SLOPE HYDROCLIMATOLOGY AND HYDROLOGIC RESPONSES TO GLOBAL CHANGE IN A SMALL HIGH ARCTIC BASIN

BY

KATHY L. YOUNG, B.Sc., M.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Doctor of Philosophy
DOCTOR OF PHILOSOPHY (1995) McMaster University
(Geography) Hamilton, Ontario

TITLE: Slope Hydroclimatology and Hydrologic Responses to Global Change in a Small High Arctic Basin

AUTHOR: Kathy L. Young, B.Sc. (University of Toronto)
 M.Sc. (University of Toronto)

SUPERVISOR: Dr. M.-K. Woo

NUMBER OF PAGES: 167 (cvxvii)
BROAD SIGNIFICANCE OF STUDY

Thesis Title: Slope Hydroclimatology and Hydrologic Responses to Global Change in a Small High Arctic Basin.

This study evaluated the present-day interactions between the atmosphere, soils, water flow and vegetation patterns of a remote area of Northern Canada. This study showed that microclimatic processes (temperature, radiation) are often the driving force behind snowmelt and ground thaw. This study also showed that it was possible to use limited field camp data (e.g. 2x daily cloud, temperature, wind) to simulate radiation and energy fluxes for a variety of surfaces. This suggests the model's utility by ecologists and earth scientists working in other areas of the Arctic. This thesis also showed that it was possible to use point data to simulate melt and evaporation for a small High Arctic basin and to investigate some possible implications of climate change to water movement. This last stage of the study will be particularly relevant to climatologists, ecologists and geomorphologists working in the north.
SLOPE HYDROCLIMATOLOGY AND HYDROLOGIC RESPONSES TO GLOBAL CHANGE IN A SMALL HIGH ARCTIC BASIN
ABSTRACT

An understanding of the linkages between atmospheric-terrestrial and hydrologic processes is required before ramifications of future global changes to arctic environments can be assessed. Part of this study focussed on understanding the present-day spatial and temporal variability of topography, pedology and botany in relation to the local microclimatology and hydrology of a High Arctic site. Fieldwork (1989–1993) at Hot Weather Creek, Ellesmere Island, N.W.T. revealed the direct (i.e., radiation, temperature), recurrent i.e., (ground thaw, snow cover) and long-term patterns (e.g. soils, vegetation) arising within a small area (1km²).

This study also indicted the importance of radiation as the driving force behind snowmelt patterns, ground thaw and soil moisture. Subsequently, much emphases was placed on the development and testing of a solar radiation model which employs summer field camp data (twice-daily air temperature and cloud information). The successful performance of this model especially when averaged over a four-day period suggests its utility in other areas of the Arctic where similar input data are available. The radiation model was employed within a surface energy balance model which similarly uses limited field camp data (twice-daily temperature, wind and cloud data) obtained at a point. The testing of this model with measured net radiation from both level and sloping surfaces with varying surface conditions, suggest that it is possible to use limited input data from a point to calculate surface energy fluxes (Q^*, Q_e, Q_h, Q_s) for a range of sites.

The surface energy balance model was used to simulate melt and evaporation for a small, continuous permafrost basin (Heather Creek, N.W.T.) during two contrasting summer seasons (1989—cool/wet and 1990—warm/dry). Model performance at the basin scale was
assessed in a simple water balance framework with both years showing simulated long-term storage of less than 20% of total precipitation input. Hypothetical alterations in atmospheric and terrestrial impacts of +/- 10% revealed that slight changes in aerosols, cloud amount and temperature have more affect on basin hydrological processes (melt, evaporation and storage) than slight changes in surface conditions (e.g. resistance, albedo).

This study will be of interest to northern scientists wishing to better understand both the present-day linkages between atmospheric-terrestrial and hydrological processes and future global impacts.
ACKNOWLEDGEMENTS

I am very grateful to my supervisor Dr. M.-K. Woo for his wise supervision, caring friendship and contagious enthusiasm throughout this study. Without his great and unending support this study would not have been possible. I wish to thank other members of my supervisory committee, Dr. S.B. McCann and Dr. S.A. Edlund, for their friendship, useful discussions and lively comments. I would especially like to thank Dr. McCann for editing the final draft of this thesis and for making the arrangements for my defense. Many thanks go to Dr. J.A. Davies for reviewing the solar radiation paper and for also providing useful advice. Funding for this study was provided by a research agreement with the Department of Energy, Mines and Resources and a grant from Natural Sciences and Engineering Research Council to M.-K. Woo and a northern training grant from the Department of Indian and Northern Affairs. Generous logistical support was provided by the Polar Continental Shelf project, Department of Energy, Mines and Resources and S.A. Edlund. Support from McMaster University in the form of a Departmental Fellowship in 1989–1990 and teaching assistantships in subsequent years is gratefully acknowledged. I wish to acknowledge the Ontario Government with support from an Ontario Graduate Scholarship in 1993–1994. Special thanks must go to my field assistants over the course of this study: Tessa Fauquier, Shannon Glenn, Sharon Reedyk, Tim Siferd, Kelly Thompson and Paul Wolfe. Their hard work and dedication will always be appreciated. I would also like to thank Angus Headley, Mike Webb and Dave McNichol for providing instrumentation and Eureka weather data.
I will always be grateful to the friendly geography staff at McMaster University: Joan, Jude, Darlene, Mettie, Cliff, Bob and Rick who always managed to steer me in the right direction. I also wish to thank the geography staff at York University: Kathy, Carol, Carolyn, Sharon, Susan, Pam and Rick who have now taken over this task and are now steering me in the right (York) direction.

I wish to thank my lab mates who have put up with me for the last few years: Augustine, Sharon, Bob, Shannon, Sean and Ron. We have shared many enthusiastic discussions and "Hok" stories. These happy memories will always be cherished.

Finally, this thesis could not have been completed without the love and support of my family, my good friends in Winnipeg, Calgary and Ontario and the love and wisdom from my little boy, John Rae.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background of Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives of this Study</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 2: INFLUENCE OF LOCAL TOPOGRAPHY, SOIL AND VEGETATION ON MICROCLIMATE AND HYDROLOGY AT A HIGH ARCTIC SITE</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>9</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>STUDY AREA</td>
<td>10</td>
</tr>
<tr>
<td>METHODS</td>
<td>13</td>
</tr>
<tr>
<td>RESULTS</td>
<td>15</td>
</tr>
<tr>
<td>Soil</td>
<td></td>
</tr>
<tr>
<td>Pedogenesis</td>
<td>15</td>
</tr>
<tr>
<td>Soil Characteristics</td>
<td>16</td>
</tr>
</tbody>
</table>
CHAPTER 3: SIMPLE APPROACHES TO MODELLING SOLAR RADIATION IN THE ARCTIC

ABSTRACT

1. Introduction

2. Theory
 2.1 Radiation under clear sky conditions
 2.2 Radiation under cloudy skies
 2.2.1 Models using total cloud amount (TC_ω, TC_ω)
 2.2.2 Modelling using a cloud layer approach (CL_ω, CL_ω)

Page

Microclimate

Albedo

Net Radiation
Temperature
Precipitation

Hydrology

Snow Ablation
Snowmelt Runoff
Frost Table Development
Soil Moisture
Groundwater

Plant Response

DISCUSSION AND CONCLUSIONS

ACKNOWLEDGEMENTS

REFERENCES

TABLES

LIST OF FIGURES

FIGURES
CHAPTER 4: MODELLING NET RADIATION IN AN ARCTIC ENVIRONMENT

USING SUMMER FIELD CAMP DATA

ABSTRACT

1. Introduction

2. Theory
 2.1 Short-wave radiation
 2.2 Long-wave radiation
 2.3 Turbulent fluxes
 2.4 Surface temperature (T_s)

3. Study Area

4. Data

5. Results
 5.1 Selection of surface resistance (r_s)
 5.2 Selection of aerosol coefficient (K)
 5.3.1 Wind speed (u)
 5.3.2 Air temperature
 5.4 Model validation
 (a) The seasonal radiation rhythm
 (b) Seasonal rhythm of surface energy fluxes
(c) Mean Bias Error (%MBE)
(d) Averaging effect of Root Mean Square Error (%RMSE)

6. Discussion and Conclusions

ACKNOWLEDGEMENTS

REFERENCES

LIST OF SYMBOLS

TABLES

LIST OF FIGURES

FIGURES

CHAPTER 5: HYDROLOGIC RESPONSES OF A SMALL HIGH ARCTIC BASIN TO GLOBAL CHANGE IMPACTS

ABSTRACT

INTRODUCTION

STUDY AREA

THEORY AND METHODS

Water balance components

Snow and ice melt (M)
Rainfall (R)
Evaporation (E)
Discharge (Q)
Storage (∆S)

Sensitivity analysis

Atmospheric

(a) Aerosol
(b) Clouds
(c) Temperature
Terrestrial

(a) Site albedo (post-snowmelt) 127
(b) Surface resistance 127
(c) Summer rainfall 128

DATA

RESULTS

Heather Creek Basin (HCB) water balance (1989–1990) 130

Global change impacts

Atmospheric

(a) Aerosol 132
(b) Clouds 132
(c) Temperature 133

Terrestrial

(a) Site albedo 133
(b) Surface resistance 133
(c) Summer rainfall 133

DISCUSSION AND CONCLUSIONS 134

ACKNOWLEDGEMENTS 136

REFERENCES 137

LIST OF SYMBOLS 142

TABLES 143

LIST OF FIGURES 155

FIGURES 156

CHAPTER 6: CONCLUSIONS 160

REFERENCES 164
PREFACE

INFLUENCE OF LOCAL TOPOGRAPHY, SOIL AND VEGETATION ON MICROCLIMATE AND HYDROLOGY AT A HIGH ARCTIC SITE

Authors: Kathy L. Young, Ming-ko Woo and S.A. Edlund

This study which has been submitted to *Arctic & Alpine Research*, March 1995 describes the field programme and data analysis from two intensive summer seasons (1989, 1990) and data from supplemental years (1991–1993) at Hot Weather Creek, Ellesmere Island, N.W.T. K. Young carried out the field measurements, analyzed the data, drafted the diagrams and wrote the paper. Dr. M.-K. Woo provided snow survey data for the Heather Creek basin (1990–1993), provided guidance on the paper’s outline and reviewed the paper several times. The plant response section analyzes field results obtained from Dr. S.A. Edlund at Hot Weather Creek. Dr. S.A. Edlund also reviewed an early draft of the paper.

SIMPLE APPROACHES TO MODELLING SOLAR RADIATION IN THE ARCTIC

Authors: Kathy L. Young, Ming-ko Woo and D. Scott Munro

This study accepted by *Solar Energy* describes the theory and validation of a solar radiation model using limited data input (temperature, cloud). K. Young wrote the programme, carried out the data analysis, drafted the diagrams and wrote the paper. Dr. M.-K. Woo provided guidance on the paper’s outline, and reviewed the paper several times. K. Young learned the basic structure of a clear-sky radiation model from Dr. D.S. Munro in a graduate course. Dr. D.S. Munro provided comments on an earlier draft of the paper.
MODELLING NET RADIATION IN AN ARCTIC ENVIRONMENT
USING SUMMER FIELD CAMP DATA

Authors: Kathy L. Young, Ming-ko Woo

This paper submitted to Solar Energy, July 1995 describes the theory and validation of a surface energy balance model which was used to simulate net radiation in a permafrost environment. K. Young wrote the programme, carried out all the data analysis, drafted the diagrams and wrote the paper. Dr. M.-K. Woo provided guidance on the paper's outline and reviewed the paper several times.

HYDROLOGIC RESPONSES OF A SMALL HIGH ARCTIC BASIN
TO GLOBAL CHANGE IMPACTS

Authors: Kathy L. Young, Ming-ko Woo

This study accepted September 1995 by Geological Survey of Canada Bulletin describes the application of a surface energy balance model which uses limited input data to model melt and evaporation for a small high arctic basin. K. Young carried out all of the data analysis, drafted the diagrams and wrote the paper. Dr. M.-K. Woo provided guidance on the outline of the paper.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Climatologic and hydrologic instrumentation employed on the slopes and plateau.</td>
<td>40</td>
</tr>
<tr>
<td>2.2</td>
<td>Mean surface albedos for the snowfree season, 1990.</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Snow accumulation at experimental sites in May.</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>Snow ablation comparison—1989 versus 1990.</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Maximum frost table development for the middle line of pipes running from downslope—upslope.</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Selected models for review and for this study.</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Hourly measured data used for verifying use of 2x/day input data and model validation.</td>
<td>105</td>
</tr>
<tr>
<td>4.4</td>
<td>Testing feasibility of using input data at base-camp versus hourly measured input data from sites to simulate Q*, Q, (observed: hourly measured inputs, simulated: 2x/day inputs).</td>
<td>106</td>
</tr>
<tr>
<td>5.1</td>
<td>Initial conditions and input data for simulation of melt and evaporation at Heather Creek, N.W.T. (1989–1990).</td>
<td>143</td>
</tr>
<tr>
<td>5.2</td>
<td>Snow water equivalent (1990) for experimental sites.</td>
<td>146</td>
</tr>
<tr>
<td>5.3</td>
<td>Adjustment ratios for rainfall measured at base-camp (BC) to sites in the Heather Creek basin (HCB) during a wet (1989) and dry (1990) summer.</td>
<td>147</td>
</tr>
<tr>
<td>5.4</td>
<td>Simulation treatments for Heather Creek basin (HCB) using 1990 field data.</td>
<td>148</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.6</td>
<td>Selected water balance data from Arctic watersheds of North America.</td>
<td>151</td>
</tr>
<tr>
<td>5.7</td>
<td>Seasonal water balance for Heather Creek Basin (HCB) (1989–1990)</td>
<td>153</td>
</tr>
<tr>
<td>5.8</td>
<td>Sensitivity of Heather Creek (1990) water balance components to selected climatic and environmental changes.</td>
<td>154</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Location of study site, and deployment of groundwater wells and meteorological instruments on studied slopes.</td>
<td>47</td>
</tr>
<tr>
<td>2.2</td>
<td>Analysis of soil samples obtained from different depths below the ground surface at the experimental sites.</td>
<td>48</td>
</tr>
<tr>
<td>2.3</td>
<td>Analysis of surface soil samples obtained from the lower, middle and upper sections of the slopes, and on the plateau.</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td>Seasonal pattern of net radiation (MJ/m²d) at the experimental sites during a: a) cool/wet year (1989); and b) warm/dry year (1990).</td>
<td>51</td>
</tr>
<tr>
<td>2.5</td>
<td>Daily variation of net radiation during: a) an overcast; b) a clear; and c) a partly cloudy day at the study sites.</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>Seasonal pattern of daily average air temperature (°C) during a: a) cool/wet year (1989); and b) warm/dry year (1990).</td>
<td>53</td>
</tr>
<tr>
<td>2.7</td>
<td>Daily variation of air temperature for: a) overcast; b) clear; and c) partly cloudy day at the study sites.</td>
<td>54</td>
</tr>
<tr>
<td>2.8</td>
<td>Seasonal pattern of daily average surface temperature (°C) during a: a) cool/wet year (1989); and b) warm/dry year (1990).</td>
<td>55</td>
</tr>
<tr>
<td>2.9</td>
<td>Daily variation of surface temperature for: a) overcast; b) clear; and c) partly cloudy day at the study sites.</td>
<td>56</td>
</tr>
<tr>
<td>2.10</td>
<td>Pattern of snow amount (W.E) at the experimental sites from 1989–1993 and dominant wind direction of Hot Weather Creek during the winter.</td>
<td>57</td>
</tr>
<tr>
<td>2.11</td>
<td>Intra-slope distribution of snow on the experimental slopes (1990).</td>
<td>58</td>
</tr>
<tr>
<td>2.12</td>
<td>Comparison of daily mean windspeed (m/s) on the Plateau and the study slopes.</td>
<td>59</td>
</tr>
<tr>
<td>2.13</td>
<td>Total precipitation for June and July measured at the various experimental sites in comparison with Eureka weather station data.</td>
<td>60</td>
</tr>
</tbody>
</table>
2.14 Pattern of energy components during the snow ablation period at the experimental slopes.
2.15 Snowmelt runoff pattern for the:
a) Northwest Slope; and b) East facing slope (1990).
2.16 Spatial and temporal pattern of frost table development at the experimental slopes.
2.17 Seasonal variation of soil moisture at the experimental slopes during a cool/wet year (1989) and a warm/dry year (1990).
2.18 Seasonal pattern of water table fluctuations at selected sites showing:
a) influence of abating snow fluctuations due to rainfall input and evaporation loss; and b) high water levels due to local topography.
2.19 Seasonal pattern of groundwater flow on the lower sections of the:
a) Northwest; b) East; and c) Southeast facing slopes.
2.20 Percent cover of vascular plants at each study site.
3.1 Measured daily global radiation compared with values estimated by four models using hourly meteorological data at Eureka.
3.2 Hourly global radiation for Eureka compared with values estimated by four models under varying cloud cover conditions.
3.3 Percentage root mean square (RMSE) of the four modelled results compared with the ranges of error for other reported models. Three averaging periods (1 day, 5 days, and 10 days) are represented. Hourly data are used in computations.
3.4 Percentage mean bias error (MBE) of the four modelled results compared with ranges of error reported by other studies. Hourly data were used in computations.
3.5 Decrease of percentage root mean square error (RMSE) with length of averaging period for the four models computed using hourly data and using twice-daily data.
4.1 Location of study site, and deployment of meteorological instruments on studied slopes.
4.2 Relationship between modelled net radiation (Q*) at the NW slope (1990) using hourly wind input and modelled net radiation (Q*) using windspeed input 2x/day. Deviations from the 1:1 line occur when windspeeds (knots) taken at 0700h/1900h are usually very low or high.

4.3 Percentage of root mean square error (RMSE) and mean bias error (MBE) of modelled daily net radiation results (NW-slope, 1990), using different windspeed inputs (knots) compared with modelled results using hourly measured windspeed (m/s).

4.4 Measured daily net radiation compared with values estimated using meteorological data twice daily during two contrasting seasons: 1989 (cool/wet) and 1990 (warm/dry).

4.5 Daily pattern of modelled energy fluxes (Q*, Q_h, Q_e, Q_d) during pre-melt, melt and post-melt periods at the study sites during 1989 and 1990.

4.6 Percentage mean bias error (MBE) of net radiation on a daily basis at the study sites (1989, 1990).

4.7 Decrease of root mean square error (RMSE) of net radiation with length of averaging period for the study sites computed using twice daily meteorological information.

5.1 Location of Heather Creek Basin (HCB) on Ellesmere Island, N.W.T. and terrain units within the basin.

5.4 Cumulative Heather Creek water balance components: 1989 (thaw) and 1990 (melt and thaw).
CHAPTER 1
INTRODUCTION

1.1 Background of Study

Arctic regions play an extremely important role in terms of the earth's atmospheric and oceanic circulation systems (LeDrew, 1993). Growing concern about global change has focussed on the Arctic where General Circulation Models (GCMs) suggest that future increases in temperature and precipitation will be the greatest (Hinzman and Kane; Maxwell, 1992). There is also concern that northern regions will experience changes in cloud cover (e.g. Wetherald and Manabe, 1986) and atmospheric pollution (Blanchet, 1989; Harte and Williams, 1988) but rates, levels of change and their possible environmental impacts are virtually unknown at this time.

This heightened scrutiny of arctic environments has led to a shift in the field of arctic hydrology. In the past, studies were largely driven by resource development and utilization but now the emphasis has been placed more on scientific curiosity (Hinzman and Kane, 1992). Research hydrologists are beginning to realize that hydrologic processes—snowmelt, slope runoff, soil moisture, evaporation and basin discharge—do not operate alone, but are driven and modified by interactions with both the atmosphere and ground surface conditions. Arctic hydrology is entering an era where the linkages and feedbacks between hydrologic processes (e.g. snowmelt, soil moisture) have to be considered in terms of microclimate (e.g. temperature, radiation), vegetation (e.g. surface albedo, plant cover), soil (e.g. texture, structure) and topography (e.g. slope angle, aspect). This more holistic approach to investigating northern hydrologic processes is required not only to settle our own scientific curiosity about what effects global change may have on snowmelt patterns and basin runoff but is also required because of our need to maintain an ecological balance in northern environments. For instance, climate warming through soil moisture changes and shifting nutrient supplies, has the potential of restructuring the character of
northern ecosystems through shifts in species composition (e.g. Bazzaz, 1990; Rizzo and Wiken, 1992; Robinson and Finklestein, 1991). This could eventually affect the traditional, social and economic characteristics of northern communities (Rizzo and Wiken, 1992).

A more complete understanding of environmental interactions is also required to further our present knowledge of ground thaw and slope failures in permafrost terrain (Lewkowicz, 1992) and to assess the sensitivity of northern man-made structures (e.g. pipelines, airports, communities) to global changes.

Northern hydrologic research geared to incorporating atmospheric, and terrestrial interactions has just recently begun and some simulated results showing how hydrologic systems may respond to climate warming have been presented (Hinzman and Kane, 1992; Kane et al., 1992). For example, Hinzman and Kane (1992) through utilization of a HBV hydrological model (Bergström, 1976) for a small continuous permafrost basin (2.2 km²) have, in conjunction with a ground thermal model (Kane et al., 1991) been able to provide simulations showing basin scale hydrologic responses to possible changes in temperature and precipitation (e.g. snow water equivalent, snowmelt, discharge and evaporation). One of their main modelling limitations is that the snowmelt routine is a simple degree-day approach which offers no opportunity to explore the spatial and temporal variations of radiation and its role in slope snowmelt and evaporational losses. They were also not able to assess possible future changes in clouds or aerosols which could influence both snowmelt amounts and evaporation from the basin (Hinzman and Kane, 1992). In addition, a vegetation routine could not be incorporated into their model because of limited field information. Therefore, they were not able to explore possible future changes in plant cover and their affect on melt and evaporation through alterations in surface roughness and radiation loadings through changes in surface albedo.

Xia (1993) and Woo and Drake (1988) have developed a physically based permafrost model (WAD) which incorporates interactions between pedology and hydrology. Its main linkage
with the atmosphere is through measured solar radiation and air temperature measured at a point. Simulated solar radiation could allow this model to be extrapolated to larger surfaces (e.g. slope, basin, region). The WAD model has been used to explore how changes in temperature and precipitation will affect frost table and water levels, but due to its present structure has not been able to assess how future changes in clouds or aerosol levels could modify permafrost hydrology.

There are several obstacles facing arctic hydrologists as we attempt to evaluate environmental interactions and speculate on possible global impacts and one of these is that a rigorous data baseline, tracking environmental variations in space and time, is lacking. This is not surprising considering the short-term record of hydrologic, botanical and climate data collection in the North. For instance, there are only four Canadian Government atmospheric stations in the Canadian Arctic Islands, and only about 50 years of continuous weather data exists.

Clearly, what is presently needed are experimental sites which are representative of large permafrost areas and can provide a range of hydrologic responses to variations in terrain (e.g. topography, surface conditions) and microclimate (e.g. temperature, radiation, precipitation).

Another problem faced by northern hydrologists as we attempt to understand present-day interactions and future changes is scale. A major criticism of GCMs is that they operate at large scales (e.g. several degrees of longitude and latitude) while, hydrological processes operate at much smaller scales (Dooge, 1992) (e.g. point, quadrat, transect, slope, sub-basin, basin, region). GCMs do not consider local variations in topography, plant cover and soils which can influence rain and snow amounts and modify radiation loadings. Subsequently, GCMs cannot provide at present the detailed temporal and spatial information needed for impact assessments (Robinson and Finklestein, 1991). At this stage, future changes in stream discharges and basin storage cannot be anticipated easily. Regional climate models have begun to address this issue. They provide atmospheric data for hydrologic modelling that begin to reflect the natural heterogeneity at the regional scale (e.g. orographic rainfall) (Hostetler, 1994). Their major
limitations however, are they are still linked with GCMs, computer demand is high and the regional scale is still larger than is of present interest to most northern researchers.

It is the opinion of several researchers (e.g. Church and Woo, 1990 Hostetler, 1994; Running et al., 1987), that scaling-up is required. The variability which exists at the local scale in terms of topography, surface conditions and microclimate needs to be considered, since it influences snow amounts, snowmelt patterns, and evaporation rates. Only by considering variations at the local scale will reasonable responses at higher scales (basin, region) be realized (Church and Woo, 1990; Hostetler, 1994; Running et al., 1987). Hostetler points out further that confirmation of this approach should be met with measured data.

Determination of spatial and temporal variations of hydrologic processes as a response to terrain and microclimate is not an easy task, even at the local scale. Arctic terrain can range from flat, to rolling to mountainous. It is composed of slopes of varying aspects and angles, plant cover and soil characteristics. Instrumentation is expensive and it is often not economically possible to monitor temperature and radiation for a whole suite of environments comprising one's study site. In fact, in many cases the only available data is weather information gathered two times/day by scientific field camps scattered throughout the Canadian Archipelago. Often, twice-daily cloud, temperature and wind data comprise the minimum amount of data provided by these camps. However, computer modelling offers the possibility of taking these limited data and extrapolating to larger surfaces (slope-basin), thus, offering the potential to describe both present-day hydrologic processes and future impacts of global change.

Several scientists (e.g. Dooge, 1992; Hinzman and Kane, 1991, 1992; Robinson and Finklestein, 1991) have suggested that the surface energy balance approach offers the best alternative for understanding the present-day linkages and feedbacks between terrain, atmospheric and hydrologic processes and accounting for the local variability. Point information can be aggregated and then extrapolated to larger scales (slope, basin, region). These models developed
at the local scale, provide information which is directly applicable to impact assessments (Robinson and Finklestein, 1991).

1.2 Objectives of this study

Considering the above observations, the objectives of this study are:

1) To investigate the present-day spatial and temporal variability of the local microclimate, hydrology and surface conditions (soils, plant cover) at a High Arctic site (both level/sloping) during two contrasting summer seasons (1989-cool/wet; 1990-warm/dry). This will: a) allow the linkages and feedbacks between the atmosphere and land surface processes to be established under present conditions; b) provide a baseline of natural conditions so that future global impacts can be assessed and c) provide field measurements for model input and validation.

2) Given that energy availability is a driving force behind many important land surfaces processes (e.g. melt, evaporation), this study will show the applicability of a cloud-layer solar radiation model which uses limited field camp data (twice-daily cloud and temperature) in providing daily solar radiation.

3) To develop and assess the applicability of a surface energy balance model which applies a cloud-layer solar radiation model, employs limited field camp data (twice-daily cloud, temperature, wind, precipitation) gathered at one point and allows this information to be extrapolated to different terrains (slopes and plateau) so that surface energy fluxes can be simulated.

4) To simulate melt and evaporation for a small High Arctic basin and demonstrate the applicability of the surface energy balance model at the basin level through a simple surface water balance approach.
5) Examine the hydrological responses of a small continuous permafrost basin to selected atmospheric and terrestrial impacts.

To achieve these objectives, the thesis has been broken down into a series of papers which form the different chapters. A literature review and a description of methods pertaining to each aspect of the thesis is contained within each chapter.

