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Abstract

Surface acoustic wave (SAW) devices are an enabling technology for high-performance
wireless communication systems. They are able to meet performance specifications
that are beyond the scope of competing technologies, particularly in the front-end
of the receivers, and establish the ultimate performance that is achievable. Current
spectrum congestion is forcing a move to higher operating frequencies, and this is
leading to a search for low-cost SAW devices that are able to operate at frequencies
above 2 GHz. To this end, there has been considerable interest in devices that employ
the high acoustic velocity of diamond. Diamond, however, is not piezoelectric, and it
must be layered with other materials such as zinc oxide (ZnO) to permit the electrical
generation and detection of acoustic waves. There is therefore a need for modeling
tools that accurately predict the behaviour of multi-layered SAW substrates in the

presence of surface transducers and reflectors.

This Thesis presents a study of SAW propagation and generation under in-

finite periodic grating structures on multi-laered ZnO/Diamond substrates. The



study is based on the space harmonic method (SHM) and predicts the SAW be-
haviour under both open and shorted surface electrodes. Dispersion diagrams are
obtained around the first Bragg wavenumber and stopbands of finite bandwidth are
observed. The method is then extended to the generation of SAWs by interdigital
transducers. Admittance curves and static capacitances are calculated. The physical
propagation behaviour of ZnO/Diamond multi-layered substrates is also investigated.
The displacement distributions and the standing wave patterns are calculated within
each layer. The energy contained in each layer is computed for different propagation
modes and different ZnO layer thicknesses.

The results are interpreted within the framework of the coupling-of-modes
(COM) theory. The COM parameters are derived for the first and second Sezawa
modes as a function of aluminum and zinc oxide thicknesses. The results and the
COM parameters can be directly used in the design of SAW devices. The established
analytical treatments can be easily applied to other multi-layered substrates with an

arbitrary configuration including additional layers.

iv
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Chapter 1

Introduction

Surface acoustic wave (SAW) is a general term for the type of mechanical waves which
concentrate all or most of their energies on the surface area of a solid. This behaviour

is in contrast to bulk waves, where the energy propagates throughout the solid.

Amongst all, the most popular SAW is the Rayleigh wave, which was pre-
dicted theoretically for free boundary surfaces on semi infinite isotropic elastic bodies
by Lord Rayleigh in 1885 [1] and observed experimentally in earthquakes. The phase
velocity of Rayleigh wave is lower than that of any bulk waves. Since then, surface
waves have been extensively investigated in the seismology field. In 1935, so-called
Sezawa waves were analysed on an isotropic plate over an isotropic half space [2].
These waves were later shown to be higher order Rayleigh modes. The application
of Sazawa type waves is being researched nowadays in order to realize a high ve-

locity SAW and multiple desired properties such as simultaneous high velocity and
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temperature stability.

Because the SAW is concentrated on the surface of the substrate, it can be
easily excited or detected on the surface. In the field of signal processing, surface
acoustic wave devices were not practical until the invention of the interdigital trans-
ducer (IDT) by R. M. White and F. W. Voltmer in 1965 [3]. Since then, a variety
of sophisticated SAW devices have been invented and are in use in most modern

communication systems.

The recent trend is to realize high frequency SAW devices for current high
speed communication systems. One way to realize this goal is to reduce the wave-
length of the SAW, because the frequency of the wave is inversely proportional to the
wavelength. This needs a reduction of the IDT period, in other words, a reduction
of the electrode width, which, however, is limited by the lithographic resolution in
the fabrication of the IDT’s. The other solution is to increase the phase velocity
of the SAW. For this purpose, several types of leaky SAW and new materials with
higher SAW velocity have been investigated. The phase velocity of a leaky SAW
is faster than that of the Rayleigh SAW, and it ranges from around 4,000 m/s for
quartz to 7,500 m/s for lithium tetraborate (Li;B407). As an alternative, Diamond
has attracted a great deal of attention as a new material with high phase velocity
of over 10,000 m/s. However, the Diamond substrate doesn’t have a piezoelectricity,
which requires the piezoelectric layer for the electrical wave excitation and detec-

tion. The multi-layered nature of the Diamond substrates cause dispersion that is
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a function of the piezoelectric material thickness. This means that the SAW prop-
agation and generation properties such as phase velocity, temperature stability and
electro-mechanical coupling are dependent on the substrate thickness conditions. The
quantification of properties that is necessary for SAW filter design and the specifica-
tion of these is becoming more and more stringent. The substrate properties have
been usually derived from the experiments. For multi-layered substrates, however,
this requires expensive and time consuming experiments that must be repeated for
each thickness condition, making a complete characterization unrealistic. Therefore,
it is especially necessary to establish a rigorous theoretical treatment of SAW prop-
agation and excitation which can predict SAW properties precisely for multi-layered
substrates.

A theoretical study is also necessary if one is to exploit potential proper-
ties of multi-layer substrates such as high coupling and temperature stability, which
are usually contradictory on semi-infinite substrates. The physical behaviour inside
multi-layered structure is also interesting, because the wave property will be governed
partially by each layer simultaneously.

For these reasons, we will establish a rigorous analytical method to de-
scribe the SAW propagation on multi-layered substrates using the space harmonic
method (SHM). The SHM is then extended to the SAW generation problem. From
these theoretical analyses, the SAW design parameters will be derived precisely for

Al/ZnO/Diamond multi-layered substrates.
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In this chapter, we will discuss the propagation of surface acoustic waves, the
principle of SAW devices and of Diamond SAW filters. With this background, the
motivation of this study will be restated, where the significance and the kernel of
this study will be emphasized. Finally, the major contribution of this Thesis will be

summarised.

1.1 Swurface Acoustic Waves

Acoustic waves propagating inside piezoelectric materials are governed by Newton'’s

equation of motion and Maxwell’s equation under the quasi-static approximation

a*u

p57 =V-T=V-(c-S—e-E) (1.1)

V-D=0 (1.2)

where U is the particle displacement, T and S are the stress and the strain, respec-
tively. D and E are the electrical displacement and the electrical field, ¢ and e are
the elastic and the piezoelectric tensors. p is the mass density.

The plane wave solution to these equations, with frequency w, has fields
proportional to

exp {j(k - r —wt)} (1.3)

where k is a wavenumber vector. The plane wave solution assumes an infinitely long

line source of the wave, and this will usually hold for SAW excitation with IDT’s. In
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fact, throughout our analysis, we will assume that the wave excitation }ine source,
IDT, is long enough in the y direction so that the spatial variation of the wave is
uniform in that direction, and k = (k,, 0, k;).

The above governing equations give us an 8th order polynomial in terms of
k. for each specific value of k.. 8 solutions of this polynomial can be classified into 4

pairs according to their dominant spatial components, which are:

1. electromagnetic wave
2. quasi longitudinal acoustic wave
3. quasi fast shear acoustic wave

4. quasi slow shear acoustic wave

The solutions for three acoustic waves can be plotted as a function of prop-
agation direction. The result is called a slowness curve. The slowness curve for Zinc
Oxide (ZnO) is shown in fig. 1.1. Right-handed Euler angle of ZnO is <0°, 0°, 0°
>. z and z are along the a-axis and c-axis of the crystal, respectively. In this figure,
kzss/w corresponds to the intersection between the quasi slow shear wave slowness
curve and the positive k,/w axis and to the branch point below which the quasi slow
shear partial wave becomes bulky. Similarly, k. ¢,/w and k,;/w are the intersections
between the slowness curves and the positive k. /w axis for the quasi fast shear wave

and quasi longitudinal wave, respectively.
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Figure 1.1: Slowness curves of ZnO.
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For k. larger than k. ,,, the solution for k., in general, consists of 4 complex
conjugate pairs. A value of k, with a negative imaginary part corresponds to a partial
wave decaying in the negative z direction. On the other hand, the positive imaginary
part corresponds to a partial wave increasing in the negative 2z direction.

Now, consider a semi-infinite material which lies in the negative z direction.
For given k, (k; > k. ,,), we can construct the wave from the 4 partial waves which
have negative imaginary components, because the amplitudes of the partial waves
with positive imaginary parts grow exponentially inside the material and these par-
tial waves can’t be allowed due to physical considerations. The resulting wave is
concentrated on the surface with no energy flow in the z direction. This type of wave
is called a generalized Rayleigh wave and the phase velocity is in general determined
by numerical computations. The Rayleigh wave is a special form of this generalized
Rayleigh wave inside the isotropic material. It can be constructed from the longitudi-
nal and the vertical shear waves coupled together to satisfy the boundary conditions.
The phase velocity for a Rayleigh wave in an isotropic material, can be given by the

analytic form as follows [4].

() o o= GO} - @}

where Vg, V; and V] are the phase velocity of Rayleigh wave, shear wave and longi-

tudinal wave, respectively.
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Fig. 1.2 and fig. 1.3 show the field pattern of the Rayleigh wave. The dis-
placement u; in the z direction is in quadrature with u, in the z direction. Therefore,
the particle motion is an ellipse. At the surface, the motion is retrograde, while it is
prograde below the surface.

If the given k. is less than the value of the slow shear wave (k. < k. ,,), some
of the k; solutions become pure real values. This means that part of the energy flows
into the material and is no longer concentrated on the surface. This type of wave is
called a leaky SAW and its phase velocity is higher than that of the Rayleigh wave,
because k. is less than that of SAW and the phase velocity is v = w/k,. For some
cases, the propagation loss due to this energy leakage is acceptable and leaky SAW

can be used for practical SAW devices.

1.2 Surface Acoustic Wave Filters

SAW devices are electrical devices that utilize conversions between acoustic waves and
electric signals on piezoelectric substrates. They can be classified into filters, delay
lines, resonators, convolvers and so on. Fig. 1.4 shows the typical structure of the
SAW filter. The input and the output IDT’s are fabricated on top of a piezoelectric
substrate. At the input IDT, the applied ac electric signal induces an acoustic wave
due to the piezoelectricity of the substrate. The traveling SAW is reconverted into

an electric signal at the output IDT.
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The frequency, f, of the applied signal will satisfy the following relation
v=fA (1.5)

where v is the phase velocity of SAW and ) is the wavelength of the wave. In order
to get the efficient conversion, A must correspond to the period between IDT finger
pairs. Typical operating frequencies range from 30 MHz to several GHz.

From a signal processing point of view, SAW filters can be viewed as Finite
Impulse Response (FIR) transversal filters, whose tap weights correspond to the IDT
finger overlaps and the delays to the finger spacings. Utilizing FIR filter design
methods, frequency responses can be designed by the geometry of the finger locations
and overlaps.

For high frequency applications, either the increase of v or the decrease of A
is necessary from eq.(1.5). The minimum value of A is limited by the lithographic
resolution of the fabrication tools. An increase of v can be achieved with the use of
new materials or leaky SAW waves.

In order for SAW filters to be effective, the electro-mechanical coupling must
be strong. In SAW filters, the minimum insertion loss and the maximum bandwidth
are closely related to this coupling coefficient.

The temperature coefficient of the substrate material is also important, espe-

cially for the narrow band applications such as resonators.
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1.3 Diamond SAW Filters

The recent rapid development of high-speed communication systems has increased
the demand for low-loss surface acoustic wave (SAW) filters with high operating

frequencies.

Diamond substrates are promising candidates for this type of application be-
cause of their high phase velocity. However, Diamond is an covalent crystal without
inversion symmetry, which leads to a lack of piezoelectricity. Therefore, it must be
used in a composite layered substrate with a piezoelectric material for the excita-
tion and the detection of the SAW. Several piezoelectric materials, such as ZnO [6],
LiNbOs3, LiTaO; [7] and so on, have been investigated over the years. The typical
Diamond SAW filter based on the ZnO/Diamond substrate is shown in fig. 1.5. After
the Diamond thin film is synthesized on the substrate, the ZnO thin film is formed
on the top of the Diamond. The metal IDT’s can be either on the top of the ZnO or

between the ZnO/Diamond interface.

These piezoelectric materials are deposited on the Diamond by RF magnetron
sputtering or ECR (Electron Cyclotron Resonance) sputtering. Because Diamond is
not in a stable state under high temperature with oxygen, the deposition conditions
are critical. Due to this fact, only ZnO is practical at this moment as a compatible
piezoelectric layer.

A single crystalline Diamond wafer is unfortunately not available yet. In
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Figure 1.5: The typical Diamond SAW filter based on the ZnO/Diamond substrate.
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practice, only polycrystalline Diamond thin films grown on a silicon substrate by
chemical vapor deposition (CVD) are commercially available. Diamond SAW filters
have been reported to have a high power durability [8]. Si0,/ZnO/Diamond multi-
layered substrate also have good texﬁperature stability, and find applications in narrow
band filters for optical fiber communications [9] [10].

As was stated before, the multi-layered nature of the Diamond SAW sub-
strates causes multiple dispersive propagation modes. These higher modes are known
as Sezawa waves. The wave propagation properties are different for each Sezawa wave.

The properties will be discussed later in this Thesis.

1.4 SAW Filter Design

For SAW filter design, the coupling-of-modes (COM) and the equivalent circuit design
methods are commonly used. The equivalent circuit model (ECM), first proposed by
W. R. Smith [11], expresses the IDT structure as an equivalent electrical circuit. The
frequency response is calculated from the admittance of this equivalent circuit.

As will be shown in Chap.2 (p.22), the COM model is an efficient and powerful
design tool. However, it is a phenomenological one that, like the equivalent circuit

model, requires parameters that are usually determined experimentally.

In order to meet the stringent demands of modern communication systems,

accurate modeling tools that can predict the propagation characteristics under the
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metal electrodes are necessary. Two effects due to the existence of the electrodes
affect the response of the device. One is the electrical shortening effect and the other
is the mass loading effect. Due to the complexity of the problem, only the electrical
effects are usually considered, which leads to a good approximation for low frequency
filter designs. However, as the operating frequency gets higher and ) gets smaller,
the relative thickness of the electrode becomes larger. In this case, we can’t neglect

the mechanical effects.

Several rigorous analysis techniques have been developed for considering both
electrical and mechanical effects, including the dyadic Green’s function method [12] [13],

the finite element method (FEM) [14] [15] and the space harmonic method (SHM) [16].

