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Abstract

Adaptive filters are used in linear estimation problems when no a priori knowledge of signal
statistics is available or when systems are time varying. They have become a popular signal
processing tool and have found application in many diverse areas. The work in recent
years has led many to regard the recursive least-squares algorithm (RLS) and its variants
as the state of the art. The principal advantage of RLS over the rivalling least mean square
algorithm (LMS) is its fast rate of convergence, which in many applications justifies the
higher computational complexity of RLS.

Mathematically speaking, both RLS and LMS result from the application of particular
iterative optimization algorithms to the minimization of the least-squares criterion. The
purpose of this thesis is to investigate the applicability of a new class of optimization
methods, interior point optimization algorithms, to the adaptive filtering problem. We
develop a new recursive algorithm, called Interior Point Least Squares or IPLS, that can be
efficiently implemented with a computational cost comparable to (but higher than) RLS.
IPLS matches RLS in asymptotic performance, but has a faster transient convergence rate.
This is significant because until now “... [RLS’] convergence speed [has been] considered
to be optimal in practice, and [thus] a measure for comparison for other algorithms.”,
(Moustakides, in a paper in the I[EEE Transactions on Signal Processing, October 1997).
Additional properties of IPLS are its insensitivity to variations in initialization, numerical
stability in the presence of limited precision arithmetic, and versatility in that it readily
allows the inclusion of additional constraints on the weight vector. Some of the above
mentioned properties are further investigated and exploited in applications to adaptive
equalization and adaptive beamforming. Numerical simulations are used throughout the
thesis to illustrate, confirm, and extend our analytical results.
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Chapter 1

Introduction

The application of the least-squares criterion to linear estimation has been so successful
and ubiquitous that the terms linear estimation, least-squares estimation and linear least-
squares estimation have become almost synonymous (in engineering we can also add the
term linear filtering). The popularity of the least-squares criterion for linear estimation can
be attributed to several factors. First, it leads to tractable mathematics and in particular,
an objective function that is convex in the parameters (Haykin, 1998). Second, it has an
intricate connection with many stochastic or deterministic problems in engineering and
even in pure mathematics (Kailath, 1974). Finally, the topic of least-squares estimation has
received the attention of several eminent researchers over the last 200 or so years. When
Gauss (1809) (who is credited with originating linear estimation (Haykin, 1998)) studied
the motion of heavenly bodies he invented the method of least squares. Kolmogorov (1941),
Krein (1945a,b) and perhaps most notably Wiener (1949) used least-squares estimation in
their studies of stochastic processes. Wiener’s work is said to “have [brought] the statistical
point of view into communication theory ... " (Kailath, 1974), which in turn may well
have motivated Shannon (1948) to embark on his exploration of information theory. The
least-squares cost function is thus established as an excellent choice of optimization criterion
(over, for example, the 1-norm or the infinity norm of the error) for linear estimation. In
this thesis we too concentrate on the least-squares approach.

We further limit the scope of our work by turning our attention to recursive solutions
of the linear filtering problem. While Kolmogorov and Wiener assumed an infinite amount
of data and stationary processes, engineering applications in the 1950’s demanded meth-
ods that were able to update parameter estimates efficiently with an increasing number of
observations. This led to three famous approaches that were all developed between 1950
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and 1960. The least mean square (LMS) algorithm is a stochastic gradient algorithm for
adaptively adjusting the tap weights of a transversal filter (Widrow and Hoff, 1960). The
recursive least-squares (RLS) algorithm can be viewed as a Newton approach to minimizing
the least-squares objective. This method has been developed independently by several inves-
tigators but credit for the original contribution is sometimes given to Plackett (1950). The
third approach is the Kalman Filter, which takes advantage of a known finite-dimensional
state-space model to estimate the internal state of a system. More details on each algorithm
and on the relation that exists between them will be given later in this chapter.

Note that LMS, RLS, and special instances of the Kalman filtering algorithms are also
referred to as adaptive filtering algorithms in signal processing. Because adaptive filtering
algorithms use only the measurements and no a priori information of the underlying process
statistics, they can be considered to be stochastic approximations to the optimum linear
filtering (i.e., Wiener) solutions. The differences in the methods result from the differences
in the various iterative deterministic optimization methods that are used to minimize the
least squares cost function. For example, the LMS algorithm is a gradient descent algorithm
and RLS arises from an application of the Newton-Raphson method.

Fifteen years ago the seminal work of Karmarkar (1984) has propelled the study of a
new class of optimization algorithms, Interior Point Methods. The subject of this thesis
is the application of interior point optimization methods to adaptive filtering problems.
Our investigation culminates in an algorithm called Interior Point Least Squares. The
algorithm’s asymptotic and transient convergence properties are analyzed and it is applied
to two typical adaptive filtering applications.

The remainder of the chapter is organized as follows. In Section 1.1 we give the mathe-
matical problem formulation of the linear filtering problem. Various solution methods that
are available in the literature are discussed in Section 1.2, and some applications of adaptive
filters are given in Section 1.3. A brief introduction to Interior Point methods and their lit-
erature is given in Section 1.4. We conclude the chapter with a preview of our contributions
and an outline of the remainder of the thesis.

1.1 The Linear Filtering Problem

Let us now give the mathematical formulation of the linear filtering problem. While the
problem applies to a wide class of applications it is set here in the context of a system
identification application. The formulation can be easily modified to apply to, say the
adaptive equalization problem (see Chapter 5).
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We briefly establish some notational conventions. In the sequel, R and C represent
the set of real and complex numbers, respectively. The superscripts ()T and (-)7 mean
transposition and Hermitian transposition. We denote vectors with lower case bold and
matrices with upper case bold symbols. The gradient of a function f is Vf and vif
denotes its Hessian matrix. Time indexing is achieved by writing the time as a subscript,
as in wy, or if the subscript is not available, by writing w(n). The notation f(n) = O(g(n))
means that there exist constants ¢ and ng, such that f(n) < cg(n), for all n > ng. Finally,
statistical expectation is denoted by E[-]. Consider a discrete-time linear system as follows:

yg=xf'w.+v,~, t1=1,2,...

where y; € C is the sequence of observations, x; € CM denotes the sequence of input vectors
of size M, w, € CM is the unknown deterministic parameter vector or filter that we wish
to estimate, and v; € C is the additive measurement noise. The linear filtering problem is
to identify the parameter vector w, from input/output pairs {x;,y;} and their respective
statistics. When the estimate is to be updated sequentially with the arrival of new data,
the problem is often referred to as adaptive filtering (Haykin, 1998).

Estimates of w, are typically found by either minimizing a least-squares objective func-
tion or by minimizing the worst case error. For reasons explained earlier in this chapter
we shall concentrate on the least-squares approach. Define the mean-squared error of a
particular estimate w (at time n) as

Va(w) = E [|yn - xlfw|’] = Ellsal’] - wp - pw + w¥Rw  (LL1)

where R = E [x,x/], and p = E[xnyn] are the input signal autocorrelation matrix and
the cross-correlation vector of the observation with the input signal, respectively. The
least-squares estimate of the parameter vector w, is the estimate that minimizes V,. We
may differentiate V,(w) with respect to the complex valued tap-weight vector w using
the convention described in (Haykin, 1998, Appendix B). Setting VV,(w) = 0 yields the
well-known normal equations

Rw = p,
which are solved by the Wiener solution (the optimum linear filter)
w=R"!p. (1.1.2)

Thus, if the joint statistics of the (stationary) input and the desired output are known then
(1.1.2) represents an effective solution of the filtering problem. The next section deals with
the case where these statistics are not available a priori.
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1.2 Adaptive Filtering

Suppose the desired statistical parameters for the calculation of the Wiener solution are not
available. To obtain an alternative solution we may define the sample based mean-squared
error function

Frp(W) =D Bnilyi —xI wi®, (1.2.3)
1=1

where the weighting factors 0y ; are used to adapt the cost function to either a stationary or
a non-stationary environment. In the stationary case, 8, ; should weight each data sample
equally. With 8,; = 1/n, the cost function becomes

1 ¢ 1
Fa(w) =~ |vi —xff w|® = ~yllyn = wpey(n) ~pH(n)wW + wHRe(m)w  (1.24)

=1

where
1 1<
Yn =12 %", Pry(n) = ;inyi: Rez(n) = - > xixf
=1 i=1

Here, R;z(n) and p;y(n) are estimates of the parameters R and p, respectively. The linear
filtering problem associated with F, is

wrrelgg‘ Fn(w), (1.2.5)
and its solution, w = R;z(n)"!pzy(n) (obtained by solving VF,(w) = 0) is a stochastic
approzimation of the Wiener filter. Note that we are concerned predominantly with the
linear filtering problem (1.2.5) (as opposed to the minimization of V,). Thus, in the se-

quel, we often refer to the quantities Fn, Rzz(n), pzy(n) as the mean-squared error, the
autocorrelation matrix, and the cross-correlation vector, respectively.

When operating in a non-stationary environment it is desirable to emphasize the more
recent data and to gradually “forget” older data. In this case, B, is commonly used as an
exponential forgetting factor 8,; = A"~*. The cost function can then be expressed as

Faalw) = 3" A tyly — whpgy(n) - piy(n)w + w¥ Rez(n)w (1.2.6)
=1

where in this context

n

n
Pry(n) = O A"'xiys, Rez(n) = A" Txaxfl
=1

=1
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Note that here the parameters pzy(n) and R;;(n) are defined differently as in the case of
constant weighting. In the sequel it is always clear from the context which definition applies
(depends on whether or not there is a forgetting factor).

To further emphasize the non-stationarity of the data, one may entirely disregard all
data that is older than a given limit I , by setting

B — At i=n—I+1,...,n
™0, i<n-1I

This definition leads to obvious modifications in Fy , Pzy(n) and Rez(n).

When we speak of adaptive filters we typically have the additional requirement of being
able to update a solution efficiently with the arrival of more data. This calls for recursive
implementations of stochastic methods. The most prominent recursive schemes for linear
filtering are the LMS, RLS and Kalman filtering algorithms and their variants. Before
introducing these and the less conventional set-theoretic methods for adaptive filtering, let
us briefly list some criteria by which the performance of such methods is measured (Haykin,
1998).

Rate of convergence This indicates the speed at which an algorithm is able to converge to
the Wiener solution in the mean-square sense. We also distinguish between asymptotic
convergence, which describes the behaviour of an algorithm after having seen a “large”
amount of data, and transient convergence, which refers to the convergence behaviour
shortly after initialization.

Tracking While the rate of convergence is typically measured in a stationary environment,
tracking performance is more important in a non-stationary environment, where an
algorithm must follow or “track” the statistical variations of signals.

Misadjustment This measures the statistical bias of an estimator with respect to the
Wiener solution.

Robustness Robustness can be measured with respect to many factors. In the literature
the robustness of adaptive filtering algorithms often refers to the sensitivity of the
algorithm to ill-conditioned input data, or its robustness to round-off errors (i.e.,
numerical sensitivity). In the sequel we will also refer to the robustness of algorithms
to their initialization. Specifically, the initialization of an algorithm should be easy
to determine, and the algorithm should not be sensitive to small variations in its
initialization.
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Computational Complexity Computational complexity is typically measured by the
amount of computation required per iteration and by the memory requirements of
the algorithm.

Structure This criterion refers to the ease with which an algorithm’s structure can be
exploited for efficient implementation. For example, some algorithms lend themselves
easily to parallel implementations saving significant computation time.

Numerical properties Digital implementations of an algorithm cause round-off errors
due to the limited precision representation of numbers in a computer. Such round-
off errors can in turn lead to issues of numerical stability in the recursive adaptive
filtering algorithms. Another issue is numerical accuracy which refers to the degree
to which an algorithm’s precision is affected by the number of bits used to represent
each quantity.

The literature on adaptive filtering is too extensive to be adequately surveyed in this
section. In the following we give a brief outline of the major approaches; much more detailed
presentations are given in the books by Haykin (1998), Kalouptidis and Theodoridis (1993),
Proakis et al. (1992), Widrow and Stearns (1985). Also of interest in this context is a recent
survey paper by Glentis et al. (1999).

1.2.1 The Least-Mean Square (LMS) Algorithm

The LMS algorithm is a form of steepest (or gradient) descent approach to minimizing the
mean-squared error cost function. It was introduced by Widrow and Hoff (1960). The
algorithm produces an estimator of the form

1
Wn = Wp_) + E#ndn

where un, is a step-size parameter and d, is the direction in which the tap weight vector is
updated. As implied by the title “gradient descent”, d, is determined by the negative of
the instantaneous gradient of F,,

o
dp = —5— [yn-xfwn—l]2}

= 2xp (yn - xfwn—l) .

Noting that y, — x,’f wn_1 can be regarded as a forward prediction error e,, we have the
LMS update equation

Wpn = Wn_1 + nXn€n. (1.2.7)
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Equation (1.2.7) and the definition of the error e, define the LMS algorithm. The method
is highly popular to this date because of its simplicity and efficiency in computation. There
are however several drawbacks. Most importantly, the method is slow to converge (e.g.,
compared to the RLS algorithm) and sensitive to the eigenvalue spread in the signal auto-
correlation matrix.

Over the years there have been many variants of the LMS algorithm. Better convergence
rates are achieved with Normalized LMS, which utilizes a time-varying step-size parameter
un = 1/(xf¥x,). Some computational savings are attained by the so-called sign-LMS al-
gorithm which quantizes the error to the three levels -1, 0, 1. The interested reader may
consult Glentis et al. (1999) for a recent review and comparison of LMS algorithms. Finally,
a surprising property of the LMS algorithm is its optimality in an H* sense. This has been
recently shown by Hassibi et al. (1996).

1.2.2 The Recursive Least-Squares (RLS) Algorithm

The recursive least-squares algorithm is another very well-known method for adaptive filter-
ing. The reason for its popularity lies mainly in its improved convergence rate as compared
to LMS, even though the better transient performance is achieved at a computational cost.
In our opinion the RLS algorithm is situated quite centrally in the “forest” of adaptive
filtering algorithms. It can be viewed as an extension of the LMS approach (via the Fast
Newton Transversal Filters described below) and as a special case of the Kalman filter
(Sayed and Kailath, 1994) (also see our discussion in the next section). In Chapter 3 of this
thesis we will realize that the RLS algorithm is also quite similar to the interior point least
squares algorithm.

The (forgetting factor) RLS algorithm can be expressed with the set of equations (Mous-
takides, 1997)

Rez(n) = ARgz(n—1) +xux7 (1.2.8)
€n = Yn— xff;lwn—l (12~9)
Wnp = Wnp_1+ enR;:.} (n)xn (1.2.10)

where ) is a forgetting factor (0 < A < 1) and all other quantities are defined as before. Note
that (1.2.10) would require the inversion of R;z(n) which is an O(M 3) operation (where
M, once again, is the number of adjustable tap weights). Implementations of the RLS
algorithm actually propagate the inverse factor R} (n) to avoid the direct matrix inversion.
The update of the inverse autocorrelation matrix can be achieved in O(M 2) by a simple
application of the Sherman-Morrison formula, also known as the matrix inversion lemma
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(Golub and Van Loan, 1996). For the purposes of this review the more lucid description
(1.2.8) — (1.2.10) of RLS is preferred.

RLS suffers from instability in the presence of finite-precision arithmetic. To address
this issue, square-root versions of RLS have been developed that propagate a square-root
factor of R;!(n). They achieve numerical stability essentially by preventing the loss of
symmetry and positive-definiteness of matrix R} (r) (Glentis et al., 1999). Another matrix
factorization leads to the well-known QR-decomposition based RLS algorithm (see, e.g.,
Haykin, 1998). This algorithm too is more numerically stable than standard RLS.

Other modifications of RLS arise from approximations to the inverse autocorrelation
matrix R;!(n). Since the RLS filter update equation (1.2.10) can be viewed as a New-
ton step in the minimization of the mean-squared error, these methods can be collectively
regarded as Quasi-Newton approaches (Glentis et al., 1999). The first Quasi-Newton ap-
proach replaces R.z(n) with a Toeplitz approximation (Panda et al., 1986; Marshal and
Jenkins, 1992; Diniz et al., 1995; de Campos and Antoniou, 1997). Other methods assume
an AR model of the input signal z(n). When the order of the AR process is much smaller
than the order of the filter, the use of the resulting banded autocorrelation matrix leads to
significant computational savings. These so-called Fast Newton Transversal Filters (FNTF)
(Moustakides and Theodoridis, 1991; Theodoridis et al., 1995; Mavridis and Moustakides,
1996; Farhang-Boroujeny, 1997) reduce to LMS when the AR process is of order zero and
the autocorrelation matrix becomes diagonal. The third family of Quasi-Newton algorithms
computes the pseudo-inverse of the limited-time sample covariance matrix, i.e., only the
last L samples are used to compute R;z(n). These methods can be interpreted to com-
pute the filter under the constraint that it optimally projects each of the L inputs onto its
corresponding output value, and are thus often referred to as affine projection algorithms
(Tanaka et al., 1999; Rupp, 1998; Baykal and Constantinides, 1997).

So far, most of the RLS-type algorithms we discussed can be computed with O(M?)
operations per iteration. They are thus more expensive than the O(M) LMS algorithms
and much effort has been expended into overcoming this drawback. Perhaps the most well
known method in this direction is the so-called Fast-RLS algorithm (Ljung et al., 1978;
Carayannis et al., 1982; Cioffi and Kailath, 1984). Fast-RLS exploits the shift-invariance
property of the input data matrix (i.e., at each iteration n only one element, z(n), in the size
M data vector x, is new) to derive an O(M) update algorithm. Although the method is the-
oretically equivalent to the RLS algorithm it exhibits much poorer numerical performance.
Numerical instability problems were addressed in Botto and Moustakides (1989) and Slock
and Kailath (1991). Other approaches to reduce the computational complexity include the
FNTF already mentioned above and the so-called Fast Quasi-Newton approaches (Marshal
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and Jenkins, 1992) which achieve computational savings by updating the approximation to
R;!(n) only infrequently.

1.2.3 The Kalman Filter

Kalman filter theory was developed in the late 1950’s (Kalman, 1960) to accommodate
nonstationary input signals (which did not fit into the Wiener filtering framework). Kalman
considered stochastic processes that admit a state-space representation as follows,

Xn+l1 = Fnxn + Gara
Yn = Haxp+vq

where y, is an N-dimensional observation vector, x, is the M-dimensional state vector,
and the matrices Fp, Gn, H, are known and of appropriate dimensions. The vectors rn
and v, are uncorrelated zero-mean noise processes with known covariance matrices. The
Kalman filtering algorithm provides an efficient way to estimate the state x,4 recursively.

Kalman filter theory was first applied to adaptive filtering in the early 1970’s. While
the problem was perhaps first considered by Lawrence and Kaufman (1971) credit often
goes to Godard (1974). Godard rephrased the adaptive filtering problem in the state-space
framework by regarding the unknown weight vector as the unknown state variable x,. Since
the work of Godard it was clear that there existed a relationship between the Kalman filter
and RLS, at least for the growing memory case (forgetting factor A = 1). But it was only
20 years later that Sayed and Kailath (1994) were able to extend the connection of RLS
and Kalman filtering to the case of exponentially decaying memory. In fact, Sayed and
Kailath showed that virtually all existing RLS-type algorithms can be derived from their
state-space counterparts.

