.

[

N .
HADRON MASSES AND THE NON-RELATIVISTIC

<

QUARK MODEL

By

L. E. COHLER, B.Sc.

- ' y N

&£ .

-A Thesis
Submitted to the School of Graduate Studies
in partial Fulfilment  of the RequirementsA
for.the Degree

Master of Science : L

McMaster University -

May 1980

i



. ! .
5 re
' .
: , .
~ . i
. ' i
$ .
. HADRON MASSES AND THE NON~RELATIVISTIC "
. | . \ LN . ‘-‘

QUARK MODEL I .

1 -

\ .
v 1 ‘



T

A T TR
s -

e it et o L o SR LR

.

/‘\.—f‘
>
o~
MASTER OF SCIENCE (1980) - McMASTER UNIVERSITY
(Physics) : S Hamiltgn, Ontario
= . ¥
TITLE: ‘'Hadron masses apd the non-relatfivistic quark model

AUTHOR: Lﬁcien Eugene Cohler, B.Sc. (McMasker University)
SUPERVISOR: Professor Y. Nogami

NUMBER OF PAGES: - vii, 63

N | <

}-‘.

—ii~- . -~ '



— )
®
(-
TO MY WIFE
JOAN
e
~
1 ]
P
.--’ '
™

~{ii-




T B

oo b s el

1/
A

i

" ps far-as the laws of“&vﬁ

mathematits rdfer to reality,

. they arg not certain:
e 4

and as far as they are certain,

they do not refer to-reality. "
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: ABSTRACT

The hadron masses are calculated in the'non-relativis-

tic quésk moded by solving the Schrédinger equaﬁion with a
- [ - K
suitable potential. The three-body baryon problem is solved

‘by the Feshbach-Rubinow methoé. ' ) ST
The Fermi-Breit potential proposed by De Rajula, Glas-

‘how and Georgi is shown to be unsuitable for non-;elativistic

hadron systems. Some phenomenological potentials are then |

examined by which light hédron masses may be fﬁtted‘and re-

main only marginally relativisticd Moreover, sdqh interac—

tions-indicate the necgésity for lbng—range spin dependence '

and permit the validity of a perturbative approgch~£o be

L]

ftested.

An attempt is made to‘consistently fit_charmoniumrto;
: . i
getgg# with the lighter hadrons by using a logarithmic bo~
tential and incorporating a perturbative type estimate of thé,’dﬁ_ﬁ
relativistic kinetic energy. It is found.tﬁat while the vec- r'

tor meson masses aré well reproduced the baryonic masses are

somewhat overest;mated.'
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CHAPTER TI°

INTRODUCTION o -

1.1 Historical Background ' Lo

* The search for undérstahﬁing-what constitutes mat-
ter is an ancient one. The availability of higher energy
accelerators provides' a gore effic;enf probe into the sub-
nuclear. Consequently, more and more datgﬁig‘extracted on |
the so—cgiléd "elementary"” particles and their list grows

longer.
~

In order to simplify the’'classification of these par-
titles Gell-Mann and Zweig (c. 1964) posited thif the héd-
rons| are composiées of more elementary particles called
quarks which come in various "flavours" (up, down, strange,
etc.). In this model mesons are reggrﬁfd as a quark-anti-
guark pair while baryons are considered to be made up of

three quarks (see appendix A.l). .- - s

The model has sinc? beén extended to incd}borate' :

' quark dynamics. Weinberg ‘and Salam (c. 1567) proposed'the
electfo-weak'interaction which‘isrgove;ﬁed'by géuge fields.
.This iqteractioh will not be discussed in this work. In
the eafly 1970's it was postulated that éhe strong interac—‘
tion is also governed by gauge‘fields whose quanta are an

octet of vector bosons known as gluone. Quantum chromodyna-

mics *(Q.C.D.) ,as it is now called, is “becoming widely accepted -

+
Ju— + +
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as a viable theory of the strong interaction.

Both the gluon of Q.C.D. and the familiar photon of
Q.E.D.T(quéntum electrodynamics) .are massless, neutral vector
bosons and one may expect some similarities between Q.C.D. and
Q.E.D. The non-relativistic reduction of one photéﬁ exchange
leads to the .Fermi-Breit interaction, which for S;states is
characterized by a Coulomb potentia} plus it§ assogiated
shbrt-raﬂge spin deﬁg;éence, tqgether with momentum depéndent
terms. Thus, as is discussed by'De'RﬁjuLa, Georgi and Glaghéwl
(DGG) in their pioneering wg;k (De 75), one m&ght'also expécé.
the quark-quark interaction to be Coulomb like. However it
BPould be'noted that there are essential differences, between
the -two theories.

In the standard ébdel there are four £lavours of frac-.
tionalfy charged spin 1/2 gquarks (up(u), down td), §trange {s)
and charmed kc))'ﬁhich, together with the 'gluons, carry ; new
guantum number known as colour, which transforms as ; triplet
under colour SU(3). Hence, each quark comes in one of three
colours and it is‘postulated that coloured particles are con-=
fineé. The usual assumptions that c?loﬁr SU(3) isuan exact
éymmetry and that physical states form an éntisymmetric colour
singlet, serve to retain the desirablg stahdgfd Fermiestaéié-

tics. »

Colour confinement'ié probably %ptimately linked with

a property known gs "infrared slavery“. Unlike Q.E.D., 0.C.D.



- »

‘is a non—abellan gauge theory and thls leads to the gluon

havxng a hlghly non-llnear, strong self-coupling. Ih Q.C.D.

the effectlve strong coupling constant (o) is a functlon of -

-

'the momentum transfer and the fact that a becomes large for
small momentum (or long distances) 1é known %f lnfrared sla-
vVery. The converse property, asymptotlc freedom, asserts

that o« \becomes small for high'momentup or short distances.

1

! /ﬂ»)

I.2 The Non-Relatiwistic Model

DGG {De 75) used the asymptotic freedem proﬁerty £o
support their.sugées ;o; that the dominant short-range qﬁerk-
quafk interaction is Coulomb-like. An essential feéture of. -
ﬂhls assumptlon ‘is that the spin-dependent Fermi term is o%/\
.short’ range. Thus phe one-gluon quark—quark‘potentlal proj

posed by DGG is of the form*

]

vij_= U{fij) + kassij}‘ s
and :
7 : Ei'Ej Lij (Elj By )Ej
5i37 : ’-2mlm - 2 ) - % G(f.-)(—%— ¥ jf
I Fij iy iy 'l . "R my L
4o, ! .
+ Eﬁ—ﬁ;l) + spin-orbit and tensor terms - (1)
iy .

where m, are the qué&k masses and ciﬂthe usual Pauli spin T

-

trices. U(Di-) is a universal confinement potential, pro-

posed on arguments based on lattice guage theorles, and k = - %
for gqq and - 4 for g The factor of two arises’ from the usual

-7



atti;ude that the éotentialjj;generated throﬁgp'gluon exchange.
Now since the effective quark—antiqugrk coupling (gqa) is of the
order 2 Iaq’ it is assumed that the mesonic gq potential is
twice the baryonic qgqg potential. Likewise, if the confine-

ment potential, U(rii), was also generated via the exchange bf
gluons (see e.g., Pu 75, Sc 76, Ph 77, Ta 79), there would_be a
similar factor of two difference between the mesonic and baryo-
nic cases. |

By treating interaction (1) in a perturbative ;pirit,

* DGG (De 75) were able to dérive mass formulas for the ligﬂter
baryohs and 1~ mesons ;hic@ agree weli with experiﬁené. They
also indicated that the same potential should not be expected
to fit the 0  mesons, which they suggested may be é result of
thé increased importaqce of two gluon gxchange.

Since DGG (De 75) did not solve the Schrddinger equa-
tion with interaction (1) but rather parametrized matrix ele-
ments such as ;ﬁlé{fijf|¢>,tpe nice fits they obtaine@ serve
to demongtraté the importance of the épin—spin coefficient
'(mimj)—l; However, their coqclpéions remain independent of
the’ range or radial formfof'the potential.

