRESH filter is lower than that of
the BA-FRESH filter. Moreover, when the number of symbols is increased, the difference
~ of the probability error between BLAST and TAST is reduced. It can be expected that the
probability error difference between BA-FRESH and TA-FRESH converges to zero when

the number of symbols goes to infinite.

Example 4.2: In this example, we examine the output probability error of the BA-FRESH
filter and the TA-FRESH filter against the different spectral overlapping and the different in-
put SIR while we fix the number of symbols. The output probability errors of BA-FRESH
and TA-FRESH are evaluated both theoretically and by simulations. The scenarios are
similar to Example 4.1 except the number of symbols, the input SIR, and the spectral over-
lapping. Two scenarios are examined. In the first case, we examine the output probability
error of the BA-FRESH filter and the TA-FRESH filter against the different spectral over-
lapping. We fix that the number of symbols is 15 and the input SIR is 0dB. The spectral
overlapping between the desired signal and the interference is 40%, 30%, 20% and 10%
respectively. Theoretical probability errors of BA-FRESH and TA-FRESH are evaluated
. by using Eq. (4.6.13). The output probability error of BA-FRESH and TA-FRESH against
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spectral overlapping 40%, 30%, 20% and 10% are shown in Fig. 4.3(a) to 4.3(d) respectively.
It can be observed that the theoretical and simulation results match well. When the spectral
overlapping is reduced, the output probability errors of BA-FRESH and TA-FRESH are
reduced. The second scenario is same as the first scenario in this example except that we
increase the input SIR to 5dB. The output probability error of BA-FRESH and TA-FRESH
against spectral overlapping 40%, 30%, 20% and 10% are shown in Fig. 4.4(a) to 4.4(d)
respectively. Here, the spectral overlapping 40%, 30%, 20% and 10% are equivalent to the
spectral overlapping 4kHz, 3kHz, 2kHz, and 1kHz respectively. Again, it can be observed
that the theoretical and simulation results match well. Compared with Fig. 4.3 with Fig.
4.4, it can be observed that when the input SIR is increased, the output probability errors
of BA-FRESH and TA-FRESH are reduced.
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Figure 4.2: Output probability of error of BA-FRESH and TA-FRESH against the number
of symbols 15, 25, 50, and 150 when the input SIR is 0dB and the spectral overlapping is
30% (3kHz)
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Figure 4.3: Output probability of error of BA-FRESH and TA-FRESH against the spectral
overlapping 40%, 30%, 20% and 10% (4kHz, 3kHz, 2kHz, and 1kHz) when the input SIR is
0dB, and the number of symbols is 15
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Figure 4.4: Output probability of error of BA-FRESH and TA-FRESH against the spectral
overlapping 40%, 30%, 20% and 10% (4kHz, 3kHz, 2kHz, and 1kHz) when the input SIR is

5dB and the number of symbols is 15



Chapter 5

Proposed BLAST Algorithm and

Its Convergence

In this chapter, blind adaptive beamforming algorithms are first reviewed. Then to sat-
isfy the practical demands for future mobile personal communication systems, a new kind
of blind adaptive space-time (BLAST) algorithm is proposed. By exploiting the spectral
correlation of cyclostationary signals, the BLAST algorithm does not require a training
signal and it can generate the training signal from the corrupted signal. It has been proved
_ that the BLAST algorithm is equivalent to the trained adaptive space-time (TAST) algo-
rithm when observed data length is infinite. Because the algorithm exploits not only spatial
information of signals but also temporal information of the signals, it has the advantages
of spatial filters and temporal filters. It can be viewed as the extension of the BA-FRESH
filtering algorithm in the spatial domain. Recursive implementation formula of the BLAST
filter is given. For the BLAST and TAST algorithms, the convergence of the filter coeffi-
cients, the output SINR, and the output MSE are analyzed. At last, Numerical results are

presented to examine these results theoretically and by simulation.

79
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5.1 Existing Blind Beamforming Algorithms

In mobile radio system, it is often too expensive to provide an adaptive processor with a
unique training signal for each signal received. Also, information about the desired sig-
nal and the interferences are usually unknown. Therefore, an economical and effective
blind adaptive signal extraction technique is in demand. In order to solve these problems,
using the cyclostationarity of communication signals, some blind adaptive beamforming
algorithms are proposed such as the SCORE algorithm [29], the CAB algorithm, and the
C-CAB algorithm [15,19]. These adaptation techniques are blind and they don’t require
any knowledge of the training signal or the DOAs (Directions Of Arrival) of the desired
signal and the interferences provided that cycle frequencies of the desired signal is different

from those of the interferences.

. The Received Signal Model: Consider that multiple narrow band signals being received

by an array of L sensors. An L x 1 vector z(n) = [z;(n) z2(n) --- IL(n)]T is used to denote
the complex envelopes of the output digitized data. The vector z(n) can then be modeled

as

z(n) = d(fs)s(n) + u(n) + v(n). (5.1.1)

s(n) is the desired signal, d(f;) is the steering vector of the desired signal at the direction of
arrival 6, u(n) is the combination of interference, and v(n) is the additive white noise. It
is assumed that the spatial direction of the signal of interest and those of the interferences
are resolvable by the antenna beam. The goal of a spatial signal extraction algorithm is to
find a beam weighting vector w according to certain criteria such that the desired signal

can be extracted by

y(n) = wiz(n) (5.1.2)
where 1 represents the conjugate transpose.

The SCORE Algorithm: The SCORE algorithm was proposed by [29] for blindly adapt-

ing an antenna array for spatial extraction. The idea for the SCORE algorithm is con-

structed by maximizing the strength of the cross-correlation function between the output
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signal y(n) and a reference signal r(n),

|Ryr |2
%36 3 = -4
(w,¢) ol 1] (5.1.3)

where r(n) = c'z*(n)e??"*" and = is the conjugate operation. This is equivalent to maxi-
g p

mizing the cost function ¥, of the SCORE with respect to the two L x 1 vectors w and

R o

tR..cl?
max ,.(w,c) = max |EU ,¢c|- (5.1.4)
w,c w, ¢ wtR..wctRyc

where t(n) is defined as the control signal,
t(n) = [z(n)e'jz’“’"]', r(n) = c't(n). (5.1.5)

a is chosen such that s(n) and s(n)e~727@" are correlated and the interference are not.
Thus, a should be chosen as the cycle frequency a. of the desired signal. In addition, R,

is interpreted as the cyclic conjugate correlation of z(n),
Ry = (z(n)t!(n))n = ((n)a” (n)e™ 72"y = Rg:-(0). (5.1.6)

The criterion can also be interpreted as maximizing the correlation of w'z(n) and ctt(n),
under the constraint that w!R_;w = 1 and ¢! Ryc = 1. Since the signal component in

z(n) Therefore, selecting w and ¢ by maximizing the correlation

From the Cauchy-Schwarz Inequality, it can be shown that the weighting vector w

is given by following eigenequation [15,19],
P S WP |
AmazW = sz R:R,, thw- (5.1.7)
Similarly, the control vector is optimized by setting ¢ to be
a1t o1
Amazc = Rtt RIIRII thc. (5-1.8)

The geometrical meaning of the SCORE algorithm is that the SCORE algorithm puts
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nulls at the directions of the interferences instead of forming a beam towards the desired

signal {71}.

The CAB Algorithm: The CAB algorithm is another blind adaptive beamforming tech-

nique which utilizes the cyclostationarity of man-made signals. The CAB algorithm simply
forms a beam towards the direction of the desired signal, which is different from the SCORE

algorithm.

For a given finite data length N, the beam weighting vector w in CAB is determined
by choosing w and ¢ so as to maximize the ctt(n), that is maximizing the cost function of

CAB (Zqs) with respected to w and ¢
max Fecap(w, €) = max [(w!z(n)t! (n)e)n/? (5.1.9)

. with the constraint that wfw =1 and
max lw! Rae)? = max w!Rac (5.1.10)
The solution of w and ¢ can be easily shown by using the Lagrange multiplier method as
Emazw = Ru R w (5.1.11)

and

§mazC = ngthC- (5.1.12)

We notice the wcap is a consistent estimate of the steering vector d(f;) for the single

desired signal case.

The C-CAB Algorithm: The C-CAB algorithm is a constraint blind adaptive beamform-

_ ing technique which utilizes the cyclostationarity of man-made signals. The C-CAB algo-
rithm is derived from the approximated Linearly Constrained Minimum Variance (LCMV)

beamforming. The beam weighting vector for LCMV [82] can be derived as the following,

n%li,n {w! R w} (5.1.13)
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such that
Clw=7f (5.1.14)

where C is the constraint matrix and f (which is defined as the response vector) is the
characteristics of which are to be determined for particular applications. By linearly con-
straining satisfy the response vector f, we can make sure that the desired signal is passed
~ with the characteristic of response f [19]. As a result, minimizing wtRz;w is equivalent
to minimizing the expected value of output power, E(ly|?) = w' R ;w, contributed by the
interference, subject to the constraint that only the desired signal can pass through with
response f. Replacing the constraint matrix C by the steering vector d(8,) of the desired
signal and the response vector f by a scalar response g, d'(6,)w = g represents the square
root of the beam pattern power towards the impinging angle of the desired signal. Using

Lagrange multiplier method, we can obtain

.1
gR,, d(6s)

= 1 . (5.1.15)
d'(65) R, d(6s)

By recognizing both g and d! (6,)R;d(93) are constant values, the solution of LCMV
beamformer is

wremv « R, d(6s)- (5.1.16)

. In the blind adaptive beamforming with a non-calibrated antenna, the steering vector d(f;)
of the signal of interest is unknown to the base station. However, since we note that wcap
is a consistent estimate of d(f;) for the single desired signal case, we may use wcap to
replace the unknown d(,). For the single desired signal case, the constrain of the C-CAB

algorithm and the beam weighting vector wccap can be approximated by
min (wiz(n)et(n)w)y = min w'Re;w (5.1.17)

subject to wTCABw =1 and

.
wecap = R wcas (5.1.18)

respectively.



CHAPTER 5. PROPOSED BLAST ALGORITHM AND ITS CONVERGENCE 84

The main advantages of the existing cyclic adaptive beamforming algorithms are
that they do not require training signals nor the knowledge of the DOAs of the desired
signal and the interference. The antenna array calibration is not necessary either. However,
the performances of the existing cyclic adaptive beamforming algorithms will deteriorate if
the desired signal and the interference are spatially too close to each other. The reason is
that those beamforming algorithms are essentially spatial filters and they only exploit the
spatial information (DOA difference between the desired signal and interference). In the
next section, we propose to combine the BA-FRESH filtering and the cyclic beamforming

techniques to separate signals which are spectrally and/or spatially overlapped.

5.2 Structure of Proposed Blind Adaptive Space-Time Fil-

ter

The structure of a blind adaptive space-time (BLAST) filter proposed in this chapter is
shown in Fig. 5.1. The structure of ith FRESH filter is shown in Fig. 5.2. The input signal
is considered as a complex signal which is a complex envelop of a real band pass signal in
this chapter. For the BLAST filter, its input antennas consist of an array of L sensors. The

output of the sensor array z(n) at nth sample is

Ko
z(n) = d(8s)s(n) + Y_ d(fu,)uk(n) + v(n) (5.2.1)

k=1
where s(n) is the desired signal and ux(n) is the kth interfering signal. Here, K, is the
number of the interfering signals, d(6;) is the directional vector of the desired signal, d(6y, )
is the directional vector of the interference ux(n), and v(n) is a complex noise. We also
assumed that the desired signal and the interferences are independent each other and they

- have different cycle frequencies. Moreover, (n) can also be expressed as

z(n) = [z1(n) z2(n) -+ zo(n))T (5.2.2)
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Figure 5.1: Structure of the BLAST filter

where L is the number of sensors, z;(n), (j = 1,2,---L) is the received signal on the jth

Sensor.

For each sensor of the array, it connects to a FRESH filter. The jth FRESH filter
(j =1,2,--- L) consists of M branches shown in Fig. 5.2. Because the input of the FRESH
filter is considered as to be a complex signal which is the complex envelop of a real band pass
signal, we consider the FRESH filter to have linear conjugate and linear parts shown in Fig.
- 5.2. The reason why the FRESH filter should have linear conjugate and linear parts when
the input signal is a complex signal is explained in [24]. We know that linear time-invariant
filtering of a real signal is equivalent to linear time-invariant filtering of its analytic signal
which in turn is equivalent to linear time-invariant filtering of its complex envelope. But
this is not true for time-variant filtering. In general, linear time-variant filtering of a real
signal is equivalent to distinct linear time-variant filtering of each of the analytic signal
(or complex envelope) and its complex conjugate, this is proved in [24]. Consequently, if
complex signals are to be used, then the problem of optimum and adaptive time-variant
polyperiodic filtering must be approached as bivariate filtering problems, where a signal
and its conjugate are jointly filtered and then added together [13]. This is called as linear-
conjugate-linear (LCL) filtering. For specified the branch number of the FRESH filter and
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Figure 5.2: Structure of the ith FRESH filter

- the frequency shift parameters, the optimum LCL-FRESH filter problem is equivalent to
the multi-variate Wiener filtering problem. Moreover, a training signal is needed to design
the optimum solution of the LCL-FRESH filter {13].

For the upper J branches of a LCL-FRESH filter, each branch consists a frequency
shift operation (a;,i = 1,2, J) followed by a FIR filter being of length N,, here we choose
all FIR filters have the same length N, and J = M/2. We denote the LN,-dimensional
frequency-shifted stacked snapshot vector as

Z(n) = [mT(n)eﬂwam 2T (n — 1)ei2m (=1 ... gT(n_ N, + l)ejQxai(n—No-{\—l)]T
(5.2.3)
where i = 1.2,---J. For the lower M — J branches, each branch consists a conjugate
frequency shift operation (a;,i = J + 1,J + 2,--- M) followed by a FIR filter being of
length N,. Here, we choose ay i = ax,k = 1,2,--- M/2. We denote the LN,-dimensional

- frequency-shifted stacked snapshot vector as

Z,(n) = [z?(n)eﬂm-" zt(n — 1)e?r(n-1) ... a.-f(n~N,,+1)e12"°-<"-No+l)]T (5.2.4)
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wherei=J+1,J+2,--- M and t denotes conjugate transpose. Here, a LN, M-dimensional

frequency-shifted stacked snapshot vector is defined as

2(n) = [T (n) 3F(m) - 2F(n)] . (5.25)

Because the received signal z(n) at the sensor array contains the desired signal
. components s(n) = d(f,)s(n), the interference components u(n) = Zf;l d(fy,)uk(n) and
noise components v(n) respectively, the frequency-shifted stacked snapshot vector Z(n) at

the nth instant can be written as
z(n) = 8(n) + a(n) + v(n) (5.2.6)

where 3(n) is the frequency-shifted stacked desired signal vector at the nth instant. u(n)
is the frequency-shifted stacked interference vector at the nth instant, and ®(n) is the
frequency-shifted stacked noise vector at the nth instant. Here, the frequency-shifted
stacked desired signal vector 3(n) is defined as

sy = | R @d) (5.2.7)

3c(n) @ d*(6;)

~ where ® denotes the Kronecker product. Let a =[a; a2 --- ag)T and b= [by by --- bu]T.
The Kronecker product @ ® b is defined as a ® b = [a1b7 asb? - apbT]T. 3g(n) and

3c(n) are defined as
3r(n) = [sT(n) &T(n) - 3T(m)]", (5.2.8)

5(n) = [s(n)eﬂm‘", s(n - 1)ed? =1 5(n — N, + 1)&2"°'<"—N°+”]T (5.2.9)

wheret1=1,2,--- J.

ic(n) = [7,1(n) #Tpn) - ()], (5.2.10)
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wherei=J+1,J+2,--- M.

The frequency-shifted stacked interfering signal vector i(n) is defined as

u(n) =

o r(n)®d(6y,)
k=1

tck(n) ® d*(6u,)

where ® denotes the Kronecker product. %gx(n) and tck(n) are defined as

ane(n) = [@h(n) ahn) - &),

(5.2.12)

(5.2.13)

. . . T
fi(n) = [u(n)e??™, wg(n ~ 1)e2HOD g (n — No + 1)er?(n=Ne+D]" (52.14)

where:=1,2,---Jand k= 1,2, - K.

tck(n) = [dk5+1(ﬂ) Uk 4a(n) - ﬁkTA}(n)]T,

(5.2.15)

. : : T
fki(n) = [up(n)e?™™", ui(n— 1)@ uf(n = No + 1)er2ren=For )] (5.2.16)

wherei=J+1,J+2,---Mand k=1,2,--- K,.

The frequency-shifted stacked noise vector #(n) is defined as

B(n) = vg(n)
tic(n)
vr(n) and vc(n) are defined as
or(n) = [67(n) 85(n) - (m)] .

] ) i T
i:,'(n) — [eJ2wa.n’ e]21ra.(n—1) . e]21ro.(n—No+1)] Qv

where1=1,2,---J.