1.2.4 Set-Theoretic Approaches to Adaptive Filtering

An alternative approach to adaptive filtering is given by set-theoretic methods that are
based on the premise that noise can be assumed to be bounded,

vl < 7, for some v > 0.

The set of filters consistent with all observations up to a certain time n is called a membership
set and takes the general form

n

Q=({weRM : —y<y-x{w<7}.

=1
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It is the goal of the adaptive algorithms to recursively update a “center” wy of Q,. In
general there are two approaches.

Recognizing that Q, describes an increasingly complex set (the number of vertices in-
crease exponentially with n) most methods obtain an approximate outer bounding of the
membership set by a simple-shaped set. Most often this simpler set is an ellipsoid (Das-
gupta and Huang, 1987; Fogel and Huang, 1982; Deller, 1989) but it can also be an orthotope
(Belforte et al., 1990) or a parallelotope (Vicino and Zappa, 1996). Regardless of their shape,
these outer bounding sets introduce a certain level of conservatism, because they have to
be made larger than the original 2,. The advantage that is gained by the outer bounding
is that now a center of the set can be computed with relative ease.

Other approaches work with Q, directly. As indicated above, the complexity of this
set makes this strategy computationally prohibitive. Nevertheless, one recent approach
proposes to compute the analytic center of 2, and produces an iterative algorithm to update
this estimate (Bai et al., 1999). While this algorithm is at least recursive, its computing
time still grows as n increases (Bai et al., 1998).

The approach of Bai et al. is of particular interest in this thesis as we too use the
analytic center of a feasible region as our filter estimate (Chapters 2 and 3). Our approach,
however, is fundamentally different from that of Bai et al. because (1) we do not impose
the bounded noise restriction, and (2) our algorithm of Chapter 3 has a computational
complexity comparable to that of more conventional least-squares approaches (like RLS).

1.3 Adaptive Filtering Applications

Linear filtering problems that require adaptive solutions arise in various fields such as con-
trol, communications, coding, digital image processing, radar, and geophysical exploration.
Specific applications include system identification, adaptive equalization, linear predictive
coding, echo cancellation, and beamforming. These are just a few examples. Details on
these and many other problems can be found for example in Haykin (1998), or in Kaloup-
tidis and Theodoridis (1993).

In this thesis we consider in detail the adaptive equalization of wireless communication
channels in Chapter 5 and an example of adaptive beamforming in Chapter 6. Also, an
application to system identification is considered in Chapters 2 and 3 to formulate and
briefly motivate the development of our approaches to recursive linear filtering.
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1.4 Interior Point Methods

Interior point methods have fundamentally altered the landscape of mathematical pro-
gramming theory ever since the seminal work by Karmarkar (1984). They presented a
polynomial-time approach to linear programming that performed well in practice (the first
polynomial-time algorithm for linear programming was given by Khachiyan, 1979). Kar-
markar’s paper and much of the ensuing research effort (which was extensive) addressed the
application of interior point methods to linear programming and quadratic programming.
In recent years some work also explored the extension of Karmarkar’s first results to general
convex programming. Most notably Nesterov and Nemirovskii (1994) presented a unified
theory of polynomial-time interior point methods for all of convex programming.

Note that in this thesis we do not use any interior point method directly, rather we use
some of the concepts and ideas they introduce. However, to convey to the reader a sense of
how interior point methods are used in optimization it is useful to describe their operation
in a general convex programming setting. Consider the following general convex program
(Nesterov and Nemirovskii, 1994)

CP: min f(z)
st. gi(z) <0, i=1,...,m

where f(z) is a linear objective function and the constraint functions g;(z) are convex. The
constraining inequalities define a convex feasible set which has a nonempty interior

D={.’Blgi(:t)<0, i=1a"'am}-

A “barrier function on D” is a function that tends to infinity as z approaches the boundary
of D. If B(z) is such a barrier function and u > 0, then the “barrier problem” associated
with the CP can be expressed as

BP(x): min f(z) + pB(z)
st. z€D

If B(z) is strictly convex and u > 0, then BP(u) has a unique solution z°*(u). Variations in
the parameter u lead to the central trajectory, {z*(u) : u € [0, 1]} of CP. It can be proved
that as u — 0 the central trajectory converges to a solution of the original CP, which usually
lies on the boundary of D. The strategy for solving the CP above is efficient (polynomial-
time) only if the barrier function B(z) is chosen appropriately. An important contribution
of Nesterov and Nemirovskii (1994) is that they have shown that the Newton method is a
particularly efficient tool for solving a CP, when f(z) and B(z) are self-concordant functions.
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In general, a function f(z) is self-concordant if for some K
1f"(@)| < 2K [f"(2)]**

for all £ in the domain of f. A popular barrier function for the CP above is B(z) =
— Y. log gi(z), which is appropriately called the logarithmic barrier function. It can now
also be seen where interior point methods have obtained their name. The final solution is
obtained by following the central path from the interior of D; this is in contrast to, for
example, the simplex method for linear programming, which finds the solution by checking
boundary points of the feasible set.

Interior point methods have been applied to mathematical programming problems (e.g.,
linear and quadratic programming, geometrical programming, quadratically constrained
quadratic programming) and to engineering problems. Vandenberghe and Boyd (1996) show
how interior point methods can be efficiently applied to semidefinite programming problems
that arise in control and information theory, maximum eigenvalue and matrix norm mini-
mization, pattern classification, statistics, and combinatorial and non-convex optimization.
More recently, Davidson et al. (1999) used semidefinite programming formulations for the
optimization of orthogonal pulse shapes in communications.

To close this section we give some further references on interior point methods. An
excellent starting point is the tutorial paper by Freund and Mizuno (1996). This paper ref-
erences many recent books on the subject, for example, Ye (1997), Bertsimas and Tsitsiklis
(1997), Wright (1997), Terlaky (1996), and Roos et al. (1997).

1.5 Contributions and Outline

In applying interior point optimization techniques to adaptive least-squares estimation we
make a twofold contribution. From the signal processing point of view, we provide new
recursive algorithms for linear least-squares filtering. For the interior point least squares
(IPLS) algorithm of Chapter 3 we also present the full asymptotic and transient conver-
gence analysis. The IPLS algorithm, in particular, also has several desirable properties
which distinguish it from established methods such as RLS. It has an exponential transient
convergence rate, and is robust to small variations in its initialization. It easily accommo-
dates linear or convex quadratic constraints and remains numerically stable in the presence -
of such constraints. The computational complexity of this algorithm is higher than that
of RLS, however, for the increase in computation one receives several major advantages
as just described. From the point of view of interior point optimization, we have shown
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the applicability and usefulness of interior point methods to dynamic problems in engineer-
ing. The applicability is shown by using interior point concepts in the development of our
algorithms and the usefulness is shown by using the interior point theory, to prove the bet-
ter performance of these algorithms as compared to methods based on other optimization
techniques.

The remainder of this thesis is organized as follows. Our first steps in using interior point
optimization techniques for adaptive filtering are documented in Chapter 2. We introducean
adaptive filtering approach that is based on the interior point column generation technique.
This method shows promising results already, but in trying to avoid the restriction to a
bounded noise case, it uses heuristic measures to achieve good performance, and thus its
convergence properties become difficult to analyze. Chapter 2 is also used to introduce
in more detail many of the concepts we need from the interior point literature. A more
“mature” algorithm for adaptive filtering is developed in Chapter 3. This interior point
least squares (IPLS) algorithm allows a detailed comparison to the recursive least-squares
technique and a complete convergence analysis which follows in Chapter 4. The most
important result shown here, is the exponential convergence rate of IPLS in the transient
phase. The transient performance of IPLS is then exploited in Chapter 5 to show that it
requires shorter training sequences than, for example, RLS to adjust the tap weights of an
adaptive equalizer. Chapter 6 demonstrates another feature of the IPLS algorithm. It is
shown in an adaptive beamforming context that IPLS can easily handle additional convex
constraints, and that it remains numerically stable in the presence of such constraints.
Chapter 7 contains a summary and some directions for future research.



Chapter 2

A First Approach: Interior Point
Column Generation

In this chapter we present our firsit approach to adaptive filtering using interior point opti-
mization techniques. The method is built on the concept of Interior Point Column Gener-
ation (IPCG). One of the key features of these algorithms is that they consider inequality
constraints that define a convex problem one at a time. This can be exploited in applica-
tions that require a solution to be updated adaptively. We give some background on IPCG
algorithms and how they are used to solve convex feasibility problems. Then we apply IPCG
to the classical filtering problem of adaptive system identification. Simulation results here
show the potential advantages IPCG has over the recursive least squares method, especially
in terms of transient convergence behaviour.

2.1 Introduction

Interior Point Column Generation algorithms have been developed in recent years by the
optimization community for the problem of finding a feasible point in a set defined by a
(possibly infinite) number of convex inequalities (convex feasibility problems) (Goffin et al.,
1994; Luo and Sun, 1999; Luo, 1997). These algorithms are also known as interior point
cutting plane methods. Their operation can be described in simple terms as follows. At each
iteration they compute an approximate center of a current set defined by the inequalities
generated in previous iterations. If this approximate center is not a feasible point (with
respect to the original problem), then a new inequality (or cutting plane) is added to the
current set, thus defining a new set with a new approximate center. As the number of

14
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cuts increases, the set defined by their intersection shrinks and the algorithm gets closer to
finding a point satisfying all the convex feasibility constraints. One important advantage of
IPCG algorithms is that they do not require the complete knowledge of all constraints; the
inequalities that define the feasible set are tested one at a time, and as soon as an inequality
is found to be violated the solution is updated.

IPCG algorithms are well suited to adaptive filtering for several reasons. The error
minimization criterion (1.2.5) used in the least squares formulation of the adaptive filter-
ing problem can be easily transformed into a quadratically constrained convex feasibility
problem. In particular, we can apply IPCG to find a filter w, such that

Fa(w) < 12, VY n>M, (2.1.1)

where the threshold 72 can be either a constant related to the average noise power or
determined adaptively. Thus, the adaptive filtering problem can be formulated as the
problem of finding a feasible point satisfying the convex quadratic inequalities given by
(2.1.1). Notice that the inequalities (2.1.1) are generated dynamically as new data arrives
in a sequential fashion. This makes it very natural to apply the IPCG algorithms to adaptive
filtering.

Interior point algorithms have previously been successfully applied to engineering prob-
lems in control and information theory. Boyd et al. (1994) and Vandenberghe and Boyd
(1996) used interior point methods to solve many optimal control and design problems in-
volving linear matrix inequalities. However, their applications are static in nature in the
sense that constraints must be specified before the start of the computation. The appli-
cation of interior point methods to dynamic problems in engineering commenced in 1996.
There were two research efforts: while the developments that are reported in this chapter
were first published in (Afkhamie et al., 1996), an independent interior point approach for
parameter estimation was also developed by Bai et al. (1997). The significant difference
between the two approaches is that while Bai et al. considered the bounded noise case,
our method does not impose any such restrictions on the noise, and may thus be used in a
wider variety of applications.

As it turns out, the application of IPCG algorithms to the adaptive filtering problem
(1.2.5) is far from straightforward. This is partly because IPCG algorithms are designed
for deterministic convex feasibility problems (Goffin et al., 1994; Luo and Sun, 1999; Luo,
1997), while in adaptive filtering the data sequences x, and y, are stochastic and may be
noise-corrupted. Certain modifications are thus necessary for a practical implementation
of the IPCG algorithms to solve the adaptive filtering problem. For example, we need to
introduce a mechanism for removing cuts that are obsolete or incorrect in the sense that
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additive noise caused the cut to face a wrong direction (see Figure 2.3 for an illustration).
Without this feature, IPCG algorithms may get stuck because noise-corrupted cuts given
by (2.1.1) may sometimes mislead the IPCG algorithms to cut away the optimal filter.

In the next section, we briefly introduce the theory of Interior Point Column Generation.
In Section 2.3, we formulate the adaptive filtering problem as a convex feasibility problem,
and give a detailed description of an IPCG algorithm for solving it. Particular details will
be given on the practical modifications added to the original IPCG algorithm, and we also
present some encouraging simulation results which show that the convergence behaviour of
the IPCG algorithm compares favorably to the RLS algorithm. We conclude the chapter
with some discussion in Section 2.4.

2.2 Background on Interior Point Column Generation

Our focus in this section will be mainly on conveying an intuitive understanding of Interior
Point Column Generation, as well as to cover all the major mathematical computations
performed in the algorithm. An in-depth treatment of the algorithms summarized here can
be found in (Goffin et al., 1994; Luo and Sun, 1999; Luo, 1997).

The IPCG algorithm has been developed by the optimization theory community to solve
the so called convex feasibility problem. There, the objective is to find a feasible point in
a convex set ' ¢ CM, where we assume ' contains an interior point. The complex region
I’ may be bounded by convex inequalities of arbitrary shape. Their number may be finite
or infinite and they may be defined implicitly. The convex feasibility problem includes as
special cases the linear programming problem, the linear feasibility probiem and the convex
quadratic programming problem with quadratic constraints (Luo and Sun, 1999).

Let us outline how the IPCG algorithm solves the convex feasibility problem. We start
with a sufficiently large “search region™ €, such that ' C Q. The algorithm iteratively

cuts a portion away from the search region, thereby generating the sequence of shrinking
sets:

QoDQlDQQD...DQnDQ,H.ID...DF.

At each iteration n, the “analytic center” (the definition of this center will be given shortly,
in Section 2.2.1) of 2, yn, is tested for feasibility with respect to I'. If y, € T, then the
algorithm stops. Otherwise, we have y, ¢ I and a cut is generated to form Qn41,

1
Qui1 =W N {Y €CM :cri1 — (an+1,Y) — (¥ Bns1) — §<y’ Qri1y) 20, } .
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where cn4 is a scalar, ap 4 is an M x 1 complex vector, and Qn4; is an M x M Hermitian
positive semi-definite matrix. The notation (a, b) denotes the inner product afb. Cuts are
always placed through Q, in a way such that [ C Q,;1 C Q. More specifically, at each
iteration n > 0 the algorithm performs the following three steps:

Step 1. Feasibility test and column generation.
First test whether y, is a feasible point. If yes, stop. Otherwise, identify an
inequality that is violated by y, and determine the corresponding an+1, Qn+1-
Step 2. Update Q, to Q4.
Given an4+1, Qn+1 of a new inequality, compute a corresponding cn+1 that
ensures an aggressive cut while leaving the previous analytic center y, in the
interior of Q41 (for faster convergence in Step 3).
Step 3. Compute new analytic center.
Compute a new approzimate analytic center yni1 of Q41 and go back to Step 1.

Let us further illustrate the principles of Interior Point Column Generation by a simple
example in R?, employing linear cuts (i.e., Qn = 0).

Example 1.1: IPCG algorithm

Suppose the feasible region I' is given by a small circle located within the unit square in
R2. The initial conditions for the [PCG algorithm are given as follows:

Qo := unit square in R?
yo = (05,0.5)

The algorithm receives yo as an input and tests its feasibility with respect to I'. If yo is
feasible, i.e., yo € I, the algorithm terminates; otherwise it identifies a linear inequality
that will cut away a fraction from the current set o, while making sure nothing is cut away
from the feasible region I'. With this additional cut and the cuts previously existing in 2o
we obtain an updated region Q;. Then the new center y; of this region is computed and
the algorithm continues.

Figure 2.1 displays 5 iterations of the IPCG algorithm. The algorithm terminates after
5 iterations because the analytic center y4 of €4 is a feasible point inside the circle I'. Note
that in general cuts are not necessarily placed directly through the analytic centers. a

The above example illustrates all the important features of the IPCG algorithm. In
particular, it should aid the reader in understanding the three steps of the algorithm. Before
elaborating on the implementation of each step, we introduce the concept of the analytic
center.
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Figure 2.1: Five iterations of the IPCG Algorithm for Ezample 1.1
2.2.1 The Analytic Center

The success of a column generation algorithm depends critically on its choice of a “center”
for each Q,. Intuitively, we would like y, to be located at the “geometric center” of 2,
(i.e., the center of gravity) because, in this way, we can expect to cut away a sizable portion
of the search region Q, when a new cut is placed at y,. As a result, we can ensure the
volume of Q,, is reduced at a geometric rate, thus ensuring a fast convergence of the column
generation algorithm. However, the geometric center is usually difficult to compute. Thus,
to achieve overall computational efficiency, we need to find a center for 2, that is not
only located almost centrally in §2,, but also easily computable. One such choice is the so
called analytic center of Q. Unlike the geometric center of 2, which depends only on the

geometric shape of Q, the analytic center depends further on the algebraic representation
of .

Formally, the notion of analytic center can be defined as follows. Suppose {2, is an
arbitrary bounded convex body in RM

1 .
tn={y e i@y - ) - 3 Q) 205 =1 Ml

Let us first define the potential function of 2, as

Nn
dnly) = —_logsj, (2.2.1)

i=1
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where the slack variables s; are measures of the distance from y to each of the boundaries
of Q,,

sj =¢j — (aj,y) — (y,a;) — %(y, Qjy), i=1,...,Nn.

It is intuitive that a point deep in the interior of 2, will have a small potential while a point
close to the boundary of Q, will have at least one very small s; value, and have a large
positive potential. Points on the boundary of Q, will have one s; = 0, thus their potential
goes to infinity. This explains why ¢, is also referred to as a logarithmic barrier function. It
can be shown that the potential function is strictly convex and has a unique minimizer over
Q, (Luo, 1997). Since the potential function ¢, depends on the analytic representation of
Q,,, we call this minimizer of ¢, the analytic center of {2, and write

Yt = ;ggx énly)-

We illustrate the analytic center concept with the following simple example in R?.

Example 1.2: Potential function and analytic center

Suppose we have
={yeR : 1-y1-% 20, »n 20, y2 20}.

Geometrically, Q is given by a triangle in R? as depicted in Figure 2.2a. If we evaluate the
potential function (2.2.1) over the interior of §2, we obtain

d(y) = —log(l — y1 — y2) — logyy — logya.

IS

0 o g v 81 8T a6 &% 88 e7 &e ee

(a) (b)
Figure 2.2: Ezample 1.2: (a) The region 2; (b) Logarithmic barrier function

The contour plot of the logarithmic barrier function ¢ is given by Figure 2.2b. It can
be seen that the potential function is steep at the outer borders and flat in the middle.
The analytic center is located at (1/3,1 /3)T. Notice that in this case the geometric center
coincides with the analytic center. a
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2.2.2 Algorithm Details

Having defined the notion of analytic centers, we can now examine each of the three steps of
the IPCG algorithm in more detail. There is a separate module that performs the feasibility
test and column generation of step 1. This module takes as an input the current feasible
point y, and tests it against its knowledge of the feasible region I'. If the given point y, is
not feasible, the module will generate a convex quadratic inequality that is violated at y,
but is satisfied by all the points in . Such an inequality is called a separating inequality
(or cut) and can be written as

=0 Y=Yn

(2.2.2)
20 Vyerl.