If one wants to solvelthe Schrédinger equaﬁiog with
pqﬁéntial (l),‘6(§ij) must Se smootheq by a suitable short
raﬂge fdrm factor,othgpwise'thé system collaﬁses for an
atﬁréétive G—function.- Similarly, other siﬁgulariﬁies,in the

potehtial éhould be regularized consistently. {
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In the succeeding chapter we address ourselves to the
problem of ‘examining the radial dependenge of the potential.
One should realize that in contradistinction to the atomic
‘\\\ case, the hadronic hyperfine splittings méf be quite large
(e.gff between N and A) and thus a pertgrbatiye treatment is
at least guestionable. Thié point is further discussed in
Chapter 1I. To our knowledgé no one has attempted a dynamical
solution to the three quark problem with interaction (). Aal-
though Shankar and warke (Sh 79) proposed a:.variaticnal cal-
culation, but since they retained the &-functioen, the signi-
ficance of their results is perhaps- debatable for the reason
preQiouély given.
In thi; connectiocn we solve the hadronic Schrddinger
equation dynamically. Since the‘qﬁark-quark potential is spin-

depehdent, the hadronic wavefunction wh takes the form
e p |

‘E ' YoV Ve VYgs Vs ' | i

wﬁere wc is the tétally antisymmetric colour singlet wavefunc-

'Fion and y_. the spin fla{?ur function for which explicit forms

" are given in appehdix A.2. The spa ial wavefunction, ¢s is

obtained by solving the Schrédingerﬁéﬁu&tion. The tﬁree quark
Schrédinger equation for the baryonic syétem is solved in the
Feshbach-Rubinow (F-R) approximation (Fe‘SS) generélizgd for
uneqﬁél masses and force bonds (Ab 62, Bh 67). This method has

been shown to be satisfactory in bgth atomic (Bh 76) and nuclear

- problems (Mc 65). In this approximation the S-state three body



wavcfunction.wo is assuméd to be a function of the singl
variable R = % (r23-+r13-+nr12) where n is a variationai
asymmetry parameter., When the masses and force bonds are
eéual n=1, otherwise n is varied to obtain the minimum ener-
gy. The method is tested against an exactly solvable harmo-
,11¢ model presentqﬁ in the next chapter and the aécuracy is
found to be satisfactory. Further detéils of the method are
given in appendix B.l.
In chapter II we solve_the S-state baryonic probleﬁ

"by the above F-R method, taking a suitably regularized inte-
;Action of the form (1), in which we use a ramp as'the‘con-
finement poténtiél. ‘The parameters (the quark masses, o and
an overall constant) were varied to fit the masses of N(939),
8(1232), N*(1470) and A(1116). A number of sets could bhe
ébtained but in each case the nucleon rms radius shrank to
0.3 fm'or less and the total kinetic energy of the three éuarks
was > 1600 MeV. Since the up quark‘mass was " 500 MeV, the
system is clearly relativistic.

As a result of this, we show that some simple phenome-
nological gg potentials may be constructed that rétain the
essential ingredients of the underlying %ield theory and fit
the ground state masses while remaining marginally nonrelativis-
tic. The potentials are chosen to exhibit the characteristic
confinement property and a spin-spih interaction whose coeffi-
cient is mass dependent. '

Several such potentials are examined in th? succeeding




chapter and we demonstrate the need fo¥ a long-range spin
‘interaction in fitting the hadron masses while reméihing wi-
thin the desirable, marginally non-relativistic framework.

In addition, we show that as the range is decreased the kine-
tic energy subséquently rises and -that a pe;tufbative esti-
mate progressively deteriorates. 1In this chapter, the em-
phasis is on fhe grpund statés of the lighter hadrons since,
as a result of the increased kinetic eneréy in the'excited
states, spectfoscapic calculations may be dubiocus. Further-
more, for charmonium, where relativistic corrections are .
expected to be considerably less, the potentials are unable
té fit the spectrum. .

In chapter ITII the emphasis is shifted from the lighﬁer
baryons to the heavier mesons. Here we determine the poten-
tial parameters by fitting the less relativistic mesons (e.g.
P and ¢). This approacﬁ is further advantageous since the’
two-body meson systeﬁ maylbe solved numéricaily to any desired
accuracy, ﬁnlike the baryéns which are treated in tﬁe F-R
approximation. _ .

For this purpcse we examine a simple logarithmie poten-
tial, which in a loose sénse is equivalent to a Coulomb poten-
tial coupled to ramp confinement. This potential has. the
remarkable pfoperty that the kinetic energy is a constant that

remains unchanged in the excited ngtes. Thus there exists

the possibility of performing meaningful spectroscopic calcu-



lations. This potential is not unlike one that has been
proposed for charmonium (Qu 77, Ma 78, Qu 80). Haviné illus-
trated the importance of the long;range nature of.the spin
interaction, for simplicity we considér a‘constanﬁ spin-spin
"term together with the logarithmic potential.’ Furthermore,
ad hoc perturbagive estimates are made of the relativistic
corrections and saEisfactofy fits are obtained for the

vector mesons, including charmonium, while the baryons are

reasonably reproduced. ,

-




CHAPTER 11

THE FERMI-BREIT INTERACTION VERSUS SOME
PHENOMENOLOGICAL POTENTIALS

0

I1.l1 The Fermi-Breit Interaction

As discussed in the preceeding chapter De Rijula et al
(De 75) first proposed the coulombic guark-quark interaction.
As was mentioned, since the three body Hamiltonian with an
‘attractive ¢-function has no lower bound, we replace it by

0
\
sen, in analogy with the atomic case (Bl 65, Bl 78), to be

--a short range form factor fD(r,rO)wherethe range r_. is cho-

W,as/mq where mq is a typical.quarﬁ mass. For simplicity we
Fix ry, = as/m#. The singular;ties in the moﬁentum dependent
terms are regularized consistently and some details are given
in appendix A.3. 'Since we investigate S-~state bafyonic mas-
ses we drop spin-orbit and tensor cohtributions. The two bedy

guark-quark interaction takes the form

- 2 ,
Vi; T 7 3 %5y
s, =c+l _frF L [Er) ——f—g(r'ro) (£+p)p.]
. = C+ = —— r,r )p.*p. + - r-(r'p.)p.
1] T 4 Zmim.02 LRSS B T r ~ = 1'%
2 4g. -0, )
_nh 1 1 ~1 3
2 2 DRl Lyt 5t )
c my mj i3
‘where
r=|r.-r.|
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1 1 “r/ry
nro o R
~r/r r/r
flr,ry) = = (1-e . Oy + L ¢ 0
C r r
0
1 —T/ry 1 _TF/T
g{r,ro) = (l-e ) - ;E e (3)

and[é is an overall constant, o, the usual Pauli matrices
\

-

and m. the quark masses. To solve for the ‘baryonic masses we

use the Feshbach-Rubinow method (appen&ix B.1l). This leads to

1

a Schrodinger eguation in the variable R = 5 (r

nr

131 93tNT o)

of the form
(T + VFR(R))¢(R)==Ee;f¢(R) (4)

~ L) .
where T is a kinetic energy operator, the F-R effective

VFR
potential and E_.. = const E where E is the binding energy of

the system. In terms of u(R) = R5/2¢(R) the F-R egquation be-

comes
h2 15u ﬁgas d Su 3v2 !
- (u" - ) + f= (u'v ) -5= [ + v_ 1]
Mg £ 4R* 12m c® IR PP 2R "2R  p
* Voggl = 26(E + 2Ca)u _ (5)

where for unequal mass and force bonds, which we refer‘to as

the asymmetric case, the guark masses ml==m27£ m,- The effec-

tive¥mass, M ger (appendix B.1l) is given by



11

2 I
1 101 .. 2
2= (R 2j2e 4 (2 + ing
eff 1 3 1 3
e're
2e = 8(n%+5n+8)
lS(n+l)S
and
_ _8(n+5)
15 (n+1)°

For the symmetric>system where all guark masses and

force bonds are equal and n==l,meff = m, wﬁére m is the guark

mass. The effective potential Veff:zv (R)+V

coul- (R)+Vc

spin onf(R)

where Vcoul{R) is the effective coulomb potential (v %) and ?
v the confining potential (vR). V_ derives from the k
conf , P ‘
momentum dependent terms in interaction (3) and the explicit
forms for Veff and vp are given in appendix B.Z.

Using the appropriate guark composition (appendix A.l)

equation (5) may be solved numerically to give the S-state

masses of the baryons. For this purpose we choose m, =My and .

restrict mu/ﬁs to.be v 0.6,

In the staﬁdard éuark model the baryon magnetic moments
(uB) may.be written in terms of the quark magnetic moments (uq)r>
and hence from a knowledge of By one may'fiﬁd uq (see e.g., Li
78). If one then assﬁmes ﬁhe guarks to be pure Dirac par-

[l
found that mu/ms n 0.62 which we consider to be a reasonably .

ticles the ratio m /m  ~ 0.7 and m“m'm A 336 MeV. DGG (De 75)

good guideline for our purposes.

