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Abstract

This thesis focuses on the joint detection of the model order and the estimation of the
parameters of interest, with applications to array signal processing in both the off-line and
on-line contexts. In the off-line mode, Markov Chain Monte Carlo methods are applied to
obtain a numerical approximation of the joint posterior distribution of the parameters. The
on-line approach uses the sequential implementation of Monte Carlo methods applied to
probabilistic dynamic systems.

Three problems were addressed in the course of this thesis.
1. A method for joint detection of the number of sources and estimation of their re-
spective directions of arrival in coloured noise with unknown arbitrary covariance was

developed.

2. The second algorithm represents an extension of the first one with the addition of the
joint estimation of the times of arrival of the pulses, in the spirit of channel sounding

for characterization of multipath channels.
Both methods were successfully applied to real data, acquired on campus with a
channel sounder during an extensive measurement campaign.

3. The final part of this thesis focuses on the sequential implementation of the Monte
Carlo methods, i.e. particle filters, for probabilistic dynamic systems.

The algorithm recursively estimates the posterior distribution of the evolving param-
eters of interest, allowing for the on-line detection of the number of sources and the

estimation of their respective directions of arrival.
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Notation and Acronyms

Symbol Definition
z Scalar
x Vector
Matrix
YT Matrix transpose
Y’ Hermitian transpose
Y| Determinant
Tx(Y) Trace
Array Processing
k Model order (Number of sources)
N, Number of snapshots (observations)
0e,] Physical directions of arrival
S(¢) Steering matrix
s(¢) One column of the steering matrix
wo Carrier frequency in rad/s
i Carrier frequency in Hz
d Spacing (for a uniform linear array)
Radius (for a circular array)
v Velocity of propagation
R, Covariance matrix of the observations y
A Eigenvalue
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e Eigenvector corresponding to the [th eigenvalue
N Noise subspace
S Signal subspace
Statistics
N Number of samples (particles)
P[A] Probability of the event A

p(z) or p(z)

Probability density function (pdf) of z or =

z ~ p(x) x is distributed or drawn from p(z)
p(x|p; 0?) Density of & conditional on g,
with the knowledge of the parameter o2
n(x) Posterior density of interest p(x|y)
q(-) Importance (or candidate) function
r Acceptance ratio
a Acceptance probability
wsi) The weight of the (i)th particle at time ¢
Acronyms
BIS Bayesian Importance Sampling
iid independant and identically distributed
IS Importance Sampling
MC Monte Carlo
MCMC Markov Chain Monte Carlo
pdf Probability Density Function
SIS Sequential Importance Sampling
CRLB Cramér-Rao Lower Bound
SNR Signal-to-Noise Ratio
DOA Direction of Arrival
TOA Relative Time of Arrival
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Chapter 1

Introduction

Statistical methods for signal processing have a wide range of different applications, such
as radar, sonar, wireless communications, telephony, geophysics and many more. The ob-
jectives are however the same, namely the extraction of parameters of interest from noisy
observations.

In array signal processing, there are a number of possible objectives, significant ones

being,

e Detection of number of sources. Most classical methods assume knowledge of this pa-
rameter, or assume that it was previously estimated. The knowledge of this parameter

is often instrumental to methods focusing on the remaining objectives, below.

e Source localization. The azimuthal locations of the sources, i.e. the direction of arrival
(DOA:s) of the propagating waves relative to the axis of the array, are the parameters
of interest. It is also possible to estimate other parameters, such as the range or the

velocity of the sources.

e Channel characterization. The objective is to estimate the space-time manifold de-
scribing the propagation between the source and the receiver. The directions of arrival

and the relative delays of propagation characterize the channel.

Depending on the application, the processing might be “batch mode” or “off-line”,
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when the data has been collected before processing, or “sequential” or “adaptive”, when
the algorithm proceeds as the observations are collected. There are many classical methods

of either type, addressing each of the objectives.

1.1 Array signal processing

In an array signal processing scenario, we have N, vector observations y(n) € cM, n=
1,...,NN; from an array of M sensors, which is illuminated by k, plane waves incident onto
the array from angles ¢y, . .. , di, relative to the normal of the array. The objective is, given

the observations, to estimate the parameter k, and the corresponding directions of arrival.

1.1.1 Array geometries

In the context of array signal processing, several assumptions are necessary to support the

development of the algorithms.

o Plane waves. The sources are assumed far enough from the array so that the incident

signals have planar wave fronts.

e Narrow band. Under this assumption, the propagation over the length of the array is

a function of only the phase term, as a simple delay factor.

e Calibration. The sensors are assumed calibrated, namely their radiation pattern is
assumed known (Tranter et al., 1999). That is, the array steering (response) vector

s(¢) is known for all ¢ within the field of view.
e Uncorrelated noise. The noise samples are assumed uncorrelated with the signals.

e k, < M. For the covariance matrix of the observations to be full column rank, the
true number of sources impinging the array must be less than the number of elements

composing the array.
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The structure of the steering matrix varies with the geometry of the array. The specific
geometry of the array, e.g. whether the array is linear or circular, depends on the applica-
tion. In the case of a linear array composed of M equally spaced sensors (see Figure 1.1),
the manifold in the presence of k, incident signals, is described by, S(¢) € CM*ko, the kth

column of which is
3(¢k) — [l’ejuodsin(cﬁk)/u’ . ,ej(M—-l)wodsin(m)/u]T k=1,... 1k01 (1.1)

and ¢ € R*. In particular, when the array elements are uniformly spaced, we assume

¢
dsin(¢)
L
- d-—>
e O o e L
M 3 2 1

Figure 1.1: Definition of symbols for a linear antenna array scenario.

d < ':T:’ where d is the distance between the sensors, wg is the operating frequency, and
v is the velocity of propagation. This structure is commonly used in the literature for its
simplicity, but it suffers from an ambiguity problem, as one cannot distinguish whether the
wave is impinging from the front or from the back of the array: two different plane waves
impinging from mirror directions would give the same steering matrix.

For this reason, the circular array is most often used in practice and this thesis therefore

adopts this geometry. The steering matrix of a circular array of radius R and made of M
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sensors is defined as (with the angles shown in Figure 1.2)

[ e—incos($r—m) p-jmcos(bz—m) | g—incos(ék,~m) ]
e—Jncos($r1—m2)  o—jrcos(éa-m2) | g—imcos(ék,—72)
S(¢) = , _ .
e—Jncos(@r—-Tm) g-jncos($a—ram) | gmincos(Pu,—TM)

where k = "—’gﬂ, and R the radius of the circular array.

) .‘. T =45
=20 @ R=0102m gn=%
7%=25@, ®=13

Figure 1.2: Definition of symbols for an 8 element circular antenna array scenario.

The vector y € CM of observed data is the output of an array of M sensors. The output
of the array at the sampling time n, i.e. at the nth snapshot, is expressed in term of its

steering matrix S(¢)
y(n) = S(dla(n) +v(n) n=12,..., N, (1.3)

where v(n) is the observation noise.
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1.1.2 Traditional array processing

Traditional array processing methods for model selection and direction finding purposes

often use the information contained in the covariance matrix of the data

E{y(n)y'(n)} = E{(S(¢)a(n) +v(n))(S(¢)a(n) + v(n))'},
R, = S®,S' +%,, (1.4)

where ¥, is the spatial covariance of the noise process and ®, is the signal covariance
matrix. The expression (1.4) is obtained with the assumption that the signal and the noise
are uncorrelated. The rank of the matrix S®,S’ in eq. (1.4) is the number of sources.

However, this matrix is only available through the estimate of R, given as

N,
By = 3 vy (n). (L5)

=1
The signal subspace and the complementary noise subspace can be estimated with an
eigen decomposition of the data covariance matrix. Let the set [y, ..., &) be the eigenvec-
tors of the data covariance matrix (1.5). The estimated signal subspace S and the estimated

noise subspace N can be defined as

S ~ span[Eg] = span[é,, ..., &},
N = span[EN] = span[ég, 41, .- -, ém].

The above quantities with a hat denote those derived from the estimated covariance

Ry,

1.1.2.1 Direction finding

Subspace methods With the knowledge of the number of sources, the signal subspace
and noise subspace can be correctly estimated with the corresponding eigenvectors. In
the event that the noise is not white, generalized eigenvectors are required to describe
the subspaces. It is possible to estimate the directions of arrival by projecting the steering

vectors onto either space. If the signal vector is in the signal DOA'’s subspace, the magnitude
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of the projection onto S should be relatively large. Correspondingly, a projection onto N
will result in a small magnitude.
Denoting s(¢) to be a column of the steering matrix and © the set of the true directions

of arrival,
l|s(¢) * Ex||] »0 when ¢ € ©.

One method which uses this principle to estimate DOAs is the Pisarenko pseudo spec-
trum (Pisarenko, 1973), that projects a steering vector onto a single noise eigenvector. The

Pisarenko pseudo spectrum is defined as

1
s'(¢)eméps(4)

A more commonly used method, the MUSIC algorithm (Schmidt, 1986) involves a pro-

PP:':(¢) =

jection of a steering vector onto the whole noise subspace. The MUSIC pseudo spectrum is

defined as

. 1
P, =
Mo = S EnEae(@)

where En = [ék,41,--.,ém]- The MUSIC method will perform well when the number
of sources is over estimated. In the worst case, when the estimated numbers of sources is
M —1, it degenerates to the Pisarenko pseudo spectrum. However, in this case, it is difficult
to localize the extra artificial directions of arrival.

These pseudo spectra show high peaks at the directions of arrival that are represented
in the data considered. The term 'pseudo spectrum’ reflects the fact that the height of the
peaks does not provide any information on the amplitudes of the signals.

Maximum Likelihood methods For a typical signal processing problem, a model can
be assumed to describe the observation data as a function of some parameters. This signal
model, along with the noise model, defines the likelihood function of the data, given the

parameters. For example, using the data model described in eq. (1.3), the likelihood



CHAPTER 1. INTRODUCTION 7

function, assuming Gaussian noise, is !

p(y(n)l¢) = l($;y(n)) ~ Ny(S(d)a(n), L. ).

This is a function of the parameter ¢ and not of y(n), thus the notation /(¢;y(n)). The

value of the parameter that maximizes this function is called the mazimum-likelihood esti-

mate.
¢p = arg max p(y|¢). (1.6)
Pee
From the model of the observation in eq. (1.3), the least-squares estimate of the amplitudes
is
a(n) = (S'(¢)S(#))7'S'(d)y(n),
which, after substituting back into eq. (1.3), gives
#(n) = S(¢)(S'(¢)S(¢)) "' S'(#)y(n) + v(n),
§(n) = Ps(¢)y(n) + v(n),
with Ps(¢) = S(¢)(S'(¢)S(¢))7'5'(¢).
The optimization problem of eq. (1.6) can be written as
$ur =argmind _|I(X - Ps(@)y(nll
= ; L L
= argmin Te(P5 () Ry ),

= arg max Tr(Ps(¢)Ryy),

where Tr(-) is the trace operator, RW is defined in eq. (1.5), and Pg(¢) is a model
dependent projector matrix. The same result can be obtained in a Bayesian context (Reilly,
1981; Haykin, 1982; Wu and Wong, 1994; Viberg et al., 1991).

Using these approaches to estimate parameters has serious limitations. This optimiza-

tion problem is well known to be difficult, as the function to optimize shows many saddle

1The definitions of the density functions can be found in appendix A.
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points and local extrema. Any gradient based method would need a good initialization
in order to succeed. Also, the likelihood function does not make use of any information
other than the observed data itself. Any knowledge that might have been acquired during
previous experiments is not utilized.

Secondly, the maximization of the likelihood function jointly with the model order,
i.e. the number of incident signals, does not limit the number of parameters involved in
modeling the data. Therefore, a more complex model would result in a higher likelihood.
This limitation is well recognized and results in difficulty determining the model order k,.
Many attempts have been made to resolve this deficiency. Methods such as AIC and MDL
(see section 1.1.2.2) use information theory - the result is an extra term that penalizes

models of higher complexity.

1.1.2.2 Model selection

In the case where the noise is spatially white, the noise covariance matrix is given as
By =0ily.

Then, in the eigen decomposition of Ry, there are exactly M — k, eigenvalues that are

equal to 0':‘:, while the remainder are all larger, i.e.
AL> A2 > > Ak, > Mgl = Akg12 =7+ = Apy-

Unfortunately, depending on the number of snapshots used to estimate the covariance
matrix, the estimated eigenvalues A and eigenvectors & will show some variance, which will
complicate the count of significant eigenvalues, especially at low signal-to-noise ratios.

The model order can be estimated using information theoretic criteria, such as the
Akaike information criteria (AIC) (Akaike, 1974), the minimum description length criteria
(MDL) (Rissanen, 1978) or the more recent D-MAP (Djuric, 1996). These approaches
maximize the log-likelihood function of the data over all the model orders available, but
with increasing penalties for higher dimension models. The AIC approach is not consistent,

i.e. there remains a finite probability of error at high SNR levels and /or when the number of
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snapshots approaches infinity. The other two approaches are known to be consistent (Zhao
et al., 1987).

These methods are based on maximizing the following functional form,

L(&) =- logf(yliﬁ) +g(k1M1Nt)s

where ¢ is the maximum-likelihood estimate of the parameters for a specific model order,
and g(k, M, N,) is a penalty term, which is a function of the model order, and other param-
eters. The AIC, MDL and D-MAP criteria for estimation of the number of sources can be

written respectively as

karc = min - log f(y|$) + 2k(2M — k),

Eaeor = min — log f(y14) + “20 =5 iog(w,),

- . - 5k
kpmap = min — log f(y|¢®) + 5 log(IVy),

where N, is the number of snapshots used to estimated the covariance matrix, M is the
number of elements in the array and k is the model order considered. The maximum-
likelihood estimate for a model of order k can be written in terms of eigenvalues (Wax and

Kailath, 1985), and this term is common to all three methods,

([T r i)/ M- "’)
k Z:-k+l )

where the eigenvalues ); are arranged in descending order.

2(M—k)N,

) = (

These criteria suffer from severe limitations due to the assumptions supporting their
development. The most limiting assumption is the noise, which is assumed additive, white
and Gaussian. Experiments have shown that these criteria are very sensitive to the white
noise assumption. A performance analysis of the criteria for varying level of colours can be
found in (Chen, 1991).

There are a few methods that address this problem in coloured noise. If the noise char-

acteristics are known, various pre-whitening approaches might be used. Another alternative
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is the use of multiple arrays (Wong et al., 1992; Fuchs, 1992; Wu and Wong, 1994; Wu and
Fuhrmann, 1991; Nagesha and Kay, 1996; Chen et al., 1996).

1.2 The Bayesian approach

The limitations and deficiencies of the maximum-likelihood method are very elegantly ad-
dressed in the Bayesian framework, by the involvement of prior distributions. This gives
analysts the ability to use prior knowledge, and the option of marginalizing with respect to
the parameters of interest, for evaluation of confidence regions, etc.

Until recently, Bayesian methods, which rely on the use of probabilistic models and
the application of probability theory, were ignored mainly for three reasons. Firstly, these
methods demand a very high implementation complexity. Most of the scenarios involve
optimization or integration that cannot be carried out analytically. Secondly, numerical
approximation of these optimizations or integrations often leads to discouragingly compu-
tationally intensive processing. Finally, the Bayesian methods make heavy use of the Bayes’
theorem, which involves the use of prior distributions. This subject has been a constant
source of controversy in the signal processing community.

Although the supporting theory is quite simple, the resulting posterior distributions to
manipulate are often highly non-linear and complex, preventing any analytical analysis or
manipulations. To solve any optimization or integration problems, numerical methods must
be employed.

Markov Chain Monte Carlo (MCMC) batch methods were first proposed in the early
fifties, but were ignored due to their intense computational requirements. With the ever
growing power of personal computers, they have just recently matured into very powerful
algorithms, providing a potential solution to difficult problems, when no other solution
would exist. The whole MCMC theory could be summarized in one sentence as:

The idea of MCMC methods is to draw samples distributed according to an arbitrary
probability density function by observing the states of a Markov chain, with the objective
of computing a histogram that will approzimate the probability density function, allowing
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numerical inference on parameters.

When the parameters of interest evolve in time, the time-series of their posterior distribu-
tions constitute a probabilistic dynamic system. When new observations become available,
the objective is to recursively update the weights of a set of samples to describe the updated
posterior distribution. This approach is the basis for particle filters.

The next chapter will focus on these topics and will present detailed explanations of the
different numerical methods. It is sufficient at this point to say that, when a large number
of samples drawn from a distribution are available, then three types of numerically-based

inference can be made using this approach.

o Optimization. The objective is to locate the extrema of the function. A complicated

optimization procedure is replaced by a simple location searching approach.

o Integration. Marginalizing parameters would require complicated non-linear and most
often prohibitive analytical integrations. Numerical marginalization of a parameter is

simplified to summing bins of the histogram.

¢ Simulation. In some applications, the objective is simply to draw samples from an
arbitrary density function, which is only possible in general when this function is
either standard or integrable. MCMC methods proved powerful in this context.

1.2.1 Bayes’ theorem

Let y be a random variable (e.g an observation) whose conditional probability density

function p(y|¢) depends on the parameter ¢. Then the function p(y|¢) defines the likelihood

function.

Any information about the parameter can be included in a prior distribution p(¢). Then

the Bayes theorem states that

p(yl®)p(4) = p(,y) = p(Sly)p(y)-

Given the observation y, the conditional distribution of the parameter ¢ defines the posterior
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distribution

p(4ly) = ”—‘%‘%@ o p(yld)p(#)-

This is Bayes’ theorem.
The total probability of the data, p(y), for two different types of probability distribution,
is
I p(y|#)p(¢)d¢ Continuous,
2 p(yl$)p(¢)  Discrete.

ply) =

This distribution only plays the role of a normalization constant and is often not of interest
in parameter estimation, as here we are only interested in the location of the extrema,
not their actual values. Furthermore, for most realistic models, this expression cannot be
evaluated analytically, limiting the specification of the posterior distribution up to that
constant.

The value of the parameter that maximizes the posterior distribution is referred to as the
Mazimum A Posteriori estimate (MAP). Statistical inferences can now be obtained from
the posterior distribution, which was not possible in the maximum-likelihood framework.

It should be noted that the maximum-likelihood approach and the MAP are not mu-
tually exclusive. If a mean-square cost function is selected to estimate a parameter in the
maximum-likelihood sense, the same result would be obtained by calculating the mean of
the posterior distribution with uniform prior (the use of a linear (absolute value) cost func-
tion is similar to finding the median of the posterior distribution; a uniform cost function,

with a notch, the MAP estimate) (Van Trees, 1968; Kay, 1993).

1.2.2 Prior distributions

When observations from previous experiments are available, the posterior distribution of
the parameters for these experiments could be used as a prior distribution for the current
experiment. For example, some physical characteristics of the system might preclude some

values of the parameters.
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The notion of prior distributions has been a point of debate for decades between rigorous
statisticians adhering to the classical philosophy, where the maximum-likelihood estimates
are obtained with more or less well defined risk functions (e.g.mean-square or uniform), and
the Bayesian analysts, that use prior distributions to include prior knowledge.

