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Abstract

In order to understand the complex electromagnetic properties of high temperature superconductors
the details of the electronic band structure must be included. In this thesis we go beyond the simple
free electron model in which the electromagnetic properties are determined by a single, spherical,
Fermi surface (which is adequate for most conventional superconductors) to more realistic models
containing muitiple, anisotropic tight binding bands. Using these models we are able to calculate
several electromagnetic properties, including the magnetic penetration depth, Josephson tunneling
currents, the density of states and the optical conductivity, we find our results are in good agreement
with experimental observations.

One of the banes of the field of high temperature superconductivity is that many exper-
iments are carried out on materials that are less than ideal. Often the presence of impurities or
less than ideal stoichiometries can have a large impact upon the measured properties. We are able
to calculate the effect of impurities upon the above mentioned electromagnetic properties in both
the unitary and Born scattering limits and find significant differences between them. We find that
the presence of impurities in the chain band has little effect upon the critical temperature which
is consistent with the experimental observations that Ni impurities (which go into the chains) and
overdoped materials (in which the excess oxygen also goes in the chains) have little effect upon the
critical temperature, while Zn impurities (which go into both the chains and planes) and underdoped
materials (in which both the chains and planes are oxygen deficient) have a significantly lower critical
temperature.

Anotcher of the difficulties with the experimental resuits is caused by the presence of twin
domains in the orthorhombic materials. The presence of twins in a material can mask some of the
significant anisotropies that are observed in untwinned materials such as the magnetic penetration
depth in the a and & directions and the ¢ direction Josephson tunneling into a conventional super-
conductor. We calculate these properties in models that take into account the large anisotropies
that are present in these materials. We find that the ¢ direction Josephson tunneling can not oniy be
non-zero. but can actually be quite large in a pure d wave superconductor if the band is anisotropic
(t.e.orthorhombic). This result helps explain one of the few experiments that was considered incon-
sistent with d wave superconductivity.
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Preface

The main body of research in this thesis is contained in three papers that have been
published in Physical Review B. All three papers have myself and Jules Carbotte as authors and
the third has Mark Lumsden and Bruce Gaulin as additional authors. In the third paper Bruce and
Mark provided the experimental results and the accompanying commentary. The rest of the work
in the three papers was a cooperative effort of Jules and myself.

The ideas and the text of the papers (excluding those related to the experimental resuits
in the third paper) were the result of many conversations and of passing the manuscripts back and
forth between Jules and myself. The text and the actual calculations and results presented in the
“formalism” and “results” sections of each paper were written or performed by myself with comments
and observations being made by Jules throughout. The computer codes used to calculate the results
presented were solely my effort. The “introduction” and “conclusion™ sections of each paper, which
place the work in the “formalism”™ and “results” sections in historical and current research contexts,
were, in the large part, written by Jules.
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Chapter 1

Introduction

1.1 Superconductors — Old and New

Superconductivity is the property of some materials which are able, below a certain temper-
ature called the critical temperature, to conduct electricity without resistance. Without resistance
means exactly that: once a current is set up in a loop of superconducting material it will continue
indefinitely so long as the temperature of the loop is kept below the critical temperature of that
material. This property has obvious uses in any application that requires large magnetic fields (fixed
magnets have an upper limit of approximately two Tesla and a conventional electromagnet uses large
quantities of electricity), and fields of several Tesla are used in the MRI machines of major hospitals
and research institutions.

The only other common application of superconductors other than creating large magnetic
fields is the sensitive measurement of variations in magnetic fields with SQUID! magnetometers.
These magnetometers are used by mining and oil exploration teams to detect small changes in the
earth’s magnetic field whichk are caused by ore or oil deposits and by the medical community in
imaging applications. They are also used in research labs, often in the study of superconductivity
itself.

Other applications of superconductors, such as maglev trains, have proven too expensive
or impractical for widespread use. The expense of these applications was almost entirely due to the
extremely low critical temperatures of the available materials which required costly cryogenics and
liquid helium as a coolant.

These restrictions have recently been somewhat removed by the discovery of materials with
much higher critical temperatures, allowing the use of liquid nitrogen instead of liquid helium for the
cryogenics. These new materials, however, have new restrictions and costs which will require much

research and development in order to reduce them. Many new material processing methods have

1SQUID - Superconducting QUantum Interference Devices



2 CHAPTER 1. INTRODUCTION

been developed in order to meet the requirements of these new materials and, while there has been
significant progress, this is an ongoing effort. Sadly, the progress of research into a fundamental un-
derstanding of these materials seems to be much more limited, with nothing close to consensus being
reached after over ten years of research (with the one important exception being the fundamental
symmetry of the superconducting state).

The reason for this difficulty is that, with the possible exception of the heavy Fermion
superconductors. these materials are so unlike “conventional superconductors” (ie, those understood
in the BCS framework): These materials exhibit magnetism as well as superconductivity and the
presence of magnetism usually prevents superconductivity.

This thesis presents one particular model (out of many) which may account for the super-
conductivity in these materials and calculates some properties which are unique to superconductors
that are a consequence of this model. However, many of these calculated properties are not unique
to this model but are ramifications of the symmetry of the superconducting state which is a result
of this model (and which is also a consequence of other possible models) and so the agreement with
some of the experimental results is not as significant as it would be if they were unique to this model.

1.2 A Brief History of Superconductivity

The breakthrough discovery of superconductivity by Onnes in 1911(1] and the subsequent
discovery of the eponymous Meissner effect in 1927[2] started a new field of research. With the
exception of the Londons’ phenomenological theory(3] and Ginsburg-Landau theory,[4] theoretical
progress had to wait until Bardeen, Cooper and Schrieffer came up with what is now referred to as
the BCS theory in 1957.[5] This theory, which used phonons (the quanta of lattice vibrations) as
the mechanism which causes superconductivity, was so successful in explaining many of the physical
properties of superconductors that it is, without doubt, correct.

However, with critical temperatures (ie, the temperature at which a material starts to
superconduct) ranging only as high as 23K (ie, —250C) the uses of these materials were restricted
to applications where the high cost of liquid helium cooling was justified. These applications were
restricted to those which required either large magnetic fields (such as MRI machines in hospitals
and bending magnets in particle accelerators) or the ability to measure magnetic fields very precisely
using SQUIDs® (which make use of the Josephson effect).

With the addition of retarded effects by Eliashberg[6, 7] in 1960 the theory was substan-
tially complete. By use of a method called “tunnelling inversion” to extract the phonon spectra of
superconducting materials even the details of the superconducting properties became calculable and
were so much in accord with the experimental resuits that any question of the correctness of the
theory was put to rest.[8] There were only a few details, such as those relating to the heavy Fermion
materials, to be tidied up before the field could be said to be complete.

2SQUID: Superconducting QUantum Interference Device




1.3. THESIS OUTLINE 3

Complete, that is, until the spectacular discovery in 1986 by Bednorz and Miiller[9] of high
temperature superconductors (HTS). Initially discovered with a critical temperature of ~32K in
Laz_.Sr;CuQ4 (LSCO), soon materials, such as YBa;CuzO7_s (YBCO), had critical temperatures
in excess of 90K.

This was an important threshold since it is above the temperature of liquid nitrogen and
liquid nitrogen is far less expensive than liquid helium. This, combined with the ease with which
YBCO could be made. enabled the study of superconductivity to expand dramatically.

In this explosion of experiments there were many contradictory results and it was some
time before it was widely accepted that the quality of the materials studied could have a dramatic
effect upon the results. This is a consequence of the complexity of the new HTS materials: Not only
did they not behave much like normal metals above their critical temperature but they were brittle
ceramics instead of ductile metals! A

This lack of ductility can limit the possible applications of these new materials. Supercon-
ducting magnets are made of coils of wire and it is extremely difficuit to make wire out of a ceramic
material (although it is not impossible and some progress has been made). It also turns out that the
sensitivity of SQUIDs is limited by the thermal noise and so even SQUIDs made from HTS materials
often require liquid helium as a coolant.

There are, however, new applications that the higher critical temperature make economical.
These applications tend to be concentrated in high frequency electronics (ie, microwaves, ~ 109Hz)
and signal processing and are waiting for progress in an unrelated field (reliable solid state cooling
devices able to reach the critical temperatures required by these materials) before they are widely
deployed - this sort of technological leap-frog is common, with progress in one field awaiting progress
in an unrelated one. Since these high frequency electronics are used by communication satellites
and cellular telephone networks, the use of both of which is growing, research and development in
both cooling devices and high frequency electronics is continuing and substantial progress is being
made. Since the clock speed of computers are approaching the microwave regime a possible future
application of these materials is in the wires interconnecting the devices within these computers.

Alas, progress in the fundamental understanding of these materials has remained elusive.
This elusiveness is in large part caused by the complexity of these new materials which display a
complex array of properties, including but not limited to magnetism and superconductivity. as well
as a complex crystalline structure. Although there are many competing theories that attempt to
explain the presence of superconductivity in these materials the one explored in this thesis explores

the likely link between the magnetism and superconductivity in these materials.

1.3 Thesis Outline

In the next chapter the BCS theory of superconductivity is briefly presented along with
the simple but astounding modification that allows a repulsive instead of attractive interaction to
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cause the electron pairing that is fundamental to superconductivity; how this repulsive interaction
changes the symmetry of the superconducting state is also briefly discussed.

The two subsequent chapters give details of the model electron states and pairing inter-
actions that are explored in this thesis. The ramifications of this model are explored somewhat in
depth in these two chapters and the effect of one upon the other is calculated in a self-consistent
manner.

The following two chapters investigate some of the properties unique to superconductors
which are calculated within the model outlined in the preceding chapters and which are compared
to the experimental results. These properties include the magnetic susceptibility, the magnetic
penetration depth. Josephson tunnelling, the superconducting density of states and the optical
conductivity.

The final chapter reports some of the conclusions that can be drawn from the research
reported in this thesis.

There is also an appendix which presents some of the computer algorithms used to perform
the calculations reported in this thesis.



Chapter 2

The BCS Theory

The BCS theory has ramifications in more areas of physics than just condensed matter. It
has applications in nuclear theory in the binding of nucleons in even-even nuclei, the dynamics of
degenerate stars (neutron stars and white dwarfs - called “degenerate” because they are supported
by the Pauli exclusion principle) and the superfluidity of 3He.

There are two main pieces of evidence that finally led to the theory of superconductivity.
The first, the fact that superconductivity was observed in many different metals and alloys, meant
that the details of the Fermi surface (and hence the underlying crystal lattice) was not an essential
feature. The second piece of evidence was the isotope effect - the critical temperature of a super-
conductor was proportional to the reciprocal square root of the isotopic mass. The fact that this
was the identical mass dependence of the phonons implies that the electron-phonon interaction was
crucial to understanding the superconducting state.

2.1 The Frolich Hamiltonian

H. Frolich{10] proposed the following Hamiltonian (in second quantization notation) as a

reasonable starting point for the study of a system containing interacting electrons and phonons

H = Ho+ AH, (2.1)
where
7‘{0 = Z e,.cL,c,., + Z huqagaq
ko q

is the total energy of the electrons and phonons without any interactions and

Hy = Y (Mach, qcneaq + Mich,_jcncal) (2:2)
hy.q
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k+q k-q
qQ
k q k
Figure 2.1: The adsorption and emission of phonons is depicted by their Feynmann diagrams. On
the left is depicted the adsorption of a phonon of momentum ¢ (wavy line) by an electron of initial

momentum k and final momentum k + q. On the right is the inverse process - an electron of initial
momentum k emits a phonon of momentum q and the electron has a final momentum k - q.

is the interaction or perturbation term with electron-phonon matrix element M,. The A in Eq. 2.1
is used for counting the order of the perturbation in the following analysis. In these sums the k and
q are reciprocal lattice vectors in units of the reciprocal lattice constant, o = (1, ]) represents the
electron spin, c,', (cs) and a{, (aq) are the electron and phonon creation (annihilation) operators,
respectively, and €5 and fwgq are the electron and phonon dispersion relations.

While this Hamiltonian was formulated for the electron-phonon interaction there is no
reason that it can not be extended to other electron-boson interactions. For high temperature
superconducting materials other bosons have been proposed as the cause of superconductivity, such
as spin fluctuations (discussed at length in the next chapter). In fact, in liquid 3He the superfluidity
is caused by the exchange of ferromagnetic paramagnons.

The first term on the right in Eq. 2.2 is depicted on the left in Fig. 2.1 and corresponds to
the adsorption of a phonon of momentum q (wavy line) by an electron of initial momentum k and
final momentum k + q (straight lines). The second term on the right in Eq. 2.2 is depicted on the
right in Fig. 2.1 and corresponds to the inverse process — an electron of initial momentum k emits
a phonon of momentum q and the electron has a final momentum k — q. In both diagrams the M,
corresponds to the vertex where the three lines meet.

2.1.1 Virtual Phonons
By performing the canonical transformation
HI = e—ASuea\S
which is defined by the Baker-Hausdorff theorem,
e'Be 4 =B +[A.B] + 514, (4, B]] + ;-. A [A[A.Bl]] +--.

and in which the operator S is defined by

S= Z chL,+qc;., (aa_q + Bag)
ko.q
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~

kZq} k+af

Figure 2.2: This Feynmann diagram corresponds to two electrons of momenta k' and k exchanging
a virtual phonon of momentum q an ending up with
momenta k' — g and k + q respectively.

on the Frélich Hamiltonian, Eq. 2.1, and choosing the a and 3 so that the first order term in A
disappears we get

2
H = Ho+ A |M,)? < .
2 “giq q (Eh+q _ E.)z _ (Mq)z Ro+q-k'o’'~-q

CworCha + O(X%)  (2.3)

which has two electrons connected by a virtual phonon (i.e., there are no phonon operators, aL or
aq, left in the interaction term). This process is depicted in Fig. 2.2 and corresponds to two electrons
of momenta k' and k exchanging a virtual phonon of momentum q an ending up with momenta
k' — q and k + q respectively. The factor |M.,l2 corresponds to the two vertices where the wavy and
straight lines meet.

For electrons near the Fermi surface ex4+q ~ €a and the denominator is negative, i.e. the
interaction is attractive. This important resuit is a consequence of the Fermion nature of the electrons
(s.e. only electrons near the Fermi level are involved in low energy processes).

Frolich next assumed that the most important interactions were those with zero centre of
mass momentum, i.e. k + k' = 0, and zero spin, i.e. 0 + o’ = 0. By performing this substitution
and shifting the sum over q by k (i.e., adding —k to g everywhere in Eq. 2.3) we get from Eq. 2.3

2 2Rwq-n t .t 3
H = Ho+lA’§ :IM —&l clocl conicnr + O(A%).
2 q 2z 2 -qs il
Py (€q — &) — (huwg—u)® T 77
This can be written as
Heed = E Ehclccko-{'- E "’h.k:CL.TC?_k,,.C_[.*Chf (2.4)
ko [ ¥ 3

where we have dropped all reference to phonons from *,, and in which
2wy
(ew —en)® = (Ao —i)’?
is the resulting interaction and we have replaced q with k’. This Hamiltonian, Hceq, is know as
the “reduced Hamiltonian.” In the interaction term the four Fermionic operators destroy a pair of

electrons with momenta (k t,—k |) and create a pair of electrons with momenta (k' 1, -k’ |) with
amplitude Vi & .

- 2
ek = 3A% M _a
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2.2 Cooper Pairs

Starting with Frolich’s Hamiltonian, L.N. Cooper [11] examined the consequence of adding
two electrons of opposite spin and momenta to a filled Fermi sea at T = 0. The energy of the two
electrons, measured with respect to the Fermi level is given by Schrédinger’s equation

2
(;‘—m (V2 +V2) + v,_,.> Yoo = (E-2p)¥, .

where 4 is the chemical potential which set the Fermi energy (or the number of electrons). Treating

the interaction as a perturbation, the ¥, ,. are expanded as plane waves of opposite momenta

Vopr = E Gawe e T
Y

= Y g =) (2.5)
[ ]

where 8.4 is a Kronecker delta function. Substitution of this wave function into the Schradinger
equation and Fourier transforming yields

9u(E — 2e) = Zgw Va-w (2.6)
h‘

where Vi _4 is the Fourier transform of V,_, and €4 = h%k?/2m — u is the unperturbed electron
energy.

2.2.1 Isotropic Phonon Interaction

Restricting the interaction to be attractive for electrons within fwp of the Fermi surface
{due to the cutoff in the phonon dispersion at the Debye energy, wp) we get for the interaction

Vie—w = —VoO(len| - hwp)8(leh| — huwp)

where 8(r) is a Heavyside or step function (i.e., zero for a negative argument and one for a positive
argument). and defining

C = 3 ouVa-w
k

= =V, Z'gk
|

where the primed sum indicates that it is a sum only over those states within hwp of the Fermi

surface. Rearranging Eq. 2.6 and performing a primed sum on both sides yields

¢ V,.C '
o2 m =€
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Figure 2.3: The Cooper pair problem (Eq. 2.7) must be solved graphically. The dotted lines are the
normal state energies, 5 and the solid curves represent schematically how f varies with £. The
value of f for E between two &4 approaches oo except for E below the lowest €4, which approaches
f =0. When f = 1/V, is plotted on the same graph (dashed lines) the intersections with the solid
curves are the solutions to Eq. 2.7.

and so our equation for the energy of the two electrons added to the filled Fermi sea is, after canceling
the C’s,

1 r 1 _ -
Vo_z,,:E—%h=f' &0

This equation can be solved graphically if we note that as E — 2¢4 + 0% only one term
in the sum contributes and f - +o00, while if £ = 2¢4 — 0% again only the same term in the sum
contributes and f =+ —oo. The value of f for E between two £4’s varies from +o0 to —oo except
for E below the lowest ¢4, which approaches f = 0. In Fig. 2.3 f as a function of E is plotted. The
dotted lines are the normal state energies, 4, and the solid curves represent schematically how f
varies with E. When f = 1/V, is plotted on the same graph (dashed lines) the intersections with
the solid curves are the solutions to Eq. 2.7.

For 1/V, > 0 and large the eigen energies are very close to those of the unperturbed system
(dotted lines), but are shifted up in energy as 1/, decreases (i.e. V; increases) as would be expected
for a repulsive interaction. However, when 1/V, < 0 and large the energies are shifted down from the
unperturbed system but stay between two unperturbed energy levels (again, as would be expected).
except for the lowest energy (circled) which can be shifted down significantly more and. since the
first unperturbed state is at zero energy, becomes negative. This is the significant result of the
Cooper problem: two electrons of opposite spin and momenta added to the Fermi sea at T = 0 can
have a lower energy than the top of the Fermi sea and so the Fermi sea is unstable since all of the
electrons at the Fermi level can lower their energy by entering a paired state.
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The binding energy, E, can be estimated by approximating the primed sum by an integral
over a thin energy shell of thickness fuwup at the Fermi energy and assuming that the density of
states. .V(e£g). IS a2 constant, N(0), within this shell

1 ' 1
Vo ZE—Q&

2N(0)/MD %

—2N(0)In (E—;"“”> ,

and for £ « hwp
E = —2hwpe ?/NOWVe (2.8)

This expression for the binding energy of a Cooper pair can not be expanded as a convergent series

in V5 for small V, and is the reason that this solution is not obtainable via perturbation theory.

2.2.2 Spatial Extent of a Cooper Pair

The spatial extent of the Cooper Pair wave function, also known as the coherence length,
is given by /(R?), with

(R?) = de\Il R*¥ g
de\Il
It is easy to show using Eq. 2.5 that this is equal to
(Rz) = Zh |V:.g|.|2.
25 |9h|2

If the isotropic phonon interaction is used this equation can be evaluated as

fﬂuo de
<R2> _ 2] (2¢—F)

e —-;“‘
] (2¢e—-E)

8K3sr
3mE?

where sr is the Fermi energy. Which gives for the spatial extent of a Cooper pair in conventional
superconductors

Y
(B = A

=~ 10°A

where vF is the Fermi velocity given by er = mv?./2. Since the average distance between electrons
in a metal is of the order of the lattice spacing, 1A, this is very large.
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For high temperature superconductors, since the condensation energy, E, is much larger
ard the Fermi velocity, v, is much smaller the spatial extent of the Cooper pairs is much smaller. on
the order of 204 in the CuO; plane and 3.5A perpendicular to the CuO- plane, and is comparable to
the lattice spacing. This introduces the possibility that the Cooper pairs may form at a temperature

above T. and only become coherent at T, - what is known as “preformed pairs.”

2.3 The BCS Wave Function

The next important step in the development of a theory of superconductivity was finding
the many body ground state wave function. It was not until J. Bardeen and L.N. Cooper and
J.R. Schrieffer{5] proposed what has now become known as the BCS theory that the full physics of
conventional superconductors was understood.

One way of creating a wave function with N/2 Cooper pairs is to act on the vacuum with

N/2
(Z a,.c{nct_u) 10) (2.9)
k

where the sum is over all k, the a, are determined by a variational principle, and | 0) is the vacuum.
Each term in the expansion will have N creation operators, although there will be many terms with
duplicate creation operators that will not contribute due to the anticommutation of the Fermionic

Operators, Cigo -

BCS assumed that each Cooper pair had amplitude vy, to be included in the wave function
and ug, not to be included in the wave function (with jug, |2 + |vs, |2 = 1)

— g T $ t
|Gy = (u;.‘ + v;.,c,.nc_,.u) (u,., + v..,c,.ﬁc_h“) ...10)

= I (we + vmchisela,) 10
k.

)

in which |G) represents the ground state BCS wave function. The number of electrons present in
this wave function is not fixed but will be sharply peaked around the number set by the chemical
potential. That this wave function contains Eq. 2.9 as its projection onto the N-particle manifold
can be easily demonstrated by manipulating it as follows to obtain the projection onto the N-particle
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manifold given by Eq. 2.9:

|IGY = Huh: H (1 + —CL?C_,. ¢) IO)
K’ k,
1 [ vs, 2 1 [ ug, 3
= Hu,,» H (1 + Ck.rc—h.,u + 31 (;k—cl‘rc'_,.“) + 3 (u—c',m.c'_,.d) +...]10)

e,

= JJuse )

k’

N2
_ , Uk, t t 1 Uk, bt
= gu,,,_ (1 + (g: .y c,‘”.c_,‘d) +... .+ ~/2)1 (Z "~ Chn,atCmten 2l +...410)

where in the third line use has been made of the relation [], e** = eXs %».

Once the wave function of a system is known one can calculate expectation values, such
as (F), in order to compare with physical observables. However, for the purposes of this thesis
the quantities of interest can be calculated in a more straightforward manner from the reduced
Hamiltonian, Eq. 2.4.

2.4 The BCS Equation

By taking the mean field approximation of the interaction term in the reduced Hamiltonian,
Eq. 2.4,

CrrC-ky = Xh + (CutC-ny —X%)
t .t
CrtCony Xi (chtc-u - X )

where the pair susceptibility, xi = (ciktc—ay), is the thermal average of the pair annihilation operator,
CerC—ky- By neglecting the fluctuations (i.e. the term bilinear in the fluctuation, (carc—ny — X3))
the reduced Hamiltonian, Eq. 2.4, can be rewritten as

Heed = 3 & (c,'.?c,.f + czucu) -3 (A..c},,c'_u + .ALc:nc_,.,-) +C. (2.10)
k k
where we have explicitly performed the sum over the spins, C is a constant, and
- Z View X5 (2.11)
hl

is. as we shall see. the BCS gap equation.

This mean field Hamiltonian can be diagonalized by a Bogolyubov canonical transformation{12.

13]. defined by

Chkt = ULTRO+ UYL,

ey = —thwmo +uerl, (2.12)
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with the normalization condition, Im.l2 + lv..l2 = 1. By substituting Eq. 2.12 into the reduced
Hamiltonian, Eq. 2.10. the coefficient for the off-diagonal terms is

. 2 2
2epunve + AL [vil® — A jusl

which is set equal to zero to diagonalize the Hamiltonian. Combining this with the normalization
condition and solving for the uy and vy yields

2 2 ke
lval® =1—|ual® =} (1 - -E—:.) (2.13)

where EZ = 2 + |Ax|® is the energy of the s, quasiparticles defined by Eq. 2.12 (i.c., they are the
eigen values of the diagonalized Hamiltonian).
Inverting the Bogolyubov canonical transformation, Eq. 2.12, we get

Vo0 T

Y1 UkC—ky + Uhclf (2.14)

Examining equations 2.13 and 2.14 we can see that as A — 0, Ex — {€al, va = 0 and uy — 1
and the <, quasiparticle operators become the electron operators. As A, becomes non-zero the
quasiparticle excitations are particle-hole pairs with opposite spin and momenta, i.e., the BCS
ground state wave function plays the role of vacuum for the vy ;

.:|G) =0

Since the reduced Hamiltonian is diagonal in the Fermionic quasiparticles, v ,, we can.
from elementary statistical mechanics, write the expectation value of their number operators as

(W Ms) = f(BEW)

where f(z) = (1 + €*)~! is the Fermi-Dirac distribution (witlk. 3 the reciprocal temperature, 3 =

1/kgT. with kg Boltzmann's constant!), and, using Eq. 2.12, we can solve for the pair susceptibility

Xk

(chtc—ny)

= ulv (1 - <"1.o7k.o> - <7L~1~"-1>)
= ulve (1 -2f(3Ew))

Ax 1 -
_ 13EL) . 2.15)
2. tanh (35Ex) (2.15)

Combining this expression with the Eq. 2.11 gives the BCS equation

A s
Aw=— ; View: 23—: tanh (13Ey). (2.16)

! Temperature is an energy unit which is related to more conventional energy units by Boltzmann's constant,
kg = 0.086eV/K



14 CHAPTER 2. THE BCS THEORY

Note that A, is completely determined by the self-consistent solution to this equation and that the
only inputs to this equation are the temperature, T, the dispersion, 4, and the interaction, Vj 4.
The quantity A, is the order parameter for the superconducting phase transition. Below
a certain temperature, T., which depends upon e, and Vj 4, Ax becomes non-zero. This phase
transition. like all phase transitions, has a corresponding broken symmetry. In the case of supercon-
ductivity the broken syymmetry is global gauge symmetry: Above T. we can replace the creation
and annihilation operators, cl and ¢, with cLe“’ and c e™'® without effecting the electron system:

this is not the case below T and so the gauge symmetry is broken.

2.5 Interactions

2.5.1 Isotropic Phonon Interaction

The BCS gap equation, Eq. 2.16, depends upon two functions (the interaction, Vi &, and
the dispersion, £;) and the temperature, T. In order to make further progress in the analysis of this
equation we must make some assumptions about the two functions. By making similar assumptions
as were made for the Cooper pair problem (namely, Vi_p = —Vo0(jex| — hwp)8(|el] — hwp) and
sk = h%k?/2m — u with N(es) constant within Awp of the Fermi surface) we see that the gap,
A& = ., has no k-dependence and the gap equation becomes

a

Ao = N(O)/MDV—°r.a.nh(—EL—)dE (2.17)
° - hop  2Es 2ksT ’ '

We can solve this equation in two limits in a straight forward manner. First in the limit T — 0,
Ao = hwpe-V/NOV.

which is the same as Eq. 2.8 so we see that A, is the binding energy of a Cooper pair (i.e. the gap).
and second, in the limit T — T, A, — 0 we get

kgT. = 1.13kwpe /NOWVe

By taking the ratio of these two equations we get
24,
ksT.

which is one of the famous results of the BCS theory.

For 0 < T < T, the isotropic BCS equation can be solved numerically. In Fig. 2.4 the
temperature dependence of the gap normalized to its zero temperature value is plotted as a function
of the temperature normalized to T, (solid curve). This temperature dependence is the same as for
any second order transition in the mean field approximation and accurately reflects the observed
behaviour of conventional superconductors. That the mean field approximation is accurate is a
consequence of the large coherence length of the Cooper pairs (see §2.2.2).

3.53
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2.5.2 Anisotropic Interactions

While an isotropic interaction is a good first approximation for conventional superconduc-
tors an implicit assumption of this choice of interaction is that the order parameter is also isotropic.
It is the interaction that determines the possibie k-space dependence of the order parameter -
choosing an isotropic interaction. as seen in §2.5.1, results in an isotropic order parameter.

We can, instead, choose any periodic function of the the difference k — k' (This restriction
is so that the interaction conserves momentum.). Any function of the difference k — k' can be written

as a sum of products of periodic basis functions of k and k' (i.e. a separable potential) {14, 15]
Vi—w = Z ‘/jy’i’r‘:- (2.18)
b

That this is so can be seen by replacing each cos(jk: — jk.) in the Fourier expansion of Vj_, with
cos(jkz) cos(jk.) (the sin(jk:)sinjk.) terms will not contribute since they are odd in kL) with j
enumerating the terms in the Fourier expansion (which will only contain cosine terms due to the
periodicity of the Brillouin zone).

Upon substituting this separated potential, Eq. 2.18, into the BCS gap equation, Eq. 2.16,
we get

A

s A s
Z{W;nw@%}m

z: Ami (2.19)

where the 4,, defined as the quantities in the braces, are just c-numbers. We can see that the order
parameter, A, can be written as a sum over the same set of basis functions as were used when writing
Ve—a’ as a separable potential, and so it can not contain any basis functions that were not present in
the separated potential and is likely to contain only those for which the corresponding V; are relatively
large. As a consequence the gap, A, can, as seen in Eq. 2.19, also have a more complicated k-
dependence - can in fact belong to irreducible representations? with a different symmetry from that

in the above discussion for isotropic interactions (which belong to the identity representation).

2.5.3 Interaction Independent Properties

Many superconducting properties are dependent only upon the order parameter and the
dispersion and are explicitly independent of the interaction. In light of this it is desirable not to
use an explicit interaction when calculating these properties and instead to use only the dispersions
detailed in Ch. 3 and an order parameter whose temperature dependence is given by a function that

2The irreducible representations (irreps) are the possible symmetries that are allowed by the crystal symmetry.
For tetragonal systems the crystal symmetry is D4 and there are four one dimensional irreps. In this thesis we only
examine two of these, the identity (s,3,,2) and d-wave (d,a_,2) representations.
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a(T)/4(0)

Figure 2.4: The temperature dependence of the order parameter as found by solving the BCS
equation with an isotropic interaction (solid curve) and that given by A(T), Eq. 2.21, (dashed
curve). The agreement between the two curves is quite good except near T/T. ~ 0.5 and T/T. ~ 0.5
where, A(T) deviates from the BCS solution; the dotted curve is the absolute value of the difference
of the solid and dashed curves. This deviation is acceptable with the caveat that calculations of
properties that rely upon the temperature derivative of the order parameter, such as the specific
heat, will be incorrect if they use this function.

approximates that given by the BCS equation and whose momentum dependence is given by some
set of basis functions which can be written as

Au(T) = h(T)Y_ A (2.20)

with A(T") giving the temperature dependence and, in a manner similar to the separable potential
described in Eq. 2.19, the momentum dependence given by a set of basis functions, nj}.

A good choice for the temperature dependence is
h(T) = tanh (1.74 T.)T - 1) (2.21)

which agrees very well with the temperature dependence of the BCS equation. Shown in Fig. 2.4
is the temperature dependence of the order parameter as found by solving the BCS equation (solid
curve) and that given by h(T") (dashed curve). The agreement between the two curves is quite good
except near T'/T. ~ 0.5 where, A(T) deviates from the BCS solution; the dotted curve is the absolute
value of the difference of the solid and dashed curves. This deviation is acceptable with the caveat
that calculations of properties that rely upon the temperature derivative of the order parameter,
such as the specific heat, will be incorrect if they use this function.

The momentum dependent functions must preserve the symmetry properties of the crystal;
for high temperature superconductors (HTS), with D, or D, symmetry, the interesting choices are
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1|

g 45 ? 138 180

Figure 2.5: Four different representations of a d-wave order parameter, .A,. At the top left is a
stereographic projection of a d-wave order parameter; the dark line is the node where Ay = 0. On
the top right is the magnitude of the gap as a function of angle along the Fermi surface and on the

bottom left is the same quantity on a radial plot. Below on the right is the position of the gap nodes
in the first Brillouin zone.

limited to combinations of the set

e =1
e = cos(jk:) + cos(jky)
ne = cos(jk:) — cos(iky) (2.22)

with j a positive integer. In general only 53 and the j = 1 case of the other basis functions will be
needed; cases in which the j subscripts are omitted will be assumed to represent the j = 1 case.
There are other allowed irreducible representations for the order parameter but only these two (i.e. s
and d-waves) are considered in this thesis. For D4 symmetry the n;’ and 1§ basis functions belong to
the same irreducible representation (referred to as s-wave) but n:’ belongs to a different irreducible
representation (referred to as d-wave). For D, symmetry they all belong to the same representation
but, since the D4 symmetry is only slightly broken, the distinction is kept and the resulting order
parameters are said to have “d + §s” symmetry if 17:’ is the dominant component.

Of particular interest for HTS are order parameters with the d-wave symmetry, nf, which
is odd with respect to rotations by 90°. Shown in Fig. 2.5 are four different representations of a
d-wave order parameter, A, = 1. At the top left is a stereographic projection of n; the dark line
is the node where nf equals zero. On the top right is the magnitude of the 7g as a function of angle
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along the Fermi surface (The Fermi surfaces of HTS materials are discussed in detail in the next
chapter.) and on the bottom left is the same quantity on a radial plot, note how the sign changes
under 90° rotations. Below on the right is the position of the gap nodes in the first Brillouin zone.

2.5.4 Sample Anisotropic Interactions

Nearest Neighbour Interaction

As an example of a separable interaction a nearest neighbour interaction, V2, = —U™%§|._, ;.

is investigated. Note that since V', is negative it is an attractive interaction. It has, in reciprocal
space, the form

e = —U™ (cos(kr — ki) + cos(ky — k)
4
= =yon E nanb
=1
where

M= cos(ks) + cos(ky)
% = cos(ks) — cos(ky)
mh = sin(k:) + sin(k;)
na = sin(k:) — sin(ky)

are the basis functions which contribute to this interaction.
Upon substitution of the above into the BCS equation, Eq. 2.19, we get
4

nn i Aw i
Z{U ;ﬂwf:}'lh

=1

Yy

il

-'ll 77: + '42773 y

in which the 4, are c-numbers defined as the terms in the braces. Note that the sums containing
r)i“ do not contribute to s since they are odd in k; ,. The strength of the interaction, U'™". is. in
this model, an adjustable parameter that is varied to yield a desired T. when the BCS equation is
solved.