(5.2.17)

(5.2.18)

(5.2.19)

(5.2.20)
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Bi(n) = [eija.n, ej21ra.(n—1) . .ej21ra.(n-—N°+l)]T RV (5.2.21)

wherei=J+1,J+2,---M.

Let ¢ be a complex valued LM N,-dimensional coefficient vector of the BLAST filter.
The output y(n) of the BLAST filter at nth sample is

y(n) = q'&(n). (5.2.22)

where g =[q1 g2 - -~ qmn,)T- The reference signal r(n) of the BLAST filter at nth sample
is

' Ko
r(n) = z(n)ef?™@ " =5 (n) + Y i (n) + 7' (n) (5.2.23)
k=1

where z(n) is the received signal at the first sensor and a' is the frequency shift parameter

in the reference path in the BLAST filter. Here, 5 (n), ﬁ; (n), and &'(n) are defined as
&2men 5 (n) = u()eI@ N, B (n) = p(n)el2Te (5.2.24)

5'(71) = s(n)

where s(n), uk(n) and v(n) are the desired signal component, the kth interfering signal

component, and the noise component which are received at the first sensor respectively.

When we know the coefficient vector g of the BLAST filter, we can obtain these
" impulse responses of the FIR filters in the FRESH filters. Denoting the impulse responses
of the jth FIR filter of the ith FRESH filter as

hi = [hi;(0) hij(1)---hii(No = 1T, i=1,2,---L, j=12,---M.  (5.2.25)
Using q. we can get h;; as
hi; = [@G-1)LN.+i QG—-1)LNo+L+i ~°° Q(j—l)LNa+(N°—1)L+t]T- (5.2.26)
wherei=1,2,---L, j=12,---M. If we define h as

h=[hy ha--himl", (5.2.27)
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h is a linear transformation of q.

5.3 Proposed Blind Adaptive Space-Time (BLAST) Algo-
rithm

With ' # am, m = 1,2,---M, the BLAST filter seeks to maximize the normalized

correlation between y(n) and r(n) by adjusting the coefficients of q, i.e.,

IRy [?
Ry B (5.3

where Ry, = E [u(n)v*(n)]. The rationale behind this algorithm is that if the output y(n) is

max I = max
2 Bst(q) 2

a close approximation to be the desired signal s(n) and is relatively free from containing the
interferences ug(n) (k =1,2,--- K,) and noise v(n), then it must have high correlation with
the o -shifted version of s(n) and must have low correlation with the a -shifted versions of
ug(n) and v(n) respectively. Thus, the correlation of the two signals may provide a measure
of the suppression of the interference and the closeness of the output to the desired signal.
In using this measure, we must ensure that the BLAST filter in the primary branch has no
common frequency shift with the reference branch. The optimum filter coefficients which
is denoted as ggst can be obtained by substituting Eqgs. (5.2.22) and (5.2.23) into (5.3.1)
and applying the Schwarz inequality

1/2 p—1/2 1/2 -1/2
quR-/- Rﬁ/ Pz < |qtRi§': |2 |Rii/ pir|2_

1@ = g Rzl =l Rasall e (5:3:2)

For equality, we have
apst = Rz:p:r (5.3.3)
where Rz; = [:E(n):i:"(n)] and p;, = E[&(n)r"(n)]. We note that Rz; is a correlation

matrix and is almost always positive definite. Thus, it is non-singular [7]. Eq. (5.3.3) is the
Wiener-Hoff equation for the BLAST filter the solution of which necessitates the knowledge
of R;; and p;,. If such knowledge is not available, then a recursive method for updating

the tap-weights of the BLAST filter in the primary branch can be obtained following the
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Figure 5.3: Structure of the TAST filter

Widrow-Hoff least-mean-square (LMS) algorithm by using the signal r(n) as the reference
signal and choosing an appropriate step-size. Alternatively, we may window the frequency
shifted data vectors #(n) to obtain a time-averaged estimates of the data correlation matrix
R;; and the cross-correlation vector pz,. Denote the N -sample estimated values of R:3, ps,,

and qgst by Rzz(N), pzr(N), and @psr(N) respectively. Thus, from Eq. (5.3.3), we have

dpsr(N) = Bop (N) bz (N) = (E(n)Em)D 3 E ()" (n)n- (5.3.4)

Applying the standard Recursive Least-Squares (RLS) algorithm [7], we arrive at the re-

cursive formula of the up-dated desired filter response:

ST REL (N = DE(N)E(N) } (5.3.5)

dpst(N) = {I- 1 = - -1 -
1+ mzt(N)Rﬁ(N — 1)z(N)

lapsr(N - 1) + T RE W - D& (0 }.

If a copy of the desired signal 5 (n) is available, we can use it as a reference instead of using
r(n). We call the space-time filter with a training signal as Trained Adaptive Space-Time
(TAST) filter shown in Fig. 5.3. The optimum TAST filter whose weighting coefficient is
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denoted as grst can then be designed to minimize the mean-square error of the output.

Here, the error is given by
ersr(n) = s(n)e’?™ ™ — y(n) = s(n)e?™ " — ghori(n) (5.3.6)
and the mean square error is
Jrst = Elerst(n)ersr(n)]. (5.3.7)

Using the gradient method, this optimum space-time filter with the training signal is given
by
arsr = Rz psy (5.3.8)

where p.. is the cross-correlation vector between Z(n) and 5 (n). The proof is shown in
. Appendix A. Denote the N-sample estimated values of R:z,p;y, and grsr by R:z:(N),
pss (N), and grsr(N) respectively. Thus, from Eq. (5.3.8), we have

arst(N) = Rzz (N)pyy (N) = (E(n)E(n)!) 3} (&(n)5 " (n))n- (5.3.9)

We note from Eqgs. (5.3.3) and (5.3.8) that the difference between ggsr and grgr is in
the cross-correlation vector. Now, we show that ggs and grst both have the same value

under infinite sample time average realization.

Property 5.1: Assume that U, is the set of cycle frequencies of the desired signal and ¥, is

the set of cycle frequencies of the interferences. Let am, (m =1,2,---, M) be the frequency
shift parameters in the primary branches of the BLAST and the TAST filter. Let a' be the
frequency shift parameter in the secondary branches of the BLAST filter such that

m -0 #0, and am, (am—a )€ (¥ —¥,), Vm, (5.3.10)

the BLAST filter and the TAST filter have same optimal filter coefficients q,,, under infinite
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sample time average realization, where
Qope = Rz1p5y = Rz} (3(n)s” (n)e77%"e n> (5.3.11)

where 3(n) is defined in Eq. (5.2.7).

The proof of the property 5.1 is shown in Appendix A. This property demonstrates
" that under large sample time-average realization, ggsr not only satisfies the criterion Eq.
(5.3.1), but also minimizes the output mean-squared error (MSE). The mean-squared error

is defined as

Jrst = ((u(n) - 5 () (y(n) - §'(m) ") (5.3.12)

where y(n) and § (n) are defined in the Eqs. (5.2.22) and (5.2.24) respectively. The property

5.1 is in fact the expansion of the property 3.1 to the space-time domain.

We note that the performances of the BLAST algorithm may be affected in the
channel distortion environment. However, the change of the performance of the BLAST
algorithm will be small provided that the cycle frequencies of the desired signal almost keep
unchanged. This is because the BLAST algorithm mainly exploits the cycle frequencies
of the desired signal to extract the desired signal. Moreover, we can combine the BLAST

algorithm with equalization technique to eliminate the channel distortion affection.

5.4 Convergence Analysis of the BLAST Algorithm

For the optimum filter coefficients of the BLAST and TAST algorithms, we know that there
are the differences between the finite sample time realization of the filter coefficients and
the infinite sample time realization of the filter coefficients. In this section, we study the
convergence rate of this difference. To this end, we define the time-averaged correlation

matrix and cross-correlation vector over N samples respectively as

Rsz(N) = (8(m)2'(n),  and bz (N) = (B(n)"(n))y (5.4.1)
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Thus, the finite-sample time-average realizations of ggsT and grgr in Egs. (5.3.3) and

(5.3.8) are placed respectively by
. - -1 .
apsT(N) = Rzz (N)pz,(N) (5.4.2)

grsT(N) = Rz: (N)pyy (N) (5.4.3)

We further define the Lo-norms of a vector v and a matrix A respectively as

loll = (v'v)* and [Al= max (l4vl). (5.4.4)

We now have the following property:

Theorem 5.1: Let ¥, and ¥, respectively denote the set of cycle frequencies of the desired
signal and interferences. Let am, (m = 1,2,--- M) be the frequency shift parameters in
 the primary branches of the BLAST and the TAST filter. Let a be the frequency shift
parameter in the secondary branches of the BLAST filter such that

’

am#a, and am, (am—a)€ (¥s—¥y) Vm, (5-4.5)
both GgsT(N) and GrsT(N) converge in the mean-square sense to

Qopt = Rz P55 (5.4.6)

zz V33

where q,y is defined in Egs. (5.3.11). Furthermore, the rates of convergence for both
gpst(N) and grsr(N) are at O(L,V)

Proof: At the Ath sensor of the sensor array, the input z,(n) consists of the desired signal

component, the interference component, and noise component. Thus,
z(n) = §(n) +t(n) + &(n) (5.4.7)

where 3(n), @(n), and ¥(n) are defined in Egs. (5.2.7), (5.2.12), and (5.2.17) respectively.
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Now, for finite N, we have

B Jst - mstoof

B [|Red (Rss(N) - Rea) Rz (V)] | (5:48)
s ] max |z 0[] £ | Res0) - R

where we have used the Schwarz inequality. From Eq. (5.4.1) and the property of matrix

7A)

. norms [70], we have

IA

R::(N) - Ri:iuz]

Etr [( R::(N) — Raz) (Rzx(N) - 55)1}

N
= trE [%Zl (:E(n):i:"( R--) ( ()& (n) - Rﬁ)T}

+rE N2 ZZ (#(m)2!(m) - Rzz) (&(n)&!(n) - R:)'
m # n
c
= Wl (5.4.9)

where C| is a constant. In the last step, we have used the fact that the desired signal and
the interferences are independent from symbol to symbol and the noise is white. Therefore,

we have

E ["i?ﬁ(zv) - Rﬁ"z] -0 (—1-) (5.4.10)

N
' where O(.) 2 N)H2

with probability 1, together with Eq. (5.4.10) in Eq. (5.4.8), we obtain

E [HR;; - R;;(N)Hz] -0 (%) . (5.4.11)

Following similar steps as in Eq. (5.4.9) and noting that p;. = p; = p;;, we also see that

B (s (V) - pex ) = 0 (37) (5.412)

and

E (|5 (N) — o5z |

=0 (_1_> . (5.4.13)
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~ Now, from Egs. (5.4.2) and (5.4.6), we have

B (| st (M) - Retos| |
= E||Rapa ) - )+ (R (V) = R (V)] |

28 [| R (16578 - pss )|

E [”QBST(N) - qut”2]

IA

+28 [ (| Rz ) - R ) Nbar 01| (5.4.14)

where we have used the inequality [la + b||?> < 2|ja||®> + 2||b}|*> followed by the Schwarz

inequality. Similarly, we have

B [Jarsr®) - aue|] < 28 [|RE (1655 ) - p2el”)]

28 [(| Rz ) - R[) Noer 0] (5.415)

) 2
Using the boundedness of “R; ” together with Egs. (5.4.11), (5.4.12), and (5.4.13) in Eqgs.
(5.4.14) and (5.4.15), we conclude that

E [Jassr) - 4| | = 0 () (5.4.16)
and
E [”QTST(N) - QOpt||2] =0 (%) - (5.4.17)

From Egs. (5.4.16) and (5.4.17), using the triangular inequality, clearly we can see that

B [16a(N)I?] = E [lassr(M) - arseNIF] =0 (3 ) - (5.4.18)

Thus, for N = oo, both ggsr(N) and grsr(N) converge in the mean-square sense to gy,
with the rate of convergence O (717) a

* Theorem 5.1 has important implications because it shows that the BLAST filter and the
TAST filter are asymptotically equivalent in the sense that both converge to q,, at the

same order. However, the TAST filter necessitates a copy of the desired signal.
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5.5 The Finite Sample Output SINR Analysis

Based on Theorem 5.1, we can further study the output signal to interference plus noise
ratio (SINR) of the BLAST filter and the TAST filter with finite samples. We denote the
output SINR of the BLAST filter with finite samples as SINRgs(/N) and the output SINR
of the TAST filter with finite samples as SINRrs1(N). They are defined respectively as

-1’ > A
SINRgsT(N) = ——B5T (V) Rs:qpsT(IV) (5.5.1)
QBST(N)Rﬁ+a.ﬁ+ﬁqBST(N)
.f -~ A
Grsr(N)Rats.a+3drsT(N)

where Rs; = (3(n)3'(n))w, and Raysats = ((B(n) + 8(n))(#(n) + 8(n))!)n. For infinite
data length (N = 00), SINRgpe_sT is defined as

qzmt R;; Qopt

T . (5.5.3)
Qopt Rt 5,a+590pt

SINRopt—sT =

We like to evaluate the mean square error between SINRgs(N), SINRTsT(N) and SINRgpe—sT

respectively, that is,

E

ISINRgsT(N) — SINRGpt—STlP] and E [”SINRTST(N) — SINRope—s7if?

ISINR ot —sT |12 ISINRgpz—sTI2
(5.5.4)

" We have Corollary 5.1 as following:

Corollary 5.1: For the same scenario as in Theorem 5.1, SINRgsr(N) and SINRTsT(N)

converge in the mean square sense to SINRgp:_sT. Furthermore the convergence rate for

SINRpsT(N) and SINRrsT(N) are O(4), that is,

ISINRpsT(N) — SINRope-stll* | _ (1
B [ [SINRpe_ sl ] -o(5) (555)

ISINRTsT(N) — SINRope—s7ll*| _ (1
g [ ISINR opt-sT |2 ] =0 (,—v) - (5.5.6)
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Proof: Using Egs. (5.5.1) and (5.5.3), we have

-1 & s
Gpst(N)Rs:qpsT(N)
SINRpsT(N) —SINRopt-sT = = = - — SINRopt—sT (5.5.7)
dhsr(N)Rass,i+s@psT(N)
QEST(N) [ Rs; — SWR@:-STRﬁ+a,a+a] gpst(N)
ahsr(N)Rassa+sdpsT(N) '
We define

6qpsT = 4psT(N) — Qope (5.5.8)
0R;s; = Rs; — Rss (5.5.9)
6Rirsa+s = Ravoars — Ritiars- (5.5.10)

Considering the numerator of Eq. (5.5.7), we have

ahsr(N) [Rss - SINRopt—STRﬁ+ﬁ.ﬁ+ﬁ] dps7(N) = gl [Rss — SINRopt—sT Rt 5,5+3] Qopt

+6qh g7 [Rss — SINRope—sT Rit5,i45] Qopt + q@}pt [Rss — SINRopt—sT Rt 5,5+5) 04 BsT

+qlpt [6Rs5 — SINRopt—sT6 Riat-5,a+5) dope + [high order terms], (5.5.11)
where
[high order terms] = JqTBST [Rs; — SINRgpt—sTRi+s,a+4) 99BST
+6qh o [6Rss — SINRope—sTO Rt 5,5+5) Dopt
+qut [0R;;s — SINRopt-STéRﬁ+ﬁ.ﬁ+i] dqpsT
+6qY o1 [0Rss — SINRopt—sT6 Rt 5,a+3) 0gpsr-  (5.5.12)
For the first term of the right side in Eq. (5.5.11), we have
qbye [Rss — SINRopt— 5T Rits,i5) dopt = Qope Résopt — Aope Ras@opt = 0. (5.5.13)
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Using the Schwarz inequality to the second term of the right side in Eq. (5.5.11), We obtain

|2] (5.5.14)

E [||<sq;m [Rss — SINRope 5T R3] Qope

<E [Héq},g”'l] . [||[R55 - SINRopt—STRi+ﬁ.ﬁ+ﬁ]”2] . ["qoptnz] .

