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ABSTRACT

Smart antennas have emerged as one of the key technologies in wireless com-
munications. This thesis focuses on developing algorithms and structures that can
be applied to one of the most important types of smart antennas — the multibeam
smart antenna - in order to improve the quality and capacity of both existing and
future wireless networks. A large database, consisting of vector channel measure-
ment data using an 8-element circular antenna array is analyzed to investigate the
underlying characteristics of the multibeam smart antenna in practical propagation
environments. Extensive vector channel simulations are also conducted, including the
innovative work on the simulation of smart antennas in Frequency Division Duplex-
ing(FDD) systems. Based on the data analysis and simulation results, two multi-
beam smart antenna algorithms, one for reception and one for transmission, are pro-
posed. Significant performance and capacity improvements can be achieved using
these two algorithms. The proposed multibeam smart antenna reception algorithm
for DS-CDMA system is expected to have important application in both existing and
the third generation CDMA systems, while the proposed multibeam smart antenna
transmission algorithm can be used in FDD wireless networks to solve the downlink
problem.
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Chapter 1

Introduction

The use of radiated electromagnetic waves enables us to communicate with other
people or vehicles that move around on land, on the sea, in the air, or in outer space.
Early wireless devices, such as car phones, were bulky, pricey, and rarely worked
beyond their limited geographic coverage areas. Over the years, wireless technology
has improved by leaps and bounds, making it possible for today’s wireless devices
to be remarkably convenient, economical, and popular. In recent years, the global
wireless business has seen an annual increase of 20 to 30%. In 1995, there were about
82 million wireless subscribers worldwide. At the end of 1997, there were 340 million —
a four-fold increase. According to some projections there will be up to approximately
1.45 billion wireless subscribers by the year 2010, extending to nearly a fifth of the
world’s population [1].

With the rapid development of wireless communications, techniques for en-
hancing the performance of the present systems are ever more hotly pursued. Today’s
wireless system designers are faced with a number of challenges, such as the compli-
cated time-varying communications channel, limited spectrum, limited capabilities
of batteries, etc. With the recent introduction of Personal Communications Service
(PCS) systems which aim at providing communications anywhere anytime, service
quality, coverage and data rates far exceeding those of the current wireless infrastruc-
ture are required.

It is expected that many technologies, which include advanced multiple access
methods and various sophisticated signal processing techniques, will be used to meet
such diverse requirements. Current wireless modems mainly use temporal signal
processing techniques such as digital modulation and demodulation, channel/source
coding and decoding, equalization and diversity combining, etc. However, one main
drawback of such temporal processing methods is that they do not effectively address
the co-channel interference problem, which places a major limitation on the quality
and capacity of wireless networks. Co-channel interference signals usually arise from
different geographical locations: therefore one way to reduce co-channel interference
is to use spatial processing. By adding another dimension, namely, space, to signal

1



processing, one can dramatically improve the quality and capacity of current wireless
communications systems.

As was pointed out in [2], time domain processing techniques have virtually
been squeezed down to their last one-tenth of a decibel in terms of performance
improvement. Spatial processing is truly the last frontier in terms of the rewards that
can be achieved in improving the performance of wireless communications systems.

1.1 Spatial Processing — the Last Frontier

The smart antenna, or adaptive beamforming concept, is a technology that was ini-
tially developed for sonar and radar applications (3, 4, 5, 6, 7, 8]. A smart antenna
system is an antenna system that has signal-processing capability and can change
its radiation pattern automatically in response to the signal environment in order
to improve radio link performance. It provides a means to separate desired signals
from interfering signals even if they are co-located in the same frequency band. In
addition to interference suppression, signal-fading reduction and signal strength en-
hancement can also be achieved by the spatial and time processing capability of the
smart antenna.

swo====<> (oterference
L Portable radio
[ ] Basc station

Figure 1.1: First tier of interference in a cellular system with cluster size of 7



Figure 1.2: Co-channel interference in a CDMA system

In a cellular scenario, co-channel interference usually arrives with a larger
angle spread than the desired signal. Figure. 1.1 shows the first tier of co-channel
interference in a cellular system that has a cluster size of 7. CDMA systems are
different from the situation illustrated in Figure. 1.1. In CDMA systems, many users
share the same wideband channel within the same cell by using different spreading
codes. Since they use the same channel at the same time and are randomly located
within the same cell, the angle spread of the interference that one user experiences
is larger than that for the desired signal. This is illustrated in Figure. 1.2. In most
cases, it is reasonable, as a first order approximation, to assume that the interference
is spread over 360° in azimuth.

Smart antennas can be used in cellular radio networks to improve signal
quality and to increase capacity. ! Smart antenna systems are applicable to analogue
FDMA, digital TDMA as well as CDMA systems. The use of smart antennas offers
a number of benefits [9, 10, 11, 12]:

e Reducing co-channel interference (CCI) by generating antenna pattern nulls
pointed in the direction of co-channel interference sources. 2

When considering smart antennas for wireless communications, we usually consider deploying
the smart antenna at the base station site. There are two main reasons for this deployment strategy:
cost and size constraint. The cost of using a smart antenna at the mobile side would be prohibitively
expensive; the size of a smart antenna makes it unsuitable to be used at the mobile stations in most
cases.

2CClI reduction is particularly important as it allows the frequency re-use distance (or cluster size)
to be reduced, thus improving capacity. Ultimately, it may even be possible to re-use frequencies
within a single cell. This is commonly referred to as Space Division Multiple Access (SDMA).
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Improving coverage and power efficiency by utilizing the available directional
antenna gain.

Reducing inter-symbol interference (ISI) through multipath rejection. 3

Reducing the undesirable effects of fast fading caused by multipath propagation
by way of antenna array processing.

Assisting users in location finding through the use of antenna arrays.

It is commonly agreed that there are two approaches that can be used when
applying smart antennas to wireless communications: adaptive smart antennas and
multibeam smart antennas {13, 14]. Depending on the operational environment and
factors such as cost, one type may be preferred over the other.

Adaptive smart antennas are more flexible and have the potential of offer-
ing better performance than multibeam smart antennas. However, they also face a
number of challenges:

e High computational complexity — The adaptive array signal processing tech-
niques that adaptive smart antennas use to determine the optimum weight co-
efficients are complicated, especially in vehicular communication systems where
the desired and interference signals vary rapidly due to fading.

e High tracking requirements — Small changes in spatial angle distributions of
signals often result in big changes in weight coefficients to meet the optimal-
ity requirements. If adaptive algorithms do not track the vector channel well
enough, the antenna’s performance may degrade [15].

e Downlink problem - It is difficult to find an optimal set of weights for transmit-
ting signals from the base station to the mobile station for an adaptive smart
antenna in FDD systems.

The multibeam smart antenna is easier to implement and more robust. In
recent years, there has been increased interest, both from academia and industry, in
applying multibeam smart antennas for the purpose of increasing the capacity and
quality of wireless networks [16, 17, 9, 18, 19, 10, 20, 21]. Our research on multibeam
smart antennas also shows two additional advantages over adaptive smart antennas:

1. The tracking problem associated with multibeam smart antennas is easier to
solve due to the fact that the angles-of-arrival (AOAs) of multipath signals
changes slowly with time.

2. Effective downlink transmitting algorithms can be developed for multibeam
smart antennas.

3The effective delay spread of the channel can be reduced to support higher bit rates without the
use of an equalizer.



1.2 Focus of Research

The focus of this thesis is to carry out research on multibeam smart antenna algo-
rithms and structures which can be used in micro/pico-cells for the current (2G) and
next generation (3G) wireless systems. In particular, the following goals are to be
achieved:

e To develop multibeam smart antenna algorithms that are suitable for the down-
link transmission in Frequency Division Duplexing (FDD) systems.

e To develop multibeam smart antenna algorithms for improving the future third
generation (3G) wireless systems, particularly, multibeam smart antenna algo-
rithms which can greatly improve the performance of the proposed wideband
CDMA systems.

e To extend our understanding of vector multipath channels in micro/pico-cell en-
vironments by analyzing the results from vector channel sounding and computer
simulations.

1.3 Thesis Overview

Following the introduction in Chapter 1, Chapter 2 is devoted to the study of the
wireless channel with the emphasis on vector channel characterization. Chapter 3
presents wireless standards and their impact on the structures and algorithms of the
smart antenna. Chapter 4 describes multibeam smart antenna structures and diver-
sity combining algorithms. Chapters 5 and 6 present the results of the research on
multibeam smart antenna algorithms using both practical data and computer simula-
tion. In Chapter 5, an effective downlink transmission algorithm is developed and its
performance improvements are evaluated and analyzed. In chapter 6, a multibeam
smart antenna multiuser detection (MSAMD) algorithm is developed and analyzed.
The thesis concludes with a summary of the findings of this thesis in Chapter 7.

1.4 Contributions

The contributions made by this thesis include:

1. Developed an effective downlink multibeam smart antenna algorithm for FDD
systems. Provided both analysis and simulation results of the performance
improvements.

2. Conducted innovative research on using vector channel models to simulate Fre-
quency Division Duplexing(FDD) smart antenna systems. Successfully applied
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the Geometrically Based Single Bounce (GBSB) model to the simulation of
multibeam smart antenna downlink transmission in FDD systems.

. Proposed the use of multibeam smart antennas to reduce the computational
complexity of current multiuser detection scheme[22, 23].

. Proposed the partial decorrelation detection algorithm[22].

. Developed a partial decorrelator based multibeam smart antenna multiuser re-
ception algorithm which can improve both the performance and capacity of
CDMA systems(24, 22].

. Designed and implemented (with Zhaonian Li and Chen Wu) a multibeam mi-
crostrip smart antenna array which is suitable for the current 1.9 GHz PCS
wireless networks[24, 25].

. Analyzed the effects of the propagation environment and parameters such as
signal bandwidth and antenna beamwidth, on the operation of multibeam smart
antennas using practical vector channel data.

. Designed and calibrated the Talaris vector channel sounding system (with other
members of the Wireless Technology Group). Collected vector channel propa-
gation data in both indoor and outdoor environments.



Chapter 2

The Wireless Channel

The wireless channel places a fundamental limitation on the performance of wireless
communication systems. The existence of multipath, i.e., signals that travel along
different propagation paths, with different time delays, attenuations and phases, gives
rise to a highly complex, time-varying transmission channel in which the smart an-
tenna must operate. In order to decide on the optimum method for applying smart
antenna systems, a deep understanding of the wireless channel is essential. In partic-
ular, the wireless channel has to be characterized with regard to both its spatial and
temporal characteristics, i.e., vector channel characteristics.

This chapter focuses on the fundamentals of propagation in wireless commu-
nication. The wireless channel is usually studied in terms of both its large-scale effects
and small-scale effects. The large-scale effects involve the variation of the mean re-
ceived signal strength over large distances or long time intervals, whereas small-scale
effects involve the fluctuations of the received signal strength about a local mean,
where these fluctuations occur over small distances or short time intervals.

This chapter begins with Section 2.1 in which the fundamentals of radio wave
propagation, such as basic propagation mechanisms and the free space propagation
model are reviewed. Large-scale and small-scale fadings are discussed in Sections 2.2
and 2.3. The emphasis is placed on small-scale fading rather than large-scale fad-
ing. The reason is that smart antennas are usually designed to mitigate the effects
of co-channel interference and fading based on small-scale channel characteristics.
Section 2.4 describes vector channel models. Up to the present, the wireless channel
modeling has been mainly focused on temporal models. The reason is that radio
technologies employed in the past have been largely based upon time and frequency
domain processing. With the introduction of spatial processing, especially smart an-
tenna technology, vector channel models become important. Although several vector
channel models have been introduced recently [26, 27], much work remains to be done.



2.1 Fundamentals of Radio Wave Propagation and
Channel Characterization

2.1.1 Free Space Propagation Model

If the transmitting antenna is free from any obstructions, wave propagation is de-
scribed by the free space propagation model. In free space, a radio wave propagates
spherically from its source, so that the total radiated power is distributed equally over
the surface of a sphere whose radius is equal to the distance between the transmitter
and receiver. The power density at a point on the sphere with radius of R is

G.P,
g Ll
4w R?
where G, is the gain of the transmitting antenna, P, is the transmitted power.

The power intercepted by the receiver antenna is equal to the power density
multiplied by the effective area of the antenna, i.e.,

(2.1)

P,- =S8 x Acff (2.2)

where A.;s is the effective area. Antenna theory shows that this area is related to
the antenna gain in the direction of the received signal by the expression [28]

G, \?
eff = 2.3
Aest = =~ (2.3)
where G, is the gain of the receive antenna, and A is the wavelength.
Egns. (2.1),(2.2) and (2.3) combined gives the path loss L as
P, GG/ \?
=" = 2.4
L Pg 167['2R2 ( )
or in decibels for which L is usually expressed as
Lgg = 32.4 + 20log R + 20 log F' — 20log G; — 20 log G, (2.5)

Where F is the frequency expressed in M Hz and the unit of R is km.

Although radio wave propagation in wireless communications usually cannot
be considered as free space propagation because of natural and man-made obstruc-
tions, as well as the effect of the atmosphere and ionosphere, the free space model is
a useful abstraction. It is a place to start when developing a model for propagation
in practical environments.



Figure 2.1: Three basic propagation mechanisms

2.1.2 Basic Propagation Mechanisms

The mechanisms governing radio wave propagation are complex and diverse.
They are generally characterized into three basic forms, namely, reflection, diffraction,
and scattering. Figure. 2.1 illustrates these three basic mechanisms, where paths la-
beled with R denote reflection, D and S denote diffraction and scattering respectively.

Reflection occurs when a radio wave impinges upon an object which has very
large dimensions compared to the wavelength of the radio wave. Both man-made and
natural objects produce reflections; building surfaces and the ground are common
examples.

Diffraction occurs when there are objects with sharp edges obstructing the
path of a radio wave. Based on Huygen’s principle, secondary waves are formed
behind the obstruction even though there is no line-of-sight (LOS) path connecting
the transmitter and receiver. Diffraction happens most frequently in non-line-of-sight
(NLOS) situations where there is no direct path between the transmitter and the
receiver.

Scattering occurs when there are objects on the order of or smaller than the
radio wavelength in the propagation path. Scattering also occurs on large rough sur-
faces. Scattering causes radio energy to be radiated in many different directions.
Trees and lamp posts are common objects giving rise to scattering in wireless com-
munications.

These three mechanisms, alone or combined, depending upon the situation
under consideration, can be used to explain both large-scale and small-scale wire-
less channel characteristics. For example, if the mobile station has a LOS path to
the base station in addition to the direct path, reflection and scattering are usually

9



important factors; while if there is no LOS to the base station, diffraction and scat-
tering are most likely to dominate the propagation. As the mobile station moves
over a few wavelengths, the instantaneous received signal power will fluctuate rapidly
giving rise to small-scale fading. When the transmitted signal is a narrowband sig-
nal, ! the received signal can usually be modeled as a random signal with Rayleigh
distributed amplitude and uniformly distributed phase. As the mobile station moves
over larger distances, the local average of the received signal power will gradually de-
crease although the rate of change is much slower. The local average of the received
signal power is usually computed over 5 to 40 wavelengths in order to average out the
small-scale fading.
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Figure 2.2: Fading signals received at the mobile station during a measurement on
the McMaster Campus

Figure. 2.2 illustrates large-scale and small-scale signal fading taken from the
measurements carried out on the McMaster Campus. The sampling rate is 1I0M Hz,
and the result shown is obtained when the mobile radio moves at pedestrian speed.

lWhen its bandwidth is smaller than the coherent bandwidth of the channel, we view the signal
as narrowband. See Section 2.3.3 for a complete treatment of the concept of channel coherent

bandwidth.
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2.1.3 Multipath Fading

In wireless communications, a radio wave usually propagates along a number of differ-
ent paths before it reaches the receiver. In a typical scenario, there is often no direct
line-of-sight (LOS) propagation between the transmitter and the receiver. Even if
there is a LOS path, multipath still occurs due to reflection and/or scattering from
the ground and surrounding objects. Propagation is mainly by way of the combina-
tion of reflection, diffraction, and scattering, aithough one or two of them may be
dominant depending on the practical situation.

Multipath creates fading effects. Multiple versions of the transmitted signal
arrive at the receiving antenna with random amplitudes, phases, time delays, and
angles-of-arrival (AOAs). These multipath components are combined vectorially at
the receiver, thereby causing the received signal to be distorted or to fade. It has
been noted that the vectorial sum of as few as six sine waves with independently fluc-
tuating random phases will give a resultant fluctuating wave whose envelope closely
follows Rayleigh statistics and whose phase is uniformly distributed [29]. If there is
relative motion between the receiver and transmitter, each multipath wave also expe-
riences a frequency shift which is called a Doppler shift. The Doppler shift is directly
proportional to the velocity of the motion and the cosine of the angle between AOA
of the multipath and direction of the relative movement.

Three most important multipath fading effects are [30]:

1. Rapid changes in signal strength over small travel distances or time intervals.

2. Random frequency modulation due to varying Doppler shifts on different mul-
tipath signals.

3. Time dispersion (echoes) caused by multipath propagation delays.

2.1.4 Two-Stage Wireless Channel Characterization

Wireless channels are usually characterized by using a two-stage process. Although
the wireless channel is non-stationary, it usually can be assumed to be stationary over
a short time interval. Based on this, a two stage characterization is used to obtain
the statistical description of the channel [30].

At the first stage, the channel is characterized over a period of time or the
equivalent geographical area, which is small compared to the variations that occur
on the channel. The small variations, which are usually called small-scale fadings,
are due to the fact that the major features of the environment, which give rise to
the channel characteristics, the significant scatterers, for example, remain basically
unchanged over this small time interval. This, in effect, gives a time interval or
equivalent geographical area in which the mean signal strength remains essentially
constant.

11



At the second stage, the characteristics of much larger geographical areas or
time intervals are obtained by extending or extrapolating the characteristics of the
small-scale statistics in the first stage.

Over the years, there has been some confusion about which term one should
use to describe large-scale and small-scale fading. Some authors have used the terms
“slow fading” and “fast fading” to describe large-scale and small-scale fading. In this
thesis, the terms “large-scale fading” and “small-scale fading” are used. The terms
“slow fading” and “fast fading” are only used to describe the relationship between
the time rate of changes in the wireless channel and the transmitted signal. We are
mainly concerned with studying small-scale fading and its counter-measures since
this is the purview of smart antennas. In what follows, only one section is devoted
to large-scale fading, the rest of the chapter déals mainly with small-scale fading: its
types and models, in particular, those aspects related to the smart antenna.

2.2 Large-Scale Channel Characterization

Large-scale fading characterization is concerned with predicting the mean signal
strength as a function of the transmitter-receiver (T-R) separation distance (d) over
T-R separation of hundreds, thousands, or millions of meters. In this section, the
widely-employed and easy-to-use log-distance path loss model is presented first, fol-
lowed by log-normal shadowing as a supplement. More sophisticated models which
take into account site-specific information are also referenced. The log-distance path
loss model has been shown historically to be a very good first-cut for predicting the
distance dependency of the received power in a wireless system.

2.2.1 Log-Distance Path Loss Model

Path Loss is defined as the local average of the received signal power relative to that
of the transmitted signal. In a realistic wireless channel, the free-space model does
not apply. Both outdoor and indoor propagation measurements indicate that average
received signal power decreases logarithmically with distance. A general path loss
model that has been demonstrated useful over the years is to use a parameter, n, to
denote a similar power law relationship between the received power and distance as
in Eqn. (2.6). This model takes into account the decrease in energy density suffered
by the electromagnetic wave due to spreading, as well as the energy loss due to the
interaction of the electromagnetic wave with the propagation environment. The path
loss, L, in decibels can be expressed as (the gains of the transmitting and receiving
antennas may be implicitly included or excluded in these power quantities)

L(z) = L(zq) + 10nlog(z/zo) (2.6)
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where z is the distance between the transmitter and receiver, L(zo) is the path loss at
a know position of zy. ¢ is usually a close-in point in the far field of the transmitting
antenna so that the near-field effects are eliminated from the path loss prediction.
Typically, z, is 1 km for large urban mobile systems, 100m for microcell systems, and
1m for indoor systems [31]. The path loss exponent, n, depends on the propagation
environment. As we can see, n = 2 corresponds to free space propagation. Table 2.1
shows some typical values for path loss exponents in various environments [30].

Table 2.1: Typical values for path loss exponent in various environments

Environment Path Loss Exponent n
Free Space 2
Urban area cellular radio 2.7 to 3.5
Shadowed urban cellular radio 3 tob
In building line-of-sight 1.6 to 1.8
Obstructed in building 4 to 6

2.2.2 Log-Normal Shadowing

The log-distance model in Eqn. (2.6) does not account for the fact that the path
losses at different geographical locations at the same distance from a fixed trans-
mitter exhibit a natural variability due to differences in local surroundings, blockage
or terrain over which signals travel. This variability is random and found to be log-
normally distributed, i.e., it follows a Gaussian distribution (with values in dB) about
the distance-dependent mean path loss predicted in Eqn. (2.6)with a standard devi-
ation L, dB. This phenomenon is referred to as log-normal shadowing [30, 32, 33].
Eqn. (2.6) can thus be modified to include the log-normal shadowing effect as

L(z) = L(zo) + 10nlog(z/ze) + Lo (2.7)

where L, is a zero-mean Gaussian distributed random variable (in dB) with standard
deviation o (in dB). Eqn. (2.7) thus gives a complete path loss model for a random
location zq, using L(zo),n, and o. For a particular environment, these parameters can
be computed from measured data covering a wide range of distances and locations.