Chapter two entitled *Influence of local topography, soil and vegetation on microclimate and hydrology at a High Arctic site* provides information on the study area, and a description of the field measurements used in 1989 and 1990. The chapter provides baseline information on the spatial and temporal variability of the local microclimate, hydrologic processes and their interaction with the terrain surface. This chapter also provides both input and validation data for a solar radiation and a surface energy balance model.

Chapter three entitled *Simple approaches to modelling solar radiation in the Arctic* outlines the theoretical framework of a solar radiation model and shows the performance of the model using different cloud approaches in attenuating incoming clear-sky solar radiation. It shows the performance of the solar radiation model when only twice-daily cloud information is available.

Chapter four entitled *Modelling net radiation in an arctic environment using summer field camp data* applies the solar radiation model within a surface energy balance approach. The ability to translate limited field camp data (twice-daily temperature, wind, cloud) at a point to nearby slopes and plateaus is assessed. The performance of the model at both level and sloping sites is made through a comparison of simulated and measured net radiation.

Chapter five entitled *Hydrologic responses of a small high arctic basin to global change impacts* tests the utility of the surface energy balance model to a larger area (small basin). Snowmelt and evaporation are simulated for different terrain facets within the basin and confirmation of the model’s applicability is tested within a simple surface water balance for two contrasting summer seasons (1989, 1990). This chapter also illustrates the hydrologic responses
of a small continuous permafrost basin (6.1 km²) to selected atmospheric and terrestrial global change impacts.

Chapter six summarizes the conclusions and presents suggestions for future research leading from this study.
CHAPTER TWO

INFLUENCE OF LOCAL TOPOGRAPHY,
SOIL AND VEGETATION ON MICROCLIMATE
AND HYDROLOGY AT A HIGH ARCTIC SITE

Authors: Kathy L. Young, Ming-ko Woo1 and S.A. Edlund2

Submitted to Arctic and Alpine Research
March 1995

1 Geography Department, McMaster University, Hamilton, Ontario, L8S 4K1
2 Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8
ABSTRACT

The spatial variations of soils, microclimate, hydrology and vegetation were studied on four slopes and a plateau site located within a 1 km² area in the continuous permafrost zone of Arctic Canada. An understanding of such variability on a local scale is useful when point observations are upscaled to match the dimensions of regional climate models. The field season covered two summers with contrasting climatic conditions. During the warm, dry summer, the between-slope spatial differences in radiation, air and ground temperatures were exaggerated, while during the cloudy summer, diffuse rather than direct solar radiation prevailed and the differential heating between slopes was reduced. While the ground thaw increased in the warm year, maximum thaw depth at any site was also affected strongly by vegetation and soil characteristics, the latter being controlled by local geology and the geomorphic processes. Precipitation on slopes may be influenced by wind and snow accumulation is governed by local topography such as slope concavities. Snow ablation was largely accomplished through radiation melt so that albedo changes were a major consideration. Meltwater runoff was maintained only downslope of deep snowbanks, and only the lower slopes experienced continuous saturation or groundwater flow. In general, the microclimate responds directly to annual fluctuations of the regional climate and to the local terrain. The spatial pattern of snow accumulation, frost table configuration and surface or groundwater flows tend to recur annually. The distribution of vegetation and soil is established through long-term adaption to the microclimate, hydrology and geomorphology of the local sites.

KEY WORDS: Arctic Hydrology, Ecology, Geomorphology, Microclimate, Permafrost
INTRODUCTION

All Global Climate Models (GCMs) suggest a significant warming of the Arctic under an increase of the atmospheric concentration of CO₂ and other greenhouse gases (Maxwell, 1992) and this is expected to have notable effects on the Arctic environment (Roots, 1989; Rizzo and Wiken, 1992). Scenarios of changes in the ecotone have been postulated (Emmanuel et al., 1985; Webb, 1987), but Edlund (1992) pointed out that such factors as soil and topography in addition to the climate, will affect the regional pattern of vegetation response. While some of the relationships between the environmental elements have been studied (e.g. Chapin et al., 1979; Peterson, 1974), there are no comprehensive investigations on the interactions among the local topography, the microclimate, the soil, hydrology and the vegetation. Such investigations are needed to enable the extrapolation of point observations, be it for the purpose of global change monitoring or the interpretation of paleo-records. It is the objective of this study to determine the spatial and temporal variability of the microclimate and hydrology of a small area in the Arctic and to examine their linkages with the local environmental factors. The results will clarify their complex relationships on a local scale, and this may enhance the up-scaling of point data in environmental change studies.

STUDY AREA

A site covering an area of about 1 km² and located in the Hot Weather Creek (HWC) basin, Fosheim Peninsula, Ellesmere Island (79°58'N, 84°28'W) was chosen for this study. The Fosheim Peninsula has been designated as a Geological
Survey of Canada (GSC) Global Change Observatory and is the location of several geological, geomorphological, biological, hydrologic and climatic studies. The Eureka weather station, 25 km west of the study site, provides over forty years of climatological data, against which our study period can be compared.

Geologically, the oldest rock unit in the HWC basin is the Expedition Formation of the Palaeocene Eureka Sound Group (Ricketts, 1986; Thorsteinsson, 1969; 1971). A section of it, over 600 m thick, outcrops south of the base camp (Hodgson et al., 1991), consisting of quartz-rich white sandstone, overlain by alternating sandstone, shale and coal beds. Overlying it is the Strand Bay Formation (< 200 m thick) which is composed of thick sandstone, thin coal seams and dark grey shale. The Iceberg Bay Formation is the uppermost unit and is the thickest encountered at HWC (> 200 m). This unit consists almost entirely of sandstone-coal cycles deposited initially under barrier island, deltaic and lagoonal environments. Carbonaceous beds can reach 6 m thick, mostly of lignite. Deformation of these rocks during the Eurekan Orogeny resulted in north-south to northeast-southwest structural trends in the HWC basin.

Remnants of alluvial terrace sediments consisting of unconsolidated sand overlain by gravel occur on top of the Northwest and West-facing slopes. These materials are well-drained and resistant to mass wasting. Weathered bedrocks of folded and faulted sandstone and shale cover large parts of the basin, yielding greyish brown sandy loam. Tills are present, consisting of materials that range from granules to boulder clasts of resistant quartzitic sandstone, dolomite and diabase, lithologies uncommon to the Eureka Sound Formation. However, their age is
uncertain and it is unclear whether the Fosheim region was glaciated in the late Quaternary (Hodgson, 1984).

HWC lies within the early Holocene marine limit so that areas below 140-145 m have a discontinuous cover of weathered marine, estuarine and deltaic deposits, composed of medium to fine-grained sand, silt and minor clayey silt, sandstone granules, coal fragments, detrital plant materials or molluscs. These materials commonly are interbedded 1 mm to 100 mm thick, with a white surface crust of calcium-magnesium sulphate, up to several mm thick, overlying unvegetated zones.

Massive and shallow ground ice is present in the marine sediments but their areal extent is unclear (Robinson, 1994). Thermal contraction cracking is widespread, ranging from fine cracks on the ground surface to larger cracks measuring 0.04 x 0.06 m across and 0.12 m deep. Larger cracks provide infiltration pathways for rain, snow and ice meltwater. Consequently, plants tend to occur at these openings (i.e. Salix arctica) where the ease of root penetration facilitates access to deeper water and nutrient sources. In addition to soil cracks, the lowland is dissected by high-centre polygons measuring over 30 m across, within which are fields of earth hummocks 0.1 to 0.5 m high. The plateau has many ponds formed at the junctions of the polygon troughs. Smaller slope hummocks are common on many steep slopes (Lewkowicz and Gudjonsson, 1992).

Summers are more moderate than most areas of the Queen Elizabeth Islands, with July temperatures of at least 5°C being common. This regional temperature
anomaly is due to the surrounding mountains which block off most cyclones and low level clouds from the Central Arctic Ocean (Edlund and Alt, 1989), allowing higher radiation input to warm the air and the ground. One consequence is a greater vegetation diversity (over 140 vascular plant species in the HWC basin) compared with elsewhere in the Queen Elizabeth Islands (Edlund, 1988).

The study area has rolling topography. Five sites (one plateau and four slopes) were selected for detailed investigation (Fig. 1). The Northwest (NW) facing slope has a gradient of 0.2 (11.5°) and the slope length from the pond edge to the top of the middle pipe is about 44 m. The Southeast (SE) facing slope lies directly across from the NW slope and has a more gentler gradient of 0.12 (6.8°). Its slope length is longer (approx. 73 m) from the pond edge to the upper middle pipe. The East (E) facing slope consists of three sections: two segments with a gradient of 0.2 (11.3°) separated by a gentler slope of 0.03 (1.9°). The entire slope measures about 98 m. The West (W) slope is steep (0.38 or 20.1°) and short with a slope length of only 21 m.

METHODS

Our intensive study spanned two summers, one of which (1989) was cool and wet and the other (1990) was warm and dry. In subsequent years, 1991-1993, supplementary field data (frost and water tables, precipitation totals) were also obtained. An automatic weather station was installed by the Atmospheric Environment Service at the Plateau (P) site (31 m above base camp) to monitor solar
radiation, air, surface and ground temperature, wind speed and direction and relative humidity (Headley, 1990). In addition, net radiation and rainfall, air and near surface temperatures, relative humidity and wind speed and direction were recorded on the four slopes, while spot albedo measurements were made with a single inverting pyranometer. Table 1 lists the instruments used and their level of accuracy and Figure 1 shows the location of their deployment.

Snow surveys were carried out in early to mid-May following a method described by Woo and Marsh (1978). Snow ablation (in water equivalent units) was obtained daily by measuring the rate of surface lowering and multiplying the lowering rate by the snow surface density (Heron and Woo, 1978). Slope runoff from NW and E slopes were measured using methods modified after Lewkowicz and French (1982). Soil moisture was monitored by Time Domain Reflectometry once every few days (Brisco et al. 1992). Probes were inserted vertically to obtain an integrated value of the surface soil moisture in the rooting zone (1-100 mm).

On each study slope, a network of 9 to 12 groundwater wells was installed. Manual water level readings were taken every few days in 1989 and daily in 1990. Single auger hydraulic conductivity measurements were made at several wells using a method described by Luthin (1966).

Soil samples were obtained from the lower, middle and upper sections of the slopes and on the plateau. Soil pits down to a depth of 0.9 m were also dug for sampling. All samples were analyzed for particle size distribution and organic content. In addition, specific yield, specific retention, bulk density, and porosity
were determined for column soils, using methods given by Luthin (1966) and Jumikis (1984).

Frost table measurements were made once every several days near all groundwater wells. Frost depth was obtained by pounding a steel rod into the active layer until the hard frozen substrate was encountered. Voucher specimens of all vascular plants found on the four slopes were identified and deposited with the National Herbarium, Canadian Museum of Nature. Nomenclature follows, as far as possible from Kartez and Kartez (1980) which updated that of Porsild and Cody (1980). Percentage vegetation cover was measured in 1976 and 1988. Plant communities are designated by the dominant vascular plant and common associates.

RESULTS

SOIL

Pedogenesis

The formation of soil is strongly influenced by present-day slope processes which continuously erode or deposit materials on the slope. The rapidity of change is demonstrated by the measurement of nine erosion pins inserted over an area of 6 m across the lower, middle and upper parts of the NW slope in August 1989. Measurements of these pins following the snowmelt period of 1990 showed that the upper slope lost 1 to 4 mm of soil, the middle slope lost 1 mm at one pin, showed no change at another pin and accumulated 7 mm at the third. On the lower slope, two pins indicated no change while the third pin had an accumulation of 9 mm.
Rapid erosion or deposition has likely prevented the establishment of a plant cover on the soil. Elsewhere, aeolian deposition is common on slopes, usually as windblown materials incorporated with the snow and then left on the ground after the snowmelt (Edlund and Woo, 1992; Lewkowicz and Young, 1991). Where the marine deposits have abundant ground ice, slope failure is common (Lewkowicz and Gudjonsson, 1992). The occurrence of active layer detachment slides completely rearrange the soil profiles.

Soil Characteristics

Organic content, porosity and particle size distribution of the samples obtained from soil pits and from the surface soil layer are presented in Figures 2 and 3. Following Nadelhoffer et al. (1992) these soils can be classified as polar desert soils since they exhibit thin organic mats, thaw relatively deeply and are generally well drained and covered by varying percentages of heath and dwarf shrub vegetation.

Three main features are evident from these soil samples. First, the large amount of fines <0.074 mm in the samples reflects the mechanical weathering of marine deposits and aeolian deposition of fine sand, silt and clay. Only the W slope has much medium sand. This site probably experienced fluvial deposition in the past since it is on an alluvial terrace adjacent to the present-day Hot Weather Creek. On the P, the small depressions have more fines than their adjacent hummock fields,
possibly because of the accumulation of fine materials washed into the depressions
during the snowmelt seasons.

Second, the abundance of fines gives rise to relatively high porosites, with the
pit samples from the SE slope being the most porous. A third feature is the high
organic content in many samples which corresponds with the intercalation of
organic-rich layers in some slopes as confirmed by excavation observations. Most
noticeable are the profile samples for the E and W slopes. Organic contents
obtained at 0.2-0.4 m below the surface on the E slope are much higher than the
upper and lower depths. Organic content of samples retrieved at the W slope tends
to increase with depth.

Low organic contents were obtained from both vertical and surface samples
of the NW slope even though it has a distinctive woody plant dominated
community composed of Cassiope tetragona (35% cover) mixed with Dryas
integrisfolia and Salix arctica (5-20%) at the footslope. Surface samples were obtained
on the lower slopes where sediment had been washed into the inter-hummock
cracks, thus reducing the overall organic contents.

These soil characteristics may be related to the soil forming processes. The
weathered products of the Eureka Sound Formation, marine deposits, fluvial
sediments and glacial till provide materials for soil development. The deposition of
aeolian materials, and their subsequent transport downslope by slopewash, leads to
smothering of the vegetation and the intercalation of clastic layers with organics.
The fresh sediments also provide opportunities for newly invading plants such as
Papaver radicatum and graminoids. Mass wasting also plays a significant role by making materials available for wind erosion, burying vegetation and moving materials downslope.

MICROCLIMATE

Albedo

Albedo, defined here as the ratio between reflected and incoming global radiation varied spatially during the snow-covered period. Spot measurements of albedo on the lower, middle and upper section of the experimental slopes showed that when the snow cover was complete, and where the aeolian deposits on the snow were minimal or when new snow fell, the albedo values were large, varying from about 0.80-0.50. After May 30, surface albedos declined rapidly to about 0.20-0.25 when the snowpacks began to thin, particularly where mineral and organic detritus were blown on the slopes (i.e. sections of the W and E slopes).

Following the snowmelt period, the surface albedo for different sections of the slopes showed no significant differences (Table 2). No significant difference in albedo was encountered for different plant types. For instance, the surface albedo for Salix arctica (lower sections of the E and SE slopes) was the same as Cassiope tetragona (lower NW slope).
Net Radiation

Net radiation \((Q^*) \) or the radiation balance is

\[
Q^* = (1 - \infty) K_\downarrow + (L_\downarrow - L_\uparrow)
\]

(1)

where \(\infty \) is the albedo; \(K_\downarrow \) is the incoming short-wave radiation; \(L_\downarrow \) and \(L_\uparrow \) are the incoming and outgoing long-wave radiation (all fluxes in \(\text{W/m}^2 \)). Figure 4 shows the seasonal net radiation pattern for a cool, wet year (1989) and a warm, dry year (1990). In both years, net radiation was low at the beginning of the melt season when the snow cover was uniform and clean (high albedo). Continued melting reduced the albedo contrast between different slopes, depending on the rate of snow metamorphism and ablation, and the amount of aeolian materials deposited on the snow. Net radiation was mainly a function of (1) the changing surface albedo and (2) topography (slope and aspect) which controlled the amount of short-wave radiation received by each site.

Net radiation contrast between the slopes after the snowmelt period declined, owing to more uniform albedo values for bare and vegetated sites (see Table 2). Differences between slopes were less in the cool and cloudy year (1989) when overcast conditions (Fig. 5a) elevated the contribution of diffuse radiation which is little influenced by the topography. The prevalence of less cloudiness in 1990 increased the contribution of direct radiation which is topographically controlled. This in turn caused the net radiation to be more variable between sites (Figs. 5b, c).
Temperature

Air temperatures in both 1989 and 1990 rose rapidly to above 0°C by May 30 (Fig. 6). The summer of 1989 was cooler and the predominantly overcast conditions reduced the difference in temperature between slopes. Clear sky and partly cloudy conditions do produce slight temperature differences between slopes (Figs. 7b, c).

Similar to the air temperature patterns (Fig. 6), temperature near the surface (10 mm depth) increased rapidly to above 0°C at the beginning of June during the snowmelt season (Fig. 8). On a daily basis, the surface temperature contrasts among slopes were exaggerated compared with the air temperature differences as can be seen for the E and W slopes (Fig. 7 and 9). Surface temperatures were consistently higher in the warmer year (1990) from June 9 to July 9, after which the trends for both years were comparable (Fig. 8b). Greatest daily variations between the slopes occurred during the snowmelt season and can be attributed to changing soil moisture conditions (see Hydrology section) and variable radiation loadings during a period of low cloud cover.

Both seasonal and daily variation between the slopes are minimized under overcast conditions (Figs. 8a, 9a). Slightly greater differences between the slopes during a warmer, dry season (Fig. 8b) also produced early daily peaks in ground surface temperature on the E slope compared with the W slope.
Precipitation

End-of-winter snow accumulation was obtained by ground surveys in May from 1989 to 1993 (Fig. 10 and Table 3). Total snow water equivalent from 1989 and 1990 for the NW slope and P were significantly higher than the other years but accumulations on the SE, E and W slopes were similar over this five year period. Dominant wind direction at HWC was from the north during the winters (Fig. 10) of 1989 and 1990 but this cannot explain the large snow accumulation on the NW facing slope.

Episodic events of blowing snow from the south together with the local topographic effects on snow deposition may account for that anomaly. The very low accumulation on the W slope measured in 1989 was due to the late snow survey when sublimation had already depleted part of the snow cover. Measured sublimation values obtained by small lysimeters (Ohmura, 1982) in May, 1989 suggest that snow losses before the main melt period could approach between 0.1 to 1.0 mm/d.

On a local scale, the snow distribution pattern on slopes was highly uneven. For 1990, for example, both the E and the SE slopes had large snow accumulations at the concave bottom portion of the slopes (Fig. 11). The large snow accumulation above the middle of the E slope represented the tail end of a semi-permanent snowbank formed in a hollow adjacent to this slope section. For the W slope, a sharp change in gradient on the upper part of the slope coincided with the zone with more snow. The upper part of the NW slope had a substantial amount of
snow and this may be attributed to a drop in windspeed. Figure 12 shows that the daily windspeed recorded at the NW slope was often lower than that on the P, while for the other slopes, the windspeed was comparable. A drop in wind speed during snow events encourages the deposition of the blowing snow which leads to greater snow accumulation (Young and Lewkowicz, 1990).

Total precipitation for June and July measured at the various experimental sites is compared with the record from the Eureka weather station (Fig. 13). Most of this precipitation was rainfall but it also included the occasional snow event. The summers of 1990 and 1992, had low precipitation and there was little difference in the precipitation measured on the slopes at HWC and that reported at Eureka. The summer of 1989 was wetter and the experimental slopes received 5 to 70 mm more precipitation than the Eureka station. Overall, the NW and the E slopes received the greatest amounts. A windrose diagram (Fig. 13) obtained for the summer of 1989 from the P indicates that the prevalence of winds is from the southwest. Reduction in windspeed on the leeward slopes such as the NW and the E slopes may have led to more rainfall deposition.

HYDROLOGY

Snow Ablation

Spring melt releases the water held as snow storage accumulated over the winter. Snowmelt occurred earlier in thin snowpatches (SE, W) than in thicker ones (NW, E) (Table 4).
Snowmelt is controlled by the energy balance at the snow surface:

\[Q_M = Q^* + Q_H + Q_E + Q_P \]

(2)

where \(Q_M \) is the melt energy flux, \(Q^* \) is the net radiative heat flux; \(Q_H \) is the sensible heat flux; \(Q_E \) is the latent heat flux; \(Q_P \) is the heat flux transmitted by rainfall and all fluxes are in W/m\(^2\).

In this study, \(Q_M \) was determined by the direct measurement of daily melt ablation

\[Q_M = L_f (\rho_s / \rho_w) M \]

(3)

where \(M \) is the measured rate of snow surface lowering (m/d), \(L_f \) is the latent heat of fusion (0.33 MJ/kg), \(\rho_s \) is the measured density of snow and \(\rho_w \) is the density of water (1000 kg/m\(^3\)).

Rainfall was negligible during the melt period so that \(Q_P \) was unimportant. The remaining fluxes are lumped and treated as a single entity (\(Q_T \)), obtained as residual of the surface energy balance.

\[Q_T = Q_H + Q_E = Q_M - Q^* \]

(4)
where Q_T is considered as the turbulent fluxes. The daily contribution of the net radiation and the turbulent fluxes to snowmelt is presented in Fig. 14. Prolonged snowmelt on the NW slope (> 8 days longer in 1990) was due to its large snow accumulation.

Snowmelt began when mean daily air temperature was still <0°C but increased quickly when the daily mean temperature was above 0°C. In the early part of the ablation seasons, net radiation was small and the turbulent fluxes were negative. The latter was mainly due to the heat required for snow sublimation. As melt progressed, the dust inside the snowpack was exposed at the surface. This, together with the increased water content in the snow, greatly reduced the albedo and raised the net radiation. Continued warming of the air raised its temperature so that sensible heat flux became larger and therefore the turbulent fluxes became positive. Over the melt seasons, net radiation was the dominant energy source for snowmelt on all the slopes. On the P, net radiation was less important as a contributor to melt (Table 4) because its snow cover was cleaner and more continuous than on the slopes.

Snowmelt Runoff

No surface flow occurred on the SE and W slopes in 1989 and 1990. Data from the 1990 field season are presented (Fig. 15) to demonstrate the variable slope runoff pattern occurring at the other slopes. Runoff started on May 31 but the flow
was initially low because of low net radiation receipt and low air temperatures (<0°C), so that the flow did not exceed 0.009 m³/m/d at the NW slope and 0.004 m³/m/d at the E slope.

By June 6, the shallow snow at the lower NW slope ripened quickly and runoff increased. Its runoff peaked at 0.6 m³/m/h on June 7 and declined to 0.05 m³/m/h on the next day as the shallow snow was depleted and as more meltwater infiltrated the thawing soil. Runoff rose on June 8 at the E slope plot, yielding significant flow for about five days ~0.04-0.18 m³/m/h. Surface flow was maintained by a deep snowpack upslope while the 75% plant cover (Salix arctica community) on this section of the slope retarded ground thaw to curtail meltwater infiltration losses.

Frost Table Development

The storage and movement of water is largely confined to the thawed zone below which the frozen ground is relatively impermeable. Above the frost table is often found a saturated and a non-saturated zone. Where the water supply is ample and where the frost table is near the surface, the saturated zone rises above ground to generate surface runoff (Woo, 1986). In terms of plant growth, thawing of the active layer allows the roots to develop and to access both the moisture and the nutrients in the soil. For these hydrological and botanical reasons, the pattern of frost table development plays an important role.
Frost table development depends on (1) the length of the thawing period which is strongly affected by the timing of snow disappearance on the ground, (2) the slope materials which govern the thermal conductivity and (3) the weather conditions of the summer.

Ground thaw often begins around mid-June as the snow on the ground disappears (Fig. 16). The rate of snowmelt varied, however. For instance, the frost table on the eastern portion of the SE slope remained shallow throughout the season because the snow which accumulated in small depressions was slow to disappear. In contrast, despite the considerable amount of snow on the southern edge of the E slope that delayed frost table development, rapid melting soon depleted the snow and the frost table deepened. Large snow accumulation on the middle section of the NW slope delayed ground thaw, but by the end of summer this section had the deepest thaw because of the large thermal conductivity of its soil (low in both organic content and in porosity) that allowed more heat to be conducted into its active layer.

The frost table tended to be shallower at the lower segments of the NW, SE and E slopes. The lower E slope has a relatively continuous cover of Salix arctica which shades the ground. On the lower NW and the SE slopes, the occurrence of shallow frost tables is due to the presence of peaty materials which have low thermal conductivities that hinder ground thaw.

The spatial pattern of the frost table development remained similar between years, suggesting a persistence of the snow distribution pattern and the strong
influence exerted by soil and vegetation. On the other hand, the rate of ground thaw and the maximum thaw depth attained by the end of summer were different from year to year. Table 5 shows that 1990 experienced the most rapid thaw development, with maximum thaw being attained about two weeks earlier than in the other years. This was due to its warm summer accompanied by low rainfall. Snowmelt in 1992 was about three weeks later than in 1989 and 1990, thus shortening the thawing season and reducing the maximum thaw depth attained.

Soil Moisture

The moisture content at the top 0.1 m of the soil was obtained for the lower, middle and upper portions of the slopes and compared with the range of moisture contents determined at the plateau site (Fig. 17). The replicated plateau measurements demonstrate the considerable variability of moisture within a confined area (10 x 10 m²) such that the representativeness of single point data cannot be established easily. In the discussion to follow, observation from the P site provides the "control" data against which the slope moisture information can be compared to detect any notable departures from the flat terrain. The general tendencies of spatial and seasonal changes in the soil moisture regime on the slopes may be discerned from the data pooled from their slope segments. The soil moisture contents for all sites was lower during a drier, warmer summer (1990) than during a wetter, cool one (1989). Moisture content was initially high after the snowmelt period of 1990. After that, the decline in the moisture levels may be linked to increased evaporation and lateral drainage in the deepening thawed zone. For instance, the rapid drop in
the moisture content of the NW slope in both years following snowmelt may be attributed to the large amount of fine sand which when thawed provided good drainage (hydraulic conductivity is between 4×10^{-3} to 1×10^{-2} mm/s). Similarly, the lower segments of the SE and E slopes with high content of fine sand provided good drainage (hydraulic conductivity of 2×10^{-3} to 1×10^{-2} mm/s). Drainage, together with increased evaporation during a period of high radiation, dried out the soil quickly. Soil moisture values rose gradually at the end of summer as rainfall increased and as evaporation dropped.

Differences in the soil moisture pattern of the slopes and on the plateau were reduced during the wet season of 1989. This was due to the large amount of rainfall and to the similar net radiation regime for all slopes (Fig. 4a). The exception was the NW slope which had lower moisture contents, because of rapid drainage of its sandy soils.

Notable departure of slope moisture values beyond the range of the "control" data from the plateau occurred during the warm, dry summer of 1990, suggesting that the local topography played a more prominent role in modifying the soil moisture under sunnier, drier conditions. For example, the low soil moisture levels on the middle and lower sections of the W slope at the beginning of the thaw season in 1990 was related to the low snow accumulation and early snowmelt which allowed these segments to dry out early. The concavity on the upper W slope accumulated more snow and there was more shading to reduce evaporation; hence its soil was more moist.
Groundwater

Most of the groundwater wells remained dry in 1989 and 1990. Only the lower parts of the slopes (except the W slope) experienced continuous or intermittent saturation. A saturated zone was also maintained on one side of the E slope below the late-lying snowbank.