Noting that the boundednesses of |[[R;s;s — SINRopt_srRﬁW',;ﬁ-,]l[ and that of "qop," and
using Eq. (5.4.16), we obtain

2 1
E | [dabsr (Rss - SINRape-srRasssusl aol | =0 () (6519
For the third term of the right side in Eq. (5.5.11), we similarly have
2 1
E [HQLpt [Rss — SINRopt—sT Rati,i+5) 5033’1‘" ] =0 (N) . (5.5.16)

We also note that E [||6Rss]|?] = 0(7{,) and E [[|[6Ra+sa+5l2) = O (). Using the
Schwarz inequality to the fourth term of the right side in Eq. (5.5.11), we obtain

E ["qu: [6Rs; — SINRopt—STO Rt 6,5+5] QOp¢"2] =0 (1—:,') . (5.5.17)

For the high order term of the right side in Eq. (5.5.11), using the similar steps, we obtain

. 21 _ 1
E [||h1gh order terms|| ] =0 (F . (5.5.18)
Therefore, we obtain
A1 - N . 2 1
E |[|absr(N) [Rss — SINRopt—sT Rass.a43) @bsT| ] =o(5)- (5.5.19)

2
Because [HQLST(N)R,-M-, l—,+,-,<‘1357-(N)“ ] is bounded with probability one, that is

v

min [ [hsr (M Rorsasstpsr (V)] | 2 CL - N = o0 (5.5.20)
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where C) is a positive constant. Using Egs. (5.5.19) and (5.5.20) in Eq. (5.5.7), we obtain

E [ISINR gs7(N) — SINRpe_s7l?] =0 () - (5.5.21)

We know ||SINRgp— stl|? is a constant which is not equal to zero, so we conclude that

ISINRgsT(N) — SINRgpe—sTll*| _ (l)
E [ [SINR s =0(5)- (5.5.22)
Using the similar steps, we obtain
ISINRTsT (V) — SINRope—sli® | _ (_1_)
E [ ISINRo_s71 =0 v/ O (5.5.23)

5.6 The Finite Sample Output MSE Analysis

. In this section, we study the finite sample MSE (Mean Square Error) of the BLAST filter
and that of the TAST filter. The finite sample MSE of the BLAST filter is denoted as
JgsT(N) and the finite sample MSE of the TAST filter is denoted as JrsT(N). They are

defined respectively as
Jost(N) = ((ahsr(ME(m) = 5 () (ahsr(N2(n) - 3(n) ") (5.6.1)

Jrsr(N) = {(@hsr(NME(M) = () (Sher(M)E() -5 (M)")  (562)

where ggs(N) and Grgr(N) are defined in Egs. (5.4.2) and (5.4.3) respectively. £(n) and
§'(n) are defined in Egs. (5.2.5) and (5.2.24) respectively. Let the infinite sample MSE of
the BLAST filter which is equal to that of the TAST filter is denoted as Jopt—sT- Jopt-sT

is defined as

Jopt—sT = { (@lpeE(n) = §'(n)) (ghpe2(n) - §'(m)") (5.6.3)
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where q,,, is defined in Eq. (5.3.11). We evaluate the mean square error between Jgst(N)

and Jope—sT and the mean square error between Jrst(N) and Jope— sT respectively, that is,

E

lJesT(N) = Jopt—sTl|? WrsT(N) = Jopt—sTll*
E . 6.
1Topt—stl? and A (56.4)

We have Corollary 5.2 as follows:

Corollary 5.2: For the same scenario as in Theorem 5.1, JgsT(N) and Jrst(N) converge

in the mean square sense to Jop—sT. Furthermore the convergence rate for JesT(N) and

JrsT(N) are O(—l%;), that is,

IJesT(N) = Jope=stl*| _ H (1

E { [epe—sl? }‘O(N) (5:69)
IJzsr(N) = Jopestl?] _ (1

& [ —— ]‘O(N)' (5.6.6)

Proof: Using Egs. (5.6.1) and (5.6.3), we have
. - - LI -
JesT(N) = (s(n)s" () ~@hsr(N)psz — (@hsr(N)psy ) —absr(N)Rzzdpsr(N) (5.6.7)

. t
Jopt—sT = (5(n)s"(n)) — @puPzz — (hpePss) — AbptRezdopt (5.6.8)

Subtracting Eq. (5.6.7) by Eq. (5.6.8), we have

178sT(N) = Jope-sTl® = |8absrpss + (6absrpse) +6ahsrRezqope  (5.6.9)

2
+q¢t>sziiéqur + 5thSTR5=55qBST“ :

Using the inequality ||la + b||2 < 2|la||® + 2[|b]|?, we obtain

)+ 48 {|6absross)[!] G510

+8E [Héq}, STRﬁqop,lr] + 16E [qu,,tRﬁJqurnz]

B [Wast(V) = Jope-srlf] < 2B ||sasrpss

+32E [HéqLSTRﬁJqurr”z] .
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Using Eq. (5.4.16) and the Schwarz inequality in Eqgs. (5.6.10), we obtain
2 1
E [IJasT(N) = Jop-stll’] = O () - (5.6.11)

Because ||Jopt- st||? is a constant, we conclude that

JBsT(N) = Jopt—sTI? ( 1 )
E =0(+%)- 5.6.12
[ | Jope-sTlI? N ( )
Using the similar steps, we obtain
I JrsT(N) = Jopt—sT|I? ( 1 )
E =0(%) O 5.6.13
[ Jept—stII? N (5.6.13)

5.7 Numerical Results

In this section, we present some simulation results showing the finite sample performance
of the BLAST filter in comparison to the TAST filter. We use BPSK signals for both the
desired and the interfering signals. Thus, the desired signal and the interfering signal are

given respectively by

s(nTy) = i d(k)g(nTy — kT, ) cos(2n finTy) (5.7.1)
k=—00

u(nTy) = f: du(k)gu(nTs — kT, ) cos(2m fonTy) (5.7.2)
k=-00

where T}, and T, are the baud periods, fi and f are the carrier frequency offsets of s(nTy)
and u(nT;) respectively and Ty is the sampling period. {d(k)} and {d.(k)} are stationary
random binary sequences. For both the desired and interfering signals, we assume that
g(nTs) and gy (nT,) are the pulse obtained by the square root raised-cosine pulse shaping
filter with a 100% roll-off factor [31]. The length of g(n) which is equal to the length of
gu(n) is equal to 159.

Example 5.1: In this example, we examine the output SINR of the BLAST and the TAST
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filtering algorithms compared with the output SINR of the SCORE and the C-CAB beam-
forming algorithms against different DOA difference 0°,2°,5°, and 10°. We denote the
output SINR of BLAST and TAST with finite symbols as SINRgsT(N) and SINRrsr(N)
respectively. The output SINR of SCORE and C-CAB with finite samples are defined
in {15]. SINRgsT(NN) is defined as

dhsr(N)Rs:4psT(N)

SINRgsT(N) = - = -
dbsr(N)Ravsa+s@psr(N)

, (5.7.3)

SINRrsT(N) is defined similarly. The desired and interfering signal are BPSK signals as
. given by Eqgs. (5.7.1) and (5.7.2) respectively. The baud rates of the desired signal and the
interference are equal which are 5kHz. The carrier frequency offset of the desired signal
is fixed at f; = 10kHz and the interference is fixed at fo = 17kHz, so that the spectral
overlapping between the two signals is 30%. The definition of the spectral overlapping is
shown in Chapter 3. The sampling rate f = 100kHz. For the parameters of BLAST and
TAST, the number of sensors is chosen to be L = 3, the order of FIR filters in each FRESH
filter is chosen at N, = 6, the number of the branches of FRESH filter is chosen to be M = 2.
The frequency shift in the two branches are set at o, = 20kHz, a; = —20kHz respectively.
The frequency shift used in the reference path of the BLAST filter is set at a = OkHz.
For SCORE and C-CAB, the number of sensors is also chosen to be L = 3. The DOA of
the desired signal is fixed at 0 degree whereas we vary the DOA of the interference so that
the DOA difference between the two signals can be varied. Two scenarios are examined.
In the first case, the signal to noise ratio (SNR) and the signal to interference ratio (SIR)
" at the input are fixed at 10dB and 0dB respectively. The output SINR of BLAST, TAST,
C-CAB, and SCORE against the different DOA difference 0°,2°,5°, and 10° between the
desired signal and the interference are plotted in Fig. 5.4(a) to Fig. 5.4(d). In the second
case, the signal to noise ratio (SNR) and the signal to interference ratio (SIR) at the input
are fixed at 10dB and 5dB respectively. The output SINR of BLAST, TAST, C-CAB, and
SCORE against the different DOA difference 0°,2°,5°, and 10° between the desired signal
and the interference are plotted in Fig. 5.5(a) to Fig. 5.5(d). It can be observed that
the output SINR of BLAST and TAST are always better than those of the C-CAB and
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SCORE algorithms in two cases. As the DOA difference between the desire signal and
_ the interfering signal decreases, the performance of SCORE and C-CAB degrades. When
the DOA difference becomes zero, SCORE and C-CAB fail. However, the performance of
BLAST and TAST are different. Although the performance of BLAST and TAST degrade
as the DOA difference decreases, it can be observed that when the DOA difference becomes
zero, the output SINR of BLAST and TAST is still 7dB in the first case and 9dB in the
second case which are much higher than the output SINR of C-CAB and SCORE when
the DOA difference is 0°. The main reason for the performance difference is that BLAST
and TAST exploit not only the spatial information (DOA difference between the desired
signal and interference) but also temporal information (spectral redundancy information),
whereas SCORE and C-CAB only exploit the spatial information. When the DOA difference
is reduced, the spatial information is reduced but the temporal information still exist there.
So the performance of BLAST and TAST is much better than C-CAB and SCORE. It also
can be observed that there is the difference between the output SINR of BLAST and that
_ of TAST. The difference becomes negligible when the number of symbols goes to infinity.
Moreover, when the DOA difference and/or the input SIR are increased, the output SINR

of these algorithms are increased.

Example 5.2: In this example, we examine the output eye diagram of the BLAST filter
against different DOA difference between the desired signal and the interfering signal. The
scenario is similar to that of Example 5.1, except that the SNR and the SIR at the input are
fixed at 20dB and 0dB respectively. The DOA of the desired signal is fixed at 0°, whereas
we vary the DOA (degrees) of the interference so that the DOA difference of the two signals
can be varied. The output eye diagrams of the BLAST algorithm against different DOA
difference 0°,2°,5°, and 10° for numbers of symbols being 250 are plotted in Fig. 5.6. In
order to compare, we also plot the output eye diagrams of C-CAB and SCORE in Fig. 5.7
when the DOA difference is zero. For C-CAB and SCORE, the number of sensors is still
chosen as 3. It can be observed that the output eye diagrams of BLAST against different
~ DOA differences 0°,2°,5° and 10° are open and the output eye diagrams of C-CAB and
SCORE are closed when the DOA difference are zero.
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Example 5.3: In this example, we examine the filter coefficient convergence and the finite
sample mean square error (MSE) of the BLAST and the TAST filters under the condi-
tion that the DOA difference between the desired signal and the interference are fixed at
0°,2°,5° and 10° respectively. The scenario is similar to that of Example 5.1, except
that the signal to noise ratio (SNR) and the signal to interference ratio (SIR) at the in-
put are fixed at 10dB and 0dB respectively. The DOA of the desired signal is fixed at
0° whereas we vary the DOA (degrees) of the interference so that the DOA difference of
the two signals can be varied. For the filter coefficients with finite symbols, ¢gs and
" grsr in this example are calculated from Eqs. (5.4.2) and (5.4.3). o in this exam-
ple is calculated from Eq. (5.3.11) using time-averages of 500 symbols. The normalized
convergence of B | [cpe = a5 (W)|°] /10al? 30 B [[aupe = arsr (M| /lacpl®, each
being averaged over 20 realizations, are plotted in Fig. 5.8(a) to Fig. 5.8(d), in which
the DOA difference between the desired and interfering signals are fixed at 0°,2°,5°, and
10° respectively. It is observed that both the BLAST filter coefficients and the TAST fil-
ter coefficients converge to the optimum filter coefficients when the number of symboles
is large, with the TAST filter being the faster in convergence. For the output MSE with
finite symbols, Jgst(N) and JrsT(N) in this example are calculated from Eqgs. (5.6.1)
and (5.6.2). Jope—sT in this example is calculated from Eq. (5.6.3) using time-averages of
500 symbols. The normalized MSE difference of E [”Jopg_.s‘[‘ - JBST(N)Ilz] /I opt—sTiI?
and E [IlJopg_sr - JTST(N)HZ] /IIJ opt—sT||?, each being averaged over 20 realizations, are
plotted in Fig. 5.9(a) to Fig. 5.9(d), in which the DOA difference between the desired and
- interfering signals are fixed at 0°,2°,5°, and 10° respectively. It is observed that both the
normalized output MSE of the BLAST filter and that of the TAST filter converge to zero
when the number of symbols is large, with the TAST filter being the faster in convergence.
It is also observed that both the normalized output MSE of the BLAST filter and that of the
TAST filter converge slower when the DOA difference is increased. The reason is that both
algorithms need more time to adjust their filter coefficients when new spatial information

(DOA difference) is added.

Example 5.4: In this example, we examine the output SINR of the BLAST and the TAST
filtering algorithms compared with the output SINR of the SCORE and the C-CAB beam-
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forming algorithms against different spectral overlapping between the signal and the inter-
ference. The scenario is similar to Example 5.1 except that the DOA differences and the
spectral overlap between the desired signal and the interference is varied. The signal to
noise ratio (SNR) and the signal to interference ratio (SIR) at the input are fixed at 10dB
and 0dB respectively. The spectral overlapping is 40%, 30%, 20% and 10% respectively.
Two scenarios are examined. In the first case, the DOA difference are fixed at 2°. The
- output SINR of BLAST, TAST, C-CAB, and SCORE against the different spectral over-
lapping between the desired signal and the interference are plotted in Fig. 5.10(a) to Fig.
5.10(d). In the second case, the DOA difference are fixed at 10°. The output SINR of
BLAST, TAST, C-CAB, and SCORE against the different frequency overlapping between
the desired signal and the interference are plotted in Fig. 5.11(a) to Fig. 5.11(d). It can be
observed that the output SINR of BLAST and TAST are always better than those of the
C-CAB and SCORE algorithms in two cases. When the DOA difference is 2°, the output
SINR for SCORE and C-CAB are unacceptably low, and the performance of SCORE and
C-CAB do not vary with the change of the spectral overlapping. However, the performance
of BLAST and TAST are different. Although the performance of BLAST and TAST is re-
duced as the spectral overlapping is increased, it can be observed that the output SINR of
BLAST and TAST is greater than the that of SCORE and C-CAB. The main reason for the
performance difference is that BLAST and TAST exploit not only the spatial information
. (DOA difference between the desired signal and interference) but also temporal information
(spectral redundancy information), whereas SCORE and C-CAB only exploit the spatial
information. When the DOA difference is 10°, It can be observed that the output SINR
of BLAST and TAST are still better than those of the C-CAB and SCORE algorithms.
Although the performances of BLAST and TAST vary with the different frequency over-
lapping, the performance change in the second scenario is smaller than that in the first

scenario.
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Figure 5.4: Output SINR of BLAST, TAST, C-CAB, and SCORE against DOA difference
0°,2°,5°, and 10° when spectral overlapping is 30%, input SIR is 0dB and SNR is 10dB
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Figure 5.5: Output SINR of BLAST, TAST, C-CAB, and SCORE against DOA difference
0°,2°.5°, and 10° when spectral overlapping is 30%, input SIR is 5dB and SNR is 10dB
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Figure 5.6: Output eye diagrams of BLAST when DOA differences are 0°,2°,5°, and 10°,
input SIR is 0dB, and input SNR is 20dB
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Figure 5.7: Output eye diagrams of C-CAB and SCORE when DOA difference is 0°, input
SIR is 0dB, and input SNR is 20dB
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Figure 5.8: Normalized filter coefficient convergence of BLAST and TAST against DOA
difference 0°,2°,5°, and 10° when input SIR is 0dB, and input SNR is 10dB
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Figure 5.9: Normalized output MSE of BLAST and TAST against DOA difference 0°, 2°, 5°,
and 10° when input SIR is 0dB and input SNR is 10dB
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Figure 5.10: Output SINR of BLAST, TAST, C-CAB, and SCORE against different spectral
overlapping 40%, 30%, 20%, 10% when input SIR is 0dB, SNR is 10dB, and DOA difference

is 2°
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Figure 5.11: Output SINR of BLAST, TAST, C-CAB, and SCORE against different fre-
quency overlapping 40%, 30%, 20%, 10% when input SIR is 0dB, SNR is 10dB, and DOA

difference is 10°



Chapter 6

Probability Error Analysis of
BLAST and TAST

In Chapter 5, we proposed the BLAST algorithm and analyzed its convergence perfor-
mance. In this chapter, we continue to analyze the performance of the BLAST algorithm.
It is well known that a fundamental performance of a digital system is the output proba-
bility error. In this chapter, we’ll examine the finite sample output probability error of the
BLAST and TAST algorithms theoretically and by simulation. Let IV be the length of input
data. g(N) is the finite sample time realization of the BLAST or TAST filter coefficient
vector. q(N) is a function of N and it is also a random vector for given N. We do K
experiments to obtain K realizations of g(N) as ¢)(N), ¢®@(N), ---, ¢¥)(N). For the
kth experiment with given g(¥)(N), we can obtain the simulation value of the finite sample
probability error P¥,. Defining P. s as P. s = & 3K, PX,, P._, is called the simulation
~ value of the finite sample probability error of g(N). We like to obtain theoretical formulae
to compute the finite sample probability error of BLAST and TAST. Because the analysis
procedures to BLAST and TAST are similar, we use BLAST as an example to do this
analysis. Firstly, the input signals and system model are given in this chapter. The input
of threshold is analyzed. Statistical analysis of the output noise, statistical analysis of the

output component of the desired signal, and statistical analysis of the output interference
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are given. The output probability error theoretical formulae of BLAST and TAST are ob-
tained. At last, numerical examples are presented to examine the output probability error

of BLAST and TAST in different scenarios theoretically and by simulation.