én+l — (An+1,Y) = (¥r8n41) — %()ﬂ Qn+1y) {

The values of &,41, an+1 and Qn are passed to step 2 of the IPCG algorithm for further
processing. The choice of €4+ such that the cut bisects Q5 through y, is the most aggressive
cut possible. In many applications, the value of &, may be unavailable or inappropriate.
In this case, a new constant term cp4+) will be evaluated in step 2 of the IPCG algorithm.
Note also that since I is convex and y, & I, separating inequalities or cuts always exist.

In the optimization literature, the module used in step 1 for feasibility test and cut
generation is usually called an oracle. With the help of an oracle, step 1 of the IPCG
algorithm can be easily carried out. We remark that the exact form of this oracle varies
from application to application; see (2.3.3)-(2.3.4) for a description of the oracle in the case
of adaptive filtering. Indeed, the oracle is the only place within the IPCG algorithm that
requires (and possesses) knowledge of the feasible region I'. In other words, to construct an
IPCG algorithm for a certain application we only need to construct an appropriate oracle to
be used in step 1 of the algorithm; steps 2 and 3 are independent of the specific application.

Step 2 of the IPCG algorithm deals with the updating of Q,. The values of Cn+1, an+1
and Qn 4+ are available from the first step. In certain cases, the only operation required is to
add the inequality (2.2.2) defined by these parameters to the set of inequalities that define
Q, in order to form Q,,1. However, as we mentioned above, some oracles may generate only
the linear and quadratic components, a,+; and Qn41. A suitable new constant cp+) can be
determined as we describe below. Generally speaking, a cut can be placed either directly
through the current center y, (aggressive cut) or one can allow for a small positive slack in
determining the constant cn,4). The main reason for the latter procedure is that it helps to
ensure fast theoretical convergence of the re-centering iterations in step 3. Specifically, we
can compute the constant c,+; of the separating inequality as

1
Cn+1 = Or + (an+1, Yn) + (¥n, ans1) + E(YM Qn+1¥n), (2.2.3)
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where 3 > (V2 + 1)? is a constant and

r:= (h, (V2¢n(Yn))_lh) sz h:=ani1 + Qns1yn

and ¢,(-) is the logarithmic barrier function of 2,. With this new value of cn+1, the
separating inequality becomes

1
Cntl — (Bnt1,Y) — (¥, 8ns1) — §(y, Qn+1y) 20.

It can be easily checked that y, satisfies this inequality. Adding this separating inequality
to Q, we obtain Qp41:

1
Qny1 = {y €CM : cni1 — (an+1,Y) — (V) 8n41) — E(Y, Qn+1y) 2 0} N Q.
Notice that we always have I' C Q,4+1 C Qq.

The third step of the IPCG algorithm involves the computation of an approximate
analytic center of 2,4;. Since the exact analytic center is too costly to compute, the IPCG
algorithm tries to find an approzimate analytic center of 2,4,. The proximity from a point
y to the exact analytic center is measured by the norm of the Hessian scaled gradient:

5(y) = (Véns1 () (V28ns1(¥) "' Vi (¥))'/2,

where ¢n4; denotes the potential function of Qn41, Vén+1(y) denotes the gradient vector of
#n+1 evaluated at y, and V2@, ,1(y) is the Hessian matrix of ¢+ evaluated at y. Clearly,
if y is the exact analytic center of 2y, we have Vén1(y) = 0, implying é(y) = 0. The
vector y is said to be an n-approximate analytic center of 2,4, if §(y) < 75, for some
fixed n € (0,1). Given any n-approximate analytic center y of Q4+, we can obtain an
n?-approximate center y* by performing the following Newton iteration:

yti=y — an(Vin+1(¥)) " Véns1 (¥), (2:2.4)

where apy is the Newton step size. Indeed, it can be shown (Luo and Sun, 1999) that the
proximity measure is reduced quadratically after each Newton iteration: &(y*) < §(y)°.
Thus, suppose we have a %-approxima.te center of Q,41, we can obtain a -}-approximate
center by performing just one Newton iteration. In the IPCG algorithm, we typically
require the iterate y, to be an n-approximate center of Q,, for some fixed 7 (say, n = 1/4).
When a new cut is added to 2,, we usually ensure that y, remains an n/-approximate
center for Qn41, where 0 < n < 1’ < 1 (say, ' = 1/2). Recall that the parameter g in
(2.2.3) is introduced for just this purpose. Subsequently, we can perform a few Newton
iterations starting from y,. This will re-center y, and yield an 7-center yn4+1 of Qn41. By
the quadratic convergence of the proximity measure, this re-centering process is extremely
efficient; it rarely requires more than one Newton iteration in the re-centering step.
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2.3 Adaptive Filtering Applications

In this section we show how Interior Point Column Generation can be applied to the adaptive
filtering problem (introduced in Chapter 1). We then discuss some practical modifications
that are necessitated by the effects of noise. Section 2.3.3 contains some simulation results
where IPCG is compared to RLS in a system identification application.

2.3.1 IPCG Algorithms for Adaptive Filtering

Our first step is to convert the optimization problem into a feasibility problem so that the
IPCG algorithm can be applied. Then we specify how to identify a violated constraint and

generate the corresponding an+; and Qu41. These will be used in steps 2 and 3 of the
IPCG algorithm.

We define the feasible region [';, as follows,
[is(n) = {w € CM | Fa(w) < 7%} (2.3.1)

Note that we must specify a threshold 72. Consider a stationary environment: in this case
the noise is not filtered through the adaptive filter, thus we know that as w(n) approaches
the optimal filter w*, F,(w) approaches the noise power o%,. The threshold should therefore
be selected proportional to o%.

It is now easy to see how the oracle can determine whether a given filter wy, is feasible:
it must test the condition given in [';;(n). If the inequality in (2.3.1) is satisfied, the tested
filter w, is feasible and the oracle is done. However, if w, is found to be infeasible, the
oracle must generate a quadratic cut. Recall that a generic quadratic cut takes on the form:

c~(ay) - (v,2) - 5, Q) 2 0. (23.2)

The oracle is only required to specify the linear and quadratic terms a and Q. Therefore,
in our case, we need to determine a,,; and Q4 for a new cut at time n + 1. Since the
current filter w,, is infeasible, the least squares error Fn41(wn) exceeds 72. The constraint
that is violated can be expressed using (1.2.4)

1
Far1(Wn) = myf+lyn+1 —wilpg(n+1) - pfy(n + Dwp + wHRz(n + 1)wy
< r2.

We rearrange the terms in the equation above to obtain a separating inequality in the
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generic format (2.3.2),

H
(T2 _ yn+1Yn+1)

——] - (-pzy(n+l)v Wn) — (Wn, —p:y(n+1)) - %(wm 2Rz (n+1)wp) > 0.

The required information a,;; and Qgn+; for this quadratic cut can be readily obtained as

Bas1 = —Pamy(n+1), (2:3.3)
Qrn+1 = 2Rz (n+1). (2.34)

Note that Q.. is given by a scaled autocorrelation matrix and thus is symmetric positive
semidefinite as required by the column generation algorithm. The above definition of [';;(n)
uses a fixed threshold 72. In applications where the noise power is unknown or the channel
is time varying, we have found that an adaptive thresholding technique works well; see
Section 3.2 for details.

Note that our approach can easily be modified to include a forgetting factor for track-
ing time-varying systems, or to a sliding-window implementation, where the error is only
accumulated over a finite observation window. It is sufficient to modify the formulation of
the mean-squared error used in (2.3.1). If A < 1 denotes the forgetting factor and I is the
interval of consideration for the finite memory case, the cost function can be expressed as

n

- 2
Faar(w)= Y 2y —xfwl
t=n-=[+1
We will see in the simulations of Section 2.4 that F, ) ;(w) allows for better tracking in
the non-stationary case. Moreover, it requires less computational effort than the infinite
memory approach.

2.3.2 Practical Modifications to the IPCG Algorithm

The presence of noise in adaptive systems necessitates some practical changes to the IPCG
algorithm. Because of noise it is possible that at some iteration n the region ['j,(n) is
located far away from the true system w. (as shown in Figure 2.3). If at such a time the
current solution wy, lies somewhere in-between w, and 'j5(n), the oracle may return a cut
removing w, permanently from 2.

In a practical implementation of the IPCG algorithm we thus take several precautions.
To avoid the generation of bad cuts we want the error threshold 72 to be slightly larger
than the average value of the error Fn(w). If the threshold was lower we would gener-
ate unnecessarily many cuts without actually being able to minimize F,(w) further. If the
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Q,
Bad
Cut

L

Figure 2.3: Noise causing a bad cut

threshold was much larger, then the steady-state mean-square error in w,, may be unaccept-
able. Assuming no a priori knowledge of the output noise power, one way of determining
the threshold 72 is an adaptive thresholding technique as outlined below.

1. Start with a very small threshold value to promote early cuts for faster convergence.

2. Define a threshold adaptation parameter, a, (usually a, = 0.05).

3. If the current error F,(w) falls into the interval
(1 - 2a,)72 < Fa(w) < (1 +a;)7?
the threshold remains unchanged for the next iteration.

4. Threshold reduction: if F,(w) < (1 — 2a,)72, then 72 := (1 — a,)72.

5. Incrementing threshold: if Fn(w) > (1 + a;)72, then 72 := (1 + 2a,)12.

Points 4 and 5 purposely reflect a certain bias of the method to select a threshold slightly
higher than the mean-squared error. In this way we hope to minimize the overall number
of cuts that need to be generated.

In the case of unbounded additive disturbances, such as additive white Gaussian noise,
a bad cut (as described above) may occur no matter how high the threshold. Such cuts
should periodically be purged from the set of inequalities defining the current Q,. After a
cut has been purged, the set Q, is enlarged and w, is no longer an approximate analytic
center of the resulting set. Re-centering w,, however, is not necessary. Either w, will
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be found to be feasible in the next iteration, or, if not, a cut will be added and Newton
iterations (2.2.4) will update w, to the new approximate center of Qn4,. Cut removal
can be implemented by maintaining only a fixed number of inequalities and removing one
whenever the maximum is exceeded. Cuts to be removed can be identified, for example, as
those most opposed to the most recent direction of update (of wy). Alternatively, one could
simply delete the oldest cut each time the limit is attained. Maintaining a small number
of cuts in 9, has the advantage that the updating to a new approximate analytic center is
made easier. Removing old cuts also represents a natural mechanism for tracking a time-

varying system, where old cuts may be obsolete after the system has undergone substantial
changes.

Another implementation issue concerns the transient phase of adaption. We may en-
counter the scenario that a given filter w, remains feasible for many iterations n’ > n.
While this “resting time” saves computations (no updates are necessary) it also causes a
deterioration in transient performance. To ensure the continued adjustment of w,, we there-
fore define a cut interval parameter I. that signifies that a cut is made every I, iterations
regardless of the current error.

2.3.3 Simulations

In this section we present numerical simulation resuits to evaluate the performance of the
IPCG algorithm as compared with the RLS method in the system identification scenario.
We are interested mainly in the speed and accuracy of convergence of the [IPCG and RLS
methods. To this end we use the following performance measures. We consider the instan-
taneous squared error,

ey(n) = ly(n) — x¥ (n)wy|?. (2.3.5)

and the error in the weight vector wy, itself. The mean squared weight vector error is defined
as

cw(n) = llwn — W-llzy (2.3.6)
where w, is the plant to be identified.

In implementing the RLS and the [PCG algorithms we must select certain parameters.
In the case of RLS this is relatively straightforward: the forgetting factor A must be chosen
and the algorithm is initialized by choosing wg, and a matrix P(0) which is equal to the
inverse of the estimated autocorrelation matrix. The initialization affects the transient
performance of RLS but is not crucial to the convergence if the data length is large (Haykin,
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1998). In the case of [IPCG algorithms a larger number of parameters can be adjusted. To
limit the scope of simulation, we fix these parameters to the values shown in Table 2.1.

Table 2.1: IPCG parameter settings

[ Parameter | Value || Description
B 2.0 |[[ indicates aggressiveness of cut
Oen 10~7 || limit for distance between approximate and true analytic centers
aN 1.0 Newton step size
T° 0.03 [ initial threshold for mean squared error €(n)
ar 0.03 || threshold adaptation parameter (see section 3.2)
Ncuts 2 maximum number of cuts maintained
R 100 radius of Qg
I. 20 Interval at which a cut will be made for sure

2.3.3.1 System models

The unknown plant is modeled as a three-ray multipath communication channel character-
ized by the impulse response shown in Figure 2.5. The impulse response has length M =24
and is composed of three delayed and amplified raised cosine pulses with roll-off factor 0.11.

Figure 2.4: Channel impulse response h(n)

Noise is assumed to be additive white Gaussian at a specified signal-to-noise ratio. We
use two different source models: the first is a white Gaussian noise sequence, and the second
source model is a correlated noise sequence. The correlated source sequence is obtained by
taking a 4 sample average of the white noise sequence {v(n)},

ve(n) = -;-(v(n) ton—1)+v(n—2 +v(n—3), n=4,5,...
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By using such a coloring filter we increase the eigenvalue spread of the correlation matrix
of the signal.

2.3.3.2 Comparison of IPCG and RLS for Adaptive Filtering

We examine the convergence behaviour of the new IPCG algorithm in two separate exper-
iments. The first experiment investigates the robustness of IPCG to variations in source
correlation and SNR levels. An abrupt change in the system is considered in Experiment 2.2.
For reference, an implementation of the RLS algorithm was tested on the same data. All

results were obtained by repeating 200 Monte Carlo trials and averaging the respective
errors.

Experiment 2.1: System Identification

We first test both algorithms with white noise at the input and the channel of Figure 2.4.
Noise is added at an SNR of 20 dB. The [PCG algorithm is configured with the parameter
settings of Table 1. The RLS algorithm is run with a forgetting factor of A = 1.0. The
weight vector and mean squared errors for both algorithms are plotted in Figures 2.5a and
2.5b. It can be seen that in this case [IPCG closely matches the RLS performance. In fact,
the mean squared errors not only converge to the same amplitude but appear to be identical
in steady state (¢f. Figure 2.5b).

We repeat the same test at an SNR of 5dB. The performance of both algorithms dete-
riorates as shown in Figure 2.5c. They still converge to the same steady state error, but
IPCG displays clearly better transient performance. It should be noted here, that RLS’
performance could te improved by assuming a higher noise level in the initialization stage.
This, however, would require a priori knowledge of the noise power. In this experiment we
did not assume such knowledge for either of the algorithms.

In the third test scenario we use the correlated source and increased the SNR to 15 dB.
The results of this run are depicted in Figure 2.5d. We observe again that IPCG show
better initial convergence than RLS. While IPCG converges to its steady state error in less
than 50 iterations, RLS takes over 100 iterations to reach the same low error level of IPCG.
Figure 2.5d was obtained using 8 = 20. Note that optimizing the initialization of RLS in
this case hardly improves its convergence. [PCGs better performance pversists as long as
algorithms are initialized in their normal operating regions. The computational complexity
of IPCG in this experiment was on average 15 to 20 times that of RLS.
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Figure 2.5: Ezperiment 2.1: (a) Weight vector error (high SNR) (b) Instantaneous squared
error (c) Weight vector error (low SNR) (d) Weight vector error (high SNR, correlated
inputs)

Experiment 2.2: System Identification (abrupt change)

As was seen in Experiment 2.1, IPCG can be more accurate especially during the transient
phase of the training period. We now want to investigate whether this advantage can be
exploited for the tracking of time-varying systems. We thus test the ability of both algo-
rithms to track a sudden change in the unknown system that occurs during the identification
process.

The input sequence is an uncorrelated Gaussian signal. This signal is convolved first
simply with a delta function, and after 50 iterations with the channel impulse response of
Figure 2.4. White Gaussian noise is added at an SNR of 30 dB.
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Both RLS and IPCG use a forgetting factor A = 0.95. Further parameter setting for
IPCG were as in Table 2.1 with the exception that a, = 0.01. Also, for [PCG we used an
oracle based on the finite interval error F, » r and the interval length was set to I = 10.

The results of the simulation are depicted in Figure 2.6. We can see that after the
abrupt change (at Iteration 50), IPCG reacquires the unknown system almost twice as fast
as RLS. In a practical scenario, this could for example mean a 50% saving in the length
of a training signal required, after the receiver has lost lock on a current communication
channel. Figure 2.7b is included to illustrate the adaptive thresholding procedure described
in Section 2.3.2.
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Figure 2.6: Ezperiment 2.2: (a) Weight vector error, (b) Adaptive thresholding

2.4 Discussion

We demonstrated the applicability of Interior Point Column Generation algorithms to a
dynamic problem in engineering, adaptive filtering. Our simulation results are encouraging:
in adverse conditions the transient convergence of IPCG is superior to RLS. When conditions
are less hostile, the IPCG algorithm consistently matches the RLS performance. Results
also indicate that the IPCG algorithm is robust to changes in input signal and channel
characteristics.

The IPCG algorithm for adaptive filtering bears a certain resemblance to set-theoretic
approaches (see Section 1.2.4) in that it always maintains a feasible set of filters and chooses
as its estimate a filter that is near the center of this convex feasible set. An important
difference is that the set-theoretic approaches in the literature are always formulated in the
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context of a bounded error environment, and thus of limited usefulness in such applications
such as telecommunications, where a noise bound can not easily be imposed.

While the performance of the IPCG algorithm encourages further investigation, there are
important issues to be addressed. Practical modifications (e.g., adaptive thresholding, cut
removal) were introduced in Section 2.3.2 to handle the problems arising with the presence
of unbounded noise. These are heuristic procedures, and no claim for optimality can be
made. Furthermore, they hinder the theoretical analysis of the algorithm. For example,
no convergence results could be obtained. The algorithm is also computationally intensive.
The update of the analytic center at each iteration is obtained by taking at least one Newton
step, which is O(M?3). In the case of unlimited cuts, the complexity depends on time as
well. The Interior Point Least Squares algorithm of Chapter 3 achieves improvements on
all these issues.



Chapter 3

Adaptive Linear Filtering using
Interior Point Optimization
Techniques

We oropose a new approach for the linear adaptive filtering problem using techniques from
interior point optimization. Similar to the IPCG approach of Chapter 2, this method
formulates a convex feasibility problem at each iteration and obtains as an estimate a filter
near the center of the feasible region. The difference lies in how the convex feasible region
is defined. It now only contains two inequalities throughout, and it is by controlling the
relative importance of these inequalities that convergence of the estimator is achieved.

In this chapter we concentrate on the algorithm and its practical implementation. It is
shown that the algorithm can be made recursive with a per-sample complexity of O(M?%2),
where M is the filter length. The potential of the algorithm for practical applications is
demonstrated via numerical simulations where the new algorithm is shown to have superior
transient behaviour and improved robustness to the source signal statistics when compared
to the recursive least-squares (RLS) method.