This sort of interaction could arise in a system in which there are unusual phonons (e.g. “breath-
ing” modes). Note that the A; are not required to have the same complex phases [14] and that a
system with different phases of the A4, would break time reversal symmetry. [16]

Repulsive Interaction

A very interesting result of the k-space anisotropy of the interaction is that supercon-
ductivity can result from a repulsive interaction if it is peaked at (or near) Q = (=,7). This
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Figure 2.6: Shown in an extended Brillouin zone scheme (the solid lines depict the zone boundaries)
is the order parameter that when connected to itself by Q = (=, x) (gray arrow) has the opposite sign
(the dotted lines depict the order parameter nodes). There are two ways that the gap nodes (dotted
lines) can be placed in the Brillouin zone (solid lines) that preserve the crystal symmetry. The first
way, on the left, has s-wave symmetry and the second way, on the right, has d-wave symmetry.
However, since all possible d-wave functions have the gap nodes depicted on the right while only
special s-wave functions have the gap nodes depicted on the left the d-wave symmetry is more stable.

superconductivity has an order parameter with d-wave symmetry, Fig. 2.5, which has the property
d  _ _.,d
NMe+Q = i
That a repulsive interaction peaked at Q = (m, 7) can produce d-wave superconductivity
can be elucidated by making the substitution Vi 4 = Vod\u—w —q into the BCS equation, Eq. 2.16,
to give

tanh (L5 Ew)
2Ey:
tanh (36Ex-q)
-Volu-q 2Eu g ,

and noting that since the term in the braces is positive definite and V, is positive by definition.
1% —@ must have the opposite sign of A,.

A = -V026|h—h’—Q|AU
h'

Shown in Fig. 2.6 is an extended Brillouin zone scheme (the solid lines depict the zone
boundaries) of the two possible nodal structures of the order parameter {dotted lines) that when
connected to itself by Q = (w,7) (gray arrow) has the opposite sign (the dotted lines depict the
order parameter nodes) that can be placed in the Brillouin zone (solid lines) and preserve the crystal
symmetry. The first way. on the left, has s-wave symmetry (given by 1§ in Eq. 2.22) and the second
way. on the right, has d-wave symmetry (given by ng in Eq. 2.22 and shown in Fig. 2.5). However,
since all possible d-wave functions have the gap nodes depicted on the right while only special s-wave
functions have the gap nodes depicted on the left the d-wave symmetry is more stable. Note that
the two basis functions, 7%, discussed in §2.5.4 on p. 18 have exactly this nodal form and that the
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order parameter found upon solution of the BCS equation can, depending upon the dispersion used,
have either or both (in an s + 1d combination) of these symmetries.[14, 15]

In §4.2 the MMP model interaction [17] is introduced and discussed. This model interaction
is repulsive and peaked at Q = (x, 7) and the solution of the BCS equation yields d-wave solutions.

2.6 Beyond BCS — The Eliashberg Equations

In 1960 Eliashberg introduced his eponymous equations [6, 7] which extended the BCS
equations to allow for a frequency dependent interaction. The formalism used, Thermal Green's
functions, appears initially quite different from that used above but in fact the pair susceptibility,
X%. is a Green's function.3

The Eliashberg equations are given by

Gil =G - Ean (2.23)
where
GPam = WwaTo — ents (2.24)

bs the non-interacting Green'’s functions,

~

Sg'n = w,,(l - Zh_,,)?o + fh_,.?g + 05.,.?1 (2.25)
is the self-energy and
é;ln = u‘:'ﬁ.n?o - E-h.n:’::i - 05.1&?1
(2.26)

is the inverse of the interacting (or dressed) Green's function where the renormalized dispersion and
Matsubara frequencies have been defined as

Exn = ex+Enrn (2.27)

Wen = WnZh.ny (2-28)

and the 7, are the Pauli matrices defined by

01 0 - 1 0
;= = ‘s , (2.29)
1 0 1 0 0 -1

3Green's functions. invented by a nineteenth century miller named George Green (18] for the analysis of Maxwell's
equations (and, incidentally, introduced the concept of a “potential”) have found uses in almost every area of physics
that involves the solution of differential equations. Often these functions go by other names, for example, the ubiqui-
tous propagators it QED are nothing but Green's functions. An even more frequently encountered example is George
Green’'s original application of his eponymcus function: The solution of Laplace’s equation, V3¢, = g, (the 1/jr — |
in o = [dr’'p, /|r — #’| is the original Green’s function).
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with % = 1 by convention. The BCS equation is, essentially, the zero frequency part of the off
diagonal term of the self energy (in the BCS approximation the diagonal terms of the self energy
are assumed negligible). The quantities ok n, éx.n and Zg , are discussed in more detail in §4.1.1;
®k.n is the Eliashberg analogue of the BCS order parameter, \,.

By putting in the Pauli matrices the expression for the self-energy, f,.,n. and the Green's
function. 5,.,n are 2x2 matricies

-~ W 1 - Z n + N 0 n
Cen = [ (1-2 - )+ G . ] (2.30)
L oh.n wﬂ(l - Zh.n) - Eh.n
P —£, -+ U -
G:l;, - [ k,n . Wk,n i 0&1: ] ‘ (2.31)
—®Pin €k + Wik n

At a certain critical temperature, called T, ®x . becomes non-zero and the system enters
the superconducting state. In the normal state (i.e. ®n.n = 0 or T > T.) the interacting Green's
function, 5':"”, has the same form as the non-interacting Green'’s function, é’T’;:, but with the en-
ergies and Matsubara frequencies having their renormalized values. As the temperature is decreased
below the critical temperature the off-diagoral terms in the Green's function, Eq. 2.31, (sometimes
called the “anomalous Green’s function”) become larger until they saturate at a value a few times
larger that T..

[nverting 5;; to form ég.,‘ results in

éh _ 1 [ Ean + Wa,n Or.n (2.32)
' lé;.lni ¢L.n -e-h.n + “:"h.n
where
|§an| = ~&hn ~ Tan = |Onnl’ (2.33)

is the determinant of the inverse of the Green's function, é;l"

In order to solve this coupled set of non-linear equations for ﬁ,.,n, the self energy, (and.
hence, the Green's function, C-',.,,,) another expression for i,._,, is required. This expression comes
from the effective electron-electron interaction.

2.6.1 Conventional Superconductors

In conventional superconductors the electron-phonon interaction is responsible for the phase
transition to the superconducting state. In this model the self-energy is a convolution of the Green's
function for the phonons, Dy ,. (multiplied by an electron-phonon matrix element, g ) and the
electron’s Green'’s function

Ean=-TI_ 3 lon-el’ Da-qn-mGa.m. (2.34)
Q m
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By equating this expression for the self-energy with that given by Eq. 2.30 we can obtain equations
for €u.n, Wa,n and P o which must then be solved self-consistently (i.e., they form a set of coupled,
non-linear integral equations). In practice,[19] the phonon's Green's function is replaced with by a
function know as a®F (), which can be derived from tunneling experiments by a process know as
“tunneling inversion.”[20, 19] This function is related to the spectral representation of the phonon'’s
Green’s function, B (), by

a®Fi() = N(0) |gul’ Bu(®)
which. in turn. is related to the phonon’s Green’s function by

© 1 1
Dun= [ a0 (g - o) B,

In the above .V(0) is the density of states at the Fermi level. This process yields for the self-energy
Can=-T3 D Wlin-mCam
q m
where the electron-phonon interaction, V,:‘:., is given by

= [ () o

This process yields the set of coupled, non-linear integral equations

. €q.m
Chn = E"_TZZ k-q.n-

e
Tkn = Wn +Tz§: N "'"'IZ" |
q.m
ok = -TY ZV,.'ZQ e (2.35)
R

which are coupled via Eq. 2.33 for I@;}n‘. These equations are know as the Eliashberg equations
and their self consistent solution characterizes the superconductivity of a system in which the only
input to the theory is the electron dispersion, 4, which comes from band structure calculations
and the electron-phonon interaction, a? Fy(f2), which is derived through the process of tunneling
inversion.[20. 19]

This procedure has been followed to great success for many conventional superconductors
{8] with many calculated superconducting properties, based upon only these two inputs, agreeing
surprisingly well with experimental results. However, this thesis is concerned with unconventional
superconductors in which this process does not appear to work - perhaps because the interaction is
not due to phonons but has some other source. In the next section a possible source of this different
interaction is investigated.

The physical significance of each of these three functions are discussed in detail in §4.1.1.
Briefly. oa. is related to the order parameter, Ay, of the BCS theory, 4., is the renormalized
electron dispersion, and @y , is a renormalization for the frequency.
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2.7 High Temperature Superconductors (HTS)

The assumptions made in §2.5.1 (i.e. a spherical Fermi surface with an isotropic interaction)
in order to solve the BCS equation are quite reasonable for many conventional superconductors such
as Aluminum but are not so reasonable for high temperature superconductors® because firstly, they
are highly anisotropic materials consisting of layers of CuQ. sheets with layers of other atoms in
between (some materials have adjacent CuQO, layers and, interestingly, these materials tend to have
higher critical temperatures) and secondly, they are doped materials with the parent compounds
being antiferromagnetic insulators.

The ramifications of this are that the dispersion and the interaction, the two functions that
are the inputs to the gap equation (either the BCS equation, Eq. 2.16, or the off-diagonal part of the
Eliashberg equation, Eq. 2.35), can have (much) more complicated k-dependences as was discussed
in §2.3.2.

In Ch. 3 dispersion relations pertinent to HTS are discussed in detail with several specific
models presented. In Ch. 4 a specific model interaction, the spin-fluctuation model, is discussed
in several approximations and, combined with the dispersions of Ch. 3, the BCS and Eliashberg
equations are solved to obtain the order parameter (and in the case of the Eliashberg equations,
the renormalization functions are also obtained). In subsequent chapters the ramifications of these
results upon several experimentally measurable quantities are discussed.

4These assumptions also do not appear to hold for the heavy Fermion or organic superconductors either.



Chapter 3

Electron States in HTS

Figure 3.1: The phase diagram for
La;_Sr.CuQy as a function of doping,
z. and temperature, I. containing or-
thorhombic and tetragonal phases (sep-
arated by a dashed line). a Néel state
(lightly shaded region) and a supercon-
ducting state (darkly shaded region).

The HTS materials have complicated structures
as well as vastly different properties as a function of dop-
ing. In Fig. 3.1 the phase diagram for La;_;Sr;CuQ, as
a function of doping, z, and temperature, T, is shown
schematically. It contains orthorhombic and tetragonal
phases (separated by a dashed line), a Néel state (lightly
shaded region) and a superconducting state (darkly shaded
region).

In order to understand the superconducting state
in HTS materials the normal state must first be under-
stood. Unfortunately, the normal state is complicated by
both the crystal structure of the materials and the fact
that superconductivity only appears when the compounds
are doped. These two factors have contributed to the
controversy about whether the materials can be treated
as Fermi liquids or whether they have to be treated as
strongly correlated electron systems.[21] The reason for
this dichotomy is that successful formalisms have been

developed to deal with electrons in the two limits, localized electrons (insulators) and free electrons
(metals), but the region in between, where the electrons are mobile but highly correlated, does not

vet have a formalism that is satisfactory.

There are two ways that attempt to deal with this region between localized and free elec-
trons. The first starts from a localized electron picture and adds mobility to the electrons; this
method is usually numerical and relies upon exact diagonalization[22] or quantum Monte-Carlo
techniques.[23, 24] The second starts from the free electron model and adds correlations through

24
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Figure 3.2: On the left (a) is shown schematically the density of states, N, for the Hubbard model in
the U >> t limit; there are two bands, referred to as the upper and lower Hubbard bands, separated
by a band gap, U. On the right (b) is shown schematically the density of states, N, for the Hubbard
model in the U <« ¢ limit; there is only one band in this limit. The shaded areas represent the
occupied electron states.

perturbation theory. In this thesis the latter view is taken: that the doped materials can be treated
as Fermi liquids with an interaction which adds some aspects of the correlations that are expected
to be present in the HTS materials.

3.1 The HTS Parent Materials

The fact that the parent, or undoped, compounds of the HTS are antiferromagnetic insula-
tors is highly unusual since superconductors and insulators are about as different, electronically, as
two compounds can be. The parent compounds are believed to be Mott-Hubbard insulators which
means that there is an electron on each lattice site and that the potential energy required for an
electron to move to an adjacent site (thereby creating both a doubly occupied site and an unoccupied
site) is much larger than the kinetic energy gained.

In most of the doped HTS materials the carriers are holes. A simple model that is widely
believed to represent the HTS materials is the Mott-Hubbard model which is described by the
Hamiltonian

H=-t ) (chepr+clcn)+UY neney —pd (ner +1,y) (3.1)
(r.7*) r "

where c!, is the electron creation operator, n., = c!,c.o is the electron number operator. the sum

on (r.r’) is restricted to nearest neighbour sites with hopping integral t. U is the on-site repulsion

and u is the chemical potential which sets the electronic filling.

For U > t there are two bands, referred to as the upper and lower Hubbard bands.
separated by a band gap, U. In Fig. 3.2.a the DOS is shown schematically for the half filled case
(i.e., g = 2) for U > t. In the figure the shaded region is occupied by electrons and the unshaded
region is unoccupied; these two bands are separated by an energy gap, U.!

lFor U <« t we are in the independent electron limit and there is only one tight binding band which for u = 2 is
balf filled. In Fig. 3.2.b the DOS is shown schematically for the half filled case (i.e., u =2) for U < ¢.
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This state can be understood intuitively from the Hubbard model: electrons can be added
until there is one electron per site, after which it takes an additional energy, U, to create doubly
occupied sites.

For the half filled case in the limit U » t the Hubbard model can, by second order
perturbation theory[21], be transformed to the t-J model which is given by the Hamiltonian

H=-t Y (epr+clic)+T Y S-S = (ner +n4y) (3.2)
{r.r) (r.#) r
where the formalism is the same as for the Hubbard model, Eq. 3.1, and S, is the spin of the electron
on site . The energy in this model can be lowered by having the electrons on adjacent sites have
opposite spins which leads directly to the antiferromagnetic state.

3.2 The Doped HTS Materials

The above is highly satisfactory since it supports the view that the Hubbard model is a
good starting point for HTS materials. However, away from half filling (i.e., less than one electron
per site) there is no exact solution for the Hubbard model and, if we are not in the U >» ¢ limit, the
perturbation theory is less valid. There are, however, two methods that can be brought to bear on
this problem: exact diagonalizations of small systems can be performed[22], and quantum Monte-
Carlo calculations can be performed on both the Hubbard model and the ¢t-J model for certain
fillings.[23, 24] These simulations indicate that while the long range antiferromagnetic order is no
longer present, there are a significant amount of antiferromagnetic fluctuations (these fluctuations
are discussed in more detail in §4.1.2 and are incorporated in the FLEX approximation which is
discussed in §4.1).

As mentioned above, in this thesis the electrons are assumed to behave as Fermi liquids. The
reasonableness of this assumption is supported by some experiments (particularly for the optimally
or overdoped cases), although this support is not conclusive. In the Angle Resolved Photo Emission
Spectroscopy (ARPES) experiments(25, 26, 27, 28, 29, 30] a Fermi surfaces consistent with LDA
calculations(31. 32. 33, 34, 35| (as well as simple tight binding calculations) are observed, albeit
indirectlv. The same experiments sometimes, but not always, also show quasiparticle peaks: generally
for the overdoped but not the underdoped case.

High temperature superconductors are highly anisotropic materials, having properties that
can vary by several orders of magnitude in different directions. This anisotropy is caused by their
crystal structure which is made up of CuQ; layers separated by layers of different atoms. Above the
superconducting temperature these materials conduct electricity in the plane of the CuO; layers and
quite poorly in the direction perpendicular to them. Due to this large anisotropy many models of
these materials are two dimensional and consider only the CuO; layers, sometimes coupling them to
each other via a hopping integral, t, , that is small compared to the in-plane hopping integrals. These
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materials are three dimensional (not only is there an interlayer hopping integral, ¢, , but the actual
CuO; planes are buckled) but, for many properties, can be investigated using a two dimensional
approximation. See §5.1.3, p.49, for a comparison of the 2D approximation to 3D resuits.

3.2.1 Tight Binding Bands

The unit cell of La;_,.Sr,CuQg is depicted in
Fig. 3.3. The lightly coloured spheres occupy the La and
Sr sites and the darker spheres occupy the Cu (lighter)
and O (darker) sites. It is the CuQ; layers that are com-
mon to all HTS materials and it is widely believed that
it is these layers that provide the conduction electrons
and, below the critical temperature, the superconductiv-
ity. Each CuO; layer is separated from its nearest CuQO-
layer by two Las_.Sr;O layers and it is this separation
that accounts for the large difference of the conductuctiv-
ity within the plane from that perpendicular to it. A con-
sequence of this large anisotropy is that for many prop-
erties the electrons can be considered to be confined to
the two dimensional CuO, plane and it is only for those

3.3:

Figure The unit cell of
Las_;Sr;CuO, is depicted. The

properties which specifically refer to the properties per-
pendicular to the plane that we need to account for it
explicitly (see §5.1.3), for example the c-axis penetration
depth (see §5.5.4).

The assumption that an infinite band, free elec-

lightly coloured spheres occupy the La
and Sr sites and the darker spheres
occupy the Cu (lighter) and O (darker)
site. Each CuO; layer is separated
from its nearest CuQO; layer by two
La;_.Sr;O layers.

tron model is a good starting point for the electron dispersion is at odds with the fact that the
materials seem to be closer to their insulating parent compounds than a free electron system. This
leads one to consider that a tight binding approximation would be a better starting point for the elec-
tron system with the electrons, instead of being completely delocalized as in the free electron model,
are hopping from site to site in real space. This system is described by the following Hamiltonian
in second quantization notation

_ \ t
== ter (cyepr +lienny)
rr

where ci, is the electron creation operator, the hopping integral from site r to ' is t,._, and tg
(t.e. * = ') corresponds to the chemical potential, u, which sets the electronic filling.
By introducing the Fourier transform of the creation and annihilation operators

= t _—wr-k - 'Y
cla - Zchae il ’ Coe = Zchoe"
[ ] [ ]
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we can rewrite the Hamiltonian as

H= Zs,. (clfc,‘,‘ + chcu) (3.3)
k
where

Chew ==Y te_pemTeTH (3.4)
r.r
is the resulting dispersion relation (one of the sums over r is eliminated by the Kronecker delta that
appears in each term of t._,.) which is periodic in kz , = [-=, ], a region known as the Brillouin
zone.
For a system with only nearest neighbour hopping, te_s = téj,_,|,1 + Bjp_p 0, the
dispersion is

€ = —2t(cos(k:) + cos(ky)) — u (3.5)

with k = (kz,k,) in units of the lattice spacing. This dispersion is referred to as the Hubbard
dispersion due to its presence in the Hubbard model. For a system with a next nearest neighbour
hopping as well, tr_p = tdjp_p|; + t"slr—"l.\/i + pdyy_,+1,0, and the resulting dispersion is

€ = —2t (cos(k;) + cos(ky)) + 4t’ cos(k;) cos(ky) — p

with, again, k = (kz, k) in units of the lattice spacing.
The bandwidth of these two bands, Egs. 3.5 & 3.6, is 8t so long as ¢’ < 0.5¢. It is convenient

for comparison purposes to express t’ and u in units of ¢t and to define a shifted chemical potential,
i =2 -2t — 1p, yielding the dispersion

cp = —2t (cos(ks) + cos(k, ) + 4t’ cos(k; ) cos(ky) — (2 — 2t' — ) (3.6)

so that the dispersions have the top and bottom of the bands defined by i = 4, 0, respectively.

In Fig. 3.4 is a dispersion with ¢/ = 0.00 and 2 = 0.1 which is appropriate to the dispersion
relation given by Eq. 3.5 with an electron filling consistent with optimal doping (ie, the maximum
critical temperature) in HTS materials. On the top is a stereographic projection of ¢4 for the two
dimensional Briilouin zone: the solid curve is the Fermi surface. Below on the left is the Fermi
surface in the first Brillouin zone; the dotted lines are guides to the eye (the diagonal lines would
be the Fermi surface at half filling). On the right is 5 along the TXMT triangle in the Brillouin
zone (inset). Note that the dispersion has a maximum at the M point, k = (r,7), a minimum at
the I’ point, k = (0.0) and saddle points at the X and Y points, k = (+n,0), (0, ) (the saddle
point appears as an inflection point at X on the lower right graph). This dispersion is often used
by theorists because it contains a minimal number of parameters (t and u are the only parameters
in the model, both of which are set by experimental observations). The fact that this Fermi surface
is not appropriate for any of the high temperature superconductors is often overlooked.
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Figure 3.4: The dispersion relation for the Hubbard model is modeled by Eq. 3.4 with ¢’ = 0 and
2 = 1.90. On the top is a stereographic projection of ¢4 for the two dimensional Brillouin zone; the
solid curve is the Fermi surface. Below on the left is the Fermi surface in the first Brillouin zone and
on the right is £4 along a triangle in the Brillouin zone (inset).

3.2.2 Nesting and Magnetism

This dispersion, however, does display an interesting property, namely at half filling, (n) =
1, (i.e. @ = 2) the Fermi surface is a perfect square (i.e. the diagonal dotted lines in the lower left
diagram in Fig. 3.4). An important ramification of this situation is perfect “nesting”? of the Fermi
surface which causes an antiferromagnetic (AFM) instability. This instability causes a gap to form
at the Fermi surface (i.e. the system becomes insulating) and is responsible for the doubling of the
unit cell (and, hence, the Brillouin zone halves). For 2 # 2 the gap may or may not develop and
may only partially coincide with the Fermi surface.

How nesting causes an AMF instability was first suggested by Overhauser{36] and this
mechanism was used by Lomer{37] to explain the incommensurate AFM in Chromium. In Chromium
there are two Fermi surfaces for which large parts are connected by an incommensurate vector close
to (m,0). Since this form of AFM is caused by the itinerant electrons it is termed “itinerant AFM”
and the stability of different forms of magnetism is explored in detail using mean field theory by
Penn.[38] The main thrust of the argument is that if many pieces of Fermi surface are connected by

2Neating is when many pacts of the Fermi surface can be connected by a singie wave vector.
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the same wave vector, Q, then the Hamiltonian will contain a term of the form

H =) Uchigrtuh_qilws 3.7
ke k'
where U is the Coulomb interaction, which represents two electrons exchanging momentum @ and
spin one and corresponds to the Feynmann diagram in Fig. 3.5.
This interaction term, Eq. 3.7, can be analysed
in exactly the same manner as the BCS reduced Hamil-
tonian, Eq. 2.4. with the following two changes: first,

the mean field approximation uses xs = <

kiQ} k+Qf

t
C~+chu>v
and second, the Bogolyubov canonical transformation has
quasiparticles given by 7,'. = UkCyy — v.cl +Qy- This anal-
vsis yields the gap equation

M9 = ZUX,?, (3.8) Figure 3.5: This Feynmann diagram
* corresponds to two electrons exchang-
ing momentum Q and spin one. If

many properties of which are the same as those of the there are many parts of the Fermi sur-

BCS theory (e.g. the ratio 2M9/kgTn = 3.5). face connected by the same Q vector
If this gap exists over all of the Fermi surface the the? "hm. scattering process can create
an instability.

system will become an insulator, otherwise the system
remains a conductor with only part of the Fermi surface gapped. This latter system has been
investigated for the case of a subsequent superconducting transition by Kato[39] in an analysis of
heavy Fermion superconductors.® In this work they treat the superconducting and AFM order
parameters on an equal footing so the two gap equations are coupled. They find that the AFM helps
to stabilise some forms of superconductivity - specifically, d-wave superconductivity.

3.2.3 The Filling

The chemical potential, j, sets the filling for the normal state of each band through the
relation

_ t
n = Z ChoCha
ke

(n) = 2 f(Bea)
ke

= z (1 — tanh (13es)) (3.9)

]

where f(z) = (1 + e*)~! is the Fermi-Dirac distribution (with 3 the reciprocal temperature, 3 =
1/kgT) and the 2 is for the sum over spin (¢ = (1,})). For the superconducting state the filling is

3Heavy Fermion superconductors are metals that have an effective electron mass that can be hundreds of times
the bare electron mass. They generally have critical temperatures on the order of one Kelvin.
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Figure 3.6: The density of states (DOS) for a tight binding band with only nearest neighbour hopping
is shown on the left. On the right is the filling, (n) (note that the DOS is given by d (n) /du). There
are van Hove singularities (vHS) at the top of the band (i = 4) and bottom of the band (g = 0)
caused by the maxima and minima of the dispersion. There is another vHS at the middle of the
band (4 = 2) which is caused by the saddle point at (r.0) (and symmetry related points) of the
dispersion.

given by
n = 2 z luh|27l.o7h,o + lvk'z (1 - 7’1,1713.1)
h
_ En 1
(n) = z,.: (1 - g, tash (iﬂEb)) (3.10)

in which Eq. 2.12 has been used to express the electron operators, ck, in terms of the quasiparticle
operators, 7g.;, and Eq. 2.13 has been used for the coherence factors, ua & va. Note that for Ay — 0
Eq. 3.10 reduces to Eq. 3.9.

On the right in Fig. 3.6 the variation of the filling, (n), with the (redefined) chemical
potential, iz = 2 — 2t' — L, is plotted in the normal state for the Hubbard dispersion, Eq. 3.5; this
curve is equivalent to an integrated density of states (shown on the left - see below). Note that the

band is symmetric about half filling, (n) = 1. There is a slight shift in this curve (~ 1%) in the
superconducting state.

3.2.4 The Density of States -~ Van Hove Singularities

The density of states (DOS) is given by the derivative with respect to the chemical potential
of the filling. In the normal state it is given by
. _ d
NE = 2

) iBsech? (1Bew). (3-11)
[ ]
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At T = 0 this becomes a delta function

N(n)

2 b(ea)
L]

.2 r
BT (3.12)

where we have approximated the delta function with a Lorentzian.
By changing the k-sum in Eq. 3.11 into energy and angular integrals
1 dQy / < dep
(2m)d J 4w Jo  |Vaeal
we can see that interesting feature of this type of dispersion is the presence of van Hove singularities,
i.e. points in k-space where the Fermi velocity, Ve, is zero, in the density of states. These appear
at the top and bottom of the band at (=, ) and (0, 0), respectively (i.e., at the maxima and minima
of =) and at (w,0) and symmetry related points (i.e., at a saddle points of £5). The van Hove
singularities at the top and bottom of the band is responsible for the discontinuities in the density of
states (DOS) which goes abruptly to zero. The van Hove singularities at the saddle points causes a
logarithmic divergence in the DOS at 4 = 2. If this divergence is near the Fermi energy it may cause
a large enhancement of the part of the density of states that is important to superconductivity.[40]
On the left in Fig. 3.6 is the density of states for the Hubbard dispersion, Eq. 3.5. There
are van Hove singularities (vHS) at the top of the band (4 = 4) and bottom of the band (i = 0)
caused by the maxima and minima of the dispersion. There is another vHS at the middle of the
band (4 = 2) which is caused by the saddle point at (#x,0) (and symmetry related points) of the
dispersion.

N(a) =

(3Bsech® (38ex)) (3.13)

In the superconducting state the equivalent expression is

N(&) % (n)

> LBsech? (LBEn). (3-14)
[

and there is a gap in the density of states at the Fermi surface. This gap in the density of states is
discussed in §5.6.
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The Pairing and Other Interactions

In §2.2.1 an isotropic interaction is discussed which was originally introduced to describe
conventional superconductors. By construction this isotropic interaction can only result in an
isotropic order parameter (i.e. it has no spatial dependence), in order for a different symmetry
of the order parameter to be possible the interaction must have some k-space dependence. In
this chapter such anisotropic interactions are introduced and the symmetries of the resulting order
parameters are examined. Of particular interest are those interactions that result in an order param-
eter with d-wave symmetry, i.e. those with a (cos(k:) — cos(ky)) functional form, which is the order
parameter symmetry most consistent with experimental results, in particular with the #-junction
experiments.j41, 42, 43, 44, 45, 46]

In this chapter a specific model interaction, the spin-fluctuation model, is introduced that
will be used for all subsequent calculations. There are two approximations used for this model: the
FLEX approximation, discussed in §4.1, and the MMP approximation, discussed in §4.2. These
model interactions, combined with the model dispersion of Ch. 3, will be used to solve the BCS
and Eliashberg equations and these solutions are then used in subsequent chapters to calculate
experimentally measurable properties. It is important to note that many of the calculated properties
will depend upon the interaction only indirectly through the order parameter. Consequently, many
of these properties do not provide direct support for these specific interactions as any interactions
which vield a similar order parameter would give the same results and consequently our results
shouid be interpreted with these caveats in mind.

4.1 The FLEX Approximation

The Fluctuation-Exchange (FLEX) approximation, introduced by Bickers and Scalapino
[47] and implemented numerically by Pao and Bickers(48] and Lenck and Carbotte {49], assumes
that the interaction in the Eliashberg equations is caused by charge and spin fluctuations. This

33



34 CHAPTER 4. THE PAIRING AND OTHER INTERACTIONS

section makes use of a formalism which combines the frequency and temperature variables into one
complex variable, the Matsubara frequency.

It is interesting to note that the main ideas of the FLEX model predate HTC and were
originally introduced with the heavy Fermion materials in mind.[50] In the FLEX model the self-
energy is given by (cf.Eq. 2.34)

fk.n = _Tz Z (Vh.—q.n—m?oéq.m?o + th—q.n—m?:iéq.m?:i) (4.1)
m q

where V) |, is the interaction due to the spin fluctuations and Vi is that due to the charge fluctua-
tions. This equation is a convolution of the fluctuations, ‘r’,:":. and the Green’s function, 5,.,,.. Since
both functions are periodic in k the summation over k can be performed using Fourier transforms
and the convolution theorem which results in a large saving in computational time. However, the
sum over Matsubara frequencies is not periodic (although it does have a reflection symmetry) so
this sum must still be performed explicitly (see §A.1.2 for a discussion of the Matsubara sums).

The V.. are given by

t
Vh.n

3
'2'U2 X;.n

c —_ 1rr2_c
Ven = 3U%xn

in which the xi, are the spin and charge susceptibilities (see §4.1.2 for a discussion of these func-
tions).

In a manner analogous to that for phonons (§2.6.1, p. 21) the self-energy from the FLEX
approximation, Eq. 4.1, is to be equated with that given by the Eliashberg equations, Eq. 2.25, in
order to solve for the fully interacting Green’s functions, 5,.,,.. However, before doing so we will
examine the renormalization functions and the susceptibilities in more detail.

4.1.1 The Renormalization Functions, ¢k, £k and Z,,

Equating the real and imaginary parts of the diagonal expressions for the FLEX self-energy,
Eq. 4.1. and the Eliashberg self-energy, Eq. 2.25. we obtain for the renormalization functions, &g n.
Zi.n and Ok n

- £q.
€en = -T Z z ( k.—q.n-m + th—q.n—m) Aq-r:t
n q Gam
. Wq.
wn(l - Zh.n) = -T Z Z (V:—q,n—m + v:—q.n-m) Aq_vln
n q Gam
Pq.
b = ‘TZZ(V:-q.n—m - :—q.n—m Aq_’ln . (4'2)
n q Gva
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Figure 4.1: The Renormalization Function &4, is shown for the lowest Matsubara frequency, n = 0,
for two different dispersions, 5. On the left is that for ¢’ = 0 and on the right is that for t'/t = 0.45.

Figure 4.2: Shown is the contour of the Fermi surface, £ = 0, (top figures) and the renormalized
Fermi surface, g4 + {g.m = 0, (bottom figures) in the 2D Brillouin zone for two different dispersions,
cx. The shaded area represents that part of the dispersion that is within 1% of the bandwidth
from the Fermi surface. Also shown is the magnetic Brillouin zone (dotted curve) which is perfectly
connect by the AFM nesting vector, Q = (7, 7). Note how the renormalized Fermi surface is closer
to the magnetic Brillouin zone than the unrenormalized Fermi surface.

The Electron Dispersion Renormalization, {4

The function &4 n corresponds to the renormalization of the electronic dispersion, c4. Its
main effect is to slightly shift the Fermi surface as well as, perhaps, to change the curvature of the
dispersion at the Fermi surface (and, hence, the effective mass).

In Fig. 4.1 representative samples of this function are shown for the lowest Matsubara
frequency, n = 0, for two different dispersions, £4. On the left is that for ¢ = 0 and on the
right is that for '/t = 0.45. The effect of the £, is to shift the electronic dispersion, 5, and
so shift the Fermi surface. It tends to shift the Fermi surface in such a manner so as to enhance
the “nesting” of the Fermi surface. Shown in Fig. 4.2 is the contour of the unrenormalized Fermi
surface (dashed curve), given by £, = 0 and the renormalized Fermi surface (solid curve), given
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Figure 4.3: The Renormalization Function Z . is shown for the lowest Matsubara frequency, n = 0,
for two different dispersions, 4.

by Se.m = €k + én.m = 0. “Nesting” means that a large proportion of the Fermi surface can be
connected to itself. In this case the nesting vector is given by Q = (=, 7) - which is exactly where
the spin-fluctuation interaction is peaked (see §4.1.2). The dotted curve is the magnetic Brillouin
zone which is perfectly connect by the AFM nesting vector, Q = (=, x).
The Frequency Renormalization Function, 2, ,

The function (1 — Z4 ) corresponds to the renormalization of the electron mass similar to
that which is seen in QED.
The Energy Gap Function, og

The energy gap function, @, is what defines superconductivity - it is zero above the
critical temperature, T, and non-zero below T,, growing to a saturated value as T — 0.
4.1.2 The Spin and Charge Susceptibilities, x3 , and x§ ,

The spin and charge fluctuations, x} ,, and x§ ,, respectively, are, in the RPA approxima-
tion. given by

Xin = 1_";—";. (4.3)
Xin = H"L# (4.4)
In these expressions the x_ ,, are the spin and charge susceptibilities, given by
Cen = ~TY Y Tr (Cusqnsm®oGamt) (4.5)
m q
Xkn = ~TD 3 Tr(GurqnsmPGem?) (4.6)
m q

where Tr(Z) indicates that a trace is to be taken of the resulting matrix. These equations are
a convolution of the Green’s function, G n, with itself. As discussed above (§4.1) the k sum
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Figure 4.4: The spin and charge susceptibilities, Xi.n and X§ . are shown for the lowest Matsubara
frequency, n = 0, next nearest neighbour hopping of 0.0t and a filling of (n) = 0.88.

Figure 4.5: The spin and charge susceptibilities, x}, ,, and xj, ,,, are shown for the lowest Matsubara
frequency, n = 0, next nearest neighbour hopping of 0.45¢, and a filling of (n) = 0.88.

can be performed using convolutions, but the Matsubara sums must be performed differently (see
Appendix A.1.2 for a discussion of the Matsubara sums).