This debate seems to be fading away, now that the impact of the prior distributions on
the end results is better understood. Also, when prior distributions are used, more inference
can be obtained from the posterior distribution than from the maximum-likelihood estimate.
For example, evaluation of confidence intervals for the MAP estimate, and marginalization
of the posterior distribution for a parameter of interest are only possible in the Bayesian

context.

1.2.2.1 Non-informative prior

When no information is available, a non-informative prior distribution should be used. A
distribution is non-informative if it can be approximated by a constant over the range
where the likelihood function is important, so that it does not contribute discrimination
to the likelihood function. In other words, the prior distribution must be wider than the
likelihood function, to “let the data talk” (Box and Tiao, 1973). Estimates obtained using
non-informative prior distributions are identical to those obtained from maximizing the

likelihood function.

1.2.2.2 Proper prior

As critics often argue, for these quantities (e.g. MAP estimates, confidence intervals) to
exist, the prior distributions must be proper, i.e. summable. In some cases, improper prior
distributions might be acceptable, such as a uniform prior over an infinite range. However,
the application of MCMC methods to be considered later is more sensitive and requires a

proper prior distribution.
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1.2.2.3 Conjugate prior

To improve analytical tractability, e.g. regarding the analytical marginalization of undesired
parameters from the posterior distribution, prior distributions are often chosen for their
analytical forms, so that the posterior distribution follows the same distribution as the
likelihood function, but with different moments. This is possible when the prior distribution
is the conjugate prior. For example, let’s assume that p(y|o?; u) is 2 Gaussian distribution
with known first moment. The conjugate prior for the variance is the Inverted Gamma
distribution (see the table in appendix A for their expressions). Bernardo and Smith (1994)

present an extensive table for most distributions.

1.2.2.4 Jeffrey’s prior

Another form of prior distribution is derived using Jeffrey’s rule (Jeffreys, 1961, original
paper, 1939). In this case, the prior distribution for a set of parameters is taken to be
proportional to the square root of the determinant of the Fisher information matrix (Box
and Tiao, 1973). This approach proposes a prior distribution that is data translated, and is

given as
p(9) < |T ()2,

where

J(¢) = -Ey4 [—8: g rule ] :

This is the general form of the non-informative prior distribution.

1.2.3 Ockham’s razor

When the model order is to be jointly estimated along with other parameters, a simpler
model must be selected, as a compromise of complexity and data fit. This principle is known

as Ockham’s razor.

In the Bayesian framework, this principle favours models of lower dimensions and models

of higher complexity are penalized because of the influence of the prior distribution on the
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model. As model order increases, the heights of the prior distributions decrease faster, thus
penalizing higher-order models.

In a sense, the effect of Ockham’s razor is similar to the behaviour of an information
theoretic criterion (such as AIC or MDL). However, the use of different forms of prior
distributions results in different types of penalty function. It has been experimentally shown
that criteria obtained from the Ockham’s razor principle often perform better (Pope, 1993).

This is the supporting principle explaining the convergence of the MCMC methods

toward the correct model order, as we discuss in later chapters.

1.3 Campaign for experimental measurement of multipath

channels

During the fall of 1997, an extensive campaign for measurements of various propagation
environments was undertaken, on McMaster University campus, with objective of providing
a data set for testing any future algorithms. The complex channel impulse response, in time
and space, was measured directly in the time domain by transmitting a wide-band spread-
spectrum signal and correlating the received signal with the known transmitted sequence,
at each element of the receiving array.

The receiving base station is a circular antenna array made of 8 mono-pole antennae.
The transmitted signal is a 255 chip pseudo-noise (PN) sequence at 5 MHz. The received
signal of each element was I-Q demodulated, converted to baseband, sampled at 10 MHz,
and then stored for further processing. The measurements were conducted on campus, with
the receiving base station at different locations and different heights in a pico-cell scenario
that offered rich multipath characteristics with severe fading.

An initial calibration of the receiver array was based on measurements with the antenna
array inside an anechoic chamber, illuminated from 64 different angles. This calibration

data is necessary to extract accurate phase information from the data.
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1.4 Scope of the thesis

This thesis discusses new approaches to various classical problems in array signal processing,
using modern numerical Bayesian methods. We show how the Markov Chain Monte Carlo
(MCMC) and the Sequential Importance Sampling (SIS) methods present new outlooks and
offer many advantages to problems in the field.

Most array signal processing approaches require the knowledge of model order to esti-
mate other parameters. Either it is assumed known, or it has been previously estimated
separately. But for most real problems, this parameter is amongst the parameters of interest
and should therefore be estimated jointly.

Very few methods tackle this joint problem of detection of the model order and es-
timation of the parameters, particularly in coloured noise with unknown and arbitrary
covariance. A few methods proposed variations of the white noise methods. There is how-
ever a rich literature about the separate problems and many methods have been published
in recent years. These will be presented throughout the thesis, mostly at the beginning of
Chapters 3, 4 and 5.

This thesis presents the application of the Markov Chain Monte Carlo methods to the
joint problem of detection and estimation in unknown coloured noise with arbitrary covari-
ance and the sequential implementation of Monte Carlo methods applied to probabilistic
dynamic systems, again in the context of joint detection and estimation.

Three problems were addressed in the course of this thesis:

1. A method for joint detection of the number of sources and estimation of their re-
spective directions of arrival in coloured noise with unknown and arbitrary covariance

using MCMC methods was developed.

The method uses a single array of sensors and analytically integrates out the unknown
noise covariance matrix to leave a marginalized posterior distribution that is only a
function of the parameters of interest. The numerical optimization is accomplished

with the Reversible Jump MCMC method.
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2. The second algorithm represents an extension of the first one with the addition of the

joint estimation of the times of arrival of the pulses.

In the spirit of channel sounding or channel characterization, the received signal is
composed of the superposition of multiple delayed and attenuated copies of the trans-
mitted signal. The objective is to detect the number of multipath components and

estimate their respective directions of arrival and excess propagation delays.

Both methods were successfully applied to real data, acquired on campus with a

channel sounder during the extensive measurement campaign previously mentioned.

3. The final part of this thesis focuses on the sequential implementation of the Monte
Carlo methods in particle filters for probabilistic dynamic systems. This algorithm
proposes a solution to the problem of tracking an unknown number of sources in white
noise with an array of sensors. At each snapshot, the joint posterior distribution of the

number of sources and their directions of arrival is recursively updated and optimized.

This method allows for the instantaneous estimate of the number of sources and
their evolving directions of arrival. In addition, by obtaining the marginal posterior
distribution of the nuisance parameters, one could perform a very simple, yet quite

effective, form of data association.

The selected numerical methods suffer from some practical difficulties. They are very

computationally intense. However, these difficulties are offset by the following consideration:

o Flezibility. Once the samples are available, the integration and optimization objectives

are very easily achieved.

e Convergence. In optimization, the probability of convergence to the global optimum

is achieved with very high probability.
e Adaptive. For the SIS algorithm, there is no requirement of quasi-stationarity.

e Performance. They inherit the properties of Bayesian methods, which generally satisfy

equality with the Cramér-Rao bound.
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1.5 Outline of thesis

The thesis is divided into four main chapters.

e This first chapter was intended as an introduction of the knowledge required to un-

derstand the subsequent chapters and to help put the work in perspective.

e Chapter 2 introduces the fundamental theory supporting Markov Chain Monte Carlo
methods and the sampling theory supporting particle filters.

e Chapter 3 presents the first of two methods developed for the joint detection and
estimation of an unknown number of sources in coloured noise with unknown and
arbitrary covariance. This algorithm can be applied in a frequency division duplex
system for beamforming processing at the base station. As the weights are frequency
dependent, the weights computed for the up-link channel cannot be reused for the
down-link transmission. However, if the directions of arrival are estimated, both sets

of weights can be calculated, which would allow for beamforming in both directions.

e Chapter 4 presents the second algorithm, which constitutes an extension of the first
one, where the times of arrival of the plane waves are also jointly estimated. This
method will be applied for channel sounding. It can also be applied at a base station,
allowing for characterization of the multipath channel. This approach presents a

potential solution to the 911-problem, where the location of users can be estimated.

e Chapter 5 presents the sequential implementation of the MC methods to a particle
filter for the tracking of an unknown number of sources. This algorithm could be
applied in a cellular communication scenario that utilizes smart antenna technology,
where users can come in and out of the cell, to track the number of users and their

angular locations.

e Finally, the conclusion section and appendices complete this work.



Chapter 2

Monte Carlo Methods

2.1 Introduction

As described in the previous chapter, the Bayesian approach allows for the consideration
of prior knowledge included in posterior distributions, but often leads to highly non-linear
and analytically non-tractable posterior distributions.

As most realistic data models will lead to multi-variate and highly non-linear poste-
rior distributions that are not analytically workable, numerical methods present attractive
alternatives.

If one was given a large set of samples drawn from a posterior distribution 7 (z) £ p(z|y),
where & represents the parameter of interest, and y is the vector of observations, then one
could easily get a numerical approximation of that posterior distribution by a histogram.
This would allow for easy numerical integration, maximization or marginalization.

Assuming that a large number N > 1 of samples distributed according to a distribution
of interest p(x) are available, the Monte Carlo numerical approximation of this distribution

is given by

N
Py(dz) = %E dpi(dz), (2.1)

=1

19
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where the indicator function is defined as

1 2zt eda
Sp(da) =

0 otherwise,
and where dz is a small finite region surrounding a value of & of interest, e.g. a histogram
bin.
Using this numerical approximation of the distribution, numerical estimates can readily

be obtained. For example, the integration of any function f(z) can be solved as

N
By (/@) = fn 2 [ f(@)Pulde) = 5 3 £(=9), (22)

=1
and the optimization of the posterior probability density function is simply

Emap =arg  max p(ylz®)p(z?).
=1, . N

These estimates are unbiased, in the sense that Py(dz) converges to the true distri-

bution. Furthermore, if the samples z(*) are statistically independent, then the estimates

converge to the true estimates, from the strong law of large numbers, e.g.
Jim v = By {f()}-
Furthermore,
i ~ 2
Jim VN(fv - Bz {f(@)}) 5 N(0, %),

with 02 < 0o and = denotes convergence in distribution.

Generally, it is not possible to draw samples directly from any arbitrary probability
density function. In some cases, for standard distributions such as Gaussian, or uniform,
many techniques exist to perform this task. For example, most classical methods are based
on the inversion of the cumulative probability density function. However, this approach
assumes that the probability density function can be integrated. Many other methods exist
for drawing samples from standard distributions (Ripley, 1987). However, in practical cases

of interest, these methods are found to be unsuitable.
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The challenge is to generate #id samples, from any arbitrary multi-variate non-standard
probability density functions. We now present a variety of methods for accomplishing this

task.

2.2 Sampling techniques

2.2.1 Direct sampling

In the event that the constant of proportionality is known, or can at least be evaluated ap-
proximately, one classic algorithm is the Accept-Reject procedure. This algorithm assumes

that
n(z) < Mqg(z) M <o Vz€E,

where g(z) is some candidate distribution on the space E that is easy to sample from, and

M is the “blanket” factor. The procedure is described below (Andrieu et al., 1998).

Accept-Reject Algorithm
1. Sample  ~ g(z) and u ~ Ujg -

2. ifu< Mlq%),; then return &, otherwise return to step 1.

The set of returned « is then distributed according to w(z). This procedure suffers
from one major drawback: the “blanketing” factor M needs to be estimated, which is not
always possible. Also, the probability of accepting a proposed & is %, making the algorithm

inefficient in practice.

2.2.2 Importance sampling

In scenarios where the normalizing constant of the distribution of interest is unknown or

can not be estimated, importance sampling constitutes a more efficient approach (Rubin,



CHAPTER 2. MONTE CARLO METHODS 22

1988)
Again, a candidate distribution ¢(z) is used. This distribution, now named importance
function, must have the same support as w(x). Also, it must be easy to draw a large number
of statistically independent samples from g¢(x).
The Monte Carlo approximations defined in egs. (2.1) and (2.2) can be redefined as
i1 w(z®)dgw (dz)

wN(dx) = N

=1 w(z(‘)) , (23)

Ei w(=z")f =) 2.4)

ilil w(z®)

v =

with the importance weights defined as

In effect, this algorithm converts samples from the distribution g(z) to the desired distri-
bution #w(z).

In the event that the desired distribution = (z) is completely known, the weights would
already be normalized. The algorithm is then formally referred to as the importance sam-
pling algorithm.

In most applications, however, it is impossible to evaluate the total probability of 7(z),
which remains known up to a constant and thus the normalization of the weights is required,
as done in the denominator of eqs. (2.3) and (2.4). We refer to this algorithm as the Bayesian
importance sampling procedure.

Using the approximation of eq. (2.3) for w(x) with a finite number of samples, the

estimate from eq. (2.4) is biased. It is however asymptotically unbiased and

A}i_f’noo v = Ex@{f(=)}.

This approach is very easy to implement and is well adapted for sequential processing.
On the other hand, it can be quite inefficient if the importance function does not represent
the target distribution closely. Furthermore, if the system is multivariate, it will be very
difficult to propose good candidates. It is rarely used in practice if the system has more

than a few parameters.
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2.3 Markov Chain Monte Carlo Methods

Another strategy to obtain the samples is to observe the states of a Markov chain whose
limiting distribution is our distribution of interest 7r(z). Each state of the chain represents a
bin of the histogram. These algorithms have nice properties, such as guaranteed convergence
and insensitivity to the initial values, which, in some circumstances, might outweigh the
computational burden, which can be significant in some cases.

The supporting theory is summarized in the following sections. The reader is referred
to Ruanaidh and Fitzgerald (1996) for a good introductory presentation and to Gilks et al.
(1998), Robert and Casella (1999) and Gamerman (1997) for a more complete treatment.

2.3.1 General theory of Markov chains

A Markov chain is a special type of stochastic process defined in terms of its states. Let
the possible values that the process z; can take be denoted by the set A = {S),S,,...,5;}.
When z; = S, the Markov chain is said to be in state k.

For a first order Markov process, the probability of the next state only depends on the

present state, and not on any previous states, that is
Pz € Alzy, ..., 25] = Plziy1 € Alzy).
Let’s define the one-step transition probability from another state as
Pyjj[xi] = Plz; = Sklzi-1 = S;)-

Let’s assume that the transition probabilities are stationary over time, then the complete
set of these probabilities can be conveniently represented in a stochastic matrix named

transition matrix, which has the form

(2.5)
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The same system can be represented in a space diagram. The following figure, 2.1, shows a

simplified version of a three state Markov chain.

Py

Figure 2.1: State transition diagram for a three state Markov chain.

From our definition of the transition matrix in eq. (2.5), it is easy to derive a general

expression for the probability of #; being in state Si, from state Sj, after n steps as
PSI;.)[:B,'] = P[z; = Sil®i—n = Sj] = I"P[zi—n = 5j].

When the kernel satisfies certain conditions, the Markov chain will converge toward a

special limiting distribution, denoted =, which will be independent of the initial state,
- I3 1= 1 —No
T = nl_l_'rgoP[z'] nlg%ol'l" Pz, ].
The distribution of the states then represents the limiting distribution of the chain. At that
point, the states of the chain are all distributed according to the limiting distribution,

Ix ==. (2.6)

Thus, the limiting distribution is unchanged after a state transition. We see that if the

limiting distribution 7 of a Markov chain is the posterior distribution of interest, observing
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the states of the chain provides samples from the distribution. The first samples are not
distributed as desired, as the chain has yet to reach the equilibrium state, during a process
called “burn-in”. These samples are discarded.

Methods to determine whether or not a particular chain has reached its limiting distri-
bution is a field of research on its own. In this thesis, the time-series of states are observed

and the end of the “burn-in” periods will be empirically estimated.

2.3.2 Properties of Markov chains

Although not all Markov chains have a limiting distribution, many algorithms exist to set
up Markov chains that will converge to the desired density function. For these algorithms
to perform as intended, some conditions must be satisfied: invariance, reversibility, irre-

ductibility, recurrence, and aperiodicity.

e Invariance
This condition is necessary as it implies that the Markov chain has a limiting distri-
bution. It means that if a state z; is distributed according to w(dz), then all the
following states are distributed according to the same distribution, as described by
eq. (2.6).
To ensure that a Markov chain is # invariant, a sufficient condition is the reversibility

condition.

¢ Reversibility
A Markov chain is reversible if the distribution of  conditioned on y is the same as
the distribution of y conditioned on . In simpler words, the direction of time does

not influence the dynamic of the chain,
Plz|y]n(z) = Plylz]~(y).

o Irreductibility
The irreductibility condition means that all the states can be reached with a non-null
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probability in a finite number of iterations. A sufficient condition for a kernel P to
be irreductible with respect to a distribution ¥ is that P™ has a positive density with

respect to ¢ (Gilks et al., 1998).

e Recurrence
While irreductibility means that all states can be reached, recurrence means that the

states can be reached infinitely often.

e Aperiodicity
This condition prevents the use of kernels which would induce a periodic behaviour

in the states.

All the MCMC algorithms have been designed to satisfy these constraints. The predom-
inant methods are the Gibbs sampler and the Metropolis-Hasting algorithm. This thesis

relies heavily on the use of the M-H algorithm and its variants.

2.3.3 Gibbs sampler

The Gibbs sampler was first introduced for image processing applications (Geman and
Geman, 1984). Here, it is only discussed briefly since it will not be considered further in
this thesis. Given a random vector x of length k, the Gibbs sampler samples each parameter,
one at the time, according to the conditional distributions when all the other parameters
are fixed. Instead of sampling from a complex k dimensional distribution, the problem is
reduced to sampling k times from one dimensional conditional distributions.

To improve the rate of convergence, it is recommended that highly correlated variables
be sampled jointly, creating p partitions. Also, it might be beneficial to randomly vary the

order of the components.

Gibbs Sampling Algorithm

1. Initialization zio) at iteration 0

2. Iteration i, 1 > 1,
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e Sample zgi) ~ w(z;lz(_i)l

e Sample a:gi) ~ w(zglm(_i)z)

e Sample a:g) ~ 1r(::p|a:(_iz,

with, m(_'ln = (a:gi),zgi), --'135:;)—1!1’5;111)---)

For this algorithm to be a viable option, all the full conditional posterior distributions

must be available in their analytical form.

2.3.4 Metropolis-Hasting algorithm

Another sampling scheme is the Metropolis-Hastings algorithm (M-H) (Hastings, 1970),
which uses a candidate function ¢(-) to sample from = (-). This candidate function is chosen
to be easy to sample from. One major advantage of this algorithm is that the knowledge
of the normalizing constant of the posterior distribution is not required. The posterior
distribution is only present in ratios, where this unknown normalizing constant will cancel
out, assuming it remains constant.

Let’s assume that the chain is in state £. A candidate &* for the next state is obtained
by sampling ¢(:), which in the general case is conditional on . This candidate will be
accepted with probability o defined as

a(z*,z) = min{r(z*, z),1}, (2.7)

with the acceptance ratio r defined as

a(z*)q(zlz*) 28)

) = @)

If the candidate is accepted, the chain takes the new state z*; otherwise the chain remains

at the current state x.

