INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unilikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overfaps.

ProQuest information and Leamning
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI






STOCHASTIC OPTIMIZATION MODELS FOR SERVICE AND
MANUFACTURING INDUSTRY

BRIAN T. DENTON, B.Sc., M.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University

© Copyright by Brian T. Denton, May 2001



STOCHASTIC OPTIMIZATION MODELS



Doctor of Philosophy (2001) McMaster University

Management Science Hamilton, Ontario

TITLE: Stochastic Optimization Models for Service and Manufacturing Industry

AUTHOR: Brian T. Denton, B.Sc (McMaster University), M.Sc. (York University)

SUPERVISOR: Professor Diwakar Gupta

NUMBER OF PAGES: xi, 156

i



Abstract

We explore two novel applications of stochastic optimization inspired by real-world prob-
lems. The first application involves the optimization of appointments-based service systems.
The problem here is to determine an optimal schedule of start times for jobs that have ran-
dom durations, and a range of potential cost structures based on common performance
metrics such as customer waiting and server idling. We show that the problem can be
formulated as a two-stage stochastic linear program and develop an algorithm that utilizes
the problem structure to obtain a near-optimal solution. Various aspects of the problem are
considered, including the effects of job sequence, dependence on cost parameters, and job
duration distributions. A range of numerical experiments is provided and some resulting
insights are summarized. Some simple heuristics are proposed, based on relaxations of the
problem, and evidence of their effectiveness is provided. The second application relates to
inventory deployment at an integrated steel manufacturer (ISM). The models presented in
this case were developed for making inventory design-choice (what to carry) and lot-size
(how much to carry) decisions. They were developed by working with managers from sev-
eral different functional areas at a particular ISM. They are, however, applicable to other
ISMs and to other continuous-process industries with similar architectures. We discuss
details of the practical implementation of the models, the structure of the problems, and
algorithms and heuristics for solving them. Numerical experiments illustrate the accuracy
of the heuristics, and examples based on empirical data from an ISM show the advantages

of using such models in practice and suggest some managerial insights.
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Chapter 1

Introduction

Both manufacturing and service sector industries are significantly affected by supply and
demand uncertainty. In the manufacturing sector (e.g. automobile assembly, steel-making,
semiconductor fabrication) uncertainty in production yield, processing time, and customer
demand, affects long-term decisions such as capacity investment and facility location and
design, as well as medium-range decisions involving inventory control and production plan-
ning. Service sector industries (e.g. hospitals, banks, law practices) are similarly affected.
For them the major source of supply uncertainty is often randomness in service time dura-
tions, which affects performance measures such as facility idle time, customer waiting and
overtime costs. These measures in turn affect long-term decisions such as capacity invest-
ment and service pricing, as well as short-term decisions about daily staff assignment and
work/shift schedules.

An important aspect of managing uncertainty is understanding the short-term recourse
actions that can be taken after uncertain future events are realized. For instance, there
may be significant variation over time in customer demand for a product or service but
the overall optimal capacity may be far short of the peak demand. As a result, different
types of recourse available for managing congestion should be considered when making a

capacity investment decision. For example, a higher peak load pricing is used in many



CHAPTER 1. INTRODUCTION 2

service industries to encourage customer utilization at times other than the peak load time,
and in manufacturing industries planned overtime and outsourcing of product orders arce
COUNON.

Effective stochastic planning models must be able to capture both the relevant sources
of uncertainty as well as the potential recourse actions. In many cases, identifying sources
of uncertainty that affect system performance is easier than modeling them. The modeler
must be able to ascertain properties of, and associations between, the random variables
(e.g. moments, correlation coefficients). In most real world applications this is done by
analyzing historical data and/or obtaining subjective information from decision makers. To
model the recourse decisions adequately the modeler must have a good understanding of
the different ways the system can react to potential realizations of uncertain future events.

Mathematical models for decision making under uncertainty originated in statistical
decision theory, developed initially be Wald (1950). Such models focus on procedures for
constructing objectives and updating the probability distributions of random variables,
based on partial decisions and observations. The stochastic optimization literature, on
the other hand, focuses on the use of mathematical programming models. The first such
models, advanced by Beale (1955) and Dantzig (1955), dealt with two-stage problems in
which there is an initial decision, followed by the resolution of some uncertainty, and then
subsequent recourse actions. They were deterministic linear programs in which the objective
was an expectation with respect to a discrete set of scenarios. An alternative formulation,
called chance constrained programming, was developed by Charnes and Cooper (1959),
and includes constraints that hold with some specified probability. Two-stage modeling is
readily generalized to multi-stage modeling which can be considered a branch of discrete-
time linear control. In contrast to statistical decision theory, the emphasis of research on
these mathematical programming-based models has been on solution methods and analytic

properties of solutions.
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A general stochastic decision problem can be expressed in the following way. Let x
represent some decision vector and £ a vector of random variables with support = and
probability distribution function P. Assuming r(x.-) : = — R represents some reward we

can write a general decision model as

m}x{EE[r(x,E)] |x € X} (1.1)

where
Eglr(x.€) = [ r(x,€)dP(e) (1.2)

and X is the set of feasible decisions. The difference between stochastic programming and
statistical decision theory is the approach to this problem. Statistical decision theory is
concerned with the appropriate method for updating P as partial information is obtained
as partial choices of decision variables x, and observations of £. This approach is typically
tractable only when the feasible decisions, X, form a small, finite set. On the other hand, in
stochastic programming it is assumed that the form of the function r(x, £) and changes in P,
as a function of the chosen decisions, are known. The difficulty is assumed to be in evaluating
the expectation in (1.1), which in most realistic decision models requires the evaluation of
multi-dimensional integrals (or nested sums if the random variables are discrete) with no
closed-form solutions. The difficulty in evaluating the objective and gradient of (1.1) often
makes standard optimization methods impractical. However, there are several methods that
are specifically designed for problems of this type. We review some of them in the next
Chapter.

In recent years, much of the focus in the literature on stochastic programming has
shifted to identifying properties of specific problems that allow for efficient solution or
approximation. In this thesis we explore two novel stochastic optimization models that are
inspired by real-world problems. The first is in the determination of the optimal schedule

of start times for jobs that have random durations, and a range of potential cost structures
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based on common performance metrics such as customer waiting and server idling. That
problem can be described as optimization of the performance metrics of an S(1)/G(n)/1
queue, where §(n) stands for a set of n scheduled arrivals, and G(n) the job duration
probability distributions for each of the n jobs. We show that the problem can be formulated
as a two-stage stochastic linear program and develop an algorithm that utilizes the problem
structure to obtain a near-optimal solution, as well as upper and lower bounds on the
difference between the optimal and approximate solution. Bounds on the expected cost
savings that can be realized from resequencing jobs are derived. Since variability in job
durations is a major source of inefficiency in appointment scheduling, we also study the
effect of changing the variance of job durations on the total expected cost of running an
appointments-based service system. A range of numerical experiments for different cost
structures and job duration distributions is presented and general insights gained from the
numerical results are summarized. Some simple heuristics are proposed based on relaxations
of the problem, and evidence of their effectiveness is provided.

The second application relates to inventory planning at an integrated steel manufacturer

(ISM). Although ISMs have typically operated according to a make-to-order policy in the
past, recent and significant changes to the competitive environment in which they operate
have resulted in the need to carry planned inventory. Existing inventory models were
developed with applications to discrete parts manufacturing in mind and generally are not
applicable to the inventory problems faced in process industries like the steel industry. The
models we present can be used for making strategic inventory deployment decisions which
consist of choosing the design of inventory items to carry and the quantity to carry. They can
easily be extended to other continuous-process industries with similar architectures. First,
we begin by presenting a model for choosing, from a continuous range of semi-processed
inventory, a finite set of items to stock. The model accounts for the large variety of finished .

products, limited storage capacity, and production costs and constraints. The problem is



CHAPTER 1. INTRODUCTION 5

classified with respect to the existing literature on similar problemns and known heuristics are
adapted for solving it. Details of the practical implementation of the model at a particular
[SM are discussed. Numerical experiments based on cmpirical data are presented and the
managerial insights that can be drawn from them are addressed. Next, we discuss a related
model for simultaneously choosing items to stock and stocking levels, given uncertainty in
both supply and demand. The structure of the problem is analyzed, and heuristics that are
well suited to the problem are discussed. Their accuracy is tested in a series of numerical
experiments, and several numerical examples based on empirical data are presented which
illustrate the importance of explicitly modeling uncertainty for inventory planning.

The thesis is organized as follows. Chapter 2 presents a literature review of stochas-
tic programming methods and applications. In Chapter 3 we introduce the problem of
scheduling start times for jobs with uncertain durations, discuss the model and methods
used, discuss some heuristics, and provide several numerical examples as well as general in-
sights. Chapter 4 introduces the steel-making process and discusses some important aspects
of steel-making that affect optimization of inventory systems for semi-finished products; it
then presents a model for optimizing inventory placement, methodology for solving it, nu-
merical examples, and specific details of its implementation at a particular ISM. In Chapter
5 we consider the problem of simultaneously choosing the items to stock and the level
of inventory to order given uncertainty affecting supply and demand. A stochastic linear
programming model is presented, heuristics suited to the structure of the problem are dis-
cussed and tested, and numerical examples based on empirical data from the particular
ISM are provided and used to draw managerial insights. Finally, in Chapter 6, we provide

a summary and discuss future research directions.



Chapter 2

Literature Review

2.1 Introduction

Stochastic programming is the branch of mathematical programming concerned with solving
optimization problems in which there is uncertainty in the problem data. Typically such
problems are related to dynamic systems. They involve decisions that are made given only
partial knowledge of future outcomes. The optimal decisions are defined by the probabilistic
nature of the future outcomes and the potential corrective (recourse) actions which can be
taken after they are realized. Modeling of such problems under uncertainty can lead to a
wide range of problem structures. In this Chapter we review the structures and properties
of stochastic linear programs (SLP) and methods for solving them.

The key feature that distinguishes SLPs from linear programs is the presence of random
variables that affect the problem parameters. We denote the realizations of such random
variables which affect the problem parameters by the vector £(w) € R", where w is a
random object defined on some abstract probability space (£2, A, P), such that Q is the set
of possible outcomes, A is the set of events, and P is a probability measure. The vector
§(w) € R" is a mapping of the abstract probability space into (R", B®, F) where B" is the

Borel field on R™ and F is the distribution function. Furthermore, = C R" denotes the
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support of £, i.e., the smallest closed set in R" such that P(§(w) € =) = 1. Throughout
this Chapter we write vectors in bold face, use a bar (e.g. €) to denote first moments, and
suppress notation for the transpose when writing inner products of vectors except when it
is not obvious from the context.

We start by using a simple example of a stochastic model. the newsvendor problem, to
illustrate some properties of stochastic programs. The problem involves a decision about
how many units of a product (newspapers) to purchase for resale. given random demand.
The decision, z € R, is the quantity of papers to purchase. The per unit cost of shortages

is ¢y, and the per unit cost of excess papers is ce, and demand is a random variable, £, with

probability distribution function F(-). Thus we can write the cost function as

Q) =c. [ (€ - 2)dF(€) +ce / “(z - E)dF(€) (2.1)

Under reasonable assumptions it can be shown that Q(z) is convex and differentiable, and

the optimality condition is as follows:

z° = F—I(Z,i;c,)’ (2.2)

A common way of approximating stochastic models is to replace the random variables by
their mean values. The resulting solution is called the mean-value solution. Using the mean-
value approach in the newsvendor problem would result in the purchase of £ units. Unless
this happens to correspond to the optimality condition (2.1), ie., £ = F"‘(;";a-), the
expected return is suboptimal. The difference between the expected return from a decision
based on the mean-value approach and the true stochastic decision model is referred to as
the value of the stochastic solution VSS (Birge, 1982). It is often used as a measure of the
improvement due to solving the stochastic model. Another measure is the ezpected value of

perfect information EVPI (Raiffa, 1961) which compares the solution to that which would

be obtained if the decision maker knew the future outcome in advance. For the newsvendor
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problem, if perfect information were available the expected cost would be 0 and the EVPI
would be —Q(z*).

In the newsvendor example the analytic result (2.2) is easily derived. This is quite rare
in many decision models as we will see from the more general setting of two-stage and multi-
stage problems. In the sections to follow we review methods for solving general stochastic
linear programs. The structure of the review is as follows. We start by discussing various
formulations. Next we summarize some basic properties that underpin standard solution
methods. The discussion of solution methods is partitioned into two groups: (a) exact
algorithms for the case in which the support, Z, is finite and (b) sampling and bounding
based approximations for the case in which the cardinality of Z is too large for exact solution,
or when = is continuous. For a more comprehensive discussion of stochastic programming
the reader is referred to Kall and Wallace (1994), Dempster (1986), Ermoliev and Wets
(1988), Frauendorfer (1992), Infanger (1994), Birge (1995) and Birge and Louveaux (1997).

This Chapter is organized as follows. In the next section we discuss the general formu-
lation of two-stage and multi-stage stochastic linear programs, and the alternative chance-
constrained formulation. In section 2.3 we summarize some basic properties of stochastic
linear programs important to the development of practical solution methods. In section 2.4
we review some exact solution methods for the special case in which the support of the ran-
dom variables is finite, and in section 2.5 we discuss some common approximations for the
general case in which it may be continuous or finite. In section 2.6 we give some examples
of applications of stochastic linear programming and in section 2.7 we briefly summarize

some important future research directions.
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2.2 Formulation of Stochastic Programs

[n this section we briefly discuss the basic formulation of two-stage. multi-stage, and chance-
constrained stochastic linear programs as well as an alternate formulation of such problemns

based on a redefinition of decision variables.

2.2.1 Two-Stage Stochastic Linear Programs (2S-SLPs)

Two-stage stochastic linear programs (2S-SLP) are used when there is a decision that must
be made prior to the realization of some uncertain data, and linear functions provide a suit-
able approximation. After the uncertainty is resolved there is an opportunity for recourse.
The recourse decision is defined by a second stage linear program which depends on the
uncertain outcome and the first stage decision. The goal is to determine the first stage
decision which best hedges against the different possible outcomes of the random variables,
given that the optimal recourse action will be taken in the second stage. Letting x € R™!,
and y € R™?, denote the first and second stage decisions respectively, we can write the

general formulation of 2S-SLP as
mxin {cx + Q(x) | Ax = b} (2.3)

where A € R™1*"1 b € ™, define deterministic constraints on x and ¢ € R™! is a vector

of deterministic first stage cost coefficients. The recourse function, Q(x), is

Q) = BelQ(x, &) = [ Qx,£)dP(e)
where
Qx.€) = min {a@)y() | TW)x+ Wwly@) = h@).yw) 20} (24)

and h € R™2, T € R™2*™ and W € R™2*"2, The second stage objective function, Q(x, £),
and constraints are defined by a vector of cost coefficients, q(w), a vector of RHS values,

h(w), and constraint matrices, T(w), and W(w), referred to as the technology and recourse
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matrices respectively. The vector £ may be comprised of some or all of the components of
q(w), h(w), and the matrices T (w), and W(w), depending on the nature of the problem. In

the most general case §(w) = (q(w), h(w), T((w), ..., T, (W), Wi (w). .... W, (w)).

2.2.2 Multi-Stage Stochastic Linear Programs (MS-SLPs)

The 2S-SLP is a special case of the more general multi-stage stochastic linear program
(MS-SLP) in which a partial resolution of uncertainty occurs at cach of a discrete set of
stages. At each stage there is a set of recourse actions that depend on prior decisions and
realizations of random variables. The general MS-SLP with fixed recourse can be written

as
min{c!x! + Eg’ [min{c?(w)x?(w?) + ... + Eey[min{ (¥ (W)xf (W)} --- 1} (2.5)

s.t. wix! = h!

THw)x! + W¥(w)x?(w?) = h%(w)

T w)xA 1) + WH () xH (W) = hf(w)

x!>0, xtw')>0, t=2,.,H

where t = 1,..., H indexes H stages, and x* € R™, ht € R™, Tt € R™*™ and W'(w)
€ Rmexne_ The cost vector, c! € R™!, is known in stage 1 and the constraints W!x! = h!
correspond to the first stage constraints from the two-stage formulation (2.3). Random
observations made at the beginning of stage ¢t + 1 are represented by w,; and the history
of observations made up to stage ¢t + 1 are represented as w' = {w,...,w}. The random

observations that are made during stage t are represented by

€ = (c*(w), ht(w), Ti ' (W), ..., T Hw), Wh (w), ..., Wy, ().
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The MS-SLP formulation assumes that random observations at stage £, &' are indepen-
dent of decisions made in prior stages. This assumption is key in establishing immportant
propertics discussed in section 2.3 that underpin solution methods. Since the only interac-
tion between the stages is through the decision variables we can write the above problem

more concisely as the following recursion:

Q'(x*~", ") = min{c!(w)x' (w') +Q* (x) | WH(w)x'(w) = h'(w)-T* {w)x' !, x*(w) > 0}
(2.6)
where Q**!(xf) = EE¢+1[Q‘+1(x‘,£‘+l)] for t = 1,..., H. The solution of (2.6) yields the

optimal decision at each stage for each set of possible realizations at that stage.

2.2.3 Chance Constrained Programs

Another way of formulating a stochastic program is to define constraints that hold with a
certain probability a € [0, 1]. In the above formulations of 2S-SLP and MS-SLP the second
stage constraints are specified to hold with probability 1. A generalization is to specify

chance constraints which hold with a specified probability. Such constraints are of the form
P{Fx2>gw)} 2« (2.7)

where F’x > g(w) is a set of linear constraints that must hold with probability at least
a. This type of formulation was first discussed in the context of stochastic programming
by Charnes and Cooper (1959). Chance constraints are often very useful for modeling
risk. For example, in a manufacturing problem the probabilistic constraint might define the
probability of a stock-out, in a portfolio optimization problem it might restrict a capital
loss.

Models with constraints of the form in (2.7) are referred to as p-models. Other chance
constrained formulations include the case in which the objective or constraints depend on

the variance of some random variables ( V-model) or a quantile of a random function. These
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formulations are fundamentally different than the recourse models 2S-SLP and MS-SLP.
However, in some special cases an equivalent 25-SLI? or MS-SLI? model can be found for a

given problem (see Gartska, 1980, for an example).

2.2.4 Nonanticipativity Constraints

There is an alternate formulation of 2S-SLP and MS-SLP based on redefining the decision
variables and using nonanticipativity constraints. In this formulation a separate set of
decision variables is defined at each stage for each scenario, and nonanticipativity constraints
are used to enforce the fact that a decision made at a given stage should not anticipate the
outcomes of random variables in later stages. For example, although for stage ¢ the decision
variable, x;(w), is defined for every set of future realizations, it is required to satisfy the
following additional constraint

xt(w) = Ent [x;(w)].

where Q! = {w' | w; € Q;, i = 1,...,t}, i.e., x;(w) must be independent of future random

outcomes.

2.3 Properties of Stochastic Linear Programs

In this section some important properties of SLP’s are summarized. The focus is on dis-
cussion of properties of 2S-SLP. Some extensions of the results for 25-SLP to MS-SLP and

important results for chance constrained problems are discussed at the end of the section.

2.3.1 Properties of 2S-SLP

From the structure of (2.4) it is clear that the first stage decisions, x, affect the feasible
region for second stage decisions. Thus there are two sets of constraints which define the

feasible region for x. The first set consists of deterministic first stage constraints, and are
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denoted by

Ki = {z | Ax = b}.

The second is a set of induced constraints which result from the requirement that the second
stage problem is feasible. There are different ways of specifying the induced constraints.
Letting Q(x, &) = +oo if the second stage problem is infeasible, the induced feasible region,
K, is

K> = {x|Q(x) < oo}.

An alternative definition, referred to as the possibility interpretation, is
K% = {x | V€ € Z, there exists y > 0 s.t. W(w)y = h(w) - T (w)x}

Equivalence of K> and K} is not guaranteed. For example, K, does not require feasible
completion for all £ € Z; if = is continuous, it may contain a countable set of points for
which Q(x, &) = +oo provided the set of points has probability zero. On the other hand it
is possible that, for given x, Q(x,£) < +o0o ,V€ € =, but Es[Q(x, £€)] is unbounded. The
following are fairly non-restrictive sufficient conditions for equivalence of K> and K%, first

derived by Wets (1974).
Proposition 1 : The sets K, and K} coincide if:

is finite.

fn

8]

ii. = is continuous, W is fized (independent of €), and € has finite second moments.

See Wets (1974) for a proof.
Necessary conditions for equivalence are not known. However, in practice the above con-
ditions are not very restrictive. Given these conditions the following propositions can be

proved

Proposition 2 Given either of the conditions in proposition I the following properties hold
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1. K, is closed and convez.
ti. tf T is fired, Ky is polyhedral.

ui. if =1 represents the support of the distribution of T(£), h(§) and T(§) are indepen-

dent, and =1 is polyhedral, then Ky is polyhedral.

Proof of this proposition can be found in Wets (1974). Having defined some properties of

the feasible region of x we now summarize some important properties of Q(x).
Proposition 3 If W is fized then Q(x,§) is

i. piecewise linear convez in (h(£), T(€))-
1. Q(x,&) is piecewise linear concave in q.
1. Q(x,&) is piecewise linear conver in x for all x € { K| N K3}.

Problems in which W is fixed are referred to as fized-recourse problems. The properties in
propositions 1-3 follow from the fact that Q(x, £) is a linear program. (Proofs can be found
in Birge and Louveaux (1997), Chapter 3, Theorem 6.) In some cases the feasible regions
K, and K, may have special properties which are useful in computation. For example, if
K, C Kj, then every first stage decision is second stage feasible. Problems which exhibit
this structure are said to have relatively complete recourse. It is often difficult to verify this
property; however, many formulations satisfy a weaker condition, referred to as complete
recourse. This refers to the condition that the recourse matrix, W, contains a positive linear
basis, i.e., pos(W) = R3*.

Properties in propositions 1-3 can be used to prove the following properties of the

expectational functional Q(x).

Proposition 4 If W is fized and £ has finite second moments
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t. (J(x) is Lipschitzian convez and finite on K,.
1. When = is finite Q(x) is piecewise linear.
ui. If F(€) is a continuous distribution then Q(x) is differentiable on K,.

Proof: convexity and finiteness of Q(x) follow directly from the conditions in propositions 1
and 3, and piecewise linearity when = is finite also follows from proposition 3. The definition
of a Lipschitzian convex function, and proofs of the continuity properties appear in Wets
(1974; theorem 7.7 and proposition 7.18 respectively).

An alternate representation of Q(x) that uses the dual of Q(x, £) is

Q) = [ m(x,)(a(€) - TEx)AP() (28)

where 7(x, £) denotes the optimal solution to the dual of Q(x,£). The following proposition

is important in the context of decomposition algorithms.

Proposition 5 Given the conditions in proposition I the hyperplane

{(z,x) | z + Egln(x,£)T(£)lx = Eg[m(%,6)h(¢)]}

15 a supporting hyperplane of Q(x) at x.

A proof of proposition 5 appears also in Wets (1974). Proposition 5 plays an important role
in solution algorithms such as the L-shaped method (Van-Slyke and Wets, 1969) discussed
in section 2.4.

Conditions under which stochastic linear programs are dualizable can be found in Rock-
afellar and Wets (1976). Also, conditions under which solutions are attainable, and issues

regarding stability, are reviewed in Chapter 3 of Birge and Louveaux (1997).
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2.3.2 Properties of MS-SLP

Many of the properties of the 2S-SLP can be extended to MS-SLP duc to its recursive
structure. Given the sequential structure of the problem, the stage-f feasible region can be
defined by

K, = {x'| Q"' (x!) < oo).

Similar properties for the equivalence of K, to a possibility interpretation of the feasible
region can be derived. From a practical standpoint most multi-stage models assume finite =.

The following is an important result for the development of solution methods for MS-SLP.
Proposition 6 The sets K, and stage-t recourse functions Q**'(x*) are convez V t.

Proof: see Birge and Louveauz (1997).
See Birge (1985), Gassman (1990), and Birge and Louveaux (1997), Chapter 11, for addi-
tional details of MS-SLP.

2.3.3 Probabilistic Constraints

Probabilistic constraints create additional difficulties not present in 2S-SLP or MS-SLP. For
instance, the constraint regions for problems formulated with chance constraints may be
nonconvex and even disconnected. A class of measures for which chance constraints lead to
well defined SLP’s is the class of quasi-concave measures. A measure P is quasi-concave if,

for every convex measurable sets U and V it satisfies
P((1 = AU + AV) > min {P(U),P(V)}

where 0 < A < 1. Letting K(a) = {x | P(Ax > g) > a} denote the set of feasible x, the

above property can be summarized as

Proposition 7 If g has quasi-concave measure, then K(a) is a closed convez set for 0 <

a<l.
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A proof of proposition 7 and additional properties of chance constraints appear in Prékopa
(1980). Quasi-concave measures are a fairly gencral class which includes distribution func-

tions such as uniform, normal, and lognormal.

2.4 Exact Methods for Stochastic Linear Programs

In this section we discuss solution methods that can be applied when the support, =, is
finite. In this case 2S-SLP is an LP with block-diagonal structure. We briefly review some
of the solution methods that take advantage of this structure: extreme point, decomposition,

quasi-gradient, interior point, and general methods based on nonlinear optimization.

2.4.1 Extreme Point Methods

When Z is finite, stochastic linear programs can be solved using the simplex method. How-
ever, extreme point methods such as this require factorization of the basis matrix, B, and as
the number of possible realizations, K, increases, factorization by standard methods even-
tually becomes impractical. (Note that K is the cardinality of =, which we also denote as
|Z|.) The block-angular structure of the constraint matrix can be exploited to achieve com-
putational savings. For example, consider the following proposition (adapted from Birge

and Louveaux (1997)).

Proposition 8 By permuting rows of the basis matriz, B, of a 2S-SLP it can be put in the

following form

D C
F L

B' =

where D is a square invertible matrix of order n; and L is a block-diagonal matrix with
K invertible blocks, each with order at most my. Thus we have the following equivalent

system of equations

Dxg +Cyg=b', Fxp+ Lyg =h', (2.9)
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b

where b’ = , b’ = hy, and h,, represents the right hand side vectors for rows of 7
h“

in D, and h; represents the remaining compounents with rows in F'. Since L is invertible we
can use (2.9) to write

ys =L"'(h' - Fxp) (2.16)

and using (2.9) we get

(D-CL 'F)xg=b' -CL™'1. (2.11)

Computational saving results from the fact that L is block-diagonal. Extreme point methods
that take advantage of this were developed for the two-stage problem (Kall, 1979, and

Strazicky, 1980) and also for the multi-stage problem (Birge, 1980).

2.4.2 Interior Point Methods

Interior point methods also benefit from the block-diagonal structure of the constraint ma-
trix in 28-SLP. For example, consider a simplified version of Karmarkar’s (1984) algorithm
for solving

min{cx | Ax = b}.