Expanding the Green’s functions with the Pauli matrices and taking the trace we get

Eu,nfh+qn+m — Th.nih +m + Oh.nPh+q.n+ -
x:h.n = _Tzz q.n+m nh+q,n n q.n+m (4.7)
Gh n Gh+q n+m
En+qni+mEin — Wik nWhiqn+m = On.nPhtq.n+m
Xkm = -T Z Z < 9. . (4.8)
Gk n Gh+q n+m

which differ only in the sign of the last term in the numerator. In the normal state the energv gap
function. ., is zero and the two susceptibilities are identical.

When the denominator of Eq. 4.3 becomes zero the spin susceptibility, x ., becomes
infinite and the antiferromagnetic (AFM) transition is reached. That the undoped cuprates (i.e. one
electron per site) have an AFM ground state indicates that certain parameter regimes of this model
are consistent with observations and also indicate that other regimes may be representative of the
cuprate system.

In Figs. 4.4 and 4.5 the susceptibilities (given by Eqs. 4.3 and 4.4) are shown for two
systems closer to half filling (i.e. one electron per site, (n) ~ 1). In the first, Fig. 4.4, the spin and
charge susceptibilities are shown for the Hubbard model (i.e. only nearest neighbour hopping) with
an on-site Coulomb repulsion, U/t, of 3 at a temperature, T'/t, of 0.05. One can see that due to
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the proximity of the AFM instability the spin susceptibility, Xk.n» 18 very strongly peaked at the
nesting vector, Q = (m, 7), while the charge susceptibility, Xk.n- i8 less strongly peaked. Note that
while both functions are peaked at the commensurate wave vector, Q = («, 7), that there is a large
difference in the scales of the two functions - the spin susceptibility is several orders of magnitude
larger that the charge susceptibility. This large difference is caused by the sign of the second term
in the denominator of the spin susceptibility Eq. 4.3.

As an aside, the spin susceptibility is often calculated on the real axis using [51]

Calw) = [ ( 4+ Sovhea + A..+~Aq) f(BEq+x) = f(BEq)
ok Eq+nE, w — Eqii + Eq + 10+
L1 ( _Earh  Eq _ Eq+kEq * Aw.Aq) 1 - f(BEq+x) — f(BE,)
4 Eq+k Eq Eq-;.th w+ Eq+h + Eq + 10+
_]: (1 + =3+= EQ"‘“ - 5_¢ _ EQ'F“EQ + AQ"'hAQ) f(ﬁEQ+h) + f(BEQ) -1 (4 9)
* 3 Eqwn Eq Eq+uEq w— Eqeu — Eq +10+ |

where Eq = Ve + A7 is the quasi-particle energy and f(z) = (1 + €*)~! is the Fermi-Dirac distri-
bution.

However, it is computationally much more efficient to use the imaginary axis formalism
given by Eq.4.5 (i.e. it takes several seconds instead of several hours to compute) and, if the frequency
dependence is required, to analytically continue the results.

4.1.3 The T, Equation

The equation for the critical temperature, T, is Eq. 4.2, linearized in ®a.n. This process
creates the eigen-value equation

AOu.n = —Tz Z(Vh-—q n-m Vh—q n—m)—&— (4.10)

in which the term |5q}n|, given by Eq. 2.33, is evaluated with @¢qm =0, i.e. in the normal state,

|G;.tn Oq.m=0 = Ei n " wi n*
After solving for Gq ,,,l self-consxstently in the normal state (i.e. for £x, and Wi ,) A, the

eigen value of Eq. 4.10, is found at different temperatures. As the temperature is lowered the eigen
value increases. and at T = T, A = 1. This process can be used to find the critical temperature, T,
as a function of different parameters, e.g. the Coulomb interaction, U, or the filling, (n).

The sums over Matsubara frequencies are technically infinite, however the importance of
the higher frequencies quickly decreases. Since these equations are solved numerically an arbitrary
cutoff, denoted by C in units of energy, must be imposed on these sums. This cutoff must be large
enough that the physics of the system described is not substantially changed but small enough to



4.1. THE FLEX APPROXIMATION 39

002

A R A A i e

0
L R

sor 002 003
T/t t/C

Figure 4.6: On the left is shown the eigen value of Eq. 4.10 as a function of reduced temperature,
T/t, for a Coulomb interaction, U/t = 6, and several different cutoffs in the Matsubara sums. The
cutoff ranges from 8¢, the bandwidth, for the lowest curve to 40t, five times the bandwidth, for the
top curve. The critical temperature corresponds to a eigen value A = 1, and for this interaction
occurs at T/t ~ 0.016. On the right is shown the critical temperature, T., as a function of one
over the cutoff, t/C. These data vary linearly with the reciprocal cutoff and when extrapolated to
zero (i.e.C — oo) provide an accurate estimate of the critical temperature, T./t = 0.019. The data
points correspond to C/t = §, 16, 24, 32, 40.

make the calculation tractable. In order to examine this issue the eigen values of Eq. 4.10 are
examined for several different values of the cutoff, C, and the critical temperature, T, (given by an
eigen value of one) is plotted as a function of the reciprocal cutoff.

Shown on the left in Fig. 4.6 is the eigen value, A as a function of reduced temperature, T'/t,
for several different cutoffs, C/t, of the Matsubara frequencies. The bottom curve is for C/t = 8, the
bandwidth, which gives a 7./t ~ 0.011 and the top curve is for C/t = 40, five times the bandwidth,
which gives a T./t ~ 0.017. On the right is shown the critical temperature, T., as a function of
one over the cutoff, t/C. The extrapolation of t/C ~ 0 (which corresponds to C — o0) gives a
critical temperature of T,./t = 0.019. Using a cutoff equal to the bandwidth underestimates the T, by
about 35%. However, since the computational time required increases with the square of the cutoff
a compromise must be made between computational speed and the exactness of the results (i.e. the
exact results is reached only in the limit C — oo). A reasonable compromise is to choose C/t = 24,
three times the bandwidth which underestimates the critical temperature by approximately 15%.

In Fig. 4.7 we see the affect of temperature and the Coulomb repulsion itself on the critical
Coulomb repulsion, U,, s.e. that at which the denominator of xi , vanishes (see Eq. 4.3). As the
Coulomb repulsion is increased it seems to approach the critical value asymptotically (i.e. the critical
value, U, increases with U'). As the temperature is decreased for a given Coulomb repulsion, U,
the critical value, U, is also approached. However the solid curve, which corresponds to T/t =
0.01 is below the superconducting transition temperature but was calculated in the normal state
(i.e. pu.n = 0). The other curves are for successively lower temperatures, decreasing in steps of 0.01.
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Figure 4.7: The Coulomb repulsion, U, divided by the critical Coulomb repulsion, U,, as a function
of the Coulomb repulsion, U, (in units of the nearest neighbour hoping integral, t) for the dispersion
given by Eq. 3.5. As the Coulomb repulsion increases it approaches the critical Coulomb repulsion,
U.. asymptotically (i.e. U/U. — 1) and the Eliashberg equations bscome more difficult to solve
numerically. Shown is the ratio U./U as a function of U for temperatures ranging from 0.05¢ (solid
curve) to 0.01¢ (dotted curve) in steps of 0.02t. As the temperature is decreased the critical Coulomb
repulsion is approached more rapidly.

4.1.4 Reduction to BCS

The BCS approximation assumes that the diagonal parts of the self energy are zero and
that only the zero frequency part of the interaction is important in the off-diagonal part of the self

energy. In this approximation the diagonal part of the self energy in the FLEX approximation,
Eq. 4.2, is given by

ab..——TZZ "‘""52 +::+w2

in which we have also dropped the charge fluctuation interaction term, VS , as it is significantly
smaller than the spin fluctuation term, V;J .. Because the dispersion and order parameter, €5 and

ox. no longer have frequency dependencies, the Matsubara sum can be explicitly performed using
the identity

tanh (%) = Tg Eﬂ—-lwi (4.11)
(with wp = (2n — 1)nT the Matsubara frequencies) to yield
==y V:—q;% tanh (38E,)
. q
with E} = e} + ¢ and 8! = kgT, which is precisely the BCS equation, Eq. 2.16, with the

interaction given by the zero frequency part of the spin fluctuation interaction term of the FLEX
approximation.
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1.00

Figure 4.8: The MMP interaction, given by Eq. 4.12, as a function of k is shown as a stereographic
projection in the first Brillouin zone.

4.2 The MMP Model

The MMP interaction(17] is a phenomenological fit to the spin susceptibility, Xi- In the spin
fluctuation scenario[50] the interaction is proportional to the spin susceptibility which is peaked at or
near Q = (w,«). The purpose of the MMP interaction is to save having to calculate the susceptibility

which is computationally expensive (see §4.1.2 for more details). The MMP interaction is given by
the Lorentzian

rMMP _— 2 Xo

[ =g l—m (4.12)

with £, the magnetic coherence length, Q = (7, #) the AFM wave vector and g°x, a phenomenologi-
cal coupling constant which is adjusted so that the BCS equation has the desired critical temperature.
In this work a magnetic coherence length of 2.5 unit cells (= 7A) is used.

In Fig. 4.8 a stereographic projection of Eq. 4.12 is shown as a function of k in the first
Brillouin zone. It is sharply peaked at Q = (w,7) and has a characteristic width given by the
magnetic correlation length, &,, and is very similar to Fig. 4.4.

Maly and Levin[52] have explored the consequences of the position in the Brillouin zone
of the peak in the interaction (i.e. different values of Q in Eq. 4.12) on the symmetry of the order
parameter with the lowest free energy. They find that a d-wave order parameter has the minimum
free energy for an interaction peaked everywhere except for the corners of the Brillouin zone.

4.3 Impurities in HTS Materials

In superconductors the effects of magnetic and non-magnetic impurities are very different.
Magnetic impurities act as pair breakers since the scattering of an electron changes its spin (and,
hence, breaks the Cooper pair), while scattering from non-magnetic impurities does not change
the spin of the electron. In this chapter the effects of non-magnetic impurities upon the critical
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temperature, T, and the order parameter, ¢, n, are examined using a formalism that averages over
the impurities.[53, 54] This method of averaging impurities is probably only valid for a reasonably
high impurity content. For low levels of impurities, due to the short coherence length, the order
parameter is able to “heal” itself between the impurity locations.[55, 56] In light of this one would
expect that impurity levels below which the order parameter can heal (~ 1%) would have little
effect upon the critical temperatures and the averaging of impurities performed using the formalism
introduced below would not be entirely valid.

In HTS materials there are at least four distinct type of impurities: those caused by va-
cancies (e.g. the oxygen doping of YBCO), substitutional doping (e.g. the strontium in LSCO or
nickel or zinc for copper) and structural defects (e.g. stacking faults, point defects and twin and
grain boundaries).

It is the first and last types of doping that will be examined in this chapter since they
are the two that directly effect the CuO; layer. There are two effects of these types of impurities.
First. they act as scattering centres for electrons (the effect examined in this chapter) and second,
they change the doping level of the HTS (which changes T, in a known way). The other two types
of impurities either effect the CuO2 layer indirectly (substitutional doping can take place in the
layers between the CuQO2 layers) or in a way that is beyond the scope of the analysis presented here
(structural defects).

The two types of impurities that directly effect the CuQ, layers are either vacancies on the
oxygen site or substitution of zinc or nickel on the copper site. For materials with non-stoichiometric
oxygen levels at optimal T, (such as YBCO) it can be surmised that the main effect of the oxygen
vacancies is to adjust the doping levels and that their effect as scattering centres is secondary.
However, small amounts of zinc substituted for copper in the CuO; layer substantially reduce T.
while the equivalent amount of nickel has very little effect on T..[57, 58, 59] It is not clear if zinc acts
as a magnetic impurity while nickel as a non-magnetic impurity but there is evidence from NMR
experiments that nickel is preferentially substituted into the CuO chain layer {60] which shall be
shown below (§6.3.1, p. 92) to have very little effect upon T..

4.3.1 Formalism

Impurities add a term to the seif energy, 5':',.,,.. of the form
a7 -
B = n

in which n'! is the concentration of impurities of scattering strength V" and T, is the T-
matrix.[61, 62] By taking the scattering to be momentum independent we get for the T-matrix
[63]

f —1Q,7 + DpT

TVri+ 02+ D2
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in which
¢b n
D, = —— , (4.13)
" ; 2 +32 + |on.nl
<
A = = , (4.14)
" Z,.: &2 + 32 + |dn.al’

and the 7; are the Pauli matricies (Eq. 2.29).

The limit of very strong scattering, V7 — oo, is called the “unitary limit” and the weak
scattering limit is called the “Born approximation.”

4.3.2 Weak Coupling Limit

In the weak coupling limit there are no other contributions to the diagonal self-energy other
than that due to the impurities. Performing the same procedure as in §2.6 we get in place of Eq. 2.35

Eh.n = Ehy
P N 1n
“Yhn = Wan=Waptn . ’
" Vit + 02 +(Daf?
Ow' D .
Orn = -T z Vi —= - 3 +nth — 2" 5 (4.15)
Py £, + 32 + |ow Vit +0Q2 + |Dg|

Because all of the frequency dependence of ¢4 . is contained in the last term of the last
equation above, it can be rewritten as

en = =9 Vawxy + fnr (4.16)
hl
where
Oh.n’
X2 =T — (4.17)
. 2 el + 32 + [Onml’

contains the k-space dependence of the order parameter and
D,
Vit+ 02 +|D,)?
contains the frequency dependence which must be analytically continued to find @g(w), the order
parameter as a function of real frequency.
The fact that in the weak coupling limit that the order parameter is separable into mo-
mentum and frequency parts greatly simplifies calculations.

fan = n(h

(4.18)

4.3.3 Strong Coupling

In the strong coupling limit the simplification made in §4.3.2 can not be made and the
Eliashberg equations, given by Eq. 2.23, becomes

-~ _ P § -~ ~
Gl =Ghpn-Zun-Z).

This limit is not examined in this work.



Chapter 5

Single Band Models

While this thesis is primarily concerned with multiband models the theoretical basis for the
calculations performed is more easily presented for a single band model. In light of this, this chapter
presents the formalism for each calculation and the subsequent chapter on multiband models only
contain the changes to the formalisms presented here that are necessary for those calculations.

5.1 Single Band Model Dispersions

High temperature superconductors seem to all have a maximum critical temperature, T,
" at a filling of approximately (n) = 0.85 (i.e. a doping of 15% away from the AFM parent compounds
discussed in Ch. 3) with the possible exception of YBaz;Cu307_, (The situation for YBa;Cu3zO+_,
is more complicated due to the chain structure of this material which is discussed in §5.1.2 and
Ch. 6.). The hopping parameters, t,._,, of Eq. 3.4 are chosen so that the filling is correct and the
Fermi surface is consistent with experimental results. Which parameters to actually use for the t,_,.
to model different materials comes from both theory and experiment. Local density approximation
(LDA) [31, 32, 33, 34, 35, 64, 65] and linear augmented-plane-wave (LAPW)[66] calculations provide
a theoretical basis for the band structure, while angle resolved photoemission spectroscopy (ARPES)
experiments [25, 26, 27, 28, 29, 30, 67, 68, 69, 70] help to provide the position of the Fermi surface
in the Brillouin zone and the magnetic penetration depth at zero temperature provide information
about the absolute magnitudes of the t,._,. (see §5.5.3). However, the details of the slope of the
dispersion near the Fermi energy are also important, particularly the position of the saddle point in
the dispersion.

In the remainder of this section several different model dispersions are examined. These
model dispersions differ from the Hubbard dispersion shown in Fig. 3.4 in that the Fermi surface
is closed about the (w,7) point (i.e. they are “hole” Fermi surfaces instead of “electron” Fermi
surfaces). This is equivalent to noting that the van Hove singularity (vHS) is below the Fermi

4
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Figure 5.1: The dispersion relation for LSCO is modeled by Eq. 3.4 with ¢’ = 0.20 and & = 2.50. On
the top is a stereographic projection of €, for the two dimensional Brillouin zone; the solid curve is
the Fermi surface. Below on the left is the Fermi surface in the first Brillouin zone: the magnetic
Brillouin zone, the diagonal dotted lines, are also shown for illustrative purposes (see text). Below
on the right is ¢4 along the CXMT triangle in the Brillouin zone (inset).

energy.

5.1.1 La;_.Sr.CuQO,

La;_.Sr;CuO, (referred to hereafter as LSCO) was among the first HTS material discovered.[9)]
Despite its relatively low critical temperature (~ 30K) LSCO is still widely studied because it is
one of the few HTS materials for which high quality, large (~ 5mm on a side) crystals can be made.
The reason that large crystals can be made is due to its stiociometric doping. Large crystals are
necessary for some experiments, especially neutron scattering.

In Fig. 5.1 is a dispersion relation with t = 100meV, ¢’ = 0.20 and & = 1.25 which is
appropriate for modeling the CuO; layer of LSCO.[71] On the top is a stereographic projection of
ci for the two dimensional Brillouin zone; the solid curve is the Fermi surface. Below on the left is
the Fermi surface in the first Brillouin zone; the dotted lines are guides to the eye. On the right is
s along the TXMT triangle in the Brillouin zone (inset). Note that the dispersion has a maximum
at the M point, k = (7, 7), a minimum at the I’ point, k = (0, 0) and saddle points at the X and Y
points, k = (~,0), (0, £x) (the saddle point appears as an inflection point at X on the lower right



46 CHAPTER 5. SINGLE BAND MODELS

3
1

<n>
-
A e A e ot An Sn o S S Su0n On S Sn An O 26
1 PR

Rink

Figure 5.2: The density of states (DOS) for a tight binding band with next nearest neighbour hopping
of 0.20t is shown on the left. On the right is the filling, (n). There are van Hove singularities (vHS)
at the top of the band (& = 4) and bottom of the band (i = 0) caused by the maxima and minima
of the dispersion. There is another vHS at the middle of the band (5 = 2 — 4¢' = 1.2) which is

caused by the saddle point at (r,0) (and symmetry related points) of the dispersion. The dotted
lines correspond to a filling of (n) = 0.85.

graph). The figures are similar to those in Fig. 3.4 but the saddle points at X and Y are much closer
to the Fermi energy (i.e., the inflection point at X in the lower right graph is closer to £ = 0).

On the right in Fig. 5.2 the variation of the filling, (n), with the (redefined) chemical
potential, ji. is plotted in the normal state; this curve is equivalent to an integrated density of
states. There is a slight shift in this curve (~ 1%) in the superconducting state. On the left is the
DOS with the van Hove singularity shifted to 2 = 2 — 4¢/ = 1.2. Note that the band is no longer
symmetric about half filling, (n) = 1, due to t' # 0. In the superconducting state a gap forms in the
DOS at the Fermi energy (see §5.6). These and subsequent DOS and filling figures are calculated
using Eqgs. 3.9 & 3.11 at a temperature of T = 0.005t, which, for ¢ = 100meV, corresponds to 4.2K.

LSCO is a single band material (i.e. it has only one CuO; layer per unit cell) and so it is
not examined in subsequent chapters. It is presented here only for purposes of comparison.

5.1.2 YBaQCu;;O-;_, and BigSl’gC&CUgOg.,H;

YBazCu307_ and Bi;Sr;CaCuz0g. - (referred to hereafter as YBCO and BSCCO, respec-
tively) are two of the most studied HTS materials. The high quality of YBCO materials particularly
suits them for experiments which are sensitive to impurities such as penetration depth measurements.
Furthermore, because the doping of YBCO can be varied by annealing them in an O, atmosphere,
they are popular in the study of the effects of doping on HTS materials. The BSCCO materials,
due to the van der Waals bonding between CaQ layers, are easily cleaved to yield almost perfect
surfaces. Such surfaces are particularly important for experiments which are local surface probes
such as STM and ARPES.

In Fig. 5.3 is a dispersion relation with ¢ = 0.45 and & = 0.51 which is appropriate for
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Figure 5.3: The dispersion relation for the CuO; layers in YBCO and BSCCO are modeled by Eq. 3.4
with t' = 0.45 and i = 0.51. On the top is a stereographic projection of £, for the two dimensional
Brillouin zone; the solid curve is the Fermi surface. Below on the left is the Fermi surface in the
first Brillouin zone and on the right is 4 along a triangle in the Brillouin zone (inset).

modeling the CuO; layer of both YBa;Cu3O7_, and Bi;Sr;CaCu308+:.{72, 73. 74] In comparison
with Fig. 5.1 the Fermi surface is much more rounded and the saddle point, while further from the
Fermi energy, is much broader and flatter.

On the right in Fig. 5.4 the variation of the filling, (n), with the (redefined) chemical
potential, i, is plotted in the normal state and on the left is the DOS with the van Hove singularity
shifted to 4 = 2 — 4t’ = 0.2. Note that the band is even more asymmetric than Fig. 5.2 and, due to
the broader, flatter saddle point in the dispersion, that the vHS is significantly enhanced.

Orthorhombicity and YBCO

While the Fermi surface of the CuO; layers in YBCO and BSCCO are very similar, YBCO
also has CuO chain layers present in its unit cell (see Fig. 3.3). The fact that there is a large a-b
anisotropy in many of the properties of YBCO (e.g. the conductivity in the normal state and the
magnetic penetration depth in the superconducting state) indicates that, even if the chain layers
are not necessary to model the superconductivity in these materials, they are necessary to model
specific properties that exhibit this large anisotropy. Furthermore, the presence of the chains makes
it unclear precisely what the doping level of YBCO materials are. Here we assume that it is the
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Figure 5.4: The density of states (DOS) for a tight binding band with only nearest neighbour hopping
is shown on the left. On the right is the filling, (n) (note that the DOS is given by d (n) /du). There
are van Hove singularities (vHS) at the top of the band (4 = 4) and bottom of the band (i = 0)
caused by the maxima and minima of the dispersion. There is another vHS at i = 2 — 4¢ = 0.2
which is caused by the saddle point at (7,0) (and symmetry related points) of the dispersion. The
dotted lines correspond to a filling of (n) = 0.85.

same as in other materials.

In the next chapter, Ch. 6, model dispersions appropriate for systems which contain multi-
ple coupled CuO; (and CuO) layers are explored. In this section a simple method for including this
anisotropy in a single band model is introduced. This method entails modifying the dispersion so

that the a and b hopping integrals differ by introducing an anisotropy parameter. 4, to the dispersion
of Eq. 3.6

n
»r
|

=2t ((1 — &) cos(kz) + (1 + &) cos(ky) — 2t' cos(k;) cos(ky) — (2 — 2t' — )
~2t (ng — dni — 2t' cos(k.) cos(ky) — (2 — 2t' — @)) , (5.1)

with the n,"“’ the basis functions defined in Eq. 2.22, which gives the dispersion an “s — dd” form.

In Fig. 5.5 this dispersion is plotted for the same parameters as in Fig. 5.3 with § = 13%.
On the top is a stereographic projection of &4 for the two dimensional Brillouin zone; the solid curve
is the Fermi surface. Below on the left is the Fermi surface in the first Brillouin zone and on the
right is <, along a triangle in the Brillouin zone (inset). This value of the orthorhombic distortion.
6 = 13%, accurately reproduces the a and b-axis zero temperature magnetic penetration depths
for optimally doped YBCO (see §5.5.3) which directly reflects the hopping integrals in the a- and
b-directions. It should be noted that, due to the asymmetry parameter, 4, the bandwidth of this
orthorhombic dispersion is slightly larger than that in Figs. 5.1 and 5.3: the bottom of the band is
now at (+w,0) and that the saddle points are at (0, +x) and (0,0) (i.e. that the saddle point at Y
and the minimum at I’ have exchanged places).

On the left in Fig. 5.6 is the density of states (DOS) for this tight binding band. There are
van Hove singularities (vHS) at the top of the band (z = 4) and bottom of the band (i = 0) caused
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Figure 5.5: The orthorhombic dispersion relation for YBCO is modeled by Eq. 5.1 with ¢/ = 0.45.
A = 1.02 and 6 = 13%. On the top is a stereographic projection of <, for the two dimensional
Brillouin zone: the solid curve is the Fermi surface. Below on the left is the Fermi surface in the
first Brillouin zone and on the right is €, along a triangle in the Brillouin zone (inset).

by the maxima and minima of the dispersion. There is another pair of vHS at B=2-—4t + 24,0
which are caused by the saddle points at (0, %) and (0,0) of the dispersion which, due to the

orthorhombic distortion, are at different energies. On the right is the corresponding filling, (n), as
a function of .

5.1.3 Three Dimensional Fermi Surface

For high temperature superconductors the hopping integrals, t,_,., are large within the
CuO: plane and small out of plane (the hopping integral perpendicular to the CuO; planes is
denoted by t, ). The Fermi surface is an undulating cylinder with its axs in the z-direction. In most
of the calculations in this thesis the sums over k-space are taken as two dimensional even though
the real system being modeled is three dimensional. This is a reasonable approximation since, due
to the small dispersion in the k.-direction, there is very little variation of most quantities in the
k:-direction and so the sum over k. can be done assuming the summand is constant as a function
of k.. However, since we are dealing with a three dimensional system we can have long range order
(which can only exist at T = 0 in two dimensions). However, in order to calculate c-axis properties
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Figure 5.6: On the left is the density of states (DOS) for a tight binding band given by Eq. 5.1 with
4 = 13%. On the right is the corresponding filling, (n). There are van Hove singularities (vHS) at
the top of the band (4 = 4) and bottom of the band (& = —0.06) caused by the maxima and minima
of the dispersion. There is another pair of vHS (4 = 2 — 4t’ + 24, 0) which are caused by the saddle
points at (0.0) and (0, £x) of the dispersion. The dotted lines correspond to a filling of (n) = 0.85.

this k. dispersion must be included.

The most straightforward way to include the k.-dispersion is to assume that hopping from
CuOz to CuO, plane is dealt with in a manner analogous to the derivation of Eq. 3.5 and introduces

a term
-2t, cos(k.c) (5.2}

to the dispersion of Eq. 3.6 with ¢, being the hopping integral in the z-direction in units of ¢.

On the top left in Fig. 5.7 the Fermi surface is plotted in the k.-k, plane of the three
dimensional Brillioun zone for the planes defined by k. = {0,7/4,7/2,3n/4, r} using Eq. 5.2 in the
dispersion of Fig. 5.3 with ¢, = 0.2. In the middle, the Fermi surface is plotted in the k.-k; plane
of the three dimensional Brillioun zone for the planes defined by k, = {0, x/4,7/2,3n/4, 7} (here
there is no Fermi surface in the k, = 0 plane). The solid curves are for k;, . = 7/2 and the solid
curve in the k;-k; plane (top) is the same as that in Fig. 5.3. On the bottom is a stereographic
projection of the three dimensional Fermi surface.

On the right in Fig. 5.7 the same Fermi surface contours and surfaces are plotted, but this
time with ¢, = 0.4 (here the innermost dashed curve is the Fermi surface in the k; = 0 plane). For
small t, the Fermi surface is a gently undulating cylinder (shown on the bottom left in Fig. 5.7)
with its axis aligned along the k_-direction and neglecting the k.-dependence is reasonable. For a
tetragonal system with ¢; > 0.3 the Fermi surface intersects the Brillouin zone boundary and it
is not so reasonable to neglect the k.-dependence of the dispersion due to the topological change
which can be seen most clearly in the two figures on the bottom of Fig. 5.7 - namely the “necks”
that exist in the &y = 0 and &; = 0 planes only on the right.

In fact it is found, using the zero temperature c-axis magnetic penetration depth that
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Figure 5.7: On the top left the Fermi surface is plotted in the k;-ky plane of the three dimensional
Brillioun zone for the planes defined by k., = {0,%/4,7/2,37/4,x} using Eq. 5.2 in the dispersion
with t; = 0.2. In the middle the Fermi surface is plotted in the k.-k; plane of the three dimensional
Brillioun zone for the planes defined by k, = {0,7/4,%/2,37/4,x} (here there is no Fermi surface
in the k, = 0 plane). The solid curves are for ky . = /2. On the right the same Fermi surface
contours are plotted, but this time with t; = 0.4 (here the innermost dashed curve is the Fermi

surface in the k, = 0 plane). At the bottom are three dimensional depictions of the Fermi surfaces
in the three dimensional Brillouin zone.

t. ~ 0.06. This gives an undulation less than a third that shown on the left in Fig. 5.7 so that, in
this case. neglect of the k.-dependence is an excellent approximation. For an orthorhombic system
(discussed below), however, even this small k.-dependence causes the Fermi surface to intersect
the Brillouin zone boundary. The effects of this topological change in the Fermi surface on the
order parameter are investigated in §5.2 (a Fermi surface plot similar to those in Fig. 5.7 for this
orthorhombic case is shown in Fig. 5.11 on p. 55) and upon the c-axis magnetic penetration depth
are explored in §5.5.4.

Recent LDA calculations by O.K. Anderson et al.[75, 76] indicate that the transverse matrix
element, ¢, , is modulated by a momentum dependent factor in the a-b plane given by

~1t, (cos(k.a) — cos(kyb))* cos(k.c) (5.3)

which is added to the dispersion of Eq. 5.14 with t, again being the hopping integral in the z-
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Figure 5.8: On the top left the Fermi surface is plotted in the k:-k, plane of the three dimensional
Brillioun zone for the planes defined by k; = {0,7/4,%/2,3n/4,x} using Eq. 5.3 in the dispersion
with t; = 0.2. In the middle the Fermi surface is plotted in the k;-k; plane of the three dimensional
Brillioun zone for the planes defined by k, = {0,%/4,7/2,37/4,7} (here there is no Fermi surface
in the k; = O plane). The solid curves are for k. = n/2. On the right the same Fermi surface
contours are piotted, but this time with ¢; = 0.4 (here the innermost dashed curve is the Fermi
surface in the k;, = 0 plane). At the bottom are three dimensional depictions of the Fermi surfaces
in the three dimensional Brillouin zone.

direction.

On the top left in Fig. 5.8 the Fermi surface is plotted in the k.-k; plane of the three
dimensional Brillioun zone for the planes defined by k. = {0,7/4,7/2,3x/4, 7} using Eq. 5.3 in the
dispersion of Fig. 5.3 with t; = 0.2. In the middle the Fermi surface is plotted in the k.-k. plane of
the three dimensional Brillioun zone for the planes defined by k, = {0,7/4,7/2,3n/4, 7} (here there
is no Fermi surface in the k, = 0 plane). The solid curves are for k, . = 7/2 and the solid curve in
the k.-k, plane (top) is the same as that in Fig. 5.3. On the right the same Fermi surface contours
are plotted, but this time with t; = 0.4. Here the innermost dashed curve is the Fermi surface in
the k, = 0 plane and, again, there are necks connecting adjacent Brillouin zones. Here, due to the
nature of Eq. 5.3, there is no undulation of the Fermi surface along the diagonals of the k.-k, plane
and this has a significant effect upon the c-axis transport properties because the k.-dispersion is
negligible near the gap nodes. This difference in the c-axis dispersion has a significant effect upon
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A(T)/A(0)

Figure 5.9: The gap due to an MMP interaction as a function of k is shown as a stereographic
projection in the first Brillouin zone on the left. Although this function has a slightly different form
to that shown in Fig. 2.5, because this gap has d-wave symmetry the gap nodes (dark lines) are
along the diagonals of the Brillouin zone exactly as shown in lower right in Fig. 2.5. On the right is
the temperature dependence of the gap (solid curve) found using the dispersion relation described
in Fig. 5.3 on p. 47 with an MMP type interaction (Eq. 4.12 with g®x./t = 30.11) which yields a
2A/ky T, ratio of 4.55. Also shown for comparison is A(T) (Eq. 2.21); note that the deviation of from
the BCS solution (dotted curve) is different from that of the isotropic s-wave system (c¢f. Fig. 2.4).

the low temperature c-axis transport properties, especially the c-axis penetration depth (§5.5.4).

5.2 MMP Interaction

When the MMP interaction is used to solve the BCS equation a gap with d-wave symmetry
results but it has a more complex form than the simple ng = cos(k.) — cos(k, ) discussed earlier. On
the left in Fig. 5.9 the functional form of the gap near the critical temperature is shown. Because
this gap has d-wave symmetry the gap nodes (dark lines) are along the diagonals of the Brillouin
zone exactly as shown in lower right in Fig. 2.5. On the right is the temperature dependence of the
magnitude of the gap (solid curve). The ratio 2A(™x) /kgT., is 4.55 with A(™**) being the maximum
value of the gap in the Brillouin zone at T = 0. This differs from the 3.53 of the BCS theory due to
the different gap symmetry.[77, 78] In this single band tetragonal model the dispersion of Fig. 5.3
has been used and the coupling constant of the MMP interaction, Eq. 4.12, is g?x./t = 30.11 which
gives a critical temperature, T, of 0.12t which, for t = 100meV, corresponds to 100K. Also shown
for comparison is A(T"), Eq. 2.21 (dashed curve); note that the deviation of from the BCS solution
(dotted curve) is different from that of the isotropic s-wave system (cf. Fig. 2.4); a factor of 1.6
instead of 1.74 in Eq. 2.21 produces a result that more accurately reflects the BCS solution for a
d-wave order parameter.
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Figure 5.10: Four different representations of a d-wave order parameter, Ay, similar to those shown
in Fig. 2.5. This order parameter is calculated using the orthorhombic system described in Fig. 5.5
on p. 49 and solving the BCS equation, Eq. 2.16, with an MMP type interaction (Eq. 4.12 with
g°Xo/t = 29.30). Note the significant asymmetry under rotations of 90°.

Orthorhombic System

When the single band orthorhombic system, used in §5.1.2 on p. 47 to model the dispersion
of YBCO (Fig. 5.5). is used with the MMP interaction to solve the BCS equation the order parameter,
due to the broken tetragonal symmetry, has an “d — §s” form given, for § = 13%, roughly by

A = Ao (-3 +cos(ke) ~ cos(ky))
= Ao (ﬂ: - %’l:)

in which the r;:"‘ are the basis functions defined in Eq. 2.22. For comparison, the dispersion,
Eq. 5.1, has an “s — 6d” form. It is worth noting that the relatively small amount of asymmetry in
the dispersion. 13%, produces a large amount of asymmetry in the order parameter, namely 50%,
but that the gap nodes are only shifted by a small amount, = 1°.

An equivalent amount of asymmetry should perhaps be introduced to the interaction
(e.g. the magnetic coherence, &, in Eq. 4.12 should be slightly different in the z and y-directions)
but this added complication would change the results only in a minor way and so is not worthwhile.