3.1 Introduction

The linear filtering problem (1.2.5) has been the subject of active research over the past
few decades (Haykin, 1998). This is because of the important role of adaptive filtering
in signal processing and data communication where it is used to solve a wide range of

31
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problems including system identification, adaptive channel equalization, echo cancellation,
linear predictive speech coding and adaptive differential coding. The work in recent years
has led many to regard the recursive least-squares (RLS) algorithm and its variants as
the state of the art. The RLS algorithm computes the solution (%I + Rzz(n)) "lpzy(n)
recursively, requiring O(M?) operations per sample. The extra term {-I, where ¢ is a fized
initialization constant, is used to handle the problem of ill-conditioning (or singularity) of
the matrix R;z(n), as caused by, for example, the lack of observation data in the initial
phase. The choice of § significantly affects filtering performance since it determines the
exact amount of regularization for the remainder of the adaptive process. In the absence
of estimation uncertainties about Rzz(n) and pzy(n) it is the regularization term that
determines the rate at which the RLS estimator converges to the optimum linear filter (see
also Moustakides, 1997).

In this chapter we reformulate the adaptive filtering problem as a convex feasibil-
ity problem and propose to use the approximate analytic center of the feasible region
as an estimate of the optimal filter Rﬂ,(n)‘lp,y(n). This estimator takes the form of
(anl + Ryz(n)) ~!pzy(n), where ay, is a time-varying parameter. We introduce a recursive
Interior Point Least Squares (IPLS) algorithm, with per-sample complexity O(M?22), to
compute this estimator efficiently. Our algorithm is based on recently developed interior
point optimization techniques and can be shown to retain the O(1/n) asymptotic conver-
gence rate of the RLS algorithm (Chapter 4). Most importantly, the algorithm is able to
adjust the regularization parameter ay intelligently, ensuring that ay is relatively large
when the estimated filter is far from the optimum linear filter and small when the esti-
mated filter is close to the optimum linear filter. As a result, the algorithm is observed to
be robust to variations in its initialization and possesses superior (exponentially decaying)
transient behaviour compared to RLS. The transient convergence of IPLS is demonstrated
experimentally by computer simulations. The theoretical analysis of transient convergence
follows in Chapter 4.

Previously, interior point optimization approaches to adaptive filtering have been based
on the idea of Interior Point Column Generation (see previous chapter or Bai et al., 1999).
Their strategy is to iteratively add cuts to a feasible region, such that a “shrinking” sequence
of feasible regions is obtained. Eventually, the center of the last feasible region will be close
to the optimum linear filter. These types of algorithms encounter difficulties when the
measurements are noisy, because noise can in fact cause the optimum filter to be cut from
the feasible region. This difficulty is remedied in the IPCG algorithm of Chapter 2 by
maintaining only a fixed number of cuts in the description of feasible sets. Should a “bad”
cut occur it would be eliminated eventually; however the sequence of feasible sets is no longer
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shrinking, thus convergence becomes difficult to establish. Alternatively, Bai et al. (1999)
assume bounded noise to circumvent this problem. Their method suffers from growing
computational complexity: the number of operations required to update the filter estimate
grows with the number of observations n. In contrast, the IPLS algorithm proposed here
has a low per-sample complexity of O(M?-?) which does not grow with n and its asymptotic
convergence can be established.

The remainder of the chapter is organized as follows. In Section 3.2, we introduce an
analytic center based estimator. The Interior Point Least Squares (IPLS) algorithm for
adaptive filtering is introduced in Section 3.3 to approximately implement the estimator
described in Section 3.2. We also develop a recursive updating scheme in this section
to efficiently compute the IPLS estimator. Then in Section 3.4 we provide some numerical
simulations that show the promise of the [IPLS algorithm, especially in terms of its transient
convergence for n < M. We close the chapter with some discussion in Section 3.5.

3.2 An Analytic Center based Estimator

Recall that the linear filtering problem is formulated as finding a weight vector w that

minimizes the cost F,(w) (¢f. 1.2.5). Consequently, we can define the following convex
feasibility region:

Q, = {w e CM | Fo(w) <, [lW]® < R?}, (3.2.1)

where 1, > 0 is an appropriately chosen scalar and R > 0 is a fixed number. Any vector
w € (Q, is said to be feasible at time n. Obviously, we would like 7,, to become small quickly,
because then any feasible vector w will approximately minimize F,(w). The additional
inequality ||w|j2 < R? is important since it ensures that the region 2, is bounded.

For the above convex feasible region 2, the logarithmic barrier function becomes
$n(W) = —log(tn — Fa(w)) — log(R? — [wi|?), w E Q.

Recall that this barrier function is strictly convex over {2,, and thus admits a unique mini-
mizer: the analytic center wi. Consider w$ as an estimator for the optimal solution of the
linear filtering problem. Intuitively, if 7, and R are chosen in a way to emphasize the first
constraint, then the analytic center w3 will be a close approximation of the minimizer of
Fa(w). Setting Vor(w2) = 0, we obtain

VI, 2 _g (3.2.2)

sn(W2) | ta(wa)
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where s;(w) := 7, — Fr(w) and tp(w) := (R? — ||w2]|?) are the slacks associated with the
two quadratic constraints of ,,. It should be noted here that the gradient is taken with
respect to the complex valued tap weight vector w (following the convention of Haykin,
1998, Appendix B). Substituting

VFn(w) = —2pzy(n) + 2Rz (n)w

in the above relation and rearranging, we further obtain

-1

wi= (E1+Ra() paylr) = (anl + Rex(i) " pyl). (329
The term ay,I can be viewed as a regularization term for the matrix R;;(n) (which may be
poorly conditioned). The above expression for w3 suggests that the estimator wg is similar
to the RLS estimator which takes the form of (%I-’f-R;z (n))"'pzy(n). The difference lies in
that for the analytic center w3, the value of ap, changes (actually depends on wy) with data.
The initialization of ay, however, depends on the filter w3_,) of the previous iteration. In
our proposed algorithm, a,(w4_,) is proportional to the quantity ||VFn(wg_;)ll2- As a
result, an,I will provide sufficient regularization to R;z(n) in the initial phase when it is
poorly conditioned. As n becomes large, R:z(n) becomes better conditioned, Fyn(w) will
be approximately minimized and VF,(w&a_,) approaches zero. This implies a, — 0 and
the effect of regularization is gradually eliminated as desired.

It remains to specify how 7, is updated in each iteration. An important consideration
here is to ensure the proportionality of an to ||[VF,(wa_,)ll2 which is essential to the
convergence behaviour of our algorithm. This can be accomplished by choosing

Ta = Fn(Wi_i)+POra

R ¢
= Fn(Wn_1) + ﬂﬁlIan(Wﬁ-l)llz, (3.2.4)

where 8 > 0 is a constant chosen by the user. With this choice of 7, the added “slack”
becomes sn(Wp_;) = frn = 3%||an(wﬁ_1)|lz which in turn guarantees an(wi_,) ~
IV Fn(wa_)ll2

Another important consequence of (3.2.4) is that w3_, remains feasible with respect
to the updated region Q, so that wi_, can be used as a starting point for a Newton
procedure to find the analytic center w3 of 2,. The condition F(w3_,) < 7, is easily
verified with (3.2.4). The (R/V?2) term in s, provides a normalization that is required
to show the convergence of the algorithm (see Chapter 4). The parameter 3 is typically
used in interior point methods to control the “aggressiveness” with which constraints are
generated. For example, a small 8 corresponds to a small allowed slack, viz, wi_, is left

n—-1
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close to the boundary of Q,. By increasing 8 we allow more slack and hence define 2, more
conservatively.

Let us again use an example in R? to illustrate the principles of the algorithm.

Example 3.1

At time zero the feasible region g is determined only by the norm condition lwil®? < R?
with R = 100. The initial filter estimate is w§ = [0 0]7. When the first data point
{w%,y1} is observed we can update Qg to ©; by calculating Rzz(1), pzy(l). We also
update 7, according to (3.2.4). Now the new filter estimate can be found by computing the
new analytic center of ;. We can see in Figure 3.1 that after one iteration the inequality
Fi(w) < 7 still defines an unbounded region. This is so because with one data point
the autocorrelation matrix is still rank deficient. In this case, the presence of the norm
constraint ensures that among all filters that yield a small mean squared error we select one
that also minimizes the norm. After two iterations R;;(2) has become full rank and defines
a bounded ellipse. The size of the ellipse is determined by [|[VFz(w$){l2: the “better” wi
was, the smaller the ellipse, or the more confident we are that w4 should be somewhere near
w¢. From the sequence of plots in Figure 3.1 we can see that the ellipses defined by the
first inequality become progressively smaller, which indicates that we are becoming more
and more confident in the analytic center filter estimate wg. a

To summarize, we have proposed the following procedure for the adaptive filtering prob-
lem:

An Analytic Center Based Adaptive Filtering Procedure

Step 1: Initialization. Select R >0, 3 > 0. Let Fo(w) = 0 and Qp = {|w]|? < R?}. Let
wg = 0.

Step 2: Updating. For n > 1, update the feasible region Qy, using the new data sample
(%n,yn) and the new value 7, according to (3.2.4).

Step 3: Recentering. Compute the analytic center wg of 1, using the previous center
wd_,. Set n:=n + 1 and return to Step 2.
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Figure 3.1: Ezample 3.1: Siz iterations of analytic center based adaptive filtering.
3.3 Interior Point Least Squares Algorithm

The analytic center based adaptive filtering procedure proposed in Section 3.2 requires the
calculation of the exact analytic center w2 of Qg for n > 1. This calculation involves the
minimization of the logarithmic function ¢,(w) which typically requires an infinite number
of iterations. Thus, the aforementioned adaptive filtering procedure is difficult to implement
in practice. Fortunately, it can be shown (Chapter 4) that an approzimate analytic center
of 0, is indeed sufficient in the adaptive filtering procedure. Moreover, this approximate
analytic center can always be updated by a single Newton iteration in the minimization of
#n(W). The Newton iteration can be described as follows:

Wp = Wp_| — (v2¢n(wn—l))_lv¢n(wn—l)y (3.3.1)

where by w, we denote the approximate analytic center of (2,.
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To compute (3.3.1) we require the gradient and Hessian of ¢,(w)

VFa 2w

Sn(w) tn(w),

(VFINVF)E  V2F,  dwwH 21
sz (w) sa(w)  ti(w)  ta(w)

Vén(w)

(3.3.2)

V2¢n (w) =

(3.3.3)

where s, (W) := T, — Fn(w) and t,(w) := R? — ||w||? are the slacks of w with respect to the
first and the second inequalities in §2,, respectively. The gradient and Hessian of Fpn(w)
are given by
VFa = —2puy(n) + 2Raz(n)w,
V3F, = 2Rg:(n).

The threshold 7, is now defined in terms of the approximate analytic center,
R
Tn = Fn(Wn-1) + Bﬁ"vfn(wn-l)nh (3.3.4)

This provides all the information that is necessary for the Newton step.

By replacing the exact analytic center wa by an approximate analytic center wy, in the
Analytic Center Adaptive Filtering Procedure given in Section 3.2, we obtain an imple-
mentable Interior Point Least Squares (IPLS) algorithm where the approximate analytic
centers are updated by a single Newton iteration. We summarize the steps of the IPLS
algorithm as follows:

Interior Point Least Squares (IPLS) Algorithm

Step 1: Initialization. Let 8, R be given. Set

wo =0, Ppz(0)=0, Rz(0)=0, VZF(0)=0.

Step 2: Updating. For n > 1, acquire new data Xy, y». Then recursively update

n—1 1
pzy(n) = pry(n -1) + ;;xnym

n
R;:(n)

-1
2 "R(n-1)+ lxnx,’,’. (3.3.5)
) n n
Update

o VFu(Wn-1) = —2sz(n) + 2Rzz(n)wn-y
e 5a(Wn—1) = Tq — Fn(Wn-1) = B% "V}-n(wn—l)llz
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o ta(wn_1) = R? - "wn—1"2

o Vén(Wn_1), V3¢n(Wn_1) using equations (3.3.2), (3.3.3)

Step 3: Recentering. The new center of Q, is obtained by taking just one Newton iter-
ation starting at wy_:

Wn :=Wqp_1| — (V2¢n(wn—l))—lv¢n(wn—l)

Set n := n + 1, and return to Step 2.

The choice of constant parameters 3 and R will be discussed in Chapter 4. Basically, the
appropriate choices of 8 and R ensure the asymptotic convergence of w, to the optimum
filter. Note also that the update of the slack variable s, in Step 2 implies the update of the
threshold 7, according to (3.3.4). We have chosen to update s, directly in order to save
the computation of Fn(wWn_1).

It can be easily seen that Step 2 (the recursive updating step) of IPLS algorithm re-
quires O(M?) arithmetic operations per iteration. This is analogous to the computational
requirement per iteration of the basic RLS algorithm. However, Step 3 (the Recentering
step) involves the calculation of the Hessian inverse (V2¢n(Wn-1)) "' which requires O(M 3)
operations. Therefore the overall computational requirement per iteration is in the order of
O(M?3). Though this complexity is independent of n, it compares unfavorably to the RLS
algorithm which has a per iteration complexity of O(M 2). Next we outline a procedure to
update the Newton direction [V2@n(Wn—1)] " ¢n(Wn_1) in O(M?*?) operations. With this
procedure, the overall complexity per iteration of IPLS is reduced to O(M??2).

3.3.1 Recursive Update of Newton Direction

Suppose A is a square matrix of size M x M and U, V € CM*¥. We first recall the following
three facts from numerical linear algebra:

1. The Sherman-Morrison-Woodbury formula (Golub and Van Loan, 1996) gives a con-
venient way of computing the rank k update of the inverse of A:

(A+UVH-1= A~ AU + VAATIU)TIVAA-L

In particular, suppose A~! is available, then the above updating formula takes O(kM 2)
operations (as opposed to O(M?3) operations needed to invert (A + UV#) from
scratch). Notice that the RLS algorithm is based precisely on the above updating
scheme (for k = 1).
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2. Let A € CM*M be a symmetric banded matrix of band-width 2s + 1, viz, its entries
A;j satisfy A;j = 0, |i — j| > s. Solving the linear system Ax = b takes O(Ms?)
operations (Golub and Van Loan, 1996).

3. Let P € CM*M pe a hermitian matrix that transforms A into a banded form, viz,
PH AP = A, where A is a banded matrix of band-width 2s + 1. If A is modified by a
rank-one matrix uu” and if s = M3/3, it is possible to update P to a new hermitian
matrix P’ and A to a new (2s+1)-banded matrix A’ in O(M?2) operations, such that

PYH(A +uuf)P' = A",

In other words, the symmetric rank-one update of the transformation of A into a
(2s+1)-banded matrix can be achieved in O(M??2) operations.

Facts 1 and 2 above are well known. Fact 3 has been treated by Powell (1998), where it is
shown that the decomposition of a matrix into a banded structure after a rank-one update
requires the computation of %(M —1)2/(s + 1) Givens matrices. To jointly minimize the
amount of work needed to update A and P, s is set to M3/5. Note that with s = M3/5 the
complexity of solving the banded system (Fact 2) also becomes O(M??).

Let us now examine the structure inherent in the Hessian V2¢,(wn_1). Rearranging
(3.3.3) and using the relation V2F, = 2R;;(n) we obtain

2R;z(n) + 2A (V.F,,)(V.F,,)H + 4Wn—lwf,’_.1
sn(wn—l) tn(Wn-1) sa(wn—l) t%(wn-l) ’

Suppose that we have a hermitian matrix P, that reduces R;z(n) to a matrix A, of band-
width 2s + 1, viz,

V2¢n(wn—l) =

(3.3.6)

PaR::(n)PH =A,, P.Py=L (3.3.7)
We can then re-write the Hessian

A, A )Pn+(an)(yfn)” +4wn_xw,’.‘_21
3n(wn—l) tn(wn—l) Sa th(Wn-1)

V2pn(Wat) = P:'(

- Pf [Tn + (Pann)(an-Fn)H + 4(inn-—l)(Pan—l)H] P,

sn(wn—l)2 tn(wn—l)2
= P,}{ann:

where

2A, 21 )
Tn = +
(Sn(wn—l) tn(Wn—_1)
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and

(Pann)(Pann)H + 4(inn—l)(inn—l)H
Sn(wn—1)2 tn(v‘"'n.—l)2

Gn = Tn +

Since A, is banded with bandwidth 2s+1, so is T,,. Thus by Fact 2 a linear system with the
coefficient matrix T, can be efficiently solved in O(M??) if we choose s = M3/5. Now, G,
differs from T, only by a rank-two modification (PrUn)(PaUn)¥ where Uy, is an M x 2
matrix given by

U _ [ an . 2Wn_1
" sn(wn—l)' tn(Wn_1) )

Therefore we can use Fact 1 cited above to express G;! in terms of T,!. The Newton
direction needed in the IPLS algorithm can then be written as

[V2¢n(wn—1)]_lv¢n(wn—l) = PEG;Ian‘ﬁn(Wn—l)
= PHT;'P,V¢n(wn-1) + PET P, U, (3.3.8)
-1+ UZPHT;'P,U,) " UYPHT;IP,Vn(Wn-1).

We outline an O(M?2) recursive procedure for updating the Newton direction (3.3.8)
in Table 1. For each step in the procedure we also indicate the approximate number of
arithmetic operations required. Here, by approximate we mean that the constants in the
computational complexity estimate have been evaluated only for the O(M?2?) and O(M?)
terms. We see from Table 1 that the per iteration complexity for IPLS can be noticeably
higher than for RLS which requires approximately 4M 2 operations per iteration. Thus the
performance improvement gained by using IPLS comes at the price of increased complexity.
It should be noted, however, that the complexity estimates are based only on a crude and
un-optimized implementation of the procedure of Table 1. Considering that a significant
amount of the computational effort involves the calculation and application of Givens ro-
tations (to compute the banded matrix A,) a parallel implementation may be one way to
achieve computational savings.

Furthermore, it should be recognized that the calculation of the IPLS estimator is com-
plicated mainly because of the regularization term that changes in each iteration. As we
have argued in Section 3.2 it is precisely this term that leads to IPLS’ improved transient
behaviour. In a practical implementation one could easily use the full IPLS algorithm only
during transient phase and then switch to an RLS like estimator in steady state.
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Tabie 3.1: Recursive Computation of Newton Direction [V2¢n(Wn—1)]"' Vén(Wn-1)

Step ' Computations
Recursively update pzy(n), Rzz(n), sn(Wn-1), tn(Wn-1), VFn(Wn_1)

and V¢,(Wn_1) in exactly the same way as outlined in the IPLS al- IM?
gorithm.

Maintain the decomposition of R;z(n) into a banded system:
PgRa:z(n)Pn = An, forn>1,

by recursively updating P, and A,. Since R;z(n — 1) and R.(n) differ 9.5M%2 + 25M°
by only a symmetric rank-one matrix (cf. 3.3.5), it follows from Fact 3
above that we can compute the matrices P, A, from Pp_;, Ap-1 in
O(M?2) operations on average.

gsg g’),., An obtained above to update the Newton direction according to 6M22 + AM?

Total 15.5M22 + 32M?