The method is based on iteratively moving along descent directions which are computed
by projecting the gradient c onto the feasible region {x | Ax = b}. This is done using the
following projection matriz

P=1-AT(AAT)'A (2.12)

where A = DA and D is a matrix with elements {z?, ...,z%} along the diagonal and zero
otherwise. Typically most of the computational work done at an iteration is in computing
(AAT)~!. Although this matrix is dense a factorization scheme which takes advantage
of this structure was developed by Birge and Qi (1988). Birge (1985) also discusses the

use of interior point methods for the solution of multi-stage problems and its relations to
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decomposition based approaches. Carpenter, Lustig and Mulvey (1991) show how various
formulations of 2S-SLP, using nonanticipativity constraints, can be used to yicld a matrix
M with structure that can be exploited to achieve efficient factorization. Chot and Goldfarb
(1993) demonstrate how a primal-dual path-following algorithm can exploit the structure of
a block-diagonal constraint matrix, and Bahn et. al. (1995) investigate the use of analytic

center cutting-plane methods for solving 2S-SLP.

2.4.3 Decomposition Methods

Basic decomposition approaches include Dantzig-Wolfe decomposition (Dantzig and Wolfe,
1960) and Benders decomposition (Benders, 1962), also referred to as dual and primal
decomposition, respectively. It is the latter which formed the basis for the well known
L-shaped algorithm (Van Slyke and Wets, 1969). Many of the existing algorithms for

stochastic linear programming are adaptations and extensions of the L-shaped method.

L-Shaped Algorithm for 2S-SLP

The basic idea of the L-Shaped algorithm is to decompose the problem into (a) a master
problem in the first stage decision variables, and (b) subproblems in second stage decision
variables. Subgradient information from the subproblems is used to generate supporting
hyperplanes (optimality cuts) to outer linearize Q(x). The algorithm is based on solution

of the following equivalent problem
min{ch+0 | Ax = b,Q(x) <6, x zo}. (2.13)

The basic form of the algorithm is as follows:

step 0 : set the number of iterations, v, the number of feasibility cuts, r, and the number
of optimality cuts, s, to zero.

step 1 : solve the master problem

min{cx + 6}
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s.t.
Ax = b (2.14)
Dix > d I=1,.r (2.15)
Ex+60 > ¢ l=1,..s (2.16)

x >0, g €R

Let (x",0") be solution. The constraint set (2.14) is the set of first stage constraints, (2.15)
is the set of feasibility cuts and (2.16) is the set of optimality cuts.

step 2 : solve the following phase-ILP fork=1,.... K
w = min{evt +ev™ | Wy + Ivt —Iv™ = hy — Tix¥, y,v*,v™ > 0} (2.17)

where e = (1,...,1), until k£ is found such that w > 0. Add the following feasibility cut to
the master problem

Dryy = 0"Tx, dry = 0y

where oV is the dual solution of the phase-I LP. Add D;4+;x > d,4+; to the master, set
r =r+ 1, and return to step 1. If w = 0,Vk then go to step 3.
step 3 : solve subproblems for k£ = 1, ... K and generate the optimality cut defined by

K K

E, =Y pe(vp)TTi, & = > pr(w})Thy.

k=1 k=1
Set s=s+1.
step 4 : If E,x" + 0 > e, is satisfied then the current solution is optimal. Otherwise add
the new optimality cut to the master problem and return to step 1.
It can be proved that the algorithm converges to the optimal solution in a finite number of
steps (Van Slyke and Wets, 1969).

Methods have been proposed for increasing the efficiency of the L-shaped algorithm.

Birge and Louveaux (1988) suggested a multi-cut version of the algorithm in which a cut

is added to the master for each subproblem rather than a single aggregate cut. A method
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referred to as hunching was discussed by Wets (1988) and Gassman (1990): it reduces
computation time in step .3 by bunching subproblems that have the same optimal basis. A
method which utilizes the framework of the L-shaped method and the recursive structure
of MS-SLP to solve multi-stage problems is the nested decomposition method based on the
algorithm of Ho and Manne (1974) for deterministic models. Cuts on the recourse function
are added at each stage, Q**!(x*), that result in feasible completion in all future stages, as
well as improved lower bounds. The main difference is that now there is a master problem
for each stage, and each scenario at that stage. At each iteration the algorithin requires
that several stages be traversed; thus the computational effort increases greatly with the
number of stages as well as the number of scenarics. Several different criteria for moving
among the time stages have been suggested and results of numerical experiments that test

a number of these were reported by Gassman (1990).

2.4.4 Lagrangian Based Approaches

All of the methods discussed so far are based on linear programming methods. Lagrangian
based methods, on the other hand, are based on nonlinear optimization techniques. They
typically utilize the nonanticipativity constrained formulation of stochastic linear programs.
The fact that the nonanticipativity constraints are the only linking constraints in the prob-
lem is the basis behind these approaches. To illustrate consider the 2S-SLP with = consisting
of K scenarios, each with probability px. The dual program is
K K

mﬂq.x{e = min{kz_:l Prlex + Q(xk,yk) + mi(xk — kglpkxk)]}}. (2.18)
A basic gradient method for (2.18) is
step 0. Set 7% v =0 and go to step 1.
step 1. Let @ = 7” and solve (2.18) for (z¥,...,z%,¥{,--- ¥%)-

step 2. If xx = Zf=lpkxk, Vk then stop with an optimal solution. Otherwise set #ty =
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X — Zi.":, peX and go to step 3.

step 3. Determine A\ that minimizes 8(7¥ + A#) such that #” + Ax > 0, A > (. Let
m*l = ¥ 4+ AY# and go to step 1.

For finite = the algorithm converges to the optimum in a finite number of iterations. Com-
putational saving results from the reduced computational burden in step 1 because the
nonanticipativity constraints appear in the objective. If the number of iterations is small
then improvements over methods that evaluate Q(xy,yx) directly can be expected. An-
other Lagrangian based approach, called progressive hedging, and developed by Rockafellar
and Wets (1991), achieves complete separation of the scenario subproblems. This results in
substantial computational saving at each iteration but may result in an increased number
of iterations. Computational advantages from using this algorithm are reported by Mulvey
and Vladimmirou (1991) for stochastic network problems. Lagrangian based approaches
have found recent application to solution of 2S-SLPs and MS-SLPs with discrete decision

variables (e.g. Takriti and Birge, 2000, Caroe et al., 1997, Takriti and Birge, 1995).

2.5 Approximations

The key difficulty that every stochastic programming problem faces is the evaluation of the
expectation function Q(x). Previous sections discussed methods applicable to the case of
finite =, most of which were large scale linear programming methods that exploit the com-
mon problem structure of stochastic linear programs. However, as the number of scenarios
becomes large or for the case of continuous support, =, approximations are necessary. Not
surprisingly most approximations are based on using a limited number of scenarios. We

briefly mention some of the approaches discussed in the literature.
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2.5.1 Quasi-Gradient Methods

The stochastic quasi-gradient methods use sampling to approximate solutions to SLDPs.
They are based on the application of nonlinear optimization. A sequence of approximates,
x",» = 0,1, ..., is generated by solving the approximate optimization problem, called the
sample average approzimation, defined by statistical estimates of Q(x”) and its gradient,
Qz(x"):

= 1 & 1 &

QL") = &~ Y Q") Qx") = A Y Q:(x")

1

V=t V=

where NV, is the sample size. Sampling may be carried out using crude monte-carlo sampling
or using more sophisticated methods such as importance sampling. Problems are solved
iteratively and at each iteration the sample size is increased. Under assumptions that are
nonrestrictive from a practical point of view, these methods can be proved to converge
with probability 1. However, difficulties arise in their practical application because finite
sample sets are used. Stopping rules are often statistical in nature and based on estimates
of confidence intervals around the true optimal solution. Several different methods have

been studied and a detailed review can be found in Ermoliev (1988).

2.5.2 Decomposition Based Sampling Methods

A disadvantage of quasi-gradient methods is that computational effort may be wasted as
a result of inaccurate approximation because an approximate optimum is found at each
iteration. Improved results may be obtained by using sampling within decomposition based
algorithms such as the L-shaped algorithm where complete optimization is not carried out
at each step. Dantzig and Glynn (1990) were among the first to use such an approach.
At each iteration of the algorithm, Q(x, £) is sampled and approximate optimality cuts are

generated. For each sample j,

Q(x, &) 2 Q(x*, &) + 7 (x")(x - x*),
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by convexity of Q(x, €) and the subgradient inequality, and thercfore
1 < N e v ooy b .
=) Q&) 2 =) Q(x", &) + = 3w (x")(x - x*). (2.19)
v i v et
By the central limit theorem
1< 1 &
=3 Q" &)+ =Y wh(x—x")
v v
1=1 1=l
is asymptotically normally distributed, with mean
Q(x*) + Eg[ (x)](x — x*)

and (2.19) converges to a valid optimality cut at x” as v — oo. However, in practice a finite
sample size is used and the above cut is an approximation. A cut generated using sampling
can be thought of as including some normally distributed error term, ¢,(x), as follows
v
Qx) 2 Y (Q(x*, &) + w7 (x")(x — X)) + &, (x). (2-20)
j=l1

Feasibility cuts are generated whenever a sample results in infeasibility in the second stage.
Stopping criteria, based on confidence intervals, rely on certain assumptions about the cuts
generated. Infanger (1992) showed that significantly tighter confidence intervals can be
obtained using importance sampling, and the assumption that consecutive optimality cuts
are independent. The concern when using this approach is that the error term in (2.20) may
lead to inaccurate outer linearization of the recourse function and subsequent inaccuracy in
the feasible minimum solution found.

A method which combines the concepts of quasi-gradient methods and decomposition,
called stochastic decomposition, was developed by Higle and Sen (1991) for 2S-SLP. Cuts
are generated using small sample sizes. Thus initially there may be significant inaccuracy
in the outer linearization of the recourse function. However, the cuts are adjusted at each
iteration such that they drop away as the algorithm proceeds. It can be shown that the -

algorithm generates a sequence of iterates that converges to the optimal solution with
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probability 1. Shapiro and Homem-deMello (1998) review other sampling based methods
that utilize partial (non-linear) optimization in iterative algorithms in which sample size is

progressively increased.

2.5.3 Deterministic Bounds

Methods that are based on deterministic bounds can be used to compute bounds on Q(x)
which can subsequently be used in an algorithm to approximate the solution to an SLP.
Typical methods replace the true measure P with a discrete measure for which Q(x) can be
computed efficiently. For example, one common way of discretizing P is to use a partition

SW = (§k k=1,...,v} where
k) L (k k) (K
5k = (af",6() x [a§?,609] x - - x [a®), b{}]

is a rectangular partition, and the discrete distribution is defined by the conditional prob-
abilities, pg, and conditional expectations, £*, over the cells of the partition. From this the

Jensen inequality can be used to obtain the following lower bound

EQ(x,8)] 2 Y r*Q(x,£)-
k=1

Methods for computing upper bounds on the recourse function also exist. They are
often based on finding an extremal measure such that the resulting expectation is an upper
bound. Thus such methods require that = be compact for the bound to be defined. An
example of a classic upper bound is the Edmundson-Madansky (EM) upper bound and it’s
generalization over a partition (Huang, Ziemba and Ben-Tal, 1977). It generates an upper
bound as a weighted sum of the function at extreme points of Z. For example, in one

dimension, if Z = [a, b], the bound is

(3=4)Q0%,a) + (-2 Q(xb).

a
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The above bound can be easily extended to multiple dimensions when the randowm variables
are stochastically independent. Frauendorfer (1988b) provided the generalization of the EM
bound to the dependent case. The use of Jensen and EM bounds in an adaptation of the
L-shaped algorithm is discussed by Frauendofer and Kall (1988). As the mumnber of random
variables in a problem grows, the number of extreme points of = increases exponentially.
Thus computation of EM bounds quickly becomes intractable. Fraundorfer (1992) discusses
a tractable bound in high dimensions based on using simplices that contain Z. Also, a
method based on solution of the generalized moment problem was developed by Birge and

Wets (1987).

2.6 Applications

The first application of stochastic programming was to airline fleet assignment, by Ferguson
and Dantzig (1956). Since then stochastic programming models have been applied to prob-
lems in areas including production planning, facility location, scheduling power systems,
capacity planning, transportation systems, and project scheduling. The above list is not
exhaustive; a more comprehensive discussion of stochastic programming applications can
be found in King (1988). The following are more recent examples.

Due to their long term nature, capacity planning decisions require significant analysis
of potential future outcomes and possible recourse actions. Such decisions are often irre-
versible, in the sense that once they are made the new capacity can not simply be re-sold if
it is found to be underutilized. Eppen et al. (1988) discuss a capacity planning model for
making automotive assembly capacity investment decisions at General Motors. The goal
was to determine capacity investments, for a range of different products, that maximize
expected profit subject to a downside risk constraint. The model captures uncertainty in

future demand, and various recourse actions such as temporary or permanent shutdown,
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and/or reconfiguration or retooling of facilities.

There are many articles in the literature on applications to the optimization of power
systems. For instance, Pereira and Pinto (1991) develop solution methods for an MS-SLP
model of the Brazillian power system. They model the control of reservoirs, given uncer-
tainty in loads on the system, and uncertainty in reservoir levels due to rainfall. Takriti, et
al. (1995) present a model for daily scheduling of the Michigan State power system which
includes binary decision variables for modeling the decision whether to switch a particular
unit on or off. Caroe et al. (1997) consider a similar type of model for electrical load plan-
ning, given multiple types of power generation units (conventional coal, gas fired thermal
units, and hydro-electric plants).

An important application to economic policy is the management of environmental
projects. Somlyody and Wets (1988) discuss models for analyzing policies designed to
reverse the deterioration of water quality in lakes. Pinter (1991) discusses a broad range
of models for identifying, estimating, and controlling the effects of various processes (both
natural and artificial) on environmental systems.

More recently there has been increasing interest in the application of stochastic pro-
gramming models to finance. For example, Carino and Ziemba (1998) and Carino et al.
(1998) describe the application of an MS-SLP model for determining the appropriate asset
and liability mix over time for a Japanese insurance company. The objective there is to
maximize expected profit, given uncertain returns on investments and various constraints on
the asset and liability mix over time resulting from cash flow requirements, legal obligations,

and taxation.
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2.7 Future Research Directions

Several exact algorithms that take advantage of the structure common to stochastic lincar
programs are reviewed above. These can be used to find exact solutions to general, and often
large-scale, problems. However, many real-world problems are well beyond the current reach
of exact methods. Thus the study and development of approximations is a necessity, both
to broaden the range of problems that can be suitably modeled, and to reduce computation
times to make real-time applications feasible. To achieve improvements in existing methods
based on deterministic bounds it will be necessary to exploit specific problem structures.
On the other hand, statistical sampling based methods hold the hope of efficient algorithms
for generating high confidence solutions.

An area of growing interest is the study of solution methods for stochastic linear pro-
grams, with discrete decision variables (see van der Vlerk, 2000, for a current bibliography,
and Schultz et al., 1996, for a review). Many realistic problems require discrete decision
variables to model 0-1 decisions describing whether or not to take a certain action. Given
the computational burden of the typically large size of stochastic programs the inclusion of
such decision variables puts extreme constraints on the implementation of solution methods.
Thus there is a need for efficient heuristics that take advantage of problem structures to

achieve feasible and near optimal solutions in reasonable computation times.



Chapter 3

Appointment Scheduling Systems

3.1 Introduction

Appointment systems are used in many customer service industries to increase the utiliza-
tion of resources, match workload to available capacity, and smooth the flow of customers.
A common problem faced by decision makers is how to determine the scheduled start times
of services when their durations are uncertain. This problem is materially different from
say a machine scheduling problem (for example, see Forst, 1993) in the sense that once
appointments are set, customers are not available prior to the scheduled start time, even if
the server becomes free at an earlier time. Thus, choosing an early start time will lead to
better server utilization at the cost of additional waiting by customers, whereas a late start
time will reduce customer waiting at the cost of additional server idling. What we propose
in this Chapter is a model that can be used to find optimal start times under different cost
structures associated with server idling, customer waiting, and tardiness.

The appointment scheduling problem arises in many contexts and appointment decisions
are economically significant. For example, Sabria and Daganzo (1989) consider it from the
viewpoint of scheduling the arrival of cargo ships at a seaport. In their treatment of the

problem the costs of underutilization of a seaport are traded off against the cost of cargo ship

29
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waiting. Wang (1994) discusses the problem in a manufacturing setting where the objective
is to schedule the arrival of parts on the shop floor such that work-in-process inventory and
server idling are minimized. Also, there have been numerous studies presented in operations
research, statistics, and health care journals over the past three decades on the problem of
assigning appointments for arrivals at outpatient clinics (for example Bailey, 1952, Welch,
1964, Jansson, 1966, Soriano, 1966, Mercer, 1973, Charnetski, 1984, Ho and Lau, 1992,
Dexter, 1999 and references therein). We begin by motivating the problem in another light
by providing a specific example in the context of allocating resources for elective surgeries
at hospitals.

Typical urban hospitals in North America have annual operating expenditures measured
in hundreds of millions of dollars. Operating rooms (ORs) are estimated to account for
between a third and a half of the total costs incurred by hospitals (Redelmeier and Fuchs,
1993, and Macario et al., 1995). As a result, ORs represent an area with high potential
for cost savings. Even small relative improvements in efficiency translate into significant
dollar savings and benefits to society. Major components of OR costs are fixed costs. These
consist of salaries of staff (surgeons, anesthesiologists, nurses, and technicians) and a fixed
cost of facilities and equipment. Thus, effective delivery of surgical services requires an
OR manager, or similar governing body, to schedule surgeries efficiently so as to tradeoff
high utilization of the OR staff and other resources with low OR idling and overtime costs.
In most large hospitals in North America, a block-booking strategy is used. This strategy
involves allocating a contiguous block of time for a sequence of surgeries within a department
(typically performed by the same surgeon) at a particular OR. Based on the allocation of
block times, a particular time of day is specified for the arrival of the staff and material
resources to the OR. Since surgery durations are not known with certainty it is common
. practice to schedule block sizes based on estimates of the sum of mean durations of surgeries

in the block. Typically overtime costs are avoided by scheduling an empty block at the end
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of the day to absorb fluctuations in finish times of all blocks scheduled that day. Using a
numerical example, we show in this Chapter that an optimal block schedule can effectively
increase the capacity of an OR and at the same time lower the sum of expected waiting,
overtime and idling costs. Thus, the optimization model discussed in this Chapter can be
the source of significant cost savings. Other issues surrounding the scheduling of elective
surgeries at hospitals are discussed in detail in papers by Goldman, Knappenberger and
Shearson (1970), Pierskalla and Brailer (1994), Strum, Vargas and May (1999) and Dexter
et al. (1999).

We shall use the term customers to refer to resources (e.g.. surgical teams in the block-
booking example above) which become available only at the assigned start time, and facility
or server to refer to fixed resources, such as an OR. The evaluation of a given schedule of
appointment times requires the calculation of expected customer waiting times and facility
idle times. Exact calculation of these quantities is problematic when there are many jobs
because it requires the evaluation of multidimensional integrals. Many previous studies
have used simulation to study the performance of heuristic rules for setting appointments.
According to one heuristic regime (Bailey, 1952 and 1954, Welch and Bailey, 1962, and
Welch, 1964), if there are n customers to be scheduled, m of them are scheduled to arrive
at the beginning of the session and the remaining n — m appointment times are spaced by
their mean job durations (denoted by u;s). Thus, if a; represents the appointment time for

job 1 then

a; = 0, i=1,...,m, (3.1)
a;i = Gi-1 + Uy, t=m+1l,...,n (3’2)
Alternatively, in the block appointments regime (White and Pike, 1964, Soriano, 1966), a

session of length d is broken up into k blocks and n; = n/k customers are scheduled to

arrive at the start of each block. Thus if we let index ¢ denote the customer, and j the
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block to which the customer belongs, then
a;; =jdfk, i=1,....n.,andj=1,....k (3.3)

Heuristics for assigning individual appointment times to customers have also been ex-
plored. For example, Charnetski (1984) considered a heuristic that assigns a job allowance
of u, + ho; to job 2, regardless of its place in the sequence where y; and o; denote the

mean and standard deviation of the ith

Jjob duration, respectively. He experimented with
different values of h using a simulation model while assuming that job durations are nor-
mally distributed. Ho and Lau (1992) also used simulation to compare the performances of
a number of heuristics. Robinson and Chen (2000) study empirical data based heuristics
developed from solutions obtained using a simulation based conjugate gradient method.

Articles by Jansson (1966), Mercer (1960 and 1973), Sabria and Daganzo (1989), and
Brahimi and Worthington (1991) use queuing analysis to study the same problem. This
literature generally assumes that job durations are independent and identically distributed
(i.i.d.), and appointment times are equally spaced. With respect to the latter assumption,
it has been shown that the optimal spacing of appointments (job allowances) when service
times are i.i.d. is not in general uniform (Wang 1993). Also, a majority of queuing theoretic
models obtain expected customer waiting times and expected facility idle times under the
assumption of a steady state. Often, however, appointments need to be set for finite session
length d during which the facility is up and running, and a steady state is never reached in
such cases.

Another line of research is the study of optimization models for appointment systems.
Weiss (1990), and Robinson, Gerchak, and Gupta (1996), deal with two and three customer
problems, respectively, which can be solved relatively easily owing to the low dimensionality
of the problem. Robinson et al. also report a method based on Monte Ca}rlo simulation for

computing appointment times when n > 3. Wang (1993) considered the case in which job
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durations are exponentially distributed and showed that for this special case the probabil-
ity density function (p.d.f.) for customer waiting times is phase-type. He then exploited
the computational advantages associated with phase-type distributions to find the optimal
appointinent times. Through numerical examples, he showed that optimal job allowances
have a dome shape, i.e., they are initially increasing and then decreasing.

In this Chapter we formulate the appointment scheduling problem (ASP) as a two-
stage stochastic linear program (2-SLP). It immediately follows that under nourestrictive
conditions, the ASP is a convex minimization problem (Birge and Louveaux, 1997). (Note
that no previous study on appointments scheduling has actually managed to prove that
ASP is convex for an arbitrary number of jobs and job durations.) Next, we develop an
algorithm that utilizes the problem structure to obtain a near-optimal approximate solution.
Our algorithm also obtains upper and lower bounds on the difference between the optimal
and approximate solution. It has the property that the solution can be made arbitrarily close
to the optimum by increasing the number of iterations performed. In applications where
job sequence is not pre-ordained, it is of interest to determine an optimal job sequence, a
task that is complicated by its combinatorial nature. We provide an upper bound on the
expected cost savings that can be realized from resequencing and identify parameter values
for which these savings are large/small.

Since variability in job durations is a major source of inefficiency in the use of OR time,
we also study the effect of changing variance of job-durations, while keeping their means
fixed, on the total expected cost of running an appointments-based service system. We
show that expected costs increase linearly with standard deviation of job durations.

Even with our algorithm, solving problems involving large number of jobs can be time
consuming. Furthermore, in OR and outpatient scheduling problems, a particular day’s
schedule may have to be revised several times based on cancellations and the arrival of

more urgent patients. We therefore study several approximations and easy-to-implement
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heuristics. Through extensive numerical experimentation, we report on the aceuracy of
these heuristics and on how optimal job allowances depend on parameters like skewness of
job duration distributions, ratio of unit waiting to unit overtimne costs. and the number of
jobs scheduled per day.

The Chapter is organized as follows. The next section discusses different performance
criterion for an appointment scheduling system, and introduces the SLP model for deter-
mining individual appointment times. section 3.3 presents the algorithm and bounds on
its performance. section 3.4 discusses approximations for large problems and two heuristics
that follow from them, and section 3.5 discusses insights and presents numerical exam-
ples to illustrate the practical importance of the model. Finally, section 3.6 summarizes

implications for policy makers and discuss future research directions.

3.2 Formulation and Preliminary Analysis

We consider a single server system at which customers arrive punctually at scheduled ap-
pointment times, and are served in the order of their arrival. Job sequence is thus assumed

fixed. We use the following notation throughout the Chapter:

n: number of jobs to be scheduled.

x: vector of job allowances for the first n — 1 jobs.

a: vector of scheduled start times for n jobs.

Z: vector of random job durations.

7% vector of mean durations for the n jobs.

W: vector of customer waiting times for given (x, Z).

S: vector of facility/server idle times between consecutive jobs for given (x, Z),
e.g. Sz is the idle time between jobs 1 and 2.

d: time allotted for a given sequence of jobs (e.g. length of day or surgeon
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block time for OR).

tardiness for a given sequence of jobs with respect to d for given (x, Z).

G: earliness for a given sequence of jobs with respect to d for given (x, Z).
c¥: vector of cost coefficients for customer waiting.
c*: vector of cost coefficients for facility idle time.
ce: cost coefficient for tardiness with respect to .

Bold face and upper case notation indicate vectors and random variables, respectively (to
avoid confusion with lower case L we use script £). The vector of job allowances x €
R"~! (we need to specify only the job allowances for the first n — 1 jobs), the vectors
a,u,Z,W,S,c? c’ € R, and d, L, G, and ¢; are scalar quantities. The vector of random
job durations, Z, has support = C R and probability distribution P on R™ and it is assumed
that Z has finite first moments. The scheduled start time for a given job is equal to the
sum of the job allowances of its predecessors. We assume that the first job commences at
time zero, i.e., a; =0 and a; = Zj-;ll z; for i = 2,...,n. The vectors of cost coefficients, ¢
and c*, can be different for each job. For example, if there are different customer classes
this can be modeled by having customer dependent waiting time costs.

Three commonly used metrics for the performance of an appointment system are cus-
tomer waiting time, server idle time, and tardiness of a collection of jobs with respect to
the alloted time for the session. Whereas early arrival increases customer waiting, late ar-
rival results in increased idle time of the facility and greater overtime costs. A manager of
an appointments-based service system needs to balance efficient server utilization against
the cost of customer waiting and overtime. The relative weights of the different metrics

may vary from one system to another. For a given realization of job durations, Z, and job
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allowances, x, these metrics can be written as the following recursions:

W, = Wiy + 2 —z)t, i=2...n (3.4)
S, = (Wi -Zii+xm)t, i=2...0, (3.5)
L = (Wn+Zn+"Z—:lx,-—d)+, (3.6)
G = (-Wn-2,-) z;+d)*. (3.7

i=1

Note that S; = W = 0 since (by assumption) the first job commences at t = 0. Note

also that waiting and idling, and tardiness and earliness, satisfy a parity relationship, i.e.,
W;-§5i=0,i=2,...,n, and L-G =0.

Assuming linear costs for waiting, idling and tardiness, the appointments scheduling

problem (ASP) is to find a schedule of times for customer arrivals that minimize the following

function:

m:'n {Z":C‘PE[W;'] + i cE[Si] + CzE[L]} ) (3.8)

=2 =2

where the expectations are over Z. The use of conventional non-linear optimization tech-
niques for solving (3.8) is problematic when there are several jobs because evaluation of
the objective function, and its gradient, necessitates the computation of multi-dimensional
integrals which typically have no known closed-form expressions. Qur approach is to use a
stochastic linear programming formulation to overcome this difficulty. However, before we

present the formulation we first discuss a case for which the ASP is easy to solve.