For the Green’s function method, the entire response of the system is de-
scribed by the Green’s function, which corresponds to the response to a delta function
source on the surface. Therefore, if we know the charge and stress distribution on
the surface, we can rigorously predict the entire behaviour. When R. F. Milson et
al. [17] first used Green’s function analysis, only the electrical effect was taken into
account for the simplification of the problem. In mid-1990’s, several authors extended
this method to the dyadic Green’s function method, which not only includes electric
effects but also mechanical effects [18] [19] [12]. Recently, the Green’s function for
multi-layered substrates has been derived [20]. Green’s functions alone do not, how-
ever, provide the propagation properties under grating structures, because the direct

calculation for hundreds of electrodes is not realizable. Some hybrid methods, such
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as the FEM and the periodic Green’s function [21] [22], offer this information under
the infinite grating structure approximation. FEM has the drawback that it is time
consuming, especially for multi-layered substrates.

For the propagation analysis under an infinite grating structure, the space
harmonic method (SHM) can also be used. As will be explained in Chap.3 (p. 46),
this method uses a set of space harmonics as a complete set of basis functions.

This method was originally applied to the propagation analysis of leaky SAW
by Q. Xue and Y. Shui in 1990 [23]. At that time, mechanical effects were neglected
for the simplicity of the problem. Since then, V. M. Bright and W. D. Hunt, and
Meier et al. applied the method to the case of thin metal electrodes using a first
order approximation of the stress caused by the electrodes in 1991 [24] and 1992 [25],
respectively.

The extension of this method with the introduction of the boundary condition
integral by T. Sato and H. Abe in 1998 [16] enabled the SHM to take fully into account

the mechanical effects with arbitrary shapes of electrodes.

We became aware of the potential of this method to extend to the analy-
sis of multi-layered structures and started our research about the wave propagation
analysis under an infinite grating structure on ZnO/Diamond structures in 1998. In
parallel, Sato et al. applied the method to SiO2/Al/Li;B4O; multi-layered substrates
and published a paper in 1999 [26]. Our ZnO/Diamond substrate is, however, par-

ticularly interesting because, unlike the Si0,/Al/Li,B,O; substrate, the piezoelectric
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wave excitation layer and the high velocity layer are distinct. The wave propagating

properties can therefore be expected to be different from [26].

1.5 Motivation of This Study

Multi-layered substrates for surface acoustic wave (SAW) filters have received consid-
erable attention, because they offer a possibility of meeting specifications for temper-
ature stability, high center frequency, and high electro-mechanical coupling, simulta-
neously.

The specifications of modern communication systems such as wireless mobile
communication systems, requires SAW filters with very stringent frequency responses.
The two major SAW filter design methods (ECM and COM) both need device pa-
rameters, which correspond to the wave reflection and the electro-mechanical coupling
at the electrodes. In order to satisfy stringent specifications, the accuracy of these
parameters becomes critical. In the past, these parameters have usually been deter-
mined experimentally using test structures. Especially for multi-layered substrates,
however, these costly and time-consuming experiments have to be repeated for all sets
of film thicknesses. Therefore, it is necessary to develop a theoretical method which
can handle multi-layered substrates and predict parameters with high precision, and

this is the most significant goal of this Thesis.

In this Thesis, the space harmonic method (SHM) is extended to account
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for multi-layered structures in order to analyse SAW propagation properties under an
infinite grating structure. The SHM is rigorous enough to consider both electrical and
mechanical effects due to the existence of grating metals. SHM is also modified to
account for SAW generation by an applied voltage. In ZnO/Diamond substrates, the
piezoelectric wave excitation and the high velocity layers are expected to be distinct.
Therefore, it is important to know the properties such as energy profile inside each
layer.

By use of this theoretical analysis, the dispersion curves can be derived for
each set of film thicknesses, from which the COM parameters can be theoretically
determined. From the calculated admittance curves of substrates, the SAW genera-
tion behaviour will be examined. The physical behavior of the multi-layered material,
such as the displacement and the energy distributions, can be examined. The data
that we generate is sufficient for the full characterization and design of SAW filters

with COM theory. These will form the kernel of this study.

1.6 Scope of the Thesis

The purpose of this Thesis is to develop rigorous analytical models to describe the
acoustic wave excitation and propagation under multi-layered structures. The treat-
ment presented in this Thesis links the physical models of acoustic propagation in

multi-layer piezoelectric substrates to the phonomenological COM models that are
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commonly used in device design. The results lead to the ability to determine COM
parameters without the need to build prototype devices. This ability is critical to the

economical future development of devices based on multi-layer substrates.

The specific contributions of this work are the following:

1. Based on the space harmonic analysis used for single layer SAW substrates,
we independently develop a rigorous analytical method for the evaluation of
SAW propagation of multi-layered structures. In this analysis, both electrical
and mechanical etfects can be considered for arbitrary thickness and shape of
grating electrodes. We apply this extended method to Al/ZnO/Diamond struc-
tures, where the wave exciting layer and the high velocity layer are distinct.
From the calculated dispersion curves, SAW filter design parameters are de-
rived as a function of film thicknesses. The most significant contribution of this
development is that it provides SAW filter designers with all but one of the
accurate COM device parameters directly (the static capacitance is obtained
later) for a potentially infinite set of multi-layer thickness conditions, without
the need for costly and time-consuming parameter extraction from experimen-
tal prototype devices. This analysis also gives us a new freedom to control
multiple SAW device properties by including the layer thicknesses as a design
parameter, which is not currently available. A discrepansy between the centers
of reflection and transduction is predicted for the first time on structurally sym-

metric ZnO/Diamond substrates, which may enable the development of totally
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new filter configrations. For the second Sezawa wave, we show that the self
coupling coefficient increases and the mutual coupling coefficient (the reflec-
tion coefficient) decreases linearly as a function of Al grating thickness for ZnO
thicknesses of Hzno = P/m and Hzno = 1.5P/w, where P is a period of the
grating structure. The transduction coefficient, which corresponds to electro-
mechanical coupling, is almost insensitive to the grating thickness. For the first
Sezawa wave of the ZnO thicknesses of Hzno = 1.75P/x, the mutual coupling
coefficient becomes a pure imaginary value when the Al thicknesses is greater
than Hy = 0.008P. These parameters can be used for the precise design of

SAW filters.

2. We examine the physical SAW propagation behaviour of multi-layered sub-
strates. The displacement and the energy distributions inside ZnO/Diamond
multi-layered substrates are presented for the first time. This information gives
us a better understanding of what is happening inside multi-layered structures
of this type, and it gives a further insight into device performance. It is also
useful, for example, in studying power-handling ability of ZnO/Diamond sub-
strates, which may form the basis for future high power-handling SAW filters
such as front end RF filters for wireless satellite communications. For a ZnO
thickness of Hz,0 = P/, the total amount of energy inside the Diamond is of
the same order as that inside the ZnO layer. At the ZnO/Diamond interface,

the kinetic energy inside the Diamond is larger than the strain energy at the
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electrode midpoint, while the strain energy is larger at the center of the spacing

between electrodes.

3. We extend the SHM for the first time to handle the wave excitation problem
in a multi-layered substrate by an applied voltage. Admittance curves are ob-
tained which correspond to the SAW excitation and which provide the static
capacitance of transducers built on multi-layered substrates, thereby theoret-
ically providing the last remaining parameter needed for device design. The
static capacitance for Al/ZnO/Diamond structures is shown to increase as the

ZnO thickness increases.

This Thesis is organized into four chapters. Chapter 2 deals with the COM
theory and the theoretical derivation of the COM parameters. Chapter 3 discusses
the space harmonic method for multi-layered diamond SAW substrates. From the
calculated results, the COM parameters for Al/ZnO/Diamond substrate are derived,

and energy profiles computed. Finally, Chapter 4 will conclude the Thesis.



Chapter 2

Coupling-of-Modes Theory

2.1 Introduction

The coupling-of-modes (COM) theory is one of the most prevailing SAW filter design
methods. It describes forward and backward propagating waves with slowly vary-
ing amplitudes represented by coupled differential equations. The COM model is,
however, a phenomenological one. The analysis depends on only a few parameters,
corresponding to the SAW velocity change, reflection, transduction and attenuation,
as well as the static capacitance per electrode pair. These parameters can be obtained
from rather time consuming and expensive experimental measurements, without con-
sidering the complexities of the underlying physics.

This method had its origin in microwave work in the 1950’s [27] and found

wide application in thick optical holograms [28], optical waveguides [29] and so on.

22
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The first use of this method in the SAW field was a paper on gratings by Y. Suzuki et
al. [30}. Later, Y. Koyamada and S. Yoshikawa [31] extended the method to include

necessary transduction terms for SAW transducers.

From the late 1980’s to the early 1990’s, the rigorous numerical calculations
for these COM parameters were done with FEM [32] [33], assuming that these pa-
rameters did not vary much with frequency. This assumption is valid for the Rayleigh

wave.

In this chapter, the COM theory will be reviewed. The general COM equa-
tions with finite loss will be derived in detail based on [33] and [34]. The relation
between two sets of COM equations is clarified. For the low loss approximation, the
COM equations are simplified to require only five COM parameters, that is, the self
coupling coefficient x,;, the mutual coupling coefficient x5, the transduction coeffi-
cient ¢ and the propagation loss ay, as well as the static capacitance of one grating
pair Cp.

The dispersion diagram is expressed by using COM. We show that the four
required parameters except for Cp can be evaluated from the dispersion diagram. We

then derive the admittance curve using the COM equations.
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2.2 COM Description

In SAW devices, metal gratings are used for exciting and detecting the SAW. The

discontinuities produced by these gratings cause reflection of the waves.

Consider the periodic grating structures shown in fig. 2.1. The period of the
grating is A. We define the forward travelling wave as a, and the backward travelling
wave as a,.

a, « e ilkr—jar)z (2.1)
a, o« ellkr—jar)= (2:2)
where kg is the wavenumber of the free surface wave without gratings and oy is a

propagation loss.

If there are no perturbations, the two waves are independent and can be

described by
da . .
— = —j(kp — jor)a (2.3)
Tz 2 = j(kr— jarja (24)

When subjected to reflections due to the gratings, the two waves affect each

other. The wavenumber of the free surface wave also changes by Ak due to the SAW

velocity change.
da, _ _ (k — jag)a; + jraa (— 2—“3:) (2.5)
dz J Jar)ay + JK2182 €Xp | —7 A .
da. ] ) . 27
d—z' = j(k - jar)az + jKri2a1 exp (J I-’L') (2.6)
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Figure 2.1: Grating structure with grating period A.

25
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where

k = kg + Ak (2.7)

is a modified wavenumber of the surface waves.

Coupling coefficients, x;2 and k3, are functions of z. They have the same
period as the gratings and they can be re-written by using a Fourier expansion. From

Fourier series,

kn = 3 Ka(n)exp (jkynz) (2.8)

k12 = Y Kk12(n)exp (jkgnz) (2.9)
n
where the Bragg wavenumber k, is

ky =2 (2.10)

Now, new variables A;(z) and A;(z) are introduced.

@) = Aiz)exp (-j%z) (2.11)
(@) = Ayfz)exp (j%z) (2.12)

where A;(z) and A;(z) are the slowly varying complex amplitudes of the travelling

waves in the positive and the negative directions, respectively.
Substitution of (2.11) and (2.12) into (2.5) and (2.6) yields,

dA1 (.’B )

o = (k- dar = ) @)+ T ) ) e (i + Do)

(2.13)
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dAz (.’B) —

= (k- dar - %) dule) 45 maln) (o) exp (s + Dhye)

(2.14)

If we only keep the n = —1 term in the summation, then the coupling coeffi-

cients become independent of z.

) jsphi(e) + frmnAa@) (2.15)
D) jbpaa(e) + jmunAa(a) (216)
where
op = kg-i-Ak—jaL—-’;—’ (2.17)
Knp = kn(-1) (2.18)
Ki2p = fK12(-1) | (2.19)

We now generalize these equations to include the action of a voltage applied
to the gratings by a pair of electrodes. If the excitation of surface acoustic waves
per strip is small, the effect of the voltage V can be incorporated with egs.(2.15) and
(2.16) by terms proportional to V as

dAl (27 )

Iz = “JpAi(z) + jrapAs(2) + jaV (2.20)
d‘?iz) = jopAy(z) + jrrzpAi(z) + jBV (2.21)

If the currents are small,
(=) _ oa(z)+ jnAa(z) + jwCV (2.22)

dz
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where C is the static capacitance per unit length.

Eqs.(2.20)-(2.22) are the most general expressions for the COM equations.

2.3 Low Loss Approximation

For the case where loss is negligible, the above three COM equations (2.20)-(2.22)
can be reduced to simpler forms. From power conservation for the shorted gratings
case (V =0),

2 (laf? = aaf?) = 0 (223)

Using the relations, |a;]|?> = a] - a; and |a;]* = a} - a2, and the expressions
a a;

(2.5) and (2.6), (2.23) leads to
aflasf? + |aal?) = Re [o1a2e (&) (5210 + Kiap)] (2:24)
For the lossless case, & = 0. Then, the following relation must hold.
K21D = —Kj;p = Kp (2.25)

That is, two coupling coefficients are complex conjugates of each other except for the
sign change.
Next, we will derive the relation between a, 3, ¢ and 7. From power conser-

vation,

+V

- - (2.26)

d 2 2 _1 ar tiI_
= 4P = 3 (v )
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The left hand side of eq.(2.26) becomes,

%(Ifhl2 —|42f*) = j(6p ~ 6p)(|Af* — |42?) — 5V (" Ay — 5" 4o)
+iV(ad; - B43)

= —jV'a’A, +jV' B Ar + jVad] - jVBA,  (2.27)

We use the assumption that Jp is a real value for the above derivation. This assump-

tion is true only for the lossless case.

The right hand side of eq.(2.26) becomes,

Lfodl o dI\ 1, e s
§(V =tV E)=§(-JC VA] - jin'VA; +jCV* AL + jnV* A,) (2.28)

Therefore, from eq.(2.26),
Qa+)AV ~ {(2a+ ¢ AVY — (26 -n") A3V + {(26 —n")A3V}" =0 (2.29)
Eq.(2.29) must hold for arbitrary A;, A2 and V. This results in,

¢ = -2 (2.30)

n 2p (2.31)

Also for the lossless case, the complex conjugates of A, and A, correspond to

time-reversals and this gives us the following relation between « and j.

a=-0" (2.32)
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In summary, we can use the following COM equations for a low loss approx-

imation,
SE) — jooAs(e)+ inpAa(e) + jaV (233
dA. . . . . .
—diz(z—) = jopAa(z) — jrpAi(z) — ja'V (2.34)
d.z‘(':) = —j2a‘A1(z) - ]2QA2($) + jwCV (2.35)
where
5p = kg + Ak - jag — % (2.36)

The above equations, introduced by D. P. Chen and H. A. Haus [34], implicitly
contain an unknown parameter Ak. It is preferable for this unknown parameter to
be expressed explicitly. We can do this by expressing the COM equations in terms of

the new variables A*(z) and A~(z)

a(z) = A*(z)e 7*r* (2.37)

a(z) = A-(c)e*s* (2.38)

A*(z) and A~(z) are slowly varying complex amplitudes from waves without any

surface perturbations.