Metropolis-Hasting Algorithm
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1. Initialization =(® at iteration 0
2. Iteration ¢, 1t 2> 1,

e Sample a candidate z* ~ g(z]z(~1).
e Evaluate the acceptance probability

m(z)g(zt|z*)

* (i-1)y _
T = @@ )

a(z*,z¢~Y) = min{r(z*,2(V), 1}

e Sample u ~ Ujg y

o if u < a(z*,z(-1)

then the chain takes the state ) = z*, otherwise it remains at (¥ = £(-1) |

A simple condition that ensures the irreductibility and the aperiodicity of the M-H
a.fgorithm requires that the candidate function g(-) be continuous and strictly positive on
the support of w(x). The choice of the acceptance probability defined in eq. (2.7) with eq.
(2.8) can be shown to satisfy the reversibility requirement.

For good mixing properties, the candidate function should allow the chain to move
considerably from its actual state, but with substantial probability of being accepted.

In the case where z is of high dimension, it becomes very difficult to select a good can-
didate function that would lead to a reasonable acceptance rate and allow the chain to mix.
To address this problem, the Metropolis-Hasting one-at-the-time algorithm (Andrieu et al.,
1998), in a similar fashion to the Gibbs sampler, samples each component (or partition),
conditionally on the other components, using a set of candidate functions. Obviously, this
algorithm includes the Gibbs sampler as a special case for which the candidate functions

are the full conditional distributions and the candidates are always accepted.
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2.3.5 Reversible jump MCMC

The methods described earlier work well in practice. They however require the dimension
of the parameter space to be explored (i.e. model order) be fixed or known.

One could obviously sample the subspace corresponding to a range of model orders
independently, but the computational cost of such a scheme can be very large. Also this
approach is very inefficient since the same effort is allocated to all model orders, even though
some models will have a very low posterior probability.

A more general MCMC framework was developed by Green (1995) for model order
uncertainty. This method directly samples the model order, k, as a parameter. The whole
parameter space U',:g‘a‘ k x &, where ®; is the space of the parameters of the model of
order k, is visited by moves designed to preserve the reversibility condition. This method
allows for the joint detection of the model order and the sampling of the parameters from its
posterior distribution. The samples concentrate on models with high posterior probability.

The algorithm itself is similar to the M-H algorithm. At each iteration, the algorithm
proposes a candidate, this time from a set of candidate functions. These functions are
designed to change the model order and explore the different subspaces.

At each iteration, a candidate distribution ¢, (-) is randomly chosen, and a candidate =*
of size k* is obtained by sampling gn,(-). This candidate will be accepted with probability

a defined as
a((z*,k*), (2, k)) = min{r((z*, k*), (x, k)), 1}, (2.9)

with the acceptance ratio r defined as

*x Lk — W(Z’,k*)qm(:c,k) * Lk
r((z*, k*),(z,k)) = w(z,k)qm(a:*,k')J((x k%), (x, k)). (2.10)

If the candidate is accepted, the chain takes the new state; otherwise the chain remains at
the current state.
The term J((x*,k*),(z,k)) is the Jacobian of the transformation, required to recon-

cile the total probability between spaces of different dimensions so that the reversibility
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condition is satisfied, and is defined (see Godsill (1998) ) as

. (2.11)

oz*
T

I k) (@) = |

The reversibility condition is satisfied by the appropriate choice of the candidate func-
tions and the definition of the acceptance probability eq. (2.9) and eq. (2.10).

The most widely used candidate functions are the birth/death complementary moves.
When the death move is selected, the algorithm proposes a candidate in the model of lower
dimension, as opposed to the birth move, which proposes a candidate of higher dimension.
The methods was first applied to engineering problems by Andrieu and Godsill (Andrieu
and Doucet, 1999; Andrieu, 1997; Troughton and Godsill, 1997, 1998) for the detection and
estimation of parameters in white noise.

The probabilities for choosing each move are denoted ug, by and di, respectively, such
that ug + b, +di = 1 for all k, and so that the probability of a jump is between 0.5 and 1 at
each iteration (Green, 1995). The overall description of the reversible jump MCMC algo-
rithm is determined by the choice of moves at each iteration. This description is summarized

as follows.

Reversible Jump MCMC
1. Initialization: set () = (2(0), k()
2. Iteration 1,

e Sample u ~ Ujgy
o if (u < by)) then execute a “birth move” ,
— else if (v < by + dp(y) then execute a “death move” ,

~ else, execute an update move .

3. ¢t « i+ 1,goto step 2
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2.3.5.1 Update move

When the update move is selected, a candidate of same dimension is proposed. One of the
previously described MCMC algorithms can be used to sample the space of fixed and known

dimension.

2.3.5.2 Birth and death moves

In the death move, we assume the current state is in (®41,{k + 1}) and we wish to
determine whether the state is in (®4,{k}) at the next iteration. The subscript k£ now
indicates the size of the parameter space. This involves the removal of an element of the
parameter vector, which is chosen randomly amongst the (k + 1) existing elements.

The proposal distribution g(x}, k|Zx+1,k + 1) for the death move is therefore chosen as

atehobzen b+ )=o) (1) a0

where p(k) is the prior distribution of the model order. The candidate state (x}, k) is then
accepted with probability agesn = min{r,1} with r defined by eq. (2.10).

Similarly, in the birth move, we assume the current state is in (®4,{k}) and we wish
to determine whether the next state is in (®x4+1,{k + 1}). This involves the addition of
a element z., selected from a candidate distribution, to the existing vector parameter, to

create
Zp1 = [®k,Tc]-

The proposal distribution g(z} ., (k + 1)|zk, k) for the birth move is therefore

q(xk41, (k + Dk, k) = p(k + 1)p(ze),

where p(z.) is the candidate distribution of an individual parameter z;. The candidate
state (z},,,k + 1) is then accepted with probability asiren = min{r,1} with r defined by
eq. (2.10).

In the case of the birth/death moves, the Jacobian of the transformation is unity. How-
ever, this is not always the case, as it will be demonstrated with the introduction of new

moves described in chapter 5.
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The following block describes the algorithm for the death move.

Death Move

Select randomly the jth element to form the candidate,

(i+1) _ (1) (¥)
Ty —["’1:0-1)""(;+1):(k+1)]

Evaluate ageqen With eq. (2.9).

Sample u ~ Up,y)-

if (4 < @dearn) then the state of the Markov Chain becomes (zgﬂ), k), else it remains

at ("’53»1”‘ +1).

The following block describes the algorithm for the birth move.

Birth Move

Propose a new element z. and a candidate,

2 =2z

Evaluate agiren with eq. (2.9).

Sample u ~ Upg1-

if (u < apiren) then the state of the Markov Chain becomes (a:fjj} ),k + 1), else it

remains at (zg), k).
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This sampling scheme constitutes the main engine for Chapters 3, for DOA estima-
tion, and 4, for multipath channel characterization, both problems defined in unknown and
arbitrary coloured noise.

The problems that will be addressed are formulated from the array signal processing

model and have the following structure, as in Chapter 1,
y(n) = S(¢)a(n) +v(n) n=1,..., N,

where the amplitudes a(n) are unknown and itd and the statistics of the Gaussian noise
samples v(n) are also unknown. The DOAs ¢ become the parameters of interest previously
defined as = in the MCMC context.

The objective is to find the MAP estimate of the parameter ¢, based on the observations

y(n), as

(Papap kmap) = arg  max w (P, k).
¢('),k(‘);i=l,...,N

2.4 Sequential Monte Carlo methods

The algorithms presented so far are all off-line methods. They require the accumulation of a
number of observations before any processing can be done and assume that the parameters
of interest remain constant over the window of observation. In many applications, sequential
processing is desired which would allow for the tracking of varying parameters.

When the parameter & evolves in time, the sequence of evolving posterior density func-
tions mw(a;) is called a probabilistic dynamic system.

To implement Monte Carlo methods for a dynamic system, a set of samples (particles)
distributed according to the w(x;) is required. As it is usually not possible to sample
directly from this posterior distribution, the samples are drawn from another distribution
q(-) and weighted according to the Bayesian importance sampling procedure.

Also, in most applications, the difference between x(x;) and m(&¢+1) is small and is

caused by the incorporation of new information, which could allow for the recycling of the
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samples. The samples used at time ¢ can be recursively re-weighted to construct the set at
time ¢t + 1.

A family of algorithms based on the sequential importance sampling (SIS) method have
accomplished this task. This area of research is very recent and only a few books are
available on the subject, e.g. Doucet et al. (2001b). Many key papers are available on this
new subject (Liu and Chen, 1993; Andrieu et al., 1999; Doucet et al., 2001a; Djuric, 2000;
Gordon et al., 1993).

2.4.1 Particle filtering

This section presents in detail the implementation of a sequential importance sampling
procedure for the particle filter. The objective is to sequentially and recursively estimate
the posterior distribution of interest as time evolves.

Let’s assume that at time ¢ a set of particles zg';),,i =1,...,N distributed according to
the joint distribution p(z,.|y,.) are available. Then, as new data y,,, becomes available,
the objective is update the numerical histogram of the particles to give p(21.04+1|¥1.¢441);
without resampling all the particles from time 1 to ¢t + 1. The importance sampling ap-
proximation can be recursively updated as new data arrives, in order to keep the previously
simulated trajectories of the particles, and to avoid sampling the increasingly long parameter
vector as a whole.

The joint posterior distribution of all parameters  from time 1 to t + 1 can be written

using Bayes’ theorem as

A P(91:z+11|:;:::1 )ll;(zl:t+l) ) (2.12)

It can be shown (Doucet, 1998), using the Markov properties of the model and the #d
assumptions on the noise variables, that (2.12) can be written in the recursive, time-update

form as (see appendix B)

P(y:+1 [®es1)p(@e41]2e) ‘ (2.13)
P(!lt+1|!l1:¢)

P(Z1:0+11Y1.041) = P(T1:tlY120)

In principle, this recursion would allow us to sequentially and recursively compute the
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posterior distribution. However, it is not useful in its present form, since the normaliz-
ing constant p(y,,1|¥.) and the desired marginal distributions require the evaluation of
complex, multi-dimensional integrals, which are generally difficult or impossible to evaluate
analytically. Also, it is generally not possible to directly generate samples directly from the
posterior distribution. We therefore resort to the Bayesian importance sampling scheme to
generate the particles and estimate the posterior distribution of interest.

Assuming at the tth time instant a set of weights u':{';l,i = 1,...,N is available, the

approximation #x(dx).) of the joint distribution m(2.¢) can be determined as
i, wt? (zg)‘)‘szﬁ} (dz1:)
S, 29(=))

In order to implement the sequential MC procedure, the importance function must

‘fl’N(dz l:t) =

satisfy the following recursivity condition (Doucet, 1998)

(®1:t411Y1:041) = ¢(®1:lY10)0(es1T1:05 Y1041 ) (2.14)

Also, in order to minimize the variance of the resulting weights as discussed below, the
optimal importance function that satisfies the recurrence requirement eq. (2.14) is (Doucet

et al., 2000)

Goptimal(*) = ¢(Te+1]Tt, Ye41)- (2.15)

These constraints on the importance function along with eq. (2.13) allow us to evaluate the

unnormalized importance weights recursively as (see appendix B)

P(Ye1|Zer1)P(Tesr|e) (2.16)
g(ze1Te, Yeq1)

The vector of weights must be normalized by dividing by the sum of its components.

Wt +1) = w(t)

w(t+1)
N oWt +1)

w(t+1)= (2.17)

2.4.1.1 Resampling

Even though the importance function was chosen carefully according to eq. (2.15), in prac-

tice the recursive algorithm involving eq. (2.16) still quickly degenerates. Only a handful
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of particles have meaningful weights after a few iterations of the importance sampling al-
gorithm.

It is desirable to minimize the variance of the weights to get the most out of the samples.
In the limit, if only one particle has all the weight, then any inference would be done on one
sample. In the ideal case, all the particles have equal weights (with zero variance), therefore
they are tid.

Therefore, any estimates based on these very few particles would show a large variance.
It is thus necessary to resample the particles according to their importance weights, by mul-
tiplying/suppressing the particles according to their importance weights. This resampling
operation can be done very efficiently, with O(IN) operations, where N is the number of
particles (Ripley, 1987; Doucet, 1998).

However, with the resampling process the trajectories with high importance weights
are statistically selected many times, which limits the true statistical diversity amongst
the particles. One approach would consist of adding an arbitrary perturbation to the
child particles. However, this does not add true statistical diversity and only increases the
variance of the estimates.

A more clever approach, proposed by Andrieu and Doucet (Andrieu et al., 1999; Doucet
et al., 2000; MacEachern et al., 1999; Gilks and Berzuini, 1998) uses an MCMC step on
each particle. At time ¢, the particles are marginally distributed as p(®1.|y,..)- An MCMC
engine with a kernel of invariant distribution p(®1.|y;.) can be used to generate a new
set of particles that will also be distributed according to this posterior distribution. This
approach provides a valid way to re-introduce the diversity amongst the particles. Any of
the MCMC methods described earlier can be used, including the reversible jump MCMC
method. It is this MCMC step that allows the algorithm to converge toward the right model
order.

The following schema describes the SIS procedure applied at each time step t = 1,2,...
for tracking changing parameters.
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Generic Sequential Importance Sampling for Tracking an Unknown Number of Parameters

1. The Importance Sampling Step:
e Fori=1,...,N, Get the particles from the importance function
2 (t) ~ g(=@(®)le(t — 1),y (1), K9)(2)) (2.18)
e For i = 1,...,N, Evaluate the un-normalized importance weights @) (t) from

eq. (2.16)

p(y ()l (2), k9 () p(a® ()= (¢ — 1), k(2))
gz (t)|z()(t - 1), y(t), KO (2))

@o(t) = 5D (t - 1) x
(2.19)

e For i =1,...,N, Normalize the weights: w(*)(t) = f’;’%
j=1

Eqns (2.18) and (2.19) represent generalized forms of egs. (2.15) and (2.16).
2. The Resampling/Selection of the Particles:

e Sample a vector of index !, with pdf described by the weights
P(I(j) =1i) = w)(¢)

e Resample the particles with the index vector

o) = o4t

e Re-assign all the weights to w(®)(t) = 717

3. Proceed with the Reversible Jump MCMC Step to introduce diversity in the particles

and to facilitate detection of model order.
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The generic problem addressed in this thesis follows the state-space model

k(t) = k(t — 1) + (),

é(t) = ¢(t — 1) + ovv(t),

a(t) ~ N(0,031,),

y(t) = S(o(t))a(t) + oww(?),
where the amplitudes a(t) are unknown and iid between observations, and the parameter
of interest ¢ evolves in time, with the possibility that its the size, k, might change at any
time during the period of observation.

The random variables v, w are Gaussian with zero mean and unit variance. The model

order is allowed to change by at most one between snapshots, with € defined as

P(e(t) = 1) = h/2
P(e(t) =0)=1—h
P(e(t) = 1) = h/2,

where h € [0, 1].
The objective is to construct sequentially the numerical approximation of p(¢,.¢, k1:¢|y;.¢)
and to estimate
{&’mv El:t} =arg = max P(Pr.e: kr:elyee)
oY k@)i=1,... N
A more complete treatment of this problem is presented in Chapter 5, where once more

in the context of array signal processing, the parameter z is the vector of DOAs ¢.



Chapter 3

Joint Detection and Estimation in

Coloured Noise

This chapter presents a novel Bayesian solution to the difficult problem of joint detection
of the number of sources and estimation of the corresponding DOAs of sources impinging
on an array in spatially coloured noise with arbitrary covariance structure. Robustness to
the noise covariance is achieved by integrating out the unknown covariance matrix in an
appropriate posterior distribution. The proposed solution uses the Reversible Jump Markov
Chain Monte Carlo method to perform the numerical optimization.

We show that the determination of model order is consistent provided a particular
hyperparameter is within a specified range. Simulation results support the effectiveness of

the method.

3.1 Introduction

Current algorithms for DOA estimation commonly make assumptions regarding the char-
acteristics of the noise field and the incident signals; in particular, that the noise is white
(Schmidt, 1986; Andrieu and Doucet, 1999; Wu and Fuhrmann, 1991) or of known covari-

ance. Further, in the typical scenario, the determination of model order (detection) and the

39
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estimation of desired signal parameters are executed independently rather than jointly.

The direction of arrival problem in the case where the noise has unknown covariance
has been addressed by Nagesha and Kay (1996); Wong et al. (1992); Agrawal and Prasad
(2000). In these papers, the model order is assumed known, and the associated detection
problem is not addressed. Established methods, e.g., using information theoretic criteria
(Wax and Kailath, 1985; Rissanen, 1978), have been developed under the assumption of
white noise, and exhibit considerable sensitivity to violations in whiteness.

Joint detection and estimation has been addressed by Andrieu and Doucet (1999) and
Wu and Fuhrmann (1991) under the white noise assumption, and later generalized by Cho
and Djuric (1995) to the autoregressive noise case.

Determination of model order for the unknown arbitrarily spatially coloured noise case
has long been regarded as a difficult problem. Methods for detection in coloured noise have
been proposed (LeCadre, 1989; Chen et al., 1996; Fuchs, 1992), but these techniques require
in effect two separate antenna arrays with restrictive assumptions on the configuration of
the signal and noise fields. In (Wax, 1992), this problem was addressed from the information
theoretic stand point, and a solution to the joint detection/estimation problem in arbitrary
unknown noise was proposed. The method however involves the minimization of a highly
nonlinear objective function and is therefore prone to being trapped in local minima.

A method for joint detection and estimation for array signal processing using Markov
Chain Monte Carlo (MCMC) methods for the white noise case has been proposed by Andrieu
and Doucet (1999). In this chapter (and in Larocque and Reilly (2000a,b,c)), we extend
the work of Andrieu and Doucet (1999) to the case where the noise covariance is unknown
and arbitrary. A significant consequence of this extension is a procedure for determination
of model order in unknown coloured noise with a single array, with relaxed assumptions on
the signal and noise fields.

This algorithm can be applied in a frequency division duplex system for beamforming
processing at the base station. As the weights are frequency dependent, the weights com-
puted for the up-link channel cannot be reused for the down-link transmission. However, if

the directions of arrival are estimated, both sets of weights can be calculated, which would
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allow for beamforming in both directions (Pahlavan and Levesque, 1995).

The signal model we consider here consists of an M-dimensional complex data vector
y(n) € CM which represents the data received by a linear array of sensors at the nth
snapshot. The data vector is composed of incident narrow-band plane wave signals each
at centre frequency wp from k, distinct sources embedded in Gaussian noise. The received

vector at the nth snapshot can be written as
y(n) = S(@)a(n) +v(n),  n=1,...,N, (3.1)

where N, is the number of observed snapshots. Each of these incident plane-wave signals
impinges on the array of sensors at an angle 6,k = 1,... ,k,, to the normal of the array.
Then S(¢) is the M x k, matrix, defined as in eq. (1.1) or eq. (1.2).

The quantity a(n) € C* represents the complex amplitudes of the incident signals
at the nth snapshot. We assume the amplitudes are #id Gaussian between snapshots,
with unknown and arbitrary mean and covariance. The spatially coloured noise vector
v(n) is an #d normally distributed noise vector distributed according to N(0, X,), where
¥, € CM*M s an unknown and arbitrary covariance matrix. The signal and noise are

assumed uncorrelated such that
E(a'S'v) =0. (3.2)

For a hypothesized number of signals k, we designate by S(k) the signal subspace spanned
by the vectors [8(¢1),...,8(¢x)]. The (M — k)-dimensional orthogonal complement noise
subspace of S(k) is denoted by N (k). In the following discussion, we simplify notation by
writing S and N instead of S(k) and N (k) respectively.