6.1 The Systemm Model of BLAST and TAST

The system model we considered is shown in Fig. 6.1. Because the analysis procedures to

BLAST and TAST are very similar, we use BLAST as an example to do this analysis.

Input Signal
N 7w
lter 1
xz(n) I —
\ - yAn) &
FRESD y(n) (n)

z(n) z(nN)
L F’? p(n)=g(-n) Re[] | thereshold|
m °
Xl-n\ . b4 o cos(2ra {n)
m%ml.

Adaptive
Algorithm

Figure 6.1: System model of BLAST and TAST

Input Signals: For the input signals, we assume that the desired signal source s(n) and

interference source u(n) are BPSK signals which have same baud rate. They are statistically
independent. Let the sampling rate of these signal is 1/T;. For a given baud rate 1/Tj, we

choose the sampling rate such that

T, = Ty/N; (6.1.1)

where Nj is an integer. In the following analysis, we normalize T as one in our expressions.
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The desired signal s(n) can be modeled as

s(n) = i d(k)g(n — kNy) cos(2xA fcn) (6.1.2)

k=-00

where Af, is the frequency offset of the desired signal. The message signal of the desired
signal is d(n) where d(n) = *1 is a random signal. The signal d(n) = +1 and d(n) = -1
occur independently with equal probability and therefore, the variance of d(n) is equal to
one. The function g(n) is a square root raised cosine pulse shaping filter with a roll-off

factor equal to one. We normalize g(n) such that

Y g(n)g*(n) =1 (6.1.3)

where + denotes the conjugate. We use a uniform linear array of sensors for the antenna

and define the directional vector of the desired signal as
d(6,) =[1 e ... (mi(L-DT (6.1.4)

where L is the number of sensors. 6, is an angle which is related with incidence angle of
the desired signal, T denotes the transpose. For the received desired signal vector s(n) at

the sensor array,
s(n) =[s(n) s(n)e 72 ... s(n)e I EDET = 5(n)d(6,). (6.1.5)
The desired signal component on the Ath sensor is

sa(n) = s(n)e~72™A-V6 — y=12... L (6.1.6)

The interference u(n) can be modeled as

u(n) = Ay i dy(k)gu(n — kN;) cos(2n A fyn) (6.1.7)

k=—00

where A, is the amplitude of the interference and A f, is the frequency offset of the interfer-
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ence. The symbol d,(n) = +1 and dy(n) = —1 occur independently with equal probability
and the variance of dy(n) is one. The function g,(n) is a normalized square root raised
cosine pulse shaping filter with a roll-off factor equal to one. We define the directional

vector of the interference as
d(ou) = [1 6—327r0.. . e—j?vr(L—l)&.,]T (6.1.8)

where 6, is an angle which is related with incidence angle of the interference. For the

received interference vector u(n) at the sensor array,
u(n) = [u(n) u(n)e 7% ... u(n)e~ 2 L-V0IT = y(n)d(8,). (6.1.9)
The interference component on the Ath sensor is

up(n) = u(n)e 7RV = X =12...L. (6.1.10)

The input noise vector v(n) on the sensor array is assumed to be a complex sta-
tionary jointly temporally and spatially white zero mean Gaussian noise, it can be written
" as

v(n) =[vi(n) ve(n) -+ wvr(n))” (6.1.11)

and we have

Ejwk(n)] =0, k=1,2,---L (6.1.12)

and
Elvi(n)v,(n2)] = 028(ny — na)é(k — m), k=1,2,---L, m=1,2,---L (6.1.13)

where 02 is the variance which is E[vg(n)vp(n)], 8(n) is the Kronecker delta function, and
vk(n) is the complex noise on the kth sensor. The real part of vg(n) and the imaginary part
of vi(n) are also assumed to be uncorrelated. From system design view, we note that noise

is white in some systems and the noise is colored in other systems. For colored noise, our
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following performance analysis method is still feasible, but the expression will become more
tedious. For simply our analysis, we approximate noise being white. Comparing theoretical
results with simulation results, theoretical results are very close to the simulation results.

Therefore, we say this assumption is feasible.

The input of the BLAST filter is
z(n) = s(n) + u(n) + v(n) (6.1.14)

where 8(n), u(n), and v(n) are defined in Egs. (6.1.5), (6.1.9), and (6.1.11) respectively.

BLAST algorithm For the BLAST filter, we choose same frequency shifts in each FRESH

filter. Because the input signal are BPSK signals, the frequency shift in the FRESH filter
' a;(i = 1,2,--- M) can be chosen as +2Af. + k/T}, where Af, is the frequency offset of
the desired signal. 1/7j is the baud rate of the desired signal. k is an integer. Here, the
frequency offset can be viewed as a design parameter and we choose the frequency offset

Af. be the multiples of 1/T;. Therefore, we have
Afc =Nc/Tb, cxi=N1/Tb, 1= 1,2,-“M (6.1.15)

where N, and N, are integers, N; = £2N, + k. Moreover, we choose the low pass filter p(n)

as the normalized square root raised cosine pulse shaping filter g(—n).

The filter coefficient hy m(n) (A = 1,2,---Lym = 1,2,--- M) denotes the impulse
response of the mth FIR filter in the {th FRESH filter, where M and L are the number
of the branch of the FRESH filter and the number of sensors respectively. These filter
coefficients consist of the filter coefficient vector of the BLAST filter ggsr which is defined
in Eq. (5.3.3). For the infinite sample time average realization of ggsT, gt is the constant
vector g, which is defined in Eq. (5.3.11). For the finite sample time average realization
of ggst. gpst is the random vector §gs(N) which is defined in Eq. (5.4.2). Ggst(N) is
the function of N, where N is the data length. We don’t know the joint probability density
function of ggsr(N). In order to simplify our analysis, we will assume that the filter

coefficient vector gggr is uncorrelated with the input white noise v(n), the input desired



CHAPTER 6. PROBABILITY ERROR ANALYSIS OF BLAST AND TAST 120

binary signal d(n) and the input interfering binary signals dy(n). We call this assumption
as the uncorrelation assumption. For the infinite sample time average realization, using the
property 5.1, we note that the filter coefficient vector of the BLAST filter g gsr is a constant
vector q,,,. Therefore, the uncorrelation assumption is valid in the infinite sample case. For
the finite sample time average realization, the filter coefficient vector ggs(N) is a random
. vector. Because we do not know the joint probability density function of ggsr(N), it is
difficult to examine the uncorrelation assumption theoretically in the finite sample case.
Here, we use an experimental method to examine the assumption. We generate K random
samples of the correlation g, (N) = ax(N)gi(N), where ax(N) denotes kth experiment input
binary signal or the input white noise. g, (N) denotes the kth experiment finite sample time
average realization of the filter coefficient vector ggsT(N). We calculate the normalized
correlation value § = || & Yk ge(N)II?/ % Tk llgx(N)||>. We found these correlation values
are very small, see Appendix B. Therefore, we say the uncorrelation assumption is valid in

the finite sample case.

6.2 The Input of Threshold

When the input signal z(n) passes through the BLAST filter, the output of the Ath FRESH

- filter is
ua(n) = 3N hak)e?me Rz (n — k) + Y Y ha(k)eT Rz (n — k) (6.2.1)
=1 &k I=J+1 k

where A = 1,2,--- L. hy (n) is the impulse response of the th FIR filter of the Ath FRESH
filters. a; is the frequency shift of the [th branch of the Ath FRESH filter. Each FRESH
filter is divided into two parts: the FRESH filtering part and the conjugate FRESH filtering
part. J is the number of FIR filters in the FRESH filtering part. M — J is the number
of FIR filters in conjugate FRESH filtering part. z,(n) is the received signal on the Ath
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sensor. The output of the BLAST filter is

L J L M
— Z zh/\l e]21m,(n k):l:,\ n k Z Z thl(k e]21ra,(n k) '(n— k)
A=li=1 k A=1l=J+1 &
(6.2.2)
The output of the low pass filter is
z(n) = Y p(k)cos(2mAfe(n — k))y(n — k) (6.2.3)
k
L J .
= >3 Z 3" p(k1) cos(2mAfe(n — ki) hu (ko) 2=k 1=k g, (n — ky — ky)
A=t =1 ki k2
L M ‘
+ }: Z 3= 3" (k1) cos(2mA fe(n — ky))hx(kp)e > k1=K z5 (n — Ky — ko).
A=1Il=J+1 ky k2

. Using Eq. (6.1.15), we note that e/2"8/enNs — ] and e?2*™Ne = 1. The output of the

sampler z2(nNj) is

L
2(nN;) = D DD (ki) (6.2.4)
A=11

COS(27fAfck1)h,\z(k2) —s2railkitka) o, (n Ny — ki — ko)

+Z Z 33 p(k1) cos(2mA feki Yha(ka)e 21T, 25 (0N, ~ Ky — ka).
=li=J+1 k1 k;

Let k; + k2 = k and k; = m, we obtain

J
z(nN,;) = Z Z z Zp(m) cos(2rA fem)hy(k — m)e~I% ik, (nNs — k) (6.2.5)

o d

J
Hyn) = Y_ hy(n — m)e I2man=mp(mye=i2tam oo 2r Afom  (6.2.6)
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M L;-1 ) .
Gan) = > 3 hu(n- m)eIra(n-my(m)e I UM cos 2r A fomn (6.2.7)
I=J+1 m=0
where A = 1,2, --- L. We note that the length of Hx(n) is equal to the length of GA(n). The
length is N, + Ly — 1. N, is the length of the filter hy/(n). Here, we assume ha(n), (A=
1,2,---L, | =1,2,--- M) has same length. L is the length of the filter p(n), which is

~ equal to the length of the filter g(n).

Substituting Eq. (6.1.14) into Eq. (6.2.5), we may express the output of the sampler

as
L No+La-1
z2(nNy) = Y [Hi(k)sa(nN, — k) + Ga(k)s(nNg — k)] (6.2.8)
A_IL ::le—l
+) [Hx(k)ux(nNs — k) + Ga(k)uy(nNs — k)]
= k=1
Ll No+L2-1
+Y [H(k)vr(nNs — k) + Ga(k)vy(nNs — k)]
=1 k=1

We divide Hx(n) and G(n) into real part and imaginary parts
Hy(n) = Hg,(n) + jH,(n) (6.2.9)

Ga(n) = Gg,(n) + jGr,(n) (6.2.10)

where Hg, (n) and Gg, (n) are the real part of Hy(n) and Ga(n) respectively. Hp (n) and
G1,(n) are the imaginary part of H)(n) and G,(n) respectively. Moreover, Hg,(n) is
La-1

Hg,(n) = Y 5 Re [h.)u(n—m)e"jz"‘"("'m)p(m)e_ﬂm‘m] cos 2r A fom{6.2.11)

=1 m=0
where Re [.] denotes taking the real part. Hy,(n) is
J La-1

Hp(n) = Z Z Im [h,\,(n - m)e'j2"“'(""")p(m)e'j2"°’"‘] cos 2w A forn(6.2.12)

(=1 m=0
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where Im [.] denotes taking the imaginary part. Gg, (n) is

M La-1

Gry(n) = 5. > (6.2.13)

I=J+1 m=0
Re [h,\l(n - m)e‘ﬂ"a‘m'""p(m)e'-’““‘”‘] cos 2nA fom

M La-1

Gn(n) = > > (6.2.14)

I=J+1 m=0
Im [h,\l(n - m)e”jz”a‘("‘"‘)p(m)e'jz’"""‘] cos 2w A fom.
The input to the threshold is

L No+lLa-—-1
d(n) = Re Z z [Hr(k)sx(nNs — k) + Ga(k)s3(nN; —k)]] (6.2.15)

L No+L2-1
+Re | Y [Ha(k)ua(nN, — k) + Ga(k)uz(nN, — k)]]
[A=1 k=1
No+L2-1
+Re Z Z [Ha(k)va(nNs — k) + Ga(k)vy(nNg — k)]]

Defining

No+L2-1

Yod(n) + &rs1(n) = Re Z Z [Ha(k)sa(nNs — k) + Ga(k)s} (nN —k)]] (6.2.16)

L No+La2-1
§cri(n [ [Hx(k)ur(nN; — k) + Ga(k)uy(nN; — k)] (6.2.17)
L No+La-1
= [Z Y [Ha(k)ua(nN, — k) + Ga(k)vs(nN; — k)]} , (6.2.18)
A=1 k=1
we have
d(n) = Yod(n) + &151(n) + &cT1(n) +n(n) (6.2.19)

where v,d(n) denotes the output component of the desired symbol. £;s;(n) denotes the
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output Inter-Symbol Interference (ISI) component. {crr(n) denotes the output Cross-Talk

Interference (CTI) component. n(n) denotes the output component of the noise. Defining
e(n) = n(n) + &1s1(n) + écri(n), (6.2.20)

we have that the input to the threshold is
d(n) = 7od(n) + 7e(n) (6.2.21)

where 7, is the coefficient of the desired symbol. 7. is sum of the output noise component,

the output ISI component and the output CTI component.

6.3 Statistical Analysis of 7n(n)

The output noise component n(n) is

L No+Lz—1
nn) = Re|S. 3 [Hx(k)va(nN, ~ k) + Ga(k)v3(nNs — k)] (6.3.1)
A=1 k=1
L No+La-1
= S Y [Hr,(k)vr,(nN; — k) — H, (k)vr, (nNs — k)]
A=1 k=1

L No+La—1
+3° 3 [Gr,(k)vr,(nN, — k) + G1,(k)vr, (nN, — k)]
= k=1

where v, (n) is the noise on the Ath sensor. vg, (n) and vy, (n) are the real and the imaginary

part of vy (n) respectively.

Using the uncorrelation assumption and noting that the input noise has zero mean,

the mean of the output noise n(n) is

L No+La2-1
Eln(n)i=Re |Y_ > [E[HA(K)E[va(nNs — k)] + E[GA(K)]E[v3(nNs — k)]]| = 0.
A=1 k=1

(6.3.2)

Using Eq. (6.1.13) and noting vg, (n) and vy, (n) are uncorrelated, the variance of the
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output noise n(n) is

Q
I

5 = En(n)n’ (n)] (6.3.3)
Z Z E [Hg, (k)Hg, (k) + Hg, (k)Gg, (k) + Gr, (k)Hg, (k) + Gr, (k)GR, (k)] 0%,

+ Z Y E[Hi, (k)Hi, (k) — Hi, (K)G1, (k) = Gr, (K)Hi, (k) + G 1, (k)G (k)] oF,
Ak

where o} is the variance of the input noise vg, (n) and o2, is the variance of the input
noise vy, (n). We note that Hg, (k), Hj, (k), Gr, (k) and Gy, (k) are defined in Eqgs. (6.2.11)
to (6.2.14), respectively. 0%, and o2, are constants. Substituting Egs. (6.2.11) to (6.2.14)
into Eq. (6.3.3), we obtain

L No+L2-1 La—1 La-1

Un = URvZ Z Z Z Z Z (6.3.4)

k=1 U=1m;=0I[2=1m2=0

E [Re [h,\h (k = my)em72man (=m)p(m, )g=i2vo, m |

Re [h,\l2 (k - mg)e‘ﬂ"“'z("‘mz)p(mg)e'j"’""'z’"’] cos(2mA femmy) COS(ZTIAfcmz)]

L No+Lz-1 J La-1 La-1

(Y S TS Y Y

A=1 k=1 L=1m=0l3=J+1m2=0

[ [h.,\[l (k — ml)e_n’m'l(k'ml)p(ml)e—ﬂ’m‘x”‘l]

Re [h,\lz(k mg)e -72’“"2(k'm’)p(mz)e'jzm‘!m’] cos(27rAf,_.m1)cos(27rAfcm2)]

L No+L2a—-1 M La—~1 J La-1
S PPED VDI BB
A=1 k=1 4L4=J+1m1=002=1m2=0

E [Re [h/\h (k - m1)e—j2’m‘l(k'ml)p(ml)e'ﬂ"a'xml]

Re [h,\h(k — my)e I2meuy (k-mz), (mz)e‘ﬂm‘!""] cos(27A fomy) cos(27rAfcm2)]

L No+La-1 M La-1 La-1
*”sz > Z > Z 2
k=1 lj=J+1m;=01l3=J+1ma=0

FE [Re [h'/\lx k — ml)e Jemay, (k- m‘)p(ml)e j21ral]m1]

Re [h,\lz(k - mg)e'jz’""z("‘mz)p(mg)e'ﬂ”“‘zm?] cos(2mA fomy) cos(27rAfcm2)]
No+La=1 J La=1 J La-1

+0:u2 IIEDIDIP DY

=1 li=1m=0ls=1 ma=0

[Im [hAll - ml)e—JZwaxl(k ml)p(ml)e—j%a,lm,]
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6.4

Im [th(k — my)e I2mank-ma)y(m, )e‘jz”"‘z"“] cos(2mwA fomy) cos(27rAfcm2)]

No+L2—-1 J Lz2-1 La—-1
—a,,,z > X X Z >
A=1 k=1 Li=1m1=0l2=J+1 mz=0

E [Im [h,\[l (k — ml)e_-ﬂ"""‘l('t "‘l)p(ml)e-j27l’0t,m1]

Im [h,\lz(k - mg)e'jz’“"z(k‘m’)p(m )e‘jz""':”"] cos(27wA fomy) cos(27rAfcm2)]

No+La-1 La=1 J Lz-1
—Ulvz: Z Z z Z z
A=1 k=1 Lh=J+1m=0Il=1 m2=0

E [Im [hAll (k - my)e” J2may, (k— m‘)p(ml)e—ﬂ’m‘lml]

Im [h,\zz(k — mg)e 7% o (k'mz)p(mg)e'ﬂ”“‘z""] cos(2mA fomy) cos(27rAfcm2)]

L No+Lz-1 La-1 La—-1

@y s Y S s S

A=l k=1 UL=J+1m=0Il2=J+1m2=0
E [Im [h'“l (k - ml)e_jz"'all(k—ml)p(ml)e—j21ra(lm1]

Im [h,u, (k — ma)e 72 ("""’)p(mg)e'jz’“"!’"’] cos(2rA fomy) cos(21rAfcm2)] .