2.2.3 Other Models

Although extremely useful for quick estimation of link performance, Eqn. (2.7) com-
bines all propagation effects into two parameters - the path loss exponent n and
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standard deviation . Considering the various different wireless communication en-
vironments that one might encounter, it is unavoidably an oversimplification in some
circumstances. More sophisticated models have been developed to take into account
other important factors that may vary from site to site, such as terrain, urban clutter,
antenna heights, and diffraction. For outdoor propagation, some of the most widely
used models are as follows: Longley-Rice, Durkin, Okumura, Hata, COST-231, Wal-
fisch and Bertoni, Wideband PCS microcell [34, 35].

2.3 Small-Scale Channel Characterization

This section discusses the small-scale characterization of radio wave propagation. Af-
ter introducing the channel impulse response, a discussion on the various parameters
used to characterize the wireless propagation channel is embarked upon. Various
types of fading, including “fast”, “slow”, “flat”, and “frequency selective”, are de-
fined. The time dispersive nature of the wireless propagation channel, which limits
the maximum unequalized data rate attainable, will also be discussed. In addition,
parameters that are of particular importance to smart antennas, such as the joint
angle-of-arrival (AOA), time delay spread and Doppler spread profile, are also de-
scribed.

2.3.1 Impulse Response of a Multipath Channel

The wireless channel, to a large extent, can be characterized as a time-variant linear
system. Like any other linear time-variant or time-invariant system, it can be de-
scribed by its impulse response, which is defined as the response of the channel when
a unit impulse or §(t) function is applied to it.

In wireless communications, as with most other communication systems, we
are mainly concerned with passband signal transmission. A bandpass system can
be represented with an equivalent complex low-pass system [36]. If we assume the
channel to be time-invariant, its baseband impulse response, h(7), can be expressed
as [30]

h(r) = fj A% 5(r — 1) (2.8)

=1

where A; is the voltage amplitude, 6; is the phase shift, and 7; is the time delay of the
ith arriving signal. This shows that the received signal is the sum of a series of time-
delayed, phase-shifted, attenuated versions of the transmitted signal. If the channel
is time-variant, then A;6;, and 7; are also functions of time for which Eqn.(2.8) can
be re-written as
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h(t,7) = l% Ai(t)e% (1 — 1(t)) (2.9)

where a time index has been added to A;, 6;, and 7; to emphasis their dependencies
on time.

h(t) or h(t,7), can be directly measured using wideband channel sounding
techniques. A;, 6;, and 7; may be used as parameters to create small scale channel
models for system design and simulation.

2.3.2 Time Dispersion Parameters
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Figure 2.3: Impulse response measured on the McMaster campus (outdoor)

In a wireless environment, a transmitted signal usually travels along multiple
paths before it is received at either a base station or a mobile station. The differ-
ent paths introduce different time delays which result in a time-dispersive wireless
channel. The degree of time-dispersiveness is closely related to the nature of the
propagation environment under consideration. Figures. 2.3 and 2.4 show two channel
impulse responses from our measurement data, where the sampling rate is 10 MHz
for both figures. Figure. 2.3 is a typical outdoor impulse response for the McMaster
Campus, while Figure. 2.4 is a typical indoor result for measurements taken in the
Communications Research Laboratory at McMaster University. As we can see, Fig-
ure. 2.3 shows much more time-dispersiveness than Figure. 2.4. To quantify the time
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Figure 2.4: Impulse response of the Communications Research Laboratory (indoor)

dispersiveness of wireless channel, three parameters are usually used: mean ezcess
delay, rms delay spread, and mazimum ezcess delay.

To define these three parameters, the power delay profile of the channel has
to be defined first. If we denote the channel impulse response as h(7), the power
delay profile of the channel is defined as p(r) which is the spatial average of |h(t)[?
over a local area. In real practice many snapshots of |h(t)|? are averaged over a local
area to provide one multipath power delay profile. The mean excess delay, 7, is the
first moment of p(7) and is defined to be

>k D(T) Tk
= 20w (2.10)

The rms delay spread, o, is the square root of the second central moment of p(r)
and is defined to be

T =

o, = 72 — 72 (2.11)
where 5. p(re)2

-y _ 2.k P\Tk)T}

(%) = Tk p(Te) (212)

7. is measured relative to the first detectable signal arriving at the receiver with
70 = 0. The maximum excess delay (X dB), 7z, is defined to be the time delay during
which p(7) falls to X dB below the maximum of p(7).
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Figure 2.5: An example of power delay profile, rms delay spread, mean excess delay,
and maximum excess delay (X dB)

Fig.2.5 shows an example of power delay profile, rms delay spread, mean
excess delay, and maximum excess delay (X dB).

2.3.3 Coherence Bandwidth

Coherence bandwidth is a statistical measure of the range of the frequencies over
which the channel can be considered “flat”. A “flat” channel passes all spectral com-
ponents with approximately equal gain and linear phase, in other words, coherence
bandwidth is the maximum separation over which two frequency components have a
strong potential for amplitude correlation [30]. The existence of different time delays
in the various paths causes the statistical properties of two narrowband signals with
different frequencies or two frequency components of the same wideband signal to be
essentially uncorrelated if the frequency separation becomes large.

Coherence bandwidth is related to the rms delay spread. It is defined as the
bandwidth over which the frequency correlation function is above 0.9, i.e., the max-
imum separation in frequency of two components whose correlation remains greater
than 0.9. The coherent bandwidth is related to the RMS delay spread according to
the approximate formula {30}

1
~ 500,

B. (2.13)
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where B, is the coherence bandwidth. If the cross-correlation of any two spectral
components is reduced to 0.5, then B, is related to the RMS delay spread according

to the approximate formula
1

B. =
50,

(2.14)

While approximate, the essence of these two equations is that the coherence
bandwidth bears an inverse relationship to the RMS delay spread.

2.3.4 Coherence Time

Coherence time is a parameter which gives information about the time varying nature
of the wireless channel. It is a statistical measurement of the time duration over which
the channel impulse response is essentially invariant.

Relative motion between the transmitter and receiver impresses Doppler shifts
upon the frequencies of the transmitted signal, which means that the received signal
will be a frequency shifted version of the transmitted signal. The frequency shift, fq,
is given by

fa= 3cos(6) (2.15)
where
v = the magnitude of the relative velocity between the transmitter and receiver
A = wavelength of the transmitted signal
6§ = angle-of-arrival of the received signal relative to the direction of motion

In most wireless communication systems, where the relative transmitter-
receiver velocity varies with time, f; will also vary with time. The frequency of
the received signal thus will appear to vary with time. As a result, the Doppler shift
tends to introduce a FM modulation into the signal. For instance, a continuous-wave
(CW) signal of frequency f. , which is transmitted over a mobile radio channel, will
spread out over the bandwidth [— f + fe, fm + fc|, where fr, is the maximum Doppler
shift suffered by the signal. The direction of arrival of energy determines the exact
Doppler shift.

The coherence time of a wireless channel is the time over which the channel
impulse response can be considered stationary. The same signal received at different
points within a time period equal to or less than the coherent time, is likely to be
correlated in amplitude. The coherence time, T, is inversely proportional to fm, the
maximum Doppler shift suffered by the signal. If T, is defined as the time over which
the time correlation function is above 0.5 then [30]

9

= — 2.16
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2.3.5 Flat Fading

Multipath delay spread leads to fading and time dispersion. Depending on the re-
lationship between the signal bandwidth (or symbol period) and rms delay spread,
different transmitted signals will undergo two different types of fading, namely, flat
fading and frequency selective fading.

Flat fading happens when the wireless channel has a constant gain and linear
phase response over the bandwidth of the transmitted signal. Since the channel
satisfies a non-distortion transfer function [36], the received signal preserves the same
spectrum of the transmitted signal except for a scaling factor and a constant phase
shift which are caused by the channel. Due to the time-variant nature of the wireless
channel, the scaling factor and phase shift are usually time-variant too. The strength
of the received signal thus changes in time with fluctuations in channel gain.

Flat fading can also be viewed from the time domain. In a flat fading channel,
the reciprocal bandwidth of the transmitted signal is much larger than the multipath
time delay spread of the channel. Since the bandwidth of the transmitted signal is
small compared to the channel flat fading bandwidth, flat fading channels sometimes
are also referred to as narrowband channels.

Flat fading conditions can result in errors in wireless systems. The probability
of error depends on the distribution and duration of these fades as well as the data
rate. Referring back to the measurement at McMaster campus as shown in Fig. 2.2,
we can see deep fades of 20dB or 30dB are not uncommon. The most common type
of flat fading channel model is Rayleigh Channel in which the channel is assumed to
introduce a Rayleigh distributed amplitude variation on the received signal. If we
denote the amplitude as 7, the Rayleigh distribution can be described as

o2

re=%, r>0,b>0
P(r)={ beo"” :20’ > (2.17)

If there is a very strong multipath component as in the case of line-of-sight, the
distribution becomes Rician instead of Rayleigh. The Rician distribution is given by

P(r) = { %e‘ﬁz:iJo(rs/b), r>0,b>0 (2.18)

0, r<0

where s2 is the mean power of the strong component and Jy() is the modified zeroth
order Bessel function of the first kind.

2.3.6 Frequency Selective Fading

If the channel does not have constant gain and linear phase over the transmit-
ted signal bandwidth, the signal will undergo another kind of fading which is called
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frequency selective fading. The term frequency selective fading comes from the fact
that the gain of the channel is a variable for the different frequency components of
the transmitted signal.

If we look at this from the time domain perspective, the impulse responses
of such channels have multipath delay spreads which are greater than the reciprocal
of bandwidth of the transmitted signal. Intersymbol interference occurs due to fact
that the multiple versions of the transmitted signal are received and the delays are
greater than the inter-symbol period (T,). As a parallel development in the flat fading
case, the frequency selective fading channel is sometimes also referred to as wideband
channel, since the bandwidth of the transmitted signal is wider than the coherent
bandwidth of the channel.

As a summary, the conditions under which the signal undergoes flat fading or
frequency fading is given in Table. 2.2. It only occurs when B,, the signal bandwidth,
is greater or much smaller than B,.. For cases when B, is neither greater nor much
smaller than B,, the situation is not as straightforward. It depends on the type of
modulation carried by the transmitted signal. A common rule of thumb is that a
channel is frequency selective when o, > 0.17, [30].

2.4 Vector Multipath Channel Models

The propagation environment provides the signaling condition that the smart antenna
must exploit to improve system performance. To properly design, analyze, and de-
velop smart antenna systems, channel models that incorporate spatial characteristics,
i.e., vector channel models, must be used. Such channel models incorporate one more
dimension, namely space, into the modeling of the wireless channel.

The challenge and task of vector channel modeling for smart antennas is to
develop a realistic channel model that can be used to efficiently and accurately simu-
late the performance of a smart antenna system. In what follows, traditional channel
models, such as the Clarke model, which deal mainly with narrowband systems, are
first presented. These traditional models provide only information about the signal
power level distribution and Doppler shifts of the received signals. As wireless systems
move towards greater bandwidth, the traditional models are becoming inadequate.

Table 2.2: The condition under which the signal undergoes flat fading or frequency
fading (B,:signal bandwidth, B.: coherent bandwidth, 7,: symbol period, o,: rms
delay spread)

B, << B, or T,>>o0, flat fading

B,>B., or T,<o, frequency selective fading
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Recent research in vector channel modeling has been more focused on jointly mod-
eling the channel in terms of signal power level, multipath delay and angle-of-arrival
(AOA) (37, 38, 39, 40, 41, 26]. Multipath channel models can essentially be grouped
into two classes: statistical models and deterministic models. Statistical models use
statistical parameters that describe the phenomenon of multipath propagation within
a given error. They are simple to use, but relatively coarse. The deterministic models
are environment-specific. They characterize a specific multipath propagation environ-
ment and reveal more details concerning the physical propagation in that particular
environment.

2.4.1 Vector Channel Impulse Response

Figure 2.6: An M-element array

We begin vector channel modeling by first introducing the vector channel
impulse response. Suppose there are a total of K users that are communicating via
the same channel with a base station equipped with an M-element antenna array as
in Fig. 2.6. The vector channel impulse response of the M-element array to user k is
defined as

Hi(t,7) = [hie(t, 7)), hoi(tT)s - - - hagi(t, 7)]T (2.19)

where A (¢, 7) is the impulse response of the mth antenna element to user k£ and T
denotes the transpose of a matrix or vector.
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Let us assume there are Ly multipaths for user k. Associated with each path
l of user k, the signal component will experience a different path environment, which
in turn determines the amplitude A;, carrier phase shift ¢;x , time delay 7, and
angle of arrival 6; ;. In general, each of these signal parameters will be time-variant.

The channel impulse response in Section 2.3.1 can be extended to vector
channel impulse responses which will be used in vector channel modeling. As shown
in Section 2.3.1, the channel impulse response for an individual user can be represented

as
Li(t)

hi(t,T) = Y Aa(t)e/®+O8(T — mia(t)) (2.20)
=1
Eqn. (2.20) does not consider the angle-of-arrival distribution of the multipath com-
ponents which need to be included to yield the vector channel impulse response.

If the inverse of signal bandwidth is large compared to the travel time across
the array, 2 [A14,.--, AL, k|7, the complex envelope vector of the signals received by
different antenna elements from a certain path, are identical except for phase and
amplitude differences which depend on the angle-of-arrival of the path, the array
geometry and the antenna element pattern. Assume each antenna has an omni-
directional radiation pattern, the effects of the angle-of-arrival and array geometry
can be absorbed into an m-dimensional array response vector which can be expressed
as

a(d) = [a1(8),a2(6);---,am(8)]"
[1,e/2m /A f2mdm/A|T (2.21)

where d,(f) is obtained by subtracting the distance between the signal source and
the first element from that between the signal source and the mth element, and A
is the wavelength. a(f) is also referred to as steering vector in the literature. * The
vector channel impulse response can be written as

Li(t)
Hk(t, 7') = Z a(Gl'k)A,'k(t)ej""-*(‘)&(r - Tl,k(t)) (222)

=1

In Eqn.(2.22), each multipath component has its own complex amplitude,
phase, and angle-of-arrival. The distribution of these parameters is very much de-
pendent upon the type of environment. If we denote the signal bandwidth and the

2This is also commonly referred to as narrowband signal in array processing, not to be confused
with the general narrowband definition. It is generally true for the conditions under which smart
antennas are used. For example, the inverse signal bandwidth of Global System for Mobile (GSM)
is 54 seconds, whereas the travel time across an array of several meters, which is in the order of tens
of wavelength at 900M Hz or 1.9GH z, is only a few nano-seconds.

3Please refer to Section 4.1.1 for details on the array response vector.
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maximum time delay as B and T respectively, a very important special case of
Eqn. (2.22) is BTma: << 1. Under this situation, Eqn. (2.22) can be simplified as

Hk(t, 7') = Uk(t)6('r) (223)

Where Ui(t) = (Z,L"l(') a(6yx) A1 (t) exp jdix(t)). In other words, the channel for the

kth user can be explicitly characterized by a complex variable Ug(t).

2.4.2 Clarke’s Model

Y
nth incident wave
= s
=T X
v

Figure 2.7: Clarke's model

Clarke’s Model describes the statistical characteristics of the amplitude and
phase of a signal received at a mobile station. It is one of the earliest models that
incorporate angle-of-arrival information. The two key AOA assumptions are as fol-
lows: [42]

1. Only the azimuth angle is important: the elevation angle can be neglected.

2. The AOA is uniformly distributed in azimuth over [0, 27].

Although the AOA assumptions are rather simple compared to the models we will
introduce later in this chapter, Clarke’s model successfully explains the Rayleigh
fading phenomenon.

As shown in Figure. 2.7, a mobile station travels at a velocity of v in the
z-direction relative to the transmitter. The waves that are incident on the mobile are
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assumed to be comprised of N multipath signals which are distributed in the azimuth
plane. In addition to the two AOA assumptions, the amplitude and phase of each
wave are assumed to be statistically identical with phase uniformly distributed over
[0, 27]. For the nth wave arriving at the mobile station at an angle of ay, relative to
the z axis, the Doppler shift is given by

fn= %cosan (2.24)

where A is the wavelength of the incident wave.
The vertically polarized plane waves arriving at the mobile have E and H
field components as [30]

N
E. = Ey Y Cncos[2n(f. + fa)t + &n) (2.25)
n=1
Eo &,
H, = —— ) _ Cpsinagcos2n(f. + fn)t + ¢n] (2.26)
n=1
Ey X
H, = Y >~ Cncosancos2m(fe + fa)t + &n) (2.27)
n=1

where E, is the real amplitude of average local E-field, C, is a real random vari-
able representing the variation in the amplitude of the nth wave, 1 is the free space
impedance of 3770, ¢, is the random phase uniformly distributed over {0, 2x]. If the
probability density functions (PDF) of C,, a,, and ¢, are independent of n, and
N is sufficiently large, E,, H;, and H, can be approximated by random Gaussian
variables. Eqn.(2.25) can be written as

E, = T.(t)cos(2n f.t) — T,(t)sin(2m ft) (2.28)

where T.(t) and T,(t) are uncorrelated zero-mean Gaussian random processes given
by

N
T.(t) = Eo Y Cncos[27 fat + ¢n) (2.29)

n=1

and N
T,(t) = Eo D Casin[2m fut + ¢ (2.30)

n=l1

The envelope of E, is given by
|E.(¢)] = T2(t) + T2(2) (2.31)

It can be shown that |E,(t)| has a Rayleigh distribution given by Eqn. (2.17). *

4Please refer to [30] for details.
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Although it includes phase information for each of multipath signals, Clarke’s
model does not consider time delay information, so it is inherently a narrowband
model. Clarke’s model is a two-dimensional model that assumes multipath signals
only arrive in the azimuthal plane. It is obvious that in the real world, signals
would arrive with different elevation angles. However, the waves that make the major
contributions do indeed travel approximately in the horizontal plane. That is, to
a first-order approximation, the elevation angle of the waves can be assumed to be
zero. This is also evident from the fact that Clarke’s model successfully explains the
envelop and phase of an observed narrowband signal in a wireless communications
environment.

2.4.3 Geometrically Based Single Bounce (GBSB) Model

Clarke’s model assumes incident waves are uniformly distributed over [0,27] in az-
imuth. From the point of view of scatterer distribution, this is equivalent to assuming
that they are distributed in a circle, which is centered at the mobile station. It is
obvious that the real propagation environment rarely resembles this simplified model.
To improve this, the geometrically based single bounce (GBSB) model was proposed
by Liberti and Rappaport [43, 44]. It defines a spatial scatterer density function
instead of simply assuming that the scatterers are uniformly distributed. By placing
the spatial scatterers according to a predefined (simulated or extracted from propa-
gation measurements) density function, the AOA, TOA and the signal amplitude are
determined.

Another characteristic of the GBSB model is that it assumes every incident
wave is the result of a single bounce from a scatterer. Although this a simplification
of the real situation, it has been shown to be successful in many cases [43]. As is
also evident from our simulation results which are presented in Chapter 5, it captures
many characteristics in our simulation of the smart antenna in Frequency Division
Duplexing (FDD) systems even though it is too coarse in some cases. The single
bounce assumption can be a merit or shortcoming depending on the problem it deals
with.

When we do not have a predefined density function of scatterers, or very
little information is available about the distribution of scatterers, one special case of
the GBSB model which is called Geometrically Based Single Bounce Elliptical Model
(GBSBEM) is very useful. It assumes that the scatterers are uniformly distributed
within an ellipse as shown in Fig. 2.8. The base station and the mobile are the foci
of the ellipse. The semi-major axis a and semi-minor axis b are given by

a= __CT';” (2.32)
1 2 2
b= 3/*2es = D (2.33)
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Figure 2.8: The GBSBEM model

where c is the speed of light, and 7inaz is the maximum TOA to be considered.

Uniformly placing scatterers in an ellipse may be accomplished by first uni-
formly placing the scatterers in a circle and then scaling each x and y coordinates by
a and b respectively. In this case, the joint TOA and AOA density function observed
at the base station can be shown to be [43]

(D2 —13c2)(D3c+713c3—27c3DCos6;) D
f(‘T', ob) — 4mab(Dcos8y —1c)’ . v ¢ S T '<‘ Tm (234)
0 ,otherwise

where 6, is the AOA observed from the base station.

2.4.4 Ray Tracing Model

Unlike statistical models, the ray tracing model is deterministic. It requires detailed
knowledge of the physical propagation environment.

Fig. 2.9 shows a simple case of ray tracing in which the received signal is
modeled as the sum of multiple reflections of the transmitted signal. The ray trac-
ing model treats electromagnetic waves the same way as light and is thus based on
geometric theory of reflection, diffraction, and scattering. Typical ray tracing mod-
els require information such as profiles of naturally occurring objects and man-made
structures, as well as path loss and delay spread information to produce propagation
prediction.