On the bottom right in Fig. 5.10 is the Fermi surface (dashed curve) for an orthorhombic
system (described in Fig. 5.5 on p. 49) and the gap node contour (solid curve) found by solving the
BCS equation, Eq. 2.16, with an MMP type interaction (Eq. 4.12 with g?xo/t = 29.30). On the
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Figure 5.11: When the MMP interaction is modified to have a k.-dependence (Eq. 5.4) the order
parameter has ~5% variation along the k,-direction with no shifting of the gap nodes. Plotted on the
right is the order parameter for k = (=, 0) (solid line) and k = (0, ) (dashed line). Plotted on the
left are the Fermi surface contours for k; = {0,7/4,%/2,3x/4,r} (top) and k, = {x/4,7/2,37/4,x}
(middle, there is no Fermi surface at k, = 0) with the 7 /2 contours being the solid lines; also plotted

on the top left are the gap nodes which do not vary with k;. On the bottom is a stereographic
projection of the three dimensional Fermi surface.

top left is a stereographic projection of the order parameter in the first Brillouin zone normalized
so that Y, |Ax)? = 1. On the top right is the magnitude of the order parameter around the Fermi
surface and on the bottom left is the same quantity in a radial piot. Note the significant asymmetry
under rotations of 90° which corresponds quite well to the “d — §s” form described above.

Three Dimensional System

If the MMP interaction given in Eq. 4.12 is used in a three dimensional system the order
parameter will be almost identical to that of the corresponding two dimensional system (i.e. that
with t;, = 0) because Eq. 4.12, as given, contains no k.-dependence and so the order parameter
will also have no k.-dependence. In order to introduce a k.-dependence to the order parameter the
MMP interaction should be modified to

V.MMP

= Xo
=g’ 1+ E(k, — )2 + E2(ky — 7)2 + E3(k: — 7)? (5.4)
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with & the magnetic coherence length in the i-direction and g?x, a phenomenological coupling
constant which is adjusted so that the BCS equation has the desired critical temperature. When
this interaction is used with £ = (2.5a, 2.5b,2.5¢) (with a, b and c the unit cell parameters) and the
dispersion shown on the left in Fig. 5.11 (which is the same as that in Fig. 5.10, but with a small
k.-dependence added via Eq. 5.3 with ¢, = 0.06) the order parameter varies in magnitude by ~5%
in the k.-direction. Plotted on the right in Fig. 5.11 is the order parameter for k = (x,0) (solid line)
and k = (0, ) (dashed line). For a smaller and more realistic £; of 0.5¢ the order parameter varies
by less than 2%. In light of this small effect, henceforth only Eq. 4.12 will be used for the MMP
interaction since the added complexity of Eq. 5.4 would only change the results in a very minor way.

Using the three dimensional dispersions of §5.1.3, shown in Fig. 5.7, instead of the equivalent
two dimensional dispersions when solving the BCS equation does not have a significant effect upon
the order parameter. This validates the assertion made at the beginning of §5.1.3 that there is very
little variation of most quantities in the k.-direction and so the sum over k. can be done assuming
the summand is constant. The only exception to this is when a c-axis property is required (e.g. the
c-axis magnetic penetration depth discussed in §5.5.4).

5.3 Impurities

Impurities are present in all HTS materials to some degree and it is only in the highest
quality crystals that they can be neglected. In some crystals impurities are purposefully introduced
in order to study their effects because the behaviour of s and d-wave superconductors in the presence
of impurities can be radically different.

Tetragonal System

In Fig. 5.12 the effect of impurities upon the critical temperature of a single layer tetragonal
system is shown for two different scattering strengths: the solid curve is for the unitary limit (V; —
oc) and the dashed curve is for the Born approximation (V; = 1t). On the left is shown the effect of
impurities for an isotropic s-wave system (U, = 1.3t) and on the right is that for a d-wave system
(¢%x = 30.11¢t).

That the isotropic system is much less affected by the presence of impurities than the d-
wave system is a consequence of Anderson’s Theorem [79] which shows how the detrimental effects
upon T, caused by the renormalization of wy, is offset by the positive effect upon ¢x n. This theorem
no longer holds for d-wave superconductors because D, is zero (i.e. The sum over k in Eq. 4.13 is
zero) and, hence, f, is also zero.

The interaction strengths used (g?x = 30.11¢t, U, = 1.3t) is that which would result in a T,
of 100K in the absence of impurities. It is slightly lower than 100K (95.58K) due to the presence of
the finite cutoff in the Matsubara sums — three times the bandwidth of 8t is used in these calculations.
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Figure 5.12: The critical temperature, T., as a function of impurities, n‘/), for a single band tetrag-
onal model. The solid curve is for the unitary limit (V; = oc) and the dashed curve is for the
Born approximation (V; = 1t). On the left is shown the effect of impurities for an s-wave system
(U, = 1.3t) and on the right is that for a d-wave system (g%x = 30.11¢).
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Figure 5.13: The critical temperature, T., as a function of impurities, n'!), for a single band or-
thorhombic model (6§ = 13%). The solid curve is for the unitary limit (V; — oc) and the dashed curve
is for the Born approximation (V; = 1t). Results are shown for a d-wave system (g?x = 29.30t).

Orthorhombic System

In an orthorhombic system the order parameter will have a d+s admixture and the effects
of impurities will be somewhere in between that of a pure s and a pure d-wave system and are shown
in Fig. 5.13. Here the critical impurity concentration (i.e. that for which 7. = 0) in the unitary limit
is 6.8%, compared to 5.7% for the tetragonal system. While Anderson’s theorem [79] still doesn't
hold. the detrimental effects upon T, caused by the renormalization of w, is mitigated by the small
positive effect upon ¢g n.

In Fig. 5.14 the order parameter, ¢x(w), for a single band orthorhombic model (§ = 13%)
in the unitary limit (V; — oo) with 2% impurities is shown for a d-wave system (g%x = 29.30t) at
T = 10K (T. = 74.8K). On the left is the real (solid curve) and imaginary (dashed curve) parts of
the analytic continuation, f(w), of the frequency dependent part of the order parameter; the points
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Figure 5.14: The order parameter, ¢&(w), for a single band orthorhombic model (§ = 13%) in the
unitary limit (V; = oo) with 2% impurities. Results are shown for a d-wave system (¢?x = 29.30t)
at T = 10K (T. = 74.8K). On the left is shown the real (solid curve) and imaginary (dashed curve)
parts of the analytic continuation, f(w), of the frequency dependent part of the order parameter,
fn; the points are the f,. On the right are shown the gap nodes in the first Brillouin zone of the
k-dependent part of the order parameter, A, (light solid curve) and the gap nodes of the analytic
continuation of the order parameter, ¢ (w), at w = 0 (dark solid curve) which is shifted due to the
effect of f(0). The Fermi surface (dashed curve) is also shown. The k-dependent part of the order
parameter, .Ax, has a maximum -~alue of 21.1meV and the frequency dependent part, f(w), has a
maximum value at zero frequency of 3.6meV.

plotted are the f,. On the right are the gap nodes in the first Brillouin zone of the k-dependent
part of the order parameter, Ag, (light solid curve) and the gap nodes of the analytic continuation
of the order parameter, ¢, (w), at w = 0 (dark solid curve) which is shifted due to the effect of f(0Q)
(Note that at w = 0 the order parameter, ¢x(w), is purely real.). The Fermi surface (dashed curve)
is also shown. The k-dependent part of the order parameter, A, has 3 maximum value of 21.1meV
and the frequency dependent part, f(w), has a zero frequency value of 3.6meV. A similar figure for
the tetragonal system is not shown because f(w) is zero and A, is a pure d-wave.

5.4 Optical Conductivity

Conductivity is probably the most important property of superconductors since it charac-
terizes the electrical response of the system to an applied electromagnetic field and it is the electrical
response of superconductors that makes them unique. Above the superconducting critical tempera-
ture conventional superconductors typically behave like metals with a conductivity having a Drude
type frequency response given by the Lorentzian

nexr

W)= ma—en

(5-5)

which is characterized by a scattering rate, r. Below the critical temperature, however, the response
changes to give a delta function at zero frequency (i.e. infinite DC conductivity) and a gap in the
low frequency response of twice the width of the superconducting gap. Note that since the optical
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range of frequencies are above the plasma frequency of HTS, HTS materials appear black (i.e. the
index of refraction is almost pure imaginary in the visible range so all visible light is absorbed); the
use of the term “optical” refers to the techniques used in the experiments rather than to the visible
region of the electromagnetic spectrum.

Experiments measure the reflectivity [80] or, in some cases, the transmission of light as
a function of frequency using different detectors for different frequency ranges. These results are
extrapolated to zero and infinite frequency and, using Kramers-Kronig relations, are converted
into a frequency dependent conductivity which can be compared with calculations. For the c-axis
conductivity the situation is complicated by the presence of several phonons that are present in the
frequency range of interest that are subtracted from the data prior to the Kramers-Kronig analysis.

High temperature superconductors are different in several respects from conventional su-
perconductors. The main differences are that the normal state conductivity, instead of having a
Drude-like form, seems to have a large background, and, even more striking, underdoped materials
(and even some optimally doped materials [81, 82]) develop a gap, called the “pseudogap”, at a
temperature. T°. above the superconducting critical temperature {80], the width of which seems to
be temperature independent. The origin and nature of these features is controversial and several
reviews have been written.(83, 84]

For underdoped materials something other than superconductivity is happening at T
which appears to behave like a superconducting gap and has the size of the superconducting gap
that does appear at 7.. Here, no attempt is made to explain the pseudo-gap other than to state
that if some other order parameter involving the conduction electrons becomes non-zero at T° it

will enter the formalism given below in a way analogous to the superconducting order parameter

5.4.1 Formalism

The conductivity tensor, o,;(w), characterizes the response of a system to an applied electric
field. E;(w), (i.e. a current) through the relation

Jiw) =Y 04y (w) E;(w)
I

although a suitable choice of coordinate system in most materials will render it diagonal, o,(w) =
0.;(w)d;,. The conductivity is related to the complex dielectric constant by

€&w) =1+ dmoy(w)
At optical frequencies wr >> 1 and, using Eq. 5.5, the real part of the dielectric constant is

4mne?
ﬁe;(w) =1- m
and for w? < 4mne?/m*® the index of refraction of the material, which is the square root of the dielec-

tric constant, will be imaginary and electromagnetic radiation will not propagate in the material,
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i.e. it will be reflected. The frequency at which this change in behaviour happens is known as the
plasma frequency, ug = 4mne?/m*. Typical metals have a plasma frequency above the frequencies of
visible light and so appear shiny or “metallic.” HTC materials, in contrast, have a plasma frequency
in the infra-red region of the spectrum, below the frequencies of visible light, and so appear black.

In any case, the dielectric constant is related to the reflectivity by

1- Va@|
1+ Vew)
which is usually the quantity that is measured in experiments. Because both the dielectric constant
and the conductivity are complex functions inverting Eq. 5.6 is non-trivial, requiring the use of
Kramers-Kronig relations [85, 86] which give the relationship between the real and imaginary parts
of the conductivity required by causality.

Ri(w) = (5.6)

Theoretically, the conductivity tensor, a,‘: (w), is related to the current-current response

function. X ,"j (w), by the relation

and is both frequency and wave-vector dependent. Since we are interested in the optical conductivity
(1.e. very small k-vector) only the k = 0 part of the conductivity tensor is of interest and henceforth
the explicit k-dependence is dropped.

The current-current response function consists of a paramagnetic and diamagnetic parts

KV (w) = K9 (w) — K9 (0),

in the normal state the diamagnetic part is unchanged and there is no response to a static field

(N

K¥"0) = k4" 0) - K9 0) =0

so that we can write the conductivity tensor as

K'Y (w) = K9 (W) - K7 (0). (5.8)

The paramagnetic part of the current-current response function on the imaginary axis is
given by [87]

Ki” = -ame’T Y Tr (viCunniCunim) (59
k.n
in which m is a Boson Matsubara frequency, 9 = Oea/0k; is the vertex function and Gin is

the Green’s function introduced in §2.6. Here we have neglected vertex corrections. Substituting
Eq. 2.32 into the above we get

K‘j(” 81re2T Z Ocy Ocn Ei - u.)h'nh.ib.n-bm + Oh.nPh.nt+m (5.10)
k.n

mo = ki Ok; (2 +02 , + Ibunl] [6 + T s + [Gumeml?]
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The equivalent expression for the normal state, K"’

Eq. 5.9.

Since the current-current response function is calculated on the imaginary axis it must be

analytically continued, K*/ (wm — w + 10%), before it can be substituted into Eq. 5.8 to vield the
optical conductivity

(0), is found by substituting Eq. 4.11 into

1 (») 1 (9} (PN
3 = - — “1] — 2] - 13
ol (w) = o QK (w) + i R [K‘ (w) - K (O)] .

Note that since the current-current response function is dependent upon Boson Matsubara frequen-
. (PN .
cies that K, = K"V (0).

5.4.2 Results

As well as the real and imaginary part of the conductivity, denoted by &, (w) and o2 (w),
respectively, a third quantity of interest is the frequency dependent scattering rate, 1/7°(w) =
w0y (w)/o2(w), which more clearly exhibits the effects of both temperature and frequency.

Shown on the left in Fig. 5.15 is the real part of the optical conductivity for an s (top) and
d-wave (bottom) order parameter. The solid curve, calculated at T = 100K, is the normal state and
shows the behaviour expected of Eq. 5.5: a Lorentzian. In the s-wave case the development of a gap
equal to twice the superconducting gap as the temperature is lowered is clearly apparent while in
the d-wave case, due to the nodes in the gap, no such gap structure is apparent, although the height
of the peak at low frequency decreases. In fact, the area under o, (w) obeys a sum rule and is equal
to w3 /87; the area that “disappears” as the temperature is lowered goes into the delta function at
w = 0 (i.e., in the superconducting state there is infinite DC conductivity).

In fact this sum rule is a useful check upon the analytic continuation of the electron-electron
response function. The “missing” area is the superfluid density and is equal to wo3(0), which does
not rely upon the analytic continuation, and, with an appropriate change of units, is the magnetic
penetration depth which is discussed in the next section.

In the middle in Fig. 5.15 is the imaginary part of the optical conductivity multiplied by w
for an s (top) and d-wave (bottom) order parameter. All curves clearly show the w — oo asymptotic
limit of w3 given by Eq. 5.5. Also, in the s-wave case there is a clear dip at a frequency of twice the
superconducting gap frequency, ~ 30meV, that is not present in the d-wave case. The zero frequency
part is related to the magnetic penetration depth which is discussed in the next section.

Finally, on the right in Fig. 5.15 is the frequency dependent scattering rate, 1/7°(w),
which for both the s and d-wave cases clearly shows the optical gap opening as the temperature is
lowered although in the d-wave case even at the lowest temperature the scattering is finite for finite
frequencies due to the gap node.



62 CHAPTER 5. SINGLE BAND MODELS

2 50 5
— Tel00K — ———— Tel100K | ~ Te100K
— T= 70K [ ——— T= 70K
-_—al e T= 40K ~ N e T= 40K
T ———— Tk . B} ———— Ta 10K .
2 E
s i
c s !°
-
pu— - -
- —
S .
-t ]
H k]
'-\
0 — 0
c o 100 0 100
@ [meV] w [meV]
01 s0 ~ 3
d — ——— T=100K T=100K
1 » — T= 70K T= 70K
-1 ; -------- Te 40K 1 N - T= 40K °
-l > ———— T- 10K > ———— T= 10k
7z i} Y
N E t
. ) : E
= _|l . ! -—
hnl e |
l —
-t
] b.
3 ‘|
Q 0 i
0 s0 o 50 50
v [meV]

@ [meV]

Figure 5.15: The optical conductivity for s (top) and d-wave (bottom) order parameters. On the left
is the real part, o;(w), in the middle is the imaginary part, ¢2(w), and on the right is the scattering
rate, 1/7°(w) = wo;(w)/o2(w), calculated using Eq. 4.16 with the dispersion of Fig. 5.3 with 1%
impurities in the Born approximation (V; = 1t), yielding critical temperatures of 92.4 and 83.5K
for the s and d-wave cases, respectively. For the s-wave case (top) an isotropic interaction was used
with Vi & = 1.3t and for the d-wave case (bottom) the MMP interaction given by Eq. 4.12 with
¢*xo = 30.1t was used: both interactions give, for no impurities and ¢ = 100meV, T. = 100K.

5.5 The Penetration Depth

One of the most convincing tests for superconductivity is the Meissner effect: superconduc-
tors expel magnetic fields by setting up a diamagnetic current on the surface of the superconductor
that creates a magnetic field inside the superconductor that is equal and opposite to the applied
magnetic field.[2] An interesting side effect of this phenomena is that the superconductor levitates
in the magnetic field. The magnetic field at the surface of the superconductor is equal to the applied
field and. as a function of depth into the superconductor, decreases exponentially. The characteristic
length of this exponential decrease in the magnetic field is know as the penetration depth and it is,
along with the coherence length, one of the two characteristic length scales of superconductivity.

There is a significant difference in the temperature dependence of the penetration depth for
s- and d-wave superconductors and, while early penetration depth measurements seemed to indicate
that the order parameter was s-wave, subsequent measurements [88, 89] on high quality YBCO and
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other crystals {90, 91, 92] have shown clear evidence of a d-wave order parameter.

Since the magnetic penetration depth is a measure of the superconductor’s response to an
electro-magnetic field it is related to the current-current response function introduced in §5.4. In
fact, with an appropriate change of units, it is the zero frequency, zero k-vector limit of the reciprocal
square root of the current-current response function and, with an appropriate change of units, is
given by

ke
4\.’,’ = lim lim —_——
k—0 w—0 / Kz, w)
In this limit the current-current response function is real (i.e. it has no imaginary part) and its value
calculated on the imaginary axis is the same as that which would be calculated on the real axis.

This simplifies calculations since both the real and imaginary axis formalisms can be used and no
analytic continuation is required.

5.5.1 Formalism

Using Eqs. 5.7 and 5.10 and setting k and w equal to zero we get for the penetration depth

(63. 94]
2 O€n,n OF g+ Jien & - &f
AP = i::aTZ ;:‘n 335:..n kt Phn — Vi, k ~ Wie.n _ (5.11)
k.n 7 (E-eh+¢in+“-’in) (5?.‘*":’12.")

where the constants ¢, ki and e are the speed of light, Planck’s constant and the electronic charge,
respectively and the functions g n, ¥x.n and @i , are as previously defined in Eq. 4.15.

Weak Coupling

In the weak coupling limit é4 , = €4, Pu.n = Ak and Wy n = wyp and the Matsubara sum
can be explicitly performed and the penetration depth can be simplified to

o= e E‘; Oen Ben (8f(ﬂe~) _ af(ﬂs..))

2 Bk, Ok, e OE, (5.12)
where the constants c, % and e are the same as in Eq.5.11, Ex = Vei + A} is the quasiparticle energy,
3 = 1/kpT is the reciprocal temperature and f(z) = (1 + e*)~! is the Fermi-Dirac distribution.

5.5.2 Measurements

Due to the large anisotropy in HTS materials the penetration depth of these materials must
be treated as a tensor which is represented by A;;. By choosing the principle axes of the unit cell as
the coordinate system this tensor is diagonal. The elements of this tensor can vary by more than an
order of magnitude. In BSCCO, one of the most anisotropic materials, the ratio of the penetration
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depth in the CuQ; plane to that perpendicular to it is ~ 100; in YBCO, the most studied and best
characterized material, the ratio is ~ 10. Because most of the single crystals of HTS materials are

thin platlets the c-axis penetration depth is very difficult to measure and, for most materials at this
time. has not been measured.

The in-plane penetration depth of YBCO,[80, 89, 88, 95] HgBa;Ca,Cu305+s (HBCCO)[92],
Tl2Ba,CuQ06+4[96] and BSCCO [90, 91] at optimum doping all have a low temperature linear be-
haviour that is distinct from the activated behaviour of conventional superconductors and is a
characteristic of the presence of nodes in the gap, an essential feature of a d-wave order parameter.
Other materials, such as LSCO and Nd; s5Ceg 15CuQ, (NCCO), however, seem to have the activated
behaviour expected of an s-wave superconductor; these materials are not of as high quality as those
that exhibit the low temperature linear behaviour and, as we shall see (§5.5.3), this linear behaviour
is destroyed by the presence of impurities.

The c-axis penetration depth of YBCO has been measured by Hardy et al.[88] and does not
have the low temperature linear behaviour of the in-plane resuits but, instead, some higher power
temperature dependence, possibly T (see §5.5.4).

5.5.3 a-b Plane Penetration Depth

In the limit of zero temperature the second term

ar
in Eq. 5.12 is zero (the Fermi derivative becomes a delta

function evaluated at the Fermi energy which. since it is
gapped, yields zero) and partial integration can be per-

= formed on the k-space integral of the remaining term to
yield
81(82 Bze;,
o -2 _ 8me” Ocn
N =g Z.: 7er f (Bew). (5.13)
Figure 5.16: The square Fermi surface In the limit of low temperature the Fermi func-

obtained with a nearest neighbour hop- tion in Eq. 5.13 can be considered a Heavyside or step
ping tight binding dispersion at half fill- function and for certain model dispersions the k-space
ing, Eq. 5.14.

integral can be performed analytically. As an example
we will take a two dimensional tight binding dispersion

ex = —2t [cos(kza) + cos(kyb) — (2 - )] (5.14)

where a and b are the lattice parameters. With i = 2 (s.e. half filling) this gives the square Fermi
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z |T.[KI|2(0)A]AN0O)A]A@O A
660 | 59 | 2100 1600 | 65 000
6.95 | 932 | 1600 1030 | 11 000
699 | 89 1600 800 | 11000

Table 5.1: Table of penetration depths and critical temperatures as a function of doping reproduced
from Hardy et al [89]

surface shown in Fig. 5.16 for which the integral in Eq. 5.13 can be easily performed

81!'62 2% /¢ dk; w/b dkv (x—ky,bd)/a

- 3 2

2 Jo 2ty 2m ) 3y 2t cosikza)

8me? 8rta?

h222 8x3abe

32¢2t .
e (5.15)

-2 _
’\zz -

where we have replaced the speed of light with & in order to avoid confusion with the c-axis lattice
parameter and the factor of four is because only one quarter of the Brillouin zone is integrated over.
A similar expression for /\;: can be derived that is identical to Eq. 5.15 except that the lattice
parameters a and b are interchanged.

This means that the zero temperature penetration depth in the CuQ, plane can be used
to estimate the electron hopping energy, ¢, in the plane

t: = C/A3. (5.16)

Taking two CuQO; planes per unit cell and the lattice parameters for YBCO Eq. 5.15 gives C =
1.46meV-um?.

Equation 5.15 is only valid for a system without impurities so it can only be used to estimate
the hopping integrals for a system at optimal doping. Using the values of Hardy et al.[89] for the
zero temperature penetration depths (see Table 5.1) at optimum doping (z = 6.95) yields values of
57meV and 138meV for the nearest neighbour hopping in the z- and y-directions respectively.

A different Fermi surface would change this result by a factor of order unity; when using
these values for the hopping integrals the zero temperature penetration depth is found to differ only
by a factor of ~20% when using the model dispersions of §5.1. In fact, for a Fermi surface similar
to that in Fig. 5.16 the constant C will scale with 2 ~ n, and Eq. 5.16 can be replaced with

t: = (2—-n)C/A2, (5.17)

and the nearest neighbour hopping in the z- and y-directions become 65meV and 158meV, respec-
tively.

The zero temperature values of the penetration depths presented in this chapter are found
by fitting a cubic spline to the values which are calculated down to a low temperature (usually
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IA(0)/M(T)|*

Figure 5.17: The penetration depth as a function of temperature is plotted for two different order
parameter symmetries. The solid curve is for an isotropic s-wave order parameter and the dashed
curve is for a d-wave order parameter, ng and ng of Eq. 2.22 respectively; the points are the a-
(triangles) and b-axis (squares) penetration depth measurements of Hardy et al. [89].

2K) and extrapolating to zero degrees. This is done because the k-space integrals of Egs. 5.11
become increasingly difficult at lower temperatures and the number of terms in the Matsubara sum
in Eq. 5.12 becomes very large (and infinite at zero temperature).

While the zero temperature penetration depth is a normal state property (i.e. it does not
depend upon the order parameter) the shape of its temperature dependence does depend upon
the order parameter. In Fig. 5.17 the penetration depth as a function of temperature is plotted
for two different order parameter symmetries. The solid curve is for an isotropic s-wave order
parameter and the dashed curve is for a d-wave order parameter; the points are the a- (triangles)
and b-axis (squares) penetration depth measurements of Hardy et al. [89] (which are representative
of the YBCO. BSCCO and TBCO data). It is immediately apparent that there is a fundamental
difference in the low temperature behaviour of the two curves: the s-wave order parameter leads to an
activated behaviour (i.e. exponential) while the d-wave order parameter leads to a low temperature
linear behaviour similar to that observed experimentally.

The curvature of the penetration depth’s temperature dependence (or, in the case of an
s-wave order parameter, where it deviates from a constant value) depends upon the magnitude of
the order parameter. In Fig. 5.17 Eq. 5.12 is utilized with Ax(T) = 15h(T)n}, meV with h(T) given
by Eq. 2.21 and the momentum dependence given by nf for the d-wave case (which gives a maximum
value of 30meV in the Brillioun zone and slightly less on the Fermi surface) and g = 1 for the s-wave
case (the n; are defined in Eq. 2.22). The dispersion is that of Fig. 5.3 and T. = 100K, which is
suitable for modeling YBCO and yields an in-plane penetration depth of 12194; Eqs. 5.16 and 5.17
give penetration depths of 1209A and 12884, 1% lower and 5% higher than calculated, respectively.

In Fig. 5.18 the penetration depth is plotted as a function of temperature for three different
d-wave order parameters. The solid curve is for Ag(T) = 9h(T)ng, the short dashed curve is for
Ax(T) = 15h(T)n¢ and the long dashed curve is for Au(T) = 20h(T)n¢ with n given by Eq. 2.22
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A0)/A(T) I*

Figure 5.18: The penetration depth as a function of temperature is plotted as a function of tem-
perature for three different d-wave order pa.ra.met.ers The solid curve is for Ax(T) = 9R(T)nd, the
short dashed curve is for Ax(T) = 15A(T)ng and the long dashed curve is for Ax(T) = 20A(T)ng
with R(T) and nf given by Eq. 2.21 and 2.22 respectively; the points are the a (triangles) and b-axis
(squares) penetration depth measurements of Hardy et al. {89]. The light dotted straight line is a
guide to the eye.

and h(T') given by Eqgs. 2.21; the points are the a (triangles) and b-axis (squares) penetration depth
measurements of Hardy et al. [89]. The solid curve corresponds approximately to the BCS value
for weak coupling d-wave superconductors, 2A(™) /kgT. = 4.55 (the value of 3.52 is for s-wave
superconductors) and the light dotted straight line is a guide to the eye which shows how closely
the penetration depth with this value for the order parameter approximates a straight line. The
dashed curves, which seem to be the most consistent with the YBCO experimental data, correspond
to 2A(max) /kg T, of approximately 7 (short dashes) and 9 (long dashes) with the larger gap value in
the a-direction (i.e. perpendicular to the chains). The in-plane penetration depths of BSCCO and
TBCO are linear to even higher temperatures(91, 96] (about 0.9T. and 0.957., respectively) and
would correspond to values of 24(™2%) /kgT. closer to the BCS value.

This good agreement between experiment and theory for the temperature dependence and
the zero temperature value of the penetration depth, A(T) and the zero temperature value of the

gap is a consequence solely of a d-wave order parameter and reflects no underlying model.

Impurities

Using the solutions to the BCS equation in the presence of impurities (§5.3, p. 56) the
effects of impurities on the magnetic penetration depth can be investigated using Eq. 5.11. On
the left in Fig. 5.19 the penetration depth as a function of temperature for impurity levels, from
top to bottom, of zero to four percent is plotted. In the presence of impurities the low temperature
behaviour is parabolic (lower four curves) instead of linear, as is the case in the absence of impurities
(top curve).

It is easy to see how the effect of impurities in the presence of experimental uncertainties
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Figure 5.19: On the left is shown the penetration depth as a function of temperature for impurity
levels, from top to bottom, of zero to four percent. In the presence of impurities the low temperature
behaviour is parabolic (lower four curves) instead of linear, as is the case in the absence of impu-
rities (top curve). On the right the zero temperature penetration depth as a function of impurity
concentration is shown. At the critical impurity concentration, 5.7%, (i.e. that for which T, = 0)
the penetration depth is infinite.

could lead one to conclude that the penetration depth exhibits an activated (i.e. exponential) instead
of parabolic behaviour.

As is to be expected in these weak coupling calculations the ratio 2A(™ax) /kgT, is close
to the BCS value (for zero impurities it is 4.55) and the zero impurity temperature dependence of
the penetration depth (top curve) is very similar to the solid curve in Fig. 5.18 (i.e. it is almost
linear). On the right in Fig. 5.19 the zero temperature penetration depth as a function of impurity
concentration is plotted. At the critical impurity concentration, ~5.7%, (i.e. that for which T, = 0)
the penetration depth diverges .

Because of the different formalism used to calculate the penetration depth in the presence
of impurities (Eq. 5.11 instead of Eq. 5.12) the zero temperature penetration depth and the critical
temperature are slightly different, being 1219.52A instead of 1219.13A and 97K instead of 100K,
respectively. These differences are caused by the finite cutoff in the Matsubara sum (Here, as
elsewhere in this thesis, three times the bandwidth, 2N'™2%) + 1 = 24¢, is used.).

Orthorhombic System

There is a significant difference between the zero temperature penetration depths in the
a- and b-directions in YBCO (see Table 5.1) that can be accounted for by including the effects of
the CuO chains that are present in YBCO. A simple way to include this effect is to introduce an
orthorhombicity to the dispersion [15, 97] (see §5.1.2, p. 47)

Using the solution of the BCS equation found with the orthorhombic system that is shown
in Fig. 5.10 the absolute value of the penetration depth as a function of temperature for this or-
thorhombic system is calculated. The solid curve in Fig. 5.20 is for the b-axis and the dashed curve
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Figure 5.20: The absolute value of the penetration depth as a function of temperature for this
orthorhombic system and solution described in §5.2. The solid curve is for the b-axis and the dashed
curve is for a-axis.
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Figure 5.21: On the left is shown the penetration depth as a function of temperature for impurity
levels, from top to bottom, of zero to five percent in the a- (dashed curves) and b-directions (solid
curves). On the right is shown the zero temperature penetration depth as a function of impu-
rity concentration in the a- (dashed curve) and b-directions (solid curve). At the critical impurity
concentration, 6.8%, (i.e. that for which T. = 0) the penetration depth is infinite.

is for a-axis. While the shape of these curves is what would be expected from soiving the BCS
equation (i.e. they are almost linear, cf. the short dashed curve in Fig. 5.18) the zero temperature
values (Az(0) = 1562A and A, (0) = 1060A) are very close to those of Hardy et al. [89] for optimal
doping (see Table 5.1), indicating that this dispersion is a good single band approximation for the
dispersion of YBCO (i.e. The zero temperature values of the penetration depth only reflect the
dispersion and not the order parameter.). That the curvature of the these penetration depth curves
is dissimilar to the results of Hardy et al is, as shown in Fig. 5.18, due to the low value of 24/kpT..
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Figure 5.22: On the left the penetration depths corresponding to the dispersion on the left in Fig. 5.7
are plotted in the a (solid curve) and c-directions (dashed curve). On the right the same quantity is
plotted but this time using the dispersion on the right in Fig. 5.7. Both use Ax(T) = 15A(T)ng for
the order parameter and t; = 0.05. The points are the penetration depth measurements of Hardy
et al.[89)] of optimally doped YBCO for the a- (open points) and c-directions (solid points).

Impurities in an Orthorhombic System

On the left in Fig. 5.21 the absolute value of the reciprocal of the square of the penetration
depth is plotted as a function of temperature for the a (dashed curves) and b-directions (solid curves)
for impurity levels of zero (top curve) to five percent (bottom curve). The penetration depths for
zero impurities differ slightly from those in Fig. 5.20 due to the finite cutoff in the Matsubara sum in
Eq. 5.11 (24t or three times the bandwidth in this case), although the zero temperature penetration
depths differ by less than one percent (1078A and 1562A instead of 1064A and 15674 for the a and
b-directions, respectively). For impurity levels of less than 2% the low temperature behaviour seems
to remain linear rather than becoming quadratic, as is seen for higher impurity levels.

On the right in Fig. 5.21 the absolute value of the penetration depth is plotted as a function
of impurity level in the a- (dashed curve) and b-directions (solid curve). The zero temperature
penetration depth increases fairly linearly with impurity level until a level of approximately 5%
when it starts to diverge rapidly, becoming infinite at a critical impurity level of 6.8%.

5.5.4 c-axis Penetration Depth

On the left in Fig. 5.22 the penetration depths, calculated using the solution on the left
of Fig. 5.7 in §5.2 (i.e. a c-axis dispersion modulated by cos(k:c), Eq. 5.2), are plotted for the a
(solid curve) and c-directions (dashed curve). The points are the penetration depth measurements
of Hardy et al. [89] of optimally doped YBCO for the a (open points) and c-directions (solid points).
Note that only the zero temperature value and not the shape A (T) is affected by ¢, , unlike the
effect of t on A;(T) and that in the c-axis case Eq. 5.15 does not provide an estimate of ¢ .

While this dispersion reproduces quite well the zero temperature penetration depths (giving
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Figure 5.23: On the left is shown a dispersion the same as that on the right of Fig. 5.8 except that
in this case t; = 0.08 and i = 0.20 which has moved the Fermi surface much closer to the Brillouin
zone boundary. On the top right is penetration depths in the in-plane (solid curve) and c-directions
(dashed curve) which is very similar to that measured of Hardy et al.[88] which are shown for the b
(open circles) and c-directions (solid circles). On the bottom right is the c-axis penetration depth
using the same dispersion relation but with several different values of ¢ .

Az = 10834 and A, = 10 9424, cf. Table 5.1 on p. 65), it is apparent that the term introduced into
the dispersion, Eq. 5.2, does not reproduce the experimentally observed temperature dependence of
the c-axis penetration depth (solid points in Fig. 5.22).

On the right in Fig. 5.22 penetration depths, calculated using the solution on the right of
Fig. 5.8 in §5.2 (i.e. a c-axis dispersion modulated by (cos(kza) — cos(k,b))2 cos(k.c), Eq. 5.3), are
plotted for the a (solid curve) and c-directions (dashed curve); the points are the penetration depth
measurements of Hardy et al. [89] of optimally doped YBCO for the a (open points) and c-directions
(solid points).