-\



The parameters m , m , o« and the constant C are then
= ; u s s _

varied to fit the masses of N(939), N*(l470), A{1232) and
A(llle)., It was possible to obtain several parametei sets -

but in each case, as mentioned in the preceeding chapter, the
2

-

system is relativistic. The best set was obtained with m ¢

475 Mev, msc2 = 730 Mev, o, = 258 Mev~-fm, a = 1.03 fm2 and

4

2Cas = 90 MeV. .The results for this set are given in Table

I1.1.1 and one can clearly see that the system is relativis-

. ~tic. For the nucleon, the rms radius is 0.28 fm and <T>N/3mu

~l.4. Even for the & particle <T>Q/3msih.6 which corres-

ponds to <v2/c2> ~ 0.5 for the quark. For the asymmetric

baryons we have shown in appendix B.2 that

<Ty>  2my 2n2+10n+8

1> M3 pfsp3i11n%+15n+8

<T (6)

where T, is the kinetic energy of the ith quark.

For 341233) my =m_, m3‘=mu and we find <T3>'= l.29le> and
3 <T. >

thus — A~ .94 while v 0.47.
u [ '

s

\\From these_?esults it is evident that the Fermi-Breit
interacgzan is ﬁnsuitable for the ba;yonic problem within'a
ndn-relafivistic framework. From Table II.1l.1l one can see
fhat, in magnitude, the contribution to the binding energy
of the Coulomb potential is of the same order -as the kinetic
energy. From the usual virial theorem this seems to imply
that the potential is Coulomb dominated and this may be part
of the difficul ty~ |
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TABLE II.L.1 Results of Fermi-Breit Potential in the
Feshbach Rubinow Approximation@

/

The

-
are

particle masses (in Mev) in the last column

o ) 4 ’ o
obta@ined by numerical solution. of equation

(3)

and the resulting wavefunctions are used to
a

» figthhe expectation values (in Mev} shown, where

T refers to the total kinetic enexrgy, V

h
cou

coulomb potential, Veonf the ramp potential,

spin
the spin-spin potential and V{p) the momentum-

dependent potential. In addition there is a

constant potential of -90 Mev. The rms charge

:

radius (in fm) is denoted by <r®>  and is given

for the highest charged state..
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We suspect that the quark-quark potentlal may be sub-
stantially modified as a consequence of the coupling being
a function of the momentum transfer,, This may be understogd
by first briefly reviewing the ﬁsual Q.E.D. derivation of‘Zhe
Fermi-B%?it interaction. This is obtained by taking the
Fourier transform of some v(q) arising from one photon ex-
change (Be-itr\\ The leading term < f%, where o is the coup-
ling‘conétant, éives rise to Ehe usugl Coulomb potential,

while the higher order contributions yield'the remaininé

Fermi-Breit terms.

.

By analogy, the Q.C.D. guark-quark potential deriving

from gluon exchange is taken to be

. 2
ig-r alq’)
qumfdge~,.—;‘21—(1_+ )y . (7)

The asymptotic freedom argument given by De RGjula

. b
et al. (De 75)7is equiva}ent'to approximating (7) by

.C, (8)

which of course leads to the usual Fermi-Breit interaction '
since a_ is taken constant. This approxiﬁation is questio-
nable. Recently, Levine and Tomozawa (Le 79) have made some

interesting advances in finding a(qz) and the leading contri-

bution to qu which is quite different from a Coulomblpotential.

This seems to 1mply that not only the Coulomb potent;\\\“,

but also the short-range spln term may be guite modified as

Yo
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a result. We do not pursue this approach further but rather,

adopt the attitude that the choice of qu should not be re-
3
stricted to the Fermi-Breit potential. We thus examine some

L] .

simple ad hoc potentials, qu, and as we show.in the next sec-

tion, the short-range nature of the Fermi spin-spin interaction .

seems also to be unsuitable in the context of a non-relativis-

tic model.

II.2 Some Simple Potentials

In this section we thw that some simple phenomenologi-
cal potentials, that contain a mass dépendent spin term and
exhibit the confinement property, may be used to fit the ground
state masses without the kinetic energy being unreésonably high.

As- an example, we consider the harmonic interaction

1
K

P~ - - — n » 2 ‘ -
Vij = F; Ej{ 2[l+(mimj) Agi gj]r +C.} . (9l_,/"\i

where <§i-§j>=—-§ for qg, - % for é& and.K,A aﬂd C are paia-
meters adjusted to fit the masses of N and A and the rms radius
of éhe nucleon.which we restrict to be in the range 0.6 to 0.7
fm. Our choice is also influenced by the N*(1470) mass but as
we see from the résultg, this viewpoint is questionéble due to
tﬁe larger relativiétic corrections 6f the excite&_states.
Equation (9) offers the advantage of being. exactly sol-

vable for ‘both mesonic and baryonic sygtems. The value n = -

B =

was found to give the best mass splittings while we chose

2

K = 437.5 Mev fm <; A 3 101.6 MeV and C = 433.5 MeV. We fixed



v

ey

'_\_;

..l - . | (j/

the quark masses m = my = 336 MeV and a good overall fit for
the strange- baryons was obtained by setting m, = 595 MeV,
Fof the three quark system the Hamiltonian with interac-.

tion (9) may be written '

2 2 2 | .
Py Py Pz 1 2 2 2 \
H = T + > +‘§E,‘+ 5 bo(r13+r2}+(l+s)r12)~2c (10)
T » i
where . . ‘ T
o _ 2k N o L "
| b0 = —ii{l + {mm') }<gl 93>} o \\F%
| ' ‘ _ 2k | _ -
bge = 5. (mm')"4<g) 05797793 -

\ . , -

. . ) - '/ : - .
f,fThis may be rewritten in terms oziihe Jacobi co-ordinates

R = .[Im(ryy+ryg)+m'r ,1/M, p = (£;37T13)/¥2 and g = (r,5+r)3-220,)/

/6 -where M fs_the total quark mass. After removing the center - _
im}s motion (10) reduces to two uncoupled oscillators with
s ) ’ ' ,

2
, P
_ P 2.3
,HD = om t bye (2 + €)
2 .
p ‘Q
U 3. 2
2 ‘
U m, 2 .0 - .
where mIJ = 3mm' .

'M.
The-haryon masses calculated in this way are pre-
sented in the seconﬁ‘coiumn of tables II.2.1 and II.Z2.Z2.

_For these parameters we find for tMem nucleon <T>N/3mu X 0.40

- .
which corresponds to < v¥/c? >~ 0.44 which



18 .

.l
*

'we regard "as marginally relativistic. For the
={1533) we now have ‘<Tl>/ms'% 0.19 and <T,>/m ¥ 0.64

thch is a considerablé improvement over the vajue of -
»

{0.94 found in the last sectiocn. To determine these values : ~

"we have used

<T3> B 4ml 3m3

<T)> 3my YM(2e/3+])

(12)
which.may easily beigerived from equations (il).

-

By solving intergction {9) in the Feshbach-Rubinow
" approximation, wé are able to‘test thé accﬁracy of-the
'three;bpdy method. For this potential, the F-R equation (5)
ﬂgived previously has v, set to zero afd a replaced by k/2.

Theqeffective pbtentiél becomes (see éppendix B.l) .

.

V_ (R = 1A (2,n) + 3 (1”5’32(2.?1}']1:932 )

.

1

where Ai(n,n) are given in the appendix. .
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for the symmetric case thié reduces té 6b0R2/35. Selving, we
find the nucleon mass to be overegtimated by about 19.7 MeV

and the constant C in equatioﬁ (9) is readjusted accordingly

to 443.4 MeV. The results obtained by the F-R method are

found to be satisfactory, as shown in tables II.2,1 and II.2.2.
By way of comparison, we find <T>N/ﬁmu # 0.41 and using equa- . !
tion (6) from the previous section, that <Tl>/ms'%-0.21 and

. —~—
<T3>/mu A 0.59 for =(1533). % '

yd

The S-state masses of the 1 mesons were also calcula-
tea using the same interaction (9) with <§i-§j>= - %. Thel
resuits, displayed in table IXI.2.3 are foﬁnd to be reasonable.
As discussed by DGG (De 75), we do not expect. the 0-. mesons
to be réproduced by the same interactioni We find them to
be greatly overestimated. L

An even simpler form of harmonic interaction, proposed

for the non-strange baryons by Liberman (Li 77) may also be(\\
[ -~

solved analytically. Here we use

2
KT -1
. = F.o1- = - L. g, + R
vij Elgj{ 2 (mlmj) Jq.lgj ¢l (14)

This may be solved in the same way as interaction (9)

LS

and we find a comparable fit with mu==md==336 MeV, m_ = 574
2

MeV, k = 305.3 MeV fm “, A/mi = 73.3 MeV and C = 359.5 MeV.