Where a saturation zone existed, a high water table in the early season was maintained by snow meltwater at the site, or by an ablating late-lying snowbank upslope of the site (e.g. left-hand side of E slope, Fig. 18a). The water table rose during rainfall events (Fig. 18b), but declined as evaporation caused water losses from the slopes. The high water table on the left-hand footslope of the NW slope (Fig. 18c) was caused by the local concavity which collected subsurface drainage in this localized depression.

Groundwater flow (Q_i) was evaluated at several sites along the NW, SE, and E slopes using the Darcy equation:

$$Q_i = kd, \frac{dh}{dx}$$ \hspace{1cm} (5)

where k is the hydraulic conductivity (m/d), dh/dx is the hydraulic gradient estimated by the elevation of the water table in adjacent wells, and d_i is the thickness of the saturated zone, obtained daily as the elevation difference between the frost and the water tables.
The NW slope has the greatest total flow. Its flow season was longer and its initial flow was higher than at the E slope (Fig. 19) because the NW slope had more snow and a higher hydraulic conductivity (0.1643 m/d, compared with 0.0432 m/d at the E slope). There was no groundwater flow on the SE slope during the early season because of insufficient snow, but flow appeared later in the season, suggesting the contribution from ground ice melt.

One interesting feature was the reversal of flow on the lower left hand side of the NW slope: from the peaty soil backward toward the more deeply thawed sandy section about 10 m upslope (Fig. 19a). This was due to a deeper and faster thaw of the sandy materials to create a "depression" in the frost table, into which the suprapermafrost groundwater drained. This example demonstrates the importance of soil materials in influencing ground thaw rates and subsurface water movement.

PLANT RESPONSE

Figure 20 summarizes the percentage cover of vascular plants at each study site. Two main vegetation types are prevalent: Dryas integrifolia and Salix arctica. These woody plant-dominated communities are typical of moderately to well-drained stable silty soils of the lowlands of Fosheim Peninsula and the intermontaine zone of the north-central Queen Elizabeth Islands (Edlund and Alt, 1989; Woo et al., 1989). Cassiope tetragona only forms a dominant presence on the lower portion of the NW slope and can be related to the extended meltwater supply afforded by the late-lying snowbank (Woo et al., 1989).
Salix arctica dominates all slopes and the plateau. It generally sends roots in shallow troughs and depressions, and into major cracks between hummocks to tap the moisture from the deeper thawed zones (Edlund et al., 1990). The upper-most part of the NW slope has species more typical of recently disturbed sites (e.g. Papaver radicatum). As mentioned previously (see Soils), this site experiences both aeolian deposition and erosion. Meltwater conveys sediment from upslope to be deposited in low-lying depressions in the Cassiope tetragona heath community. Subsequently, plants cannot establish themselves easily on the upper portions of the NW slope.

The W slope tended to have the lowest coverage of plants, with a continuous plant cover restricted to a meltwater channel located on the upper part of the slope. The abundance of bare ground reflects the lower soil moisture because this slopes usually has less snow and suffers higher losses to evaporation. These conditions provide a xeric environment for plant growth.

Poor drainage in the lowland between the NW and the SE slopes gives rise to a wetland plant community, composed of Carex aquatils var. stans, Eriophorum scheuchzeri, and Dupontia fisheri, with Salix arctica on a slightly raised swale growing on peat.

Overall, vegetation tended to be more prevalent in sites with greater snow accumulation (e.g. the lower part of the E and the SE slopes). There, the snow affords protection to the plants from strong winds and provides ample moisture. Vegetation cover tended to decrease upslope, likely caused by declining soil moisture
and greater exposure to wind. Frost tables tended to be shallower under vegetated
sites than beneath bare zones. Plants provide shade to reduce the ground
temperature while the production of biomass increases the organic contents of the
soil, to lower its thermal conductivity. In an extreme case, the wetland
environment with peaty soils yields the most shallow active layer thaw.

DISCUSSION AND CONCLUSION

This paper documents the local variability of soils, microclimate, hydrology
and vegetation within a small area in the continuous permafrost zone. Observations
from the HWC area showed the linkages and feedbacks among the environmental
variables. Their temporal and spatial responses to the local conditions may be
identified as direct, recurrent or long-timed.

(1) **Direct responses:** Microclimate, itself affected by topography and the regional
climate, often sets the conditions for other variables to respond. Variations of
radiation on slopes, particularly during years with few cloudy periods, have effects
on the initiation, duration and intensity of snowmelt, as well as evaporation. Areas
with little snow yields no surface runoff while ground thaw is accelerated and soil
misture is low if early melt and warm, dry summer conditions extend the ground
heating and the evaporation season (e.g. 1990). This pattern differs from a cold, wet
summer (e.g. 1989) where ground thaw is shallower and the soil moisture content is
higher.

(2) **Recurrent responses:** Snow distribution, frost table configuration and
groundwater flow exhibit recurrent spatial patterns, even through the magnitudes
vary from year to year. Thus, deep snow drifts are frequently expected on slope concavities and shallow ground thaw is expected in soils rich in organic matter, while well-drained slopes with high energy input seldom sustain prolonged groundwater flow.

3) **Long-term responses:** The spatial distribution of vegetation and soil represents long-term adaption to the microclimate, hydrology and geomorphological activities of the local sites. The evolution of soils and plants is a slow process, that manifests the response to the local conditions averaged over a period of years.

Given the spatial variability and different response rates to the environmental factors, limited samples in space and time may not yield a representative set of conditions even for a small area. Our field results therefore cautions that the spatial and temporal variations of local environments must be considered before point measurements of frost depth, snow amount, vegetation cover, soil moisture etc. are upscaled for use in climate change detection.

ACKNOWLEDGEMENTS

This work was funded by a research agreement with the Department of Energy, Mines and Resources and a grant from Natural Sciences and Engineering Research Council to M.-K. Woo and a northern training grant from the Department of Indian and Northern Affairs. The logistical support of the Polar Continental Shelf Project is gratefully acknowledged. We wish to thank Dr. Bea Alt, Shannon
Glenn, Sharon Reedyk, Tim Siferd, Kelly Thompson, Paul Wolfe for their assistance in the field, and Angus Headley for the loan of instruments. Diagrams were skillfully prepared by R. Hamilton and C. King while K. Armstrong carefully typed the final draft of this paper. We acknowledge the A.E.S. Canadian Climate Centre through Mike Webb for providing Eureka station data.
REFERENCES CITED

Thorsteinsson, R. 1969. Geology, Greely Fiord West, District of Franklin.

Geological Survey of Canada Map 1311A.

Geological Survey of Canada Map 1302A.

Vegetation 69: 177-187.

TABLE 1
Climatologic and hydrologic instrumentation employed on the slopes and plateau

<table>
<thead>
<tr>
<th>CLIMATOLOGICAL VARIABLES</th>
<th>INSTRUMENT*</th>
<th>LOCATION & HEIGHT*</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Radiation</td>
<td>Pyranometer (Kipp and Zonen Crn<sup>6</sup>)</td>
<td>Plateau (P) (2m)</td>
<td>± 1% or 0.01 MJ/m²h</td>
</tr>
<tr>
<td>Net Radiation</td>
<td>Pyradiometer (Swisstec³)</td>
<td>(P) (1m)</td>
<td>± 1% or 0.01 MJ/m²h</td>
</tr>
<tr>
<td></td>
<td>Pyradiometer (Middleton¹)</td>
<td>Slope (S) (1m)</td>
<td>± 1% or 0.01 MJ/m²h</td>
</tr>
<tr>
<td>Surface Albedo</td>
<td>Davos type PDI-QK</td>
<td>P(1m), S(1m)</td>
<td>± 5%</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>Campbell Scientific (CSI)</td>
<td>P(2m, e, f), S³ (0.5m)</td>
<td>± 0.25 m/s</td>
</tr>
<tr>
<td></td>
<td>Met-One Anemometer</td>
<td>Run-of-wind</td>
<td>± 10%</td>
</tr>
<tr>
<td>Wind Direction</td>
<td>Campbell Scientific (CSI)</td>
<td>P(2m), S(1m)</td>
<td>± 5°</td>
</tr>
<tr>
<td></td>
<td>Met-One Wind Vane<sup>6</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Temperature and</td>
<td>CSI 207 Probe<sup>4</sup></td>
<td>Plateau (1.5m)</td>
<td>± 2° C and 5% respectively</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>CSI 201 Probe<sup>4</sup></td>
<td>Slope (0.5m)</td>
<td>± 0.3° and 5% respectively</td>
</tr>
<tr>
<td>Surface Soil Temp.</td>
<td>CSI 101 Probe<sup>4</sup></td>
<td>P&S</td>
<td>± 0.2°C</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Weathermeasure Tipping Bucket</td>
<td>Valley between NW-SE Slopes</td>
<td>± 0.25 mm</td>
</tr>
<tr>
<td></td>
<td>Atmospheric Environment Raingauge</td>
<td>S & P & Base Camp (BC)</td>
<td>± 0.25 mm</td>
</tr>
<tr>
<td>Water Table - Daily</td>
<td>Groundwater Well Sensor and Tape Measure</td>
<td>P & S</td>
<td>± 1 mm</td>
</tr>
<tr>
<td>Soil Moisture</td>
<td>Time Domain Reflectometer Textronix 1502</td>
<td>P & S</td>
<td>0.006 m³/m³</td>
</tr>
<tr>
<td>Stage of Surface Flow</td>
<td>Leupold-Stevens Type F Water Level Recorder</td>
<td>S</td>
<td>± 1 mm</td>
</tr>
</tbody>
</table>

* Readings were taken every 10s and averaged over 60-min. intervals using Campbell Scientific CR21 dataloggers on the slopes and a CSI CR10 datalogger on the plateau.

* During the snowmelt period heights above the snowpack were adjusted daily.

* Calibrated prior to fieldwork by the Radiation Department of the Atmospheric Environment Service, Environment Canada. Accuracy in field (± 15%)

* Calibrated during the field season with a Bendix Electric Psychrometer.

* Calibrated following the field season by Atmospheric Environment Service, Environment Canada.

* Calibrated prior to fieldwork by Atmospheric Environment Service, Environment Canada.
Table 2

Mean surface albedos for the snowfree season, 1990

<table>
<thead>
<tr>
<th>SLOPE</th>
<th>LOWER</th>
<th>MIDDLE</th>
<th>UPPER</th>
<th>NUMBER OF SAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.15 ± 0.03 (C. tetragona)</td>
<td>0.19 ± 0.06 (Bare)</td>
<td>0.19 ± 0.06 (Bare)</td>
<td>(22)</td>
</tr>
<tr>
<td></td>
<td>0.15 ± 0.02 (S. arctica)</td>
<td>0.16 ± 0.03 (Partial S. arctica-Bare)</td>
<td>0.18 ± 0.03 (Partial S. arctica-Bare)</td>
<td>(20-21)</td>
</tr>
<tr>
<td></td>
<td>0.15 ± 0.04 (Bare)</td>
<td>0.14 ± 0.02 (S. arctica)</td>
<td>0.16 ± 0.02 (S. arctica)</td>
<td>(20)</td>
</tr>
<tr>
<td></td>
<td>0.16 ± 0.04 (Bare)</td>
<td>0.16 ± 0.05 (Bare)</td>
<td>0.14 ± 0.06 (Bare)</td>
<td>(17)</td>
</tr>
<tr>
<td>Plateau</td>
<td>0.17 ± 0.02 (S. arctica)</td>
<td>0.15 ± 0.02 (Bare)</td>
<td></td>
<td>(19-20)</td>
</tr>
</tbody>
</table>

1. Three measurements/section at each sampling period

2. Measurements were staggered over time (daily) and under various cloud conditions
Table 3

Snow accumulation at experimental sites in May

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Depth (m)</td>
<td>0.46 ± 0.44<sup>1</sup></td>
<td>0.70 ± 0.46</td>
<td>0.17 ± 0.18</td>
<td>0.24 ± 0.13</td>
</tr>
<tr>
<td>Mean Density (kg/m<sup>3</sup>)</td>
<td>393 ± 47</td>
<td>359 ± 61</td>
<td>301 ± 61</td>
<td>227 ± 54</td>
</tr>
<tr>
<td>W.E.<sup>2</sup> (mm)</td>
<td>181 ± 21</td>
<td>249 ± 28</td>
<td>51 ± 11</td>
<td>54 ± 7</td>
</tr>
<tr>
<td>Southeast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Depth (m)</td>
<td>0.15 ± 0.15</td>
<td>0.18 ± 0.15</td>
<td>0.11 ± 0.10</td>
<td>0.19 ± 0.08</td>
</tr>
<tr>
<td>Mean Density (kg/m<sup>3</sup>)</td>
<td>342 ± 4</td>
<td>358 ± 54</td>
<td>330 ± 40</td>
<td>193 ± 26</td>
</tr>
<tr>
<td>W.E. (mm)</td>
<td>51 ± 6</td>
<td>63 ± 8</td>
<td>36 ± 4</td>
<td>38 ± 2</td>
</tr>
<tr>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Depth (m)</td>
<td>0.33 ± 0.39</td>
<td>0.23 ± 0.18</td>
<td>0.22 ± 0.23</td>
<td>0.33 ± 0.22</td>
</tr>
<tr>
<td>Mean Density (kg/m<sup>3</sup>)</td>
<td>339 ± 21</td>
<td>314 ± 41</td>
<td>286 ± 35</td>
<td>239 ± 28</td>
</tr>
<tr>
<td>W.E. (mm)</td>
<td>112 ± 8.0</td>
<td>72 ± 7</td>
<td>63 ± 8</td>
<td>79 ± 6</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Depth (m)</td>
<td>0.076 ± 0.15</td>
<td>0.21 ± 0.26</td>
<td>0.10 ± 0.13</td>
<td>0.20 ± 0.14</td>
</tr>
<tr>
<td>Mean Density (kg/m<sup>3</sup>)</td>
<td>309 ± 23</td>
<td>297 ± 49</td>
<td>297 ± 38</td>
<td>281 ± 92</td>
</tr>
<tr>
<td>W.E. (mm)</td>
<td>23 ± 3</td>
<td>62 ± 13</td>
<td>30 ± 5</td>
<td>56 ± 13</td>
</tr>
<tr>
<td>Plateau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Depth (m)</td>
<td>0.26 ± 0.11</td>
<td>0.31 ± 0.10</td>
<td>0.16 ± 0.08</td>
<td>0.32 ± 0.11</td>
</tr>
<tr>
<td>Mean Density (kg/m<sup>3</sup>)</td>
<td>337 ± 106</td>
<td>383 ± 44</td>
<td>257 ± 62</td>
<td>274 ± 117</td>
</tr>
<tr>
<td>W.E. (mm)</td>
<td>89 ± 12</td>
<td>116 ± 4</td>
<td>43 ± 7</td>
<td>88 ± 13</td>
</tr>
</tbody>
</table>

¹ Standard Deviation
² W.E. = Snow Water Equivalent
Table 4
Snow ablation comparison - 1989 versus 1990

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>Initial Snow Water Equiv. (mm)</td>
<td>89</td>
<td>118</td>
<td>161</td>
<td>247</td>
<td>51</td>
<td>63</td>
<td>109</td>
<td>72</td>
<td>26</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Starting Date of Melt</td>
<td>May 26</td>
<td>May 16</td>
<td>May 26</td>
<td>May 16</td>
<td>May 28</td>
<td>May 16</td>
<td>May 27</td>
<td>May 16</td>
<td>—</td>
<td>May 16</td>
<td></td>
</tr>
<tr>
<td>Duration of Melt (Days)</td>
<td>11</td>
<td>24</td>
<td>8</td>
<td>32</td>
<td>8</td>
<td>24</td>
<td>10</td>
<td>24</td>
<td>—</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total Melt Energy (MJ/m²)</td>
<td>+17.69</td>
<td>38.37</td>
<td>+14.33</td>
<td>+201.12</td>
<td>+64.33</td>
<td>+48.54</td>
<td>+35.7</td>
<td>+40.93</td>
<td>—</td>
<td>35.39</td>
<td></td>
</tr>
<tr>
<td>Q' Total (MJ/m²)</td>
<td>+11.58</td>
<td>—</td>
<td>57.0</td>
<td>+210.18</td>
<td>+75.06</td>
<td>+55.66</td>
<td>+62.7</td>
<td>+56.29</td>
<td>—</td>
<td>153.4</td>
<td></td>
</tr>
<tr>
<td>Q' Total (MJ/m²)</td>
<td>+6.11</td>
<td>—</td>
<td>-42.69</td>
<td>-9.06</td>
<td>-10.73</td>
<td>-7.42</td>
<td>-27.0</td>
<td>-15.36</td>
<td>—</td>
<td>-118.01</td>
<td></td>
</tr>
</tbody>
</table>

¹ Totals for 1990 are for days when Q' values occur
² Lower part of slope
³ Sublimation values only
Table 5

Maximum frost table development for the middle line of pipes running from downslope - upslope

<table>
<thead>
<tr>
<th>PIPE LOCATION</th>
<th>NORTHWEST</th>
<th>SOUTHEAST</th>
<th>EAST</th>
<th>WEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR</td>
<td>89(^1)</td>
<td>90(^2)</td>
<td>91(^3)</td>
<td>92(^4)</td>
</tr>
<tr>
<td>Footslope</td>
<td>—</td>
<td>.49</td>
<td>—</td>
<td>.45</td>
</tr>
<tr>
<td>Lower</td>
<td>.65</td>
<td>.82</td>
<td>—</td>
<td>.68</td>
</tr>
<tr>
<td>Middle</td>
<td>.91</td>
<td>.90</td>
<td>.92</td>
<td>.79</td>
</tr>
<tr>
<td>Upper</td>
<td>.74</td>
<td>.78</td>
<td>—</td>
<td>.64</td>
</tr>
</tbody>
</table>

1 Max Thaw = August 22
2 Max Thaw = August 4
3 Max Thaw = August 18
4 Max Thaw = August 23
LIST OF FIGURES

Figure 1: Location of study site, and deployment of groundwater wells and meteorological instruments on studied slopes.

Figure 2: Analysis of soil samples obtained from different depths below the ground surface at the experimental sites.

Figure 3: Analysis of surface soil samples obtained from the lower, middle and upper sections of the slopes, and on the plateau.

Figure 4: Seasonal pattern of net radiation (MJ/m²d) at the experimental sites during a (a) cool/wet year (1989); and (b) a warm/dry year (1990).

Figure 5: Hourly variation of net radiation during: a) an overcast; b) a clear; and c) a partly cloudy day at the study sites.

Figure 6: Seasonal pattern of daily average air temperature (°C) during a (a) cool/wet year (1989); and (b) a warm/dry year (1990).

Figure 7: Hourly variation of air temperature for: a) overcast; b) clear; and c) partly cloudy day at the study sites.

Figure 8: Seasonal pattern of daily average surface temperature (°C) during a (a) cool/wet year (1989); and (b) a warm/dry year (1990). Note: In 1989, the thermister at the West Slope monitored the ground surface continuously.

Figure 9: Hourly variation of surface temperature for: a) overcast; b) clear; and c) partly cloudy day at the study sites.

Figure 10: Pattern of snow amount (W.E) at the experimental sites from 1989–1993 and dominant wind direction of Hot Weather Creek during the winter.

Figure 11: Intra-slope distribution of snow on the experimental slopes (1990).

Figure 12: Comparison of daily mean windspeed (m/s) on the Plateau and the study slopes.

Figure 13: Total precipitation for June and July measured at the various experimental sites in comparison with Eureka weather station data.
Figure 14: Pattern of energy components during the snow ablation period at the experimental slopes.

Figure 15: Snowmelt runoff pattern for the: a) Northwest Slope; and b) East facing slope (1990).

Figure 16: Spatial and temporal pattern of frost table development at the experimental slopes.

Figure 17: Seasonal variation of soil moisture at the experimental slopes during a cool/wet year (1989) and a warm/dry year (1990).

Figure 18: Seasonal pattern of water table fluctuations at selected sites showing: a) influence of ablating snow fluctuations due to rainfall input and evaporation loss; and b) high water levels due to local topography.

Figure 19: Seasonal pattern of groundwater flow on the lower sections of the (a) Northwest; (b) East; and (c) Southeast facing slopes.

Figure 20: Percent cover of vascular plants at each study site.
Contours, when shown, are in metres above arbitrary datum.
NORTHWEST-FACING SLOPE

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Depth Below Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 - 0.1 m</td>
</tr>
<tr>
<td></td>
<td>0.2 - 0.4 m</td>
</tr>
<tr>
<td></td>
<td>0.6 - 0.7 m</td>
</tr>
</tbody>
</table>

SOUTHEAST-FACING SLOPE

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Depth Below Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 - 0.1 m</td>
</tr>
<tr>
<td></td>
<td>0.2 - 0.4 m</td>
</tr>
<tr>
<td></td>
<td>0.6 - 0.7 m</td>
</tr>
</tbody>
</table>

EAST-FACING SLOPE

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Depth Below Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 - 0.1 m</td>
</tr>
<tr>
<td></td>
<td>0.2 - 0.4 m</td>
</tr>
<tr>
<td></td>
<td>0.6 - 0.7 m</td>
</tr>
</tbody>
</table>

Soil Texture
- Medium sand: 0.42 to 2.0 mm
- Fine sand: 0.074 to 0.42 mm
- Fines: Less than 0.074 mm

Soil Composition
- Porosity
- Organic
- Mineral
<table>
<thead>
<tr>
<th>TIME (DAY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY 15 30 15 30</td>
</tr>
<tr>
<td>JUNE 15 30</td>
</tr>
<tr>
<td>JULY 15 30</td>
</tr>
<tr>
<td>AUGUST 15 30</td>
</tr>
</tbody>
</table>

MEAN DAILY AIR TEMPERATURE (°C)

(a) 1989

(b) 1989

Fig. c
* after June 17, thermister placed at 0.1 m
ENERGY FLUX DENSITY (MJ/m²) PER MEASUREMENT PERIOD

- PLATEAU 1989
- NORTHWEST 1989
- SOUTHEAST 1989
- EAST 1989
- NORTHWEST 1990
- SOUTHEAST 1990
- EAST 1990
- WEST 1990

MAY | 30 | JUNE
SURFACE FLOW (m³/h/m)

TIME IN HOURS (JUNE 7-14)

(a) NORTHWEST

(b) EAST

Missing Data

No Flow
(a) NORTHWEST

(b) EAST

(c) SOUTHEAST

WATER TABLE POSITION

FROST TABLE POSITION
SIMPLE APPROACHES TO MODELLING SOLAR RADIATION IN THE ARCTIC

KATHY L. YOUNG, MING-KO WOO, and D. SCOTT MUNRO

Department of Geography, McMaster University, Hamilton, Ontario, Canada L8S 4K1; *Department of Geography, Erindale College, University of Toronto, Mississauga, Ontario, Canada L5L 1C6

Abstract—Solar radiation was modelled for an Arctic location using hourly and twice daily meteorological data. Results indicate that a total cloud model (TCM) employing cloud opacity data and cloud layer models (CLM) utilizing cloud opacity and cloud amount data (CLD) perform equally well; and they are better than a total cloud model (TCM) employing cloud amount data. The performance of TCM, CLM, and CLD models improve greatly when averaged over 4 days, indicating the feasibility of utilizing rudimentary meteorological observations to broaden the radiation database for the vast Arctic region of North America.

1. INTRODUCTION

The Canadian Arctic covers an area of 2.6 × 10^6 km² (Rizzo and Wiken, 1992) and represents about one-quarter of the terrestrial surface of Canada. There is often a demand for Arctic solar radiation data from researchers in ecology (Edlund and Alt, 1989; Oberbauer and Dawson, 1992), climatology (Kane et al., 1992; Rouse et al., 1992), hydrology (Woo et al., 1990; Young and Lewkowski, 1990) and glaciology (Munro and Young, 1982). Yet, there are few weather stations that measure radiation in this vast territory (e.g., only four in the Queen Elizabeth Islands). There exists a need to model solar radiation using a limited amount of auxiliary information that is easily obtainable from summer scientific field camps.

Presently, several methods are available to model solar radiation under cloudy skies (Atwater and Ball, 1978; Davies and McKay, 1982, 1989; Davies et al., 1984; Lyons and Edwards, 1982a, 1982b; Munro and Young, 1982; Revfeim, 1981; Rietveld, 1978; Suckling and Hay, 1977). Davies et al. (1984) identified them into five groups, depending on the type of input data used for the models: (a) Cloud layer based models, (b) Total satellite based models, (c) Sunshine based models, (d) Satellite data based models, and (e) Liu-Jordn (1960) type models which partition global radiation into direct and diffuse components. A selected list of solar radiation models and their required input variables are given in Table 1.

In this study, cloud layer and total cloud model approaches are employed because the information is easily obtainable by scientific field camps without expensive instrumentation. The purpose of this paper is to test the applicability of several solar radiation models to the Arctic and quantify their error in comparison with radiation measurements. Table 1 outlines the variety of models used in this study and their required inputs.

2. THEORY

The approach adopted is to model radiation under clear sky conditions and then modify the radiation thus obtained through various cloud models.

2.1 Radiation under clear sky conditions

Global radiation (Gₜ) under clear sky conditions is modelled using a single-band approach (Munro, 1991; Munro and Young, 1982). Here,

$$Gₜ = Gₜ + Gₗ$$

where $Gₜ$ and $Gₗ$ are the direct and diffuse components of clear sky radiation respectively, and follows from Paltridge and Platt (1976) with

$$Gₜ = Iₑ Rₚ^{-2} \mu (\psiₗ₋ₗ - aₗ) \psiₗ \psiₗ$$

$$+ Jₗ \left(1 - \psiₗ \right) \psiₗ$$

$$Gₗ = Iₑ Rₚ^{-2} \mu \left(0.5 \psiₗ \left(1 - \psiₗ \right) \right)$$

$Iₑ$ is the solar constant ($1370 ± 3$ Wm⁻²; Lean, 1991), R is the squared ratio between the actual and average sun-earth distance, μ is the cosine of the solar zenith angle. The transmittances, $\psiₗ$, $\psiₗ$, $\psiₗ$, and $\psiₗ$, account for ozone absorption, Rayleigh scattering, aerosol absorption, and aerosol scattering, respectively, and $aₗ$ is absorptance by water vapour. The values 0.5 and $Jₗ$ (here taken to be 0.8) are the downward scattering ratios for Rayleigh and Mie scattering (Munro and Young, 1982). Procedures using latitude and time to determine μ and R are found in Paltridge and Platt (1976), and so are the various transmittances, $\psiₗ$, $aₗ$, and $\psiₗ$. Aerosol transmittances are treated by assuming that $\psiₗ = \kappaₗ$ (Houghton, 1954), where m is the optical air mass and κ is a coefficient. A value of 0.96 is adopted for κ (Munro and Young, 1982; Suckling and Hay, 1976).