In this case the c-axis penetration depth has what appears to be an activated behaviour
similar to that seen for s-wave superconductors (cf. the solid curve in Fig. 5.17) due to there being
no k. dispersion along the diagonals of the two dimensional Brillioun zone (si.e. the k.-dispersion
does not in effect “see” the nodes in the gap). The low temperature behaviour is actually a T®
dependence. [98]
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Figure 5.24: On the left is shown a dispersion the same as that on the right of Fig. 5.23 except that
in this case t; = 0.05 and G = 0.25 which has moved the Fermi surface so that, for t; = 0.05, it
just touches the Brillouin zone boundary. On the right is the c-axis penetration depth for several
different values of ¢, .

It is apparent that neither of the c-axis dispersions of §5.1.3 (Eqgs. 5.2 and 5.3) reproduce
the c-axis penetration depth measurements of Hardy et al..[89] However, if the dispersion is modified
so that the Fermi surface is closer to the k; = 0 and k; = 0 boundaries of the Brillouin zone the low
temperature slope of the c-axis penetration depth is very sensitive to the c-axis hopping parameter,
t..

Shown on the left of Fig. 5.23 is a dispersion the same as that of Fig. 5.8 except that
t. = 0.08 and 4 = 0.20 which has moved the Fermi surface so that for k;, = x/2 it intersects the
Brillouin zone boundary (solid curve in the top left of Fig. 5.23). On the top right is the resulting
penetration depth for the in-plane (solid curve) and c-directions (dashed curve) calculated using
Ae(T) = 15h(T)n¢. As can be clearly seen, this result very closely resembles the experimental
results of Hardy et al.[88] which are shown for the b (open circles) and c-directions (solid circles).
While this Fermi surface is not similar to that of HTS its proximity to the Brillouin zone boundary
is similar to that expected for the chain Fermi surface of YBCO which is discussed in Ch. 6.

In the calculation of the penetration depth, Eq. 5.12, the Fermi derivative is sharply peaked
at the Fermi energy with a width given by the thermal broadening, k7. When the Fermi surface
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intersects the Brillouin zone boundary a large proportion of this peak, where the gap is the largest,
is no longer included in the calculation of the penetration depth, giving a smaller effective A(™max),
On the bottom right in Fig. 5.23 is the c-axis penetration depth calculated with several different
c-axis hopping parameters, causing the low temperature slope to vary dramatically. This result.
which is very sensitive to the choice of dispersion, along with those of Fig. 5.22 demonstrate the
dependence of the temperature dependence of the c-axis penetration depth upon the details of the
Fermi surface. For a c-axis dispersion given by Egs. 5.2 the effect is less dramatic but is still present.

On the left in Fig. 5.24 is a dispersion the same as that of Fig. 5.23 except that ¢, = 0.05
and 2 = 0.25. In this case the Fermi surface just touches the Brillouin zone boundary at k. = =.
For values of t, less than 0.05 the Fermi surface is very near, but does not touch, the Brillouin
zone boundary and the penetration depth, rather than decreasing monotonically with temperature,
increases to a maximum before decreasing. This effect is caused by the vHS at (r,0) (and symmetry
related points) - as the temperature increases the thermal broadening of the Fermi surface “sees”
the vHS at a temperature, for small t; , equal to the distance of the Fermi energy to the vHS. This

effect is not seen for a c-axis dispersion given by Eqgs. 5.2 because the effect of the gap node is much
more pronounced.

Orthorhombic System

The dependence of the low temperature c-axis penetration depth upon the proximity of
the Fermi surface to the Brillouin zone boundary and the c-axis dispersion is more interesting in the
orthorhombic system discussed earlier (§5.1.2) because this dispersion is near the k; = 0 Brillouin
zone boundary without the manipulations used in Figs. 5.23 and 5.24. Shown in Fig. 5.25 is the
c-axis penetration depth calculated using the dispersion of Fig. 5.5 with an orthorhombic distortion,
4, of 0.13 (top) and 0.155 (bottom) and with the c-axis dispersion of Eq. 5.2 (right) and Eq. 5.3 (left).
For § = 0.13 (top graphs) the Fermi surface intersects the Brillouin zone boundary at k = (7,0, 7)
(and symmetry related points) only for t; > 0.05 and, for small ¢, , the slopes of the low temperature
penetration depth for the c-axis dispersion of Eq. 5.3 is significantly larger that those for larger ¢t _,
rising to a maximum at T/T. ~ 0.4 (top left) while for the c-axis dispersion of Eq. 5.2 there is very
little change with ¢, (top right). For d = 0.155 (bottom graphs) the Fermi surface intersects the
Brillouin zone boundary at k = (7.0,7/2) (and symmetry related points) and. for small ¢, . the
slopes of the low temperature penetration depth is significantly less that those for larger ¢, . In all
cases the curves cease to change significantly for values of t; larger than 20 (although the absolute
value of A, changes).

In Fig. 5.26 the variation of 1/A.(0) as a function of ¢t for two different in-plane dispersions,
the tetragonal dispersion of Fig. 5.3 (dashed lines) and the orthorhombic dispersion of Fig. 5.5, and
two different c-axis dispersions, those of Eq. 5.2 (gray curves) and Eq. 5.3 (black curves) are shown.
The variation of A.(0) is almost linear with 1/t , unlike the case of the in-plane penetration depth
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Figure 5.25: On the top c-axis penetration depth using the dispersion of Fig. 5.5 with a c-axis
dispersion given by Eq. 5.2 (right) and Eq. 5.3 (left) is shown. For ¢t; = 0.05 the Fermi surface
just touches the k; = 0 Brillouin zone boundary. Below are the same calculations except that the
orthorhombic distortion, 4, has been changed to 0.155 from 0.13 so that at k; = /2 the Fermi surface
intersects the k&, = 0 Brillouin zone boundary. The points are the penetration depth measurements
of Hardy et al. [89] for the c-direction.

which scales with 1/v2.

It is interesting that although the analysis of Xiang and Wheatley[98] shows that the c-axis
dispersion of Eq. 5.3 should give a T temperature dependence to 1/A3(T) that in very specific
cases. such as those which are shown in Figs. 5.23 and 5.24 and on the left in Fig. 5.25, that this
behaviour is violated for small values of t;, pushing [A(0)/A(T)]* above and below the expected
curve, respectively. The reason that this is interesting is twofold, first because such small values
of t, are necessary in order to yield the correct value for the zero temperature c-axis penetration
depth and second, because of the proximity of the chain Fermi surface in YBCO to the Brillouin
zone boundary at (7,0, ) (see Ch. 6).

5.6 STM Tunnel Junctions

Tunneling experiments using scanning, tunneling microscopes, STMs, provide insight into
the density of states (DOS) of the material being studied. In these experiments the STM measures
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Figure 5.26: The variation of 1/A.(0) for the tetragonal dispersion of Fig. 5.3 (dashed lines) and the
orthorhombic dispersion of Fig. 5.5 using the c-axis dispersions of Eq. 5.2 (gray curves) and Eq. 5.3
(black curves) is shown. The variation of A.(0) is almost linear with 1/t,, unlike the case of the
in-plane penetration depth which scales with 1/v/%.
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Figure 5.27: The figure on the left, taken from Ref. [100], shows a typical, high quality, STM
tunneling conductance measurement. On the right is shown the DOS calculated using the dispersion
similar to that of Fig. 5.3 and a d-wave order parameter using Eq. 2.20 (see text for the exact
parameters). The dotted line is the normal state DOS.

the differential tunneling current through a superconductor-insulator-normal metal (SIN) junction
as a function of voitage difference between the superconductor and the normal metal. The spectra
obtained seem to be dependent upon the layer which is topmost but give spectra that are more-or-less

consistent with a d-wave order parameter [99, 100] with some anomalies.

On the left in Fig. 5.27 a typical, high quality, STM tunneling conductance measurement at
T = 4.2K is shown;[100)] it has coherence peaks at V' ~ +40meV and becomes small or zero at V = 0.
One of the anomalous features alluded to above is that the zero energy tunneling conductance is
small but larger than would be expected for a high quality superconductor. A second feature is the
dip in the conductance to the left of the left hand coherence peak, here at V' ~ —80meV.
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5.6.1 Formalism

The current through the SIN junction is given by Fermi’'s Golden Rule

Iw) = —4me Y |Tuw| 8 (w + Eu - &) (F(BEW) — f(3Ew)),
.k’

where T ' is the tunneling matrix element, £y = \/5{-&-—.3,2, is the quasi-particle dispersion of the
superconductor. £ is the dispersion of the normal metal and f(z) = (1 + ¢*) ! is the Fermi-Dirac
distribution.

If we assume that the tunneling matrix element is constant, Ty & = T, and that the density
of states of the normal metal is a constant, N, so that we can replace the sum over k' with 4x N, [ d&
we get for the tunneling current

Iw) = —anelTP N, [de 38w+ Bu - &) (/(BEW) - f(3E)
L]
= —4re|TP N, Y_ (f(BEw) - f(B(w + En))).
[}

STM SIN tunneling experiments measure the conductance, df(w)/dV, between the normal
metal tip of the STM and the HTS material, separated by a small distance of vacuum which acts as
an insulator. Using the above equation we get

A srerp N, ; £ (Bl + En))

= GN(w) (5.18)

where G = 4re |T|2 N, and the sum over k is the definition of the density of states from Eq. 3.11.
When the superconductor is in the normal state (i.e. T > T.) N(w) is also, roughly, a constant
(i.e. Ohm’s Law holds) and a measurement of G is used to calibrate the experiment.

5.6.2 Results

The van Hove singularity (vHS) caused by the saddle points in the dispersion (see §3.2.4
on p. 31 for a description of its cause) has not been seen in tunneling experiments perhaps because
these experiments do not solely measure the DOS but also measure the tunneling matrix element,
T -

This tunneling matrix element is, for analysis and scaling purposes, typically taken as a
constant incorporated into the tunneling conductance when both electrodes are in the normal state,
G. However. this matrix element is, in a more advanced treatment, k-dependent and most probably
has the Fermi velocity, Vies, as a factor (since if the Fermi velocity is zero the tunneling current
will be zero) and this would cancel the Fermi velocity in the denominator of the expression for the
DOS, Eq. 3.13, which will eliminate the vHS from the tunneling conductance (This is equivalent to
saying that while the electrons with zero Fermi velocity are present in the DOS they will not show
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Figure 5.28: The sharp features of the DOS calculated with a two dimensional dispersion are no
longer present when a three dimensional dispersion is used instead. Shown is the DOS at the middle
(left) and top (right) of the band calculated using the dispersion of Fig. 3.6 with (solid curve) and
without (dotted curve) the c-axis dispersion of Eq. 5.2; using Eq. 5.3 instead produces results that
are not significantly different. For the calculation with the c-axis dispersion t; = 0.05 and both
curves were calculated at a temperature of T = 0.005¢, which, for t = 100meV, corresponds to 4.2K.

up in tunneling measurements.). Note that the vHS is present in the normal state DOS of this as

well as other two dimensional materials and it is not observed in the normal state STM tunneling
conductance.

The tunneling matrix element may also have some weighting for those k-vectors that point
in the general direction of the STM’s tip. These factors (i.e. those involved in the tunneling matrix
element) may account for the zero bias anomaly (ZBA) observed in tunneling experiments. Another
possible explanation is that it is caused by tunneling from another layer in these complex materials.

On the right in Fig. 5.27 is the DOS calculated at T = 4.2K using the dispersion of Eq. 3.6
with ¢ = 100meV, ¢’ = 0.2 and 4 = 1.75 with a d-wave order parameter using Eq. 2.20 with a
maximum gap in the Brillouin zone of 40meV calculated using Eq. 3.14. These parameters were
chosen in order to show the relevant features clearly and are not necessarily representative of HTS
materials. These features are the vHS at w ~ —120meV, the coherence peaks at w ~ +30meV
and the gap which closes at w = 0; these last two features are characteristics of a d-wave order
parameter and the first feature is caused by the saddle points in the dispersion and is not seen in

the tunneling experiments as discussed above. The dotted line is the normal state DOS which is
shown for comparison.

A further argument for the non-appearance of the vHS in the STM tunneling experiments is
that they are truncated in a three dimensional system. These singularities are characteristics of one
and two dimensional systems and in STM tunneling measurements of one dimensional systems, such
as carbon nanotubes,[101] they are observed. In light of the above discussion, for a one dimensional
system the square of the Fermi velocity comes into the denominator of the DOS, and so it would
not be completely canceled by the tunneling matrix element.
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In Fig. 5.28 the DOS of Fig. 3.6 is plotted with a different horizontal scale (dotted curves)
along with that calculated with the same dispersion but this time including the c-axis dispersion of
Eq. 5.2 (solid curves). The sharp feature at the middle of the band (left) is truncated and the cutoffs
at the top and bottom of the band (right) are extended, both with widths 2t; . Using Eq. 5.3 instead
of Eq. 5.2 for the c-axis dispersion has very little effect upon this result. The curves are continuous
because they are calculated at finite temperature, here at T = 0.005t, which, for ¢ = 100meV,
corresponds to 4.2K. Note that the c-axis dispersion has no effect upon the shape of either the gap
or the coherence peaks.

The similarities and differences between theory and experiment are quite interesting. The
lack of a vHS in the experimental measurements has been discussed above. The coherence peaks
and the closing of the gap at w = 0 are similar enough to conclude that the experimental gap is a d-
wave with the differences being that the coherence peaks are significantly wider than the theoretical
calculation and that the DOS is not zero at zero frequency (a feature know as the zero bias anomaly,
ZBA); these differences may, in fact, be related. If one postulates that there is a significant energy
resolution in the experiment (i.e. electrons with energies close to but not at the STM bias voltage
are also tunneling) both the width of the coherence peaks and the filling in of the DOS at w = 0
would be explained. The flat background and the dip to the left of the left hand coherence peak in
the experimental results, however, are not present in the calculated DOS and are subject to intense
speculation as a similar feature is also seen in ARPES experiments.

5.7 Josephson Tunneling

When two superconductors have a thin insulating layer in between them a Josephson
current between the superconductors results and the system is called a “Josephson junction.”[102]
The variation of the current in a Josephson junctions as a function of the applied magnetic field
are exploited in SQUIDs to yield some of the most sensitive and accurate measurements in physics.
In fact, the “nail in the coffin” of the debate whether HTS are s or d-wave was hammered in

by several experiments which showed the presence of a half flux quantum in “corner junctions.”
[41. 42, 43. 44. 103. 45, 46]

5.7.1 Formalism

The Josephson current through a superconductor-insulator-superconductor junction is given
by the relation [53, 54]

2xT
RNL(O)NR(D)x2

AL AR )
) Zﬂ: [(; (53 + (Af)7 + (u-.)’) (; (B2 + (AR + (u..)z)] (5.19)

JT) =
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for incoherent tunnelling, where the superscript L(R) indicates on which side of the junction the
dispersion and order parameter are on, the sum over w, = #T(2n—1) is for all Matsubara frequencies
and R is the normal state resistance of the junction and NZ/R(0) is the normal state DOS given by
Eq. 3.14. If the tunnelling were coherent the matrix element (which is incorporated into R) would
have a k — k' dependence, and the sums over k-space wouldn’t be separable.

For two isotropic superconductors in which the order parameter can be taken as a constant
and the dispersion varies as |k|®> the same manipulation used in Eq. 2.17 on p. 14 can be used to
manipulate Eq. 5.19 into [104]

o0 AL AR
J(T) = 2’;{ 3 4 ) (5.20)
n=0 \/A‘-’ +ul \/A“"l +uw?
At T = 0 this can be reduced to
24L AR AL - AR
70 = rat+ am) ( AL+ AR ) ' (5:21)

where K (z) is the complete elliptic integral. For two identical, isotropic superconductors (AL =
AR = A) Eq. 5.20 can be reduced to

92 a -
For a tunnel junction consisting of a conventional isotropic superconductor on one side and

an HTS on the other side only one of the k-sums of Eq. 5.19 can be explicitly performed and the
resulting expression is

o T ANT) AR
D = B L JAmrra L e @ 6

5.7.2 Pb-YBCO c-axis Tunnelling Experiments

More recent Josephson tunneling experiments oriented the current in the direction of the
c-axis of YBCO. The Josephson current that involves a superconductor of tetragonal symmetry in a
pure d-wave state tunneling in the direction perpendicular to the planes should, to first order [105],
be exactly zero since there would be equal positive and negative parts to the sum over k in Eq. 5.19.
However. most high T. superconductors are only approximately tetragonal (as discussed earlier)
and the current observed will be a measure of the asymmetry of the Fermi surface (i.e. A d-wave
superconductor with a 25% asymmetry yields a Josephson current that is approximately 25% of that
of an s-wave superconductor).

In order to incorporate this important asymmetry into cur single layer model (without
which there would be no Josephson tunnelling) we use the dispersion relation of Eq. 5.1. These
results for a single layer model are published in Ref. [106] and give an RJ product of order 1meV,
similar to that seen in experiments.[107]



Chapter 6

Multiband Models

A common feature of HT'C materials is that they all contain CuQ; planes; however, there
seems to be a strong correlation between the presence of adjacent CuO; layers and the supercon-
ducting critical temperature (see Table 6.1). The materials with higher critical temperatures tend
to have multiple adjacent CuO; layers indicating that this may enhance the critical temperature.
In this chapter different ways of modeling mulitiple Fermi surfaces are investigated; their effect upon
the critical temperature are examined, and further properties are also investigated.

In this chapter the multiband models that are discussed are, to the most part, contained
in three published papers. [109, 110, 110] The first of these papers [109] examines a two band model
and its effects upon the DOS and magnetic penetration depth, the second [111] examines the effect
upon the magnetic penetration of a three layer model in depth and the third and final paper [110]
examines the effect of the two band model upon the c-axis Josephson tunneling.

While each of these papers is self contained, the preliminary sections outlining the dis-
persions and interactions used are discussed, respectively, in §6.1 and §6.2 below in order to both
preserve the continuity of this chapter and to allow their elaboration. Some additional results are
also presented in this chapter.

6.1 Model Dispersions

When there are multiple degenerate bands in a material they become hybridized. The

single particle normal state band energies for a multilayer model can be written as an extension of
Eq. 3.3 as

H = Z Ex.a8 (CLT'achf.ﬁ + ch.acu.a) (6.1)
k.a8

in which the greek indices enumerate the layers, the c}m (cn.a) create (destroy) electrons of momen-
tum k in layer a and the £,,.5 are the electron dispersions.

80
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Adjacent Tetragonal/
Material T. [K] | CuO; Layers | Orthorhombic
HgBagCagCug 03+J 135 3 T
EB&: CaCug 054,3 128 2 T
TIBa;CazCu30y, 5 123 3 T
TlgBagCa;,Cu.Ou 112 4 T
TlBagCaacmOu 112 4 T
(Sr,Ca)CuO, 110 o0 T
TlBa;Ca.Cu,-,Om 107 5 T
Tlg Baz C& CllsOu 105 5 T
HgBag Cul 04+6 98 1 T
TB&: Cu3 07-5 92 2 O
YBaz Cu4 Og 80 2 (6]
GaSrg (Y,Ca) Cu: 07 70 2 (o]
(Sr,Ca)sCuOyo 70 4 T
Pngrg YCU:; Og 70 2 (e}
(La,Ba)2CuQO, 38 1 T
(Nd,Sr,Ce)2CuOy 35 1 T
Pbg (Sl’.L&)zCllee 32 1 O
(Nd,Ce);CuO4_s 24 1 T

Table 6.1: There seems to be a strong correlation between the presence of adjacent CuQ; layers and
the superconducting critical temperature (from [108]). The materials with higher T.’s tend to have
multiple adjacent CuQO2 layers indicating that this enhances T..

If two Fermi surfaces cross and if electrons can cross from one to the other (ie, if they
have the same symmetry) they become hybridized into odd and even Fermi surfaces that effectively
“repel” each other. In order to see this we must go from the “layer” picture to the “band” picture
by diagonalizing this Hamiltonian. In order to demonstrate this procedure a specific model of the
£h.a3 18 required.

6.1.1 Two Band Models

The single particle normal state band energies for a two layer model can be written by
explicitly expanding the sums over the greek indices of Eq. 6.1

= ' ' 1 t
H o= D een (Ckf.xcln.x + cu.zcu.x) + th.zz (ch‘r.2chf.2 + cu.zcu.z)
k .
t ' ] $
+ Z E€x.12 (cn.xchf.z + cu.xcu.z) +d_ern (ckmcn.l + chuclu.x)
3 .

in which the sp o3 are the dispersions in and between the two bands. Note that, by symmetry,
€k.21 = £a.12- This Hamiltonian can be rewritten as

H=Y ¥l A%,
ho
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Figure 6.1: The Fermi surfaces for two identical layer dispersions (dashed curve) which model the
bilayer present in BSCCO that have been hybridized by ¢, into odd and even bands (solid curves).

in which ¥} = [‘-’;w.x c{mz] is a spinor, ¢ = {1,{} and the Hamiltonian matrix, Hs, given by

= En,11 En12
Hy = . (6.2)
€r2l a2

This Hamiltonian is easily diagonalized and has eigenvalues

2
. €11 + En, €h11 — Eh,
€no/e = (&zﬂ) E S \/ (—.HTNE) + En,12E8,21 (6.3)

which give the quasiparticles’ dispersion (i.e. the band dispersion as opposed to the layer dispersion,
£k.a3) for the odd and even bands (o/e = +/—) and new quasiparticles given by the corresponding
eigen vectors.[40, 111] These new quasiparticles act in the bands as opposed to the layers; for small

£4.21 this is a small distinction - the band dispersions will not be significantly different from the
layer dispersions.

BSCCO

In BSCCO there are two identical CuO; layers that are adjacent to each other and distant
to other bilayers so that the dispersion within each layer is given by €411 = €x.22 = €& and the
interlayer coupling is modeled in such a way that electrons can hop between two adjacent layers
but not between bilayers by €412 = €p.21 = ti. This yields, from Eq. 6.3, the band dispersion
€k.o/e = En £ t; . The dispersion relation in each of the two CuQ; layers is expected to be the same
as for the CuO2 layer in YBCO (Eq. 3.4, shown in Fig. 5.3). The effect of the hopping between the
layers is to “push” the dispersions of the two layers apart (They effectively “cross” everywhere.). In
Fig. 6.1 are the Fermi surfaces for two identical layer dispersions (dashed curve) which model the
bilayer present in BSCCO that have been hybridized by t, /t = 0.2 into odd and even bands (inner
and outer solid curves, respectively).
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Figure 6.2: On the left are the Fermi surfaces for the chain and plane dispersions (dashed curve)
which model the chain-plane bilayer present in YBCO that have been hybridized by t, into chain
and plane-like bands (solid curves). In both cases ¢, /¢t = 0.20.

It is unfortunate that this bilayer splitting is not seen in ARPES experiments,[68, 30, 69,
70] perhaps either due to ARPES being a surface probe (so that the symmetry required for the
hybridization is not present) or because the splitting, ¢, , is not large enough for the two Fermi
surfaces to be distinguished; the latter is most likely the case since the actual ¢, is most likely much
smaller than that shown in Fig. 6.1 so that the splitting between the Fermi surfaces is correspondingly
small.

The situation is also complicated by the presence of an incommensurate CDW along the
diagonal of the unit cell that is present in BSCCO. In light of these difficulties it is probably best to
model BSCCO as a single CuO; layer with a unit cell dimension which is half that of the real unit
cell (s.e. ¢ = c/2).

YBCO

Examined in this subsection are two ways of incorporating the chains that are present
in the crystal structure of some materials (Of the compounds in Table 6.1 chains are present in
YBa;Cu3z0O+_s, YBazCu,Os and GaSr,(Y,Ca)Cu07). In particular, the YBCO compounds have
one or more CuQ chain layers separating the pairs of adjacent CuQO; layers (in the GaSr,(Y.Ca)Cu20+
compound the chains are composed of GaQ). The presence of these CuO chains makes these mate-
rials have strongly anisotropic transport properties in the a- and b-directions (e.g. a factor of two
difference in the conductivities in the a- and b-directions in YBa2Cu30Os 9s).

It is unfortunate that the most popular material among experimentalists is YBCO because
of the complications brought about by the presence of CuQ chains in this material. While the reasons
for the choice of this material by experimentalists are valid (i.e. it is relatively easy to grow high
quality crystals with a high critical temperature and the critical temperature is above the boiling
point of liquid nitrogen) a consequence of this choice is that some of the best experimental resuits
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are only available for this material. It is due to this consequence that the modeling of YBCO, with
its attendant chain structure, is important.

The presence of the chains in YBCO can be modeled by allowing the electrons in the

chain layer to only hop in the y-direction (i.e. the direction of the chains), which results in a chain
dispersion given by

E(hch.) = ¢lch) COS(ky) - ”(Ch-) (6.4)

or equivalently, Eq. 5.1 can be used with § = 1, ¢ = 0 and t(*") half the value of that in the plane
layer. Using Eq. 3.4 for the plane dispersion and hybridizing the two layer dispersions by way of
Eq. 6.3 yields one of the quasiparticle dispersions examined in this subsection.

On the left in Fig. 6.2 are the Fermi surfaces for the chain and plane dispersions (dashed
curves) which model the chain-plane bilayer present in YBCO that have been hybridized by 4,12 =
t, into chain and plane-like bands (solid curves). This choice of £4 ;2 allows electrons to hop between
adjacent chain and plane layers but not to other layers.

Using this method of hybridizing the layer dispersions to form the band dispersions is
awkward when one is trying to reproduce the Fermi surfaces found experimentally. Since the details
of the dispersion are less important that the shape of the Fermi surface, in this thesis the Fermi
surfaces of YBCO are also modeled using a simpler scheme. Namely, using Eq. 5.1 for the two
band dispersions with the plane band tetragonal dispersion in Fig. 5.3 and the chain band with
the orthorhombic dispersion of Eq. 5.1 with § = .09 and u = 0.4. This procedure yields the Fermi
surfaces shown on the right [109] in Fig. 6.2 which are much closer to those found experimentally.[69]
The values of ¢ for the two layers are chosen so that the zero temperature magnetic penetration depth
in the a and b-directions are close to those found experimentally (given in Table 5.1 on p. 65).

6.1.2 Three Band Models

A three band system is treated analogously to the two band system, giving the Hamiltonian

matrix

€x,11 £k12 Eh13

He= | a1 €n22 Enas |- (6.5)

€31 €En32 £Ea33

The eigenvalues of this matrix are quite cumbersome and are, in fact, not required since some or all
of the layers in HTC compounds are identical.
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Figure 6.3: The three Fermi surfaces in the triplanar model of YBCO. The chain like band (dashed
curve) is nearly one dimensional, the odd band Fermi surface has orthorhombic symmetry (dotted
curve) due to its interaction with the chains and the even band (solid curve) remains tetragonal.

YBCO

The unit cell of YBCO has two CuO; plane layers separated by a CuO chain layer. This
simplifies the matrix of Eq. 6.5, reducing it to[111]

€1 thl k2
Ho= | tay €en2 tai (6.6)

tn2 ta1 Eau

with €4 and €42 the CuO; plane and CuO chain layer dispersions respectively, ts; the chain-

plane hopping dispersion and ti; the plane-plane hopping dispersion. This matrix can be easily
diagonalized to give eigenvalues

&1 = g -t

€2 = j(ar+e+t)+ %\/(51 —€3)(€1 — €2 + 2t2) + 8t + £3
and

& = & +53+tz)-%\/(51 —&2)(e1 — €2 + 2ty) + 883 + 3

in which the momentum index, k, has been omitted for clarity. (The expressions given in Ref. [111],
reproduced here in §6.5.2, are in error although those used in the calculations performed are, in fact,
correct.)

Using Eq. 3.6 for 4, with the same parameters as in Fig. 5.3, Eq. 6.4 for £42 with
u/t = 1.2 and only allowing hopping within the trilayer and not between different trilayers by
taking t; = tg,; = 30 meV and t; = ta2 = 15 meV. The resulting band dispersions, £4.;, £x 2 and
Ex.3 are respectively the solid, dashed and dotted curves in Fig. 6.3. The chain like band (dashed
curve) is nearly one dimensional, the odd band Fermi surface has orthorhombic symmetry (dotted
curve) due to its interaction with the chains and the even band (solid curve) remains tetragonal.
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In Fig. 6.3 are the Fermi surfaces for the chain (long dashed curves) and plane dispersions
(solid and short dashed curves) which model the chain-plane trilayer present in YBCO that have
been hybridized by £i,12 = t; and £4,13 = t; into chain and plane-like bands. This allows electrons

to hop within a trilayer made up of two CuO; plane layers separated by a CuQO plane layer but not
to other layers.

6.2 Interaction

The most general way to introduce a pairing interaction to a multiband system is through
the Hamiltonian

_ ¥ ']
H = Z €n.ad (chf.aacnn,aa + Cu.ﬁacu.aa)
[ N.7.]

- 2 Vie.q.0876Ckt,aCl-ty 5Cqt.+Cmqi.8? (6.7)
h.q,.a8v8

where the greek indices enumerate the layers, the c{.' o (€x o) create (destroy) electrons of momentum
k in layer a, £x.q3 is the electron dispersion in layer a, and Vi q.o3+6 is the generalized pairing
interaction.

However, since it seems reasonable that the pairing acts in the bands and not the layers
we can start from the band system in which the dispersions have already been diagonalized

—_ = t t
H = z Eh,a (Ch?.acb‘r.a + Cu.acu.a)
h,a

- Z Vk""“"‘"’clf.oc'—u.ﬂcvf.vc—qi..ti ’ (6.8)
h.q.a8v8

where the greek indices now enumerate the bands, the c{m (ch.a) create (destroy) electrons of
momentum k in band a, £ .4 is the electron dispersion in band a, and Vi q,a3+4 is the pairing
interaction. The case in which the pairing acts in the layers is studied by Atkinson.[40]

While the first sum in the above is very similar to that appearing in Eq. 6.7 it differs in
that the £, , are the band dispersions instead of the layer dispersions (i.e. they are the result of
the diagonalization procedure in §6.1) and the electron creation and annihilation operators likewise
operate in the bands instead of the layers. This distinction is made because of the assumptions that
are made about the pairing interaction, namely that the pairing acts only in the bands.

Performing a mean field analysis similar to that in §2.4 we get

H=> W H, 5%
ka8

-

where ¥} = [ Chto Comja J is a Nambu spinor,

Huas= E"';"s"” T ] (6.9)
A.'ag —Eh.aaaﬁ
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in which d,2 is a Kronecker delta function and

Aras = - z Vh.q.ad‘y&X:'.,J (6.10)
q.a348

with the pair susceptibility given by x} .5 = (cqt.vC-qu.8)-

We now make the following assumption

V‘l-v.cn = thQ.GG‘Y*I = Vh.q.adﬁ&adéﬂ-

This means that there is only intraband pairing and no interband pairing (ie, Ag.o = Ax.a36a3 and
Xq.v = Xq.vé0as are both diagonal in the greek indices); this is a reasonable assumption because
electrons near the Fermi surface in the different bands cannot have equal and opposite momenta.
This Hamiltonian has the same form as that for a two band model studied by Chi [77] and is similar
to that studied by others {77, 112, 113, 114] and is, as noted in [109], mathematically very similar
to the system studied by Liu et al..[52] Interlayer pairing has also been studied.[114, 115, 116]

With this assumption each of the elements of the Hamiltonian matrix is diagonal and so
the Hamiltonian matrix can be diagonalized in the same manner as is §2.4 and has eigenvalues given
by Ex.a = Vel . + A2 .o and pair susceptibilities similar to Eq. 2.15. The resulting BCS equations
are

Ana = — Z Vh.q,aBX:,p (6.11)
q.3

which are a set of coupled, non-linear integral equations which must be solved in a self-consistent
manner.

There remains the choice of the Vi q.08 and their relative magnitudes. In order not to
complicate matters with an inordinate number of parameters all of the Vi g.o5 are taken to have
the same functional form, namely Eq. 4.12, and to have the same coupling constant, g?x.. A rami-
fication of this simplification is that all of the A, o will have identical momentum and temperature
dependencies.

However, the results of having different coupling constants for the different terms in the
interaction matrix, Vi 4,03, have been investigated [109] and an interesting result is that, regardless
of the sign, the off-diagonal term in the interaction matrix enhance the superconducting critical
temperature.{77, 109, 117] It is easy to see that this is so in a two band system if one considers
that the relative sign of the order parameters in the two bands can change to accommodate both
attractive and repulsive off-diagonal interactions. For a larger number of bands the situation is more
complex, with some of the off-diagonal terms possibly counteracting that of other off-diagonal terms,
but there will be no net decrease in the superconducting critical temperature.
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Bilayer Models

For a bilayer system the sum over the bands of the coupled BCS equations, Eq. 6.11,
(i.e. a = 1.2) can be written explicitly as

Qe = - Z Via.11X5,1 + Vig12X5 2
q

A2

- P
=) Vaquaxh, + Vig2xh
q

where we have taken Vi q.12 = Vi q,21 although, in general, only Vi q.12 = V,f'q'n is required. Note
that since the pair susceptibility changes sign with the corresponding order parameter we see that
the above equation is unchanged by the substitution {Aaz2,Va.q.12} = {—3&.2, —Vagq.12} which
means that the overall sign of Vjq,12 only affects the relative sign of the order parameters in the
two bands and not their magnitudes. This is a reiteration of the above statement that the effect
upon the critical temperature of having an interband interaction is independent of whether this
interaction is attractive or repulsive, although some calculated properties (e.g. the c-axis Josephson
tunneling current) still depend upon the relative sign of the interband interaction. If we had taken
Vi.q.12 as complex the symmetry would be {Ax 3, Vaq.12} = {Dn.267*®, Vi q.12€'°} where Vi q.12 =
|Vie.q.12/€*®, and the relative phase of the order parameters in the two bands would no longer be £1.
It is important to emphasize that any interband interaction, either attractive or repulsive, tends to
enhance the critical temperature and that this is consistent with the observation that the critical
temperature tends to be higher in materials with multiple adjacent CuQO; layers.

By incorporating our choice of taking as identical the elements of the interacticn matrix,
Vh.q.a8 = Vi q, we get

Ay = - Z Vg (051 + Xq.2)
q

Az = =Y Vag (5, +X52) (6.12)
q

in which we can immediately see that the two order parameters are identical although the pair
susceptibilities remain different. If we had chosen the off-diagonal terms of the interaction matrix

to have the opposite sign of the diagonal terms the order parameters would have opposite signs but
the same momentum dependencies.