From the results, presented in tables II.2.1 and I1.2.2, we. .

e



RESULTS FOR THE SIMPLE MODELS?®

.

aThe notation used in the following tables
‘is the same as that given in table IT.1.1.
For .the symmetric baryéns'(N,A and Qi the .

value of n = 1. -
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T%BLE II.2.1

Model
Method

N(939)
<T>

* )
N (1471)
<T>

N*
2,

A(1l116)
<T>J\
M

£(1193)

21

Results of Simple Model Calculations for Octet

Baryons .
Eq. (9) Eq. (14) Eq. (15)
Set (a) Set (b)
Exact F-R Exact F-R F-R
939 939 939 939 939
399 409 325 468 503
0.66 0.67 ' 0.63 0.61
1471 1484 1470 1470 1475
665 681 591 645 662
0.86 0.89 0.88 .
1103 1106 1118 1113 1112'::::)
352 363 296 439 485
0.84 0.66 1.04
1187 1187 1199 « 1177 1194
394 403 336 460 453
0.74 0.70 0.72
1.15 0.97 0.68
1337 1337 1342 1320 1336 -
340 349 289 422 418
0.40 0.41 0.60
1.53 1.41 1.10
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TABLE II.2.2 Results of Simple Model Calculations for De-
- { cuplet Baryons

Model Eg. (9) Eg. (14). Eg. (15) _

' ' set (a) set (b)
Method Exact F-R Exact F-R F-R
A(1232) 1231 1239 . 1232 1245 1234
<>, 545 559 472 569 404
a?>} 0.59 0.57 0.67
£(1385) 1385 1391 . 1370 1390 1378
<T>. 493 505 422 532 391
a?io 0.67 ©0.66 _ 0.76
Ny  0.86 0.83 0.80
£(1533) 1540 1542 1513 1533 1522

<> _ 441 451 . 374 493 375
<r?> 0.52 0.48 ©0.53
, n. ‘ 1.19 1.24 1.25
' Q(1672) 1695 1694 - '1663 1673 1668
<T>q 389 398 330 453 354

<r?% 10,51 | 0,48 0.54

1t
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TABLE II.2.3 Results of Simple Model Calculations for
Mesonsa . '
Model Eq. (9) Eg. (14) Eq. (15)
Set (a) set (b)
JgP = 17
p(773) 723 750 ' 714 735
hd -
< 315 279 342 237
K* (892) 893 893 872 887
T, 270 231 308 228
$(1020) 1060 1054 1022 1039
<T>, : 224 193 ’ 272 210
aP =0 :
m(138) ° 261 360 325 269
<> 84 ‘84 212 427 .
K(495) 628 " 670 608 . 605
<T>, 138 120 220 335

a The calculations for equations (9) and (14) were analytical
while equation (15) was treated numerically. The results
for the scaler mesons are given for completeness but cannot
be fitted by the same parameters {(see text).:
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find <T>. 3m, % 0.32 which corresponds to <v2/c2> * 0.39 and
for 3(1553),.<Tl>/m5.% 0.17 and <T3>/mu A 0.54 which may be
calculated from Eg. (12) with ¢ = 0. The meson masses calcu-
lated from equation (14) are displayed in table II.2.3.

We consider two further simple potentials of the form

my A m

V.. = F,-F.[-a {r ~ + —2 5. .g. - C}l . (15

ij -1 mj[ 0‘.'5{ (m m_)n %4 93 * H . (15)
. iP5

The F-R equation now.takes the form (5) with Vé set to zerc ané

Veff given by (see appendix B.l)

V() =2 a [{2A (mam)HA (o m IR E 4 P
eff 3 s x 1! z' 1t n
(m,m.)
P : 1]
.'m2
2a_(m,,n)<g, -0 >+Az(m2.n)<gl-g2>}R ] (16)

We fit the baryons by the same procedure as used pre-

viously and for set (a) we take ml=m2=l, n=1/2, mu=md=336
MeV, m_ = 595 MeV, a_ = 555.6 MeV fm , A = 49.33 MeV and
C = 1.324 fm. For set (b) we use the values m, = 1, m, = -1,

, -1
n =1, m. o= mg = 336 MeV, m_ = 585 MeVv, a, = 445.5 MeV ffu —,
A

il

0.3625 (cti)? and = 1.418 fm. The results for these two

cases of equation (l§) for the baryons and mesons are set

‘out in tables II.2 l, I1.2.2 and II1.2.3. Here again we see

that the calculated masses are quite reasonable. Set (b),
which in the nucleon. has <v2/c2> N 0.50 for the gquark, is of

particular interest since l/r-type spin-dependence arises
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naturally .if the ramp confinement is generated by Lorentz

vector exchange (S¢c 76, Kh 7B, Ta 79). ~

Ih order to demonstrate the importance of a long-range

" spin-spin interaction and invesfigate the accuracy of a per-

turbation estimate we consider the potential

V.. = F,«F, [~ % 2

-1
i - EitE5 -(mimj) AfD(r,rO)gi-gj + C] (;7)

where fD(r,rO) is defincd as in equation (3). We fix m =my =
336 Mev and k = 241.5 Mev fm“2 and then for a series of values
of Lot interaction® (17) is solved by the Feshbach-Rubinow
methéd and X and C adjusted to fit the masses of N{(939) and
A(123é). Using oscillator wavefunctioné for a perturbative
estimaté, the nucleon kinetic energy is found to be 355 MeV
while the rms rgdius 0.7 fm. These values, together with the
estimated A-N splittings, may be compared with the results

of the dynamical calculation shown in table II.2.4. It can

be seen that fer lafger ranges the perturbation estimate is
adequate but as r, < 1l £fm  the nucleon kinetic energy rises
> 1700 MevV. we shoﬁld point out that the dramatic effect

illustrated here is suppressed somewhat for larger values of «x.

Similar trends are exhibited by the qg system, which

"we demonstrate with the K-meson. The parameters « and C are

fixed as above and m is taken to be 500 MeV, then XA is adjus-
ted to fit the K mass obtained by solving the Schrddinger

equation with interaction (17). For Ly = 3 fm the kinetic



26"

-~ d

-
o

TABLE II.Z2.4 Investigation of the Range of the Spin-Spin

Potentiala
Method ' F-R Perturbative
Estimate
r, A/Lhcq3 c <r2>:- .<T>N M, -M
5 177.5 321.3 0.66 415 283
2 37.8 319.7 0.65 430 \ 279
1 14.5 316.6 0.64 453 270 |
0.5 7.13 311.2 0.61 501 248
0.1 2.60  288.8  0.49 1711 70

a The results tabulated are obtained from Eg. (17). Pertur-
bation theory estimates the nucleon rms radius to be 0.7
fm d the kinetic energy to be 355 MeV (see text). The
las\ column gives the estimated A-N mass splitting in Mev.

4
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~

energy, is 300 MeV ‘whereas for ry < 0.2 fm it rises above.-950

MeV, 'r:(‘

*v}rom these calculations we conclude that for an attrac-
tive spin-spin interaction of range << 1 fm the kinetic.ener-
glies of the gquarks become very large and subsequently rela-
tivistic corrections play a role of increasing importance.
We héve also shown that perturbative estimates can be mislea-
ding for such short-range potentials. Furthermore, we have
demonstrated that it is possible to construct simple phenomeno-
logical interactions that fit the masses of the baryons and
vector mesons within a reasonably non-relativistic framewdrk.
Such potentials are characterized by confinement and a long-—
range spih—spin interaction.

We should also mbgtion that the potentials we have

used for the lighter hadrons are unable to fit the charmonium
spectrum although for a suitable choice of tﬁe charmed gquark
mass (mc) the ground state may always be fitted. In the suc-
ceeding chapter we attempt to remedy this situation by consi-

dering a logarithmic potential.

¥



CHAPTER IIX

THE LOGARITHMIC POTENTIAL

III.1 The Logarithmic Model

As we have shown in the last section, it is possiblé.to
fit the baryon masses with some simple potentials such that
the system is marginally relativistic. We now attemét to
fit the hadrons in such a way as to minimize the effects of
the relativistic corrections. To this'end, we fit the mas-
ses of the least relativistic mesons in order to determine-
the parameters. This approach has the added aévantage
that we ds not introduce uncertainties in the solutf;ns
since the twg-body Schrﬁdiﬁger equation is numerically sol-
vable.