3.4 Simulations

We present numerical experiments to compare the performance of the analytic center estima-
tor wy, (obtained from the IPLS algorithm) with the least-squares estimator w’is obtained
from the RLS algorithm. Throughout we shall use the mean-squared errors in the filter,

€ip(n) = [|[Wn — Wall? and  eqq(n) = [Wh — w.|?

as a measure of performance, where w, represents the coefficients of the unknown system
to be identified.

In our experiments we employ two different sources. In each of the sources the input
vector satisfies X, = [Zn,Zn—-1,--- s Tn— sm+1]T, where the sequence {z,} can be generated
either as white Gaussian noise, or by passing white Gaussian noise first through an IIR
system with transfer function (adopted from Moustakides (1997))

1+2z71 43272

H(z) = AT 1814 T + 064:-9)(1 + 092 1)

(3.4.1)

The unknown FIR system w, is a random vector of length M (where M will be specified in



CHAPTER 3. ADAPTIVE FILTERING USING LP. OPTIMIZATION 42

each experiment) and each entry takes on a value in the interval [—1, +1]. Zero mean white
Gaussian noise will be added to the output of the system at specified signal-to-noise ratios.

We present three separate experiments. In Experiment 3.1 we examine the basic con-
vergence behaviour of our algorithm (and compare to RLS). Experiment 3.2 is designed to
illustrate how IPLS changes with different choices of parameters # and R. Finally, in the
third experiment, we consider an abrupt change in the FIR system w,. In each experiment
our results are obtained by averaging errors over 500 independent Monte Carlo trial.

Experiment 3.1

The order of the FIR system is M = 20, and source sequence length is N = 200. The
parameters of both the RLS and IPLS algorithm are set to the nominal values listed in
Table 3.2. For RLS, ) is the usual forgetting factor, and 4 is a parameter that controls
the amount of regularization added to the autocorrelation matrix R;z(n). The widely used
“rule of thumb” is to set § < 0.0102, where o2 is the average signal power (Haykin, 1998).

Table 3.2: Nominal parameter settings

RLS [ A=1, §=10"1
IPLS | =2, R=1000

The nominal values are chosen such that both algorithms perform well in the nominal
scenario of high signal-to-noise ratio (SNR=40dB), and white Gaussian signal source. Fig-
ure 3.2a confirms that in this case both RLS and IPLS efficiently identify the unknown
system. Their respective identification errors €;p and &, are almost identical. We then
compare both algorithms in the case where the underlying conditions have changed, i.e.,
the SNR drops to 10dB, and/or the source becomes correlated and the source power changes
(by being generated according to (3.4.1)). Figures 3.2b, 3.2¢, and 3.2d show that now, RLS
has a significantly worse transient convergence behaviour while asymptotically, both RLS
and IPLS are still equivalent. It should be noted that the degradation in RLS is not so
much due to the source being correlated as to the fact that signal power has changed and
RLS is now poorly initialized. In other words, RLS can be re-initialized to perform well in
the scenario of Figure 3.2d, however, then its performance in Figure 3.2a (high SNR, white
Gaussian source) suffers considerably.
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Figure 3.2: Comparison of convergence properties of RLS and IPLS (a) SNR = 40dB,
Source: White Gaussian Noise (b) SNR = 40dB, Source: Correlated (c) SNR = 10dB,

Source: White Gaussian Noise (d) SNR = 10dB, Source: Correlated.
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Experiment 3.2

We now examine the sensitivity of the algorithm to the initialization of parameters 8 and
R. We use once again a size M = 20 filter, and source sequences of length N = 200. Let
the three algorithms IPLS-1, IPLS-2, IPLS-3 have R = 1000 but three different values of
B, /i = 0.1,5 = 10, and B3 = 100, respectively. Recall from Section 3.2 that a smaller
value of 3 corresponds to a smaller slack, and thus a smaller parameter a,. Figure 3.3a
illustrates that when the SNR is high, a smaller regularization term results in slightly faster
convergence. This is intuitively satisfying because as the noise is small, the true filter should
be located more central in the feasible region. On the other hand, when the SNR is low,

the smaller a,I term is insufficient to contain the error during the transient stage of the
algorithm as seen Figure 3.3b.

To examine the sensitivity of IPLS to the value of R, we keep 3 constant (8 = 2, as in
Experiment 3.1) and initialize the three different IPLS algorithms (IPLS-1, 2, and 3) with
R, = 10, R, = 1000 and R3 = 100,000, respectively. Note that since the elements of w,
are constrained within the interval [—1, +1], ||[w.]| < vM < R for all three values R;. The
simulation results depicted in Figure 3.4 are best interpreted by examining the relation of
R to ay in (3.2.3). When R is small a,I is large, thus the conditioning of Rz:(n) is much
improved by the regularization term. Thus the better performance of IPLS-3 in Figure 3.4b.
When the SNR is high, R;z(n) is better conditioned and does not require the augmentation
by anI. It is important to note that the initialization of parameters 8 and R affect only the
transient behaviour of IPLS. Asymptotically the effects of 8 and R vanish in comparison
with that of the term ||VFy|l.

Experiment 3.3

The transient convergence of an adaptive filtering algorithm becomes even more significant
when the parameter vector to be identified changes in time. In this experiment the pa-
rameter vector changes to a new set of values at iteration 100. It is well known that the
standard RLS algorithm performs poorly after an abrupt change, because as the change
occurs the state of R! corresponds to a poor initialization of the algorithm (Moustakides,
1997). The problem is addressed using a sliding-window approach in which all data outside
the current window is erased from memory. We employ the method of Liu and He (1995)
to adapt RLS to a sliding-window format. Note that implementing a sliding-window IPLS
is quite straight forward. One simply computes the cross-correlation vector and autocor-
relation matrix over a window of data. For the sliding-window RLS (or SW-RLS) it is
nchaow also necessary to reduce the forgetting factor A to a value less than one. We use
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(a) (b)

Figure 3.3: Dependence of IPLS on 3. (a) SNR = 40dB, Source: White Gaussian Noise
(b) SNR = 10dB, Source: White Gaussian Noise
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Figure 3.4: Dependence of IPLS on R. (a) SNR = 40dB, Source: White Gaussian Noise
(b) SNR = 10dB, Source: White Gaussian Noise
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A = 0.99 but all other parameters remain as in Table 3.2. In the simulation of Figure 3.5
we let M = 10 and use a sliding-window length of 15. This window length is relatively
short to improve (and emphasize) the transient responses of both algorithms tested. Noise
is added at an SNR of 40dB. After the abrupt change it takes 15 iterations to “flush out”
the old and incorrect data from the statistics. Thus, any convergence behaviour beyond
iteration 115 is purely due to a decaying regularization. It can be seen in Figure 3.5 that
the regularization becomes a limiting factor for RLS which needs about 200 iterations (after
the change) to reach steady state. IPLS, on the other hand, is only limited by the length of
the sliding window, and needs no further iterations to reduce any regularization bias. Due
to the forgetting factor A < 1, w7** does not converge to the optimum linear filter, thus the
higher steady-state error of RLS.

T T T Y

——  SW-ALS
---  SW-iPLS

Figure 3.5: Comparison of sliding-window versions of IPLS and RLS when channel char-
acteristics change abruptly (at iteration 100).

3.5 Discussion

We have presented a novel approach to adaptive linear filtering. The IPLS algorithm intro-
duced in this chapter uses a convex feasible region with just two inequalities throughout:
one that is designed to minimize the mean-square error and a norm constraint that is shown
to provide regularization in the case of an ill-conditioned autocorrelation matrix. The al-
gorithm is efficient in that it uses only one Newton step to update its estimate in each
iteration. Moreover, this Newton step can be computed recursively in a way that reduces
its computational complexity from O(M?3) to O(M??2). The potential of our method has
been demonstrated in several numerical experiments where the IPLS algorithm is observed
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to be less sensitive to initialization and to have superior (exponentially decaying) transient
behaviour. We point out that the IPLS algorithm can be readily extended to include an
exponential forgetting factor or be limited to a finite data window. The recursive updating
procedure can easily be modified to account for these changes.

The algorithm has of course not been completely characterized yet. Several important
issues are left for later chapters: asymptotic and transient convergence are analyzed in
Chapter 4 and numerical stability is addressed in Chapter 6. The reader may find it helpful,
however, to see a somewhat detailed comparison of IPLS and RLS at this point. Those key
properties that have been investigated in this thesis are summarized in Table 3.3. A quick
glance over the table allows the general observation that: in comparison with RLS, IPLS
trades off a slight increase in computational complexity for advantages in (1) transient
convergence, (2) robustness to initialization, (3) numerical stability, (4) versatility with
respect to additional constraints.

It should be mentioned that by taking advantage of structural properties in adaptive
filtering problems, RLS can sometimes be implemented with O(M) complexity (see Section
1.2.2). Whether the same structure can also be exploited for ‘fast’ implementations of IPLS,
has not been considered in this thesis.

Table 3.3: Direct Comparison of RLS, IPLS

Property RLS IPLS
Asymptotic Convergence O(1/n) O(1/n)
Computational Complexity O(M?) O(M?2)
Transient Convergence O(1/n) O(R™™)
Robustness to Initialization no yes
Additional constraints requires new algorithm easily accommodated
stable even at small val-
Numerical Stability problems occur when A is | ues of A, and in cases of
(in constrained case) small (A : forgetting factor) limited precision calcnla-
tions
Sliding window implementation can be accommodated easily accommodated




Chapter 4

Convergence Analysis of the
Interior Point Least Squares
Algorithm

Generally speaking, the convergence behaviour of an estimation algorithm is influenced
by two factors: the speed of the statistical averaging process and the decay rate of the
initialization parameters. The former is usually dictated by the law of large numbers and
therefore exhibits O(1/n) type of convergence rate. The latter is dependent on how fast
the estimation algorithm can phase out the effect of initialization and is therefore more
algorithm specific. We shall refer to this algorithm property as its transient behaviour. This
is consistent with other work in which the initialization of RLS has been identified as the
most dominant factor governing transient convergence (Moustakides, 1997). Fast transient
convergence is important for accurate estimation of time-varying parameters.

The two types of convergence behaviour can be nicely separated as follows. To isolate
the statistical averaging process, we assume that the algorithm is initialized in such a way
that there is no need for the phasing out of effects of initialization. On the other hand,
to isolate the transient behaviour, we assume that the generated data has no statistical
fluctuation so that the statistical averages are equal to the true estimated values throughout
the algorithm computation. In this case, the convergence rate is entirely dictated by the
transient behaviour of the estimation algorithm.

We first consider the RLS algorithm and briefly analyze its convergence behaviour in
a simple example. Suppose the data is generated by the following discrete time-invariant

48
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system in R!
yi = wezi +vi, withz; =w.=1, i=1,2,.. (4.0.1)

As discussed above, to understand the influence of the statistical averaging process on
the convergence speed of the RLS algorithm, we assume RLS is perfectly initialized: the
regularization term 4 is equal to zero, so that the RLS estimate is given by

_ vi+ve+---+ v
R:z(n) lp:l:y("')=]~'+' : 2 =,

By the law of large numbers, the noise average goes to zero at the rate O(1 /n) (in the mean
square sense). Therefore the RLS estimates converge to the correct value w, = 1 at the
rate O(1/n). To understand the transient behaviour of the RLS algorithm, we assume that
the noise is absent. In this case, Rzz(n) = 1 and pzy(n) =1 for all n > 1. Thus the RLS
estimate at time n is (% + 1)~! which shows that the effect of the initialization decays at
O(1/n).

Now consider the analytic center based estimation method described earlier. Similar
to RLS, the statistical averaging process converges at the rate of O(1/n), thus giving the
method an asymptotic convergence rate of O(1/n). To understand its transient behaviour,
we set the noise in (4.0.1) to zero. In this case, F(w) = (w — 1)? for all n > 1. In light of
(3.2.4), we get

Ta = (wW3_;, — 1)2 +ﬂ\/_|wn_ -1.
By property (3.2.2) of the analytic center, we have

2(ws — 1) 2wl _
T (g~ 172 | R (wA)

n>2.

The above two relations imply [w3 — 1| = O(R™!)|w3_; — 1|. This shows the exponential
decay of the transient process when R is sufficiently large.

In the following two sections we rigorously analyze both the asymptotic and the transient
convergence behaviour of the IPLS algorithm.

4.1 Asymptotic Convergence Analysis of IPLS

We now analyze the asymptotic convergence, i.e., the steady state behaviour of the IPLS
algorithm. The following two conditions will be required in the analysis.
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Condition 1 (Bounded Autocorrelation Matriz) There ezist ng > 0,01 > 0,02 > 0 such
that for every realization {x1,... ,Xn}

1 n
nl< - Zx;x‘r < o091, vn > ng.

=1

Condition 2 (Bounded Outputs) There ezists a fized p, such that for all n > ng there
holds

The left inequality in Condition 1 is known as weak persistent ezcitation condition and
is considered standard in the analysis of adaptive linear filtering algorithms. The remaining
inequalities stated in the conditions refer to the boundedness of inputs and outputs.

Lemma 4.1 Suppose Conditions 1 and 2 are both satisfied. Then

1
Fa(w) < 5 -IVFA(W)I* 40y, VR 270

Proof. Evaluating F,(w) at the least-squares solution wi = R} (n)psy(n) yields

1 _
fn(wﬁf) = ;yg% - pfy(")R::} (")sz(") <py

where Condition 2 is used. By Taylor expansion and VFa(wh) = 0, we can write Fnp(W)
as:

1
Fa(w) = 5(w ~ wi) I V2 Fy(w — wil) + Fo(wr).
Taking the gradient with respect to w yields
VFau(w) = (V2F)(w—wy)

IVE. W2 = (w—wi)H (V2F,)? (w — wh) (4.1.2)
Then
Falw) = o(w =~ wi)H (V) (w = wh) + Fa(wh)

< s(w = wE) (V2R (w—wh) + 5y
1

1
= 50—XI|V3‘n(W)II2 + Py,
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where the inequality uses Condition 1, and the equality follows by substituting (4.1.2). O

Lemma 4.1 is a consequence only of Conditions 1 and 2 and is thus true for any estimate
w independent of the algorithm. The next lemma establishes some key preliminary results
that are required in the proof of Lemma 4.3.

Lemma 4.2 Let the quantities 1,, sp(wW) and w, be generated according to the IPLS al-
gorithm:

£

Tn = Fa(Wn-1) + ﬁﬂIIan(Wn-l)”,
sn(w) = 7T — Fa(w),
Wnp = Wpo| — [V2¢n(wn—1)]—1v¢n(wn—l)-

Assume that T, < t for some constant t > p,. Then
L ||lwall = 0(1) and [[wa_1ll = O().
2. For large enough 8 and R, wp_) is an approzimate analytic center of Sy in the sense

(Vén(Wa-1), [V2¢n(wn-1)]"lv¢n(wn—1)>% < % +O(R™") <0.9.
3. 3p(Wn) = O (3n(Wn-1)) and sa(wWn_1) = O (sn(Wn))-

Here and throughout the big “O” notation refers to an upper bound with constant factor
independent of R, B, but may depend on t.

Proof. We treat each claim of the lemma in sequence.

Claim 1

By the update rule for 7, we have F,(wg_1) is bounded by 1,. Also, Fr(wn) < ™ since
w, must have a lower potential ¢,(W,) than w,_; after the Newton update. Using the
assumption T, < t, we then have that Fp(wn_1) < t and Fp(wys) < t. On the other hand

we can write as in Lemma 4.1,

1 S 5
Fa(w) = 5w — wi) ¥ (V2F,) (w — wh) + Fa(wh) 2 FHlw - wiIl®.



CHAPTER 4. CONVERGENCE ANALYSIS 52

Using the bounds for F,(wy) and Fn(Wn_1) argued above we obtain
%1-||w—w£;’||2 <t for w=w,, w=wp_;.
This further implies
Iwn-1ll < V2t/or + [Will and |wall < V2t/a1 + Wyl

By Conditions 1 and 2, the least-squares solution w!# is clearly bounded by a constant
(dependent on p, and o} only), the above immediately implies the claim.

Claim 2

Denote by LHS the quantity we want to bound in this proof.

LHS = (V¢n(wn—l):[V2¢n(wn—l)]_lv¢n(wn—l))%

- 2Wn—1 _ VFn(Wn-1) 2 -1 2wy -1 _ VFn(Wn-1) i
- <t"(wﬂ“1) Sn(Wn-1) ,[V ¢n(wn—l)] (tn(wn—l) Sn(Wn-1) )>

)

t,.(w,._l) ! tn(wn—-l)

1) ) [V2¢n(wn—l)] !

VFu(Wn-
<——_8n(wn-1) (4.1.3)

an(wn-l)>%
8n(Wn-1)

where s,(W) := T, — Fn(W) and t,(w) := R? — ||w||2. Here the second step follows directly
from the definition of the gradient of the potential function ¢,(w), and the last step is

obtained by using the triangular inequality. To continue, we first bound the Hessian of
én(w) which is given by

(VF)VF)E  V2F,  4wwH 21
SZ(W) T sa(W) | ta(W)2 | ta(w)

V2¢n(W) = (4.1.4)

Since all terms in (4.1.4) are positive semidefinite, the Hessian of ¢n(wn,_1) can be bounded
by the last term,

(wn—l) 2 2t = 752 21 2 i
ta(w) RZ—|lwa_q|? = R?

Vién I,

or equivalently,

[V2¢n(Wn-1)] 7' < -1;—21. (4.1.5)
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Using (4.1.5) in both terms of (4.1.3), we then obtain

1
tus < B [<2uw,.-ln 2||vvn.ln>=+ VFa(Wn-1) an(wn-1)>

(X1
—_

- ﬁ tn(wn—l),tn(wn—l) Sn(Wn_1) ! sn(wn—-l
_R_ [2"wn—l” + ”V}.n(wn—l)”]
\/5 tn(wn—l) Sn(wn_l)

But sp(Wn_1) = Th — Fn(Wn-1) = ﬁ\—’/%."an(wn_lll as stipulated by the updating rule for
Tn. Therefore

E_ 2flwn_1ll 1 - l -1
LHS = \/i[m—uwn_ul?*a%] 5T OE™D

where in the final step we made use of the first result in the lemma.

Claim 3

By selecting R and 3 sufficiently large, Claim 2 implies

(V¢n(wn—l), [v2¢n(wn-l)]—lv¢n(wn—l)>% <0.J9,

indicating that w,_, is an approximate minimizer of ¢,(w) and an approzimate analytic
center of Q,. We can therefore apply a resuilt by Nesterov and Nemirovskii (1994) that says

0 < $n(Wn-1) — Pn(Wn) < ¢, for some constant c. (4.1.6)

This result allows us to bound sy(Wp) and sp(Wn—1) in terms of each other. Consider first
the right inequality in (4.1.6). Substituting the definition of ¢,(w) we obtain
—log (R2 - ”wn—l”2) - log Sn(Wn-1) + log (R2 - "wn"2) +log sn(wn) <c

or

1 1
R? - "“’n—l“2 Sn(Wn_1)

: (R2 - Ilwnuz) - (sn(wn)) < €.
Solving for sp(wy) yields

R? — |woi|l?
< . t7n-il
sn(Wn) S w2

R2
R2 - t2 .
O(sn(wn—l))-

e - Sn(wn—l)

€€ - sn(Wn_1)
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A similar argument using the left inequality in (4.1.6) yields

R2 —ilw 2
sn(Wnet) S It - an(wn) = Olsn(wn)

One important consequence of Claim 2 of Lemma 4.2 is that if 3 and R are chosen appro-
priately then w,_; remains an analytic center of Q,. As a consequence the Newton step
will quadratically reduce the error in the criterion (Vén(w), (V2¢n(W)] "' Vén(w)), which
is instrumental in the proof of Lemma 4.3.