It is felt, though, that the high computational burden and lack of detailed
database for terrain and man-made objects make ray tracing models difficult to use
except in a very few simple or well controlled cases [41, 45, 46]. Although progress

26



-

Figure 2.9: An example of ray tracing where the transmitter and receiver are enclosed
by a box

has been made in both the ray tracing and computer technology, further development
of efficient ray tracing algorithms is still needed before it can be applied to practical
environments.

2.4.5 Channel Sounding

Channel sounding refers to the use of measuring equipment (channel sounder) to ob-
tain experimental data from which one can derive a deeper and better understanding
of the wireless channel under investigation. Channel sounding is particularly impor-
tant in the study of smart antennas due to the complexity of the wireless channel.
Although a number of vector channel models have been proposed, currently there
is not a single vector channel model that is well validated to capture both AOA,
time delay, and power of the multipath components. There is still no substitute for a
well-planned-and-ezecuted channel sounding measurement.

There are basically two kinds of channel sounding measurements: narrow-
band channel soundings and wideband channel soundings (35]. Narrowband channel
sounders excites the channel with a narrowband signal (usually a CW carrier) and
measure the variations in both the amplitude and phase of the signal received in a
possibly moving receiver. In the early days, wireless communication systems were
usually narrowband. With the introduction of digital commutations and the increase
in data rate, current wireless systems have evolved more and more towards wideband.
Since we are more interested in the joint AOA, TOA and power distribution of the
received vector signal, we only address wideband soundings in this subsection. In
the rest of this thesis, we refer to wideband channel sounding implicitly when we say
“channel sounding”.
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Channel Sounding Methods

Basically there are three kinds of channel sounding methods: spaced-tone sounding,
periodic pulse sounding, and pulse compression sounding. Examples of these sounding
methods can be found in {30, 35, 47].

Spaced-tone sounding is an extension of the narrowband single-tone sound-
ing method. By measuring the channel response to sequentially transmitted tones
with a predetermined frequency spacing over the frequency band of interest, a mea-
surement of the channel frequency transfer function can be obtained. This method
suffers two drawbacks. First, stepping a synthesizer over a large bandwidth in small
steps (the accuracy of the frequency transfer function depends on the step size) is
time-consuming. Secondly, no Doppler-shift information can be obtained. Although
spaced-tone sounding is attractive in that it requires relative simple equipment, it is
usually not preferred.

When a pulse of very short duration is transmitted, the received signal is
the convolution of the sounding pulse and the channel impulse response. As can
be proven, the received signal will approximate the impulse response provided the
pulse duration is short enough. Channel sounding employing a periodic short pulse
is called periodic pulse sounding. The actual duration of pulse is determined by
the frequency band of interest. To be exact, it should be shorter than the inverse
of the frequency band. In order to observe the time varying response of individual
propagation path, the repetition rate of the pulse cannot be very long. In other
words, it has to be long enough to ensure that all multipath components have decayed
between successive pulses while short enough to capture the time-varying nature of
the channel. The major difficulty of periodic pulse sounding is the requirement of
transmitting a short pulse of high peak power. The high peak power is required to
detect the weak multipath signals that are generated by the transmitted pulse. One
way of overcoming this is to use a pulse compressing technique.

If a white noise signal n(t) is transmitted, the received signal is

y(®)= [ h(r)n(t - T)dr (2.35)
where h(t) is the channel impulse response. And
(>}
/ n(t)n* (t — 7) = Nod(7) (2.36)

The correlation of y(t) and n(t) gives

/_ : y(t)n"(t — n)dn = /_ : /_ : h(T)n(t — T)n" (t — n)drdn (2.37)
= Noh(r) (2.38)

In practice, genuine deterministic white noise is impossible to generate, one
widely used waveform is the pseudo-noise(PN) sequences which are deterministic and
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have a noise like character. The 8-element vector channel sounder which is described
in Appendix A uses this method.

2.5 Conclusions

In this chapter the wireless channel is studied in detail. The dispersiveness in time,
space, and frequency of wireless channels is presented together with the parameters
that describe these phenomenon, e.g., coherent bandwidth, coherent time, time delay
spread. We then further study vector channel models, in particular, Clarke’s model,
the GBSB model and the ray tracing model. However, none of the currently existing
models can completely satisfy all the needs for adequately simulating smart antennas
in realistic propagation environments and much research remains to be done. To
supplement the inadequacy of the current vector channel models, channel sounding
can be used to provide an understanding and characterization of the wireless channel
under investigation.
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Chapter 3

Wireless Communication
Standards and Smart Antennas

Wireless communication standards have evolved through two generations, namely,
first generation analog systems and second generation digital systems. With the
introduction of first generation analog FDMA /FM system such as Advanced Mobile
Phone Service(AMPS) and Total Access Communication System(TACS), we have
seen the widespread deployment of cellular systems. Second generation standards
with GSM, D-AMPS, and CDMA (IS-95) as its key members, started the era of
personal communications systems (PCS). Wireless systems are now moving towards
to a third generation standard. Although fundamentally, smart antenna technology
can be incorporated into any of these standards, the implementation in each instance
will inevitably be different.

There have been many standards developed for wireless communication up
to now. In this chapter, instead of going to lengthy explanation of each standard,
we will concentrate on identifying the key underlying differences in these standards
which are important to smart antenna technologies.

3.1 Cellular System Fundamentals

Early mobile radio systems used a single high power transmitter mounted on a tall
tower to achieve a large coverage area. It was impossible to re-use the same frequen-
cies throughout the large coverage area since the interference would render the system
unusable. With the increase in the number of users, new systems were needed to offer
higher capacity. But the spectrum is limited and cannot be allocated in proportion to
the increasing demand for wireless communications. It has become imperative there-
fore to build a system which achieves high capacity with a limited radio spectrum.
The cellular concept was thus introduced which used many base stations with low
power transmitters. Each base station provided coverage to only a small portion of
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the service area which is called a cell. Each base station is also allocated a portion
of the total number of channels available to the entire system. Neighboring base sta-
tions are assigned different groups of channels so that the interference between base
stations is minimized.

Figure 3.1: Cellular system and frequency reuse

Figure. 3.1 shows a cellular system in which the ideal hexagon cell shape is
used. ! In practice, the cell shape will be very irregular with the boundaries deter-
mined by the propagation environment in which it operates. Referring to Fig. 3.1,
the available channels are divided into groups and allocated to each cell. A particular
group of channels can be reused in cells that are separated by distances large enough
that they do not cause interference to each other. Suppose S, the total of channels
available, is divided into N groups with each of the cell allocated & channels, we have
S = kN. The neighboring N cells which use completely S disjoint channels are called
a cluster. Since frequency reuse occurs every NN cells, the reuse factor of a cellular
system is defined as 1/N. Typical values for N are 1,'4,7, and 12. It can be shown
that only a number of values of N are possible with the hexagonal structure which
can be expressed as [48]

N =4 +ij+j° (3.1)

where i and j are non-negative integers. If we move i cells along any chain of hexagons

l1Smart antennas are viewed as a space (or space-time) processing technology. Interestingly
enough, the cellular concept can also be viewed as a spatial processing technology in the sense that
it allows the same frequency reuse at spatially separated regions [2].
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and then turn 60° counter-clockwise and move j cells, we will arrive at the nearest
co-channel neighbors of the cell from which we started.

When the size of each cell is approximately the same, it can be shown that
the co-channel interference is independent of the transmitted power and is a function
of the radius of the cell (R) and the distance (D) between the co-channel cells[48]. A
parameter Q can be defined which is called the co-channel reuse ratio to describe the
capacity of a cellular system

Q= % — V3N (3.2)
Q describes the ratio of separation of co-channels relative to the cell size. A smaller
value of Q also indicates larger capacity since the cluster size N is smaller.

3.2 FDD and TDD

It is usually desirable to allow the user and the base station to communicate with
each other simultaneously. The function whereby the user is able to talk and listen
at the same time is called duplezing. The user talks and listens to the base station
through two links, one is called the uplink or reverse link, which links the user to
the base station, the other is called the downlink or forward link, and links the base
station to the user. There are basically two ways of providing duplexing: frequency
division duplexing (FDD) and time division duplexing (TDD). In an FDD system
the two links use different carrier frequencies, while in a TDD system the two links
operate on different time slots at the same frequency. In TDD systems the time
interval between the two time slots is small, and the two links appear as simultaneous
to the user, as in the case of FDD. Figure. 3.2 illustrate these two methods.

FDD

| Reverse channel I Forward channci

Time

Figure 3.2: FDD and TDD
There are several trade-offs between FDD and TDD methods. In FDD the
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frequencies for the two link must be carefully coordinated with out-of-band users oc-
cupying the spectrum between the two frequencies. Also there is a need of a frequency
separation wide enough for the use of inexpensive frequency duplexers. TDD requires
more coordination in time and synchronization, which makes it unsuitable for use in
cells of large size due to the round trip time delay inherent in TDD systems.

The implementation of smart antennas in the uplink for the two duplexing
methods are similar, but fundamental difference occurs in the downlink. The filtering
coefficients (or weights) of smart antennas for FDD are different if the frequency
separation is wider than the channel coherent bandwidth. Although the wireless
channel is time-variant, the downlink filtering weights for TDD are expected to be very
much correlated with the uplink weights provided that the time interval of duplexing
is small enough compared to the channel coherence time. FDD systems usually
use duplexing frequency separation of tens of MHZ which is much wider than the
coherence bandwidth of most wireless channels. This makes it more difficult for FDD
systems to implement the smart antenna on the downlink than TDD systems. In
Chapter 5, we will address this problem and come up with an effective algorithm to
deal with it.

3.3 Multiple Access Methods

Multiple Access refers to the scheme that allows many mobile users to simul-
taneously share a finite radio spectrum resource without interfering with one another.
Frequency division multiple access (FDMA), time division multiple access (TDMA),
and code division multiple access (CDMA) are the three major multiple access meth-
ods used in wireless communication systems. Figure. 3.3 illustrates the differences
among these three multiple access methods by plotting frequency, time, and code as
the three axes.

3.3.1 Frequency Division Multiple Access (FDMA)

FDMA is the multiple access method that was adopted for the first generation wireless
system, e.g. AMPS. Compared with TDMA and CDMA, it is relatively simple to im-
plement and bandwidth inefficient. With the introduction of digital wireless systems,
FDMA is gradually being replaced by other forms of multiple access techniques.

FDMA divides the available frequency block into frequency bands as shown
in Figure. 3.3. Usually a pair of frequency bands, one for receive and the other for
transmit, are used together for a single user. This pair of frequency bands is usually
called a channel. The channels are assigned to users who request service. Each user
communicates with the base station via a different channel and thus avoids inter-
ference. Once a voice channel is assigned, the base station and the mobile transmit
simultaneously and continuously.
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Figure 3.3: Three common multiple access methods

Since each channel carries only one user, FDMA is usually implemented as
a narrowband system. FDMA can be used in either analog or digital systems. For
example, AMPS is a 30K Hz analog modulation system. Equalization is usually not
needed in FDMA systems since the symbol time is much larger than the average delay
spread due to its narrow bandwidth.

Although FDMA is relatively simple to implement, it suffers a number of
serious drawbacks. In addition to its inefficient use of bandwidth (compared to other
methods), it is also expensive to implement. Since only one user can be allocated for
each carrier, and costly bandpass filters are needed to eliminate spurious radiations
at the base station, the radio equipment used by one user at the base station cannot
be shared with other users as in TDMA and CDMA.

3.3.2 Time Division Multiple Access (TDMA)

In TDMA systems, several users time-share a common carrier frequency to commu-
nicate with the base station. Each carrier frequency, i.e., channel, is divided into
frames and time slots as shown in figure. 3.4. A channel is time-divided into frames,
with preamble, an information message and trailing bits in each frame. One frame
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consists of IV slots. In each slot, there are trail bits, synchronization bits, and guard
bits in addition to the information data bits. The guard bits in the frame and slot
structures are used for receiver synchronization.

Each user is allocated one or more timeslots within a frame in both the
downlink and uplink. The uplink and downlink can be on the same frequency in
which case TDD is used, or different frequencies in which FDD is used. In general,
TDMA /FDD systems intentionally induce several time slots of delay between the two
links so that duplexers are not required in the subscriber unit.

Frame
Preamble message information Trail Bits
Time slot 1 | Time slot 2 Time slot N

/\

Trail bits | Synchronization bits (Information bits [Guard bits

Figure 3.4: A general TDMA structure

Since N users can share the same carrier, one common radio equipment can
be shared among them at the base station, thereby reducing the cost. The data rate
for each user is also very easily changed by allocating multiple time slots. Multiple
users can share the same channel, thereby increasing the symbol rate. TDMA usually
requires some form of equalization in order to combat the intersymbol interference
problem. The degree of equalization needed depends on the symbol rate and channel
coherent bandwidth as discussed in Section 2.3.3.

Data transmission for each user is not continuous. Since each user has a 1/N
duty cycle with a total of N users in one channel, TDMA signals have a periodically
pulsating power envelope. This presents a challenge to designers of portable RF units.
Frequency and time slot assignments also entails extra complexity in TDMA systems.

3.3.3 Code Division Multiple Access (CDMA)

CDMA is based on spread spectrum communications, which were originally devel-
oped for military applications. Spread spectrum communication uses transmission
bandwidth that is much wider than the bandwidth of the original information signal.
There are a number of way of achieving this; frequency hopping (FH) and direct se-
quence (DS) are the two most widely used methods. In FH, the information signal is

35



broken into bursts and each burst is transmitted at a different frequency. The current
CDMA system, i.e., IS-95 standard family, however, is based on DS spread spectrum.

In DS-CDMA systems, the information signal is multiplied by a code sequence
which is called the spreading sequence or signature waveform. The code sequence has
a chip rate much higher than the information bit rate. The resultant signal thus
has approximately the bandwidth of the spreading sequence, which is usually much
wider than the original information signal. If each user uses a code sequence that is
orthogonal to those of other users, it is possible for them to share the same carrier
frequency without causing serious interference to each another. Upon detection of
each user signal, the received signal is correlated with the code sequence for that
particular user in order to decode the original message signal. All other user signals
appear as noise due to the orthogonality of the code sequences.

Perfect orthogonality among all the users cannot be realized in the real world,
thus the power of each user has to be strictly controlled to allow multiple users to use
the same carrier frequency at the same time in CDMA systems. Otherwise, strong
signals will yield higher noise power after the decorrelation for weak signals and make
them difficult to detect.

CDMA systems have a number of unique features. The reuse factor of CDMA
is one, i.e., all neighboring cells are co-channel cells. The capacity of a CDMA system
depends on the noise level that can be tolerated in the system, rather than a hard
number such as in the case of TDMA or FDMA. Since data rates are usually high, and
many multipath components have time delays greater than the chip rate, a RAKE
receiver can be used to improve reception by collecting multiple time delayed versions
of the transmitted signal [49].

3.3.4 Comparison of FDMA, TDMA, and CDMA

Although it is generally agreed that TDMA and CDMA are more efficient and less
costly to implement than FDMA, it is very hard to make an objective comparison
between TDMA and CDMA. This is also one of the reasons that some of the current
second generation wireless systems use TDMA while others use CDMA. TDMA is
a better understood technology than CDMA, however, with more widespread use
of CDMA technology, this situation is changing. It seems, for the present, CDMA
is gradually gaining the upper hand. However, the battle of TDMA and CDMA
is expected to last well into third generation wireless systems. Table 3.1 gives a
comparisons of these three multiple access methods.

3.4 Mobility: High Tier and Low Tier Systems

Wireless communication standards tend to be targeted at two different markets. On
the one hand we have lower tier systems with low mobility, low transmission power
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Item FDMA TDMA CDMA
Spectrum efficiency low high high

Implementation cost high low low

Modulation scheme analog/digital | digital digital

Equalization not needed needed | not needed
Power control requirement low low high
Varying bit rates not possible | possible | possible
Pulsating power envelop no yes no

Table 3.1: A comparison of FDMA, TDMA, and CDMA

(and thus smaller cell sizes), and on the other hand we have high tier systems, which
allow high mobility, higher transmission powers and larger cell sizes. Recently, there
has been an increasing level of interest in fixed wireless access (FWA) or wireless local
loop (WLL) systems. This is an extreme case of low tier system that has almost zero
mobility. Systems such as personal access communications systems (PACS), digital
European cordless telephone (DECT) and personal handyphone systems (PHS) are
examples of the low tier systems, while GSM, IS-54/1S-136, and IS-95 are examples
of the high tier system. Interestingly enough, most low tier standards seem to favour
TDD which may be attributed to the suitability of the use of TDD in cells with
smaller sizes.

Low mobility reduces Doppler Spread which translates into low channel vari-
ability, i.e., longer channel coherence time. This makes the channel characteristics
easier to estimate and track which in turn requires less computational power for
processing spatial-domain algorithms and adapting the weights of a smart antenna.
Smaller cell sizes also result in lower delay spreads which reduces the need for time
processing. The fact that most low tier standards are tied with TDD also means that
downlink problem can be more easily solved in these systems. However, since low tier
standards are intended to be used as low cost systems, the challenge of incorporating
smart antennas with these systems will consist of finding a solution that improves the
systems performance at low cost. The cost issue is less sensitive in high tier systems,
however; it also presents a more challenging problem because of the higher channel
variability associated with higher mobility. The fact that most high tier standards use
FDD presents another major challenge for the use of smart antennas on the downlink.
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3.5 Third Generation Wireless Standards: IMT-
2000

IMT-2000 stands for International Mobile Telecommunications - 2000. It is an ini-
tiative of the International Telecommunications Union (ITU) directed at achieving a
worldwide standard for third generation wireless systems. Its goal is to provide wire-
less access to the global telecommunication infrastructure through both satellite and
terrestrial systems, serving fixed and mobile users in public and private networks with
integrated voice and data service. It is being developed on the basis of the “family
of systems” concept, defined as a federation of systems providing IMT-2000 service
capabilities to users of all family members in a global roaming offering.

When third generation systems are deployed, users will not only be able to
roam among countries which currently use different technologies but will also be ca-
pable of seamlessly moving between multiple networks - fixed and mobile, cordless
and cellular. As a result, product life cycle for core network and transmission com-
ponents should be longer. Network operators, service providers and manufacturers
should benefit from increased flexibility and cost effectiveness. Table 3.2 gives a list
of the Radio Transmission Technology(RTT) submitted to ITU by June 30, 1998.

While the path of evolution as well as its speed will be governed by market
needs, appropriate global standards, as well as the harmonized assignment of suitable
spectrum by the various national and regional authorities within the framework of
the internationally agreed spectrum allocations in the ITU Radio Regulations, will
be the determining factors for a successful implementation of IMT-2000.

IMT-2000 is being developed in recognition of the fact that future wireless
access systems will need to provide users with the same high quality and broadband
characteristics offered by fixed networks. As wireless becomes a major part of global
telecommunications, common network components need to be developed which can
provide virtually any desired future service combination composed of wired or wireless
access links.

The present work schedule calls for the key choices of Radio Transmission
Technology (RTT) associated with IMT-2000 to be made by March 1999, with ap-
propriate ITU recommendations to be completed by the year 2000. Although the
finally results of the ITU recommendation will not be known until the year 2000,
Table 3.2 shows a clear trend towards CDMA, or wideband-CDMA to be exact, in
third generation systems. Among all the proposed RTTs, the European Telecommu-
nications Standard Institute(ETSI), decided to adopt W-CDMA for the FDD mode
of UTRA, which is a radio transmission scheme very similar to the one contained
in the Japanese proposal. Also, the U.S. is likely to harmonize their activities with
the decision made by ETSIL In Korea, wideband CDMA is studied as one of the
candidates for the radio transmission technology of IMT-2000. Thus W-CDMA is
not only a more competent technology than other systems, but it is also the most
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PROPOSAL DESCRIPTION ENVIRONMENT SOURCE
Indoor | Pedestrial | Vehicular | Satellite
DECT Digital x x - - ETSI
Enhanced Cordless Project (EP)
Telecommunications DECT
UWC-136 | Universal Wireless x x x - USA TIA
Communications TR45.3
WIMS W- | Wireless Multime- x x x - USA TIA
CDMA dia and Messaging TR46.1
Services Wideband
CDMA
TD- Time-Division Syn- x x X - China
SCDMA chronous CDMA Academy of
Telecommu-
nica-
tion Technol-
ogy (CATT)
W-CDMA | Wideband CDMA x - Japan ARIB
CDMA II | Asynchronous DS- - S. Korea
CDMA TTA
UTRA UMTS Terrestrial X x x - ETSI SMG2
Radio Access
NA: North  American: X X x - USA TI1P1-
W-CDMA | Wideband CDMA ATIS
cdma2000 | Wideband CDMA x x x - USA TIA
(IS-95) TR45.5
CDMA 1 Multiband x x x - S. Korea
synchronous TTA
DS-CDMA
SAT- 49 LEO sats in 7 - - - X S. Korea
CDMA planes at 2000 km TTA
SW- Satellite wideband - - - x ESA
CDMA CDMA
SW- Satellite wideband - - - x ESA
CTDMA hybrid
CDMA/TDMA
ICO RTT | 10 MEO sats in 2 - - - x ICO Global
planes at 10390 km
Horizons Horizons satellite - - - x Inmarsat
system
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promising system to be applied as a global system. Therefore, it is necessary to carry
out research into applying smart antenna technology to wideband CDMA for the
various wideband CDMA proposals. In Chapter 6 we are going to study the problem
of applying multibeam smart antennas to CDMA systems.