Assuming an atmosphere of finite curvature, the optical air mass was calculated using the method found in Paltridge and Platt (1976),

1 The current address of Kathy L. Young is Department of Geography, York University, North York, Ontario, Canada M3J 1P3.
Table 1. Selected models for review and for this study

<table>
<thead>
<tr>
<th>Model type</th>
<th>Input variables</th>
<th>C_1</th>
<th>CT_1</th>
<th>C_2</th>
<th>C_3</th>
<th>N_a</th>
<th>T</th>
<th>T_2</th>
<th>S_P</th>
<th>P_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cloud</td>
<td></td>
</tr>
<tr>
<td>Won (1977)</td>
<td></td>
</tr>
<tr>
<td>Davies et al. (1984)</td>
<td></td>
</tr>
<tr>
<td>Sunshine</td>
<td></td>
</tr>
<tr>
<td>Rietveld (1978)</td>
<td></td>
</tr>
<tr>
<td>Revleim (1981)</td>
<td></td>
</tr>
<tr>
<td>Cloud layer</td>
<td></td>
</tr>
<tr>
<td>Davies et al. (1984)</td>
<td></td>
</tr>
<tr>
<td>Lyons and Edwards (1982a)</td>
<td></td>
</tr>
<tr>
<td>Atwater and Ball (1978)</td>
<td></td>
</tr>
<tr>
<td>Sucking and Hay (1977)</td>
<td></td>
</tr>
<tr>
<td>To = cloud</td>
<td></td>
</tr>
<tr>
<td>TC_a</td>
<td></td>
</tr>
<tr>
<td>TC_b</td>
<td></td>
</tr>
<tr>
<td>Cloud layer</td>
<td></td>
</tr>
<tr>
<td>CL_a</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL_b</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C_1 = cloud layer amount; CT_1 = cloud layer type; C_2 = total cloud amount; C_3 = total cloud opacity amount; N_a = number of sunshine hours; T = air temperature; T_2 = dew point temperature; S_P = surface pressure; P_w = precipitable water.

\[m = \left(\frac{(RE/H)\mu}{2} + \sqrt{2(RE/H) + 1}\right)^{1/2} \]

where \(R \) is the radius of the earth \((6.370 \times 10^8 \text{ m})\)
and \(H \) is the height \((\text{m})\) of the homogeneous atmosphere of constant density. \(H \) (here taken as 8436 m) has been adjusted for the effects of atmospheric pressure using an empirical relationship between air pressure and elevation (Williams et al., 1972).

The precipitable water \(P_w \text{ in } 10^{-2} \text{ m} \) required for \(a_n \) computations is based solely upon average air temperature \((t_a \text{ in } K)\), and elevation \((\text{in } m \text{ a.s.l})\) according to expressions formulated by Deacon (1970) and is as follows:

\[P_w = 10^{1.85 \log(a_n - 40.97) \exp(-Z/2700)} \]

2.2 Radiation under cloudy skies

Clouds play an important role in modifying radiation but our understanding of them is far from complete (Davies et al., 1975; Kondratyev, 1969; Sucking and Hay, 1977). They affect the reflectance, absorption, and transmittance of the incident radiation (Kondratyev, 1969). Two sets of radiation models that incorporate the cloud effects are used in the present study because they require only a limited amount of easily obtainable information.

2.2.1 Models using total cloud amount \((T_{C_a}, T_{C_b})\).

These models are based upon cloud reflectance and treat all clouds as though they are confined to one layer (Munro, 1991). Hence, direct radiation under cloudy skies, \(G_{ac} \), is simply a function of total cloud amount \((n)\):

\[G_{ac} = G_b(1 - n) \]

where \(G_b \) is direct radiation under clear skies (eqn 2a).

In this study, \(n \) is evaluated in two ways using total cloud amount \((n_{ac})\) and total cloud opacity amount \((n_{aq})\), hence the difference between the \(T_{C_a} \) and the \(T_{C_b} \) models.

Total cloud amount is expressed as cloud-covered fraction of the sky hemisphere. Total cloud opacity is a visual estimate of the effective cloud cover of the sky (Davies and McKay, 1989) and it is the non-transparent cloud amount that can be seen by the ground-based observer. Consequently, cloud amount totals using cloud opacity values tend to be lower than total cloud estimates. Cloud opacity totals have also been used by Kimura and Stephenson (1969) in their irradiation model.

Diffuse radiation under cloudy skies \((G_{ac})\) follows from Monteith (1962) and Munro and Young (1982),

\[G_{ac} = D_1 + D_2 \]

where

\[D_1 = G_{ac}(1 - n) + n G_b(1 - a_n - a_n) \]

and

\[D_2 = (G_{ac} + D_1)n a_n a_n(1 - a_n a_n)^{-1} \]

with \(a_n \) being the absorptance of cloud; \(a_n, a_n \), and \(a \) being the reflectance of the cloud top, the cloud base, and the average reflectance of the ground, respectively. Here, \(D_1 \) represents diffuse radiation from the cloudless portion of the sky plus that passing through the cloud layer, while \(D_2 \) represents diffuse radiation due to multiple reflection between the cloud base and the ground.

Following Munro and Young (1982), a saturation value of 0.18 is adopted for \(a_n \) and \(a_n \) is taken to be 0.6. The cloud top reflectance \(a_n \) varies according to air mass number and cloud thickness (Paltridge and Platt, 1976),

\[a_n = 1 + \left[\exp(-0.5656m n) \right] x (1 - 1.48m) + 3.54 m^{-1} - 2.62 - 3.54 m^{-1} - 2.62 \left[x + 5.2 \right]^{-1} \]

(7)
in which \(m \) is the optical air mass and \(x \) is the ratio of cloud thickness to the mean free path of light through the cloud. Thus eqn 7 allows \(\alpha \) to decrease as \(m \) becomes small, yielding relatively high values of diffuse radiation near local noon. Following the practice of Munro and Young (1982) the value \(x = 1.5 \) was obtained empirically by comparing the predicted and measured radiation under an overcast sky at Hot Weather Creek, a field camp 25 km east of Eureka.

Using field measurements made at Hot Weather Creek during the snow-free period in 1990, the mean surface reflectance was found to be 0.16. This value falls within the range reported for tundra surfaces of the alpine, sub-arctic, and arctic environments (Bowers and Bailey, 1989; Lalleur et al., 1993; Oke, 1987). When both direct and diffuse radiation are obtained, global radiation under cloudy skies \((G) \) is given by

\[
G = G_{oc} + G_{dc}
\]

(8)

2.2.2 Modelling using a cloud layer approach \((CL_x, CL_u)\). Cloud layer models take into consideration the variations in cloud transmittance with cloud type. They have the general form

\[
G = G_0 \prod_{i=1}^{j} \left(1 - C_i + CT(C_i)/(1 - ab) \right)
\]

(9)

where \(G \) is global radiation, \(G_0 \) is a theoretical estimate of cloudless sky irradiance, \(C_i \) and \(CT_i \) are the cloud amount and the transmittance of an individual layer, \(j \) is the number of cloud layers, and \(b \) is an atmospheric backscatter coefficient for surface reflected radiation. The denominator incorporates the effect of multiple reflections between the surface and the atmosphere (Davies and McKay, 1989; Wendell et al., 1981). Dominant cloud type in each layer determines the transmittances (Davies et al., 1985; Suckling and Hay, 1977). Following the recommendations of Davies et al. (1985), three transmittances were incorporated into our study: 0.32 for low clouds, 0.42 for middle layer clouds, and 0.78 for high clouds. The back scattering coefficient \((b) \) is evaluated by Davies and McKay (1982):

\[
b = 0.0658(1 - n) + 0.0124 + \alpha_m n
\]

(10)

Here, the first term is molecular scattering, assumed to apply only to the cloudless portion of the sky, the second term is scattering by aerosol in the atmosphere below the cloud base, and the third term is the cloud base reflectance, the product of average cloud reflectance \((\alpha_m) \) and cloud amount. Total cloud amount \(n = n_{oc} \) is the total cloud opacity amount in the \(CL_u \) model and \(n = n_{oc} \) is the total cloud amount in the \(CL_x \) model.

Since cloud layer amounts are reported from surface-based observations, a correction is applied to the amount of upper layer clouds to offset the obscuring effect of the layers below,

\[
n_i = n_i/(1 - \sum_{oc})
\]

(11)

where \(n_i \) is the corrected cloud layer amount and \(n_{oc} \) is the reported cloud layer amount. The variable, \(\sum_{oc} \) is the simple sum of reported cloud amount for the layers beneath (Suckling and Hay, 1977). Direct solar radiation under cloudy skies \((G_{oc}) \) using the cloud-layer model is

\[
G_{oc} = G_0(1 - n)
\]

(12)

where \(n = n_{oc} \) is total cloud opacity amount in \(CL_u \); and \(n = n_{oc} \) is total cloud amount in the \(CL_x \) model. Diffuse radiation \((G_{dc}) \) is then obtained by subtracting \(G_{oc} \) from global radiation \((G) \) (Davies et al., 1984).

3. DATA

For model computation and confirmation, we used meteorological data (Table 1) from Eureka weather station (80°00'N, 85°56'W, elevation 10.4 m). The \(TC_u \), \(TC_x \), and \(CL_u \) models were evaluated using cloud opacity data from the summer of 1989. The summer of 1973 was the only year at Eureka where there was continuous measurements of cloud amounts to analyse the performance of the \(CL_u \) model.

Pyranometers used by official weather stations are checked daily to ensure that they are level and free of condensation, rime, and dust. These instruments are also re-calibrated once every 2 years. The Atmospheric Environment Service (AES) guidelines estimate uncertainty in global radiation values to be the greater of ±1% or ±0.01 MJ m⁻² h⁻¹ (AES, 1989). Air temperature values have an uncertainty of ±0.1°C (AES, 1989).

Cloud observations were made following the standard Environment Canada procedures, specifying

\[
\text{Julian days}
\]

![Fig. 1. Measured daily global radiation compared with values estimated by four models using hourly meteorological data at Eureka.}

\[
\text{Simulated} \quad \text{Measured}
\]
cloud layer heights, amounts, and the types of clouds in each layer. Twice daily observations were also obtained during the snowfree period. The cloud data taken at 0700 h (LST) are considered to be representative of the period 0100–1200 h, and the values obtained at 1900 h (LST) were used to represent cloud conditions from 1200 h to 2400 h. These types of data replicate those which can be obtained easily by field camps scattered in the Arctic during the summer.

4. RESULTS

The radiation models were run using hourly or twice daily cloud data (2X/day). The root mean square error (RMSE) and the mean bias error (MBE) were used as indicators of model performance:

\[
RMSE = \left(\frac{1}{n} \sum (P_i - Q_i)^2 \right)^{1/2}
\]

(13)

Fig. 2. Hourly global radiation for Eureka compared with values estimated by four models under varying cloud cover conditions.
and

$$\text{MBE} = \frac{1}{k} \sum_{i=1}^{k} (P_i - O_i)$$

where \(P \) and \(O \) are computed and observed values and \(k \) is the number of data points. RMSE was also expressed as a percentage of the mean for different averaging periods (from hourly to 10-day intervals).

4.1 Calculations using hourly data

Figure 1 plots the estimates of daily global radiation from four models (TC_a, TC_o, CL_a, and CL_o) using hourly meteorological data, compared against measured global radiation at Eureka. Both the TC_o and the CL models perform better than the TC_a model, reproducing the seasonal trend and the shorter term fluctuations. The CL models using 1973 data underestimate high peaks early in the season. The TC_a, TC_o, and CL models tend to underestimate extreme high peaks and overestimate extreme low troughs in 1989. To examine this phenomenon in greater detail, hourly values for clear, overcast, and partly cloudy days are presented in Fig. 2. The overestimation of global radiation during the clear days (Figs. 2a, b) may indicate that the aerosol factor \(\alpha \) needs to be elevated from 0.96 to a higher value, as the Arctic atmosphere has lower aerosol content than that found in Western Canada. The overestimation during the overcast days (Fig. 2c, d) may be partly explained by the optimized value of \(\alpha = 1.5 \) used throughout the summer period. The CL models which do not use any optimization technique also overestimate radiation under overcast conditions, with the CL_a model overestimating more frequently than the CL_o. On days with partly cloudy skies, the CL models again tend to underestimate during the hours of low cloud cover possibly due to observer overestimate of total cloud and overestimate during the hours with large cloud amounts.

Despite the above limitations, the overall performance can be evaluated against other models currently available. The average %RMSE over 1-day, 5-day, and 10-day periods are plotted in Fig. 3 for all the models (TC_a, TC_o, CL_a, and CL_o) and compared against the %RMSE reported by other radiation models for these same time periods but for more southerly latitudes.

On a daily basis, the TC_a model performs poorly. TC_o, CL_a, and CL_o perform as well as Rietveld's (1978) sunshine model and a cloud layer model by Suckling and Hay (1977) and one by Atwater and Ball (1973). They also provide better results than the Davies et al. (1984) total cloud approach and Revfeim's (1981) sunshine model. However, the TC_o, CL_a, and CL_o models yield higher %RMSEs than the cloud layer method by Davies et al. (1984), one by Lyons and Edwards (1982a), and a total cloud approach utilized by Won (1977). This is attributed to the fact that the TC_a, CL_a, and CL_o models use only a limited amount of input data compared with the other models mentioned (Table 1).

Over a 5-day period, the %RMSE drops for all models, and the TC_a, CL_a, and CL_o models show greater improvement relative to the other methods. Although still weaker than the models of Davies et al. (1984) and Won (1977), the TC_o, CL_a, and CL_o models are as good as the models cited. Over a 10-day basis, the %RMSE of TC_a and CL_o falls below 10%, while CL_o falls below 11%. Here, CL_a and CL_o compare well with four radiation models and perform better than one sunshine model (Revfeim, 1981) whereas TC_a compares well with the Davies et al. (1984) and the Won (1977) model which benefit from more input information.

The daily %MBE of the TC_a, TC_o, CL_a, and CL_o models are plotted against the range of %MBE values of several other models (Fig. 4). The bias errors of the CL_a and CL_o models are equivalent to those of the total cloud method used by Davies et al. (1984) and Revfeim's (1978) sunshine model. Revfeim's sunshine model has a greater %MBE than both the TC_a and the

![Diagram](https://via.placeholder.com/150)

Fig. 3. Percentage root mean square error (RMSE) of the four modelled results (horizontal lines) compared with the ranges of error for other reported models (vertical bars). Three data averaging periods (1 day, 5 days, and 10 days) are represented. Hourly data were used in the computations: 1: Davies et al. (1984), CL Model; 2: Davies et al. (1984), TC Model; 3: Won (1977); 4: Revfeim (1981); 5: Revfeim (1978); 6: Lyons and Edwards (1982); 7: Suckling and Hay (1977); 8: Atwater and Ball (1978).
K. L. Young, M.-K. Woo, and D. S. Munro

Fig. 4. Percentage mean bias error (MBE) of the four modelled results (horizontal lines) compared with the ranges of error reported by other studies (vertical bars). Hourly data were used in the computations. 1: Davies et al. (1984), CL Model; 2: Davies et al. (1984), TC Model; 3: Won (1977); 4: Revféim (1981); 5: Reiveld (1978).

CL models. The TC_o model has a %MBE within the range found by the Davies et al. (1984) cloud layer model and Won’s (1977) total cloud model.

It is evident from Figs. 3 and 4 that the error associated with the TC_o, CL_o, and CL_a models fall within the range of error experienced by other radiation models, even though the latter models may require more input data. Given the lesser demand for a data base, the total cloud model (TC_o) and the cloud layer models (CL_o and CL_a) offer reasonable alternatives to measuring solar radiation in the Arctic. We further explore the manner in which the %RMSE declines as the averaging time lengthens.

Figure 5 shows that there is a rapid decrease in %RMSE for all the four models (TC_o, TC_a, CL_o, and CL_a), as the time base increases from an hourly to a ten-day period. For both the TC_o and CL models, the %RMSE is reduced to less than 15% after 4 days. Thus, for arctic ecologists or geomorphologists (e.g., Keller, 1992) who may require radiation data for only 5-10 day intervals, the TC_o and the CL models are adequate.

4.2 Calculations using twice daily data

For many arctic field stations, meteorological and cloud data are obtained only twice per day. Solar radiation was re-calculated using only twice-daily data inputs. Results show that the twice daily totals are comparable to those obtained using hourly data (see Fig. 1). One possible reason is the persistence of high cloud cover during the summers of 1973 and 1989. Davies and McKay (1988, 1989) also observed that the good performance of their cloud layer model using 3-hourly or 6-hourly cloud data is due largely to the persistence of the cloud cover during those times.

The %RMSE of these models using twice daily cloud data can be compared with the same model computation, using hourly data (Fig. 5). The %RMSE for the two times per day version also decline rapidly and

Fig. 5. Decrease of percentage root mean square error (RMSE) with length of averaging period for the four models computed using hourly data and using twice-daily data.
compare well with those of the daily version after 2 or
3 days of data averaging.

5. CONCLUSIONS

This study has shown that solar radiation in the
Arctic can be estimated satisfactorily by a total cloud
model \((TC_0) \) and cloud layer models \((CL_0 \) and \(CL_1) \),
yielding errors that fall within the range of other ra-
diation models which demand more input information.
Acceptable results are obtained using hourly or twice-
daily input cloud data, rendering the \(TC_0 \), \(CL_0 \), and
\(CL_1 \) models appropriate for many Arctic sites where
data are limited. The model performance improves
greatly when the calculated values are summed over 4
days or more. These three models are useful to Arctic
ecologists and earth scientists interested in mapping
solar radiation over large but remote areas.

Overall, it is suggested that cloud opacity or cloud
amount data should be obtained at Arctic field camps.
This allows the application of the cloud layer model
when no measured radiation data are available.

Acknowledgments—This work was funded by a research
agreement with the Department of Energy, Mines and
Resources, a grant from the Natural Sciences and Engi-
neering Research Council and a Northern training grant
from the Department of Indian and Northern Affairs. The
logistical support of the Polar Continental Shelf Project and Dr. S. A.
Edlund is gratefully acknowledged. We wish to thank Dr. B. Alt,
Sharon Reedyk, Tim Siferd, Kelly Thompson, and Paul
Wolfe for their assistance in the field, and Angus Headley for
the loan of instruments. We acknowledge the A.E.S. Canadian
Climate Centre through Bill Webo for providing Eureka station
data. We wish to thank Dr. John Davies and two anonymous
referees for their reviews of the manuscript.

REFERENCES

AES Guidelines for Co-operative Climatic Autostations. Cli-
matic Applications Branch. Canadian Climate Centre.
Downview, Ontario. Environment Canada. Atmospheric

M. A. Aitken and J. T. Ball. A numerical solar radiation
model based on standard meteorological observations,

J. D. Bowers and W. G. Bailey. Summer energy balance regi-
mes for alpine tundra. Plateau Mountain, Alberta, Can-

J. A. Davies and D. C. McKay. Evaluation of selected models
for estimating solar radiation on horizontal surfaces, Solar

J. A. Davies and D. C. McKay. Estimating solar radiation
from incomplete cloud data, Solar Energy 41(1), 15–18
(1988).

J. A. Davies, M. Abdel-Wahab, and D. C. McKay. Estimating
solar irradiation on horizontal surfaces, Int. J. of Solar

J. A. Davies, W. Scherzer, and M. Nunez. Estimating global
solar radiation. Boundary-Layer Meteorol. 9, 33–52
(1975).

J. A. Davies, M. Abdel-Wahab, and J. E. Howard. Cloud
transmissivities for Canada, Mon. Weather Rev. 113, 338–
348 (1985).

J. A. Davies and D. C. McKay. Estimating solar irradiance

E. L. Deacon. The derivation of Swinbank’s longwave radia-

S. A. Edlund and B. T. Alt. Regional congruence of vegetation
and summer climate patterns in the Queen Elizabeth
Islands, Northwest Territories, Canada, Arctic 42(1), 3–23
(1989).

H. G. Houghton. On the heat balance of the northern hemo-

Snowmelt at a small Alaskan Arctic watershed. 2. Energy
related modelling results, 9th International Northern Re-
search Basins Symposium/Workshop, Canada, 1992,
NHRI Symposium No. 10, (editors) T. D. Prowse, C. S.

K. Kellcr. Automated mapping of mountain permafrost using
the program PERMAKART within the Geographical In-
formation System ARC/INFO. Perm. and Periglacial

T. K. Kimura and D. G. Stephenson. Solar radiation on cloudy
days. Research Paper No. 418, Division of Building Re-

P. M. Lafler, A. V. Renzetti, and R. Bello. Seasonal changes
in the radiation balance of subarctic forest and tundra,

J. Lean. Variations in the sun’s radiative output, Rev. of Geo-

B. Y. H. Liu and R. C. Jordan. The interrelationship and
characteristic distribution of direct, diffuse and total solar

T. J. Lyons and P. R. Edwards, Estimating global solar irradi-
ance for Western Australia, part 1. Arch. Meteorol.,

T. J. Lyons and P. R. Edwards, Estimating global solar irradi-
ance for Western Australia, part 2. Arch. Meteorol.,

J. L. Monteith. An attenuation model for shortwave radia-
(1962).

D. S. Munro and G. Y. Young. An operational net shortwave

D. S. Munro. A surface energy exchange model of glacier melt
and net mass balance. Int. J. of Clim. 11, 689–700

S. F. Oberbauer and T. E. Dawson. Water relations of Arctic
vascular plants. (editors) F. S. Chapin III, R. L. Jeffries,
Arctic ecosystems in a changing climate-an eco-
physiological perspective. Academic Press, San Diego, 259–280

G. W. Patridge and C. M. R. Platt. Radiative processes in
meteorology and climatology. Elsevier, Amsterdam, 318

K. J. A. Revfeim. Estimating solar radiation income from
“bright” sunshine records. Q. R. J. Meteorol. Soc. 107,

H. R. Rietveld. A new method to estimate the regression co-
efficients in the formula relating radiation to sunshine. Agric.

R. Rizzo and E. Wiken. Assessing the sensitivity of Canada’s
ecosystems to climatic change. Climatic Change 21, 37–

W. R. Rousse, D. Carlson, and E. J. Weick. Impacts of summer
warming on the energy and water balance of wet tundra,

for estimating direct, diffuse and total solar radiation, At-

P. W. Suckling and J. E. Hay. Modelling direct, diffuse and
K. L. Young, M.-K. Woo, and D. S. Munro

CHAPTER FOUR

MODELLING NET RADIATION IN AN ARCTIC ENVIRONMENT USING SUMMER FIELD CAMP DATA

Authors: Kathy L. Young, Ming-ko Woo
Submitted to Solar Energy
July 1995

Geography Department, York University, North York, Ontario, M3J 1P3
1 Geography Department, McMaster University, Hamilton, Ontario, L8S 4K1
ABSTRACT

A model is presented that uses easily obtained twice-daily field data (cloud, temperature, wind) to calculate net radiation for horizontal and slope sites in an arctic setting. Shortwave radiation is calculated using a cloud-layer model, sensible and latent heat fluxes are determined using temperature and wind data, and the surface heat flux is obtained as the residual in the energy balance equation. Surface temperature which is required for longwave radiation is derived using the force-restore approach.

The modelled results compare favourably with field measurements for a cool and wet (1989) and a warm and dry (1990) summer at Hot Weather Creek (HWC). Significant departures in the results tend to appear during the snowmelt period, suggesting that a better understanding of rapid albedo changes during the snowmelt season are required. A better agreement occurred in 1990 and may partly reflect lower errors in global radiation estimates (15% versus 19% in 1989) and lower windspeeds which dampened turbulent transfers. A variable dust coefficient used in the model and the use of cloud data twice daily may partly explain the discrepancy in the two years, since, measured global radiation values were slightly underestimated in 1989 and overestimated in 1990. This may have attributed to the underestimate of Q* in 1989 and its overestimate in 1990.

Overall, the root-mean-square error for 1990 was 15-25% when net radiation was averaged over a 5 day period. The model could be applicable to geomorphologists, hydrologists and ecologists interested in mapping the spatial pattern of net radiation for slopes, transects or drainage basins in the north.
I. INTRODUCTION

Global Climate Models (GCMs) suggest temperature increases in the Arctic under a doubling of atmospheric concentration of greenhouse gases (Maxwell, 1992). There is little certainty regarding how alterations in cloud cover, aerosol amounts and changes in ground surface characteristics (Barker and Davis, 1992; Etkin and Agnew, 1992; McGuffie and Henderson-Sellers, 1987) may affect the energy balance under a climate warming scenario. Energy considerations are particularly important in the Arctic where snow and ice melt, and evaporation require considerable latent heat (Kane et al., 1992). Furthermore, changes in cloudiness, snow and ice regime, soil moisture and plant cover may produce negative feedbacks to the radiation balance.

While the GCMs provide scenarios for large areas, local variations in radiation balance are especially relevant to hydrologic, geomorphic and ecological studies. There is a dearth of radiation measurements, over different slopes and under different soil and vegetation conditions. Indeed, radiation measurements are scarce for the arctic region as a whole (Young et al. 1995).

Modelling offers a viable means of estimating net radiation for arctic sites where direct measurements of radiation are scarce. Most field parties supported by the Polar Continental Shelf Project (PCSP) of the Canadian Department of Natural Resources, scattered over large parts of the Arctic during the summers, offer temperature, wind and cloud data on a twice-daily basis. This paper presents a model, that uses such limited input data to compute the surface energy balance for flat and sloping surfaces. The modelled results will be compared with field measurements of net radiation obtained on several sites during the summers of contrasting weather conditions.

2. THEORY

The surface energy balance is

\[Q^* = K^* + L^* = Q_h + Q_e + Q_a \]

where \(Q^* \) is net radiation, \(K^* \) is net shortwave radiation, \(L^* \) is net longwave radiation and \(Q_h, Q_e, Q_a \) are sensible and latent heat fluxes. \(Q_a \) is the surface energy flux.
being equal to the melt energy when a snow cover exists and is equivalent to the
ground heat flux \(Q_x \) otherwise.

The fundamental problem of simulating net radiation is the requirement of \(T_s \)
which is required in determining outgoing longwave radiation \(L_\uparrow \). During the snow
period, the estimation of \(L_\uparrow \) is simplified because \(T_s = T_z \) before melt and \(T_s = 0°C \)
during melt (see section 2.4). However, in summer \(L_\uparrow \) is not known and \(T_s \) needs to
be determined before \(L_\uparrow \) can be calculated. This is possible only through knowing \(Q_s \)
which is used in the force-restore approach (Deardorff, 1978) (see section 2.4) to
solve for \(T_s \). \(Q_s \) itself is obtained as the residual in the surface energy balance
equation (eqn. 1) which requires that the turbulent fluxes \(Q_u, Q_v \) to be calculated
during the snowfree period.

In this paper, the turbulent fluxes are also considered during the snow period.
This is done so that the model framework can allow for energy losses and gains to
the snow surface during the pre- and snowmelt period to be determined, if so
desired. These are quantities which may be of interest to hydrologists, climatologists
and ecologists working in the north.