Lemma 4.3 Assume the same conditions as Lemma 4.2 for some fized n. Let w, and
sn(W) be obtained by the IPLS algorithm, then we have the following:

1. There holds
IVFawa-ill _ VZ _ 5p-ty  IVFa®all _ o p-2
m(wa) AR - OET) s tw = OR™). (4.1.7)

2. If R and n are large,

raer = Far1(Wn) + B-\%IIVEH(W)II =0 (R-‘ + %) roy <t

Proof. By assumption, all the conclusions of Lemma 4.2 hold. Therefore

lwnll = O(1) and |lwn_ill = O(1) (4.1.8)

and if we choose R and 3 sufficiently large

(Vén(Wn-1), [V2¢n(wn_1)]“V¢n(w,,_1))5 < 0.9. (4.1.9)

The first part of Claim 1 of Lemma 4.3 follows directly from the updating rule of 7. To
show the second part of the first claim of Lemma 4.3, we need to establish some bounds on
the Hessian of ¢,. Recall

21 2wwil  V2F, + (VFNVF)H

V(W) = tn (W) + tn(W)2 | sp(w) s2(w)

Using Condition 1 and tn(Wn) = R? — |[wn||2 = O(R?), we obtain the following bounds

V2hn(Wn_1) > ——al—l,
¢n( n 1) = sn(wn_l)
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and

Vin(wn) < (0(3-2)+O(R-4)+ a2 +l|an(wn)||2)I

Sn(Wn) s?; (Wn)

< (O(R_z) + g2 + lIan(Wn)llz) L

Sn (wn) 512;(“’1;)

By (4.1.9), w,_, is an approximate analytic center, so there holds quadratic convergence
(Nesterov and Nemirovskii, 1994):

(V¢n(wn)a [V2¢n(wn)]—lv¢n(wn)) < (V¢n(wn—l)v [V2¢n(wn—l)]—1V¢n(wn—l))2 .

Denote the left and right sides of the above inequality by LHS and RHS respectively. Then

-1
LHS > IIV¢n(Wn)|l2'(O(R'2)+ 72 +“Vf"(“'")"’)

Sn(Wn) srzg(wn)

2
RHS < [[Vén(wa)|*- 2{Fn-t)
o}

Combining the above we obtain

2 2
IVnwal? < 22220 (o(r-2 4 22 ITEa L0l ) g o,

Notice that sy(w) < T < t = O(1) and that the quotient ’—';S'("ﬁf;‘l is O(1) (due to
Lemma 4.2 (Claim 3)). The above inequality further simplifies to

[V Fn(wa)ll?
sﬁ(wn)

IV n(wa)l? < (0(1) + ) 1Vén(wa1)lI*. (4.1.10)

Note that from (4.1.8) and

”Vfﬂ(wn—l)" _ \/2_ _ _ _
Sn(Wn_1) BR O(R™Y), Vén(Wn_1) =

we can immediately deduce

V.Fn (Wn_ 1 ) 2Wn_ 1
Sn(Wn-1) R? - "wn—l”2,

IVén(Wn_1)ll = O(R™Y).
Using this result and the definition of V¢, in (4.1.10) we obtain

VFa(wn) + 2w,

IV Fa(wa)ll?
Sn(Wn) R? — |jwy||2

52 (wn)

i < (O(l) +

) o(r™).
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Applying the inequality [la + b||> > Lllall®> — |I6]|> and noting |[2wa|i?/(R? - |[[wnl?)? =
O(R™*), we further obtain

V(w2 2wal? IV Fa(wa) Y oo o
2 s2(wn) "(zﬁzz—uwnim?5(‘)(”+ 52 (wn) )O(R R

Solving for the H_V_’f'_'(i:_ﬁ).l.l: term yields

|V Fn(wn)ll?
sa(wn)

= O(R™Y) (4.1.11)

which immediately verifies the second part of the first claim in the lemma.

It remains to show the second claim that the updated threshold 7,4+, will still be bounded
by t. We first note that the update formula for 7,4 is

R
Tas+l = fn+1(wn)+B%IIVFu+x(wn)ll

= Fai(wa)+ ﬂ%sn(wn)O(R"z)

= Fasalwa) + Z0(RTOQ)
where the second line follows from (4.1.11), and the third line holds because sp(W) < 7, <
t = O(1). We next bound Fp41(Wn),

n+l
1

3 i — xfw,)?

n+1 -4
n

Fa+1 (wn) =
=1

1
= IF lf(wn) + n__H(yn+l — xH ywa)?

n

= 2 _Fwa)+0 (%)

n+1

where the last step follows from using Conditions 1 and 2 and the fact |[wy|| = O(1). But
from Lemma 4.1 we have

1 1
Fn(wn) < gllan(Wn)Ilz*'Py < 5=

< 5-O(R™)sk(wn) + oy = O(R™) + py.

Combining the last two results and gives

n
n+1

_ 1
= O(R 44—;)4—;),,.

(O(R™) +p,) +O (;)

<
-Fn+l(wﬂ) n+ 1
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And finally, substituting back into our update formula we obtain

Tntl = O(R_I) + 0 (R—4 + '71;) + py <t, n, R large.

The main result here is the first claim, which states that by taking one Newton step in the
IPLS algorithm, the size of the quantity ||VF,(Wn-1)||/Sn(Wn—1) reduces from O(R™!) to
O(R™?). This will later help to prove our main convergence result in Theorem 4.1. We
point out that the estimate (4.1.7) holds only under the assumption 7, <t (as assumed in
Lemma 4.2). However, Claim 2 of Lemma 4.3 ensures that 7,4, < ¢, thus Lemmas 4.2 and
4.3 can be applied again at iteration n + 1. This fact will be used in the proof of our main
convergence result below.

Theorem 4.1 Let the sequence of estimates {wpn,n = 1,2,3,...} be generated by the IPLS
algorithm. Then

IVFn(wa)ll = 2|[Rez(n)Wn — Pzy(n)ll = O (1/n).
Consequently, ||wn — Rzz(n) ™ pzy(n)|| = O(1/n).

Proof. Fix some t > py so that 7, < t for some large n;. Suppose 8, R are chosen large

enough. Then Lemma 4.3 holds for this n; so that 7,41 < ¢t. But this implies Lemma 4.3
should hold for n; + 1. In general, a simple inductive argument shows Lemma 4.3 should
hold for all n > n;. Thus, we have

|V Fn(Wn-1ll _ \/72- d w = O(R-z), vn > n,.

Sn(Wn-1) - ﬂ—R Sn(Wy)
Therefore,
"V}-n(wn)" = R7! Sn(wy) O(R-l)
v n— -
BT el 2 so(wa) ORTY
= ||[VFa(wa_1)lIO(R™) (4.1.12)

where the last step is due to Lemma 4.2 (Claim 3). By the recursive update of VF,(w),
we have

n 2(wHxni1 = yni1)
n+ IV}-n.(wn) + ntl Xn+1

< ZHIvAmI+o(3).

IVFnsr(wa)ll =
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Using (4.1.12) in the equation above we can then write

1V Fnst(Wn)ll € IVFa(Wa_)|O(R™Y) + O ( ) .

1
n
This implies that || VF,(wn-1)l| = O (%) and due to (4.1.12)

IVFatwn)l =0 (2).

n

The remaining claim follows due to Condition 1. a

Theorem 4.1 establishes the asymptotic convergence of the IPLS algorithm. This rate of con-
vergence matches that of the RLS algorithm which computes Wi’ := (£I+Rzz(n)) " !pzy(n)
at each iteration, for some fixed 4. This is because R;z(n) and pzy(n) converge to their true
values at the rate of O(1/n). Note that the convergence of R;z(n) and pzy(n) together with
the result of Theorem 1 also imply that the IPLS estimate wy is asymptotically unbiased,

in the sense that its expected value converges to the Wiener solution.

4.2 Transient Convergence Analysis of IPLS

Note that in the example at the beginning of the chapter we have shown that the actual
analytical center converges exponentially to the true filter in the noise free case. In the
following we extend this argument to show the same convergence result for the estimator
obtained by the IPLS algorithm of Chapter 3. In addition to the bounded autocorrelation
condition (Condition 1 in Section 4.1) we now require

Condition 3 (No Noise) The system is free from measurement noise, i.e.,

yi = xTw,, i=1,2....

Condition 3 is included to allow us to isolate the estimation bias and therefore the
transient convergence behaviour of any estimator. In the noise free case the least-squares
solution is always given by the true filter w,, since 7p(w.) = 0. Thus any residual error
can be caused only by a non-zero regularization term. Note that given the basic assumption
that |jw,|| is bounded, the combination of Conditions 1 and 3 implies that Condition 2 also
holds.
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To facilitate the proof of our transient convergence result (given in Theorem 4.2 below)
we first show some preliminary results summarized in three more lemmas. These lemmas

represent the corresponding results to Lemmas 4.1, 4.2 and 4.3 above, for the noise-free
case.

Lemma 4.4 Suppose Conditions I and 3 are satisfied. Then
1
Fa(w) € —IVFa (W%, Vn 2 no,
J1
and

1
lw — W.||2 <

< SIVFRWIE  vnzno.
1

Proof. In the noise free case we may simplify the expression of the mean-squared error as

follows
Faw) = L3 [w—xliwf
n = neLl¥TXN
=1

= ,‘;z_; [ (. — W)’
= (w—w)R (n)(w—w.).
Taking the gradient with respect to w yields
VFa(w) = 2Rzz(n)(w—w.)
IVF.(W)I? = (w—w)H (4R%,(n)) (w — w.) (4.2.13)
Then
Falw) = (w—w.)FRez(n)(w - w.)

< (w—wo)" ZRZ (n)(w — w.)
gy

1 2
o IVFawI?,

where the inequality uses Condition 1, and the equality follows by substituting (4.2.13).
Similarly, applying the condition Rzz(n) > oI twice to (4.1.2) yields

lw = wall? < —

< S IVF(W)II2
40% n



CHAPTER 4. CONVERGENCE ANALYSIS 60

Lemma 4.4 is a consequence only of Conditions 1 and 3 and is thus true for any estimate
w independent of the algorithm. The next lemma establishes some key preliminary results
that are required in the proof of Lemma 4.6.

Lemma 4.5 Let the quantities 7, sp(W) and w, be generated according to the IPLS al-
gorithm:

Ei3

Tn = Fn(Wn-1) + ﬂﬁuv-}-n(wn—l)"’
sn(w) = T — Fa(w),
Wq = Wpo) — [V2¢n(wn—l)]—lv¢n(wn—l)-

Assume that T, < t for some constant t. Then

1. |lwall =O(1) and |[wa_1ll = O(1).

2. For large enough B and R, wa_) is an approzimate analytic center of Qq in the sense
- 1 1 -
(Vén(Wn-1), [V2én(Wn-1)] ' Vén(wn-1))* < 5+ O(R™) < 09.
3. 3a(Wy) = O (5p(Wn—1)) and sn(Wn_1) = O (sn(Wn))-

Here and throughout the big “O” notation refers to an upper bound with a constant factor
which is independent of R, (3, but may depend on t.

Proof. We treat each claim of the lemma in sequence.

Claim 1

By the update rule for 7, we have Fn(wn_1) is bounded by ,. Also, Fa(wn) < 1 since
w, must remain feasible with respect to Q,. Using the assumption 7, < t, we then have
that Fp(Wn-1) <t and F(wy) < t. On the other hand we can write as in Lemma 4.4,

Fa(w) = (W = wo) IRz (n)(w — W) 2 oy|lw — w. |2
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Using the bounds for Fn(wy) and Fn(wWn_1) argued above we obtain
. 1 1
[|w — w2 < —Fa(w) < —t, for w=w,, w=w,_].
a1 4
This further implies
IWn-1ll < Vt/o1+|[well and [jwn|l < Vt/or + |lw.].

Assuming boundedness of the unknown system w, by a constant, the above immediately
implies the claim.

Claim 2

Denote by LHS the quantity we want to bound in this proof.

LHS = (Véa(Wnot), [V2én(Wno1)]" ' Vén(Wn_1))?

tn(Wn-1) Sn(Wn-1) tn(Wn-1) Sn(Wn-1)

where 3, (W) := Th — Fpn(W) and tp(w) := R2 —||w||2. The second step follows directly from
the definition of the gradient of the potential function ¢,(w). To continue, we first bound
the Hessian of ¢,(w) which is given by

(VF)(VF)T | V2F,  dww? 21
s2(w) (W) T En(W)E | ta(w)

Since all terms in the above summation are positive semi-definite, the Hessian of ¢n(wn—1)
can be bounded by the last term,

2wp-1 V]:n(wn—l) ’ [Vz%(wn—l)]—l ( 2wy + an(wn—l))>%

V2¢n(w) =

21 21 2

2 - > = > —
Vien(wn-1) 2 40y = RS Twai P 2 RP

L

or equivalently,
- R?
[V2n(wn-1)] " < 5L
Extracting the Hessian term and subsequently applying the triangular inequality LHS can
be further bounded by

-

(Bl 2||w,._1||>%+ VFa(Wn-1) an(wn_l)>%]
!

LHS < 1 b
- tn(Wn-1) tn(Wn-1) Sn(Wn_1) Sn(Wn-1)

S =

E [ 2fjwn_1ll “V-Fn(wn—l)"]
V2 _tn(wn—l) Sn(Wn-1)
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But sp(wWn-1) = Tn — Fr(Wn-1) = 3%||an(wn—1)|| as stipulated by the updating rule for
Tn. Therefore

R 2lwn—1ll 1 1 -1
LHS < — + = —+O0O(R
< 7 |F-lwe? TE| T B TON

where in the final step we made use of the first result in the lemma.

Claim 3

By selecting R and 3 sufficiently large, Claim 2 implies

(V¢n(wn—l): [V2¢n(wn—l)]-lv¢n(wn-l))% <0.9,

indicating that w,_; is an approximate minimizer of ¢,(w) and an approzimate analytic
center of Q,. We can therefore apply a result by Nesterov and Nemirovskii (1994) that says

0 < Pn(Wn-1) — n(wn) <g¢, for some constant c. (4.2.14)

This result allows us to bound s,(wy) and sp(Wa—1) in terms of each other. Consider first
the right inequality in (4.2.14). Substituting the definition of ¢»(w) we obtain
— log (R? = IWn1li2) — 10g sn(Wn_1) + log (R? — [[Wall?) + log sn(wn) < ¢

or
1 1
R? - """ﬂ—l."2 3n(Wn-1

3 (R? = [wall?) - (sn(wn)) < €.

Solving for sp(wy) yields

RZ - "Wn—1"2 .

3n(wn) S R2 _ “wn“2 ec " sn(wn—l)
RZ
B_e €’ - Sn(Wn_1)

= O(sn(wn—l))-
A similar argument using the left inequality in (4.2.14) yields

R? — ”wn"2 -
Sn(Wn_1) < m - 5n(Wn) = O(sn(Wn))- g

One important consequence of Claim 2 of Lemma 4.5 is that if 8 and R are chosen appro-
priately then wy_) is close enough to the analytic center of Q,, and one Newton step will
suffice to recenter w,_; to a new approximate center of 2.
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Lemma 4.6 Assume the same conditions as Lemma 4.5 for some fized n. Let w, and
sn(w) be obtained by the IPLS algorithm, then we have the following:

1. There holds

IV Fn(wWn-1)ll - ﬁ - O(R—l), IV Fn(wn)ll

— -2
Sn(Wn-1) BR 5n(Wn) = O(R™°). (4.2.15)

2. If R 1s large,

R
T+l = Fns1(Wn) + ﬁ"‘ﬁ"vfn%-l(w)” = O(R—l) <t

Proof. By assumption, all the conclusions of Lemma 4.5 hold. Therefore

lwall = O(1) and [[wn_1f| = O(1) (4.2.16)
and if we choose R and g sufficiently large
1
(Vén(Wn-1),[V2@n(Wn-1)] "' Vbn(Wn-1))* < 0.9. (4.2.17)

The first part of Claim 1 of Lemma 4.6 follows directly from the updating rule of 7,. To

show the second part of the first claim of Lemma 4.6, we need to establish some bounds on
the Hessian of ¢,. Recall

21 2wwH  V2F, (VF)NVF)H
2 _ n n n
Vi =t e Tawm T dw
Using Condition 1 and t,(Wn) = R? — ||wy[|2 = O(R?), we obtain the following bounds

oy
L —
Sn(Wn-1)

V2¢n (Wn-1) >

and

- _ o2 ”V-Fn(v"n)"2
Vin(wa) < (O(R )+ O(R™) + Sn(wWn) * s2(wn) ) !

< (O(R_z) + a2 + I‘VFn(wn)llz) I

sn(Wn) s%(wn)

By (4.2.17), wn_ is an approximate analytic center, so there holds quadratic convergence
Nesterov and Nemirovskii (1994):

(V¢n(wn), [v2¢n(wn)]-lv¢n(wn)> < (Vd’n(wn—l)’ [V2¢n(wn—l)]-lv¢n(wn—1))2 .
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Denote the left and right sides of the above inequality by LHS and RHS respectively. Then

-1
LHS > ||V¢n(w..)||2-(0(R-2)+ 72 +“Vf"(w")"2)

sn(Wn) S%(Wn)

2
RHS < [[Vén(waoy)lt- S2%oct).
of

Combining the above we obtain

sﬁ(wn_l) -2 a2 "V]:rt("“'n.)"2
"V¢n(wn)"2 = —0%—_— (O(R ) + Sn(wn) 3121(Wn)

) 19 én(wa_)l*.

Notice that sp(wn) < 7a < t = O(1l) and that the quotient ’—';é"(';—:)‘-l is O(1) (due to
Lemma 4.5 (Claim 3)). The above inequality further simplifies to

HV Fn(wn) "2
s2(wn)

19 6n(wa)ll? < (0(1) + ) 1V dn(wa)lI%. (4.2.18)

Note that from (4.2.16) and

IVFa(Wa-)l _ V2 _ o o _
" sa(Wa1) AR O(R™Y),  Vén(Wn_1) =

we can immediately deduce

VFn(Wn-1) 2wy
5n(Wn-1) R? - "wn—l"2 ’

IVén(wn-1)ll = O(R™?).
Using this result and the definition of V¢, in (4.2.18) we obtain

VFa(wn) + 2wy,

|V Fn (wa)ll?
8n(Wn) R? - “wn"2

sﬁ(wn)

i < (0(1) +

) O(R™Y).