The resultant COM equations for the low loss approximation are [33]

. |
P20 = —imud*(z) - e A~ () + SV (2.39)
dAd-z(z)' = JRLe AN (T) + jrp A (z) - CTe IV (2-40)

W)~ _jagreieat() - jaceiam(z) + juCV (2.41)

dz
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where

. kg 21[’ Ao . 27r f .
=kp—jag — 9 _ST(A ) _ . (T _4)\_ 2.42
d=kr—jar 2 = % ( 3 1) jer = 3~ ( fo jag (2.42)

The last transformation of (2.42) ignores the minor velocity dispersion which may be
present over the finite frequency bandwidth of the interaction.

In the above transformation, we use the following variable transformations.

Ak — K11
Kp — —Ki2

a — (

d is called the detuning parameter. x;; and ;2 are the self coupling coefficient

and the mutual coupling coefficient, respectively. ¢ is the transduction coefficient.

2.4 Dispersion Analysis using COM Theory

2.4.1 Dispersion Relation

For the shorted gratings case (V = 0), (2.33) and (2.34) form a homogeneous system

of linear first-order equations.

oo | = [T e ][ 262 (2.43)

Using
X(z) = [ 4(2) (2.44)
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—Jjdp jrp
A(z) = : A 245
@ [ﬂ%]%] 249
(2.43) can be written as
X = AX (2.46)

Now, we assume that the solution has the following form
X = ge¥t® (2.47)

where £ is the 2-by-1 coefficient vector and A is a number and a function of frequency.

Substituting (2.47) into (2.46), we get the following equation
Af =jAL (2.48)

In order for the above equation to hold, det(A — jAI) = 0, where I is 2-by-2

identity matrix. We obtain the following two acceptable values for A.

A(f) = £/dp—Ispl?

= £/(8 +ru)? — |kpaf? (2.49)

These wavenumbers describe the dispersion properties for shorted gratings.
The dispersion diagram for the lossless case is shown in fig. 2.2. We see that for
|0+K11| < |K12], A is pure imaginary and the amplitude of the waves along the grating
will decrease exponentially. The frequency region where the above inequality holds
is called the stopband. Inside the stopband, the waves satisfy the Bragg’s condition

and the multiple reflections form a standing wave. The center of the stopband, f., is
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given as

Ao

fe="fo (1 - '2?511) (2.50)

fc is modified from fo due to the existence of the gratings and the difference is

proportional to x;;. The stopband width is related to |«,3|, as will be explained next.

2.4.2 Derivation of Coupling Coeflicients
At the stopband edge for shorted gratings, A = 0. Then, from eq. (2.49),

Innlz - (6 + Nu)2 =0

2
|n12|2 - {i—: (‘—ff; - 1) +I€u} =0

A A
% = (1 - #Ku) + 2—;'II€12| (2.51)

Eq.(2.51) holds for the upper stopband edge (f,,) and the lower stopband

edge (fi,), that is,

Jus _ (i _ N Ao
fo = (1 21rf€u -+ 21r|f€12| (252)
fis 7 _ N )
‘—fo— = (1 —27l’ Ku) o lh‘.lz [ (2.53)

Subtracting both sides of (2.52) and (2.53),

[K12 0] = plu = fu (2.54)

fo
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Real A

Imaginary A

Figure 2.2: The dispersion diagram for shorted gratings without the propagation loss.
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Substitution of (2.54) into (2.52) yields,

Ku/\o =2r (1 - &2};&) (2.55)

In summary, the magnitude of the mutual coupling coefficient and the self
coupling coefficient can be derived from the information of the stopband frequencies
for shorted gratings [33].

Next, we will get the information about the phase of the mutual coupling
coefficient x,,. Before doing so, we first introduce the notation of the standing wave
patterns [35].

At the stopband edge for shorted gratings, a; o e~7%% and g, o e ¥2.

Therefore, from eqs.(2.37) and (2.38),

At(z) = Aﬂe’(*“'%‘)‘ (2.56)
A (z) = soe (%) (2.57)

where we assume that the loss is negligible.

We substitute these equations into (2.39) and (2.40) with V =0,

e
N;ze_j”Zej(kR—Ezl)z (kﬂ _ 521 + }Cll) e—j(kn—-bz-l)z AO— 0

(2.58)

In order to satisfy the above vector equation, the following relation must hold

k
kr - f + K1 = ko] (2.59)
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where the + sign applies to the upper edge and the — sign to the lower edge of the

stopband.
Therefore,
K
Ao =5lmzly,, (2.60)
K12
where the — sign applies to the upper edge and the + sign to the lower edge.

The above relations show that, at the stopband edge, the standing wave

function, ¥, corresponding to the surface electric potential, is given by,

¥ = a(z)+ax(z)

= Aoyt (e“"fi"=B F Iﬁlile"!f") (2.61)

K12
where the — sign applies to the upper edge and the + sign to the lower edge.
If we define,

K12 = |"12|ei % (2.62)

then,

¥ = Aggei {e"'(’z‘*‘) ;e"(’*"")}

] Aose™%2c0s (L‘.}z - ¢) (for lower edge) (2:63)
" ]| Aose%(~25)sin (5;::: - ¢) (for upper edge) )
where z = 0 corresponds to the center of the grating. From the relation (2.63), we

see that the standing waves are 90° phase shifted between the upper edge and the

lower edge.
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If the potential has a maximum value at the center of the grating for lower
edge, ¢ = 0, then x;2 = |k;2|. On the other hand, if it is minimum at the center for
lower edge, ¢ = 7/2, then k12 = —|K;2|- This means that knowledge of the potential
distribution at stopband edges for shorted gratings enables us to determine the phase

of the mutual coupling coefficient.

2.4.3 Derivation of Transduction Coeflicient

Next, we consider the open grating case, where

SIS
I
(=]

From eq.(2.41),
V= % {g'e-f“A*(z) + gef"*A-(z)} (2.64)

Assuming the form (2.47) and substituting (2.64) into (2.39) and (2.40), we

finally get

A—kp+ 5.} - Kn + %Klz %Cz - ""'12) e/ (Al) = (0) (2.65)
~( B -w) e xrkaprm- i) (4) = o

In order for (2.65) to have non trivial solutions,

A2 i

(54 ma = 251c?) = mal? - (Z5icr?)

F (6 Pa + (i) (266)
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Using the éxpressions,

Ki2 = |"12|3jz¢

¢ = [gle”

2 2 2
W = sl + 2lmal oL cos (206 - 9} - (e

2
+ (34 ma - —icP) (2.67)

At the stopband edge (A = 0),

2
cos 28~ W)} = g {Iwal - G+ + L4 m)]  (209)

Eq.(2.68) holds for the upper and the lower stopband edges, which leads to two
equations for the upper edge (f,,) and the lower edge (fi,)- From these two equations,
the left hand side of eq.(2.68) is eliminated by assuming that ¢ — v is identical at
both f = f,, and f = f;,. After some manipulations, we get the following equation

for the transduction coefficient, { and the phase difference, |¢ — 9|

E:co'l ; flz {(foo + fiz + Fuofio + fusfia) = (Fus + fiu) (fuo + fio)} (2.69)

|¢“¢|=%cos“[ 1

(fus - fl:)
{ fuo(z.flo - .fu: — fl:)(fuofus + fuofl: — fl%; - fmfls)
fuo(fuofus + fuofh - f&o - fusfl:) - flo(flofu: + flofls - flzo - fmfh)

_ flo(2fuo - fus - fla)(flofu: + flofl: — fl% - ftufh) }]
fuo(fuofm + fuofl: - fzo - fuafla) - .flo(flofu: + flofls - fl% - fu:fl:)

(2.70)
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where Cp is the static capacitance of one electrode pair.
As is clear from the above derivations, the transduction coefficient can be

obtained from the dispersion diagram for open gratings [33]. The capacitance in the

denominator of the left hand side of (2.69) can also be computed, as shown later in
Chap.3 (p. 46).

From eq.(2.70), we can easily find the following relations

| — Y| =0 when fi, = fy, or fuo= Jus (2-71)

6—wl=3 when fio=fu orfuo=fa (2.72)

2.5 Admittance Curve using the COM Equations

I we apply an external voltage, the wave generation due to this voltage can be
described by the particular solution of inhomogeneous differential equations, that
is, the COM equations [39]. Here, we start from the most general COM equations
(2.20)-(2.22).

Eqgs.(2.20) and (2.21) form the following matrix equation
X=AX+f (2.73)

where
_| —3% JjKkab
Jsip  Jop

f=j[g]V (2.75)

(2.74)
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by the sum of the solutions of the following two differential equations.

where

40

From the principle of the superposition, the solution of (2.73) can be given

X, = AX;+f

Xz = AX,+6
1].

fl = [O]JQV
0.

Now, we assume X; = &;. Then,
1.
A&+ [0 ]JQV=0

Therefore,

X, = aV )
e 6% + K21p - K12p | —K12D

Similarly, we assume X3 = &;. Then, from (2.79),
-8V [ K21p ]

+&21p -Ki2p | 9D

x2=£2=62D

Therefore, the particular solution is given as

[ A ] 1 [ (adp — Bka1p) J v

A, = 62D + K21p * K12D ("O!leu - ﬁJD)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

Substituting (2.83) into (2.22), we can get the expression for the current

density, j(z),

iw) = 3
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_ j((a - 18)dp — ({(Br21p + flaﬁlzo)v + jwCV (2.84)
0% + Kap - K12p

The admittance for one period ()\g) can be expressed by

_ .y (a—nB)op — ((Brap + nakizp) . .
Y(f) =3k R — + jwCp (2.85)

where Cp = 2CP is the static capacitance of one electrode pair.

2.6 COM Parameter Derivation Using Admittance

Curve

In the following derivation, we assume that the loss is very small and that relations
(2.25), (2.30), (2.31) and (2.32) hold.

The current density (2.84) becomes,

2 .
i(z) = —45200 = Re{"f"z} V + jwCV (2.86)
6p — |xp|

Now, we use the further simplification that xp and a are real. Then,

. . da? )
(@) =-j 5= nDV + jwCV (2.87)

The admittance for one period is, therefore,

2

. 4 .
Y(f)=-jx 3  — +jwCp (2.88)

D — KD

Using the another set of COM parameters,

442

— 43 2.
FrP——— + jwCp ( 89)

Y(f) = -5
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where the detuning parameter is defined in (2.42)

2_" L) s
0= (fo 1) jar

Y(f) = Y(f)+5Y(f)
/\04(201,
B (h-1)+mutra) +

+5 [ o, Mot {Z (- 1) + fu + Ko}
wCp —

g {ro' ({;—1)'{'&11'{-&12}2'{-&%

where
/\04(20:1,
Y.(f) =
(f) % (fLo - 1) + K11 + Klz}z + a%

and

'\oCz{,\o( )+ﬂu+'€12}

Yi(f) = wCp —

{Z(£-1)+ru+ra) +0}

42

(2.90)

(2.91)

(2.92)

(2.93)

The determination of the frequency (the resonant frequency) where the real

part (2.92) reaches a maximum is straightforward:

_ _ Kuo + K12A
fr - .fo (1 __211’ )

The height of the resonant peak is

4(C o)?

and the full width of the peak at half maximum Y, = ¥,,,,/2:

af =L

(2.94)

(2.95)

(2.96)
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From the imaginary part of the admittance,

ov, _ %M [{B(F-1) +rutra} ~af] 5

= 2.97)
F) 2 DY (
P [(EG-) rmurma —af] Yoh
Therefore, the peak frequencies for the imaginary part are
Ao
fo- = foll+ %{GL — (k11 + K12)} (2.98)
A
f,‘ﬁ. = fo [1 - ﬁ{QL + (Ku + 512)}] (299)
The frequency difference between these two peaks, A fipy is
_J
Afp = ;(QL/\O) (2.100)
From eqs.(2.93, (2.98) and (2.99), the magnitude difference, AYp, is
4(Aa)?
AY;n = 2.101
(Aa;) ( )

From (2.100) and (2.101), the transduction parameter can be given by

n AYimAfip

()= 4 fo

(2.102)

With the help of the quality factor Q@ = f,/Af of the resonant peak, the real

and the imaginary parts of the admittance may be expressed in the form:

Yom

Y, = 2.103
N = o (2109
20 (£ -1)

+2nfCp (2.104)

Yi(f)

402 (£- 1)427- 1
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At the anti-resonant frequency, f,., the imaginary part of the admittance

becomes zero. Then,

Le _
m 20 (% i) = 27 f.-Cp (2.105)
4Q2 (L= —1)" +1
If
Q (ffi — 1) >1, (2.106)

the unity in the denominator may be ignored. Therefore,

1

Ymm o~ 21l’f¢,-Cp
_Af .
Yimg——gy = 2farCr
- 2
g e

From the above derivation, we see that if the admittance curves are obtained,
we can estimate the transduction coefficient and the propagation loss under a low loss

approximation. Unfortunately, only the sum of x,; and x;2 can be estimated.

2.7 Conclusion

In this chapter, the COM theory has been reviewed. There are several unknown
parameters which must be derived experimentally or theoretically. These parameters
are the self coupling coefficient, the mutual coupling coefficient, the transduction

coefficient and the static capacitance of one electrode pair. We show that these
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parameters, except for the static capacitance, can be derived from the dispersion
properties for the wave propagation under shorted or open gratings in a low loss
approximation. The remaining unknown parameter, the static capacitance, will be
computed by the space harmonic method for the generation problem, which will be
explained later in Sec. 3.4 (p. 108).

On the other hand, the COM equations can also be solved for the admittance
curves for SAW generation by an external applied voltage. Alternatively, from the
admittance curve as a function of the frequency of the applied voltage, we can get some

of the COM parameters and the propagation loss under a low loss approximation.



Chapter 3

Space Harmonic Method

3.1 Introduction

The Space Harmonic Method (SHM) is an analysis method that uses spatial harmon-
ics as a set of orthogonal basis functions for describing the waves inside an infinite
periodic structure.

The method was originally used to analyse SAW propagation in 1990 by
Xue and Shui [23]. At that time, however, mechanical effects due to the existence
of electrodes were neglected to simplify the problem. In the early 1990’s, several
authors improved the model accuracy by including a first-order approximation for
stress distributions to account for thin metal electrodes [24][25].