3.6 Conclusions and Discussions

In this chapter, various wireless standards, including the third generation standard
—IMT2000, which is under world-wide investigation, are discussed with an emphasis
on their impact on the smart antenna technology. We also showed how the problem
of applying smart antenna algorithms on the downlink differs for FDD and TDD
systems. The challenge of downlink smart antenna algorithms in FDD systems is
identified which lays a foundation for the work described in Chapter 5.
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Chapter 4

Multibeam Smart Antenna
Systems and Algorithms

This chapter begins with an overview of antenna arrays and beamforming techniques
in Section 4.1, followed by Section 4.2 in which multibeam smart antennas are studied
in relation to beam-space beamforming. In Section 4.3, signal combining algorithms
that are applicable to the multibeam smart antenna are described.

4.1 Antenna Arrays and Beamforming

A multibeam smart antenna uses multiple directive antenna beams to illuminate
the whole coverage area of the base station. The directive beams can be generated
by applying a technique called beamforming. The term beamforming relates to the
function performed by a device or apparatus in which energy radiated by an aperture
antenna is focused along a specific direction in space [2]. For example, in a parabolic
antenna system, the dish is the beamforming network in that it takes the energy that
lies within the aperture formed by the perimeter of the dish and focuses it onto the
antenna feed. Energy from the preferred direction is aligned at the feed and summed
coherently while energy from other directions is summed incoherently {2].

Although it is possible to use antenna systems such as the parabolic antenna
to form a multibeam smart antenna, it is generally more desirable to use antenna
arrays. By applying beamforming to an array of antenna elements, one can obtain
directional antenna beams at low cost. In addition, the beam patterns formed by an
antenna array are very flexible. An antenna array can change its beam patterns if
desired, which is a very desirable feature in time-variant wireless environments. As
shown in Figure 4.1, the array consists of N antenna elements designed to receive
(and/or transmit) signals. The physical arrangement of the array is arbitrary. Lin-
ear, circular and planar arrays are some of the most widely used structures. The
beamforming network is capable of weighting the signals received at each antenna
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element over a wide range of relative amplitude and phase values in order to produce
an effective pencil-beam radiation pattern at each output port. The number of ports
can be different from the number of antenna elements, usually the number of ports
is smaller.

Antenna | Anteana 2 Antenna N-2  AntennaN-1  Antenna N

771177

Beamforming Network

Port | Port M

Figure 4.1: Array-beamforming network for a multibeam antenna

4.1.1 Antenna Array Overview

Many applications require antennas that produce narrow concentrated beams
with little radiation in other directions. Such directional antennas can be generated by
a single antenna such as the parabolic antenna, but a more flexible approach is to use
antenna arrays. An antenna array is a collection of more than one identical antennas
that are arranged and excited to produce high-gain beams in certain directions [28,
50].

Antenna arrays can have many different configurations, the linear array and
the circular array are the most common among them. A linear array consists of n
equally spaced antenna elements along a straight line as shown in Fig. 4.2. A circular
array consists of n equally spaced antenna elements placed on a circle as shown in
Fig. 4.3.

To derive the radiation pattern of a general array and to see how an antenna
array can form directional beams, consider N identical antennas, placed within an
area of radius ry as shown in Fig. 4.4. We place an additional reference antenna,
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Figure 4.2: A linear array

which has the exact same radiation pattern, at the origin. The electromagnetic field
generated by the reference antenna at an observation point (r,8, ¢) in the far field of
the array is *

e—jkr

P=1I p(6.¢) (4.1)

where k is the wavenumber, I is a complex amplitude, and p(6, ¢) is the radiation
pattern of the reference antenna. The far field generated by each of the N antenna
array elements is similar to Eqn. (4.1), which is

r

n n n: ¥n -
Ran (
where n = 1, 2, ceey N, and Rﬂ is the distance between the nth antenna element and

the observation point (r,6,¢). Since ry << 7, the following approximation can be

used
e~ikRn = g=ikT gI2n/A (4.3)

where ) is the wavelength, d, is the projection of r, on r. In addition, 1 [Ta = 1/7,
6, ~ 0, and ¢, =~ ¢. Eqn.(4.2) can be approximated as

e—jkr

P, = I,——p(6, $)e’*"*/ (4.4)

r

1The far field of an antenna array is defined as observation points which satisfies r >> ro, where
r is the distance between the antenna and the observation point.
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(r.8.9)

Figure 4.3: A circular array

By the use of the superposition principle, the total field generated by the IV element
antenna array at the far field is

N ~jkr

Po=Y P,= —p(6,¢) Z er"d"/’\ (4.5)

n=1 n—l

Eqn. (4.5) indicates that the far field of an antenna array is equal to the refer-
ence antenna pattern multiplied by a sum called the array factor which is Zn_l —&eﬂ"“’".

2In array processing, a frequently used term which is related to the array factor is called array
response vector or steering vector. If we assume the complex weights, lo, I1, ..., In are equal, and
the first antenna element is placed in the origin, the array factor for Eqn. (4. 5) is

N
Zejzrd../X =1+ ejzrdl/X +... +ej21rd~/X (4.6)

n=1
The vector corresponding to the above array factor, which is [1, 2741/, ..., 72748 /2] is called the

array response vector. Apparently, the array response vector is a functlon of both frequency and
array geometry, since it is dependent upon A and dn.
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( 28.0)

Figure 4.4: A generic array

By adjusting parameters such as N,Ia ot d,, one can obtain various directional antenna
beams. To show this, we use the linear array shown in Fig. 4.2. In the case of the
linear array, d, satisfies the following equation:

A
d. =(n — l)kdcose-ﬁ (4.7)

Consider a special case in which the complex amplitudes are equal and the
relative phase between adjacent elements is a constant 8. Eqn. (4.5) becomes

N —jkr
P, = S P.=1° — (0, ¢) Z I (n—1)(kdcos6—p) (4.8)
n=1 n=1

Fig. 4.5 shows the array pattern of an 8-element linear array which is comprised of
omnidirectional antenna elements with a spacing of A/2.

4.1.2 Analog and Digital Beamforming

Beamforming can be achieved through either analog or digital methods. Fig-
ure 4.6 shows the structure of an analog beamforming network which consists of
devices such as power dividers, power combiners, and phase shifters. They are used
to adjust the amplitudes and phases of the signals received from each antenna ele-
ment, thereby forming a desired directional beam. Figure 4.6 shows a single-beam
beamforming network. Multiple single-beamforming networks can be used when a
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Figure 4.5: The beam pattern of an 8-element linear array

multibeam antenna is needed. By offsetting the desired direction of each single-beam
beamforming network, a multibeam antenna can be generated.

Beamforming can also be carried out digitally. Figure 4.7 depicts a generic
digital beamforming (DBF) structure. The transceivers are required to perform fre-
quency down-conversion and up-conversion, filtering, and amplification. A/D and
D/A converters converts signals in the digital domain into analog domain, and vise
versa. Various digital signal processing techniques can be used to form the desired
beams. The major advantage of digital beamforming is the fact that RF signals
are captured in digital form, enabling a multitude of digital signal processing tech-
niques and algorithms to be used for spatial processing. It also brings great flexibility
without any degradation in SNR.

4.2 Multibeam Smart Antenna Structures and
Beam-Space Beamforming

There are many possible ways of performing digital signal processing in digital beam-
forming. One possible way of characterizing various DBF methods is to divide them

into two categories: element-space beamforming and beam-space beamforming.
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Phase shifters

Power dividers/combiners

Figure 4.6: An analog beamforming network

Figure. 4.8 shows a simple beamforming structure in element space. In
element-space beamforming, one manipulates signals directly from/to the antenna
elements by applying weights to the signals to achieve the desired response. In con-
trast, in beam-space beamforming, the outputs from/to the array elements are first
processed by a multiple-beamforming network to form a set of beams. The beam
outputs are then weighted and combined to produce the desired output. Figure. 4.9
shows a beam-space beamforming structure.

It can be proven that beam-space beamforming and element-space beam-
forming are equivalent provided that the number of beams formed in beam-space is
equal to the number of elements and the beams formed in the beam-space are all
orthogonal [51].

But what is really interesting is the case when M < N as shown in Figure. 4.9,
in particular, when M << N. Although the capability of an adaptive array to
perform a pattern shaping function increases as the number of elements increases,
the complexity of the processing circuitry and logic also increases. In addition, the
complexity of processing may make it impractical for real-time usage. By using
M << N, the number of signal ports can be kept tractable while performance close
to the element-space processing can be achieved. In many cases, the implementation
of smart antennas using beam-space beamforming is simpler.

The structure of multibeam smart antennas can be generalized as shown in
Figure. 4.10. The multibeam smart antenna consists of three main components: a
multibeam antenna, a beam selection processor, and a combining processor. The
beam selection processor reduces processing complexity by reducing the number of
beams included in the combining processor. The combining processor validates the
beam selection, does combining and other appropriate signal processing.

Comparing Figures 4.10 and 4.9, we can see that multibeam smart antennas
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Figure 4.7: A generic digital beamforming network

have close relationship with beam-space beamforming. In fact, multibeam smart
antennas can be viewed as a special case of beam-space beamforming.

The adaptive processor determines the operation of beam selection/combining.
The information commonly used by the adaptive processor includes: [52]

e The signals received by the antenna array.

The output of the smart multibeam antenna.

The structure of the antenna array.

Feedback signals from the mobiles.

Network topology.

4.3 Multibeam Smart Antenna Combining Algo-
rithms

From the perspective of diversity, the multibeam smart antenna can be viewed as
an extension of angle diversity systems. Most algorithms used for multibeam smart
antennas bear their roots in diversity combining algorithms, although the operation
of the multibeam smart antenna is usually more complicated.

In wireless communication literature, compared to antenna space diversity,
angle diversity has received far less attention. The use of space diversity has long been
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Figure 4.8: A simple beamforming structure for element-space processing

recognized as an effective technique for combating the detrimental effects of channel
fading [42, 53, 54]. This is probably due to the fact that classical diversity techniques
are usually applied to noise-limited systems. It has not been until recently, with
the introduction of cellular technology, that interference-limited system caused by
co-channel interference has become very important. The inherent difference in their
AOAs distributions makes angle diversity a very attractive candidate for interference
cancellation in such systems.

Diversity combining algorithms can be classified into three types, namely,
selection combining (SC), equal gain combining (EGC) and maximal ratio combining
(MRC) [42]. The structures of these combining methods are similar, the differences
(and thus the resultant performance) lie mainly in the mechanism of complex weight
generation.

4.3.1 Selection Combining (SC) Algorithm

Selection combining is the simplest of all combining algorithms. Referring to
Figure 4.11, the basic idea behind selection combining is to select the single beam with
the best baseband signal-to-noise-and-interference ratio (SNIR). In practice, however,
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there are different approaches. For example, the beam with the highest signal-plus-
noise power may be selected in certain situations when it is difficult to estimate SNIR.

In a typical wireless communications environment, instead of a single beam,
the received signal powers at several beams are often higher than the rest. For
selection combining to work well in this kind of environment, the SC algorithm can
be generalized to include more than one beam. In this case, coherent combining is
usually used. By coherent combining we mean that the signal in each beam has to
be properly aligned in phase before they are combined. The combining weights are
selected using the same method as in maximal ratio combining (MRC) algorithm
which is the subject of the next section.

Thomas Eng et al. have studied this generalization of SC algorithm in [55].
Their study shows that algorithms combining the two (or three) strongest branch
signals, which is termed as SC2 (or SC3), offer significant improvement over the
performance of just selecting the largest signal (SC). When the number of available
paths is small, or only a few of the branches have significant signal power, SC2 and
SC3 perform close to the maximal ration combining when coherent combining is used.
Furthermore, SC2 and SC3 perform better or comparably to EGC if non-coherent
combining is used.
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Figure 4.10: A generic multibeam smart antenna structure

4.3.2 Maximal Ratio Combining (MRC) Algorithm

In maximal ratio combining the signal in each beam is cophased and weighted
proportionally to the ratio of its signal to noise ratio before they are summed together.
Fig. 4.12 shows the signal flow diagram for this method. If we denote the received
signal in the ith beam signal as r;, it includes s; and n;, which are the desired signal
and noise respectively. That is

Ty = S; +n; (49)

If r; are weighted and combined, the combiner output can be expressed as
M
R=Y gi(si +m) (4.10)
=1

where g; is the weight applied to each beam. If we denote noise power at each beam to
be N;, i.e., N; = E(|ni|?) (E() represents the expectation of a random variable), and
also assume that they are mutually independent, the total noise power in Eqn. (4.10)
is o
N =3 |al*N, (4.11)
=1

The SNR of the combiner output is then

| M, gisil?
=== 4.12
ih;1 |gi|2Ni ( )

51



Beamforming Network

Pont | Port M

Select the beam with best SNIR

Output

Figure 4.11: The selection combining algorithm

It can be proven that v is maximized if we choose [29]

g:
;= K24 4.13
g 7 (4.13)

Where K is some arbitrary complex constant and * denotes complex conjugate. The

maximum value for v is
et o
i=1 Ni

which equals the sum of the SNR in each beam.

4.3.3 Equal Gain Combining (EGC) Algorithm

It is not always possible to provide the variable weighting capability required for true
MRC. To deal with this kind of situation, one method is to cophase the signals in
each of the beams and combine them by setting all the weights to be unity. This is
referred to as equal gain combining (EGC).

Denote the signal received by the ith (i =1,2,..., M) beam as r;. It can be
expressed as

ro = 8 + 1 (4.15)

where s; and n; are the desired signal and noise in that beam, respectively. The
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Figure 4.12: The maximal ratio combining algorithm

output from an equal gain combiner is

M
R=>"r (4.16)

=1

The SNR for the equal gain combiner is then

24-{-1 |s;|2
=== (4.17)
Zil‘il Ni

Equal gain combining algorithm is most effective when the noise levels in all
beams are equal. Otherwise, those beams with large noise levels would dominate the
output SNR even if the beam itself is weak in terms of signal level. If various beams
have unequal noise, one way to equalize the noise would be to use different gains in
each beam before combining.

4.3.4 Comparison of Algorithms

Of the three algorithms presented above, the MRC algorithm gives the best perfor-
mance, however it is also the most complex algorithm to implement since the SINR
has to be estimated at each beam. Due to the difficulty and cost involved in the im-
plementation of the MRC algorithm, SC/SC2/SC3 or EGC are usually the algorithms
of choice in many situations. The MRC algorithm is more of theoretical curiosity and
is often used as a benchmark for other combining algorithms [56]. In real wireless
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propagation environments, the angular distributions of signals and interference are
very different. Usually, there are a few beams with strong signals and/or strong in-
terference while the rest are relatively weak, both in terms of the desired signal and
the interference signals. In this case, SC/SC2/SC3 may be the most cost-effective

algorithm.
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Chapter 5

Multibeam Smart Antennas for the
Down-link Transmission in FDD
Systems

5.1 Introduction

Most wireless communication systems today have two links: uplink (or reverse link)
and downlink (or forward link). Radio signals transmitted from base stations travel via
the downlink before being received by mobile stations; signals transmitted from mobile
stations travel via the uplink before received by the base station. As was mentioned
before, practical considerations generally rule out the possibility of using an antenna
array on the mobile station side, thus leaving only the base station as a candidate
for deploying smart antennas. This makes it difficult to use smart antennas for the
downlink. On the downlink, the smart antenna has to decide on what processing
should be done before the signal is transmitted through the wireless channel to the
mobile station. This contrasts the uplink case where the smart antenna can receive
the multipath signal first and then do processing as appropriate. In other words,
a smart antenna can estimate the channel on the uplink, while it can not do so
directly on the downlink. The fundamental question for smart antennas working in
the downlink is the following: can it estimate the downlink channel? If yes, how?

The principle of reciprocity implies that downlink and uplink channels are
identical if the channels operate on the same frequency and nearly simultaneously in
time. In a TDD system, if the duplexing time between reception and transmission
is small compared to the coherence time of the channel, both channels are approxi-
mately the same for the uplink and downlink, and the base station can use its estimate
of the uplink channel and apply it to the downlink channel. In FDD systems, the
downlink and uplink channels can potentially be very different due to the large fre-
quency separation of the two channels. S.S. Jeng et al have conducted measurements
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on the difference of the uplink and downlink channel in terms of their spatial signa-
tures [57]. ! Their results show that the spatial signature variation is quite significant
even for a small percentage change (< 5%) of the carrier frequency. Most digital
cellular standards operating in 800 MHz frequency band, IS — 54/IS —136(TDMA),
IS5 —95(C DM A) and GSM, for example, have a frequency separation of 45 MHz while
Personal Communications Systems in the 1.9 GHz frequency band have a frequency
separation of 80 MHz. The frequency separation, whether 45 MHz or 80 MHz, is
large enough to give rise to different values for the complex gain experienced by each
multipath at the two frequencies.

Although AOA based algorithms show promise for smart antennas in the
downlink, they are restricted by the requirement that they need more antenna ele-
ments than the number of multipath components [58]. In this chapter, we investigate
the use of multibeam smart antennas for downlink transmission. Our focus is on FDD
systems since this is still a major challenge for researchers of smart antennas.

Algorithms for smart antenna systems working on the downlink are still in
their preliminary stages of development and much work remains to be done. In dealing
with the downlink smart antenna problem, we analyze the large set of practical data
we have collected with the 8-element vector channel sounder system. An in-depth
understanding is obtained by examining individual cases from the measurements.
In addition, numerical simulations are also conducted whenever necessary using the
Geometrically Based Single Bounce (GBSB) vector model.

The chapter is organized as follows: First, the downlink system model is pre-
sented and major difficulties involved in downlink are identified. Next, the results
from measurements and experiments are analyzed. Simulations using the geometri-
cally based single bounce (GBSB) model are carried out to gain further insight into
the analysis. A novel multibeam smart antenna algorithm for downlink transmission
is then proposed. Its performance improvement is shown and analyzed for a QPSK
modulation system.

5.2 Estimating the Downlink: the System Model
and General Approaches

The objectives for a smart antenna on the downlink are three-fold:

e to maximize signal power delivered to the desired mobile station.

e to minimize the co-channel interference (CCI) to other mobile stations.

1If we denote the array steering vector as a(6), the spatial signature of a source s(t) is defined
as Zf;l a(6;), where 6; is the angle of arrival of the Ith multipath and L is the total number of
multipath associated with s(t).
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e to minimize fading of the signal received by the desired mobile station.

The CCI at the desired mobile station is usually not controlled by the base
station in which the smart antenna operates unless some kind of complex multiuser
detection scheme is used as will be addressed to in Chapter 6. For the present, we
concentrate on the single-user detection scheme in which the CCI is not under the
direct control of the referenced base station or the smart antenna system. However,
the method used here is also applicable to CDMA systems using multiuser detection.

Smart antennas involve both spatial and temporal signal processing. For this
kind of signal processing to be successful the key lies in the estimation of the char-
acteristics of the channel. The effectiveness of both spatial and temporal processing
depends on the degree to which the channel can be estimated. There are basically
two approaches in dealing with the estimation of the downlink:

1. estimate the downlink directly from the uplink.

9. base the estimate on feedback between the mobile station and the base station.

5.2.1 Downlink Channel Estimation in TDD Systems

Time-division duplexing (TDD) systems use time-sharing on a single frequency for
both transmission and reception. CT2, DECT, PHP(Personal Handy Phone) and
DCS 1800 are some examples of TDD systems [2].

The principle of reciprocity implies that downlink and uplink channels are
identical if the uplink and downlink communications use the same frequency and are
nearly simultaneous in time. If that happens, the downlink channel will be a scaled
version of the uplink channel.

The current trend seems to see TDD techniques applied mostly in low-tier,
low mobility wireless systems. Since the channel coherence time is inversely related to
the Doppler shift which is proportional to the speed of the relative movement between
the base station and the mobile station, the duplexing time between reception and
transmission will be small compared to the coherence time of the channel in these
low mobility systems. Thus both channels are roughly the same and the base station
can use its estimate of the uplink channel for controlling and optimizing the downlink
channel.

When applying TDD techniques to higher mobility wireless systems, the task
of the downlink channel estimation is still less formidable than in FDD systems.
Although the two channels are no longer completely reciprocal, strong correlation
can still be expected given the fact that transmission and reception occur at the same
frequency.
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5.2.2 Downlink Channel Estimation in FDD Systems

Frequency-division duplexing (FDD) is used in many current wireless systems, most
prominent among them are systems based on IS-54/IS-136, IS-95, and GSM stan-
dards. In FDD systems, the downlink and uplink channels can potentially be very
different due to the large frequency separation. The difference in channel arises from
the difference in the instantaneous complex path gains, in particular, the relative
phases of the signals arriving via different paths vary with changes in frequency. This
difference makes it impossible for a smart antenna to reuse the weights of its uplink
for its downlink.