BSCCO

Using the dispersions from §6.1.1 that were used to model BSCCO (shown in Fig. 6.1) and
the MMP interaction, Eq. 4.12, we can solve the above coupled set of BCS equations. The resulting
order parameter has, as expected, d-wave symmetry with nodes along the diagonals of the Brillouin
zone. In Fig. 6.4 the effect of the interlayer hopping integral, t; /t upon the coupling constant,
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Figure 6.4: The effect of the interlayer hopping integral, ¢, /t upon the coupling constant, g?x,/t,
required for a critical temperature of 100 K for BSCCO (solid line) and YBCO (dashed line) bilayers
are shown. There is very little variation (< 5%) over the range of interest.
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Figure 6.5: The temperature dependence of the order parameter as found by solving the BCS
equation with an MMP interaction (solid curves) and that given by A(T), Eq. 2.4, (dashed curves)
for the two model YBCO dispersions shown in Fig. 6.2. The agreement between the two curves is
quite good except near T/T. ~ 1 where, h(T') deviates from the BCS solution. This deviation is
acceptable with the caveat that calculations of properties that rely upon the temperature derivative
of the order parameter, such as the specific heat, will be incorrect if they use this function.

9°Xo/t. required for a critical temperature of 100 K for a BSCCO bilayer is shown by the solid line.
There is very little variation (< 5%) over the range of interest.

YBCO

In Fig. 6.5 the temperature dependence of the order parameter as found by solving the BCS
equation with an MMP interaction (solid curves) and that given by A(T'), Eq. 2.4, (dashed curves)
for the two model YBCO dispersions of §6.1.1 (shown in Fig. 6.6). The agreement between the two
curves is again quite good except near T/T. ~ 1. The gap nodes (dashed lines) of this solution are
shown in Fig. 6.6. The Fermi surfaces of Fig. 6.2 are the solid lines reproduced here. While the gap
nodes are superficially different in the centre of the Brillouin zone this reflects only the sign of the
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Figure 6.6: Solving the coupled BCS equations with the chain and plane dispersions of §6.1.1 (the

Fermi surfaces of Fig. 6.2 are the solid lines reproduced here) yields the gap nodes (dashed lines)
shown.

0 a1
M

Figure 6.7: The critical temperature, T, as a function of impurities, n{/?, for a plane-chain model.
The solid curve is for the unitary limit (V; — oo) and the dashed curve is for the Born approximation
(Vi = 1t). Results are shown for a d-wave system (g = 20.0¢t).

order parameter at this point - it is the value of the order parameter along the Fermi surfaces that
is important and this is very similar for the two different chain-plane dispersions shown.

In Fig. 6.4 the effect of the interlayer hopping integral, t. /t upon the coupling constant,
g%Xo/t. required for a critical temperature of 100 K for a YBCO bilayer is shown by the dashed line.
There is even less variation (< 1.5%) over the range of interest than in the BSCCO case.

6.3 Impurities

6.3.1 Chain-Plane Models

The effects of impurities in a chain-plane model, which models the Fermi surfaces of YBCO,
is important because, while this is the most widely studied material, it is also potentially the one
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with the most impurities in many experiments (only recently have crystals been obtained that are
considered “perfect”). In order to compare theoretical calculations with experimental results it is
important that impurities, which are present in most if not all experiments, are incorporated into
the theoretical model. This is especially true for YBCO both because it is the most studied HTS
material and because even poor quality crystals can have relatively high critical temperatures, even
though some samples are also among the best HTS crystals available (see the end of this section,
p- 92, for a discussion of why this material can have a lot of impurities and still have a high critical
temperature).

In the chain-plane model studied here (see §6.1.1 for details of the dispersions used) the
order parameter is more orthorhombic (i.e. the s component is larger) than the orthorhombic system
examined above and, consequently, the critical impurity concentration is slightly larger (~ 8%). In
Fig. 6.7 the critical temperature, T., as a function of impurities, n{/), for a plane-chain model is
plotted. The solid curve is for the unitary limit (V; = oo) and the dashed curve is for the Born
approximation (Vy = 1t). Results are shown for a d-wave system with an interaction strength
(g = 20.0t) which yields T, = 100K for no impurities (Here T. = 95K due to the finite cutoff in the
Matsubara sums.)

The order parameter, ¢x(w), for a chain-plane model in the unitary limit (V; = oc) with
2% impurities for a d-wave system (g = 20.1¢) at T = 10K (T. = 69.0K) is plotted in Fig. 6.8. The
top two figures are for the plane layer and the bottom two figures are for the chain layer. The curves
are the same as in Fig. 5.14. The k-dependent part of the order parameter, A, has a maximum
value of 17.2 meV (A, is identical for the two layers) and the frequency dependent part, f(w), has
a zero frequency values of 0.040 and -3.22 meV on the plane and chain layers, respectively.

There are two interesting features of the f(w): first, due to the repulsive interaction the
f(w) have opposite signs on each of the two layers and, second, f(w) is much smaller on the plane
layer than on the chain layer. This last feature is caused by the plane layer being very close to
tetragonal (a tetragonal system would have f(w) = 0 - see the discussion in §5.3 on p. 56) since all
of its orthorhombicity is caused by its coupling to the chain layer.

Finally, there is an interesting feature of ¢5(0) on the chain layer, namely that the gap
nodes no longer cross the Fermi surface - i.e. the gap along the chain Fermi surface has an anisotropic
s-wave character while that along the plane Fermi surface still has a d-wave character (i.e. nodes
and sign changes). For n!/) = 5% (T. = 28.1K) there is no longer a node in ¢%(0) anywhere in
the Brillouin zone on the chain layer and for n{!) = 6% (7. = 15.0K) the nodes are gone from the
Brillouin zones of both layers. This disappearance of the gap nodes is caused both by the decrease
in A and the increase in f(0) with increasing n(f.

Figure 6.9 shows the change in T, as a function of impurities which are only in the chain
layer (left) or plane layer (right) (i.e. there are no impurities in the other layer). The solid curve
is for the unitary limit (V; = oc) and the dashed curve is for the Born approximation (V; = 1t).
Results are shown for the same d-wave system (g = 20.0t) as Fig. 6.7.
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Figure 6.8: The order parameter, ¢4 (w), for a chain-plane model in the unitary limit (V; = o0)
with 2% impurities for a d-wave system (g = 20.1¢) at T = 10K (T = 69.0K). The top two figures
are for the plane layer and the bottom two figures are for the chain layer. The curves are the same
as in Fig. 5.14. The k-dependent part of the order parameter, As, has a maximum value of 17.2

meV and the frequency dependent part, f(w), has a zero frequency values of 0.040 and -3.22 meV
on the plane and chain layers, respectively.

The small variation of T. with chain impurities, n{/<), illustrates that, in this model, there
can be a large amount of impurities in the chain layer without substantially affecting the critical
temperature, T.. In fact, these curves are not very different from those for an isotropic s-wave system
(Fig. 5.12). This supports the view {118] that only systems with the very highest T.'s have intact
chains since, in this model, impurities in the chains have little effect upon the critical temperature.

This is one of the important results of this research. If the oxygen vacancies are indeed in
the chain layer then this could account for the factors that make YBCO both unique and widely
studied; namely that it is relatively easy to make “dirty” YBCO crystals (i.e. with large amounts
of impurities and defects) with high critical temperatures. There are two effects of these oxygen
vacancies, first they provide the hole doping that is necessary for high critical temperatures (optimal
doping is ~15%) and second, they provide a reservoir (i.e. the chains) for the impurities (i.e. the
oxygen vacancies) that effects the critical temperature in a minimal way. These two effects, optimal
doping and minimal impurity effects, can be balanced (with the former increasing and the latter de-
creasing the critical temperature) with the critical temperature only slightly lowered by the impurity



6.4. OPTICAL CONDUCTIVITY 93

n() nt,)

Figure 6.9: The critical temperature, T., as a function of impurities in only the chain layer (left)
or only in the plane layer (right) for a plane-chain model. The solid curve is for the unitary limit
(Vi = oo) and the dashed curve is for the Born approximation (Vy = 1t). Results are shown for
a d-wave system (g = 20.0t). Note in particular that impurities in the chain layer behave as if
the order parameter has s-wave symmetry (cf. Fig. 5.12) while impurities in the plane layer behave
similar to the single band orthorhombic system (cf. Fig. 5.13).

effects. This is substantially different from other HTS materials in which the lowering of the critical
temperature by the impurity effects of the doping is substantial due to the small or nonexistent
s-component in the order parameter.

In fact, if one takes the view that there is a CuQO; trilayer in YBCO in which half of the
oxygen in one layer are missing, allowing the other two layers to be free of vacancies, the doping
level is 1/6 = 17%, very close to optimal doping in other materials.

6.4 Optical Conductivity

The optical conductivity for a two layer system is the sum of the optical conductivities of
each of the layers. This follows from the elementary rule for parallel conductors (The conductivity
is the reciprocal of the resistivity.). The optical conductivity for a two layer BSCO model is not
interesting: It is merely double that of the corresponding singie layer system. In light of this only
the optical conductivity of the YBCO system will be examined here.

6.4.1 YBCO

In Fig. 6.10 the optical conductivity for a chain-plane system with a d + Js-order parameter
are shown for directions both perpendicular (top) and parallel to the chains (bottom). The only
significant difference between the two directions being the relative magnitudes in the r (top) and
y-directions (bottom). They are similar to those calculated for a single layer d-wave system, shown
on the bottom in Fig. 5.15 except that the rise in 1/7* with frequency is much more pronounced.

In Fig. 6.11 the optical conductivity for the same chain-plane system used in Fig. 6.10 is
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Figure 6.10: The optical conductivity for the z (top) and y-directions (bottom) at various temper-
atures. On the left is the real part, o;(w), in the middle is the imaginary part, o3(w), and on the
right is the scattering rate, 1/7°(w) = woy (w)/o3(w), calculated using Eq. 4.16 with the dispersion
on the left of Fig. 6.2 with 1% impurities in the chain layer and 0.1% in the plane layer in the Born
approximation (V; = 1t), yielding a critical temperature of 94.9K. The MMP interaction given by
Eq. 4.12 with g°x, = 20.18t was used; the interaction gives, for no impurities and ¢ = 100meV,
T. = 100K.

plotted for T = 10K, this time for several different impurity levels in the chain layer. As the chain

laver impurity level increases the conductivity curves evolve smoothly.

6.5 The Penetration Depth

6.5.1 Effects of Interlayer Interaction on the Superconducting State in
YB32CU307_5

This paper [109] examines the effect of the interaction between the chain and plane layers
of YBCO upon the order parameter, the DOS, the magnetic penetration depth and the Knight shift.
It shows, in detail, the diagonalization of the Hamiltonian of the two layer system and emphasizes
that “any interlayer interaction, either attractive or repulsive, tends to enhance 7. and that this is
consistent with the observation that T, is higher in materials with muitiple adjacent CuO layers.”
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Figure 6.11: The optical conductivity in the y-direction for a chain-plane system with 0.1% (top)
and 1.0% impurities in the plane layer (bottom) in the Born approximation (V; = 1t) for various
impurity levels in the chain layers at T = 10K. On the left is the real part, o, (w), in the middle is the
imaginary part, o2(w), and on the right is the scattering rate, 1/7°*(w) = wa)(w)/0o2(w), calculated
using Eq. 4.16 with the dispersion on the left of Fig. 6.2. The MMP interaction given by Eq. 4.12
with g?x, = 20.17t was used; this interaction gives, for no impurities and ¢t = 100meV, T. = 100K.

Note that the approximation given by Eq. 11 in this paper was not used in the calculations
of the penetration depth in §6.5.3. Note that the dispersion also differs slightly. Finally, somewhere
in the process of publishing this paper two of the panels of figure two were lost. The correct figure
is reproduced here as figure 6.12.
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Figure 6.12: In the following published paper figure two has only half the number of paneis that it
should have. This figure has the correct number of panels.
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L INTRODUCTION

The scarch for the mechanism which causes superconduc-
tvity in the copper oxide materials is an ongoing effort
which has yet 10 reach a consensus. One factor which any
model should account for is that the critical temperature
tends to be higher in systems with multiple adjacent CuO,
layers, and even in systems, such as YBI;CI!;O7-‘
(YBCO). in which a CuO layer is adjacent to the CuO,
layers, T, seems 10 be enhanced.

It is generally believed that the superconducting conden-
sate resides in the CuO; planes, although one interpretation
of the observed large x-y anisotropy of the zero temperature
magnetic penetration depth (a factor of ~ 1.6) in YBCO in-
dicates that there is as much condensate in the CuO chains as
in the CuO, planes (i.c.. the condensate in the chains oaly
contributes (o the penetration depth for current in the direc-
tion parallel to the chains, i.c.. the b direction).! Since it is
believed that whatever mechanism is responsible for super-
conductivity in the copper oxides is intrinsic to the CuO,
planes, some other mechanism for creating the superconduct-
ing condensate on the CuO chains is required.

In this paper we derive a Hamiltonian for a layered sys-
tem and, making a simplifying assumption that there is no
pairing between electrons which reside in different layers,
derive a pair of coupled BCS equations for a system of two
layers. cach with possibly different dispersion and pairing
interactions. In this model Cooper pairs can scatter between
the layers so that, as in a two-band model.? even if there is no
pairing interaction in one of the layers, there will still be a
condensate in that layer due to the interlayer interaction.

Although we make a particular choice for the pairing in-
teraction (which is motivated by the nearly antiferromagnetic
Fermi liquid model which lcads naturaily to a d-wave gap
for single CuO ; planes®), a d-wave solution is also found for
other types of nonisotropic pairing interactions. One result
of having gap nodes cross the Fermi surface is a low-
temperature linear behavior of the magnetic penetration
depth A ;% . as is observed in YBCO.'*~" Here we only try o
model the low-temperature behavior and relative magnitude’
in the x and y directions of the magnetic penetration depth.
The T—~T,. behavior is only reproduced for values of
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280 /T, about 1.5 times higher® than the value of 4.4
found in the BCS weak-coupling approximation. In the two-
layer model that we study here a higher value of 24, /T, is
obtained which is closer to that observed in experiments such
as angle-resolved photoemission spectroscopy (ARPES)
(Ref. 9) or CITS (Ref. 10) that measure the absolute magni-
twde of the order parameter.

We find that the presence of the chains destroys the te-
tragonal symmetry of the CuO, planes and shifts the
d-wave gap nodes in the CuO, ?hneoﬂ’thedingomlsin
agreement with an carlier model."! In this case the gap con-
tains an admixmre of s- and d-wave symmetry. Calculations
of the c-axis Josephson tunneling current show that the posi-
tive and negative parts of the order parameter do not cancel.
as for d-wave pairing in a tetragonal system, and that the
Josephson junction resistance-tunneling current products
RJ(T=0), are in the range of 0.1-3.0 meV., in agreement
with the experiments of Sun er al.'? We also calculate both
the normal and superconducting density of states (DOS) for
the CuO planes snd CuO chains separately since some sur-
face probes, such as current-imaging tunneling spectroscopy
(CITS),'® can measure them separately. Finally the Knight
shift is calculated separately for both the planes and the
chains.

In Sec. II we introduce our Hamiltonian and derive a set
of coupled BCS equations for planes and chains and other
necessary formulas, particularly the expression for the mag-
netic penetration depth in this mode!. In Sec. Il we present
the the solutions of these BCS equations as well as the re-
sults of calculations of the magnetic penetration depth. elec-
gonic density of states, c-axis Josephson tunneling. and
Knight shift. Section IV contains a short discussion and con-
clusion.

IL FORMALISM

In this section we will present a Hamiltonian in which
multipie layers are coupled through the pairing interactions
between adjacent layers. We will then make the assumption
that there is no interlayer pairs (i.e.. that each Cooper pair
resides in only one of the layers) and that there is no single-
particle interlayer hopping. The Hamiltonian of this special
case is then diagonalized and coupled BCS equations de-
rived. We then give expressions for the magnetic penetration

1200 © 1997 The American Physical Society
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depth in this model. the Knight shift, the quasiparticle den-
sity of states, and the dc Josephson junction resistance-
tunneling current product for a c-axis tunnel junction.

The generai Hamiltonian is

= ’ M
H= Lza‘ Exagldyr o81.8% Ox) g0k .a)

1
Y u.gn Vu.nﬁvdﬂl'u..“'-u.n"qr.»"-u.lv (1

where the greek indices enumerate the layers, the af,
(ay o) create (destroy) electrons of momentum k in layer a
(k is in units of a~' where a is the lamtice parameter).
£y qg 1S the clectron dispersion. and Vy o 44,4 is the pairing
interaction.

Performing a mean field analysis, we get

H= gs Exaslay; JBur. gt Y g0, a)

-;23 (Auapalr a8ly gt He)+C.

where C is a consum. H.c. indicates the Hermitian conju-

gate, A._,,,-ﬂ' 2q. Y0V g apyiXe ys AE the Order param-

eters, and xo 4™ (347,43 -4, 4) arc the pair susceptibilities.
Writing this in Nambu spinor notation, we get

H= 2 Al Avaphug.
kaf
where A;_.-[a;t.a a 'N.a] and

Caas

Ay og™ @

Ala’ ]
A:..a ~frap]

In this model the magnetic penetration depth is given by
the expression'

n

_y 8me
Ay TRIT

2 Hp W se(Gr aslamo=Gran).
3)
where

~ af( El.a)

f(Eva) -~ f(E
Gl.aﬁ- 3E~.’ 5.‘ & IJ)

Et._ Eu

(1= 5.5).

- de .
) L 12
Y‘Llaﬂ- % U;.cy UL a8

= E, , are the eigenvalues of Eq. (2)..f(x) is the Fermi func-
tion, 4,4 is a Kronecker deita, and U, ,4 is the unitary ma-
wix which diagonalizes Eq. (2). The quantities ¢. A, and ¢
are the electron charge, Planck’s constant, and the speed of
light, respectively.

We now make the following simplification:
Vk;ny. Vl.q.ann Vl‘.c’y‘al‘ayl and Epa™Exae
=€y o89,5- This means that there is only intralayer pairing
and no interlayer pairing (i.e.. 4, ,®48, .05, and
Xo ™ Xo.78%as are both diagonal in the greek indices) and

there is no single-particie interlayer hopping. This Hamil-
tonian has the same form as that for a two-band model stud-
ied by one of us® in an earlier publication and is similar o
that studied by others.'*'® Interlayer pairing'®'® has also
been studied.

The Hamiltonian has cigenvalues given by

Eq o= Jci ,+A._z o and is diagonalized by the unitary ma-
mix
. u v
7] It § (@)
“Una Uyo
where
1 Cy,
uy = i( I+ _E._:) .
' 1 'La)
Una™ 2 ( 1 E.“.

are the usual BCS coherence factors. Using this unitary
transformation (4) we can evaluate the pair susceptibilities to
get

Age Eqe
ee™ (g8 -q1.0)= 3E (Z—kﬁ . (5

where T is the temperature and &, is Boltzmann's constant.
Note that if we had inciuded the interlayer pairing from Eq.
(1) we would have susceptibiliies of the form
(aqt.«8-¢i.8) With a® 8 and both the cigenvalues and the
unitary matrix (4) would be much more complicated.

For a bilayer system (i.c.. a= 1.2) the BCS equations are

1
Au"ﬁg (VignXer+ Ve qiakg2)-

1
Apz= 'ﬁ'g (ViqiaXer + Ve ezXe2)- (6)

where we have taken Vu...u" V._‘z, although in general
only Vi o12= V....zl is

Noting that xo2 changes s:gn [see Eq. (5)] with Ay, we
see that this set of equations (6) is unchanged by the substi-
tution {Au.V‘.‘xz}—O{—Au.—V.“lz} which means that
the overall sign of V,, o, only affects the relative sign of the
order parameters in the two layers and not their magmtudes.
This is interesting because it means that the effect on T, of
having an interlayer interaction is independent of whether
this interaction is attractive or repulsive, although some cai-
culated properties (e.g.. c-axis Josephson tunneling current)
still depend upon the relative sign of the interlayer interac-
tion. It is important (0 emphasize that any interiayer inter-
action, either antractive or repulsive. tends 1o enhance T,
and that this is consistent with the observation that T, is
higher in materials with multiple adjacent CuO layers. This
well known result can be casily shown by examining the
coupied BCS equations (6) near 7~ 7. . In this limit we can
write
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ALa= Au .
Vegas=Vasy:

where A, and V4 are numbers and 7, is a normalized func-
ton which could be taken to be 4 wave and corresponds o
the highest T.. The coupled BCS equations (6) can then be
writlen as

i)

A (”Q) ( Eqi )
A,=A v,,QE —-—m TP

(77.) ( )
+A~vn-52 —nnh TR AR ()

We now assume that A, is the dominant superconducting
channel when V3=V, =0 and obtain, assuming an infinite
band with cutoff wc,

(8a)

113w
-\|=(A|M|*Alez)|l‘(—)-

T,

(8d)

l.lsﬂc
A;*(Alx“‘bdzxﬂh .

T,

where A, m V, X the density of clectronic states at the Fermi
surface. Substitution of Eq. (8b) into Eq. (8a) leads to a
quadratic in In(1.13wc/T,) with the solution

T.=113e'S, ©)

with

~ 1
=§[M!*’ln+\/(\n'hz)r““hzkzl]- (10)

This resuit is well known and is given by Eq. (6.3) on p.
105 of Ref. 23. It is aiso found as Eq. (40) of Chi and
Carbotte.” We note that A, whatever its sign, increases A
and so increases T .

If we had taken V o |2 as complex, the symmetry would
be {Ay:. VL.[.}-*{Au‘ CViqze'? where Vg
_qvu,,]e and the relative phase between the layers
would no longer be =1.

_ We note that by performing the unitary Tansformation
S'HS where

1 1
- 1 -1
*5lo o
0

1
el

- 0 Q
[~}

and making the substitutions V;=Vnp=V;+V_ .
Via=V|=V_. g;=g+t, and g,=e—t we obtain both the
Hamiltonian and BCS equations used by Liu er al.'® Our
work differs from theirs in that we allow both the dispersion
and the interaction to be different in the two layers. This is
important not only because we are able 10 model systems
such as YBCO in which there are CuO. planes and CuO
chains, but also because the order parameter in each of the
layers may differ in sign even in two identical layers.'® Other
workers have studied models in which the electrons in the
pairs reside in different layers'” (i.e.. in which only x, ;- is
nonmo)uwellasmodelsmwhlchmueunomuﬂayer
interaction'®'? (i.c., in which only V, o, is nonzero).

After solving the set of coupled BCS equations (6) at
T=0 using a fast Fourier transform (FFT) technique*''® we
approximate the order parameters A, | and A, , with

- {39) _{3g) () _(355)
A=A n /" +A0 n

+AY M anh(1.78T T 1), (11)

where the 7|’ are the three lowest harmonics given by

q(""-l.

7" = cos(k,) +cos(k,).
= cos(k,) —cos(k,).

and the A.’ are their amplitudes. The amplitudes of the
higher harmonics are all very much smaller in magnitude and
the gap nodes and the maximum magnitude of the gap.
which are the most important features of the order parameter.
are essentially unchanged by this approximation. We also
calculate the magnetic penetration depth which in this sys-
tem, since the %",, are diagonal in the greck indices. is
given by the simplified expression

af(sl.c)
"Ela
(12)

-z 47me? | oey o ac.‘,(af(xt,)

SR O& ok, ok, | den.

which is the usual expression™® summed over the layers.

The curvatre of the penctration depth curve. A (T
(and also its low-temperature slope), is governed by the ratio
280 /T. . where Ay, is the maximum value of the order
parameter in the first Brillouin zone, and is close to a straight
line for the d-wave BCS value of 24 pg, /T.=4.4. The pres-
ence of the interlayer interaction increases this ratio and
makes the A 3(T) curve have a downward curvature. Ex-
perimental measurements of both the ratio 24 .., /T, (Refs.
10 and 21) as well as the penetration depth in high quality
crystals of both YBCO (Ref. 1) and BSCO (Ref. 22) indicate
that this ratio is quite high in the HTC (high-T ) matenials —
on the order of 6 or 7.

Other quantities calculated are the Knight shift which is
given by
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af(Ey)
9E,

the normal state electronic DOS which is given by

Vw)= =3 SKea-w)= lim—s C
Mel=gg Ao = limoqs G-a e
(14)

the superconducting electronic DOS which is given by

M= =S SE-w)= | -l—E—y—!r
' (w)—ﬂ [y . w)-r‘mﬂ’ﬂ Y (Ey—w)*+T*

-0
Q15)

1
xmxaﬁ; (13)

and the c-axis Josephson junction resistance-tunneling cur-
rent product RJ(T) through a superconductor-insulator-
superconductor junction for incoherent c-axis tunneling is
given by the relation:**

2nT
—_ L R
RIUD= TN S Al )A%(w,). (16)

1 ]
where

Al"“)

1
AHB (o Ym 52 e

v (e TP+ (A + ()"

in which the superscript L(R) indicates on which side of the
Junction the dispersion and order parameter are on, the sum
over w,mwT(2n— 1) is for all Matsubara frequencies. R is
the resistance of the junction, and N“*(0) is the normal
state electronic DOS given by Eq. (14). If the tunneling were
coherent, the matrix clement (which is incorporated into R)
would have a (k—k’) dependence. and the sums over k
space would not be separable.

L RESULTS

In this section we make an explicit choice for the disper-
sions and interactions and then present the results of our
numerical solutions to the coupled BCS equations (6) as well
as the results of our calculations of the magnetic penetration
depth, densities of states, Knight shift, and Josephson cur-
rent. As we wish 1o model YBCO we will want to account
for both the CuO, planes as well as the CuO chains. Further,
we will assume that we do not have a pairing interaction in
the chains. but only in the planes as well as an interiayer
interaction. This means that all of the order parameter in the
chains is due to the interfayer interaction. We note that al-
though our solution technique* allows the order parameters
1o be complex and to have a relative phase between layers
we find that in the models studied here, to within an overall
phase, the order parameters are all real with a relative phase
of =1.

For the dispersions, £, ,. we use

Eena=~21.[(1+ €,)cos(k,) +cos(k,)~ 2B cos(k,)cos(k,)

where the parameters {¢, .€, .8, ..} are chosen so that the
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FIG. 1. Model of YBCO Fermi surfaces for chains (loag dashed
curve) and planes (closed short dashed curve) in the first Brillouin
zone. The (=, ¥) point is &t the center of the figure. For the chains
the parameters {¢,.¢,.8,.4,} in Eq. (17) are {~50,-0.9.0.1.2}
and for the planes they are {100.0.0.45.0.51).

Fermi surface and bandwidth are close approximations to
those observed experimentally™ (see Fig. 1). In order to
model YBCO we chose {100.0.0.45.0.51} for the pianes and
{—50.—0.9.0,1.2} for the chains. In both dispersions ¢,
which sets the overall energy scale, is in units of meV. For
the interactions, Vy o 9. We chose the form of Millis er al.?
(MMP form)

~ Xo
VL‘.“ 8.‘ 1+ éo'k— q_q .

where x; is a constant that sets the scale of the susceptibility,
£ is the magnetic coberence length, Q= (7. w) is the com-
mensurate nesting vector, and g4 is the coupling to the
conduction electrons, the size of which can be fixed to get a
desired value of the critical temperature and can be consid-
ered to contain x,. The remaining parameter §;. is given in
Ref. 2 and will not be varied in this work. In this paper we
set g»=0; i.c., there is no intrinsic pairing in the chains.
This means that any superconductivity in the chains is in-
duced by the interlayer interaction g,,. since we have set the
hopping between layers to zero0. The effect of an interlayer
hopping has been extensively studied in works by Atkinson
and Carbotte™ as well as others.!4!317-19

We solve the coupled BCS equations (6) using a FFT
technique * In Fig. 2 we plot the lowest three Fourier com-
ponents (11) of the zero-temperature order parameter as a
function of the interlayer interaction (higher Fourier compo-
nents are all much smaller in magnitude) for two different
intralayer interactions (upper and lower frames) in the planes
(left frames) and chains (right frames). The values plotted in
Fig. 2 are the amplitudes A A" and A\ given by Eq.
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FIG. 2. Caiculation of the zero-temperature order parameters as
a function of the interiayer interaction g; for two fixed values of
the interlayer interaction g,; (upper and lower frames) presented for
the pianes (right frumes) and chains (left frames) separately. In all
frames the solid curve is the d-wave component of the order pe-
rameter, the short dashed curve is the extended s-wave component,
and the long dashed curve is the isotropic s-wave component. [n the
upper frames g,;=26.2 and for g\2=10, T, = 100 K At g,,=0 the
order parameter is zero in the chains and is pure d wave in the
planes. As the interiayer interaction is increased the order paramneter
becomes present in the chains and there is a mixing of s-wave
components. In the lower frames g;;=9.18 and for g,;=20,
T.=100 K. At g,=0 the order parameter is zero in both the chains
and the planes. As the interlayer interaction is increased the order
parameter becomes present in both the chains and plancs and there
1s a muxing of s-wave components with the isotropic s-wave com-
ponent cventually becoming dominant. The feature at g2~ 25 oc-
curs when the gap node leaves the Brillouin zone. As discussed in
the text there is a g, ~ g2 symmetry. Both g,; and g, are in
umts of ¢,; g . the cuupling in the chains, is set equal to zero.

(11) with a=1 for the plane layers (right frames) and
a=2 for the chain layers (left frames). For the orthorhombic
system studied here all three of these harmonics belong o
the same irreducible representation of the crystal point group
except for £,,=0 when the tetragonal CuO, layer is decou-
pled from the orthorhombic CuQO layer. Receat CITS
measurements™ show that the gap has a magnitude of ~20
meV in the chains and ~30 meV in the planes which would
Mﬂmm‘lzkw-
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For the first choice of intralayer interaction (upper
frames). £,,=26.2, and there is no order parameter in the
chains when there is no interlayer interaction (i.c.. g,;=0)
and the order parameter in the planes is pure d wave. As the
interlayer interaction is increased from zero. s-wave compo-
nents appear in the planes and all three components appear in
the chains. This “*s+d mixing’" is caused by the breaking of
the tetragonal symmetry upon the introduction of the chains:
there is no relative phase between the s- and d-wave com-
ponents within either the planes or chains but there can be a
relative phase between the order parameter in the planes and
chains. In the range of g, explored here the d-wave compo-
nent in the plane remains dominant but for sufficiently strong
interlayer interaction the isotropic s-wave component even-
tually dominates”” (i.e.. the gap nodes disappear). For inter-
action parameters {g;,.£,2.822}={26.2.10.0} the critical
temperature is 100 K and the maximum vzive of the gap in
the Brillouin zone is 27.5 meV in the planes and 8.0 meV in
the chains, while the maximum values on the Fermi surfaces
are approximately 22 and 7 meV. respectively. The ratio
2800 /T, is 6.4 in the planes and 1.9 in the chains.

For the second choice of intralayer interaction (lower
frames), g,,=9.18. there is no order parameter in cither the
chains or the planes when there is no interlayer interaction
(i.e.. £12=0). As the interlayer interaction is increased
d-wave and then s-wave components of the order parameter
appear in both the planes and chains. Again. there is no rela-
tive phase between the s- and d-wave components within
cither the planes or chains but there can be a relative phase
between the order parameter in the planes and chains. In the
range of g,, explored here, the d-wave component is domi-
nant. At approximately g,,=15 the gap nodes no longer
cross the Fermi surface in the chains; the feature at
£12~ 25 coincides with the gap nodes leaving the Brillouin
zone and the isotropic s wave becoming dominant. For in-
teraction parameters {g,,.812.8 22} = {9.18.20.0} the critical
temperature is again 100 K and the maximum value of the
¢ap in the Brillouin zone is now 32.8 meV in the planes and
20.1 meV in the chains, while the maximum values on the
Fermi surfaces are approximately 27 and 17 meV, respec-
tively. The ratio 244, /T, is 7.6 in the planes and 4.7 in the
chains.

Note that for £,2>0 all of the s-wave components of the
order parameters in both the planes and chains have the same
relative sign and the d-wave compoments have opposite
signs, while for g,,<0 all of the relative signs are reversed
but that the magnitudes of the components are insensitive to
msi‘n Orglzlsmlﬁﬂ&- (6).

In Fig. 3 we plot the density of states (DOS) for the
planes (left frames) and chains (right frames) calculated us-
ing the lowest three harmonics (11) of the solution to the
BCS equations (6) with two sets of interaction parameters.
The dotted curves are the normal state DOS (NSDOS) and
the solid curves are the superconducting DOS (SCDOS). The
insets show the Fermi surface (dashed curves) and gap nodes
(sclid curves) in the first Brillouin zone [with (7. 7) at the
center]. The peak in the NSDOS (dotted curves) is the van
Hove singularity located at 21 (2— .- 48,2 ¢,) which is
at —62 meV in the plane layers (left frames) and at 10 and
—170 meV in the chain layers (right frames). They are
caused by the saddle points in the clectron dispersions.
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F1G. 3. Cailculation of the superconducting (solid curves) and normal (dotted curves) density of states (DOS) for two sets of interaction
parameters g, ¢ (upper and lower frames) presented scparsiely for the planes (left frames) and chains (rigit frames). Some experiments are
surface probes and may probe cither the planes or chains independently. The insets show the Fermi susface (dashed curve) and gap nodes
(solid curve) in the planes and chains for the two different parameter choices in the first Brillouin zone with (v, ) at the center. In the upper
frames, (a) and (b), we have chosen {g,;.£:2.822} = {26.2.10.0} which gives T.=100 K In the lower frames. (c) and (d). we have chosen
{£11.812-822} = {9-18.20,0} which aiso gives T, =100 K. Note that for the second parameter choice the gap nodes do not cross the Fermi
surface in the chans [frame (d). inset] and that the DOS is gapped. The c-axis Josephsom resistance-tunneling cusrent product for a
YBCO-Pd junction for a pure J-wave order parameter is zero due 1o the equal parts of the order parameter with opposite signs. Here this is

oot the case (insets) and the c-axis Ji

resistance-tunneling currents
meV. (c) =0.25 meV. and (d) 2.17 meV. The relative sign is due to the relative sign of the s-wave components of the order parameter (i.c..

the only part which coatributes).

Eyq. 3 (0.= ) and (= 7.0). These van Hove singularities
are shifted by the presence of the superconducting order pa-
rameter (solid curves) by an amount that depends upon the
value of the order parameter at the saddle poi in frame
(c) these values are very different and the van Hove singu-
larity is split, and in frame (a) these values are almost the
same and no splitting is evident.