In 1998, Sato and Abe extended this method for arbitrary electrode thickness

and applied it to an Al/LisB4O7 structure [16]. In their analysis, they used the

46
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Galerkin method to take boundary conditions into account, by satisfying !:hem not at
every boundary point but on the entire boundary region where the error integral is
minimized. In this way, the mechanical effects due to the stress were easily included.

One of the most significant advantages of this method is that it can include
both mechanical and electrical effects due to the existence of the electrode without
any limitations on the electrode thickness or its shape. All types of waves can be
included by the proper selection of the partial waves. This method is also easy to
apply to multi-layered structures.

In this chapter, the space harmonic analysis of acoustic waves under infinite
grating structures on ZnO/Diamond multi-layered substrates is presented. The proce-
dure of the SHM for multi-layered substrates is discussed. Both the wave propagation
under shorted or open gratings and the wave excitation problems are discussed by
using the modified SHM.

The physical behavior of the multi-layered substrates will be examined, by
calculating the displacement and the energy distributions. The COM parameters will

be evaluated theoretically using the derivations discussed in Chapter 2.
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3.2 Space Harmonic Method

3.2.1 Floquet’s Theorem

Consider a physical quantity, U(z,) under an infinite periodic structure along the z;
direction. If the period of the structure is P, the physical conditions at z; = z and
at z; = z + P must be exactly the same except for a relative phase shift, which leads
to the following relation

U(z + P) = e7 %Py (z) (3.1)

where ko is the wave number of the spatial variation in the z, direction. Note that
the above relation does not mean the period of U (z1) is P. For example, the period
becomes 2P when k, is idential with the first Bragg wavenumber (ko = 7/P).

When eq.(3.1) holds, U(z,) can be expressed as the superposition of space
harmonics

U)= 3 Aneiton (3.2)

n=-—00

where A, is the amplitude and k, is the wave number of the n-th space harmonic,
where
27

kn = ko + B (3.3)

This is called Floquet’s theorem. This expansion can be applied to any phys-

ical quantity under an infinite periodic structure.
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3.2.2 Space Harmonic Solutions

Inside the dielectric medium, the governing equations are Newton’s equation of motion

and Maxwell’s equations under the quasi-static approximation [4]

%:V.T=V-(c-8—e-E) (3.4)

V-D=0 (3.5)

where U is the displacement vector, T and S are the stress and the strain vectors,
respectively, D and E are the electrical displacement and the electrical field vectors,
c and e are the elastic and the piezoelectric tensors, and p is the mass density. For
a metal layer, only Newton’s eq.(3.4) is necessary, while Maxwell’s eq.(3.5) alone is
needed for free space.

In general, there will be 8 partial wave solutions inside dielectric media and
6 solutions inside metal, because there will be no electromagnetic waves inside the
metal. The waves can be either surface constrained, upward propagating or downward
propagating waves depending on the wavenumber component in the direction parallel
to the surface. These partial waves will be linearly combined to meet boundary
conditions. However, if the lowest layer is assumed to be semi-infinite, only surface
waves and those propagating downward are employed in the solution for the lowest
layer, because there are no upward reflecting waves from the bottom. As a result,
only 4 out of the 8 partial waves will be used in the lowest dielectric layer of the

problem [5] [36].
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Figure 3.1 shows the periodic Al grating structure on a ZnO/Diamond sub-
strate that will be considered here, of the type that is currently commercially avail-
able. The technique described below can be adapted in a straightforward way to
other structures considered in [7] by the proper formulation of the boundary condi-
tion integrals.

The periodic gratings have period P in the z, direction of propagation. The
Al grating structure is assumed to be long in the z, direction, and no variation is
assumed in the z; direction. The interface between ZnO and diamond layers is along
the z3 = 0 plane, with the diamond material in the negative z3 region. The width
and the thickness of the metal electrodes are represented by M and H,, respectively.
The thickness of the ZnO layer is denoted by Hj.

In practice, a finite polycrystalline diamond thin film is grown on a silicon
substrate by chemical vapor deposition (CVD) [6]. In the following calculations,
however, the diamond thickness is assumed to be sufficient to ignore any contributions
from the underlying Si substrate. This assumption will be valid if the acoustic energy
density at the diamond/silicon interface is sufficiently low. This will require the
diamond thickness to be greater than a few wavelengths of the SAW [7]. This will be

shown to be the case later on the discussion of the energy distributions.
For free space, the following governing equation gives us one complex conju-

gate pair of solutions for the electromagnetic waves

V-D=—-gV® = (3.6)
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Figure 3.1: A periodic Al grating structure on a ZnO/Diamond substrate.
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where ¢, is a dielectric constant of the vacuum and ®/ is the electric potential in free
space. Only one partial wave out of these two candidates is selected for the potential

by imposing the boundary condition

& =0 (3.7)

z3—+00

The number of partial waves inside each layer is, therefore, 4 for diamond, 8
for ZnO, 6 for Al and 1 for free space.

Taking Floquet’s theorem into account, the resultant expressions for parti-
cle displacements U; (i = 1,2,3) and electrostatic potential U, in each region are

expressed by using space harmonics

diamond: U? = i 24: A(m.n) ﬁ:(mm) JF[1a™™zs+(r+2m)z, —£(2P)1]
m=-—o0 n=1
(1=1,2,3,4) (3.8)
S (mn) g(mn) 5 § [1a(™ ™ zy+(7+2m)z, — £(2P)t]
ZnO: Uf = Amn ﬂ‘. NI E yal™ ™ gy +(y 21—
DR
(i=1,2,3,9) (3.9)
Al electrode: U* = f: f: Almn) ﬂ’(‘""")ej%[70(""")83+(‘7+2m)z;—f(2P)t]
m=-—o0 n=13
(k=1,2,3) (3.10)

i A(m.19) ﬂ.g""m) F ['ya(""“) zs+(1+2m)z1 —f(2P )‘]

m=-oo

free space: U =

(3.11)

where m denotes the m-th space harmonic and n is the index of the partial waves
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inside the layers. A(™n), gi™") anq o(mn) are the weighting factors, the relative
amplitudes for the partial wave vectors and the decay factors in the z; direction,
respectively. v is the wavenumber normalized to the first Bragg wavenumber and f
is the frequency.

The decaying factor a{™™ can be obtained for each m and n by substituting
egs.(3.8)-(3.11) into the governing equations (3.4) and/or (3.5) depending on the
layer considered and by using the orthogonal relation of the each space harmonic.

The orthogonal relation is given as

1 rP
f/o' exp (—jkmz1) exp (jknz1)dz)
_ %/;Pexp{j%(n_m)zl}dm
_ { 0 n#¥m (3.12)

1 n=m

For the dielectric substrate, this procedure leads to the following so called
Christoffel equations

Rji(m,n) Rj(m,n) Rys(m,n) Ry(m,n) ﬂ{ﬂl,ﬂ)
R21 (m’ n) R22 (m, n) R23 (m, n) R24 (m , n) ﬂg’“t")
Ry (TR, n) Rso (m, n) Ras (m, n) Rs, (m’ n) ﬂ;m'")
Ry(m,n) Ra(m,n) Ri(m,n) Ry(m,n)/ |\ gmm

=0 (3.13)

where the coefficient matrix is symmetric and each component is given as follows:

Ry = en(v+ 2m)2 +2¢15(7 + 2m)('ya(""")) + C55(7a(m‘"))2 —p(f - 2P)2
Ry = ce(v+ 21‘)’&)2 + (c14 + cs6)(7 + 2m)(7a(m,n)) + 645('70("""))2

R = cao(7+2m)’ + 2cs6(y + 2m)(ya™™) + cyy(ya™™)? — p(f - 2P)?
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Ry = ci5(7+2m)? + (a3 + css)(7 + 2m)(ya™™) + css (’ya("""))z.
Ry = cse(7 +2m)? + (cas + cas)(7 + 2m)(val™™) + cag(val™™)?
Ry = css(v+2m)* + 2cs(7 + 2m)(72™™) + csa(va™™)? — p(f - 2P)?
Ry = en(r+2m)*+(e1s + ea1)(y + 2m) (’ya‘""”) + 335(7a(mm))2
Rg = es(y+2m) + (e14 + e36)(7 + 2m)(ya™™) + e34(va™™)?
Ry = eis(1+2m) + (es + e3s)(7 + 2m)(val™™) + e33(yal™™)?

Ry = —(en(y+ 2m)2 + 2e13(y + 2m) ('ya(""")) + 833(70("""))2)

In order for the solutions to be non trivial, the determinant of the above
coefficient matrix must be zero. This gives us an 8th order polynomial in terms of the
decaying factor, a™"). For the ZnO layer, all 8 roots, corresponding to all 8 partial
waves, are selected. For the diamond layer, on the other hand, a root selection is
made by means of physical arguments to choose acceptable 4 solutions from the 8

candidates.

These 4 partial wave solutions are either surface or downward waves as stated
before, because there is no wave source at the bottom of the diamond layer. The
solutions with the negative imaginary parts are selected for the surface constrained
waves. For the downward partial waves, the waves with energy flow in the negative
z3 direction are selected. To judge the energy flow direction, the fact that the energy
flow direction is always normal to the slowness surface (4] is employed. Because the

diamond has slowness curves which are concave and symmetric in terms of the k.,
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axis shown in fig. 3.2, this condition is equivalent to the roots k., with the negative

real value.

For the Al grating, the Christoffel equation becomes,

Ru(m,n) Ru(m,n) Ru(m,n) (8™
R21 (m, n) Rzz (m, n) R23(m, ﬂ) ﬁ.‘(,m'") =0 (3.14)
Ra (m, n) R3s (m, n) Ras (m, n) ﬂgm'")

The expressions for the components, R;; (i,j = 1,2, 3), are the same as shown above.

All six decaying factors, a{™"), are selected for the metal grating.

For free space, eq.(3.6) gives two candidates for the decaying factor, as stated
before. The solution with a positive imaginary part, which satisfies eq.(3.7), is selected
for a(m19),

Once the decaying factors are determined, the relative magnitudes of the
partial wave vector 8™"™ can be obtained for each (™" by egs.(3.13)-(3.14). The
weighting factors A(™") are determined from mechanical and electrical boundary

conditions which will be explained next.

3.2.3 Boundary Condition Integral

The boundary conditions are satisfied with the Galerkin method in the average
sense16]. Fig. 3.3 shows the mechanical and electrical boundary conditions. For
mechanical boundary conditions, a metal layer of zero thickness is assumed between

grating electrodes for simplicity of the computation.

At the boundary between Al, ZnO and diamond, the displacements and the
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k. /o (s/m)

Figure 3.2: Slowness curves for the diamond.

0° >.

Right-handed Euler angle is <0°, 0°,
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normal stress components must be continuous, while normal stress components are

required to be 0 at the interface between Al and free space. For electrical bound-

ary conditions, the potentials and the normal components of the electrical charge

displacement will be continuous at each interface. The potential is spatially con-

stant on the metal electrode. The boundary conditions between adjacent periods are

automatically satisfied by the use of space harmonics.

For the structure shown in fig. 3.3, the mechanical boundary conditions are

expressed as

diamond : P{‘:P,-‘(onl‘g[m),(i=1,2,3),
Zn0 : U?=U% (onTi™M) (i=1,23),
P?=P" (oni™),(i=1,2,3),

metal IDT : U™ =U? (on ™) (i =1,2,3),

P"=0(onTP™) (i=1,2,3),
The electrical boundary conditions are

diamond : P¢=P? (onIdE),
Zn0 : Ui=U¢(onTi¥),
U; = Voe ™t (on T3 )
P:=Pf (on i)

free space : U =UZ (onTI¥!)

(3.15)
(3.16)
(3.17)
(3.18)

(3.19)

(3.20)
(3.21)
(3-22)
(3-23)

(3.24)
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Free spac-
o

x1=(P-I:VI)/2 I","("] x1==(P+M)/2

¥ (E] l
=

] AN
In n
[}

E Diamond

]

(a)Mechanical B. C. (b)Electrical B. C.

Figure 3.3: The mechanical and the electrical boundary conditions. In both figures,
the joint boundary between adjacent layers has been separated to clarify the direction

of integration. Boundary conditions for boundaries represented with a dashed line

are automatically satisfied by the formulation.
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Uf = Voe ™7 (on THIF) | (3.25)

where V3 is the maximum amplitude of the electric potential on the metal gratings.
Ui(t = 1,2,3,4) are defined in (3.8)-(3.11). P,(i = 1,2,3) are the normal stress
components and F; is the normal components of the electrical charge displacement.

For each layer, these have the following forms

P} = T§-n;

- 3 ZA‘”W( )ei%[‘m""""zs+(7+2M)21—f(”)t]

m=-00 n=1

[,Z BN {(y -+ 2m) ey + 1)

+ral™m) (c .n; + c,-3,.3n3)}] , (1=1,2,3) (3.26)
P{ = Dj-ny
- _ f: Ama) (ji) B i B [1al™ V2 +(r42m)z: ~ F(2PY]
m=—co P
[{ (v + 2m)(efin1 + ed1n3) + yal™ (3 1, + s§3n3)}] , (3.27)
P‘ —_ Tz

o0
- Z E A(min) ( ) e’T”["“(m "’z;+(-y+2m)z1-f(2P)t]

m=-00 n=5

z ﬂsm.n){(,y + 2m) (cflrlnl + Cfsrx n3)
'Ha(m n)( i1r3TL + Cf3r3n3)}
+B™™ (7 + 2m)(eZan: + €i5n3)

+yal™™ (62 n, + egans)}] ) (1=1,2,3) (3.28)
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P} = Di.n

= i Z A(m n) ( ) er[‘ya(m n)zs+(‘7+2m)zl -f(2 P)t]

m=-00 n=5

[0+ 2m) e + e
=1

ﬂa(mm) (efrsnl + e;ra n3 )}

=B { (7 + 2m)(eZ,ny + €£,15)

+ya ™™ (e2,n, + 6‘3311.3)}] , (3.29)

P™ = T-'!‘-n,-

L)
]

= 2 E A(mm) ( ) e] E [‘70("' n) z3+(y+2m)z1-£(2 P)t]
P

m=—00 n=13

3
|3 B8y + 2m) s + )

+’ya(""")( Ci1rp3™1 + C;g,.3n3)}] ’ (i = 17 27 3) (3’30)
P{ = DJf *n;
= — Z A(m:19) ( ) ez;-['ya"" 19) 2y +(v+2m)z; —f(ZP)‘]
m==00 P
B eo{ (v + 2m)ny + ya™9ny)}, (3.31)

where n = (n,, ny, n;) is the unit vector normal to the boundary, whose direction is
outward from each region considered.
For each layer, the boundary conditions (3.15)-(3.25) are satisfied not at every

boundary point but for the entire boundary in the average sense. This procedure
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yields the following boundary condition integrals for each layer

diamond : fr sy RE((PF" = P#)SU4T
2
+ [ REl(PE ~ P)USAT = 0 (3.32)
200 - [ Rel(UF ~ USPEIAT + [ o Rel(P" ~ PE*)UZAT
+ /r, o Rel(UF = UHSP;|dT
+ [l RelCVF - Voe 3*1)§ PF*|dT
+ /;.3[31 Re[(P{. — P{*)oUf]dI’ = 0 (3.33)
2a
metal IDT : /r o REl(UT* = UD)6PP™|dT
+ /r o Bel(=P™)3UdT = 0 (3.34)
free space : / [ o RElU] — UD)6PL"laT

1

+ /I"{{” Re[(U{ - Voe‘jhﬂ)‘sp 4’ ‘]dl" =0 (3.35)

where the asterisk (*) denotes the complex conjugate. 6U; and JP; represent the
virtual increments of U; and P;, respectively.