Statistical Analysis of the Output Component of the

Desired Signal

When the input desired signal s(n) pass through the system, the input of the threshold is

Yod(n) +€1s1(n) = Re ZZ[H,\ )sa(nNs — k) + Ga(k)si(nNs — k)]| (6.4.1)

where s5(n), Hy(n), and G(n) are defined in Eqgs. (6.1.6), (6.2.6), and (6.2.7), respectively.
Substituting Eqs. (6.1.2) and (6.1.6) into Eq. (6.4.1), we obtain

L No+La—-1
Yod(n) + &rsr(n) = YD d(m) > g(nNs—mNs—k) (6.4.2)
A=1m k=1

cos(2m A fek)Re [H(k)e 2710 Galk)e2mA-10]
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We define

L No+La-1
Z Z (RN, — k) cos(2m A fk)Re [Ha(k)e 727308 1 G, (k)eI2m =10 |

(6.4.3)

where we note that the lengths of v(n) is Kj,
1
Ky = [—(N, + 2Ly — 2)] (6.4.4)
N,

where [.] denotes rounding to nearest integers less than or equal to the number. Substituting

Egs. (6.2.6) and (6.2.7) into Eq. (6.4.3), we obtain

No+La2~-1 J La-1

L
7(n) Z 2 Y > g(nN, —k) (6.4.5)

k=1 {=1 m=0
Re [h,\l(k - m)e"j"”""'(k‘"‘)p(m)e‘jz’“""‘e"jz"('\‘1)9'] cos(2r A fem) cos(27A f.k)
L No+L2-1 M L2-1

troX 2 2 glnNe—k)

k=1 =J+1 m=0
Re [h,\,(k — m)e~I2maulk- '")p(m)e'ﬂ’“’""ejz"('\‘”o‘] cos(2wA fom) cos(2mA fck).

Substituting Eq. (6.4.3) into Eq. (6.4.2), we obtain

Yod(n) + &1s1(n) = Y d(m)y(n —m) =(0)d(n) + D _ d(m)y(n—m). (6.4.6)

m#n

Here, we define

Yo =7(0), &rsi(n) = Y d(m)y(n—m) (6.4.7)

m#n
where v,d(n) is the desired symbol component. &;s/(n) is the inter-symbol interference

(ISI) component. We note that v, is a random variable.

J
Yo = D 2 22 9(=k) (6:48)
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Re [h,\,(k - m)e-ﬂ’m‘<"—'")p(m)e-ﬁmtmeﬂ"(**‘)"-] cos(27A fom) cos(2m A fok).

The mean of ~, is

No+L2-1 La-1

Z Z Z E g(—k) cos(2nA fem) cos(2m A f k) (6.4.9)

=1 =1 m=0
Re [E[hx[ k _ m)]e—121ra((k m)p(m)e—_ﬂwa;m -j2x(A— 1)8,]

No+L2—-1 M L2-1

L
Z Z Z Z9(—k)COS(21rAfcm)cos(27rAka)

k=1 I=J+41 m=0
Re [E[h,\[(k‘ _ m)]e—j21ra¢(k—m)p(m)e—j%ra,meﬂx(a\—1)9,] .

The variance of v, is

2 2
o = E[»,},’-] -yl (6.4.10)
L No+L2—1 J L2-1No+La-1L2-1 J

Yy Y Yy Y &y

M=1Ad2=1 k1=1 L=1m=0 k=1 m3=0{[=1
E [9(-’91)Re [h,\m(h - ml)P(ml)e_ﬂm"(k’—m‘)e_ﬂm"m’e'jz"(’\‘_m']

g(—k2)Re [hAzlz (k2 — m2)P(m2)e'j2”°'2("""")e‘jz""'zm’e‘ﬂ"(‘\"”"']

cos(2mA fomy ) cos(2mA ferna) cos(2nA foky) cos(2n'A fek2)]
L L No+La—-1 J La—1No+Lz—1La-1

Y S EETY Y v

AM=12=1 k=1 L=1m=0 k=1 m2=00l=J+1
E [g(~k1)Re [ha,i, (k1 = ma)p(ma)e72mou (s =mi)g=s2mai, mi g=j2r(hi ~16|

g(—kz2)Re [h,\ztz(k2 — ma)p(my)e2mei (ka=m2)g=i2rai, ma gl 2"(“_1)0']

cos(27rAfcm1) cos(27rAfcm2) cos(2mA fcky) cos(2m A fek2))

L No+La-1 La—=1 No+La2-1 La-1 J
fY Yy Z > X XX
A=l A2=1 k=1 =J+1m1=0 ko=1 ma2=0{3=1

E [g(~k1)Re [ha,s (k1 — my)p(my e 72 (ki =m)gmi2ren i a2 =10
g9(—k2)Re [h,\m(kz - mz)P(mz)e"jzm"(k"m’)e“ﬂm"m’e'ﬂ"('\’-”0‘]

cos(21rAfcm1) cos(2mA foma) cos(2nA feky ) cos(2mA fck?))
L No+La—1 M La—1No+La-1L2-1 M

fYY Y YEY S Y

M=1A2=1 k=1 L=J41m=0 k=1 me=0l=J+1
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E [g(=k1)Re [hayy, (k1 = my)p(my)e 72 (k1 =m)g=2nan, m g325(0 =100 |
g(—k2)Re [hays, (ky — ma)p(ma)e72mais ka=madms2rary ma g12x(0a 1)

cos(21rAme1) cos(2mA ferna) cos(27A feky) cos(2n A feka))
L No+La-1 J La—=1 No+Lz—1L2-1 J

Ty Y rETY Yy

M=l =1 k=1 L=1m=0 k=1 m2=0I3=1
g(—kl)Re [E[h/\lll(kl _ ml)]p(ml)e'jz’""l(k"m‘)e'ﬂ""‘xm‘e_ﬂ"('\"l)o‘]

g(—k2)Re [E[h:\'zh (k2 — mz)]P(mz)e'ﬁm‘?("""‘”)e‘ﬂ"‘”z”"e"ﬂ"('\’"l)"']

cos(2wA fomy ) cos(2r A foma) cos(2rA foky) cos(27rA Sfeka)
L L No+La-1 J La—1 No+La—1La-1

Yy S SETY Y v

AMi=ld=1 k=1 L=1m=0 k=1 me=0I{2=J+1
g(—k1)Re [E[h,\m(kl - m1)]P('ml)6_72“’“(k"m‘)e-ﬂm“m‘6-12"('\‘_1)8‘]

g(—k2)Re [E[h,\ztz(kz - m2)]P(mz)e‘jz"°‘2(""’“’)e‘ﬂ"‘zm’e’z"('\"‘)"']

cos(27rA ferny) cos(2m A ferng) cos(2mA foky) cos(2n A foka)
L No+La=1 M La—1 No+La-1 La-1 J

Y Yy Y S

Ai=lde=1l k=1 Lh=J+1mi=0 k=1 me=0[3=1
g(—kl)Re [E[hu\lll(kl _ ml)]p(ml)e—ﬂwa;l(k;—m;)e—j21ra¢lm1ej21r(A;—l)0,]

g(—k2)Re [E[hmz(kz - mz)lp(mz)e_ﬂm"(k"m’)e—jz’m‘?m’e_ﬂ"('\2—1)9']

cos(21rAfcm1) cos(2mA foma) cos(2TA foky) cos(21rAfck2)
L No+La-1 M La—1 No+Lz—-1 La—-1

550 63D 3 S5 M 3D »

A1=1d2=1 k=1 ULi=J4+1m1=0 ko=l ma=010=J+1
g(kNs — k1)Re [E[h'Alh ki — m)lp(mi)e 12"0“(kl—ml)e_ﬂ"m‘mlejﬁr(h—l)a']

g(—k2)Re [E[hlez(kz - mz)]P(mz)e"j2"°‘=(k’""’)e'ﬂ”"'z’"’ejz"""‘1)"']

cos(2mA ferny ) cos(2m A forna) cos(2m A foky) cos(2mA foka).

The mean of €;5/(n) is

Eleisii = Y Eld(m))Ely(n - m)] = 0. (6.4.11)

m#n
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The variance of £r57(n) is

K;-1

(st = Eléisi(n)éisi(n)] = D Elv(k)y" (k)] (6.4.12)
k_
L No+La=1 J La—1 No+Laz-1L2-1 J

-Ery X sESE S

=1 k1=1 h=1m =0 kz— my=0 12 1
[ (kNy — k;)Re [hml ki — my)p(my)e32mon (ki—m) g=s2mar my o= 12m(A - 1)9,]

g(kNs — k2)Re [hlez(kz — mg)p(my)e I (ka—ma) g=j2marma g=52m(Az - ””’]

cos(21rA fcml) cos(21A foma) cos(2mA foky) cos(21rA fek2)]
No+La—=1 J La=1 No+L2-1La-1

Y Y rE Y E S

k=1A1=1A2=1 ki=1 L=1mu=0 k2=1 me=01I{2=J+1
B [g(kN, = k1)Re [hayg, (k1 = my)p(myJe 927 (k1 =mi)gm2ear mig—s2r(h =16

g(EN, — k2)Re [yt (o — ma)p(ma)e 727 (ke ~ma)g=s2rama gi2r(ra=1)0s |

cos(2mrA formy) cos(27rAfcm2) cos(27A fcky) cos(21rAfck2)]
L No+Ls-1 Loa—1 No+La—-1 La—-1

:zzzz S SYTE S

=1X2=1 k=1 UL=J+1m1=0 k=1 ma=01I{2=1
[ _ kl Re [hkxll(kl ml)P(ml)C J2may, (ki— ml)e—j21ra,lmlej?1r(z\1—1)0.]

g(kNs — k2)Re [h,\zlz(k2 - mz)P(mz)e_ﬂ""'?("""m’)e'ﬂ"“‘!""e'ﬂ"o"'1)9']

cos(21rAfcm1 ) cos(2m A foma) cos(2mA feky) cos(2m A fek2)]
No+Lo-1 M L2—1 No+L2—1 La-1 M

IEYEY Y Y EY £

k=1 \=122=1 k=1 UL=J+1m=0 ko=1 ma=0I2=J+1
E [g(kN, — k1)Re [hy,g, (ky — my)p(my)em727ou (ki =m)g=2mar, m r2n(hi =16 |

9(kN, — ka)Re [ (k2 — ma)p(ma)e ™72tz (ke =ma)gs2mayma gr2n(Re=1)0:

cos(2mA ferny ) cos(2mA foma) cos(2mA fky ) cos(2mA feka)]

6.5 Statistical Analysis of {cr/(n)

When the input interference u(n) passes through the system, the input of threshold is

No+L2~1
tcri(n) = Re Z Z [Hx(k)ur(nNy = k) + Ga(k)ui(nN, = k)] | (6.5.1)
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where uy(n), Hy(n), and G(n) are defined in Egs. (6.1.10), (6.2.6), and (6.2.7) respectively.
Substituting Eqs. (6.1.7) and (6.1.10) into Eq. (6.5.1), we obtain

[e o] No+La—1
feri(n) = Aw Y du(m)d>. Y gu(nN,—mN, — k) (6.5.2)
k=1

m=-—o0co A

Re [H,\(k)e_jz"(’\‘l)”" + G,\(k)eﬂ”(’\“)g“] cos(2mA fu(nNs — k).

When we define

No+La—-1

Bin) = ALY Y gulnN,—k) (6.5.3)
A k=1

Re [H(K) cos(2mA fuk)e 27010 4 G, (k) cos(2mA fok)e?2" 310

No+La2-1

B(n) = A Y gunN,—k) (6.5.4)

A k=1
Re [H,\(k) sin(2r A fuk)e~ 72" A-D0 1 G/ (k) sin(2rA fuk)eﬂ"('\’l)”"] ,

we obtain

€cti(n) Z dy(m) [B1(n — m) cos(2n A funN,) + Bo(n — m) sin(27A fynNy)]

= Z dy(n — m) [B1(m) cos(2n A funN,) + Bo(m)sin(2rA funN,))

= S dy(n—m)B(m,n) (6.5.5)
where we define
B(m,n) = PBi(m)cos(2rAfynN;) + B2(m)sin(27A fyunNj) (6.5.6)
No+L2-1
= Ay Z Z gu(mN;s — k) cos(2rAfu(nNs — k))
A k=1

Re [H,\(k)e-j%r(»\—l)ﬂu + G‘\(k)eﬂr()‘-l)au] )
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Using Eq. (6.5.5), we note that the mean of {c7(n) is zero and the variance of Ecrr(n) is

(cri(n) = Elécri(n)écri(n)] (6.5.7)
= S°3 Eldu(n - ki)d}(n - k2)B(k1,n)B" (K2, n)]
k1 k2

> E[B(k.n)B" (k,n))-
k
Here, B(k,n) is a periodic function in n and its length is K,

Ky = [F(No + Lo+ L3 — 2)], {(6.5.8)

L3 is the length of g,(n). Substituting Egs. (6.2.6), (6.2.7), and (6.5.6) into Eq. (6.5.7), we

obtain

L Kz No+La-1 J La—1 No+L2-1La—-1 J

) = £Y Y S LY Y &% (6.5.9)

M=lA=lk=1 k=1 L=1m=0 k=1 m2=0[{=1
E [gu(EN, — k1)Re [ha,u, (k1 — ma)p(myJe ™27 (i mm)gs2nan mi =52~ |

gu(kN, — k2)Re [hagty (b2 — ma)p(ma)e 7270t (kr=ma)e=s2mai; mag=32r(ha= 1|

(27rAfcm1) cos(2w A ferng) cos(27A fu(nNs — kl)) cos(2mA fu(nNg — k2))
L Ka No+La—1 J La2-1 No+Lz—1La-1

Y YY S SEY S S

Ai=1Az=lk=1 k=1 UL=1m=0 k=1 ma=0I=J+1
B [gu(kN, = k1)Re [y, (s — myJp(my)e~72man (i —mi)g=s2mau, i g=32e(hi -1

gu(kN, = k2)Re [Ragt, (k2 — mo)p(ma)e 72ran (kamma)g—s2maymagi2r(ia=1ou |

cos(2mA fomy) cos(2 A fema) cos(2nA fu(nNg — ky)) cos(21rAfu(nN, — ky))
L L Ka2 No+La—-1 M La—1No+La—-1L2-1

53535 5 SIS S SIS S

AM=1lA=tk=1 k=1 L=J+1m=0 k=1 m2=0I[2=1
E [gu(st _ kl)Re [hhh (kl _ ml)p(ml)e—jmra,l(Ic1—ml)e—]21ro,lm1e;21r(z\1—l)8,,]

gu(kNs — k2)Re [hAzlz(kZ - mz)P(mz)e-jzm"(k’_mz)e—ﬂm"‘m’C_ﬂ”('\’—1)0"]]

cos(21rAfcm1) cos(2m A fema) cos(27A fy(nNg — ky)) cos(27rAfu(nN, — kj))
L K2 No+La—1 M La-1 No+La-1 La-1

EY TS Y Y SN Ty

A=l de=lk=1 k=1 Li=J+1m=0 k=1 me=0{=J+1
E [gu(st —k1)Re [h»\xll (k1 — ml)p(ml)e"’j'a’ﬂ’all(kl-ml)e_jZﬂ’O[lTTll ej21r()‘1—l)0u]
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gu(kNg — k2)Re [hu\zlz(k2 — my)p(my)e 73 ("’""’)e‘jz""“z”"eﬂ"(*?‘1)""]]

cos(2m A fomy) cos(2mA fomg) cos(2nA fu(nNs — k1)) cos(2mA fu(nNg — k2)).