An interesting feature is that the low-energy behavior
(w~0) of the SCDOS is govemed by the smallest local
maxima of the gap on the Fermi surface when the gap nodes
cross the Fermi surface and by the minima of the gap on the
Fermi surface when there are no gap nodes which cross the
Fermi surface. In Fig. 4 the magnitude of the gap along the
Fermi surface is plotted. In Figs. 4(a)—4(c) one can see that
there are two different local maxima of the on the Fermi
surface and these maxima are (to first manifested as
twin peaks in the SCDOS [Figs. 3(a)-3(c)}: these peaks are
distinct from the van Hove singularities which are also

]
w{mev]}

product for a YBCO-Pb junction are (a) =0.18 meV, (b) .35

present in the normal DOS (dotted curves in Fig. 3) and
which are slightly shifted in the superconducting state.”® In
frame (a) of Fig. 4 the local maxima of the gap on the Fermi
surface are 16 and 18 meV, in (b) they are | and 7 meV, and
in (c) they are 25 and 3 meV. In (d) one can see that there are
no gap nodes which cross the Fermi surface; the maximum
and minimum values of the gap on the Fermi surface are 17
and 4 meV, respectively. In Fig. 3(d) the finite gap in the
SCDOS corresponds to the minimum of the gap on the Fermi
surface and the peak to the maximum.

The junction resistance-wnneling current prod-
uct RJ(T=0) for a c-axis YBCO-Pb junction. given by Eq.
(16) with A{ and &f appropriate for Pb.!' is =0.25 and
=22 meV for the planes and 2.2 meV and 3.4 meV for the
chnmfonhemchowuofg.,made.mamcmmm
carlier calculations.!! The relative sign is due 10 the relative
sign of the s-wave components (i.e.. the only part which
contributes) of the order parameters. The actual c-axis Jo-
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FIG. 4. The magnitude of the gap on the Fermi surface a3 a
function of angle for the four cases of Figs. 2 and 3. The angle # is
measured from the center or ( 7. ®) point of the Brillouin zone with
the y axus (i.e.. the vertical in the insets of Fig. 3) corresponding to
#=0. Frames (b) and (d) do not span all angles due to the Fermi
surface not being closed in the chain layer. For the first choice of
mteraction  parameters. {gq;.812.82)} ={26.2.10.0}. the ratio
20 i rsy /T, . where Aoy ey is the maximum value of the gap on
the Fermu surface, 13 4.3 and 1.6 for the planes and chain, respec-

uvely: for the second, {gy;.£,2.82) ={9.18.20.0}. they are 5.7 and
38.

sephson junction resistance-tunneling current product
RJ(T) for a junction made with untwinned YBCO would be
some weighted average of the plane and chain c-axis tunnel-
ing currents depending upon the relative abundance of chains
and planes in the top layer of the YBCO. For a twinned
sample with both twins equally abundant there would be zero
net tunneling current, although there is evidence that for
single crystals of YBCO there can be up to a 5:1 ratio in the
relative abundance of the two twin orientations.”® We note
that due to the different magnitudes of the order parameters
in the two layers the model presented here is consistent with
the observed = shifts in comer junctions™®** for both atrac-
tive and repulsive interlayer interactions g,5.

In Fig. S we have plotted the magnetic penectration depth
(left frames) and the Knight shift (right frames) calculated
with the lowest three harmonics (11) of the solutions of the
BCS equations (6) for the two choices of interaction param-
eters. In the penetration depth frames (left) the solid curve is
for the x direction (along the chains) and the dashed curve is
for the y direction (perpendicular to the chains). The dotted
curve is 1 —(T/T.)* and is plotted for comparison. The ratio
A,y /A, at zero temperature is 1.37 for both interaction pa-
rameter choices since the zero-temperature penetration depth
is a normal state property {i.c.. the second term in Eq. (12)
does not conmibute at zero temperature]l The zero-
temperature penetration depth is largely governed by the
bandwidth [i.c.. 41,(2— ¢,)] — the larger the bandwidth, the
larger the zero-temperature penctration depth.

As pointed out above, the curvature of the penetration
depth curve, A (D). is largely governed by the ratio
2800 /T, and is a straight line for the d-wave BCS value of
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4.4. The presence of the chain layer and the interlayer inter-
action increases this ratio in the plane layer but it remains
low in the chain layer due to the absence of an interaction in
this layer. It is this lower value that makes A, *(T) (along the
chains) have upward curvature (solid curves).

One can see [Figs. 5(a) and S(c)] that the in-plane pen-
etration depth perpendicular to the chains (dashed curve)
closely resembles that observed experimentally in high qual-
ity crystals,'2 and is largely determined by the presence of
gap nodes crossing the Fermi surface, which cause the low-
temperature linear behavior, and the ratio 24, /T, which,
for values above ~4.4, make the curve of A, *(T) have
downward curvature. The penetration depth along the chains
(solid curves), however, has an overall upward curvature due
to the low values of 24, /T, in the chains. It is the com-
ponent of the penctration depth due to the chains that makes
the overall A, (T have downward curvature. The compo-
nent of the penetration depth due to the chains perpendicular
1o the chains does not contribute significantly to the overall
penetration depth in this direction, A;? is due almost en-
tirely to the CuO, layers. For a single plane model® we
would have {g,,.£:2.8222}={30.0.0}, 2A../T. would be
4.5, and the penetration depth would closely resembie the
straight line 1 —(T/T,).®

The Knight shift [Figs. 5(b) and 5(d)]. which is calculated
independently for the planes (solid curves) and chains
(dashed curves), has a low-temperature power law behavior
when the gap nodes cross the Fermi surface (planes, both
figures and chains in the upper figure) and an exponential
behavior when the gap is finite over all the Fermi surface
(chains, lower figure). When these quantities are measured®
the distinction between a power law and exponential behav-
ior rests upoa the choice zero and so is not a reliable indica-
tor of the presence of gap nodes on the Fermi surface.

IV. CONCLUSION AND DISCUSSION

We have derived a general expression for the Hamiltonian
in a multilayer system and then made a simplification and
have explicitly diagonalized the Hamiltonian. A set of two
coupled BCS equations is then derived for this simplified
sysiem which is subsequently solved numerically by a FFT
technique. This technique, unlike others.'*'* makes no as-
sumptions about the functional form (and hence the symme-
try) of the order parameter in cither layer or any relationship
between the order parameters in the different layers.

Using the three lowest harmonics (11) of the solutions
found for the coupled BCS equations (6) the magnetic pen-
etration depth (12), normal and superconducting density of
states (14) and (15), Knight shift (13), and c-axis Josephson
resistance-tunneling current products (16) were calculated.

Our choice of electron dispersion relations was made so
as to approximate the YBCO system in which there are lay-
ers consisting of CuO; planes as well as layers which con-
tain CuO chains. Our choice of interactions was made so that
there is a pairing interaction in the CuO, layer as well as an
interlayer interaction, but no pairing interaction in the CuO
layer.

The solution of the BCS equations is predominately of a
d-wave character, but because the tetragonal symmetry is
broken by the presence of the chains, there is some mixture
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FIG. 5. Calculations of the
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of s-wave order parameter with no relative phase between
the components, although the relative sign of the order pa-
rameter in the planes and chains may be = |. Further, we
find that due to a symmetry in the set of coupled BCS equa-
tons derived, the sign of the interlayer interaction affects
only the relative sign of the order parameter in the two layers
and not their absolute magnitudes (although some properties
could be affected by this relative sign). We also find that any
interlayer interaction strongly enhances the zero-temperature
order parameter and, hence, the critical temperature. This is
consistent with the observation that T, is higher in materials
with multiple adjacent CuO, layers.

Furthermore, we find that the presence of gap nodes in
only one of the layers is enough to produce a low-
temperature linear behavior for the penetration depth. al-
though if the minimum gap in the chains is wo large, the
A (T) and A;,*(T) curves can cross. Our calculation of the
magnetic penetration depth gives a form that is similar to
that measured experimentaily perpendicular to the chains,
but not along the chains due to the smail value of
24 0a: /T, in the chains. This leads us to speculate that there
may be intrinsic pairing in the CuO chains of the same order
as in the CuO. planes since the 2A,,, /T, ratios must both
be large (6 - 7) for the low-temperature slope of the
A,.*(T) curves to be approximately equal as is observed in
experiments."> This would tend to support the simple
sxnﬁl;band orthorhombic model previously proposed by
us.

Our calculation of the superconducting density of states

indicates that a surface probe may measure very different
resuits depending upon whether the top layer is CuO chains
or CuO, planes. Depending upon the interlayer pairing
strength the CuO chain layer may have a very narmrow
**d-wave’ -type gap or a finite *‘isotropic s-wave’"-type gap.

Our calculation of the c-axis resistance-
unneling current products RJ(T=0) for a YBCO-Pb junc-
tion for several choices of g, 4 ranges from 0.18 0 0.50 meV
for the planes and from 2.35 1o 3.06 meV for the chains, with
possibly a relative sign between the chain and plane layers
due to the reiative sign of the s-wave components of the
order parameters. The actual c-axis Josephson resistance-
unneling current product for a junction made with un-
twinned YBCO would be some weighted average of the
plane and chain results depending upon the relative abun-
dance of chains and planes in the top layer of the YBCO. For
a twinned sample with both twins equally abundant there
would be zero net tunneling current although there is evi-
dence that for single crystais of YBCO there can be up to a
S5:1 ratio in the relative abundance of the two twin
orientations.™
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6.5.2 Triplanar Model for the Gap and Penetration Depth in YBa,Cu;0-

In this paper, Ref. [111], the order parameter and penetration depths for several choices
of interactions are calculated. A triplanar model similar to what is actually present in YBCO was
used in the hope that this would capture the anisotropy that is present in the penetration depth
measurements. By using dispersion relations appropriate for the three layers of YBCO the zero
temperature penetration depth in the z- and y-directions was accurately modeled and, for some
interaction parameters, the temperature dependence of the penetration depth was much closer to
the experimental results than was the case in the two plane model.
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PHYSICAL REVIEW B

Triplanar model for the gap and penetration depth in YBa,Cu,0,

C. O'Donovan” and J. P. Carbotte
Departmens of Physics & Astronomy, McMaster University, Hamilion, Onzario, Canada L8S M1
(Received 11 October 1996)

YBaCuO, is a trilayer matenal wath a unit cell consisting of a CoO, bilayer with a CuO plane of chans 1n
between. Starting with a mode! of isolated planes coupled through a transverse matnx element. we consider the
possibility of intra- as well as interplane pairing within a nearly antiferromagnetic Fermi-liquid model. Solu-
tions of a set of three coupled BCS equations for the gap exhibit orthochombic symmetry with s- as well as
d-wave contributions. The temperature dependence and a-b in-plane anisotropy of the resulting penetration
depth is discussed and compared with experiment. [S0163-1829(97)06110-9]

L INTRODUCTION

Within the unit cell of YBa;Cu;0,, (YBCO), there are
two CuO; planes and a single set of CuO chains oriented
along the b axis. The chains break the tetragonal symmetry
of the system and make it orthorhombic. The role of the
chains is not yet fully understood but it is clear that they lead
10 a large in-plane anisotropy in various properties such as
the value of the zero temperature penetration depth and the
dc conductivity, etc.'”’ For example, in optimally doped
YBa;Cu4y0¢9s. the penctration depth along the a axis at
T=0 is A,(0)~1600 A while that along the b axis is
A5(0)~ 1030 A.2 At 300 K the ratio of the dc resistivities
Ps/p, is larger than a factor of 2. These large anisotropies
would not exist in a purely tetragonal system. The role of the
chains in YBCO has been investigated before using a two-
plane model® as well as a plane-chain model.>'? While these
calculations have given us considerable insight, such a model
is not fully realistic. Here we want to explicitly introduce the
trilayer nature of the system. We start with a pair of isolated
CuO; planes and a set of chains (CuQ plane). They are
assumed to be coupled through a transverse matrix element,
t;, between the chzin and cach of the planes and 7, between
the two planes. A set of three coupled BCS equations are
used to describe the pairing with intra- as well as interband
coupling. For the pairing potential, we use the form of the
magnetic susceptibility introduced in the phenomenological
nearly antiferromagnetic Fermi-liquid model of Millis, Mon-
ien, and Pines'' (MMP) which we multiply by a dimension-
less parameter g,s which allows us to vary at will the
strength of the diagonal (in-plane) and off-diagonal (inter-
plane) couplings. Here the indices a8 range over the three
subbands. Numerical solutions of these equations using a
fast-Fourier-transform technique give solutions which are an
admixture of d, sp. and s symmetry. For the tetragonal
crystal-point group, these three symmetries would belong to
two different irreducible representations and would, in gen-
eral, not mix. But because of the existence of the chains, the
system possesses reduced symmety although. in most cases
considered, nodes remain oa the Fermi surface and the linear
low-temperature variation of the penetration depth remains.
In Sec. 11, we give the formalism. Solutions of the gap equa-
tons are discussed in Sec. III along with resuits for the pen-
etration depth. A brief conclusion is included in Sec. IV.

0163-1829/97/55(13)/8520(9)/310.00 s
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. FORMALISM

Consider a three-plane per unit-cell system with energies
£y Here a=123 is an index that enumerates the three
planes: two CuO; which are identical 0 each other and one
CuO plane consisting of chains oriented along the b direc-
tion. The momentum index k is restricted to the two-
dimensional CuQO; Brillouin zone which has tetragoaal sym-
metry. A tight-binding model will be used to describe these
isolated planes of the form:'2-'4

Exa= =2t [(1+e,)cos(k,)+(1—e,)cos(k,)
—2B.cos(k,)cos(k,)~(2=-28,~u,)]. (1)

where ¢, is the first-neighbor hopping parameter, ¢, an
orthochombic distortion which can be used to describe the
chains, B, is the second-neighbor hopping in units of 7, . the
k; are in units of reciprocal-lattice vectors, and u, is related
to the chemical potential and determines the filling. Here it
will be treated as a parameter. In what follows, the £,'s will
be taken to be the same for simplicity and denoted by ¢, .
The three-dimensional nature of the system is introduced
through transverse matrix clements, ¢, between the CuO,
planes and the CuO chains and ¢, directly between the
CuO;, bilayer. This changes the energies &, ., o band ener-
gies £, , which we then use in the BCS gap equations as-
suming singlet pairing between equal and opposite momen-
twm pairs. Including intraband (on diagonal) as well as
interband (off diagonal) pairing through the two-body poten-
tial Vs .g. Which describes scattering from k to k' with
a and B band indices, the gap in the ath band A, _ satisfies
the BCS equations:'?

EI'..

m . )

A, = 1 2 v Al'.- |(
Lea L, M2k,

In Eq. (2). 1 is the crystal volume. &, is Boltzmann's
coastant, T is temperature, and

Ellz v‘-L-*AI.. (3)

© 1997 The American Physical Society
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FIG. 1. (a) and (d) are the absolute value of gap as a function of angle # measured clockwise from the &, axis along the Fermi surface
for the CuO, plane and CuO chains. respectively. (b) and (¢) are Fermi-surface contours (dashed line) and gap zeros (solid line). while (c)
and (f) are the contributions to the inverse square of the penetration depth A ~3(7) as a function of temperature along o (dashed curve) and
b direction (solid curve). Note that the chains (d), (¢). and (f) contribute aimost exclusively (0 the b direction. The same pairing was included
in chains and plane (Eq. 13)] yet note the very small energy scale for the gap in the chains (d) as compared to the gap in the piane (a). This
1s due (o the quasi-one-dimensional nature of the chain Fermi surface. Note also that the low-energy scale in the chains leads to the sharp
drop 1n penetration depth in b direction with increasing temperature seen 1n (f).

are the quasiparticle energies of the ath band in the super-
conducting state. The singile-particle normal-state band ener-
gies for a two layer model come from the Hamiltonian:

4
H__:[tl l] @
n 4]

with cigenvaiues

SIS e

and for the three-layer model come from the Hamiltonian

€ 4L n

H=|tu & n (6)
o gy
with cigenvalues
&=, —n
EyteEatts |
€-.=—l—7'—.+;v'(€|‘cz)r*’lz(z‘l‘z‘z*‘:)*m
and
~ gtexytn; 1
c3=——?——i\f(:|—zz)2+tz(2z|-2¢1+11)+8?f

which are, respectively, the solid. dashed. and dotted curves
in Fig. 5.

T (K}

The set of three coupled equations (2) for the gap’s A,
in the ath band (a=1.2,3) are explicit once the pairing po-
tentials V) ;- .4 are specified. Different models could be
used. Here for simplicity and to be specific, we will assume
that the superconducting condensation proceeds through the
spin susceptibility x, o+ which for the nearly antiferromag-
netic Fermi liquid is peaked at the commensurate wave vec-
tor (7. 7) at the comer of the Brillouin zone. So as not to
introduce new parameters, here we will use the form of
Xxas introduced mmo*h a fit to NMR data by Millis, Mon-
ien. and Pines (MMP)."! Their susceptibility and consequent
pairing potential has the form:

vu""_—s'.—‘—jl TER—r—Q (%))

where the scale on V- .4 has been set by 7o for conve-
nience and g .4 are dimensionless parameters that determine
the overall size of the pairing as well as the relative amount
of diagonal (o= 8) and off-diagonal (a# 8) coupling de-
sired. In all our calculations, the relative sizes of the g, will
be chosen at will with absolute value adjusted to get a critical
temperature of 100 K typical for the oxide superconductors.
The other parameters in Eq. (7) are also specified and fixed at
values given by MMP. £,=2.5 A is the magnetic coherence
length and Q is the commensurate wave vector (7, 7) in the
two-dimensional CvO,, Brillouin zone.

In writing down the set of equations (2), we have asstmed
that the coherence length transverse to the planes is short so
that the gap can have different values in the different bands
£x.«- The model still allows for a single gap. applicable to
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all three planes. o exist. The appropriate limit is g,4 inde-
pendent of a and B in which case A, , on the left-hand side
of Eq. (2) is ciearly independent of a and a single gap pa-
rameter describes the entire system.

Numerical solution of the set of equations (2) using fast-
Fourier transforms makes no assumption on the symmetry of
the resulting gap parameters A, , as a function of momen-
tum k in the two-dimensional Brillouin zone. In our work,
we find that these solutions coasist of a mixture of d,:_ 3.
So. and s 2. 2 symmetries with higher harmonics as well as
the more familiar lowest ones which are

so~n V=1, (8a)
55342~ 7y mcos(k,) +cos(k,), (8b)
2o y2~ 7\ mcos(k,) — cos(k,). (8¢)

We are now ready to present results including the tem-
perature dependence of the penetration depth A(T) for vari-
ous model parameters. To obtain the penetration depths. we
have adopted the following approximate procedure. The low-
est harmonics represented by Eqgs. (8a) to (8c) are projected
out of our numerical solutions and these are used in ail fur-
ther caiculations. This neglects higher harmonic contribu-
tions but is an adequate procedure since we are mainly inter-
ested in qualitative results and trends. In any case, our model
for the pairing interaction (7) is simplified and is not be-
lieved to be accurate. We use a BCS approach while it is
necessary to go to an Eliashberg formulation to get quantita-
tive results. This goes beyond the scope of this work.

For completeness. the approximate formula for the pen-
ctration depth employed here is

TR of(Ena) _ If(End)
Y & lete Fra FE, o

where the constant ¢ is the speed of light, v, , is the ith
component of the electron velocity in the ath band

. 9

1 98y o
Vo, ™ i ok, . (10)
and f(x) is the Fermi-Dirac distribution given by
flx)m(etna/tal4 )=t an

We are now in a position to present resuits.

[IL RESULTS

Before presenting results for the trilayer model. it is in-
structive to consider a bilayer consisting of a CuO, plane
with tetragonal symmety and a set of CuO chains directed
along the b axis which has lower arthorhombic symmerry.
This difference in symmetry has a drastic effect on the solu-
tion of the BCS gap equation. To illustrate this, we take a
model band structure

500 00 045 051
} (12)

{‘°""""“'}’{so.o 10 000 12

C. O'DONOVAN AND J. P. CARBOTTE ss

with 75 in meV and the other parameters are dimensioniess.
We also consider the pairing potential to be of the MMP type
and of equal magnitude in both chains and plane. So as to
have a single critical temperatre, we aiso include a smaller
off-diagonal pairing g,5#0 for a# 8. Specifically, we take

38.75 I.O]

1.0 3875 (13)

gaﬁ=

Solutions of the BCS equations using fast-Fourier trans-
forms give an admixture of 5. 5,2.,2. and d,3_,: which all
belong to the same irreducible representation for an ortho-
rhombic system. The gap amplitudes are

(29)
-0.196 -0467 9.482) | ', .
Sue™| 0664 -0182 Lag2| | ™ |-
,'(.l)

with the 7}’ as given in Egs. (8a)—(8c). We note that in the
CuO, plane, the d,2_,: component is dominant with a small
admixture of 5o and 5,:.,: having the opposite sign (out of
phase by 7). Although the same MMP interaction as used in
the CuO planes has been assumed to also apply on the CuO
chains, the very different symmetry of the quasi-one-
dimensional Fermi surface has led 10 a gap on the chains
which is smaller by an order of magnitude. The d,:_,: com-
ponent has the same phase as it has in the planes but it is
now not much larger than its s¢ and s,2. ,: parts. In Fig. 1(b)
(middle upper frame) and (e) (middle lower frame), we show
the CuO, and CuO Fermi surfaces (dashed lines), respec-
tively, as well as the contour of gap zeros (solid lines). In
Fig. 1(b), the Fermi surface has tetragonal symmetry but the
gap zeros have nevertheless moved off the main diagonals
(solid curve) because of the admixture into the mainly
d,2_,z gap function of 5o and s5,2.,2 components. As these
are negative in Eq. (14). the zeros cross the Fermi surface at
an angle (#) measured clockwise from the negative &, axis

1 p—r—r—r—r—r
. )
.
A e, ]
2, NRec- )
— N .
- NoL
- N . - 4
=< N e
\ \\ o.
— \\ "
L 4
S L
= r N
L \ o
*e
I !
° o
0 1
T/Tg

FIG. 2. Total contribution 1o the a¢ (dashed) and b directions
(solid) as a function of temperature to the inverse square of the
penetration depth normalized to its zero-temperature value. The
dots are experimental values (Ref. 1) with the b direction falling
below the g direction. The b direction theoretical curve is much too
steep o8 jow temperature because of the small energy scale for the
chain gap.
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FIG. 3. (a). (b). and (c) apply to the CuO; planes while (d). (). and (f) apply to the CuO chains with a nearly one-dimensional Fermi
surface. The painng interaction is assumed to be the same on chains and planes and off diagonal so that a single gap results. (b) and (e) give
the Fernu-surface contours (dashed curve) and the gap zeros (solid curves) which are the same in both frames but different from pure d wave
which would be lines on the main diagonals in the Brillouin zone. (a) and (d) give the absolute value of the gap as a function of angle & along
the Fermu surface measured clockwise from the &, axis. (c) and (f) give partial contributions to the inverse square of the penetration depth
as a function of temperature along a direcuon (dashed) and b direction (solid). Note that the zevos in the gap are not at 45° and 135° as they
would be 1 pure d wave [Fig. (a) and (d)].

which is slightly larger than 45°. This is seen more clearly in
Fig. 1(a) where we show the absolute value of the gap on the

For the chain case. the gap zeros [solid curves in Fig.
1(e)] are displaced much more off the main diagonals and as

Fermi surface as a function of & for the plane. Note that the
gap does not display full tetragonal symmetry in that the
zeros are displaced from 45° and 135° and that the gap at
90° is smaller than it is at 0° and 180°.

1

[MO)/A(T)]?

FIG. 4. Total contribution to the a (dashed) and b directions
isolid) as a function of temperature to the inverse square of the
penetration depth normalized to its zero-temperature value. The
dots are expenmental values (Ref. 1) with the b direction falling
below the g direction. The agreement is good snd the value of
A /Ay=1.4 15 also in reasonable but not exact agreement with ex-
penment.

illustrated in Fig. 1(d) the value of the absolute value of the
gap as a function of 8 along the quasi-one-dimensional chain
Fermi surface is very small. Note that this is a result of the
orthorhombicity (i.c., geometry of the Fermi surface) of the
chain Fermi surface as the pairing potential has been as-
sumed to have the same size and form in the chains as in the
tetragonal planes. For the given value of pairing interaction,
the gap ratio 24 o, /T is 3.86 in the plane while it has been
reduced to 0.47 in the chains. Finally. it is important o note
that in Fig. 1(d), the gap on the Fermi surface starts at a finite

FIG. 5. The three Fermi surfaces in the tripianar model of
YBCO. The chainiike band (dashed curve) is nemly ome dimen-
(dotied curve) due to its interaction with the chains and the even
bend (solid curve) remains tetragonal.
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18] [meV)

value of ¢ reflecting the geometry of the nearly linear chain
Fermi surface. The very small energy scale exhibited by the
gap in the chains leads directly to a very steep slope in the
resulting b-axis penetration depth as seen in the solid curve
of Fig. 1(f). The contribution of the chains to the a-axis
penetration depth is by contrast (dashed line) very small.
This is quite different from the contribution of the piane to
the penetration depth illustrated in Fig. 1(c). In this case, the
nearly tetragonal symmetry of the Fermi surface leads to
very similar contributions for the temperature dependence of
the a- (dashed) and b- (solid) direction penetration depth.
The small differences between these two curves as 1o abso-
lute value of A "3(0) at zero temperature is due 1o the ortho-
rhombic symmetry of the dispersion [Eq. (1)]. Unfornately.
these small differences are not measured directly in an ex-
peniment which probes the sum of contributions from chains
and planes. i.e.. Fig. 1(f) and 1(c). This sum is shown in Fig.
2 where it is compared with experiment’ (circles). The agree-
ment is poor aithough the order of the zero-temperature
slopes is correct, i.c.. it is steeper in the chain direction (b
direction). The large discrepancy can be traced directly to the
small energy scale found in the chains in this model and we
can conclude that the data favors a gap which is of the same
magnitude in the chains as it is in the planes. Finally, we
note that A, /A, = 1.4 in our calculation, which is reasonably
close to (but not exactly) the measured value.

It is easy to modify our model so that chains and planes
have the same gap value. A single gap results for A, , inde-

T T T =
» b
3 T
3 g
= L
< i
{
° - 4
L] L} » 18 - a
(d) 8 o 100
® T (K]

FIG. 6. Results for the triplanar model illustrated in Fig. 5 assuming no pairing disgonal or off diagonal on the chains which then remain
normal. (a). (b). and (c) apply to the odd-band (orthorhombic symmetry) while (d). (¢). and (1) apply (o the even-band (tetragonal symmetry).
(a) and (d) illuwuetheabsolutcvnlmo(megnpllou;meFmMmulMonofmgleOmdclockwuefmmthek,m
Thuecmadonuhavefuuzemondsymnecymdm:mmdhplxedmfmmthe:duld,z-,xcuewmchwmudbeu
45° and 135°. (b) and (e) g1ve the Fermu surface (dashed line) and gap nodes (solid line) for odd and even plane (tetragonal). respectively.
(c)and(nngepamalconmbunmmmcmvaus@mdmewdepthunﬁmnmo{wfmmea(duhed)mdb
(solid) directions. Note that the odd (orthorhombic) band gives a contribution to the » direction which is about twice 1ts contribution to the
adirecuon.whxlemecvenbmd(xungoul!)givelmlythemneconuibuionmbo(hdincnom.lnthermde!.thermox,lx.-l.l

-

(AM0)/M(T))*

FIG. 7. Total comtributions to the inverse square of the penetra-
tion depth normalized to its zero-temperature value as a function of
temperature. The solid curve is for the b direction and the dashed
for the a direction. The dots are the experimental data (Ref. 1) with
the b-direction curve below the a-direction curve. Results are for
the trilayer model of Figs. S and 6 in which it is assumed that there
is nO pairing o the chaias oa or off diagonal 50 they remain normal
and do not comtribute directly to the condensase.
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FIG. 8. Results for a tnplanar model with some off-diagonal punng on the chains but with g » =0, Le.. no direct paining 1n the chains

themseives. The chains become superconducting but with a small gap amplitude. Top frames apply to the odd (orthorhombic) CuO, band.
the nuddle three to the chan (CuO) band and the lower three frames (o the even (tetragonal) CuO; band. (a). (d). and (g) give the absolute
value of the gap as a function of angile 6§ along the Fermi surface measured clockwise from the &, axis. Note the lack of tetragonal symnetry
in the gap and the shift off 45* and 135° of the gap nodes. (b). (¢). and (h) give the Ferrmi surface (dashed curve) and gap zero contours (solid
curve). The odd CuO; plane band is orthorhombic as are the chains, while the even CuO, band Fermi surface retains tetragonal symemetry.
Contributions (0 the inverse square of the penetration depth as a function of temperature are given in (c), (f). and (i) for the a direction
(dashed) and b direction (solid). The odd orthorhombic band coatributes aimost twice as much to the b as to the g direction. while the even

pendent of « if all diagonal and off-diagonal ciements of the
pairing potential are taken to have the same value, i.c..
gas= const for any @ and 8. In Fig. 3, we illustrate results
obtained with the same band parameters as used in our pre-
vious model but now with g,s=24.7 for all @ and 8 in
which case a single gap resuits which has the form:

e

’,‘l)

This gap has mainly d-wave character with a small ad-
mixture of 5o and 5,2.. ,2 so that the gap zeros (solid curve) in

A=[—183 =—0288 10.09) (15)

tetragonal band makes almost equal contributions. The chains contribute mainly in the b direction.

Fig. 3(b) and 1(e) have moved off the main diagonal as in the
previous exampile. Now these zero contours are the same in
both chains and planes. The absolute value of the gap (on the
Fermi surface) as a function of 6 are shown in Fig. 3(a) and
3(d) for plane and chain. respectively, and the maximum
vaiue of 2A/kgT_ is 4.5 in the planes and 3.76 in the chains.
much more comparable in value than was the case in the first
model considered. It is to be noted that over the entire Bril-
louin zone the gaps in the planes and chains are not different
but, of course, the Fermi-surface geometry is totaily different
in these two cases. In particular, we note that on the Fermi
surface the gap in the chains starts at a finite angie 6 near
45° and that there is no Fermi surface at small values of 8.

The smaller value of the maximum gap found in the
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FIG. 9. Results for a uilayer model with pairing interaction having the same value on and off diagonal, i.c.. g,4=constant for all o and
B. This assumption ensures that a single gap spplies to both the CuO, planes and the CuO chain. The three upper frames apply (o the odd
CuO, orthorhombic band, the middie three to the CuO chain band and the lower three to the even CuO; (tetragonal) band. (a). (d). and (g)
gives the gap on the Fermi surface as a function of angle # measured clockwise from the &, axis. Note the lack of tetragoaal symmetry and
the “‘Tussing parts’ in the chain case which reflects the geometry of the quasi one dimensional Fermi surface. (b), (¢). and (h) give the Fermi
contours (dashed line) for the odd CuO, (orthorbombic) band, chainlike CuO band. and even CuO; (tetragonal) band. The solid curves are
the gap zero contours and are the same in all three figures. (c). (). and (i) give the contributions to the inverse square of the penetration depth
as a function of temperature for the g direction (dashed) and the b direction (solid). Note that the odd orthorhombic band contributes aimost
twice as much to the b as it does o the a direction in contrast 1o the even (tetragonal) band which makes neasly equal contributions. The
chains contribute mainiy (o the 5 direction. In this model part of the a-b asymmetry in the penetration depth comes from the orthorhombic
nature of the even plane Fermi surface of frame (b).

chains as opposed to the planes will lead to a steeper siope of 500 00 045 051

the low-temperature dependence of the inverse square of the _

penetration depth in the chain direction as seen in Fig. 4 {fo € B. po}=1300 10 00 12:. (16)
where we compare with experiments. While theory predicts 500 00 045 051

somewhat steeper slopes, qualitative agreement with experi-  with 1, in meV. The chain Fermi surface, denoted by the
ment is obtained in this simpie model. dashed line. is quasi-one dimensional and has only ortho-
We tum next to resuits obtained for the wilayer model  mhombic symmetry. The two CuO, plane Fermi surfaces are
with CuO planes on both sides of a CuO chain plane. The-  snown as dotied (odd) and solid (even) curves. Only the
transverse coupling between CuO; and CuO plane is de-  even-band Fermi surface has tetragonal symmetry, while the
noted by r, and ¢, is a direct transverse coupling between  odd band is flanter along &, than it is along &, . This orthor-
the two CuO; planes of the same unit cell. For  hombicity will lead to different a- and b-direction contribu-
{to .1, .22} ={50.30,15} in meV the resulting Fermi surfaces  tions to the penetration depth from the CuO, planes them-
obtained from Eq. (6) are shown in Fig. 5, where seives and this will now be described.
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[A(0)/NM(T)J

FIG. 10. Total contributions to the inverse square of the pen-
etration depth normalized 0 its zero-temperature value as a func-
tion of temperature. The solid curve applies to the b direction and
dashed to the a direcion. The dots are experimental data (Ref. 1)
with the b direction falling below a direction. The model is that of
Fig. 9 with painng interaction assumed constant (i.e.. g ,4=const)
independent of a and 8 which leads to a single gap for all three
planes in the pnmitive cell. This does not imply that it has d,3. 2
symmetry because the bands do not have tetragonal symmetry and
the gap contans an admixture of 5o and s,:.,: although it is still
dormnantly d,:_ ,:.

A first set of results that is instructive is illustrated in Fig.
6. The chains are assumed not to contribute directly to the
penetraton depth but only provide an agency whereby the
CuO, plane acquires orthorhombic symmetry. This is ac-
complished casily if no pairing is assumed to act on the
chains be it diagonal or off diagonal. That is, we take for the
pairing potential the matrix:

368 00 150
00 00 00
150 00 368

8ag™ an

What is critical in Eq. (17) is that the second row is all
zero so the chains remain normal by arrangement. In this
case. we obtain a gap of the form:

181 —146 99 ]| m°

A,=| 00 00 00

{ 059 -0.80 10.88 n®

(18)

The gap on even (top row) and odd (bottorn row) band is
mainly d-wave like with s+ components an order of magni-
tude smaller. The contours of gap zeros are illustrated as the
solid curves in Figs. 6(b) and 6{(¢) for odd and even bands,
respectively. The Fermi contour is the dashed curve in each
case. The absolute vaiue of the gap (JA]) as a function of
angle @ along the Fermi surface are given in Figs. 5(a) and
S(d) for odd and even band, respectively. In both cases, the
gap zeros occur slightly before =45 and beyond 135° so
that the gap does not have tetragonal symmetry even in the
even band with a tetragonal Fermi surface. Also, the maxi-
mum gap on the Fermi surface is not quite the same in the
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two bands and is 2A/ksT.=4.5 and 3.69 for even and odd
cases, respectively. While these values are not very different,
the contributions of even and odd bands to the a- and
b-direction penetration depths are very different. The odd
band with orthorhombic Fermi surface gives a factor of 2
difference in the value of the square of the zero-temperature
penetration depth as shown in Fig. 6(c). The solid curve
applies along the b direction and the dashed curve along the
a direction. For the even Fermi surface, which has tetragonal
symmetry, the situation is very different as illustrated in Fig.
6(f) where it is scen that solid (along the b direction) and
dashed curve (along a direction) are nearly the same (the
slight difference is due to the difference in the a and b lattice
parameters). Finally, in Fig. 7. we compare results for the
a- (dashed) and b-direction (solid) penetration depth with
experimental results. Again the curves are correctly ordered
as to value of siope at zero temperatyre and the agreement is
qualitative. It is as good as that shown in Fig. 4. although the
physics of the two cases is quite different. In Fig. 7, the
chains are normal by assumption and do not contribute di-
rectly to the condensate density in the a or b directions. The
in-plane anisotropy is due mainly to the odd-band Fermi sur-
face which has been made orthorhombic through its coupling
1o the chains and much less importantly to the s admixture in
the gap function. Thus, we are dealing mainly with a band-
structure effect which dominates and overwhelms any gap
symmetry effects.