We then get the following equations from egs.(3.32)-(3.35)
4 [ ! ol (; r
> X [FE™) - Re(5AM ) + Ff™™) . Im (64™™)] =0 (3.36)

12 d I ol ! ot
> 3 [FE™) - Re(5AM™) + F™™) . Im (s4™™)] =0 (3.37)

)
)

> 3 F("‘ n') - Re (At ) + F{™™) . Im,( SA™ "] =0 (3.38)
)

3 [F§™) . Re (A4™9) + F{™9 . Im (§AL™19)

m’'=-co0

=0 (3.39)
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where F{™ ™) and F™ ™) are linear functions of A™" and Vj. Egs.(3.36)-(3.39) must
hold for any §A(™»), This leads to the following set of equations in terms of the real
and imaginary parts of the weighting factors A™") and the voltage amplitude, V;,

on the electrodes

FE™) (o, Ao, Amm) | glea9)y = @ (3-40)
Fl(m,'n") (Vo, A(—oo.l)’ ceey A(m,n)’ ey A(oo,19)) = 0 (341)

where m' = —ocotoocoand n =1 to 19.

Two more equations are necessary for the determination of the unknown
parameters. These two equations are obtained by considering the electric state of the

electrodes. For shorted gratings, V} is set to zero,
Vo=0 (3.42)
and for open gratings, the total charge on the each electrode must be zero

Q™ =£‘mmP4-dP=0 (3.43)

The direction of the integration of (3.43) must always be along the positive z; and z;
directions. These conditions (3.42) and (3.43) each give us two additional equations.

Eqgs.(3.40), (3.41), and (3.42) or (3.43) form a complete set of linear equations
in terms of the unknowns, V3 and A™"), which leads to the following matrix equation
for these unknowns

C-Y=0 (3.44)
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where each components of C matrix can be calculated from the boundary condition
integrals and the vector, Y, consists of the real and the imaginary parts of V; and

Almn) that is,
Y = [Re(Vs),Im(Vp), Re(A™Y), Im(A=Y), ..,
Re(A™™) Im(A™™), ...,

Re(A19)), Im(A9N)]T, (345)

In reality, we have to truncate the number of space harmonics to the specific value.

In this case, the vector, Y can be expressed as

Y = [Re(Vy),Im(Vp), Re(A-MoV)) [m(A-Mo))) | |
Re(A™™), Im(A™™), ..,

Re(AM0=119)) [ ( A(Mo=119)YT (3.46)

3.2.4 The Procedure for Simulation

The solution for the dispersion properties of a SAW propagating under a periodic
grating structure is obtained by evaluating the normalized wavenumber v and the
frequency f that satisfy the condition det(C) = 0, where the matrix C is given in
eq.(3.44). In the actual procedure, the normalized frequency, f -(2P), is set first.
For the initial guess of v, a™™ and B{™™ are calculated for each space harmonic
and for each partial wave inside every layer. The boundary condition integrals are

calculated to lead to a set of equations in terms of the real and the imaginary parts of
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the weighting factors and the potential amplitude. The coefficient matrix, C, is set
up and its determinant is evaluated. For this specific frequency, a two dimensional
optimization in terms of the real and imaginary parts of v, is performed until det(C)
is zero within a specified tolerance.

In the calculations, we truncate the number of space harmonics m to some
specific value 2M,. In this case, the space harmonics range from m = —M; to
m = My — 1. The size of the resultant matrix C is (76M, + 2) x (76My + 2). The
following calculations use 2M, = 8. The stopband frequencies converge in the similar
manner as described in [16] when M, increases. The stopband determination error,
attributed to the use of the truncation M, = 4, is estimated to be less than 0.05% of
the center frequency of the stopband in our calculation, which will cause no significant
error for the calculation of COM parameters.

Fig. 3.4 shows the flowchart of a computer program for the computation of

SAW dispersion properties under a periodic metal strip grating.

3.2.5 Energy Distribution

In the Al/ZnO/Diamond structure, the acoustic waves are excited by the piezoelectric
property of ZnO. For a ZnO layer of finite thickness on a diamond substrate, the SAW
velocity of the combined system is higher than that of semi-infinite ZnO, and the
propagation characteristics are governed by the physical properties of both materials.

It is therefore important to know where the acoustic energy is concentrated.
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(Start)

Y
Load material constants

4
Input dimensions of
metal and ZnO

Select root a(m.n)

[Input Mg

4
Set initial frequency
f (2P)

4
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Set initial wavenumber
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f €— f4Af
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of matrix C
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Dispersion curve
yvs. f (2P)

5

Figure 3.4: Block diagram of our calculation procedure.
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Inside dielectric media, the wave energy can be divided into two mechanical
energies and two electromagnetic energies. Mechanical energies consist of kinetic
energy and strain energy. Electromagnetic energies are divided into electric stored
energy and the magnetic stored energy. The time average of these energy densities

(J/m?®) will be expressed in the complex expressions [4]

Kinetic energy density : Ex = %v -p° (3.47)
Strain energy density : Es=%S-T‘=%S-(c-S—e-E)‘
(3.48)

Electrical stored energy density : Eg = %E -D* = %E -(e-E+e-S)°
(3.49)
Magnetic stored energy density : Ep = %H -B* (3.50)
where p is the momentum, ¢ is the dielectric tensor and H and B are the magnetic

field and the magnetic flux density, respectively. * denotes the complex conjugate.

The magnetic stored energy (3.50) can be neglected in the quasi-static approximation
(4].

These energy densities can be expressed using the space harmonic description

2
Ex = 3om(f 2P S L5 T A 4

n m n

{ ﬂ{m,n) ﬂ{m n')s + ’B"(‘m,n) ﬂgm n')e + ﬁgm,n) ﬁgm N )o}

exp [ [{70™) - 7ol ™"}y + {(y — 47) + 2m — m)}a)
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(3.51)

Es

4 Pz Z 2 z Z A(m,n)A(m n')s
m n m n

exp [Jﬁ [{7a(m.n) _ ,y‘a(m'.n')c}z:3 + {('Y _ 7.) + 2(m _ m')}:cl”
3

{2 ﬁim,n)ﬂ’gm N ).{('Y + 2m) (’Y. + 2771’)6{1;'1 + I,ylza(m,n)a(m N ).Cisis}
i=1

+eiz" (7 + 2m)alm s gimn) glm'in')e

+essy" (7 + 2m)alm'm)s gimm) glm'a')e

ey (7" + 2mJalme g i s

+essy(7" + 2m')almm) g glm'n)e

+ea(y + 2m)‘7°a("'""')'ﬂ{m'n)ﬂ£m""')‘

+ess I ,ylz a(m.n) a(m’ n')s ‘Bgm,n) ﬂfnl n')e

+ersy(v" + 2m')almm) gimn) glm')e

+ews(y +2m)(7* + 2m")B™ " g™ ") (3.52)

5
i

4 - z zﬂ: > Z Almin) g(m' )
=P [j (7™ —77a™ P}z 4 {(y — 1) + 2(m — m’)}:n]]
{en(y +2m)(y* + 2m) ™" g™ ™
+ess|y[Pammalm ) gmn) glm e

—eg7(7" + 2m')amm g™ gim

~ez3|y[2a™™) o™ n')e glmn) glm'.n)e
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—e1s5(7 + 2m)y* o™ ™) gimim) glm'm')e

—exs(y + 2m)(7" + 2m)g{™ " i+ (3.53)

As is clear from (3.51)-(3.53), the amount of energy density will depend on
the amplitude of the partial wave A™" and on the period of the grating P, which

allows us only to estimate the relative energy in terms of some reference value.

3.3 Results and Discussion

The material constants used in the analysis are taken from [41]. The diamond layer
is assumed to be a single crystal, because the unpredictable nature of polycrystalline
diamond makes the crystalline approximation necessary. The ZnO thin film is c-
axis oriented, which is a necessary condition for ZnO to exhibit piezoelectricity. The
right-handed Euler angles are set at <0°, 0°, 0° > for all materials. This Euler angle
is a valid assumption for Al and ZnO, because Al is isotropic and ZnO has a 6mm
crystalline structure which is uniaxial along the c-axis in its electrical and elastic
properties [4].

In the ZnO/Diamond substrate, there will exist a number of higher-order
modes called Sezawa waves, whose velocity as a function of normalized ZnO thickness,
kHzno0, where k is a wavenumber of the SAW wave and Hz,0 is the ZnO thickness,
is shown in fig. 3.5. In fig. 3.5, the SAW velocities are calculated for ZnO/Diamond

substrates with no surface electrodes by using the similar calculation method shown
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in [42] [43]. We can see that there are a series of higher SAW modes with higher
velocities. In this figure, we show up to the second order Sezawa mode.

In the following calculations, three ZnO thickness are considered Hz = P/,
Hz = 1.5P/r and Hz = 1.75P/x, and the Al thickness ranges from H, = 0 to
Hy = 0.05P. We selected these thicknesses for their high acoustic velocity and their
relatively high electro-mechanical coupling coefficient k2 for the second Sezawa mode.
k? is calculated to be 1.07% for the second mode when Hz = P/ [40]. This ZnO
thickness corresponds to kHz,0 = 1.0 in fig. 3.5. The second mode is concentrated
on for Hz = P/r and Hz = 1.5P/x, and the first Sezawa mode is considered for
Hz = 1.75P/n. The width of the Al grating is M = 0.5P for all the calculations.

The number of the space harmonics is set to 2Mp = 8.

3.3.1 Dispersion Diagram

Fig. 3.6 shows the calculated dispersion properties of the second Sezawa mode for both
shorted and open gratings around the first Bragg wavenumber, where H; = P/m and
the thickness of Al is 0, H, = 0. In this case, there will be only an electrical effect
due to the existence of the gratings. In this figure, the horizontal axis corresponds to
either the real or imaginary part of the normalized wavenumber «. The vertical axis
corresponds to the normalized frequency (f - 2P), which has a dimension of velocity.
The left hand part is for shorted gratings and the right hand side for open gratings.

There is a clear stopband on the dispersion curve, which is discussed in Sec. 2.4
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Figure 3.5: SAW velocity of the ZnO/Diamond substrate as a function of the ZnO

thickness.
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(p- 31). The normalized stopband widths are A(f - 2P) = 31.4 (m/s) for shorted
gratings, and A(f-2P) = 34.0 (m/s) for open gratings. The center frequencies of the
stopbands are f - 2P = 11,567 (m/s) for shorted and f -2P = 11,600 (m/s) for open
gratings. Both are slower than that for the free ZnO/Diamond substrates with the
same ZnO thickness, f-2P = 11,611 (m/s) shown in fig. 3.5, which indicates that the
electrical effects reduce the SAW velocity both for open and shorted grating cases.

In fig. 3.7, the dispersion diagrams of the second Sezawa mode for Hz =
P/n and H4 = 0.03P are shown. In this case, the normalized stopband widths are
A(f - 2P) = 128 (m/s) for shorted gratings, and A(f - 2P) = 190 (m/s) for open
gratings. The stopband center frequencies are (f - 2P) = 11,440 (m/s) for shorted
gratings and (f - 2P) = 11,472 (m/s) for open gratings. There are large velocity
reductions due to the existence of the Al gratings with finite thickness, which is
largely attributed to the mass loading effect.

The dispersion diagrams of the second mode for H; = 1.5P/% and H, =
0.03P are shown in fig. 3.8. The normalized center frequencies for the stopbands
are about 2,100 (m/s) smaller than those for Hz = P/7 and the same Al thickness
due to the thicker ZnO layer. The normalized stopband widths are larger for open
gratings than for shorted gratings under both ZnO thickness conditions. Within the
stopband for H; = P/, the figure shows a small discontinuity for open gratings,
which is attributed to numerical rounding errors.

For H4 = 0.03, both of the lower stopband frequencies, fi; and fi,, are
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identical for both ZnO thickness conditions, while the upper stopband frequency for
shorted gratings, f,, and the lower stopband frequency for open grati.ngs, fio are
identical for H4 = 0. This indicates that there is a qualitative change in SAW
propagation properties between these two Al thickness conditions. This situation
becomes much clearer in fig. 3.9. This figure shows the stopband widths as a function
of Al thickness for Hz = P/x. For open gratings, the stopband width increases
linearly as a function of Al grating thickness. The stopband width becomes 0 around
H, = 0.006P for shorted gratings. The reason of this qualitative change will be
clarified later in this chapter.

The dispersion diagrams are also calculated for the first mode when Hz =
1.75P/m. Fig. 3.10 shows the dispersion properties of the first Sezawa mode when
Hz = 1.75P/% and Hy = 0.03P/x. From fig. 3.5, SAW phase velocity without
any surface electrodes is 5,905.9 (m/s) for this condition. The stopband widths are
A(f-2P) = 25.8 (m/s) for the shorted gratings, and A(f-2P) = 35.9 (m/s) for open
gratings. The stopband centers are f-2P = 5862.5 (m/s) and f - 2P = 5873.9 (m/s),
respectively. As opposed to the second mode cases described above, none of the four
stopband frequencies coincide.

Inside the stbpband, the normalized wave number has a large imaginary part,
which corresponds to propagation loss. This wave attenuation comes from the fact

that there are multiple reflections inside the stopband and the wave is trapped.