We now consider a two-body interaction which takes the

form

Vij = gi.fj[—as{xn(hrij) + mimj

gi-gj}] | (18)

where, as previously, o, are the Pauli matrices and <Fi-Fj> =
-2/3 for qg and -4/3 for q&. As remarked in the introductory
chapter, potential (18) has the remarkable property that, in

any state, the kinetic energy <> (appendix C.l) is

as ‘
<T> = - 5 I <F.F.> | - (19)
. + had 'UJ
1>73 -

28 .
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.Thus for baryons with three gg bonds the kinetic energy is
simply oo while for mesons it is 2as/3.

For the purpcse of investigating the mesonic systems, we
transform to the Jacobi coordinates B = (mlfl+m2r2)/(ml+m2)
and p-= L "Xy, then. dfter removing the center of mass motion,

equation (17) leads to the Hamiltonian

2
P
- o _ B .
H = ml+m2 + 2—1‘! E‘l'gj (as{ln(l\p] + m m2 gl g }) (20)

where 1 is the usual reduced mass. In order -to calculate

the charmonium spectrum we add.to egquation (20) the usual
centrifugal potential
2
v = & ({&+1) —é-f (21)
2up

We find that the 1P-1S5 splitting for the logarithmic
potential isla function only of the parameter a_ and thus
we may deteérmine its value from the 1P-1S splitting of 427
MeV in charmonium. A variayionél calculation using CoulomB
wavefuncﬁions_pr?dicts this splitting to be 7as/9 which.
suggests the valug a, =

549 ‘MeV, ‘however from the numerical

solution we find we need to take a, = 537 MeV. Hence, using

equation (18{ we see that‘for mesons the kinetic energy ié
358 MeV while for baryons it is 537 Mev.

Since we have chosen a constant spin term in the
potential, spin splittings between baryons of identical

mass quarks may be simply determined and we find

et
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s . . _
¢ .
4a B

A(1282)-N(939) = —5-
. ‘ o

L :

N

, T(1193)-A(1116) = — (1 - My (22)

A . 3m s
, u

Now, since we insist that the above splittings be fitted,

' .= 2 _
we take mu/mS = 0.6 and B/mu = 0.1364. P

In order to find the baryonic masses we solve the in-

teraction (18) by the F-R method. As we have already seen,

this leads to an effective one body equation

52 15u '
- z-r—n—-g—f- (U." - . 2) + VL u =. 2& (E-Vs)u, (23)
e R

where we use the same notation as in the preceding chapter

and
20 B <g.-0.>
V. = —2— 1§ =1 -
s 3 .. m.m,
1>] 1]
Zas
VL = == [6£AnAR + G(n)]

‘where G{n) is given in appendix B.3 and for the symmetric
case reduces to -199/600. .
A Now as we have already indicated o is chosen go be
_wls while the A-N and I-n
splittings fix mu/mS = 0.6 and B/mi = 0.1364.

537 Mev to reproduce the wlp

The value of mg is determined by fitting ¢{1019)

and m. from ¢ (3095) while the value of A is chosen that

gives the best overall fit to the. hadrons. With A = 0.8 fm-;.

we find ms = 6§39 Mev and mC = 1887 Mev and we thus use

T
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m, = 383.4 Mev. The results of the hadron mass calenla-
tions based on equation‘(ls) for these parameters are pre-
sented in table III.1.1.

As can be seen, "‘the vector mesons are reproduced
re.sonably well as is the charmonium spectrum. The scaler
meséns are overestimated as was the case for the other
simple models, while the bafyoné are "~ 50 Mev tdo high over
and above the underbinding introduced by the K}R approxi-
'mation; which we expect to be v 20 Mev. Yet, the calcula- '

- ted Q mass is only 26 Mev. above the experimental value and

we therefore suspect that the overestimated masses may arise
as a result of neglected relativistic effects.. For the
<T>/3mu % 0.47 which correspoﬁds to a quari velocity <v2/c2> o
0.48, whereas for @, <T>/3m_ ~ 0.28 while <T>/m A~ 0.47 and
<Tl>/ms ~ 0.28 for the = particle. For comparison <T>/2m A

0.09 in charmonium, which is equivalent to <v2/c2> X 0.16

while <T>/2mu ¥ 0.47 for the p particle. Thus, althbugh

we may consider charmonipm to be non-relativistic ‘we expect
. . - ¥

relativistic corrections to be of importance for the light

hadrons. In the next section we attempt to improve the mo-

del by incorporating an estimate of the relativistic correc-

tion to the kinetic eﬁergy.



MASS ' MASS n
¥, (3095) 3096 .- N(939) 1007 1.

-wlp(352é) 3524 ‘ N* (1470) 1470 1.

y, (3684) ¢ - 3671 A (1232) 1300 1.
¥14(3772) 3790 2 (1672) /1698 ' 1.
¢3s(4028)_.- \ 3988 A (1116) 1181 | 0.804
V,q(4160) 4058 I (1193) 1259 | 0.804

g, a814) 4207 = (1318) 1392 1.27
*§§7 | I (1385) . 1435 0.804
$(1019) 1019 = (1533) 1568 1.27
p(770) 753 . A_(2285) 2322 0.58 .
. K*(892) 890 :
D*(2010) 1997 .
-]
m(138) 363 .
K(492) 655 -
. D(1867) 1918 \
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ey

| Ti?LE‘iII.l.l HADRON MASSES CALCULATED USING INTERACTION (18)2
AN A '

MESONS R : BARYONS

-
~

haBaryon masses are calculated by the F-R methgd{zﬁmhe meson

kinetic energy is 358 Mev, while for baryons it is 537 Mev.
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III.2 The Model with Ad Hoc Relativistic Corrections

In attempting a potential model calculaticen that in-
cludes both the heavy and light had;ons we feel that rela-
tivistic effectgvare not unimportant. We therefore attempt
én estimation of the correction to the kinetic energy. 1In
order to get some idea as to the order of magnitude wé first
make a crude estimate in thé fol%owing way.

The twﬁ body interaction (18) leads to an effective

one body Hamiltonian (20) for the meson system. Top a first

approximation then the kinetic energy operator, p2/2u, may
be considered as deriving from E_ with ,g\
' £

o 5
I
.

‘ : 2 3 .
ElJ oV pSHnt (R u o+ %ﬁ - jlj + eeee) (24)
8u .

Now in tHe spirit of a closure approximation we consider

-

E, % / 2u<T>4p? ‘ (24a)

L]
and since <T> = 2as/3 for mesons we take the correction AT

to be-.of the order

. /4pas 2 2q

AT RN Y — +u_-—(u+_Ts). (25)

H
In this ppproximation we consider in essence a particle of

mass y moving in a one-body field.
The yame estimate may be applied to the F-R equation

(23) and we then find for the Baryons that the correction to

[l
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the kinetic energy becomes

q,/ff"_____f )
AT & 2uBaS+pPj (uB+uS) (26)
where

Mp = 46 m gg-

With this correction included the masses are refit-
ted as before and we now take mS = 54% Mev, m, = 326 Mev,
m, = 1790 Mev énd A= l.l-fm—l.- The results, which still
suffer ;xom overestimating the baryons, are not markedly
different from those in the previous set. We list the .
masses together with the estimated correction - in Table III.2.1.

We now éry an improved method of estimating aT
by a perturbative calculation. To accomplish this we use
Gaussian wavefunctions to find the expectation value of the
'Hamiltonian _

2 (o) .@n
> U '

h

i1

where the sum runs over the number of guarks. This may be

-

readily done in momentum (5) space.

"

——-\
For the mesons in the center of mass' frame Bl==-p2

m

B

. -+ .
and we use the p-space wavefunction

. /2 _,,2.2
p(p) = 1Ry, TP
/T
where the constant b is determined by the condition that

<p2>/2u = 2a,/3. We then find
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TABLE III.2.1 RESULTS WITH AT BASED ON EFFECTIVE ONE BODY

¥,4(3095)
¥y (3522)
¥, (3684)
414(3772)
¥4, (4028)
¥, 4(4160)
¥y (4414)

D*(2010)
¢ (1019)
K*(892)
p(770) -

aF = o~

D{1867)
K{492)

m(138)

3AT is calculated using equations (25) and (26).