In this chapter, we jointly estimate k, and ¢ using MCMC techniques. Determination
of k, using MCMC methods involves sampling a posterior distribution p(k, ¢|y) of varying
model order. This cor;sidetation requires the use of the reversible jump MCMC method
(Green, 1995), which was presented in Chapter 2 and is treated in further detail in section
3.3.

We treat the unknown quantities an,n = 1,... ,N; and ¥, as nuisance parameters,

which are integrated out. It is the elimination of ¥, in this way which enables us to
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handle correlated noise with unknown covariance. Even though these parameters can be
eliminated by the sampling process inherent in the MCMC technique, we choose to integrate
them analytically since the analysis is tractable, to produce a more efficient sampler for the
parameters of interest.

After integration of the nuisance parameters, the parameter space ® of interest for joint
detection of the model order and estimation of the incident signal angles, includes k and the
corresponding angles ¢; ... ¢x. We denote the permissible set of k to be K = {0,... ,M—1}.
To reflect the fact that the number of parameters changes with model order, we note that
can be written as a finite union of subspaces as ® = Uﬁ;l{k} x P, where ®; = {(0,2m)* :
|¢i — ¢;1 > €}, where € is a small number > 0, and (i,j) = {0, ... ,k}. The set ®; is defined
in this way so that S in eq. (3.1) is always full column rank. The set ®q = 0.

In section 3.2, we develop the desired marginal posterior distribution p(k,¢ly). We
perform the integration of X, by projecting the observed data onto the noise subspace
N. After assigning a Jeffreys’ prior, the resulting posterior may then be integrated by
comparison to a complex Wishart distribution. In section 3.3, we apply the reversible jump
MCMC algorithm to sample the posterior distribution and so obtain joint estimates of the
desired parameters k and ¢. In section 3.4 we discuss conditions for consistency of the
estimation of model order. Simulation results demonstrating the satisfactory performance
of the proposed method are given in section 3.5, and the conclusions are presented in section

3.6.

3.2 Development of the marginal posterior distribution

Since the N, snapshots are iid, the total likelihood function of all the data can be expressed

as

1 —N - ‘-1 -
P(Y 164, 4 B0 k) = —grmrseme” > (ve)-Siuam) T (ynr-Sieuam),

where Y, A are all the data and amplitudes, respectively, ' denotes Hermitian transpose,

and | - | denotes determinant.
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To proceed with the integration of the nuisance parameters ¥, and A, we first define

an orthonormal matrix U(¢,k) € CM*M as in (Wong et al., 1992; Cho and Djuric, 1995)

U(¢!k)= [U,(¢,k) Uv(¢’k)]1

M xk M x(M—k)

where U,(¢,k) € S and U,(¢,k) € N. We now transform the received data y(n) into
z(n) Sy 'y(n), with a signal component z,(n) € S and a noise component z,(n) € N

defined respectively as
z,(n) = Uy(#, k)y(n),
and
z,(n) = U, (¢, k)y(n).
In the neighbourhood around the true value where ¢ =~ ¢ we have S'U, = 0. Then using

eq. (3.2), we can write

R.. —E[22] ~ sa +ULZU, UZU, , (3.3)

U,z U, u,xU,
where R4 2 E{a(n)a'(n)} and a(n) = U, S(¢)a(n). If we neglect the effect of the off-
diagonal blocks above, then locally around ¢ = ¢ we can assume that z, is independent
of z,. Then using eq. (3.3) it follows that z, ~ N(&,C), and z, ~ N(0,W), where
cuU's,U,, W 2 U,S,U,. Under these conditions the joint likelihood function of 2,

and z, is given as

PZ,,Z,|A, ¢, k, W) =

N¢
x~Nek|C 1| Neexp {- Z;l(z.(n) —@(n))'C N (z4(n) - "'<">)} (34)

N
% W—Ne(M—k)|W-1|Nt exp {— Z z:,(n)W"‘zy(n)} .

n=1
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The desired posterior distribution can then be written using Bayes’ theorem as

p(A, ¢, kW' |2,,2,)
P(Zs, 20| Ak, W) (3.5)
x p(Al@, k, W) - p(W' |9, k) - p(¢lk) - (k).
We now discuss the assignment of each of the prior distributions in eq. (3.5). These priors
are chosen to be non-informative where possible. When convenient, we also choose the

structural form of these distributions for their desirable conjugate properties. The prior

distributions are described as follows.

e A is assigned a non-informative prior distribution described as a Gaussian function

with a large covariance matrix D (compared to C), and zero mean. Thus,

Ne
p(Aly, k, W) = [[ N(o, D), (3.6)
n=l
where
D =dI, (3.7)

and where I; is the identity matrix of size k. The above assumes that the amplitudes
of the projected signals are independent with the same large variance. We discuss the

choice of the hyper-parameter d2 in section 3.4.

e The prior distribution for ¢ is chosen to be uniform
p(eelk) = U[0, 2.

e The prior on k is chosen to be Poisson with expectation A. Although this choice is
not strictly non-informative, it results in a more efficient MCMC sampling procedure,
and further, simulation results have shown that performance is robust to the choice

of prior on k.

p(k) = Ake /K1 (3.8)
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e W™!: We use a non-informative multi-dimensional Jeffreys’ prior (Jeffreys, 1961) for

the unknown transformed noise covariance matrix.

We now apply this rule to obtain the prior distribution p(W~! | ¢,k). The log
likelihood is given from eq. (3.4) as
C(A,q&,k,W—l | ZV) =
— N¢(M — k) log(n)

+ Ny log |W™!| (3.9)

N
=) z(mW ™z, (n) + f(Z,(n)),

n=1
where f(Z,(n)) is the log value of the Gaussian block in 2,(n) in eq. (3.4). The

Fisher information matrix is then given by
Jw-1 = —-E[V-VL()], (3.10)

where the matrix operator V is defined such that the (I, m)th element is given by

1( 4 . 8
lem = '2' (a—w? —Ja—w?;‘-> ’ (3.11)

with w'™ being the (I,m)th element of W~! having w!® and w!™ as the real and
imaginary parts. We note that Jy -1 is an (M ~ k)2 x (M — k)? matrix. By applying
eq. (3.10) to eq. (3.9), it can be shown (Wong et al., 1992) that

det(Jw-1) = Ny | W1 |72M—K)

so that when Jeffreys’ rule is applied, the non-informative prior distribution of the

transformed noise covariance matrix can be written as

p(W| ¢,k) oc| W1 |~(M=k) (3.12)
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The posterior distribution from eq. (3.5) is then

p(kv ¢’ W_la AIZM ZU) x
|C~1|Mie= Tnta(@(n) -2, () C ™ (@(n)-24(m)

x W—kNng—llNle_ Eﬁ’;l d(n)'D_l('l(n) (313)

_ _ _ _ W ' -1 Ak
x |[Wl N (M k) o= Sp2, 2L (W zu(n)k!(%)k,

where superfluous constants independent of ¢ or k have been absorbed into the constant

of proportionality.

Remark 1 The hyper-parameter A could either be estimated ahead of time, or could be
considered known as part of the design parameters. It could also be treated as a random
variable, with its own prior distribution, to make the algorithm more robust. However, this

complicates the problem and does not prove necessary. O

We now proceed to integrate out the nuisance parameters analytically. Since we assume
the matrix D is large enough to dominate the matrix C (for a non-informative prior dis-
tribution), the term @'D~'a in the second exponential above is small in comparison to the

term @'C 14 in the first exponential. This simplifies the posterior to

p(k1 ¢v W-li Alzls ZV) x
e Qlomin P TN (@(n)-2.(n))C ™' (@(n)-24(n))

Ak

N, ' -1 -
xIW—llN‘—(M_k)C_Z";IzV(n)W ZV(")lD llN'k!(zﬂ.)k'

The first nuisance parameter (the amplitude of the sources @(n)) can now be easily
integrated out by comparison, since it only appears in an isolated Gaussian distribution.
The posterior distribution can then be simplified to

N k
A
-1 ~1|Ne—(M—k) / -1
p(k,¢, W™ |Z,) < [W™7| exp {-"z 1: z,(n)W z,,(n)} k!(27r)"d2k~‘

= [IW“‘[N‘_(M—’:) exp {—ttNgWW_l}] WA—%{WW,
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where tr(-) is the trace operator, N;W ((¢, k)) 4 ,1:’:1 z,(n)z,(n), and we have used eq.

(3.7) for D . The noise covariance matrix can now be integrated out by comparing the term
inside the square brackets above to a complex Wishart distribution on W1, with order
p = M — k and parameter N,W, i.e. the conventional roles of W and W are reversed.

This term integrates to I(W), given as (Goodman, 1963)
. 1 M-k C-N,
I(W) = nsM-RM—5-1) TT D(N, —i +1) |N,W| ,
i=1

where I is the Gamma function. The posterior distribution, after carrying out the integra-

tion and some manipulation is then

w3 (M-k)M-k-1) [[M_kp(N, _ 41
p(k': ¢|ZV) x (27T/A)kk!(d2)kN‘

) |N,VV|“N‘ . (3.14)

The objective is to estimate the parameters of this highly non-linear function, as the Max-
imum A Posteriori (MAP) estimates

{k,¢} =arg max p(k,¢|Z,)- (3.15)
k,peKx[—n,x]k

3.3 The reversible jump MCMC algorithm

We now propose the reversible jump MCMC algorithm (Green, 1995) to perform the
Bayesian computation in extracting the parameters of interest from the posterior distri-
bution eq. (3.14).

In the reversible jump algorithm, candidate samples are chosen from a set of proposal
distributions, which are randomly accepted according to an acceptance ratio that ensures
reversibility, and therefore the invariance of the Markov chain with respect to the desired
posterior distribution. Here, we choose our set of proposal distributions to correspond to

the following set of moves, as described in Chapter 2:

1. the birth move, valid for k < M. Here, a new incident plane wave is proposed at

random on (—, .
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2. the death move, valid for £ > 0. Here, a randomly chosen incident plane wave is

removed.

3. the update move. Here, the parameters describing the incident plane wave are updated

for a fixed value of k.

The probabilities for choosing each move are denoted ug, by and di, respectively, such that

ug + bx + di = 1 for all k. In accordance with (Green, 1995), we choose

b du = cmin{-E 1), (3.16)

p(k+1)
p(k)

where p(+) is the prior probability of the kth model according to eq. (3.8), and c is the

b = cmin{

tuning parameter for the ratio of update moves to jump moves. We choose ¢ = 0.5 so that
the probability of a jump is between 0.5 and 1 at each iteration (Green, 1995). The overall
description of the reversible jump MCMC algorithm is determined by the choice of move

at each iteration. This description is summarised as follows.

Reversible Jump MCMC
1. Initialization: set $(® = (¢(®, k()
2. Iteration ¢,

e Sample u ~ U
e if (u < b)) then execute a “birth move” (see section 3.3.2)

— else if (u < by + di()) then execute a “death move” (see section 3.3.2)

— else, execute an update move (see section 3.3.1) .

3. i « i+ 1,goto step 2
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3.3.1 Update move

Here, we assume that the current state of the algorithm is in (¥4, {k}). When the update
move is selected, the algorithm samples only on the space of ®,, for k fixed. The acceptance
ratio r = rypdaee from egs. (2.8) and (3.14) for the update move, in the case of coloured

noise, is therefore

. —N,
) [NW (97, 5)|
Tupdate(d’kaka ¢k1k) = |N W( )|__N‘ ) (317)
t ¢) k
Qypdate = min[rupdates 1]- (318)

The candidate @* is then accepted as the current state (¢§j+” = ¢%), with probabil-
ity aypdate- The performance of the proposed method is enhanced by selecting randomly
between two types of proposal distributions for the update case: one involves a global
exploration of the parameter space, while the other involves a local exploration.

The global exploration is realized by proposing candidates according to their prior dis-
tributions, which is the whole horizon. The local exploration uses a Gaussian distribution,
with mean ¢, and known covariance X4, around the present values with a reasonable vari-
ance as candidate distribution. Therefore, the candidates are located in the vicinity of the
present values. This strategy offers the chain more freedom to mix, resulting in better

characteristics of the samples.

Update Move (hybrid M-H)

Sample u; ~ Ujg,y

e if u; < 0.5, Propose a global exploration
¢; ~ t][0,21r]"
e else, propose a local exploration

¢; ~N(o, 24)
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o Evaluate aypgace With eq. (3.18).
e Sample u ~ Ujp y)-

o if (u < aypdate) then the state of the Markov Chain becomes (¢%), else it remains at

(o).

3.3.2 Birth and death moves

In the death move case, we assume the current state is in ($+1, {k + 1}) and we wish to
determine whether the state is in (8, {k}) at the next iteration. This involves the removal
of an incident signal, which is chosen randomly amongst the (k+ 1) existing incident signals.
The proposal distribution q(@}, k|x, 1.k + 1) for the death move is therefore chosen as

k+1) A 1

ot ket + 1 =20+ (") « gy (3.19)

Similarly, in the birth move case, we assume the current state is in (®x,{k}) and we wish
to determine whether the next state is in (®x41,{k + 1}). This involves the addition of
a new incident signal, which is proposed uniformly over (0,2x]. The proposal distribution
a(@; 1) (k + 1)| @y, k) for the birth move is therefore

(Gtass (6 + Dide K) = bk + 1) o AL
N Pk+1) k' K} =P 2 S (k+1) 21

For the death move, a candidate state (@}, k) is then sampled from eq. (3.19). The

acceptance ratio r = rgeqen from egs. (2.10) and (3.14) is then given as

[ (9, )|

rdeath(¢z1 k, ¢k+la k+ 1) = N —N;
VW (8,5 +1)|

x aMkE-ID(N, - M +k + 1)(k + 1)d2"".
The quantity ageqen is then defined according to

Qdeath = Min(Tgeatn, 1]- (3.20)
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The acceptance ratio r = ryn for the birth move in the case of coloured noise can be

verified to be

Qpirth — min[l, . (3.21)
Tdeath
The following block describes the algorithm for the birth move.
Birth Move
e Propose a new direction of arrival, uniform on (0, 27)
gﬂ ) = [4’ Ulo,2x)]
e Evaluate ap;ep with eq. (3.21).
] Sa.mple U ~ U[O,l]'
o if (u < apiren) then the state of the Markov Chain becomes (¢£':11 ), + 1), else it
remains at (¢£'), k).
|

The description for the death move is similar, with appropriate modifications.

Death Move

e Select at random one direction of arrival, n;
( i+1) _ 1 4(%) ()
; [¢1'(nk -1)? ¢n‘k+l:(k+l)]

o Evaluate ageqsn With eq. (3.20).
e Sample u ~ Ujg 3.

e if (u < Qgeqen) then the state of the Markov Chain becomes (¢('+l) k), else it remains

at (@), k +1).
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Remark 2 At this point, it is enlighting to take the logarithm of the previously obtained
posterior distribution eq. (3.14),

log p(k, x| Z,) o —Ny 1og(lN,v‘V| ) + kN, log(d?) + k log(A/2r) + log(k!)

M-k
+ (M k)(M — k — 1) log(r) + log( J] T(Ve —i + 1)).

i=1
In this form, the similarities with previous model selection criteria such as AIC, MDL,
D-MAP of Djuric (Djuric, 1996) or W-MDL of Waz (Waz, 1992) are made apparent.
The first term represents the likelihood term, while the remaining ones jointly constitute a

“penalty term”, which is a result of the use of prior distributions for a, ¢, and k. O

3.4 Model order determination

In this section, we discuss conditions which must apply on the hyper-parameter d? in egs.
(3.6) and (3.7) for consistent determination of model order.

The marginal posterior distribution for k is given as
p(kiZ.) [ ok, 41Z,)de. (3.2)
k

Let the eigenvalues of N;W (¢, k) in eq. (3.14) at ¢ = ¢ ! be given as Ay, Az, ... , Ay
arranged in ascending, rather than the usual descending order. For the case where NV is
large, for moderate values of SNR, the joint posterior distribution p(¢, k|Z,) concentrates
around the true value ¢ = ¢. Thus eq. (3.22) can be written as

L(M—-k)(M—k-1) M=kD(N, —i + 1) =N
e ] [ ()

=1

(3.23)

where i indicates “approximately proportional to”.
Let us define the event E; as the declaration of a model order in error by i signals; i.e.,

E; occurs when we declare k = k, + i or k = ko, — i. In the following analysis, we assume

!Since k is variable in this context but ¢ is a constant with fixed dimension, there is an apparent conflict
with the dimension of ¢. This can be resolved by adding or removing appropriate elements from ¢ as
required.
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P(E,) > P(E;) > ... > P(Ep-1). This implies p(k|Z,) is unimodal in k. From this

assumption, a necessary and sufficient condition for consistent detection of model order is

therefore
p(ko + llzv)
N.Eloo _P(kolzu) =0, (3.24)
and
p(ko —1|2,) 0. (3.25)

NIP’I“’ p(kolZ,)
Using eq. (3.23) we can write

M-ko—l D(Ny—i+1

xd (M—ko-)(M-ko-2) | [T] ) ( M—ko—1 ,\,) —Ne
plko +1|Z,) (2 /A)ko+1(ko+1)! —'“‘(WW)_ i=1 d

p(kolZ,) ~ bM—ko)M-ko-1) | [[TM %0 D(Ne—it1) [ryM—ko y \ N
o = (2n/A)Rok,! —'-‘r,,,n:ﬁ.—(n.-=1 ’\i)

~(M—ko=U) ()1, JNe(A
= T ( M ko) (21[) , (3.26)

where we have used the property I'(n + 1) = (n + 1)['(n) and that the first (M — k, — 1)
smallest eigenvalues are common to both the numerator and to the denominator. Since
for k = k, and ¢ = ¢, and large N;, we have W — U.Z,U, ~ U,R,U,, where
R, 2 E{yy'}. Since the eigenvalues of U’ R,,U, are the same as the nonzero eigenvalues
of Py Ryy Py, where Py is the projector onto N, the eigenvalue Aps_i, above is the largest
eigenvalue of the covariance matrix formed from the data projected onto N.
Using a similar development we also have
p(ko —112y)  T(Ne — M + ko)d*™ (ko)
p(ko|Z,) a=(M=ko)(\pr_g, 11 )Ve(£)

In this case, k = k, + 1, and since the estimated dimension of the noise subspace is too

(3.27)

large, it incorporates part of S. The quantity Ap—x,+1 may thus be associated with the
smallest signal eigenvalue of Ry, projected into S, which is the same as the smallest signal
eigenvalue of R,,,.

We can now evaluate the limits of eqs. (3.26) and (3.27). To do so, we require the
Stirling approzimation (Abramowitz and Stegun, 1965) to the I'-function, which is valid for
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large values of the argument
I(z) ~ V2me =z~ 1), (3.28)

We also note from the definition of NW that the eigenvalues ); are directly proportional

to N, and thus they can be written as
A = Ny, i=1,... , M-k, (3.29)

where ); is the normalized version of A;. Substituting eqs. (3.28) and (3.29) into eq. (3.26)
we find that eq. (3.24) is satisfied if

AM—k, < d; (3.30)

In a similar way, using eq. (3.27), eq. (3.25) is satisfied if

- d?