For the leaky type wave, there can be some propagation loss outside the
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stopband, because some of the partial waves become of bulk type and are no longer
concentrated on the surface. The propagation loss (PL) can be represented by the
following expression using the real and imaginary parts of the normalized wavenum-

ber (38].

Im(y) _ Im(y)
Rely) 546 x 2 o (3.54)

PL(dB/)) = 2 x 20logye(e) x

In our case shown above, we calculated the dispersion diagram for the second

order Sezawa wave around the first Bragg wavenumber, when Hz = P/x. For this
condition, all the partial waves inside the diamond are concentrated on the surface,
and there is no energy leakage into the bulk. Therefore, propagation must be lossless
as opposed to the case of leaky SAW. Our calculated results, however, show a small
finite imaginary wavenumber for finite grating thickness, which will increase as the
grating thickness increases. This can be interpreted as a computational error due to
the truncation of the number of space harmonics. In order to reduce this error, we

have to include higher space harmonics, which will be used for better estimations for

the waves at the grating edge.

3.3.2 Displacement Distribution

The displacement distributions of the second mode inside the ZnO and diamond
layers, with an arbitrary time ¢t = 0 used in expressions (3.8)-(3.11) for the lower
stopband edge for shorted gratings, are shown in fig. 3.11 for Hz = P/m and H, =

0.03P. A positive z3 corresponds to ZnO and a negative z3 to diamond, and z; = 0.5P
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x,/P 0 -2
©

Figure 3.11: Displacement distribution of the second Sezawa mode inside
Al/ZnO/Diamond structure at ¢ = 0 for shorted gratings at the lower stopband edge
for Hz = P/r and H4 = 0.03P. (a)Displacement distribution in the z; direction.
(b)Displacement distribution in the z, direction. (c)Displacement distribution in the

3 direction. (d)Potential distribution. Vertical axes represent arbitrary units.
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is the center of the grating electrode. Fig. 3.12 shows the same results from the z;
direction. The amplitude of the displacement clearly depends on the wave amplitude
A(mn) | whose absolute value can not be determined for shorted and open grating
conditions. Therefore, the vertical axes of these figures represent arbitrary units.
These figures show that the wave amplitudes are larger in the ZnO region than
in the diamond for U; and the electrical potential U, and they attenuate rapidly
in the diamond region. In the case of U;, however, the wave amplitude is larger
inside diamond and has a large penetration depth inside the diamond layer. These

distributions show the typical higher order nature of Sezawa waves.

A single crystalline diamond is assumed for the calculation. Therefore, there
is no coupling component between the z; and the remaining directions in material
constants of the material considered. As a result of this assumption, there is no
U, component in either material. For polycrystalline diamond, there may be a U
component if the grain size is not small enough for the isotropic approximation to be
valid.

The displacement distributions for the first Sezawa mode, with Hz = 1.75P/x
and H4 = 0.03P, are shown in fig. 3.13 for shorted gratings at the lower stopband
edge. Fig. 3.14 show-'s the same results from the z; direction. There is no null in the
U, component inside the ZnO layer, which is the biggest difference between the first

and the second Sezawa modes.

Figs. 3.15, 3.16 and 3.17 show the standing wave patterns of the second Sezawa
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Figure 3.12: Displacement distribution of the second Sezawa mode inside
Al/ZnO/Diamond structure at ¢ = 0 for shorted gratings at the lower stopband edge
for Hz = P/m and H,4 = 0.03P. (a)Displacement distribution in the z, direction.
(b)Displacement distribution in the z; direction. (c)Displacement distribution in the

z3 direction. (d)Potential distribution. Vertical axes represent arbitrary units.
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potential

Figure 3.13: Displacement distribution of the first Sezawa mode inside

Al/Zn0O/Diamond structure at ¢ = 0 for shorted gratings at the lower stopband edge
for Hz = 1.75P/n and H4 = 0.03P. (a)Displacement distribution in the z, direction.
(b)Displacement distribution in the r, direction. (c)Displacement distribution in the

z3 direction. (d)Potential distribution. Vertical axes represent arbitrary units.
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Figure 3.14: Displacement distribution of the first Sezawa mode inside
Al/ZnO/Diamond structure at ¢ = 0 for shorted gratings at the lower stopband edge
for Hz = 1.75P/m and H4 = 0.03P. (a)Displacement distribution in the z, direction.
(b)Displacement distribution in the z, direction. (c)Displacement distribution in the

z3 direction. (d)Potential distribution. Vertical axes represent arbitrary units.
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potential

Figure 3.15: Standing wave pattern of the second mode at the lower stopband edge

for shorted gratings when Hz = P/x and H4 = 0.03P. (a)Displacement standing
wave pattern in the z, direction. (b)Displacement standing wave pattern in the z,
direction. (c)Displacement standing wave pattern in the z; direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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potential

Figure 3.16: Standing wave pattern of the second mode at the upper stopband edge
for shorted gratings when Hz = P/r and H4 = 0.03P. (a)Displacement standing
wave pattern in the z, direction. (b)Displacement standing wave pattern in the z,
direction. (c)Displacement standing wave pattern in the z; direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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potential

Figure 3.17: Standing wave pattern of the second mode at the stopband center for

shorted gratings when Hz = P/w and H, = 0.03P. (a)Displacement standing wave
pattern in the z; direction. (b)Displacement standing wave pattern in the z; di-
rection. (c)Displacement standing wave pattern in the z; direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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mode inside the ZnO layer at the lower stopband edge, at the upper stopband edge,
and at the stopband center, respectively, for the second Sezawa waves when Hz = P/x
and H4 = 0.03P. We note that the standing wave patterns for the lower and upper
stopband edges are symmetric about the mid-point of the electrodes z, = 0.5P.
However, there is a /2 phase shift between them. The distribution for the stopband
midpoint is no longer symmetric about the center of the grating period and has
either a maximum or a minimum value at the edge of the electrode. This 7/2 phase
difference between the lower and upper edges of the stopband are predicted by the
COM theory in Sec. 2.4 (p. 31). The similar standing wave patterns can be derived
for the second Sezawa waves when Hz = 1.5P/n and H, = 0.03P.

In figs. 3.18, 3.19 and 3.20, the standing wave patterns of the second Sezawa
mode inside the ZnO layer are shown when Hz = P/m and H, = 0.005P for the
upper edge, the lower edge and the stopband center, respectively. As opposed to the
H4 = 0.03P case, the potential has a maximum at the grating center for the lower
stopband edge. The similar patterns are obtained when H, = 0 both for Hz = P/r
and Hz = 1.5P/~ for the second mode.

The standing wave patterns are also calculated for the first Sezawa waves
when Hz; = 1.75P/‘tr. Fig. 3.21-3.22 show patterns for H4 = 0. The potential
distribution inside the ZnO layer becomes maximum at the midpoint of the grating
for the lower stopband edge and minimum at the upper stop band edge. The locations

of the maximum and the minimum points are identical with the second Sezawa cases
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Figure 3.18: Standing wave pattern of the second mode at the lower stopband edge

for shorted gratings when Hz = P/r and H, = 0.005P. (a)Displacement standing
wave pattern in the z; direction. (b)Displacement standing wave pattern in the z,
direction. (c)Displacement standing wave pattern in the z; direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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potential

Figure 3.19: Standing wave pattern of the second mode at the upper stopband edge

for shorted gratings when Hz = P/7 and H4 = 0.005P. (a)Displacement standing
wave pattern in the z, direction. (b)Displacement standing wave pattern in the z,
direction. (c)Displacement standing wave pattern in the z3 direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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@
Figure 3.20: Standing wave pattern of the second mode at the stopband center for

shorted gratings when Hz = P/m and H, = 0.005P. (a)Displacement standing
wave pattern in the z; direction. (b)Displacement standing wave pattern in the z,
direction. (c)Displacement standing wave pattern in the 3 direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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when Hy = 0.

For H, = 0.03P, the standing wave patterns are totally different from that of
the second mode for H4 = 0.03P. These patterns are shown in 3.23-3.25. Maximum
points are located around 0.25P, 0.75P and 0.5P for the lower stopband edge, the

upper stopband edge and the stopband center, respectively.

These standing wave patterns will be used to determine the COM parameters

later in this chapter.

3.3.3 Energy distribution

The time average of the energy density distributions can also be calculated from eqs.
(3.51)-(3.53). Fig. 3.26 shows the time average of the energy distributions inside the
ZnO layer, while the distributions for the diamond layer are shown in fig. 3.27, both
for the lower stopband edge for Hz = P/x. The thickness of Al is set at H4 = 0.03P
and the gratings are shorted. Figs. 3.28 and 3.29 show the corresponding energy
distributions for the stopband center.

As stated above, the wave energy can be divided into two mechanical types
and one electrical type in the quasi-static approximation (3.51)-(3.53). Without piezo-
electricity, these thre;. energy densities must be positive because they have quadratic
forms. For piezoelectric substrate, however, strain energy density and electric stored

energy density exchange part of their energies with each other, which may not always



CHAPTER 3. SPACE HARMONIC METHOD 92

ks
i

potential

-0

Figure 3.21: Standing wave pattern of the first Sezawa mode at the lower stopband
edge for shorted gratings when Hz = 1.75P/r and H4 =0. (a)Displacement standing
wave pattern in the z, direction. (b)Displacement standing wave pattern in the z,
direction. (c)Displacement standing wave pattern in the z; direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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potential

Figure 3.22: Standing wave pattern of the first Sezawa mode at the upper stopband

edge for shorted gratings when H; = 1.75P/r and H4 = 0. (a2)Displacement standing
wave pattern in the z; direction. (b)Displacement standing wave pattern in the z,
direction. (c)Displacement standing wave pattern in the z; direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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potential

(d)
Figure 3.23: Standing wave pattern of the first Sezawa mode at the lower stopband

edge for shorted gratings when Hz = 1.75P/m and H4 = 0.03P. (a)Displacement
standing wave pattern in the z, direction. (b)Displacement standing wave pattern
in the z; direction. (c)Displacement standing wave pattern in the z; direction.

(d)Potential standing wave pattern. Vertical axes represent arbitrary units.
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Figure 3.24: Standing wave pattern of the first Sezawa mode at the upper stopband
edge for shorted gratings when H; = 1.75P/7 and H, = 0.03P. (a)Displacement
standing wave pattern in the z, direction. (b)Displacement standing wave pattern
in the z; direction. (c)Displacement standing wave pattern in the z3 direction.

(d)Potential standing wave pattern. Vertical axes represent arbitrary units.
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(c) (d)
Figure 3.25: Standing wave pattern of the first Sezawa mode at the stopband center

for shorted gratings when Hz = 1.75P/w and H4 = 0.03P. (a)Displacement standing
wave pattern in the z; direction. (b)Displacement standing wave pattern in the z,
direction. (c)Displacement standing wave pattern in the z3 direction. (d)Potential

standing wave pattern. Vertical axes represent arbitrary units.
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Figure 3.26: Energy density distribution of the second Sezawa mode inside ZnO

xalP

layer at the lower stopband edge for shorted gratings when Hz = P/r and H, =
0.03P. (a)Kinetic energy distribution. (b)Strain energy distribution. (c)Electric

energy distribution. Vertical axes represent arbitrary units.
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Figure 3.27: Energy_density distribution of the second Sezawa mode inside diamond
layer at the lower stopband edge for shorted gratings when Hz = P/w and Hy =
0.03P. (a)Kinetic energy distribution. (b)Strain energy distribution. (c)Electric

energy distribution. Vertical axes represent arbitrary units.
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Figure 3.28: Energy density distribution of the second Sezawa mode inside ZnO layer
at the stopband center for shorted gratings when Hz; = P/w and Hy = 0.03P.
(a)Kinetic energy distribution. (b)Strain energy distribution. (c)Electric energy dis-

tribution. Vertical axes represent arbitrary units.
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require a positive value of energy density for either type of these two energy densi-
ties, depending on the strength of the piezoelectric constant. This does not mean a
negative energy density of the total energy density of the waves. This negative value

can be seen in the electric energy at some points inside ZnO in figs. 3.26 and 3.28.

The kinetic energies inside ZnO have maximum values at the interface be-
tween Al and ZnO for both the lower stopband edge and the stopband center. On

the other hand, the strain energies inside ZnO have maximum values inside the layer.

Inside the diamond, all the energies have their maxima at the ZnO/Diamond

interface, and attenuate rapidly inside the diamond substrate.

Table 3.1 shows the time average of the total energy inside each layer for Hz =
P/n and Hz = 1.5P/=, with the total energy inside ZnO set to 100 for each condition.
Here, the total energy means the sum of the energy density inside one period. This
normalization is necessary because the amount of energy depends on the relative
wave amplitude and on the grating period P, which doesn’t allow us to calculate the
absolute value of the energy. In the case of plain waves inside non-piezoelectric media,
the time averages of the kinetic energy and of the strain energy must be the same at
each point due to energy conservation inside media. However, in the case of Rayleigh
waves propagating uﬁder grating structures inside isotropic media, these two energies
are no longer identical at each point, because the acoustic Poynting vector has a
spatial dependency, and only the integral of these two energies over the entire region

can be assumed to be the same. For the generalized Rayleigh waves, this equality will
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be satisfied including the small amount of piezoelectric energy which is transferred
from the strain energy to the electric stored energy. This agreement can be verified
from the Table 3.1, which shows that the total kinetic energy and the total strain
energy agree to within 1.2%. The difference can be attributed to the piezoelectrically
transferred energy from the strain energy to the electric stored energy. It also shows
that the total amount of energy inside the diamond is of the same order as that inside
the ZnO layer when Hz = P/n. At the ZnO/Diamond interface, the kinetic energy
inside the diamond is larger than strain energy at the electrode midpoint, while the
strain energy is larger at the center of the spacing. The total energy inside diamond
when Hz = 1.5P/x is almost 30% of that inside ZnO, due to the increase of the ZnO
thickness.

In Table 3.2, the total energies are shown for the first Sezawa mode when
Hz = 1.75P/7 and H4 = 0.03P. The total energy inside diamond is 7% of that
inside the ZnO layer, because the thickness of ZnO is very large for this condition.
The ratio of the energy inside diamond to that inside ZnO decreases almost linearly
as the thickness of ZnO increases regardless of the mode. In spite of the small amount
of energy inside diamond, the SAW velocity of around 5,900 (m/s) is more than the
twice of the slow shear wave for semi-infinite ZnO substrate.