3.2.1 When is the ASP Easy?

The simplest form of (3.8) occurs when there are only two jobs (n = 2) and ¢, = 0. Owing
to the low-dimensionality of the problem it is possible to derive a closed form expression for
the optimal job allowance for the first job (job allowance for the second job is immaterial).

This problem was first identified as a variation of the newsvendor problem by Weiss (1990).
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What follows in this section is therefore a direct consequence of Weiss' work. Letting Fy ()
denote the cumulative distribution function (c.d.f) of the first job. and £, = | — F,, ASP
can be written as follows:

min {c3 B[W2] + 3 E[S:]}, (3.9)

where

E[W,] = /0 T —a)tdP) = [ adFi(a) - 2 i)

£

and

E[Sz] = /ooo(:l:l - 21)+dP(21) = _/0’:1 Z[dF[(Z[) +.’L‘1F1(:I:1).

The objective function is easily shown to be convex and the optimal allowance for job 1 is

obtained as the following critical fractile (analogous to the newsvendor solution):

z} = F[! {dﬁ 3 } . (3.10)

It follows from (3.10) that as the waiting (idling) cost increases the optimal job allowance

increases (decreases). Furthermore, the distribution of the second job’s duration plays no
role in determining optimal z]. It is possible to derive optimality conditions for optimal z}
and z5 when n = 3 (see, Robinson, Gerchak and Gupta, 1996, for details). However, the

method becomes impractical for n > 3.

3.2.2 Stochastic Linear Program Formulation of the ASP

In this section, we formulate the ASP as a stochastic linear program. First, (3.8) is written
as the following deterministic equivalent of a two-stage stochastic linear program (2S-SLP).
(See Birge and Louveaux (1997), Kall and Wallace (1994), Dempster (1986), Ermoliev and
Wets (1988), and references therein for more details.)

n n
minE{ cw;  + Zc{si + c,e}

=2 =2
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s.t.
+ur —82 = Z| — T
-y +ws —53 = Zy—-uy (3.11)
-wn, +¢ ~9g = Zn—-d+ E;‘;l' €,

x20, w;20,s5,20Vi=1,...,n, and {,g > ().

The summations in the objective function of (3.11) begin with index 2 because W, and S;
are set to zero, leaving n—1 decision variables, (z, z7,...,Z,-), for an n job problem. The
first stage decision variables, x, and second stage decision variables, w, s, ¢, g, are written
in lower case and the dependence of second stage decisions on the random variables, Z,
is implied. The constraints in (3.11) enforce the piecewise linearity of the waiting, idling
and tardiness functions. The first n — 1 constraints correspond to waiting/idling time of
customers/jobs 2 through n, and the n*® constraint corresponds to tardiness/earliness. We

can rewrite the 2-SLP above more compactly as follows:

min{Q(x)} (3.12)
where Q(x) = E[Q(x, Z)] and
- .
] Zl
Q(x,Z) =min{ey |Tx+Wy=h,y >0}, e=| ° [,y=|" |, h=
[4
« Z,—d
o) L]
(3.13)

In the stochastic programming literature Q(x) is called the recourse function, whereas T
and W (n x n — 1 and n x 2n matrices, respectively) are called the technology and recourse
matrices. We can write the recourse matrix for this problem as W = [W'| — I] where [ is

the identity matrix. The matrix 7 and the submatrix W’ have the following form (empty
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spaces indicate zeroes):

-1 - -1 | -1 1
When viewed as a 2-SLP the two-job problem is a simple recourse problem which follows
from the fact that the recourse matrix has the form W = [1] - 1]. In general, problems
where the recourse matrix is of the form [I| — I] can be solved very efficiently due to
separability of the second stage constraints. The multi-job problem (3.11) differs from this
because of a sub-diagonal of —1s in W', resulting in a nonseparable second stage. However,
the second stage is feasible for any x € R"~!, ie., pos(W) = R*~1. Put differently, the
2-SLP has a complete recourse.

The dual of the ASP can be written as
max{E[nZ] | E[x|T <0,7W < c}. (3.14)

Decomposition methods (e.g., Bender’s decomposition, Dantzig-Wolfe decomposition), whether
applied to the primal (3.12) or dual (3.14), rely on efficient solution of the subproblems,
Q(x,Z). However, in order to solve the ASP efficiently, we need to focus instead on solu-
tion methods that take advantage of the structure of the primal problem, since in our case
the solution of subproblems, defined by (3.13), is trivial. Notice that the latter requires
only the evaluation of piecewise linear functions (waiting, idling and tardiness). Similarly,
the dual of (3.13),

max {(Z ~ Tx)w | W < c}, (3.15)

can also be solved without actually solving a linear program. It has random cost coefficients
but the constraints are fixed. Thus, the feasible region in (3.15) is the same_for all x and

Z, and is easily shown to be compact. The optimal solution to (3.15) for a given choice of
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x and realization of Z follows from the recursive structure of waiting, idling and tardiness
functions. If there is nonzero waiting for jobs 7 and (¢ + 1) then any increase in job i's
waiting time (i.e. an increase in the RHS of constraint  in 3.13) results in a subsequent
increase in job (z + 1)’s, and so on. On the other hand, if a job has nonzero idle time then
it is decoupled from future ones because the next job starts at the scheduled time. As a
result we can write the solution to (3.15) as the following backward recursion
—Cit1 w; =0
T (x,2Z) = . (3.16)

e +mia(x,Z) w;>0
where
0 ¢=0

(%, Z) = (3.17)
ca €>0.

The dual solution, =, is the subgradient of Q(x, Z) with respect to the RHS of the equality
constraints in 3.13. It is continuous everywhere except on a set of points of measure zero. For
example, w; = 0 implies that w;_; + Z;_| — z;_; < 0. When strict equality is satisfied, i.e.,
w; = s; = 0, there is degeneracy in the second stage problem and 7}(x, Z) € [—¢{,,,c%, +
mi1(x, Z)].

Before closing this section, we present a property of the ASP that allows us to establish

an equivalence between two common cost structures.

Proposition 1 Ezpected idle time is equal to the difference between two sums: the sum of
ezpected tardiness and the session length, and the sum of average job durations and ezpected
earliness, 1.e.,

n n

Y, E(Si] = [B[L] +d) - [E[G] + Y_ mil-

i=1 i=1
This is easily seen by adding the equality constraints in (3.11) and taking the expectation

of both sides. If the session length d is zero then expected tardiness is equal to expected

makespan (time for completion of all jobs) and expected earliness is zero. Having established
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proposition 1, it is easy to see that the solution to the ASP remains unchanged under the

following two conditions:

¢ idle time costs are identical, for example if ¢ = «, V1, and tardiness cost is zero. i.e.

ce =0,
e idle time costs are zero for all jobs, i.e., c; =0 and ¢, = a.

In the two situations described above, the objective function differs only by a constant, i.e..
the sum of the first moments of the job durations. Robinson et al. (1996) do not consider
tardiness cost in their formulation, and use a similar argument to net out the sum of the

first moments of job durations from the objective function.

3.3 Solution Method and Aggregation Bounds

When Z is finite and the number of scenarios is not computationally prohibitive methods
such as the L-shaped algorithm can be used. Approximate methods for the cases in which =
is continuous or the number of discrete scenarios is prohibitively large are typically based on
partitioning = and solving the resulting large scale linear program. For example, statistical
sampling is used to obtain a discrete set of scenarios that define an approximate problem,
which is then solved using the L-shaped method (Dantzig and Glynn, 1990, Infanger, 1992).
Alternatively, quasi-gradient methods (Ermoliev, 1988) use general purpose nonlinear opti-
mization techniques where the objective and its gradient are obtained from sampled data.
These methods rely on statistical estimates of the objective and its gradient for solution. In
this section we provide an efficient approximation for computing the optimal job allowances

and deterministic bounds on the accuracy loss due to the approximation.
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3.3.1 Sequential Bounding Algorithm

If Z is finite, then (3.11) is a linear program with the block-diagonal structure. Each block
corresponds to the evaluation of (second stage) waiting, idling and tardiness costs that result
from a given (first stage) set of job allowances, x, and realization of job durations, z. We refer
to a set of realizations of job durations, {z),2s,...,2,}. as a scenario, wg, where k = 1, ..., K
indexes the K scenarios. Because of the simple form of the second stage problem in the
ASP, decomposition algorithms are very efficient at solving large scale problems. However,
if independent finite service time distributions are specified, the number of scenarios grows
geometrically with respect to n, or alternatively, if service time distributions are continuous
then the number of scenarios is infinite. In such cases an adaptation of the L-shaped
algorithm based on partitioning the space of the random service durations can be used.
We briefly review this below (see Chapter 5 of Birge and Louveaux, 1997) for a detailed
review).

The basic idea of the L-shaped algorithm with sequential bounding (LSB) is to use
constraints, based on lower bounding functionals; and upper bounds for Q(x) to approx-
imate the optimal solution, x*. Classic bounds such as the Jensen lower bound and the
Edmundson-Madansky bound can be generalized over a partition of the support (Huang,
Ziemba and Ben-Tal, 1977). For example, the Jensen bound can be written as

v
Elf(x,Z)] 2 Y p*f(x,2*)
k=1

where f(-) must be a convex function of the components of random vector Z, k& indexes cells
of a partition of =, p* is the conditional probability on the k¥ cell, and z* is the vector of
conditional expectations of the job durations on that cell. We denote the partition of = by
S®) where S®) = {S*, k =1, ...,v} and for simplicity we assume a rectangular partition,
i.e.,

Sk = [agk),bgk)] x [agk),bgk)] X +ee X [astk)’bgk)]'
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where n is the number of jobs. Thus if job durations are independent then the integrals for
p* and z* are independent and can be iterated. When the partition is refined in such a way
that the approximate distribution {p*, k = I, ..., »} converges to the true distribution, P,
the bound converges to the expectation of the function as v — oco.

We first outline the LSB and postpone the discussion of how to obtain the upper bounds
used in the algorithm to the next section. In our description the lower bounding functionals
used to outer linearize the recourse function are hyperplanes that are obtained using Jensen

bounds. As such, the discrete approximation is

min ZZ:[ pk E?=2 cyk (3'18)
st. Tx+Wyk=h* k=10,

x>0, y>0, k=1,..,v

We refer to the optimal solution of (3.18) as (x(*),(y**.k = 1,...,v)) and its objective
function at the optimum as Q(*), where Q) = T¥_, p*Q(x(*), zF) = 6(). At each iteration
the objective, Q), is a lower bound on the optimal solution. The basic form of the algorithm
is as follows:

L-Shaped Algorithm with Sequential Bounding

step I: Let v index the iteration. Set v = 0.

step 2: Set v = v + 1. Solve the discrete problem (3.18) defined by partition S¥ using the
standard L-shaped method and let (x(*),0()) be the optimal solution.

step 3. Evaluate QUE(x")). If QUB(x(")) — () < tolerance then stop. Otherwise go to
step 4.

step 4: Refine the current partition $) - S(+1) and return to step 2.

Note that the stopping criterion in step 3 is based on the absolute difference between the
upper and lower bounds, and this places a limit on the accuracy loss due to solving the

discrete approximation.
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The above algorithm generates bounds on the gap between the solution obtained from
solving the discrete version of the ASP at each step and the optimal solution. The gap
depends on how the partition is refined in step 4 at cach iteration. If the partition is refined
in such a way that the discrete distribution couverges to the true distribution as v — oo,
then x(*) - x* (Birge and Wets, 1986).

Refinement of a partition is typically described as involving three decisions. The first is
the choice of a cell to split, k*, the second is the direction along which to make the split,
t*, and the third is the point at which to make the split, c&'. After the split is made the

old and new cells, S*" and §“*+! respectively, are

Sk

[af",617] x [a57,b87] x - x ok, K] x -+ x a7, 657] (3.19)

Su+l

[af",657] x (05", 057) x --- x [, 6] x -+ x [0, 657 (3.20)

The aim is to obtain solutions to the approximate problem that converge to the optimum
quickly. We describe a simplified version of the method proposed by Frauendorfer and Kall
(1988) (which is suitable to guarantee convergence of the probability distribution in the
limit). Choose the cell, k*, which has the largest difference between the upper and lower
bound, i.e.,

k' = argmingy, {Q%YP(x™) — @EB(x™M)}. (3.21)
Note that the upper and lower bounds in (3.21) are for a particular cell. For example, the
conditional Jensen bound on a given cell, k, is Q*LB(x(*)) = p*Q(x(*), z%). The rationale
behind choosing the cell with the largest difference is that it has the highest potential for

improvement. In choosing the direction, i*, it is desirable to choose one along which there

is a high degree of nonlinearity of the recourse function. Along a given direction i evaluate

E‘i = Q(x(u), V2) - Q(x(”)avl) - W(zkv vl)(v2 - vl), (322)

€& = Q(x™, v!) — Q(x),v2) — x(zk, v2)(v! — v?) (3.23)
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Figure 3.1: Illustration of the method for choosing a cell from partition =.

1 k

where (v!, v2) is a pair of adjacent vertices of S, v! = (af, ..., a%, ..., a%), v2 = (¥, ..., b5, ..., aX).

From the subgradient inequality, €; and €, are nonnegative since Q(x(*), z) is convex. The
direction is chosen such that i* = argmax{min{e},e;}}. The point at which to split, ¢;-, is

then chosen so that
Q(x(ll), v2) + mie (zk, V2)(C“- - bl") = Q(x(y), vl) + M- (zkv vl)(ci’ = Qe )'
The choice of split point for a two dimensional example is illustrated in Figure 3.2.

3.3.2 Aggregation Bounds

Standard methods for obtaining upper bounds of convex expectational functionals rely

on determining an approximate discrete distribution such that its support is composed of
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v'=(ai,by) v = (abbh)

Q(x'vl) + i (C|' - b |‘) (akl ' bll ) (akl' bkl)
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Figure 3.2: Illustration of the method for choosing the split point for cell k* and direction
i°.

extreme points, of Z. For example, the Edmundson-Madansky upper bound is a weighted
average of the function at the extreme points and thus when Z is not compact the bound
is not defined. It requires evaluation of Q(x,z) at each vertex of each cell in the partition.
Since the number of vertices increases gebmetrica.lly with the number of dimensions the
computation time quickly becomes prohibitive as the number of random variables increases.
A method based on solving a generalized moment problem, which is applicable to the case
in which Z is not compact, was developed by Birge and Wets (1995), and was subsequently
applied to the problem of computing upper bounds on tardiness in a project network (Birge
and Maddox, 1995). However, it is not well suited for use in an optimization algorithm.

We now show how efficient upper bounds can be obtained that are independent of service
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duration distributions by using a dual representation of the ASP. Using (3.13) we can write

the recourse function in the following form

Q(x) = / x(x,z)(h — Tx)dP(z). (3.24)

Of course it is generally not possible to compute the integral in (3.24) exactly. However, we
can obtain an upper bound on (3.24) using an approach similar to the aggregation bounds
described by Zipkin (1979) for deterministic linear programs, and subsequently extended
by Birge (1985) to the case of multi-stage stochastic linear programs. As before we let
SY = (8%, k = 1,...,v} denote a rectangular partition of the support, =, where the h*
are conditional expectations, and the p* are conditional probabilities. We start with an

application of aggregation bounds to the ASP.

Proposition 2
QM < Q(x") < QYW + e (v)

where Q) = Y% _, p¥cy** and

al)=>_> /S Qo eF +ea)(hi — k)™ + {(hf — hi)*)dP(2). (3.25)
=t

k=11=2

Proof: The lower bound follows from the fact that the objective in (3.18) is a Jensen bound
for any x and hence the optimal solution to (3.18) is a lower bound on the optimal solution

to the ASP. The second inequality can be proved in the following way:
Qx") = /_ (2, x*)hdP(2) (3.26)
< [ w(z,x")hdP(z) + (3.27)

ij / (¢ = w(z, x")IW)y** — 7 (z, x*)Tx*))dP(z)
k=1 Sk

where the inequality in (3.27) is due to nonnegativity of the second term which resuits from

the dual constraints in (3.14). Reorganizing the terms we can write the right hand side as
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follows:
= QU+ Y [ m(ax")h - Wyt - Tx)dP(z) (3.28)
k=1 s*
< QM+ Z/sk(ﬂfm("i — Weyy® = Tx)*
k=11=2
— 7EB(Wieyy** + Tx™ = hi)*)dP(z) (3.29)
NP S UB(p. _ pky+ _ gLBepk _ p o+
= @+ Y [ (B - kYt - xB(hE — h)*)dP(a) (3.30)

k=11=2

U

where 778 and x£8

i are upper and lower bounds on the dual solution for any x € R*~! and
Z € = and the positive and negative parts of the integrand in (3.29) have been separated
to give an overall upper bound on Q(x*). The feasible region of the dual is compact and

the bounds can be obtained from (3.16) and (3.17) as follows

w/f = max{m(x,Z) | x € R, Zec) (3.31)
= ¢}y +max{mi(x,2) | x€e R, Z € 5} (3.32)
= E c;y + ¢, (3-33)
=i+l
and
7B = min{m(x,2) | xe R*"!,Z € g} = —cyy- (3.34)
a

The bounds in proposition 2 are on the optimal solution to the ASP and do not necessarily
provide any information about the the recourse function at x(*), Q(x(*)). To bound the
accuracy of the LSB algorithm we need bounds on the recourse function at the current

iterate x(*). We now derive a similar bound on Q(xW).

Proposition 3

QW < Q(x™)) < Q¥ + () - - (3.35)
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where
v n :
) =YY / (xBVB(h, — 1k)* — 25 EB(LE _ 1) )dP(a)
k=11=275*
and 11':c VB (xlv ", 1r£c ‘LB(x(")) are upper and lower bounds, given x'*) and Z € S*.

Proof: The lower bound in (3.35) follows from the fact that Q(*) is a lower bound on the

optimum (proposition 2). The upper bound is proved as follows:

Q(X(")) - /=1r(z,x(”))(h—Tx(”))dP(z) (3.36)

IA

| 7(z,x")(h - Tx("))dP(z) + Z /S (e - 7(z. x"NYW)y**dP(z)3.37)
= k=1

where the inequality follows from the dual constraints on the discrete approximation (3.18).

Rearranging the terms as in proposition 2

174 n
Q™) < QW+ Y / (EVB (hy — ) — nFLB(hE — hi)*)dP(z)  (3.38)
k=1 i=2 Sk
where wf'UB = max{m;(x(*),Z) | Z € S*} and ﬂf‘LB = min{m;(x(*), Z2) | Z € §%}. m}

The lower bounds in propositions 2 and 3 are identical. That the upper bound in proposition

3 is tighter than the bound in proposition 2 follows from the fact that
wf'UB < 1,.1!13 and wf'LB > 1r,-LB, k=1,...,v.

The upper bound in proposition 3 is an upper bound on Q(x"), and hence on Q(x*) as well.
Thus from propositions 2 and 3 the solution to (3.18) provides upper and lower bounds
on the accuracy loss due to the approximation, i.e., |Q(x*) — Q(x(*))| < e2(v). It remains
to be shown how upper and lower bounds for the dual solution on a partition of = can be
obtained. The following simple dynamic programming procedure can be used.

Bounding the Dual Multipliers on a Cell:

For each job we must determine whether nonzero waiting or idling is possible and whether

nonzero tardiness or €arliness is possible for x(*) and Z € S*. From (3.4) and (3.6) waiting
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times and tardiness are nondecreasing in Z and hence we can bound them by evaluating

them at the extreme points of the cell as follows:

WEVE — (WEYE f bk | — 2 ), i=2,.m, (3.39)
WHLB = (WELB ok | —z, ), i=2,..n, (3.40)
and
L¥UB = (WhUB L pk 4+ 50 1, —d)*, i=2....,n, (3.41)
LKLB = (WhLB L gk 4 5% 1z, —d)", i=2,..,n. (3.42)

Note that when = is not compact the upper bounds in (3.39) and (3.41) may be infinite.
However, we are concerned only with knowing whether they are greater than zero. A
nonzero upper bound on waiting time indicates a lower bound of zero on the corresponding
idle time, and vice versa due to the parity relationship. The same is true for tardiness and
earliness. The upper and lower bounds on the dual solution can therefore be obtained using

the following backward recursions:

f kUB
—Ci+1 if Wiy~ =0

08 (x) = max{—clyy, ¢ + 7P (x)} HWEY  =0and WEYE S0 (3.43)

.6 rk.LB
| e+ (x) if Wit >0
and
( k.UB
_c€+1 if Wl+l =0
it (x) = ¢ min{~c}y,, :+1 +aii ()} if WY = 0and WHYP > 0 (3.44)

kLB k.LB
i + Mg (%) if Wi ” >0
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for 2 = 1,...,n — 1, and the upper and lower bounds for ,, are

: 0 ifLKB =g
mhUB(x) = (3.45)
ce if LFUB 5

and
nbibg = {0 ¥ =0 (3.46)
ce if L¥B >,
The bounds in proposition 7 can be viewed as having a penalty term on the discrepancy
between the approximate discrete problem and the continuous problem. The penalty for a
given cell is expressed as Eg: [wf'UB(hi — k5t — 1rf'[' B(h{-c — h;)*] above. When it is used

in LSB, refinement of the partition results in a reduction of this measure of discrepancy on

the chosen cell at x(*).

3.4 Approximations and Heuristics

As the number of jobs to be scheduled increases the problem size grows, and the correspond-
ing computational effort in obtaining an effective partition of = that suitably approximates
the true problem increases. In this section we point out two relaxations that give lower
bounds on Q(x*) and significantly reduce computation time. The first approximation is

based on a relaxation of the n job problem to obtain a set of separable subproblems.
Proposition 4 If ¢f = c}, V(i,j) then the simple recourse problem,
min{Egfminfey | Tx + (I | - Iy = h}]}, (3.47)

gives a lower bound on the ASP.

Proof: Let ¢} = ¢*, Vi. We can show the following problem is equivalent to the ASP

1

n
minE{Zc,‘-”wi + s + c,e}

=2
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s.t.
Wy — sy =2y — 1, (3.48)
—wy + w3 — 53 = Zy — L2 (3.49)
—w,_) +Wn — 53 = Zny — Tn—1 (3.50)
—w,+l-g=Z,+ Y7 z;-d (3.51)
—w,+5=2Zn+ 020 75 (3.52)
wi=w;, i=2,...,n. (3.53)

x>0, w; >0, s2>0,Vi=1,..,n, and ,9,5s > 0.

Note that s is total makespan. By proposition 1 it follows that 3% ;s; = s — Y%, u;-
Removing the constraint set (3.53) yields a relaxation of the ASP. Since the objective
function is independent of (w;, si, Vi) the pairs (w;, s;) fori = 1,...,n — 1 in constraints
(3.48) - (3.50) can be aggregated into one decision variable s; = w;+s;. Since Z,.-i-z;-‘;ll z; >
0 the optimal solution has w:‘ = 0. Removing w, from (3.51) and (3.52) yields a problem
equivalent to (3.47). u)
The above approximation achieves a complete separation of the n jobs. Less severe sepa-
rations lead to improved lower bounds. For example, removing only constraint ¢ = m of
(3.53) separates the problem into independent sequences of m and n — m + 1 job problems.
(Note that the assumption that the first customer in a sequence does not wait implies the
second sequence of jobs has n — m + 1 jobs rather than n — m jobs.) For the special case
of a complete separation of jobs and ¢, = 0, (3.47) separates into a set of n independent 2-

job (newsvendor) problems. If we assume job durations are independent, with distribution

function Fj(-) for each job ¢, this yields the following solution to the relaxed problem

c¥
Ty = F{-l —w—w;' Vi.
Gy +H¢°
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Henceforth we refer to the relaxation based on separating jobs as the Separation Heuristic
(SEP).

[n the next approximation we utilize the Jensen bound and the recursive structure of
the waiting times in (3.4). First, we define the following approximate cxpected waiting,

idling and tardiness times:

EW:] = E(EWi]+ Zioi—z2)?), i=2,.0m, (3.54)

E[S)] = E[(-EWi-1] - Zio1 +3i-1)*], i =2,...,m, (3.55)
n-1

E[L] = E[EWn]+2Z,+ Y z:-d)*]. (3.56)

=1

From the Jensen bound, and convexity of W; with respect to W;_,, we have
E[W;] > E(Wi), E[S:] 2 E[Si, EIL] > E[L}.

The structure of E[W;], E[Si] and E[L] allows for efficient computation because the multi-
dimensional integrals can be separated into one dimensional integrals. Thus we could solve
n

m,gn{gc:w[wm + ¢ E[S))) + ceE[L]} (3.57)
using standard nonlinear optimization to obtain a lower bound on Q(x*). Again, for the
case in which ¢, = 0, it is straightforward to show that the optimal solution is the following
solution to a modified newsvendor problem, which we refer to as the Sequential Jensen
Bound Heuristic (SJB)
SJB Heuristic: Set job allowances such that z; = E[W;] + F ! {;'..;—T::%} Vi.
The SJB heuristic provides a very simple decision rule, as well as lower bounds on the

optimal solution. In the next section we offer some numerical examples that illustrate the

performance of the approximations discussed in this section.
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3.5 Insights and Examples

[n addition to appointment scheduling, a related problem is to determine the optimal se-
quence in which jobs should be processed. This is relevant in those situations where jobs
can be reordered prior to processing. In general, optimal sequencing is a hard problem due
to its combinatorial nature. We begin this section by showing that the bounds obtained
in the previous section can also be used to assess the potential for improvement through
resequencing. For this purpose, we let Q(x%°) and Q(x®) be the recourse function at the
optimal solution of the ASP for the optimal sequence of jobs and some arbitrary sequence

of jobs, respectively.
Proposition 5 The optimal solution to the ASP for an arbitrary sequence is bounded by
n n
ce(D_pi—d)t < Q(x*) <Y pi —d)* + (1) (3.58)
=1 i=1

and the relative improvement due to resequencing is nonincreasing in c,.