AM-ko+1 > - (3.31)
Therefore, by combining eq.(3.30) and eq. (3.31), we see that detection of model order is

consistent if the hyper-parameter d? is chosen so that
- & -
AM -k, < - < AM —ko+15 (3.32)

i.e., the quantity g must lie in the gap between the largest projected normalized noise
eigenvalue and the smallest normalized signal eigenvalue.

Strictly speaking, this procedure for determining d? cannot be used for consistent detec-
tion because eq. (3.32) depends on the unknown k,. However, it should be possible in the
practical scenario to propose an ad hoc scheme to approximate eq. (3.32). For example, it
is usually possible to form an estimate of ¥, during periods where it is known with reason-
able certainty that there are no signals present. The largest eigenvalue of this matrix could
then be used as an upper bound on :\M—k,~ If some a priori knowledge on the DOAs were
available, then an estimate of U, can be evaluated and a better estimate of ) M—k, could be
determined. In either case, d? could be given as an empirically determined constant times

this eigenvalue estimate.
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3.5 Simulation results

In this section, we present simulation results of the sampling scheme developed in sections
3.2 and 3.3. The estimates are obtained as the MAP estimators of the histogram of the
samples, as defined in eq. (3.15).

The spatially coloured noise is generated with an AR process of order 2 with roots
0.95¢ 71977 and 0.95e~7%-#8* as in (Cho and Djuric, 1995), with excitation from complex
white noise samples of equal variance o2 /2 for both the real and imaginary parts. Figure
3.1 shows the directional spectrum of the spatially coloured noise.

-5

_ L . s L N
3«) -150 -100 ~50 [1] 50 100 150 200
incidert Angie (Degrees)

Figure 3.1: Spectrum of the spatially coloured noise used in simulations. The directions of
arrival for the first scenario are indicated on the figure.

Two scenarios are presented. First, the directions of arrival to estimate are located in a
somewhat favourable zone of the noise spectrum, as shown on Figure 3.1. A second scenario

will locate the DOAs in a steeper zone of the spectrum, around 120°.
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3.5.1 First scenario

The characteristics of the signals and parameters used to obtain the first simulation results
are summarized in Table 3.1. This scenario is very difficult, using only a small number of
snapshots at low SNR and presenting two sources well within a beamwidth of the receiver

array. The hyperparameter of d> was assigned the value of 1000, in accordance to the

Amplitude DOA Sensors Snapshots SNR MCMC iterations
10 20° 5 30 2dB 10000
10 45°

Table 3.1: Characteristics of the signals and parameters for simulation #1 .

criterion eq. (3.32). The Figures 3.2 and 3.3 show typical results for 10000 iterations
(after a sufficient burn-in period of 5000 iterations, based on the observation of the chain
behaviour) of the Reversible Jump Sampler with N; = 30 observations of a circular array
made of 5 equi-spaced sensors (with a radius of 0.102m at 1.86GHz), when the SNR is 2
dB. The SNR is defined as

2
=4
SNR= o5

It is interesting to observe the evolution of the instantaneous model probabilities (top
portion of Figure 3.2) and how they reach an equilibrium value. The bottom portion of
Figure 3.2 shows the posterior histogram of the estimated number of sources after burn-in.
Figure 3.3 shows the histograms of P(¢|k, = 2). Clearly, from visual inspection of the
figures, we see the algorithm detected the right number of sources and has estimated their
respective DOAs as 19.5° and 46.0°, which are close to the true values.

The next figure, Figure 3.4, shows the behavior of the algorithm when the hyperpa-
rameter A is initialized at A = 5. This represents the scenario where no a priori or wrong
information is available. As expected, the algorithm takes a little longer to converge to the
proper model order, but the correct a posteriori estimate is obtained. This supports the

claim that the algorithm is robust to this hyperparameter.
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Figure 3.2: Coloured noise with unknown covariance matrix, Simulation #1: Instantaneous
estimate of the model probability (top half); Histogram of the number of sources after
burn-in (bottom half).

3.5.2 Second scenario

The characteristics of the signals and parameters used to obtain the second simulation
results are summarized in Table 3.2. For this scenario, the sources are located in a region

where the spectrum of the coloured noise is steeper. The hyperparameter d? was assigned

Amplitude DOA Sensors Snapshots SNR MCMC iterations
10 110° 5 30 2dB 10000
10 130°

Table 3.2: Characteristics of the signals and parameters for simulation #2 .

the value of 140, in accordance to the criterion eq. (3.32). The Figures 3.5 and 3.6 show
typical results for the same type of simulation, e.g. 10000 iterations (after a sufficient

burn-in period of 5000 iterations, based on the observation of the chain behaviour) of the
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Figure 3.3: Coloured noise with unknown covariance matrix, Simulation #1: Histogram of
the DOAs after burn-in: Source 1 (top) and Source 2 (bottom).

Reversible Jump Sampler with N; = 30 observations.

Again, the Figure 3.5 shows the posterior histogram of the estimated number of sources
after burn-in. Figure 3.6 shows the histograms of P(¢|ko = 2). Clearly, from visual
inspection of the figures, we see the algorithm detected the right number of sources and has
estimated their respective DOAs as 133.0° and 110.0°, which are close to the true values.

3.5.3 Performance of the method

In order to assess the performance of the algorithm for joint detection/estimation in terms
of variance of the estimates as a function of the SNR, the algorithm was applied to 50 Monte
Carlo noise realizations of scenario #1, for a range of values of SNR, from —4dB to 16dB,
with the other parameter values given as before in Table 3.1. Specifically, the value of a?
was held at the value 1000, which was verified to satisfy (3.32) over the entire range of SNR

values considered.
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Figure 3.4: The hyperparameter A was set at 5. Instantaneous estimate of the model
probability (top half); Histogram of the number of sources after burn-in (bottom half).

The results are compared with the algorithm developed by Wax (Wax, 1992) and imple-
mented by the alternating projection (Ziskind and Wax, 1988) algorithm, where a steepest
descent gradient method was used for the one dimensional optimization. For SNR levels
lower than —2 dB, the detection part of both the Wax algorithm and the MCMC algorithm
is not reliable. The Wax method was initialized at the true value of the DOA parameters.
Without this procedure, the performance curves for the Wax method as shown in Figure
3.7 would be severely degraded, due to convergence of the algorithm to local minima. In
contrast, initial DOA values for the MCMC method were assigned random values uniformly
distributed over [0, 27], for large number of iterations of the MCMC algorithm. The prob-
ability of detection, and the variances of the estimated DOAs are shown in Table 3.3 and
Figures 3.7 and 3.8 respectively for both methods. The Cramér-Rao lower bounds were
evaluated from the results in (Gershman et al., 2001; Ye and DeGroat, 1995).

With reference to Figure 3.7, it may be observed that the performance of the MCMC
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Figure 3.5: Coloured noise with unknown covariance matrix, Simulation #2: Histogram of
the number of sources after burn-in.

method is comparable to that of the Wax method above the threshold value of approxi-
mately —2 dB, but at a much higher computational cost. However, the computational cost
is seen as a relatively insignificant advantage compared to the problems of initialisation.
The colored noise method proposed clearly outperforms the classical maximum-likelihood
approach developed under white noise assumption.

For reasons of clarity, the curves for the signal at DOA; are omitted of Figure 3.7. The
omitted curve behaves in a similar way. The MCMC method achieves comparable perfor-
mance levels for both DOAs, close to the Cramér-Rao lower bound. It may be observed
that the slight degradation in performance of the MCMC may be caused by neglecting the
off-diagonal terms of the covariance matrix in the development of the posterior distribution
eq. (3.4).

Figure 3.8 shows the same performance curves, but in comparison with their respective

Cramér-Rao bound curves. We note that the performance of the signal associated with
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Figure 3.6: Coloured noise with unknown covariance matrix, Simulation #2: Histogram of
the DOAs after burn-in: Source 1 (top) and Source 2 (bottom).

DOA,; is degraded over that for DOA;. This is because, with reference to Figure 3.1, the
signal with DOA, receives a higher noise level than that for DOA;. For this reason, Figure
3.7 shows variances for both DOA values. It is shown in (Wong et al., 1992) that the
variances of the DOA estimates do not approach zero as Ny — oo. However, it is seen from
Figures 3.7 and 3.8 that the variances approach the Cramér-Rao bound closely.

Both detection procedures provide similar performance, as indicated in Table 3.3. Fur-
ther simulation results, as shown in Figure 3.9, demonstrate that the probability of an error
in detection of the model order diminishes towards zero with increasing N, thus verifying

the development of section 3.4.
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Figure 3.7: Coloured noise with unknown covariance matrix: Mean Squared Error. 50
Monte Carlo runs of 20000 MCMC iterations and W-MDL of Wax. The Wax method was
initialized to the true values of the parameters, whereas the MCMC method was initialized
arbitrarily. The curve for the second DOA angle is omitted for reasons of clarity.

3.6 Application to real-life measurements

To demonstrate the robustness of the discussed methods, we apply the method developed
in this chapter to a typical data set collected on campus through the experimental mea-
surement campaign, discussed in section 1.3. We collected 60 snapshots, from a position,
shown in Figure 3.10, where the multipath characteristics have been frequently observed to
be 2 rays well separated in angle.

Figure 3.11 shows typical results for 75000 iterations of the Reversible Jump Sampler
with 60 observations of the array output of the first leg of the ground scenario. Two rays
impinge the array with approximated angles of arrival of 30° and —80°. The transmitter was
moving slowly along the parking lot known as Annex 3, from behind the teacher’s college
toward Main street. The array was located on the front lawn of the CRL. The direct path

shows a DOA of about 20° — 30° and the first multipath arrives at the array at an angle of
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Figure 3.8: Coloured noise with unknown covariance matrix: mean squared error versus the
CRLB.

about —80°, after bouncing off the JHE building. The expected signal to noise ratio is at
least 20dB, but the noise is highly correlated as there is a lot of interference. This data set
is adequate to test the robustness of the method.

In reference to the Figure 3.11, one can notice that the posterior distribution of the
direction of arrival of the line of sight is wider. As the transmitter was moving slowly across
the horizon of the array, the direction of arrival of the line of sight ray varies in time, which
violates the assumptions of the algorithm. During the collection of the 60 snapshots, the
transmitter travelled about 100m, which changed the direction of arrival from the initial
value of 20° slowly toward 30°. On the other hand, as the transmitter was walking directly
away from the JHE building, the direction of arrival of the multipath ray seen from the

array remained constant, thus the narrower posterior distribution.
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SNR (dB)
4 3 -2 1 0 1 2
M 116 14 28 26 40 18 30
C 2/64 82 72 74 60 82 70
M k£ 3|28 4
C 4| 2
5
W 1] 2 2
M 2|74 82 66 78 72 78 78
D k£ 3|18 10 20 12 20 20 10
L 4|4 8 12 2 8 2 6
5] 2 2 8 4

Table 3.3: Probability of detection (in %) VS SNR

3.7 Conclusion

A new application of the Reversible Jump MCMC method was developed and presented
for the problem of joint detection/estimation of sources impinging on an array of sensors in
spatially unknown coloured noise with arbitrary covariance.

This method is based on the formulation of a posterior density function which has all
the nuisance parameters integrated out. Consistent detection has been verified, for values
of d? in the range given by eq. (3.32). Simulation results support the effectiveness of the
method, and demonstraie reliable detection of the number of sources and estimation of
their directions of arrival in coloured noise with a single array. This is reinforced with the
successful application to real data.

Although MCMC approaches are computationally intensive, a significant advantage as
demonstrated in this work is that they provide the global solution with robustness to the
initial guess of the parameter values.

In comparison, classical approaches have been shown to suffer degradations in DOA esti-
mation performance due to local solutions, unless a priori knowledge of the DOA estimates

is available.
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Figure 3.10: Layout of the setup for the first leg of the ground scenario.
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Figure 3.11: Measurements: Histogram of the DOA (top); Instantaneous estimates (bottom)

(after the burn-in period)



Chapter 4

Wide Band Channel

Characterization

In this chapter, we extend the treatment of the previous chapter to include estimation of
the times of arrival (TOA) of multipath components onto arrays of sensors in unknown
and arbitrary coloured noise. Thus, in this chapter, we consider the joint detection and
estimation of the times of arrival and directions of arrival of the multipath components
characterizing a multipath channel.

The developed method is applied to simulations and, more interestingly, with empha-
sis to real-life propagation measurements to show the performance and robustness of the

approach.

4.1 Introduction

In recent years there has been a considerable amount of work done in the estimation of time
delays (or times of arrival (TOAs)) and directions of arrival (DOAs) of the components of a
multipath channel (Vanderveen et al., 1997; Wax and Leshem, 1997; Wax, 1992; Larocque
and Reilly, 2000b; Blanz et al., 2000; Logothetis and Carlemalm, 2000). This is a cen-

tral problem in many fields including radar, sonar, and wireless communications, for both

67
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the indoor and outdoor scenarios. In the wireless case, knowledge of the statistics of the
TOA/DOA profile of typical multipath channels is necessary to determine the complexity
of proposed receivers during the design process, and to evaluate the performance of a given
wireless configuration. The knowledge of these parameters could also be used to locate a
user within a wireless network, thus providing a solution to the 911 problem.

In this chapter, we propose the use of the reversible jump Markov chain Monte Carlo
(RJIMCMC) technique (Green, 1995) for joint blind! estimation of the number of incident
multipath components (model order), and the channel TOA/DOA information in the pres-
ence of noise with arbitrary covariance structure, using arrays of sensors. This approach is
an extension to algorithm developed in Chapter 3 for the purpose of channel characteriza-
tion.

The proposed solution differs from (Vanderveen et al., 1997) in that the number of
multipath components (reflections) is not assumed known in our case. In (Wax and Leshem,
1997), again, the number of reflections is assumed known, or is e¢ priori estimated with
the MDL approach. This limits the application of the proposed algorithm to white noise
scenarios. Although another algorithm was developed by Wax (Wax, 1992) for the coloured
noise case, it appears that it is very sensitive to initialization and local minima (Larocque
and Reilly, 2000b). More recently, other methods have been proposed to address this
difficult problem. In (Blanz et al., 2000), the number of multipath components is assumed
known. Lastly, the application of the SAGE algorithm by Logothetis and Carlemalm (2000)
is limited to the white noise case. In many other papers, where the joint detection of the
number of multipath components and the estimation of the parameters is addressed, only
the directions of arrival are estimated, or only the temporal channel impulse response is
estimated, but never jointly. It has been shown by Wax and Leshem (1997) that individual
estimation of either the TOA or DOA parameters is suboptimal, and that significantly
improved performance is obtained from joint TOA/DOA estimation, as is proposed in this

chapter.

!By “blind” we mean no training sequence is required nor is the transmitted source sequence assumed
known.
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This chapter is organized in the following manner. In section 4.2, we describe the
formulation of the problem, state the necessary assumptions and define the notation. In
section 4.3, we develop the statistical model for the received signal in terms of the parameters
of interest, where the undesired nuisance parameters are integrated out analytically. In
section 4.4, we then describe the reversible jump MCMC procedure for joint determination
of model order and TOA/DQA estimation. Results from simulated data are presented in
section 4.5. In section 4.6, we describe the measurement technique used to gather the
real propagation measurements and we apply the proposed method to these measurements.

Conclusions are given in section 4.7.

4.2 Problem formulation

Consider an array composed of M sensors with arbitrary locations and arbitrary spa-
tial response. The array is immersed in a multipath propagation environment where the
corresponding channel consists of k, discrete reflections with time delays (TOAs) 7 =
[r1,... ,7k,]T, incident on the array from directions ¢ = [¢1,... ,¢k,|7. We assume the
sensors and the reflection points are coplanar and that the reflecting points are in the far
field of the array, so that ¢ is the DOA of the k, reflection. The signal vector y(n) € cM

received by the array at time ¢ can be written as

ko

y() = 3 anlt — m)a(e) + v (e), (41)

k=1

where
e ai(t) is the amplitude parameter associated with the k;, reflection
e 71 is the delay (TOA) of the kqy reflection
e 8(¢) € CM is the array response vector from direction ¢

e v(t) € CM is the noise vector at time ¢. v is assumed to be uncorrelated with the
signal, zero mean, distributed as (0, X,), where I, € CMxM is unknown, positive

definite and Hermitian, but otherwise arbitrary.
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We choose to express the problem in a CDMA scenario?, where the number of chips in
one transmitted symbol is denoted by P, and the chip duration is AT. After sampling y(t)
in eq. (4.1) in time, we may now express the received signal over the P chips comprising

the ny, symbol in the form
Y(n) = S(¢)A(n)T(7) + V(n), n=1,...,N, (4.2)
where

e Y(-) and V(-) have P columns consisting of their lower case counterparts

o S(¢) € CMx*o = [s(g1),--. ,8(dx.)]

e A(n) € Cko*%s is a diagonal matrix. The diagonal elements contain the signal ampli-

tudes at the nth symbol

o T(r) € C**P_ Each row of T() consists of zero elements, except for a single one in
the pth position. This element indicates that the relative delay of the corresponding

scattering component is pAT.
e N, is the number of observed snapshots.

Given only observations [Y'(1),... , Y (/Ny)], our objective is to jointly estimate the num-
ber of scatterers, k,, their directions of arrival, ¢ € [0,27]* and their times of arrival within
the resolution AT of one chip, represented by the vector of integers 7 € [0, Pjke.

Note that since the number of scatterers k, is unknown, the dimensions of the parameters
¢ and 7 are also unknown. We therefore denote them as ¢, and 7 respectively, where k
is the hypothesized number of signals.

We make the set of assumptions on the model:
o S(¢) is full rank

e the noise v(-) is #id between symbols

2This is done solely for ease of presentation and is not necessary for the development of the central ideas
of this chapter. It allows us to consider a single user, isolated by its characteristic CDMA code.
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e ¢ and T are stationary over the entire N observations.

e the symbol amplitudes a; are iid between symbols.

4.3 Development of the posterior distribution

The model described by eq. (4.2) can now be rearranged to a more familiar form using

Kronecker algebra,
y(n) = Z(7, ¢)b(n) + v(n), n=1,..,N,
where

y(n) = vec(Y (n)),
b(n) = vec(A(n)),
Z(r,¢) =TT (1) ® S(¢),

where vec(-) is the vectorization operator and ® is the Kronecker matrix product. Further-
more, noting that the matrix A(n) is diagonal, the vector b(n) as defined only operates on

a few columns of Z. Regrouping these useful columns into a new matrix H(7, ¢) we have
y(n) = H(r,¢)a(n) +v(n) n=1,..., Ny,

where a(n) holds the diagonal elements of A(n), and the matrix H(r, ) defines the space-
time structure of the multipath. This form is more familiar and can now easily be analyzed
in the Bayesian framework, as done in the previous chapter. The presentation in this chapter
is therefore intentionally briefer.

Since the N; snapshots are iid, the total likelihood function of all the data can be
expressed in the form of

1
p(Y|o,7,A,%,,k) = ANHP[E, [

e~ Tnt i (ym)-H (@.1)am) T (y(n)-H@.T)am)
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where the matrices Y and A represent the sets {y(n)})t, and {a(n)}},, respectively. This

likelihood function can be simplified by integrating out the undesired parameters X,, and

A. To proceed with this step, we first define an orthonormal matrix U (¢, T,k) € cMPxMP

for a hypothesized model order k, as in Chapter 3 (Wong et al., 1992; Cho and Djuric,
1995),

U(¢af’k)= [U8(¢1T7k) U,,(¢,T,k)],

MPxk MPx(MP—k)

where U,(¢, T,k) € H, the signal subspace, and U, (¢, T,k) € N, the noise subspace. We
now transform the received data y(n) into H and N to form a signal component z,(n) and

a noise component z,(n) respectively as

z4(n) = U (@, 7, k)y(n),
and

zy(n) = U,(¢, T, k)y(n).