2.1 Short-wave radiation

\(K^* \) can be obtained when the surface albedo, \(\alpha \), and the global radiation, \(G \),
are known:

\[
K^* = (1 - \alpha) \ G
\]

\(G = G_b + G_d \) \hspace{1cm} (3)

where the subscripts b and d distinguish the direct and diffuse components.

The calculation of global radiation (both \(G_b \) and \(G_d \)) using temperature and
cloud data has been presented in Young et al. (1995) and will not be repeated here.
Several additional considerations are needed for the present study.

\[
\alpha(t) = \alpha(0) - \left[(\alpha(0) - \alpha) / \exp(\beta_1 + \beta_2 t + 1) \right] \hspace{1cm} (4)
\]
(1) The surface albedo, \(\alpha \), is assigned a value of 0.8 for the pre-snowmelt period. During melt, where \(t \) is the time since melt began, \(\alpha (0) = 0.8 \) is the snow albedo on the first day of melt, \(\alpha \) is the albedo of the ground surface, set at 0.12 (1989-wet) and 0.16 (1990-dry) for the study site, values that fall within the range of a tundra environment (Bowers and Bailey, 1989; Lafleur et al., 1993; Petzold and Renicz, 1975). Values for \(\beta_1 \) and \(\beta_2 \) are 2.46 and -0.26 (Woo and Dubreuil, 1985).

Snow on the first day of melt is rarely clean and an \(\alpha (0) = 0.8 \) may be too high. Woo (1984) proposed that if the albedo for the first day of melt is \(\alpha (0) \), it may be equivalent to the albedo for day \(\tau \), or \(\alpha (\tau) \) in equ. 4. In other words, the effective albedo on day \(\tau \) after the initiation of melt is to be shifted by \(\tau \)-days.

\[
\alpha_e (t) = \alpha (t + \tau)
\]

The initiation of continuous melt at each experimental site was established from field observations.

(2) Direct solar radiation on a slope (\(G'_b \)) is modified by

\[
G'_b = G_0 \cos i \mu^{-1}
\]

in which \(\mu \) is the cosine of the zenith angle (Young et al., 1995) and \(i \) is the angle between the sun's rays and a line normal to the slope, given by Kondratyev (1969) as:

\[
\cos i = \cos \Theta \sin h_0 + \sin \Theta \cos h_0 \cos (\Psi - \Phi)
\]

where \(\Theta \) is slope angle, \(h_0 \) is the solar elevation, \(\Psi \) is solar azimuth, and \(\Phi \) is slope azimuth.

Topographic shading is invoked when the cloud fraction (\(n \)) is between 0 and 0.7. The aspect of a slope is checked for +/- 90° of its azimuth (Table 1). If the
solar angle is less than the slope angle, shading occurs. Then, \(n \) is set to 1.0, the transmissivity function is set to 0.32 (low cloud type) and the cloud coefficient used in longwave radiation calculations (eqn. 10) is set to 0.24 (equivalent to stratus cloud type).

(3) Diffuse radiation on the slope \((G'_d) \) following Barry (1992) is:

\[
G'_d = [(G_0/I_0) \cos \mu^{-1} G_d] + [G_0 \cos^2(\theta/2)(1 - G_0/I_0)] + [\alpha(G_b + G_d) \sin^2(\theta/2)]
\]

(8)

where \(I_0 \) is the solar constant. Here, the first term is the anisotropic radiation, the second term defines the isotropically distributed radiation and the third term represents diffuse radiation reflected onto the slope by its surrounding ground hemisphere.

(4) For net shortwave radiation on a slope, \(G'_b \) and \(G'_d \) are substituted into eqn. (3) to obtain \(G \) and field determinations of \(\alpha \) specific to each site are used in eqn. (2) (Table 1).

2.2 Longwave radiation

Outgoing longwave radiation, both from a horizontal and a slope surface, is determined by

\[
L^1 = \varepsilon \sigma T^4
\]

(9)

where \(\sigma \) is the Stefan-Boltzmann constant, \(\varepsilon \) is the surface emissivity, considered here to be 0.97 (Kondratyev, 1969), a value which falls within the range for tundra surfaces (Oke, 1978). \(T_s \) is the surface temperature (see section 2.4). The incoming longwave is

\[
L^1 = \varepsilon \sigma (1 + a_n n^2) T_z^4
\]

(10)

where \(\varepsilon \) is the clear sky emissivity, and is calculated according to Idso and Jackson (1969). \(T_z \) is the air temperature at height \(z \). A correction is made for elevation as suggested by Deacon (1970):
\[\epsilon_e = 1 - 0.261 \exp[-7.77 \times 10^{-4}(273.2 - T_e)^2] - 0.001 \]

(11)

Here, \(\epsilon_e \) is an empirical coefficient related to cloud type (Monteith, 1973). For two cloud levels with the same cloud cover (n), the \(\epsilon_e \) value for the lower cloud type will be used because it has more influence on the longwave radiation (Pluss and Mazzoni, 1994).

For slopes less than 30°, incoming longwave radiation can be determined adequately using eq. 12b (Barry, 1992). For steeper slopes, their incoming longwave radiation (\(L' \downarrow \)) is

\[L' \downarrow = L_t + L_r + L_b \]

(12a)

where \(L_t \) is the atmospheric emission to the slope,

\[L_t = L \downarrow \cos^2(\theta/2) \]

(12b)

with \(L \downarrow \) being the incoming longwave onto the horizontal, \(\theta \) is the slope angle. \(L_r \) is the atmospheric emission reflected from the adjacent surfaces to the slope

\[L_r = (1 - \epsilon_e)L \downarrow \sin^2(\theta/2) \]

(12c)

and \(L_b \) is the infra-red flux from the adjacent surface to the slope

\[L_b = \epsilon_e \sigma T_e^4 \sin^2(\theta/2) \]

(12d)

2.3 Turbulent fluxes

During the melt period, the snow surface is close to 0°C and saturated. A bulk transfer expression is used for sensible heat (\(Q_h \)) and latent heat (\(Q_l \)) fluxes. assuming melting conditions at the snow surface:

\[Q_h = \rho \ c \ D_a \ u_e (T_s - T_e) \]

(13)
\[Q_e = \rho_s \lambda \left(\varepsilon/P \right)_e D_e u_e (e_e - e_s) \]

(14)

where, \(Q_e \) is the sensible heat flux term, \(\rho_s \) and \(C \) are the density and the heat capacity of air, \(u_e \) is wind speed at height \(z \), \(T_s \) and \(T_z \) are surface and air temperature respectively. \(Q_e \) is the latent heat flux term, \(\lambda \) is the latent heat of vaporization, \(\varepsilon \) is the dimensionless ratio of the molecular weights of water and air and \(P_a \) is the atmospheric pressure, \(e_e \) is the saturated vapour pressure of the melting snow surface and \(e_s \) is the saturated vapour pressure at height \(z \), calculated from \(T_z \) using an equation given by Dilley (1968). \(D_h \) and \(D_e \) are drag coefficients, considered to be equivalent to the common drag coefficient (D)

\[D_h = D_e = D = k_0^2 (\ln(z - d_0)/z_0)^2 \]

(15)

where \(k_0 \) is the von Karman constant, \(z \) is the height of the instrument (here taken as 0.5 m) and \(d_0 \) is the zero-plane displacement and \(z_0 \) is the surface roughness. Field determination of \(d \) and \(z_0 \) yielded \(d = 0.0 \) m, \(z_0 = 0.005 \) m for the pre-snowmelt and melt period. In the snowfree season, \(d = 0.067 \) m and \(z_0 = 0.005 \) m.

The drag coefficient is corrected for atmospheric stability using correction factors presented by Price and Dunne (1976):

\[D_d = D/(1 + \theta \text{Ri}), \text{Ri} > 0 \]

(16a)

\[D_u = D(1 - \theta \text{Ri}), \text{Ri} < 0 \]

(16b)

Here, \(\text{Ri} \) is the Richardson number and \(\theta = 10 \) and \(D_u \) and \(D_d \) are the coefficients under stable and unstable conditions.

After the snowmelt period, the Penman-Monteith (Monteith 1965, 1973) model is used to calculate the latent heat flux. A change to this model takes advantage of the resistance terms which allows the effects of vegetation growth to be incorporated. "This equation is an improvement because the stomatal resistance term produces an equation that simulates actual evaporation rather than just potential evaporation" (DeCoursey, 1991). Here,
\[
Q_c = \frac{S(Q^*-Q_0) + p_s C_p(e_s - e_d)/r_s}{S + \gamma(1 + r_s/r_s)}
\]

(17)

where \(S \) is the slope of the saturation vapour pressure-air temperature curve at \(T_s \) (Bowers and Bailey, 1989; Dilley, 1968), \(Q_0 \) is the ground heat flux (see eqn. 1), \(C_p \) is the specific heat of the air, \(e_s \) is the saturated vapour pressure at \(T_s \), \(e_d \) is the saturated vapour pressure at the dewpoint temperature (here assumed to be the minimum of the two daily readings taken at base-camp) (Jury and Tanner, 1975), \(\gamma \) is the psychrometric constant, \(r_s \) and \(r_a \) are the aerodynamic and the surface resistances. The term \(r_s \) is approximated by

\[
r_s = (D u_2)^{-1} \text{ under neutral conditions}
\]

(18a)

\[
r_a = (D u_a)^{-1} \text{ under stable conditions}
\]

(18b)

and \(r_a = (D u_a)^{-1} \) under unstable conditions

(18c)

The surface resistance was not determined in the field, but results from tundra sites with comparable plant types and moisture conditions were applied to this study. Stoner and Miller (1975) offered a relationship between mean leaf resistance \((r_s) \) and global radiation \((G) \) for tundra plants in the wet coastal zone at Barrow, Alaska:

\[
r_s = 100[2.14 + 8.67(G/697.32)]
\]

(19)

This relationship may be compared with those derived by Bowers and Bailey (1989) for an alpine tundra, sparsely vegetated. They found average values of \(r_s = 100 \) (moist conditions) and \(r_s = 650 \) (dry conditions).
2.4 Surface temperature (T_s)

During the pre-snowmelt period, the surface temperature (T_s) is set to T_e, an approximation used also by Marks and Dozier (1992) in the Sierra Nevada. During melt, T_s is set to 0°C.

After the disappearance of snow, T_s is calculated by the force-restore scheme (Deardorff, 1978; Koster and Suarez, 1992 and Munro, 1991). Deardorff's (1978) scheme is used to model the surface temperature response (dT_s / dt) to the surface energy flux (Q_s or Q_r) which is determined as the residual in the surface energy balance equation:

$$\frac{dT_s}{dt} = 2Q_s/(C_s h_d) - 2\pi(T_e - T_s)T$$ \hspace{1cm} (20)

where, C_s is the heat capacity of the substrate (at 0 - 0.10 m depth) determined using field data (Young et al., 1995, submitted) (Table 2) and calculated using the method described by De Vries (1963). The daily damping depth (h_d) is calculated by,

$$h_d = (K_s \Gamma)^{1/2}$$ \hspace{1cm} (21)

where K_s is the average seasonal thermal diffusivity (Table 2). The value (Γ) is the number of seconds in a day and T_s and T_g are the temperatures of the surface and subsurface layers, given by

$$T_s = Q_s/(C_s h_d) \Delta t$$ \hspace{1cm} (22)

$$T_g = Q_s/(C_s h_g) \Delta t$$ \hspace{1cm} (23)

Δt is the time step (3600 s). The annual damping depth (h_s) is also calculated following Deardorff (1978).
\[h_g = (365K_pD)^{\frac{1}{2}} \]

(24)

The surface temperature of the previous time step \(T_i \) is then updated on an hourly basis so that

\[T(t+1) = T_i + \frac{dT_s}{dt} \]

(25)

3. STUDY AREA

Five sites located within 1 km² of the base-camp (BC) at Hot Weather Creek (HWC), Fosheim Peninsula, Ellesmere Island (79°58'N, 84°28'W) (Fig. 1) provided data for modelling (Tables 1-3).

A Northwest (NW) facing slope has a gradient of 0.2 (11.5°) and a slope length of 44 m. The upper two-thirds of the slope has under 5% of vegetation while the lower zone is more completely covered by a Cassiope tetragona community, grading into a wetland-type vegetation (Carex aquatils var. stans, Eriophorum scheuchzeri, and Dupontia fisheri) adjacent to a small tundra pond. The Southeast (SE) facing slope lies directly across from the NW slope and has a gentler gradient of 0.12 (6.8°). Its slope is longer (approx. 73 m). The vegetation cover Salix arctica is nearly complete on the lower part of the slope near the pond and for a short distance up the slope (15 m). For the rest of the slope, plant cover is sparse, largely concentrated in small depressions and along soil cracks where moisture collects. The East (E) facing slope consists of three sections: two segments with a gradient of 0.2 (11.3°) separated by a gentler slope of 0.03 (1.9°). The entire slope measures approximately 98 m. The two steeper zones are populated by a Salix arctica-Dryas integrifolia community, but the intermediate more gentle slope section is largely devoid of vegetation. The West (W) facing slope is steep (0.38 or 20.1°) and short with a slope length of only 21 m. It is sparsely vegetated by Salix arctica and Dryas.
integri folia. On the Plateau (P), the vegetation cover (15-35%) is dominated by *Salix arctica.*

4. DATA

Data for these sites came from two summers of contrasting weather conditions: 1989 (cool, wet) July precipitation was 48 mm (P) and 1990 which was warm and dry (July precipitation was only 6 mm (P)). Two sets of data were collected: as input to the model (Tables 1, 2) and data used (a) for assessing the feasibility of employing weather data gathered at BC to represent all sites (both level and slope) and (b) for model validation (Table 3).

The first set of data consisted of location type information (latitude, longitude); site characteristics (slope, aspect and angle, elevation, surface albedo, soil attributes); and twice-daily weather observations of cloud data (cloud type and amount), wind speed and temperature (dry bulb, and minimum temperatures). This collection of weather data generally comprises the minimum amount of data provided twice a day at field camps scattered in the Canadian Arctic and supported by PCSP.

Cloud observations were made following the standard Environment Canada procedures, specifying cloud layer heights, amounts and the types of clouds in each layer (Young et al., 1995). Dry-bulb air temperatures were obtained with mercury thermometers (± 0.5°C), and minimum air temperatures were obtained from maximum-minimum thermometers (± 0.5°C) (AES, 1989). These instruments were housed in an isolated Stevenson screen approximately 1.5 m above the ground surface. Spot wind speed measurements (in knots) were made twice a day approximately 2 m above the ground using Cassella type anemometers (± 10%) (AES, 1989). In the model these wind speed measurements were adjusted to a height of 0.5 m to make them comparable to measured wind speeds and were also converted to units of ms⁻¹. Measurements taken at 0700 h (LST) are considered to be representative of the period 0100-1200 h, and the values obtained at 1900 h (LST) were used to represent weather conditions from 1200 to 2400 h.

The second set of data obtained comprised information which was used (1) for validation of applying the twice-daily data to represent meteorological
conditions at the experimental sites on a hourly basis and (2) for assessing model performance. Air temperature and relative humidity on an hourly basis was measured using Campbell Scientific (CS) 201 probes, set at 0.5 m above the surface. Wind speed was measured with CS met-one anemometers also placed 0.5 m above the surface. Net radiation was measured on four slopes and on the horizontal using Middleton or Swissteco radiometers and these data were recorded by Campbell Scientific CR21 dataloggers with values averaged over hourly intervals (Young et al. 1995, submitted) (Table 3).

5. RESULTS

The percentage root mean square error (%RMSE) and percentage mean bias error (%MBE) will be used as an indicator of the performance of modelled net radiation:

\[
\text{%RMSE} = 100 \left[\frac{\sum_{j=1}^{k} \left(\frac{P_j - O_j}{k} \right)^2}{\sum_{j=1}^{k} 0/k} \right]^{0.5}
\]

(26)

and

\[
\text{%MBE} = 100 \left[\frac{\sum_{j=1}^{k} \left(\frac{P_j - O_j}{k} \right)}{\sum_{j=1}^{k} 0/k} \right]
\]

(27)

where \(P \) is modelled net radiation and \(O \) is either an observed value or a value obtained by some standard computation method, and \(k \) is the number of data points being compared. In the following discussion, simulated net radiation refers to modelled values obtained using cloud data, dry-bulb temperature and windspeed input determined twice a day for all sites.

5.1 Selection of surface resistance (\(r_s \))

The equation proposed by Stoner and Miller (1975) and the findings by Bowers and Bailey (1989) were used to determine \(r_s \). In applying the latter approach, \(r_s = 100 \) was applied to the wet summer of 1989 and \(r_s = 650 \) was used for the dry summer of 1990. To account for wet, rainy conditions, where \(r_s \) would approach 0 (Bowers and Bailey, 1989; Lafleur and Rouse, 1990) \(r_s \) was set to 0 when
the cloud transmissivity $C_i \leq 0.32$ (see section 5.2) in the latter approach. The net
radiation simulated using r_i that was determined by the two methods were compared.
The RMSE indicated no significant difference in the calculated net radiation when
employing eqn. 19 to derive r_i. The %RMSE was under 6% for both 1989 and
1990. However, when the calculated cumulative evaporation (mm) was compared
with measured lysimeter values (mm) (unpublished data), the results determined by
using eqn. 19 were unreasonable (<20 mm) in comparison to measured values of
about 45 mm at the experimental sites in both 1989 and 1990.

5.2 Selection of aerosol coefficient (κ)

Young et al. (1995) use a constant value of $\kappa = 0.96$ in the calculation of
global radiation (G), but Davies et al. (1975) indicate that κ may change in space
and in time due to variable atmospheric dust loadings under clear and cloudy
conditions. For instance, a value of $\kappa = 0.88$ provided better agreement for a site at
Grimsby, Ontario, during cloudless days in 1988. Under cloudy conditions, a value
of 0.91 was selected and it produced the best result. On these types of days, winds
are usually stronger and atmospheric pollution is less than on cloudless, anticyclonic
days. Lyons and Edwards (1982) working in Australia also allowed κ to vary
between 0.85 and 1.00.

In view of the occurrence of arctic aerosol (Barrie, 1992), κ may be variable
in the arctic atmosphere. It is proposed that much of the aerosol may be removed
during rain events. Assuming that precipitation events are accompanied by abundant
low clouds, a switch in the value of κ is applied to the model:

$$\kappa=1.00, \quad C_i \leq 0.32$$

(28)

otherwise, $\kappa=0.96$. Overall, a variable κ value reduces the error of simulated global
radiation (%RMSE=19, %MBE=-1 for 1989, %RMSE=15, and %MBE=7 for
1990) compared with the computations where κ is held constant at 0.96 or 1.00.
5.3.1 Wind speed (u)

Net radiation (Q*) for all sites simulated using 2x/d inputs was compared with simulated Q* using hourly measured wind speed. The latter set of simulated values was used as the standard against which the performance of the 2x/d inputs were gauged.

The results were highly variable, with %RMSE ranging from 8 to 21% (Table 4). To examine further the cause of the large errors, the Q* simulated using 2x/d wind data were plotted against those calculated using hourly data. Figure 2 indicates that most points fall on the 1:1 line except those obtained for the calm days (u=0) and for days when speeds were high.

To explore the effect of windspeeds on the error values, the 2x/d wind speed was increased incrementally between 0 and 22 knots (11.5 ms\(^{-1}\)). Q* simulated by each of these runs were compared with those calculated using hourly u measured on all the slopes. Figure 3 provides an example from the NW site in 1990, showing that extremely high %RMSEs occurred when u=0 and when u>19 knots, accompanied by very large negative %MBEs.

Considering that these wind conditions are infrequent in the study area, subsequent simulations set u=1 knot (0.51 ms\(^{-1}\)) as a minimum and u = 19 knots (9.8 ms\(^{-1}\)) as a maximum windspeed. In so doing the %RMSEs and %MBEs were reduced significantly (Table 4).

5.3.2 Air temperature

Simulated Q* using 2x/d field camp data were compared with Q* simulated using measured hourly air temperatures. The %RMSEs were small (<13%) when 2x/d air temperature was substituted for hourly observations. Similarly, measured hourly relative humidity (R\(_H\)) was used to simulate Q*, by replacing e\(_s\) (eqn. 14) and e\(_d\) (eqn. 17) with hourly derived actual vapour pressure (e\(_a\)) approximations. Here

\[
e_a = (R_H/100)e_s
\]

(29)

The %RMSEs indicate small errors (< 9%) when temperatures (2x/day) are used to approximate actual vapour pressure (e\(_a\)) in the simulation of net radiation
(eqns. 14 and 17). However, in a comparison of daily latent heat flux calculations, there was a large discrepancy between using hourly measured \(R_H \) and using temperature data (2x/d). Large departures arose during episodes of high winds.

5.4 Model validation

(a) The seasonal radiation rhythm

Using 2x/d data obtained at BC extended to the five experimental sites, \(Q^* \) was simulated. A seven day start-up period was used for each simulation to avoid model instability due to initializations.

The simulated results reproduced the strong seasonal regime of \(Q^* \) (Fig. 4). In the pre-melt period, values were low, approaching negligible amounts of negative quantitives. This was due to the large snow albedo and below-freezing air temperatures. As albedo declined and as temperatures rose during the snowmelt period, \(Q^* \) increased. Discrepancy between observed and simulated results during the melt season may partially reflect the occasional movement of the net radiometer over a more complete snowcover, so that it was not monitoring bare ground. Subsequently, the net radiometer may have been monitoring surfaces with varying dust contents.

After the snowmelt, both simulated and observed \(Q^* \) showed high values around the summer solstice which corresponded with periods with little cloud. \(Q^* \) fell in July and August, as the solar altitude declined and as greater cloudiness prevailed. Departures between the curves, on a daily basis, may reflect the use of cloud data only twice daily which may not be representative of the hourly changes in cloud amounts. For instance, when simulated and measured global radiation are compared during the snowfree period in 1989 (between Julian days 165-232), the %RMSE increases to 24% and the %MBE drops to -5%, possibly accounting for the underestimation of simulated net radiation during the snowfree period in 1989. Conversely, during the same period in 1990, the %RMSE increased slightly to 17% while the %MBE rose sharply to 11%. This pattern likely accounted for the overestimation of simulated net radiation values (NW, SE, E). The sizeable underestimates in 1989 may also be attributed to the surface albedo used during the snowfree period. For the wet soils, only a limited number of albedo measurements
were made and this could have over-estimated the value (Table 1). DeCoursey (1991) indicated that the albedo of wet soil can range from 0.05-0.24, with an average of 0.11.

(b) Seasonal rhythm of surface energy fluxes

To better understand the net radiation patterns, the energy fluxes were examined throughout entire field seasons of 1989 and 1990 (Fig. 5). During the pre-snowmelt periods, contributions of \(Q_h \) and \(Q_e \) were negligible given \(T_r = T_s \) and consequently, \(Q_s \) was dominated by \(Q^* \) which was itself small or negative. At times during the melt period, \(Q_h \) and \(Q_e \) contributed to large \(Q_s \) values (see Fig. 5a). Following the snowmelt period which varied among the sites during the two years, \(Q_s \) became less dominant and most net radiation was consumed by the turbulent fluxes. In 1989, \(Q^* \) was partitioned almost evenly between \(Q_h \) and \(Q_e \). During high radiation days (e.g. Julian day 173) \(Q_h \) tended to be more important, while on low radiation days (e.g. day 192) \(Q_e \) was higher than \(Q_h \). This may be partly a reflection of the model logic, in that \(r_s \) was set to 0 when cloud conditions were low (≤0.32). Such a condition would enhance evaporation if wind conditions were moderate as well.

Following the snowmelt season of 1990, \(Q^* \) was again largely consumed by \(Q_h \) and \(Q_e \). Due to the dry conditions during this season, more energy was used in \(Q_h \) and less energy for evaporation (\(Q_e \)), except for several days when cloud conditions decreased (≤0.32) and the surface resistance fell to 0. On these occasions, with moderate wind speeds, \(Q_s \) dominated (e.g. day 198) and \(Q_h \) became small.

(c) Mean Bias Error (%MBE)

In 1989, the %MBEs for the sites were large ranging from -35% (P) to -17% (W). Conversely, the %MBEs were reduced in 1990 and were positive except for the W slope (-2%). Here, the positive values range from about 1% (SE) to about 14% for the E slope (Fig. 6).
(d) Averaging effect of Root Mean Square Error (%RMSE)

The %RMSEs were higher for the simulated daily Q* of 1989 (42-59%) than of 1990 (27 to 39%) (Fig. 7). In 1989, most slopes experienced a 10% improvement in the results when averaged over 5 days, while the W slope experienced the greatest improvement of 18%. This same pattern was duplicated in 1990, where most sites again saw improvements of about 10%, while the W slope showed the best overall performance of 15%. The large error drop for this W slope in both years may be attributed to its low mean bias errors (Fig. 6). There were both under and overestimated values to lower the %MBE and hence average out the error differences over time, resulting in greater %RMSE drops over a 5 day period.

For the other sites in 1989, the high negative %MBEs (see Fig. 6) may have caused the %RMSEs to decline less dramatically. Although the %MBEs were reduced in 1990, the consistent overestimation by the modelled values is again reflected in the gradual declines in %RMSE. The lowest decline in %RMSE occurred for the P site (1989) and likely reflects the small sample size (46 days) versus (85-87 days) for the other sites and the higher %RMSE occurring when 2x/day air temperature is substituted for hourly air temperature (see Table 4).

6. DISCUSSION AND CONCLUSIONS

This paper has demonstrated the feasibility of simulating Q* using limited input data, providing an opportunity to map the radiation over the Arctic where direct measurements are scarce.

The model presented allows an extension of point observations in space to cover different terrains and under various ground surface conditions. Microclimatologists and hydrologists will find it useful in extrapolating snowmelt and evaporation for various slopes and drainage basins. Ecologists can apply the model to compute radiation input for plot or transects; and geomorphologists can estimate the energy available for geomorphic processes to occur over a range of spatial scales.