CALCULATION®
MESONS
MASS AT
3096 -5
3524 -52?‘{
3671 -5
3790 -52
3988 -52
4058 -52
4207 -52
2010 -111
1002 -112
894i =129
782 -143
1939 -111
659 =129
391 -143

N{939)
N*(1470)
A(l232)

{(1672)

A (1116)

L(1l92)
L*(1385)
Z(1318)

3*(1533)

Ac( 286)

MASS
1006
1470
1299

1629

1157
1235
1411
1319

1495

2328

BARYONS

AT
-257

-257

-~257

-210

=256
-256
~256
-264

-264

=221



.
2 2 % 1 2 2
<{p +mi) >=£ Jl(b mi) (28)
with b2 = 3
Bua
s
and o
J, (x) = 4 dy yz(y2+x)%é-y2 )
1 /T
0 \
= L x ™% (x/2) (29)
YT ,

where Kl(x/2) is the modified bessel function. The kinetic

energy correction for mesons in this approximation then becomes

2 , A
AT & E [<(p +ml) >-m;] -2a_/3 . (30)

i=l

, (pue to fhe judicious choice of Gaussian wavefunction,
the three body system may be treated in a similar fashion. We
have shown in the preceding chapter that the three body har-
monic oscillator may be reduced to two uncoupled oscillators
(equations (10) and (11)). Since the only asymmetry ip in-

teraction (18) .arises as a result of mass differences we take
T
e=0 in equations (ll) and the solutions in E—space, after

~,

removing center 6£’mass motion, may be written

' ' (x+
3/2 2 2 . 2
23 -%a” [2p +——J%r +2p. *p.]
L WPy = LY o 17Tz {P3TeRi "B

T

vhere we have used Py = Ep//f + Eu//g, By = —Ep//f + Eu/fg,.

Py = -ZEH/JE and k = (1\4/3m‘);i is a mass symmetry constant.

s

A
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As was done above for the mesons, we fix the para-

meter a by insisting that

<pz> <p2> <pz>
oy 2 v 2= a (32)
2m ~2m 2m’ s ’
from which we find
2 1 2m/m' +1
a’ = 4asm [3 + ———E———] - (33)

The baryonic kinetic energy correction is then given

by
% b
AT X 2<(pram®) >ec(plimt %y oo (agt2mint) (24)
whefe . - °
~ ;5 )
L 2
B .<(p3+m' ) = % /%— Jq [%K- (m*a)™]
| 5 ' ‘
2 23 1 /fict 6K 2
<pym’) > = 3 /TS Ty lgay W)

and ql(x) is given in equation (29). One .might note that for
equai mass éytems k=1 and <(p§+m2) > = <(p§+m2)->.

: _ In ordexr to ascertain the degree of variance in the
kinetic energy correction, we compare, in table III.Z2.Z2, the
two above thhods with a W.K.B. approximaﬁion and a pertur-

bative estifnate using coulomb wavefunctions. For this pur-

pose we use ﬁc = 1790 Mev, m_ = 543.Mev, m = 326 qu and

a, = 358 Mev as before. Although the coulomb wavefunction

is probably a more realistic wavefunction for a logarithmic .

-
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TABLE III.2.2 COMPARISON OF THE VALUES OF AT FOR MESONS

BY DIFFERENT METHODS®

,‘_/—
\
METHOD EFFECTIVE WKDB COULOMB ‘GAUSS
3-BODY WEN WFN
Eq. (25) Eq. (30)
¥ =52 -38 -41 -25
¢ . -112 -84 -83 -61
K ~129 ~}bs- -100 -78
0 -143" -109 -107 -84

b -111 -119 -115 -96

v

ajI'he values of AT are given for the paramete uoted in
the text. No details of the WKB method or i:;/ﬁé

thod

using coulomb wavefunctions is provided.

3



P

7

/

39

potential. The three body calculation is non-trivial]. Thus
we feel that using Gaussian wavefunctions tends to underes-
timate AT, and this effect may be more important for the
baryons and we therefore concede that such estimates are not
entirely satisfactéry, however the Gaussion wavefunction me-
thod may be used for both mesonic and baryonic systems and
the results are considered to serve as an ad hoc estimate.
Using equations (30) and (34) based on the CGaussion
wavefunctioﬁ, we refit the masses by assuming that the correc-
tions in the excited charmonium states are the same as that
in the ground state and thus we retain the value o= 537 Mev.
In tables III.2.3 and I1I1.2.4 where we display the resElts,

we have used mc = 1831 Mev, ms = 592 Mev, mu = 355.2 Mev

and A = 0.95 fm L.

The baryon masses are still somewhat overestimaﬁed
although the —particle,'which seems to be less relativis-
tic (in the‘sense'that AT is smaller), falls the expe
29 Mev or so above the experimeﬁtal value. We therefore feel
that within the context of this'simﬁle model the galé?lated
masses are reasonably satisfactory and although the model
ténds to underestimate the baryon binding energies the mass
splittings are well reproduced.

The mesons are fairly well reproduced by this model
with the exception of an extra S-state ét 4.21 Gev in the .
charmonium spectrum. As is suggested by Kang (Ka 79) this

may be a fault inherent in the simple logarithmic potential.



TABLES III.2.3 AND III.2.4

HADRON MASSES CALCULATED FROM THE LOGARITH=-

MIC ?OTENTIAL WITH A GAUSSION ESTIMATE FOR

AT?

l

aThe calculations are based on interaction (18) with kine~
ticenergy corrections, AT, found from Eq. (30) for mesons

and Eg. (34) for the baryons. . ' N
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TABLE 111.2.3 MESON MASSESb
MASS sT MASS AT
(MeV) (GeV)

Y, (3095) 3094 ~24 T, (9.46) 9.46 -0.01
¢lp(35221 3511 ~-24 Tlp( 2 ) 9.89 -0.01
Yo, (3684) 3669 =24 T25(10.01) 10.03 -0.01
§14(3772) 3788 -24 T a0 > ) 1015 -0.01
gl 2 ) 3886 -24 sz( 2 ) 10.25 -0.01
¥, (4028) 3985 -24 T, (10.41) 10.35 ] -0.01
¥, q(4160) 4055 -24 Toal 2 ) 10.42 -0.01
Vapl 2 ) 4129 -24 TBP( 2 ) 10.50 -0.01
Yagl 2 ) 4253 -24 Tyl 2 ) 10.57 -0.01
¥y (4414) 4205 -24
wSS(ﬂ? ). 4386 -24 PREDICTIONS

M(ub) 5.27 -0.11
¢ (1019) 1018 -58 M(sb) 5.36 -0.08
F*(n2140) 2083 -60 M(ch) 6.31 -0.03
K*(892) 891 ~-74 ) )
p (770) 767 -80
D* (2010) 1969 -90
F(v2020) 2030 -60
K (492) 656 -74
1 (138) 377 ~80 B
D(1867) 1893 -90
b

of T(bb).

Thils

The value of?ﬁ\wi 5.195 Gev was chosen to fit the ground state
alue is used in masses of the predicted "bot-

temed" 17 mesons given above and baryons given overleaf.



TABLE ITII.2.4 BARYON MASSES®

N (939)

' N*(1470)
A(llle)
£(1192)
Z(1318)

Ac(2273)

Ec(m2430)

MASS

1028
1491
1190
1269

1393

- 2306

2463

MASS

(MeV)

iGeV)-

3.61

AT n
-120 1.
~120 1.
~114 .804
-114 .804
~103  1.27
_127 .56
—127 .56

PREDICTIONS

AT n
—0.11 2.23
~.09 .64
~.07 1.73

A(1232) 1321
L*(1385) 1444
E*(1533) 1569

Q(1672) 1697

42

AT

(MeV) .

~120
~-114

-103

o

. {Ge\)

MASS
=.(2) 3.67
*

I, (2) 2.52
(2 2.76

Q. (2) 2.

Qs (2) 3.79
cc -

Q { 2} 4.81

Q. 14.27

. =0.11

-0.13
-0.09
-0.07
-0.04

-0.02

. 804
1.27

1.

2.23
0.56
0.64
1.73
RN

1.

€In this calculation we find the nucleon rms charge radius to

be 0.58 fm. The notation used for the charmed bayons is the

‘same as used- by Lichtenberg (Li 78).
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The bottomonium spectrum is found using m = 5.195 GeVv to
fit the grgund state and the three known states come reasonably
well. Using the same parameters we also calculate some as yet
uncbserved hadrons in the charmed and "bottomed" sector.