As a second illustration of a triplanar model, we show in
Fig. 8 results for model parameters chosen so that the chains
also become superconducting but by virtue of off-diagonal
coupling and not because there is intrinsic pairing in the
chains themselves. That is gx is assumed to be zero. Spe-
cifically, we assume

44 100 00
g.5=| 100 00 100}, (19)
00 100 444

while the band parameters remain the same as in the previous
cases. In Figs. 8(b), 8(¢), and 8(h), we show, respectively,
odd, chain, and even-band Fermi surface as the dashed
curves and contours of gap zeros are the solid curves. The
gap solution is

121 -135 17T o

Ay.=| 065 -034 379 wn?| . (20
=059 0I5 117 ]| @

The absolute values of the gaps as a function of angle @
along odd, chain, and even Fermi surface are shown in Figs.
8(a), 8(d), and 8(g). Because no pairing was assumed (o act
in the chains, the gap is smallest in frame 8(d) with maxi-
mum 2A/kgT, equal to 1.88 as opposed to 4.58 and 2.98 for
even and odd band. respectively. Frames (c), (f), and (i)
show that the odd orthorhombic band makes a very different
contribution to the b-direction (solid curve) penetration
depth than to the g-direction; the difference in zero-
temperature value being of order 2. The differences are even
more pronounced in the case of the chains which contribute
very little to the g direction (dashed curve), while the even
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tetragonal Fermi surface makes an almost equal contribution
to the g and b directions. Because of the small energy scale
present on the chains, which can be traced to the assumption
8n=0, i.e., zero pairing on the chains, this model will not
lead to good agreement with experiment. To achieve this, a
final model is considered with the same single gap for both

CuO, planes and for the chains. If we take all
£ag=const=18.4, we obtain a single gap
,’(;o)
Ay=[—0363 -0502 10.14] [ n0?| . (21
,*l)

Detailed resuits are illustrated in the nine frames of Fig. 9.
In Figs. 9(b), %e). and %(h), the gap zeros are all the same
(solid curves) yet because the Fermi contours (dashed
curves) are different, the gap as a function of angle along the
Fermi surfaces are different as shown in Figs. %a), 9(d), and
9(g) for odd. chain, and even Fermi surfaces, respectively.
The maxima in 24/kaT, are, respectively, 4.39, 4.55, and
4.07. Resulting contributions to the a- (dashed) and b-
(solid) direction penetration depth are found in Figs. 9(c).
9(f). and %i). The odd orthorhombic Fermi surface again
contributes about twice as much to the b and to a directions
at low temperature, while the even one contributes equally.
The chains mainly contribute to the b direction. The sum of
all contributions are shown in Fig. 10 and compared with
experiment. The agreement is satisfactory with the
a-direction curve (dashed) above the b direction (solid) as
observed. The ratio A /A, was ~ 1.6 in the caiculations,
close to the observed value.

IV. CONCLUSIONS

We have presented results of calculations for the tempera-
ture dependence of the in-plane penectration depth in a

C. O'DONOVAN AND J. P. CARBOTTE ss

trilayer model of YBa,;Cu;0, which includes two CuO,
planes and a set of CuO chains oriented along the &
direction. Transverse hopping matrix elements couple
the three planes together leading to three coupled bands
in which the gap parameters is an admixture of
dp_)2 5,3.,2, and s symmetries. While the s- and d-
symmetry types belong to two different imreducible
representations of the tetragonal crystal-point group. they
belong to the same representation in the orthorhombic case
which is the case we are dealing with here because of the
presence of the chains. Nevertheless, it is found that the
penetration depth remains linear in temperature at low tem-
perature as a result of nodes in the gap crossing the Fermi
contours. To compare with experiment, the ratio of
Ao/hy was kept near the observed value in all our calcula-
tions. With this constraint, it was found that the observed
normalized temperature varistion of the penetration depth
in the a and b directions is difficult to understand in
models where no intraplane pairing is introduced in the
chains even if a large amount of interplane pairing is consid-
ered. The most natural expianation of the data is obtained
when the pairing interaction is assumed not to depend sig-
nificantly on the subband and is taken to be independent of
a and ﬂ. ie.. VLI'.C‘- V.‘.,. Also the zero-temperature an-
isoropy in A, » can be traced to the orthrhombicity of the
band structure which resides in the chains and hybridized
planes.
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Figure 6.13: The magnetic penetration depths as a function of temperature found using the solutions
of the BCS equation with chain-plane model dispersions of §6.2 (shown in Fig. 6.6 on p. 90) are
shown. The sharp upturn in the penetration depth in the b-direction (dashed curves) is due to the
small energy scale that is present in the gap on the chain Fermi surface.
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Figure 6.14: The magnetic penetration depths as a function of temperature found using the solutions
of the BCS equation with chain-plane model dispersions of §6.2 with 2% impurities in the chain layer
are shown. The sharp upturn of the penetration depth in the b-direction present in Fig. 6.13 has
been substantially attenuated.

6.5.3 The Penetration Depth with Impurities

Chain-Plane Models

The magnetic penetration depths as a function of temperature found using the solutions
of the BCS equation with chain-plane model dispersions of §6.2 (shown in Fig. 6.6) are shown in
Fig. 6.13. The sharp upturn in the penetration depth in the b-direction (dashed curves) is due to
the small energy scale that is present in the gap on the chain Fermi surface.

Due to the judicious choice of the hopping parameters in the chain and plane layers the zero
temperature penetration depths are close to those observed by Hardy et al [89]; for the hybridyzed
model (shown on the left) the values in the a and b-directions are 1855 A and 968 A, for the second
model (right) they are, respectively, 1603 A and 1045 A.
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Figure 6.15: The zero temperature magnetic penetration depths as a function of impurities found
using the solutions of the BCS equation with chain-plane model dispersions of §6.2 with impurities
only in the chain layer are shown.

The sharp upturn in the penetration depth in the b-direction, which is a direct consequence
of a d-wave order parameter in the chain-like band, is not present in the data of Hardy et al [89]
and it is difficult to reconcile the two results. By introducing impurities to the chain layer this sharp
upturn is significantly rounded. Shown in Fig. 6.14 is the magnetic penetration depths as a function
of temperature found using the solutions of the BCS equation with chain-plane model dispersions
of §6.2 with 2% impurities in the chain layer.

As noted in §6.3.1 impurities in the chain layer do not substantially effect the critical
temperature (89 K instead of 95 K) and, from Fig. 6.14, neither does it have a large effect upon
the zero temperature penetration depths which for 2% impurities are 1605 A and 1234 A for the
a and b-directions, respectively. Shown in Fig. 6.15 is the zero temperature magnetic penetration
depths as a function of impurities found using the solutions of the BCS equation with chain-plane
model dispersions of §6.2 with impurities only in the chain layer. As can be seen there is almost
no change to the penetration depth perpendicular to the chains (solid curve) while the penetration
depth parallel to the chains (dashed curve) slowly increases.

6.6 Josephson Tunneling

6.6.1 c-axis Josephson Tunneling in Twinned and Untwinned YBCO-Pb
Junctions

This paper {110] examines the réle played by twins in an ostensibly untwinned YBCO
crystal in the Josephson tunneling current. Early experiments on highly twinned films [107] seemed
to indicate that there existed a c-axis tunneling current, in contradiction to the predictions of d-wave
theory. We argue that the assumption that the abundance of the two twin orientations are equally
abundant is not necessarily true. We also show that the effect of the chain layer upon the plan layer
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leads to a large breaking of the tetragonal symmetry and, consequently, a significant c-axis tunneling

current.
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L INTRODUCTION

The symmetry of the order parameter in the cuprates is
the subject of much current debate. While several experi-
mental techni such as angle-resolved photoemission
spectroscopy’ ™ and current imaging wnnelling spectroscopy
(CITS) (Refs. S and 6) probe the magnitude of the supercon-
ducting order-parameter, Josephson tunneling is, perhaps, the
only observable phenomena which directly probes the phase
of the superconducting order parameter as well as, indirectly.
its magnitude.

The focus of the debate has been upon whether the order
parameter has s-wave (even under a 90° rotation) or
d-wave (odd under a 90° rotation) symmetry. Since most
experiments are performed upon orthorhombic materials in
which the s- and d-wave symmetries belong to the same
irreducible representation there is no clear distinction be-
tween them and, rather than the symmetry of the order pa-
rameter, the discussion should focus on whether there are
nodes present in the order parameter which cross the Fermi
surface.

Although the s- and d-wave representations of the tetrag-
onal systems mix freely in orthorhombic systems we can stll
speak of the “*s'* and *‘d"" parts of the order parameter if
what we mean are, respectively, the parts which are odd and
even under a 90° rotation. It would, however, be highly un-
usual for one of these components to be present in an ortho-
rhombic superconductor without the other being present as
well. Further, if the odd, or 4. part is dominant then nodes
which cross the Fermi surface will be present in the order
parameter [what we call a (d+ es)-wave order parameter]
while if the even, or s, part is dominant the nodes, if they are
present. will not cross the Fermi surface [what we call an
(s + ed)-wave order parameter]. It is possible for an order
parameter that is even under a 90° rotation (i.e., s wave) to
have nodes but we consider this situation unlikely and we
will not examine this possibility here.

Several comer junction YBCO-Pb  wnneling
experiments’~® are cited as strong evidence for the order pa-

0163-1829/97/55(14)/9088(6)/$10.00 s
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Within a microscopic two-band model of planes and chains with a pairing potential in the planes and
off-diagonal pairing between planes and chains we find that the chains make the largest contribution to the
Josephson tunneling current and that through them the d-wave part of the gap contributes to the current. This
13 contrary (o the usual assumption that the d-wave pant of the gap does not coatribute to the c-axis Josephson
current for incoherent tunneling into an s-wave superconductor and for a d-wave orthorhombic superconductor
with a small s-wave component 10 its gap only the s-component contributes. It has been further argued that the
effect of twins. in YBa;CuyOy.. 4 (YBCO) would lead 10 cancellation between pairs of twins, and so the
observation of a current in c-axis YBCO-Pb experiments is evidence against a d-wave-type order parameter.
We argue that there is evidence that the two twin orientations are not necessarily equally abundant in call cases.
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rameter in YBCO having d-wave type symmetry. Other tun-
neling experiments which contain only YBCO in a bi- and
tricrystal rings'®"'? also give strong indications of order pa-
rameters with d-wave type symmetry. Both of these types of
experiments have the plane of the junctions perpendicular o
the a-b plane—what we refer to as ““edge junction’ experi-
ments. It is the observation of 7 phase shifts in the comer
junctions and haif flux quanta in the ring experiments that is
the strong evidence for the order parameter in YBCO having
d-wave type symmetry.'’ Note that for the observation of
w phase shifts there is no difference between a 4-wave order
parameter and a (d+ es)-wave order parameter.

The resuits of these edge junction experiments are inde-
pendent of the presence of twins in these materials.'® This
indicates that the order parameter is phase locked across the
twin boundaries, although calculations indicae'>'® that the
magnitudes (as well as the relative magnitudes and perhaps
the relative phase as well) of the d and s may change in the
twin boundary. Although this phase locking is not unex-
pected it may have other consequences.

There is a second class of YBCO-Pb tunneling experi-
ments in which the plane of the junction is paraliel 1o the
a-b plane—what we refer to as ‘‘c-axis junction’
experiments.'”'® The presence of a current in these experi-
ments is cited as evidence against a d-wave order parameter
in the literature'®'® as well as articles for more general phys-
ics audiences.? In fact, due to the orthorhombic symmetry of
these materials the order parameter will have (d + €s)-wave
symmetry and a c-axis tunneling current of reduced magni-
tude is expected in untwinned materials.*'? The current is
not just due to the es part of the order parameter but is also
caused by the 4 part of the order parameter due to the orthor-
hombicity of the Fermi surface, a fact that appears not to be
widely appreciated. Here we use a plane-chain double layer
model? in which each set of clectrons has its own Fermi
surface in the two-dimensional CvO; Brillouin zone.

While there is quite a large variation in the maximum
resistance-tunneling current product, /.Ry. observed in
these c-axis tunneling experiments, / Ry in the untwinned

9088 © 1997 The American Physical Society
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samples xs. on average, about twice that in the twinned
samples.’* The argument that a finite c-axis YBCO-Pb wn-
neling current is evidence against a d-wave order parameter
is based upon the intuitive assumption that over the junction
area, the relative abundance of each orthorhombic twin do-
main will be roughly equal and any orthorhombicity in a
phase-locked order parameter will average out. The view
that, over any macroscopic region in the crystal, the relative
volume fraction occupied by cach of the orthorhombic twin
domains must be approximately equal. is prevalent in the
literature,'®*® and is used as a simplifying assumption for
some calculations.

The issue of the microstructure of coexisting twin do-
mains is sufficiently important to these arguments that we
have carried out a high-resolution x-ray-scattering study of a
particular twinned YBa;Cu 304, single crystal, for the pur-
pose of investigating whether such averaging out of the
orthorhombicity on macroscopic length scales in fact neces-
sarily occurs in real samples. These resuits show the volume
fractions occupied by the two twin domains to be quite dif-
ferent over macroscopic dimensions in the sample studied.
While it does not follow that this particular morphology is
present in the ‘“heavily twinned'® YBCO crystals employed
in the c-axis tunnel junctions mentioned above, these results
clearly demonstrate that the widely accepted view of the
orthorhombic twin domains occurring in roughly equal popu-
lations, is not cotrect. As will be discussed. this experiment,
which measures the relative abundance of the two twins by
comparing the intensities and line shapes of the (200) and
(020) diffraction peaks from each twin, indicates that over
the whole sample, one of the two twins is 2-3 times more
abundant than the other.

If the ratio of the two possible twin orientations is n:m
and if the current-resistance product, / Ry (T=0), is I .RY’
for an untwinned junction then for the twinned sampie the
current should be:

""-1%'1,3;:’. )

This is consistent with the experimental observation of
Sun er al.** in which the Josephson tunneling current in un-
twinned c-axis YBCO-Pb is about double that observed in
twinned junctions if the ratio of twins is approximately 3:1.

In Sec. I1 we present a BCS formalism for a model! system
in which a tetragonal CuO, plane layer is coupied to an
orthorhombic CuO chain layer and give the equation for the
resistance-tunneling current product. /.Ry. In Sec. Il we
present the results of some representative caiculations as well
as some experimental results on the relative abundances of
the two twin orientations. In Sec. [V we make some conclud-
ing statements.

IL FORMALISM

For a bilayer system (i.e., a=1.2) the coupled BCS equa-
tons

1
Au’ﬁg (Vi giiXer+ Vaqiaxe2)-

1
Au.fﬁ% (Vi gr2xq1* Vig22Xed)- )

where we have taken Vy o 13= V) o2 and

- Ey.
Xea™(3qr.a8-q;.a) = 2E, "M Ta,7)

is the pair susceptibility, with
E.-l= V3L1+AI.-'

where £y , are the band energies in the normal suate. Note
that we have taken (aq; 13- q;.2) =0, i.e., there is no pairing
between electrons in different planes. This assumption seems
reasonable since a {kT.—k]} Cooper pair could not both be
on the Fermi surfaces of two layers simultaneously, although
other do not make this assumption.

We note that this set of equations (2) is invariant under
substitution {Au.v...u}—.{ Au, Vt.,z} which means
that the overall sign of V, o 2 only affects the relative sign of
the order parameters in the two layers and not their magni-

wdes. This is interesting because it means that the effect on
T. of having an interlayer interaction is independent of
whether this interaction is attractive or repulsive, although
the c-axis Josephson tunneling current still depends upon the
relative sign of the interlayer interaction.

The c-axis Josephson-junction resistance-tunneling cur-
rent product, /. R\{(T). through a superconductor-insulator-
superconductor juncuon for incoherent c-axis tunneling is
given by the relation®

! 2aT
RT)= TGNV 0)
xz A(R)(“.)A(YKO)(“-)‘ 3)
where
A - —l- A(.‘) (4)
(“.) nz (‘g))z*’(A(l.))g*_(“.)z .

in which the superscript (-) indicates on which side of the
junction the dispersion and order parameter are on. the sum
over w,m wT(2a~1) is for all Matsubara frequencies, R is
the resistance of the junction. and N* '(0) is the normal-state
electronic density-of-states DOS given by

1 1 r
-) == Ul )= lim ——
NN w) Q; Nel'—w) mﬂﬂz EQEea s
(5)

Since the DOS and A{™ for lead are constant the sum in
Eq. (4) can be performed and A'™(w,) is given by™®
A(D)

VA4 (0T

If the tunneling were coherent the matrix element (which
is incorporated into R) would have a (k—k’) dependence,
and the sums over k space would not be separable.

A(RD(“.)s
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(e)

(b) (@)

Vi qiz. being negative (i.e.. repulsive).
ML RESULTS

We use the same band structure as in our previous work
on the penetration depth of a coupled chain-plane bilayer= in
which we assume tetragonal symmetry for the electron dis-
persion in the CuO ; plane with first- and second-neighbor
hopping, while the chains are quasi-one-dimensional (1D)
with very different hopping probabilities in the x and y di-
rections (the chains are along the y direction). For the pairing
potential, V, o ,4. which appears in the coupled BCS equa-
tions (2) and which determines the superconductivity, we use
a nearly antiferromagnetic Fermi-liquid mode! with magnetic
susceptibility of the gbeoommological form given by Millis,
Monien. and Pines:

Xo
Yiees= b T QT

where £, is the magnetic coherence length and Q is the com-
mensurate vector (7, 7) in the 2D Brillouin zone. Our re-
sults are not specific to this interaction—any interaction
which would result in a d-wave order parameter in the
CuO , plane layer will give a (d+ es)-wave order parameter
when the CuO, planes are coupled to the CuO chain layers.

No pairing interaction is assumed to act directly in the
chain band, i.e.. £22=0, so that the superconductivity in the
chains is entirely due to the g,;=g;,#0. This parameter
(£12) is fixed to get a critical temperature value of 100 K for
a chosen value of the in-plane pairing, g;;. In Fig. 1. we
show results for the gap value A, in the planes [Fig. 1(a)]
and for A, ; in the chains [Fig. 1(b)] as a function of k in the
first Brillouin zone. The order parameters result from a nu-
merical solution of equations (2). For the runs shown in Fig.
1, {gu.gu.gn}={262.10.0} and T‘:lm K.

On the rigin-hand side of Fig. 1. we have decomposed the
order parameters into d-wave (c) and (d) and s-wave (¢) and
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FIG. 1. The order parameter in the first Brillouin zone for (a) the piane layers and (b) the chain layers. Beside are the projections of the
d components. (c) and (d). and the s components. (¢) and (f). The vertical scale in all frames is the same. Note that the relative phase of the
d components in the two layers are the same. while that of the s components are opposite; this is caused by the interlayer mteraction,

(o)

)

(f) components for the plane and chain. respectively. While
the main component is certainly the d-wave part, the
s-wave admixture is, nevertheless, significant in magnitude
in both the chain and plane bands.

A useful representation of these gap results is to show the
contours of gap zeros on the same plot as the Fermi swiface.
This is presented in the series of frames shown in Fig. 2. The
top frames apply to the plane while the bottom frames apply
to the chains. In all cases, (a), (c), (¢) for the planes and (b).
(d). (f) for the chains, the same Fermi surface (dashed
curves) was used. By choice, the Fermi contours have tetrag-
onal symmetry in the top figure, while the chain Fermi sur-
face is a quasistraight line along &, as is expected for chains
along the y direction in configuration space. The pictures are
for three different values of pairing potential. The first set of
two frames (.) and (b) are for {‘" .‘|:.‘n}’{29.9.5.0}.
i.e., very little coupling between chains and planes (off-
diagonal g;; small). In this case, the gap in the plane is
nearly pure d wave as is also the induced gap in the chains.
The zero gap contours are given by the solid line and would
be the main diagonals in a pure d-wave system. As the cou-
pling g, is increased {g,,.£,2.8 2} ={26.2,10,0}, a signifi-
cant s-wave component gets mixed into both solutions and
the gap nodes move off the main diagonals of the Brillouin
zone (This is the solution that is plotted in Fig. 1). The gap
nodes still cross the Fermi surfaces in both chains and
planes. As the coupling is further increased to
{811.812-222} ={9.18.20.0}. Figs. 2(e) and 2(d). the gap
nodes move far off the diagonal and for the chains they no

sistivity given in Eq. (3) for a YBCO-/-Pb tunnel junction
gives for the intermediate case {g,,.£12.82} ={26.2.10.0}
the tunneling current, I .R\(T=0), is 0.2-0.3 meV for the
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plane layers and = (2-3) meV for the chain layers. The rela-
tive sign depends upon whether the interlayer interaction,
£12. is attractive or repulsive. These values for chain and
plane wnneling current, /Ry . are upper and lower bounds
and note that the expected value should be somewhere in
between since the / Ry(T=0) values are dependent upon
the amount of tunnel junction area which is covering the
uppermost chain or plane layer.

The order of magnitude difference obtained between
plane and chain layer for the / Ry(T=0) product is under-
stood as follows. For a given Matsubara frequency. w, in Eq.
(4), the contribution to the sum over k, which ranges over the
entire Brillouin zone, is suongly peaked about the Fermi
surface because the denominator in Eq. (4) becomes smallest
in this case. This is seen ciearly in Fig. 3 where we show the
integrand of Eq. (4). again for the intermediate case, as a
function of k in the first Brillouin zone for planes (a) and
chains (b). respectively, for a particular Matsubara fre-
quency. w,=50 meV. It is clear that in the plane layer the
positive and negative parts largely cancel each other. They
would, in fact, give exactly zero if the gap had pure
d-wave symmetry. The situation for the chains is completely
different because the Fermi surface now does not have te-
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FIG. 2. The Fermu surface (dashed curves) and gap nodes (solid curves) for a CuO; plane layer (top frames) and a CuO chain layer
(bottom frames) for three different interiayer interaction strengths (left, middle. and rigin frames). As the strength of the interiayer interac-
ton. g;>. 15 increased (left 0 nght frames) the proportion of the s component in both layers increases. If the interiayer interaction were
further increased the gap nodes would ieave the Brillouin zone altogether and the order parameter would become s like. Note that the Ferru
surface 18 the CuO; plane layer is tetragonal but that the gap node is onhorhombic.

tragonal symmetry and even if the gap was pure d wave
there would not be a large degree of cancellation between the
positive and negative regions. Thus, we note the imporiant
result that the main part of the Josephson curremt coming
Jfrom the chains is due to the d-wave part of the gap funcrion
and would stll be large if we did not account for the
s-wave admixture. Thus, in an experiment on an untwinned
single crystal of YBCO the Josephson curren: coming from
the chain part of the Fermi surface is sampling mainly the
d-wave part of the gap and therefore, such experiments do
not reflect directly the s-wave admixture.

It has been argued that for twinned samples, the c-axis
Josephson current will cancel because of the cancellation be-
tween a and b twins.>* This argument would apply equally
well to our work, since we shouid then average over pictures
as shown in Fig 3(b) with opposite phases (a and b twins).
However, we do not expect twins to be present in equal
numbers, and the expected cancellation will not occur.

The issue of the morphology of the orthorhombic twin
domains in YBCO and whether such domains must occur in
equal volume fraction over macroscopic dimensions is suffi-
ciently important to this study that high-resolution x-ray-
scatiering measurements on a small single crystal of twinned
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FIG. 3. The k-space integrand of A*Y* % (w,) [see Eg. 3] for (a)
the CuO; plane layer and (b) the CuO chain layer. In the plane
layer the positive and negative parts mostly cancel and the resulting
current is small, while in the chain layer only a very small amount
of the integrand, A Y®Y(a,), is negative and the resulting current
ts large. This effect is due 1o the different Fermi sutfaces in the two
layers.

YBa,Cu;0¢4; were carried out for the purpose of investi-
gating its twin structure. Measurements were made with an
18-kW rotating anode x-ray source and a double-axis diffrac-
tometer using a perfect Ge(111) monochromator with suffi-
cient resolution to cleanly separate Cu Kal from Cu Ka2
radiation. Full details will be reported separatety.™

The crystal under study was grown by the UBC group and
had approximate dimensions of 1X 1X0.03 mm>, with the
c-axis oriented along the thin dimension. The crystal was
sufficiently thin that scattering within the orthorhombic basal
plane [such as (2.0,0) and (0.2.0)] could be performed in
transmission geometry and such measurements thus probe
the bulk of the crystal Representative longitudinal scans of
the (2.0.0) and (0.2.0) Bragg peaks are shown for both twin
domains in Fig. 4. As is clear from this figure, one twin
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domain has a peak intensity which is more than an order of
magnitude stronger than the other. This leads naturally to an
interpretation of the twin structure in the crystal in terms of a
majority and a minority domain. Also, as would be expected
in this scenario, the minority phase line shape is very notice-
ably broader than that of the majority phase, whose line
shape appears (o be approximately resolution limited. This is
shown in the insct to Fig. 4, where the same data is plotted
on a linear intensity axis, and has been scaled so that the
peak intensity of the two domains coincide.

The majority and minority phase domain distribution in
this crystal was found to be inhomogeneous. X-ray-
scattering measurements were performed with a very narrow
(~0.05 mm) incident beam to allow measurements which
probe different regions of the crystal. The twin structure was
investigated as the sample was translated through the narrow
beam along the majority phase a axis. This investigation
yielded resuits which ranged from completely untwinned on
one extreme edge of the crystal to an approximate !:| ratio
of the volume fraction of majority to minority domains on
the other edge. Interior regions of the crysal yielded some
intermediate value of this ratio. We estimate the average ra-
tio of the volume fraction occupied by the masjority and mi-
nority twin domains for the entire sample to be about 2-3 to
1. While these measurements reveal a complex inhomoge-
neous morphology to the twin structure, it is certainly clear
that macroscopic regions of the crystal exist in which one
domain predominates over the other.

IV. CONCLUSIONS

For c-axis incoherent YBCO-/-Pb Josephson tunneling
junctions, the d-wave component of the gap parameter can
contribute very significantly because of the orthorhombic na-
ture of the chain Fermi surface which emphasizes the coatri-
butions to the Josephson current from those parts of the Bril-
louin zone along the Fermi surface. The s component of the
gap in the chains and planes will also contribute but this may
be less important so that such experiments on untwinned

FIG. 4. Representative longiudinal x-ray
scaltening scans through the (2.0,0) and (0.2.0)
Bragg peaks of the YBa,Cu,0,4; uingle crystal
are shown on a logarithmic scale. It is clear that

the peak intensity of the majority phase twin do-
mains are at least an order of magnitude stronger
than that of the corresponding minority phase do-
main. The inset shows the same data, but now on
a linear intensity axis, and scaled so that the peak
intensities for the two domains coincide. The
Bragg features of the mincrity twin domains are
clearly much broader than those of the majority

10* 10
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samples do not probe directly the s-wave admixture of a
predominantly d-wave gap function.

The observation of a c-axis wunneling current in the ex-
periments of Sun er al'’** and Tanaka er 3L'® on twinned
samples can only be understood within our theory if we do
not have equal numbers of a and b twins. Experimental evi-
dence is presented that in some cases twins will not be
equally abundant.
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Figure 6.16: The DOS in the trilayer model of Fig. 9 of §6.5.2 calculated with Vi .08 = Va q. t.€.,
the interaction within and between the bands being the same.

6.7 STM Tunnel Junctions

The DOS for a two band plane-chain system is reported in Ref. [109], included here starting
on p. 102.

For a three band system, shown in Fig. 6.16, the DOS has even more detail due to the
number of coherence peaks and van Hove singularities present. This DOS corresponds to the order
parameter shown in Fig. 9 of the paper included in §6.5.2 and has coherence peaks, which are
more clearly seen for w > 0, at w = 6,20meV due the chain layer (see Fig. 9a in §6.5.2) and at
w = 14,17.18meV due to the plane layers. The extra peaks for w < 0 are van Hove singularities.

It is interesting that the experimental STM tunneling measurements , Fig. 5.27, most
closely resemble those calculated using a single band system. This would seem to indicate that for
STM tunneling there are only electrons coming from one layer.



Chapter 7

Conclusions

This thesis has examined some of the ramifications of having multiple conducting bands in
HTC materials, with special emphasis on YBCO and its problematical chain layer. Several different
band structures have been examined and the effect of impurities upon the order parameter as well as
several electronic properties have been calculated, including the optical conductivity, the magnetic
penetration depth, the density of states and the Josephson current.

While the interactions discussed in Ch. 4 were used for the subsequent calculations pre-
sented in Ch. 5 & 6, in most cases the details of the interaction were unimportant: Any interaction
that resulted in a d-wave order parameter would have given much the same results. It is perhaps an
unfortunate consequence of BCS theory that it provides very little insight into the interaction that
gives rise to the Cooper pairing. So far there is no equivalent for the HTS materials to the tunneling
inversion process that has been so successful for the conventional superconductors.

A significant part of the work in Ch. 6 has been included as three previously published
papers, but some of the calculations, particularly the optical conductivity and the c-axis penetration
depth, are presented here for the first time.

It is hoped that future work calculating both the AFM and SC order parameters utilizing
the same interaction for different fillings, alluded to in Ch. 3, will yield a phase diagram similar to
Fig. 3.1. This would provide much stronger, albeit indirect, evidence for the spin-fluctuation type
interactions used in this work.

The main conclusion of this work is that, even if the spin-fluctuation model is not the
correct explanation for HTS, the details of the band structure can have significant effects upon the
electronic properties of these unusual, and potentially technologically important, materials.
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Appendix A

Computer Algorithms

A.1 Convolutions

The convolutions required in the calculation of the self energy, f,.,,., (e.9. Egs. 2.34, 4.1)

and susceptibilities, xa.n, (¢.9.- Eqs. 4.6 and 4.6), given by equations of the form (dropping the
spinors for clarity)

Eh.n = -Tzzvh—q.n—mcq.m
m q

-T 2 Z Gh+q.n+qu.m: (A'l)
m q

el

¥
»
il

are performed in a slightly different manner. In both the reciprocal space sums (i.e. the T) are
performed with Fourier transforms and the Matsubara sums (i.e. the X,) are performed explicitly.

A.1.1 Reciprocal Space Sums

The reciprocal space sums are performed using the convolution theorem

I = ) VaeGe
q

Fo [Fe Va] - 7 [Gall,

where “” indicates a dot product, and the F are the Fourier transform operators defined by

}.h_l[zr] = _‘/Iﬁ Z e-:h-rz'
Felza] = -ﬁ Z e* Tz,
.
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with A the number of terms in the k-sum. These transforms are implemented with a fast Fourier
transforms (FFT) algorithm.[119] The assumption of FFTs that the function being transformed is
periodic is very convenient since all of the functions are indeed periodic in the Brillouin zone.

Since all functions have inversion symmetry (i.e. zp, = z_s) the two different types of
convolutions in Eq. A.]1 can be treated the same. This is not true for the Matsubara sums.

A.1.2 Matsubara Sums

The matsubara sums are defined for Fermionic frequencies, wn, = (2n + 1)7T, and Bosonic
frequencies, vy, = 2n#T, with n = —00...0... + 00. Obviously, the Matsubara sums are not periodic
in n so they can not be implemented with FFTs and the sums have to be performed explicitly and
with care.

The first approximation is that imposing a cutoff does not change the results significantly
so long as the cutoff is large enough. For most of the work in this thesis a cutoff of wy = 24t (which
is three times the bandwidth) has been used. This limits the Matsubara indices on the functions to
the range —V...0...(N - 1). The two types of sums can then be written as

N-n-1
En = -T Z Va-mGm
m=-N
N-1
xn = =T 3 GnimGm (A2)

m=—N4+n+l

where the unusual limits on the sums ensure that the indices on V,_m and Gn+m stay within the
range —N..0...(N - 1)

All functions are either symmetric or antisymmetric in w, so that only the positive n
values need to be stored. This does, however, impose the condition that the above sums must be
manipulated so that only the positive m are needed.
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Convolution of Two Fermionic Functions

Using the fact that for Fermionic Matsubara frequencies, w_, = —wn—; for n > 0 we can
perform the following manipulations so that only positive Matsubara frequencies are used

N—n-1
xn = =T Y Glwnim)Glwm)
m=-—N
-n-1 N-n-1
= =T Y Gwn+m)Glwm)-T 2 Gwn+m)Glwm) =T Y G(wn+m)G(wm)
m=-N m=-n m=0
N-n-1
= -T 2 Gln-m)Glumm) =T 3" Glun-m)GWom) =T 3= Glansm)Glem)
m=n+1l m=1 m=0
N-n-1
= -T 2 Glw- .,.._...)G(u_m)—rzG(u|.._.,..)G(u-m)-T D" G(wnsm)Glwm)
m=n+l m=1 m=0
N-n-1
= =T 2 G(~wm-n-1)G(—wm- 1)‘TZG(wn—m)G(‘wm-l)-T 2 G(wn+m)G (wm)
m=n+1 m=1 m=0
N-1 n-1 N-n—-1
= -T Y G(-wm-n)G(~wm) =T Y Gwa-m-1)G(~wm) =T 3 G(Wn+m)G(wm). (A.3)
m=n m=0 m=0

Note that for the imaginary component of the diagonal part of 5.,,, is odd in wy, so the second term
in Eq. A.3 will have to be treated differently from the rest.

Convolution of Fermionic and Bosonic Functions

Using the fact that for Bosonic Matsubara frequencies, v_, = v, for n > 0 we can perform
a similar manipulations so that only positive Matsubara frequencies are used

N-1
Lo = -T Y V(tnm)G(wm)
m=—N+n+l
N-n-1 N~
= -T Y V(u,.m_x)c(—um)—rz Vn-m)Glwm) =T 3 V(¥m-n)Glwm)
m=0 m=0 m=n+1

(A.4)

Note that in this case it is the first term in Eq. A.4 that will that will cause the imaginary component
of the diagonal part of Gi n to have to be treated differently.
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