Applying the inequality fla + bl|2 > jlla|> — {|b]|® and noting ||2wa[12/(R? — [[wal|*)? =
O(R™*), we further obtain

LIVEwa)lE fl2wal? IV Fa (w2 o
2 s2(wn) ‘(R?—uwnnz)zS(O“)+ 52 (W) )O(R Y

Solving for the I.I&;-\T(‘:_':))lﬁ term yields

"v;:n(‘“’n)"2

2w O(R™) (4.2.19)

which immediately verifies the second part of the first claim in the lemma.
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It remains to show the second claim that the updated threshold 7,1 will still be bounded
by t. We first note that the update formula for 74, is

R
T+l = Fnst(Wn) + ﬂ7—2‘|lv-¢n+l(wn)"

= Fari(wa) + a%sn(wn)om*)

= Faer(wa) + %O(R-‘)O(l)

where the second step follows from (4.2.19), and the third line holds because s,(wy,) < 7 <
t = O(1). We next bound Fp1(wy),

1 n+l )
Fas1(Wn) = > lyi — xf wa
=1

n+1

n
n+1

Fn(wn) + ;;‘_t_‘i‘[xf-{»l(w- - Wn)]2

S g Fa(Wa) + (We = W) TRaz(n + 1)(wa = wn)
Sy Fa(Wa) +ozl|we — wal.

n+1
Note that each term above is bounded by Lemma 4.4, thus

n 1 1
Fanilom) € 7 (I VF ) +2 (a9 Fawn)l)
1+ 02
< 40% “an(wn)uz
= LLPZO(R)sh(wa) = O(R™).
91

Finally, substituting back into our update formula we obtain

Tas1 =O(R™) + 0 (RY) <t.

The main result here is the first claim, which states that by taking one Newton step in the
IPLS algorithm, the size of the quantity ||VFn(Wn_1)||/Sn(Wn—1) reduces from O(R™!) to
~ O(R™?). 'This will later help to prove our main convergence result in Theorem 4.2. We
point out that the estimate (4.2.15) holds only under the assumption 7, < ¢ (as assumed in
Lemma 4.5). However, Claim 2 of Lemma 4.6 ensures that 1,41 < ¢, thus Lemmas 4.5 and
4.6 can be applied again at iteration n + 1. This fact will be used in the proof of our main
convergence result below.
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Theorem 4.2 Let the sequence of estimates {wyn,n = 1,2,3,...} be generated by the IPLS
algorithm. Suppose Lemmas 4.4, 4.5 and 4.6 hold at some iteration ny. Then

[Wa — well = O(R™)||Wno1 = wull,  n2ny

Proof. Fix some t so that 7, < t for some n;. Suppose 8, R are chosen large enough. Then

Lemma 4.6 holds for this n; so that 7,,41 < ¢. But this implies Lemma 4.6 should hold for

n; + 1. A simple inductive argument shows Lemma 4.6 should hold for all n > n;. Thus,
we have

IV Fa(wn-1)ll _ _\/_g d HVFn(wn)ll

e ~BR 4 Towm "OET, vmzm.
Therefore,
IVEa(wa)l = R sn(wa) O(R™)
= B2l 2 oo 087
= |[VFa(wa1)lO(R™?) (4.2.20)

where the last step is due to Lemma 4.5 (Claim 3). By the recursive update of VFy(w),
we have

n 2 -xf w
IVFnir(walll = |n—'—’v-7:n(wn)+ (y"“n_:’l“” n) +1
= Tl + |2 (o) (v = wa)
< (Wa)ll + 202[lw. — Wyl
< ——llV}‘n(wn I+ —I|V.7',,(wn)||
+
< P2 VFwa)l

where we used the right inequahty of Condition 1 in step 3 and Lemma 4.4 in step 4. Using
(4.2.20) in the equation above we can then write

IVFnri(wa)ll S IVFa(Was)IO(RTY).

Due to the boundedness of the autocorrelation matrix imposed in Condition 1, this is
equivalent to

wn — w.l = O(R™Y)[Wn_1 — w.l|,
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which shows the exponential decay of the transient process. a

Theorem 4.2 establishes the exponential transient convergence of the IPLS algorithm.

4.3 Discussion

The results above establish important convergence behaviour of IPLS under the condition
that the estimated autocorrelation matrix is full rank (Condition 1). Another important
aspect of transient behaviour is the convergence of an algorithm when n < M. In this
case the autocorrelation matrix can have at most rank n, thus Condition 1 is certainly not
satisfied. Recall that in the simulations of Chapter 3 we observed better transient behaviour
of IPLS in precisely the case described above, i.e., there are fewer observations than there
are parameters. This implies that IPLS has also better convergence in the cost function
(or criterial convergence) than RLS. We have considered this convergence issue briefly from
a theoretical point of view, without any noteworthy results. This therefore remains an
interesting topic for future investigation.



Chapter 5

MMSE Decision Feedback
Equalization with short Training
Sequences

In many communication systems training sequences are used to help the receiver identify
and/or equalize the channel. The amount of training data required depends on how fast
an equalizer can adjust to the observed data samples. Consequently, when adaptive filter-
ing algorithms are used for the computation of equalizer tap-weights, it is their convergence
properties that dictate the length of the training sequence. The Interior Point Least Squares
(IPLS) algorithm was shown to have excellent transient convergence properties in Chap-
ter 4. In this chapter we exploit this feature of IPLS to update the weight vector for a
minimum-mean-square-error decision-feedback equalizer (MMSE-DFE) in a downlink code
division multiple access (CDMA) scenario. Numerical simulations show that when training
sequences are short IPLS consistently outperforms RLS in terms of system bit-error-rate

and packet error rate. As the training sequence gets longer IPLS matches the performance
of the RLS algorithm.

5.1 Introduction

In a wireless mobile communication system, the transmitted signal typically travels through
a time-dispersive multipath channel which gives rise to intersymbol interference (ISI) at
the receiver. Such ISI is known to be one of the main causes for signal distortion and

68
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therefore must be canceled by some form of channel equalization. Since mobile channels
are also time-varying, the channel equalization process must be adaptive to account for the
nonstationary characteristics of the channel (Qureshi, 1985; Proakis, 1991). The decision-
feedback equalizer (DFE) is a well-established and effective approach for the mitigation of
the ISI. It provides improved performance compared to the linear transversal equalizer and
reduced complexity (at almost the same performance) compared to maximum-likelihood
sequence estimation (MLSE) (Proakis, 1983). We consider a DFE that is implemented
to minimize the mean-square error criterion (MMSE-DFE). The MMSE-DFE has been
identified as the best among the suboptimal (compared to MLSE) receivers for wireless
applications by Klein et al. (1996) and has been well studied theoretically by Cioffi et al.
(1995) and Al-Dhahir and Cioffi (1995).

When the DFE is updated iteratively, the tap weights are usually computed by an
adaptive algorithm of the least-mean-square (LMS) or recursive-least-squares (RLS) family.
These algorithms rely on a training period during which the receiver has a priori knowledge
of the transmitted symbols (Proakis, 1991). The tap weights obtained at the end of a train-
ing period are used to initialize the channel equalizer in the subsequent transmission period
until a new training period begins. To maximize system capacity, it is of course desirable
to use as few training symbols as possible. Note that there are numerous approaches that
can identify and equalize the channel “blindly”, without the requirement of training data.
Blind algorithms, however, cannot compete with training based methods in terms of perfor-
mance and computational complexity. An alternative approach to minimize the length of
the training sequence is to concentrate on the transient performance of the adaptive filtering
algorithm that is used to initialize the equalizer tap weights. If transient performance is
measured by the number of observations (training symbols) it takes an algorithm to attain
“sufficiently” low estimation error, then transient performance essentially dictates what the
minimum length of the training sequence should be.

The fast transient convergence behaviour of IPLS allows it to make effective use of
limited training data. In a downlink CDMA scenario we used the IPLS algorithm to update
the weight vector for a minimum-mean-square-error decision-feedback equalizer (MMSE-
DFE). Numerical simulations show that when training sequences are short (less training
symbols than DFE tap weights) IPLS consistently outperforms RLS in terms of system
bit-error-rate. As the training sequence gets longer IPLS matches the performance of the
RLS algorithm.

Below we first describe in more detail the components of the particular communication
system we simulate in this chapter. The following section presents the results of numerical
simulations.
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5.2 System Description

In our simulation example we model the (synchronous) downlink portion of a CDMA system
(see Figure 5.1). There are K users whose symbol rate signals are given by {u;(n)},i =
1,..., K. The base station upsamples these signals by a spreading factor L and applies a
particular L-tap FIR code filter C;(z) to each of the user signals. The chip rate signals are
then all summed before transmission through a multipath channel H(z). The spreading
sequences are chosen to be Walsh codes of length 16 (Proakis, 1983) (hence L = 16). These
codes have zero cross-correlation when there is only one received path and equal delay
between users. For the system under consideration these codes represent a reasonable (not
necessarily optimal) choice.

Code Filters
u (k) L @)
k noise
u {k) e = Cyz) Channel ‘ R?::aled
1}

. . z H(2) _.@__Q\—— y(k)

[ ] [ chjp

L ] [ ] rate

sampler

W 1L C2)

Figure 5.1: Discrete-time model of CDMA dounlink

The user signals are modeled as QPSK, where each point in the alphabet {1 + 1,1 —
i, —1 + i, —1 — i} has equal probability. The channel impulse response is composed of three
different taps, each undergoing Rayleigh fading independently. The first tap is considered to
be the line-of-sight component and is on average 5 dB stronger than each of the multipath
taps. The delays for each of the paths is determined randomly for each simulated channel,
but the delay spread (delay between first and last tap of the channel) never exceeds 67T,
where T is the chip period. The time varying nature of the channel can be characterized
in many different ways. In our case we selected a normalized fading rate fpT. to be 0.005
to characterize a slowly fading channel. Figure 5.2 shows the time-variation of the tap

amplitudes of one realization of this channel (the phase of each path is uniform between
[0, 27)).

Alternatively, we also consider a static channel, where the tap weights for each path
remain constant for the duration of the adaptive filtering procedure. The tap weights for
the static channel are determined by sampling the fading channel at a random instant. Both
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Figure 5.2: Three ray Rayleigh Fading Channel with fading rate 0.005

types of channel also include additive white Gaussian noise.
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The receiver configuration for user 1 is depicted in Figure 5.3. The chip rate sampled
received signal y(n) is first passed through a code matched filter which implies that the
receiver assumes knowledge only of the desired user’s spreading code. The output of the code
matched filter r(n) is received by a decision feedback equalizer (DFE) that has a feedforward
filter operating at the chip rate, and a symbol rate feedback loop. All simulations were
carried out using 14 taps in the forward filter and 2 taps in the feedback filter of the DFE.
For the given receiver structure and channel conditions, these filter lengths were found to
yield good results (Abdulrahman et al., 1994).

Received signal
—

y(k)

code matched filter

Q@ k) x(k)

{L

=i

FBF (=

Figure 5.3: Code Matched Filter - Chip rate DFE

It is useful to introduce some variables at this point:

y(n):
r(n) :
z(n) :
Z(n) :

Ck,0y---
b1 - -

1Ck L :
cabkm :

the sampled received signal;

the input to the feedforward filter (FFF);
the input to the decision device in the DFE;
the input to the feedback filter (FBF);

the £ + 1 tap coefficients of the FFF at time k;
the m tap coefficients of the FBF at time k.

x(k)

ugk)
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The input to the decision device {z(n)} can be computed by

[4 m
— . . b z o pH
In = Cn—-1,iTn—i n—1,iIn—i = Fp Wn_1

i=0 i=1
where
= - H
In = [rm Ta—ly--- 1y Tn-ts ~Ip—-1y--- —'zn—m]
— T
Wnol = [eno1,00Cn=01r--+yCne1,8s0n-1,15- -+ , bn—1,m]

are complex vectors. wy_; represents the adaptive filter tap coefficients based on observa-
tions up to time n — 1. The equalization error at time n is defined as

€n=dn"zn=dn—rfwn-l
where d, is the corresponding desired signal.

This defines all the quantities of interest for the adaptive filtering algorithms. The
vector sequence {r,} is used as the input sequence and obviously the sequence of filters
{wn} estimates the optimum equalizer tap weights. The error sequence {¢n} is used by RLS
to control the step size of the adaptation. Once the training sequence has been received
the DFE is operated in decision-directed mode, where the quantized equalizer output is
used instead of the training symbol d,. In the simulations below, we always continue the
decision-directed adaptation using the same algorithm that was used during training. Note
that in practice one may desire to save in computation by switching to a less complex
algorithm, such as LMS, once the adaptive equalizer has been initialized.

5.3 Simulation Results

Two different algorithms are compared for the equalization of multipath channels: the
IPLS algorithm and the square-root RLS algorithm. The choice of square-root RLS as
a reference is motivated by two factors: RLS methods are generally considered to have
better convergence properties than LMS based methods, and the square-root version of the
algorithm is more numerically stable than regular RLS. For a comprehensive reference on
the family of RLS algorithms see Sayed and Kailath (1994). All experimental results shown
in this section were obtained by averaging over 5000 independent Monte Carlo trials.
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Experiment 5.1: Static Channel

Let us first consider the static channel case. The tap weights of the unknown channel remain
constant for the duration of the message signal. We set the length of the message signal
to N = 200, and use the first N = 10 symbols as a training signal. The overhead due to
training is thus only 5% of the total bandwidth. The algorithms initialize the regularization
term with § = R~! = 10~4. The IPLS algorithm furthermore initializes 3 = 2. To simplify
the simulation, we have used a fixed equalizer delay (equal to one symbol period), even
though this may be suboptimal for some channels.

To compare the performance of the two algorithms we measure the bit-error-rate (BER)
at various signal-to-noise ratios (SNR). Here and in subsequent experiments the BER is
computed as the average probability of (bit) error over all Monte Carlo runs. The result
for the case where only one user is transmitting is shown in Figure 5.4a. It can be seen
that IPLS performs significantly better than the RLS algorithm. Specifically, RLS requires
about 4 dB higher SNRs to achieve the same error performance as [PLS. Because of the error
propagation inherent in decision feedback equalization we also evaluated the probability of
packet failure to ensure a fair comparison between the two algorithms. The message signal
of 200 symbols (including the training symbols) is regarded to be a “data packet”, and is
considered to be successfully received if the bit-error-rate over the data part of the packet
is less than a certain threshold, in this case 10~2. The probability of (successful) packet
arrival for the single user case is shown in Figure 5.4b. Here the SNR gain of the IPLS
algorithm over RLS is about 3 dB. These and subsequent results are obtained without
any error-correction coding, which is typically used in wireless CDMA applications. Thus
the results serve more as a comparison between different algorithms for adapting the DFE
rather than absolute performance results of a complete receiver.

We next consider the multi-user case. The base station signal is comprised of four dif-
ferent user signals, and we show the results for one receiver. It is the purpose of the code
matched filter to reduce the co-channel interference (CCI) from the signals of the “other”
users. However, since the channel introduces intersymbol interference, the orthogonality
of the codes no longer guarantees perfect cancellation of interference. As is shown in Fig-
ure 5.5a, the additional interference causes a degradation in equalization performance for
both the RLS and IPLS algorithms. The performance gap between the two methods, how-
ever, has increased, indicating that IPLS is more robust to the remaining CCI than RLS.
Figure 5.5b shows the corresponding plot of probability of packet arrival. It should be
noted that multiuser detection techniques exist by use of which the receiver should attain
essentially the performance of the single-user case (Madhow and Honig, 1994).
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(a) (b)

Figure 5.4: Equalization performance in the single user, static channel case. (a) BER
performance, (b) Probability of packet arrival.

Of course, the performance gap that was shown in Figures 5.4 and 5.5 is dependent
mainly on the fact that we are using relatively short training sequences. To illustrate the
dependence of each algorithm on the length of the training sequence N, we fix the signal-
to-noise ratio to 12 dB and vary the number of training symbols used. Figure 5.6 shows
results of this simulation for the single user case. The curves in Figure 5.6a can be divided
into two segments. At their tail end the curves show significantly improved equalization
performance when N1 > 16. Since the equalizer has a total of M = 16 taps, a minimum
of 16 observations are required for the autocorrelation matrix to attain full rank. Hence,
there is a sharp dropoff in BER at Ny = 18. The difference between RLS and IPLS is the
greatest when Ny < M. In this region RLS gradually improves with the increasing number
of training symbols. IPLS on the other hand is virtually independent of N, as long as there
is at least some training available. The advantage of IPLS in this case is clearly due to its
better transient behaviour. However, the results depicted in Figure 5.6 go even beyond the
theoretical results presented in Chapter 4. When Nt < M, the weak persistent excitation
condition is not fulfilled, hence exponential convergence in the parameter is theoretically
not guaranteed. The fact that we still observe equalization then indicates that convergence
in the cost function (i.e., the mean squared error) is sufficient in some sense. This in turn
implies that IPLS has also better convergence in the cost function (or criterial convergence)
than RLS (this has been previously observed in Chapter 3). We provide some simulation
evidence of the difference in convergence in cost in Figure 5.7. Fixing the training length to
N7 =2 and SNR to 15 dB, we plot the mean-squared error versus time for each algorithm.
It can be seen here that even in the first few iterations, IPLS has a mean-squared error
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Figure 5.5: Equalization performance in the § user, static channel case. (a) BER perfor-
mance, (b) Probability of packet arrival.

significantly below that of RLS.

Experiment 5.2: Time-Varying Channel

We now consider a time-varying multipath channel as discussed in Section 5.2. To deal
with the time-varying nature of the channel, we use an exponentially decaying memory by
employing a forgetting factor A < 1.

As we have done in Experiment 5.1 we investigate how the equalization performance of
each algorithm depends on the number of training symbols. The plots in Figure 5.8 were
obtained at a fixed SNR of 18 dB. There is only one user in the system and both algorithms
use a forgetting factor A = 0.85. From the BER plot of Figure 5.8a we can see that as in
the static channel, IPLS maintains a distinct advantage in BER performance in the region
0 < Nr < M. At this SNR even as few as two training symbols are sufficient for IPLS
to achieve a 90% success rate in equalizing packets. RLS requires at least 18 symbols to
ensure the same kind of performance.

We now fix the training length and test how the equalization performance varies with
the SNR. Figure 5.9 shows four curves in total; both RLS and IPLS were run with N7 =2
and Nt = 10. The forgetting factor A is set to 0.85 throughout. As suggested already in
Figure 5.8, we observe that RLS depends heavily on the length of the training sequence.
In the case of Ny = 2 the SQRT-RLS algorithm simply fails to equalize the channel, no
matter what the SNR. IPLS is able to equalize the channel with 2 training symbols already.
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Figure 5.6: Equalization performance versus length of training sequence: static channel. (a)
BER performance, (b) Probability of packet arrival.

In the case of the IPLS algorithm, increasing the training length to Ny = 10 results in an
improvement especially at higher SNRs where ISI is the dominant cause of error.

Figure 5.10 depicts results for one user in the simulation of the 4 user scenario. Since
length 2 training sequences now yielded inconsistent results we only show the case of Np =
10. The advantage of the IPLS algorithm is around 6 dB according to Figure 5.10a and
approximately 5 dB in Figure 5.10b. Both curves in Figure 5.10a seem to level out above
26 dB. This indicates that in that SNR range signal reception is limited by the amount of
residual ISI, that could not be removed by the equalization algorithm.