The new parameters z,(n) and z,(n) are both Gaussian.

Following the same treatment as in Chapter 3, the joint likelihood function of z, and

z, is then given as

P(Z.,Z.|A, ¢, 7,k W) = n~ kO M
N
X exp {" z(zs(n) - &(n))'C-l(z,(n) - a("))} (4.3)
n=1

N,
x = N(MP=k)| gy —1|Ne oyp {— > z:,(n)W"zv(n)} :

n=1
To complete the model, prior distributions are chosen to be non-informative where possible.
When convenient, we also choose the structural form of these distributions for their desirable
conjugate properties. Using the same prior distributions as in Chapter 3, with the addition

of the prior distribution of the times of arrival

1
p(rlk) = 'P_kv



CHAPTER 4. WIDE BAND CHANNEL CHARACTERIZATION 73

the posterior distribution, after carrying out the integration of the nuisance parameters and

ignoring the constant terms, is then

L MP—k)(MP-k-1) l-IMP-k L
me iz L(Ne—i+1)
p(k,¢,7|Z,) x (2n P/ ) k! (d2)kNe

(4.4)
- -N;
X N,W(¢,r,k)| .

with N,W (¢, 7, k) £ E,’:’;l z,(n)z,(n)f. Take note that this function depends only on
the slowly varying parameters of interest. The objective is to estimate the parameters of

this highly non-linear function, as the Maximum A Posteriori (MAP) estimates.

{k,$,7} = arg max p(k,¢,7|Z,). (4.5)
¢.Teo

[ 4]

4.3.1 White noise hypothesis

In the event that the noise is known to be spatially white, the integration of the nuisance
parameters is straightforward. The detailed development is presented in (Andrieu and
Doucet, 1999). The resulting posterior distribution is given as

Ne NMP
Puhite(®, T, kl[{y(n)}) (Z v'(n)Pg(¢,, k)y(ﬂ))
n=1

Ak
X [2x)EPEE(L + 82)FNe’

where

Pj(¢,7,k) =1 - HMHY,
M-'=HRH(+672).

and the hyperparameter 42 now represents the estimated SNR.
However, this form remains quite sensitive to the degree of colour in the noise. Our
experiences show that the performance of the detection of model order degrades very quickly

in the presence of even mildly coloured noise.
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4.4 The reversible jump MCMC algorithm for channel char-

acterization

The general reversible jump MCMC algorithm was completely defined in the previous chap-
ters. To avoid repetition, only the key elements particular to this chapter are presented.

The description is summarized as follows.

Reversible Jump MCMC
1. Initialization: set @ = (¢@, (0, k(®)) according to the prior distributions.
2. Iteration 1,

e Sample u ~ Ujg 1
o if (u < by»)) then execute a “birth move” (see section 4.4.2)
— else if (u < by + di)) then execute a “death move” (see section 4.4.2)

— else, execute an update move (see section 4.4.1) .

3. i « i+ 1,goto step 2

4.4.1 Update move

Here, we assume that the current state of the algorithm is (¢, T4, {k}). When the update
move is selected, the algorithm samples all parameters for k fixed. The proposal distribu-

tions in the general case of global exploration of the space are given as

a(@",79,6) = o(&" 7" 0) = . (46)

The acceptance ratio r = rypgqte for the update move, in the case of coloured noise is

obtained by substituting eqs. (4.6) and (4.4) into the expression for the acceptance ratio
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defined in Chapter 2, eq. (2.8) to give

- -N,
o VW (g7, 7, )|
rupdatc(¢k1 Trr Ky Oy Ty k)= -

L (4.7)
| (9,7, k)]

Qupdate = min{rupdatea 1]- (4.8)

The candidate (¢*,7*) is then accepted as the current state (¢§:+1) = ¢;) and (TSH) =
7}%), with probability aypdate-

For the specific case at hand, the performance of the proposed method is again enhanced
by selecting randomly between two types of proposal distributions for the update case rather
than the one given by eq. (4.6): one type involves a global exploration of the parameter

space, while the other involves a local exploration. The method is summarized as follows.

Update Move (Metropolis-one-at-the-time)

At iteration i, DO
e Sampling the directions of arrival:

— Propose new directions of arrival, maintaining fixed values for 7(¥). The choice

of proposal distribution is described as follows:
— Sample u; ~ Uy
« if u; < 0.5, then propose a global exploration
@i ~ Ulo 2xp
* else, propose a local exploration
ok ~ N (¢}, Z) (4.9)
where Z, is a covariance matrix such that samples from (4.9) are closely

clustered around ¢£i).
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— Evaluate aypdate With eq. (4.8).
— Sample u ~ Ujg,1}-
— if (u < Qupdate) then the state of the Markov Chain at iteration i + 1 becomes

(%, k), else it remains at (¢, k).

¢ Sampling the times of arrival: (This process is analogous to sampling the DOAs,

as above).

— Propose new times of arrival, maintaining the directions of arrival fixed at their

current values.
- Sample uy ~ L’[O,l]

* if u; < 0.5, then propose a global exploration
Tk ~ Up, ppr
« else, propose a local exploration
i~ N, 2)

- Evaluate aypdate With eq. (4.8).
— Sample u ~ Ujgy).

— if (u € @update) then the state of the Markov Chain becomes (T%, k), else it

remains at (-rf:) y k).

4.4.2 Birth and death moves

In the death move case, we assume the current state is (¢4, Tx+1, k + 1) and we wish to
determine whether the state is (¢, Tk, k) at the next iteration. This involves the removal of

an incident signal, which is chosen randomly amongst the (k + 1) existing incident signals.
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The proposal distribution q(@}, 7}, k[¢rsy, Te+1,.k + 1) for the death move is therefore
Tk +1

chosen as

. . C(E+1Y A1
dotrikdp ek + 0 =50+ (1) o« e

where p(k) is the prior distribution defined in eq. (3.8). The remaining values of ¢} and
T} are set to the corresponding values of ¢f) and 1’}:).

Similarly, in the birth move case, we assume the current state is (@, Tk, k) and we wish
to determine whether the next state is (¢, Tk+1,k + 1). This involves the addition of a
new incident signal, which is proposed uniformly over (0,2x] and over (0, P]. The proposal
distribution ¢(¢} 1, 75,1, (k + 1)|dk, Tk, k) for the birth move is therefore

* * L(k+ 1o k) =p(k +1) L1 AT 11
(Dk+1> Th+1o ko Tk F) =P P > (k+1)!'2x P

Using these proposal distributions with eq. (4.4), the acceptance ratio for the death

MOVE T = Tgeqsh IS

Mg, ™

rdcath(¢iv Tiy k’ ¢k+17 Tk+1, k+1 ) = R —N¢
VW (9,7, +1)|

x  aMP=E-ID(N, - MP + k + 1)(k + 1)d®"*.(4.10)
The quantity ageq:n is then defined according to
Qgeath = Min(rgeath, 1]- (4.11)

The acceptance ratio r = rpr¢n for the birth move in the case of coloured noise can be

verified to be

1
Tdeath

Qgiren = minl, ——]. (4.12)

The following block describes the algorithm for the birth move.
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Birth Move
e Propose a new direction of arrival and time of arrival,
b1 =8 Vpam]  Tiv1 = [ U]
e Evaluate apirn with eq. (4.12).

e Sample u ~ Ujgy)-

o if (u < apiren) then the state of the Markov Chain becomes (¢}, T,k + 1), else

it remains at (¢f:), rg), k).

The description for the death move is similar, with appropriate modifications.

4.5 Simulation results

The proposed algorithm for coloured noise is now applied to simulation data, generated for
ko = 2 scatterers with the parameters described in Table 4.1. The receiver array is composed

of 5 elements. The amplitudes are itd Rayleigh distributed over N; = 125 received symbols

Scatterers DOA (deg) TOA (bins) Amplitude (dB)
S1 65° 8 10
S2 20° 2 10

Table 4.1: Parameters of the multipath environment for simulated data

(or snapshots) for P = 25 chips, with an SNR of 5dB. The noise is once more coloured
with an AR filter, the poles of which are 0.95¢~7197" and 0.95¢~7938%, The corresponding
spatial spectrum is shown in Figure 3.1. The hyper-parameter d? was set to 10, according

to the procedure described earlier, in section 3.4. The hyper-parameter A was set to the
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true number of multipath components. As discussed in the previous chapter, this parameter
does not influence the maximum a posteriori estimates.

The Reversible Jump MCMC scheme goes through 1500 iterations after a burn-in period
of 300 iterations. The results, as found by the algorithm, are summarized in Figure 4.1. It
is clear from the histograms that the DOA and TOA estimates concentrate around their
true values. The posterior probability of the number of scatterers k being equal to the true
value of two was evaluated at 75% (due to a high noise level), as summarized in Table 4.2.
The bottom line, “measurements”, describes the detection performance using real measured
data, as presented in section 4.6. Clearly, the algorithm correctly identified the parameters
of the simulated multipath scenario. Further simulation results for the DOA case only are
presented in (Larocque and Reilly, 2000c). There are omitted in this document as the

present work focuses on the joint detection and estimation of the parameters. Further
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Figure 4.1: Simulations: Histogram of the TOA (top); Histogram of DOA (bottom).

simulation results of the joint problem can be found in (Larocque and Reilly, 2001a,b).
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plk=9)% 1 2 3
Simulations 0 75 25
Measurements 1 98 1

Table 4.2: Posterior estimate of the number of paths using MCMC, for both the simulated
data and the real data.

4.5.1 Performance of the method

The TOA parameter is discrete; therefore the estimate may be considered fixed for rea-
sonable values of SNR. Thus the joint TOA/DOA estimation performace is approximately
determined by examining the DOA estimation performance alone. Thus, the performance
measures showing the DOA-only case provided in Chapter 3 are still meaningful in providing

joint DOA/TOA performance in the present context.

4.6 Application to real-life problem

In this section, we apply our proposed scheme for the coloured noise case to real-life out-
door propagation measurements with a typical data set collected on McMaster University

campus.

4.6.1 The measurement scenario

The complex channel impulse response, in time and space, is measured directly in the time
domain by transmitting a wide-band spread-spectrum signal and correlating the received
signal with the known transmitted sequence, at each element of the receiving array.

The receiving base station is a circular antenna array made of 8 mono-pole antennae.
The transmitted signal is a 255 chip pseudonoise (PN) sequence at 5 MHz. The received
signal of each element is I-Q demodulated, converted to baseband, sampled at 10 MHz, and
then stored for further processing. One time bin AT therefore corresponds to 100ns. The
measurements were conducted on the McMaster University campus, with the receiving base

station at different locations and different heights in a pico-cell scenario that offered rich
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multipath characteristics with severe fading. An initial calibration is based on measurements

with the antenna array inside an anechoic chamber and illuminated from 64 different angles.

4.6.2 Processing

For the purpose of demonstrating the proposed algorithm, V; = 20 received data symbols
(or snapshots) are used, measured from a position where the multipath characteristics have

been geographically observed to be 2 rays incident approximatively from angles of arrival

of 30° and 135°, as shown in Figure 4.2.

NMAANNANNANNY
§ College §

S2

s

Figure 4.2: Map describing the geometry of the setup.

Using traditional beamforming techniques, one can easily obtain an angular power spec-
trum. The temporal impulse response is directly obtained from the output of the correlator.
Both results are presented in Figure 4.3, where the estimates found by the proposed algo-
rithm are indicated. As the figure shows, it is not easy to first determine the number of
multipath components; it can easily be over-estimated. Furthermore, there is ambiguity
in which DOA estimate corresponds with which TOA estimate. With the proposed algo-

rithm, since the optimization is done jointly for the two sets of parameters, the ambiguity
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is resolved.
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Figure 4.3: Channel impulse response: Temporal (top); Angular (bottom).

The results from application of the proposed algorithm are now presented. Figure 4.4
shows typical results for 1000 iterations of the Reversible Jump MCMC Sampler. The
initialization of the algorithm was totally random, with no prior information being used. It
is clear that the algorithm identifies the two major multipath components, in time and in
direction. These estimates are presented in Table 4.3. From the geometry of the system, the
first multipath ray goes around the corner of building 43 (or over the top), while the second
ray impinges from another direction, after bouncing off the Teachers’ College building across
the street. The receiving array is located approximately mid-way between the College and
the transmitter. The extra propagation time is thus simply the path from the transmitter

to the College, which was measured to be approximately 100m which corresponds to a time
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Figure 4.4: Measurements: Histogram of the TOA (top); Histogram of the DOA (bottom).

delay of 330ns. Within the resolution of the 100ns time bins, the excess delay measurement

of S2 obtained from geographical truthing is therefore 300ns.

Sources DOA TOA (Excess delay)
S1 136° O ns
S2 32° 300 ns

Table 4.3: Estimate of the multipath components using MCMC

It is seen that the parameters extracted by the algorithm are in accordance with the
physical characteristics of the scenario, as described on the map. The performance of the

detection procedure for the real measurement case is shown in the bottom line of Table 4.2.
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4.7 Conclusion

In this chapter, a new and innovative approach to channel characterization in unknown
coloured noise with arbitrary covariance is presented in the Bayesian framework. We used
a Markov Chain Monte Carlo method to perform the joint estimation of the model order,
times of arrival and directions of arrival, which jointly characterize the multipath chan-
nel. The nuisance parameters (unknown noise variance and amplitudes) are integrated out
analytically.

Simulation results support the effectiveness of the method, and demonstrate reliable
detection of the number of sources and estimation of their directions and times of arrival
in coloured noise with a single array. The performance is reinforced with the successful
application to real data and it shows how the algorithm provides a potential solution to a

practical problem of localization.



Chapter 5

Sequential Monte Carlo: Particle

Filters

This chapter addresses the application of sequential importance sampling (SIS) schemes to
tracking DOAs of an unknown number of sources, using a passive array of sensors. This
proposed technique has significant advantages in this application, including the ability to
detect a changing number of signals at arbitrary times throughout the observation period,
and that the requirement for quasi-stationarity over a limited interval may be relaxed,
relative to other methods.

We propose the use of a reversible jump MCMC step to enhance the statistical diversity
of the particles. This step also enables us to introduce two novel moves which significantly
enhance the performance of the algorithm when the DOA tracks cross. The superior per-
formance of the method is demonstrated by examples of application of the particle filter to
sequential tracking of the DOAs of an unknown and non-stationary number of sources, and
to a scenario where the targets cross. Our results are compared to the PASTd method of

Yang (1995a).

85
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5.1 Introduction

The problem of tracking the directions of arrival of multiple targets in background noise
using passive arrays of sensors is of great interest to the signal processing community,
with applications in communications, radar, sonar, acoustics and others. For example,
in a beamforming application, one is typically interested in extracting a signal of interest
arriving onto an array of sensors, from multiple interfering sources arriving from different
DOAs. For this approach to be effective, the DOA of the desired source must be estimated
from the received data. In many scenarios, the desired source is moving, necessitating target
tracking of the desired DOA.

Recently, many high resolution DOA estimation techniques have been proposed. These
include beamforming methods (Johnson, 1982; Capon, 1969), subspace-based methods (Schmidt,
1986; Viberg and Ottersen, 1991) and maximum likelihood methods (Reilly and Haykin,
1982; Ligget, 1973). Since these high-resolution methods incorporate the benefits of tem-
poral averaging and knowledge of the model order, the target must be assumed stationary
over the period of observation. Thus, these methods fail or suffer performance degradations
when the DOAs of the targets exhibit significant motion during the observation period.

In recent years there have been several methods developed for estimating or tracking
the DOAs of moving targets using passive sensors or arrays of sensors , e.g., (Zhou et al.,
1999; Yang, 1995b; Molnar and Modestino, 1998), etc. Like the high-resolution methods,
these approaches also assume the targets are stationary over a limited time interval. The
approach in (Yang, 1995b) is based on adaptively estimating a noise subspace basis from the
received signal covariance matrix. These methods then rely on a high-resolution technique
such as MUSIC (Schmidt, 1986) to estimate the desired DOAs. In (Zhou et al., 1999), a
method based on maximum likelihood estimation of a novel state-space representation for
tracking is presented.

An important consideration in target tracking problems is the data association problem;
i.e., the association of tracks with measurements. In the case where passive arrays of sensors

are used, the data association problem reduces to the association of targets before and after
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their DOA tracks cross each other. In (Molnar and Modestino, 1998), a method for DOA
tracking for disparately-spaced sensors using the EM algorithm is presented. This method
treats the DOAs as unknown parameters and the data associations as the missing data.

In this chapter, we discuss the use of sequential MC (Monte Carlo) methods for target
tracking. MC and MCMC (Markov chain Monte Carlo) methods (Gilks et al., 1998; Andrieu
et al., 1998; Larocque et al., 2001a,b) have been capturing the attention of researchers
in the field of statistics throughout the past decade and have more recently emerged as
useful methods in the signal processing arena. However, conventional MC methods are
not well suited to problems where data arrive sequentially, due to excessive computational
requirements. This consideration has motivated the development of sequential MC methods,
also known as particle filters (Doucet, 1998; Andrieu et al., 2001; Djuric, 2000), which are
capable of recursively updating the probability distributions of interest as new data become
available.

In this chapter, we propose the application of particle filters to joint detection, estima-
tion and tracking of an unknown and time—varying number of sources. There are several
advantages offered by this approach.

Firstly, previous methods require prior determination of model order. The MDL (Rissa-
nen, 1978) and AIC criteria (Wax and Kailath, 1985) are often used for this purpose. These
methods require the assumption of stationarity and are highly sensitive to the white noise
assumption. The proposed approach offers robust estimation of the model order jointly
with other parameters of interest, and furthermore can accommodate changes in model
order occurring arbitrarily throughout the observation interval.

Secondly, the particle filtering approach estimates the posterior distribution of the pa-
rameters given all past data. This distribution can then be marginalized to yield the “in-
stantaneous” posterior distribution of the desired parameters at the current time sample.
Thus we need not assume stationarity. This is in contrast to most other methods which
involve estimation of second- or higher-order statistics by temporal averaging, a process
which requires stationarity over an appropriate interval.

Thirdly, with the particle filtering approach, the joint posterior distribution of the target
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amplitudes given the received data is readily available. This greatly facilitates high-accuracy
data association.

Finally, in contrast to other methods, because any form of MCMC technique produces
an approximation of the entire distribution of interest, one can easily calculate confidence
intervals, marginalize with respect to desired parameters, or make inferences on the param-
eters, etc.

One of the difficulties with particle filtering is the loss of statistical diversity in the
recursive update of the importance weights (Doucet, 1998). To mitigate this difficulty,
we have introduced a new form of the Reversible Jump MCMC (Green, 1995; Andrieu
and Doucet, 1999) process as a novel resampling engine. We propose the use of two new
moves, called the split/merge (Richardson and Green, 1997; Andrieu, 1997) moves, which
are specifically designed to handle the crossing of the signal tracks, and allow for the joint
detection and tracking of the number of sources.