Table 3.3 shows the amount of energy that exists within the specified depth

in the diamond region at the lower stopband edge for shorted gratings. This table

is for the second Sezawa wave when Hz = P/r and H4 = 0.03P. In Table 3.4, the
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Table 3.1: Energy inside each layer at the lower stopband edge for shorted gratings

normalized to the total wave energy inside ZnO. H, = 0.03P.
layer | kinetic | strain | electrical | total

Hz = P/x ZnO 49.17 | 50.65 0.18 100

Diamond | 34.66 | 36.31 0.06 71.02

Al 440 | 051 - -

Total 88.23 | 87.47 - -

Hz =15P/n ZnO 52.39 | 47.54 0.07 100

Diamond | 12.34 | 18.65 0.02 31.01

Al 2.63 | 0.39 - -

Total 67.36 | 66.58 - -

Table 3.2: Energy inside each layer at the lower stopband edge for shorted gratings

normalized to the total wave energy inside ZnO. H4 = 0.03P.

layer kinetic | strain | electrical | total

Hz =175P/n ZnO 51.38 | 48.80 -0.18 100

Diamond | 1.28 5.66 0.24 7.18

Al 131 0.73 - -

Total 53.97 | 585.15 - -
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energy inside the diamond region for the first mode is shown, with Hz = 1.75P/r and
H, = 0.03P. The total energy inside the diamond region is set to 100. We observe
that over 99% of the total energy is concentrated within 2P (one wavelength) of the
ZnO/Diamond interface for the both cases, and that there is essentially no energy
below 4P (two wavelengths). This result confirms our assumption that the thickness

of diamond is sufficient for the semi-infinite approximation.

3.3.4 COM Parameter Derivation

In Sec. 2.4 (p. 31), we have derived the relations between the dispersion diagrams
and the COM parameters for the low loss approximation, egs.(2.54),(2.55) and (2.69).
The phase of the mutual coupling constant can be determined from the standing wave
pattern at the ZnO surface, as explained in Sec. 2.4. The phase difference between
the transduction coefficient and the mutual coupling coefficient is also estimated from
(2.70).

Fig. 3.30 shows the computed COM parameters of the second Sezawa wave for
Hz = P/m and Hz = 1.5P/x, which are derived from the calculated dispersion dia-
grams by using the relations stated above. For both cases, the self-coupling coefficient
K11 and the mutua.l-céoupling coefficient k5 are a linear function of the Al thickness.
k1 is larger for Hz = P/n. The positive x;; becomes 0 around H4 = 0.006P for
Hz = P/ and around H; = 0.004P for Hz = 1.5P/1r, and becomes the negative

value as the Al thickness increases, which means that the reflection center suddenly
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Table 3.3: Energy inside the diamond up to specified depth for the second mode when
Hz = P/w and Hy = 0.03P.
depth kinetic | strain | electrical | total

0 to -0.5P | 62.1 54.6 98.0 58.4

0to -P 88.1 78.3 99.9 83.1

0 to -2P 99.5 | 98.6 100 99.1

0 to -3P 100 100 100 100

0 to -4P 100 100 100 100

Table 3.4: Energy inside the diamond up to specified depth for the first mode when
Hz = 1.75P/1r and H4 = 0.03P.

depth kinetic | strain | electrical | total

0to-0.5P | 85.9 70.8 95.7 74.4

0to-P 98.5 | 95.7 99.8 96.3

0 to -2P 100 100 100 100

0 to -3P 100 100 100 100

0 to -4P 100 100 100 100
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Figure 3.30: The coupling-of-modes (COM) parameters as a function of Al thick-

ness for the second Seazwa mode when Hz = P/r ('o’) and Hz = 1.5P/% ('x’).

(a)Self coupling coefficient &;; - (2P). (b)Mutual coupling coefficient x,; - (2P).
(c)Transduction coefficient |¢ - (2P)}?/(woCp).
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change its position by A/4. Zero x;» would lead to no reflections for electrode of
this thickness. The phase of the transduction ( is always 0 in spite of the change of
the Al thickness. { for Hz = P/~ is insensitive to Al thickness, while it decreases
linearly for Hz = 1.5P/n. The magnitude of ¢ is as twice for Hz = P/~ as that for
Hz = 1.5P/=, which is consistent with the calculated result for the electro-mechanical
coupling coefficient k? in [40].

COM parameters are also calculated as a function of the Al grating thickness
for the first Sezawa mode when Hz = 1.75P/x. For this case, none of the 4 stopband
frequencies coincide for the thicker Al thickness, which indicates that the reflection
and transduction centers are no longer identical. From the standing wave pattern,
we can estimate that the phase of x;2 becomes 7/4 when Al exceeds the thickness
H, = 0.008P. That is, x;2 changes from a positive real value to a positive pure
imaginary value as the Al thickness increases. The phase of { remains constant,
which results in a phase difference between k;; and ¢ of 7/4 (¢ — ¥ = n/4). For
a structure with anisotropy either in the substrate or the electrode finger structure,
this is a necessary and sufficient condition to single phase unidirectionality [38] and
can be used for lowloss SAW filters such as single-phase unidirectional transducers
(SPUDTSs) [44], the floating electrode unidirectional transducers (FEUDTS) [45] [46]
and natural SPUDTs (NSPUDTSs) [47]. In this case, however, there is no origin of
anisotropy in the structure and it is hardly possible to have a unidirectionality. Our

calculated results show that the centers of x;; and { for the positive z; travelling
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wave are shifted A\/8 and those of the negative travelling wave are shifted —\/8, and
eventually becomes bi-directional. This phenomenon is, however, very unusual and
may have applications in new SAW filter structures.

In fig. 3.31, COM parameters are shown. The magnitudes of x;; and &2
change linearly with Al grating thickness, as did the values for the second mode. ¢

decreases linearly.

3.4 Generation Problem

3.4.1 Space Harmonic Description

In the generation problem, a positive and a negative voltage is applied to the adjacent
grating electrodes alternately. The period of this structure is now A = 2P, as opposed
to the period of the grating P for the eigenvalue problem described in Secs. 3.2 (p. 48)
and 3.3 (p. 68). Fig. 3.32 shows the periodic Al grating structure on a ZnO/Diamond
substrate, which will be considered in this section.

The displacements and the potential, U;, must have the same periodicity,

including the phase term, as the applied voltage. This requires
Ui(z1 + A) = Ui(z1) (3.55)

or

Ui(z, + P)= =Ui(z,) (3.56)
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CHAPTER 3. SPACE HARMONIC METHOD 110

Figure 3.32: An infinite grating structure on ZnO/Diamond substrate. The positive

and the negative voltages are applied to the adjacent grating electrodes alternately.
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Under the condition (3.56), we can deal with this problem using a similar
manner as used for the eigenvalue problem, which has a period P, not 2P. From
egs.(3.1) and (3.3), the quantities U; can be expanded by using space harmonics with

the following wavenumbers

2T T 27 w .
kn =ko + —I;n = ﬁ + Fn = ?(1 <+ 211.) (n.mteger) (357)

where ko = 7/P is a constant value determined by the grating period, P, as opposed
to the eigenvalue problem case in (3.3).

The resultant space harmonic expressions for the particle displacements U;
(i =1,2,3) and the electric potential Uy in each region are the same as in egs.(3.8)-

(3.11), except that we impose the normalized wavenumber 4 = 1 for this case. We

get
diamond: U¢ = i i A(min) ﬂ'f”'v")eii-[a(""")za+(1+2m)z1-!(2P)t]
m=-—oco n=1
(31=1,2,3,4) (3.58)
Zn0: U = i f: A(min) ﬂ'(m,n) eii[a(""")z;+(1+2m)n-f(2P)t]
m=-—00 n=5
(1=1,2,3,4) (3.59)
8
Al electrode: U* = i IZ Almin) ﬂ’(‘mm)eji[c("'-")za+(1+zm)z,-f(zp)t]
m=-o00 n=13
(k=1,2,3) (3.60)

i A(m,19) ﬂim,w) e 3 [a("'-“) zs+(l+2m)z1—f (2P)t]

m=-—00

free space: Uf =

(3.61)
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The decaying factors a(™") and the relative magnitudes of the partial wave
vector 8™ are determined by following the same procedures used in Sec. 3.2 (p. 48).
The weighting factors A(™") are determined from the boundary conditions.

The expressions for the boundary conditions are identical to those for the
eigenvalue problem, which will be repeated here. However, the potential on the

grating is the external applied voltage in this case.

The mechanical boundary conditions are expressed as

diamond : P%=PF (onT#M) (i=1,2,3), (3.62)
Zn0 : U =US (on 3™ (i=1,2,3), (3.63)
Pf=PP (nT3™),(i=1,2,3), (364)

metal IDT : U™ =U? (on I™™) (i =1,2,3), (3.65)
PP=0(onTPM) (i=1,2,3), (3.66)

The electrical boundary conditions are

diamond : P =P: (onT3), (3.67)
Zn0 : U:=U2 (onDi¥), (3.68)

P =P (onD3?), (369)

UZ = Voe > (onTEl ) (3.70)

free space : U =UZ? (on ¥ (3.71)

Uf = Voe 3 (onilF)) (3.72)
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where V} is the magnitude of the applied voltage on the metal gratings, P;(i =1,2,3)

are the stress components and P; is the electrical displacement as before. P;(i =

1,2, 3, 4) for this generation problem can be obtained by setting ¥ = 1 in egs.(3.26)-

(3.31).

These boundary conditions are rewritten as boundary integrals, as was done

in Subsec. 3.2.3.

diamond :

Zn0O

metal IDT :

free space :

[ Rel(BE* = P2*)6UAar

+ [y REIEE" = PE*)SUS1AT = 0 (3.73)

. td d 20 » z 2
+ Jrsua RV ~UBSPEIAT + [ 1 Rel(P7™ ~ PE)3UzdT

+ [ RelF ~ UDSPLIAT + [, Rel(PL" ~ PE*)oUFJaT

+ Jum Rel(U - Voe™2*1)$P{*ldT = 0 (3.74)
oot Rl ~ VY5

+ /rn-m Re[(-P/™)éU"]dT" = 0 (3.75)
_/I'-{m Re[(U{ - U})sP{"|dT

+ frﬁm Re[(U] - Voe™#)§P[*|dT = 0 (3.76)

where the asterisk (*) denotes the complex conjugate. dU; and SP; represent the

virtual increments of U; and P;, respectively.

Following the same procedures as in Sec. 3.2 (p. 48), we get the following set

of equations in terms of the real and the imaginary parts of the weighting factors
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A™") for a given applied voltage amplitude V,,

Fl(tm,,n") (I,O’ A(-w'l)y ey A(m,n), ey A(w'lg)) =0 (3'77)
Fl(m"nl') (I,O) A(_“'l)y ey A(m.n)’ ey A(eo,19)) =0 (3'78)

where m’' = —oo0 to oo and n = 1 to 19.

This set of equations, combined with two more equations given by the infor-

mation about the applied voltage of the electrodes,
Vo = Re(Vy) + jIm(V) (3.79)
form the matrix equation,
C-Y=bDb (3.80)

where each element of the rows above 2 of matrix C can be calculated from the set of
equations (3.77) and (3.78). In terms of rows 1 and 2 of C, we have C(1,1) =1 and
C(2,2) =1 and zeros elsewhere. The Y vector consists of the real and the imaginary

parts of the applied voltage magnitude, V;, and the unknowns, A(™"),

Y = [Re(Va),Im(Vp), Re(AY), Im(A-=), ...,
Re(A™™), Im(A™™), ...,

Re(A®9), Im (AT, (3.81)
The vector b is given by

b = [Re(V), Im(Vp),0,...,0]T (3.82)
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From eq.(3.80), we can calculate the weighting factors, A™") for the specific
applied voltage and frequency.

Once the weighting factors, A(™"), are given, we can easily calculate the
charge density, P;. The total charge on one electrode, Q™, is determined by integrat-

ing the charge density along the electrode surface, I.

Qm = }{, Pl =Q,+5Q: (3.83)

If we denote the real and the imaginary parts of the total charge, Q™, as Q, and
Qi, respectively, they have the following relations between the real and the imaginary

parts of the admittance, Y;(f) and Y;(f) (Y (f) = Y:(f) + jYi(f))

e = 2w -y, (3.84)
Q& = Y(f )(2V)-M (3.85)

where the expressions for Y;(f) and Y;(f) were previously given as (2.92) and (2.93)
by using the COM equations.
From the equivalent circuit model [48] [5], one electrode pair can also be

represented by the equivalent circuit shown in fig. 3.33, where the admittance

N A04CZQL
Y.(f) = G.(f)= 3.86
) #) x L—1)+nu+nlz}2+a"}; (386)
Yi{f) = 2nfCp+ Bu(f)
2 f2x (f _
— 2fCp- A4 ( 7o 1) + K3 + lﬁz} (387)

25(}%—1)'*'&11'{'512} +02



CHAPTER 3. SPACE HARMONIC METHOD

jaCy

iBs

Figure 3.33: The equivalent circuit for one electrode pair.

116



CHAPTER 3. SPACE HARMONIC METHOD 117

G, and B, are frequency dependent conductance and susceptance, which are
attributed to the generation of SAW by the applied voltage. Cp is a capacitance for

one electrode pair with no frequency dependency.

3.4.2 The Procedure for Simulation

The admittance curve as a function of the frequency is obtained by way of the fol-
lowing procedure. At first, the normalized frequency (f - 2P) is set. a(™") and ™™
are calculated for each space harmonic and for the each partial wave inside every
layer. The boundary condition integrals are calculated and lead to a set of equations
in terms of the real and the imaginary parts of the weighting factors and the applied
voltage amplitude. The coefficient matrix, C, is set up. For the given applied volt-
age, the weighting factors, A™") are calculated from (3.80). Using these calculated
weighting factors, the total charge on an electrode is evaluated, which leads to the
determination of the admittance (3.84) (3.85) for that frequency.

Fig. 3.34 shows a flowchart of a computer program for the calculation of the
admittance curve as a function of the frequency.

In this procedure, the two dimensional optimization in terms of the complex
wavenumber is not nécessary, as was the case when getting the dispersion diagram for
the eigenvalue problem in Sec. 3.2. This will significantly reduces the computational
effort.

In the calculations, we truncate the number of space harmonics m to some



CHAPTER 3. SPACE HARMONIC METHOD 118

-

Load material constants Select riot a(m,n)
i ‘ i (m,n)
Input dimensions of
metal and ZnO
(Input Mo

Calculate and arrange
Set initial frequency matrix C

f (2P) ! ¢

M

*’i (M <—m+]] |’ Calculate A(m,n)
! m=- .