5.4 Discussion

The fast convergence property of IPLS is exploited in an application to adaptive equal-
ization of time-dispersive channels encountered in wireless communications. The IPLS
algorithm is able to equalize channels using fewer training symbols than are required by the
RLS algorithm. In particular, a minimum mean-squared-error decision feedback equalizer
(MMSE-DFE) with 14 feedforward and 2 feedback taps can be effectively trained using
as few as two training symbols. Depending on the channel conditions, the length of the
training signal and number of co-channel user signals the gain of using IPLS over the RLS
algorithm can range from 3-4 dB to well over 10 dB.
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Figure 5.7: Mean-squared error versus time, Ny = 2, SNR=15dB.
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Figure 5.8: Equalization performance versus length of training sequence: time-varying chan-
nel. (a) BER performance, (b) Probability of packet arrival.
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Figure 5.9: Equalization performance in the single user, time-varying channel case. (a)
BER performance, (b) Probability of packet arrival.
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Figure 5.10: Equalization performance in the 4 user time-varying channel case. (a) BER
performance, (b) Probability of packet arrival.



Chapter 6

Numerically stable Constrained
Adaptive Estimation using IPLS

Linearly constrained adaptive filtering problems occur in applications such as adaptive
digital beamforming. The main issues with existing algorithms are slow convergence in the
case of constrained LMS (Frost, 1972) and numerical instability (RLS based algorithms).
In this chapter we investigate the applicability of the interior point least squares (IPLS)
algorithm to adaptive beamforming. The IPLS based method is shown to match RLS in
terms of convergence speed and there seem to be no problems with numerical instability.

The chapter is organized as follows. In Section 6.1 we give the adaptive beamforming
problem formulation and summarize some existing solution methods. Our proposed algo-
rithm is described in Section 6.2 and in the following section we present some numerical
simulations to iilustrate the potential of our method. As usual we close the chapter with
some discussion in Section 6.4.

6.1 Introduction

In many adaptive filtering problems the estimated parameters must also satisfy some lin-
ear constraints. For example, in the context of telecommunications, the most frequently
quoted application is the adaptive digital beamforming problem. It should be noted that
beamforming finds application in many other fields as well (e.g., radar, sonar, geophysics,
and biomedical signal processing (Haykin, 1998)). In essence, a beamformer is a spatial
filter that is used to distinguish between the spatial properties of signal and noise. The aim

79
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often is to adaptively place nulls in the directions of the interferences (or jammers) while
protecting the target signal (steering capability). When the receiver is a linear array of
M identical sensors, the beamformer can essentially be modeled as an adaptive transversal
filter (Frost, 1972; Haykin, 1998). The requirement for steering capability gives rise to some
linear constraints. :

The linearly constrained adaptive filtering problem we consider in this chapter is stated
as follows. Given a sequence of input vectors x; and a desired response sequence y;, the
objective is to identify a linear filter w of length M, to minimize the mean-squared er-
ror Fn(w), subject to some linear constraints (imposed by target directions). Using an
exponentially decaying memory the problem formulation becomes

n
min Fnp = E z\""lyi - x;frw|2,
= (6.1.1)

st. CTw=f, weRM,

where ) is the forgetting factor; the matrix C and vector f are of appropriate dimensions
and they represent the linear (side) constraints for the adaptive filter.

When the filter is trained with “signal-free observations” the problem above reduces to
minimizing the output power, while keeping the same constraints. The resulting formulation
is a special case of the Minimum Variance Distortionless Response (MVDR) beamformer,

min wl R (n)w

st. CTw=f, weRM,

where Rzz(n) =31, An—ix;xT is the exponentially weighted autocorrelation matrix. This
formulation also enjoys several robustness characteristics. The inclusion of the point con-
straints CTw = f is one of the most popular methods to make the beamformer robust
to pointing and calibration errors (Gershman, 1999). Such robustness is also achieved by
diagonally loading the autocorrelation matrix, viz, Rzz(n) is augmented by a term al. The
loading factor arises from imposing a quadratic constraint on the norm of the weight vector,
thus this technique is also referred to as quadratically constrained beamforming. Diagonal
loading also leads to robustness of the beamformer to small sample sizes (Gershman, 1999).

Perhaps the easiest and most widely used technique for solving (6.1.1) is the constrained
LMS algorithm by Frost (1972). Here, the weight vector is updated according to

Wni1 = Plw, — #ﬁ(n)xz:] + F,

where P = I3s — C(CTC)~'CT and F = C(CTC)~!f are used to project the unconstrained
estimate onto the space of vectors that do satisfy the constraints. This method inherits
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LMS’ simplicity and computational efficiency, but also its convergence problems in the case
of correlated input signals.

Other methods are based on the adaptation gain (or Kalman Gain) readily computed by
the RLS algorithm. We follow some of the development of Resende et al. (1996) to derive
an RLS based beamforming algorithm. Solving the constrained minimization (6.1.1) by the
method of Lagrange multipliers leads to the following solution,

wn = RZ} (n)pzy(n) + RZ (n)C[CTR (n)C]7H(f — CTR} (n)p2y(n)), (6.1.2)

where pzy(n) = 31, A"~ix;y; is the exponentially weighted cross-correlation vector of the
desired signal with the input signal. In the case of signal-free observations this vector is
zero (which leads to an obvious simplification of (6.1.2)).

The term R} (n)pzy(n) can be identified as the solution of the unconstrained problem

and the second term in (6.1.2) is a correction in order to satisfy the constraints. Using the
definitions

wp' = RZ}(n)pzy(n),
Fn = R;:l(n)c,
¥, = CTr,,

we rewrite the Lagrange solution as
Wy = W 4 DL E — CTwine). (6.1.3)
It is well known that the adaptation (or Kalman) gain, g, can be used to update wj"¢,

Wil = Wa' + Bnat[Uns1 — WXt (6.1.4)

RLS computes g, as

_ ATIP(n—1)x,
B I+ A xIP(n — I)xn’

where P(n) is the inverse of the autocorrelation matrix R, ;(n) and updated by P(n) =
A P(n — 1) — A~'gaxITP(n — 1). Since 'y, and ¥;! are closely related to R;!(n) we can
easily derive formulae for their recursive updates as well (Resende et al., 1996)

1
Cpnt1 = 'X[Fn - gn+lx17;+1rn]7
1 (6.1.5)
‘I';-}»l = K[‘I’;l + ln+1x£+ll",,,\ll,:l],
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where
1 -
lny1 = X[CTFYH—I] 'CTgnsr (6.1.6)

Equations (6.1.3)-(6.1.6) already represent an algorithm for solving (6.1.1). Notice, how-
ever, that the constraint vector f never enters the algorithm except at the initialization (not
shown here), thus the algorithm would soon diverge due to round-off errors. A mechanism
to enforce the linear constraints is suggested by Resende et al. (1996).

A new term (just like in (6.1.3)) is added to correct numerical errors, this time using
the explicit error in the constraints [f — CTwy] as the direction for correction. Suppose wy.
is the parameter vector before correction. Then the final estimate is found as

Wnitl = Whe + Fn+1‘p;l[f - CTWn]- (6.1.7)

We shall refer to this algorithm as linearly constrained recursive least squares (LC-RLS).

In the next section we present a novel technique for the linearly constrained adaptive
estimation problem based on the IPLS algorithm of Chapter 3. Its convergence speed
matches that of the RLS based method and there seem to be no problems with numerical
instability. The numerical stability is maintained even for relatively low forgetting factors,
thus one can trade steady state performance for adaptation speed by changing the forgetting
factor.

6.2 Interior Point Least Squares for Constrained Adaptive
Filtering

The only difference between the problem (6.1.1) and the standard least-squares estimation

problem we considered previously in Chapter 3, is that now we have some additional linear
constraints on the filter. At each iteration n > 1 we require a filter that satisfies

Fn(w)

ICTw -2 < €,

Iwi> < R?

IA

Tn,

where 7, is a dynamic threshold as before and R is a normalizing constant to ensure w
is bounded. The parameter €2 specifies the tolerance within which the additional point
constraints must be satisfied.
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The additional linear constraints lead to a straightforward modification of the algorithm
of Chapter 3. The feasible region in the constrained case is

Qn = {weRM | Fo(w) < 7, ||CTw —f|> <€, [[w]?> < R?},
giving rise to the new logarithmic barrier function
$n(W) = — log(Tn — Fn(w)) — log(e? — [CTw — £||?) — log(R? - ||w|?).

As before, ¢, is convex and approaches infinity on the boundary of §2,. The gradient and
Hessian of ¢, are now given by

VF, 2C(CTw-f) 2w

+ + =

S1 32 83

Vgn(w) =

1

(VFINVF)T 4 V2F, . 4C(CTw — £)(CTw - £)TCT

2

2
Veéon(w) 3% 0 32

2CCT  4ww? 21
+ +—+=,
82 33 33

where the slack variables s; are defined by sy := 7, — Fn(W), 32 := €2 — |CTw — f||?, and
83 := R? — ||w||2, and the gradient and Hessian of F(w) are computed as in Chapter 3.

Note that it is geometrically intuitive that the extra constraints change the feasible
region of w. The optimization technique used to find the center of the feasible region,
however, is the same as before. Thus the update equation for the threshold parameter 7,
is the same as in Chapter 3,

R
Tn = Fn(hw-1) + 5-‘/—§||an(wn—1)||2,
and w is still updated with one exact Newton step,

Wn = Wnpo1 — (V2¢n(wn—l))—lv¢n(wn—l)~

We remark that the analytical convergence results of Chapter 4 do not hold automat-
ically for the linearly constrained IPLS algorithm described above. Similarly, we have not
addressed the question whether it is still possible to compute the Newton direction ef-
ficiently (in O(M?2), or similar). A quick inspection of the expression for the Hessian
matrix V2¢,(w), allows the following observations: the additional linear constraints cause
two new terms to appear. One of them is a rank one term, which can easily be handled in
O(M?) operations. The second term is 2CCT /s,. Since €2 should be a very small number
we could certainly achieve efficient updates by approximating s, = €2 — ||CTw — f||? = €2
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6.3 Simulation

The experiment we use is based on the one presented by Resende et al. (1996). The input
signal is composed of three interferences at normalized frequencies 0.15, 0.1625, and 0.35,
and white noise at an SNR of 40 dB,

z(n) = sin(0.3n7) + sin(0.325n~7) + sin(0.7nw) + b(n).

The filter has length M = 11 and is constrained to have unity response at target frequencies
0.1 and 0.25. This produces the constraint parameters

1 cos(0.2r) ... cos((M —1)0.27)
cT = 1 cos(0.57) ... cos((M —1)0.57)
0 sin(0.27) ... sin((M —1)0.27)
0 sin(0.57) ... sin((M —1)0.57)

and
f=[1 10 o]T.

We tested our proposed algorithm against Frost’s constrained LMS and the RLS type
algorithm as outlined in Section 6.1. The RLS implementation is stabilized in that the
symmetry of the autocorrelation matrix is always assured (Haykin, 1998, Chapter 19). The
three algorithm shall be referred to as LC-LMS, LC-RLS and LC-IPLS, respectively.

To emphasize the stability issue, some of the higher level computations were limited to
four decimal digits of numerical precision. This corresponds to an accuracy of at least 13
bits in a hardware implementation. Figure 6.1 shows the convergence of the estimated filter
sequence to the ideal Lagrange solution. Clearly, both the LC-RLS and LC-IPLS converge
much quicker than LC-LMS. But after about 1000 iterations the LC-RLS algorithm becomes
unstable, whereas the new method shows no sign of instability. The forgetting factor here
is A = 0.99, and LC-LMS uses a step size of u = 0.1 for “fast” convergence. The result is

averaged over 10 independent trials. Figure 6.2 shows the frequency responses of the filters
after 4000 iterations.

We also tested the proposed algorithm in a more difficult scenario, as far as stability
is concerned. Reducing the forgetting factor to 0.9 we ran an input sequence of length
100,000. Due to the small ), the estimated filter does not separate the two closely spaced
frequencies anymore, however, the adaptation remains stable and matches the constraints
throughout the length of the simulation (see Figure 6.3).
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Figure 6.2: Frequency response of filters at Iteration 4000

We have shown the stability of LC-IPLS regardless of the forgetting factor A. This
property can be further exploited in applications where the system can undergo abrupt
changes, and tracking performance becomes important. With the LC-IPLS method we may
sacrifice some estimation precision for faster adaptation (by lowering the forgetting factor)
without fear of instability. Figure 6.4 shows the convergence of all three algorithms after an
abrupt change occurs at iteration 1000. Before n = 1000 the signal frequencies are 0.325,
0.350, 0.375 and then they switch to the familiar values of previous experiments. It was
necessary in this case to reduce the step size u in the LC-LMS to 0.03. At u = 0.1, LC-
LMS would diverge immediately. The forgetting factors are 0.995 and 0.95 for LC-RLS and
LC-IPLS, respectively. This allows LC-IPLS to adjust to the new signal within about 100
samples, while LC-RLS takes much longer to converge. Note that for this last experiment
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the numerical precision of computation was set to 6 digits. Otherwise, LC-RLS would
become unstable almost immediately after the change in the input signal at iteration 1000.
A potential drawback of IPLS may be the oscillatory nature it exhibits in Figure 6.4. We
cannot offer an explanation for this behaviour at this point, however, in this experiment
the oscillations do not lead to instabilty, even for long sets of signals.
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Figure 6.4: Abrupt change at iteration 1000

A note about computational complexity: the current implementation of the LC-IPLS
algorithm requires about twice the computation time of the LC-RLS algorithm. Both
algorithms are significantly more expensive to compute than Frost's LC-LMS algorithm.
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6.4 Discussion

We have proposed a novel approach for the estimation of adaptive filters under linear con-
straints. A comparison with the work of Resende et al. (1996) shows that our method
matches the convergence speed of RLS based methods, however, the interior point method
leads to a numerically more stable solution of the constrained filtering problem. The method
is flexible as it can handle an arbitrary number of either linear or convex quadratic con-
straints.

The inclusion of additional constraints causes certain technical issues. Namely, the
convergence results of Chapter 4 do not automatically hold for the algorithm derived in
this chapter, and we have also not established that the Newton iteration that leads to the

updated filter estimate can be computed efficiently. A close approximation, however, can
be determined in O(M?22).

Finally, the stability that we claim for our LC-IPLS algorithm is based purely on ob-
servation, as no rigorous results have yet been obtained. Also, the results of the chapter
should not be interpreted as to say that our algorithm is numerically more stable than any
RLS based algorithm. In fact, there exist a multitude of other RLS algorithms in the liter-
ature that may very well be better than the one used here. One certain benefit of the IPLS
algorithm is, however, that the inclusion of extra linear or convex quadratic constraints is
very simple. The IPLS framework allows for a unified description of both constrained and
unconstrained algorithms.



Chapter 7

Summary and Discussion

The objective of this work was to investigate the applicability of interior point optimization
methods to the adaptive filtering problem. In a first approach, interior point column gener-
ation algorithms were considered. The iterative nature with which these algorithms operate
to find solutions of static problems (with potentially a large number of constraints) seemed
attractive for the adaptive filtering problem, which also requires an iterative solution. Prob-
lems arose due to the unbounded nature of noise, which led to heuristic modifications of the
algorithm. These modifications encumbered the theoretical analysis of the method. The
simulations of this algorithm were promising, however, suggesting that it may have advan-
tages over the recursive least-squares (RLS) algorithm in terms of transient performance.

Aided by the experience gained in applying the column generation methods to adaptive
filtering, we next developed the interior point least squares (IPLS) approach. This algorithm
is simpler and more elegant than the one based on column generation. It requires only
one Newton step in each iteration and can be implemented efficiently with complexity
O(M??2) per iteration, where M denotes the filter size. Moreover, IPLS does not rely on any
heuristic measures t> deal with the noise. Consequently, the method is more mathematically
tractable, which is reflected in the fact that both asymptotic and transient convergence
have been established. The exponential transient convergence rate is among the algorithms
principal advantages, and it was exploited in an application to channel equalization, where
we showed that IPLS can equalize channels with fewer training symbols than required
by RLS. Another attractive property of IPLS is its numerical stability in the presence of
additional constraints and limited precision arithmetic. This was shown in the context
of adaptive beamforming, where again we compared our method to a (stabilized) RLS
algorithm.

88
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In summary, it can be said that the IPLS algorithm and its analysis and applications
presented in this thesis establish the importance of interior point optimization to dynamic
problems in engineering. Moreover, the IPLS algorithm has merits of its own as it proved to
be a fast converging algorithm that is inherently numerically stable. In our opinion, IPLS
may become a viable alternative to LMS and RLS in many adaptive filtering applications.

7.1 Further Work

The work in this thesis can be continued or extended in at least two general directions.
First, we can complete the characterization of the IPLS algorithm by investigating more of
its properties. Several open issues in this context were identified in the discussion sections
of previous chapters: i) in Chapter 3 wc mentioned that it is worth exploring whether
one can exploit structural properties of the adaptive filtering problem to derive “fast I[PLS”
algorithms; i1) the discussion in Chapter 4 raised the question whether it is possible to show
any analytical convergence results without invoking the weak persistent excitation condition;
and iii) the analytical treatment of convergence and numerical stability of the linearly
constrained IPLS algorithm in Chapter 6 also remain open problems. Another important
property that should be analyzed in the future is the tracking performance of IPLS.

The second category of future research is concerned with more fundamental or concep-
tual questions. An open problem here is the exact relationship of IPLS to the Kalman filter.
Kalman filter theory has been used by Sayed and Kailath (1994) to derive essentially all
RLS-type algorithms in the literature. Since IPLS is similar to RLS in that it differs only
in the way the regularization is determined, it would be interesting to investigate whether
it too can be fitted into the Kalman filtering framework. And if so, what type of Kalman
filter does IPLS corresponds to ? Throughout the thesis we have restricted our treatment of
adaptive filtering to the least-squares case. Lately, the H™ criterion (viz, worst case error,
or minimax criterior) has received considerable attention, especially in context with Kalman
filter theory. Can an interior point algorithm be formulated to (efficiently) minimize an H*
criterion ? How would this algorithm compare to the H*°-optimal LMS ?

It is our hope that this thesis represents only the first step in the study of adaptive
interior point algorithms for engineering problems.
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Postscript

Parts of the work reported in this thesis have previously appeared in the literature or have
been submitted for publication as follows. The IPCG algorithm of Chapter 2 was first
presented at a workshop on semidefinite programming in the Netherlands (Afkhamie et al.,
1996). Different parts of the work on the IPLS algorithm of Chapter 3 were presented in
conferences (Afkhamie et al., 1998b, 1999a) and as a full paper (Afkhamie et al., 2000a),
which also contains the complete asymptotic convergence analysis of IPLS (given here in
Chapter 4). The adaptive equalization work of Chapter 5 appears in (Afkhamie et al.,
2000b) and together with the transient analysis of IPLS in (Afkhamie et al., 1999b). Finally,
the constrained IPLS algorithm of Chapter 6 has previously been presented in form of a
conference paper (Afkhamie et al., 1998a).
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