In the future, this model can be used to investigate the sensitivity of net radiation to changing values of cloud cover, surface conditions, and air temperatures, thus offering a tool to study radiation responses to surface and climatic changes.
ACKNOWLEDGEMENTS

This work was funded by a research agreement with the Department of Energy, Mines and Resources, a grant from the Natural Sciences and Engineering Research Council to M.-k. Woo and a Northern training grant from the Department of Indian and Northern Affairs. The logistical support of the Polar Continental Shelf Project and Dr. S.A. Edlund is gratefully acknowledged. We wish to thank Dr. Bea Alt, Sharon Reedylk, Tim Siferd, Kelly Thompson and Paul Wolfe for their assistance in the field, and Angus Headley for the loan of instruments and for providing unpublished climate data from the automatic weather station at Hot Weather Creek. We wish to thank Kathy Armstrong for typing the manuscript and Carol Randall for drafting the figures.
REFERENCES

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>heat capacity of air (1200)</td>
<td>Jm⁻³K⁻¹</td>
</tr>
<tr>
<td>Cₚ</td>
<td>specific heat of air (1010)</td>
<td>Jkg⁻¹K⁻¹</td>
</tr>
<tr>
<td>Cₛ</td>
<td>heat capacity of the substrate</td>
<td>Jm⁻³K⁻¹</td>
</tr>
<tr>
<td>Cₜ</td>
<td>cloud transmissivity</td>
<td>dimensionless</td>
</tr>
<tr>
<td>D</td>
<td>common drag coefficient</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Dₑ</td>
<td>drag coefficient for latent heat</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Dₛ</td>
<td>drag coefficient for sensible heat</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Dᵯ</td>
<td>drag coefficient under stable conditions</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Dᵤ</td>
<td>drag coefficient under unstable conditions</td>
<td>dimensionless</td>
</tr>
<tr>
<td>G</td>
<td>global radiation</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>Gₚ</td>
<td>direct radiation</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>Gₜ</td>
<td>diffuse radiation</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>Gₜᵇ</td>
<td>direct radiation on slope</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>Gₜᵈ</td>
<td>diffuse radiation on slope</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>I₀</td>
<td>solar constant (1370)</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>K*</td>
<td>net shortwave radiation flux density</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>Kₛ</td>
<td>thermal diffusivity (x 10⁻⁷)</td>
<td>m²s⁻¹</td>
</tr>
<tr>
<td>L↓</td>
<td>atmospheric longwave radiation (level)</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>L↑</td>
<td>longwave radiation leaving slope, level</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>L↓</td>
<td>atmospheric longwave radiation (slope)</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>L*</td>
<td>longwave radiation flux density</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>L₀</td>
<td>infra-red flux from the adjacent surface received by the slope</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>Lᵣ</td>
<td>atmospheric emission of longwave radiation to the slope</td>
<td>Wm⁻²</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>L<sub>r</sub></td>
<td>atmospheric emission from the adjacent surface reflected onto the slope</td>
<td>Wm<sup>2</sup></td>
</tr>
<tr>
<td>LST</td>
<td>local standard time</td>
<td>h</td>
</tr>
<tr>
<td>MBE</td>
<td>mean bias error</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>computed value</td>
<td>MJm<sup>2</sup></td>
</tr>
<tr>
<td>P<sub>p</sub></td>
<td>atmospheric pressure (101330)</td>
<td>Pa</td>
</tr>
<tr>
<td>Q<sup>*</sup></td>
<td>net radiation flux density</td>
<td>Wm<sup>-2</sup></td>
</tr>
<tr>
<td>Q<sub>e</sub></td>
<td>latent heat flux density</td>
<td>Wm<sup>-2</sup></td>
</tr>
<tr>
<td>Q<sub>s</sub></td>
<td>ground heat flux density</td>
<td>Wm<sup>-2</sup></td>
</tr>
<tr>
<td>Q<sub>h</sub></td>
<td>sensible heat flux density</td>
<td>Wm<sup>-2</sup></td>
</tr>
<tr>
<td>Q<sub>s</sub></td>
<td>surface energy flux density</td>
<td>Wm<sup>-2</sup></td>
</tr>
<tr>
<td>R<sub>H</sub></td>
<td>relative humidity (%)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Ri</td>
<td>Richardson number</td>
<td>dimensionless</td>
</tr>
<tr>
<td>RMSE</td>
<td>root mean square error</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>slope of the saturated vapour pressure-air temperature curve</td>
<td>Pa<sup>•</sup>°C<sup>-1</sup></td>
</tr>
<tr>
<td>T<sub>S</sub></td>
<td>temperature of the surface layer</td>
<td>K</td>
</tr>
<tr>
<td>T<sub>C</sub></td>
<td>thermal conductivity</td>
<td>Wm<sup>-1</sup> k<sup>-1</sup></td>
</tr>
<tr>
<td>T<sub>d</sub></td>
<td>dew-point temperature (here assumed to be the minimum temperature)</td>
<td>K</td>
</tr>
<tr>
<td>T<sub>k</sub></td>
<td>temperature of the subsurface layer</td>
<td>K</td>
</tr>
<tr>
<td>T<sub>s</sub></td>
<td>surface temperature</td>
<td>K</td>
</tr>
<tr>
<td>T<sub>i</sub></td>
<td>surface temperature of the previous time step</td>
<td>K</td>
</tr>
<tr>
<td>T<sub>a</sub></td>
<td>air temperature</td>
<td>K</td>
</tr>
<tr>
<td>O</td>
<td>observed value</td>
<td>MJm<sup>2</sup></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_c</td>
<td>cloud coefficient</td>
</tr>
<tr>
<td>d_o</td>
<td>zero-plane displacement (0.0 snow; 0.067 snowfree)</td>
</tr>
<tr>
<td>e_a</td>
<td>actual vapour pressure</td>
</tr>
<tr>
<td>e_d</td>
<td>saturated vapour pressure at T_d (assumed to be the minimum air temperature)</td>
</tr>
<tr>
<td>e_r</td>
<td>saturated vapour pressure of the melting snow surface (611)Pa</td>
</tr>
<tr>
<td>e_z</td>
<td>saturated vapour pressure at T_z</td>
</tr>
<tr>
<td>h_o</td>
<td>solar elevation</td>
</tr>
<tr>
<td>h_d</td>
<td>daily damping depth</td>
</tr>
<tr>
<td>h_s</td>
<td>annual damping depth</td>
</tr>
<tr>
<td>i</td>
<td>the angle between the sun’s rays and a line normal to the slope</td>
</tr>
<tr>
<td>k_0</td>
<td>von Karman constant (0.40)</td>
</tr>
<tr>
<td>m.asl</td>
<td>metres above sea level</td>
</tr>
<tr>
<td>n</td>
<td>total cloud amount (tenths of the sky)</td>
</tr>
<tr>
<td>r_s</td>
<td>aerodynamic resistance</td>
</tr>
<tr>
<td>r_r</td>
<td>surface resistance due to stomatal control</td>
</tr>
<tr>
<td>t</td>
<td>time since melt began</td>
</tr>
<tr>
<td>u_z</td>
<td>wind speed at height z</td>
</tr>
<tr>
<td>z</td>
<td>height</td>
</tr>
<tr>
<td>z_o</td>
<td>surface roughness (0.005)</td>
</tr>
<tr>
<td>α</td>
<td>surface albedo (background albedo)</td>
</tr>
<tr>
<td>α_e</td>
<td>albedo of the ground surface (level, slope)</td>
</tr>
<tr>
<td>$\alpha(0)$</td>
<td>albedo on the first day of melt</td>
</tr>
</tbody>
</table>

UNITS

- dimensionless
- m
- Pa
- radians
- m
- m
- radians
- dimensionless
- m
- dimensionless
- sm$^{-1}$
- sm$^{-1}$
- day
- ms$^{-1}$
- m
- m
- dimensionless
- dimensionless
- dimensionless
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>effective snowmelt albedo</td>
<td>dimensionless</td>
</tr>
<tr>
<td>β_1</td>
<td>coefficient in snow surface albedo (2.46)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>β_2</td>
<td>coefficient in snow surface albedo (-0.26)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Γ</td>
<td>number of seconds in a day (86400)</td>
<td>s</td>
</tr>
<tr>
<td>γ</td>
<td>psychrometric constant (66)</td>
<td>$\text{Pa} \cdot ^\circ \text{C}^{-1}$</td>
</tr>
<tr>
<td>ε</td>
<td>ratio of the molecular weights of water and air (0.622)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>ε_a</td>
<td>clear sky emissivity</td>
<td>dimensionless</td>
</tr>
<tr>
<td>ε_s</td>
<td>surface emissivity (0.97)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>θ</td>
<td>slope angle</td>
<td>radians</td>
</tr>
<tr>
<td>κ</td>
<td>aerosol coefficient</td>
<td>dimensionless</td>
</tr>
<tr>
<td>λ</td>
<td>latent heat of vapourization ($\times 10^6$)</td>
<td>Jkg^{-1}</td>
</tr>
<tr>
<td>μ</td>
<td>cosine of the solar zenith angle</td>
<td>radians</td>
</tr>
<tr>
<td>π</td>
<td>Pi</td>
<td>dimensionless</td>
</tr>
<tr>
<td>ρ_a</td>
<td>air density</td>
<td>kgm^{-3}</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant (5.67×10^{-8})</td>
<td>$\text{Wm}^2 \cdot \text{K}^{-1}$</td>
</tr>
<tr>
<td>τ</td>
<td>time shift in the calculation of snow albedo</td>
<td>day</td>
</tr>
<tr>
<td>ϕ</td>
<td>slope azimuth</td>
<td>radians</td>
</tr>
<tr>
<td>Ψ</td>
<td>solar azimuth</td>
<td>radians</td>
</tr>
<tr>
<td>θ</td>
<td>constant with a value of 10</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Δt</td>
<td>time step</td>
<td>s</td>
</tr>
</tbody>
</table>
Table 1. Initial conditions and input data for simulation of net radiation at Hot Weather Creek, N.W.T. (1989-1990)

Initial conditions:

<table>
<thead>
<tr>
<th>Site</th>
<th>P</th>
<th>NW</th>
<th>SE</th>
<th>E</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>79°58'N</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Longitude</td>
<td>84°28'W</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Slope angle (°)</td>
<td>0</td>
<td>11.5</td>
<td>6.8</td>
<td>4.2 (11.3)a</td>
<td>21.0</td>
</tr>
<tr>
<td>Slope aspect (°)</td>
<td>0</td>
<td>315 (135)b</td>
<td>135(-45)</td>
<td>90 (-90)</td>
<td>270</td>
</tr>
<tr>
<td>Elevation (m,asl)</td>
<td>118</td>
<td>95</td>
<td>96</td>
<td>99</td>
<td>85</td>
</tr>
<tr>
<td>Pre-snowmelt albedo</td>
<td>0.8/-</td>
<td>0.7/0.7</td>
<td>0.8/0.8</td>
<td>0.7/0.8</td>
<td>0.7/0.8</td>
</tr>
<tr>
<td>Snow/ice albedo</td>
<td>0.125/-</td>
<td>0.13/0.19</td>
<td>0.135/0.16</td>
<td>0.10/0.14</td>
<td></td>
</tr>
<tr>
<td>Time shift (τ)</td>
<td>3/-</td>
<td>2/1</td>
<td>5/2</td>
<td>2/1</td>
<td>2/1</td>
</tr>
</tbody>
</table>

Input Data (2x/d) for all experimental sites

- Clouds (Amount/Type)
- Dry-bulb air temperature (°C)
- Minimum air temperature (°C)
- Windspeed (Knots)

* ✓ same as Plateau (P)
a shadow occurred for E slope when sun elevation fell below 11.3° (see study area)
b aspect according to Kondratyev (1959)
c 1989/1990 values in each year
Table 2. Soil attributes from experimental sites, Hot Weather Creek, N.W.T. (1989-1990)

<table>
<thead>
<tr>
<th>Site</th>
<th>Year</th>
<th>Thermal * Conductivity (T_c) (Wm$^{-1}$ K$^{-1}$)</th>
<th>Heat* Capacity (C_p) (x106 Jkg$^{-1}$)</th>
<th>Thermal* Diffusivity (K_c) (x10$^{-7}$ m$^{-1}$s$^{-1}$)</th>
<th>Daily Damping Depth (h_d) (m)</th>
<th>Annual Damping Depth (h_a) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>1989</td>
<td>0.6 (0.1)</td>
<td>1.7 (0.1)</td>
<td>3.9</td>
<td>0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>SE</td>
<td>1989</td>
<td>0.5 (0.1)</td>
<td>1.8 (0.2)</td>
<td>2.7</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>E</td>
<td>1989</td>
<td>0.6 (0.1)</td>
<td>1.8 (0.1)</td>
<td>3.4</td>
<td>0.2</td>
<td>3.3</td>
</tr>
<tr>
<td>W</td>
<td>1989</td>
<td>0.7 (0.1)</td>
<td>1.8 (0.2)</td>
<td>3.9</td>
<td>0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>P</td>
<td>1989</td>
<td>0.9 (0.1)</td>
<td>2.2 (0.2)</td>
<td>4.0</td>
<td>0.2</td>
<td>3.6</td>
</tr>
<tr>
<td>NW</td>
<td>1990</td>
<td>0.5 (0.1)</td>
<td>1.4 (0.2)</td>
<td>3.9</td>
<td>0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>SE</td>
<td>1990</td>
<td>0.4 (0.2)</td>
<td>1.6 (0.4)</td>
<td>2.7</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>E</td>
<td>1990</td>
<td>0.5 (0.2)</td>
<td>1.5 (0.3)</td>
<td>3.3</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>W</td>
<td>1990</td>
<td>0.5 (0.0)</td>
<td>1.3 (0.1)</td>
<td>3.7</td>
<td>0.2</td>
<td>3.4</td>
</tr>
</tbody>
</table>

* average seasonal value for 0.0 - 0.10 m depth

** $K_c = (T_c / C_p)$

() standard deviation

note: soil conditions reflect net radiometer position at experimental site
Table 3. Hourly measured data used for verifying use of 2x/day input data and model validation

Verifying use of 2x/day input data:

<table>
<thead>
<tr>
<th>Site</th>
<th>1989</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P NW SE</td>
<td>E W</td>
</tr>
<tr>
<td>Windspeed (ms⁻¹)</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Air temperature (°C)</td>
<td>X X X</td>
<td>X X</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
<td>X X X</td>
<td>X X</td>
</tr>
</tbody>
</table>

Validation of model:

<table>
<thead>
<tr>
<th>Site</th>
<th>1989</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P NW SE</td>
<td>E W</td>
</tr>
<tr>
<td>Net Radiation</td>
<td>X X X</td>
<td>X X</td>
</tr>
</tbody>
</table>

X: Employed
Table 4. Testing feasibility of using input data at base-camp versus hourly measured input data from sites to simulate Q^*, Q_a (observed: hourly measured inputs, simulated: 2x/day inputs)

<table>
<thead>
<tr>
<th>Year</th>
<th>Site</th>
<th>Wind (%RMSE) Q^*</th>
<th>Dry-bulb (°C)*</th>
<th>Min. temp. (°C)**</th>
<th>Min. temp. (°C)**</th>
<th>Min. temp. (°C)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wind limit (%RMSE) Q^*</td>
<td>Wind limit (%RMSE) Q^*</td>
<td>Wind limit (%RMSE) Q_a</td>
<td>Wind limit (%RMSE) Q_a</td>
<td>Wind limit (%RMSE) Q_a</td>
</tr>
<tr>
<td>1989</td>
<td>NW</td>
<td>—</td>
<td>7.0 (76)</td>
<td>8.4 (76)</td>
<td>60.7 (76)</td>
<td>33.4 (65)*</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>8.2 (30)</td>
<td>6.6 (76)</td>
<td>3.6 (76)</td>
<td>44.0 (36)</td>
<td>41.4 (59)</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>3.1 (72)</td>
<td>3.3 (73)</td>
<td>55.5 (73)</td>
<td>36.7 (63)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>6.0 (70)</td>
<td>5.3 (68)</td>
<td>62.7 (68)</td>
<td>41.0 (41)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>20.4 (82)</td>
<td>12.4 (82)</td>
<td>4.4 (82)</td>
<td>72.0 (82)</td>
<td>44.5 (63)</td>
</tr>
<tr>
<td>1990</td>
<td>NW</td>
<td>21.1 (65)</td>
<td>5.8 (58)</td>
<td>1.5 (56)</td>
<td>96.91 (56)</td>
<td>33.4 (52)</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>8.7 (68)</td>
<td>4.1 (72)</td>
<td>3.7 (72)</td>
<td>97.8 (72)</td>
<td>47.1 (64)</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>8.3 (50)</td>
<td>1.8 (54)</td>
<td>3.0 (53)</td>
<td>104.4 (63)</td>
<td>47.3 (53)</td>
</tr>
</tbody>
</table>

— no continuous measurements
() sample size
* Air temp. 2x/d compared with hourly air temp. with limits to wind. If wind = 0 knots, wind = 1 knot and if wind > 19 knots, wind = 19 knots
** Compared with hourly measured relative humidity and wind limit
a took out RMSE > 10 MJ/m² which were due to high wind speeds (generally in excess of 10 knots)
List of Figures

Figure 1: Location of study site, and deployment of meteorological instruments on studied slopes.

Figure 2: Relationship between modelled net radiation (Q^*) at the NW slope (1990) using hourly wind input and modelled net radiation (Q^*) using wind speed input 2x/day. Deviations from the 1:1 line occur when windspeeds (knots) taken at 0700 h/1900h are usually very low or high.

Figure 3: Percentage of root mean square error (RMSE) and mean bias error (MBE) of modelled daily net radiation results (NW-slope, 1990), using different windspeed inputs (knots) compared with modelled results using hourly measured windspeed (m/s).

Figure 4: Measured daily net radiation compared with values estimated using meteorological data twice daily during two contrasting seasons; 1989 (cool, wet) and 1990 (warm, dry).

Figure 5: Daily pattern of modelled energy fluxes (Q^*, Q_h, Q_v, Q_s) during pre-melt, melt and post-melt periods at the study sites during 1989 and 1990. Positive values of Q_h, Q_v, and Q_s are directed away from the surface and vice versa.

Figure 6: Percentage mean bias error (MBE) of net radiation on a daily basis at the study sites (1989, 1990).

Figure 7: Decrease of root mean square error (RMSE) of net radiation with length of averaging period for the study sites computed using twice daily meteorological information.
Contours, when shown, are in metres above arbitrary datum.

- Meteorological tripod \((T_z, R_H, u) \)
- Rainfall
- \(Q^* \)
Simulated daily net radiation (MJ m$^{-2}$) using hourly windspeed (m/s)

- $u=50$
- $u=15/15$
- $u=15/5$
- $u=3/0$

NW 1990
CHAPTER FIVE

Hydrologic responses of a small high arctic basin to global change impacts

Kathy L. Young and M-k. Woo

Abstract

This study describes the application of a surface energy balance model which uses limited data input (twice daily cloud, temperature, wind) to model melt and evaporation for a small high arctic basin. Validation of this approach is demonstrated within a water balance framework, where total storage is small relative to total precipitation input during two contrasting summer seasons (1989 - cool, wet and 1990 - warm, dry). In 1989 total storage is <20% of total precipitation input and in 1990 it is <12%. Using the model, selected global change impacts (± 10% of present levels) were investigated, and the results indicate that small atmospheric alterations in temperature, aerosols and clouds can have more effect on basin hydrological processes (melt, evaporation and storage) than slight changes in surface albedo, resistance, and low rainfalls. This study will be of interest to northern scientists wishing to better understand both the present day linkages between atmospheric-terrestrial and hydrological processes, and future global impacts.

Department of Geography, York University, 4700 Keele Street, North York, Ontario, M3J 1P3

1 Department of Geography, McMaster University, Hamilton, Ontario, L8S 4K1
INTRODUCTION

Northern scientists have all expressed a need to better understand the linkages between atmospheric-terrestrial and hydrologic processes so future global changes to arctic environments can be anticipated. For hydrologists, changes in energy which is the driving force behind melt and evaporation could ultimately influence northern hydrologic regimes, by altering runoff and storage patterns (Kane et al., 1992). Ecologists' main concern is that global change could alter the present vegetation patterns by modifying soil moisture and nutrient levels. This may cause some plant communities to be eliminated or to be replaced by more resilient species (Edlund, 1992) leading eventually to changes in the grazing patterns of northern fauna. Northern geomorphologists are interested in understanding how climatic variability and change may trigger slope instabilities, enhance ground thaw (Lewkowicz, 1992) and alter sediment loadings in northern streams (Lewkowicz and Wolfe, 1994; Woo and McCann, 1994). However, progress in this direction will be hampered until the present-day complex linkages between energy, water and northern terrain (e.g. geology, soil, vegetation, permafrost) are better understood (Lewkowicz, 1992).

To date, much emphasis or speculation has been placed on how arctic environments will change under future temperature and precipitation levels, since these are the two outputs from the General Circulation Models (GCMs) which tend to have the highest certainty (Maxwell, 1992). GCMs indicate that the Canadian Arctic islands could experience warmer summers of about 5°C and higher precipitation levels of about 120% (Maxwell, 1992). Using these types of scenarios, scientists such as Hinzman and Kane (1992) and Kane et al. (1992) have been able to show how warmer summer temperatures will lead to higher evaporation levels and less discharge from a small low-arctic, Alaskan basin underlain by continuous permafrost.

Less is known about how changes in other atmospheric or terrestrial attributes will affect northern drainage systems. For instance, uncertainty exists
regarding how changes in cloud type or amount will modify radiation levels which tends to dominate melt and evaporation rates (e.g. Church and Woo, 1990; Hinzman and Kane, 1991, 1992).

Changes in aerosol levels and their effect on solar radiation and implications for hydrologic processes are also not well established. Little quantitative information exists detailing how changes in vegetation with possible changes in surface albedo (α_s) and surface resistance (r_s) will impact on soil moisture and evaporation rates. These types of information being especially critical for ecologists and planners involved in drafting future environmental policies for northern regions.

Coupled with this level of uncertainty is the question of scale. For instance, GCMs generate temperature and precipitation output at large scales (5°Lat. by 7°Long.). "The models often agree well, with present climate and with one another, for seasonal or annual averages over large areas, but substantial disagreements appear as the scale is reduced below continental" (Maxwell, 1992). Hence, Maxwell (1992) cautions that we should not be overconfident of current GCM predictions for any region, including the Arctic. Given this current problem of scale, several researchers (e.g. Church and Woo, 1990; Running et al., 1987) urge that before the impact of global changes can be addressed at the regional scale, we must take into account the spatial and temporal heterogeneity of the local site and then move upwards (e.g. point-slope-basin-region). Much more realistic results will come from first aggregating meteorological, hydrological and botanical information defined at a small scale and then moving upwards from that point.

A final problem which has plagued scientists trying to understand existing inter-linking processes and future changes is the high cost of arctic research, especially logistics and equipment. For instance, owing to the diverse northern topography which can range from flat, rolling-to mountainous terrain, monitoring temperature or solar radiation at one point may not be representative of the surrounding region. Also, for many sites in the Arctic, twice daily weather data
(temperature, cloud, wind, precipitation) often forms the only available data. Computer modelling, however, offers the possibility of extrapolating information gathered at a point to larger scales (e.g. slope, basin) allowing for spatial variability and also allows one to investigate possible climate change impacts.

Thus, this study outlines the application of a surface energy balance model (Young and Woo 1995, submitted) which uses easily obtained field data to model melt and evaporation for a small high arctic basin. These outputs are then placed in a water balance framework, so that the water balance components can be considered for two contrasting summers, 1989 (wet, cool) and 1990 (warm dry) thus, allowing the utility of this approach to be assessed. This study will also investigate the possible implications on the basin water balance to changes in selected atmospheric and terrestrial impacts.

This study will be of importance to northern scientists interested in an improved understanding of the present linkages and feedbacks in northern ecosystems and their future sensitivity to global changes. The outputs from this study could serve as inputs into other ecological or hydrological models.

STUDY AREA

The Heather Creek basin (HCB) (6.1 km2), located on the Fosheim Peninsula, Ellesmere Island (79°58′N, 84°28′W) was the focus of this study (Fig. 1) and provided data for modelling and validation. It can be described as rolling terrain and is comprised of different terrain units (slopes of varying aspect, angles, bottomlands and valleys) (see Data section and Table 1). It is a sub-basin of a much larger basin, Hot Weather Creek (HWC) which has an area of about 155 km2. The Heather Creek (HC) tributary is the sixth largest in the basin and at low flow, it occupies a single channel 1 to 2 m wide cut into a wet-vegetated valley bottom. It has a beaded morphology and at peak flow, HC overtops the channel and expands into a vegetated floodplain (Lewkowicz and Wolfe, 1994). The HWC watershed is underlain by poorly consolidated sandstone and to a lesser extent siltstone, conglomerate, shale, and coal of the upper Cretaceous-lower
Tertiary Eureka Sound formation (Thorsteinsson, 1969). It is likely that the basin has not been glaciated since late Wisconsinan time (Lewkowicz and Wolfe, 1994). HWC lies within the early Holocene marine limit so that areas below 140-145 m have a discontinuous cover of weathered marine, estuarine and deltaic deposits, composed of medium to fine-grained sand, silt and minor clayey silt, sandstone granules, coal fragments, detrital plant materials or molluscs. Permafrost is continuous with active-layer depths ranging from 0.4 to 1.0 m depending on surface materials and summer temperatures (Young et al., 1995, submitted).

The HWC basin is a region that is generally warmer in summer than other sites in the Queen Elizabeth Islands due to the surrounding mountain ranges of Ellesmere and Axel Heiberg which tend to dispel slow-moving cyclones from the Arctic Ocean and Baffin Bay (Edlund and Alt, 1989). Summer temperatures at HWC tend to be slightly higher than the meteorological station at Eureka 25 km to the west (Lewkowicz and Wolfe, 1994), and rainfall levels can be higher in certain years than that measured at Eureka (Young et al., 1995, submitted).

Soil, climate and hydrological information gathered in 1989, 1990 from four varying experimental slopes and plateau: Northwest (NW); Southeast (SE); East (E); Plateau (P) located within HCB and one site; a West - facing slope (W) located about 1000 m downstream from the outlet of HC provided information used for modelling (see Data section). These sites have been extensively described by Young et al. (1995, submitted) and Young anJ Woo (1995, submitted). The base-camp (BC) (approx. 84 m. a.s.l.) was located about 500 m south of the HCB lower boundary and is within about 1 km² of the intensively studied experimental sites. Twice daily meteorological information (temperature, wind, cloud and precipitation) was gathered here as part of a programme initiated by Polar Continental Shelf Project (P.C.S.P.) to obtain meteorological information from summer field camps scattered throughout the Canadian Arctic Archipelago.

Vegetation cover in the study basin is variable and strongly linked to moisture supply (Lewkowicz and Wolfe, 1994; Young et al., 1995, submitted). Complete plant cover generally occurs in thaw ponds, fens and valley bottoms,
consisting of grasses, sedges, cotton grass and mosses. Plateaus tend to have higher vegetative covers (35-50%) dominated by *Salix arctica* and *Dryas integrifolia* communities, while slopes can have quite variable covers ranging from less than 10% in sandy sites prone to disturbance (Young et al., 1995, submitted) to higher levels (> 10%) below late-lying snowbeds, in cracks and depressions where water collects and on the lower parts of slopes where moisture levels tend to be higher. Overall, the dominant plant cover in HCB tends to be a *Salix arctica-Dryas integrifolia* complex (Woo et al., 1990; Young et al., 1995, submitted).

THEORY AND METHODS

Water balance components

It is the intent of this study to examine the feasibility of employing a surface energy balance model which uses easily obtained weather data (twice daily) to provide input (melt, evaporation) for a simple basin water balance model. We wanted to investigate 1) the present-day hydrological status of HCB under two different summer seasons (1989-cool, wet; 1990-warm, dry) in order to justify the feasibility of the surface energy model and 2) to arrive at a baseline so that we could analyze the hydrological sensitivity of the basin to selected atmospheric and terrestrial impacts.