Paulraj and Papadias have proposed to divide this estimation problem into
four different situations according to the relative time-delays and angle-spreads of the
multipath signals [59]. The four situations consist of the following:

1. Zero delay and angle spread: in this condition the channel reduces to a single
vector, a(f). In this case the uplink and downlink channels are identical up to
a scalar factor. If we denote the vector channel impulse responses of the uplink
and the downlink channels as H,, and Hy, respectively, H, = cHq4, where cis a
scalar. 2

2. Zero angle spread, nonzero delay spread.
3. Zero delay spread, nonzero angle spread.

4. Finite delay and angle spread.

While the first three situations are more or less ideal situations, the last one
is more frequently encountered. It is of more practical value, but is also the most
difficult to deal with.

As was shown in Chapter 2 the vector channel impulse responses of both the
uplink and downlink can be expressed as

Le
h(r) = Za(glq)Alqej¢'q5(T — Tiq) (5.1)

=1

While it is arguable that the amplitude of Ay, is the same for both uplink and
downlink; the total number of paths L,, time delays 7, and angles-of-arrival (angles-
of-departure in the downlink) 6;, are expected to be the same. This may suggest that
AOA based algorithms are better positioned for smart antennas in the downlink. If
the delay and AOA can be jointly estimated in the uplink, the same information can
be used in the downlink processing. However, a fundamental difficulty here is that all
AOA estimation techniques currently available are based on the key assumption that

2Both H, and Hy satisfy Eqn.(5.1).
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the number of signal wavefronts, including cochannel interference signals, must be less
than the number of antennas in the array [58]. In a typical wireless communication
environment, there are usually a large number of multipath signals, therefore, it would
be too costly to apply these AOA estimation techniques because it would require too
many antenna elements.

Another approach is feedback. Paulraj and Papadias suggested a feedback
approach in which a training signal is transmitted individually by each element of the
base station antenna array to the mobile station [59]. The estimation of the channel
from each base station antenna to the mobile station can be solved using methods
such as Least Squares. Once the channel for each antenna is estimated, the total
vector channel can be determined. In [60], another feedback approach is proposed.
In this approach, the base station transmits probing signals separately from each
element on the downlink frequency, each mobile station measures its own response
to the probing signal and feed the information back to the base station. Based on
the feedback, the downlink channel is estimated, thereby deriving the weights that
can be used by the smart antenna for the downlink. However, this approach requires
the interruption of normal information transmission when the base station transmits
probing signals.

While the feedback approach may seem feasible, it suffers a number of draw-
backs. Feedback algorithms need information to be transmitted back from the mobile
station to the base station, occupying additional bandwidth which reduces the sys-
tem capacity. It also requires a complete re-design of current protocols. With the
increase of demand for wireless communications, the system capacity is becoming one
of the most important issues with respect to future systems. It is very desirable that
we develop algorithms which estimate directly the downlink channel from the infor-
mation obtained on the uplink channel, and require no additional bandwidth. The
multibeam smart antenna is a possible solution to this problem. A multibeam smart
antenna can measure the channel characteristics at the receive frequency and decide
on appropriate actions when transmitting on the downlink frequency. For example,
it may decided to transmit on the beam that has maximum received signal power.
Although this is a fairly good first estimate in some cases, this is clearly not adequate
in most practical situations, especially in highly built-up urban areas. In the rest of
this chapter we will explore options and expand on the idea of transmitting on the
beam with maximum received power, thereby devising a novel transmission algorithm
for multibeam smart antennas.
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5.3 Estimating the Downlink in Multibeam Smart
Antenna Systems

5.3.1 Uplink and Downlink Relation: Measurement Results

A series of experiments were designed by the Wireless Technology Group, McMaster
University to investigate the channel characteristics at PCS transmit and receive fre-
quencies and the possible relationship between them. Extensive measurements and
experiments were carried out at several outdoor sites on the McMaster University
campus and surrounding areas. Several indoor measurements have also been con-
ducted inside the Communications Research Laboratory at McMaster University.

The FDD experiment was set out as follows: A transmitter with a dipole
antenna was used to repetitively transmit a 255-bit PN sequence with a chip rate
of 5MHz at two frequencies at the same time. While transmitting, the transmitter
was in motion, carried about at walking speed. An 8-element circular antenna array,
which we named Talaris, receives the signals and samples them at a 10 MHz clock
rate. The sampled signals were first stored in a Sun Sparc workstation and later
multiplied offline by 8 pre-calculated vector weights, which emulate an 8-beam multi-
beam antenna. This effectively provided us with a database that would be received
using an 8-beam (multibeam) antenna.

A. The Power Distribution on the Uplink and Downlink

When considering the application of a multibeam smart antenna to the down-
link problem, the first question one has to answer is: does the signal power distribution
in each beam at the transmit frequency bear any relationship with that of the receive
frequency?

To answer this question, the large amount of data from the FDD measure-
ments are processed and further analyzed. The signal received at each beam is corre-
lated with the transmitted PN sequence to yield the corresponding channel impulse
response. Fig. 5.1 shows the impulse response of each beam at one time instant for
a particular outdoor measurement site. The impulse response of an omni-directional
antenna, measured simultaneously with the multibeam antenna, is also plotted at
the lower right part of Fig. 5.1 (labeled as omni) for the purpose of comparison.
Generally, depending on the environment, there will be a marked difference in the
energy received on the different beams. One thing worth noting is that the output
of each beam has a finite number of multipath components, although the number of
multipath signals is much smaller than is the case for the omni-directional antenna.

Denote pi(nT) and pri(nT) as the average power of the impulse response
of the ith beam at t = nT for transmit and receive frequencies, respectively, where
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Figure 5.1: Impulse responses of multibeam antenna and omni directional antenna

i=0,1,...,7. We rank the average powers of all the beams at the transmit frequency
(pe:(nT)) in descending order and denote K;;(nT') as the rank for the ith beam. Sim-
ilarly, we rank p,;(nT) in descending order and have K,;(nT) as the rank for the ith
beam at the receive frequency. K,;(nT) and Ki;(nT) are generally random variables.
To investigate the relation between K,;(nT) and K¢;(nT), the conditional probability
P{K|K,:} obtained from our measurement database is analyzed. Figure. 5.2 plots
P{K|K,;} at one outdoor measurement site, where ¢ = 0,1,...,7. The transmit
and receive frequencies are 1.94 GHz and 1.86 GHz respectively.

Figure. 5.2 suggests that there is statistically strong correlation in the power
distributions at the two frequencies. In Fig. 5.2, P{Ky = 0|K,; = 0} and P{K,; =
1|K,; = 0} are 82% and 9% respectively, which suggest if we select to transmit on the
beam with the maximum received signal power, 82% of the time we end up with the
best choice while 9% of the time it is the second best. Similar results are found in all
our measurements, including the indoor environment, although, generally the values
for P{K, = 0|K,; = 0} and P{Ky = 1|K,; = 0} are lower for indoor environments.
Fig. 5.3 shows another outdoor site and Fig. 5.4 shows an indoor site respectively.

B. Simulations and Explanation
The measurement results presented above have important implications. It
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Figure 5.2: The relationship between the power levels of the transmit and receive
frequencies at outdoor site 1

suggests that there is strong correlation between signals on the uplink and the down-
link in the same beam of a multibeam antenna. When one considers that there are
still many multipath components in each beam output, we need to explain why the
correlation exists at the two frequencies.

In analyzing the Talaris measurement data, two important phenomena are
observed. One is that the impulse responses of strong beams typically have a few
strong peaks within a continuum of lower intensity scatterer contributions; this is
especially true in the strongest, or second strongest beam. The impulse responses
in weak beams, on the other hand, usually contain a large amount of multipath
signal components which none of them dominates. The other is that each peak in a
beam impulse response typically consists of a number of signal components with very
close time delays. This suggests that there are strong scatterers physically located
close together (or in a “cluster”). This clustering phenomenon is also observed in
experimental data published in the literature [61].

With the above two observations in mind, our explanation is based on the
theory of wave interference. Let us further assume that there is a one-to-one corre-
spondence between the plane waves traveling on the uplink and the downlink. That
is, for each traveling wave at the receive frequency, there is another corresponding
traveling wave at the transmit frequency that has the same time delay and angle-of-
arrival (angle-of-departure to be exact in the transmit frequency). In addition, their
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Figure 5.4: The relationship between the power levels of the transmit and receive
frequencies at an indoor site

simulate multibeam antenna reception at the two frequencies using the Geometrically
Based Single Bounce (GBSB) model [30]. The GBSB model is a geometrically based
wave propagation model that treats each multipath component as a wave bounced
from a single scatterer (See Chapter. 2 for details on this model). Clustered scatterers
are assumed in the simulation. The cluster size is assumed to be 40m. The number
of clusters is selected to vary from 6 to 20, which is similar to the environment we
encountered in our 8-element antenna array measurements. The number of scatterers
in each cluster is a randomly generated integer in the range of [5,10]. In addition,
the distance between the receiver and transmitter is 500m. Path loss exponent of
3.5 with a deviation of 5dB is assumed. An 8-beam multibeam antenna, which has
exactly the same beam patterns as the ones used in the Talaris measurements, are
used. Figure 5.5 shows a typical simulation layout.

Figure. 5.6 shows an example of the simulation results using the layout as
shown in Fig. 5.5. Comparing Fig. 5.6 with Figs. 5.2, 5.3, and 5.4, we can see the
strong correlation in two frequencies which we discovered in measurement indeed
exists in our simulation, although P{K|K,} is larger for K,; # 0 in the simulation.
The discrepancies may due to the fact that the GBSB model only simulates single
bounce waves. For K,; = 0, the beam consists of mostly strong multipath components
and can be expected to contain many single bounce waves. For K; # 0, however, the
corresponding beams contain more multiple bounce waves. The GBSB model may
not have captured the underlying physics of multiple bounce components received by
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Figure 5.3: The relationship between the power levels of the transmit and receive
frequencies at outdoor site II

amplitudes are the same, but their phases are uncorrelated. > Under these assump-
tions, the resultant signal power on the downlink would be correlated with that of
the uplink for the same beams when there are very few unresolved multipath com-
ponents, or if the powers of the unresolved multipath components account for only a
small portion of the total signal power. The reason is that the unresolved multipath
components add vectorially and thus contribute to the de-correlation effect between
the signal powers of the downlink and uplink in the same beam. Since the powers of
the unresolved multipath components are usually low in the strongest or the second
strongest beam, even though there may be quite a few of them, the signal power
on the downlink usually “tracks” that of the uplink most of the time. For the weak
beams, however, the multipath components may add constructively at the receive
frequency but destructively at the transmit frequency, or vise versa, since there are
usually many unresolved multipath components which none of them is dominant. The
exact statistics of the relation between the downlink and uplink, of course, are de-
pendent on a number of factors. As we will show later, the propagation environment,
signal bandwidth, and multibeam antenna patterns all play important roles.

To show how the above assumption captures the essence of our findings, we

3The assumption that their amplitudes are the same. is reasonable considering the fact in our
measurements the difference of wavelengths at these two frequencies, namely 1.86 GHz and 1.94
GHz, is only less than 5%. Considering the underlying physics of propagation, this can be expected
to be a good assumption.
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Figure 5.5: An example of simulation layouts

those beams that well.

5.3.2 Beamwidth Effect

600

Table 5.1: Correlation coefficients between the powers at the receive frequency and
transmit frequency based on Talaris measurements (receive frequency: 1.86GHz,
transmit frequency: 1.94GHz)

Location | Condition | 45° beamwidth | 90° beamwidth | 120° beamwidth | 360° beamwidth
Outdoor 1 NLOS 0.878 0.601 0.527 0.473
Outdoor 1 LOS 0.828 0.712 0.675 0.572
Outdoor 1 Average 0.810 0.718 0.605 0.547
Outdoor 2 NLOS 0.801 0.705 0.596 0.547
Qutdoor 2 LOS 0.801 0.709 0.654 0.597
Outdoor 2 | Average 0.815 0.698 0.633 0.574
Indoor Average 0.413 0.359 0.255 0.253

If the explanation presented in last section is to be believed, we can expect
the correlation between the power levels of the same beam on the uplink and the
downlink to increase with a decrease in the beamwidth of the multibeam antenna.
This follows from the fact that the narrower the beamwidth the fewer the number of

65




1.0 v v T v T r T T

0.8
OO0 P{Kd | Kri= 7} 4
——0O P{Kt | Kriwg}
— — - PlKi|Kn=s)
—ce= P{Ktl | Krim,} 1
T P{Ktl | Krim3} -

0.6
-T-- P{Kui | Kri= 2}
""""" P{Ktl | Krism 1}
P{Kd | Krimo}

Probability

-

0.2

AET0% LR I R N AL B B BRI

T
\.

0.0 leiam—P———% T T T L R L RTINS

Figure 5.6: An example of simulation results for Fig. 5.5

multipath components that an antenna will receive. With the number of dominant
components reduced, the correlation between the receiving and transmit frequencies
can be expected to be stronger. This is indeed true. Table. 5.1 shows the correlation
between the power of the outputs of the beam with maximum receiving power at the
two frequencies using multibeam antennas with different 3dB beamwidths.

It is apparently desirable to achieve high correlation between the receive and
transmit frequencies from the point of view of multibeam smart antenna transmission
algorithms. The multibeam smart antenna would be able to transmit on the beam
with the maximum received power if the correlation between the power distribution
of the two frequencies is 100%.

To achieve higher correlation among the two frequencies and thus make the
downlink multibeam smart antenna problem easier, one can use multibeam smart
antenna systems that have a greater number of beams. As indicated in Table. 5.1, the
narrower the beamwidth, the higher the correlation. However, care must be taken in
using this approach. In our measurements and simulations, we found that the curve of
correlation versus number of beam tended to fall off as the number of beams increases.
For example (except for the indoor case) in Table. 5.1, the correlation coefficients
increase approximately 10% in going from 360° beamwidth (omni-directional) to 120°
beamwidth. Considering the dramatic decrease in the beamwidth, the increase of the
correlation coefficients is not that significant. The extreme seems to happen in the
indoor case where there is significantly less improvement.

We obtained similar results in our simulations using the GBSB model. In
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each simulation run, we keep the same cluster size as shown in Fig. 5.5; as well, we
keep the other parameters fixed and only change the beamwidth of the multibeam
antenna to see the change in the correlation coefficients. We use an approximation
of the multibeam antenna in the simulation. The approximate beam pattern for the
mth beam g, () is shown in Fig. 5.7. It satisfies the following

dB

. : —

ml m2 2x e

Figure 5.7: First order approximation of a practical multibeam antenna

0dB, 0m1 <60 <6y

2 _
g (6)] { zdB, otherwise
where m = 1,2,..., M, [fm1,0m2] is the main lobe (main beam) area of the mth
beam. z is the sidelobe level.

Fig. 5.8 shows the simulation results for typical micro-cell environment. The
simulation was carried out using the following parameters: a cluster size of 80m, a
receiver and transmitter distance of 500m, 15 clusters, 8 scatterers per cluster, path
loss exponent equal to 3.5 (with a deviation of 5dB), and sidelobe level of —16dB.
As can be seen the increase of correlation between the two frequencies is not that
significant for number of beams larger than 20.

From the perspective of downlink transmission, the optimum number of
beams a multibeam samrt atenna should have will depend very much upon the envi-
ronment in which the smart multibeam antenna operates. The narrower the multipath
components spread in angle, the larger the optimum number of beams will be.

5.3.3 Signal Bandwidth Effect

As was stated before, smart antenna systems are expected to operate in dif-
ferent wireless systems, having different bandwidths, with the objective of improving
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the system capacity and quality. In this section, the effect of bandwidth on the
correlation relationship between the receive and transmit frequencies is addressed.

To show the bandwidth effect on the relationship between the power distri-
butions at the two frequencies, the same set of data which was used to plot Fig. 5.2 is
processed to reflect the change in signal bandwidth. The result is shown in Fig. 5.9.
As we can see from Fig. 5.9 that the probability peak (at P{Kyu = 0|K;; = 0}) de-
creases with the system bandwidth, indicating a decrease in the correlation at the two
frequencies for the beam with maximum power. Another thing worth noticing is that
the tail of the curve for P{K;|K,; = 0} rises with the decrease in system bandwidth.
This indicates that the intuitive downlink algorithm in which we select to transmit
only at the beam with the maximum received power will perform more poorly when
the system bandwidth is narrow.

The bandwidth effect is consistent with the fact that the number of multipath
components which cannot be resolved on reception increases with the decrease in
signal bandwidth. These effects are also observed in simulations using the GBSB
model. Figure. 5.10 shows the simulation for the same conditions as Figure. 5.6.
Again the agreement is good for K,; = 0, relatively poor for other values of K,;.

The bandwidth effect gives us more insight into the results presented in Sec-
tion. 5.3.1. We have seen the correlation at two frequencies is much lower for indoor
environments than for outdoor environments. The bandwidth effect clearly shows
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Figure 5.9: The effect of bandwidth on the power distribution relationship at two
frequencies : measurement results

the tendency for de-correlation among the distribution of beam powers at the two
frequencies with an increase in the number of unresolved multipath components. In
an indoor environment, the number of multipath signals is usually higher than for
an outdoor environment. In addition, the delay spread is usually an order of magni-
tude smaller than for an outdoor micro-cell environment. It follows, that if the same
signal is transmitted in both indoor and outdoor environments, there are far more
unresolved multipath components received by the multibeam smart antenna in the

indoor case.

5.3.4 Discussions

In the above, we have shown the correlation between the beam power distributions
at reception and transmission frequencies. Our experiment and simulation results
indicate the number of unresolved multipath components as the key factor underlying
the degree of correlation. The number of unresolved multipath components is a result
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Figure 5.10: The effect of bandwidth on the power distribution relationship at two
frequencies : simulation results

of the influence of many factors, most important among them are
e total number of multipath components.
e multipath delay spread.
e multipath angle spread.
e main beamwidth of the multibeam smart antenna.
e signal bandwidth.

While the first three factors are dependent upon the propagation environment the
last two are dependent on the characteristics of the smart antenna system.
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5.4 A Novel Multibeam Smart Antenna Trans-
mission Algorithm

Our analysis in Section. 5.3 indicates that, for situations where there are still a num-
ber of unresolved multipath components, which is usually true in actual wireless envi-
ronments, using the strongest uplink beam for downlink transmission is inadequate.
In this section, we propose a novel transmission algorithm that will bring further
improvements in performance. One related topic, which relates to the correlation
between signals received from different beams in a multibeam antenna, is examined
before presenting this algorithm. The performance and analysis of this algorithm is
left to the next section.

5.4.1 Power Correlation Among Different Beams in the Same
Multibeam Antenna

Table 5.2: Correlation coefficients between the powers at different beams (Beams are
ranked in power descending order, i.e., Beam 0 represents the beam with the strongest
signal power)

LOCATION | CONDITION Beam 0 and 1 Beam 0 and 2
1.86GHz | 1.94GHz | 1.86GHz | 1.94GHz

Outdoor 1 NLOS 0.354 0.333 0.291 0.288
Outdoor 1 LOS 0.306 0.289 0.382 0.425
Qutdoor 1| Average 0.316 0.315 0.320 0.338
OQutdoor 2 NLOS 0.169 0.215 0.189 0.172
OQutdoor 2 LOS 0.223 0.240 0.211 0.200
Outdoor 2 | Average 0.230 0.210 0.206 0.173
Indoor Average 0.240 0.203 0.243 0.202

The problem associated with transmitting on the beam which corresponds to
maximum received signal power is that this may result in the mobile station being in
a deep fade for the transmit frequency although the base station may receive a very
strong signal at the receive frequency. The probability of this happening depends on
the number of unresolved multipath components, as stated in the last section. The
use of a multibeam antenna at the base station gives us extra degrees of freedom in
dealing with this problem.
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Figure 5.11: Signal power improvement by transmitting on two beams

Table. 5.2 gives the average signal power correlations between beams at sev-
eral locations where we have conducted propagation measurements. As we can see
there is very low correlation, around 0.2 ~ 0.4, between the power levels of the
strongest and second strongest beams as well as that of the strongest and third
strongest beams. A number of studies showed that very little performance degrada-
tion occurs so long as the correlation between the diversity channels is less than 0.3
to 0.5 [42, 56]. This low degree of correlation suggests it is possible to use diversity to
further reduce the probability of mobile station being in a deep fade at the transmit
frequency.

To show that this indeed improves system performance, we calculated the
cumulative distribution function (CDF) of signal power resulting from two methods
using data collected with the 8-element vector channel sounder system. The first
simply transmits using the beam which corresponds to the maximum received power,
the second splits the power between the two beams with the strongest received powers.
Figure. 5.11 shows the improvement obtained at one outdoor site. Figure 5.11 shows
that the results for the two methods lie very close to each other for signal power
levels of 0dB or higher (compared to omni-directional antenna). The probability of
signal power being higher than that for an omni-directional antenna is 90% for both
methods. However, the CDF curve for the second method decrease much faster in
region where signal power is lower than 0dB. For example, the probability of the
signal power level dropping below —10dB is 1% of the time for the second method
in contrast to it being 3% for the first method. Since most transmission errors occur
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Figure 5.12: Signal power improvement by transmitting on n beams

in the region where the SNR is low, the second method is expected to perform much
better than the first method. Figure. 5.12 shows the improvement in average signal
power with the transmitter using up to 4 beams. The improvement, that comes about
when combining more than 4 beams, is negligible in this case due to the large power
difference between beams.