The chapter is organized as follows. Section 5.2 presents the state-space model. In
sections 5.3 and 5.4, we discuss and extend the particle filtering approach as developed
in (Doucet, 1998) to the target tracking problem and provide insights on the methods.
Results from simulations are presented in section 5.5 where our results are compared with

the method presented in (Yang, 1995a,b). Conclusions are given in section 5.6.

5.2 The State-Space model

The problem of interest is the sequential detection of the number of sources impinging an
array and the estimation of their corresponding directions of arrival.

The signal model we consider consists of a complex vector of observations y(t) € cM
which represents the data received by an array of M sensors at the tth snapshot. The
observation vector is composed of incident narrow-band plane wave signals from k(t) distinct
sources embedded in Gaussian noise. Each of these incident plane-wave signals impinges
on the array of sensors at a physical angle ¢x,k = 1,... ,k(t), relative to the normal of

the array. The amplitudes of the sources at the ¢th time instant are denoted by the vector
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a(t) € CF).
The sequential sampling approach we adopt admits a first order state-space hidden
Markov model. The states [¢(t), a(t)] evolve according to

é(t) = (t — 1) + oy 0(t), (5.1)
a(t) ~ N(o’azlk(t))a (5.2)

whereas the observation is given by

y(t) = S(¢(t))a(t) + ouw(t). (5.3)

The noise variables v(t) € RM, w(t) € CM are iid Gaussian variables with zero mean
and unit variance, independent of the parameters. The respective variances of the scaled
noise terms are o2 and o2. The variance of the prior distribution of the amplitudes will be
defined shortly. The dimension k(t) of the model is described by the following stochastic

relationship at time ¢,
k(t) = k(t — 1) + e(t), (5.4)
where the €x(t) are discrete iid random variables such that

Plex(t) = —=1) = h/2
Plex(t)=0)=1-h
P(ex(t) = 1) = h/2, (5.5)

where h € [0,1]. In eq. (5.5), it is tacitly assumed that the model order changes by no more
than one in each sample period.

In the proposed system of equations, the noise variances g2 and o2 are assumed unknown
but constant over time. The unknown vectors of amplitudes a(t) are assumed #id between
snapshots.

We introduce a vector 8 of all the parameters dwcribing the model

0. = ({¢k(¢) }lzh {ak(t)}lzta kl:ta 012;1 a?p)a
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where the notation (-);.; indicates all the elements from time 1 to time ¢, and the subscript
k(t) indicates the size of the corresponding vector. The posterior distribution of interest
is then given by 7(0,.¢) = p(01:t|y,.;), and can be specified within a normalizing constant,

using Bayes’ theorem, as

7(01:4) o< p(Y1:41601:¢)p(61:¢), (5.6)

where p(y,.4|01.¢) is the likelihood function and p(;.) is the prior distribution of the pa-
rameters. From the model description, it is clear that the prior distributions for some of
the parameters are conditional on k;. and also on other parameters. Thus, we expand the

posterior distribution in eq. (5.6) to give

1I’(01;g) “p(ylztl¢l:tialtt1kl:hatznoﬁv) X

P(D1:02, kr.e)p(ar:el Py, 02, kre)p(kre)p(a?)p(ol). (5.7)

We now assign distributions for each of the terms in eq. (5.7). It is assumed that the
observations, given the states, are #id and that the conditional update likelihoods of the
states are also #id. Therefore, assuming the distribution of the initial states to be uniform,
and using the Markov properties of the model, the distributions of eq. (5.7) can be written

in the form of

t

p(Y1elb100 @10 Fre, 05) = [[N(S(@)ar, o2 In), (5.8)
=1
t
p(Prilkre 0f) = [[ N (11,02 Lk,), (5.9)
=1
t
p(@re| b1 kit 03) = [[ N (0,825 (S (6)S () 7H), (5.10)
=1

t t
p(kre) = [[ p(kilki-1) = [] ex (). (5.11)
=1 =1
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The prior distribution defined in eq. (5.10) is the maximum entropy prior (Andrieu and
Doucet, 1999) with the parameter 2 set to an estimate of the SNR. The prior distribution
on the variances 02 and o2 are both assumed to follow the inverse Gamma distribution,

which is the conjugate distribution for the Normal distribution,

p(o3) ~ T-G(Vz—", 1—"% (5.12)
p(03) ~ IG(v1,m)- (5.13)

Since p(02) is later combined with a real Normal distribution (instead of complex), the
factors of % in eq. (5.12) are required to maintain the conjugate property. The above priors
are noninformative when the hyperparameters v and v are set to zero.

The model is now clearly defined. In the application addressed in this chapter, the
parameters of interest are primarily the DOAs ¢;., and the model order k;.;. The amplitudes
ay., along with the state update noise variances o2 and 02, may be considered nuisance
parameters. Even though it is straightforward to numerically marginalize the posterior
density to eliminate these undesired parameters using the proposed Monte-Carlo based
estimation methods, the resulting procedure is more efficient if the nuisance parameters can
be integrated out analytically. Such is the case with the signal amplitudes. We now proceed
to eliminate the amplitudes from the posterior distribution n(0;.;) by marginalization.

Using the 1id Normal distribution of the noise variables, and the model structure given

by egs. (5.1) to (5.3), and egs. (5.8) to (5.13), the posterior distribution 7(8;.¢) of eq. (5.7)
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can be written as

t
®(01:¢) H ;2—,.,11r—MeXP [—0—12'(!!1 - S(enar) (v, - 5(4’1)“1)]

H |Sl(¢l)S(¢z)| exp [_#(a‘)l(Sl(d,l)S(‘ﬁz))(al)]

( Ja'w 2kx ki
t

x H __l—exp [—%(d’z — 1) (D — ¢l-1)]

=1 0'3"'/2 (2m)k/2

x 2" TV exp [——%] x o2 ™V exp [i]

202 ol
¢
x [[ plkilkizr).-
=1

The terms relating to the amplitudes can be collected together to give the following expres-

sion, as in (Andrieu and Doucet, 1999),

t
1 -1 1gv—1
m(01:1) ox ‘1;[1 ;2":.‘—“,:" exp [E(Gl —mg,) Ek, (@i - ma,)]

t

1 -1
x 1 o4 g P [EU;P 5 (¢l)yl]

=1

S'(¢)S -1 , _
x ‘1'[ 6'2(.,52’:‘()23'(’:),'2, exp [p(dn —é11)' (60 - ¢,_1)] G.14)
=1 “v v

(-%-1) -, (-v1-1) -
x a2 exp [—20';] x a2 ' exp [E]

t
x [ pCkalki-1),

=1

where

! = S'(¢)S(#)(1+672),
Mg, = zkxsl(¢l)yh
and

rat -1¢¢
Pi(8) = 1u - SIS 5 0)
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From eq. (5.14) a mazimum a posteriori estimate of the amplitudes, knowing the other

parameters is readily available as
apmap(l) =mg,. (5.15)

Thus, the amplitude parameters need not be included in the particle filter. Instead, they
can be estimated at each iteration, after the sampling of the other parameters as discussed
in sections 5.3 and 5.4.

It then becomes straightforward to integrate out the amplitudes in eq. (5.14) to yield a
simpler definition of the posterior distribution in terms of the remaining parameters. The

posterior distribution can then be simplified to

7l’(¢1 t7auvawak1 ) X H oM

-1,
—m;)—k" [-Uzylpé(‘f’l)yl]

t

1 i ,
x H 72 (3 a/2) exp [50—3(4’1 — &) ()~ ¢,_1)]

=1

o~ -1 [‘70] 2(-v1-1) [—71]
o exp |—5| % o exp | —— 5.16
v 202 b a2 (5.16)

t
x [ p(kilkiza)-
=1

The MAP estimators of the nuisance parameters of the variances can be readily obtained
by comparing the previous distribution with a product of Inverted Gamma distributions.
Using the fact that the mode of the Inverted Gamma distribution is ;15, it follows that

L4 i (b — b)) (i — 1)

2 —
Tuneap(t) = 2+ 15 k() + 1 , (5.17)
o2, (=2 + i (ViP5 (P)y1) (5.18)

n+Mt+1

We choose however to keep these parameters in the expression of the posterior distri-
bution in eq. (5.16). This simplifies the derivation of the acceptance probabilities of the
moves as discussed in section 5.4. Since the nuisance parameters can be estimated, we now

define a new vector a of parameters to sample with the particle filter, as

are 2 (¢y0 krse)-
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5.3 Sequential Importance Sampling

This section describes the SIS procedure introduced in Chapter 2, which is used to extract
the DOA estimates for tracking. In this section, the background treatment on the SIS
methodology is necessarily brief. The reader is referred to Chapter 2, (Doucet, 1998; Liu
and Chen, 1993; Doucet et al., 2001b) and the references therein for a more complete
coverage of this topic.

As described in Chapter 2, the optimal importance function that satisfies the recurrence
requirement eq. (2.14) and minimizes the variance of the weights generated by the recursion
eq. (2.16), is given by

qutimal(') = ‘I(agi)|a$i-)1:!lt)-

Unfortunately, this distribution is not easily evaluated directly for the problem at hand.
However, an suboptimal approximation is readily obtained by means of a local linearization

(Taylor expansion) of the observation equation. The observation equation (5.3) and the

state update equation (5.1) for ¢ are reproduced here for convenience

é(t) = @(t — 1) + oyv(t),
y(t) = S(¢(t))a(t) + oww(t)-

These equations yield

- St ya(e) + 5P
y(t) = S(o(t — 1))a(t) + ag(t) (¢(t) =¢(t-1)

x (¢(t) — o(t — 1)) + ouw(t).
a(t) =a(t - 1))

After solving the above for ¢(t), from the assumptions on the model noise, we see the
resulting distribution for ¢(t)|@(t — 1), y(t), i-e., the optimal importance function, is linear

and Gaussian and can be expressed as
2(69())|¢0(¢ — 1), y(2)) ~ N(m O (2), SO (2)), (5.19)
where, for each particle,

B7Yt) = 072 (t) () + G' (052 () )G,
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m(t) = 5(¢) (a;z(t)tkaw(t _1)+ GO In)y(t) — S(@(t - 1)alt - 1) + Gt - 1)}),

and the matrix G is the gradient of the observation equation

G - IS@(t)a(®)
a(t)
In summary, the recursive update for the weights is obtained using the following form

of eq. (2.16)

 Pu®169®), k9 (1),a(6), 3" (@)l (t - 1), K1), o)

20 (t) = w (¢ —
(8) = (¢ - 1) 1@ (16D (¢ - 1),y(1))

(5.20)

Equations (5.8) and (5.9) are used for the respective terms on the numerator, and eq. (5.19)
is used for the denominator.

As discussed in section 2.4.1, it is convenient to use a reversible jump MCMC procedure
to provide diversity amongst the particles. The MCMC procedure samples m(a) directly,
thus introducing statistical diversity amongst the particles. Also, the reversible jump pro-
cess is capable of exploring parameter spaces of varying dimension, which as we see in
section 5.4 is the key to detection of model order (Andrieu and Doucet, 1999; Larocque and
Reilly, 2000b).

The above procedure is summarized in the following schema.

Sequential Importance Sampling for Tracking an Unknown Number of DOAs

For time ¢t = 1, initialize the weights w()(1),i =1,... ,N
For each time step t = 2,3,..., DO

1. The Importance Sampling Step:

e For i =1,...,N, generate the particles by sampling from the distribution g(-|-),
as follows (see eq. (5.19)):

a(¢9 (8)| 09 (2 — 1), y(t)) ~ N(ml) (), 29 (1))
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e For i = 1,...,N, Evaluate the un-normalized importance weights from eq.

(5.20).
e Fori=1,...,N, normalize the weights:
. o (t)
D)= 2 ¥ (5.21)
w - .
¥im 50)(t)
2. The Resampling/Selection of the Particles:

e Sample a vector of index { distributed as:

P(I(j) = i) = wi(2) (5.22)
¢ Resample the particles with the index vector:

Sbx = Do (5.23)

¢ Re-assign all the weights to w()(t) = }.
3. The Reversible Jump MCMC Step:

e Apply the sampler to be described in section 5.4 to enhance diversity amongst

the particles and facilitate detection of model order.

The SIS procedure is now completely described, in order to use this procedure to track
the DOAs. Our objective is to estimate the parameters of interest ¢(t) and k(t) given all
past observations, at each time instant. This can be achieved by forming the marginal
distribution corresponding only to the specific parameters of interest from 7(a.). One of
the primary advantages of using a numerical Bayesian procedure for parameter estimation

is that this implicit integration is readily performed directly from the histogram #y(dar.¢).

5.4 The reversible jump MCMC diversity step

In our application, since the dimension of the parameter space ¢,., varies with k.., we use

the reversible jump MCMC method which samples directly from the joint distribution over



CHAPTER 5. SEQUENTIAL MONTE CARLO: PARTICLE FILTERS 97

all model orders of interest. In effect, the process jumps between subspaces of different
dimensions, thus visiting all relevant model orders. In the reversible jump case, candidate
samples are chosen from a set of proposal distributions, which are randomly accepted ac-
cording to an acceptance ratio that ensures reversibility, and therefore the invariance of the
Markov chain with respect to the desired posterior distribution. Here, we choose our set
of proposal distributions to correspond to the following set of moves, which includes new

moves:

e the birth move, chosen with probability b;, for which a new source is proposed at

random; i.e., k(t) = k(t — 1) + 1.

e the death move, chosen with probability di, for which one of the existing sources is

proposed to be removed; i.e., k(t) = k(t — 1) — 1.

These moves, in conjunction with the update move described below, enable us to sample
the parameter k;.,. By forming the marginal of w(a;.:) with respect to k;.;, we can detect
the most likely number of sources vs. time. In addition to these moves, we propose two
further novel moves, which we have shown in simulations to improve performance when two
neighbouring DOA tracks cross, by proposing better candidates. These additional moves

are

e the split move, for which an existing source is proposed to be split into two sources.

This move is chosen with probability s; .

e the merge move, for which two neighbouring sources are proposed to be merged into

one. This move is chosen with probability m; .
We also have the update move:

e with the update move, all the parameters are updated with fixed dimension; i.e.,
k(t) = k(t — 1). This move is executed with probability 1 — bx — dx — sx — mx. With
the update, birth and death moves, J in eq. (2.10) is readily shown (Andrieu and
Doucet, 1999) to be unity.
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It is shown in (Doucet et al, 2001a) that the proposed MCMC sampling procedure
requires no burn—in period in this application. This is a consequence of the fact the particles
before the MCMC step are already distributed according to the limiting distribution of the
chain. Thus, in the interest of computational efficiency, only one MCMC iteration need be
applied to each particle at each time step. Furthermore, this allows for the use of moves
that are not all mutually reversible.

The selection of moves is described by the following schema.

Reversible Jump MCMC

1. Current state of the chain = current state of the particles (k(t), ¥ ().
2. Iteration j for the ith particle,i=1,...,N:

e Sample u ~ Ujg y

if (u < bi) then “birth move”

else if (u < by + di) then “death move”

e else if (u < bg + di + i) then “split move”

else if (u < by + dx + 3¢ + my) then “merge move”

else update all the parameters

3. j < j+ 1 goto step 2

5.4.1 Update move

If the update move is selected, all the parameters are resampled, with fixed model order

k(t). The proposal distribution g(¢}|@,(t)) for the candidate ¢} is given using eq. (5.1) as

(k| #r(2)) = N(@r(t), 05 ()T ky)- (5.24)
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This candidate function is different from the optimal function described by eq. (5.19).
When the optimal importance function is used in the MCMC step with wrong parameters,
the Markov chain does not mix efficiently and most candidates are rejected. By using a
less informative candidate function, more candidates are accepted, and a higher degree of
diversity amongst the particles is achieved.

By substituting egs. (5.24) and (5.16) into eq. (2.10), after some algebraic manipulation

we obtain the following expression for the acceptance ratio for the update move,

exp iV OPs Gy

Tupdate = . (5.25)
upda ep 2V OPE By
The candidate ¢} is accepted as the ith particle at time ¢, with probability
k
€update = Min(Typdate, 1)- (5.26)

The amplitude parameters, which are required for data association in section V, are es-
timated directly from eq. (5.15). The noise variance parameters o and o2, which are
required in egs. (5.24) and (5.25), are estimated directly from eqgs. (5.17) and (5.18).

The update move is summarized with the following schema.

Update Move

Propose a candidate ¢* from eq. (5.24).

Evaluate £ypdate With eq. (5.26)

Sample u ~ Upp )

if (u < fupdate) then

— The state of the Markov Chain becomes (k, ¢*),
— If desired, estimate a|¢ from eq. (5.15)

— update o2 and o2, from egs. (5.17) and (5.18) respectively.

else it remains at (k, @)
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5.4.2 Birth and death moves

The birth move proposes a candidate in a higher dimension model, as opposed to the death
move, which in turn proposes a candidate in a lower dimension model.
For the birth move, a new source ¢, is proposed at random from the prior distribution

for the directions of arrival

Pry+1 = (Prgys el
After straightforward algebra, the acceptance ratio for the birth move is (using eq.
(5.16))

eXPffy'(t)P;("’;(c)ﬂ)y(t) ) I
exp;‘g-y:(:)Pé(¢,,(,,)y(t) 1 +8)(k+1)

Thirth =

with corresponding acceptance probability given by
§birth = min{rbirtht 1}' (5.27)

If the move is accepted, then the amplitudes and noise variance parameters are then updated
in the same manner as described for the update move process.

The death move is just the reverse. A source, amongst the (k + 1) sources is randomly
selected to be removed. It is straightforward to show the new candidate, of dimension k, is

then accepted with probability

€death = min{ y1}. (5.28)

Thirth
The schemas for the birth and death moves are similar to that for the update move with
appropriate changes. However, for the birth move, if the candidate is accepted, the new
state becomes (k + 1,¢;,), otherwise, it remains at (k,¢;). For the death move, if the

candidate is accepted, the new state becomes (k, @;), otherwise, it remains at (k+1, ¢y,).
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Birth Move
e Propose a candidate vector of directions of arrival as follows:
¢Z+1 = [¢k’ ¢c]

e Evaluate &piren with eq. (5.27)
e Sample u ~ Uy
o if (4 < &piren) then

— The state of the Markov Chain becomes (k + 1, ¢ ),
— If desired, estimate ag41|k + 1, @, from eq. (5.15)

— update 02 and o2 from egs. (5.17) and (5.18) respectively.
else it remains at (k, ¢;).

Death Move

e Pick at random one direction of arrival among the (k + 1) existing DOAs
o Evaluate £4eq:n With eq. (5.28)

e Sample v ~ U

o if (u < €dearn) then

— The state of the Markov Chain becomes (k, ¢;),
— If desired, estimate ag|k, ¢, from eq. (5.15)

— update 02 and o2 from egs. (5.17) and (5.18) respectively.

else it remains at (k+ 1,5 ,,)-
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5.4.3 Split and merge moves

The split move proposes a candidate in a higher dimension model, as opposed to the merge
move, which in turn proposes a candidate in a lower dimension model. The split move is
designed to handle the situation where two DOA tracks separate after crossing. The merge
move corresponds to the case where two adjacent DOA tracks coalesce before crossing.
For the split move, two new sources ¢; and ¢; +1 are proposed as a replacement of the

source ¢; € ¢y, selected at random amongst the existing k sources
J k g
¢ = ¢; — uW,
¢;+1 = ¢] + uVV,

where W is some fixed and known parameter and u ~ Ujg,1j- These new angles are inserted
in the parameter vector, replacing the jth element, to produce a candidate vector ¢y, for

the split move as follows

Gier = [$6(1: G — 1)),65, 841,06 (G + 1) : )]

The merge move is just the reverse of the split move. A source, ¢;, amongst the first
k of the (k + 1) sources is randomly selected. A candidate source ¢ is proposed as the

superposition of two adjoining sources
#; = (¢; + dj+1)/2.