[f < f+Af Compute total charge]
Solve wave eqgs.
for o Admittance curve
* f (2P) vs. Y
@

Figure 3.34: A flowchart of our calculation procedure.
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specific value 2M,. In this case, the space harmonics ranges from m = —M; to
m = My — 1. The size of the resultant matrix C is (76Mp + 2) x (76M, + 2). The

following calculation uses 2M, = 40. The width of the grating is set to M = 0.5P.

3.5 Results and Discussion for the Generation Prob-

lem

Fig. 3.35 shows the real part of the calculated charge for an Al/ZnO/Diamond struc-
ture when Hz = P/m and H4 = 0.005, with 2M, = 40. From this figure, we see that
there are multiple SAW excitations which correspond to a series of Sezawa modes.
The wave around f - 2P = 6,500 (m/s) corresponds to the Oth order Sezawa wave,
that around f - 2P = 7,280 (m/s) to the 1st order Sezawa wave and the 2nd order
Sezawa wave appears around f - 2P = 11,550 (m/s). The height and the width of
the resonant structure of each mode will depend on the strength of the transduction
and the propagation loss «;, introduced by numerical errors due to the truncation of
the number of space harmonics.

From egs.(3.84) and (3.87), the static capacitance can be evaluated from the
real part of the total charge at the frequency where there is no influence due to
SAW excitation. Therefore, we can estimate the capacitance from the calculated real
charge by interpolation at f - 2P = 0. The total real charge per unit length in the

z, direction for Hz = P/m and H4 = 0.005P is 1.75 x 10~%(C/m) when the applied
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voltage amplitude Vp = 1(V’). Then, the calculated capacitance for one electrode pair
with unit length in the z, direction is estimated to be 87.5(pF/m) when Hz = P/n
and H,4 = 0.005P.

Fig. 3.36 shows the static capacitance for one electrode pair per unit length in
the z, direction as a function of Al grating thickness when Hz = P/w, Hz = 1.5P/n
and Hz = 1.75P/n. The static capacitance of one electrode pair increases as the ZnO

thickness increases and it is also a linear function of the Al thickness.

In fig. 3.37, the admittance curves for the second mode when Hz = P/r and
H,4 = 0.005P are shown. There is an expected resonant shape for the susceptance,
which consists of the static capacitance and the remaining component due to the
excitation of the SAW. For the real part, the conductance should have a sharp peak
corresponding to the SAW generation [5]. The calculated conductance (the imaginary
charge), however, becomes zero everywhere, which leads to no energy dissipation cor-
responding to the generation of the SAW. Zero imaginary charge (zero conductance)
comes from the fact that the contribution from mth and —mth space harmonics are
complex conjugates of each other regardless of the frequency. And the total imaginary
charge cancels out at every frequency. This complex conjugate nature originates in
the fact that we a.re.'dealing with an infinite structure and there is no change in the
positive and the negative travelling waves in the z, direction, as far as they ha.vevthe

same magnitudes of the wavenumber.

Physically, this situation can be interpreted as follows. At the SAW excitation



Capacitance (F/m)

CHAPTER 3. SPACE HARMONIC METHOD 122

x10™"
9.6 Y Y T T T T T T T
= 1 - o S S S S I S
9.4._.................................................S ........................ c. .............
+ .

93&—' ........................ e Ty
92b ... .......... ::_ ..................................................
9.1 - ......................................................

oF-------- ......................................................
89k - .;,:, .....................................................
88F-------- ................................... + .............................................

—
87k - - S
86 : . i ; i ; L ;

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Normalized Al thickness, HA/P

Figure 3.36: The static capacitance for one electrode pair per unit length when Hz =
P/r ('), Hz = 1.5P/w ('x’) and Hz = 1.75P/7 (*').



CHAPTER 3. SPACE HARMONIC METHOD 123

x10

......................................
. e et e et et

Admittance (S)

2 L !
1.145 1.156 1.155 1.16 1.165
Normmalized frequency, f - (2P) (nvs) x 10°

Figure 3.37: The admittance curves for the second Sezawa mode when Hz = P/n

and H, = 0.005P. Susceptance 'x’ and conductance ’o’.



CHAPTER 3. SPACE HARMONIC METHOD 124

frequency, the wave becomes a standing wave, because the wave travelling to the right
and the wave travelling to the left are identical. Therefore, the amount of .the energy
emanating from or entering one period of the structure must be same due to the
symmetry of the structure. Therefore, there is no net electrical energy dissipation
attributed to the excitation of the SAW. In the real situation, however, the structure
is not infinite and the energy gets converted when the SAW is excited, which leads
to the sharp conductance peak at the specific frequency of the SAW generation.

By way of trial, ” the conductance” is calculated by summing only the contri-
butions from the space harmonics with the positive wavenumber, which is shown in
fig. 3.38. this figure shows the sharp peak, and the result is due to the SAW genera-
tion. The magnitude, however, is more than 2 order less than expected. As a resuit,
we have to conclude that the conductance can not be directly calculated from a SHM
treatment based on the Floquet’s theorem.

The relation between the conductance and the susceptance around the SAW
generation frequency is known to be a Hilbert transform [5]. If the conductance is
estimated by performing a Hilbert transform on the calculated susceptance, then the
result shown in fig. 3.39 is obtained.

Fig. 3.40 sh6ws the displacement distribution for the second Sezawa mode
when the applied voltage magnitude is V5 = 1(V) at the resonant frequency. This
figure is for Hz = P/m and Hz = 0.005P and at ¢t = 0 in the expressions (3.58)-(3.61).

At this frequency, displacements and the potential become standing waves and the
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Figure 3.38: The calculated conductance curves for the second Sezawa mode when
Hz = P/m and H4 = 0.005P where only the contributions from the positive travelling

waves are summed up.
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Figure 3.39: The conductance curves for the second Sezawa mode when Hz = P/n
and H4 = 0.005P calculated from the Hilbert transform. Calculated susceptance 'x’,

and conductance o’ calculated from the Hilbert transform.
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magnitudes are maximum at this time instance. The magnitude of the displacement
is about 10 x 10~!%(m) for U; at the Al/ZnO interface. On the other hand, the
magnitude for Uj is around 2 x 1071%(m) at the Al/ZnO interface, and it grows inside
the diamond substrate until it reaches 4 x 10~1%(m). In terms of the electrostatic
potential, it becomes very large inside ZnO and dies out quickly inside the diamond
layer.

The transduction parameter is estimated from the calculated susceptance

curve by using the derivation in Sec. 2.6. We have

. 2
% = 0.835% (3.88)

for the second Sezawa mode when Hz = P/r and H4 = 0.005P. This value is about

5 % less than that (0.879%) estimated from the dispersion property in fig. 3.30.

3.6 Conclusion

In this chapter, we have presented the space harmonic analysis of acoustic wave
propagation and excitation under infinite grating structures on ZnO/Diamond multi-
layered substrates. We have extended the SHM model to include multi-layered struc-
tures and to the wav.e generation problem. The dispersion diagrams are obtained for
wavenumbers around the first Bragg wavenumber. From the dispersion curves, we
theoretically derive the COM parameters, including the self coupling coefficient, the

mutual coupling coefficient and the transduction coefficient, which can be used for
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potential

Figure 3.40: Displa.cgment distribution of the second Sezawa mode for an applied volt-

age of I(V). Hz = P/w and H4 = 0.005P. f.-2P = 11, 544(m/s). (a)Displacement
distribution in the z, direction. (b)Displacement distribution in the z, direction.

(c)Displacement distribution in the z; direction. (d)Potential distribution.
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device design. The self coupling coefficient increases linearly as a function of the Al
thickness both for the first and the second Sezawa modes. The mutual coupling coeffi-
cient for the second Sezawa wave decreases as the Al thickness increases and becomes
0 around H4 = 0.006P when Hz = P/n and H4 = 0.004P when Hz = 1.5P/m,
where it changes to a negative value. The mutual coupling coefficient for the first
mode also decreases as a function of the Al thickness. However, it changes from a
positive real value to a positive imaginary around H, = 0.008P, which means a A/8
difference between the centers of transduction and of reflection. This, however, does
not lead to the natural single phase unidirectionality on a uniform grating structure
on a symmetrical ZnO/Diamond substrate. The transduction coefficient is insensitive

or slightly dependent on the Al thickness regardless of the mode.

The calculated displacement distributions show the typical characteristics of
a higher order Sezawa wave. The energy distributions inside each layer are calculated,
and they shows that the energy of the second mode inside the diamond and the ZnO
layer are similar in magnitude when Hz = P/x. For Hz = 1.5P/~, the energy inside
the diamond reduces to 30% of that inside ZnO, due to the thicker ZnO layer. The
energy inside the diamond turns out to be concentrated to within 2 wavelengths of
the ZnO/Diamond interface.

From the wave generation analysis using the SHM method, we have calculated
the admittance curves as a function of the frequency of the applied voltage. The

conductance curve can not be calculated by the SHM based on the Floquet’s theorem,
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due to the assumption of an infinite structure. The static capacitance of one electrode
pair can be calculated theoretically, and the result is also necessary for SAW filter
design by the COM method. We can show that the calculated admittance curve can
be used as an alternative way of estimating the COM parameters as shown in Sec. 2.6

and Sec. 3.5.



Chapter 4

Conclusion

The SAW propagation and generation under an infinite grating structure on ZnO/Diamond
multi-layered substrates have been studied in this Thesis. We have established rigor-

ous analytical methods for the evaluation of SAW propagation and excitation prop-
erties on multi-layered structures with surface electrodes. In these analyses, both
electrical and mechanical perturbations due to the existence of the surface electrodes

are considered for an arbitrary shape of grating electrode.

In Chap.2, we review the coupling-of-mode (COM) theory and the COM
equations. This Chapter forms a basis for the interpretations of the calculated re-
sults obtained by the analytical models, which are explained in Chap.3. The general
COM equations are derived from the first principles. The relations between the two
commonly used sets of COM equations are clarified. The dispersion diagrams are

obtained from the COM equations, and the relations between the unknown COM

131
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parameters and the stopband edges are derived. SAW generation phenomena are also
discussed and related to the COM equations. The admittance curve as a function of

the frequency of an applied voltage is obtained in terms of the COM parameters.

In Chap.3, the space harmonic method (SHM) is discussed. The SHM is
extended to the SAW propagation analysis under shorted and open grating struc-
tures on ZnO/Diamond multi-layered substrates. Dispersion diagrams are calculated
around the first Bragg wavenumber, where stopbands of finite width are observed.
The COM parameters (the self coupling coefficient, the mutual coupling coefficient
and the transduction coefficient) are evaluated theoretically from the calculated dis-
persion diagrams, based on the relations discussed in Chap.2. These parameters
are obtained for several ZnO and Al thickness conditions and different propagation
modes. We found that the self coupling coefficient increases linearly as a function of
the Al grating thickness both for the first and the second Sezawa modes. The mu-
tual coupling coefficient for the second mode changes from a positive real value to a
negative real value as the grating thickness increases, which leads to a situation with
no reflections at some specific Al thickness. For the first mode for Hz = 1.75P/x,
the mutual coupling coefficient becomes a pure imaginary value when H, is larger
than 0.008P. This indicates a A/8 difference between the centers of transduction and

reflection.

We also examine the physical propagation behaviour of ZnO/Diamond multi-

layered substrates, which gives us a better understanding of the SAW propagation and
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generation inside multi-layered substrates. The displacement distributions and the
standing wave patterns are calculated inside ZnO/Diamond substrates. We calculate
and compare the energy density distribution inside each layer. The ratio of the energy
inside diamond to that inside ZnO decreases almost linearly as the thickness of ZnO
increases regardless of the mode, 71% for H; = P/n and 7% for Hz = 1.75P/x.
The energy inside the diamond layer is concentrated to within two wavelengths of the
ZnO/Diamond interface.

A modified SHM is also developed to analyse the SAW generation due to
an applied voltage under an infinite periodic electrode. The admittance curves are
calculated as a function of the frequency of an applied voltage. Another important
parameter for the SAW filter design, the static capacitance of one electrode pair,
is evaluated from the calculated admittance curve as a function of the Al and ZnO
thicknesses. This model is also shown to be useful for evaluating the transduction

coefficient.

4.1 Suggestions for future work

As is explained earlier, multi-layered substrates have been gaining wide attention in
the modern communications environment due to their possibilities of having high
SAW velocity and of combining properties of the materials of each layer. They also

give us the unlimited freedom of the selections of the composite materials and their
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thickness conditions, which may lead to SAW filters with improved performance.

Versatility of multi-layered substrates, on the other hand, have several draw-
backs. The design parameters must be extracted for each thickness condition. The
SAW properties are also dispersive and very sensitive to the thin layer material thick-
ness, unlike single layer substrates where they are constant. These facts make the

conventional experimental parameter extraction unrealistic.

Our established theoretical analyses enable the parameters derivations for any
set of the substrate thickness conditions fairly easy without worrying the thickness
error of the fabricated thin film. Our methods are easily applied for any multi-layer
substrate configurations where the electrode is located either on top of or within the
the multi-layered substrate. And, as is shown in [16}, our modified SHMs are also eas-
ily applied to the leaky SAW problems with the proper selection of the partial waves
of the very bottom layer. For example, the first mode on ZnO/Diamond substrate
becomes a leaky SAW when the ZnO thickness is thin, and a SAW velocity of around
15,000 m/s is predicted with an acceptable level of propagation loss [19]. The COM
parameters of this substrate will be easily derived by a minor change of the program,

and would enable the design of 5GHz SAW filters with an electrode width 0.75 um.
In addition fo the ZnO/Diamond substrates, the temperature compensation
using SiO, layers have been reported [9] [10], with temperature stability better than

that of quartz. 2 to 3 GHz retiming filters and resonators are already in the market
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using SiO,/IDT/ZnO/Diamond structures. The additional SiC; top layer doesn’t af-
fect the theoretical framework of our analyses, and the methods can be easily adapted.
Moreover, potential narrow band filter applications of these substrates will make a

COM based treatment preferable.

The diamond based SAW filter is known to have a high power durability [8],
which is qualitatively explained as a high heat transfer coefficient of diamond. A
quantitative discussion would be possible by using the physical behaviour analysis,
such as energy distribution that we have shown in this study.

For the first Sezawa mode, we found that the centers of the reflection and
the transduction are \/8 different each other. This is a quite unusual and strange
phenomenon, especially for the symmetric ZnO/Diamond substrate. This is predicted
not only by the calculated stopbands but also by the standing wave patterns. At first,
experimental verification is necessary, and the physics behind this rapid change in
the position of the reflection center should be examined with the help of the physical
behaviour analysis inside each layer. This effect may have possibile applications in

new SAW filter structures.
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