Proof: Equation (3.58) follows directly from proposition 4 for the case v = 1. The bounds are

obtained by solving a deterministic problem in this case (p! = 1, h! = (z1,..., 01, tin -d)),
and therefore are independent of job sequence. Defining the relative difference between the
objective function for the optimal sequence and an arbitrary sequence as the ratio of the

difference between the upper and lower bounds and their sum, we have

Qx*) - Q(x*) _ eu(1)
Q)+ QGx) = Zee(Siy i — A + ex(])

(3.59)

where, from (3.25), €;(1) is linearly increasing in ¢;. Thus the numerator and denominator
in the left hand side of (3.59) are both linearly increasing in ¢, with the rate of increase
of the denominator greater than or equal to the numerator. The relative improvement is
therefore nonincreasing in ¢;. . a

From proposition 5 it follows that as the cost of makespan and/or idle time increases, the
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(%))
[34]

bounds on the relative benefits from optimizing job sequence are nonincreasing. Further-
more, if 3 [, st; > d, then the bound on the relative benefits approaches zero as ¢ — oo.
It can be shown for the case of ¢, = 0 that some simple transformations of the random
Job durations in the ASP result in linear transformation of x* and Q(x*). For instance,
consider changing each job duration by a constant factor Z — Z + b where b € R™. It is
easy to show that the effect on the optimal solution of the ASP in this case is x* — x* + b
and Q(x*) is unchanged. For the case of i.i.d. job durations and ¢, = 0, the following can

also be shown

Proposition 6 The effect of the transformation Z — aZ +b, where a € R and b € R", on
the optimal solution, is Q(x*) = aQ(x"') and x* — ax* + b

Proof: The proof follows from the fact that

n%,in{clex+Wy=ah+b, y 20}

is equivalent to
u;in {acy' [Tx' + Wy =h, y > 0}

wherey' =a~'y and x' =a~!x —a~'b. 0
From proposition 6 it follows that under the mean preserving transformation, Z — ¢Z —(a—
)i, Q(x*) is increasing linearly with respect to the standard deviation of job durations.
Also, if the solution for a particular a and b is known then the solution for any other a and
b can be obtained by a simple transformation. Note also that several distributions have the
property that they can be completely described through the above linear transformations
(e.g. normal, uniform, exponential). Thus solving an instance of the problem in such cases
results in knowing the solution for the entire class of problems by a trivial transformation

of the solution.
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3.5.1 Experimental Design

The numerical results presented below fall into three categories: (a) numerical experiments
that give general insights and illustrate the quality of the aggregation bounds, (b) exam-
ples that reinforce the fact that the OR scheduling problem is economically important, and
(c) numerical evidence that the heuristics work well for large n. The partitioning method
described in section 3.3 was used to compute the solutions and deterministic bounds. In all
cases 50 iterations were carried out, and 500 additional cells were added at each iteration.
Solution times for the largest examples are typically less than 10 minutes on a modest work-
station (Sun Ultra 10 with 128 MB Ram) for the largest problems considered. The master
problem was solved using Cplex 5.0 at each iteration and the majority of computation time
is spent in updating the partition. To simplify comparison of results the job distributions
are assumed i.i.d. in each case. For each example we also compute a statistical estimate of
the recourse function at the approximate solution, @(x(*)). (Since the ASP is a convex min-
imization problem these are statistical upper bounds on Q(x*).) The statistical estimates
were obtained using a sample size of 104, which is consist;ant with results of the simulation
study by Ho and Lau (1992) that indicate an accuracy of 1% at the 95% confidence level

for n < 30.

3.5.2 Computation Times, Accuracy of LSB, and Parametric Variations

We start by providing some examples of the dependence of computation time on the number
of jobs, n, and the number of cells in the partition, K. In other words, the results illustrate
typical computation times for a single iteration of the LSB algorithm with given partition K.
Results in Table 3.1 are examples withn = 5 ton = 25 and K = 1000 to K = 50000. Results
are averages for 25 randomly generated problem instances in which cost parameters and job
duration scenarios were varied. The job durations were assumed i.i.d uniformly distributed

and were sampled according U(0, 1) for each of the K scenarios. The cost coefficients for each
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test problem were generated by sampling according to U(0, 1) for each job. Computation
times were found to be relatively insensitive to changes in cost parameters.

Table 3.1 gives estimates of the average complexity per iteration of the LSB algorithm
with respect to the number of jobs, n, and the number of cells, K. The complete algorithm
requires other operations in addition to the solution of the discrete stochastic linear program
approximation. At each iteration upper and lower bounds for each cell of the partition must
be computed. Lower bounds are obtained from solution of the discrete problem; however,
upper bounds must be computed for each cell. This is done by (a) computing upper and
lower bounds on the dual multipliers (equations (3.43) - (3.46)) which are linear in n, and
(b) computing conditional moments along each direction, which are linear in n. Given these
bounds, selection of a cell for refinement requires a search for the cell with maximum gap

which is also linear in n.

K/n |5 10 15 20 25
1000 [0.42(61) 5.47(233) 28.54(438)  143.34(848) 337.91(1119)
5000 | 0.80(68) 7.85(229) 45.24(509)  151.24(820) 413.55(1244)
10000 | 1.54(67) 12.78(228) 66.17(512)  199.24(840) 505.34(1219)
50000 | 5.55(68) 39.56(233) 144.30(496) 405.19(877) 950.23(1346)

Table 3.1: Average computation times for various problem sizes in seconds (numbers in
brackets are average numbers of iterations of the L-shaped algorithm).

Tables 3.2 and 3.3 contain results for problems with a variety of different cost structures.
In each example we assume waiting and idling cost coefficients are the same for each job
(¢ = ¢y and ¢f = ¢;, V1,5). In Table 3.2 there are no overtime costs, i.e. ¢ = 0, and
the relative costs of waiting and idling are varied. In Table 3.3 results for nonzero overtime
costs are reported when the session length is assumed to be equal to the sum of the mean
Job durations (d = 7.0). The uniform distribution was chosen as a test case because it

represents an extreme condition with respect to the application of a partitioning method
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since the probability mass is evenly spread across the range of the distribution. In other
words, the paritioning method cannot benefit from concentrating the partitioning within
a smal region of high probability mass. Note that proposition 6 shows how the results in

Table 3.2 can be transformed to correspond to any mean and variance of the Job durations.

(c¢¢®) 109,1) (82) (7,3) (6,4) (5,5 (4,6) 3.7 (2.8) (1,9)

T 0.360 0.624 0838 1.035 1.165 1313 1461 1631 1.807
T2 0.876 1.093 1162 1.259 1.349 1437 1.549 1669 1.817
I3 0969 1.070 1.201 1.255 1.361 1446 1.552 1.670 1.819
z4 0.952 1.065 1174 1.255 1.351 1443 1.543 1670 1.819
Ty 0.911 1.060 1.125 1.228 1300 1426 1.528 1.665 1.821

Tg 0.784 0871 0970 1.087 1.203 1344 1479 1639 1.813
Q(x)“P | 8963 13423 15726 16.656 16400 15.139 12.906 9.674 5.394
Q(x)YB 1 9.985 14.619 17.326 17.789 17.250 15.812 13.345 9.896 5.501
Q(x) 9.077 13498 15.855 16.858 16.551 15278 12.983 9.768 5.412

Table 3.2: Results for 7 jobs with U(0,2) job durations after 50 iterations with no tardiness
cost penalty.

(e,c’,c®) | (7,7,3) (7,5,5) (7.3,7) (5,7,3) (5.5,5) (5.3,7) (3.7%.3) (3,5.5) .(3,3.7)

Ty 0.606 0.831 1.063 0.645 0.875 1.136 0.719 0.997 1.250
T2 1.085 1.175 1.267 1.113 1.217 1.337 1.125 1.250 1.375
z3 1.080 1.197 1.264 1.106 1.236 1.308 1.120 1.250 1.375
T4 1.091 1.196 1.266 1.125 1.216 1.321 1.131 1.251 1.383
Ts 1.067 1.104 1.208 1.049 1.137 1.252 1.077 1.194 1.351

Zg 0.936 0.997 1.164 0.956 1.009 1.203 0.935 1.069 1.242

Q(x)LB 22.167 26.546 28.236 20.486 24.225 24.829 18.716 21.507 20.812
Q(x)Us 25045 29.114 30.699 22.754 26457 26.438 20.547 23.282 21.891
Q(x) 22.743  27.047 28.888 20.801 24.644 25.258 18.928 21.853 20.921

Table 3.3: Results for 7 jobs with U(0,2) job durations after 50 iterations with tardiness
cost penalty.

The results in Tables 3.2 and 3.3 illustrate a common behavior of solutions to the ASP for
iid. job durations, which is that they tend to have a dome shape, i.e., initially increasing
and then decreasing job allowances. Numerical experiments for other types of distributions

confirm that this is a typical property of solutions to the ASP with i.i.d. distributions and
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uniform waiting and idling costs for all jobs. The dome shape is most pronounced when the
ratio of idling to waiting cost coefficients is high. When the opposite is true job allowances
are more uniform. Solutions do not exhibit this property for cases in which waiting or idling
cost coefficients are not uniform for all jobs and/or job duration distributions are not i.i.d.

For brevity, results for all the numerical experiments perforined are not presented here.
In all cases though, it was found that job allowances increase for all jobs as n increases when
¢ = 0. However, when nonzero overtime costs are included, changes in job allowances with
respect to problem size are not necessarily monotonic. Table 3.4 illustrates the effect for the
case of zero overtime costs for different problem sizes. In the table Az/u is the ratio of the
difference between the maximum and minimum job allowance to the mean job duration. It
is useful as a representative measure of the non-uniformity of the job allowances. The results
show significant increases in job allowances as n increases when waiting cost coefficients are
low compared to idling cost coefficients, but relatively small changes when the opposite
is true. As idling cost coefficients increase, Az/p decreases, indicating that uniform job
allowances (equally spaced appointments) are near optimal in such cases. Also, the results
indicate that the change in job allowance for a particular job, as n increases, is increasing

at a decreasing rate.

n=3 | n=>5 | n=7

(e 161D 65 (1,9 (1) (.5 (19 (9.1) (55 (1,9
-5 0262 1.094 1.809 0.311 1.160 1.808 0.335 1.168 1.808
2 0674 1.203 1.811 0.849 1336 1818 0.882 1349 13818
z3 0.881 1313 1818 0.985 1.358 1.818
T4 0.769 1.210 1.809 0.955 1.345 1.823
zs 0.914 1310 1.818
Zg 0.784 1.219 1.812
Az/p [ 0412 0.109 .002 570 .176 .0l 650 .190 015

Table 3.4: Comparison of job allowances for different problem sizes for 3,5, and 7 jobs with
U(0,2).

Figure 3.3 shows the dependence of the aggregation bounds, and the statistical upper
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-

Figure 3.3: Dependence of upper and lower bounds on problem size for ¢’ =5, ¢} = 5, Vi,
¢t =0, and U(0, 2) job durations.

bound, on problem size. The results indicate that the actual performance, based on the
statistical estimate, is typically much better than the worst case bound as problem size
grows. Furthermore, the cost is increasing approximately linearly with problem size in the
range of problem sizes considered here. Numerical experiments indicate that this linear
dependence is not sensitive to relative changes in waiting and idling cost coefficients. Also,
from proposition 6, the slope is proportional to the standard deviation of the job durations
for the case of i.i.d. job durations.

The results in Table 3.5 illustrate the importance of solving the ASP for different values

of the cost coefficients. For each case, @(x) and Q(u) are estimated by sampling. Together,
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(c”,c) 9,1 (8,2) (7,3) (6,4)  (5,5) (46) (.7 (2,8 (L9
Q(x)8 | 10.602 17.251  22.097 25369 27.129 27.496 25970 22215 15.030
Q(x)Y® | 11.540 19.324  24.804 28453 30.661 30.892 29.340 25.553 18.365
Q(x) 10.736  17.516 22484 25816 27.842 27.993 26.577 22.800 15.499
Qp) 54.509 49.321  45.041  40.888 36.959 32.031 27.727 23.363 18.953
Rel. VSS | 407.72% 181.58% 100.32% 58.38% 37.74% 14.42% 4.32% 2.46% 22.28%

Table 3.5: results for 7 jobs with N (5, 1) job durations.

the estimates are used to approximate the value of the stochastic solution (VSS), the differ-
ence between the optimal solution and the mean-value solution, which can be interpreted as
a measure of the importance of solving the ASP. In the table, the relative VSS is reported
(the difference between the LSB algorithm solution and the mean-value solution, shown as
a percentage of the LSB solution). It is clear that relative VSS is high when waiting cost
coefficients are high, or similar to idling cost coefficients. Intuitively this can be attributed
to the upward bias in customer waiting, i.e., waiting for customers arriving early in the
sequence tends to increase waiting of later customers. As waiting time cost coefficients
decrease with respect to idle time cost coefficients, the VSS is initially decreasing, and then
increasing again. In fact the mean-value solution performs relatively well under some cost
structures. From proposition 6 it follows that Q(x), @(u), and VSS are linearly increasing

in the standard deviation of the job durations.

I'(6,18) [ U(775,4225) ] N(3,0.5)
(c*,e?) 1(8,1) (5,5 (L9 1) (55 (1,9 61 (55 (1,9
T 3990 3.120 2.285 3.992 3.196 2.155 3.952 3.167  2.268
2 4056 3.352 2.784 4.002 3.412 2818 3.995 3369 2.818
3 4055 3.340 2.830 4.002 3.382 2.853 3.98) 3348 2.844

T4 3994 3.199 2.726 3.991 3.259 2.718 3.954 3.227 2.752
Q(x)L8 | 5577 13.059 6.341 4421 13.286 6.736 5.056 12.734 6.657
Q(x)V8 | 5779 13.225 6.422 4.422 13.323 6.779 5.073 12.830 6.736

Table 3.6: Comparison of distributions with 2 = 3 and 0% = 0.5.
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Many heuristic rules suggested in the literature utilize only the mean and variance of
the job durations. Table 3.6 contrasts different distribution types and shows that optimal
schedules may depend on higher moments. The results are for i.i.d. gamma, uniformn, and
normally distributed job durations, with mean 3.0 and variance 0.5 for each distribution.
The uniform and normal distributions are symmetric, whereas the gamma distribution is
skewed (the skewness of I'(6, 18) is 0.55). Comparison of the solutions for the different distri-
bution types indicates that dependence of Q(x) on the distribution type is most pronounced
when waiting cost coefficients are high relative to idle cost coefficients. For instance, the
relative difference between I'(6, 18) and U(1.775,4.225) for (c*,c*) = (9, 1) is approximately
25%. However, the actual solutions, x, are virtually independent of the distribution type.
For the other cost structures in Table 3.6, (c¥,c*) = (5,5) and (1,9), the solutions vary
somewhat with respect to changes in the distribution type but the relative changes in Q(x)

are typically less than 5%.

3.5.3 Allocating Block Time for Deferrable Surgeries

In this example we illustrate the benefits of solving the ASP in the context of optimizing
the allocation of block times for sequences of deferrable surgeries. We assume that there
are five blocks scheduled at a given OR in an 8 hour day, and that the session lengths are
i.i.d. with distribution ['(1.0, 1.5) (gamma distributed with shape parameter A = 1.0, and
scale parameter a = 1.5). A common heuristic used by OR managers is to allocate block
times such that the total time allocated is equal to the mean of the sum of the surgery
durations in the session, and to reserve time at the end of the day to avoid overtime costs.
For example, setting block sizes equal to the mean in this example results in 1.5 hours for
each block and a total of 7.5 of 8 available hours. Thus the surgical team, patients and
other resources for the first scheduled block would be coordinated to arrive at the beginning

of the day. The start time for the second block would be scheduled 1.5 hours later, and
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subsequent blocks scheduled in a similar fashion. Typically there are no direct costs for
OR idling (cost of OR up-time is a sunk cost), rather the goal is to trade off the number
of surgeries scheduled, costs of idling surgical teams and material resources, and overtime
costs. In this example we assume that an equal weight is assigned, i.e., ¢ =1, Vi, and
ce = 1. The stopping criteria for the LSB algorithm was set at a tolerance of .01. Under

this cost structure the optimal block sizes are
zj = 1.563, z3 = 2.065, 3 = 2.022, =} = 1.703

and Q(x*) = 4.14. Conversely, the mean-value approach (; = 1.5, Vi) yields Q(u) = 4.84.
Thus there is approximately a 14.5% reduction in total overtime and surgical team idling
associated with using an optimal schedule. The improvement can be viewed as allowing an
increase in the effective capacity of the OR. For example, assume that each session has three
scheduled surgeries distributed as I'(1.0,0.5) (thus the sum of durations is distributed as
['(1.0,1.5)). Increasing the number of surgeries in the last session by 1/3 corresponds to a
session duration distributed as I’(1.0,2.0). In this case solving the ASP yields the following
block sizes:

z] = 1.550, z3 = 2.051, z3 = 2.013, z; = 1.701

and Q(x*) = 4.65. The result is an increase of about 6.7% in the effective capacity of the
OR while still maintaining a reduction in cost compared to the heuristic approach. On the
other hand, increasing capacity using the heuristic approach yields a cost of Q(x*) =5.372.
Due to the high costs of delivering surgical care at hospitals discussed in section 1, such

improvements can represent significant savings.

3.5.4 Evaluation of Heuristics for Large n

Another important application of appointment scheduling is in the coordination of the

arrival times of patients at outpatient clinics. For such problems n is likely to be much larger.
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Tables 3.7 and 3.8 give numerical results that illustrate the performance of the approximate
methods discussed in section 3.4. Both tables are for the case of n = 19; Table 3.7 assumes
normally distributed job durations and Table 3.8 assumes gamma distributed job durations.
Given the dependence on the variance of job durations, established in proposition 6, the
results represent a rather comprehensive study of the i.i.d. case. Comparisons are made to
statistical estimates of the recourse function at the solution obtained from the heuristics.
Since Q(x5EP) > Q(x*) and Q(x5/B) > Q(x*) these estimates are approximate upper
bounds. They also contrast the solutions obtained using the SJB heuristic with that from
separating the n = 19 problem into three n = 7 job problems. As shown in section 3.4,
both approximations yield lower bounds on the optimum (the lower bound on the latter is
the sum of the lower bounds for the three n = 7 job problems). Thus the lower bounds,
together with the statistical estimates, bound the accuracy loss due to the approximations.

For comparison, statistical estimates of the mean-value solution are provided as well.

(c®ef) 1001 (82 (73) (64 (55) 46 (37 (8 19

Q(x57B) | 32.394 54604 72.142 85503 94.376 99.953 95964 82.168 57.108
SJIBLB | 31.590 50.393 62.585 69.542 71.810 69.542 62.585 50.393 31.590

Q(xSEP) | 32.283 53.688 69.959 81.825 89.790 97.085 99.087 94.349 74.354
SEPLB |31.805 51.753 66.291 76.107 81.387 82488 77910 66.645 45.001

Qu) 299.376 272.649 241.756 208.879 177.053 149.621 119.440 88.550 58.653

Table 3.7: Performance of SJB and SEP heuristics for n = 19 and i.id. N(5,1) job
durations.

In the tables, SJB LB and SEP LB are the deterministic, i.e., not sampling based, lower
bounds obtained from using the heuristics. It is clear from comparison of the statistical
estimates that the heuristics considerably outperform the mean-value solution when waiting

cost coefficients are high, or similar to idling cost coefficients. In this case both heuristics
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(c"”,c®) (9,1) (8,2) (7,3) (6,4) (5,5) (4.6) (3.7) (2,8) (1.9)

Q(x5/B) | 61.189  100.078 130.462 154.959 167.813 167.548 152.143 121.938 78.170
SIBLB | 55.696 80.808 93.419 97.429 94.654 86.100 72.342 53.642 29.911

Q(xSEP) | 50.806 93.825 116.825 134.879 146.353 155.561 157.188 146.940 108.506
SEP LB | 58.272 89.457 109.266 120.639 124.824 121.719 110.568 90.306 57.207

Q(u) 419.900 379.833 333.716 291.121 248.956 207.470 165.769 124.341 81.675

Table 3.8: Performance of SJB and SEP heuristics for n = 19 and i.i.d. ['(1,2) job durations.

provide rather tight lower bounds on the optimal solution. In such cases the actual per-
formance of the two approximations is similar, although, the SEP heuristic is better. On
the other hand, when idling cost coefficients, are high relative to waiting cost coefficients
the mean-value solution performs almost as well as the SJB heuristic, and both outperform
the SEP approximation. In all cases SEP LB is a tighter lower bound than SJB LB, al-
though the SJB heuristic outperforms the SEP heuristic when idling costs are high relative
to waiting costs.

From proposition 6 the solutions in Tables 3.7 and 3.8 are linearly increasing in a for
transformations of the form Z + aZ + b. The relative differences between the objective
functions at the solutions are independent of these transformations. Thus the above results
represent a comprehensive examination of the i.i.d. job duration case. A worst-case average
measure of the performance of the heuristics can be obtained using max{SJB LB, SEP LB}
(the best lower bound) to approximate the optimum. This yields an upper bound on the
average gap between the heuristic solutions and the optimal solutions of 16.83% for the SJB

heuristic and 24.42% for the SEP heuristic.
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3.6 Summary and Conclusions

In this Chapter we provided a new formulation of an important and common problem. The
stochastic linear programming model allows considerable flexibility in modeling different
types of cost situation. For example, the formulation can easily be generalized to accommeo-
date piecewise linear cost structures, not only for overtime costs, but also for waiting and
idling costs. It is also easily extended to include application to systems with special charac-
teristics, such as customer tardiness or “no shows”, through adjustments to the performance
metrics and the modeling of job duration distributions.

For problems with n < 10, solutions with tight upper and lower bounds can be obtained
with little computational effort. As the problem size grows, the gap between the bounds
increases. However, the solutions are typically much better than the worst case bound. For
solving large problems, two heuristics have been proposed and tested. Both provide tight
lower bounds on the optimum, and both significantly outperform the mean-value solution for
cases in which waiting costs are high, or comparable to idling costs. From a practitioner’s
point of view, the SJB heuristic is amenable to spreadsheet-based implementation, and
outperforms (in many cases significantly) the mean-value solution, for all cost structures
and job duration distributions considered.

Numerical experiments indicate that VSS is high when either the relative cost of over-
time/idling is very high, or when the relative cost of idling is high. There are, however,
ranges of cost parameters where choosing job allowances equal to mean job durations is
a reasonable approach. That happens when the unit cost of waiting is about 10 to 50%
of the unit cost of idling. In general, there are significant cost advantages associated with
using optimal appointment schedules. Results for small problems indicate that optimal
solutions, although mostly dependent on mean and variance, exhibit some dependence on

other distribution properties as well, such as skewness.
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The cost of operating an appointments-based service system rises as job durations be-
come more variable, suggesting that in such a case other forms of managing service delivery
(segmenting job population into more homogeneous divisions) might be necessary. There is
evidence that optimal sequencing, where possible, delivers cost savings that are decreasing
in unit overtime costs. If overtime costs are sufficiently high, all jobs experience positive
waiting times with high probabilities, and the sequence has negligible impact on makespan.

From a modeling perspective, a potentially valuable extension would be to include prob-
abilistic service level constraints. For instance, these could be in the form of constraints
on the probability of makespan exceeding the allocated time for a set of jobs, or similar
constraints on individual waiting and idling times. Another important extension would be
to model scheduling of start times for activities in a project network. Such a model would
be useful for scheduling resources (e.g. construction crews) when the start times of jobs are
contingent on the completion times of multiple predecessors, or for coordinating the release

of raw materials into a manufacturing system.



Chapter 4

Inventory Placement in the Steel

Industry

4.1 Introduction

More than 100 million tons of steel are produced annually in North America with an es-
timated value of over 50 billion dollars !. Steel is an essential raw material for buildings,
automobiles, household appliances, and a wide range of consumer and producer products.
The Steel industry is widely considered vital to global economic competitiveness and na-
tional security It is also considered a mature industry, and often the quintessential example
of the old economy. Yet there have been significant changes in production technology in
recent years that have lowered the barrier to market entry and intensified competition. For
example, mini-mills use newer electric arc furnace (EAF) technology to process scrap steel.
A typical mini-mill consists of a scrap storage area, EAF, and a continuous casting machine.
Mini-mills produce between three hundred thousand and one million tons of steel annually
and have capital investments measured in tens of millions of dollars. Integrated steel man-

ufacturers (ISM), on the other hand, carry out all of the processes necessary to convert raw

!Statistics in this paragraph were obtained from “Steel Industry Technology Road map”, American Iron
and Steel Institute, February 1998.
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ore into finished products. They have dozens of semi-fabrication processes, typically pro-
duce three to four million tons of steel annually, and have several billion dollars in capital
investment.

Mini-mills are cost-efficient, but restricted in the variety of steel grades they can produce.
Nevertheless, they have generated unprecedented competition in the market for plain carbon
steels. In response to this competitive pressure, some ISMs that have the technology to
produce exotic grades, and to customize finishing operations, have positioned themselves
in the high-end markets for exotic/custom-finished steel products. However, customers in
these markets demand not only a unique product, but also deliveries that are synchronized
with their own production processes. Thus, ISMs are under pressure to increase the variety
of products they produce while at the same time increasing their responsiveness to market
demand. Even in those cases where product portfolios have not expanded, their composition
is turning over much more rapidly. For example, more than 50% of the items in one
steel manufacturer’s portfolio, consisting of thousands of unique end products, have been
introduced in the last 10 years.

Managing variety has become the key to profitability for many ISMs. Whereas product
proliferation is a common problem facing many industries, it poses a particularly difficult
challenge for ISMs that have long operated in the make-to-order (MTO) production mode.
Their production processes are designed to make steel in high volumes in order to minimize
setup costs (a brief description of a typical ISM’s production processes can be found in
section 4.2). Thus, invariably, order fulfillment times are long, ranging from 10 to 15 weeks.
However, markets in which [SMs have greater price latitude demand custom-products as
well as shorter and more reliable delivery lead times, in the range of 5 to 6 weeks. These
requirements are not consistent with the assumptions of low-variety and high-volume pro-
duction upon which ISMs production processes were built. As a result, where management

intervention has been slow, increased product variety has resulted in capacity shortages, as



CHAPTER 4. INVENTORY PLACEMENT IN THE STEEL INDUSTRY 70

well as an exploding inventory of semi-finished and finished goods. This has increased oper-
ating costs and worsened delivery performance for some customers. A potential solution is
capital expenditure to increase the agility of the production system. However, technological
and financial constraints make this an unpopular option.

ISM managers see strategic inventory management as a challenge as well as an oppor-
tunity to improve operations. Strategically placed inventories of the right semi-finished
products, and in the right quantities, can be used to achieve shorter and more reliable de-
livery times, while still preserving production efficiencies. In effect, this changes the pure
MTO architecture into a hybrid make-to-stock (MTS) and MTO architecture, in which a
portion of the finished products are made from existing stock of semi-finished products.
However, deciding which products to keep in stock, and how to manage their inventories,
is far from easy. It is complicated by capacity, yield, and demand uncertainty, process and
efficiency related constraints, and the fact that the production processes allow for a con-
tinuous range of semi-finished products. There can also be several potential staging areas
for the placement placing semi-finished goods inventory. It is clear that the steel industry
needs an optimization-based approach to managing product variety.

This Chapter describes a model, and its implementation at one ISM, that helps to choose
which semi-finished products to manufacture to stock. It is discussed in the context of a
single inventory staging point, but, it can be extended to cover multiple stages. The model
accounts for production efficiency requirements, inventory storage policies, and the need for
short order-fulfiliment lead times encountered at a typical ISM. It is motivated by discussions
with senior planners in several different ISM functional areas. Participants have included,
for example, inventory managers, purchasers, production planners, caster schedulers, an\d
capacity managers. Although the model is clearly inspired by application to one particular
ISM, it is generalizable for application to other ISMs, and to other industries with similar

process architecture, for example, the pulp and paper industry.
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The Chapter is organized as follows. In the next section we provide some background on
the steel-making process, some common process and policy constraints, and factors affecting
the design and control of a slab inventory system. In section 3. we formulate and discuss
properties of a model for choosing the specific design of slabs to manufacture to stock,
given capacity constraints, and uncertainty in customer demand. In section 4 we discuss
implementation issues and heuristics, and provide numerical examples based on empirical
data obtained from the particular ISM on which we have focused. In section 5 we summarize

the managerial implications of our findings and discuss future research directions.