The water budget of any basin (m) can be simply written as

\[M + R - E - Q = \pm \Delta S \] \hspace{1cm} (1)

where \(M \) is snow and ice melt; \(R \) is rainfall; \(E \) is evaporation loss from the basin; \(Q \) is basin runoff including both surface and subsurface flow and \(\Delta S \) is the change in moisture storage in the basin (increases being positive) including surface, soil, groundwater and biological moisture storage in all phases (Wright, 1981). Over an increasingly long period of time, \(\Delta S \) should approach zero, but over short periods (i.e. a day), it may assume a significant value.
Each component of the water balance can be considered by either measuring it directly, simulating it or allowing it to be determined as a residual in eqn. 1. In the following section the determination of each component of the basin water balance will be described.

Snow and ice melt (M)

Prior to determination of melt (snow, ice) for HCB, a snow survey in 1990 following the methods described by Woo and Marsh (1978) was conducted. The basin was broken down into different terrain units (see Fig. 1) and a series of transects across these units were carried out and both snow depth and density measurements were made. Table 2 outlines the initial snow water equivalent (areally weighted) for each terrain unit. East-facing slopes (NE, E, SE) have the highest snow contributions owing to their large areas in the basin. In 1989, snow surveys were only conducted on the 5 experimental sites, and no snowmelt runoff measurements were made in the basin. Hence, only the thaw period for 1989 will be considered here.

The surface energy balance model outlined by Young and Woo (1995, submitted) is used to determine the amount of daily energy (Q_m) available for melt within the basin. Here,

$$Q_m = Q^* + Q_h + Q_e$$ \hspace{1cm} (2)

where Q^* is net radiation, Q_h and Q_e are sensible and latent heat fluxes respectively. During the melt period: the surface temperature is set to 0°C, temperature lapse rates are taken into account, only positive melt is accounted for and its duration (e.g. June 1-6) for varying terrain units (Fig. 1, Table 1) is determined from field data obtained in 1990 from the experimental sites (see Young et al., 1995, submitted; Young and Woo, 1995, submitted).

Melt energy is converted into water equivalent terms (m) by the following
Here, L_f is the latent heat of fusion, and ρ_w is the density of water. At each terrain unit, the amount of melt did not exceed the original areally weighted snow input.

$$M = \frac{Q_m}{(L_f \cdot \rho_w)}$$ \hspace{1cm} (3)

Rainfall (R)

Rainfall was measured at BC twice daily, and was measured at the experimental sites on a daily basis. Unfortunately, these sites were not scattered throughout the basin but were clustered close to the southern boundary of the basin (see Fig. 1), precluding use of the isohyetal or the Theisson polygon approach in areally weighting precipitation input. However, these sites did encompass the types of terrain units found in HCB. To adjust precipitation measured at BC to the other terrain units, a ratio approach similar to that used by Woo and Drake (1988) was applied. A ratio is determined between BC and the experimental slopes (NW, SE, E, W, P, BL) using July precipitation totals in both 1989 and 1990 (Table 3). Monthly rather than daily totals were compared to avoid spurious ratios which may have occurred through random errors (e.g. tippage). Overall, the ratios determined for the two years (1989, 1990) were similar suggesting the feasibility of this approach. Deviations for the west slope probably reflect local and variable wind conditions which can influence raingauge catch efficiency. Daily precipitation input to the HCB is areally weighted.

Evaporation (E)

The Penman-Monteith combination model is used to simulate evaporation for HCB and it is detailed in Young and Woo (1995, submitted). It offers the opportunity to consider not only meteorological conditions (radiation, temperature, vapour pressure) but also variable surface conditions through the surface albedo (α,) and surface resistance (r_s) on basin evaporation.
Here it is outlined briefly,

\[
Q_g = \frac{S(Q^* - Q_d) + \rho_a C_p (e_s - e_d)}{s + \gamma (1 + r_s / r_a)}
\]

where, \(S \) is the slope of the saturation vapour pressure-air temperature curve at \(T_z \) (Bowers and Bailey, 1989; Dilley, 1968), \(Q_g \) is the ground heat flux, \(\rho_a \) is air density, \(C_p \) is the specific heat of the air, \(e_s \) is the saturated vapour pressure at \(T_z \), \(e_d \) is the saturated vapour pressure at the dewpoint temperature (here assumed to be the minimum of the two daily readings at BC) (Jury and Tanner, 1975), \(\gamma \) is the psychrometric constant, \(r_s \) and \(r_a \) are the aerodynamic and the surface resistances. \(Q_g \) is determined as the residual in the surface energy balance model during the post-snowmelt period and is used in the force-restore scheme (Deardorff, 1978) to derive surface temperature (\(T_s \)) for the thaw season (see Young and Woo, 1995, submitted).

The surface resistance is set to \(r_s = 100 \) (moist conditions, 1989) and \(r_s = 650 \) (dry conditions, 1990). The surface resistance is allowed to fall to zero, when the cloud transmissivity value used in attenuating incoming solar radiation (see Young and Woo, 1995, submitted) falls below a critical level indicative of cloudy conditions. The assumption that wet weather occurs under these situations is also made.

Discharge (\(Q \))

Stream discharge from HCB comprising both surface and subsurface flow was measured directly in 1989 (thaw period from June 29 to approx. Aug. 20) and in 1990 (melt+thaw period from June 8 to approx. Aug. 20). Stevens Type-F water level recorders with weekly charts were mounted on stilling wells at the exit of the basin to obtain continuous stage records. Prior to August 10, 1989 a 30-L container served as the stilling well at HC. It was not until this date, that a 40 gal. barrel replaced it. Consequently, in 1989, there were periods (e.g., episodes of prolonged rain), when continuous stage measurements could not be obtained.
Absence from camp July 11 - 12, 1989 also resulted in incomplete stage and discharge data during a rain event.

A Price current meter was used at HC, and during low flows, the whole discharge was collected for several seconds in a 30-L container and the volume measured. Stage-discharge curves for HC were developed in 1989 and 1990. In 1990, few low stage-discharge points were obtained, so for stage levels < 450 mm, the following polynomial equation ($r^2 = 0.96$) from Lewkowicz and Wolfe (1994) is used,

$$y = -0.13680 + 1.7324E - 3x - 7.3255E - 6x^2 + 1.0371E - 8x^3$$ \(5\)

where y is discharge (m3s$^{-1}$) and x is stage (mm above arbitrary datum).

Storage (AS)

Storage which can be soil moisture storage, groundwater storage, water held in depression storage or tied up in ground ice was not measured in its entirety and subsequently it is determined as the residual in eqn. 1.

Sensitivity analysis

Sensitivity analysis offers a viable and effective method to investigate possible global change impacts on high arctic basins and it can take two approaches. The variables in question (e.g. T_r, R) can be altered by a known level (e.g. 5°C or 120% respectively) (Maxwell, 1992) and then be used to simulate changes in snowmelt or evaporation. When the level of change is less certain for a variable, then equal intervals of change from the present condition can be utilized (e.g. $\pm 5\%$, $\pm 10\%$, $\pm 20\%$) (Hinzman and Kane, 1992; Munro, 1991). This approach is straightforward and offers an insight into very sensitive and robust variables or parameters.

Two things which must be considered in utilizing sensitivity analysis is that 1) rarely do entities (e.g. T_r, α, λ) change independently, but are in fact interrelated to other variables or parameters and 2) reasonable levels of change are
necessary and should reflect field results and if possible present levels of knowledge.

In this study, a conservative sensitivity analysis (roughly ±10% change of present conditions) is conducted using selected 1990 atmospheric and terrestrial components. This allows the possible effects of global change to be assessed for the HCB.

Atmospheric

a) Aerosol

Aerosols are defined as suspensions of liquid or solid particles in the air, excluding cloud droplets and precipitation (Peixoto and Oort, 1992). They can alter solar energy by absorbing or scattering the radiation both in cloud-free and cloudy conditions (Peixoto and Oort, 1992). Presently, in the Arctic high levels of aerosols in the early spring (March, April) are responsible for a phenomena known as "arctic haze" (Barrie, 1992). In this study, the dust factor (aerosol) is changed by ±10% of its present (1990) level to a maximum of 1.0. When cloud conditions decline below a critical level, the dust factor still rises to 1.0 (see Young and Woo, 1995, submitted) (Table 4). Fallout of dust particles onto the ground surface are not considered at this stage.

b) Clouds

Clouds reflect incoming solar radiation back to space and reduce the energy available at the earth surface. Conversely, longwave radiation emitted from the earth into the atmosphere is trapped by clouds, thereby reducing longwave energy loss to space. Through these competing processes, clouds can modify the earth's general circulation and climate (Sohn and Robertson, 1993).

In the Arctic, stratus-type clouds predominate due to the high stability of the land masses here. They are described as being low-lying, extensive and average cloud cover in the summer is between 4-5 tenths (Feigelson, 1983). The expansion of more open sea water with climate warming, could lead to higher
evaporation rates and increased cloudiness along arctic coastlines (LeDrew, 1993; Slaymaker and French, 1993).

In this study, the cloud amount of the lowest cloud layer bearing a stratus-type cloud has been altered by $\pm 1/10$th. Total cloud cover for all layers is maintained at 1.0. No adjustment is made to the cloud coefficient in the calculation of longwave radiation (see Young and Woo, 1995, submitted). In the final analysis (see Results), only the evaporation changes will be examined (due to missing 1990 cloud data for the snow period at this time).

c) Temperature

Summer temperatures as high as 5°C have been predicted for the High Arctic because of climate change (Maxwell, 1992). Here, we increase temperatures by $\pm 10\%$ from their present 1990 levels (see Table 4).

Terrestrial

a) Site albedo (post-snowmelt)

Presently, the limiting factor to plant growth is not necessarily temperature, but rather water and nutrients (Slaymaker and French, 1993). Climatic warming will thus influence arctic vegetation indirectly by modifying soil moisture levels and nutrient availability. Some plants may disappear, or be replaced and the ratio between bare and plant covered ground could change. These types of terrestrial modifications will likely lead to varying surface albedos, which in turn will influence radiation levels and evaporation rates. Therefore, the site surface albedos have been altered by $\pm 10\%$ (see Table 4). In this simulation, the background albedo is maintained at the 1990 value (see Young and Woo, 1995, submitted).

b) Surface resistance (r_s)

If vegetation patterns are altered then surface resistance (r_s) will probably change as well, affecting evaporation amounts. Here, the 1990 r_s value is
increased by ± 10%, but is still allowed to fall to 0 when cloud conditions fall below a certain level, indicative of cloudy and wet conditions (see Young and Woo, 1995, submitted).

c) Summer rainfall

Summer rainfall in the High Arctic may increase by 120% (Maxwell, 1992). Here, summer rainfall for 1990 is varied by ±10% and the resultant effect on the water balance is examined.

DATA

Data for determining the water balance for HCB and its sensitivity to selected global change variables comes from two summers of contrasting weather conditions: 1989 (cool, wet) and 1990 which was warm and dry (Young et al., 1995, submitted). Two sets of data were collected: as input to the surface energy balance and water balance models (Tables 1, 5) and for validation (e.g. stream discharge (Fig. 2) if one considers that ∆S approaches 0 over the season (see eqn. 1)).

The first set of data consisted of location type information (latitude, longitude); site characteristics (slope aspect and angle, elevation, surface albedo, soil attributes); and twice daily weather observations of cloud data (cloud type and amount), wind speed and temperature (dry bulb, and minimum temperatures) and precipitation amounts. This collection of weather generally comprises the minimum amount of data provided twice a day at field camps scattered in the Canadian Arctic and supported by PCSP (Young and Woo, 1995, submitted).

Cloud observations were made following the standard Environment Canada procedures, specifying cloud layer heights, amounts and the types of clouds in each layer (Young et al., 1995). Dry-bulb air temperatures were obtained with mercury thermometers (± 0.5°C), and minimum air temperatures were obtained from maximum-minimum thermometers (±0.5°) (AES, 1989). These instruments were housed in an isolated Stevenson screen approximately 1.5 m above the
ground surface. Spot wind speed measurements (in knots) were made twice a day approximately 2 m above the ground using Cassella type anemometers (± 10%) (AES, 1989). In the model these wind speed measurements were adjusted to a height of 0.5 m to make them comparable to measured wind speeds (see Young and Woo, 1995, submitted) and were also converted to units of ms⁻¹. Measurements taken at 0700 h (LST) are considered to be representative of the period 0100-1200 h, and the values obtained at 1900 h (LST) were used to represent weather conditions from 1200 to 2400 h. Precipitation is measured by Atmospheric Environment Service manual raingauges (± 0.25 mm), by home-made manual raingauges (± 1 mm) and a recording tipping bucket raingauge adjacent to Picnic Lake (±0.25 mm). Trace precipitation values represent 0.03 mm (Barrie Goodinson, personal communication, 1993).

Changes to input data not outlined before in Young and Woo (1995, submitted) are:

1) post-snowmelt site albedos are average values from the lower, middle and upper parts of the experimental slopes, and from three locations on the experimental plateau. The average of several albedo values obtained in 1990 adjacent to Picnic Lake (see Fig. 1) is thought to reflect valley (V) terrain types and an average of several sub-arctic bog α values (Petzold and Rencz, 1975) is used for bottomland (BL) sites because they share similar vegetation characteristics.

2) both heat capacity (Cₑ) and thermal conductivity (Tₑ) values are seasonal averages determined using soil moisture and soil data obtained from the lower, middle and upper parts of experimental slopes and from 3 locations on the experimental plateau. Soil moisture and soil data from Glenn, (1994, unpublished) provided information which allowed Tₑ and Cₑ to be calculated for the BL and an assumption that this information could pertain to V sites is also made.

3) the complex valley network is simply divided into six equal areas, of similar slope angles but varying in aspect and elevation. Shading from nearby slopes is also considered.
Heather Creek (HC) stream discharge data can be described by Figure 2. The short, yet intensive snowmelt dominated discharge in 1990 (June 8 - June 26) suggests that Heather Creek experiences a nival regime, similar to Hot Weather Creek (HWC) (Lewkowicz and Wolfe, 1994) and other high arctic streams (Woo, 1986). Summer rainfall in 1990 is low and the total runoff coefficient (Q/P) is 0.55, a value which is lower than other high arctic basins (Table 6) but is similar to a low-arctic basin in Alaska (see Table 6). The runoff coefficient for HC in 1990 is greater than that estimated for 1991 and may be related to very low snow levels and deep ground thaw in 1991 (see Table 6 and Young et al., 1990, submitted).

Snowmelt runoff was not measured in 1989, but the runoff from frequent rainfall inputs of varying magnitudes in 1989 were measured (see Fig. 2b). Due to the frequent rainfalls, (Young et al., 1995, submitted) HC responded relatively rapidly to rainfall input. For instance a 10 mm rainfall which started on Aug. 15 about 0300 h and lasted 24 hours resulted in peak flow about 0600 h on Aug. 16. The total runoff coefficient for this storm is 0.65, a level again similar to a low-arctic, continuous permafrost basin (Table 6).

RESULTS

Heather Creek Basin (HCB) water balance (1989-1990)

The reliability of the simulation of melt, evaporation and adjustment of precipitation input is assessed by the assumption that the seasonal storage would be small (less than 20%) of the total precipitation into the water balance equation (see eqn. 1). This assumes that most water input into the basin would be lost as either evaporation or discharge over the course of the summer. The summer field seasons of 1989 and 1990 were used for model calibration and verification.

Figure 3 outlines the daily water balance of HCB for 1989 (thaw period) and 1990 (snowmelt + thaw period). Daily variation in the storage component in 1989 indicates that rarely is it possible for inputs into the basin to be sequentially matched by losses on a daily basis. This problem is highlighted by Aug. 5, when
a sizeable precipitation input (approx. 18 mm basin averaged) occurs but peak flow does not occur until two days later. This causes noticeable storage adjustments (Fig. 3a) to occur during this time.

In 1990, snowmelt peaked June 8 after about seven days of continuous melt and peak flow occurred on June 12 (four days later) causing large swings in the storage term during this time (Fig. 3b). Flow decreased rapidly following the end of snowmelt, and only small changes in storage occurred with small rainfall inputs for the rest of the season.

Cumulative totals of water balance components for the two summer seasons (1989, 1990) are plotted in Figure 4 and tabulated in Table 7. They indicate that rainfall is a significant input into the system in the 1989 summer season and that more of it is lost via discharge than through evaporation. The total storage term is larger in 1989 than 1990 likely arising from 1) the underestimate of stream discharge in 1989 and 2) low evaporation rates arising from underestimates of Q^* (Young and Woo, 1995, submitted). Overall the 1989 storage term is calculated to be 18 mm or approximately 19% of the total precipitation input.

Model performance is much improved in 1990. Snowmelt is the most important input into the system, while summer rainfall is small relative to outputs of stream discharge and evaporation. Overall, total storage is 5 mm or 4% of the total calculated input, and indicates that most water from the HCB is lost via discharge and evaporation. If the initial snow storage is considered, then the final storage term is about 11% of total precipitation input. Melt is under-estimated for the W and SW slopes by the model. The better agreement is 1990 may partially reflect that evaporation is likely overestimated since Q^* is overestimated in 1990 (Young and Woo, 1995, submitted). However, this higher estimate is likely dampened by an underestimate in stream Q caused from a few days of missing discharge (see Fig. 2a).

These two years serve to provide an indication that 1) the surface energy balance model using limited field data can provide reasonable estimates of melt
and evaporation for small high arctic basins; 2) that precipitation measured at one location can be adjusted to different terrain units within a small basin and 3) that these results provide a benchmark from which it is possible to evaluate the sensitivity of the HCB to selected atmospheric and terrestrial impacts.

Global change impacts

Table 8 outlines the results of selected atmospheric and terrestrial impacts on the HCB water balance components (e.g. melt, evaporation, storage). Discharge for 1990 is not altered and seasonal totals are only examined.

Atmospheric

a) Aerosol

Evaporation increases slightly when the effect of aerosols is removed (e.g. the aerosol factor (κ) is raised by 10% to a maximum value of 1, which indicates clear conditions). Greater amounts of incoming solar radiation allow more water to be evaporated. The greatest changes to melt, evaporation and storage occur when κ is decreased by 10% (a level which is perhaps comparable to a large city (e.g. Toronto, Davis et al., 1975). This aerosol level is able to dampen overall melt and evaporation for the basin by impeding incoming radiation to the surface (Table 8).

b) Clouds

Increases in low cloud amounts by 1/10 over present 1990 levels will elevate evaporation rates to levels comparable to higher temperature amounts (Table 8). This is partially a reflection of model logic where r_s = 0 when cloud conditions deteriorate and cloud transmissivity is reduced (Young and Woo, 1995, submitted). This low surface resistance indicates a wet surface which poses no terrestrial (vegetation, soil) restriction to evaporation, thus allowing for higher losses over present 1990 levels.

Small decreases in cloud amounts by 1/10 do not alter present evaporation levels. This indicates that 1) r_s values were little changed in the model by small
decreases in low-lying cloud amounts and 2) slightly higher amounts of incoming radiation do not necessarily suggest higher evaporation rates if surface resistance still remains high.

This analysis serves to indicate the linkages which exist between atmosphere and terrestrial components and the complexities involved in understanding the impacts of global change.

c) Temperature

Alterations in temperature even by 10% appear to have sizeable impacts on basin evaporation. Higher temperatures elevate evaporation by about 20 mm over present conditions, a range also found by Kane et al. (1992) while lower temperatures decrease evaporation by about 10 mm for the season. In this study, this leads to marked changes in storage if one considers no adjustments in stream discharge (Table 8).

Terrestrial

Changes in terrain features do not appear to have as great an effect as atmospheric conditions on water balance constituents.

a) Site albedo

Changes in site albedo of about ±10% did not impart significant changes in the water balance constituents. This could be partly due to the fact that the background albedo which plays a role in atmospheric solar radiation is not altered (see Young et al., 1995).

b) Surface resistance

Changes in surface resistance (r_s) of about ±10% also did not cause significant changes in the water balance components. Evaporation rates were slightly higher by about 1 mm when the surface resistance is reduced by ±10% and evaporation is reduced slightly by about 3 mm when r_s is increased by 10% (Table 8).

c) Summer rainfall
Rainfall amounts were low in the summer of 1990 (12 mm) and as such, storage terms varied by about 1 mm when precipitation is increased and varied by about 2 mm when precipitation is decreased by 10%. Greater differences may exist for seasons when summer rainfall is high (e.g., 1989) or if one considers the levels of change dictated by the GCMs (Maxwell, 1989).

This limited sensitivity study reveals that atmospheric constituents (e.g., aerosol levels, clouds) deserve further attention regarding their present and future influence on hydrological processes in northern environments. Terrestrial simulations suggest that slight changes in site albedo, surface resistance, and low summer precipitation amounts may not have dramatic effects on non-glacierized basins. Sensitivity analysis should continue at varying levels of change to identify any dramatic change in melt and/or evaporation.

DISCUSSION AND CONCLUSIONS

1) This study successfully utilizes a surface energy balance model which uses easily acquired field data (temperature, cloud, wind) to model melt and evaporation for a small high arctic basin (HCB) composed of varying terrain units (level/sloping).

2) This model takes into account spatial variability using field data established at experimental sites (e.g., site albedo, heat capacity, thermal conductivity) which are then applied to similar terrain facets. Precipitation obtained at a point (BC) is also adjusted to the different terrain units and areally weighted.

3) Reasonable results from both the 1989 (thaw season) and 1990 (melt + thaw season) suggest that the surface energy balance model could be applicable to other sites in the High Arctic where limited field data also exist.

4) The ability of the model to move from a point-to slope-to a small basin, provides flexibility to scientists interested in working at different scales and adheres to the suggestions by Church and Woo (1990) and Running et al. (1987) that the spatial variability on the local scale needs to be considered, if reliable
predications of future global change impacts are to be realized for northern environments.

5) Sensitivity analysis of selected atmospheric and terrestrial impacts indicate that slight changes in atmospheric constituents have perhaps a greater effect than small modifications in the terrestrial environment. This study suggests that different levels of sensitivity should be investigated, and several more years of record should be evaluated to provide a comprehensive baseline which would detail the present variability in the water balance system.
Acknowledgements

This work was funded by a research agreement with the Department of Energy, Mines and Resources, by a grant from the Natural Sciences and Engineering Research Council to M.-k. Woo, and by a northern training grant from the Department of Indian and Northern Affairs. The logistical support of the Polar Continental Shelf Project and Dr. S.A. Edlund is gratefully acknowledged. We wish to thank Dr. Bea Alt, Sharon Reedyk, Tim Siferd, Kelly Thompson, Paul Wolfe, for their assistance in the field, and Angus Headley for the loan of instruments. We would like to thank B. McCann for his review of the manuscript.
References

AES

Anderson, J.C.

Anonymous

Barrie

Bowers, J.D. and Bailey, W.G.
1989: Summer energy balance regimes for alpine tundra, Plateau Mountain, Alberta, Canada; Arctic and Alpine Research, v. 21, no. 2, p. 135-143.

Brown, J., Dingman, S.L., and Lewellen, R.I.

Church, M. and Woo, M-k.

Davies, J.A., Schertzer, W., and Nunez, M.
Deardorff, J.W.

Dickenson, R.B.

Dilley, A.C.

Edlund, S.A.

Edlund, S.A. and Alt, B.T.
1989: Regional congruence of vegetation and summer climate patterns in Queen Elizabeth Islands, Northwest Territories, Canada. Arctic, v. 42, no. 1, p. 3-23.

Hinzman, L.D. and Kane, D.L.

Hinzman, L.D. and Kane, D.L.

Glenn, S.

Kane, D.L., Hinzman, L.D., Woo, M-k., and Everett, K.R.
LeDrew, E.F.

Lewkowicz, A.G.

Lewkowicz, A.G. and Wolfe, P.

Maxwell, B.

Marsh, P. and Woo, M-k.

Munro, D.S.

Ostrem, G., Bridge, C.W. and Rannie W.F.

Peixoto, J.P. and Oort, A.H.

Petzold, D.E. and Rencz, A.N.
1975: The albedo of selected subarctic surfaces, Arctic and Alpine Research, v. 7, no. 4, p. 393-398.

Running, S.W., Nemani, R.R., and Hungerford, R.G.
Slaymaker, O. and French, H.M.

Sohn, B-J. and Robertson, F.R.

Thorsteinsson, R.

1973: Runoff from a small high arctic basin (abstract), EOS: Translations of American Geophysical Union, v. 54, no. 1090.

Woo, M-k.

Woo, M-k.

Woo, M-k. and McCann, B.

Woo, M-k., Young, K.L. and Edlund, S.A.

Woo, M-k. and Drake, J.J.
Woo, M-k. and Marsh, P.

Wright, R.K.

Young, K.L. and Woo, M-k.

Young, K.L., Woo, M-k., and Edlund, S.A.