This combined angle is inserted in the parameter vector, replacing elements j and (j + 1)

to produce the candidate vector for the merge move as follows

¢; = [¢k(l : (J - 1)),¢;1¢k((1 +2) : (k + 1))]

The proposal functions for this pair of moves are defined as

Ak
Q(BLy1rk + Lar k) = p(k + 1)p(dhs k) o ﬁ———(v;k),
k Ak
a9t Muank + 1) =20+ () < T gy
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As opposed to the previously defined moves, the split/merge moves require the evalua-

tion of the Jacobian term in eq. (2.10). The Jacobian can be evaluated as

S¢

du

J=|3% 3 =L
3 i W
5 e

After some straightforward algebra, using eq. (5.16) and the candidate functions defined

above, the acceptance ratio for the split move is given as

exp [V ()P} (S0 )0(0)]
exp [V (O P (Bry)u(t)|

exp [5’ (¢i(¢)+1 = D)+ (t ~ 1)) (¢Z(¢)+1 — it — 1))]

exp [ﬁ%(d’k(z) (t) — Dry(t — 1)) (Dr(e) (£) — Pyt — 1))] (5.29)
1
8 2v2xoy(1 + 82)’

Tsplit =

X

Eaplit = min{rp, 1}. (5.30)

This acceptance probability does not depend on the hyper-parameter W. This split
move is attempted only if no original sources fall between the two proposed candidates,
such that the reverse move, the merge move, makes the sampling reversible. This measure
is necessary to satisfy the reversibility condition (Green, 1995), which in turn is sufficient
for the invariant distribution of the Markov chain to converge to the desired density.

Similar to the death move case, it is straightforward to show that the candidate vector
¢}, of dimension k is accepted with probability

1},

fmcrge = mjn{
Tsplit

For both the split and merge moves, the amplitude and noise variance parameters are also

updated in the manner described for the update move.

Split Move
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Pick at random one DOA element ¢;, amongst the first k existing directions. Evaluate:

¢ = ¢ —uW
¢;+1 =¢; +uW

Evaluate §,pi¢ with eq. (5.30)

Sample u ~ Ujg,y;

if (u< Eaplit)then

— The state of the Markov Chain becomes (k + 1, ¢% ),
— If desired, estimate @ag41|k + 1, ¢, from eq. (5.15)

— update o2 and o2, from egs. (5.17) and (5.18) respectively.

else it remains at (k, ¢;) .

Merge Move

Pick at random two adjacent directions of arrival among the (k + 1) existing DOA

#; = (¢ + $j+1)/2

Evaluate {merge With eq. (5.28)

Sample u ~ Ujg,y;

if (u< fmerge) then

— The state of the Markov Chain becomes (k, ¢}),
— If desired, estimate ai|k, ¢} from eq. (5.15)

— update 02 and o2, from eqs. (5.17) and (5.18) respectively.
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else it remains at (k + 1,¢.,) -

5.5 Simulation results

The proposed algorithm is now verified with simulated data, generated for the true number
of sources k, = 2, with parameters described in Table 5.1. The received array is circular
and composed of M = 8 elements. The parameters and observations evolve according to

the state space model egs. (5.1) - (5.3), with an initial SNR of 20dB, which is defined as

[
sngr = 2Lall) (5.31)
Uw
Parameter | o2 aZ ¢(0) a(l) o2

Value | 5deg?. 0.15 [70°,110°] [2—2j,4+j] 0.0707

Table 5.1: Parameters of the state-space model for simulated data

The hyperparameter is set to 42 = 100 in accordance with the initial SNR value, and the
hyperparameters vg, 1,70, are all set to zero, corresponding to a non-informative prior
on the respective variances. (Brief experiments have verified performance is robust to the
values of the hyperparameters). The DOAs are simulated using a first-order random walk,
with variance o2, thus generating a nonstationary DOA environment. The parameter k for
the model order is initialized at k(1) = 1 or k(1) = kmer (where kyqz is the maximum
allowable model order) and all the other parameters are initialized at random over their
respective parameter space. The initialization is therefore done blindly. The particle filter
uses N = 300 particles. We compare the performance of the SIS method with that of the
PASTd method (Yang, 1995a) with joint rank estimation.
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5.5.1 First scenario: change point in the number of sources

In this first scenario, the number of sources is initialized to k = 1, and is complicated by
a change point at ¢t = 50, when one of the sources vanishes. Figure 5.1 shows the results

obtained with the particle filter. It shows that the directions of arrival are well traced by
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Figure 5.1: Top: Sequential MAP estimates of the directions of arrival, and Bottom: the
number of detected signals, each vs. time, using the particle filter (Scenario A), initialized
to k(1) = 1. The finely dotted line shows the true values, and the coarsely dotted line gives
the estimated values.

their estimates throughout the entire tracking process and that the number of sources is
correctly estimated. Imitially, since k = 1, the algorithm tracks towards only one source,
until a birth move is accepted. The second source is then detected and later on correctly
estimated. The change-point was detected within one sample period and the estimates of
the parameters, following the change point, quickly adapt to the true values. The same
scenario is used in Figure 5.2, but the model order is initially set to kmaz = 5. Within 35
observations, the correct model order is determined, and the DOA trajectories follow the
true values. Again, the change point is detected within one sample period. It is therefore
seen that the proposed particle filter approach performs well under nonstationary conditions

and variations in the initial values of the parameters.
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Figure 5.2: Same as Figure 5.1, except the filter is initialized to k(1) = kmsr = 5. The
finely dotted line shows the true values, and the coarsely dotted line gives the estimated
values.

We now discuss the comparison of the particle filter results with those from the PASTd
algorithm. Due to the nonstationarity, the PASTd algorithm fails to give meaningful results
in this environment. In the nonstationary case, rank estimation fails as the number of
sources is always over-estimated and the DOA estimates obtained are smoothed versions of
the true values. This behaviour is typical of any algorithm which is based on time-averaged
statistics.

We therefore consider a simulation scenario which is more favourable to the PASTd
algorithm. In this case, the source DOAs are held steady at +30° for the first 500 obser-
vations. As shown on Figure 5.3, the PASTd algorithm with joint rank estimation is much
slower to converge to the true number of sources than the particle filter case, both initially
and after the change point. For this favourable case, the DOA estimates produced by the
algorithm include values which are close to the true values.
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Figure 5.3: Sequential estimates of directions of arrival using PASTd and root-MUSIC
(Scenario A). The finely dotted line shows the true values, and the coarsely dotted line
gives the estimated values.

5.5.2 Second scenario: sources crossing

In this subsection, we apply the previously developed algorithm to a scenario where the
source DOAs cross, thus verifying the performance of the split/merge move combinations.
In this scenario, the variance o2 of the update equation is reduced to 62 =1 deg? .

The same initial parameters as for the previous case are used. As verified in Figure
5.4, the algorithm performs well under these adverse conditions. As is evident from the
figure, the number of detected sources varies cleanly from 2—1 and back again in the region
where the tracks cross. Also, the algorithm shows no apparent tendency towards outliers
in the DOA estimates in the cross region, as is commonly exhibited with other algorithms.

When the sources cross, the steering matrix S(-) becomes rank one and hence the two
targets are seen as a single source, which explains the apparent miss-detection of a second
source during the period of time when they are very close. This scenario is more difficult
than the ones presented in Yang (1995b), as the sources here follow steep trajectories and
the variance between snapshots is high, making estimation of statistics by time-averaging

very difficult. As expected under these conditions, the performance of the PASTd method
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Figure 5.4: Top: Sequential estimates of the directions of arrival, using the particle filter
(Scenario B), and Bottom: corresponding number of detected sources. The finely dotted
line shows the true values, and the coarsely dotted line gives the estimated values.

is significantly degraded, as shown in Figure 5.5.

5.5.3 Data association via matching of probability distributions

The data association problem in our case becomes determining the most likely correspon-
dence of trajectories with DOA enumeration, particularly after the crossing of trajectories.
In our numerical framework, we can use the estimated posterior distributions of the param-
eters to perform the data association task. For example, we can compare first and second
moments of the approximate marginal distributions of the amplitude parameters before and
after crossing of the targets. Many other possibilities exist. Figure 5.6 shows an example
of data association using the (unnormalized) marginal distribution of the amplitudes of the
two sources for the above scenario. The first column shows the histograms of the two ampli-
tudes before the targets cross, while the second column shows the histograms after crossing.

In this case, from visual inspection, it is clear the diagonally opposite distributions match.
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Figure 5.5: Sequential estimates of directions of arrival using PASTd and root-MUSIC
(Scenario B). The finely dotted line shows the true values, and the coarsely dotted line
gives the estimated values.

5.5.4 Approximate joint confidence regions

An advantage of numerical approaches to parameter estimation is that an approximation
to the joint confidence region of the parameters is readily established from the histogram
approximating the joint posterior distribution of the parameters. Figure 5.7 shows a contour
plot for the joint histogram of the DOAs for the second scenario, at the 7th sample. The
probability level associated with the joint confidence region is determined by integrating

inside the respective contour of the normalized distribution.

5.5.5 Performance of the method

In this subsection, the proposed algorithm was applied to 50 different scenarios of 50 ob-
servations, for different values of SNR, in order to estimate the variance of the estimate as
a function of the SNR. A single source is tracked, and this information is used to help the
implementation of the PASTd algorithm. For each run, the first 25 sequential estimates
(considered in the acquisition mode) were discarded and the following 25 estimates were

used to get one sample of the variance. The results are compared with those obtained with
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Figure 5.6: Data association via the marginal posterior distributions of the amplitudes.

the PASTd method in Figure 5.8.

The limiting factor of the particle filter at high SNR is the number of particles. The
estimates are obtained as the MAP estimates of a histogram. Clearly, using more particles
will improve the variance of the estimates. The following figure, Figure 5.9, shows the
results. The same data was used to obtain each point of the figure, with the parameters set

as described in Table 5.1.

5.5.6 Further discussion

It is easily shown that as N — oo, the global optimum of the desired posterior distribution
coincides with the most heavily-weighted histogram bin corresponding to the particles. In
practice, the global optimum is achieved within a histogram bin-width with finite N with
high probability. Thus, the global optimum can be attained by a simple search, instead of
a complicated global optimization over what is shown in Figure 5.7 to be a multi-modal
surface.

The computational expense of the particle filter approach is fairly high, requiring O(N )'

function evaluations each time step. However, the evaluation of the particles is easily
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Figure 5.7: Contour lines of the approximate posterior distribution of the DOAs at the 7th
sample.

parallelizable, and this order of computation does not necessarily compare unfavourably
with that of a global optimization procedure. Further, the relative computational expense
of the method is offset by its advantages; namely, a joint detection capability and improved

performance in nonstationary environments.

5.6 Conclusion

In this chapter, a particle filter that includes a reversible jump MCMC with two new
components, the merge and split moves, is used for sequential joint detection and estimation
of an unknown number of sources and their corresponding directions of arrival.

The algorithm compares favourably to an established approach in computer simulations.
The algorithm proved robust to changes in initial values and shows robust convergence to
the global minimum. The superior performance of the particle filter over conventional
methods which use time-averaged statistics in nonstationary environments has been clearly
indicated. Examples of data association of tracks before and after crossing using histogram

matching, and of the joint confidence region of the parameter estimates, have been given.
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Figure 5.8: Performance of the tracking versus SNR.
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Figure 5.9: Performance of the tracking versus the number of particles.
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Chapter 6

Conclusion

This thesis discussed new approaches to various classical problems in array signal processing,
using modern numerical Bayesian methods. We showed how the Markov Chain Monte Carlo
(MCMC) and the Sequential Importance Sampling (SIS) methods present new outlooks and
offer many advantages to problems in the field.

This thesis presented the application of the Markov Chain Monte Carlo methods to the
joint problem of detection and estimation in coloured noise and the sequential implementa-
tion of Monte Carlo methods applied to probabilistic dynamic systems.

Very few methods tackled this joint problem of detection of the model order and esti-
mation of the parameters, particularly in unknown coloured noise with arbitrary covariance
and none are as flexible and adaptive.

Three problems were addressed in the course of this thesis.
1. A method for joint detection of the number of sources and estimation of their respec-
tive directions of arrival in coloured noise using MCMC methods was developed.

The method uses a single array of sensors and analytically integrates out the unknown
noise covariance matrix to leave a marginalized posterior distribution that is only a
function of the parameters of interest. The numerical optimization is accomplished

with the Reversible Jump MCMC method.

A criteria to ensure the consistency of the method was developed and its performance
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was demonstrated by simulations. Also, the performance of the estimation of the

parameters was compared successfully with the Cramér-Rao bound.

2. The second algorithm represents an extension of the first one with the addition of
the joint estimation of the times of arrival of the pulses. The emphasis lies on the
verification of the method using real propagation measurements taken around the

McMaster University campus.

In the spirit of channel sounding or channel characterization, the received signal is
composed of the superposition of multiple delayed and attenuated copies of the trans-
mitted signal. The objective is to detect the number of multipath components and

estimate their respective directions of arrival and excess propagation delays.

Both methods were successfully applied to real data, acquired on campus with a
channel sounder during the extensive measurement campaign previously mentioned.

It shows how these methods work in real-life.

3. The final part of this thesis focuses on the sequential implementation of the Monte
Carlo methods in particle filters for probabilistic dynamic systems. A lot of insight
on how to successfully implement such methods are provided throughout the chapter.

This algorithm proposes a solution to the problem of tracking an unknown number of
sources in white noise. At each snapshot, the joint posterior distribution of the number
of sources and their directions of arrival is recursively updated and optimized.

This method allows for the instantaneous estimate of the number of sources and
their evolving directions of arrival. In addition, by obtaining the marginal posterior
distribution of the nuisance parameters, one could perform a very simple, yet quite

effective, form of data association.

6.1 Contributions to the scientific literature

All the work presented in Chapters 3, 4 and 5 was published in various conferences and

three journal papers were submitted for publication.
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o Journal Papers

~ Particle Filters for Tracking an Unknown Number of Sources. (Larocque et al.,
2001b) Submitted to IEEE Transactions on Signal Processing, May, 2001.

~ Reversible Jump MCMC for Joint Detection and Estimation of Directions of
Arrival in Coloured Noise. (Larocque and Reilly, 2000b) Submitted to IEEE
Transactions on Signal Processing for the Special Issue on MCMC, October,
2000.

— Wideband Channel Characterization using the Reversible Jump MCMC. (Larocque
and Reilly, 2001b) Submitted to IEEE Transactions on Vehicular Technology,
June 2001.

e Conference Papers

— Sequential Monte Carlo for Spatial Signal Separation and Restoration. (Ng,
Reilly and Larocque) 2001 Workshop on Maximum Entropy and Bayesian Meth-

ods in Science and Engineering.

— Wideband Channel Characterization in Coloured Noise Using the Reversible Jump
MCMC. (Larocque and Reilly, 2001a) ICASSP 2001.

— On the Implementation of Particle Filters for DOA Tracking. (Larocque et al.,
2001a) Lecture at ICASSP 2001.

— Reversible Jump MCMC for Joint Detection and Estimation of Directions of
Arrival in Coloured Noise. (Larocque and Reilly, 2000c) IMA 2000, Nominated

for best student paper award.

— Application of the Reversible Jump Markov Chain Monte Carlo Method to Real-
Life Propagation Measurements. (Larocque and Reilly, 2000a) ICASSP 2000.

— On the Calibration of an Antenna Array. (Tranter et al., 1999) Symposium at
Virginia Tech, 1998.



Appendix A

Probability Density Functions

Definitions of selected probability functions that appear in the thesis (Bernardo and Smith,
1994).

Name Symbol Functional Form c

Beta Be(a, ) cz®"1(1 - z)f _11[[0.1](2) %%%{%’
Gamma G(a,B) cz* ! exp(—PB2)l[0,4+00)(2) y :
Inverted Gamma IG(a,8) ¢z 'exp(—B/z)l[g 4o0)(2) £ :

Real Normal  N(m,X) cexp(-}(z—-m)TE"!(z — m)) |27 x| ~1/2
Complex Normal N(m,E) cexp(—(z—-m)'Z~!(z —m)) |wZf?
Complex Wishart ~ W(A) LIA|N-Pexp(—trE-1A) x 3P| gV

x [T, T(NV — i + 1))
Poisson P()\) cArIn(z) exp(—A)
Exponential Ezp(A) cexp(—2z) A

Table A.1: Definition of selected probability density functions
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Appendix B

Recursivity of Particle Filters

This appendix shows how to obtain the recursive form of the posterior equation (2.13)

P(YerilTer1)p(zes1le)
P(yt+1|y1::)

P(21:t+1|ylzt+1) = p(@1:¢|¥1.¢)

We start with the application of Bayes’ theorem,

P(!ll:t+1 [®1:441)P(®1:041)
P(y1:¢+x)

p(xr:e+1|Y1:041) =
Since the observation noise is assumed tid, the conditional terms are assumed indepen-
dant and the total likelihood term can be expanded one step into

P(yt+1|3t+1)P(y1:z|31:t)P(21:¢+1)
P(y1::+1)

.

P(let+1|y1:t+1) =

Applying once more Bayes’ theorem on the diminished total likelihood term, we get,

p(y1.)p(®1:041)
P(Y1.041)P(Z1:) .

P(=1:1+1|y1:t+1) = P(zl:tlylzt)p(yt+llzt+l)
Expanding the total density function of = as (also for y),
p(x1:t41) = p(@e1|Zr0)p(@el®1:0-1) - - - P(20),

and simplifying the common terms in the numerator and denominator, we obtain

p(Tesr|®1:e)

Z1t+1|¥1041) = P(@1:|Y1.)P(Y g1 [Te41) .
p( 1:t+1] 1¢+1) 1:t t+11%t+ p(yt-{—llyl:t)
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Applying the first order Markovian property of the model, the previous equation sim-
plifies to

P |®e1)D(Zes1|2e)
P(!lt-H lye)

p(E1:041|¥1.041) = P(Z1:ely1e)

*

which is the desired recursive form. QED.

When the proposal function satisfies the following recursivity condition

g(@re+1|Y1:041) = A(@12|Y10)0(Ter1 T2 Y1041 )
the importance weights can be evaluated recursively.
The importance weights are defined as

Bt+1) = P(-Tl:t+1|yl:z+1)_
9(31:t+1|y1:t+1)

Replacing the distributions by their corresponding definitions, we get

P(Z1:2|Y1:0)P(Y 41| Tes1)P(Te 1| 2e)

w(t+1)= .
( P(yz+1|y¢)41(21:t|U1:t)Q(3t+1|31:t,y1:¢+1)
Recognizing that
ﬁ}(t) — p(zl:tlyl:t)’
Q(zlitlylzt)

we can obtain the recursive form of the unnormalized importance weights as,

P(yt+1 [®e+1)p(®es1]Te)
q(es1|Z1:e ym+1)

w(t +1) = w(t)
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