4.2 Background

As opposed to discrete parts manufacturing, in which 2 manufacturer might utilize many
components and sub-assemblies to produce a few finished products, steel making is a few-to-
many industry. It uses a few raw materials to produce a large variety of finished products.
Product differentiation increases as raw material proceeds on its journey toward finished
product form. At each production stage, there exist process and efficiency related con-
straints, as well as stage-specific sources of uncertainty. Naturally, inventory is routinely
maintained to act as a buffer between various production stages, to improve efficiency, and
to satisfy process constraints. However, only the finished goods inventory is directly tied to
improving delivery performance. Our goal is to explore options for staging strategic inven-
tory at earlier points in the production process for the purpose of increasing responsiveness

to customer demand. But first, we begin with a general description of how steel is made.

4.2.1 The Steel-Making Process

ISMs produce a variety of finished products, most commonly in the form of flat rolled
steel coils, or band for short. Production of these products is achieved through two basic

stages: primary production and finishing. Primary production refers to the conversion of
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raw naterials (e.g. iron ore, coke and limestone) into band. Finishing operations, on the
other hand, make surface and structural modifications to the band to achieve customer
specifications on an order. Finishing operations might include surface modifications like
galvanization, tin plating, chromium-coating, and painting, as well as shaping operations
such as tube-forming.

A typical ISM has a plant with the following primary production operations: coke ovens,
blast furnace, vacuum degas stations, a continuous caster, and a hot strip mill. Figure 4.1
illustrates the flows between these operations. The first step in steel production is iron-
making. This process involves the separation of iron from iron ore. It is carried out through
a series of exothermic chemical reactions in a blast furnace. Next, the liquid iron, together
with additional scrap steel and various catalysts and purifying fluxes, is reduced in an
oxygen furnace and subsequently transferred to a ladle. The ladle is then transferred to
Ladle Metallurgy and Vacuum Degassing. At this stage various alloying elements may
be added to the ladle to modify the chemistry, purification processes are carried out, and
additional processing is done to ensure a homogeneous chemistry throughout the ladle.

A batch of liquid steel, called a heat, typically varies in size between 100 and 300 tons.
The grade of steel is based on its chemical composition and determines the physical prop-
erties of the eventual finished product. For example, grade often determines the ductility,
tensile strength, and surface quality of the product. Specifying the grade is the first step
in customizing the finished product. After the chemistry requirements have been met, the
next step is casting. This facilitates the transformation of steel from liquid to solid stage. A
continuous caster has a tundish into which liquid steel is poured from the ladle. The liquid
steel flows down through an opening in the tundish into one or more water cooled moulds.
As the steel moves through the mould it is cooled and forms a solid shell. Typically the
dimensions of the mould can be adjusted. - In the production of slabs (rectangular cross

section) it is common to have a fixed thickness but adjustable width. The mould is set to a
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Figure 4.1: Schematic representation of primary operations.
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specific width and after the slab exits the mould it is cut with torches to a desired length.
Given the slab width the length is the parameter that controls the weight of the slab. The
width and weight of the slab are chosen based on the order dimensions of the finished coil
specified by the customer.

Within each batch/heat a range of quality levels of slabs are produced. This occurs
because the level of the liquid steel in the tundish decreases between ladle changeovers. As
a result, some impurities from the surface (slag) mix with the liquid steel that flows through
the moulds, resulting in decreased quality of steel. Some slabs are therefore not suitable for
customers that have more stringent quality requirements.

Theoretically, slabs can be cast in any width and cut to any length. However, in practice,
large rapid width changes are expensive because they result in oblong shaped slabs which
have limited applicability to customer orders. Also, ISMs prefer to cast wide rather than
narrow widths, since wider slabs have higher throughput at the caster. Similarly, within
order specifications, they prefer to cut slabs as close to the specified weight as possible since
higher weights require cropping downstream, while lower weights can represent a revenue
loss and/or an increased number of pieces to be handled and processed at the hot-mill. In
summary, the controllable attributes of a slab up to this point are the grade, width, weight,
and internal and surface quality. It is not feasible to rework and correct deficiencies if any
of these attributes are out of range with respect a customer order, or the allowable hot-mill
tolerances.

After casting is complete, finished slabs may either be labeled and sent to a storage
yard for later use or taken directly to the hot-mill for processing. The industry term for
the latter practice is hot-connect. Heat retained by recently cast slabs reduces the energy
and time required for re-heating the slab. Re-heating is necessary to bring the slabs to the
right temperature for hot-rolling. Depending on the type of slab and volume of demand

for it, ISMs may try to schedule slab production to make hot-connect possible, particularly
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for wider slabs since wide slabs take longer to heat. The degree to which hot-connect is
practiced depends on the extent to which re-heat furnace is a bottleneck in the material
flow.

The hot-mill is a flow line in which a slab is first heated in a furnace to the desired
temperature. Next, it is moved on a conveyor to a system of rollers which are used to draw
it out into a strip. At this point some width reduction may be carried out by roughing, a
process by which pressure is applied to the edges of the slab while it is rolled. The amount
of width reduction that is possible depends on the metallurgical, process, and end-product
quality constraints. The steel strip is subsequently spun into a coil, labeled, and sent to
storage for cooling.

Any of a number of finishing operations may be performed on the coil. For example
many applications call for electro-plating or painting. Typically, before these operations
are carried out the coil goes through a process of pickling, in which the surface is exposed
to an acid to remove surface imperfections and improve adherence of a surface coating. In
many cases annealing and/or tempering processes, in which the slab is heated and cooled
at a controlled rate, are necessary to adjust physical properties. In some cases significant
structural modifications may be called for as well; for example, hydro-forming technology
is used to produce tube-form products used in the automotive industry.

From this description of the steel-making process, it is clear that there are broadly three
categories of inventories. These are in the form of slabs, hot-band, and finished items. Slabs
are the least differentiated products; finished goods are fully differentiated. A typical ISM
supplies thousands of unique finished products in response to tens of thousands of unique
customer orders each year. Similarly, within slab and hot-band categories, there are ranges
of potential specifications, called designs, which may be used to fill each order. It is therefore
difficult to decide which of these are “good” candidates for MTS production mode: In this

Chapter, we describe an approach that can be used to answer such a question. Also, we
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discuss the implementation at one ISM where it is being used to choose slab and hot-band
designs. In order to understand what is a good design, we begin by explaining the relevant

sources of uncertainty in the steel making process.

4.2.2 Sources of Uncertainty

Being the suppliers of an important raw material for many industries, steel manufacturers
experience a great deal of demand uncertainty. This is caused, in part, by the fact that
ISMs supply steel to customers in many different industries, and their demand is affected
by all of the factors that affect their customers’ demands. However, even for industries in
which end-user demand is virtually constant, the existence of long supply chains creates the
empirically observable bullwhip effect (see, e.g., Lee, Padmanabhan and Wang, 1997, and
Chen, 2000). This effect refers to the increased variance of demand between customers and
supplier when moving upstream in the supply chain. One reason for this effect is due to
batch ordering and order timing. For instance, although end customer demand for a product
may be nearly constant, an intermediate supplier may find it desirable to place orders to
upstream suppliers in discrete batches at well spaced intervals in time. Steel manufacturers
face the brunt of this variability by virtue of their position at near the beginning of many
supply chains. Order batching by downstream players in the supply chains in which ISMs
participate is commonly believed to be the most significant reason why their orders are
much more variable than the demand for end-products.

In some cases relationships with suppliers can make accurate forecasts possible through
closer sharing of information (e.g. demand data, inventory levels, production processes).
However, this is the exception rather than the norm. Typical lead time for the production
of a finished product from raw materials is in the 10-15 weeks range. Long lead times make
forecasting less reliable and intensify the bullwhip effect. They also increase the possibility

of order cancellations and/or changes. Even though slabs are produced after orders are
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received, orders are confirmed on much shorter notice (typically 5 weeks prior to the delivery
date). It is not uncommon for customers to cancel orders or change order sizes and/or
specifications at the time of confirming the order. This is well after slabs corresponding to
the original order specifications have been produced. Thus, long production lead times are
a source of significant uncertainty in demand.

In addition to being long, replenishment times are also highly variable. This variability
is caused, in large part, by the presence of random yield. Because of the large number of
operations at an ISM there are many points in the production process at which a yield loss
can occur. For example, slabs produced could deviate from the desired grade, and such
quality glitches are determined only after the slabs have been cast. After a yield loss occurs
it is often too late to make up for it since other products are already scheduled on the
caster, or on the hot-mill in the case of hot-band. On account of high setup costs, it is not
economical to adjust caster/hot-mill sequences at short notice. Thus it can sometimes take

several weeks before the additional production can be scheduled to recover from a yield loss.

4.2.3 Slab Inventory and Storage

Semi-finished inventory is carried within supply chains to buffer the disparity in supply
and demand between production units. At a typical ISM there are two stages at which it
may be beneficial to carry semi-finished inventory: slab and hot-band. In this section, and
throughout the remainder of the Chapter, we concentrate specifically on issues surrounding
the slab stage. Similar analysis carries over to the hot-band stage as well.

Slab inventory is carried as a buffer between two major production units at an ISM,
the continuous caster and the hot mill. It is clear from the previous Subsection that some
slab inventory is unavoidable and some is necessary for production efficiency. Unavoidable
inventory may be generated in the form of low grades that are produced between ladle

changeovers, and the mid width slabs that have to be cast in going from wide to narrow for
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which there may be no existing demand at the time of production. Furthermore, inventory
may accumulate in some cases due to changes in customer orders that are made after
production of the slabs. Marketing departments are encouraged to find customers for such
slabs and planners are encouraged to apply such slabs to orders as soon as possible.
Production efficiency-related reasons that make planned slab inventory important are as

follows.

e Whenever there is a grade change at the caster, there is a mixture of two chemistries
created which makes a portion of the cast steel unsuitable for most applications. Slab
inventory increases efficiency by allowing larger batches. It minimizes grade changes
and the concomitant loss of material. At one ISM, it is policy to produce minimum

three-heat lots of the mid to high demand volume slabs to reduce scrap.

e On occasions when the caster is scheduled to produce narrow slabs, ISMs produce a

batch in excess of existing demand to reduce the expense of future setups.

e Slab inventory is necessary to bridge the near uniform production rate at the caster

with the batch production mode at the hot-mill.

e Inventory of slabs promotes hot-connect by providing insurance against yield loss.
Recall that in order to make hot-connect possible, caster and hot-mill schedules have
to be synchronized and any shortfall in supply of slabs can delay the order by several

weeks.

Once slabs are in stock, planners are encouraged to apply them to released orders whenever
possible. Slab inventories have increased in step with increasing product differentiation.

In addition to providing efficiency gains and a buffer against capacity variations, there
are also important strategic reasons for making some slab designs to stock. The production

of slabs accounts for roughly half of the time required to process an order. Thus, having
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the slabs available when an order arrives can reduce delivery lead times significantly. Lead
time benefits can also result from the carrying of finished goods inventory. However, slab
inventory is much cheaper to carry because less value has been added at that stage, and
because it has a much lower rate of spoilage due to surface corrosion such as rust. Also, there
is much greater flexibility in matching slabs to orders than at later stages of production.
Thus, significant risk pooling benefits can be realized by carrying slab inventory. Order
matching flexibility comes from a combination of process capabilities and flexible customer
order specifications. This is explained in detail in the next Subsection. after we discuss the
types of storage used to stock slabs.

There are two common ways of storing slabs. In the random access area slabs of different
designs (grade, width, weight, internal and /or external quality) are stacked in the same pile
in a random order. The piles are adjoining, and the heights are restricted because of
the need for structural stability. Here it is possible that slabs with similar or identical
dimensions may be stored at different locations. Random access storage is necessary for low
volume slabs. These are produced in small quantities, but literally thousands of designs are
carried. Tracking and retrieval are often difficult in the random access area. In contrast,
in the second type of storage, slabs of identical dimensions are stacked in piles in the slab
storage yard and are referred to as clone banks. Several piles are stacked next to each other,
and because the piles contain identical slabs their heights are kept uniform by rotating
the picking of slabs. Thus structural stability is maintained and the maximum heights of
the piles can be much greater (often as much as 5 times the height of piles in random
access storage). The second method therefore benefits from much higher density storage,
simpler control and tracking, and shorter retrieval time. However, only high volume slabs
are economical to store in this manner. Most ISMs allocate a relatively smali proportion of

total storage space to clone banks.
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4.2.4 Order Matching Flexibility and Cold Application Rules

Slabs arc required for each order that arrives at an ISM. Customer orders specify the
dimensions of finished hot band that could be applied to fill the order. The hot band
dimensions, in turn, translate into a set of slab designs that could be matched to the order.
For the most part there is no flexibility in the grade and quality of the slab that is used.
However, there are ranges of width and weight for the slab that can be applied to the order.
There are two primary reasons why that is the case. First, [ISMs have the ability to reduce
width at the hot-mill via roughing (see section 4.2.1). Thus slabs that are greater than the
specified width for an order may be applied. However, there are limits on the amount of
width reduction possible which depend on things such as the grade, width, cast duration,
and gauge of the coil required for the order. Second, customers accept coils that fall within
a range of weights. Typically aim weight is specified but it is permissible to deviate from
this somewhat. Most customers permit weights which are lower than the specified weight
but not higher due to constraints at customer loading docks; thus having a higher weight
requires the scheduling of an additional cropping operation downstream. Put differently,
each customer order translates into a range of slab widths and weights that could be used
to match to the order. We call this order-matching flexibility.

In some cases, it may be possible to increase order-matching flexibility by downward
substitution, i.e., by using slabs of higher internal and external quality than the ones spec-
ified by the customer order. However, by and large, downward substitution (known in the
steel industry as grade and quality consolidation) is not practiced. This is because cus-
tomers can discern the quality of steel supplied to them and once they receive a higher
quality product than what they paid for they demand the same combination of quality and
price in future transactions. In short, slab width and weight are essentially the only two

attributes of order-matching flexibility.
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For an order that is released and is not part of a hot-connect sequence, a planner
determines whether there is an existing (cold) slab in inventory that could be used to fll
it. This is done by checking if any of the slabs in inventory satisfy a set of rules, called
the cold-application rules, for the order. If there is such a slab it is then assigned to the
order; otherwise a custom-fitted slab design is included in the future production schedule.
Similarly, in the event of a yield loss within a hot-connect sequence the affected order(s) is

re-released, and an appropriate cold slab is pulled from inventory if one is available.

4.3 The Approach

We propose a two-step approach to the management of product variety at [SMs. The ap-
proach is suitable for ISMs that have experienced an increase in the size of their product
portfolios, as well as pressure from their customers to improve delivery performance (both
delivery time and reliability). Typically, such ISMs carry finished goods inventories, ei-
ther as a contractual obligation to their customers, or as safety stock to cover mismatches
between supply and demand. The first step of our approach consists of moving most of
this inventory to earlier production stages where inventory is cheaper to hold, and where
benefits of inventory pooling can be exploited to reduce safety stock requirements. Carry-
ing strategic inventory of slabs, for example, is expected to cut the delivery lead time of
strategically important customers to less than half of where it stands now. This is highly
desirable for customer retention. In fact, it is quite possible that some customers will be
willing to pay a premium for having the option to specify order quantities no more than 5-6
weeks in advance of delivery.

The second step of our approach is to develop a plan for the management of inventory
of selected semi-processed items that will be made-to-stock. We plan to replenish stock

by scheduling regular production/purchase of certain items in each planning periad. This
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will free the remaining production capacity to be used to satisfy orders in a reactive mode.
Overall, the approach is expected to simultaneously reduce total inventory, improve delivery
performance, and improve capacity utilization.

Only the first of these two steps has been completed and implemented, and that is what
is described in this Chapter. The inventory management problem is addressed in Chapter
5. We are concerned here with determining which slab designs are “good” candidates for
MTS production. For this purpose, we recognize two important functions of slab inventory:
facilitating hot-connect and reducing delivery lead times. In either case, we are interested
in identifying designs that could cover the maximum number of customer orders and thus
minimize inventory carrying costs. Most, if not all, of these designs are stored as clone banks
due to the high volume of the requirements for them. Extensions of that work reported
here might include the development of an appropriate model-based inventory management
system that would include multiple inventory staging points for determining how the stock
of MTS slabs and other types of semi-finished inventory should be chosen and replenished.
Key issues here are: limited production capacity at the caster, seasonal demand pattern,
and planned and unplanned downtime, e.g., due to scheduled maintenance and repair of

furnace lining.

4.4 Model Formulation

In order to maintain low inventory a small number of slab designs are chosen for MTS
production. In the model discussed below we treat the following two concurrent objectives

for carrying planned slab inventory:

e Slabs are to be carried for the purpose of reducing lead times and improving on-time-

delivery performance.

e Slabs are to be carried as insurance against yield losses at the caster or hot-mill.
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The former allows efficient expediting of back-logged orders and shorter quoted lead times:
the latter helps on-time delivery of orders that are subject to hot-connect by allowing
production planners to pull cold slabs in the event of a yield loss.

The description of the model that we have developed is as follows. Let p denote the
maximum number of designs that are to be made to stock. The number p is determined
by available storage space. Later, we show the results of a sensitivity analysis to determine
the incremental benefit of making p larger. J denotes the set of potential slab designs, and
C = {1, ...,p} the index set of chosen slab designs with widths, w;, weights, u;, grades, 95
and qualities, g;. We define I = {1,...,m} to be the set of all orders within a historical
data set. For each slab j € J, and order i € I, we assume there is a nonnegative reward
rij, which is strictly positive if the cold-application rules are satisfied for the slab-order pair
and zero otherwise. Given a slab and order that satisfy the cold-application rules, the size
of the reward may depend on, for example, variable production cost, order size (in tons),
importance of the customer, and width and weight discrepancy between the slab and the
ideal width-weight combination for the order. Given the rij, our problem is to choose the

index set C of cardinality p that maximizes total reward, i.e.,

m
gg{g max{ry} | |C| < p}- (4.1)
Problem (4.1) is complicated by the fact that there is a continuous range of potential slab
widths and weights, i.e., the set J is continuous. As long as the width-weight combination
of a slab lies within the range specified by the cold-application rules, it is a feasible design.
Thus, for each order there is an infinite number of feasible slab designs.

For an order indexed i, let (w™", w™**) and (™", uM%%) denote the pairs of minimum
and maximum feasible widths and weights, respectively. Our first simplification of the

problem is to demonstrate that-under the following assumption, which is quite reasonable

from a practical viewpoint, the set of potential designs that need to be considered is finite.
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We begin by temporarily redefining the rewards in the following way. Let r;(w,u) denote
the reward associated with applying a slab of the required grade and quality with width

and weight (w, u) to order i. Furthermore, we make the following assumption:

Assumption 1 The rewards ri(w, u) are linear with respect to slab width and weight (w, u),

for each i € I, where w™" < w < wW* and U™ < u < UMOT,

For the particular application in mind this assumption is valid since rewards are reasonably

assumed to be roughly linear in width and weight for the following reasons

e Cast duration is linearly proportional to width and thus yield is linearly increasing in

width.
e Revenue is linearly proportional to slab weight.

Given this assumption the problem of optimizing over the set of potential slabs for a given
subset of orders, p, can be written as
c - -
max{Y" ri(w,u) | WP < w < WM, M < u < MM, i€ p). (4.2)
v iep
Since there is at least one common design (4.2) is feasible and assumption (1) guarantees

that a solution such that the width and weight correspond to a corner point solution. In
practice, this means that J can be reduced to a finite set of potential designs. This result
demonstrates an important property of the problem. It implies that we can start with a
finite set of slab designs, and search within that set, to find the best p designs. It parallels
the node optimality property of certain location problems (see for example Chapter 2, pp.
75-78, of Mirchandani and Francis, 1990). In a location theory context, node optimality
refers to the fact that, under reasonable assumptions, if one needs to locate at most p
facilities to maximize profits from serving n geographically dispersed customers (n > p),

then optimal locations are chosen from the set of demand nodes.



CHAPTER 4. INVENTORY PLACEMENT IN THE STEEL INDUSTRY 85

The fact that each subset of designs can be associated with a single optimal solution to
(4.2) implies a finite set consisting of p optimal designs. We demonstrate the logic behind
this through some specific examples. Consider first a single order from the sct 7, say order
1. In this case, the set of feasible designs can be shown as a rectangle encompassing the ideal
width-weight combination for the order. The latter is shown as an open circle in Figure
4.2. The reward r;(w, u) is linear over all feasible (w, u), and the unique optimal design for
order 1 is denoted by a star in Figure 4.2. In this example the set [ = {1} is a singleton.
The claim that there is a finite set of potential slab designs holds true in this case since we

can choose the set S) to have a single member, the optimal design.

A

Optimal Design

Wmax)...............

Width

Wmin].........oo000s

Order

Mumin Mmax

Weight

Figure 4.2: Order-matching flexibility.

Notice that in the example illustrated in Figure 4.2, the ideal width-weight combination

is shown at the upper right corner of the feasible region of slab widths and weights. This is
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based on actual considerations at one ISM but it no doubt has considerable generality. The
ISMs clients will accept a somewhat lower weight, but never higher because of limitations
at their loading docks. The time and material cost of scheduling the neccessary downstream
cropping operation for overweight coils is prohibitive. It is always desirable to avoid this
non-value adding step. Thus the ordered weight is assumed to be the maximum possible one,
and it is this weight that becomes the goal in order to simultaneously maximize revenues and
minimize the number of pieces handled/processed downstream. The location of the optimal
slab width depends largely on which production process is currently the bottleneck. For
example, when caster capacity is a bottleneck, ISMs try to cast slabs with the highest
possible width to maximize the total tonnage that can be processed through the caster.
Thus, Figure 4.2 shows the ideal width-weight combination in one instance of the slab
design problem. This may change over time, or from one application to another. Our
model accommodates such changes so long as assumption 1 is satisfied.

Next, consider an order subset consisting of five orders, as shown in Figure 4.3. We
immediately notice that there is no single slab design that can satisfy all five orders. There-
fore, the feasible set is empty and trivially finite. If we consider the two subsets consisting
of two and three orders shown in Figure 4.3, we notice that each of these subsets can be
satisfied via common slab designs. For illustrative purposes, this figure assumes that the
caster is indeed the bottleneck, and therefore maximum width and weight slab designs (top
right corners) are preferred. Then, the set of designs that contains the complete set of
optimal designs is the set of top right corners of all slab design sets that are feasible for at
least one member of the original subset. In the three order example, this set includes (a)
optimal designs for each particular order (b) optimal designs for combinations of two orders
from the original subset, and (c) a single design that is optimal with respect to all three

orders from the original subset.
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Potential Solutions

Width

-

Weight

Figure 4.3: Illustration of discrete set of potential solutions when ri; linearly increasing in
slab width and weight.

Since the order set is finite, there is a finite number of non-empty order subsets. There-
fore, there is a finite set of possible slab designs, which we denote as J = {1,...,n} from this
point forward, within which lie the p best designs. Thus, the problem can be formulated as
a combinatorial optimization problem in which the relationships between slabs and orders is
represented by a bipartite graph such as the example in Figure 4.4. Arcs have nonnegative
weight, r;;, and arcs with zero weight (ones that do not satisfy the cold- application rules)

are ignored.
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Slabs

Orders

l I I [ l

I ! ] { )

Figure 4.4: Graph representation of the set-covering problem in slab design optimization.

In the language of mathematical optimization, we need to determine values of binary
decision variables z; and y;; in order to maximize the total reward. That is, if
1 if j € J is chosen 1 if order ¢ is assigned to slab j

z; = . Yi; = .
0 otherwise 0 otherwise

and assuming that each order should be assigned to at most one chosen slab design, the

problem can be formulated as

m n
max 2 = Z zrijyij (4.3)
i=1j=1
s.t.
n
Youii<1, Vi (4.4)
Jj=1
n .
Yozi<p (4.5)

j=1
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Yij < Lj, V(l,_]) (4.6)

Yij» Ij € {07 1}7 V(l,]) (4.7)

Up to this point we have not commented on the precise form of the rewards, r,;, associated
with applying a slab design to an order. The factors that determine an appropriate way
of modeling these depend on the particular application. In the next section we discuss a
simple definition which can be quite useful in practical applications. First, we point out the
following interesting property of the model. Assume that the rewards are stochastic and
can be written as the sum of a deterministic part and a random part, ri; = 7i; + &j, where
£;; is observed after the choice of designs but before the allocation of orders to designs.
For example, they may have an underlying dependence on some random variable(s) (e.g-
demand). The structure of the problem is that of a two-stage stochastic linear program
where the variables z; correspond to first stage decisions, and y;; are the second stage

(recourse) decisions. The stochastic linear program has the following interesting property:

Proposition 2 The stochastic linear programming analogue to (4-3) - (4.7) is equivalent
to the associated mean-value-problem2 if &ij = &, t.e., &ij depends only on the order 1 and
not the design j.

Proof: Since the second stage decision is

1 if j = argmax;ec{rij’}

Y = :
0 otherwise,

it follows that yj; is independent of £;; and therefore

EE[E Y (&l = Y2 Eglrij (€)ly3s

i=1j=1 i=l j=1

250 Chapter 2, section 2, for definition of the mean-value problem
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Thus the introduction of randomness into the reward coefficients in this special case does
not change the underlying problem structure, i.c., the mean-value solution is optimal. In
the next section we use this property in the application of the mnodel.

Problem (4.3 - 4.7) is well known in other contexts. For example, the same mathematical
formulation is obtained when a firm needs to choose at most p locations to maintain bank
accounts for customer payments, given fixed costs for opening such accounts. In that
context, the problem is called the lock-boz problem (see, for example, Cornugjols, Fisher
and Nembhauser, 1977, for a discussion). In general, the problem can be described as an
instance of the fixed-charge network flow problem. A special case of the problem in which
facilities are located at demand nodes (i.e. J = I in the above notation), and the fixed
costs for opening facilities are zero, is called the p-median problem in location theory (see
Mirchandani and Francis, 1990, Chapter 2, for a review). The p-median problem is typically
posed in the context of determining the location of (at most) p facilities such that profits
from serving a range of geographically distinct customers is maximized.