)

Thus we have been able to fit the hadron masses rea-
soﬁably well by—including an ad hoc felativistic,correction
to the gnergy, however, we feel that our appfoach may be
uhderestimating-the corrections and this may be more severe
for the more relativistic baryons. In addition we have re-

tained the simple logarithmic potential and if one is to be

consistent, relativistic corrections to the poténtial should

also be included.
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CHAPTER 1V

L CONCLUSIONS

IV.l1l Summary

In this work we calculated hadron masses by dynamical-
ly solving the Schrddinger equation where the three-body
baryonic system was treated in the Feshbach-Rubinow approxi-
mation. Initially, we investigated a suitably EEgularized
Fermi-Breit interaction of the form suggested by De Riijula et
al (be 75) and we found that, although we could fit the bar-
yon masses, the kinetic energies were very large, which led
us to belie?e that such a potential was:unsuitable in a non-
-relat%gistic model. We felt that this was in part due not
only to the fact that it was ‘Coulomb dominated but also as a
result of the inherent short-range nature of the spin poten-
tial. )

anséquently, we examined some phenomenological in-
te&adtions'that retain .the characteristic confining property
and a mass-dependent spin term. We i}lustrated that it seems
necessary for such a spin-spin potential to have long range
and furthermore,ﬂthat as the range is reduced, n¢£monly does
the kinetic energy rise but that a perturbative estimate of
the spin ggtential pqakréssivelﬁ.deteriorates. In addition,
we showed that by using such simple potentials, it was possible

not only to fit the light baryons but also the low-lying
- A
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Qector mesons. Unfortunately, the charmonium spectrum was
unable to be reproduced using the same parameters. Since the
light hadrons were found to be marginally relativistic while
charmonium is expected to be reasonably mon-relativistic |
this is perhaps not surprising.

wé therefore adopted the.approqch of determining the
potential parameters by fitting the léast relativistic ha-
drons and attémpting to include a perturbative-type estimate
of the relativistic kinetic enexgy coréections. This was
done for a simple logarithmic potential which has the remar-
kable property that the kinetic energy is a constant. We
found that although the vector mesons could be fitted well
the baryons were o%erestimated. This is dﬁe in part to the
variétional character of thé F-R approximation and more
importantly to the probable underestimated correcﬁioné. Al-
though tpis point deserves further study, the inadequacy of
the estimate is supported by th; fact th§t fdr.the ﬁ-particle,
where the correction is not too large, the mass is reésonably
weil reproduced. One may therefore expect £he less relativis-
tic baryon masses, such as the charméd omega, to be predicted
fairly well. We therefore feel that relativistic effects
play an esséntlal role if one tries to use an effective po;
tential to consistently fit the hadron masses and that;thfs

deserves further attention.
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Iv.2 Suggestions for ‘re Wwork

In.the context of the potential model, the kinetic

energy corrections need to be calculated more reliably. One

simple approach wou be to do this numerically using the un-
perturbed wavefunctions found by solving the Schrddinger .

equation. In addition the relativistic corrections to the

quld also be included.

This £§§ perhaps best be accomplished by starting with
a momentum space Q,.C.D., potential, such as that propoaed by
Le ine'and.Temozawa {Le 79i. | One could then add the
a propriate re}ativietic corrections and solwe the integral
S hradinget equatipn in momentum space. Thie offers the ad-
antage that kinetic corrections may be readily found u51ng
the wavefunctions so obtalned

It is interesting that one may use a potential approach
in a non-relativistic medel to determine tte'masses'of some)
hadrons, bht‘gt would be more satisfying to be able to consis-
tently calculate the masses of both the baryons and the mesons.
This work is a step in, that direction but it is felt that the

. .

subject merits further investigation.

r
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APPENDIX A L,

APPENDIX A.l1 QUARK COMPOSITION OF HADRONS
' % )
No details of the model are given here but an ex-

callent review of the. quark model is given by Lipkin (Li 73).

We list below.the quark compositions, but in this work we ~
* ! 1] '

ignore electromagnetic splittings and thus for example we

consider the 'n and p to -be dégenerateu

- (

BARYONS
aP = 1/2* P =ant
PARTICIE COMPOSITION PARTICLE COMPOSITION
++ :
P uud A uuu
n udd at uud
Ao uds . Ao udd i
+ ] - i )
z uus A udd
o : * &
) uds . b uus
z” ' . dds £*° uds "
=0 uss ’ o dds
- ’ dss =#C uss
5*; dss
o,

2 ‘ 5SS

For the JP_= 1" mesons we use the following compositions;

'p = und, XK' - uS and ¢ = s3 wQE%irffr the JP = 07 mesons

we take T = uu and K = us.

47
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APPENDIX A.2 HADRONIC WAVEFUNCTIONS -

The wavefunction wsf needs td be symmetric. Thus gb

the octet baryons (Jp = l/2+) we follow Schiff (Sc 64) and

consider:

LY

! 1 : /2 .
X, = — o, — (a,B 4B a.) - /= B a,a (symmetric)
. 1 /3 1 ) 273 7273 v 3 717273
_ 1 ] , . .
X, = Qg = (a183 82a3) (antisymmetric)

where the indices refer to quarks, o tospinup and 8 to
spin d3wn. For the flavour part we consider nqy and Ny
defined as above with a +u and B+ d. The s quark is trea-

. . ted as distinguishable from u and d quarks because of the

large mass difference. Thus we use:

boe(®) = A (i) ¢
) sg P} T = xynyraon,
b (2% = xlsl_fg (uzd$+d2u3)_ ’
Vse(A) = X585, f; (uyd3-djus)
. Vge(EY) = xpuys,s, | - ~

For the decouplet (Jp = 3/2+) baryons the spin part may be

taken as qla2a3.

We need <ai-oj> for the potentials considered, these

may be obtained using the given wavefunctions. The results

are given below where we abbreviate wa by its particle.

s

-
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<plgi.9j |p> = -1
<z0fg -0, (2% = <£%lg,r0,|2%> = -2
<i®lo,0411%> = 1

Noyrolh> = <tlgy:

93jA> =0
<dloymasln> = -3
<2050, |8 = <E0 g r0,|E0> < -2
Lloynl a1

For the decuplet baryons-

~

<g.*o.> = 1.
%i

Note that for simplicity the nucleon, for example,

is treated as being symmetrit¢ between any two pairs.
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APPENDIX A.3 REGULARIZING THE FERMI-BREIT

POTENTIAL

The potential v(r) may be found by taking the Fou-

rier transform of v(qz) (Be 71) where for example the §(r)

-

derives from v(q2) = 1. To regularize.this we replace this
2 28 a -1
by a form factor fig') = 5 7 T 3 2 3 ¢ where r0 = A
(q7+A7) (g~+A") B

A compton wavelength of the quark. This form was chosen be-
cause it leads to comparatively simple modifications in the
momentum dependent potential. The §-function is then re-

placed by

£ (r,h) = L | age™TE r(g?
- (2m) -
_ ~r/r
=-2£\—- (i—é—)e Ar:-.._l—_. ('El'-—_...l_.)e 0
T 'r 4 27rrO r 4r0
The B-dependent pot$nti4} now takes the form
(p; +q) (p,+q) 2 —
v = 2 dg {p,'p, + ————=d =y Elg) 39°F
p 3 2 i =3 2 2
(2m)~ )~ T ' q q '
' (p-'f)(p.-r)
- L . ~i ~3
=3 {p;*py flrr,) + 2 g(rr,))
where
‘ -r/r r/r
f(rro) = % (l-e 0) + gk e 0
0
1 ~-xr/xr 1 r/ry - ‘7
g(rr,) = & (l-e 0)_- e o
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APPENDIX B.l FESHBACH-RUBINOW METHOD

This method is useful for S-state three body

systems for which, in the center of mass coordinates,

the wavefunction, w(rl,rz,rB), igs a function only of
three variables, w(rl,rz,r3). We treat the casg where at
least two masses and force bonds are equal. These bonds
T1r T13 = D2
The idea, as discussed in the text, is to

are given the indices 1 and 2 and thus r,g =
and 175 = I3
assume that the wavefunction is a functlon of the smngle
variable R = (rl+r2+nr3)/2, where n is an asymmetry variational
parameter. The three body Schrédinger equation then reduces

) [ .

to an effective one body Schrédinger equation for ¢(R)

which may be obtained in the following way.