Here, we note that {cr1(n) is a periodic function in n. The minimum integer value of n
which make Af,nN, be an integer is the period of the function {cT1(n). Let Q denote the

period of {crr(n). @ may be determined as
Q = min {n : AfynN, = integer} (6.5.10)

where N; is defined in Eq. (6.1.1). For example, when Af, = 0.17, and N, = 20, we have
Q = 5. The average value of {crr(n) is

Q-1
{CTIlave = %ZCCTI(T‘) (6.5.11)
n=0
A2 Q-1 L L K3 No+La—1 J La=1Ng+Lla—-1L2-1
= o2 X )IDIEDIEDD Z
n=0 \1=1Ae=1lk=1 k=1 L=1m= k=1 ma2=0I[2=1

A
gu(kNs = k1)gu(kNs — k2)
E [Re [hxl 1 (ky = ml)p(ml)e—jz"ml‘(kl—ml)e—jmmllml6-12"('\1-1)&.]
Re [h,\zzz(kz — ma)p(ma)e 72" ("""‘z)e‘ﬂ’“"z""e'ﬂ"(""”""]]

cos(2rAfemy) cos(27rAfcm2) cos(2rA fu(nNg — k1)) cos(27rAfu(nN, - k)

2Q2fi Z K2 No+La—1 J La—1 No+Lay- ngzl Z
+ =
n=0 A;=1 Az= ug qu_:l :lz—:mgo k,z_: me=01ly=J+1

9u(kNs — k1)gu(kNs — k2)
E [Re [h'\llx (k1 — m1)P(ml)e-jzm‘l(k‘_m‘)e'j2"°‘l"“e‘ﬂ"()"")9"]
Re [hz\zlz(kQ _ mz)p(m2)e—j21ra12(kg—-mg)e—j21ra‘2mzej21r(/\z—1)0,,”

cos(2m A femy ) cos(2wA fomp) cos 21rAfu(nN - kl))cos(27rAfu(nN, —ks))
429 L L Kz NotLa-l L2—1 No+Lz~1 La-1

+—“ZZZZ STy EYTE S

n—o,\,_uz lk=1 k=1 UL=J+1m=0 ky=1 m2=01{3=1
9u(kNs — kl)gu(st - k2)

E [Re [th (kl _ ml)p(ml)e—jh’u;l(kl—rnl)e—j21roqlm1 ej21r(/\1—1)0..]

Re [hAzlz(k2 - mz)P(mz)e'jz’“"!("’""’)e'ﬂ”"‘zm’e‘ﬂ"(’\z'1)9"]]
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cos(2~rAfcm1) cos(2mA femna) cos(27A fu(nNg — k1)) cos(2mA fu(nNs — k2))
L K2 No+La—-1 M La—1 No+la-1L2-1 M

ZZZZZ X X X X

n=0 \;=1 A2=1k=1 k=1 h=J+1lm=0 k=1 m2=01{=J+1
gu(st - kl)gu(st - k2)

E [Re [hxlll(kx _ ml)p(ml)e—jmmxl(kx-ml)e-—j27ra;lm1ej21r(/\1—1)9,.]
Re [hu\glz(k2 _ m2)p(m2)e—j21ra,2(kz-mz)e—j21ra,2mzej21r(,\2—l)9..]]

cos(2n A ferny) cos(2mA femg) cos(2mA fu(nNs — k1)) cos(2mA fu(nNs — k2)).

6.6 Analysis of the Output Probability Error
Using Eq. (6.2.21), the input to the threshold is

d(n) = 7d(n) + 7(n) (6.6.1)

where d(n) is the desired symbol, -, is the random coefficient of the desired symbol which
is defined as in Eq. (6.4.8). 7.(n) is the sum of the output noise component, the output
ISI interference, and the output CTI interference and it is also a random variable which
is defined in Eq. (6.2.20). We know v, and 7. are results of a large amount of random
variables acting together. 7, and 7, can be approximated as having Gaussian distributions

respectively, that is,

e v, is approximated as having Gaussian distribution
Yo ~ N(ptn,,02,) (6.6.2)

where . and 02 are the mean and variance of 7, respectively. p,, and o3 are
defined in Eqs. (6.4.9) and (6.4.10) respectively. The approximation accuracy is
shown in Appendix C.

e 7, is approximated as having zero mean Gaussian distribution

fle ~ N(0,02,) (6.6.3)
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2

7 is the variance of n.. Using Eq. (6.2.20), We know

where o

E[n.(n)] = E[n(n)] + E[&151(n)] + ElécT1(n)]. (6.6.4)
Using Egs. (6.3.2), (6.4.11), and (6.5.5), we know
E[ne(n)] = 0. (6.6.5)

Using the uncorrelation assumption and noting that the input noise, input desired

signal, and input interference are uncorrelated, we have that the variance of 7(n) is
0%, = Ene(n)n;(n)] = o} + (rsr + Ceri (6.6.6)

0,2,, Cisr and (cr; are the variance of 1, €755 and ¢y respectively. They are defined in
Egs. (6.3.4), (6.4.12) and (6.5.9). Because {cr; is a periodic function, we take average
value of (cr;. The average value (cTrqve is defined in Eq. (6.5.11). Therefore, the
variance of 7, should be modified as

2

On = 0727 + 151 + (CTIave- (6.6.7)

The approximation accuracy is shown in Appendix D.
From the uncorrelation assumption, we also note that

E[von"} =0, E[vo€is;] =0, and E[ve{cri] =0 (6.6.8)

Therefore, we have

Elyom:] = 0. (6.6.9)

Because v, and 7, have Gaussian distributions and they are uncorrelated each other, we

~ conclude that 7, and 7, are independent each other.
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Let P. denote the probability error of d(n), then

P. = Prob{[d(n)>0nd(n) = -1]U[d(n) <ONd(n) = 11} (6.6.10)

1
= %Prob(—'yo +n.>0)+ EProb(’yo +n. < 0).

Using the Gaussian distribution approximations, we obtain

- Pe

2 2
1 foo oo 1 _!L_;” 1/00 /—‘70 1 =
= - exp e dn.dy, + = exp*ne dn.d
2 /—oo p(7) [70 27“7'2" P NelYo 2 _mp('Yo) oo (_——21l'0,2k XPp " e dnedYo
2
o qe 1A
= / p('Yo)/ oo exp?*re dnedyo (6.6.11)
-0 Yo To

Ne

where p(v,) is the probability density functions of ,.

Let z = %—, we have
207,

_[*® 1 b 22 _i ® Yo
P. = /_ - p(7) 7= / e " dzdy, = 3 /_ - p(7o)erfc ( \/20—%) dv, (6.6.12)

20,, e

where erfc(z) = ﬁ ey e~*"dz. Because 7, also has Gaussian distribution, we obtain

P, a3, —i—) . (6.6.13)

1 00 1 —(‘Io—u:m)z
= - ————exp erfc
2 /—00 \/2102, 202,

After some computations shown in Appendix E, we obtain

1 (#10)? 1 (b, )2
P = Lot o = Lert o . 6.1
e = peric ( 202 +202, )~ 25 \\ 202, + 0% + (151 + CCTlave) (6.6.14)

2

Here, y,, and o}

_ are the mean and the variance of 7, and they are defined in Egs. (6.4.9),
(6.4.10) respectively. 0,2, is the output noise power of the system. (;s; is the output ISI
interference power of the system. {cr/qve is the average output cross talk interference power

of the system. They are defined in Eqs. (6.3.4), (6.4.12) and (6.5.11) respectively.
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In the above analysis, the filter coefficients are assumed to be the filter coefficients
" of the BLAST filter. We note that the above analytic steps are also suitable for the output
probability error analysis of the TAST filter when the filter coefficients are the filter coef-
ficients of the TAST filter. For the finite sample case, there is difference between output
probability error of BLAST and that of TAST because there is filter coefficient difference
between BLAST and TAST. When the number of sample is increased, the probability error
difference between BLAST and TAST will be reduced because the filter coefficient difference
between BLAST and TAST is reduced. Moreover, using the property 5.1, we note that the
filter coefficients of the BLAST filter with infinite sample time average realization is equal
to the filter coefficients of the TAST filter with infinite sample time average realization.
Therefore, for the infinite sample time average realization of the filter coefficients, the out-
put probability error of the BLAST filter should be same as the output probability error of
the TAST filter.

. 6.7 Numerical Results

We now present computer numerical examples showing the output probability errors of
the BLAST and TAST algorithms. The desired signal and the interfering signal are given
respectively by

s(nTy) = f: d(k)g(nTs — kT, ) cos(27 finTy) (6.7.1)
k=-00

u(nTy) = i du(k)g(nTs — kT, ) cos(27 fonT) (6.7.2)
k=-00

where T, and T}, are the baud periods, f1 and f; are the carrier frequency offsets of s(nT)
and u(nT,) respectively and Ty is the sampling period. {d(k)} and {d,(k)} are stationary
random binary sequences. For both the desired and interfering signals, we assume that
9{nT;) and g,(nT) are the pulse obtained by the square root raised-cosine pulse shaping
- filter with a 100% roll-off factor [31]. In the following examples, we’ll examine the output
probability errors of the BLAST filter and the TAST filter against the different number of

finite symbols, the different DOA difference or different spectral overlapping between the
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desired signal and the interfering signal. Here the DOA difference between the desired signal
and the interference is defined as the difference between the DOA of the desired signal and
the DOA of the interference. In the following examples, we fix the DOA of the desired signal
at 0° while we vary the DOA of the interference so that the DOA difference between the
desired signal and the interference can be changed. The spectral overlapping between the
desired signal and the interference is defined in Chapter 3. In the following examples, we
choose that the baud rate of the desired signal is equal to the baud rate of the interference,
i.e, the bandwidth of desired signal is equal to that of the interference. When we fix the
- carrier offset of the desired signal, we vary the cairier offset of the interference so that
the spectral overlapping between the desired signal and the interference can be changed.
Moreover, all frequencies we mentioned are normalized as the relative frequencies, relative

the sampling rate.

Example 6.1: In this example, we examine the output probability errors of the BLAST
filter and the TAST filter against the different number of finite symbols while we fix the
DOA difference and the spectral overlapping between the desired signal and the interfering
signal. The output probability errors of the BLAST filter and the TAST filter are evaluated
both theoretically and by simulations. The theoretical probability errors of BLAST and
TAST are evaluated by using Eq. (6.6.14). The desired and interfering signal are BPSK
signals as given by Egs. (6.7.1) and (6.7.2) respectively. The baud rates of the desired
signal and the interference are equal which are 0.05, relative the sampling rate. The carrier
frequency offset of the desired signal is fixed at f; = 0.1 and that of the interference is fixed
" at f, = 0.17, so that the two signals overlap on 30%. For the parameters of the BLAST
filter and the TAST filter, the number of sensors is chosen at L = 3, the length of FIR filters
in each FRESH filter is chosen at N, = 6, the number of the branches of FRESH filter is
chosen at M = 2. The frequency shift in the two branches are set at a1 = 0.2, a; = -0.2
respectively. The shift frequency used in the reference path of the BLAST filter is set at
a = 0. The DOA difference between the desired signal and the interference is fixed at
2°. The signal-to-interference ratio (SIR) at the input is fixed at 0dB whereas we vary the
input signal-to-noise ratio (SNR). The filter coefficients of the BLAST and TAST filters in
this example are calculated using 15, 25, 50, and 150 symbols respectively. The simulation
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results and theoretical results of the BLAST and TAST filters against the different number
of samples are shown Fig. 6.2(a) to Fig. 6.2(d). It can be observed that the theoretical
results match the simulation results well. When the number of samples is increased, the
output probability errors of BLAST and TAST are reduced. When the number of symbols
is increased from 15 to 50, the output probability error is reduced fast, but when the number
of symbols is increased from 50 to 150, the output probability error is reduced relatively
. slow. For the same finite symbols, the output probability error of the TAST filter is lower
than that of the BLAST filter. The probability error difference between BLAST and TAST

converges to zero when the number of symbols goes to infinite.

Example 6.2: In this example, we examine the finite sample output probability errors of
the BLAST filter and the TAST filter against the different DOA differences between the
desired signal and the interfering signal while we fix the number of finite symbols and the
spectral overlapping between the desired signal and the interfering signal. The scenarios
is similar to the example 6.1 except the DOA difference between the desired signal and
the interfering signal and the number of finite symbols. The output probability errors of
BLAST and TAST are evaluated both theoretically and by simulation. The finite sample
probability errors of BLAST and TAST using number of symbols N = 15 against the
different DOA difference 0°, 2°, 5°, and 10° are shown Fig. 6.3(a) to 6.3(d). It can be
observed that the theoretical results match the simulation results well. When the DOA
- difference is increased, the output probability errors of BLAST and TAST are reduced.
The reason is that the spatial information exploited by BLAST and TAST is increased
when the DOA difference is increased. For the same finite symbol and the same DOA
difference, the output probability error of the TAST filter is lower than that of the BLAST

filter.

Example 6.3: In this example, we examine the finite symbol output probability errors
of the BLAST and the TAST filters against the different spectral overlapping between the
desired signal and the interfering signal while we fix the number of finite symbols and the
DOA difference between the desired signal and the interfering signal. The scenarios is similar

to the example 6.1 except the number of finite symbols, the DOA difference, and the spectral
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. overlapping between the desired signal and the interfering signal. The output probability
errors of BLAST and TAST are evaluated both theoretically and by simulations. The
number of symbols is 15. The spectral overlapping is 40%, 30%, 20% and 10% respectively.
The DOA difference between the desired signal and the interference is fixed at 2° and 10°
degrees respectively. When the DOA difference is 2° and number of symbols is 15, the finite
symbol probability errors of BLAST and TAST against the spectral overlapping 40%, 30%,
20%, 10% are shown in Fig. 6.4(a) to 6.4(d). When the DOA difference is 10° and number of
symbols is 15, the finite symbol probability errors of BLAST and TAST against the spectral
overlapping 40%, 30%, 20%, 10% are shown in Fig. 6.5(a) to 6.5(d). It can be observed
that the theoretical results match the simulation results well. For the same finite symbols,
the same spectral overlapping, and the same DOA difference, the output probability error
of the TAST filter is lower than that of the BLAST filter. When the spectral overlapping
is reduced, the output probability errors of the BLAST and TAST filter are reduced. The
" reason is that the temporal information (spectral overlapping) exploited by BLAST and
TAST is increased when the spectral overlapping is reduced. Comparing Fig. 6.4 with 6.5,
we also can observed that when the spatial information (DOA difference) is increased, the

output probability errors of the BLAST filter and that of the TAST filter are reduced.
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Figure 6.2: Output probability error of BLAST and TAST against different number of
symbols N=15, 25, 50, and 150 when DOA difference is 2° and input SIR is 0dB
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Figure 6.3: Output probability error of BLAST and TAST against different DOA difference

0°, 2°, 5°, and 10° when number of symbols is 15 and input SIR is 0dB
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Figure 6.4: Output probability error of BLAST and TAST against different frequency
overlapping 40%, 30%, 20%, and 10% when number of symbols is 15, DOA difference is 2°,

and input SIR is 0dB
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Figure 6.5: Output probability error of BLAST and TAST against different frequency
overlapping 40%, 30%, 20%, and 10% when number of symbols is 15, DOA difference is 10°
and input SIR is 0dB



Chapter 7

Conclusions

7.1 Thesis Summary

The thesis research background is the multi-user communication systems such as mobile
wireless communication systems. Exploiting the cyclostationarity of the signals, two kinds
of novel blind adaptive periodically time varying filtering algorithms are proposed to combat
. the CCI and ACI in multi-user communication systems. One algorithm is the BA-FRESH
filtering algorithm and the other is the BLAST filtering algorithm.

For the proposed BA-FRESH filtering algorithm, the structure of the BA-FRESH
filter is given. The criteria of the BA-FRESH algorithm is to maximize the normalized cross
correlation between the output of the BA-FRESH filter and the frequency shift version of
the input corrupted signal. Using the Schwarz inequality, we obtain its unique optimum
solution. Using the Recursive Least Square (RLS) algorithm, the recursive implementation
formula of the BA-FRESH filter is given. The BA-FRESH filtering algorithm does not
require a training signal or the statistical knowledge of the desired signal. Comparing the
BA-FRESH filter with the TA-FRESH filter, it is proved that two kinds of filters have

same optimum solution when the observed data length is infinite, that is, both the BA-
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FRESH filter and the TA-FRESH filter have same performances when the observed data
length is infinite. However, when the observed data length is finite, there are differences
between the optimum solution of the BA-FRESH filter and that of the TA-FRESH filter.
The convergence rates of BA-FRESH and TA-FRESH to infinite sample optimum solution
are determined. When the observed data length is finite, the filter coefficients of both the
BA-FRESH filter and the TA-FRESH filter asymptotically converge in the mean square
sense to the same optimum solution with convergence rates O(4), where N is the observed
data length. Moreover, when the observed data length is finite, we also examine the finite
sample output MSE and the finite sample output SINR of BA-FRESH and TA-FRESH.
When the observed data length is finite, the finite sample output MSE of both BA-FRESH
and TA-FRESH asymptotically converge in the mean square sense to the same optimum
MSE respectively with convergence rates 0(%). Similarly, when the observed data length is
_ finite, the finite sample output SINR of both BA-FRESH and TA-FRESH asymptotically
converge in the mean square sense to the same optimum SINR respectively with convergence
rates O(W‘—). We know the output probability error is a fundamental performance in a digital
communication system. Therefore, the output probability error of the BA-FRESH and the
TA-FRESH algorithms are analyzed for infinite sample case and finite sample case. Using
the central limit theorem, approximate analytic expressions of the output probability error
of BA-FRESH and TA-FRESH are obtained. Numerical results are presented to examine
these results. Comparing the theoretical results with the simulation results, we found that

the theoretical results and simulation results match well.