While the problem defined by (4.3) - (4.7) is a well known problem, it is also known to
be NP-Complete (Cornuéjols, Fisher and Nemhauser, 1977). In practice, that means it is
at least as difficult as a set of other problems in combinatorial optimization for which no
exact and reasonably fast algorithms are known for solving large instances of the problem
exactly. The size of the problem that is relevant for a typical ISM is indeed quite large.
For example, a typical historical order set may contain tens of thousands of distinct orders.
Similarly, the number of slab designs that we need to evaluate, albeit finite, may easily
run into hundreds of thousands, and the size of clone bank inventory, although small, may
accommodate fifty different designs. Thus, there is little hope of solving a realistic problem
of this kind. We also recognize that ISM managers would like to perform sensitivity analysis
by solving different versions of the problem that represent different reward functions (recall

that this depends primarily on which process in the production system is a bottleneck, and
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bottlenccks change depending on order mix). They also need to continually re-apply this
technique to determine whether there have been sufficient changes in the customer order
portfolio to warrant a change in the slab designs kept in stock.

Naturally, many operations researchers have made contributions by developing heuristics
that work well for particular problem cases. A discussion of solution methods can be found in
Nemhauser and Wolsey (1999), pages 495-512. A well known, fast, and easily implemented
heuristic is the greedy dual-ascent heuristic. It has been studied in detail by Cornuégjols,
Fisher and Nemhauser (1977). They provide an analysis of the worst case performance of
this algorithm. Letting Z* denote the optimal solution and Z€ the solution obtained by

the greedy heuristic, they prove the following

Proposition 3 (Cornuéjols, Fisher and Nemhauser, 1977)

ZG
Z‘

>(1- ()2 = ~oe. (48)

Cornuéjols, Fisher and Nemhauser (1977) also show that there exists a class of problems for
which this bound is sharp, but, that there is empirical evidence that the average performance
is %?— = 0.8. Greedy heuristics such as this are often implemented as the first of a two-step
procedure in which an initial solution is generated (construction) in step 1, and subsequent
improvements are made in step 2. A well known heuristic for step 2 is an interchange
heuristic due to Teitz and Bart (1967). This heuristic is based on a neighborhood search of
an existing solution to determine pairwise interchanges that yield improved solutions. The
algorithm terminates when no improving interchange can be found. .

For problems of large size, a combination of the greedy heuristic to obtain a “good”
initial solution, and the interchange heuristic to improve this solution, can be a fast method
for obtaining near optimal solutions. There is evidence in the literature that the greedy-

interchange heuristics often gives near optimal results. For these reasons, we have chosen
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this two-pronged approach. The solution obtained using this approach is, by definition,
a lower bound on the optimal total reward. An upper bound on the optimal reward is
obtained by using the Lagrangian dual formulation, which is solved using a sub-gradient
algorithn (see Appendix A.1). The gap between the upper and lower bounds informs us
about the quality of our heuristic solution. While the worst case bound on the greedy
heuristic in proposition 3 is not very good, our numerical experimentation reveals that
the greedy-interchange heuristic produces a very good solution to the problem. It is also
fast and easy to implement, even on an inexpensive personal computer. The next section

describes results of numerical experiments and discusses implementation issues.

4.5 Implementation and Numerical Examples

The model developed in section 4.4 has been applied at a particular ISM and it is currently
being used as the basis of a decision support tool for choosing which slab designs should
be stored as clone-bank inventory and for making decisions concerning external purchasing
of slabs. Initial implementation and testing were carried out on a Sun Ultra 10 Work-
station with 128 MG of Ram using C++. The greedy-interchange heuristic solution was
subsequently transferred to a Windows NT platform and a suitable graphical interface was
added to accommodate various data management needs and to provide a suitable level of
abstraction for non-technical users.

A diagram illustrating the different types of data required by the model is provided in
Figure 4.5. The model uses various sources of data at the ISM to formulate the optimization
problem proposed in the previous section. An instance of the model is defined by the set
of rewards for applying orders to slabs. The order data is used to generate a list of distinct
order types, each of which has distinct specifications. To generate instances of the model

consistent with the needs of the decision makers the following assumptions were made
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e For cach distinct subset of orders that could be covered by a single common slab design

the maximum slab width and slab weight were considered. This is consistent with the
assumption that Continuous Caster is the bottleneck in the production process (see

Figure 4.3 for an illustration).

All the distinct order types over a specified planning horizon (e.g. 3-6 months) were
rolled into a single time period. Robustness of chosen designs is later tested by
studying the proportion of orders (in tons) that can be met with these designs when

order data from different periods is used.

Rewards were assumed equal to estimates of the mean demand for each order type,
D;, over the specified planning horizon, i.e., , rij = E[D;], where E[D;] is an estimate

of the mean demand for order type i.

Estimation of the mean demand for each distinct order type can be done using historical

order data, quantitative and/or subjective forecasts of demand, or a mixture of the two. The

objective is to maximize total demand covered by p designs, given the secondary objective

of maximizing caster throughput. The basic structure of the algorithm used is as follows:

i

ii.

iii.

A finite set of non-redundant potential clone bank designs is generated based on cold-
application rules in place at the ISM and an appropriate matrix of rewards for the
particular problem instance is generated and stored using a sparse matrix storage

scheme.

The greedy-interchange heuristic is applied to generate a user defined number of clone

bank designs.

Supplemental data analysis is carried out and a range of output is generated for
analysis of various properties of the proposed bank (e.g. factors impacting hot-mill

scheduling, product and customer breakdown, etc.) and for modeling subsequent
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Figure 4.5: Data flow for the slab design optimization model.

replenishment of the proposed bank (mean and variance of demand). This data can

subsequently be used for feedback into step i.

Numerical analysis was carried out using historical data from a particular ISM. For
confidentiality reasons no specific data regarding order trends or chosen slab dimensions is
given. The results are intended only to give some idea of the types of analysis that can be
done using the above model.

The results are presented in Table 4.1. They illustrate the typical accuracy of the
two heuristics employed. Comparison with the Lagrangian dual upper bound (last column
in the table) indicates that the greedy + interchange heuristic typically finds a solution

that is within 2% of optimal. This is significantly better than the worst case bound in
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proposition 3. Intuitively this can be attributed to two factors. First, the cold-application
rules restrict the applicability of slab designs to orders, and thus the choice of a given
slab design has a more localized impact on other design choices than in general location
applications. Second, although there is a broad range of potential designs, therc appears
to be a natural aggregation (similar to the well known Pareto rule) of a large proportion of
orders into a small set of width/weight ranges. As a result the greedy-interchange heuristic
provides a fast and satisfactory solution method for the structure and size of problems

considered here.

P Greedy  Greedyys %Gap Greedy +  Subgradient % Gap
Heuristic Interchange Decomposition
Heuristic
10 | 22.751 33.130 31.3 23.342 (12) 23.473 0.56
20 | 33.130 49.175 32.6 33.144 (6) 33.699 1.65
30 | 40.964 59.764 31.5 40.979 (6)  41.581 1.54
40 |46.562  63.885 27.3  46.685 (8)  47.522 1.76
50 | 50.756 67.384 24.7 50.770 (10) 50.793 0.04
60 | 54.340 71.739 24.2 54.902 (21) 55.769 1.55
70 | 57.425 76.210 24.6 57.988 (21) 58.577 1.00
80 | 60.059 77.820 22.8 60.620 (30) 61.143 0.85
90 | 62.439 81.104 23.0 62.974 (27) 63.488 0.81
100 | 64.628 84.215 23.2 65.198 (30) 65.736 0.82
150 | 73.450 92.580 20.7 73.794 (34) 74.608 1.09
200 | 79.707 98.211 18.8 79.833 (15) 81.158 1.63

Table 4.1: Numerical results for several values of p for greedy and greedy + interchange
heuristics, and the solution of the Lagrangian dual (upper bound).

The running time of the greedy heuristic is dependent on the form of the cold-application
rules that determine the extent of applicability of slabs to orders. Examples of computation
time for various problem sizes are given in Table 4.2. Typical running time for the greedy
heuristic for problems in Table 4.1 was less than 15 minutes on a Sun Ultra 10 and compa-
rable results can be achieved on a typical PC (366 MHz, 128 MG Ram). The interchange

heuristic was found to yield small improvements to the greedy solution (< 3%); however
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it significantly increased computation times. The number in brackets in columnn 3 of Table
4.1 denotes the number of iterations after which the interchange heuristic stopped, i.c., no
interchange could improve the solution any further. Many possibilities exist for choosing
the search criteria for the interchange heuristic. In this case we used single interchanges
where the entering slab design was the first to improve the solution and the exiting design

was the one that yielded maximum improvement.

Algorithm/p 10 20 30 40 50 60
Greedy 60 80 121 156 190 223
Interchange 924 2558 4771 5917 9013 13548
Subgrad. Decomp. 7818 8569 8586 8189 9253 8617
Subgrad. Decomp. Iterations | 1976 1993 2000 2000 2000 2000

Algorithm/p 70 80 90 100 150 200
Greedy 265 310 345 399 559 762
Interchange 14018 18270 21508 25978 99496 75346
Subgrad. Decomp. 9083 8888 9201 9460 8528 9418
Subgrad. Decomp. Iterations | 2000 1916 2000 2000 2000 2000

Table 4.2: Sample computation times in seconds for several values of p for greedy and greedy
+ interchange heuristics, and the solution of the Lagrangian dual (upper bound).

After applying the algorithm to one instance of the problem, i.e., one set of 6-month
order data, the robustness of the solution was tested by calculating the percentage of orders
(in tons) that could be covered by the best 50 designs in different planning periods. It was
found that the choice of designs is quite robust, and that the percent of orders covered is
approximately constant across different planning periods. We expect this not to hold for
long periods of time, due to portfolio turnover. Therefore, the software application of the
slab design optimization problem has the functionality to start with some initial designs and
add the best p — z design to the already existing z designs. Such flexibility accommodates
the potential need for incremental changes to the portfolio over, time.

Figure 4.6 illustrates the diminishing return for increasing the number of clone bank
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positions. It was found, using the model, that more that 50% of orders in 1999 could
have been filled using 60 different designs. However, as the munber of available cells is
increased, a long tail develops. Managing this tail is a problem confronted by all [SMs. It
illustrates the fact that there are typically many orders that require custom slab designs.
This representation is consistent with the 80-20 rule or Pareto distribution of many naturally
observable phenomena, including, for example, the ABC classification of inventory (see, for

example, Silver, Pyke and Peterson, 1998).

Cumulative Order Coverage vs. p
‘ w L L] Ll L] T

Figure 4.6: Cumulative percentage coverage of total demand for slab designs obtained using
the greedy heuristic.

Figure 4.7 is an example of a typical requirements schedule for a particular slab design
over a 6 month period. The schedule was evaluated using the set of orders assigned to

the particular design by the greedy heuristic. The order due dates were then adjusted
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according to production-routing-dependent processing times to determine the approximate
week in which slabs for each order would have been required for processing at the hot-mill.
The figure is typical of requirements schedules for slab designs in the steel industry. It
can be observed that there is some base load, which depends on the season, mixed with a
high variance component of demand. Such schedules can also be used to approximate the
probability distribution of the weekly demand for a particular slab design, and subsequently

used to analyze the effectiveness of different types of inventory control policies.

requirements (tons)
B

0 5 10 15 20 5 2
weeks

Figure 4.7: Example of a typical requirements schedule for a particular slab design over 25
weeks in 1999.
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4.6 Summary and Conclusions

We have motivated and provided evidence of the implementability of a well known combina-
torial optimization model for making inventory placement decisions in a continuous process
industry. Due to the recent need for ISMs to reduce order-fulfillment lead times, such a
model can play an important role as a tool for planning slab inventory. Numerical exam-
ples indicate that allocating even very limited space for planned inventory may allow for
significant improvements in order-fulfillment lead time. Also, we have demonstrated that
near optimal solutions can be expected even for the very large-scale problems considered
here, using heuristics that are fast and easy to implement.

The model presented in this Chapter represents a first-cut at modeling the choice of
clone bank designs. It ignores capacity limitations at individual cells, i.e., how many tons
of slabs each cell can hold, as well as decisions and policies regarding how clone bank
inventory is to be replenished in the presence of uncertain future demand and yield. These
factors may affect the choice of a set of clone bank designs. In the next Chapter we discuss
a more detailed stochastic optimization model for optimizing the inventory level of chosen

slab designs.



Chapter 5

Inventory Deployment Under

Uncertainty

5.1 Introduction

Advance planning of inventory requirements is a difficult and common problem faced by
managers of manufacturing systems operating under a make-to-stock (MTS) policy. Inven-
tory planning decisions depend on the penalties for excesses and shortages of inventory with
respect to random demand and product yield, as well as replenishment lead time, and the
frequency and duration of setups. Typically for low and medium demand volume prod-
ucts the inventory policy is a tradeoff between fixed setup/transaction costs and inventory
holding and shortage costs. High demand volume items, on the other hand, are produced
in each planning period, and therefore the frequency of setups is largely fixed, obviating
the need to explicitly consider fixed costs. The complexity of the problem is significantly
increased when planning decisions must be coordinated across multiple items for reasons
such as common capacity constraints, budget restrictions, and substitutable demand.

In the steel industry the customized nature of finished products, and the continuous

range of designs of semi-finished inventory, expand the planning to include the choice of
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which designs to stock. Chapter 4 considers a specific problem in the steel industry in which
semi-finished inventory designs are chosen for the purpose of shifting from make-to-order
(MTO) to a hybrid MTO/MTS production mode. When the number of design choices
is limited by a storage space constraint the problem is equivalent to the well known p-
median problem. The model in Chapter 4 is uncapacitated, i.e., it implicitly assumnes perfect
matching of supply and demand. In reality, however, the presence of long production lead
time requires inventory levels to be chosen long before demand materializes. Thus costs due
to supply/demand mismatch are unavoidable.

The goal of this chapter is to study the impact of uncertainty in yield and demand on
inventory deployment in the steel industry. The model we propose is motivated by the
application described in chapter 4. However, it is applicable to other process industries
and to other problem contexts. In the general framework we refer to the different types of
stock-keeping-units (slabs in the example in Chapter 4) as designs, and the requirements for
them as demand. We use the terms customer-class and order-type interchangeably to refer
to specifications of an order that affect inventory matching. Rules for allocating designs
to order types (cold-application rules in Chapter 4) are referred to simply as application
rules. Acquisition of inventory, whether by in-house production or external purchase, is
called procurement. The decisions about which designs to stock, which orders to support,
and inventory levels, are referred to separately as design-choice, order-choice, and lot-size
decisions, respectively, and together as inventory deployment.

The model we propose in this chapter is formulated as a two-stage stochastic linear
program with binary first stage decision variables representing both the choice of designs
and the choice of order-types to be supported through the make-to-stock (MTS) production
mode. First stage decisions also include the quantity of inventory to plan. Each of these
decisions are made prior to the resolution of uncertainty in yield and demand. Once the

uncertainty is resolved, available supply is allocated to demand to maximize profits subject
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to the application rules governing allowable allocation of designs to order-types.

The main contributions of this chapter are as follows. We show that a common relaxation
of the stochastic programming model corresponds to the p-median problem, and therefore, is
NP-complete. Structural properties of the deterministic equivalent problemn and the second-
stage recourse problem are presented that permit significant reduction in the number of
discrete decision variables and lay the groundwork for efficient heuristics. Applicability of
a greedy allocation algorithm to the recourse problem is discussed, and a stylized example
illustrating the potential worst case error is presented. Due to the large size of problems
found in industry, exact algorithms are not practical. Instead we propose two heuristics
that exploit the structure of the model, and which are applicable to large-scale instances of
the problem. A series of numerical experiments are presented which establish the accuracy
of the heuristics. Results for an instance of the problem from the steel industry (based on
actual data) are used to motivate the economic importance of the model, and to illustrate
some important managerial insights.

The Chapter is organized as follows. In the next section we provide a brief review of
relevant literature. In section 5.3 we present the model formulation, discuss special cases,
and provide insights based on the structure of the problem. We propose and discuss some
heuristics in section 5.4 and report, in section 5.5, a computational study of their accuracy;
we also provide examples based on empirical data to illustrate the economic importance
of the model. We summarize the work presented in the Chapter, and discuss potential

extensions of it in section 5.6.

5.2 Selected Literature Review

The model of interest in this Chapter is related to several different areas of literature in-

cluding: random yield production models, multi-product substitutable inventory models,
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and stochastic fixed-charge network problems. We provide a brief overview of this lit-
crature in the present section, and draw analogies between our problem and previously
studied problems. A majority of stochastic inventory model literature deals with single pe-
riod (newsvendor) problems, and with two product instances of the substitutable products
problem. The literature on stochastic versions of the fixed-charge network problem is very
limited. To the author’s knowledge there are no articles which incorporate randomn yield
and substitutable product features in the context of the stochastic fixed-charge network
problem studied in this Chapter.

Single-period stochastic inventory models assume a two-stage decision process in which
an initial inventory level is chosen, random supply and/or demand are observed, and inven-
tory is subsequently allocated to demand. The simplest example is the newsvendor model
for which there is a vast literature (see Porteus, 1990, for a review). We make no attempt
to present a detailed review of the newsvendor model here, however, some of the extensions
include: quantity discounts (Jucker and Rosenblatt, 1985), risk aversion (Eeckhoudt and
Schlesinger, 1995), multiple customer classes (Sen and Zhang, 1999), and pricing (Petruzzi
and Dada, 1999). The analytical tractability of this model makes it an important building
block for more general stochastic inventory models.

The importance of considering uncertain yield is well established. Yano and Lee (1995)
give a comprehensive review of factors influencing yield uncertainty and related modeling
approaches. In the context of single-product problems there is a considerable literature
including Shih (1980), Moinzadeh and Lee (1987), Lee and Yano (1987), and Henig and
Gerchak, (1990). The majority of models assume stochastically proportional yield losses,
i.e., yield uncertainty is represented by an independent random fraction of the lot-size. This
typically results in convex stochastic optimization problems, however, it is not appropriate
when yield uncgtta.inty is correlated with lot-size. Klein (1966) and White (1967) formulate

models as Markov decision processes that explicitly account for this correlation. These
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types of models are generally restricted to a small number of products and low dimensional
state spaces. Our model assumes stochastically proportional yield losses and is applicable
to large-scale problems involving both multiple products and demand classes.

[gnall and Veinott (1969) first considered the multi-product inventory problem with
downward (one-way) substitution. They focus on conditions under which a myopic or-
dering policy is optimal in a multi-period setting. Analytic results for two-product prob-
lems given perfect yield, are presented by McGillvray and Silver (1978), Parlar and Goyal
(1984). Bassok et al. (1999) consider solution methods for a two-stage stochastic linear
programming formulation (2S-SLP) of large-scale multi-product problems with downward
substitution. Gerchak and Wang (1996) consider the two-product case in which there is also
yield uncertainty. Studies of large scale single-period multi-product substitutable inventory
models that account for yield uncertainty have focused on applications to semi-conductor
manufacturing. Bitran and Dasu (1992) study heuristics for a lot-sizing model and Hsu
and Bassok (1999) present an efficient algorithm for a 25-SLP model that assumes a single
lot-size decision resulting in random yield of multiple products. Our model incorporates
all aspects of these substitution models but also.generalizw to cases other than downward
substitution.

The multi-product inventory problem with substitutable demand is related to the multi-
location inventory problem with transshipment between locations studied by Karmarkar
(1979), Robinson (1990), and others. A similar problem, the stochastic transportation
problem (Williams, 1962), differs from these problems because shipping schedules are fixed
prior to realization of random demand rather than after. These problems are related to the
general topic of two-stage stochastic linear programming problems with network recourse in
which the recourse problem constraints are of the network flow type. Wallace (1986) studied
specialized computational procedures for solving these.types of problems. Our model is

closely related to the work of Wallace since it assumes a two-stage problem with network
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recourse representing the allocation of supply to demand. However, it is a generalization
because it incorporates binary decision variables in the first-stage decision process that
represent selection of supply and demand nodes that define the second stage network flow
problem.

There is recent and growing interest in the area of stochastic mixed-integer programming
models. See Birge and Louveaux (1997, Chapter 8) and Schultz et al. (1996) for a review
of general stochastic mixed-integer programming applications and solution methods, and
van der Vlerk (2000) for a recent bibliography. In this context our model can be classified
as a stochastic fized-charge-network problem (see Nemhauser and Wolsey, 1999, Chapter
I1.6 for discussion of deterministic fixed-charge-network problems). Studies of stochastic
versions of these models are very limited. Louveaux and Peeters (1992) study a dual based
procedure for the stochastic uncapacitated facility location problem. Laporte et al. (1994)
study exact solution procedures for a location problem with stochastic demands in which
facility capacities (inventory levels) are chosen a priori. Another closely related work is by
Rao et al. (2000). They study a multi-product inventory model with downward substitution
and fixed setup costs. The differences between their model and ours are that they assume
perfect yield, no storage constraints (rather, fixed setup costs), and take advantage of the

downward substitution structure to propose simulation based heuristics.

5.3 Model Formulation and Analysis

The model we present is aimed at addressing the following decision process. Given a known
(but potentially large) set of inventory designs, a subset is chosen to support the MTS
production mode, subject to a storage space constraint. Furthermore, some or all of the
orders that are applicable to one or more of the chosen designs may by selected for plan-

ning in the MTS production mode, and lot-size decisions are optimized a.ccorciing to these
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Figure 5.1: Bipartite graph representing the inventory deployment problem

design/order-choices. Any orders not included in the MTS set will be served by the MTO
production mode. Also, all orders are eventually satisfied and shortages are fully back-
ordered. It is assumed that the design-choice, order-choice, and lot-size decisions are all
made before yield and demand uncertainty is resolved. Once these are resolved supply
and demand are matched according to a given set of application rules governing allowable
allocations of supply to demand.

The structure of the problem centers around a network described by the bipartite graph
in Figure 5.1. Vertices in the graph can be partitioned into a set of potential supply nodes,
J = {1,2,...,n}, that represent the set of design-choices, and a set of potential demand
nodes, I = {1,2,..,m}, that represent the different order-choices. Edges between the

supply and demand nodes indicate allowable allocations of supply to demand according to
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the application rules. To formulate the model we define the following notation:

j: per unit cost of having excess inventory of design j.

«}: per unit cost of shortage for order-type 1.

74;: application reward from applying order-type 1 to design j.

(:? : per unit variable production cost for design j.

z,: binary decision variable representing the decision to stock design j.

qi: binary decision variable representing whether order-type 7 is supplied from inventory
(gi = 1) or not (g; = 0).

c: number of permitted design-choices

w;: production/procurement lot-size for design j.

yi;: amount of order-type ¢ supplied by design j.

a;;: incidence parameter that is 1 if there is an edge between i and j and 0 otherwise.
s;: shortage for order-type i.

e;: excess product j inventory.

U;: random yield for design j.

D;: random demand for order-type :.

&: random vector with components that are yields, U;, and random demands, D;.

where c € Z,, ¢} € R, (cf, rij, cg, wj, Yij, Sir €j) € Ry, and (z5, ¢;) € B. Note that, as in
previous chapters, we use upper case for random variables, and boldface for vectors. Also,
Z+ and B are the set of nonnegative integers and binary values, {0,1}, respectively. The
random vector £ has support = C R" and probability distribution P. It is assumed to have
components that are nonnegative and to have finite first moments, denoted by &.

The first-stage decisions are the design and order-choices, x € B®, and q € B™, and the
vector of lot-sizes, w € R7%., respectively. In the first-stage there is a total production cost,

=1 ngJ‘. In the second-stage there is a cost 37, cfe;, for surplus inventory, and a cost
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=1 €15, for inventory shortage. The total application reward from matching inventory

with demand is 3°7_; 312 ri;3:;. Thus the complete sccond-stage objective function is

n m n e
1=

e s
E Tyl — che] - Zc,.s,.
=1 =1

li=1 j=

For convenience, the dependence of y;;, e;, and s;, on the realization of £ has been suppressed
in the notation.
There are second-stage inventory balance constraints on the allocation of inventory to

demand of the form

m
Y aijyij + €5 = Ujw;, V7, (5.1)
i=1
and
n
3" aijyij + 5 = Digs, Vi (5.2)
j=1

The a;; are determined by application rules. The first-stage binary decision variables, g;,
in (5.2), reflect the fact that application rewards and shortage cost penalties are incurred
only for designs that are chosen to be covered in the first-stage. (It is implicitly assumed
that if an order cannot be covered by a chosen design it is covered by alternative means; for
example, as part of the MTO production mode.) The yield dependence in the right hand
side of constraint (5.1) implies stochastically proportional yield losses. This is a reasonable
assumption for high demand volume designs in the steel industry where production yield
losses are approximately linear in lot-size, and yield losses for externally purchased designs
are typically of the all-or-nothing type. This latter type of yield loss results from mistakes
made by external suppliers in the delivery process.

The complete problem involves the discrete selection of supply and demand nodes, as
well as lot-sizes for chosen supply nodes, such that total profits are maximized. Putting
it all together, and assuming that the firm is risk neutral, the complete problem can be

expressed as

max{Z = -c’w+Q(x,q,w)} (5.3)
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n
st.y z; <c (5-4)

=1
x€B", qe B",w >0 (5.5)

The recourse function is Q(x,q,w) = Es[Q(x, q,w, §)], where Q(x,q, w, §) is defined by

n m n m
Qx,q,w,8) = max{d ) rjy; - cSe;— Y cisi} (5.6)
J=1li=1 =1 =1
m
s.t. Za,-jy,-j + e; = Ujwj, V7, (5.7)
=
‘ﬂ
Z%‘yﬁj + si = Digi, V4, (5.8)
i=1
¥ij < Dizj, V(i j), (5.9)
Yij 20, s; €; 20, V(l,j). (5.10)

We refer to (5.3) - (5.5) as the inventory deployment problem (IDP). It has complete re-
course, i.e., it is feasible for any feasible (x,w), due to the positive linear basis provided
by (e,s) in constraints (5.7) - (5.8), and given that U; > 0, D; > 0,¥(i,j). Furthermore,
randomness occurs in the right hand sides only, and second-stage cost coefficients are de-
terministic. It is assumed that the allocation of inventory is continuous which results in a
tractable model, and is also a reasonable assumption, given that the designs chosen typically
are those with significant demand volume. In the steel industry there are no significant fixed
costs for choosing a design, thus fixed costs for z; = 1 are zero. However, this assumption
is trivial to relax for applications in other contexts to which the model is applicable (e.g.
facility location problems) where fixed costs may be high. Also, note that there is no explicit
constraint forcing optimal lot-size w; = 0 if z; = 0. However, this is implied by constraints
(5.7) and (5.9) since otherwise e; > 0 and unnecessary additional excess inventory costs are
incurred with’ no additional rewards. Similarly, constraints (5.8) and (5.9) imply ¢! = 0 if

all z; = 0 such that a;; = 1, i.e., if no applicable inventory design has been chosen.
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We make the following assumptions about the objective function coefficients. Shortage
costs, ¢, .are nonnegative, i.e., it is never advantageous to incur a shortage. The excess cost
cocfficients, ¢j, may be positive or negative depending on the application. A negative c§
would correspond to a positive salvage value for excess inventory. The application rewards
are such that if for some (i, 5) aij = 0 then r;; = 0 as well. Furthermore, it is assumed
that rj; > max{—cf - ¢5,0}, V(i,7), ie., it is never advantageous. in the second stage, to
choose not to allocate available supply of design j to order i if r; ; > 0, and, there s some
nonzero reward for having a design that can fill an order. It is also assumed that first stage
procurement cost coefficients are such that c;’ +¢§ > 0, since otherwise it is trivially optimal
to produce an infinite quantity of design j, and for each design j there is an order-type i
such that r; > ¢} + c;’ , since otherwise it is optimal not to produce design j at all.