The most important parameter in the design of a digital communication sys-
tem is the probability of error as a function of the energy per transmitted message
input [36]. If we use n beams for downlink transmission and divide the total energy
among the n beams, an optimum value of n must exist. This is because on the one
hand, the average signal-to-noise ratio decreases at each beam as m increases if the
total energy is fixed, on the other hand, increasing n provides additional diversity.
This optimum value of n can be expected to be highly dependent upon the environ-
ment in which the wireless system operates. As we can see from Figure 5.12 little
improvement can be expected by transmitting on more than three beams. Also, one
thing worth pointing out is that, if the base station transmits on more than one beam
in a cellular environment, the level of co-channel interference will increase, which, in
turn, will increase the level of interference at each user.

5.4.2 The Algorithm

In the previous sub-section, the transmitted power is split equally between
the two beams. In actual fact, better performance usually can be achieved if we divide
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Figure 5.13: The proposed downlink algorithm

the signal power equally among more than two beams. In this subsection we propose
an algorithm that expands on the idea introduced in last subsection. The general
structure of the algorithm is shown in Figure. 5.13.

In Figure. 5.13 the multibeam smart antenna selects n beams (n is smaller
than the total number of beams in the multibeam antenna) for transmission. The
signal transmitted by the :th beam is multiplied by a complex weight w; and delayed
by 7;. The two sets of parameters {wi,...,w,} and {m,...,ma} are determined
by some optimum criterion, for example, minimum probability of error, under the
channel conditions of hi(t),. .., hn(t).

Conceivably, more complicated combining scheme, such as a transversal linear
filter, could be used in this algorithm. We find this added level of complexity does not
pay off in a real situation. The reason is that limited information on hi(£), ..., ha(t)
at the transmit frequency can be estimated from the signals at the receive frequency.

This transmission algorithm will improve the system performance in both
flat fading and frequency selective fading channels. For flat fading channel, the time
diversity can be explored by weighting and staggering the transmission delay among
different beams in effect to combat the flat fading. For frequency selective fading,
the channel delay spread can be adjusted by the relative transmission delay among
different beams, thus reducing the burden of equalization. For systems using training
sequence for equalization, this means reducing training sequence length and improving
system spectrum efficiency.

In the next section, we will analyze the performance of this algorithm under

74



Rayleigh fading. We will show how one goes about selecting the parameters and
the improvement in performance that can be achieved. The analysis is based on a
dual transmission scheme, i.e., combining two beams for transmission; however, the
results presented should be general enough to be applicable to more than two beams.
As a caution, transmission on more than 2 beams may or may not improve system
performance depending on the practical situation. The reason is that in using more
beams one will introduce more co-channel interference which in turn will affect the
SIR achievable at each mobile station.

5.5 Performance Analysis

In this section, the proposed multibeam smart antenna transmission algorithm is
applied to a QPSK system. We begin with the system model and then proceed
to give the analysis and simulation results for a flat Rayleigh fading scenario. The
numerical results obtained through simulations indicate that for a SNR = 17dB
there is a 4 times reduction in probability of error over simply transmitting on the
beam that receives the maximum power. It increases to over 10 times at a value of
SNR= 25dB.

5.5.1 System Model

. Basesation . ..

o=

“t) : w2

Bam 1

i
EE'

b(t)

e e

fler Demndulstor Maker

a{t) :
4/1\ N N "t o . .
9, -

Mobile station receiver

Figure 5.14: Block diagram of the QPSK system in simulation
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Figure 5.15: Optimum linear equalizer

Figure 5.16: Decision feedback equalizer

A QPSK system using the proposed multibeam smart antenna downlink
transmission algorithm can be modeled as in Fig. 5.14. Assume dual transmission
where two beams are combined for transmission. If bandpass signals and channels are
represented and simulated using the corresponding baseband in-phase and quadrature
forms, the baseband signal s(t), which the base station transmits, can be express as

s(t) = 3" zn6(t — nT) (5.2)

where {z,} is the complex sequence of data symbols with in-phase and quadrature
components.

s(t) is fed into two paths, which correspond to the two beams used for trans-
mission. The gains of the two paths are w; and w2, and the second path is delayed
by 7. Each path is phase modulated and passed through a square-root raised cosine
filter. The two paths are passed through a channel, which has an impulse response of
h(t), and then summed. Receiver noise n(t) is also added. At the receiver side, there
is another square-root raised cosine filter. The received signal r(t) can be expressed
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r(t) = (wis(t) * h(t) + was(t — 7) = k() * g(t) +n(?) (5.3)

where “*” represents convolution. g(t) represents the combined effects of the two
square-root raised cosine filters, one located at the base station, the other located in
the mobile station. The spectrum of g(t) corresponds to a raised cosine filter which
is defined as [62]

T, 0<|fls(-a)/2T
G(f) =1 T +cosF(Ifl - ), (1-e)/2T <|fl < (1 +a)/2T (5.4)
0, Ifl> (1 +a)/2T

where « is called the rolloff factor, which takes a value in the range 0 < a < 1.
Eqn. (5.3) can be simplified as

r(t) = s(t) * he(t) + n(t) (5.5)
where h.(t) is the equivalent total system impulse response
he(t) = (wih(t) + wah(t — 7)) * g(t) (5-6)

Given r(t) in Eqn. (5.5), time equalizer is used to reduce the intersymbol
interference (ISI). The equalizer strives to achieve minimum probability of error. We
now carry out simulations using two of the most popular adaptive equalizers. One
is optimum linear equalizer, the other is decision feedback equalizer. Figures. 5.135
and 5.16 gives the structures of an optimum linear equalizer and a decision feedback
equalizer, respectively.

When transmitting, the multibeam smart antenna chooses the two beams on
which it receives the highest signal powers. It can adjust three parameters, namely,
wq,w» and T, to optimize its performance. As can be expected, the optimal values of
these parameters will depend on the channel, the characteristics of the transmitted
signal as well as the receiver structure.

5.5.2 Probability of Error

In this subsection, we derive the probability of error for the minimum mean square-
error (MMSE) linear equalized receiver and the decision feedback equalized (DFE)
receiver which we will use to analyze system performance.

A. Linear Equalizer Receiver
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If we denote H.(f) as the Fourier transform of h.(t) defined as in Eqn. (5.6),
the minimum mean square error (MMSE) that can be realized by the linear equalized
receiver, which operates using QAM modulation (QPSK is a special case of QAM),
can shown to be [63]

1T
€min(linear) = T /o No/[No + Sna(f)]df (5.7)

where Ny is the commmon noise spectral densities when the noises are assumed to be
white; Spa(f) is the aliased signal power spectrum of o2|H.(f)|? defined as

Swn(f) =Y o He(f —n/T)?, —1/2T < f <1/2T (5.8)

where 02 = 2 for QPSK. In [64], Babylon and Sale derived the probability of error
bound as

— €min(Linear)/o?

1
P. < —
e < exp { €min(Linear)

)} (5.9)

B. Decision feedback Equalizer Receiver

Decision feedback equalizer (DFE) [63] is a nonlinear equalizer which uses
previously detected symbols to eliminate the inter-symbol interference caused by pre-
viously detected symbols on the current symbol to be detected. It generally provides
better performance than the linear equalizer. If we use H.(f) to denote the Fourier
transform of h.(t) , it can be shown in [63] that the minimum mean square error
(MMSE) that can be realized using the decision feedback equalizer receiver for QAM
modulation is

/T
emin(DFE) = exp {~T /o In(1 + Swa(f)/No)df } (5.10)

where Spa(f) is the aliased signal power spectrum as in Eqn. (5.8).
Again, in [64], Babylon and Sale derived the probability of error bound for
QAM modulation to be

- 6min(l)}PE')/af
Emgﬂ(DFE)

P, < exp{-- )} (5.11)
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5.5.3 Optimum Parameters and Performance Analysis in Flat
Fading Channels

A. The System Model

Assuming that the channels from each beam at receive and transmit frequen-
cies are both described by the same Rayleigh fading distribution, the channel impulse
response h(t) given in Eqn. (5.3) can be expressed as

h(t) = ae?®4(t) (5.12)

where ¢ is a random phase parameters that is uniformly distributed over [0, 2] and
a is random variable with a Rayleigh distribution, i.e.

2
Se~®, >
P(a) = { "eo T —T0;b0> 0 (5.13)

If we denote h()(t) and h{)(¢) as the impulse response of the ith beam at
receive (uplink) and transmit (downlink) frequencies and use Eqn. (5.12), we have

RO (t) = AV 5(¢) (5.14)
r(t) = AP eI 5(2) (5.15)

and Asj),¢$j>,Afj’,¢§,"’ are independent. Assuming the channel changes slowly with
time, it can be expected that E|A{|2 = E|A}|? and we can estimate E|AD|? using
AD,

Substituting Eqn. (5.15) into Eqn. (5.6), we have the equivalent total system
impulse response as

he(t) (AP 98w, 5(t) + (AP eI wyb(t — 7)) * g(2)

Af,l)ej“’-(il)wlg(t) + Afiz)ej"flz)wzg(t -7) (5.16)

Generally, w; and w, are complex weights, however, in the flat Rayleigh
fading case, we can choose them to be real values. As we can see from Eqn. (5.16),

the two phase terms ¢&1) and ¢&2) are random and uniformly distributed over [0, 27].
Since they are independent of ¢{)) and ¢{?), the smart antenna can not estimate ¢{’
and ¢ using ¢{) and ¢@. Without any loss of generality, we assume the total
transmitted power is unity. That is

w2 + [we)?* =1 (5.17)
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Our goal is to find values for w;,ws,and 7 that optimize system performance. The
received signal at the mobile station becomes

r(t) = he(t) * s(t) (5.18)
(Af,l)e”’fll)wlg(t) + Aff)ej"&z)wgg(t — 7)) * s(t) (5.19)

where “*” denotes convolution. Since

s(t) = zab(t — nT) (5.20)

assuming {z,}, the complex sequence of data symbols with in-phase and quadrature
components, is uncorrelated, i.e.,

2

o2, n=m
E(zazy) =< ° 5.21
(TnTr) { 0 nstm (5.21)
For QPSK, 02 = 2. The average power of r(t) is
2
E(re)) = 2= [ 1G(HPIAP e wy + AP 3% woe* I Pdf (5.22)
-0

In contrast, if we transmit all the signal power using Beam 1, the received signal is
(we denote it as r;(¢) to differentiate it from r(t))

ri(t) = hi(t) = s(?) (5.23)
(AP ()] * (2) (5:24)
the average received signal power would be
2
0% [
E(In@P) =% [ 16(OPI4P e (5.25)
We now define the average signal-to-noise ratio SNR as
_ E(n®P)
p = W N, (5.26)
2
_ 9 [T 2; 4(1))2
= 3 [ ianradre (5.27)
ALY U
= = (5.28)

N, the single-sided noise spectrum. In deriving Eqn. (5.27), we used W Ny = No/T,
where W is the noise power measured in the Nyquist band. W = 1/T and also

[T 16(PaP R =1 (5.29)
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The Fourier transform of h.(t) in Eqn. (5.16) is
H.(f) = (AP w; + AP %8 w0, M)G () (5.30)
Combining Eqns.(5.30) and (5.8) yields
Sun(f) = X o2 (AP % w; + AP % wye ™ ImTIMG(f)?, —1/2T < f < 1/2T
" (5.31)
If we substitute Eqn. (5.31) into Eqn. (5.7), we obtain

€min (linear)

= T2 No/[No + T (AP €4 wy + AP 398" wnped? I =n/T)G (£)[2)df

= M1/ + pTa (A% w1 + A I8 upe? /TG [2m(z — )/ T])dz
(5.32)

where p is the average signal-to-noise ratio, G'(.) = G(.)/VT, A;(l) and A’d(z) are inde-
pendent Rayleigh variables with variance E|A V|2 = 1 and E|A Y |? = E|AP |2/E[ AP 2,
respectively. The parameter E|A;(2)|2 gives the ratio of the powers transmitted on
Beam 1 and Beam 2. We denote it by 7.

In a similar manner, by substituting Eqn. (5.31) into Eqn. (5.10) we derive
MMSE for a decision feedback equalized receiver to be

"(1) o)) "2) 62 2w ‘o
= exp {17, ~In[l + p T (A&7 w1 + A1’ woed ¥ E-)G (B (2 — n))|?]da})
(5.33)

If we substitute either Eqn. (5.32) or Eqn. (5.33) into Eqn. (5.9) we get an expression
for the probability of symbol error bound on the linear receiver or decision feedback
equalized receiver. It is not possible to evaluate the integral. Consequently, it is not
possible to obtain a closed form for the probability of error. We therefore resort to
Monte-Carlo techniques.

Before presenting the numerical results, the symbols and parameters used in
simulation are defined and summarized as follows:

1. SNR: defined as the average signal-to-noise ratio at the mobile station when
all the signal power is transmitted over the beam with the maximum received
power.

2. n: the ratio of average power in the strongest beam to that of the second
strongest beam. When the channel changes slowly, 7 is expected to be the same
at both the receive and transmit frequencies, it can be estimated from the signal
received by the multibeam smart antenna.
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3. 1: v = |wy|?/|ws|?, the ratio of the power transmitted on Beam 1 to that on
Beam 2 in Figure. 5.14. The value for v is derived by the transmission algorithm.

4. 7/T: the relative time delay normalized to the symbol period as in Figure. 5.14.
7/T is also selected by the transmission algorithm.

5. P,.: probability of symbol error.
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Figure 5.17: Average probability of symbol error when transmitting on the beam with
the maximum received signal power under Rayleigh flat fading channel assumption

B. The Effect of Relative Time Delay 7/T

We first analyze how the proposed algorithm makes use of the multipath time
delay to reduce P..

Setting w; = 1, w, = 0 and 7 = 0 in Eqns. (5.32) and (5.33) gives us the
MMSE and probability of symbol error for the first method, where transmission occurs
on the beam with the maximum received power. Figure. 5.17 shows the probability
of error under various SNRs. We will refer to Figure. 5.17 from time to time and use
it as a benchmark for comparing system performance.

Next, we evaluate probability of error under various v and 7. As the relative
delay /T is increased from 0 to 1.5, Fig.5.18 depicts the average probability of error
for three different values of SNR and filter roll-off factor = 0.35, n = 5dB, and
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Figure 5.18: Average probability of symbol error when dividing transmitted signal
power equally among the two beams with the strongest received signal power at
Rayleigh flat fading channel

4 =1, i.e., |w|? = |ws|? = 1/2. The curves associated with linear and decision
feedback equalized receivers are both seen to decrease as the relative delay increases.
This indicates the algorithm is able to take advantage of the multipath time delay.
The slopes of the linear receiver cases are shallower than for the feedback equalized
receiver cases. This suggests that those receivers are less able to take advantage of
the multipath delays. This difference is more prominent for the high SNR cases. The
numerical results also show average probability of error approaches its minimum at
about 7/T = 0.7 ~ 0.8, beyond this value, further increase in the relative time delay
will not reduce the probability of error. Since larger 7/T values require more complex
equalization structure at the mobile station receiver, the value 7/T = 0.7 ~ 0.8 serves
as the desirable value for achieving low probability of error while keeping the receiver
structure simple.

C. The effect of n and v

As have been shown, P. reaches its minimum when 7/T > 0.8 if the values
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Figure 5.19: Average probability of symbol error when transmitting on the two beams
with the strongest received signal power at Rayleigh flat fading channel: the effects
of varying v = |w1[?/|wa|?

of SNR, 7, and « are kept fixed. However, simulation results show that P, generally
varies with SNR, 7, and 4. In order to determine the optimum v, we set 7/T = 0.8
and calculate P, under varying values of SNR and 7. Fig. 5.19 shows how P, varies
with v under different values of SNR and 7. As expected, the optimum value of 7 is
a function of both SNR and 7. However as shown in Fig. 5.19. The bottoms of the
curves are quite flat, indicating there is a fairly wide range of values for < in which
one can achieve close to the minimum probability of error. The value, v = 0dB ,
where we divide the transmitted power equally between two beams seems to work
well for many values of SNRs and #’s.

D. Minimum P.

The minimum probability of symbol error for various SNRs is plotted in
Fig. 5.20. In moving from a SNR value of 15dB to 17dB, the P, is reduced 4 times
using the proposed algorithm. If the SNR is increased to 25dB, rather than 17dB,
P. is reduced by a factor of 10 times. As we can see, the improvement achievable
is highly dependent upon the value of n. When the SNR is kept fixed, P, increases
with 1. However, the increase is not all that significant for n < 5dB. This can be
concluded from the fact that the P, curves for n = 0dB and n = 5dB are quite close
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Figure 5.20: Average probability of error of the proposed algorithm using dual beams
under Rayleigh flat fading channel assumption

to each other. P, increases rapidly as n approaches 8dB. The numerical results show
that there is little improvement when 7 exceeds 10dB. This indicates the algorithm
is unable to make use of the multipath delay when the difference of the signal power
between the beams is too large.
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Chapter 6

Multibeam Smart Antennas for
Multiuser Detection

6.1 Introduction

There has been substantial interest in code-division multiple-access (CDMA)) technol-
ogy in recent years due to its many attractive properties for the wireless communica-
tions {65, 66]. Several air interface standards based on direct sequence code-division
multiple-access (DS-CDMA) have been proposed including the well-known IS-95 stan-
dard. Currently, there is also a strong effort underway to develop wideband CDMA
for the next generation wireless communications systems {67]. However, despite the
many desirable features, DS-CDMA systems are interference-limited and suffer from
the near-far problem.! The current CDMA detection method uses a bank of matched
filters followed by quantizers. Each user is treated as signal at its detection time while
all the others are treated as if they are noise for that user. Fig. 6.1 shows the structure
of this DS-CDMA detection scheme. It is reliable only if the signature waveforms of
all the users have low cross-correlations for all possible delays, and the powers of the
users are not very different. Unfortunately, these two conditions are rarely met in the
real world. This places a bottle-neck on the capacity of the current CDMA systems.

Recent advances in CDMA detection theory show that the shortcomings of
the current CDMA system are not inherent to the system itself. As will be explained
in the next section, a base station has information on all the mobiles in its own cell.
The information about all the users can be used for their mutual benefit through
multiuser detection (joint detection), by considering all users as signals for each other

1In a DS-CDMA system, strong users usually have better quality than weak users. This is known
as the near-far problem. The near-far problem is due to the existence of multiple access interference
at the output of matched filters. Weak users experience relatively higher multiple access interference
and are subject to the interference of stronger users. In addition to the physical distance between
the mobiles and their base station, fading is also another major cause of near-far problem.
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Figure 6.1: The conventional DS-CDMA detection architecture

instead of interference for each other [68, 69, 70].

At the present, major obstacles to the application of multiuser detection in
practical wireless systems are processing complexity and delay [68]. Optimum mul-
tiuser detection is too complex for applications in a system with large user population,
even the suboptimal structures can lead to unacceptable levels of complexity. Many
suboptimal detectors, such as decorrelating detectors and decision-feedback detectors,
require inversion and/or factorization of matrices proportional in size to the number
of users, which is difficult to perform in real time when the number of users is large.
For example, for a system with K users and N bits per user, the decorrelating detec-
tor in an asynchronous case results in the inversion of a NK X NK cross-correlation
matrix. Others such as the successive interference cancellor (SIC) require processing
delay proportional to the number of users. This may lead to unacceptable processing
delays when there is a large user population.

The spatial filtering properties of directional array antennas in wireless com-
munications makes it possible to confine the radio energy associated with a given
user to a particular direction. One such example is 2 multibeam smart antenna in
which multiple narrow beams illuminate the entire coverage area of a base station.
Each beam usually consists of a main beam that covers a certain angular extent.
Although the use of multibeam smart antenna systems in wireless communications is
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a relatively new concept, multibeam smart antenna systems have already been used
in radar systems and have proven to be very effective [71].

In this chapter we propose employing multibeam smart antennas together
with multiuser detection at the base station. We call this approach the multibeam
smart antenna multiuser detection (MSAMD) technique. By using the spatial filter-
ing property of multibeam smart antenna, existing optimum as well as suboptimal
multiuser detectors can be implemented with much lower computational complexity;
in addition, substantial performance improvements can also be achieved as a result
of the capability of multibeam smart antennas to spatially suppress multiple access
interference (MAI). MSAMD can thus reduce the computational complexity of var-
ious existing multiuser detectors as well as improve their performance. Attention is
focused on the analysis of symbol-synchronous systems, however, the analysis con-
ducted in this chapter applies to asynchronous CDMA systems. This comes about
because synchronous CDMA systems are a special case of its asynchronous CDMA
systems. The performance would also be indicative of its asynchronous counterpart.

The chapter is organized as follows. The multiuser detection concept is ex-
plained first in Section. 6.2. In section 6.3, we present the concept and system model
of the proposed MSAMD approach. In Section 6.4, we analyze the use of a decor-
relating detector for MSAMD and introduce the concept of partial decorrelation. A
partial decorrelator-based MSAMD algorithm is then developed. In Section 6.5, its
performance is analyzed and examples are given. The lower bound of probability of
error for MSAMD is established and the sidelobe effect is also analyzed in this section.
Section 6.6 is the summary and outline for future work.