Young, K.L., Woo, M-k. and Munro, D.S.
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_p)</td>
<td>specific heat of air (1010)</td>
<td>J kg(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>(C_s)</td>
<td>heat capacity of the substrate</td>
<td>J m(^{-3}) K(^{-1})</td>
</tr>
<tr>
<td>(E)</td>
<td>evaporation</td>
<td>m</td>
</tr>
<tr>
<td>(L_f)</td>
<td>latent heat of fusion (0.33)</td>
<td>MJ kg(^{-1})</td>
</tr>
<tr>
<td>(LST)</td>
<td>local standard time</td>
<td>m</td>
</tr>
<tr>
<td>(M)</td>
<td>melt</td>
<td>m</td>
</tr>
<tr>
<td>(Q)</td>
<td>discharge</td>
<td>m</td>
</tr>
<tr>
<td>(Q^*)</td>
<td>daily net radiation</td>
<td>MJ m(^{-2})</td>
</tr>
<tr>
<td>(Q_e)</td>
<td>daily latent heat flux</td>
<td>MJ m(^{-2})</td>
</tr>
<tr>
<td>(Q_s)</td>
<td>daily ground heat flux</td>
<td>MJ m(^{-2})</td>
</tr>
<tr>
<td>(Q_h)</td>
<td>daily sensible heat flux</td>
<td>MJ m(^{-2})</td>
</tr>
<tr>
<td>(Q_m)</td>
<td>daily melt energy</td>
<td>MJ m(^{-2})</td>
</tr>
<tr>
<td>(R)</td>
<td>rainfall</td>
<td>m</td>
</tr>
<tr>
<td>(S)</td>
<td>slope of the saturated vapour pressure</td>
<td>Pa °C(^{-1})</td>
</tr>
<tr>
<td>(\Delta S)</td>
<td>storage</td>
<td>m</td>
</tr>
<tr>
<td>(T_c)</td>
<td>thermal conductivity</td>
<td>W m(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>(T_s)</td>
<td>surface temperature</td>
<td>K</td>
</tr>
<tr>
<td>(T_z)</td>
<td>air temperature</td>
<td>K</td>
</tr>
<tr>
<td>(T_d)</td>
<td>minimum air temperature</td>
<td>°K</td>
</tr>
<tr>
<td>(e_s)</td>
<td>saturated vapour pressure at (T_z)</td>
<td>Pa</td>
</tr>
<tr>
<td>(e_d)</td>
<td>saturated vapour pressure at (T_d) (assumed to be the minimum air temperature)</td>
<td>Pa</td>
</tr>
<tr>
<td>(h_d)</td>
<td>daily damping depth</td>
<td>m</td>
</tr>
<tr>
<td>(h_k)</td>
<td>annual damping depth</td>
<td>m</td>
</tr>
<tr>
<td>(r_a)</td>
<td>aerodynamic resistance</td>
<td>s m(^{-1})</td>
</tr>
<tr>
<td>(r_s)</td>
<td>surface resistance</td>
<td>s m(^{-1})</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>albedo of the ground surface (level, slope)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>(K)</td>
<td>aerosol term</td>
<td>dimensionless</td>
</tr>
<tr>
<td>(\rho_a)</td>
<td>density of air</td>
<td>kg m(^{-3})</td>
</tr>
<tr>
<td>(\rho_w)</td>
<td>density of water (1000)</td>
<td>kg m(^{-3})</td>
</tr>
</tbody>
</table>
Table 1: Initial conditions and input data for simulation of melt and evaporation at Heather Creek, N.W.T. (1989-1990)

Initial Conditions:

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Slope angle (°)</th>
<th>Slope aspect (°)</th>
<th>Elevation (m a.s.l.)</th>
<th>Pre-snowmelt albedo</th>
<th>Snowfree albedo 1989/1990</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>79°58'N</td>
<td>84°28'W</td>
<td>1.1</td>
<td>45</td>
<td>130</td>
<td>✓</td>
<td>0.10/0.15</td>
<td>229203.</td>
</tr>
<tr>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>11.3</td>
<td>✓</td>
<td>105</td>
<td>✓</td>
<td>✓</td>
<td>10418.</td>
</tr>
<tr>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>38201.</td>
</tr>
<tr>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>1.0</td>
<td>✓</td>
<td>115</td>
<td>✓</td>
<td>✓</td>
<td>916814.</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
<td>3.4</td>
<td>90</td>
<td>180</td>
<td>✓</td>
<td>✓</td>
<td>1023497.</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
<td>2.3</td>
<td>✓</td>
<td>155</td>
<td>✓</td>
<td>✓</td>
<td>76401.</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
<td>1.6</td>
<td>✓</td>
<td>165</td>
<td>✓</td>
<td>✓</td>
<td>652883.</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
<td>1.9</td>
<td>✓</td>
<td>125</td>
<td>✓</td>
<td>✓</td>
<td>69456.</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
<td>7.6</td>
<td>✓</td>
<td>110</td>
<td>✓</td>
<td>✓</td>
<td>13891.</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
<td>4.2/11.3*</td>
<td>✓</td>
<td>99</td>
<td>✓</td>
<td>✓</td>
<td>20837.</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
<td>2.3</td>
<td>✓</td>
<td>110</td>
<td>✓</td>
<td>✓</td>
<td>17416.</td>
</tr>
<tr>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>2.3</td>
<td>135</td>
<td>170</td>
<td>0.8</td>
<td>0.13/0.16</td>
<td>551477.</td>
</tr>
<tr>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>1.1</td>
<td>✓</td>
<td>135</td>
<td>✓</td>
<td>✓</td>
<td>159748.</td>
</tr>
<tr>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>11.3</td>
<td>✓</td>
<td>95</td>
<td>✓</td>
<td>✓</td>
<td>31255.</td>
</tr>
<tr>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>6.8</td>
<td>✓</td>
<td>96</td>
<td>✓</td>
<td>✓</td>
<td>39937.</td>
</tr>
<tr>
<td>Site</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Slope angle (°)</td>
<td>Slope aspect (°)</td>
<td>Elevation (m a.s.l.)</td>
<td>Pre-snowmelt albedo 1990</td>
<td>Snowfree albedo 1989/1990</td>
<td>Area (m²)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SE*</td>
<td>✓</td>
<td>✓</td>
<td>2.9</td>
<td>✓</td>
<td>140</td>
<td>✓</td>
<td>✓</td>
<td>48619.</td>
</tr>
<tr>
<td>S</td>
<td>✓</td>
<td>✓</td>
<td>3.8</td>
<td>180</td>
<td>140</td>
<td>✓</td>
<td>✓</td>
<td>55564.</td>
</tr>
<tr>
<td>S</td>
<td>✓</td>
<td>✓</td>
<td>3.8</td>
<td>✓</td>
<td>105</td>
<td>✓</td>
<td>✓</td>
<td>27782.</td>
</tr>
<tr>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>5.7</td>
<td>225</td>
<td>110</td>
<td>0.8</td>
<td>✓</td>
<td>69456.</td>
</tr>
<tr>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>9.9</td>
<td>✓</td>
<td>110</td>
<td>✓</td>
<td>✓</td>
<td>138911.</td>
</tr>
<tr>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>11.3</td>
<td>✓</td>
<td>105</td>
<td>✓</td>
<td>✓</td>
<td>6946.</td>
</tr>
<tr>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>5.7</td>
<td>✓</td>
<td>108</td>
<td>✓</td>
<td>✓</td>
<td>34728.</td>
</tr>
<tr>
<td>W</td>
<td>✓</td>
<td>✓</td>
<td>2.3</td>
<td>270</td>
<td>175</td>
<td>✓</td>
<td>✓</td>
<td>69456.</td>
</tr>
<tr>
<td>W</td>
<td>✓</td>
<td>✓</td>
<td>11.3</td>
<td>✓</td>
<td>145</td>
<td>✓</td>
<td>✓</td>
<td>83347.</td>
</tr>
<tr>
<td>W</td>
<td>✓</td>
<td>✓</td>
<td>1.9</td>
<td>✓</td>
<td>125</td>
<td>✓</td>
<td>✓</td>
<td>83347.</td>
</tr>
<tr>
<td>W</td>
<td>✓</td>
<td>✓</td>
<td>5.7</td>
<td>✓</td>
<td>130</td>
<td>✓</td>
<td>✓</td>
<td>20837.</td>
</tr>
<tr>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>11.5</td>
<td>315</td>
<td>95</td>
<td>0.7</td>
<td>0.11/0.18</td>
<td>20837.</td>
</tr>
<tr>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>11.3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>48619.</td>
</tr>
<tr>
<td>P</td>
<td>✓</td>
<td>✓</td>
<td>0</td>
<td>✓</td>
<td>100</td>
<td>0.8</td>
<td>0.13/0.16</td>
<td>312550.</td>
</tr>
<tr>
<td>P</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>368115.</td>
</tr>
<tr>
<td>P</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>236149.</td>
</tr>
<tr>
<td>BL</td>
<td>✓</td>
<td>✓</td>
<td>1.3/7</td>
<td>135</td>
<td>125</td>
<td>0.8</td>
<td>0.12<sup>b</sup></td>
<td>34728.</td>
</tr>
</tbody>
</table>
Table 1: continued

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Slope angle (°)</th>
<th>Slope aspect (°)</th>
<th>Elevation (m a.s.l.)</th>
<th>Pre-snowmelt albedo 1990</th>
<th>Snowfree albedo 1989/1990</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>✓</td>
<td>✓</td>
<td>1.4/7</td>
<td>45</td>
<td>85</td>
<td>✓</td>
<td>✓</td>
<td>20837.</td>
</tr>
<tr>
<td>BL</td>
<td>✓</td>
<td>✓</td>
<td>1.3/7</td>
<td>90</td>
<td>85</td>
<td>✓</td>
<td>✓</td>
<td>20837.</td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
<td>✓</td>
<td>1.8/4</td>
<td>315</td>
<td>180</td>
<td>0.7</td>
<td>0.15</td>
<td>58667.</td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
<td>✓</td>
<td>1.8/7</td>
<td>135</td>
<td>180</td>
<td>0.8</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>90</td>
<td>110</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
<td>✓</td>
<td>1.8/4</td>
<td>270</td>
<td>110</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>315</td>
<td>95</td>
<td>0.7</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
<td>✓</td>
<td>1.8/7</td>
<td>135</td>
<td>95</td>
<td>0.8</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* shading occurs when sun elevation falls below larger slope angle

b value from Petzold and Renz (1975)

* bowl type terrain

Input Data (Twice Daily) for all experimental sites

Clouds (Amount/Type)
Dry-bulb air temperature (°C)
Minimum air temperature (°C)
Windspeed (knots)
<table>
<thead>
<tr>
<th>Site</th>
<th>Total area (m²)</th>
<th>Areal weighted Snow water equivalent (mm)</th>
<th>Site contribution to basin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>1194636.</td>
<td>22</td>
<td>19.6</td>
</tr>
<tr>
<td>E</td>
<td>2028381.</td>
<td>41</td>
<td>36.5</td>
</tr>
<tr>
<td>SE</td>
<td>831036.</td>
<td>12</td>
<td>10.9</td>
</tr>
<tr>
<td>S</td>
<td>83347.</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>SW</td>
<td>250040.</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>W</td>
<td>298659.</td>
<td>5</td>
<td>4.1</td>
</tr>
<tr>
<td>NW</td>
<td>69456.</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>P</td>
<td>916814.</td>
<td>16</td>
<td>14.1</td>
</tr>
<tr>
<td>BL</td>
<td>76401.</td>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>V</td>
<td>352001.</td>
<td>8</td>
<td>7.2</td>
</tr>
<tr>
<td>HCB</td>
<td>6100771.</td>
<td>112</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Table 2: Snow water equivalent (1990) for experimental sites
Table 3: Adjustment ratios for rainfall measured at basecamp (BC) to sites in the Heather Creek basin (HCB) during a wet (1989) and dry (1990) summer.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>NE</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>E</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>SE</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>S</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>SW</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>W</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>NW</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>P</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>BL</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>V</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Ratio for BL and V derived from 1989 rainfall data from the BL between NW and SE experimental slopes (see Young et al., 1995, submitted).
Table 4: Simulation treatments for Heather Creek Basin (HCB) using 1990 field data.

<table>
<thead>
<tr>
<th>Atmospheric</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol (k)^a</td>
<td>+10% -10%</td>
</tr>
<tr>
<td>Temperature</td>
<td>+10% -10%</td>
</tr>
<tr>
<td>Cloud amount (Tenths)^b</td>
<td>+1/10 -1/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terrestrial</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope albedo (α,)</td>
<td>+10% -10%</td>
</tr>
<tr>
<td>Surface resistance (r,)</td>
<td>+10% -10%</td>
</tr>
<tr>
<td>Precipitation (rainfall)</td>
<td>+10% -10%</td>
</tr>
</tbody>
</table>

^a aerosol max. to 1.0
^b max. change to n = 1.0
Table 5: Soil attributes at experimental sites, Heather Creek, N.W.T. (1989-1990)

<table>
<thead>
<tr>
<th>Site</th>
<th>Year</th>
<th>Thermal* Conductivity (λ_e) (Wm$^{-1}$ K$^{-1}$)</th>
<th>Heat* Capacity (C_p, $x10^6$ (Jkg$^{-1}$))</th>
<th>Thermal** Diffusivity (K_e, $x10^{-7}$ m2s$^{-1}$)</th>
<th>Daily Damping Depth (h_d, m)</th>
<th>Annual Damping Depth (h_a, m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>1989</td>
<td>0.6</td>
<td>1.9</td>
<td>3.2</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>E</td>
<td>1989</td>
<td>0.6</td>
<td>1.9</td>
<td>3.2</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>SE</td>
<td>1989</td>
<td>0.4</td>
<td>1.7</td>
<td>2.6</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>S</td>
<td>1989</td>
<td>0.4</td>
<td>1.7</td>
<td>2.6</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>SW</td>
<td>1989</td>
<td>0.8</td>
<td>1.9</td>
<td>3.9</td>
<td>0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>W</td>
<td>1989</td>
<td>0.8</td>
<td>1.9</td>
<td>3.9</td>
<td>0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>NW</td>
<td>1989</td>
<td>0.7</td>
<td>1.8</td>
<td>4.0</td>
<td>0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>P</td>
<td>1989</td>
<td>0.7</td>
<td>2.0</td>
<td>3.7</td>
<td>0.2</td>
<td>3.4</td>
</tr>
<tr>
<td>BL</td>
<td>1989</td>
<td>0.3*</td>
<td>3.0*</td>
<td>0.9</td>
<td>0.1</td>
<td>1.6</td>
</tr>
<tr>
<td>V</td>
<td>1989</td>
<td>0.3</td>
<td>3.0</td>
<td>0.9</td>
<td>0.1</td>
<td>1.6</td>
</tr>
<tr>
<td>NE</td>
<td>1990</td>
<td>0.5</td>
<td>1.6</td>
<td>3.3</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>E</td>
<td>1990</td>
<td>0.5</td>
<td>1.6</td>
<td>3.3</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>SE</td>
<td>1990</td>
<td>0.4</td>
<td>1.5</td>
<td>2.7</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>S</td>
<td>1990</td>
<td>0.4</td>
<td>1.5</td>
<td>2.7</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>SW</td>
<td>1990</td>
<td>0.5</td>
<td>1.4</td>
<td>3.7</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>W</td>
<td>1990</td>
<td>0.5</td>
<td>1.4</td>
<td>3.7</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>NW</td>
<td>1990</td>
<td>0.6</td>
<td>1.6</td>
<td>3.9</td>
<td>0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Site</td>
<td>Year</td>
<td>Thermal* Conductivity (T_c) (Wm$^{-1}$ K$^{-1}$)</td>
<td>Heat* Capacity (C_s) (x106 Jkg$^{-1}$)</td>
<td>Thermal** Diffusivity (K_s) (x10$^{-7}$ m2s$^{-1}$)</td>
<td>Daily Damping Depth (h_d) (m)</td>
<td>Annual Damping Depth (h_a) (m)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>P</td>
<td>1990</td>
<td>0.6</td>
<td>1.6</td>
<td>3.5</td>
<td>0.2</td>
<td>3.3</td>
</tr>
<tr>
<td>BL</td>
<td>1990</td>
<td>0.3*</td>
<td>3.0</td>
<td>0.9</td>
<td>0.1</td>
<td>1.6</td>
</tr>
<tr>
<td>V</td>
<td>1990</td>
<td>0.3</td>
<td>3.0</td>
<td>0.9</td>
<td>0.1</td>
<td>1.6</td>
</tr>
</tbody>
</table>

* based on 1993 field observations (Glenn, 1994, unpublished)

* average seasonal value for 0.0 - 0.10m depth

** $K_s = (T_c / C_s)$ note: soil conditions are average values for experimental sites (E, SE, W, NW, P, BL).
Table 6: Selected water balance data from Arctic watersheds of North America

<table>
<thead>
<tr>
<th>Location</th>
<th>Area (km²)</th>
<th>Study period</th>
<th>Precipitation (mm)</th>
<th>Runoff (mm)</th>
<th>Evapotranspiration (mm)</th>
<th>Change in soil storage (mm)</th>
<th>Snowmelt runoff index</th>
<th>Rainfall runoff index</th>
<th>Total runoff index</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH ARCTIC</td>
<td></td>
</tr>
<tr>
<td>A.W. Master River</td>
<td>33</td>
<td>1976</td>
<td>163 28</td>
<td>161 31</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>Woo (1983)*</td>
</tr>
<tr>
<td>Basin</td>
<td>33</td>
<td>1977</td>
<td>97 23</td>
<td>155 31</td>
<td>-37</td>
<td></td>
<td></td>
<td></td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>Cornwallis Island, NWT</td>
<td>33</td>
<td>1978</td>
<td>212 61</td>
<td>213 30</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Ellesmere Island, NWT</td>
<td>33</td>
<td>1979</td>
<td>176 42</td>
<td>143 30</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1980</td>
<td>120 37</td>
<td>130 51</td>
<td>-16</td>
<td></td>
<td></td>
<td></td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1981</td>
<td>148 67</td>
<td>148 47</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1982</td>
<td>162 27</td>
<td>148 47</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Hot Weather Creek, Ellesmere Island, N.W.T.</td>
<td>155</td>
<td>1990</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.69</td>
<td>Lewkowicz and Wolfe (1994)</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>1991</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.69</td>
<td>Lewkowicz and Wolfe (1994)</td>
</tr>
<tr>
<td>F2 Watershed, Baffin Is.</td>
<td>2.5</td>
<td>1967</td>
<td>616 462 154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
<td>Church (1974)*</td>
</tr>
<tr>
<td>Baffinland, N.W.T.</td>
<td>125</td>
<td>1965</td>
<td>375 430</td>
<td>375 252</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>1.15</td>
<td>Oster et al. (1967)*</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>1965</td>
<td>375 430</td>
<td>375 252</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>1965</td>
<td>461 450</td>
<td>461 450</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Heather Creek, Ellesmere Island, N.W.T.</td>
<td>6.1</td>
<td>1969</td>
<td>95 45 10 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.47</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>112 12</td>
<td>60 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>35 90</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>Lewkowicz and Wolfe (1994)</td>
</tr>
</tbody>
</table>
Table 6: continued

<table>
<thead>
<tr>
<th>Location</th>
<th>Area (km²)</th>
<th>Study period</th>
<th>Precipitation</th>
<th>Runoff</th>
<th>Evapotranspiration</th>
<th>Change in soil storage</th>
<th>Snowmelt runoff index</th>
<th>Rainfall runoff index</th>
<th>Total runoff index</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Snow (mm)</td>
<td>Rain (mm)</td>
<td>Total (mm)</td>
<td>Snow (mm)</td>
<td>Rain (mm)</td>
<td>Total (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inuvik, Alaska</td>
<td>2.2</td>
<td>1985</td>
<td>102</td>
<td>66</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td>.65</td>
<td>Hinzeman' (1990)</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>1986</td>
<td>109</td>
<td>57</td>
<td>119</td>
<td>153</td>
<td></td>
<td></td>
<td>.52</td>
<td>.38</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>1987</td>
<td>108</td>
<td>71</td>
<td>179</td>
<td>250</td>
<td></td>
<td></td>
<td>.66</td>
<td>.66</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>1988</td>
<td>78</td>
<td>39</td>
<td>110</td>
<td>219</td>
<td></td>
<td></td>
<td>.56</td>
<td>.29</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>1989</td>
<td>155</td>
<td>94</td>
<td>172</td>
<td>240</td>
<td></td>
<td></td>
<td>.61</td>
<td>.30</td>
</tr>
<tr>
<td>Boot Ck., NWT</td>
<td>31</td>
<td>1973</td>
<td>140</td>
<td>119</td>
<td>210</td>
<td>85</td>
<td></td>
<td></td>
<td>.74</td>
<td>Anderson' (1974)</td>
</tr>
<tr>
<td>Barrow, Alaska</td>
<td>1.6</td>
<td>1963</td>
<td>42</td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>.46</td>
<td>Brown et al. (1968)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1964</td>
<td>8</td>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
<td></td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Point Barrow,</td>
<td>1.6</td>
<td>1965</td>
<td>14</td>
<td>.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>Alaska</td>
<td>1.6</td>
<td>1966</td>
<td>42</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.03</td>
<td></td>
</tr>
</tbody>
</table>

a found in Kane, et al. 1992
b calculated using 1991 snow survey
c calculated from BC data and ratio adjustments (see Table 3).
Table 7: Seasonal water balance for Heather Creek Basin (HCB) (1989-1990)

<table>
<thead>
<tr>
<th>Year</th>
<th>TOTAL INPUTS</th>
<th>TOTAL OUTPUTS</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Melt (mm)</td>
<td>Precipitation (mm)</td>
<td>Evaporation (mm)</td>
</tr>
<tr>
<td>1989 (June 29 - Aug. 20)</td>
<td>—</td>
<td>95</td>
<td>32</td>
</tr>
<tr>
<td>1990 (May 25 - Aug. 20)</td>
<td>102³ / 112⁵</td>
<td>12</td>
<td>42</td>
</tr>
</tbody>
</table>

a melt calculated according to model
b snow water equivalent of HCB determined by snow survey early May
c overall storage if one considers initial basin snow survey snow storage input
Table 8: Sensitivity of Heather Creek (1990) water balance components to selected climatic and environmental changes

ATMOSPHERIC

<table>
<thead>
<tr>
<th>Water Balance Components (mm)</th>
<th>Aerosol</th>
<th>Temperature</th>
<th>Cloud amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+10%</td>
<td>0</td>
<td>-10%</td>
</tr>
<tr>
<td>M</td>
<td>104</td>
<td>102</td>
<td>92</td>
</tr>
<tr>
<td>P</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>E</td>
<td>44</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>Q</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>S</td>
<td>3/11a</td>
<td>5/14</td>
<td>3/23</td>
</tr>
</tbody>
</table>

TERRESTRIAL

<table>
<thead>
<tr>
<th>Water Balance Components (mm)</th>
<th>Slope albedo (α_s)</th>
<th>Surface resistance (r_s)</th>
<th>Precipitation (rainfall)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+10%</td>
<td>0</td>
<td>-10%</td>
</tr>
<tr>
<td>M</td>
<td>103</td>
<td>102</td>
<td>103</td>
</tr>
<tr>
<td>P</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>E</td>
<td>39</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Q</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>S</td>
<td>8/17</td>
<td>5/14</td>
<td>5/14</td>
</tr>
</tbody>
</table>

a If initial snow storage is considered.
List of Figures

Figure 1: Location of Heather Creek Basin (HCB) Ellesmere Island, N.W.T. and the terrain units comprising the basin

Figure 2: Heather Creek stream discharge (1989, 1990)

Figure 3: Heather Creek daily water balance (1989, 1990)

Figure 4: Cumulative totals of Heather Creek water balance components (1989, 1990)
Fig. 2

Snowmelt Period (a) 1990

Stream discharge (m³/s)

Time (hours)

June 15 July 1 July 15 Aug. 1 Aug. 15

M = missing data

Rainfall (mm/h) 1989

Stream discharge (m³/s) 1989

Thaw Season (b)
CHAPTER 6
CONCLUSIONS

Future global changes require that interactions between atmospheric, hydrologic and land surface processes be more carefully considered for arctic environments. This study examined the local variation of environmental variables (topography, microclimate, soils and hydrology) and their linkages and feedbacks at both level and sloping sites within the Hot Weather Creek basin, located on the Fosheim Peninsula, Ellesmere Islands, NWT. A surface energy balance model framework incorporating a cloud-layer solar radiation model allowed these environmental relationships to be considered when snowmelt and evaporation were simulated for the Heather Creek basin, a sub-basin of Hot Weather Creek. This model which uses easily obtained filed data as input (twice-daily cloud, temperature, wind, precipitation) was calibrated and tested using field measurements obtained from the Hot Weather Creek experimental site during two contrasting summer seasons (1989-cool/wet; 1990-warm/dry). Hydrologic responses to selected atmospheric and terrestrial impacts in Heather Creek, a small continuous permafrost basin were investigated using this surface energy balance model. Several results can be drawn from this study:

1) Baseline information obtained in 1989 and 1990 at Hot Weather Creek indicate that the temporal and spatial responses of environmental variables to the local conditions can be identified as direct, recurrent or long-termed. For example, under direct responses, microclimate, itself affected by topography and the regional climate often sets the conditions for other variables to respond. Variations of radiation on slopes, particularly during years with few cloudy
periods, have effects on the initiation, duration, and intensity of snowmelt, as well as evaporation. Snow distribution, frost table configuration and groundwater flow exhibit recurrent spatial patterns, even though the magnitudes vary from year to year. The spatial distribution of vegetation and soil represents long-term adaption to the microclimate, hydrology, and geomorphological activities of the local site.

2) Field measurements at Hot Weather Creek caution that the spatial and temporal variation of local environments must be considered before point measurements of frost depth, snow amount, vegetation cover, soil moisture, etc. are upscaled for use in climate change detection.

3) This study has demonstrated that it is possible to model solar radiation satisfactorily using a cloud-layer model using twice-daily input of cloud data. The study shows that model performance improves greatly when calculated values are summed over four days or more, indicating that this model is useful to arctic ecologists and earth scientists interested in mapping solar radiation over large but remote areas.

4) This study has demonstrated the feasibility of simulating net radiation using limited input data, providing an opportunity to map the net radiation over the Arctic where direct measurements are scarce.

5) The surface energy balance model allows an extension of point observations in space to cover different terrains and under various surface conditions. Microclimatologist and hydrologists will find it useful in extrapolating snowmelt and evaporation for various slopes and drainage basins. Ecologists can apply the
model to compute radiation input for plot or transects; and geomorphologists can estimate the energy available for geomorphic processes to occur over a range of spatial scales.

6) A simple surface water balance for Heather Creek (1989 and 1990) demonstrates that a surface energy balance model using easily acquired field data (twice-daily temperature, cloud, wind, precipitation) can model melt and evaporation successfully for a small high arctic basin composed of varying terrains and surface conditions.

7) Sensitivity analysis of selected atmospheric and terrestrial impacts indicate that slight changes in atmospheric constituents (e.g. temperature, low-level cloud amounts and aerosols) have perhaps a greater effect on basin hydrologic responses (snowmelt, evaporation, and storage) than small modifications in the terrestrial environments (e.g. surface albedo, and resistance).

Future work is required to assess present-day variability of the Heather Creek hydrologic system through long-term monitoring. A more comprehensive sensitivity analysis which considers a larger number of variables (both atmospheric, and terrestrial), greater levels of change and combinations of variables (e.g. changes in precipitation and temperature simultaneously) (e.g. Hinzman and Kane, 1992) would broaden and provide a greater appreciation of the possible hydrologic responses that continuous permafrost environments will experience. The good performance of the surface energy balance model at the small basin scale (6.1 km²) suggests that it could be used to simulate snowmelt and evaporation at a larger scale (e.g. Hot Weather Creek, 155 km²). Snow and
stream discharge data from 1989-1993 is available for the Hot Weather Creek basin. The model's performance should also be tested at other sites in the Canadian Arctic. Future research is needed to couple this model with ecological-type models so as to assess present and future global impacts on plant productivity and structure in northern environments. In the near future, this model should be coupled with permafrost hydrological models (e.g. Woo and Drake, 1988) so as to extend their applicability from a point to larger surfaces (slopes-basin-region).
REFERENCES

Bazzaz, F.A.

Blanchet, J-P.

Bergström, S.

Church, M. and M-K. Woo

Dooge, J.C.I.

Harte, J. and J. William
Hinzman, L.D. and D.L. Kane

Hinzman, L.D. and D.L. Kane

Hostetler, S.W.

Kane, D.L.; L.D. Hinzman; M-K. Woo and K.R. Everett

Kane, D.L.; L.D. Hinzman and J.P. Zarling

LeDrew, E.F.

Lewkowicz, A.G.

Maxwell, B.

Rizzo, B and E. Wiken

Robinson, P.J. and P.L. Finkelstein

Running, S.W.; R.R. Nemani and R.G. Hungerford

Wetherald, R.T. and S. Manabe

Woo, M-K and J.J. Drake

1988: A study to model the effects of uranium mine tailings on a permafrost environment. Environmental Studies No. 53, Northern Affairs Program, Indian and Northern Affairs, Canada, Ottawa, Ontario, 41p.

Xia, Z-J.