The restriction of the problem obtained by fixing some feasible x € B" is an important
problem on its own, which we refer to as the lot-sizing problem (LSP). It corresponds to the
case in which there is a known set of designs for which inventory levels must be planned.
From a practical standpoint, the IDP pertains to medium and long-range decisions about
which designs to stock, whereas the LSP may be solved frequently to control inventory lev-
els. Although the LSP is large-scale in nature, it is computationally less challenging than
the IDP because all the decision variables are continuous. It can be solved efficiently using
decomposition based approaches (e.g., Bender’s decomposition, Dantzig-Wolfe decomposi-
tion).

The LSP can be modified to account for initial inventory by adjusting the right-hand side
of (5.1), as Ujw; — w? +Ujw;,Vj. Since it may be necessary to solve the LSP repeatedly, it
is of interest to understand the properties of the optimal policy. Such a policy presupposes
a critical inventory level, ax, such that if w° < a, then w* = a — w?. The practical benefit,
when demand distribution is’ stationary, is that the LSP needs to be solved only once and

w* can be trivially obtained for arbitrary w®. In the absence of uncertainty in yield losses,
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ie., U; =1, w.p. 1, the optimality condition satisfies the following equivalence relationship

(see Kall and Wallace, 1995, chapter 1)

VwQ(x,q, w) = E&[va(xv q,w, &)] =0¢& E&[va[Q(x, q.w, 6)] =0 (5.11)

where w; = wg + #jw;, V7, and therefore

wl = 2 —21 vj. (5.12)

Bassok et al. (1999) point out a property analogous to (5.12) for a multi-product stochastic
linear programming model with downward substitution and perfect yield. When yields
are random, Henig and Gerchak (1990) have proved the existence of a critical value below
which an order is placed for the single-product problem. However, they show that in
general an order-up-to policy is not optimal, which immediately extends to the multi-

product generalization of the problem.

5.3.1 Deterministic Equivalent Problem Analysis

Given the very large-scale nature of problems encountered in practice we assume, from this
point forward, that the support, Z, is a finite set of scenarios, represented by the random
vectors &¥ = (uf,uf,...,uk, d%,d, ..., d5), with associated probabilities px, k = 1,..., K.
(In section 5 we discuss the reasonableness of this assumption and methods for generating

scenarios.) The deterministic equivalent problem can be written as

n n m
max{Z = - Zﬁ% + Zp"[tm'tx{zl Zruy,, Zc, ek 2‘1 cIsfY} (5.13)
1= =1 1=
Z%’ <6 (5.14)
2
m
Y aijyl + € = ufw;, Vi, (5.15)
2
1n .
3 aiyl; + b =dbqi, Vi, (5.16)

j=1
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z,,q: € {0,1}, V(i,5), 95, sk, 5 >0, V(i,5,k). (5.18)

To begin with, we consider a common relaxation of stochastic linear programns, such as the
IDP, in which the random right hand sides of the subproblem constraints are replaced by
their first moments (Huang et al. 1977). This corresponds to replacing each of the set of
subproblem constraints (5.15), (5.16), and (5.17), with the sum of the K rows weighted
by their associated probabilities, p¥*. This relaxation, known as the mean-value problem
(see section 2.2), significantly reduces the size of the deterministic equivalent problem by
reducing K subproblems to a single subproblem. The following proposition uses this relax-
ation to establish the connection between the stochastic model, IDP, and the deterministic

p-median problem (chapter 4).

Proposition 1 The mean-value relazation of the IDP is equivalent to the p-median problem.

Proof: Let £ = (d,d). Replacing random vector £ with single realization £, occurring

w.p. 1, yields the mean-value-approximation which, for some feasible x € B", has optimal
first-stage decisions,
n 1 _
g = min{z aijz;,1} and wj = (-_—) Z diz;,
4 ;-
i=1 2 i€C;
where C; = {i | rij > rij#,Vi'}. The optimal second-stage solution is s; =0 Vi, e; = 0, V7,
and
] d; ifieC;
¥ = )
0 otherwise.
Making the transformation y;; — d;y;; transforms the mean-value relaxation of the IDP to
n CP = m n _
max{Zp = -3 LY diz;+) Y rijdivij} (5.19)
j=1 % jec i=1j=1

m -
s.t. ij <e, (5-20)
=1
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ZathJu = Zd z;, VY, (5.21)
1€C

Zl ijYij = min{z ayr;, 1}, Vi, (5.22)

iz —

vi; < zj, V(i,j), (5.23)

zj € {0,1},Y5,4:; 2 0, V(4,5). (5.24)

Substituting (5.21) into the first term of the objective function yields

Zp = - Z 2 aqd;yu + z: Z erdtUu (5.25)

=1 j= i=1j=1
m n

= DD it (5-26)

i=1 j=1

(5.27)

where 7;; = ri;jd; — dayid;/uj. Since rij = 0 if a;; = 0 (by assumption) then 7; = 0 if
a;j = 0, replacing (5.22) with {y;; | 3=, aijyi; < 1,Vi} yields a problem equivalent to the
p-median problem except for binary restrictions on the y;;. However, y;j € B follows from
the total unimodularity of constraints in the p-median problem, given x € B® (Cornuejols,
Fisher, and Nemhauser, 1977). o
Since the p-median problem is a relaxation of the IDP an immediate corollary to proposition
1 is that the IDP is also NP-complete. The p-median problem has been studied in detail
(see Mirchandani and Francis, 1990, chapter 2, and references therein). Although reliable
exact algorithms for large-scale instances of the problem are not available, fast and easy-
to-implement heuristics that yield near optimal results in most cases have been proposed
(see chapter 4 for examples of the application of a greedy-interchange heuristic to p-median
problem). This relaxation forms the basis for one of the heuristics presented in section 5.4.
Managers of hybrid MTS/MTO production systems in the steel industry must trade

off the benefits of reduced lead-times with inventory allocation (shortage and excess) costs
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resulting from the assignment of orders to MTS production mode. Orders for which in-
ventory is not planned arc assumed to be served by default through the MTO production
mode. However, assigning an order-type to the MTS production mode represents a com-
mitment to have available inventory to allocate to that order-type when it arises. In the
IDP the decision, g;, represents whether or not to plan to supply demand for order-type
t from inventory. If ¢; = 1 then, from constraints (5.7) and (5.8) in the IDP, there is the
potential for nonzero rewards, r;;, as well as nonzero shortage costs, ¢, and excess costs cj.
In the following proposition we establish an important property of the discrete nature of
these first-stage order-choice decisions which allows considerable reduction in the number of

discrete first-stage decision variables and plays an important role in the heuristics discussed

in section 5.4.

Proposition 2 For fized x € B™ there is an optimal solution to the relazation of the IDP,
with constraints q € B™ relazed, and 0 < q < 1, such that q* € B™.

Proof: We consider the case in which ¢f > 0 (otherwise gf = 0) and show that it implies
¢ = 1. Treating the LP relaxation of (5.13) - (5.18) as a parametric program in q it can
be rewritten as

n
Zt; = ma.x{Q(x, w, Q) l (x, w,Y,Ss, e) €P, z al]y:; + sik = dl"cqit vi, k} (5'28)
i=1

where P = ((5.14), (5.15), (5.17)) has all zero right hand sides and is independent of q.

Writing the corresponding dual of (5.28) as

Zy = min{wh | * € D} (5-29)

where h = (q1d}, q2d}, ..., 1d%, q2d3, ..., 1dK , q2d¥, .) and 7 = (w}, wd, ..., nd 22, . oK 2K ).

Since d¥ > 0,V(i, k), and ¢; > 0, Vi, it follows that h > 0. Thus if ¢¢ > 0
oz

. K
g _ k gk
(a_qi)q,-zq? = 1?:1: nidi >0
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is independent of ¢; and since (5.29) is unconstrained in ¢; other than 0 < g; < 1 it follows
that q; = 1. 0O
Thus by proposition 2 the number of binary decision variables can be reduced from m +n
to n. This effectively increases the size of instances of IDP that can be solved reliably by

exact methods. As we show in section 5.4 it also important in the development of heuristics.

5.3.2 Recourse Problem Analysis

The heuristics proposed in the next section rely on decomposition of the scenario subprob-
lems. It is therefore important to establish the structural properties of the second-stage
recourse problem. In the second-stage, for a particular realization of £, the inventory levels,
yield, and demand are known with certainty, and the problem is to allocate inventory to
demand in such a way that total second-stage profit is maximized. Each design is a source
node, each order-type is a demand node, and the second-stage problem has network struc-
ture corresponding to the transportation problem. Special algorithms, such as the primal
dual or flow augmentation algorithms, that have polynomial running time are available to
solve such problems (Nemhauser and Wolsey, 1999, chapter 1.3).

In some special cases the transportation problem can be solved trivially using a greedy-
type algorithm. This relies on identification of a sequence of arcs {(i;, j¢), t = 1,...,m x n}

such that the following algorithm yields the optimal solution:
Greedy Allocation Algorithm:

Step 0: w;(0) = w° + ujw;, di(0) =d;.

Step 1: Fort=1,..n x m do:

If Qipje = 1 then Yigje = min{wﬁ (t)a dig (t)} and Wy, (t + 1) = w)c(t) = Yivjer

’ dig (t + 1) = die(t) = Yieje
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Step 2: return to Step I.

The basic idea of the algorithm is that arcs are ordered such that flows across cach are
sequentially maximized subject to maximum available supply and demand. Existence of
such a sequence can be proved based on the fact that every basis for a transportation
problem is triangular (see Corollary 13.2, pp. 382, Murty, 1983). However, the identification
of such a sequence is nontrivial. A special condition for identifying an optimal sequence,
referred to as a Monge sequence, for the case in which total supply equals total demand
was proved by Hoffman (1963). The following proposition is an adaptation of Hoffman’s

proposition specific to the recourse problem for the special case of no shortages or excesses.

Proposition 3 (Hoffman, 1963) If the coefficients satisfy the condition that for every 1 <1,
s<m,1<j,t<n,if(i,7) precedes both (i,t) and (j,s) in the sequence, then the inequality

Tij + Tsg 2 Tie + Tsj 15 satisfied, then the sequence is a Monge sequence.

In the case of the LSP the transportation problem can be viewed as consisting of dummy
supply and demand nodes for shortages, s, and excesses, e. Hsu and Bassok (1999) identified
a Monge sequence for the special case of downward substitution when ry;, V(i, j) are sepa-
rable into costs depending on the product i and the order-type j, i.e., ri; = 7 + 77. There
are two reasons why these assumptions do not apply to inventory deployment problems in

the steel industry

i. Allocation of designs to orders is not restricted to downward substitution.

ii. The r;; depend on the relative difference between the width and weight of the slab

design, and the ideal dimensions of the order-type to which it is applied.

The first follows from greater generality of application rules (see section 4.4 of Chapter
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4). The second follows from (a) dependence of revenues on weight discrepancy between an
order and design, and (b) the cost dependence of cropping and side-reduction operations
on width discrepancy. The following example illustrates the potential error due to greedy

allocation when the sequence is not a Monge sequence.

Example: In this example we consider a heuristic in which supply is allocated to demand
by choosing arcs in decreasing order of rewards. We assumen=m=2,r;;, >0,¢f =0, i =
1.2, cj =0, j=12, and u; =1, j = 1,2. Demands, d;,d, and supplies, w;,ws, are
known in the second stage, and rewards satisfy r1; = ro2 = r and ry3 > r. The structure of

the problem is illustrated in Figure 5.2.

Figure 5.2: Two design/order example
It is straightforward to show that the optimal allocation is achieved by either of the se-
quences {11,22,12} or {22,11,12} if rj3 < 2r. Thus, according to the greedy algorithm
Z* = rmin{d;, w1} + r min{dy, w;} + r12 min{dz — min{dz, w2}, w; — min{d;, w1 }}.

Alternatively, for sequences {12,11,22} or {12,22,11}, the arc with maximum marginal

return, r2, is chosen first, and the solution is

Z = rmin{dl,wl - min{dg,wl}} + rmin{dz,wz - min{dz,wl}} + ry2 mjn{dg,wl}.
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The maximum relative difference is achieved when the total allocation across arc 12 could
have otherwise been allocated across both arcs 11 and 22. We assume that supply is
allocated across arcs in order of decreasing rewards, thus the maximum relative difference
between the two sequences above is achieved when rj2 = r. In this case each unit allocated
across arc {12} is at the expense of allocating a unit across each of arcs {11,22} (providing

wy = d) and w, = dj) for total reward 2r. Therefore the maximum relative difference is

2t -2
Zt

<l =1

—2r 2

Therefore the relative error due to applying the greedy algorithm to the recourse problem
with a non-Monge sequence is potentially 50%. This underscores the potential need for
exact solutions to the second-stage recourse problem.

An important assumption upon which the IDP was formulated is that inventory is
allocated continuously. Although, in reality units of inventory are allocated in integer
quantities. Since the recourse problem has network flow structure, if the right hand sides
of the recourse problem constraints are integer valued then optimal second stage decision
variables will be integer valued without the need for imposing explicit integrality restrictions
(see proposition 2.3, Nemhauser and Wolsey, 1999, Chapter III.1, p. 541). Since d; are

integer by assumption, a sufficient condition is that that supplies, Ujwj;, are integer valued,

which is true for the following two special cases:
i. (Deterministic Yield Loss): U; = uj, Vj w.p. 1, w€ 2% and d € Z7, or,

ii. (All or Nothing Yield Loss): U;, Vj have distribution

1 w.p.
U = P- Po

0 w.p.1l-pg.

and we€ Z} and d € Z7.

For problems in which continuous allocation of inventory is an unacceptable approximation

this permits a O(K(nm + n + m)) reduction in the number of integer decision variables.
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However, in general the presence of stochastic yield loss ruins the unimodular structure of
the constraint matrix by imposing non-integer right hand sides. Rather than concentrate
on these special cases, we show instead that the assumption of continuous allocation of

inventory is a reasonable approximation for the application considered in the Chapter.

Proposition 4 At most ¢ orders will receive partial (noninteger) allocation of supply.

Proof: Every basis matrix of a transportation problem is triangular (see Corollary 13.2,
pp- 382, Murty, 1983) and thus there exists an ordering of arcs such that greedy allocation
(equivalently backward substitution) is optimal. Thus if it is optimal to allocate any supply
from a supply node to a demand node then it is optimal to allocate the maximum possible
supply. Since there are at most ¢ supply sources it follows that at most c orders can receive
only partial allocation of supply. m]
Since d; are typically large, and c is typically much smaller than m the relative worst case

error from continuous allocation of inventory is expected to be small.

5.4 Heuristics

Solving the IDP is computationally difficult for two reasons: first because of its large scale,
due to the stochastic nature of the problem, and second due to the additional combinatorial
nature of the first-stage decision. As a result, exact solution, by branch-and-bound, for
example, is not realistic. As discussed above there are similarities between the IDP and the
well known p-median problem. The latter problem has been studied extensively and many
different types of heuristics have been proposed for it (see Mirchandani and Francis, 1990,
Chapter 2 for a review). Some of these heuristics can be extended in a straightforward
manner to the IDP, however, the stochastic nature of the problem greatly increases their
computational burden. We restrict the study to heuristics which are applicable to very

large-scale inventory deployment problems such as those encountered in the steel industry.
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We propose two straightforward heuristics. Each heuristic is based on iteratively deter-
mining design-choices, x, such that at each iterations x € B". From proposition 2 of the
previous section integrality restrictions for q can be dropped. Thus deterinination of q, w,
Y, e, s, subject to the restriction on x reduces to solution of a two-stage stochastic linear
program with continuous first and second stage decision variables. The first heuristic is a
greedy type heuristic analogous to the one applied to the deterministic p-median problem
in Chapter 4. We let J denote the chosen set of designs, ie., J = {7 | z; = 1}, where

[J] < ¢, and ZLS(J) is the greedy solution to the LSP.
Greedy Heuristic (GH):

Step 1: Letv =0, J=0.
Step 2: Ifv <c,v=v+]1, and let j, = argmax,¢,;{ZL5(J U j)}.
Step 3: If Z2S(JUj,) < ZES(J) then stop with J as greedy solution.

Step 4: If ZL5(JUj,) > ZL5(J) then J = J Uj,. Return to step 1.

The critical difference between this heuristic and the dual-ascent heuristic used in Chapter
4 is that determination of j, at step 2 in iteration v requires solution of n — |J| instances of
the LSP. The running time per iteration O(n) in the number of potential choices of designs,
however, computation times can be prohibitive depending on the size/computation time for
the LSP.

The next heuristic is more suitable for very large size problems. It is based on initially

solving a relaxation of the problem, followed by the solution of a restriction to the problem.

Decomposition Heuristic (DH):
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Step 1 (Relaxation): Relaz the IDP to the corresponding deterministic p-median prob-
lem. Apply the greedy dual-ascent heuristic (Cornuejols, Fisher, Nemhauser, 1977)

to determine the greedy solution, x“.

Step 2 (Restriction): Resirict the IDP to x = x%. Solve the restricted IDP using the

L-shaped method (Van Slyke and Wets, 1969) for q¢ and w'.

This heuristic is based on initially approximating the first-stage design-choice decision using
the p-median relaxation of the problem. This results in a significant reduction in complexity
by reducing the first-stage to an approximation (again using a greedy type heuristic) of a
deterministic problem. The LSP is only solved once, after x has been specified. However,

the choice of decision, x, is made using only first moment information for &.

5.5 Numerical Experiments and Empirical Observations

In this section we provide results from two computational studies. The first study consisted
of numerical experiments to test the accuracy of the two heuristics proposed in the previous
section by comparing the solutions obtained with the optimal solutions to small-size, ran-
domly generated test problems. The second study involved a series of numerical examples
based on empirical data from a particular ISM to demonstrate the economic importance of
the model. The calculations in both studies were performed on a Sun Ultra 10 workstation
with 128 MG Ram; the programming was done in C/C++. The commercial solver CPLEX

was used both for solving mixed integer programs and linear programs.

5.5.1 Numerical Experiments

There is a wide range of possible problem structures that could arise in practice; the results
presented here are for randomly generated test problems. A set of test problem sizes,

specified by the choice of ¢, n, and m are examined. The problem instances for each of these
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were generated as follows. From each of i = 1, ..., m supply nodes. arcs were generated to
cach of j = 1,...,n demand nodes by sampling with probability p¢. Thus higher probabilitics
tend to correspond to greater substitutability of demand. The numerical experiments in
Tables 5.1 and 5.2 both assume arc probabilities drawn from some distribution F(p®) where
p® C [0, 1]. Yield and demand were assumed to be i.i.d. in all cases and sampled according
to U; ~ Ul(a,b),Vj and D; ~ N(u,0?),Vi, to generate a set of K scenarios. Procurement
costs c? are assumed the same for all supply nodes and are fixed at 1. Coefficients for

application rewards, shortage costs, and excess costs are all distributed as U(1, 4).

F(p®) (c,n,m) MV AMV LP ALP DH ADH GH AGH
(5,10,20) | 943 1565 026 121 031 209 4.73 8.57
(5,10,30) | 8.55 1142 016 061 0.37 2.84 3.08 9.99
(5,20,30) | 2.77 4.67 101 289 188 753 6.34 7.53
U(0.1,0.3) | (5,20,40) | 7.05 11.03 169 443 0.61 2.96 4.70 11.01
(10,20,30) | 5.50 6.35 009 020 076 1.65 0.40 0.86
(10,20,40) | 5.29 6.77 012 035 049 1.02 031 0.77
(10,30,50 | 3.59 4.79 0.12 031 0.18 047 1.80 2.94
(5,10,20) | 10.18 14.79 0.09 0.72 1.14 4.92 468 9.42
(5,10,30) | 9.40 154 004 035 0.11 0.66 330 6.30
(5,20,30) | 7.06 9.03 095 324 0.80 2.60 344 707
U(0,0.4) (5,20,40) | 6.62 8.21 131 301 095 3.64 425 7.66
(10,20,30) | 6.06 7.19 003 009 047 121 0.16 0.51
(10,20,40) | 5.13  6.25 002 011 084 222 0.18 0.56
(10,30,50 | 3.84 4.71 0.15 047 0.26 1.23 1.91 3.40

Table 5.1: Relative errors with respect to the optimum for randomly generated problem
instances with K = 25, U; ~ U(08,1),Vj, and d; ~ N(10,2), ¥i, and & = 05,7,
¢; =2,Vj7, ¢ =2,Vi.

Within Tables 5.1 and 5.2 results are presented for different choices of arc probability
distribution. The two tables differ with respect to the yield and demand uncertainty dis-
tributions; demand and yield variances are both higher in Table 5.1. The results illustrate
the accuracy of DH and GH for small randomly generated test problems with respect to

exact solutions obtained using the CPLEX mixed-integer-program solver. Relative errors
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F(p") (c,n,m) MV AMV LP ALP DH ADH GH AGH
(5,10,20) | 4.54 747 002 0.14 054 490 3.10 10.76
(5,10,30) | 3.11 4.92 049 305 0380 3.75 272 7.50
U(0.1,0.3) { (5,20,30) | 2.64 4.51 089 212 079 4.01 480 797
(5,20,40) | 2.63 4.83 1.89 365 0.82 34l 462 884
(10,20,30) | 2.84 3.72 003 0.12 036 0.64 0.24  0.56
(10,20,40) | 2.28 3.03 003 0.07 035 049 021 048
(5,10,20) | 4.92 6.11 003 0.12 029 215 295 6.11
(5,10,30) | 3.74 5.29 0.11 079 0.17 0.68 413 1094
U(0,0.4) (5,20,30) | 3.07 4.27 078 161 050 3.25 3.36 7.76
(5,20,40) | 2.60 3.57 088 3.27 1.08 5359 4.78 840
(10,20,30) | 2.72 3.87 002 005 025 046 0.093 0.21
(10,20,40) | 2.48 3.10 003 0.15 031 0.57 0.17 061

Table 5.2: Relative errors with respect to the optimum for randomly generated problem
instances equivalent to Table 5.1 except U; ~ U(0.85,0.95),Vj, and d; ~ N(10,1), Vi

are reported as 100 x (Z* — Z)/Z. In addition to the optimal solution, and heuristic solu-
tions using GH and DH (lower bounds), the upper bound achieved by the linear program

relaxation is reported in each case. Column headings in the tables are as follows:
MV : Average relative error for solution to mean-value p-median problem.
AMYV: Maximum relative error for solution to mean-value p-median problem.
LP: Average relative error for the continuous linear programming relaxation.
ALP: Maximum relative error for the continuous linear programming relaxation.
DH: Average relative error for DH.

ADH: Maximum relative error for DH.

GH: Average relative error for GH.

AGH: Maximum relative error for GH.

Average and maximum errors were determined from solutions to 20 randomly -generated

problem instances in each case. Since DH and GH are heuristics they are lower bounds on
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the optimal solution.

Results are very favorable for both heuristics DH and GH. The overall average error
across all problem instances in Tables 5.1 and 5.2 (480 in total) was 0.65% for DH and
2.80% for GH. For DH the average error in Table 5.1 was 0.72% compared to 0.52% in
Table 5.2. A similar reduction in average error for lower yield and demand variance of
2.96% to 2.6% was observed for GH. The worst case errors across all 480 test problems were
7.53% and 11.01% for DH and GH respectively. Also, in nearly 50% of the test problems
DH found the optimal solution whereas GH succeeded in finding the optimum in about 12%
of the cases. It is particularly interesting that DH in the majority of cases outperforms GH,
even though the latter explicitly considers the impact of uncertainty through the solution
of the LSP for each iteration of the design-choice decision. The degree to which DH is an
improvement over GH appears to depend on the number of designs choices. When ¢ = 10
the difference between the two heuristics is small compared to when ¢ = 5. Intuitively this
appears to imply that the performance of the GH heuristic is tied to the extent to which
design substitution is possible.

Results in Tables 5.1 and 5.2 show that in general the continuous LP relaxation provides
a tight upper bound on the optimum. The average gap is 0.48% in Table 5.1 and 0.45%
in Table 5.2. The high quality of the bound from the LP relaxation has been observed
for the deterministic p-median problem as well (Cornuejols et al., 1977). The solution of
the p-median relaxation has an average relative error of 6.92% in Table 5.1 and 3.13% in
Table 5.2. The p-median relaxation is more sensitive to changes in the variance of yield and
demand than the LP relaxation.

Results in Table 5.3 are the same as those in Tables 5.1 and 5.2 except for differences in
demand uncertainty and arc probabilities. In this case it is assumed that arc probabilities
have a discrete distribution corresponding to a truncated Pareto distribution such that

P(10,0.25) = C/k*?, k = 1,...,10 and C = [X}2,(1/k)}-25]~1. (Note that truncated
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F(p%) cn,m) | MV AMV LP ALP DH ODH GH AGH
(5.10,20) | 59.74 7862 021 089 028 193 178 7.1l
(5,10,30) | 41.36 5855 0.04 044 000 000 100 3.54
(5.20,30) | 34.84 4756 023 155 189 7.69 383 901
P(10,0.25) | (5,20,40) | 23.51 3153 0.17 067 098 462 358 7.06
(10,20,30) | 33.46 5091 004 011 077 208 051 1.19
(10,20,40) | 24.94 2900 004 021 068 238 065 1.31
(10,30,50 | 20.58 27.88 0.0 039 049 1.14 070 2.5

Table 5.3: Relative errors with respect to the optimum for randomly generated problem
instances equivalent to Table 5.1 except U; ~ U(0.8,1),Vj, and d; ~ N(10,2) w.p. 0.5 and
di =0 w.p. 0.5, Vi

Pareto was chosen because the results generated using it were roughly similar to those
observed for empirical data.) Furthermore, demand for each of the order types is now
assumed to by N(10,2) w.p. 0.5 and 0 w.p. 0.5. This allows for the additional uncertain
as to whether an order-type (demand node) has nonzero demand. (In the next section we
discuss how this type of uncertainty arises in the steel industry.) Results are again favorable
for both heuristics in these numerical experiments as well. In this case average errors for DH
and GH are 0.72% and 1.72%, respectively. However, it is interesting to note that the gap
between the optimal solution and the upper bound from solving the p-median relaxation
is much larger than in the examples in Tables 5.1, 5.2, and 5.3. This can be attributed
to much greater demand variation resulting from significant probabilities of realizing zero
demand for each order-type.

Figure 5.3 illustrates differences in average computation times for the exact solution,
DH, and GH. It was found that relatively large problem instances could be solved exactly
using the CPLEX mixed-integer solver. In fact all of the randomly generated samples could
be solved in less than 60 minutes. Figure 5.3 is a comparison of average computation times
over all test problems. From Figure 5.3 it is clear that DH has significantly shorter average
computation times. In fact due to the computational burden of solving the LSP repeatedly

in GH it shows only marginal improvement over solution to exact problems for these small
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Figure 5.3: Average computation times in seconds net of problem setup time for exact
solutions, and heuristics GH and DH.

test cases. In the next section we provide examples of its application to a real problem in

the steel industry.