In order to exploit both spatial and temporal information of the signals, we proposed
the BLAST algorithm. For the BLAST algorithm, it has advantages of both spatial and
temporal filter because it exploits not only the spatial information but also the temporal
information of the signals. By exploiting the cyclostationarity of the signals, the BLAST
. algorithm requires no desired signals and it can generate the training signal from the input
corrupted signal. It can be viewed as an expansion of the BA-FRESH algorithm in the
space-time domain. Moreover, when the length of FIR filter in each FRESH filters reduced
as one, the BLAST algorithm is reduced as a blind adaptive cyclostationary beamforming

algorithm. The structure of this BLAST filter is given in the thesis. For the BLAST
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filter, its input antennas consist of L sensor array. For each sensors of the array, it follows
a FRESH filter. By maximizing the cross correlation between the output of the BLAST
filter and the frequency shift version of the received signal from the first sensor and using
the Schwarz inequality, we obtain the optimum weighing coefficient vector of the BLAST
filter. Comparing the optimum solution of the BLAST filter with that of the TAST filter,
it is proved that both BLAST and TAST have same optimum solution when the observed
" data length is infinite, that is, both BLAST and TAST have same performance when the
observed data length is infinite. However, when the observed data length is finite, there
are differences between the optimum solution of the BLAST filter and that of the TAST
filter. The convergence rates of BLAST and TAST to the infinite sample optimum solution
are determined. When the observed data length is finite, the solutions of both BLAST
and TAST asymptotically converge in the mean square sense to the same optimum solution
with convergence rates O(-,{-,—), where N is the oi:served data length. Moreover, we also
examine the finite sample output MSE and the finite sample output SINR of both BLAST
and TAST. When the observed data length is finite, the finite sample output MSE of both
BLAST and TAST asymptotically converge in the mean square sense to the same optimum
MSE with convergence rates O(). Similarly, when the observed data length is finite,
the finite sample output SINR of both BLAST and TAST asymptotically converge in the
mean square sense to the same optimum SINR respectively with convergence rates O(ﬁ).
. The output probability error of the BLAST and the TAST algorithms are analyzed for
infinite sample case and finite sample case. Using the central limit theorem, approximate
analytic expressions of the output probability error of BLAST and TAST are obtained.
Numerical results are presented to examine these analytic results. Simulation results show
that for the DOA difference between the desired signal and the interferences is zero, the
BLAST algorithm performs well while the cyclic beamforming algorithms fail. Comparing
the theoretical results with the simulation results, the theoretical results and simulation
results match well. These results also show that the use of such blind adaptive technique to

extract desired signals from spectrally or spatially overlapping interferences is promising.
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' 7.2 Suggestions of Future Work

Although the two blind adaptive algorithms are developed and their performances are stud-
ied. there are some interesting issues worth of investigations. These future research work

can be as following:

e In this thesis, we just exploit the second order cyclostationarity to develop the algo-
rithms. How to exploit higher order cyclostationarity to improve the performances of

the proposed algorithms is worth to be investigated.

e In the proposed algorithms, we just exploits the cyclostationarity of signals. If we
exploit both cyclostationarity and other signal properties such as constant modulus
of signals simultaneously, we maybe able to propose other new space-time processing

algorithms.

e In practice, for uncertainty of the channel model and uncertainty of the cycle fre-
quencies exploited, robust blind adaptive space-time filtering algorithm is worth to be

developed.



Appendix A

Proofs of Eqs (3.2.20) and (5.3.8)
and Proof of Property 5.1

A.1: Proofs of Eqgs. of (3.2.20) and (5.3.8)

In this Appendix, we use the gradient method to obtain the optimum solution of
the TA-FRESH filter in Chapter 3 and the optimum solution of the TAST filter in Chapter
5. Because the TA-FRESH filter can be viewed as a special case of the TAST filter, we just

prove the optimum solution of the TAST filter.

Proof:

erst(n) = s(n)e’?™ " — gl 2(n)

8Jrst | .0JrsT .
Virst = + s = +
aqR J aql qarsT qr Jqr

where g and q; are the real part and the imaginary part of grg7.

Jrst = {ersr(n)efsr(n)) = (s(n)s"(n)) — qrsr’ <s'(n)e-ﬂ"°'"a-:(n)>

~qFsr (s "3 (n) ) + arsr! (8(m)3!(n)) arsr

3;;;—1- == <3'(")e_j2”°'"5:(n)> - <S(n)ejz"°1"5:'(n)> +2 <:i:(n):i:"(n)> ar
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T = —j (stm)e " () +3 (s ez (m)) +2 (22" g

dJrst | .9JrstT < .\ o—i27a'n > -yt
VJrsT = + = -2(s*'(n)e” 7" "z(n) ) + 2(x(n)x'(n T
TST = Gaes 1 5, (n) (n)) +2(2(n)2!(n)) qrsr

Let VJrst = 0, we obtain

arsr = Rz} (3(m)s"(me™) = Rlpyy ©

A.2: Proof of Property 5.1

Proof: The input z(n) consists of the desired signal components, the interference compo-

nents, and the noise components. Thus,
z(n) = 3(n) + @(n) + v(n)

where 3(n), #(n) and &(n) are defined in Eqgs. (5.2.7), (5.2.12), and (5.2.17) respectively.

The reference signal r(n) is,
r(n) = (s(n) + u(n) + y(n))e2 "

where u(n) = E;’f;l ug(n). Because s(n), u(n), and v(n) are independent, under the infinite

sample time average realization, we have
<§(n)u'(n)e_j2"°,"> =0 <§(n)u'(n)e_-’2"°'"> =0
<a(n)s‘(n)e’12”°'"> =0 <ﬁ(n)u'(n)e‘12"°'"> =0

<a(n)s'(n)e-f2“°'"> =0 <a(n)u'(n)e-ﬂ"°'"> = 0.

So we obtain:

gpst = R;} (<.§(n)s‘ (n)e"j2”°’"> + <ﬂ(n)u'(n)e—ﬂ’"""> + <D(n)u‘ (n)e"2”°'“>)
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Because we choose the parameters a,, and o satisfy Eq. (5.3.10), we obtain
<ﬁ(n)u'(n)e‘j2’“""> =0.

Similarly, we have

<D(n)u'(n)e—j2"° "> =0.
So we obtain

apsT = R33 Psz = Qopt-

Using Eq. (5.3.8) and noting s(n), u(n), and v(n) are independent, similiarly we obtain

-1
qrst = Rz: P53 = Qopt- O



Appendix B

Approximation of Uncorrelation

Assumption

In this appendix, we examine the uncorrelation assumption in Chapter 3 and the uncorre-
_ lation assumption in Chapter 6. Because the uncorrelation assumption in Chapter 3 can be
viewed as a special case in Chapter 6, we just discuss the uncorrelation assumption in Chap-
ter 6. In order to simplify our analysis, we assume that the filter coefficient vector ggsr
is uncorrelated with the input white noise v(n), the input desired binary signal d(n) and
the input interfering binary signals dy(n). For the infinite sample time average realization,
using the property 5.1, we note that the filter coefficients vector of the BLAST filter ggsr
is a constant vectors g,, which is defined in Eq. (5.3.11). Therefore, the uncorrelation
assumption is valid in the infinite sample case. For the finite sample time average realiza-
tion, the filter coefficient vectors §ggr(/N) are random vectors with an unknown probability
density function. It is difficult to examine the uncorrelation assumption theoretically in the
finite sample case. Here, we use an experimental method to examine the assumption. We
do K times experiments. For the kth experiments, We generate kth random samples of the

correlation

9k(N) = ax(N)qi(N),

152
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where ax(N) denotes input binary signal or the input white noise in the kth experiment,
g, (N) denotes the finite sample time average realization of the filter coefficients §gsr(N) in
the kth experiment, N is the number of data length. We calculate the normalized correlation

value 2
”% Yegk(N) "
% >k l[gk(N)llz'

§=

In the following example, we choose K = 20000, where K is number of experi-
ments. Given N, where N is the data length. Let G4 denote the normalized correlation
_ between input desired signal and the finite sample time average realization of filter coef-
ficients ggst(N). §u denote the normalized correlation between input interfering signal
and the finite sample time average realization of filter coefficients ggsr(N). g, denote
the normalized correlation between input noise and the finite sample time average realiza-
tion of filter coefficients gggr(IN). Given the input SIR=0dB, and SNR=0dB. We choose
N =15 N =25 N =50, and N = 150 respectively, where N is the data length.
The desired and interfering signal are BPSK signals as given by Egs. (6.7.1) and (6.7.2)
respectively. The baud rates of the desired signal and the interference are equal which are
5kHz. The carrier frequency offset of the desired signal is fixed at f; = 10kHz and that of
the interference is fixed at fo = 17kHz, so that the spectral overlapping between the two
signals is 30%. The sampling rate f = 100kHz. For the parameters of the BLAST and
TAST filters, the number of sensors is chosen at L = 3, the length of FIR filters in each
FRESH filter is chosen at N, = 6, the number of the branches of FRESH filter is chosen
~at M = 2. The frequency shift in the two branches are set at a; = 20kHz, az = —20kHz
respectively. The shift frequency used in the reference path of the BLAST filter is set at
o = 0kHz. Both the input SIR and the input SNR are fixed at 0dB. The DOA difference
between the desired signal and the interference is fixed at 0°. We obtain the following cor-
relation values in Table B.1. From Table B.1, we can see that these correlation values are
very small. When we fixed the number of data length N at 15 and the spectral overlapping
is 30%, we change the DOA difference to be 0°,2°,5°, and 10° respectively, we obtain the
following correlation values in Table B.2. From Table B.2, we can see that these correlation

values are very small. When we fixed the number of data length N at 15 and the DOA
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N=10

N=25

N=50

N=150

Gd

0.4513 x10~*

0.5206 x10~*

0.1876 x10~*

0.1884 x10~4

Gu

0.4362 x10~*

0.7884 x10~*

0.2322 x10—4

0.7760 x10~*

Go

0.7359 x10~*

0.4472 x10~%

0.2456 x10~*%

0.0677 x10~*

Table B.1: The normalized correlation between the input signal and filter coefficients against
data length N=10, 25, 50, and 150 for K=20000

00

20

50

10°

gd

0.4513 x10~*

0.4417 x10~%

0.4282 x10~4

0.4176 x10~%

Ju

0.4362 x10~*

0.4338 x10~*

0.4298 x10~*

0.4248 x10~*

0.7431 x10~*

0.7576 x10~*

0.7597 x10—*

o | 0.7359 x10~*

Table B.2: The normalized correlation between the input signal and filter coefficients against
the different DOA difference 0°,2°,5°, and 10° for K'=20000.

difference at 10°, we change the spectral overlapping to be 40%, 30% 20%, and 10% respec-
tively, we obtain the following correlation values in Table B.3. From Table B.3, we can see
that these correlation values are very small. From Table B.1 to Table B.3, we can see that

these correlation values are very small. Therefore, we say the uncorrelation assumption is

valid in the finite symbol case.

40%

30%

20%

10%

gd

0.5266 x10~*

0.4513 x10~*

0.4719 x10%

0.5167 x10~%

Gu

0.3873 x10~*

0.4362 x10~*

0.4975 x10~*

0.4480 x10~*

Gv

0.1025 x10~*

0.0736 x10~*

0.0703 x10~¢

0.0657 x10~*

Table B.3: The normalized correlation between the input signal and filter coefficients against

the different spectral overlapping 40%, 30%, 20%,and 10% for K=20000.




Appendix C

Approximation of 7, by a Gaussian

Distribution

In this appendix, we discuss the approximation accuracy of v, by a Gaussian distribution
in Chapter 4 and Chapter 6. Because the case in Chapter 4 can be viewed as a special case
in Chapter 6, we just discuss the approximation accuracy of v, by a Gaussian distribution

in Chapter 6. Re-write the definition of «, here for convenience

L Nog+l2—-1 J La-1
Yo = > 2 2 9(=k)
A=1 k=1 { m=0

= =1
Re [h,\l(k - m)e'j2"°‘("‘"‘)p(m)e'ﬂ""'"‘e'ﬂ"('\'”a’] cos(2mA fom) cos(2mA f k)

L No+Lz—-1 M La2-1

+§1 kz Yo > 9(—k)

=1 I=J+1m=0
Re [hu(k - m)e-ﬂml“-m)p(m)e-ﬂ"mmeﬂ"(*-1)9'] cos(2r A fom) cos(2m A fk).

Here, the filter coefficient hym(n) (A = 1,2,---L,m = 1,2,--- M) denotes the impulse
response of the mth FIR filter in the {th FRESH filter, where M and L are the number
of the branch of the FRESH filter and the number of sensors respectively. These filter
coefficients consist of the filter coefficient vector of the BLAST filter g gg7 which is defined

in Eq. (5.3.3). For the infinite sample time average realization of g g5, ggsT is the constant
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vector q,p; Which is defined in Eq. (5.3.11). For the finite sample time average realization
of ggs, gpsT is the random vector ggs(N) which is defined in Eq. (5.4.2). GgsT(N) is
the function of N, where N is the data length. Because <, is linear combination of these
filter coefficients, we see that v, is a constant for the infinite data length case. For the finite
data length case, as the linear combination of a large number of random variables hj m(n),

v, can be approximated by Gaussian distribution with the mean

No+La2— Ii
1 k=1 I=1

Re [E[hu(k -m ]e'Jz""“(* m)p(m)e‘jz"“‘"‘e'jz"(’\_1)9'] cos(2mA fomn) cos(2mA f k)

L No+L2-1 M L-1

+2 2 X 2=k

=1 k=1 I=J+1 m=0
R%Ehﬂk—mthM*mﬂmkﬁ”mmﬂﬂ*W1aﬂ%Aﬁmkm@ﬂMﬁ)

1

¥

Il
M-
ﬁl"l".

>
1

—

and the variance
0'270 = E[’Yg] - #?Yo'
- The probability density function (pdf) of v, is therefore,

(2 = i)?

1
Pyo(2) = exp (— ) :
7 ‘/27?0.270 20‘270

Now we use experimental method to demonstrate the accuracy of the approximation.
Given the data length N, SIR=0dB, and SNR=0dB, we do K times experiments to generate
K samples of the filter coefficient hj ,(n). We use the kth sample of the filter coefficients
to compute the kth value of 7,. When K is large enough, we obtain a long sequence of
Yo(N). For the finite data length case, v,(N) is a random sequence. For the experimentally
generated v,, a histogram Hist(b;, ;) can be obtained, where b; is the center of ith bin,
the bin size b, is given by b;;; — b; and y; is the accumulation number. We normalize a

histogram by
- Yi

vi= bs Zi Yi
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such that
Y gibs =1
i

In the following examples, we choose K = 100000, where K is number of experiments.
We choose N =15, N =25, N = 50, and N = 150 respectively, where N is the
data length. The number of bins of the histograms is chosen to be 50. The desired and
interfering signal are BPSK signals as given by Eqgs. (6.7.1) and (6.7.2) respectively. The
baud rates of the desired signal and the interference are equal which are 5kHz. The carrier
frequency offset of the desired signal is fixed at f; = 10kHz and that of the interference
is fixed at f» = 17kHz, so that the spectral overlapping between the two signals is 30%.
The sampling rate f = 100kHz. For the parameters of the BLAST and TAST filters, the
" number of sensors is chosen at L = 3, the length of FIR filters in each FRESH filter is
chosen at N, = 6, the number of the branches of FRESH filter is chosen at M = 2. The
frequency shift in the two branches are set at a; = 20kHz, a; = —20kHz respectively.
The shift frequency used in the reference path of the BLAST filter is set at a = OkHz.
Both the input SIR and the input SNR are fixed at 0dB. The DOA difference between the
desired signal and the interference is fixed at 0°. We plot these histograms of v, with the
assumption of the pdf of 7, against different data length 15, 25, 50, and 150 in Fig. C.1(a)
to C.1(d) respectively. Comparing these histograms with the assumption of the pdf of o,
we can see heuristically how accurate the approximation is. Moreover we use the square
error between the experimental histogram and the theoretical curve to be a measure of the

approximation accuracy. The results are in the Table C.1.