6.2 Multiuser Detection

A conventional DS-CDMA system treats each user separately as signal while consid-
ering all other users as interference or noise. Referring back to Fig. 6.1, we see that
the structure of conventional DS-CDMA detection scheme has a bank of correlators.
The correlators are sampled and decisions are made based on the sampled signals yi.
It is clear that the conventional detector has no sharing of multiple user information.
Assume K users communicate with the base station in symbol-synchronous fashion
over a shared channel. Each user is assigned a finite energy signature waveform
se(t),t € [0,T],k = 1,---, K. Without loss of generality, assume that Si(t) satisfies
the following

T
/0 s2(t)dt = 1 (6.1)

Each user transmits information by modulating that waveform antipodally.
The received signal at the base station, r(t), can be modeled as a superposition of the
K simultaneously transmitted waveforms combined with an additive noise. Assuming
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real channel attenuations, 2 r(¢) is represented by

K
r(t) = g be(7)wr(F)sk(t — 5T) + n(t)
B t € [§T, 5T + T (6.2)

where n(t) is white Gaussian noise with power spectral density o2. bi(j) (be(j) €
{—1,1}) is the kth user’s jth information bit and wi(j) is the energy received from
user k in the jth time slot.

Assuming all possible information sequences are equally likely, we drop the
time subscript and restrict attention to only j = 0. If we denote b(t) = [b,(¢), b2(t), ..., b (¢)]T,

S(t) = [s1(t), s2(t), -.., sk (t)]T, W = diag( /wr, /W2, - - ., /WK ), We have

r(t) = ST(t)yWb(t) +n(t),t € [0, T] (6.3)

When a bank of filters, which is matched to the set of signature wave-
forms S(t), is followed by samplers at time T, the sampled output vector y (y =

[Y1,92,-- -, yx]T) is

y=HWb+2 (6.4)

where z is a colored zero-mean Gaussian noise vector with a covariance matrix c2H.
H is the cross-correlations matrix where the (k,!)th element is

hkl = /;T Sk(t)sl(t)dt (65)

The conventional detector uses eqn. (6.4) to estimate input signals, i.e., the estimated
signal vector b is R
b = sgn[y] (6.6)

Let us take a closer look at the individual elements in y in the above equation to gain
some further insights. The output of the kth correlator, g, is

K
U = Vurbc+ Y huJwib + 2z (6.7)

=117k

Only the first term on the right hand side of the above equation is the recovered data
term while the second and the third terms are due to multiple access interference
(MAI) and the noise, respectively. Since the detection of b; is dependent upon the

2The real attenuation model is convenient for analyzing coherent methods, and can easily be
generalized to the complex case. For a complete treatment of the complex attenuation case, please
refer to [68).
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sign of v, the presence of MAI and noise as evident in Eqn. (6.7) has a significant
impact on the performance of the conventional detector. As the number of interfering
users increases, the amount of MAI increases. In addition, the presence of strong
users introduce higher MAI, thereby obscuring the weaker users as can be seen from
Eqn. (6.7). Weaker users may be overwhelmed by stronger users and cause the well
known near-far problem.

A better strategy is to jointly detect y1,. ..,y Information about multiple
users can be used jointly to better detect each individual user. This is known as
multiuser detection. For example, instead of using Eqn. (6.6) , we apply the inverse
of the cross-correlation matrix H~! to the conventional detector in order to reduce
the MAI, i.e., the estimated signals are

b = sgn[H 'y] (6.8)

This kind of multiuser detector is called decorrelating detector, or simply
decorrelator. It can be shown that this approach provides significant improvement in
performance over the conventional single user detection approach.

The major improvements of using multiuser detection include [68] [69]:

e Significant capacity improvement: more users can be accommodated as a direct
result of MAI reduction.

e More efficient use of spectrum: the reduction of MAI allows mobiles to operate
at a lower processing gain. This leads to lower chip rate which requires less
bandwidth.

e Reduced requirements for power control: since the near-far problem is allevi-
ated, the accuracy of power control needed at the mobiles can be relaxed.

e More efficient power utilization: the reduction of interference can allow mobiles
to transmit less power.

Multiuser detection methods can be divided into two groups: optimum mul-
tiuser detector and sub-optimum multiuser detectors. The optimum multiuser detec-
tor is a maximum likelihood sequence detector. It yields the most likely transmitted
sequence b by choosing b to be the sequence that maximizes the probability of b
being transmitted for a certain received r(t). The optimum detector requires a search
over the 2K possible combinations of the components of vector b, where K is the
number of users. It has a complexity that is exponential in the number of users. The
optimum detector offers huge performance and capacity improvement over the con-
ventional detector, however, its implementation is impractical. A realistic DS-CDMA
systems has a relatively large number of active users which makes the cost of this de-
tector too high. Sub-optimum detectors are less complicated, and offer performance
close to the optimum detector.
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The sub-optimum detectors can be further divided into two sub-groups: linear
multiuser detector and non-linear multiuser detector. The linear detectors apply a
linear transformation to the output of the bank of correlators to reduce the MAI seen
by each user. Important linear multiuser detectors include decorrelating, minimum
mean-squared error (MMSE), and polynomial expansion (PE) detectors. Non-linear
suboptimum detectors use non-linear methods to cancel MAI. Multistage detectors,
decision-feedback detectors, and successive interference cancellers are some of the
well-known non-linear multiuser detectors [68] [69].

Major obstacles to the application of the multiuser detectors in practical
wireless systems include the processing complexity and possible processing delays
[68]. The optimum multiuser detector is clearly too complex for application to a
system with a large number of users. Even the suboptimal multiuser detectors can
lead to unacceptable levels of complexity. In the rest of the chapter, we will focus on
using the multibeam smart antenna to reduce the complexity and processing delays
of various multiuser detectors.

6.3 Applying Multibeamm Smart Antenna to Mul-
tiuser Detection

In this section, we present the concept and system model of multiuser detection with a
multibeam smart antenna used at the base station. We call this approach multibeam
smart antenna multiuser detection (MSAMD). We denote the number of beams as
M, and also assume we have M receivers.

6.3.1 The Benefits of Multibeam Smart Antenna Multiuser
Detection

The concept of MSAMD can be best explained using an ideal multibeam antenna.

By an ideal multibeam smart antenna, we refer to a multibeam smart antenna whose

beam pattern has zero gain in all directions except its main beam. The beam pattern
of its mth beam, g,,(6) satisfies the following

{ lgm(@)|2 =1, for Bmy <6 < Oy

llgm(8)]I2 = 0, otherwise
where m = 1,2,..., M. [61,0mz2] is the main lobe (main beam) area of the mth
beam. The set of {[f11,612]), (021,622, [0nm.1,0m2]} covers the whole coverage

area of the base station. Of course, such a multibeam antenna can not be realized
in the real world, nevertheless, it is useful in analyzing the characteristics of various
multibeam antennas as we will see later in this chapter.
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If the base station is equipped with such an ideal multibeam smart antenna,
Eqn. (6.2) can still be used to describe r,(t), which is the signal received by the mth
beam. More specifically, the output at mth beam can be expressed as

rm(®) = 35 bu() v/ ) sk(E — 5T) + 7om(8),

k=m,

t e [§T,5T + T (6.9)

In the above equation, we have assumed m;, ma,...,m, (L < K) to be the
indices of the L users covered by the mth beam. n,(t) is white Gaussian noise
with power spectral density o2,. b(j) is the kth user’s jth information bit and
bi(7) € {—1,1}. wi(j) is the received energy for user k in the jth time slot.

With the time subscripts dropped and setting j to 0, Eqn. (6.9) can be written
in vector form as the following

Tm(t) = SL(E)Winbm(t) + nm(t), t € [0,T] (6.10)

where

bm(t) = [b"u (t)v bm, (t)1 ) bm(. (t)]T
Sm(t) [8mi (£) Smy (8), <oy Sy (t)]T

Wm = diag(vwml_r\/wmzy' .- 1\/me)

Figure 6.2: An illustration of multibeam smart antenna multiuser detection.
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Comparing Eqns. (6.10) and (6.3), we can see that r(t) contains L users,
with all the other K — L user signals being eliminated by the multibeam smart
antenna. Since all users are located randomly, L would be much smaller than K
when M is large. If multiuser detectors can be used at each beam output to jointly
detect only those L users, the computational complexity can be reduced. If all users
are equally spread in angle, L equals K/M. In this situation, only M inversions of
matrices of the size (K N/M) x (K N/M) are needed, instead of invertinga NK x NK
matrix if we want to decorrelate the asynchronous DS-CDMA system with K users
and N bit/user. This corresponds to a factor of M? reduction in computational
complexity. 3 More importantly, each user will be detected with less probability of
error since the MAI seen at the output is greatly reduced by the multibeam smart
antenna. A point that is worth making here is that multibeam smart antenna not
only reduces the MAI from other users in the same cell, but also reduces the MAI
from users in other cells. Users in other cells are not included in the current multiuser
detection schemes due to either the lack of information about them or the complexity
of including them in multiuser detection. Taking this into consideration, the benefit of
multibeam smart antenna multiuser detection over conventional multiuser detection
scheme would become even greater.

Fig. 6.2 illustrates the performance of multiuser detection implemented with a
multibeam smart antenna. With the ability of a multibeam smart antenna to spatially
filter out other users and interferences, Users s1, s2 and s3 can be jointly detected
with only one interference I5 which originates from another cell. As is evident in this
illustration, MAI from Users s4 to s9 which originated from within the same cell as
well as I1 to I4, which are from other cells, are all eliminated through spatial filtering
by the antenna.

The practical situation is less ideal. In particular, antennas with very low
side lobes are difficult and expensive to build, which means the ideal case we just
mentioned above usually does not hold — the user signals are received from the side
lobes as well as the main beam. In a system with a large number of users and mod-
erate side lobes (—15dB to —20dB), the MAI from the side lobes cannot be ignored.
To make the situation more complicated, users are often not equally distributed in
angle, and are likely to may move with time, which results in the addition/removal
of users in each beam. Despite of all these issues, the ideal multibeam antenna is
an important abstraction for the analysis of MSAMD. For example, the probability
of error obtained from an ideal multibeam antenna serves as the lower bound of the
achievable performance for various MSAMD structures as will become evident later
in this chapter.

3Gince inversion of an X x X cross-correlation matrix requires computation complexity of O (X 3)
(72, 73].
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6.3.2 System Model
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Figure 6.3: The beam pattern of a practical multibeam antenna
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In deriving the system model of MSAMD, we use a practical multibeam
antenna. Fig. 6.3 shows the pattern of one beam in a practical multibeam antenna. It
has a main-lobe which points in a particular direction, the beam direction, and minor
lobes (side lobes) which point in other directions. Between the lobes are located the
nulls in the antenna pattern, i.e., directions along which the radiation assumes a local
minimum.

Eqn. (6.9) can be revised to include the effects of multibeam smart antennas
that are less than ideal. Suppose the radiation pattern of mth beam is denoted by
gm(0), where m =1,..., M. 7(t), the output at the mth beam can be re-written as

ro8) = 32 be I/ G)e4(t = ST (80 + ()
t € [§T,iT + T} (6.11)
If we write Eqn. (6.11) in vector form we have
rm(t) = ST(t)Wgm(©)b(t) + nm(t),t € [0, T] (6.12)
Where

gm(©) = diag(gm(61), gm(62), .- gm(fK))
b(t) = [bl (t)’ b2 (t)’ ey bK(t)]T
S(t) = [sl(t)’ s2(t), - SK(t)]T
W = diag(y/wi, Wz, -, VWk)
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When a bank of filters, which is matched to the set of signature waveforms
S(t), is followed by A/D converter that takes samples at time 7', the sampled output
vector y (¥ = [¥1,¥2,---,yx]T) can be expressed as

y = HWg,(0)b(t) + z (6.13)

where z is a colored zero-mean Gaussian noise vector with covariance matrix o2H.
H is the cross-correlations matrix with the (k,!)th element as

T
hat = /0 se(t)si(t)dt (6.14)

Without any loss of generality, we assume that the gain of the main beam
gain to be unity, * Eqn. (6.11) can be rewritten as

L
rm(t) = D be()se(t — 3T)y/we(5)
k=1
+ S0 b(d)se(t — 3T)we(3)gm(8e) + nem(2),

q#1,,L
te [jT, T + T] (6.15)

Compared to Eqn. (6.10), the second term in Eqn. (6.15) is caused by the effects of
the non-ideal multibeam smart antenna.

6.4 Decorrelator-Based Multibeam Smart Antenna
Multiuser Detection Algorithms

In this section, we propose an MSAMD algorithm that is based on the widely used
decorrelating detectors.

The decorrelating detector has been shown to be independent of the energy
of the interfering users and exhibits the same degree of near-far resistance as the op-
timum multiuser detector {74, 75]. Because of its many advantages, the decorrelating
detector has probably received the most attention in the literature. However, as we
have pointed out before, the inversion of the cross-correlation matrix which is asso-
ciated with the decorrelating detector requires considerable computation time when
the matrix is large.

Multibeam smart antennas give us the capability to reduce the size of this
correlation matrix. Decorrelation can be carried out among a smaller number of users.

4For an ideal multibeam smart antenna, matrix g,,(©) then contains only L 1’s with all the other
elements being 0.
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We call this approach partial decorrelation to differentiate it from the commonly used
decorrelation process. ?

6.4.1 Partial Decorrelation

Without loss of generality, assume 1,2, ...L are users that have higher powers and the
total number of users is K. We divide all the users in Eqn. (6.13) into two groups:
those L users who have relative high powers and the rest K — L users who have low
powers, ® and partition the cross-correlation matrix H accordingly

Hll I H12
H=| c— e — ——__ (6.16)
Hy, | H»
[ hii--- R l hyr+1y--- hik ]
I - . .
hri--- hrr I hrit+1)--- hrk
= S T T T (6.17)
hieenyr-- haeyr | Ry Re+nk
. | A
hgi1--- hker | hr(+1) -+ hrk

We propose a multiuser detection method, which we call partial decorrelation,
for detecting L strong users at the mth beam output as the following

b,, = sgn[Hfllym] (6.18)

where by, = [b1(t), b2(t), -, b2(E)]T. ¥m (¥m = [v1.¥2,-.-,uz]T) is the output of
matched filter bank which is sampled at ¢ = nT (T is the symbol period). ym, thus
satisfies the following equation:

Ym = [Hu ng]ng(@)b -+ Zm (6.19)

where z,, is a colored Gaussian noise term with power spectral density oc?Hj;.

In Eqn. (6.18), only the cross-correlation matrix involving those users having
higher powers is inverted. At the output of each beam, multiuser detection is carried

S5In the rest of the chapter, the term decorrelation refers specifically to the conventional decorre-
lation scheme in which all user signals are decorrelated at the same time.

6For the present, assume the threshold for dividing these two groups are known. In the sections
to follow, we will show how to choose this threshold depending on factors such as bit-error rate
requirements, sidelobe levels, etc.
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out by using mainly those signals received by the main lobe of that beam, while
regarding the other users as noise. Since only H;;! needs to be computed instead of
H™!, computational complexity is greatly reduced.

6.4.2 The Algorithm and Structure of Partial Decorrelation
Using Multibeam Smart Antennas
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Figure 6.4: Partial decorrelation using a multibeam smart antenna

Fig. 6.4 shows a possible structure of applying multibeam smart antennas to
partial decorrelation. In this figure, there is one corresponding partial decorrelator
for each beam, and one corresponding combiner for each user. The output of each
beam is first fed into a bank of K matched filters, where K is the total number
of users that a base station can support on one CDMA carrier frequency. Strong
outputs from the matched filters are then selected for partial decorrelation. Since
it is sometimes necessary to include a user in more than one partial decorrelator,”
a selector routes the outputs of partial decorrelation pertaining to each user to the
corresponding combiner upon the completion of the partial decorrelation operation.
Various combining algorithms, such as selection combining, maximal ratio combining,
or equal gain combining as described in Chapter 4, can be used for the combiners.

The system shown in Fig. 6.4 has one obvious drawback - there are too
many matched filters. Since a user signal does not need to be used in all partial

"Multipath propagation can cause a user signal to be received by multiple beams. If a user signal
is very strong, it is also possible to be received by the sidelobes of other beams. In either case, the
user signal may have to be included in partial decorrelation in the beams that receive it in order to
reduce the multiple access interference it may cause to other users.
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decorrelators, we only need as many matched filters that the partial decorrelator
needs in each beam. But, two problems need to be solved before we can do this:

1. We need to determine which users should be retained for partial decorrelation
in each beam without dedicating a matched filter to each user.

2. Since users move from time to time in a wireless network, we need to determine
how to keep updating this decision in order to reflect changes in user location.

Research results obtained by other workers on the characteristics of AOAs,
including our measurements, show a slow rate of change in mobile AOAs in practi-
cal propagation environments [76, 57]. This suggests the suitability of using block
adaptation to solve the above problems. 8

RG] :Q » \C‘ Time average
rz(l) :‘ » \C‘ Time sverage

T M") :’ » \C Time average

Sk(I)

Figure 6.5: A user selection method

We reserve a few matched filters in each beam and transform them into a
“matched filter pool”. When a user first appears in a cell, a matched filter is selected
in each beam and “tuned to” that user to measure its signal strength. Time averaging
is used in order to filter out the possible fading/fluctuation in each user signal. Once
the user signal strength is measured in each beam, these matched filters are released
to the “matched filter pool”, and can be used for other users. For each user, the
user selection and signature waveform generation processor makes the decision of
which decorrelator(s) need to include this user based on the results of its signal
strength measurement. This decision is then updated using block adaptation. When

8There are usually two approaches to the problem of adaptation: (1) block estimation; (2)
Adaptive estimation. In block estimation, the available data is divided into individual blocks, each
of length N. The block length N is usually chosen short enough to ensure pseudostationarity of the
input data over the length N [77, 78].
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updating the decision, the same process is used again. The adaptive rate depends on
parameters such as beamwidth, signal bandwidth, and the environment. In addition
to block adaptation, the BER of each user is constantly estimated and monitored.
When the BER rises above a certain pre-defined threshold it triggers the processor
to update its decision. ° Fig. 6.5 shows a diagram of this decision making scheme.
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Figure 6.6: An improved method of partial decorrelation using a multibeam smart
antenna

An improved structure of applying multibeam smart antenna to partial decor-
relation is shown in Fig. 6.6.

6.5 Performance Analysis and Simulation Results

In this section, we compare the performance of the proposed partial decorrelator based
MSAMD algorithm with those of conventional detectors and decorrelators using a
single antenna. we will show that

e The proposed MSAMD algorithm always achieves better performance than a
conventional detector.

e The proposed MSAMD method can achieve performance similar to or better
than that of a decorrelator by carefully choosing the sidelobe levels or employing
some power control. :

9The threshold is determined depending on the practical situation. For voice communication,
BER from 10~2 to 10~ may suffice.
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The metric used for comparison is probability of error. In making the compar-
ison, we assume that the selection combining algorithm is used in the combiners. Se-
lection combining is selected not only for the simplicity in analyzing its performance,
but also, in many cases, it can yield performance close to equal gain combining or
maximal ratio combining.

6.5.1 Error Probability Formula

Since it is assumed that selection combining is used in the combiners, Eqns. (6.19)
and Eqn. (6.18) can be used to derive the error probability formula. For a specific
user in the mth beam, we only need to substitute m in Eqns. (6.19) and Eqn. (6.18)
with the beam that has its partial decorrelator output is selected at the selection
combiner.

Substituting Eqn. (6.19) into Eqn. (6.18) yields
bm = sgn{[I H'H3]Wgn(©)b(t) + Hii'zm} (6.20)

where I is the L x L identity matrix, and L is the number of users included in partial
decorrelation. If we divide b,W and © into two parts as the following

b = [by bm-]T (6.21)
w=| W0 (6.22)
0 W,
0 =1[0,0,)7 (6.23)
where
bm = [b1,---,bL]T
bm‘ = [bL+1’ R} bK]T
Wl - dia'g[\/wla"'a\/le
W2 = diag[va+1,---,va|
G)1 = [91,'”,9[,]
62 = [€L+1: R GK]
K = The total number of users
And denote
F = H'H,, (6.24)
Eqn. (6.20) then becomes
B = 5gN[W1gm(01)bm(t) + FW29m(02)bp-(t) + I (6.25)
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where T' =HJ;'2,, is the colored Gaussian noise term with covariance ¢E, and

E = Hl—llHll(HﬁlT

= (H)T (6.26)

Denoting the expectation over the ensemble of independent, uniformly distributed b
as E(), and the probability of error as P[ |, the probability of error for User 1 can be
expressed as !°

Per p= Plb, = 1|6y = —1]

P[\/ wh + (szgm(ez)Tbm- (t) + I‘)l > 0!b1 = —1]
=  E(P(n > v — TE L1 fig-0)bi/T59m(65)))
E(sér So... Q(\/irl—z:j;m fx(j—L)bj\/‘”_jym(oj)»

Volen

VBT~ oy F1G—L)b5 VT9m (65)

— 5 1- Zme. Q( ] L+i/:2e J J Jj )
1

(6.27)

where fi;_r) and ey are the (1,(j — L))th and (1, 1)th elements of F and E respec-
tively; Vb,,- means “for all possible values of b,,-”. The Q-function is as follows

1 oo —y?
T) = —F= e —)d 6.28
Qe) = 7= [~ exp(—5)dy (6.28)
The error probability of a decorrelator is [74]
Perea = Q(—52 (6.29)
g gn

Where gy; is the (1,1)th element of G, and G = H™L.