5.5.2 Empirical Example

The following is an application of the model to real-world problems faced by an ISM.
The examples in this section illustrate the impact of uncertainty on lot-sizing decisions
for an actual set of slab designs stocked at the ISM which were chosen based on solution
to the p-median relaxation problem. No specific information about the policies or
design choices of the ISM involved in the study can be derived from the results

below. However, the examples demonstrate the types of problems that can be
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studied using our model, as well as general trends and insights into the effects of
uncertainty on inventory deployment decisions. We begin by explaining the method
for generating problems using empirical order book data. The approach discussed below is
based on discussions with senior managers at one ISM.

Design-choices, order-choices, and lot-size decisions, must be made in advance of knowing
with certainty which orders will arise. These decisions are based on existing orders, which
are typically placed sufficiently well in advance for planning purposes, however, there is
uncertainty about possible changes to the size and/or timing of the release of orders between
the time the planning decisions are made and the beginning of the shutdown. To simulate
scenarios that are consistent with these two types of uncertainty two sets of orders are
defined, a set of planned orders, I,,, and a set of possible replacement orders I5. For instance,
I, might correspond to existing orders in the order book with processing time adjusted due
dates during the planning period, and I, would correspond to a set of likely replacements
in the event of customer changes to due dates or cancellations. We define the set of order-
types that arise in scenario k as I,’,‘. Consistent with previous notation, the actual order
size is d;, and the order size in scenario k of order-type 1 is d{-‘. The demand scenarios are
generated by the following 3-step process. (Note that the +/— operations below correspond

to addition and removal of elements from a set.)
Demand Scenario Generation:
Fork=1,...,K do:
Step 0: Initialize I and I, and set df =d;,Vi € Ip, and I,',‘ = I,.

Step 1: Foralli € I,',‘ w.p. p* perform the following interchange operations with a randomly
drawn order, i.:

Ip=Ip—i+ic, I,=Is+i_ic.
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Step 2: For alli € I set df = (1 + A)d; where A is a sampled random deviate satisfying

A > -1

Thus there are two parameters determining uncertainty in demand, p* and A. To complete
generation of a vector, £, random yields are sampled according to some appropriately
defined yield distribution.

In practice the calibration of the various cost coefficients is a difficult problem. For
the purpose of numerical examples considered here it is assumed that shortage costs are
identical for all order-types, and excess and procurement costs are each the same for all
slab designs. The application rewards, r;;, depend on the relative differences between slab
and order width and weight

r —c¥(wi — wf) + c™(m§ —m%) if order i is applicable to slab j

Ti; = .
0 otherwise,

where w¢, w} are the widths for order i and slab j, respectively, and m¢, m}, are the weights
for order ¢ and slab j, respectively. Coefficients ¢ and c™ are calibrated with respect to the
cold-application rules, such that the minimum reward for a feasible slab-to-order application
satisfies r;; > 0. For the purpose of generating scenarios, the parameters p{ and A; were
assumed the same for all order-types. Unless specified otherwise, it is assumed that yields

are i.i.d. uniformly distributed, and that the demand scenario generation parameter A is

distributed as ~ N(u,02). The planning period is such that the number of orders ~ 103.

c/K |25 100 300 500
5 3 18 67 112
10 |23 92 281 480
15 33 190 635 1251

Table 5.4: Computation times net of problem setup time for solution of LSP.

Some limited examples of solution times are illustrated in Table 5.4. Experiments were

performed with implementations of the algorithm with and without the use of the special
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CPLEX network solver option. The sample computation times illustrate the fact that when
using the network solver option, dependence on K for fixed n is roughly linear for decom-
position algorithms. Dependence on n for fixed K, on the other hand, is approximately
quadratic. It was found that solution times were roughly independent of changes to cost
coefficients. Taking advantage of the network structure made solution times between 4 and
8 times faster for the problems considered in Table 5.4.

The sampling method described above is based on a crude Monte Carlo simulation of
orders and order sizes. Statistical error depends on the number of scenarios as 1/VK.
Numerical experiments indicate that the 95% confidence intervals around the mean for
k = 50 to k = 500 correspond to relative errors of roughly 0.8% to 8%. Thus, small
statistical errors can be achieved for reasonable problem sizes without resorting to variance
reduction methods like importance sampling (e.g. Infanger, 1994). In general it was found
that the sample variance is relatively insensitive to changes in the yield variance, and more
sensitive to the choice of scenario generation parameters, p*, A.

Figures 5.4 and 5.5 illustrate the effects of yield uncertainty on the optimal solution.
Figure 5.4 is a plot of the optimal solution, Z*, as a function of yield variance, with fixed
mean. Yields are assumed uniformly distributed as U; ~ U(0.8 — §/2,0.8 + §/2),Vj, and
Z* is plotted against §. When yields are deterministic, yield rate affects optimal lot-sizes
as wi — wj /u;,Vj. Thus, there is significant sensitivity to the first moment of the U; when
procurement costs, c;’ , are high. Our numerical experimentation shows that Z* can also be
sensitive to changes in the second moments of the yield distribution. For example, in Figure
5.4, Z* is decreasing at an increasing rate. For § > 0.1, Z* is roughly linear in §. This
sensitivity to the second moment of the yield distribution is evidence that the mean-value
solution would be a poor approximation when yield variance is high.

-Figure 5.5 illustrates the difference between two different types of yield.  The upper line
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Figure 5.4: Z* as a function of § = (b — a) for U; ~ U(a,b) for n = 15, K = 500, p* = 0.1,
A~ N(0,0.1)

corresponds to uniformly distributed yields, whereas the lower line corresponds to all-or-
nothing type losses, i.e., U; = 1.0 w.p. pg and U; =0 w.p. 1 —pg. The figure plots Z* with
respect to pg. For the uniformly distributed case, U; ~ U(a, b), V5, parameters are chosen
such that the mean and variance are equivalent to the all-or-nothing case. (This is done to
demonstrate that dependence on yield uncertainty goes beyond first and second moments
of the distribution.) This is achieved by choosing parameters (a,b) for the uniformly dis-
tributed case such that “—I—" = pg and ga—'é’ﬁ = po(l — pg), corresponding to fixing means
and variances respectively. The distinct differences in Z* are therefore due to dependence
on third and higher moments of the yield distribution.

Several numerical examples are presented in Tables 5.5 - 5.7 for different choices of cost
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Figure 5.5: Z* with respect to systematic changes in mean and variance for two types of
yield distributions for n = 15, K = 500, p* = 0.1, A ~ N(0,0.1)

coefficients and demand scenario parameters p* and A (for simplicity yields are assumed
perfect in these examples). In table 5.5 it is assumed that there is uncertainty in the types
of orders (p* = 0.1), but no uncertainty in the sizes of orders (A = 0). In table 5.6 the
opposite is assumed, the order-types are known with certainty (p* = 0) but order sizes are
uncertain (A ~ N(0,0.1)). Finally, in table 5.7 the two types of uncertainty are combined.
From inspection of Tables 5.5 - 5.7 it is clear that Z* is more sensitive to uncertainty in
order-types than order sizes. The expected value of perfect information (EVPI) is higher in
Table 5.5 (10% - 20%), than in Table 5.6 (about 2% - 13%). In Table 5.7, for which the two
types of uncertainty are (Eombined, the EVPI is higher than in either Tables 5.5 or 5.6, but

less than the sum of the EVPIs from those two tables. Although the EVPI is significant
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our results also indicate that the mean-value solution is often ncar optimal (within 1% to
6%).

Tables 5.8 - 5.10 contain results for several examples that illustrate relative differences
between the optimal and mean-value lot-sizes for varying yield uncertainty. The mean-
value lot-sizes are the optimal lot-sizes, given that yields and demand for order-types are
deterministic and equal to their means. It is useful to make this comparison since this is the
approach typically used in practice for choosing lot-sizes at the ISM. The most interesting
observation is perhaps that total inventory is relatively insensitive to significant changes
in cost parameters and yield uncertainty. Although intuitively it is expected that lot-size
would increase with increasing yield variance, the dependence is found to be very weak.
However, it was found that there may be significant dependence of individual lot-sizes on

yield uncertainty (see z7/u7 in Tables 5.8 - 5.10, for example).

5.6 Summary and Conclusions

The model presented in this Chapter is a first step in capturing aspects of inventory deploy-
ment under vncertainty that are relevant to the steel industry and other process industries.
The numerical examples illustrate several potential uses for the model as a planning tool.
While specific results depend on the particular application, the following general strategic-

level conclusions seem warranted:

i. Choosing designs based on mean demand and yield typically yields optimal or near

optimal design choices.

ii. EVPIL is, in general high, indicating significant advantages associated with improving

demand information within the supply chain (e.g. vendor managed inventories).

iii. Uncertainty in order-types (customer classes) has a greater impact on profits than

uncertainty in order sizes.
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iv. Total inventory is insensitive to yield uncertainty; however, individual lot-sizes can be

strongly effected.

The model studied in this Chapter is applicable to general problems involving the de-
sign/configuration of transportation networks given uncertainty in supply and demand. The
model could be modified to account for various other factors such as capacity constraints on
total production and/or external purchases, or randomness in second-stage cost coefficients.
However, suitability of the proposed heuristics for such problems remains to be established.
The scenario generation approach described has the benefit of being relatively simple to
automate with respect to a firm’s changing order book. However, a potentially valuable
extension would be the testing of the sensitivity of inventory deployment decisions to al-
ternative stress scenarios. An example would be the sensitivity of decisions to significant

changes in the order book, such as the addition of new products and/or customers.
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&, et cf) | 2 oy LI RI WS MV EVPI
(1,4,4) 59008.2 879 58835.8 59180.6 64708.4 58192.3 5700.1
(2,4,4) 41684.0 87.1 41513.2 41854.7 47114.2 40598.1 5430.2
(3,4,4) 24508.2 879 24335.8 24680.7 29520.0 23004.0 5011.7
(1,4,2) 59929.0 81.9 59768.3 60089.6 64708.4 59227.9 4779.3
(2,4,2) 42275.6 80.9 42116.9 42434.2 47114.2 41633.8 4838.6
(3,4,2) 24924.1 84.1 24759.2 25088.9 29520.0 24039.6 4595.9
(1,4,-0.5) | 62663.8 71.0 62524.5 62803.0 64708.4 60522.5 2044.5
(2,4,-0.5) | 43795.8 68.1 43662.3 43929.3 47114.2 42928.3 3318.3
(3,4,-0.5) | 25812.6 73.2 25669.1 25956.2 29520.0 25334.2 3707.4

Table 5.5: Optimal solutions, confidence intervals and other numerical results for 15 slab
designs, no yield losses, K = 500, p* = 0.1, and A =0

& ccef) | 2 oy LI RI WS MV EVPI
(1,4,4) 57426.6 39.9 57348.3 57505.0 59272.4 57005.4 1845.7
(2,4,4) 41262.9 36.1 41192.1 41333.8 431654 40898.4 19024
(3,4,4) 29829.5 107.8 29618.0 30040.9 34401.4 29503.9 4571.9

(1,4,2) 58172.1 47.1 58079.6 58264.6 59708.1 57557.5 1536.0
(2,4,2) 41792.2 344 41724.6 41859.7 43518.3 41443.7 1726.0
(3,4,2) 27411.6 34.6 27343.7 27479.4 29507.0 270779 2095.4

(1,4,-0.5) | 64824.6 364 64753.0 64896.1 65300.6 63655.5 476.0
(2,4,-0.5) | 46857.9 28.5 46802.0 46913.7 47754.5 46140.9 896.6
(3,4,-0.5) | 21863.5 30.9 21802.8 21924.1 23422.2 21507.6 1558.6

Table 5.6: Optimal solutions, confidence intervals, and other numerical results for 15 slab
designs, no yield losses, K = 500, p* =0, and A ~ N(0,0.1).

P, ccef) | 2 oy LI RI WS MV EVPI
(1,4,4) 58437.2 96.5 58248.0 58626.4 64645.1 57677.1 6207.8
(2,4,4) 41012.3 924 40831.2 41193.5 47068.7 40100.7 6056.4

(3,4,4) 29204.8 141.8 28926.7 29482.9 36795.6 28238.8 7590.8
(1,4,2) 60375.8 97.4 60184.7 60566.8 65636.1 59474.7 5260.3
(2,4,2) 42181.1 82.0 42020.3 42342.0 47643.7 41520.8 5462.5

(3,4,2) 26590.3 92.8 26408.3 26772.3 32094.5 25773.4 5504.1
(1,4,-0.5) | 68584.7 82.0 68424.0 68745.4 70625.0 66205.2 2040.3
(2,4,-0.5) | 48495.0 75.0 48347.9 48642.2 51969.1 47368.2 3474.0
(3,4,-0.5) | 21706.1 76.2 21556.8 21855.5 25449.5 21278.0 3743.3

Table 5.7: Optimal solutions, confidence intervals, and other numerical results for 15 slab
designs, no yield losses, K = 500, p* = 0.1, and A ~ N(0,0.1).
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o ey | 2@ omox xR o5 o5 o5 ne )T
e 1“2 2 u3 B4 us ne nr ns 9 m0 S

(1,4.4) 0.99 099 095 090 1.03 098 1.8 093 097 0.89 1.00
(2.4.4) 096 098 096 091 1.23 094 1.11 094 1.48 0.87 0.99
(3,4,4) 095 096 095 089 1.21 092 1.08 092 146 0.85 0.97
(1,4,2) 1.02 1.02 098 096 1.07 1.12 132 093 1.04 1.02 1.02
(2,4,2) 1.00 1.00 093 092 1.04 101 124 095 088 0.86 0.99
(3.4,2) 097 097 093 095 1.03 108 1.64 090 099 0.74 0.97
(1,4,-0.5) | 1.07 1.13 1.08 109 145 1.67 1.28 1.18 1.19 148 1.12
(2,4.-0.5) | 1.01 1.08 096 1.06 1.18 1.04 1.14 1.09 1.17 106 1.05
(3,4,-0.5) | 0.98 1.02 096 095 1.19 1.02 1.12 101 1.27 0.73 1.01

Table 5.8: Lot-sizes with respect to mean-value lot-sizes for 10 slab designs, U; ~
U(0.9,0.9),V5, and K = 500, p* = 0.1, and A ~ N(0,0.1) .

oo, ef) |[H om o@mono@m oZmom o om om ome X
v u2 u2 u3 B4 us 16 ur m #9 m0 Y

(1,4,4) 1.00 0.99 094 091 103 099 1.89 092 097 089 1.01
(2,4,4) 095 098 094 090 125 094 123 094 146 087 0.99
(3,4,4) 094 096 094 088 123 092 114 092 144 084 0.98
(1,4,2) 1.02 1.02 097 096 1.07 1.10 1.32 093 1.04 1.03 1.03
(2,4,2) 1.00 100 091 091 104 100 128 0.95 0.87 0.87 1.00
(3,4,2) 097 097 092 095 1.02 108 1.73 090 098 0.75 0.98
(1,4,-0.5) | 1.06 1.13 106 1.08 1.43 158 127 1.17 1.18 140 1.14
(2,4,-0.5) [ 1.01 1.07 095 1.05 1.17 1.04 1.16 1.07 1.17 1.05 1.05
(3,4,-0.5) | 097 1.01 094 094 123 101 115 099 125 0.74 1.02

Table 5.9: Lot-sizes with respect to mean-value lot-sizes for 10 slab designs, U; ~
U(0.85,0.95), V4, and K = 500, p* =0.1, and A ~ N(0,0.1)

. - - . - ) . . . :'.

0 0= oxn on m oz om  mo 3 ;e X
&, ¢, ¢) M2 42 n3 B Bs He uy us M9 w0 N g

(1,4,4) 1.00 101 091 091 103 101 225 093 098 0.89 1.01
(2,4,4) 094 099 090 091 135 094 154 094 142 0.87 0.99
(3,4,4) 092 096 0.88 089 133 092 1.51 092 140 085 0.97
(1,4,2) 103 104 098 096 108 1.11 133 093 105 1.04 1.04
(2,4,2) 101 101 0.89 091 104 1.02 139 097 0.88 0.88 1.00
(3,4,2) 096 098 091 096 1.03 1.11 179 0.88 099 0.76 0.98
(1,4,-0.5) | 1.09 1.15 109 1.09 144 159 130 1.18 120 141 1.15
(2,4,-0.5) | 1.02 1.09 094 1.06 1.18 1.05 122 1.08 1.17 1.06 1.06
(3,4,-0.5) | 098 1.02 094 094 128 101 1.19 101 122 0.75 1.02

Table 5.10: Lot-sizes with respect to mean-value lot-sizes for 10 slab designs, U; ~
U(0.8,1.0),V5, and K = 500, p* = 0.1, and A ~ N(0,0.1).



Chapter 6
Summary and Extensions

This Chapter summarizes the work presented in this dissertation, underscores important
insights arising out of this work, and suggests potential future extensions. The discussion
is separated into two parts. The first considers the appointment scheduling problem from

Chapter 3, the second the inventory deployment problems in Chapters 4 and 5.

6.1 Appointment Scheduling Systems

The work in Chapter 3 consists of a detailed study of a model applicable to the problem of
optimizing appointment-based service systems. The model assumes a set of jobs scheduled
on a stochastic server. The scheduling problem is a convex minimization problem, and solu-
tion of that problem yields job allowances (equivalently, appointment times) that minimize
the combined costs of waiting time, idle time, and tardiness. A variation of the standard
L-shaped algorithm is used to obtain approximate, but near-optimal, solutions via succes-
sively finer partitions of the support of job durations. Also, we derive upper and lower
bounds on the accuracy of the approximation with respect to the optimal solution. For
situations where jobs can be sequenced arbitrarily, we develop a bound on the magnitude of

savings that can be realized from ah optimal sequence of jobs. We show that if job-duration
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variances increase, while keeping their means fixed, the expected total costs of running an
appointments-based service system also increase concomitantly. We propose and test two
easy-to-implement heuristics that are based on relaxations of the original problem. These
heuristics are very fast and reasonably accurate for problems with a large number of jobs.

Several numerical experiments are presented which illustrate computation times, and
dependence of solutions with respect to parametric variation of input parameters. Optimal
appointment schedules are shown to be very sensitive to changes in the first and second
moments of the job duration distributions. Several examples are given for different cost
structures. Solutions are categorized according to the difference between waiting and idling
cost coefficients. For instance, a high ratio of waiting to idling cost resulted in high sen-
sitivity of the objective function to changes in the optimal schedule. However, when the
converse is true the objective function is found to be relatively insensitive to changes. In
fact, the mean-value solution (the solution obtained by setting job allowances equal to the
first moments of job durations) is typically near optimal in this case. A bound on the bene-
fits of changing the sequence of jobs was derived. The major insight provided by this bound
is that the dependence of the objective function on job sequence is high when the ratio of
idling to waiting costs is high. When the opposite is true, the dependence is low. Results of
the numerical experiments and the bound on changes in the objective function with respect
to job sequence have important implications for managers of appointments-based service
systems. They serve to categorize the types of systems for which application of a stochastic
optimization model could have significant impact on total costs.

There are several potential extensions to the appointment scheduling problem which to
the authors knowledge have not yet been studied. These can be classified into three groups.
The first is a more detailed analysis of the effects of job sequence. This problem is combina-
torial in nature, and can be described as follows. Given that optimal job allowances are used

for any particular sequence of jobs, the problem is to determine a sequence that minimizes
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total costs. In the simple case of i.i.d. job durations, and identical waiting and idling cost
coefficients for all jobs, the total cost of operating the system is obviously independent of
job sequence. However, if either job durations or waiting/idling cost coefficients are job-
dependent, there can be significant improvements from determining the optimal sequence.
Furthermore, there is evidence that the optimal solution to the sequencing problem can
be counter-intuitive. For example, Wang (2000) conjectures that the increasing-variance
ordering of jobs is optimal. Ridder et al. (1998) give a two job example in the context
of a news-vendor problem that proves the opposite (decreasing-variance) ordering can be
optimal. In particular, they show that there exist probability distributions for which higher
variance may be preferred to lower variance. That is consistent with a decreasing-variance
ordering in the two job appointment scheduling examples, and inconsistent with Wang’s
conjecture.

The second potential extension deals with general project scheduling environments in
which the predecessors for a given job may be more arbitrarily defined. In the appointment
scheduling problem discussed in Chapter 3, the jobs were performed sequentially. However,
in typical project scheduling applications (e.g. building construction, product design) start
times of jobs may depend on completion of multiple predecessors, and some jobs may be
performed in parallel. As in the appointment scheduling problem typical costs in project
scheduling are due to idling of resources and total tardiness of the project with respect to
some fixed completion time. The more general project scheduling problem can also be for-
mulated as a two-stage stochastic linear program, however, the much larger size of problems
encountered in project scheduling applications requires sampling based approaches.

The third extension would consider the case of more general queuing networks. Arriving
customers may require visits to multiple types of servers. Furthermore, there may be
multiple, but identical, servers providing each service. In such cases the optimal sequence

of servers visited by a customer may depend on availability at the time of arrival and
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during service. This results in the added complexity of optimizing the routing of customers
through the system on a dynamic basis. Such models would allow insights into the effects
of varying the configuration of servers in more complex appointments based service systems
(e.g. triage systems at outpatient clinics, multiple operating room scheduling).

Together, the above extensions would improve understanding of how appointment schedul-
ing policies, and the configuration of project networks and queuing networks, affect the
waiting of customers, and the idling of resources within appointment based service systems.
Such information would improve daily scheduling decisions and job/server sequencing and
workload allocations, as well as long term strategic decisions about capacity investments

and system design.

6.2 Inventory Deployment in the Steel Industry

The term inventory deployment is used to describe the coordinated decision of choosing the
design, order-types, and lot-sizes for planning inventory as part of a make-to-stock produc-
tion mode in the steel industry. The work in Chapters 4 and 5 comprises a detailed study
of models for semi-processed inventory deployment with special applicability to the steel
industry (but not restricted to that industry). Chapter 4 considers the problem of deter-
mining a finite set of slab designs from a continuous range. It is shown that the continuous
set of potential designs can be reduced to a finite set. The resulting finite problem is shown
to be equivalent to a well known problem that has been studied previously in the context of
facility location decisions. It is also shown, by numerical analysis, that fast heuristics can
be used to provide very accurate results for this problem. The model has been implemented
at a particular ISM, and details of its implementation were provided. Numerical examples
using problem parameters typical in steel manufacturing are provided and these show evi-

dence of the Pareto rule for semi-processed items in that industry. Furthermore, subsequent
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to the work reported here, the model has been applied to the optimization of another type of
semi-finished inventory (flat rolled coils referred to as band), with only minor modifications
of its original form.

Chapter 5 extends the design problem of Chapter 4 to include the added complexity of
planning lot-sizes for the chosen designs in the presence of uncertain demand and yield. The
model captures the effects of random order-types, order-sizes, and yield rates. The structure
of the problem is analyzed and several properties are presented which lay the groundwork
for two heuristics. Average and worst-case performances of the heuristics are estimated,
and shown to be quite favorable, by solving a series of randomly generated test problems.
Several numerical examples are provided that demonstrate the impact of demand and yield
uncertainty in inventory planning and managerial insights are summarized. In particular, it
is shown that the solution to the mean-value problem typically results in near optimal design
choices, however, there may be significant advantages to solving the stochastic optimization
problem for determining lot-sizes. The expected value of perfect information is typically
large which is evidence of the importance to integrated steel manufacturers of engaging in
projects that increase information sharing through the supply chain (e.g. vendor-managed
inventory). Also, total inventory is found to be relatively insensitive to yield uncertainty,
however, individual lot-sizes may be significantly affected.

The models studied in Chapters 4 and 5 represent a first step in the study of large scale
models for the strategic deployment of semi-processes inventory in the steel industry. An
important and potentially valuable extension to these models is to the case of multi-period
planning. The models we consider are of the two-stage type, however, in reality this is
a simplification. In practice planners have choices to make about dynamic changes to the
portfolio of inventory carried including: decisions to add additional designs, remove designs,
and/or switch from one design type to another. Two-stage models are a natural first step in

the study of models for dealing with the much larger and complex multi-period problems.



CHAPTER 6. SUMMARY AND EXTENSIONS 141

[n the multi-period setting there is the added complexity of coordinating decisions among
multiple time periods. The extremely large size of the problems and the need for discrete
decisions for the choice of whether to choose/switch an item of inventory make even the
implementation of reasonable heuristics a challenging goal.

The inventory deployment problem was motivated in the context of a slab inventory
system for an integrated steel manufacturer. However, the models that were developed
are generalizable, not only to other stages of semi-finished inventory in the steel industry
(e.g. band inventory), and other process industries (e.g. pulp and paper), but also to other
problem contexts. For example, in the context of long-term strategic management decisions,
the problem is analogous to the choice of facility locations (in fact, the typical context for
discussing p-median models). Similarly, the configuration of facilities with regard to flexible
manufacturing capability in a multi-product setting (e.g. Graves, 1994) is an important and

similar problem to which models of the kind we have developed can be applied.



Appendix A

A.1 Upper Bounding Lagrangian Dual Formulation

We begin by relaxing constraints (4.4) from the original formulation in (4.3) - (4.7) of section
4.4. For a given set of Lagrange multipliers, A, a dual of the relaxed problem can be written
as follows:

Zp = min{Zp(A)}, (A1)

where

Zp(A) = ma.x{L(:l: ¥, A)}, (A.2)

and the Lagrange function L is written as

DoY) = 3 3ty + 3 (L - qu). (A3)

i=1 j=1 i=1 =1

The above problem is to be solved subject to constraints (4.5) through (4.7) of the original
formulation presented in section 4.4. It is well known that Zp > Z. Cornuejols, Fisher
and Nemhauser (1977) present arguments that the coefficient matrix of constraints (4.5)
to (4.7) for given feasible vector x is totally unimodular, i.e., a linear programming (LP)
relaxation of the problem of determining Zp()) yields integer y. In fact, due to the simple
structure of Zp(A) the problem can be solved without having to solve an LP, as shown in

Cornuejols, Fisher, and Nemhauser (1977).
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It is well known that Zp()) is non-differentiable, but piecewise linear and convex in .
Therefore, Zp can be determined efficiently via the sub-gradient method (see, for exam-
ple, Nemhauser and Wolsey, 1999, pages 41-49 for details). When using the sub-gradient
method, the user needs to specify a stopping criterion. In our implementation, the algo-
rithm was terminated when M successive iterations produced a net improvement in Zp
which was less than an arbitrary e. Normalized sub-gradients were used as search direc-
tions, and step sizes were decreased geometrically at regular step intervals. The step size
was reduced by a factor of 0.98 every 5 iterations, M was set to 100 iterations, and the

algorithm was terminated when the net improvement was less than 0.001%.
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