@ =3 (5 — Py (b)) 20

It can be observed from Figs. C.1(a) to C.1(d), and Tables C.1 that the approximation of v,

2

+, is accurate. Moreover, it

as a Gaussian distribution with the mean p., and the variance o
also can be observed from Table C.1 that the mean of 7, is increased and the variance of 7, is
decreased when the number of data length is increased. When we fixed the number of data
length N at 15, we plot these histograms of 4, with the assumption of the pdf of v, against

different DOA difference 0°,2°,5°, and 10° in Fig. C.2(a) to C.2(d) respectively. Comparing
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these histograms with the assumption of the pdf of v,, we can see heuristically how accurate
the approximation is. Moreover we use the square error between the experimental histogram
and the theoretical curve to be a measure of the approximation accuracy. The results are
in the Table C.2. It can be observed from Figs. C.2(a) to C.2(d), and Tables C.2 that
' the approximation of v, as a Gaussian distribution with the mean pu,, and the variance
o2 is accurate. Moreover, it also can be observed from Table C.2 that the mean of 7, is
increased and the variance of v, is almost unchanged when the DOA difference is increased.
When we fixed the number of data length N at 15 and the DOA difference at 10°, we
plot these histograms of v, with the assumption of the pdf of v, against different spectral
overlapping 40%, 30% 20%, and 10% in Fig. C.3(a) to C.3(d) respectively. Comparing these
histograms with the assumption of the pdf of 7,, we can see heuristically how accurate the
approximation is. Moreover we use the square error between the experimental histogram
and the theoretical curve to be a measure of the approximation accuracy. The results are
in the Table C.3. It can be observed from Figs. C.3(a) to C.3(d), and Tables C.3 that the
approximation of v, as a Gaussian distribution with the mean ., and the variance a?,o is
accurate. Moreover, it also can be observed from Table C.3 that the mean of -, is increased
and the variance of 7, is reduced when the spectral overlapping is reduced. Moreover, to
" investigate the Gaussinity of -y, further, we use same scenarios above and change the input
SNR to be 10 dB and 20 dB respectively. The mean and the variance of 7, and the mean
square error between the experimental histogram and the theoretical pdf of v, are tablized
in Table C.4 to Table C.9. The related histogram comparisons are showr in Fig. C.4 to
Fig. C.9. It can be observed from Figs. C.4 to C.9, and from Tables C.4 to C.9 that the
2

approximation of v, as a Gaussian distribution with the mean u., and the variance o3, is

accurate.
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N=15 N=25 N=50 N=150
iy, | 0.3409 0.3472 0.3514 0.3539
o2 168 x10"7]3.5 x10=* [ 1.5 x10~* | 4.9 x10™°
d? |25 x1075 | 9.7 x10°% [ 5.2 x107° | 6.4 x10™°

Table C.1: The mean and the variance of 7, and the mean square error between the exper-
imental histogram and the theoretical pdf curve of v, for N=15, 25, 50, and 150 when the
input SNR is 0dB, the DOA difference is 0°, and the spectral overlapping is 30%

0° 2° 5° 10°

fiy, | 0.3409 0.3425 0.3498 0.3684
52 16.8 x10~% [ 6.8 x10~* | 6.8 x10~* | 6.8 x10~*
2.6 x1075> [ 2.6 x107° [ 3.0 x10—> [ 2.9 x10~°

Table C.2: The mean and the variance of v, and the mean square error between the experi-
mental histogram and the theoretical pdf curve of ~, for 0°, 2°, 5°, and 10° when the input
SNR is 0dB, the data length is 15, and the spectral overlapping is 30%

40% 30% 20% 10%
iy, | 0.3596 0.3684 0.3764 0.3844
52 8.6 x10~* ] 6.8 x10~* [ 6.0 x10~* [ 5.7 x10~*
d? 4.0 x107%[2.9 x10~° [ 7.7 x10~® [ 1.4 x10~°

Table C.3: The mean and the variance of v, and the mean square error between the exper-
imental histogram and the theoretical pdf curve of v, for 40%, 30%, 20%, and 10% when

the input SNR is 0dB, the data length is 15, and the DOA difference is 10°

N=15 N=25 N=50 N=150
fir, | 0.4106 0.4123 0.4135 0.4142
52 133 x1077] 1.6 x10~* [ 6.8 x10™> [ 2.0 x10~°
d® 149 x107° |23 x10~° | 8.8 x10~® | 9.8 x10~°

Table C.4: The mean and the variance of 4, and the mean square error between the exper-
imental histogram and the theoretical pdf curve of v, for N=15, 25, 50, and 150 when the
input SNR is 10dB, the DOA difference is 0°, and the spectral overlapping is 30%
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0° 2° 5° 10°
fiy, | 0.4106 0.4154 0.4313 0.4506
52 |33 x10~%[3.2 x10~%[2.9 x10~* ] 2.8 x10~*
d? 149 x107° [ 4.7 x10™° [ 3.9 x10~— | 3.2 x10~°

Table C.5: The mean and the variance of v, and the mean square error between the experi-
mental histogram and the theoretical pdf curve of v, for 0°, 2°, 5°, and 10° when the input
SNR is 10dB, the data length is 15, and the spectral overlapping is 30%

40% 30% 20% 10%

fye | 0.4490 0.4506 0.4521 0.4541
52 54 x107% | 2.8 x10~7 [ 1.8 x10~* | 1.5 x10~*
7.6 x10~° | 3.2 x10~° [ 6.0 x10~° [ 1.2 x10~°

Table C.6: The mean and the variance of v, and the mean square error between the exper-
imental histogram and the theoretical pdf curve of ~, for 40%, 30%, 20%, and 10% when

the input SNR is 10dB, the data length is 15, and the DOA difference is 10°

N=15 N=25 N=50 N=150
fq, | 0.4223 0.4226 0.4229 0.4231
&2 [2.9 x107% [ 1.4 x10~* [ 5.7 x10™> | 1.7 x10~°
d? |69 x10~° | 2.8 x10~° [ 1.9 x10~° | 1.0 x10™°

Table C.7: The mean and the variance of 7, and the mean square error between the exper-
imental histogram and the theoretical pdf curve of v, for N=15, 25, 50, and 150 when the
input SNR is 20dB, the DOA difference is 0°, and the spectral overlapping is 30%

00 20 50 100
fia, | 0.4223 0.4435 0.4632 0.4696
52 129 %1077 |24 x10~7 [ 2.3 x10-* [ 2.2 x10~*
d? 6.9 x10~° | 5.7 x10~° | 3.2 x10~> [ 3.0 x10™° |

Table C.8: The mean and the variance of v, and the mean square error between the experi-
mental histogram and the theoretical pdf curve of «, for 0°, 2°, 5°, and 10° when the input
SNR is 20dB, the data length is 15, and the spectral overlapping is 30%
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40% 30% 20% 10%
iy, | 0.4694 0.4696 0.4698 0.4705
52 [5.1 x107%¥ {22 x107%] 1.1 x10~* | 8.8 x10~°
6.1 x10~° 3.0 x10™° | 1.7 x10™° | 1.1 x10~>

Table C.9: The mean and the variance of 9, and the mean square error between the exper-
imental histogram and the theoretical pdf curve of v, for 40%, 30%, 20%, and 10% when
the input SNR is 20dB, the data length is 15, and the DOA difference is 10°
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Figure C.1: Comparison between the experimental histogram and the theoretical pdf curve
of v, for N=15, 25, 50, and 150 when the input SNR is 0dB
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Figure C.2: Comparison between the experimental histogram and the theoretical pdf curve
of 7, for the DOA difference 0°, 2°, 5°, and 10° when the input SNR is 0dB
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Figure C.3: Comparison between the experimental histogram and the theoretical pdf curve

of v, for different spectral overlapping 40%, 30%, 20%, and 10% when input SNR is 0dB
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Figure C.4: Comparison between the experimental histogram and the theoretical pdf curve
of v, for N=15, 25, 50, and 150 when the input SNR is 10dB
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Figure C.5: Comparison between the experimental histogram and the theoretical pdf curve
of 7, for the DOA difference 0°, 2°, 5°, and 10° when the input SNR is 10dB
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Figure C.6: Comparison between the experimental histogram and the theoretical pdf curve
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of «, for different spectral overlapping 40%, 30%, 20%, and 10% when input SNR is 10dB
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Figure C.7: Comparison between the experimental histogram and the theoretical pdf curve
of v, for N=15, 25, 50, and 150 when the input SNR is 20dB
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Figure C.8: Comparison between the experimental histogram and the theoretical pdf curve
of v, for the DOA difference 0°, 2°, 5°, and 10° when the input SNR is 20dB
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Figure C.9: Comparison between the experimental histogram and the theoretical pdf curve
of v, for different spectral overlapping 40%, 30%, 20%, and 10% when input SNR is 20dB



Appendix D

~Approximation of 7 by a Gaussian

Distribution

In this appendix, we discuss the approximation accuracy of 7. by a Gaussian distribution
in Chapter 4 and Chapter 6. Because the case in Chapter 4 can be viewed as a special case
in Chapter 6, we just discuss the approximation accuracy of 7. by a Gaussian distribution

in Chapter 6. Re-write the definition of 7. here for convenience
ne(n) = n(n) + &rsr(n) + &cri(n)

where 7(n), &s7(n), and £cri(n) are the output noise, output ISI, and output CTI re-
_ spectively. n(n), €1sr(n), and écry(n) are defined in Egs. (6.3.1), (6.4.7), and (6.5.2)

respectively.

As the result of large amounts of random variables acting together, 7, can be ap-

proximated by Gaussian distribution with zero mean

pn. = E[ne] = E[n] + E€1s1] + Elécti] =0

and the variance

03,, = ‘772; + Crs1 + (CTIave
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02, (151 and {cT1ave are the variance of 7, £1sr and €crr and they are defined in Egs.

(6.3.4), (6.4.12) and (6.5.11) respectively.

The pdf of 7, is therefore,

» (z)_;exp(_i)
e ,/2?ch"?,e 2‘7121¢ .

Now we use experimental method to demonstrate the accuracy of the approximation. Given
the data length N, SIR=0dB, and SNR=0dB, we do K times experiments to generate K
samples of the filter coefficient k) ;n(n). Using the kth sample of the filter coefficients and
the input noise, input desired symbols, and input interfering symbols to compute the kth
value of 7., we obtain a long random sequence of 7.(N). For the experimentally generated
7e, a histogram Hist(b;, y;) can be obtained, where b; is the center of ith bin, the bin size b,

is given by b;,1 — b; and y; is the accumulation number. We obtain normalized histogram.

In the following examples, we choose K = 100000, where K is number of experi-

ments. We choose N =15, N =25, N =50, and N = 150 respectively, where N is
’ the data length. The number of bins of the histograms is chosen to be 50. The desired
and interfering signals are BPSK signals as given by Egs. (6.7.1) and (6.7.2) respectively.
The baud rates of the desired signal and the interference are equal which are 5kHz. The
carrier frequency offset of the desired signal is fixed at f; = 10kHz and that of the inter-
ference is fixed at fo = 17kHz, so that the two signals overlap on 30%. The sampling rate
f = 100kHz. For the parameters of the BLAST and TAST filters, the number of sensors
is chosen at L = 3, the length of FIR filters in each FRESH filter is chosen at N, = 6,
the number of the branches of FRESH filter is chosen at M = 2. The frequency shift in
the two branches are set at a; = 20kHz, as = —20kHz respectively. The shift frequency
used in the reference path of the BLAST filter is set at a = O0kHz. The input SIR and the
input SNR are fixed at 0dB respectively. The DOA difference between the desired signal
and the interference is fixed at 0°. We plot these histograms of 7, with the assumption
of the pdf of 7, against different data length 15, 25, 50, and 150 in Fig. D.1(a) to D.1(d)

" respectively. Comparing these histograms with the assumption of the pdf of 7., we can see
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heuristically how accurate the approximation is. Moreover we use the square error between
the experimental histogram and the theoretical curve to be a measure of the approximation

accuracy.
d® = )" (5 — Py (5:))%03-

The results are in the Table D.1. It can be observed from Figs. D.1(a) to D.1(d), and
Tables D.1 that the approximation of 7, as a Gaussian distribution with the zero mean and
the variance oy, is accurate. Moreover, it also can be observed from Table D.1 that the
variance of 7, is decreased when the number of data length is increased. When we fixed
. the number of data length N at 15, we plot these histograms of 7, with the assumption of
the pdf of 7. against different DOA difference 0°,2°,5°, and 10° in Fig. D.2(a) to D.2(d)
respectively. Comparing these histograms with the assumption of the pdf of 7., we can see
heuristically how accurate the approximation is. Moreover we use the square error between
the experimental histogram and the theoretical curve to be a measure of the approximation
accuracy. The results are in the Table D.2. It can be observed from Figs. D.2(a) to D.2(d),
and Tables D.2 that the approximation of 1, as a Gaussian distribution with the zero mean
and the variance a;*’k is accurate. Moreover, it also can be observed from Table D.2 that the
variance of 7, is almost unchanged when the DOA difference is increased. When we fixed
the number of data length N at 15 and the DOA difference at 10°, we plot these histograms
of n. with the assumption of the pdf of 7. against different spectral overlapping 40%, 30%,
20%, and 10% in Fig. D.3(a) to D.3(d) respectively. Comparing these histograms with the
assumption of the pdf of 7., we can see heuristically how accurate the approximation is.
. Moreover we use the square error between the experimental histogram and the theoretical
curve to be a measure of the approximation accuracy. The results are in the Table D.3. It

can be observed from Figs. D.3(a) to D.3(d), and Tables D.3 that the approximation of 7,

2

as a Gaussian distribution with the zero mean and the variance o

. is accurate. Moreover,
it also can be observed from Table D.3 that the variance of 7, is reduced when the frequency

overlapping is reduced.
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N=15 N=25 N=50 N=150
fin, | 5.9 x107° [ 8.0 x10~> | -8.0 x10~> | -5.8 x10~°
5 0.0038 0.0031 0.0026 0.0022

_d? 9.9 x10~% | 3.4 x107°% | 9.3 x107° | 1.2 x10™°
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Table D.1: The mean and the variance of 7. and the mean square error between the exper-
imental histogram and the theoretical pdf curve of 7, for N=15, 25, 50, and 150 when the

input SNR is 0dB, the DOA difference is 0°, and the spectral overlapping is 30%

0° 2° 5° 10°
fin. | 5.9 x107° [ 3.0 x10> | -2.1 x10~' | -1.7 x107>
52 0.0038 0.0038 0.0037 0.0036
wa 9.9 x10~5 [ 1.0 x10~° | 6.3 x10® | 8.0 x10~°

Table D.2: The mean and the variance of 7, and the mean square error between the ex-
perimental histogram and the theoretical pdf curve of 5, for 0°, 2°, 5°, 10° when the input

SNR is 0dB, the data length is 15, and the spectral overlapping 30%.

40% 30% 20% 10%
fin, | 1.0 x107% [ -1.7 x10™> | 1.5 x107% | 1.9 x10~>
52 0.0048 0.0036 0.0032 0.0030

9.6 x10~°

g,
_ff 8.8 x10-° | 8.0 x10-° | 9.0 x10~°

Table D.3: The mean and the variance of n. and the mean square error between the exper-
imental histogram and the theoretical pdf curve of 7, for 40%, 30%, 20%, 10% when the

input SNR is 0dB, the data length is 15, and the DOA difference is 10°
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Figure D.1: Comparison between the experimental histogram and the theoretical pdf curve
of n, for N=15, 25, 50, 150 when the input SNR is 0dB
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Proofs of Eqgs. (4.6.13) and (6.6.14)

Show that

—('m-u:m)z 2
exp erfc( To )d'ya = %erfc( #—i——

1/°° 1
2 /- \/ 2702, ,/20,2k 6'270+2072k

Proof: Let v = v, — p4, and noting that erfc(z) = 72; I e~*'dz, we have

2
. Y+ By
Left side = / exp’”'r erfc | ——== | dvy (E.0.1)

2 ,/21r02 ( \/ 202, )

2
= 2 [% 22
= _/ ED) exp~* dzdvy
T+
o) ™ L
Let w = — 2—7-18-7+“ that is, z = — w—7‘—"§i-7+
202, ? ? 203, ’
2
Lef d 1 [ro° 1 2;7;_ 2 0 _(w_7+2u2>
eft side = —/ ————exp*7 / ex “ne / dwd
2 /-0 /2102, RV . P !
2
2 _atuy
1 w0 ’[?3’:*("’ V252, )]
- / exp L e/ | dwdy (E.0.2)
-0 J =0
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We note that

) ) :,2 ~'z%z,‘f:
Substitutiing Eq. (E.03) into Eq. (E.02) and let v = /(g + 5 ) {7 - P22

and noting that 71; Iz, e’ dv = 1, we obtain

-k <
1 1 202 20
“\wrtr )i
1 00 (20.’0 2”1¢)< 2_0&__’_;'&_ ) 1
= / exp LAY N A VS — (E.0.4)
T J-0

Therfore, we obtain

2 2
Left side = ! = ! / exp o+ The 5. ) dw (E.0.5)
1 1 —00
Vi, \/(m— + 57
o3 .
Letz=— ;3;7_%{ (w— 203’:), we obtain

2
ol ) ientside. O (E.0.6)

/w e Fdr = 1erfc
Tlﬂﬁ=“ T2 202+ 203,
20..,°+20,2,¢

. 1
Left side = ﬁ
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