The error probability of a conventional detector is obtained by setting L to
1 and gm(6;) to 1 in Eqn. (6.27)

VOI-3 103 fig-nbs VI3
Pare= g S, QU it/

(6.30)

In order to facilitate comparison, the single user bound are also given here.!!

Py, , = Q(@) (631)

103ssume g, (6:) = 1 as before.

11The single user bound is the probability of error when there is no multiple access interference
in the systems, i.e., the errors are caused by noise only. The single user bound serves as the lower
bound on the performance of any detectors including the proposed MSAMD method.
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where w is the power of the associated user.

Eqns. (6.27), (6.29), (6.30), and (6.31) are used to compute the error prob-
abilities. Since the probability of error for the proposed MSAMD method as shown
in Eqn. (6.27) is dependent on the beam pattern gm(f;), let us first derive its lower
bound of probability of error for the proposed algorithm before we start to compare
the performances.

6.5.2 The Lower Bound of Probability of Error
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Figure 6.7: The Q-function

bl

Eqn. (6.27) is the equation for calculating the probability of error with arbi-
trary antenna patterns g, (6;). Apparently, different g, (6;) gives different values for
the probability of error. What is the antenna pattern that gives us the smallest prob-
ability of error given that all other conditions remain unchanged? In another word,
what is the lower bound of probability of error for the proposed MSAMD method in
relation to the multibeam smart antenna patterns?

To answer this question, we show a plot of Q-function in Fig. 6.7. Q-function
satisfies the following equation:

Q@) == * exp(ZL)ay (6.32)

It is obvious from Fig. 6.7 that 2

12A5 can be seen from Fig. 6.7, Q-function decreases with z in general. But the rate of decrease
increases with z for z < 0 while that rate decreases with z for z > 0.
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-Q—(ﬂ’)%Q—(ﬂﬂ>Q(x) forz >0,a#0
ng—a!-;ng-#-a! = Q(Z’) forz>0,a=0

(6.33)

VBT- 31y f1=0bi /TF9m (65)
\/a"eu

), there is a corresponding term of Q(

There are 2X-L terms of Q(

Q( VEI=3 5 3 fi-1)b5 /T39m (85) VY13 f15-1)b5 T59m (65) )

\/dzen \/62611
Use Inequality (6.33), we have the probability of error for multibeam partial detection

as

) in Eqn. (6.27). For each

Perp > Q(\/—f'-,?———:;) for gm(8;) # 0,5 # 1
P p = Q=) for gm(8) = 0,5 # 1
(6.34)

In other words, the ideal multibeam antenna patterns give the lowest probability of
error.

Having established the lower bound of probability of error, we wish to inves-
tigate its relation with that of decorrelation. In particular, we want to know how the
proposed MSAMD algorithm using an ideal multibeam smart antenna compares to
decorrelation with respect to the probability of error.

If G is defined as the inverse of matrix H, we can express G in terms of
partitioned matrix of H. Using Eqn. (6.24), and H;; = Hj,, we have '

G = H!
- -1
Hy, | H;,
| Hy | Hy,
[ H! + FC™'FT | —FC™!
= —_———— —_ — — —_-— (6.35)
(-FC™H)T | cCt
Where
C = H22 - H21H1-11H12 = H22 - H'sz;IIH12 (6.36)

13For the detailed derivation of the inverse of a partitioned matrix, see [79].
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We can use Eqns.(6.29), and (6.34), and (6.35) to compare the performance
of the proposed MSAMD algorithm using an ideal multibeam smart antenna with
that of conventional decorrelation. The comparison cannot be made straight forward
as we can see from Eqn.(6.35) that g;; is equal to e;; + My, where my; is (1, 1)th
element of M = (FC~'FT). But it turns out that we can prove that Eqn. (6.34)
always gives lower probability than Eqn.(6.29). The proof is provided in Appendix
B.

The proposed MSAMD algorithm using an ideal multibeam smart antenna al-
ways yields lower probability of error than the decorrelator, however, the extent of per-
formance improvement depends also on the specific structure of the cross-correlation
matrix H and the number of beams, which determines the number of users that can
be jointly detected. This is not a surprising result, as there are fewer user signals
in the output of an ideal multibeam smart antenna, the multiple access interference
(MAI) each user experiences become less severe and thus yields few errors. What is
interesting is using a non-ideal multibeam smart antenna. This is the question to be
answered in the next sub-section.

6.5.3 Sidelobe Effects

One important thing to notice is that the proposed MSAMD algorithm using a prac-
tical multibeam smart antenna is no longer near-far resistant. That is, the probability
of error of each user is also dependent upon the power levels of other users. This is
in sharp contrast to the decorrelator for which the error probability of each user is
independent of the power levels of others.

Comparing with the Conventional CDMA Detector

Eqns.(6.30) and (6.27) enable us to compare the performance of the proposed MSAMD
algorithm using an non-ideal multibeam smart antenna with that of a conventional
CDMA detector. In general, Eqn.(6.27) has fewer terms than Eqn.(6.30). This is true
even for the worst case when all the users are “crowded” into the coverage area of a
single beam. Although, K, the total number of users, is the same for both equation in
this case, L+1 in Eqn.(6.34) is still larger than 2 since we employ multiuser detection.

It can be proven that the proposed MSAMD algorithm using a multibeam
smart antenna always gives lower probability of error than the conventional CDMA
detector. The proof is as the following:

VBI-3F | 1 Fi-1)bi VT (65)
Perr_p = ER’L—T Eme. Q( 4 L+i/32¢11 = - 2 )

VEI= N f15-£)55 /TF9m (65)
< 3 1 Svb.e Q( W=D 2 1(:2:;)11\/"719 f] )
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V-3, fii-1bi /5
< Tw,. QT Rmlen
= Perr ¢ (637)

The second part of the inequality is true because

Qz+a)+Q(z—a) <Q(z+b) +Q(z —b) forany z > 0,6>a >0 (6.38)

Comparing with the Decorrelator

MSAMD using a practical multibeam smart antenna has higher probability of error
than MSAMD using an ideal multibeam smart antenna. In addition to the specific
structure of the cross-correlation matrix H, the radiation pattern of the multibeam
smart antenna g,(6;) also plays an important part. To make the situation more
complex, unlike the conventional decorrelation detector, the probability of error for
each users also depends on the power of other users as well. However, with careful
design of gi,(8;), the proposed MSAMD algorithm can achieve better than or close
to the probability of error of the conventional decorrelation detector as we will show
in the next two examples.

Userl User2  User3

|

Users Userd

0 (X173 150 2 °

Figure 6.8: First order approximation of a practical multibeam smart antenna

Example 1

Consider a 2-beam multibeam smart antenna. We use a first order approxi-
mation of a practical multibeam smart antenna as shown in Fig. 6.8. It has constant
main lobe and sidelobes which are at 0dB and zdB respectively. Users 1,2 and 3 are
the three users received by the main lobe of beam 1 while Users 4 and 5 are received
by the main lobe of beam 2 and the side lobes of beam 1. Users 1, 2 and 3 have their
SNRs set at 13dB, 10dB and 6dB respectively. The other two users, i.e., Users 4 and
5 have variable SNRs with respect to the SNR of Users 1.

Figs. 6.9, 6.10 and 6.11 show the probability of error for Users 1, 2 and
3, with varying power levels of Users 4 and 5 (relative to User 1). As well, three
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Figure 6.9: Simulation results for the proposed MSAMD algorithm: probability
of error for User 1 with SNR(1)=13dB, SNR(2)=10dB, SNR(3)=6dB, and varying
SNRs(i), i = 4,5 (sidelobe =-10dB, -20dB, -30dB)

Probabuiity of efrof lof user 2

-4 A 2 " e S

10 —h
-10 -8 -8

-2 ] 2
SNRA(I)-SNR(2)

Figure 6.10: Simulation results for the proposed MSAMD algorithm: probability
of error for User 2 with varying SNRs(i), ¢ = 4,5, SNR(1)=13dB, SNR(2)=10dB,
SNR(3)=6dB (sidelobe =-10dB, -20dB, -30dB) .

106



different sidelobe levels are used, namely, z = —30dB,—20dB and —10dB. The
probability of error for a decorrelation detector is given in those figures for the purpose
of comparison. This example corresponds to a strong MAI case in which the MAI
renders the conventional single user detector completely useless.

As we can see in Fig. 6.9 the probability of error for User 1 decreases with
a reduction in the levels of sidelobes. This result is to be expected. However, the
probability of error increases with increases in the powers of Users 4 and 5, when
signals arrive through the side lobes of beam 1, although it is independent of the
powers of other users under partial decorrelation, i.e., User 2 and User 3. This
behavior is different from that obtained using decorrelation detectors, which have
probability of errors independent of the energies of all the other users. In Fig. 6.9,
curves corresponding to sidelobes of —20dB and —30dB give much lower probability
of error than that of decorrelators. This can be explained by the effect of the high
attenuation at the side lobe — signals from Users 4 and 5 are so well attenuated
that they contribute much less to the resulting multiple access interference when
partial decorrelation is carried out. It is worth pointing out that the reduction in the
probability of errors are very significant.

By contrast, the curve that corresponds to the sidelobe level of —10dB yields
probability of error lower than or close to that of the decorrelator when the power
levels of Users 4 and 5 are comparable to User 1. Its performance is degraded as
the power levels of Users 4 and 5 surpass that of User 1. The performance of User 1
would probably not be satisfactory in this case. However, if we exercise a little bit
of power control to restrict the power of multiple access interference received from to
certain limits, this problem could be remedied.

Figs. 6.10 and 6.11 give results for Users 2 and 3. It is easily seen that similar
conclusions can be made for User 2 and User 3 as well, i.e., if the MAI power from the
other users is controlled, the performance for Users 2 and 3 goes from unsatisfactory
to satisfactory.

When carrying out the simulations in Example 1, we used a first order ap-
proximation for the real multibeam smart antenna patterns. By varying the sidelobe
level, we identified the importance of sidelobe level control in determining system per-
formance. Next, we carry out an analysis of the proposed MSAMD algorithm using
real multibeam smart antenna patterns. Naturally, we do not have a closed form for
the probability of error. We overcome this by resorting to Monte-Carlo simulations.

Example 2

The same 5-user DS-CDMA system and 2-beam multibeam smart antenna
are used, however, the radiation pattern is different. In Fig. 6.12 the beam patterns
are given. These are typical radiation patterns for rectangular microstrip antennas
[71]. Again, as in example 1, the SNR values for User 1, 2 and 3 are set at 13dB, 10dB
and 6dB respectively. The other two users have variable SNR values with respect to
users 1, 2 and 3. To reduce the computation involved, the angles of arrival (AOA)
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Figure 6.11: Simulation results for the proposed MSAMD algorithm: probability
of error for User 3 with varying SNR(i), ¢ = 4,5, SNR(1)=13dB, SNR(2)=10dB,
SNR(3)=6dB (sidelobe =-10dB, -20dB, -30dB)

Figure 6.12: Beam patterns used in Example 2
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Figure 6.13: Simulation results for the proposed MSAMD algorithm: probability
of error for User 1 with varying SNR(i), i = 4,5, SNR(1)=13dB, SNR(2)=10dB,
SNR(3)=6dB
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Figure 6.14: Simulation results for the proposed MSAMD algorithm: probability
of error for User 2 with varying SNR(i), ¢ = 4,5, SNR(1)=13dB, SNR(2)=10dB,

SNR(3)=6dB
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Figure 6.15: Simulation results for the proposed MSAMD algorithm: probability
of error for User 3 with varying SNR(i), i = 4,5, SNR(1)=13dB, SNR(2)=10dB,
SNR(3)=6dB

for Users 1, 2 and 3 are set to be 90°, 80° and 110° respectively, while the AOAs for
Users 4 and 5 are assumed to be random and uniformly distributed in [180°, 360°).
Figs. 6.13 to 6.15 show the probability of error for Users 1,2 and 3 with varying power
levels for Users 4 and 5.

We can see that the results in Figs. 6.9 to 6.11 are similar tc the curves
corresponding to sidelobe level of —30dB in in Figs. 6.13 to 6.15.

6.6 Conclusions

In this chapter we proposed and analyzed a multiuser detection scheme which differs
from those proposed by others in that it employed a multibeam smart antenna at
the base station. We have shown both analytically and numerically that this ap-
proach results in a significant reduction in computational complexity compared with
the conventional multiuser detection methods. We then introduced the concept of
partial decorrelation and developed an effective algorithm for partial decorrelation
using a multibeam smart antenna. The proposed multibeam multiuser detection ap-
proach would be most useful for implementing multiuser detection in CDMA systems
in which many users access the system simultaneously. It is a simple and effective
way of achieving the performance of multiuser detection without the penalty of com-

putational complexity.

110



Chapter 7

Conclusions

This thesis is devoted to the development of algorithms and structures that can
improve the quality and capacity of the existing and future wireless networks using
multibeam smart antennas. The main contributions made by this thesis to the smart
antenna technology are in two areas: (1)downlink transmission algorithms in FDD
systems; (2)multibeam smart antenna algorithms for CDMA multiuser reception.

Developing effective downlink transmission algorithms for FDD systems is
a major challenge facing researchers of smart antenna technology today. One main
accomplishment of this thesis is the development of an effective downlink multibeam
smart antenna transmission algorithm. The algorithm is based on our measurement
data of an 8-element circular array and FDD smart antenna simulations using the
Geometrically Based Single Bounce (GBSB) model. The results of the analysis and
simulations reveal that the correlation of signal powers at the receive and transmit
frequencies are high in beams that receive strong signal powers, while the correlation
at the transmit frequency between beams with strong received signal powers is usually
very low. Based on this, we have developed an algorithm that selects n beams which
have the strongest received signal powers (n should be much smaller than the total
number of beams in the multibeam antenna) for transmission. The signal transmitted
by each beam is multiplied by a complex weight and then adjusted with different
time delays. The weights and time delays can be determined using criteria such as
minimizing probability of error. This algorithm improves the system performance in
both flat fading and frequency selective fading channels. For flat fading channel, the
time diversity can be explored by weighting and staggering the transmission delays
among different beams to combat the flat fading. For frequency selective fading, the
channel delay spread can be controlled by adjusting the relative transmission delays
on different beams. Long delays can be avoided to reduce the burden of equalization.
For systems using a training sequence for equalization, this reduces training sequence
length and improves system spectrum efficiency. Our simulation results show 4 times
reduction in probability of error over the method which simply transmits on the beam
with the strongest received signal. It is assumed the system is a QPSK system under
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flat Rayleigh fading with SNR= 17dB. It increases to 10 times for SNR= 25dB.

In developing this downlink transmission algorithm for smart antennas, the
GBSB model is used for vector channel simulations in FDD systems. The GBSB
model was first proposed by Liberti and Rappaport in {43, 44] to simulate wave
propagation in multipath environments based on the geometrical properties of the
environment. There have not been any reports in the literature on its use in the sim-
ulation of FDD systems. As a matter of fact, there has been a dearth of information
reported in the literature on FDD smart antenna systems. For the most part this
is probably due to the lack of availability of “good” propagation models which can
be used for FDD simulations. Since the GBSB model is geometrically based, it is
more easily adapted to FDD simulations than other models. Our use of the GBSB
model to simulate FDD smart antennas is among the first of its kind. Our simulation
results indicate the suitability of the GBSB model in such simulations although some
improvements may be needed with regards to capturing the characteristics of wave
propagation where the wave has more than one bounce. This could be an interesting
research topic.

Another main contribution of this thesis is, for the first time, multibeam
smart antennas have been applied to multiuser detection. Currently, there is a strong
effort underway to develop wideband CDMA for the next generation wireless commu-
nications systems [67]. As a result, CDMA multi-user detection has become a very
active research area in recent years. At the present, major obstacles to the appli-
cation of multiuser detection in practical wireless systems are processing complexity
and delays [68]. By applying the multibeam smart antenna to multi-user detec-
tion, the computational complexity and delays can be greatly reduced. Our focus is
on decorrelator-based algorithms, in particular, we modified the popular decorrela-
tion multi-user detection scheme and developed a new method, which we call partial
decorrelation. Instead of decorrelating all users at the same time, which is a complex
and time-consuming process, partial decorrelation attempts to decorrelate only those
users that have higher powers. Since the strength of different multipath component
received by a typical multibeam antenna is very different — there are usually several
strong multipath components coupled with many weak ones - partial decorrelation is
especially suitable for multibeam smart antenna multi-user detection. The outputs
from the partial decorrelators are combined using diversity combining algorithms.
Our simulation results show performance close to or better than that of a decorre-
lator that uses the selection combining algorithm. The proposed multibeam smart
antenna multiuser detection approach would be most useful for implementing mul-
tiuser detection in CDMA systems with a large number of simultaneous users. Such
systems require multiuser detection methods which are less computationally intensive
to meet the practical requirements.

When developing the multibeam smart antenna multiuser detection algo-
rithms, our focus has been on using decorrelation-based detectors. The results ob-
tained in this thesis can be expected to be applicable to other methods of multibeam
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smart antenna multiuser detection methods, such as those using decision feedback or
SIC multiuser detector. However, more research is needed to fully understand the
behavior of multibeam smart antnena multiuser detection under these circumstances.
This can be an interesting area of future research.
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Appendix A

Description of the 8-Element Array
Vector Channel Sounder

The 8-element circular array vector channel sounder uses pulse compressing sounding
technique as described in Section 2.4.5. It consists of a transmitter and a receiver
(including a Sun Sparc workstation). It is designed and developed by the Wireless
Technology Group at McMaster University to measure the spatial channel character-
istics of the wireless channel at the PCS frequency band (around 2GHz).

A.1 Transmitter

The transmitter of the channel sounding system is capable of transmitting at two
frequencies. They can be choosen to be the same as the up-link and downlink fre-
quencies used in most PCS standards in order to measure the characteristics in a
FDD system. The carriers at these two frequencies are each modulated by the same
pseudo-noise (PN) sequence at a clock rate of 5 Mbps. The length of the PN sequence
is 255 bits.

The transmitter is mounted on a mobile cart that can be wheeled about just
like 2 mobile user. A monopole antenna is mounted on the cart at a height of about
1.6 m above the ground.

A.2 Receiver

The receiver is made up of an 8-element circular antenna array. The array elements
are 8 identical dipole antennas. The signal received from each element is down-
converted coherently to produce In-phase (I) and Quadrature (Q) baseband signals.
The Baseband signals are then sampled at a clock rate of 10MHz by an A /D convertor

and stored by a Sun Sparc workstation.
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A.3 Data Collecting and Processing

Data are collected at a number of places around the McMaster Campus, including
indoor environments such as the CRL building. By wheeling the transmitter about
the McMaster Campus and placing the receiver at various locations, such as the
rooftop of the Engeering Building and CRL building, the front of CRL (Lamp post
heigth), a large amount of data have been collected.

One of the main goal of this measurement campaign is to collect a large
amount of vector channel impulse responses that can later be used for smart antenna
simulation and analysis. As described in Section 2.4.5, the vector channel impulse
response can be obtained by correlating the baseband signals recorded by the Sparc
workstation with the same PN sequence used by the transmitter.

For the purpose of multibeam smart antennas, the vector channel impulse
response has to be further processed to simulate the channel response seen by each
beam of the multibeam antenna. To achieve this, as shown in Figure 4.8, different
weights are generated which in effect give us the desired multibeam antenna patterns.
Figure A.1 shows an 8-beam pattern which was used in processing the collected data.

Raodiation patterns of the multi—beam antenna
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Figure A.1: The patterns of a simulated 8-beam multibeam antenna
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Appendix B

The Proof of Eqn. (6.34) Having
Lower Probability of Error Than
Eqn.(6.29)

Since H is a cross correlation matrix, H is positive definite. ! From the property
of positive definiteness it follows that the inverse of a positive definite matrix is also
positive definite [72]. Thus from Eqn. (6.35) we can see that G is also positive
definite. Because C is a principle minor of G,? it follows from the properties of
positive definiteness that C is also positive definite. Since the inverse of a positive
definite matrix is positive definite, C~! is also positive definite. This proves m,;, the
(1, 1)th element of M = (FC™'FT), is positive. Thus we have proven g;; < e;; which
means Eqn. (6.34) always gives lower probability of error than Eqn.(6.29).

!Definition of positive definite: A real, non singular matrix A is called a positive definite matrix
if and only if the corresponding quadratic form XTAX is positive, where X is any column vector.

2If we strike out equal numbers of rows and columns from a square matrix, the remaining elements
form a minor of the original matrix. When the struck out rows and columns also have the same
indices, the resulting minor matrix is located symmetrically with respect to the main diagonal of
the original matrix, we call the corresponding minor a principle minor.
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