The kinetic energy operator takes the form T =

T.+T7.+T., with

1772773
<Ty> = <Ty> = 12 [n? ¥ 1)+ ntl AR Rs(dgéR) 2
4m
1 0
and -
@r,> = 1% [26 + ngl |. GR R (E2R),2

o
g

51



where
c - 4(n% + 5n .+ 8)
15(n + 1)°
8(n + 5)
L= —=
15(n + 1)

Thus we have' ©
> = 1P J dR R° (—-—---—‘:1“1’(13‘));2
0

dR
4meff
with
, 2
L apgpaEl Ly 2,1
Seff _ .3 3
in which we use m = = m. \

(e may thus' find the ratio

3 2m 2n2 + 10n + 8

T3> m3 4 5034 110 4 150 + 8

’ v
’)To find the effective potential, in general one

considers the transformation

R = trl+;2+nr3)/2




53

and hence'( Fe 55, Bh 67 )

3 ® (® (rtr, '
} , . Jo {0 F drlclr.:aci.r.3 RTEE
. Irl-rzl
- R 2R 2R 2R
n+1 ° n+l n+1
= 2 o dRrR { 0 4R, dR,  + 4R, dR, i

i .'ZR—ZR2 R 2R—2R2 .

n+l n—1

R2R3 '(.ZR—RZ-nR3) 1

AT W e e T 1Y s

! : which gives

=]

<V(rl,r2,r3)> = [ dR R5

n Ll

2
V(R 0°(R)

and thus - N
<H-E> = [ dR R> F
0 -
. ,2 2
where  F = i°_ ¢ (R) + V_. (RIGZ(R)
Mars

From the variation 6<H~E> = 0 we obtain the Euler-lagrange

equation

-

d 9 5 59 o5, _
~arlzgr (RF)] + RGR(R°F) = 0

/M
C
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which is an effective one body Schrédinger equation that may

5/2

be readily solved on a computer foriu(R) = R ¢ (R) . When

momentum-dependent forces are present F takes the form

2
F=go— 02 (R) + vétR)¢ﬁ2(R) + V16 (R 6% (R)

4meff

The effective potential for ™ type potentials is

given below for n > -2. =
[~ 5 2
<r‘i> = <rg> = A_(n,n) drR R> ¢“(R) R"
Jo.
n i 5 2(r) R
<ry>, 7 A, (nmn) dr R” ¢
40 '
’ = n . .
where V_..(R) = [2A (n,n) + A (n,n)] R, with
c .
_ 32 T(n+2) 2 (nt+3
] Ax$n,n) = = {{n+2) [”+(_n+l) ]+

= e

(n°-1) 2T (n+6)

8n 2 .n+2
[ (22 11)
(n®-1y N+l

t

T {n+3) ( 2 )n+5

-2
[3n"+3(n+5)n+(n+4) {(n+6) ]
W inte) L

and Az(n;ﬂ) =

(n+6) (n+7)
3(n+3) (n+4) (n+5) "

For n = l}AAx(n,l) Az(n,l) = , while for

r1

n=20, AR(O'n) Az(O,n)
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The above expressions may be used to calculate the

rms radius. For example
L}

2 o
rms charge radius = [ Lqy <x;> ]l/2

Zqi

»where qiand x; are the charge and distance from the center

of mass of the i th guark and

2. _ . M-m 42 2 2
x3> = l . 3] (<rl>—<r3>/4)
<xi> = <x§> = [T}]z <ri> +<r§>(l—[T§]2)
M M



APPENDIX B.2 FERMI-BREIT F-R POTENTIAL

Using the methods outlined in Appendix B.l it is
found that for the Fermi-Breit interaction (5) the F-R

effective potentials are §iven by

L)

Veff(R) = Vcoul(R) + Vspin * vconf(R

)

where
a

S5
= 22,0, (10 IR

Wit

Vconf(R)

!

1}

) 1
Veoul (R = - 3 a5[2Ax(~l,n)+Az(-l,n)]§

ﬁ 2 4<22-g3>
c

I
Wit
2
—

(R)

Vspin~ )Wl(R)

2 2 3m.m
m1 m4 173

2n(n2+3)r0

[ + DR,
L) 2R . (L) (=17 (-1 @
2R

T Telr, o <n+1)2r0 \
+ e [ - } )
2 3
(n-1) (n-1)

1 ~r/xg

W, (R) = 4 Gy (Brg)te

1

- 2R
(n+l) r .
= -1 (2r- AN P {n-1) 2R
WB(R) = 4R4 {2Rr 2nr0+e . [2nr0 + i)

4R? 8r>

- + 1}
(n+l)2r0 (n+l)4r3




- A
L rg Ww-ﬁ""“:‘“"-"" gl ’

57

The momentum dependent part, v_, takes the form

-5.1 -2
v_.{R) = R "{— X + = Y}
P m M3
where
4
4nR 2 1 2 .2 3 .
X = ———y (3n“+9n+8) -3 {4R" (3n -2)11-4R(3n —4n-R/r0)I2
9{(1+n)

+ [(1-n*) (4-3n%) =anR/r 11~ (1-n?) 1,/ }

3284

- [-48n3+166n2+6Tn+15] - ___i__,§ {40R2(3-2n)Il
45(n+1) 15(n+1)

+40R[nR/r0—4n-3]Iz+2[(n—l)(4n2+16n-15)-20nR/r0jI3

4
2
+2n (n+4) (L-n)T,/r } ~ —20B - 1104 n(2)
(15(1-n") n
+ 07 (150541710 344n3 18960 241610 +61)
12(n+1)

+ 4RJ_2+2(5+2R/r0)J_1+5[(nz--l)/R-Z/raJJ6
+ 5[(1‘n2)R/ro—ll~9n2]Jl/R2+5[15n2+l3+(3n2+l)R/rO]Jz/R3

- [19+35n2+5(3n2+l)R/rU]J3/R4+(5n2+1)J4/(R5r0)}

where the notation " 4
T r2R/n+1
- /N e
n Y e ) dy
J
r2 +1 .
2R/n W Y/T,
In = y e dy
]
R
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For the symmetric case (n=1) these expressions simplify

to the following

- 2 X A
T a ) -R/T . T
1 1 0 0 1
Vemin (R} = S (342<0,40,> [-—+e ==
T 511 _ .
12Rr0
3 2 3
V_(R) = 3] 3 + 3 + e ( > - —3 5 )
P R R R R R
o
~
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APPENDIX B.3 LOGARITHMIC F-~R POTENTIAL

To find the effective logarithmic F-R potential one may use

the results of Appendix B.l. Consider

I(n) = J-(dr)rlrzra(ﬂri)f = C(n) { dr R’ (AR)n¢2(R)

-

Thus

dI(n) _ \

T | _a J (dr)x)r,xyan(fr,) '

n=0 -
=‘§§£n) J dR R5¢2(R)+C(0) ] dR RSEH(KR)¢2(R).
=0
5 a 0 ’

Phus

Voes(R) = (23 _(0,n)+A_(0,n)&nAR

q _
| t I {2Ax(n.n)+Az(n.n)} o .

When this is evaluated the expression for vefk(r) takes the

form ‘
) L}
Voge (R) = [652nAR + G(m)] /
where . .
G = —2— (amn’+sn+s + 2§D un 2y )
15 (n+1) - (n-1)7 =
- 2= 1201n°+145n+1408] + —2— [n(n+1)3+8])

: (n-1)
L) ' .
for the symmetric case -

L4

G(1) ==-199/600.'




ENDIX C.1 VIRTAL THEOREM FOR LOGARITHMIC POTENTIAL

This| may be readily demonstrated uéing scaling. Con-

—
]

sidér 1
H|x> = E|x> .
s '

" Then ' let
f

'E(B) = <pr|Hlr)[Br> . (1)

i Al \

Now, since |r> is an eigenvector of H, then the variation

- . . : *

Normal_i'zation of the wavefunction demon-

»

holds at g=1.

strates: L. . , : N
1 \;

l ar|y(8r) |2

<Br|Br>

l P .

_ B3m <£|£>_ '.. .
‘ .

=M=, . .

where n is the numbq.r‘ of degries' of freedom.-

" Now (1) may be written
E(8) = <c|H(x/B) |r> .

Since the kinetic energy .operator ~ l/_r2 and

1




= - Rl r..
v o= as I «<F }E‘J Zn{A 13)

i»y T4 7
Then g\
3E(B) _ r|2pT 4+« L <F.-F.>
38 - LI28T +ag 1o 3%
Thus
<T> = - —, - 1L <F.+P.> .
2 >3 ~1 -

™|
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